

FUNCTIONAL SERVICING STUDY LEBRETON FLATS PLAN OF SUBDIVISION

September 6, 2024

Prepared for: National Capital Commission

Prepared by: Stantec Consulting Ltd.

Functional Servicing Study LeBreton Flats Plan of Subdivision

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date
0	1 st Submission Draft Plan of Subdivision	MW	2024- 07-23	DT	2024- 07-23	KS	2024- 07-23
1	Draft Plan Application	MW	2024- 08-30	PM	2024- 09-05	KS	2024- 09-05

(

Functional Servicing Study LeBreton Flats Plan of Subdivision

The conclusions in the Report titled Functional Servicing – LeBreton Flats Plan of Subdivision are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from National Capital Commission (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

	Mirchaelm
Prepared by:	Signature
	Michael Wu, EIT
	Printed Name
Reviewed by:	R Pl
	Signature
	Peter Moroz, P.Eng.
	Printed Name
Approved by:	Komadala
	Signature
	Karin Smadella, P.Eng.
	Printed Name

(

Table of Contents

	ONtext	
	3	
3 WATER SERV 3.1 Background 3.2 Functional Wate 3.2.1 Water Distribution	r Servicing Design	
3.2.3 Fire Flow Demai 3.2.4 Boundary Condi 3.3 Hydraulic Asses 3.3.1 Level of Service 3.3.2 Average Day De 3.3.1 Peak Hour Demai 3.3.2 Maximum Day D	Demands nds tions sment emand (AVDY) and (PKHR) Demand + Fire Flow (MXDY+FF)	8 9 9 10
 4.1 Background 4.2 Wastewater Ger 4.3 Functional Sanit 4.3.1 Functional Layor 4.3.2 Sanitary Pump S 	R SERVICING neration and Servicing Design ary Servicing Design ut Station	14 15 15 15
 5.1 Background 5.2 Stormwater Man 5.3 Functional Storn 5.3.1 Pre-Developmer 5.3.2 Post-Developme 5.4 Functional Storn 5.5 Major System FI 	R MANAGEMENT AND STORMWATER SERVICING	
6 SITE GRADIN	G	29
7 UTILITIES		30
8 MUNICIPAL R	IGHTS-OF-WAY	31
		_
	D SEDIMENT CONTROL DURING CONSTRUCTION	
11.1 Geotechnical Inv11.2 Environmental S	AL AND ENVIRONMENTAL CONSIDERATIONS	34 34

12	CONCLUSIONS AND RECOMMENDATIONS	36
12.1	Potable Water Servicing	
12.2	Wastewater Servicing	
12.3	Stormwater Management	
12.4	Utilities	
12.5 12.6	Municipal Right's of WayGrading	
12.0	Approvals/Permits	
_	OF TABLES	0
	3.1: Water Demands	
	3.2: Boundary Conditions	
	4.1: Estimated Total Wastewater Peak Flow	
	4.2: Comparison of demands with CIMA+ MSS allocations	
	5.1: Target Release Rate	
	5.2: Summary of Post-Development Subdrainage Areas	
	5.3: 100-Year Storage Requirements for Block Areas and ROWs	
	5.4: Major System Spillage at Albert/Preston	
I IST (OF FIGURES	
	1.1: LeBreton Flats Subdivision Lands	1
	1.1.2: Proposed Site Development Plan (Appendix D, LeBreton Flats Infrastructure and	
Remed	diation Project: Master Servicing Report, Dessau-Soprin, 2004)	3
Figure	1.3: Master Servicing Plan Block Layout of LeBreton Flats Master Concept Plan (Master S	ervicina
	:: Renewed Master Concept Plan & Development Strategy, CIMA+, 2021)	
	3.1: AVDY Pressure Results	
	3.2: PKHR Pressure Results	
Figure	3.3: Fire Flow Results – Residual Pressure and Available Fire Flows	12
	4.1: Sanitary Drainage Outlets	
	5.1: External Stormwater Drainage Area Crossing Albert Street (LeBreton Flats Master Se	
Report	Amendment, Parsons, June 2019)	22
LIST (OF APPENDICES	
	NDIX A BACKGROUND	
A.1 A.2	Draft Plan and Densities	
		∠
	NDIX B WATER SERVICING	
B.1	Domestic Water Demands	
B.2	Boundary Conditions	
B.3	Preliminary Hydraulic Analysis	5
	NDIX C SANITARY SERVICING	6
C.1	Sanitary Sewer Design Sheet	
C.2	Proposed Preliminary Pump Station Design Memo	7
APPE	NDIX D STORMWATER MANAGEMENT	8
D.1	Modified Rational Method Calculations	
D.2	Storm Sewer Design Sheet	
D.3	Quality Control MTD Sizing Calculations	10
D.4	Conceptual Major System PCSWMM Model Input/Output Files	11

Functional Servicing Study LeBreton Flats Plan of Subdivision

LIST OF DRAWINGS

Drawing EX-STM-1 – Existing Storm Drainage Plan Drawing STM-1 – Functional Storm Sewer System

Drawing SAN-1 – Functional Sanitary Sewer System

Drawing WTR-1 – Functional Watermain System

Drawing GP-1 – Functional Grade Control Plan

Drawing EC-1 - Erosion and Sediment Control Plan

Drawing DS-1 – Detail Sheet

Drawing PP-STM – Storm Outlet Plan and Profile Preliminary

Project Number: 160401780

iii

1 Introduction

Stantec Consulting Ltd. has been retained by the National Capital Commission (NCC) to prepare a Functional Servicing Study for the LeBreton Flats Plan of Subdivision in support of a Draft Plan of Subdivision application. The subdivision lands are currently zoned Parks and Open Space (O1), General Mixed-Use Zone (GM7), and Residential Fifth Density Zone (R5), and is bordered by Wellington Street and the Kichi Zibi Mikan Parkway to the north, the O-Train Trillium Line rail corridor and Trillium Pathway to the west, Albert Street to the south, and Booth Street to the east. The subdivision lands are shown in blue in **Figure 1.1** below. Other lands owned by the NCC subject to the LeBreton Flats Master Concept Plan are identified in green. These lands fall outside of the plan of subdivision and development of the parcels will be approved in the future through Site Plan Control.

Figure 1.1: LeBreton Flats Subdivision Lands

The 21.5 ha subdivision development comprises of a total of 19 blocks, with public roadways and private lanes. The subdivision will include a block for an NCC park, a block for a municipal park and a block over the covered aqueduct to be conveyed to the City of Ottawa. The Confederation Line rail corridor and the open aqueduct bisect the subdivision lands. The draft plan of subdivision has been prepared by Stantec Geomatics Ltd. dated March 12, 2024, and density tables are included **Appendix A.1**.

The intent of this report is to build on the servicing principals outlined in the earlier master servicing studies to develop a servicing strategy specific to the subject site. The report will establish criteria for future detailed design of the subdivision in accordance with the associated background studies, City of Ottawa Design Guidelines, and all other relevant regulations.

1.1 Master Plan Context

In 1962, pursuing the modernist vision set out in the 1950 Gréber Plan, the federal government expropriated lands and cleared much of LeBreton Flats. The plan was to use the site as a federal office campus, but it was never fully realized. In subsequent years, efforts were undertaken to determine a suitable future for this important site.

In 1989, the NCC, the former Regional Municipality of Ottawa-Carleton (RMOC), and the City of Ottawa launched a joint planning process. The issues that were addressed and recommendations that were endorsed by all three parties included:

- the Transitway alignment;
- the condition of the heritage aqueduct and related bridge crossings;
- the reinforcement of the street grid;
- environmental assessment processes; and
- the sanitary sewer servicing capacity.

This process led to a land agreement that consolidated land ownership under the NCC and created the 1997 LeBreton Flats Master Plan. It analyzed and developed policies for density, land uses, urban design, servicing, roads, and the environment. The master plan was approved by Official Plan amendment in 1997, adopted following the Ontario Municipal Board decision in 1999, and zoning was updated by the City of Ottawa in 2000. The 1997 Plan still forms much of the policy basis that applies to the site today.

In 2002, the NCC hired Dessau-Soprin to complete a Master Servicing Study for LeBreton Flats and the Master Serving Plan (LeBreton Flats Infrastructure and Remediation Project: Master Servicing Report, 2004) was submitted and approved under the Municipal Class EA Process. The Site Development Plan from the 2004 Master Servicing Report is included in **Figure 1.2** below.

Based on that 2004 Master Servicing Study, in 2005 the NCC and the City entered into a servicing agreement to construct a new sanitary pumping station at LeBreton Flats. Pursuant to the agreement, the NCC undertook the environmental assessment in accordance with the Canadian Environmental Assessment Act and financed the design and construction of the facility, while the City obtained the provincial requirements. In 2008, the NCC built the LeBreton Flats Sanitary Pumping Station to accommodate the anticipated servicing requirements for the full build-out of LeBreton Flats. The NCC then transferred ownership of the pumping station to the City for operation and maintenance.

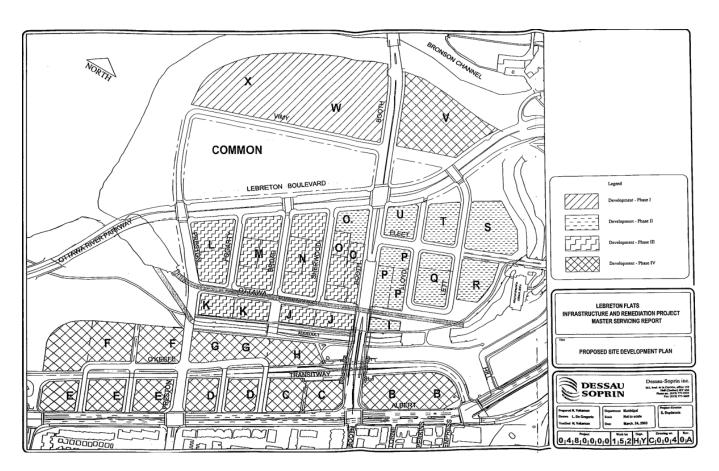


Figure 1.1.2: Proposed Site Development Plan (Appendix D, LeBreton Flats Infrastructure and Remediation Project: Master Servicing Report, Dessau-Soprin, 2004)

In 2014, motivated to enhance the attractiveness of the Capital and bring civic life back to LeBreton Flats, the NCC launched a competitive process seeking a development proposal for the entire site. With the cancellation of that process in 2019, the NCC chose to lead a new approach that would establish a comprehensive vision for LeBreton Flats, re-establishing the area as a Capital destination and a vibrant community. That new vision finds its expression in the 2021 LeBreton Flats Master Concept Plan (MCP), which serves as the guiding document for the draft plan of subdivision.

Supporting development of the LeBreton Flats MCP, the Master Servicing Report: Renewed Master Concept Plan & Development Strategy by CIMA+ was completed in 2021. The report is based on the 2004 Dessau-Soprin report and incorporates minor updates to reflect updated site conditions and the updated vision and plan for LeBreton Flats. While the CIMA+ report was not formally approved by the City of Ottawa, City staff reviewed the report and contributed to its development in support of the Master Concept planning process. See figure below of the block layout used in the master servicing report (CIMA+, 2021).

Figure 1.3: Master Servicing Plan Block Layout of LeBreton Flats Master Concept Plan (Master Servicing Report: Renewed Master Concept Plan & Development Strategy, CIMA+, 2021)

As required under the West Downtown Core Secondary Plan, the master servicing study is to be updated for the LeBreton Flats MCP area prior to development as outlined by Policy 7 under Section 10.2 from the Pimisi and LeBreton Flats District chapter:

The City shall require an updated master servicing study for the district, prior to development of lands within the LeBreton Flats Master Concept Plan area, west of Booth Street.

The intent of this report is to fulfill this policy condition by preparing a Functional Servicing Study for the subdivision lands west of Booth Street, maintaining the overall intent of the 2004 Dessau-Soprin report while building on the servicing principles outlined in the LeBreton Flats Master Servicing Report (CIMA+, 2021) to develop a servicing strategy specific to the subject site to support the draft plan of subdivision.

This report demonstrates that the municipal servicing can support the proposed development, establishes the functional design for future detailed design of the subdivision and the design criteria for the detailed design of the subdivision development blocks subject to future Site Plan Control approval.

Functional Servicing Study LeBreton Flats Plan of Subdivision 1 Introduction

The overall development plan for LeBreton Flats has evolved from the 1997 LeBreton Flats Master Plan to reflect the current vision and address the impacts of the Confederation Line. The West Downtown Core Secondary Plan was developed based on the current MCP for LeBreton Flats and this update to the Master Servicing Study addresses the land uses, road network, and densities established in the master plans while meeting current design criteria.

2 References

The following documents were referenced in the preparation of this report:

- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012 (and all subsequent technical bulletins).
- City of Ottawa Design Guidelines Water Distribution, Infrastructure Services Department, City of Ottawa, First Edition, July 2010 (and all subsequent technical bulletins).
- LeBreton Flats Master Concept Plan, NCC, 2021
- LeBreton Flats Infrastructure and Remediation Project, Master Servicing Report, Dessau Soprin, February 2004
- LeBreton Flats Master Servicing Report Amendment (Draft), Parsons, June 2019
- Building LeBreton Master Servicing Report Renewed Master Concept Plan & Development Strategy, CIMA+, March 2021
- Geotechnical Desktop Review: The LeBreton Flats Plan of Subdivision, Stantec Consulting Ltd., May 7, 2024.
- Draft Phase One Environmental Site Assessment, LeBreton Flats, Stantec Consulting Ltd., February 2024.
- LeBreton Flats Hydrogeological Memo, Stantec Consulting Ltd., July 4, 2024.
- LeBreton Flats Master Concept Plan, National Capital Commission, 2021
- Cave Creek Collector Realignment (Preliminary Design Drawings), Robinson Consultants, January 23, 2024.
- Albert/Queen/Slater Renewal (Construction Drawings), Parsons, June 20, 2022.
- Albert Street Reconstruction (Drawings), Robinson Consultants, August 28, 2014.
- Low Pressure Transmission Main Replacement Program Lemieux Island WPP to Fleet Street (Asbuilt Drawing), Stantec Consulting Ltd., March 2007.
- Confederation Line Guideway Design Segment 1 (As-built Drawings), RTGE Joint Venture / MMM Group, July 22, 2019.
- The Canada Central Railway Bridge General Arrangement (Record Drawing), Stantec Consulting Ltd. / Morrison Hershfield, November 12, 2001.

3 Water Servicing

3.1 Background

The proposed development is located within Pressure Zone 1W of the City of Ottawa's water distribution system. The development will be serviced with proposed connections to existing watermains along the boundaries of the development. These include the 406 mm diameter PVC watermains in Albert Street and Booth Street, and the 305 mm diameter PVC watermain in Wellington Street. A 1676 mm concrete backbone watermain is located within the open aqueduct and a 1220 mm diameter backbone watermain is located within Albert Street. These are critical components of the City of Ottawa water infrastructure that are not to be impacted as part of the subdivision development.

3.2 Functional Water Servicing Design

3.2.1 WATER DISTRIBUTION LAYOUT

The functional layout of the municipal water distribution system ensures the servicing of all development blocks based on the NCC Master Concept Plan, planned densities and applicable design criteria. The functional layout of the water distribution system in shown on **Drawing WTR-1**.

Watermains within the new public roads will be fed through connections to the existing watermains Albert Street, Booth Street and Wellington Street. Watermain stubs were installed with the construction of the 305 mm watermain in Wellington Street and the 406 mm watermain in Albert Street in anticipation of future connections for the servicing of the LeBreton Flats Subdivision. It is assumed that these stubs will be used as connection points for the municipal servicing where possible and will be confirmed through the detailed design phase.

The water distribution layout ensures that development blocks can be designed with redundant supply through secondary connections to the proposed distribution system. Block 6 can be provided with redundancy with a service connection to the 406 mm Albert Street watermain. The detailed design of each block will form part of future site plan development applications. The NCC park does not have frontage on a public watermain, as such, a private water service will be required to cross the Block 19 park to service the NCC park. Size and alignment of the services will be established as part of the future detailed design of the parks.

The watermains have been sized to meet City of Ottawa design criteria for pressure and flow for both domestic and fire flow demands.

3.2.2 DOMESTIC WATER DEMANDS

Preliminary water demands were estimated based on the assumed development densities and gross parcel areas established by the NCC in accordance with the West Downtown Core Secondary Plan. The density table is included in **Appendix A.1.**

7

The City of Ottawa's Water Distribution Guidelines (July 2010), ISD-2010-02 and ISTB 2021-03 Technical Bulletins were used to determine water demands based on projected population densities for residential areas and peaking factors. The population was estimated using an occupancy of 1.8 persons per apartment unit and 2.7 persons per townhome.

A daily rate of 280 L/cap/day has been used to estimate average daily (AVDY) potable water demand for residential areas, 28000 L/gross floor ha/day for commercial areas, 225 L/bedspace/day for hotels. A density of 185.3 persons/ha was assumed for the park blocks with a water demand of 20 L/persons/day based on the picnic and flush toilet demands from the City of Ottawa Sewer Design Guidelines.

Maximum day (MXDY) demands were determined by multiplying the AVDY demands by a factor of 2.5 for residential areas and 1.5 for commercial areas, hotels, and parks. Peak hourly (PKHR) demands were determined by multiplying the MXDY by a factor of 2.2 for residential areas and 1.8 for commercial areas, hotels, and parks. The estimated demands are shown in **Table 3.1** below and detailed in **Appendix B.1**.

Demand Type	Area (ha)	Total Units	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Residential	-	4448	8276	26.8	67.0	147.5
Commercial	6.7	-	-	2.3	3.5	6.3
Hotel	-	305	-	1.6	2.4	4.3
Parks	9.3	-	-	0.5	0.8	1.4
Total	16.5	4448	8276	30.3	72.3	156.9

Table 3.1: Water Demands

3.2.3 FIRE FLOW DEMANDS

At the draft plan level, no details pertaining to the building footprints for each block are available. Therefore, a fire flow demand of 200 L/s (12,000 L/min) was assumed based on the Simple Method for a typical family dwelling in a subdivision summarized in Table 8 of the 2020 FUS, in which the 200 L/s is the worst-case scenario. This conservative estimate, which is applied to all blocks, exceeds the fire flow demands of non-combustible and sprinklered buildings that are anticipated for the development. Further details of the fire flow demands will be provided once the building construction and floor area details are made available at the detailed design stage for each site plan block.

3.2.4 BOUNDARY CONDITIONS

The estimated domestic water and fire flow demands were used to define the supply required for the proposed development from the existing watermains. **Table 3.2** below summarizes the boundary conditions received from the City of Ottawa on June 24, 2024. A copy of the boundary condition correspondence and the accompanying schematic received from the City of Ottawa is included in **Appendix B.2**.

Table 3.2: Boundary Conditions

Street	Wellington			Booth	Albert			
Connection	1	2	3	4	5	6	7	8
Min. HGL (m)	107.4	107.4	107.4	107.5	107.6	107.6	107.6	107.6
Max. HGL (m)	115.2	115.2	115.2	115.2	115.1	115.0	115.0	114.9
MXDY + FF (200 L/s) (m)	105.0	106.5	107.1	108.4	110.1	109.9	110.0	110.0

3.3 Hydraulic Assessment

3.3.1 LEVEL OF SERVICE

A preliminary watermain network was compiled and modeled on PCSWMM to verify adequacy of watermain pressures to service the subdivision, based on the provided boundary conditions from the City. Through the City of Ottawa Design Guidelines, the normal demand conditions (average day, maximum day and peak hour) should be in the range of 350 kPa to 480 kPa (50 psi to 70 psi) and no less than 275 kPa (40 psi) at the ground elevation on the streets (i.e., at hydrant level).

As per the Ontario Building Code (OBC) & Guide for Plumbing, if pressures greater than 550 kPa (80 psi) are anticipated, pressure relief measures are required. The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). Under emergency fire flow conditions, the minimum pressure objective in the distribution system is 138 kPa (20 psi).

Hazen-Williams coefficients ("C-Factors") are applied to the simulated watermains in accordance with the City of Ottawa's Water Distribution Design Guidelines and as shown in **Table 3.3** below.

Table 3.3: Proposed Watermain C-Factors

Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
> 600	130

Results of the preliminary watermain hydraulic analysis is available in Appendix B.3.

3.3.2 AVERAGE DAY DEMAND (AVDY)

The hydraulic modeling results indicate that under the average day demand, the pressure in the proposed watermain ranges from 550 kPa to 614 kPa (79.8 psi to 89.1 psi). These pressures exceed the serviceable limit of 276 kPa to 550 kPa (40 psi to 80 psi) as specified in the City of Ottawa Design Guidelines - Water Distribution, indicating that pressure reducing valves may be required for the development. Results are shown in **Figure 3.1** below. Requirements for pressure-reducing measures will

be confirmed by the mechanical or civil engineering consultant at the future detailed design phase for the residential and park development blocks.

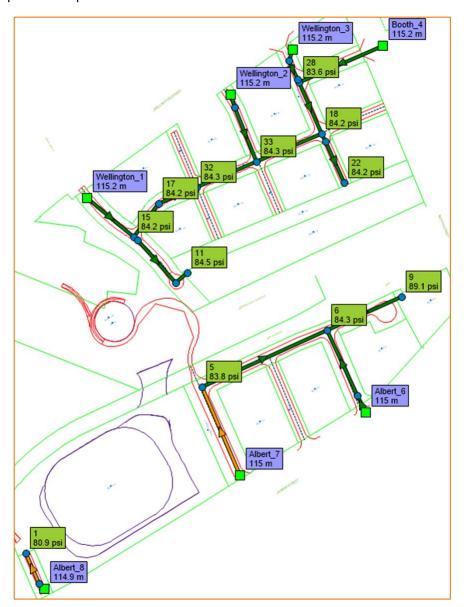


Figure 3.1: AVDY Pressure Results

3.3.1 PEAK HOUR DEMAND (PKHR)

The hydraulic modeling results indicate that under the peak hour demands, the pressure in the proposed watermain ranges from 477 kPa to 539 kPa (69.2 psi to 78.2 psi). These pressures are within the serviceable limit of 276 kPa to 552 kPa (40 psi to 80 psi) as specified in the City of Ottawa Design Guidelines – Water Distribution. Results are shown in **Figure 3.2** below.

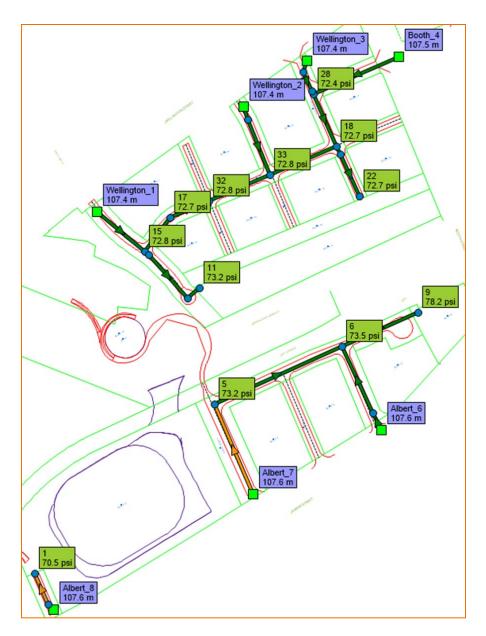


Figure 3.2: PKHR Pressure Results

3.3.2 MAXIMUM DAY DEMAND + FIRE FLOW (MXDY+FF)

The hydraulic modeling was also used to assess the maximum day and fire flow demands while maintaining a residual pressure of 138 kPa (20 psi), per the City of Ottawa Design Guidelines – Water Distribution. The modeling is conducted using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of H2OMAP. The fire flow demand is set to 200 L/s as per the demands noted in **Section 3.2.3**.

Figure 3.3 illustrates that the proposed networks can deliver flows exceeding 200 L/s while maintaining the required residual pressure of 138 kPa (20 psi).

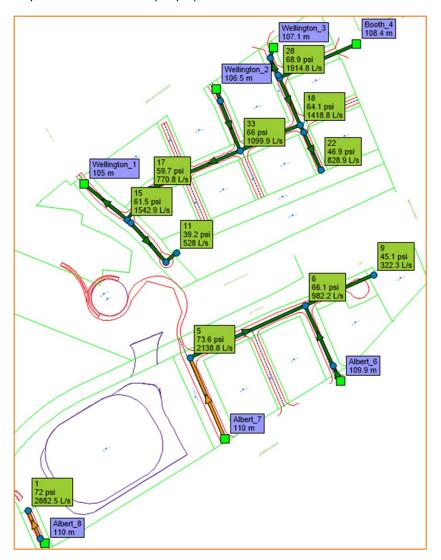


Figure 3.3: Fire Flow Results - Residual Pressure and Available Fire Flows

3.4 Conclusion

The proposed watermain alignment and sizing can achieve the required level of service within the LeBreton Flats subdivision. Based on the hydraulic analysis, the following conclusions were made:

- The proposed water distribution system is recommended to include a combination of 200 mm, and 300 mm diameter watermains.
- During peak hour conditions, the proposed system is capable of operating above the minimum required pressure of 275 kPa (40 psi).

 Under fire flow conditions, the proposed networks can provide sufficient fire flows (200 L/s and above) while maintaining a residual pressure of 138 kPa (20 psi) in the LeBreton Flats development.

Watermain sizing and hydrant placement will be confirmed as part of the detailed design of subdivision.

4 Wastewater Servicing

4.1 Background

The LeBreton Flats subdivision lands are located within the central core of the City of Ottawa immediately adjacent to the Ottawa River. Public wastewater infrastructure is available to service the subdivision lands. The 1050 mm diameter Cave Creek Collector (CCC) sanitary sewer, crosses the southern portion of the development land (Block 2, Block 4 and Street 4). Design is underway for the realignment of the CCC. The CCC is intended to be relocated to the Albert Street ROW (by others) prior to the development of the impacted subdivision blocks. 250 mm diameter and 300 mm diameter sanitary sewers on Wellington Street, and a 375 mm diameter sanitary sewer on Booth Street also front the subdivision lands. These sewers direct wastewater to the LeBreton Flats Pumping Station (LFPS) via Fleet Street. The LFPS was designed to service the full buildout of LeBreton Flats subdivision north of the closed aqueduct, including the existing Claridge development and the Canadian War Museum. A flow allotment was also assigned for potential future development of Victoria Island. The design and construction of the LFPS was funded by the NCC.

4.2 Wastewater Generation and Servicing Design

The following criteria have been used to calculate the estimated wastewater flow rates and to determine the size and location of the sanitary sewers. Design criteria are in accordance with the City of Ottawa Sewer Design Guidelines, and the Ministry of Environment Conservation and Parks (MECP) Design Guidelines for Sewage Works. Park design criteria are consistent with previous background studies.

- Minimum velocity = 0.6 m/s (0.8 m/s for upstream sections)
- Maximum velocity = 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes = 0.013
- Minimum size of sanitary sewers inside the greenbelt = 250 mm
- Minimum grade of sanitary sewer service = 0.34% (0.65% where less than 10 contributing residential units)
- Residential average wastewater generation = 280 L/person/day
- Commercial average wastewater generation = 28,000 L/gross floor ha/day
- Hotel average wastewater generation = 225 L/bedspace/day
- Picnic space and flushing toilets average wastewater generation = 20 L/persons/day
- Residential Peaking Factor = based on Harmon Equation; maximum of 4.0, minimum of 2.0

Project Number: 160401780 14

- Commercial and Hotel Peaking Factor = 1.5
- Park Contingency Factor = 25 %
- Harmon correction factor = 0.8
- Infiltration allowance = 0.33 L/s/ha
- Minimum cover for sewers = 2.5 m
- Population density for apartment units = 1.8 persons/unit
- Population density for townhome units = 2.7 persons/unit
- Bedspace per hotel unit = 2 bedspaces/hotel unit
- Population density for park areas = 183.5 persons/ha

4.3 Functional Sanitary Servicing Design

4.3.1 FUNCTIONAL LAYOUT

The functional layout of the municipal sanitary collection system ensures the servicing of all development blocks based on the NCC Master Concept Plan, planned densities and applicable design criteria.

The functional servicing layout and drainage area plan for the LeBreton Flats Plan of Subdivision is detailed on **Drawing SAN-1**. The LeBreton Flats development will be serviced by two separate networks of sanitary sewers. Wastewater from the subdivision lands north of the covered aqueduct will outlet to the 375 mm diameter sanitary sewer in Booth Street, which directs flow to the LFPS via Fleet Street. Wastewater from the subdivision lands south of the covered aqueduct will outlet to the Cave Creek Collector (CCC). In **Figure 4.**1 below, lands serviced by the LFPS are green and those serviced by the CCC are shown in pink.

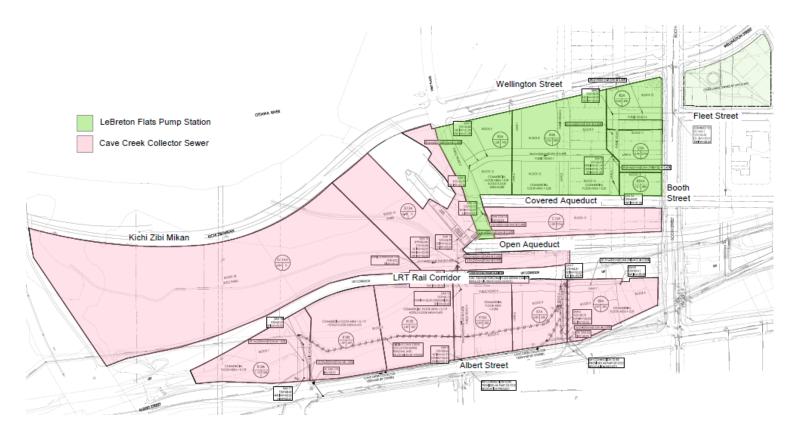


Figure 4.1: Sanitary Drainage Outlets

There is no restriction to flows directed to the CCC, however, the LFPS has a firm rated capacity of 100 L/s. The remaining available capacity in the LFPS has been allocated to the subdivision lands north of the covered aqueduct and to development lands outside of the LeBreton Flats Subdivision. A peak flow rate of 40.95 L/s has been allocated to the LeBreton Flats Subdivision.

A network of sanitary sewers will service the subdivision lands with connections to the existing municipal sewers within Booth Street and Albert Street as outlined in earlier master servicing studies. New municipal sewers will be located within the public roadways to provide a wastewater outlet for each of the development blocks and park blocks.

Functional design flows were estimated based on the assumed development densities and gross parcel areas established by the NCC in accordance with the West Downtown Core Secondary Plan. The density table is included in **Appendix A.1**. Although the density table assumes primarily residential and hotel use for Block 2, the proposed municipal sanitary sewers have the capacity to service the block should it become a major events centre.

A sanitary pumping station will be required to service the sanitary sewers receiving flows from the Block 17 (commercial/office) and park blocks 18 and 19 due to their relative elevation to the municipal gravity sewers and the need for the transmission infrastructure to cross the open aqueduct and the rail corridor. City of Ottawa Wastewater Operations have advised that the sanitary pump station will require back up power, dual forcemains and vehicular access. The have also specified that the infrastructure crossing the

rail line is required to be sleeved. The functional location and layout of the proposed pumping station (Option 1 per section 4.3.2 below) is included on **Drawing SAN-1**. Peak design flow to the station is calculated to be 2.6 L/s as detailed in the sanitary design sheet included in **Appendix C.1**.

The proposed design peak flows for the subdivision to each outlet are outlined in **Table 4.1** below and detailed in **Appendix C.1**. As shown in **Table 4.2** below, the design peak flows fall within the allotted capacity from the CIMA+ MSS.

Residential Hotel Park Commercial Total Infiltration Peak **Population** Peak Peak Peak Peak Area Peak Peak Outlet Flow (L/s) Flow **Flow** Flow **Flow Flow Factor** (ha) **Factor** (L/s) (L/s) (L/s) (L/s) (L/s) LFPS 4104 2.86 38.0 8.0 0.66 1.5 0.2 1.5 40.5 CCC 4172 38.6 6.04 2.85 1.6 0.5 1.5 2.9 5.5 52.7 **Total Estimated Wastewater Peak Flow (L/s):** 93.2

Table 4.1: Estimated Total Wastewater Peak Flow

Table 4.2: Comparison of demands with CIMA+ MSS allocations

Outlet	Sanitary Peak Flows for Draft Plan of Subdivision (L/s)	LeBreton Flats MSS (CIMA+, 2021) Sanitary Flow Allocation (L/s)
LFPS	40.57	40.95
CCC	52.67	66.99

4.3.2 SANITARY PUMP STATION

The existing infrastructure crossing the site and the relative elevations of the land and existing sewer outlets constrain the servicing of the lands between the covered aqueduct and the Confederation Line rail corridor. A small sanitary pumping station is required as part of the sanitary servicing infrastructure to service Block 17, the City park block, and the NCC park block.

Options for the pump station siting were evaluated based on the station requirements and constraints. A technical memo and schematics examining the options has been included in **Appendix C.2.** The memo includes the functional layout of both options. Option 1 is depicted on the Functional Sanitary Sewer System layout, **Drawing SAN-1** and is the recommended option based on the review of pros and cons identified.

The wet well will receive wastewater flow from the two parks and Block 17 by gravity where sewage will be pumped across the rail corridor. The forcemains will outlet to SAN 10 within Public Road 4 where sewage will flow by gravity to the CCC. The detailed design of the pump station will form part of the detailed design of the subdivision.

4.4 Conclusion

The proposed sanitary sewer alignment and sizing can achieve the required level of service for the LeBreton Flats subdivision development.

The capacity of the receiving wastewater systems can accommodate design flows based on proposed densities.

A small sanitary pump station will be required to service the blocks that do not have a gravity outlet to the municipal collection system, Blocks 17, 18 and 19.

The detailed design of the sanitary collection system and components will be established as part of the detailed design of subdivision.

5 Stormwater Management and Stormwater Servicing

5.1 Background

The objective of this stormwater management plan is to determine the measures necessary to control the quantity and quality of stormwater released from the proposed development to the design criteria established in earlier Master Servicing Studies and subsequent pre-consultation with City of Ottawa staff.

5.2 Stormwater Management (SWM) Design Criteria

The Stormwater Management (SWM) criteria are established by combining current design practices outlined by the City of Ottawa Sewer Design Guidelines (SDG) (October 2012), as amended, consultation with City of Ottawa staff, and review of the LeBreton Flats MSS (LFMSS) and other background studies. The following summarizes the criteria, with the source of each criterion indicated in brackets:

General

- Use of the dual drainage principle (City of Ottawa SDG)
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff (City of Ottawa SDG)
- Assess impact of 100-year event outlined in the City of Ottawa Sewer Design Guidelines on the major and minor drainage systems (City of Ottawa SDG)

Storm Sewer and Inlet Controls

- The minor system will be designed to convey the 5-year post event, and quantity control will be required for the individual blocks up to and including the 100-year event (LFMSS, CIMA+ 2021)
- Discharge from the blocks and ROWs should be controlled to the 5-year storm event with C=0.70 (City of Ottawa pre-consultation).
- Tc should be not less than 10 minutes (City of Ottawa SDG).

Surface Storage and Overland Flow

- Building openings to be a minimum of 0.30 m above the 100-year water level (City of Ottawa SDG)
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35 m for local streets (City of Ottawa SDG)

3

Project Number: 160401780 19

Functional Servicing Study LeBreton Flats Plan of Subdivision 5 Stormwater Management and Stormwater Servicing

 Provide adequate emergency overflow conveyance off-site with a minimum vertical clearance of 0.15 m between the spill elevation and the ground elevation at the building envelope in the proximity of the flow route or ponding area (City of Ottawa SDG)

Quality Control

 An Enhanced level of quality control of 80% removal of Total Suspended Solids (TSS) has been requested for all stormwater outlets (City of Ottawa pre-consultation)

5.3 Functional Stormwater Management Design

The LeBreton Flats development is to be designed using the "dual drainage" principle, whereby the minor (pipe) system is designed to convey the peak rate of runoff from the 5-year design storm and runoff from larger events is conveyed by both minor (pipe) and major (overland) channels, such as roadways and walkways, safely off site without impacting proposed or existing downstream properties.

In keeping with the 5-year inlet restriction criterion, inlet control devices (ICDs) or orifice plates will be specified during the detailed design stage for the individual blocks and street catchbasins to limit the inflow to the minor system. Restricted inlet rates to the sewers are necessary to prevent the hydraulic grade line (HGL) from surcharging storm sewers into basements and other underground infrastructure during major storms.

The Modified Rational Method has been employed to assess the rate and volume of runoff anticipated during post-development rainfall events. Based on the draft plan and preliminary Grading Plan, drainage area boundaries have been defined. Runoff coefficient values were then assigned to each drainage area based on a conservative estimate of built-form imperviousness. Runoff coefficients for each area are assigned based on City of Ottawa SDG and accepted practices. Full details can be found in **Appendix D.1**, while **Drawing STM-1** illustrates the conceptual post-development drainage conditions.

The major system flows generated from larger events (beyond the 100-year storm) will be safely conveyed to the open aqueduct as per existing conditions by engineered (overland) channels such as roadways, ditches, and walkways. The overland channels immediately north of Albert Street have also been proposed to receive overland flow from approximately 21 ha of land south of Albert Street, which is tributary to the open aqueduct under historical conditions (see Major Overland Flow section below). It is of note that construction of the Confederation Line has effectively blocked existing overland flow path to the open aqueduct, with no option for overland conveyance identified in the stormwater management report for the Confederation Line guideway.

The minor system from the proposed subdivision will be conveyed and modelled up to the point of discharge to three storm sewer outlets, comprising of the open aqueduct, the 2100 mm diameter storm trunk sewer in Albert Street, and a 525 mm diameter section of storm sewer immediately upstream of the trunk sewer within Albert Street.

Functional Servicing Study LeBreton Flats Plan of Subdivision 5 Stormwater Management and Stormwater Servicing

5.3.1 PRE-DEVELOPMENT DRAINAGE CONDITIONS

The existing drainage conditions for the site have been determined by evaluating available topographic mapping to delineate the existing flow patterns and subdrainage areas, with the study area split into subcatchments based on existing surface inlets. The runoff coefficients for the existing subdrainage areas have been determined based on the relative imperviousness of the respective areas. A network of existing culverts and catch basins direct the drainage from most areas to either the open aqueduct, the Confederation Line ditch line, and the Ottawa River. Existing areas to be retained as NCC or City of Ottawa park land largely drain to existing catch basin and culvert infrastructure to the Ottawa River or open aqueduct. The pre-development subdrainage areas are shown on **Drawing EX STM-1**.

An external area to the south measuring approximately 21 ha as identified by City of Ottawa personnel contributes overland flow to the open aqueduct as identified in previous background studies. This emergency overland flow route enters LeBreton Flats Subdivision via a low point at the intersection of Albert and Preston Streets, with grading indicating a potential for major system flows to overtop the centerline of Albert Street allowing major system runoff to enter the proposed subdivision.

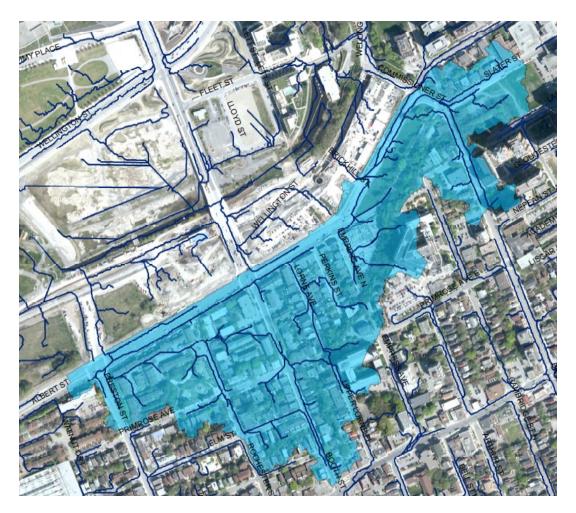


Figure 5.1: External Stormwater Drainage Area Crossing Albert Street (LeBreton Flats Master Servicing Report Amendment, Parsons, June 2019)

The target release rate for the site was calculated using the rational method, a time of concentration of 10 minutes, and the City of Ottawa IDF curves. The rational method equation is as follows:

- Q = 2.78 CiA
- Where:
 - Q = peak flow rate, L/s
 - A = drainage area, ha
 - I = rainfall intensity, mm/hr (per Ottawa IDF curves)
 - C = site runoff coefficient

The release rates are summarized in **Table 5.1**. The post-development peak flows for the study area for the 5-year and the 100-year event must be restricted to be less than or equal to the 5-year predevelopment with a C of 0.7.

Table 5.1: Target Release Rate

Design Storm	Target Flow Rate (L/s)			
5-Year	4360			

5.3.2 POST-DEVELOPMENT DRAINAGE CONDITIONS

The post-development drainage patterns for the site were established based on the draft plan and shown on **Drawing STM-1**, where the subdrainage areas have been delineated based on their drainage outlet, storage treatment, and design criteria. The subdrainage areas have been grouped into the following categories as shown in **Table 5.2**.

Table 5.2: Summary of Post-Development Subdrainage Areas

Category	Applicable Blocks	Subdrainage Areas	Total Area (ha)	Outlet
Block Areas – Tributary to Fleet Street	Blocks 7 to 15	C6B, C6C, C5A, C5B, C5C, C4D, C4AA, C4C, C3AA	2.90	Fleet Street 2100 mm diameter storm sewer
ROWs – Tributary to Fleet Street	Public Roads 1 to 3, 5, and Lanes 1 to 5	C6A, C6D, C4B, C3B	1.55	Fleet Street 2100 mm diameter storm sewer
Block Areas – Tributary to Albert Street	Blocks 1 to 6	C19A, C16A, C16B, C12B, C12A, C13A	5.22	Albert Street 525 mm and 2100 mm diameter storm sewers
ROWs – Tributary to Albert Street	Public Roads 4 and 6, and Lanes 6 to 7	C19B, C15A, C14A, C14B, C13B	1.13	Albert Street 525 mm and 2100 mm diameter storm sewers

Category	Applicable Blocks	Subdrainage Areas	Total Area (ha)	Outlet
Block Area – Tributary to the Open Aqueduct	Block 17	C17A	0.89	Open Aqueduct
City Park	Block 19	PARK-1, PARK-2	2.48	Open Aqueduct / Nepean Bay / Ottawa River
NCC Lands, Closed Aqueduct Block	Blocks 16 and 18	UNC-1, NCC-1	7.33	Ottawa River / Open Aqueduct

The post-development subdrainage areas and runoff coefficients are summarized in Appendix D.1.

5.3.2.1 Quantity Control

The LeBreton Flats development will lead to a significant increase in the site's overall runoff coefficient, as the site is presently vacant and predominantly pervious area. In addition, the C coefficient values have been increased by 25 % for the post-development 100-year storm event based on MTO Drainage Manual recommendations and City of Ottawa Sewer Design Guidelines. Quantity control measures are required on this site to meet the restrictive stormwater release criteria.

To assess the post-development runoff, a runoff coefficient of C=0.85 was assigned to all the development blocks, save for the parks (C=0.40) and the covered aqueduct (Block 16, C=0.20), while C=0.70 was assigned to the public roads and private lane ROWs.

Detailed design for each block is expected to progress through individual Site Plan Control (SPC) processes. To demonstrate the serviceability of the subdivision, the Block areas and ROWs have been treated as a single consolidated area with a combined runoff coefficient, overall storage requirements, and a single outflow rate that satisfies the 5-year pre-development release rate. To demonstrate the serviceability of each individual Block, the stormwater management design calculations also provide the required release rates at the Block level.

It is anticipated that surface storage with inlet control devices (ICDs) in catch basins be provided in the public roadway and private lane ROWs, while onsite storage methods (i.e. controlled rooftop storage, cisterns, underground tanks, oversized pipes, or a combination thereof with restricted release) will be provided onsite within the blocks to meet the target discharge. Further details of the stormwater storages for each block and the surface storages within the ROWs will be provided at the detailed plan of subdivision and individual block site plan control stages for the development.

The storage requirements for the site were determined using the Modified Rational Method (MRM). The detailed MRM analysis have been provided in **Appendix D.1**. The 100-year storage requirements per outlet are summarized in **Table 5.3**, where:

- Qactual is the 100-year rainfall runoff rate generated from the Block area as determined by the Rational Method Calculation at tc = 10 min
- Vstored is the volume of storage required.

Outlet	Area	Area	С	С	Qactual	Qcontrol	Vstored
Outlet	Type	(ha)	(5-yr)	(100-yr)	(L/s)	(L/s)	(m³)
Floor Ctroot	Blocks	2.90	0.85	1.00	1441	588	511
Fleet Street	ROWs	1.55	0.70	0.88	673	314	215
Alla ant Ctina at	Blocks	5.22	0.85	1.00	2591	1533	920
Albert Street	ROWs	1.13	0.70	0.88	490	229	157
Open Aqueduct	Block 17	0.89	0.85	1.00	442	180	157

Table 5.3: 100-Year Storage Requirements for Block Areas and ROWs

5.3.2.2 Quality Control

On-site quality control measures are expected for the proposed development per pre-consultation with the City of Ottawa. An enhanced level of protection (80% removal of total suspended solids) was identified for the site before discharging to the storm sewer outlet. The use of LIDs may be limited for the development based on elevated bedrock as well as historic land use for a portion of the development as a landfill. As such quality control measures will largely be limited to oil/grit separators, surface filtration measures, and filtration manufactured treatment devices (MTDs). The MECP has recently advised that OGS units should be sized for quality control based on revised particle size distributions which largely limit OGS units to providing 50-55% removal of total suspended solids. Jellyfish membrane systems are proposed as an end-of-pipe filtration MTD solution to achieve quality control where treatment train processes are not possible given spatial requirements within municipal rights-of-way.

Jellyfish membrane systems are proposed in the most downstream storm manholes within the subdivision before the connections into the existing storm sewers within Albert and Fleet Streets. These end-of-pipe systems are to be designed to treat runoff from the 90th percentile annual storm event (approx. 25mm storm) to satisfy MECP criteria for design. The drainage area for the Fleet Street outlet is too large to permit a single end-of-pipe MTD to treat the entire development, and so individual blocks in this area as well as Block 2 (previously an area noted for an arena) will require quality control prior to discharge to the municipal system. The quality control unit for the outlet into the open aqueduct will be incorporated into the stormwater design by others at the detailed design phase.

The Hydrogeological Review (Stantec, 2024) recommended using low impact development (LID) systems designed to promote sediment filtration, evapotranspiration, and/or capture stormwater from the parks

and direct it toward a stormwater sewer that conveys the water away from any proposed buildings. Furthermore, the LeBreton Flats Master Servicing Report (CIMA+, 2021) also identified bio-swales and/or rain gardens as the preferred LID measures for park blocks.

See **Appendix D.3** for conceptual quality MTD sizing calculations.

5.4 Functional Storm Servicing

A functional storm servicing design featuring conceptual sewer alignments, emergency overland flows, and storm drainage areas is provided in **Drawing STM-1**. Preliminary storage requirements and supporting calculations are provided in Appendix. The sewers are to be designed in conformance with all City of Ottawa and MECP Guidelines, policies, and design parameters.

The proposed roadways will have urban cross sections complete with curb, gutter, and catch basins to inlet to the minor storm system. Design of the storm sewer (including catch basin design and locations) are to be determined at the detailed design phase when a dynamic model will be developed to evaluate the post-development conditions and sewer hydraulic design. At present, the functional sewer design is free of conflicts with other services (SAN and WTR) and has adequate cover for frost protection.

The buildings in each development block are anticipated to be serviced by storm service laterals, which will accommodate the controlled release of rooftop runoff, building foundation drain flow, and release of stormwater runoff from building area drains or stormwater storage cistern(s). It is assumed that sump pits and pumps will be required to accommodate the foundation drains and the possible stormwater storage cistern(s) at the basement (underground) parking levels.

The mechanical consultant or plumbing contractor will ultimately be responsible to confirm the building service lateral sizing; sump pump requirements and designs; and ensure conformance to building code requirements. Building service sizing and sump pump requirements will be confirmed at the detailed design phase.

5.5 Major System Flow

During preconsultation discussions, the City of Ottawa identified that the Confederation Rail Line is situated in the overland flow path of runoff from an area of approximately 21 hectares external to the subdivision, south of Albert Street. Infrastructure for conveyance of the external drainage has not been accommodated with works undertaken to date including the construction of the Confederation Line. The City of Ottawa advised that an emergency overland flow outlet would have to be designed to support the plan of subdivision to safely convey the external stormwater drainage across the rail line to the open aqueduct. It was agreed that responsibility for funding and construction as well as timing of the outlet would be negotiated between the City of Ottawa and the NCC.

Using available 2K mapping topography, the catchment area for the external drainage was delineated, and an overall runoff coefficient of 0.70 was applied based on prevailing imperviousness of existing areas.

26

Functional Servicing Study LeBreton Flats Plan of Subdivision 5 Stormwater Management and Stormwater Servicing

A PCSWMM model for the major system within the catchment area was developed in consideration of the typical 18m ROW cross section for all streets with the exception of Preston and the south side of Albert Street which were developed based on existing photogrammetry. Subcatchments within the area are generally sloped from southeast to northwest to the intersection of Albert/Preston Street. Given the relatively high average longitudinal slope of the roadways, it was conservatively assumed that no additional storage would be available within ponded areas beyond that already determined for the given road cross sections. Subcatchment slopes were conservatively set at 3% on average, and subcatchment widths defined as subcatchment area x 225 per recommendations of the SDG for lumped drainage areas.

Each street intersection or major incoming driveway was modeled with a storage node in the PCSWMM model without surface storage to permit routing of the major system from street to street. At each storage node, runoff was removed from the model using catch basin capture curves for inlets on continuous grade as noted in the SDG, and for capacity of surface grates within sags from Design Charge 4.19 in the MTO Drainage Manual. Catch basin counts for each area were estimated based on direct take-offs from available City of Ottawa GIS mapping (GeoOttawa). It is assumed that the minor system in this area does not surcharge to surface during major storm events, and that the area is not equipped with inlet control devices given the overall existing sewer age.

The 100yr 3hr Chicago storm and 100yr 3hr +20% climate change storm was then run on the resulting model to verify at a high level whether considerable major system flows could be expected to discharge over the centerline of Albert Street at the Preston intersection. Results of the model are noted in **Table 5.4** below, and PCSWMM model input and output files are included in **Appendix D.4**.

Table 5.4: Major System Spillage at Albert/Preston

Design Storm	Major System Spillage (L/s)
100-Year	372
100-Year + 20%	983

It is proposed to permit major system spillage from Albert to progress northwards through the subdivision along public ROWs, with eventual capture via a bank of surface catch basins or high-flow trench drain to a proposed storm sewer. This sewer is anticipated to be directed northwards under the Confederation Line rail corridor to connect directly to the open aqueduct complete with a sluice gate on the outgoing manhole to permit maintenance of the system and isolate the sewer from aqueduct normal water elevations. Flows to the open aqueduct in this manner are only anticipated for extreme storm events (100yr and above). See **Drawing PP-STM** for conceptual major system capture sewer details. Responsibility for funding and construction of the works, as well as timing for the outlet, are to be negotiated between the City of Ottawa and the NCC.

5.6 Conclusion

The proposed storm sewer alignment and sizing will provide the required level of service for the LeBreton Flats subdivision development and meet quantity and quality control requirements.

- On site storage within the blocks and ROWs are proposed to limit inflow from the subdivision into the existing storm sewers on Albert and Fleet Streets to the 5-year storm event based on City of Ottawa IDF curves and to a maximum runoff coefficient of 0.70.
- Major overland flow is directed to City managed rights-of-way.
- A major system overland capture point located south of the open aqueduct is proposed to manage spillage from Albert Street and approximately 21ha of external contributing area during the climate change (100yr +20%) storm event. Captured flows are to be directed to the open aqueduct. City of Ottawa and NCC to establish responsibilities for funding and construction.
- Quality control is proposed to be provided by end-of-pipe filtration MTDs for urban rights-of-way, with additional on-site quality control required for site plan blocks north of the aqueduct, and for the hotel/potential arena parcel.
- Quality control for the proposed park blocks is anticipated to be provided by on-site surface filtration through the use of bioswales, enhanced grass swales, or other infiltration measures.

Functional Servicing Study LeBreton Flats Plan of Subdivision 6 Site Grading

6 Site Grading

The site measures approximately 21.5 ha in area and is mostly vacant, save for the two aqueducts and the existing multi-use pathways (MUPs). Per Appendix D of the LFMSS (CIMA+, March 2021) and topographic survey data, the existing terrain generally slopes from the edges of the site towards the open aqueduct and Broad Street, with portions of the NCC and City Park blocks draining to the Ottawa River.

A functional grading plan (see **Drawing GP-1**) is provided to support the stormwater management review presented in **Section 5**. The functional grading scheme verifies stormwater management calculations and allows for major system flow routes to progress along public ROWs as per City design criteria, and ultimately to the open aqueduct as per existing conditions. It provides preliminary high-point to high-point elevations in critical areas to demonstrate the proposed overall drainage patterns. The plan ties-in to existing elevations at the rail corridor and adjacent right of ways and no drainage is proposed to be directed to the adjacent private properties.

Functional Servicing Study LeBreton Flats Plan of Subdivision 7 Utilities

7 Utilities

Overhead (OH) hydro-wires run east-west along Albert Street and north-south along Preston Street, and significant hydro underground plant exists along Albert and Booth Street. Limited hydro plant exists along the northern boulevard of the Kichi Zibi Mikan and Wellington Street.

Within the subdivision boundaries, Hydro Ottawa duct runs along the southern limit of Block 2. Overhead electrical lines extend across the subdivision lands from the underground duct at Albert Street at Preston Street and extend to underground duct north of the covered aqueduct. A 100mm hydro duct extends from the covered aqueduct at the Inlet from the Ottawa River to Booth Street.

The detailed design of utility services will be further investigated as part of the composite utility planning process as part of the detailed design of subdivision. Existing utilities within the site boundaries may require relocation where they are not being incorporated into the detailed design.

Enbridge gas plant exists within the rights-of-way in the vicinity of the proposed site. Gas servicing is anticipated to be via the existing 300 mm diameter medium pressure system that runs along Preston and Albert Streets and via the existing 150mm line within Booth Street north of Fleet Street. The site is expected to be serviced through connections to these existing services.

Bell utilities exist near the development along Albert, Booth, and the Parkway. It is anticipated that the future development will be serviced by Bell fibre optic cables which will be extended through the subdivision.

The exact size, location, and routing of utilities is to be finalized during detailed design. Detailed design of the required utility services will be completed by the respective utility companies. Any relocation and protection of existing utilities in conflict with the proposed development will be coordinated with the individual utility providers.

Functional Servicing Study LeBreton Flats Plan of Subdivision 8 Municipal Rights-of-Way

8 Municipal Rights-of-Way

The widths of the proposed municipal roadways for the plan of subdivision were established to ensure that all right-of-way (ROW) infrastructure including municipal servicing, utility servicing, sidewalks, trees, streetlights and vehicular travel lanes can be accommodated while maintaining minimum offsets to adjacent infrastructure. The City standard ROW sections developed for greenfield development are not suitable for use in the urban core and do not meet the intent of the MCP.

Functional sections have been included on the Details Sheet, **Drawing DS-1** to demonstrate that the proposed ROW widths are adequate to support the required infrastructure. Alternative ROW sections will be established for the subdivision development as part of the detailed design.

Project Number: 160401780

Functional Servicing Study LeBreton Flats Plan of Subdivision 9 Approvals

9 Approvals

The City of Ottawa will review and approve the functional design report to support the Draft Plan of Subdivision application for the development and issue conditions to be satisfied prior to early servicing and/or registration of the subdivision.

At the detailed design stage, an MECP Environmental Compliance Approval (ECA) will be required for the proposed public storm and sanitary sewage and stormwater management works. Approval for the new sewage pump station is expected to require approval through direct submission to the MECP, however this will be confirmed based on the final detailed design, and potentially via the Consolidated Linear Infrastructure (CLI) ECA process.

At the subdivision construction phase, registration on the Environmental Activity Registry (EASR) or A Permit to Take Water (PTTW) may be required depending on the volume of water. Expected permitting requirements can be provided by the geotechnical engineer at the detailed design phase.

Project Number: 160401780

10 Erosion and Sediment Control During Construction

To protect downstream water quality and prevent sediment build-up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit the extent of the exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- 6. Install silt barriers/fencing around the perimeter of the site to prevent the migration of sediment offsite.
- 7. Install track out control mats (mud mats) at the entrance/egress as shown in **Drawing EC-1** to prevent migration of sediment into the public ROW.
- 8. Provide sediment traps and basins during dewatering works.
- 9. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 10. Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Refer to **Drawing EC-1** in for the proposed location of silt fences, sediment traps, and other erosion control measures.

Project Number: 160401780 33

11 Geotechnical and Environmental Considerations

A Geotechnical Desktop Review (Stantec, May 7, 2024), Phase One Environmental Site Assessment (Stantec, August 2, 2024 and Hydrogeological Memo (Stantec, August 14, 2024) were prepared for the proposed development to support the draft plan of subdivision application. These reports form part of the submission package for the Planning Act approval.

11.1 Geotechnical Investigation

Subsurface soil conditions within the subject area were determined through field investigations from February 1992 through to June 2018. In total the site has been divided into 4 portions (North, South, West, and East) based on subsurface conditions. The soil stratigraphy for the North, South, and West portions of site are summarized as follows:

- West Portion of Site: The proposed parklands north of the Confederation Line rail corridor sits on the former Nepean Bay landfill and consists of a layer of silty sand and gravel fill, complete with various amounts of debris, including wood, brick, and plastic, with a thickness of up to 19 m.
 Bedrock was encountered at 3.7 m to 15.4 m depth. South of the rail corridor, the fill layer is generally 1.5 m to 4.9 m thick, and bedrock was encountered at 5.6 m to 11.0 m depth.
- North Portion of Site: Bedrock was encountered at ground surface at some borehole locations.
 Elsewhere, bedrock was encountered at 2.7 m to 4.8 m depth. At the multi-use pathway where
 Preston Street formerly extended to the Ottawa River Parkway, the bedrock is overlain by a silty
 sand fill and gravel. Silty sand with gravel and cobbles fill material is the cover material for the
 buried aqueduct.
- South Portion of Site: The fill material comprises of loose to compact silty sand and containing
 gravel, cobbles, boulders, and construction debris, such as brick, wood, slag, and ashes. A silty
 clay and clayey silt deposit was encountered under the fill layer between the former Preston
 Street extension and the former Broad Street right of way. Bedrock was encountered at 3.5 m to
 9.2 m depth.

Groundwater levels were measured at depths between 1.1 m to 9.8 m, though seasonal variations in the water table should be expected and would need to be monitored continuously at key locations where underground infrastructures are proposed. It is expected that construction may occur below the existing groundwater table and therefore a permit to take water may be required. No grade raise restrictions were identified for the site.

11.2 Environmental Site Assessment

A Phase One Environmental Site Assessment (ESA) was conducted to determine if Areas of Potential Environmental Concern (APECs) exists on the proposed site due to current and/or past Potential

Project Number: 160401780 34

Functional Servicing Study LeBreton Flats Plan of Subdivision 11 Geotechnical and Environmental Considerations

Contaminating Areas (PCAs) on the proposed site or nearby properties within 250 m of the perimeter of the site boundary.

The Phase One ESA determined the presence of APECs on the proposed site potentially impacting soil and groundwater quality, on account of the past industrial, commercial, and mixed-use residential usage of the site before the site was cleared out in the 1960s. Specifically, the proposed parks at the western end of the site north of the Confederation Line rail corridor sits in areas identified as PCAs due to it being a former landfill, with the potential contaminants the result from importation of fill material of unknown quality and the use for waste disposal and management. As such, a Phase Two ESA will be required to assess the issues before a Record of Site Condition can be submitted for the site.

11.3 Hydrogeological Review

A hydrogeological review was conducted to evaluate the hydrogeologic conditions on the site and potential for Low Impact Development (LID) infrastructure/techniques to be implemented at the site and the potential dewatering requirements.

The ability to infiltration stormwater within the development will be limited by space constraints and the shallow depth of bedrock. Capture and infiltration of groundwater is not recommended in the vicinity of building foundations due to the risk of short circuiting. Further, there is risk that infiltration systems may transport contaminants from the subsurface.

LID systems designed to promote sediment filtration, evapotranspiration, and/or capture stormwater and direct it toward a stormwater sewer that conveys the water away from buildings are recommended. Bioswales, rain gardens, and green roofs were also identified as the preferred LID measures for the site.

12 Conclusions and Recommendations

12.1 Potable Water Servicing

The proposed watermain network and pipe sizing are capable of achieving the required level of service in the proposed development:

- During peak hour (PKHR) conditions, the proposed watermain network is expected to operate above the minimum pressure objective of 276 kPa (40 psi);
- The proposed system is capable of providing sufficient fire flow while maintaining a residual pressure of 138kPa (20 psi) in all areas.

12.2 Wastewater Servicing

The LeBreton Flats subdivision will be serviced by a network of gravity sewers which will direct wastewater flows to two different outlets. The area north of the covered aqueduct contributing to the 375 mm diameter storm sewer in Fleet Street, and ultimately to the LeBreton Flats Pumping Station. The balance of the subdivision will be serviced by the 1200 mm diameter Cave Creek Collector which runs along Albert Street.

A small pump station will be required to service the two park blocks and Block 17.

The preferred cover requirement of 2.5 m for the sanitary sewer system has been satisfied in all locations, and requirements for slope and velocities have been met within the local internal sewers. The downstream sewers have been adequately sized to receive peak sanitary discharge from the proposed subdivision.

12.3 Stormwater Management

The proposed stormwater management plan is in compliance with the goals specified in the background reports and the 2012 City of Ottawa Sewer Guidelines:

- On site storage within the blocks and ROWs are proposed to limit inflow from the subdivision into the existing storm sewers on Albert and Fleet Streets to the 5-year storm event based on City of Ottawa IDF curves and to a maximum runoff coefficient of 0.70;
- Major overland flow is directed to City managed rights-of-way;
- A major system overland capture point located south of the open aqueduct is proposed to manage spillage from Albert Street and approximately 21ha of external contributing area during the climate change (100yr +20%) storm event. Captured flows are to be directed to the open aqueduct. City of Ottawa and NCC to establish responsibilities for funding and construction.

Project Number: 160401780 36

Functional Servicing Study LeBreton Flats Plan of Subdivision 12 Conclusions and Recommendations

- Quality control is proposed to be provided by end-of-pipe filtration MTDs for urban rights-of-way, with additional on-site quality control required for site plan blocks north of the aqueduct, and for the hotel/potential arena parcel.
- Quality control for the proposed park blocks is anticipated to be provided by on-site surface filtration through the use of bioswales, enhanced grass swales, or other infiltration measures.

12.4 Utilities

Utility infrastructure is available on the surrounding municipal roadways and will be extended to service the subdivision. Designs will be prepared by each of the respective utilities at the detailed design stage.

12.5 Municipal Right's of Way

Alternative ROW cross sections will be used for this urban development to meet the intent of the MCP. Municipal ROW widths proposed are sufficient to accommodate all infrastructure needs. The alternative ROW sections will be established at detailed design.

12.6 Grading

The functional grading scheme has been developed to allow for an emergency overland flow outlet to downstream rights-of-way as per City standards, and ultimately to the open aqueduct as per existing conditions.

12.7 Approvals/Permits

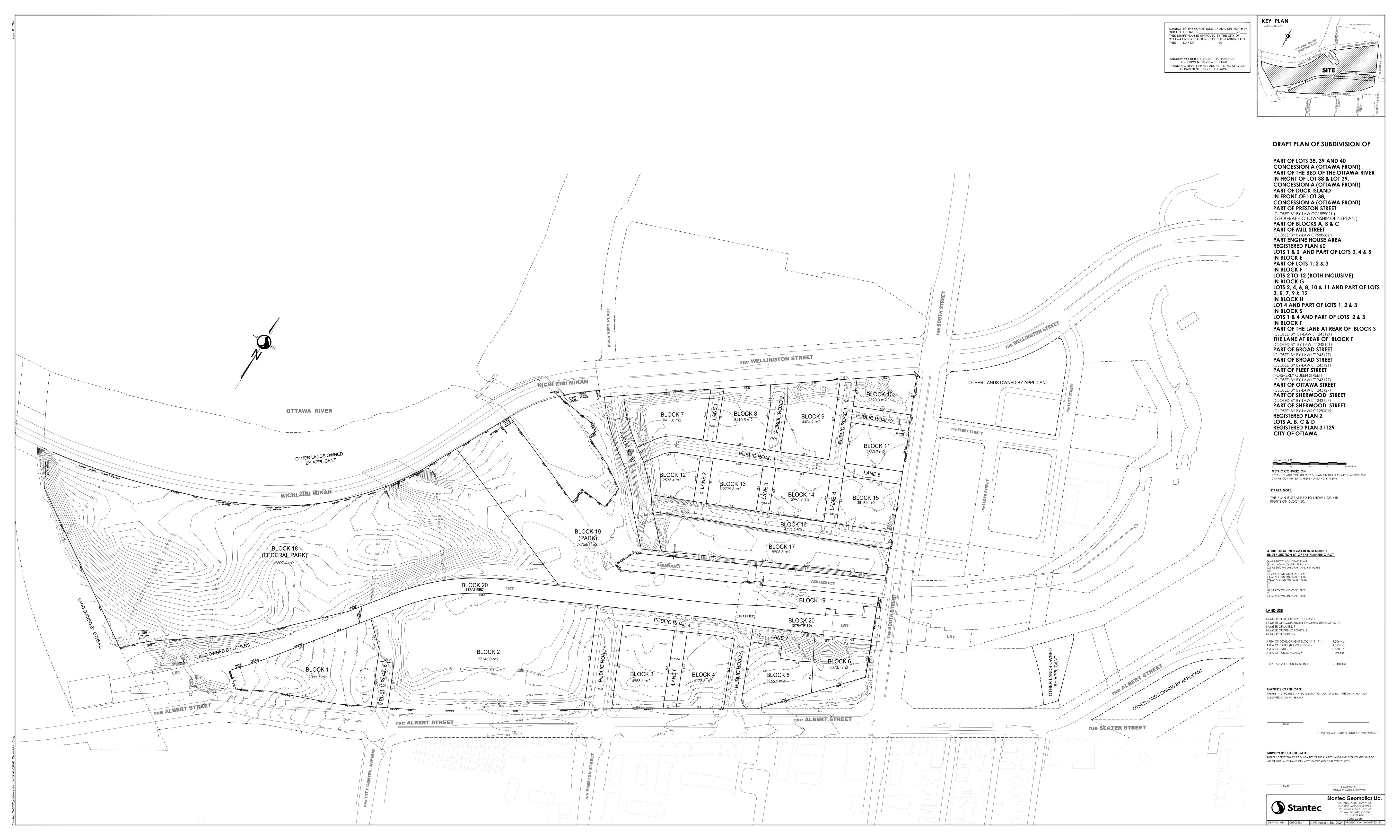
At the detailed design stage, an MECP Environmental Compliance Approval (ECA) will be required for the proposed public storm sewage and stormwater management works. Approval for the new sewage pump station is expected to require approval through direct submission to the MECP, however this will be confirmed based on the final detailed design. The ECA for sanitary sewer works is anticipated to be required through the CLI ECA process.

At the subdivision construction phase, registration on the Environmental Activity Registry (EASR) or A Permit to Take Water (PTTW) may be required depending on the volume of water. Expected permitting requirements can be provided by the geotechnical engineer at the detailed design phase.

Project Number: 160401780

APPENDICES

3


Project Number: 160401780

Appendix A Background

A.1 Draft Plan and Densities

Project Number: 160401780 Appendix A-1

MCP	MCP Block Area	Subdivision	Subdivision Block	Land Use	Floor Area	Dwelling Unit	ts	Population	Number of	Building Storeys
Block	(m2)	Block	Area	Land Ose		ortment Townh		Population	Buildings	Building Storeys
A1	5,095	1	9,030	Residential Commercial Office (/ loft)	59,213 1,389	592	-	1,066		
				Hotel Total Floor Area	60,602				2	30,40
A2 to 4	25,055	2	27,146	Residential	60,750	608	-	1,094		30,40
				Commercial Office (/ loft)	2,370					
				Hotel (201 rooms) Total Floor Area	9,450 72,570				4	20,20,20,30
A5	4,454	3	4,984	Residential	27,861	267	10	508		
				Commercial Office (/ loft) Hotel	838 - -					
				Total Floor Area	28,699				1	. 20
A6	4,428	4	3,995	Residential	35,914	348	10	653		
				Commercial Office (/ loft)	-					
				Hotel	-					
				Total Floor Area	35,914				1	30
A7	5,569	5	3,967	Residential Commercial	20,250 2,035	203	-	365		
				Office (/ loft)	13,391					
				Hotel	-					
A8	3,306	6	3,073	Total Floor Area Residential	35,676 27,000	270		486	1	30
МО	3,300	0	3,073	Commercial	2,811	270		480		
				Office (/ loft)	10,922					
				Hotel Total Floor Area	40,733				1	40
F1	4,563	7	4,412	Residential	16,781	81	74	346	1	40
	+,503	•	7,712	Commercial	-			3.0		
				Office (/ loft)	-					
				Hotel Total Floor Area	- 16,781				1	12
F2	3,536	8	3,410	Residential	20,059	135	56	394		12
				Commercial	-					
				Office (/ loft) Hotel	-					
				Total Floor Area	20,059				1	20
F3	4,583	9	4,405	Residential	22,422	135	76	448		
				Commercial	-					
				Office (/ loft) Hotel	-					
				Total Floor Area	22,422				1	. 20
F4	2,706	10	2,390	Residential	18,899	135	46	367		
				Commercial Office (/ loft)	-					
				Hotel	-					
				Total Floor Area	18,899				1	. 20
F12	3,772	11	2,830	Residential Commercial	26,811 1,792	268	-	482		
				Office (/ loft)	-					
				Hotel	-					
F8	3,086	12	2 533	Total Floor Area Residential	28,603 22,067	221		398	1	. 30
	3,000	12	2,333	Commercial	884			330		
				Office (/ loft)	-					
				Hotel	4,896				1	20
F9	3,617	13	2,730	Total Floor Area Residential	27,847 23,229	216	14	427	1	20
-	-/	-	_,. 30	Commercial	514	-				
				Office (/ loft)	-					
				Hotel Total Floor Area	- 23,743				1	20
F10	3,721	14	2,995	Residential	30,476	288	14	556		20
				Commercial	546					
				Office (/ loft) Hotel	-					
				Total Floor Area	31,021				1	30
F11	4,365	15	3,317	Residential	38,130	381	-	686	_	
				Commercial	2,860					
				Office (/ loft) Hotel	-					
				Total Floor Area	40,990				1	40
Buried	Unknown	16	4,756	Residential	-	-	-	-	_	
queduct				Commercial Office (/ loft)	-					
				Hotel	-					
				Total Floor Area	-				-	-
AD2-5	7,340	17	8,908	Residential Commercial	- 3,717	-	-	-		
				Office (/ loft)	3,717 22,950					
				Hotel	-					
				Total Floor Area	26,667				1	. 5
Park ederal)	Unknown	18	68,398	Residential Commercial	-	-	-	-		
cuerdi)				Office (/ loft)	-					
				Hotel	-					
rk (cit.)	I Inknow	10	24.750	Total Floor Area	•		_		-	-
rk (city)	Unknown	19	24,/56	Residential Commercial	-	-	-	-		
				Office (/ loft)	-					

			· ·
TOTALS (Blocks 1-19)	·		
Res. Units (apt. / towns / total)	4,148	300	4,448
Res. Pop. (apt. / towns / total)	7,466	810	8,276
Res. Floor Area (m2)			449,861
Comm. Floor Area (m2)			19,756
Office (/ loft) Floor Area (m2)			47,263
Hotel Floor Area (m2)			14,346
Total Floor Area (m2)			531,226
MCP Block Area (m2)			89,195
Subdivision Block Area (m2)			188,034

person/DU
1.8
2.7

МСР	MCP Block Area	Subdivision	Subdivision Block	Land Use	Floor Area	welling Unit		Population	Number of	Building Storeys	TOTALS (Blocks 1-19 + excluded NO	•		
Block	(m2)	Block	Area		(m2)	t Townh			Buildings		Res. Units (apt. / towns / total)	5,767	300	
A9	4,357	NA	NA	Residential	22,824	228	-	410			Res. Pop. (apt. / towns / total)	10,380	810	11,190
				Commercial	960						Res. Floor Area (m2)			611,762
				Office (/ loft)	-						Comm. Floor Area (m2)			24,25
				Hotel	-				_	0.5	Office (/ loft) Floor Area (m2)			47,26
				Total Floor Area	23,784	244			1	. 25	Hotel Floor Area (m2)			14,34
A10	4,357	NA	NA	Residential	24,356	244	-	439			High School Floor Area (m2)			1,64
				Commercial	1,368						Total Floor Area (m2)			699,260
				Office (/ loft)	-						MCP Block Area (m2)			117,02
				Hotel	-					25				
440D	2,930	212	***	Total Floor Area	25,724	208		374	1	. 25				
A10B	2,930	NA	NA	Residential	20,775	208	-	3/4						
				Commercial	521									
				Office (/ loft) Hotel	-									
				Total Floor Area						. 25				
A11	4,575	NA	NA	Residential	21,295 31,410	314		565	1	. 25				
AII	4,575	NA	NA			314	-	505						
				Commercial Office (/ loft)	1,046									
				Hotel	-									
				High School	1,645									
				Total Floor Area	32,455					1 20				
A12	3,349	NA	NA	Residential	19,499	195		351		1 20				
712	3,343	ING	IVA	Commercial	600	133		331						
				Office (/ loft)	-									
				Hotel										
				Total Floor Area	20,098				1	. 20				
F5	3,312	NA	NA	Residential	19,125	191	-	344		. 20				
13	5,512	14/4	14/4	Commercial	-			9						
				Office (/ loft)	_									
				Hotel	_									
				Total Floor Area	19,125				1	. 20				
F6	2,777	NA	NA	Residential	18,395	184	-	331						
	_,			Commercial	-									
				Office (/ loft)	-									
				Hotel	_									
				Total Floor Area	18,395				-	-				
F7	2,173	NA	NA	Residential	5,518	55	-	99						
	-,-,0			Commercial	-									
				Office (/ loft)	_									
				Hotel	_									
				Total Floor Area	5,518					1 20				

A.2 Background Report Excerpts

Building LeBreton

Master Servicing Report

Renewed Master Concept Plan & Development Strategy

CIMA+ file number: A000958 March 5th, 2021

Major Event Centre demands were based on the values provided in the Parsons Servicing Vision 2019, which is based on flow monitoring of an arena. The value obtained of 110 L/seat/d corresponds to the OBC value (20 L/d) (Ontario Building Code, 2017) multiplied by a factor of 5.5. Commercial peaking factors were assumed for this demand.

A breakdown of the resulting estimated potable water demands for each phase is presented in Table 4.2. The water demand calculation sheet supporting these values is included in Appendix E.

Table 4.2: LeBreton Water Demands

Concept Dev.	Residential	Gross Fl (m			Average Day	Maximum Day	Peak Hour
Block	Population (persons)	Commercial/ Institutional	Office/ Loft	Hotel	Demand (L/s)	Demand (L/s)	Demand (L/s)
Block 1	726	3 063	19 307	-	4.84	10.20	21.31
Block 2	512	1 559	-	11 246	2.76	6.21	13.25
Block 3	1 834	5 169	27 000	1	10.12	22.61	48.12
Block 4	-	3 717	24 098	1	2.37	3.55	6.40
Block 5	3 114	3 921	-	7 956	13.19	32.40	70.93
Block 6	1 716	2 687	-	1	28.68	71.62	135.86
Block 7	571	-	-	-	2.31	5.78	12.72
LeBreton Place	-	2722			0.09	0.13	0.24
Parks	-	-	-	1	0.42	0.85	1.87
Total	8 473	22 838	70 405	19 202	64.78	153.35	310.70

4.2.2 Fire Protection

Given the design is at a conceptual stage with limited available building information, it would not be appropriate to develop fire flows in accordance with the FUS and City requirements at this time. For a preliminary analysis and determination of boundary conditions, a fire flow demand of 217 L/s (13 000 L/min) was considered per the maximum fire demand level of service in core areas as stipulated in the 2013 City of Ottawa Water Master Plan (Stantec, 2013).

4.2.3 Proposed Connections

The proposed LeBreton Flats water servicing configuration utilizes the connection points proposed in the *LeBreton Flats Servicing Vision* (Parsons, 2019) and the *Servicing and Stormwater Management Report 557-584 Wellington Street & 550 Albert Street* (Stantec, 2017). Table 4.3 summarises the proposed primary and secondary connection points while the water servicing plan provided in Appendix A demonstrates the proposed water servicing layout.

For each individual building, multiple connections will be required if the average day demand is over 50 m³/d, as per the requirements of the City of Ottawa Water Design Guidelines.

The 2019 Parsons report also highlighted a need for pressure reducing valves at each building. The updated boundary conditions may also highlight this requirement, which will need to be confirmed at detailed design.

Table 4.3: LeBreton Proposed Watermain Connection Points

Concept Dev. Phase	Primary Connection	Size*	Secondary Connection	Size*
Block 1	Albert St.	406mm PVC	Albert St.	406mm PVC
Block 2	Albert St.	406mm PVC	Albert St.	406mm PVC
Block 3	Preston Street North of Albert	406mm DR 18 PVC	Albert St. near Rochester St.	406mm PVC
Block 4	Preston Street North of Albert	406mm DR 18 PVC	Albert St. near Rochester St.	406mm PVC
Block 5	Wellington St. and Preston St.	305mm Class 52 DI (+300mm PVC and Stubs)	Booth St. and Fleet St.	406 mm booth st. / 305mm Fleet street PVC
Block 6	Albert St. and City Centre Ave.	406mm DR 18 PVC	Preston Street North of Albert	406mm DR 18 PVC
Block 7	Wellington St. and Preston St.	305mm Class 52 DI (+300mm PVC and Stubs)	Booth St. and Fleet St.	406 mm booth st. / 305mm Fleet street PVC
LeBreton Place	Connected to Block 4 Network	-	-	-
Parks	Connected to LeBreton Place Network	-	-	-

*Based on a review of as-built drawings available to CIMA+ at the time of publication of this report

4.2.4 Watermain Boundary Conditions

The following boundary condition was obtained from the City of Ottawa on March 16th, 2020, using a fire flow of 217 L/s at each connection. The connection points used are shown in Appendix A. Based on the boundary conditions, and the proposed site grading, the resulting pressure at the connection points ranges approximately from 59 to 89 psi. To satisfy the City of Ottawa hydraulic objectives and Ontario Building Code requirements, pressure-reducing valves will be required at the building connections where the watermain pressure exceeds 80 psi, as per the City of Ottawa Water Design Guidelines.

Table 4.4: LeBreton Proposed Watermain Connection Points

Concept Dev. Phase	Connection points	Min. HGL	Max HGL	Max Day + Fire Flow
		(m)	(m)	(m)
Block 1	Connection 1A,1B	107.0	116.5	109.0
Block 2	Connection 2A, 2B*	107.0	116.5	109.0
Block 3	Connection 3A, 3B	107.0	116.0	109.0
Block 4, Block 5,	Connection 5A	107.0	116.5	97.0
LeBreton Place, Parks	Connection 5B	107.0	116.5	107.0
Block 6	Connection 6A, 6B	107.0	116.0	109.0
Block 7	Connection 7A	107.0	116.5	107.0
BIOCK /	Connection 7B, 7C	107.0	116.5	108.0

^{*}Assuming a connection to a future 406mm diameter watermain on Albert St.

4.3 Conclusions and Recommendations – Water Servicing

Water Servicing for the LeBreton Flats development is feasible and meets the City of Ottawa hydraulic objectives provided that connection 2B connects to a future 406mm dia. watermain. However, it should be noted that actual fire protection requirements may dictate otherwise.

Actual fire flow demands will need to be assessed and fire scenarios analysed as part of the detailed design. It should also be noted that there may be difficulty in achieving FUS fire flow requirements depending on construction type, gross floor area and percent of unprotected openings. The final design will need to meet the available fire flow with capacity of the existing network or provide additional measures to meet the requirements of the Fire Marshall and appropriate governing bodies.

5.1.1 Capacity analysis for existing outfall infrastructure

A review of the available information on the principal sanitary infrastructure was undertaken to assess the available capacity in each outlet. Table 5.1 summarises estimated capacities, per the principal outlet and its components.

Table 5.1: Summary of outlet-specific sanitary flow allocations and estimated capacity, including external contributions

Outlets	Element	Estimated Capacity (L/s)	Source
	Fleet St. Sewer	117.6	Dessau-Soprin, 2004; Novatech 2017
LFPS	Pumping station (Current Capacity)	100	ECA - MOE 2010
	Flowrate until overflow to Storm	140	City of Ottawa 2018
Albert St.	Sewer + ICD	233	City of Ottawa 2020
Sewer	Design Sanitary Flow	110	Robinson 2015
ccc	-	Capacity not limited	Parsons, 2019; City of Ottawa, 2018

5.1.1.1 Fleet street gravity sewer, LFPS and IOS

The Fleet street sanitary sewer conveys sewage to the LFPS, and its capacity was estimated at 117.6 L/s in the 2004 LeBreton Master Servicing Report (Dessau-Soprin, 2004). In discussions with the City, the City has indicated that it could be acceptable for this sewer to surcharge in order to accommodate the required flow, provided acceptable justification and analysis.

The LFPS itself has a current firm rated at a capacity of 100L/s, as indicated in its associated Environmental Compliance Approval No. 8494-84GSRF (MOE, 2010), and in the LFPS Design Brief (Stantec 2006, 2008).

As referred to in the LeBreton Flats Servicing Vision (Parsons, 2019), the City of Ottawa's analysis demonstrated additional capacity of 130 L/s in the downstream pipe connecting the effluent of the LFPS to the IOS (Tousignant, 2018).

5.1.1.2 Albert St. Sanitary Sewer

The Albert St. Sanitary sewer is the planned outlet for the Chaudière and Albert Island developments as well as the outlet of a 600mm combined sewer. The outlet of the combined sewer contains an inlet control device (ICD) to control the flow going into the sanitary sewer. It also has a 450mm overflow pipe that discharges to the 900mm storm sewer when the flow exceeds the ICD's capacity. Design sanitary capacity for this outlet were determined at 110.68 L/s (Robinson, 2015). However, it should be noted that this structure is part of the combined sewer system and that sanitary flows directed to this outlet impact the return period of combined sewer overflow at this location (Tousignant, 2020).

Table 5.8: LeBreton Flats Pumping Station proposed redistribution of unallocated flows

Outlet	Concept Dev. Phase	Sanitary Flow Allocation (L/s)	Distributed Remaining Capacity (L/s)	Total Sanitary Allocation (L/s)
	Block 5	32.43	8.52 (60.14%)	40.95
	Block 7	6.60	1.73 (12.24%)	8.33
	Victoria Island	20.0[1]		20.0
LFPS	Future Cultural/ Institutional	1.52	0.40 (2.82%)	1.92
	Canadian War Museum	3.18 ^[1]		3.18
	Claridge ph. I-III	8.73 ^[1,2]		8.73
	Claridge ph.IV-V	13.37 ^[2]	3.51 (24.80%)	16.88
	Subtotal	85.83	14.17 (100%)	100.00

Note: Values in bold denote proposed developments

^[1] Values Previously Approved by the City of Ottawa, based on the Dessau-Soprin Servicing Report

^[2] Novatech 2020 – RE: Phase 1 LeBreton Flats – Revised Building Statistics & City of Ottawa Comments (May 12th 2020); Flow split confirmed by NCC.

5.4.4.2 Albert St. Sanitary Sewer

For the Albert Street Sewer, the capacity of the sewers and ICD is sufficient to accommodate both the Windmill Developments Phase 1 (noted as Chaudiere and Albert Isl.) and the LeBreton Developments Block 1 and 2 flows (Stantec, 2017; Robinson Consultants, 2015).

5.4.4.3 Cave Creek Collector

As mentioned previously in Section 5.1.1.3, the City of Ottawa has indicated that there is likely no capacity limitation for this collector but has requested to be provided with the proposed design flows to this collector in order to update their models.

Table 5.9 : Albert Street Sewer and the Cave Creek Collector proposed sanitary flow allocations vs. estimated capacity.

Outlet	Allocation		Sanitary Allocation	Current Estimated Capacity (L/s)			
	Block 1	9.29	17.18				
	Block 2	7.89	17.10				
Albert St. Sewer	Ottawa Central Library	4.3 ^[2]		75.08	110	Capacity OK	
	Chaudière and Albert Isl.	53.6 ^[3]					
	Block 3	20.85					
	Block 4	2.3	34				
CCC	Block 6	40.2	26	66.99	Capacity not limited	Capacity	
	LeBreton Place	0.2	29		Capacity not initiod	OK	
	Park Area	3.2	25				

Note: Values in bold denote proposed developments

^[1] Values Previously Approved by the City of Ottawa, based on the Dessau-Soprin Servicing Report

^[2] Stantec 2017 – Servicing and Stormwater Mangement Report 557-584 Wellington Street & 550 Albert Street (September 11, 2017)

^[3] DSEL. 2018. – Master Servicing Study (Phase 1) – Revision 7. Ottawa

6.1.6 Overland Flow

An emergency overland flow route from an offsite area of approximately 20ha extending south of Albert Street, drains through the LeBreton Flats land and discharges to the open aqueduct. The low point of the flow route is located at the intersection of Preston and Albert Street before it enters the LeBreton Flats lands (Figure 6.2).

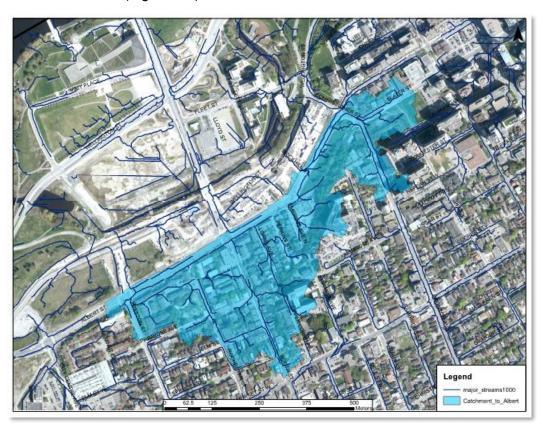


Figure 6.2: Drainage Area South of Albert Street

6.2 Summary of Available Background Documentation

CIMA+ has completed a thorough review of available documentation for the proposed LeBreton Flats Development Area and external lands. The following is a summary of the pertinent information available concerning the evolution of the SWM strategy for this area:

6.2.1 Dessau-Soprin LeBreton Flats Infrastructure and Remediation Project – Master Servicing Report (2004)

In 2002, the National Capital Commission hired Dessau-Soprin to complete a master servicing study of for the LeBreton Flats development area. The recommendations included the construction of three stormwater management facilities:

- A wet pond to the northwest of Wellington Street and Preston Street discharging to the Ottawa River
- A wet pond in the northeast corner (adjacent to Mill Street Restaurant) discharging to the Ottawa River

6.3.1 Quantity Control

Quantity control for the LeBreton Flats Development Area is not required given the proximity to the Ottawa River.

As discussed with the City, the minor system will be designed to convey the 5-year post event with a run-off coefficient of 0.7 and quantity control will be required for the individual blocks up to and including the 100-year event.

The allowable release rate for Block 1 and 2 will be limited to the 5-year pre-development flow as per Stantec Servicing and Stormwater Management Report, with quantity control on site up to and including the 100-year event.

The major system must provide an appropriate outlet for overland flows meeting the City of Ottawa flow depth requirements.

6.3.2 Quality Control

As per the Stantec *LeBreton Flats Stormwater Management Feasibility Options* (Stantec, 2002) (Appendix J, appended to the Dessau-Soprin Report), the following quality control requirements are in place for the LeBreton Flats site.

Fish habitat designation:

- Type 1 in the Fleet Street Pumping Station Tailrace requiring 80% removal of Total Suspended Solids.
- + Type 2 in the Ottawa River requiring 70% removal of Total Suspended Solids.

These requirements are based on fish habitat protection in accordance with the Federal Fisheries Act.

Quality control of 80% TSS removal is to be met through the installation of several mechanical separators (Oil and Grit) in combination with other source control elements, using a treatment train approach. The use of Oil and Grit separators in conjunction with low impact development source control measures for quality control corresponds with the findings and recommendations of previous studies.

Low-impact development measures seek to mitigate the impacts of increased runoff and stormwater pollution by managing and reducing runoff. The LID strategies mimic natural or predevelopment hydrology through the process of infiltration, evapotranspiration, harvesting, filtration and detention of stormwater. These practices can effectively remove nutrients, pathogens and metals from runoff and reduce the volume and intensity of stormwater flows. Based on the current site plan, the preferred LID measures for the LeBreton Flats Development area should include bio-swales, rain gardens and green roofs.

The option of using a wet pond to treat the water quality of the site was considered but abandoned given several concerns relating to submerged outlets and surcharges conditions, fluctuating river water level, environmental issues and approvals, as well as significant fill requirements.

6.3.3 Sewer Design Constraint and Considerations

The use of inlet control devices on stormwater structures must be implemented on-site to ensure that only the 5-year event enters the minor system to ensure allowable flows to the municipal networks are not exceeded during major storm events.

6.4.15 Albert Street Overland Flow

As indicated in section 6.1.5, 20ha of land south of Albert Street has an overland flow route that crosses the LeBreton Flats land and discharges to the open aqueduct. The portion of land between the LRT and Albert street at the Preston intersection has a grade difference of approximately 3.3m. The proposed LeBreton Flats grading will generally follow the existing topography of the land and will keep the overland flow towards the open Aqueduct. (Figure 6.16)

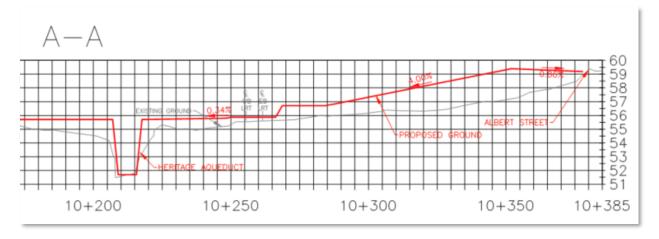
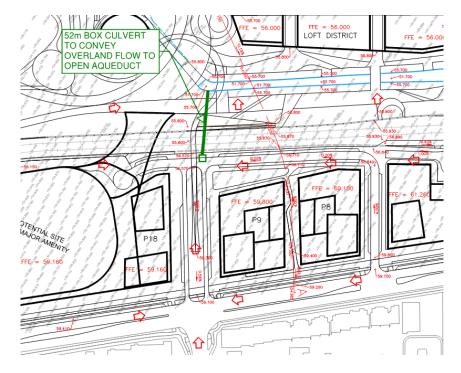
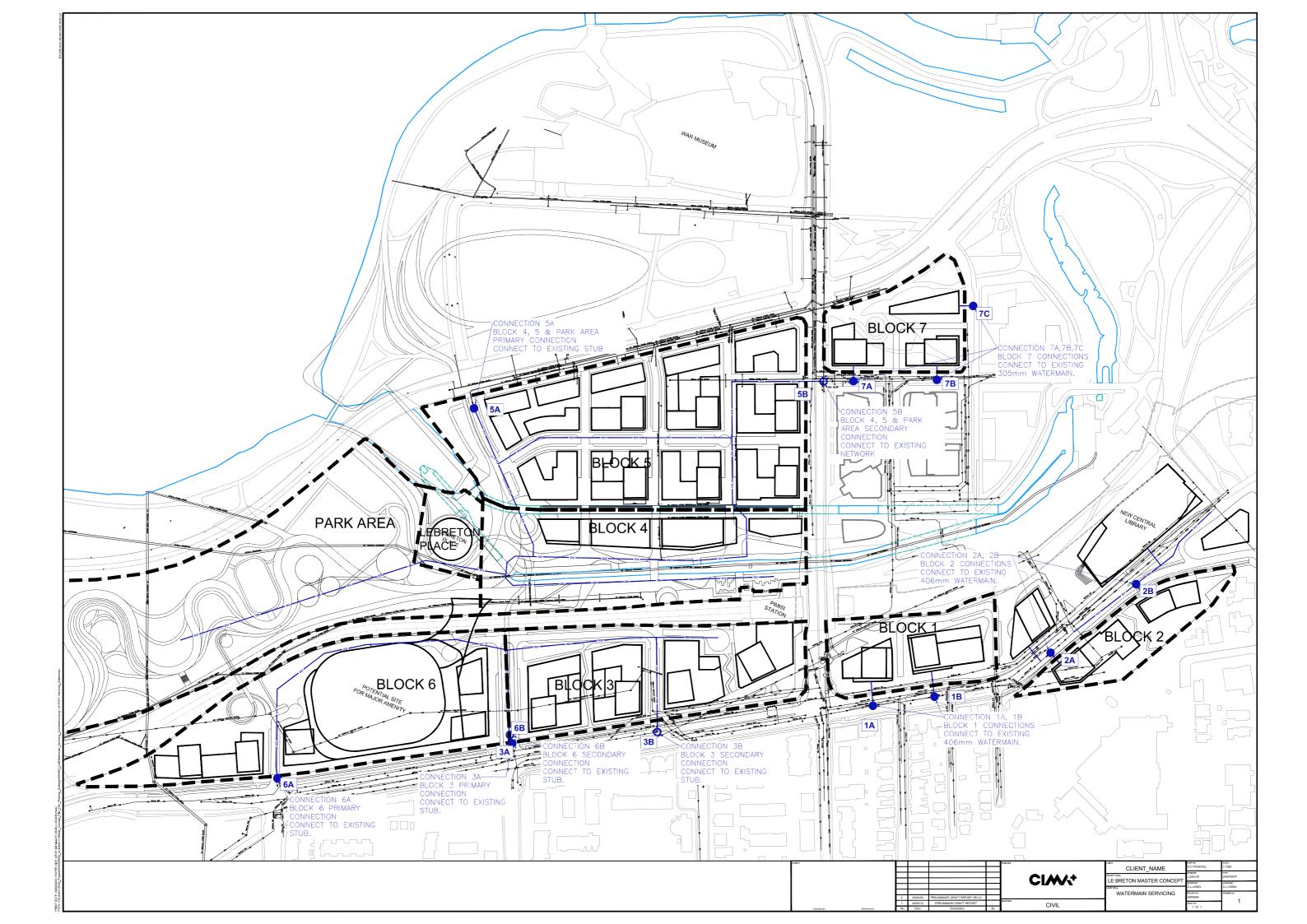
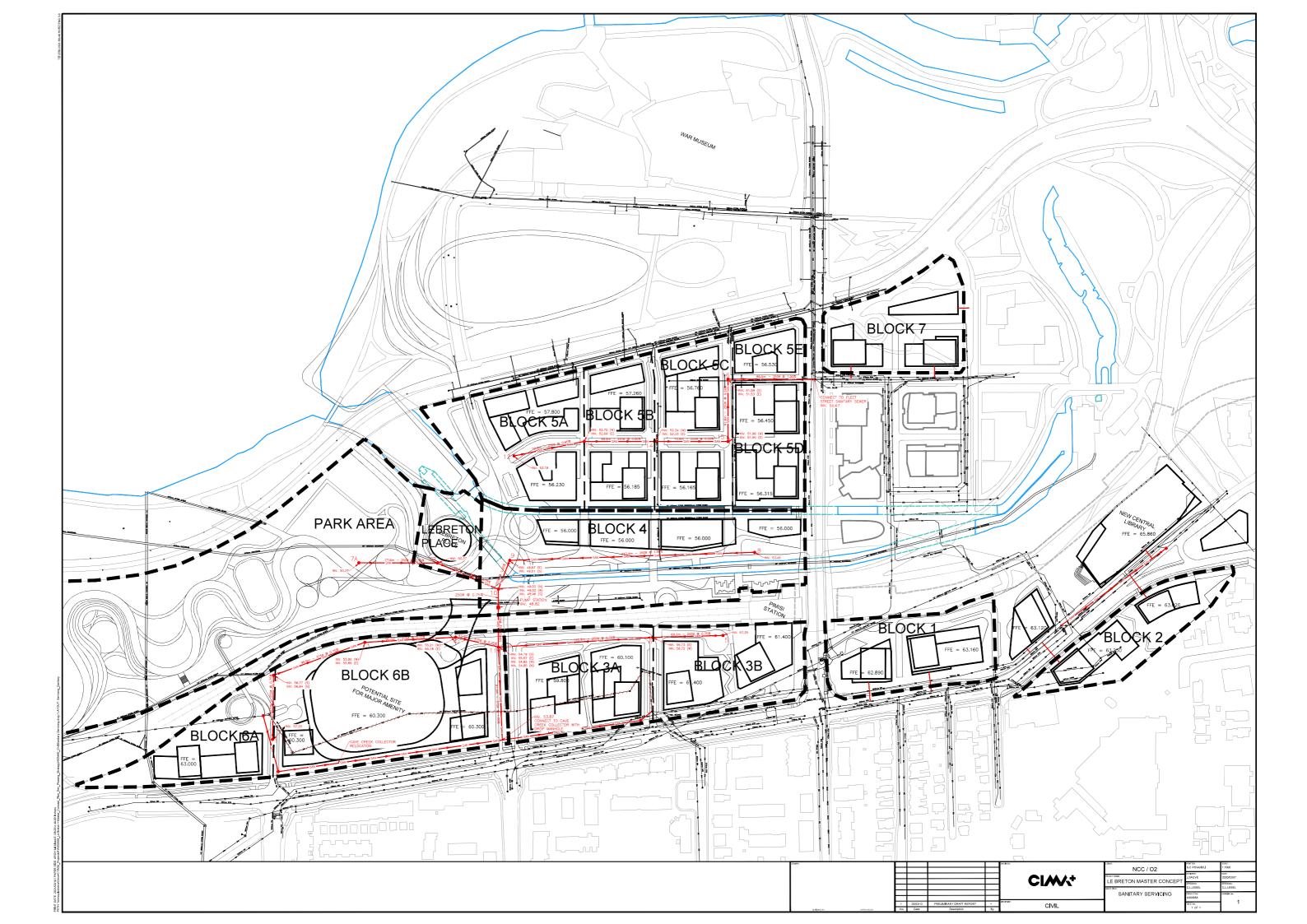


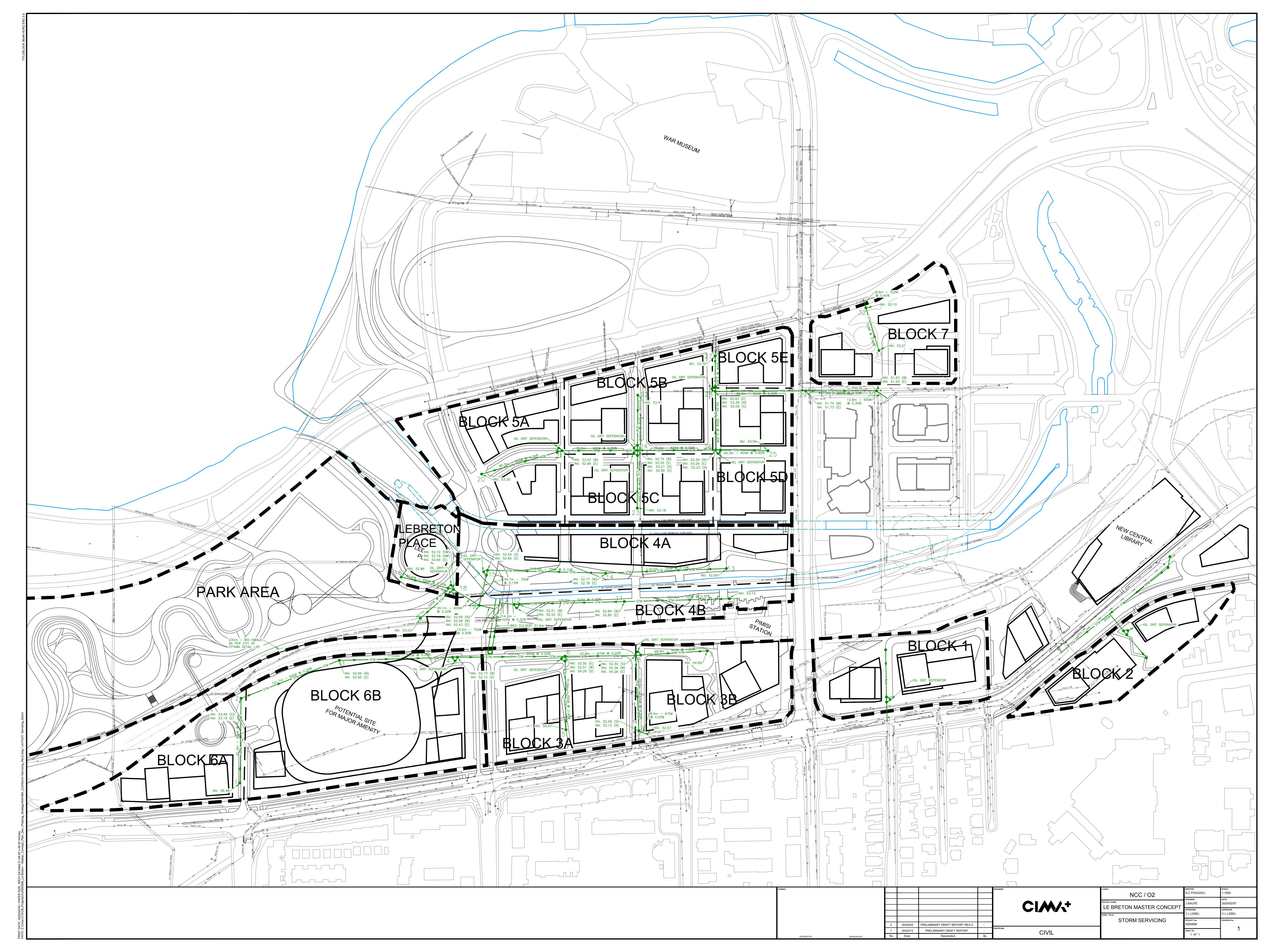
Figure 6.16: Overland Flow - Section A-A

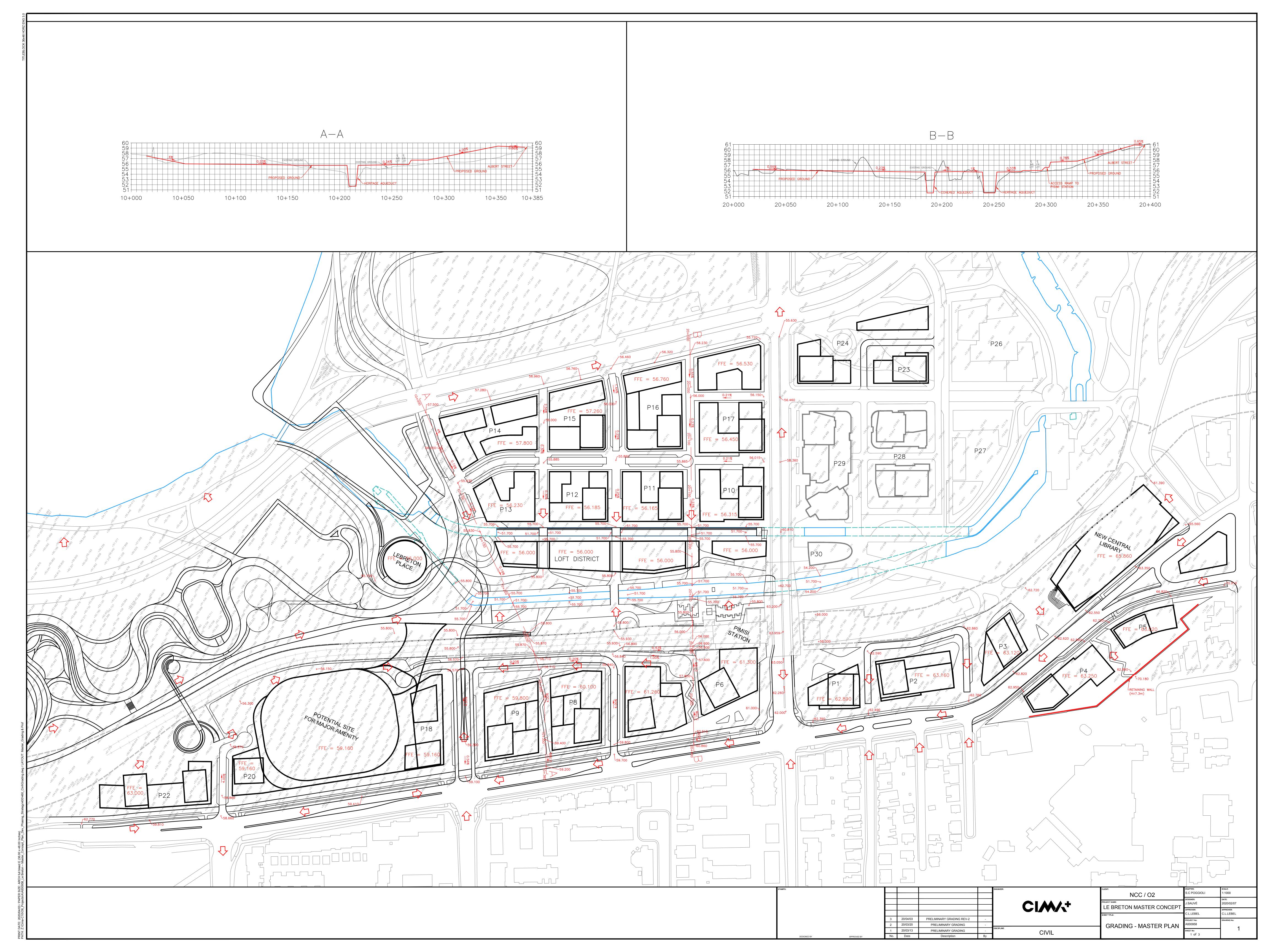
The existing overland flow currently flows over the LRT track which was opened in 2019. With an increased runoff coefficient, it is expected that the overflow would cross the LRT track at greater velocities and possibly damage the track. In order to mitigate the damaging of the LRT, a box culvert is proposed before the LRT crossing to capture the overland flow and direct it towards the open Aqueduct. This would require approximately 52m of box culvert and would need to be bored beneath the LRT track.




Figure 6.17: Overland Flow to Box Culvert Under OLRT Track

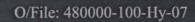

A detailed analysis of the flow generated from the overland route will be required to size the box culvert. Further discussion with the city will also be required.


6.5 Conclusions and Recommendations – Storm Servicing


In conclusion, the discharging of storm water flow into the city's municipal network and Open Aqueduct will be feasible. Quality requirements are expected to be achieved using a combination of Oil and Grit separators and LID methods.

* Commission

commission de la Capitale nationale Canada


LEBRETON FLATS
INFRASTRUCTURE
AND REMEDIATION PROJECT

PROJECT N°: SC436

MASTER SERVICING REPORT

FINAL REPORT (5TH REVISION)

LeBreton Flats Infrastructure and Remediation Project

Master Servicing Report

FINAL REPORT (5th Revision)

February 2004

Y/Ref.: SC-436

O/Ref.: 480000-100-Hy-07

LeBreton Flats Infrastructure and Remediation Project

MASTER SERVICING REPORT

FINAL REPORT (5th Revision)

February 2004

Prepared by:

Dominique Deveau, P.Eng., M.Eng.

Approved by: Daniel Lépine, Eng

	RECORD OF REVISIONS AND EMISSIONS												
REVISION#	REVISION # DATE DESCRIPTION OF THE MODIFICATION AND / OR OF THE EMISSION												
05	05/16/2003	For Approval											
06	10/11/2003	Final											
07	13/02/2004	Final											

This engineering document is the property of Dessau-Soprin and is protected under Copyright Law. It can only be used for the purposes mentioned thereto. Any reproduction or adaptation, either partial or total, is strictly prohibited without the express written authorization of Dessau-Soprin.

Dessau-Soprin inc.

885 de la Carrière Blvd., suite 110 Hull (Quebec) Canada J8Y 6S6 Telephone: (819) 770-6832 Fax: (819) 777-3689

E-mail: laval@dessausoprin.com Web Site: www.dessausoprin.com

Y/Ref.: SC-436

O/Ref.: 480000-100-Hy-07

From: Montgomery, Paul

To: O"Connell, Erin; Smadella, Karin
Cc: Mottalib, Abdul; Thiffault, Dustin

Subject: Re: Lebreton Flats Draft Plan of Subdivision - Engineering Discussion

Date: Tuesday, November 14, 2023 7:55:22 PM

Attachments: <u>image001.gif</u>

image002.png

Hello Karen; all is well and I hope the same for you and yours.

Below is what information I have regarding water elevations, in and around the two Fleet Street aqueducts:

The **open aqueduct** is largely connected, together with the **covered aqueduct**, with and at the forebay of the Fleet Street Pumping Station. With little usual flow through the **open aqueduct**, I would guess that its usual water elevation would be fairly level along its length and would follow the usual operating level of the forebay; currently between 51.82m and 52.03m (per Record Drawings: ISB05-3013, Sheet 1, Delcan). Peak and surge operating levels, in the forebay, can be higher and sometimes spill over the forebay's stoplog weir. I don't have a precise elevation of this weir but, from previous visual observations, I would roughly estimate its current crest elevation to be ~52.2m.

The hydraulic grade line along the length of the **covered aqueduct** is much steeper and will, of course, vary with flow rate. Usual and optimal flow rates through the **covered aqueduct** were estimated to be between 25 to 35m3/s (Fleet Street Pumping Station Hydraulic Capacity Study, October 1998, Delcan).

For the **open aqueduct**, Water Production has no records of upstream water elevations, estimated or observed, for or during storm events. It is worth noting that there is a small diameter (~200mm?) pipe connection, at the upper end of the **open aqueduct**, which flows water from the river and from just above the headworks facility, to maintain some flow through. This small pipe connection, along with any other seepage, piped or overland flows entering into the **open aqueduct**, would steepen its operating hydraulic grade line somewhat but, to what degree, I cannot precisely say.

For the **covered aqueduct**, data taken from personal survey notes on April 30, 2019, recorded the peak river water elevation, just upstream of the Headworks flow control gates, at 53.7m. I then estimated an additional river level increase of ~0.5m would begin to bypass at/around the Headworks facility and down into the lower Lebreton Flats area. From the same Delcan study noted above, the usual river water elevation, just above Headworks, was noted as 52.8m (as controlled by the Chaudiere Ring Dam). Much of the then observed headloss, through the **covered aqueduct**, was attributed to the Headworks trash racks and gatehouse structure.

Lastly, I do recall finished grades, adjacent to the **open aqueduct** and by the Pimisi Station, being quite close the usual operating level of the forebay. I did not keep copies of those early station drawings but Erin should know where they can be found.

I hope you find this information helpful!

Paul

From: Montgomery, Paul
To: Smadella, Karin

Cc: Moroz, Peter; Tousignant, Eric; Duquette, Vincent; Fawzi, Mohammed

Subject: RE: Open Aqueduct Configuration - Upstream end.

Date: Monday, March 25, 2024 8:56:41 PM

Attachments: <u>~WRD2863.jpg</u> image001.png

SN 015120 STRUCTURAL EVALUATION FINAL REPORT MARCH 2015.pdf

B01512001-01 .pdf

Hi Karin,

Unfortunately, I am fairly certain that the City has very little detailed record information on this former rail bridge. I recall a concerted effort made by several staff to locate any such details, in advance of the construction of the temporary Preston Street Extension but, to my knowledge, very little was found. I have attached what I could find through the City's Geoinformation site, about this immediate area, for your reference. Much of the structure is on NCC property so I can only speculate who might now own this structure. From the attached 2014 report's photos, it would also appear that the LPTM has been routed under a portion of the southerly end of the former (and now heritage) 1870 railway bridge (SN015120). This 2014 report mentions an earlier 2006 condition report but I could not find a copy of it on the Geoinformation site. If the City's structures folks have more detail, perhaps try reaching out to Jack Zhao?

As you may already know, the original open aqueduct extended through to Nepean Bay and had its own headworks structure (i.e. separate from the current headworks structure). Historical photos and the attached report appear to confirm that this open aqueduct was, at one time, entirely routed underneath this former rail bridge. I have checked and no detailed records, about this abandoned section of open aqueduct or former headworks structure, are here at Lemieux or on the same geoinformation site. As such, precisely how and how much of this aqueduct section was filled in, I cannot say, but I would guess that any original rock cut, for this aqueduct section, was simply filled in, from the then shore and back towards this former rail bridge. The attached MH report suggests likewise and notes that only a southerly ~10m section of the arch structure still acts as a bridge, with the rest underlain by some manner of fill material.

The dashed line, as highlighted in red below, shows a rather *approximate* location of the pipe, as I understand it, but I would suggest that its terminus lies somewhere underneath the old rail bridge and not beyond. Again, like much of this area, details on this pipe are few. I can confirm that the pipe exists and it is valved off, from time to time, coincident with the draining of the aqueducts. I would guess that the pipe was installed along and with the filling in of the upstream section of the old aqueduct. Again, I have no details of the pipe's depth but there is a valve box inside our fenced headworks compound, like those used for watermains, which we can operate.

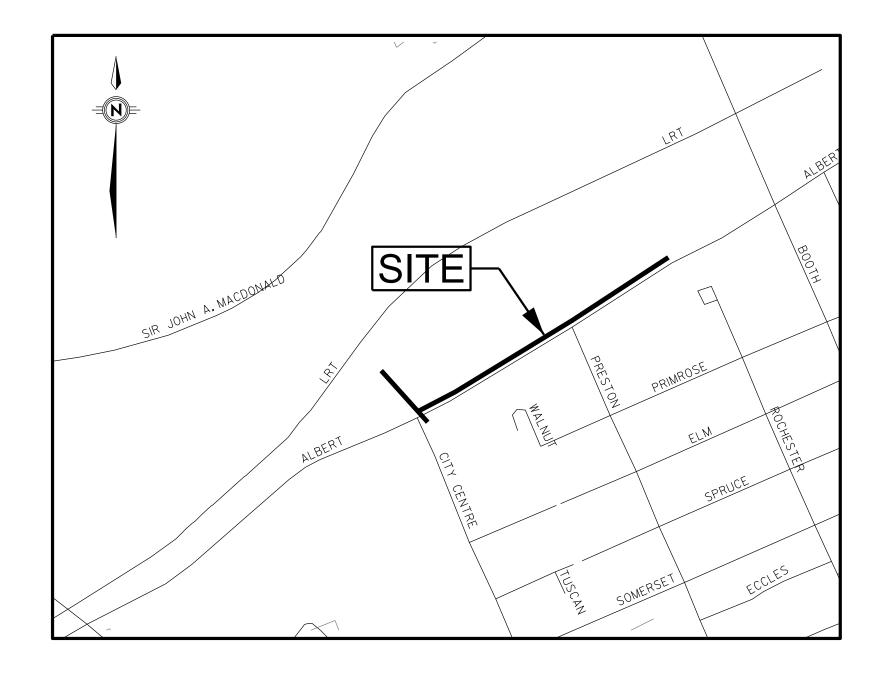
The attached drawing, by Stantec, details some circa 2001 rehabilitation work completed on the bridge. This was the only drawing I found, for this particular structure, so I hope this, and the above information will be helpful.

Take care,

Paul

M. Paul Montgomery, P.Eng.

Plant Manager, Water Production East Infrastructure and Water Services Department, City of Ottawa 1 Onigam Street, Ottawa, Ontario, K1Y 2C4 tel / tél: (613) 580-2424, ext / poste: 23302


cell: (613) 223-0907

e-mail / courriel: Paul.Montgomery@ottawa.ca

From: Smadella, Karin < Karin. Smadella@stantec.com>

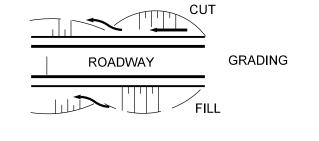
C. DUCLOS, P.ENG.
DIRECTOR
INFRASTRUCTURE SERVICES

Robinson Consultants

CAVE CREEK COLLECTOR REALIGNMENT

CONTRACT NO. CP000511

ISSUED FOR FINAL PRELIMINARY DESIGN JAN. 23, 2024

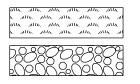

	EXISTING	PROPOSED	REMOVALS
Structure Adjustment	Extorniva	11101 0025	DENOTES ADJUSTMENT
Self Leveling Frame & Cover		(SL)	ONLY
Clay Seal		(62) CS	
San. Sewer & Manhole	250mm SANITARY SEWER MHSAN	PROP.250mmØ SAN	MHSAN LIMIT OF REMOVA
Comb. Sewer & Manhole	250mm SANITARY SEWER	PROP.250mmØ COMB	MHSAN LIMIT OF REMOVA
Storm Sewer & Manhole	(COMBINED) 450mm STORM SEWER MHST	PROP.450mmØ STM	MHST LIMIT OF REMOVA
Single Curb Inlet Catch Basin			
Single Catch Basin	CICB CB	CICB#	CICB
Ditch Inlet Catch Basin	DICB	■CB#	X DICB
Double Curb Inlet Catch Basin		DICB#	
	DCICB	DCICB#	DCICB
Double Catch Basin	DCB	DCB#	LIKI DCB
Subdrain (with direction of flow)	400mm WATERMAIN	PROP. 406mmØ WM	400mm WATERMAIN
Water Main		—————————————————————————————————————	400mm WATERMAIN
Hydrant & Valve Box	VB ROTA	₩ V&VB	VB ZO ₁₂
Valve & Valve Box	o _{NB}		₩ ^{VB}
Valve & Valve Chamber	VC o	⊕ V&VC SP	VC WK
Valves (Water services only)	•WV WK	•SP	XWV WKX
Sanitary Service Lateral		SA	
Storm Service Lateral		ST	
Water Lateral & Stand Pipe		SP	
Gas Main & Valve	GV 100mm GAS		
Property Line			
Concrete Curb			-
Depressed Curb		DC	
Ditch	EX. DITCH		
Fence & Gate	CHAIN LINK FENCE GATE	→ → →	**
Guide Rail	CABLE GUARD RAIL		\longrightarrow
Retaining Wall	CONC RWALL		
Trees (Dripline & Trunk Dia. / Small Tree)	(•20) C		∞ ⊗
Hedge / Brush Area			
Concrete Sidewalk / Median	CONCRETE		
Asphalt Sidewalk / Pathway	ASPHALT		
Asphalt Laneways & Entrances	ASPHALT		
Asphalt (Full Depth)			
Asphalt (Partial Depth)			
Gravel Laneways & Entrances	GRAVEL		
Paving Stones	PSTONE		
TWSI		000000	
Bell Utility Pole & Anchor	(──● WP BP		←
Bell Manhole	• MHU BELL		X MHU X BELL
Bell Box / Pedestal	BELLBOX		BALLBOX
Hydro Utility Pole & Anchor	(──● WP HP		€ WP
Hydro Manhole	omhu hydro		HP MHU HYDRO
Hydro Transformer / Pedestal			
Light Standard	HYDRO TRANS ●LS		HYDRO TRANS ★LS
Traffic Manhole	• MHU • TRAFFIC		X MHU X TRAFFIC
Traffic Handhole	□ THH		X THH
Traffic Control Box	□ TRAFFIC CONTROL		XTRAFFIC CONTROL
Traffic Mast Arm Foundation	CONTROL		CONTROL TL
Metal Pole	AMD		
INICIAL I VIC	● MP		● MP

REFERENCE POINTS

BM ELEV.	BENCH MARK
□ CM	CONCRETE MONUMENT
	ROCK BAR
• IP	IRON TUBE OR PIPE
IB	IRON BAR
⊚ PK	PK NAIL
ISCM 2-	2ND ORDER INTEGRATED SURVEY CONTROL MONUMENT
• ISCM 3-	3RD ORDER INTEGRATED SURVEY CONTROL MONUMENT
	CUT CROSS
V	CUT VEE
• RIB	ROUND IRON BAR
Ø	REINFORCING BAR
SIB	STANDARD IRON BAR

MISCELLANEOUS

SHORT STANDARD IRON BAR


MW4 MONITORING WELL (PLAN VIEW)

BH4 BOREHOLE (PLAN VIEW)

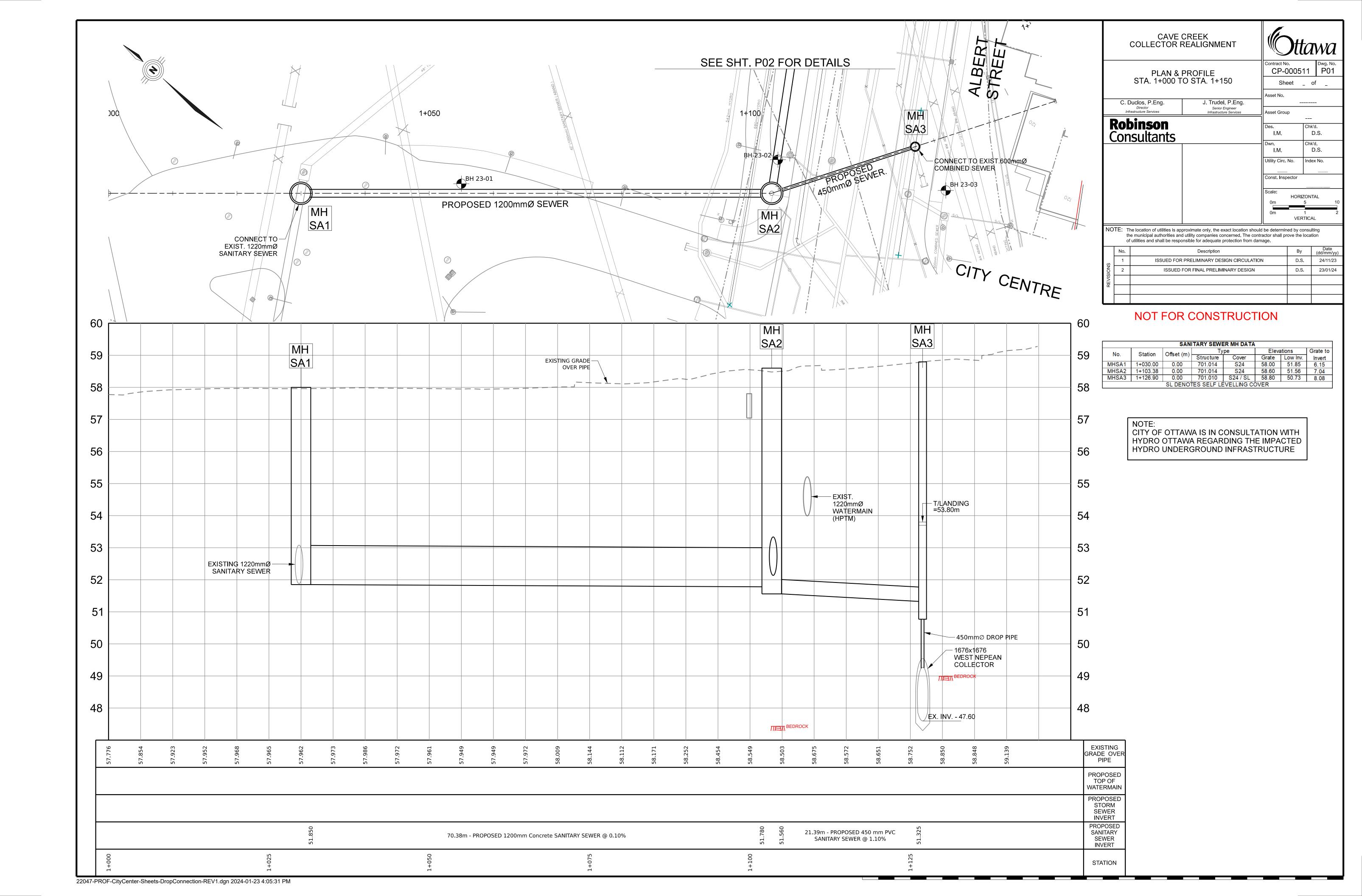
AG4 AUGER HOLE (PLAN VIEW)

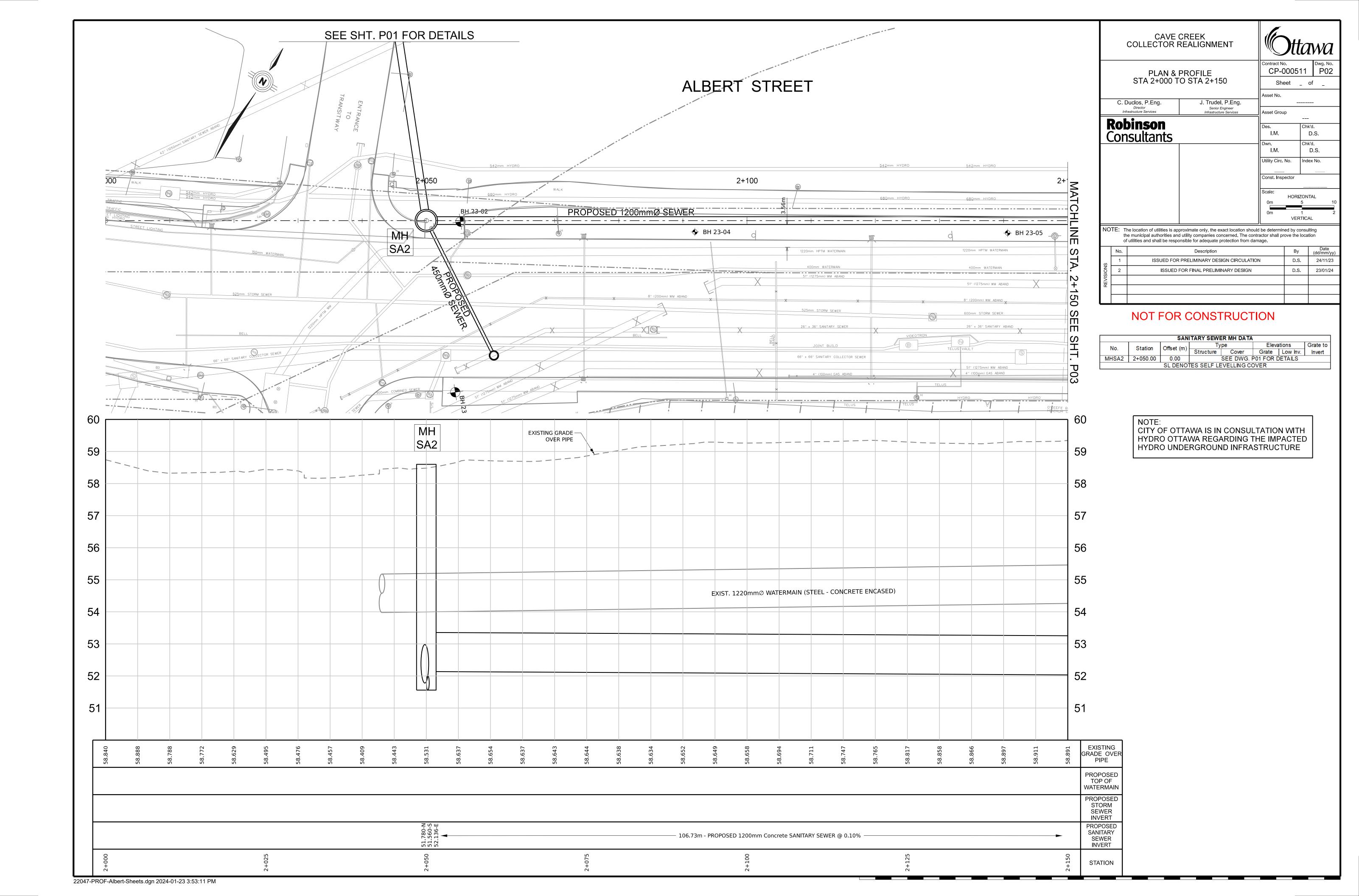
+HV4 HYDROVAC HOLE (PLAN VIEW)

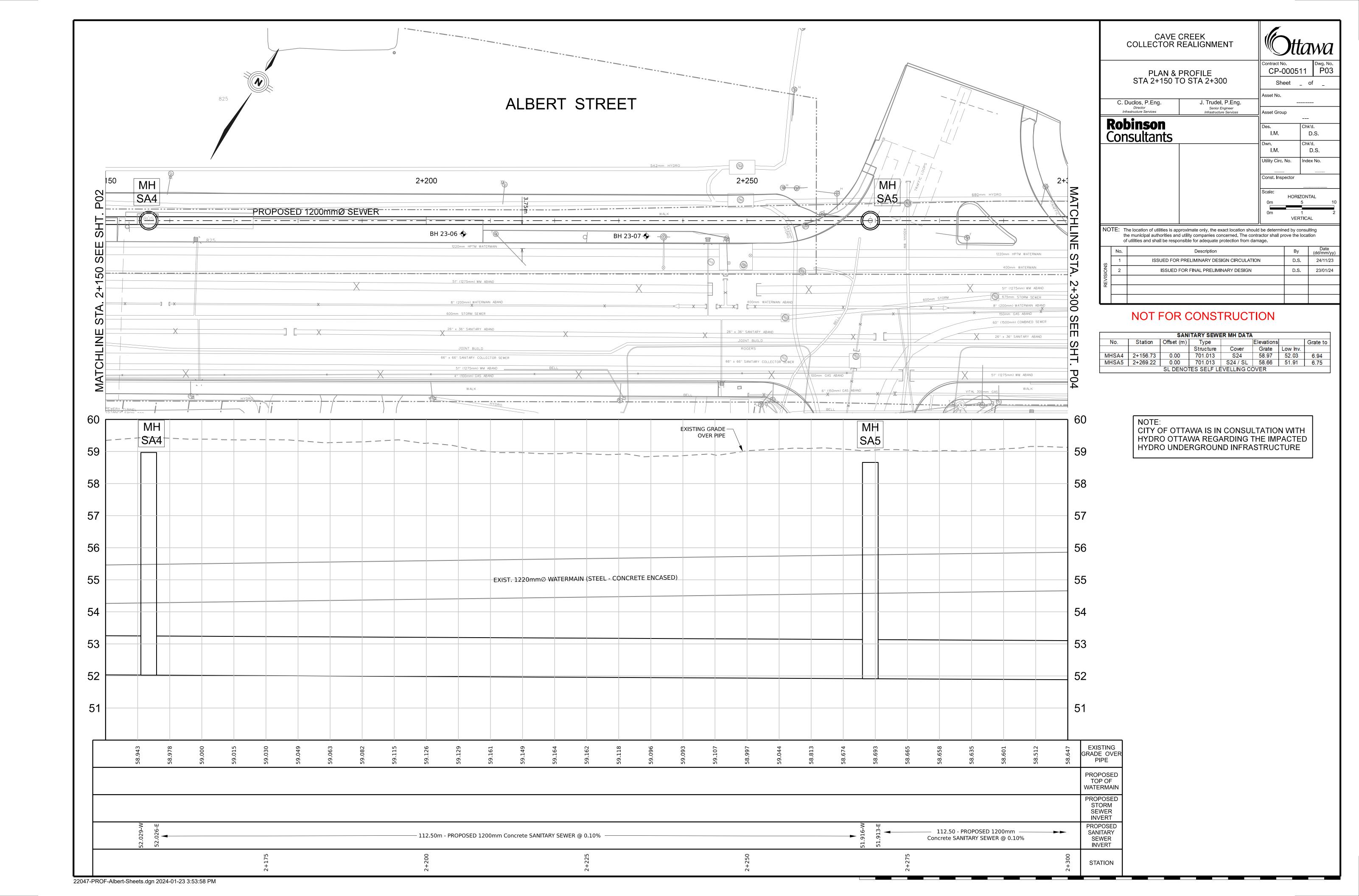
SUPPLEMENTAL

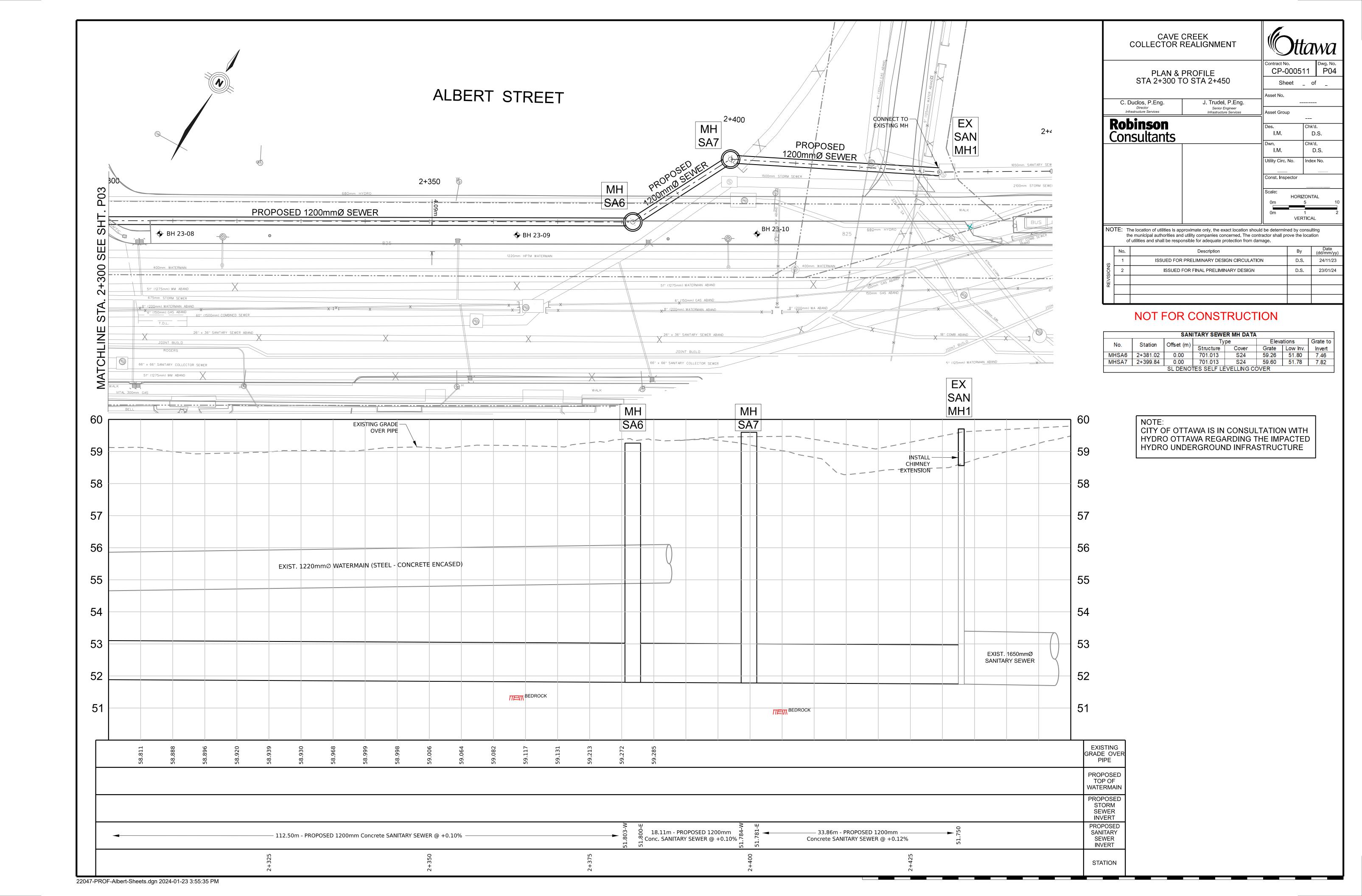
Topsoil & Sod

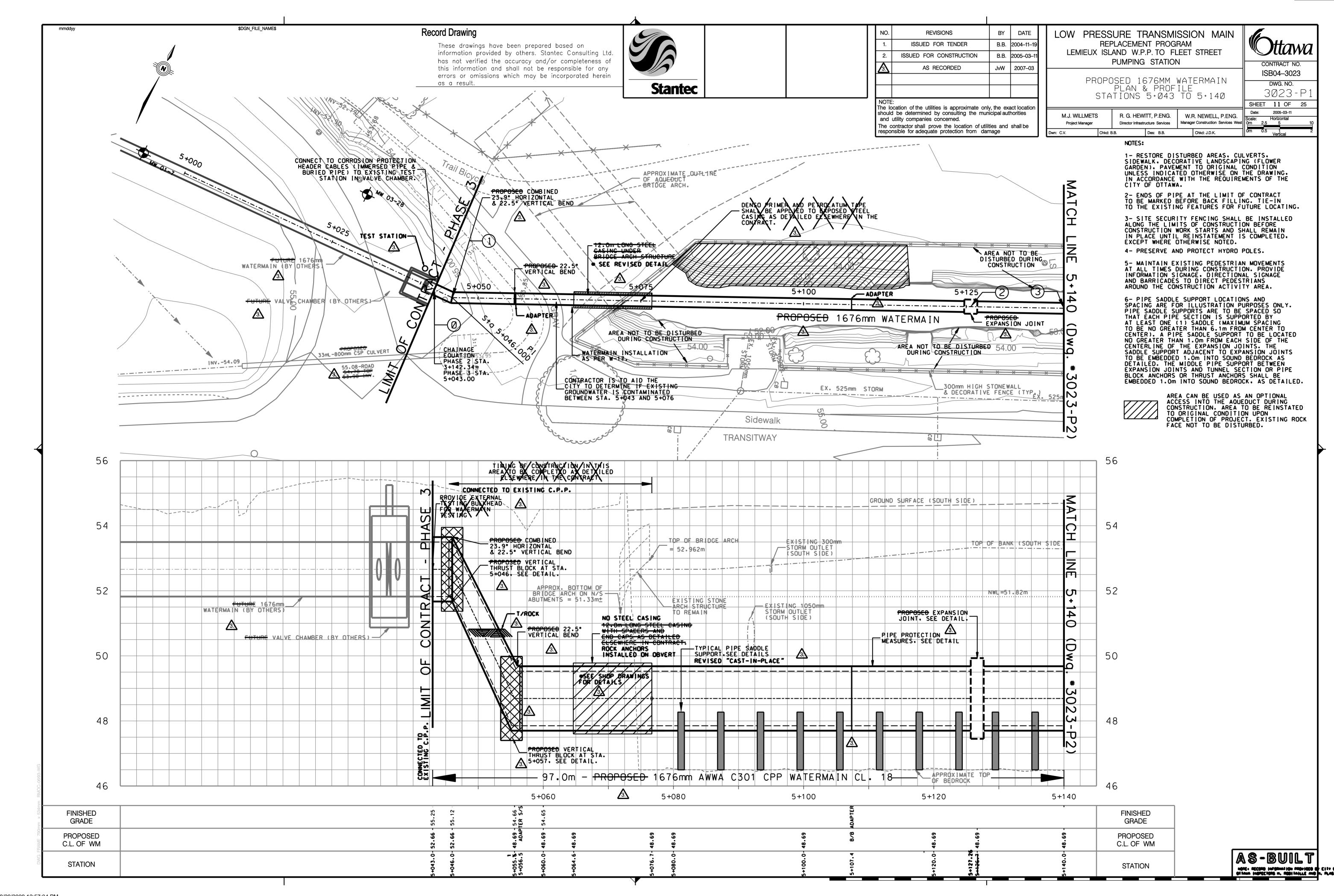
DWG. DESCRIPTION 000 COVER SHEET I1 LEGEND, INDEX, AND NOTES P01 PLAN & PROFILE - STA. 1+000 TO 1+150 P02 PLAN & PROFILE - STA. 2+000 TO 2+150 P03 PLAN & PROFILE - STA. 2+150 TO 2+300 P04 PLAN & PROFILE - STA. 2+300 TO 2+450

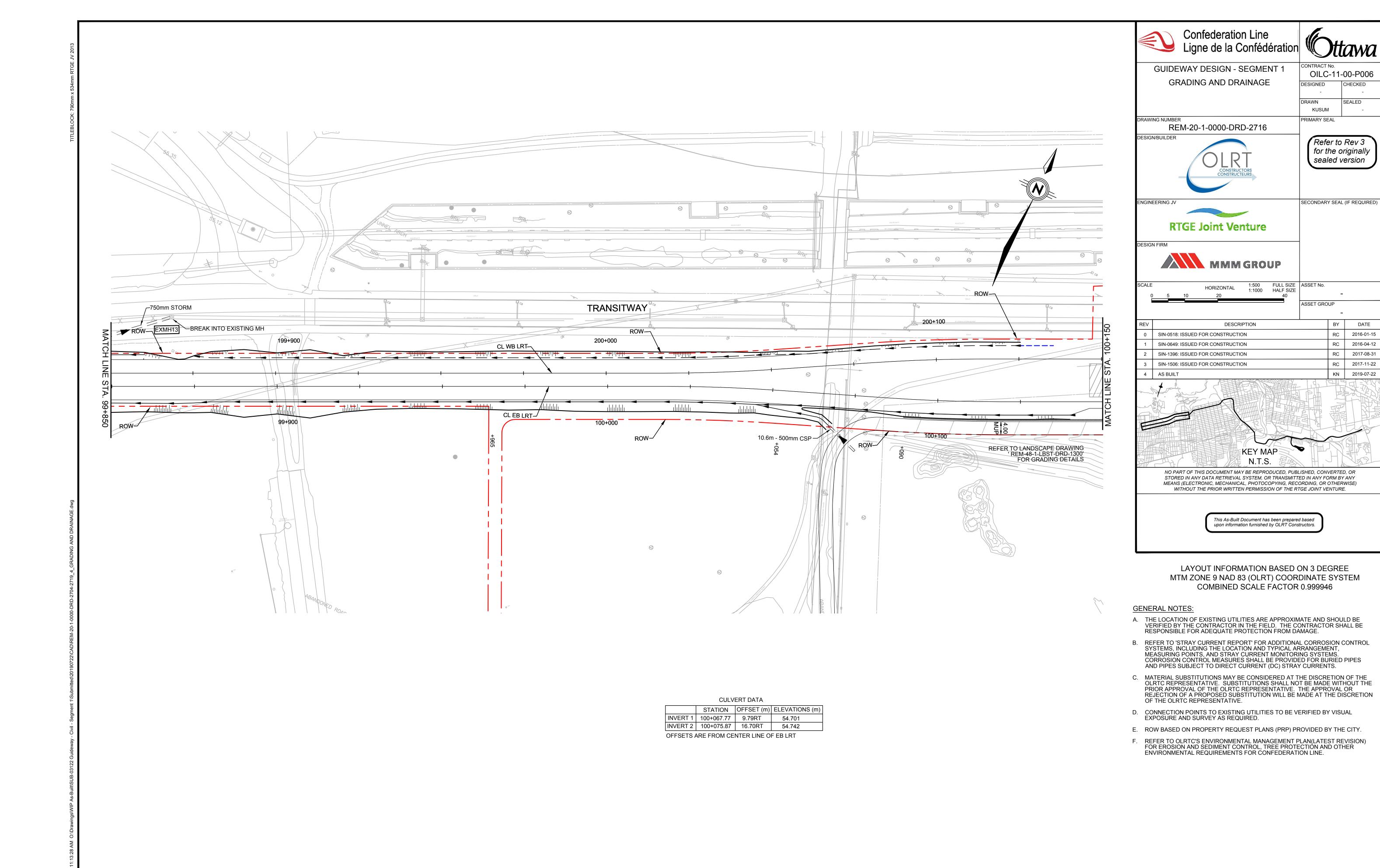

CAVE CREEK COLLECTOR REALIGNMENT LEGEND, INDEX, AND NOTES C. Duclos, P.Eng. Director Infrastructure Services Robinson Consultants Dwg. No. CP-000511 I1 Sheet - of Asset No. Asset No. Des. I.M. D.S. Dwn. Chk'd. I.M. D.S. Utility Circ. No. Index No. Const. Inspector

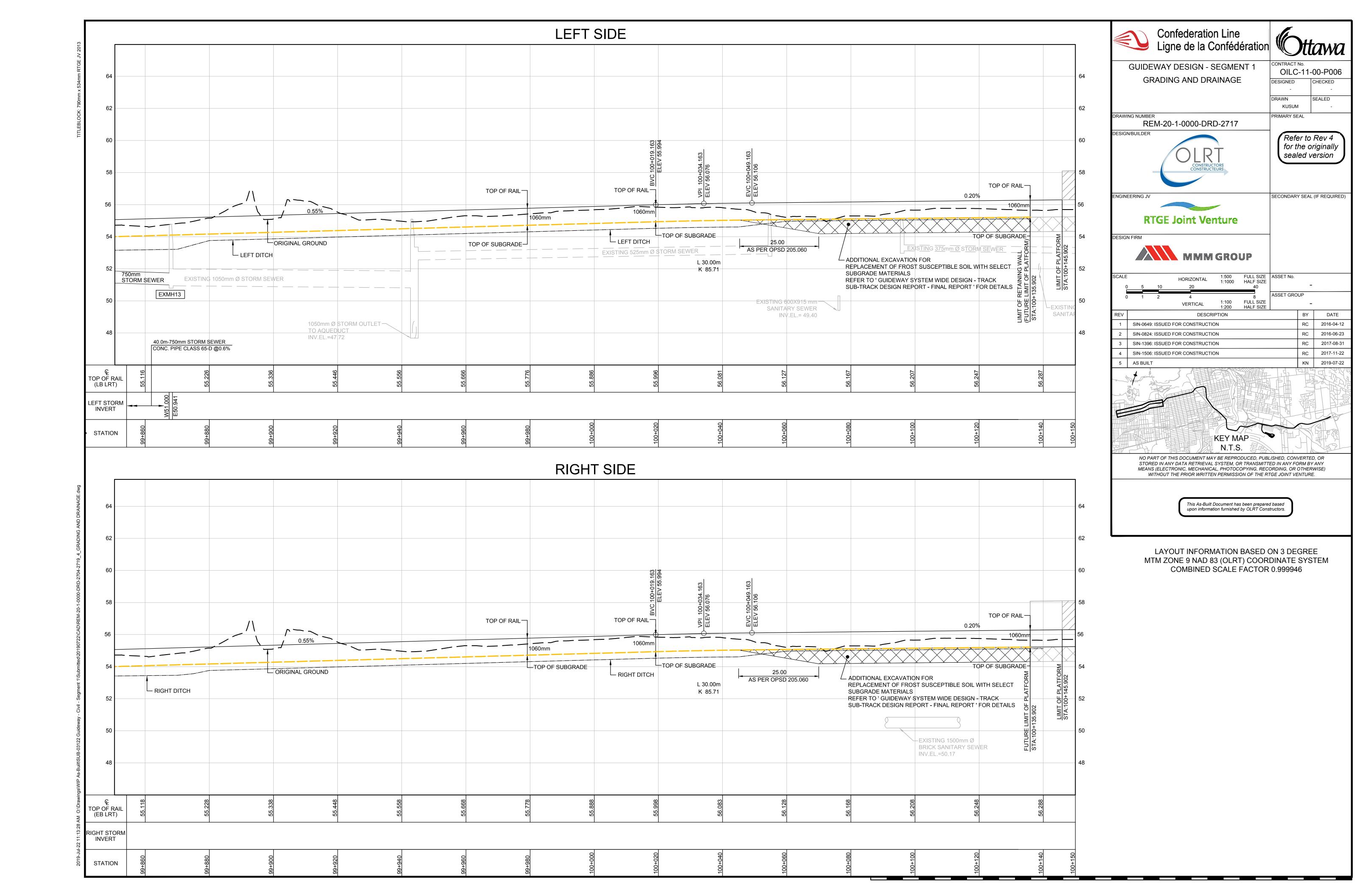

HORIZONTAL

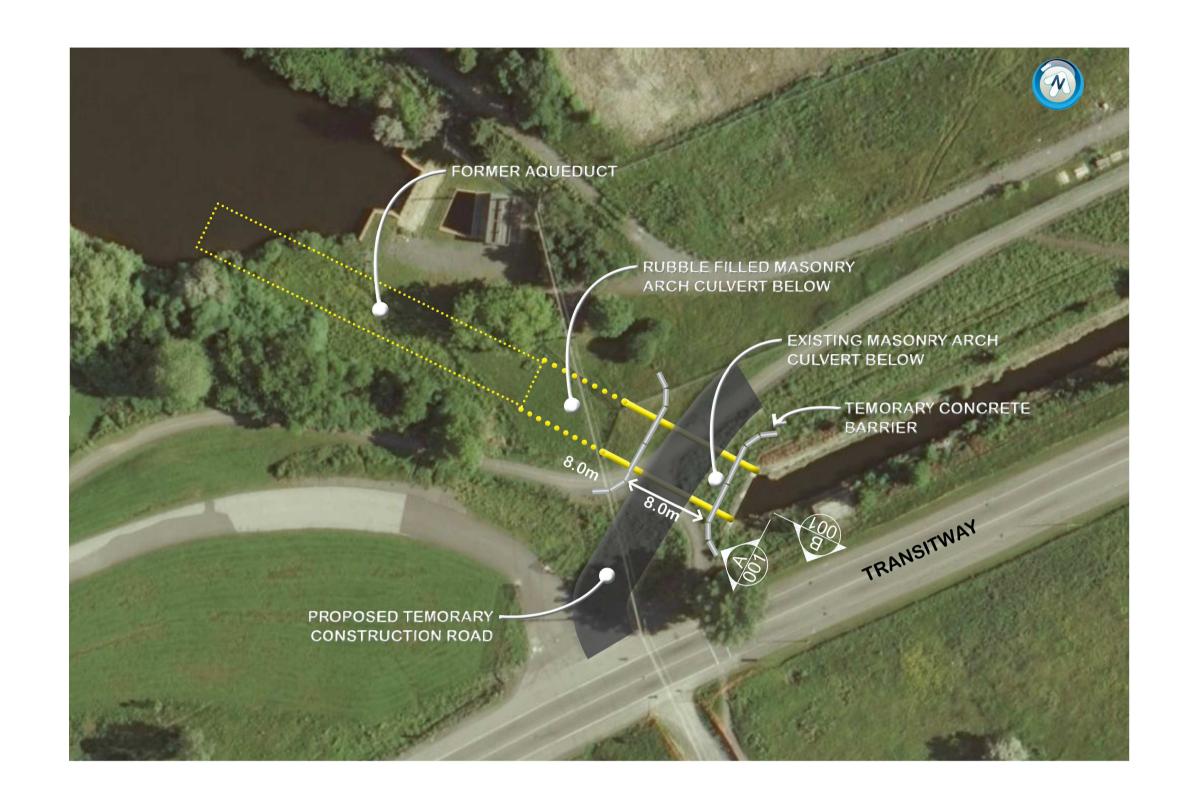

NOTE: The location of utilities is approximate only, the exact location should be determined by consulting the municipal authorities and utility companies concerned. The contractor shall prove the location of utilities and shall be responsible for adequate protection from damage.

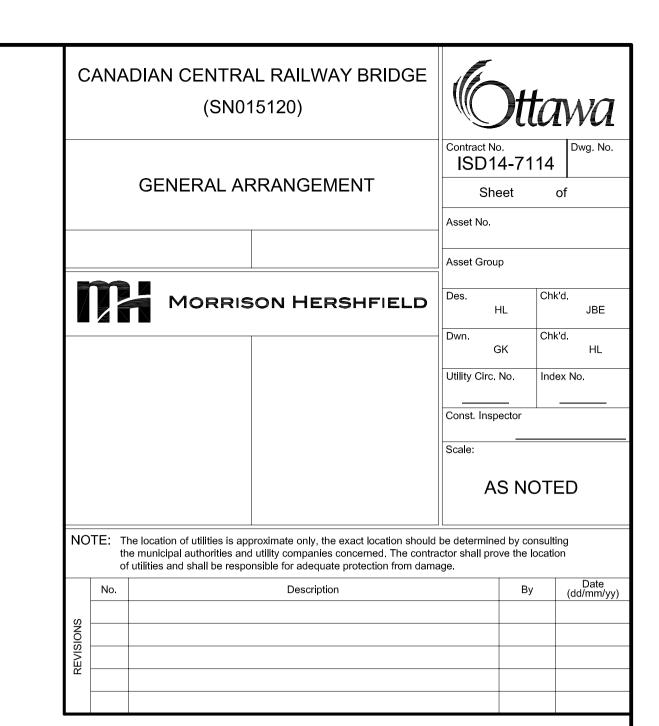

	of alliance and containing responding to adequate procession from defining containing					
REVISIONS	No.	Description	Ву	Date (dd/mm/yy)		
	1	ISSUED FOR PRELIMINARY DESIGN CIRCULATION	D.S.	24/11/23		
	2	ISSUED FOR FINAL PRELIMINARY DESIGN	D.S.	23/01/24		

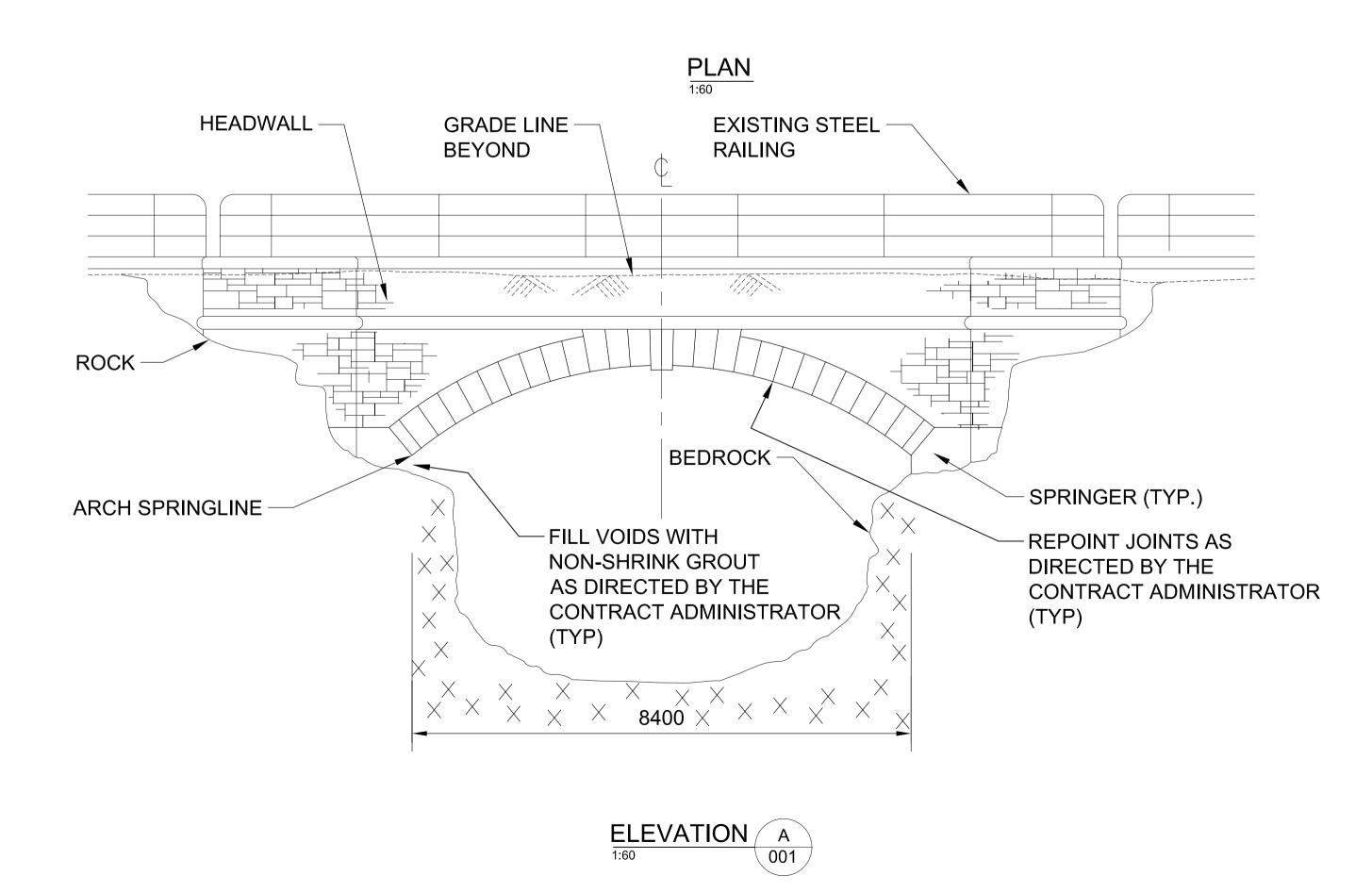

NOT FOR CONSTRUCTION

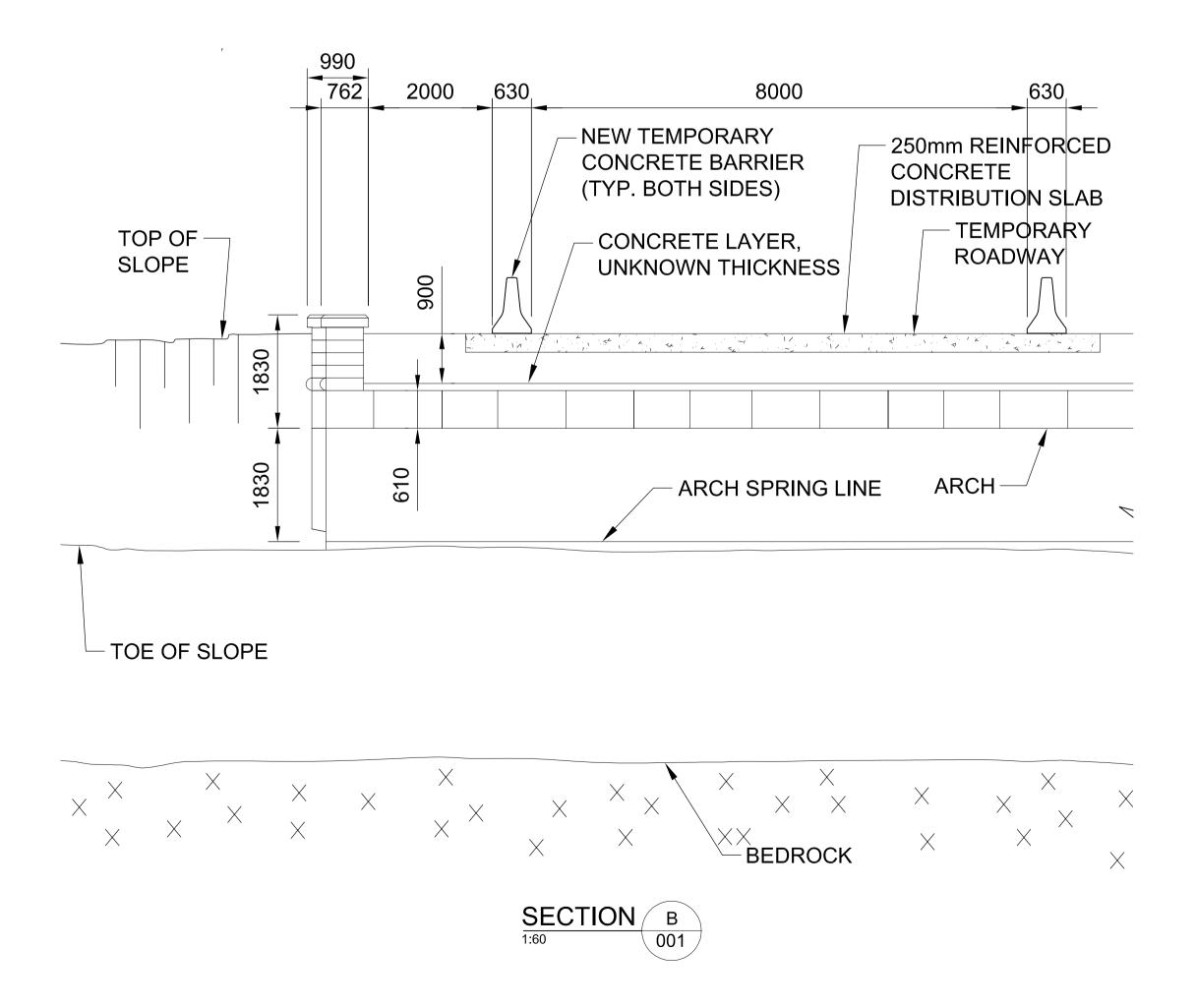


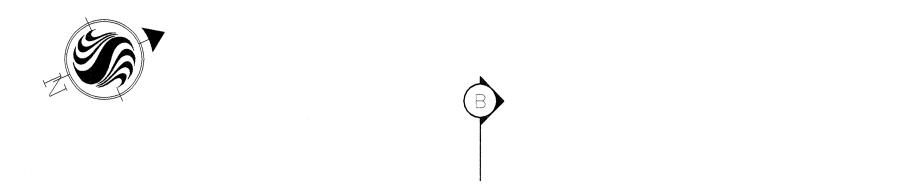






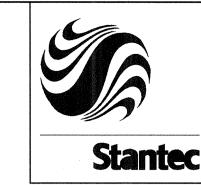






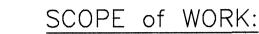
NOTES:

1. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL OTHER APPLICABLE CONTRACT DRAWINGS. INFORMATION SHOWN ON THIS DRAWING HAS BEEN EXTRACTED FROM xxxx AND SUPPLEMENTED BY FIELD INVESTIGATIONS.

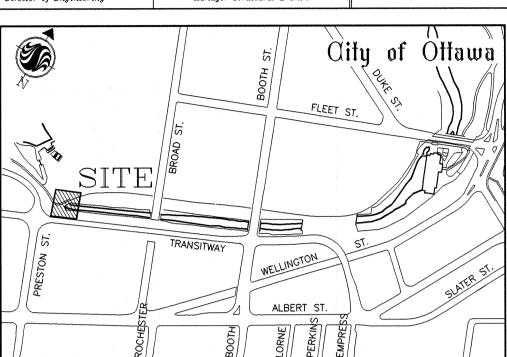


RESET CAPSTONE TO ALIGN

WITH ADJACENT STONES


LIMIT OF REPOINTING

ON UNDERSIDE OF


STRUCTURE

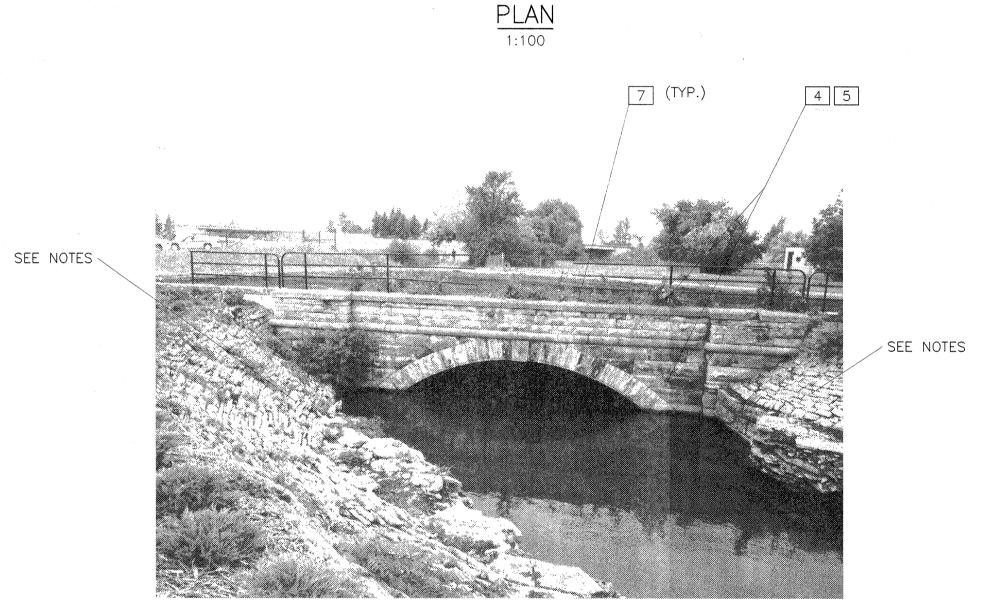
REVISION	BY	DATE
RECORD SET	P.C.M.	12 NOV 01

Offav	va-Garleton	B-	DWG.	. No. 2 01 —	001
		Sheet		of	
THE CANADA CENTR	AL RAILWAY BRIDGE	11	CONTRA E TLOO :		
		Des.	S.T.R.	Chk.	D.A.H.
GENERAL AF	RRANGEMENT	Dwn.	HWB	Chk.	J.M.
		Date:	10	MAR 0	0
J. MILLER, P.ENG. Director of Engineering	V.K. SAHNI, P.ENG. Manager Structural Branch	Scale	1	:100	

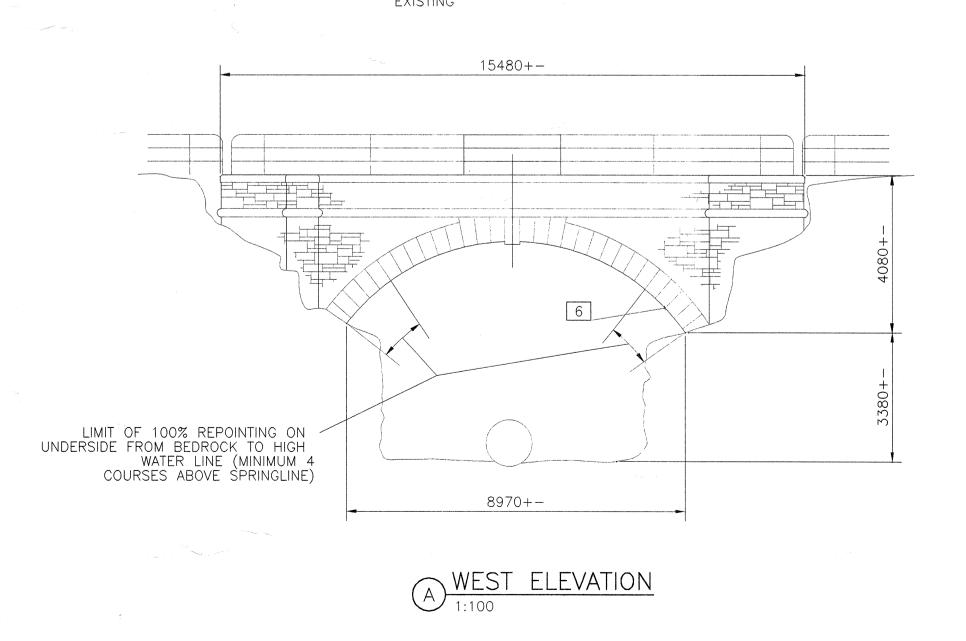
- 1 INSTALL FENCING, BARRICADES, ETC. AS REQUIRED TO PREVENT PUBLIC ACCESS TO THE WORK SITE.
- DO NOT BLOCK EXISTING PATH. CONFINE ACCESS ACROSS PATH TO ONE LOCATION, APPROXIMATELY 4.0m WIDE.
- 3 PROVIDE ACCESS SCAFFOLDING, FALSE WORK AND DEMOLITION CATCHMENT SYSTEM.
- 4 REPLACE DETERIORATED STONE IN SPANDREL WALL AS DIRECTED BY THE ENGINEER.
- 5 CHIP AND REPOINT MASONRY JOINTS (100%) ON EXTERIOR.
- 6 CHIP AND REPOINT ARCH BARREL UNDERSIDE AT WATERLINE (100% OF AREA). CHIP AND REPOINT REMAINDER OF ARCH SOFFIT ONLY AS DIRECTED BY THE CONTRACT ADMINISTRATOR.
- 7 SEAL SKYWARD FACING JOINTS.
- 8 REINSTATE LANDSCAPING.

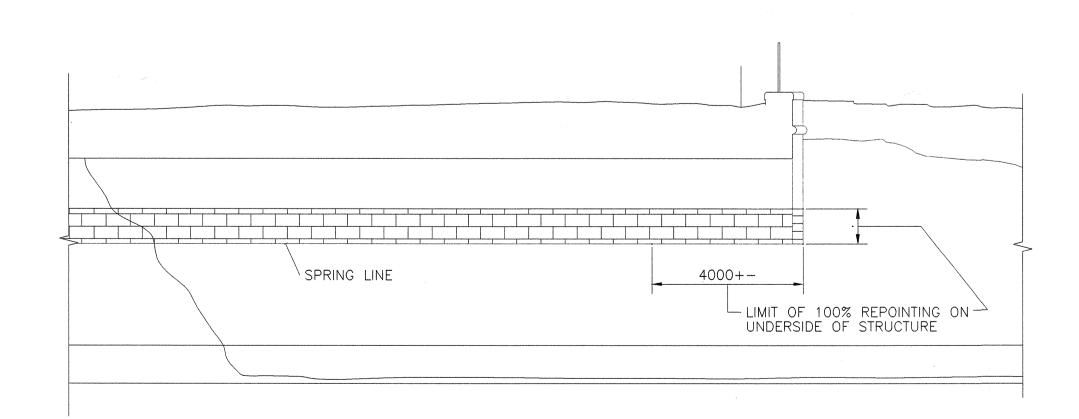
GENERAL NOTES:

- THE CANADA CENTRAL RAILWAY BRIDGE IS A DESIGNATED HISTORIC STRUCTURE. ALL MASONRY RESTORATION IS TO PRESERVE THE HERITAGE APPEARANCE.
- THE AREA IN AND AROUND THE BRIDGE MAY CONTAIN VALUABLE AND SENSITIVE ARCHAEOLOGICAL RESOURCES. RESTRICT WORK TO DESIGNATED AREAS AND NOTIFY CONTRACT ADMINISTRATOR UPON DISCOVERY OF RELICS, ETC.
- · ACCESS, WORK AND STORAGE AREAS SHALL BE LIMITED TO THOSE AREAS SHOWN ON THE DRAWINGS.
- DO ALL MASONRY RESTORATION WORK TO CAN3-A371-M94, EXCEPT AS MODIFIED BY THESE DRAWINGS AND THE CONTRACT SPECIFICATIONS.
- WHERE STONEWORK IS REMOVED, STABILIZE AND PROVIDE PROTECTION TO EXPOSED MASONRY REMAINING. PROVIDE TEMPORARY SHORING AND BRACING AS REQUIRED.
 UNLESS OTHERWISE NOTED, NO STONES ARE TO BE REPAIRED OR REPLACED WITHOUT PRIOR INSPECTION AND APPROVAL OF THE
- CONTRACT ADMINISTRATOR.


 NO CLEANING OF THE STONEWORK IS TO BE CARRIED OUT (UNLESS NOTED OTHERWISE) EXCEPT FOR THAT REQUIRED TO RESTORE

PRECONTRACT APPEARANCE AS A RESULT OF SPILLAGE OF MORTAR,


- · DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE. ELEVATIONS AND STATIONS ARE IN METERS.
- THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS AND DETAILS OF EXISTING FEATURES BEFORE PROCEEDING WITH THE WORK. ANY DISCREPANCIES SHALL BE PROMPTLY REPORTED TO THE CONTRACT ADMINISTRATOR.
- · FIELD MEASURE TO ENSURE PROPER FIT.


CONCRETE, GROUT, ETC.

- THE AQUADUCT WILL BE DRAINED FOR A PERIOD OF 4 WEEKS BEGINNING SEPTEMBER 18th TO PERMIT WORK TO BE COMPLETED ON THE ARCH BARREL UNDERSIDES. CATCHMENT SYSTEMS MUST BE IN PLACE TO PREVENT ANY REMOVALS OR OTHER MATERIALS FROM BLOCKING OR FALLING INTO THE AQUADUCT. COMPLY WITH THE ENVIRONMENT OPERATIONAL CONSTRAINTS OUTLINED IN THE CONTRACT SPECIFICATIONS.
- · MAINTAIN WORK SITE IN A NEAT AND ORDERLY MANNER AT ALL TIMES AND REINSTATE ALL DISRUPTED AREAS TO THE SATISFACTION OF THE CONTRACT ADMINISTRATOR.
- DESIGN CRITERIA AND LOADING TO OHBDC 1991 3RD EDITION FOR PEDESTRIAN BRIDGES.
- THE NCC HAS RECENTLY COMPLETED RESTORATION WORKS OF THE AQUADUCT AREA ADJACENT TO THIS STRUCTURE INCLUDING THE RAILING OVER THE STRUCTURE. THESE WORKS ARE NOT TO BE DISTURBED BY THE WORK OF THIS CONTRACT AND ANY DAMAGE SHALL BE REPAIRED AT THE CONTRACTORS EXPENSE TO THE SATISFACTION OF THE CONTRACT ADMINISTRATOR.

WEST ELEVATION EXISTING

B SECTION 1:100

Appendix B Water Servicing

B.1 Domestic Water Demands

Project Number: 160401780 Appendix B-3

LeBreton Flats, Ottawa, ON - Domestic Water Demand Estimates

Draft Plan of Subdivision, Stantec Geomatics, April 5, 2024 & associated densities Project No. 160401780

Population densities per Table 4 Guidel		a Water Design
Apartment	1.8	ppu
Townhome	2.7	ppu
Demand conversion factors per Water Design Guidelines and Te		
Residential	280	L/cap/day
Hotel	225	L/bedspace/d
		Libeaspaceia

Block ID	Commercial /	No. of	Damidatian	Ava Da	y Demand	Max Day	12 Demand	Peak Hour	Dem
Block ID	Institutional (m²)	Units	Population	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	Dema (I
	(/			(=)	(=:0)	(=)	(=:0)	(=)	
Block 1									
Apartment		592	1066	207.2	3.45	518.0	8.63	1139.6	1
Commercial	1389		0	2.7	0.05	4.1	0.07	7.3	(
Block 1 Subtotal	1389	592	1066	209.9	3.50	522.1	8.70	1146.9	1
Block 2									
Apartment		608	1094	212.8	3.55	532.0	8.87	1170.4	1
Hotel ³		201		62.8	1.05	94.2	1.57	169.6	
Commercial	2370	201	0	4.6	0.08	6.9	0.12	12.4	(
Block 2 Subtotal	2370	809	1094	280.2	4.67	633.1	10.55	1352.4	2
Disale 0									
Block 3		007	481	00.5	4.50	000.0	2.00	544.0	
Apartment		267	27	93.5	1.56	233.6	3.89	514.0	3
Townhome	200	10	0	5.3	0.09	13.1	0.22	28.9	(
Commercial Block 3 Subtotal	838 838	277	508	1.6 100.3	0.03 1.67	2.4	0.04 4.15	4.4 547.2	(
2.35% o Cabiolai	300			100.0	1.01	2-10.2	7.10	V-11.2	
Block 4		242	626	404.0	2.00	204.5	F 00	000.0	
Apartment		348	27	121.8	2.03	304.5	5.08	669.9	1
Townhome	0	10	653	5.3	0.09	13.1	0.22	28.9	(
Block 4 Subtotal	0	358	003	127.1	2.12	317.6	5.29	698.8	1
Block 5									
Apartment		203	365	71.1	1.18	177.6	2.96	390.8	6
Commercial	2035		0	4.0	0.07	5.9	0.10	10.7	(
Office	13391		0	26.0	0.43	39.1	0.65	70.3	
Block 5 Subtotal	15426	203	365	75.0	1.25	183.6	3.06	401.5	6
Block 6									
Apartment		270	486	94.5	1.58	236.3	3.94	519.8	8
Commercial	2811		0	5.5	0.09	8.2	0.14	14.8	(
Office	10922		0	21.2	0.35	31.9	0.53	57.3	(
Block 6 Subtotal	13733	270	486	100.0	1.67	244.4	4.07	534.5	8
Block 7									
Apartment		81	146	28.4	0.47	70.9	1.18	155.9	- 2
Townhome		74	200	38.9	0.65	97.1	1.62	213.7	
Block 7 Subtotal	0	155	346	67.2	1.12	168.0	2.80	369.6	(
Plost 9									
Block 8 Apartment		125	243	47.3	0.79	118.1	1.97	259.9	
Apartment Townhome	+	135 56	151	29.4	0.79	73.5	1.97	259.9 161.7	2
Block 8 Subtotal	0	191	394	76.7	1.28	191.6	3.19	421.6	7
Block 9			0.10						
Apartment	+	135	243	47.3	0.79	118.1	1.97	259.9	
Townhome		76	205	39.9	0.67	99.8	1.66	219.5	3
Block 9 Subtotal	0	211	448	87.2	1.45	217.9	3.63	479.3	7
Block 10									
Apartment		135	243	47.3	0.79	118.1	1.97	259.9	4
Townhome		46	124	24.2	0.40	60.4	1.01	132.8	2
Block 10 Subtotal	0	181	367	71.4	1.19	178.5	2.98	392.7	6
Block 11									
Apartment		268	482	93.8	1.56	234.5	3.91	515.9	3
Commercial	1792		0	3.5	0.06	5.2	0.09	9.4	(
Block 11 Subtotal	1792	268	482	97.3	1.62	239.7	4.00	525.3	8

	1			1					
Block 12									
Apartment		221	398	77.4	1.29	193.4	3.22	425.4	7.09
Hotel ³ ⁴		104		32.5	0.54	48.8	0.81	87.9	1.46
Commercial	884		0	1.7	0.03	2.6	0.04	4.6	0.08
Block 12 Subtotal	884	325	398	111.6	1.86	244.8	4.08	517.9	8.63
Block 13									
Apartment		216	389	75.6	1.26	189.0	3.15	415.8	6.93
Townhome		14	38	7.4	0.12	18.4	0.31	40.4	0.67
Commercial	514		0	1.0	0.02	1.5	0.02	2.7	0.04
Block 13 Subtotal	514	230	427	83.9	1.40	208.9	3.48	458.9	7.65
Block 14									
Apartment		288	518	100.8	1.68	252.0	4.20	554.4	9.24
Townhome		14	38	7.4	0.12	18.4	0.31	40.4	0.67
Commercial	546		0	1.1	0.02	1.6	0.03	2.9	0.05
Block 14 Subtotal	546	302	556	109.2	1.82	272.0	4.53	597.7	9.96
Block 15									
Apartment		381	686	133.4	2.22	333.4	5.56	733.4	12.22
Commercial	2860		0	5.6	0.09	8.3	0.14	15.0	0.25
Block 15 Subtotal	2860	381	686	138.9	2.32	341.7	5.70	748.4	12.47
Block 17									
Commercial	3717		0	7.2	0.12	10.8	0.18	19.5	0.33
Office	22950		0	44.6	0.74	66.9	1.12	120.5	2.01
Block 17 Subtotal	26667	0	0	51.9	0.86	77.8	1.30	140.0	2.33
Block 18									
			1000						
Park⁵	68398		1268	22.0	0.37	33.0	0.55	59.4	0.99
Block 18 Subtotal	68398	0	1268	22.0	0.37	33.0	0.55	59.4	0.99
Block 19									
DI-5	04750		450	0.0	0.40	44.0	0.00	04.5	0.00
Park ⁵	24756	1	459	8.0	0.13	11.9	0.20	21.5	0.36
Block 19 Subtotal	24756	0	459	8.0	0.13	11.9	0.20	21.5	0.36
Total Site :	160173	4753	10003	1817.7	30.29	4335.8	72.26	9413.7	156.90
Total Site :	100173	4/00	10003	1017.7	30.23	4333.0	12.20	3413.7	130.30

Notes:

- 1 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate
 - peak hour demand rate = 2.2 x maximum day demand rate (as per Technical Bulletin ISD-2010-02)
- 2 Water demand criteria used to estimate peak demand rates for commercial areas, hotels, and parks are as follows:
 - maximum daily demand rate = 1.5 x average day demand rate
 - peak hour demand rate = 1.8 x maximum day demand rate (as per Technical Bulletin ISD-2010-02)
- 3 Hotel bedspace assumed to be 2 bedspace/room per LeBreton Flats MSS (CIMA+ 2021)
- 4 Block 12 hotel unit counts estimated based on density of hotel room/gross floor area (201 rooms/9450 m²) established in Block 2 in density table.
- Park population based on 185.3 persons/ha density; 20 L/p/d water demand based on park picnic and flush toilet demand from City Sewer Design Guidelines

B.2 Boundary Conditions

 From:
 Fawzi, Mohammed

 To:
 Smadella, Karin

Cc: Duquette, Vincent; Moroz, Peter; Mottalib, Abdul; Thiffault, Dustin; Wu, Michael; binitha.chakraburtty@ncc-ccn.ca

Subject: RE: LeBreton Flats Boundary Conditions Request Date: Monday, June 24, 2024 12:33:05 PM

Attachments: ~WRD2598.ip

WRD2598.jpg image004.png image005.png image007.png LeBreton Flats June 2024.pdf

Hi Karin,

The following are boundary conditions, HGL, for hydraulic analysis at LeBreton Flats (zone 1W) assumed to be connected to via 8 Connections to the 305mm watermain on Wellington Avenue, 406mm on Booth Street and 406mm on Albert Street (see attached PDF for location).

Notes:

1. Analysis has been completed by classifying the demands into three groups:

North Block: Blocks 7 to 19 South Block: Blocks 1 to 5 South Individual Block: Block 6

- 2. Private main looping has been assumed for North Blocks.
- 3. For Connections 1,2,3,4 and 8: The maximum pressure is estimated to be more than 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required.

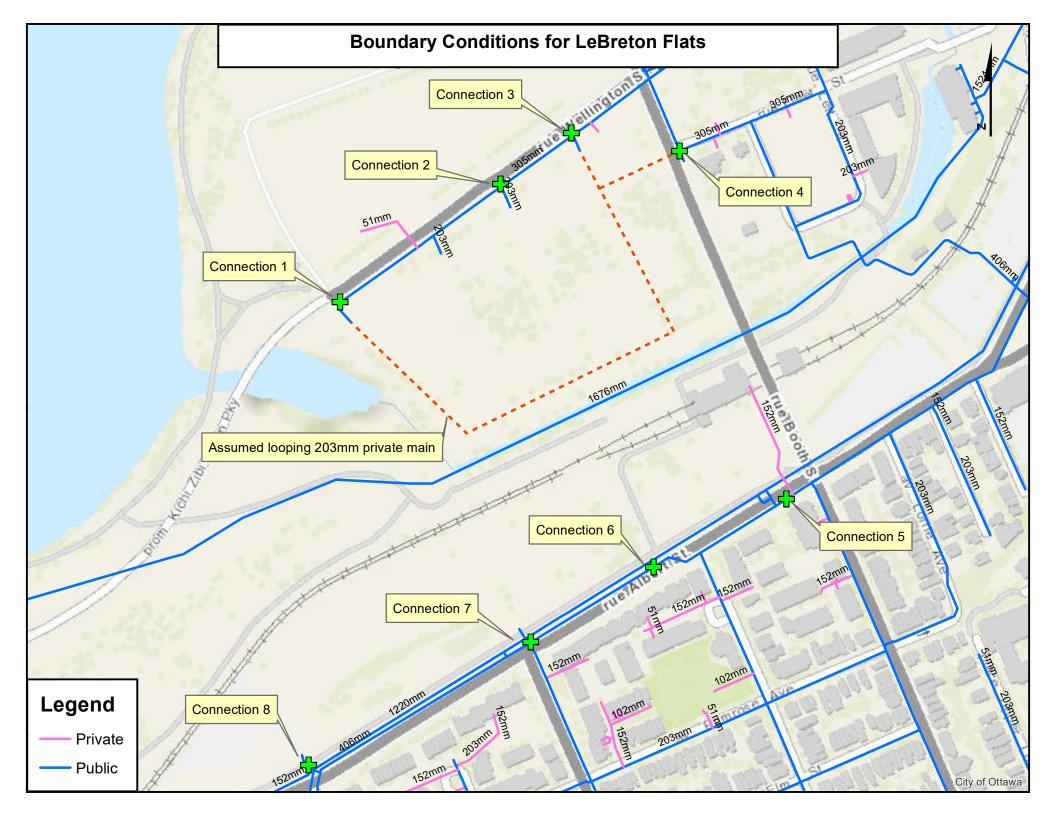
	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	Connection 6	Connection 7	Connection 8
Minimum HGL (m)	107.4	107.4	107.4	107.5	107.6	107.6	107.6	107.6
Maximum HGL (m)	115.2	115.2	115.2	115.2	115.1	115.0	115.0	114.9
MaxDay + FireFlow (200 L/s)	105.0	106.5	107.1	108.4	110.1	109.9	110.0	110.0

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Best Regards,

Mohammed Fawzi, P.Eng.


Project Manager, Infrastructure - Gestionnaire de projet, Projets d'infrastructure

Development Review All Wards (DRAW) | Direction de l'examen des projets d'aménagement - Tous les quartiers (EPATQ)

Planning, Development and Building Services Department (PDBS)| Direction générale des services de la planification, de l'aménagement 110 Laurier Avenue West | 110 Avenue Laurier Ouest

Ottawa, ON K1P 1J1

613.580.2424 ext./poste 20120, Mohammed.Fawzi@ottawa.ca

B.3 Preliminary Hydraulic Analysis

Project Number: 160401780 Appendix B-5

Junction Results - Basic Day

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
8	0.00	58.89	115.00	56.11	79.79	550.14
2	0.00	58.55	114.90	56.35	80.13	552.45
1	8.17	57.98	114.90	56.92	80.93	558.02
28	0.00	56.43	115.20	58.77	83.56	576.15
29	0.00	56.42	115.20	58.78	83.58	576.25
5	1.67	56.08	115.00	58.92	83.79	577.68
25	1.45	56.17	115.20	59.03	83.93	578.70
30	1.19	56.11	115.20	59.09	84.03	579.35
18	1.62	56.01	115.19	59.18	84.16	580.23
15	0.00	56.00	115.19	59.19	84.16	580.28
23	0.00	56.00	115.19	59.19	84.17	580.31
16	0.00	55.98	115.19	59.21	84.19	580.50
17	2.98	55.96	115.18	59.23	84.22	580.65
22	2.32	55.95	115.19	59.24	84.23	580.75
6	3.37	55.74	114.99	59.25	84.25	580.89
33	1.82	55.93	115.19	59.26	84.26	580.97
32	2.68	55.87	115.18	59.31	84.34	581.52
11	0.86	55.73	115.19	59.45	84.54	582.89
12	0.50	55.72	115.19	59.47	84.57	583.06
9	1.67	52.36	114.99	62.63	89.06	614.06

Link Results - Basic Day

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
1001	Albert_8	2	7.98	297.00	120.00	8.17	0.12
1002	5	Albert_7	99.73	297.00	120.00	-3.74	0.05
1003	5	6	143.55	204.00	110.00	2.07	0.06
1004	8	Albert_6	19.71	204.00	110.00	-2.97	0.09
1005	6	8	74.71	204.00	110.00	-2.97	0.09
1006	9	6	84.55	204.00	110.00	-1.67	0.05
1008	12	11	15.52	204.00	110.00	0.86	0.03
1009	16	12	59.34	204.00	110.00	1.36	0.04
1010	15	Wellington_1	63.13	204.00	110.00	-4.60	0.14
1011	16	15	5.45	297.00	120.00	-1.36	0.02
1012	17	15	42.92	204.00	110.00	-3.24	0.10
С3	32	33	68.12	204.00	110.00	-2.42	0.07
1017	23	22	46.88	204.00	110.00	2.32	0.07
1018	25	Wellington_2	13.71	204.00	110.00	-5.42	0.17
C2	17	32	42.82	204.00	110.00	0.26	0.01
1020	28	Booth_4	95.52	204.00	110.00	-1.71	0.05
1022	30	29	21.74	204.00	110.00	2.51	0.08
1023	Wellington_3	30	12.02	204.00	110.00	3.70	0.11
C1	2	1	34.20	297.00	120.00	8.17	0.12
C4	33	18	73.85	204.00	110.00	-0.27	0.01
C6	25	33	60.97	204.00	110.00	3.97	0.12
C11	23	18	8.86	204.00	110.00	-2.32	0.07
C12	29	28	3.77	297.00	120.00	2.51	0.04
C13	28	18	58.08	204.00	110.00	4.21	0.13

Junction Results - Peak Hour

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
8	0.00	58.89	107.56	48.68	69.22	477.24
2	0.00	58.55	107.59	49.04	69.73	480.78
1	41.66	57.98	107.54	49.56	70.47	485.84
28	0.00	56.43	107.36	50.93	72.42	499.34
29	0.00	56.42	107.36	50.94	72.44	499.45
17	14.79	55.96	107.08	51.12	72.70	501.23
22	12.47	55.95	107.08	51.13	72.71	501.32
23	0.00	56.00	107.14	51.14	72.72	501.41
18	8.76	56.01	107.15	51.15	72.73	501.43
25	7.99	56.17	107.33	51.16	72.74	501.54
15	0.00	56.00	107.19	51.19	72.78	501.82
16	0.00	55.98	107.19	51.21	72.82	502.05
32	14.67	55.87	107.08	51.21	72.82	502.06
33	9.96	55.93	107.15	51.22	72.83	502.16
30	6.55	56.11	107.38	51.27	72.91	502.68
11	2.33	55.73	107.18	51.44	73.15	504.36
12	1.35	55.72	107.18	51.46	73.18	504.55
5	9.12	56.08	107.56	51.48	73.21	504.75
6	18.34	55.74	107.42	51.67	73.48	506.62
9	8.91	52.36	107.36	55.01	78.22	539.29

Link Results - Peak Hour

ID	FROM	ТО	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
1001	Albert_8	2	7.98	297.00	120.00	41.66	0.60
1002	5	Albert_7	99.73	297.00	120.00	-20.30	0.29
1003	5	6	143.55	204.00	110.00	11.18	0.34
1004	8	Albert_6	19.71	204.00	110.00	-16.07	0.49
1005	6	8	74.71	204.00	110.00	-16.07	0.49
1006	9	6	84.55	204.00	110.00	-8.91	0.27
1008	12	11	15.52	204.00	110.00	2.33	0.07
1009	16	12	59.34	204.00	110.00	3.68	0.11
1010	15	Wellington_1	63.13	204.00	110.00	-21.72	0.66
1011	16	15	5.45	297.00	120.00	-3.68	0.05
1012	17	15	42.92	204.00	110.00	-18.04	0.55
C3	32	33	68.12	204.00	110.00	-11.42	0.35
1017	23	22	46.88	204.00	110.00	12.47	0.38
1018	25	Wellington_2	13.71	204.00	110.00	-27.96	0.86
C2	17	32	42.82	204.00	110.00	3.25	0.10
1020	28	Booth_4	95.52	204.00	110.00	-13.64	0.42
1022	30	29	21.74	204.00	110.00	9.01	0.28
1023	Wellington_3	30	12.02	204.00	110.00	15.56	0.48
C1	2	1	34.20	297.00	120.00	41.66	0.60
C4	33	18	73.85	204.00	110.00	-1.42	0.04
C6	25	33	60.97	204.00	110.00	19.97	0.61
C11	23	18	8.86	204.00	110.00	-12.47	0.38
C12	29	28	3.77	297.00	120.00	9.01	0.13
C13	28	18	58.08	204.00	110.00	22.65	0.69

Fire Flow Results - Max Day + 200 L/s

	Static Demand	Static Pressure	Static Pressure	Static Pressure	Static Head	Fire Flow	Residual	Residual	Available	Available
ID	(L/s)	(m)	(psi)	(kPa)	(m)	Demand (L/s)	Pressure (m)	Pressure (psi)	Flow (L/s)	Pressure (psi)
9	4.09	57.52	81.79	563.92	109.88	200.00	31.74	45.13	322.3	20
11	0.43	49.52	70.42	485.50	105.25	200.00	27.59	39.23	528.0	20
12	0.00	49.54	70.44	485.68	105.25	200.00	30.86	43.88	562.1	20
17	6.15	49.47	70.35	485.05	105.43	200.00	41.96	59.66	770.8	20
32	6.78	49.83	70.86	488.58	105.70	200.00	42.36	60.23	817.6	20
22	5.72	50.69	72.08	496.96	106.64	200.00	32.96	46.87	828.9	20
6	8.45	54.15	76.99	530.85	109.89	200.00	46.51	66.13	982.2	20
8	0.00	51.01	72.54	500.14	109.90	200.00	48.17	68.50	1000.7	20
33	4.65	50.40	71.67	494.13	106.33	200.00	46.38	65.96	1099.9	20
25	3.63	50.29	71.51	493.03	106.46	200.00	48.27	68.64	1229.8	20
23	0.00	50.66	72.03	496.64	106.65	200.00	43.13	61.33	1339.5	20
18	4.05	50.65	72.02	496.57	106.66	200.00	45.05	64.07	1418.8	20
16	0.00	49.28	70.07	483.11	105.25	200.00	43.11	61.29	1457.7	20
15	0.00	49.25	70.04	482.88	105.25	200.00	43.24	61.48	1542.9	20
30	2.98	51.00	72.52	500.01	107.11	200.00	49.51	70.40	1554.9	20
29	0.00	50.71	72.10	497.12	107.13	200.00	48.45	68.90	1860.3	20
28	0.00	50.70	72.09	497.02	107.13	200.00	48.44	68.88	1914.8	20
5	4.35	53.91	76.65	528.50	109.98	200.00	51.76	73.60	2138.8	20
1	19.26	52.00	73.95	509.85	109.98	200.00	50.61	71.96	2882.5	20
2	0.00	51.45	73.16	504.39	110.00	200.00	51.18	72.78	7042.4	20

Appendix C Sanitary Servicing

C.1 Sanitary Sewer Design Sheet

Project Number: 160401780 Appendix C-6

Stant	tec	SUBDIVISION	LeBreto	n Flats Subdivisio	_								DES	SIGN S	SEWEI HEET	₹															DESIGN PA	·										
			IT Plan of										(C	City of Ott	awa)									ACTOR (RES.)		4.0		AVG. DAILY F		ON		I/p/day		MINIMUM V				m/s				
		DATE:		2024-07	-23																			ACTOR (RES.): CTOR (INDUS		2.0		COMMERCIAL			.,	I/ha/day		MAXIMUM \				m/s				
		REVISION DESIGNED		1		FILE NUM	IDED.	1604017	00															CTOR (INDUS CTOR (ICI >20	,	2.4 1.5		INDUSTRIAL (, ,		,	l/ha/day l/ha/day					0.013					
		CHECKED		AR MW		FILE NUM	IBEK:	1604017	80														PERSONS / S		70).	1.5		INSTITUTION			,	I/ha/day		BEDDING C			Е	3				
		CHECKEL	ы.	MVV																			PERSONS /			27		INFILTRATION				l/na/day		MINIMUM C			2.50) m				
																							PERSONS / /			1.8		HOTEL	ч			l/bedspace/day			ORRECTION I		2.00					
LOCATION	N					DESIDENTI/	AL ADEA AND	D POPULATION	N .					IOTEL			D	ARKS		COMM	EDCIAL		TRIAL (L)	INDUST	DIAL (H)	INSTITUT		GREEN /	IINIISED	C+I+I		INFILTRATION		TOTAL	MOTEL UNIT	_	2.00	-	IPE	_		_
AREA ID	FROM	TO	AREA		UNITS	KESIDENTIA	POP.		IULATIVE	PEAK	PEAK	LIMITS	BEDSPAC		D PEAK	ADEA	POP.	ACCU.	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.		ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL
NUMBER	M.H.	M.H.	ANLA		TOWN	APT	101.	AREA		FACT.	FLOW		DEDONAC	L A000.BE	FLOW	ANLA	1 01.	POP.	FLOW	ANLA	AREA	ANLA	AREA	ANLA	AREA	ANLA	AREA	AINLA	AREA	FLOW	AREA	AREA	FLOW	1207	LLINOIH	DIA	MATERIAL	OLAGO	OLOI E		PEAK FLO	
			(ha)					(ha)			(l/s)				(l/s)	(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)		(%)	
R5A			1.20	0	74	302	743	1.20	743	3.30	8.0		208	208	0.8	0.00	0	0	0.00	0.09	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.20	1.20	0.4	9.2	29.6	250	PVC	SDR 35	0.40	38.3	23.98%	
R4A	SAN 4	SAN 3	2.04	0	160	774	1825	3.24	2569	3.00	25.0	0	0	208	8.0	0.00	0	0	0.00	0.11	0.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	2.04	3.24	1.1	26.9	184.2	250	PVC	SDR 35	0.40	38.3	70.17%	. 0.77
R3AA	SAN 3A	SAN 3	0.21	0	0	381	686	0.21	686	3.32	7.4	0	0	0	0.0	0.00	0	0	0.00	0.29	0.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2	0.21	0.21	0.1	7.7	38.8	250	PVC	SDR 35	0.40	38.3	20.03%	0.77
C3A	CVNS	SAN 2	0.00	0	0	0	0	3.45	3254	2.93	30.9	0	٥	200	0.0	0.00	0	0	0.00	0.18	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2	0.46	3.91	1.3	33.2	59.8	200	DVC.	SDR 35	0.20	E2 6	63.16%	/ 0.75
R2A	SAN 2	SAN 1	0.56	0	46	403	850	4.01	4104	2.86	38.0		0	208	0.8	0.00	0	0	0.00	0.10	0.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2	0.56	4.47	1.5	40.5	88.2	300	PVC	SDR 35	0.30		77.06%	
																														¥.=												
C15A		SAN 14	0.00	0	0	0	0	0.00	0	3.80	0.0	0	0	0	0.0	0.00	0	0	0.00	2.67	2.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3	1.02	1.02	0.3	1.6	4.6	250	PVC	SDR 35	0.70	50.7	3.22%	
			0.00	0	0	0	0	0.00	0	3.80	0.0			0	0.0	0.00	0	0	0.00	0.00	2.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3	0.00	1.02	0.3	1.6	53.4	250	PVC	SDR 35	0.50	42.9		
G13A	SAN 13	SAN 11	0.00	0	0	0	0	0.00	0	3.80	0.0	0	0	0	0.0	2.48	459	459	0.13	0.00	2.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3	2.48	3.50	1.2	2.6	38.9	250	PVC	SDR 35	0.38	37.4	6.91%	0.75
G11AA	SAN 11A	SAN 11	0.00	0	0	0	0	0.00	0	3.80	0.0	0	0	0	0.0	6.84	1268	1268	0.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	6.84	6.84	2.3	2.6	63.9	300	PVC	SDR 35	0.41	61.5	4.27%	0.87
On a Note O hadam	000144	041140	0.00	_	_	_	_	0.00	_	0.00	0.0		_	_	0.0	0.00	_	4707	0.50	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.0	0.00	40.04	0.4	5.0								
See Note 2. below R10A, R10B	SAN 11 SAN 10	SAN 10	0.00	0	10	0 571	1055	0.00	1055	3.80	0.0	101	201	201	0.0	0.00	0	1727	0.50	0.00	2.67 2.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3	0.00	10.34 12.56	3.4	5.2 17.4	104.2	250	PVC	enn se	0.40	20.2	45.27%	/ 0.77
KIUA, KIUD	SAN IU	SAN 9	2.22	U	10	5/ 1	1000	2.22	1055	3.23	11.0	101	201	201	0.6	0.00	U	U	0.00	0.20	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.4	2.22	12.50	4.1	17.4	104.2	250	PVC	SUK 35	0.40	30.3	45.27%	0.77
R18A, R18B	SAN 18	SAN 17	2.41	0	0	896	1613	2.41	1613	3.13	16.3	101	201	201	0.8	0.00	0	0	0.00	0.26	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	2.41	2.41	0.8	18.0	49.1	300	PVC	SDR 35	1.00	96.0	18.75%	6 1.36
		SAN 17A	0.00	0	0	0	0	2.41	1613	3.13	16.3		0	201	0.8		0	0	0.00	0.00	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	0.00	2.41	0.8	18.0	15.9	300	PVC	SDR 35	1.00	96.0		6 1.36
R8A	SAN 9		0.91	0	0	473	851	0.91	851	3.28	9.0	0	0	0	0.0	0.00	0	0	0.00	2.92	2.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.4	0.91	0.91	0.3	10.8	87.7	250	PVC	SDR 35	0.30	33.2	32.39%	
R7A	SAN 7		0.80	0	10	348	653	1.71	1505		15.3		0	0	0.0	0.00	0	0	0.00	0.00	2.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.4	0.80	1.71	0.6	17.3	64.4	250	PVC	SDR 35	0.30	33.2		
	SAN 6	SAN 6A	0.00	U	U	U	U	1.71	1505 4172	3.14 2.85	15.3 38.6		U	U	0.0		U	U	0.00	0.00 6.04	2.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.4	0.00	1.71 16.69	0.6	17.3 52.7	16.2	250	PVC	SDR 35	0.30	33.2	52.12%	6 0.67
									41/2	2.00	30.0									0.04										2.9		10.09	ა.ე	93.2								

<sup>300 4148 8276 8276

1.</sup> Sanitary manhole numbers taken from functional sanitary servicing plan Drawing SAN-1 attached as part of submission package.

2. PPS for proposed pumping station to service Blocks 17-19 and located upstream of SAN 11 with forcemain connecting SAN 11 to SAN 10; outflow from PPS assumed to be the same as intake flow 3. Hotel bedspace assumed to be 2 bedspacerom per LeBerten Flast MSS (CIMA+ 2021)

4. Block 12 hotel unit counts estimated based on density of hotel room/gross floor area (201 rooms/9450 m²) established for Block 2 in density table.

5. Park area population estimated based on 185.3 persons/ha density in LeBreton Flast MSS (CIMA+ 2021); 20 Up/td demand based on park picnic and flush tollet demands

C.2 Proposed Preliminary Pump Station Design Memo

Memo

To: Peter Moroz, P.Eng. From: Gregory Chochlinski, P. Eng.

Stantec, Ottawa

Project/File: 160401780 Date: July 23, 2024

Reference: LeBreton Flats Subdivision Sewage PS - Functional Design

INTRODUCTION

Further to your request we prepared a Functional Design and location options for the proposed Sewage PS at LeBreton Flats. We understand that this Memo will be reviewed by the stakeholders and one of the two options will be selected to advance to the preliminary design.

We understand that the proposed PS would receive a peak flow of about 3.6 L/s but we propose a pumping rate of about 7.0 L/s through 100 mm diameter forcemain to maintain self-cleaning velocity of 0.90 m/s. Twin forcemains are proposed for redundancy, as per the City guidelines. After construction and commissioning the PS will be taken over and operated by the City of Ottawa.

Two location options are presented and evaluated in this Memo:

Option 1: PS location close to LRT corridor (south of the arch bridge)

Option 2: PS location north of the arch bridge

In both cases the twin discharge forcemains would need to be installed under the existing LRT tracks using trenchless construction method.

Refer to the Attachment for the proposed plan and profile drawings for two options.

PS DESIGN COMPONENTS

The proposed PS will be a wet well type with two submersible pumps, one duty, one standby, with the following components:

- Prefabricated Fiberglass wet well, 2.4 m diameter (minimum size acceptable to the City)
- Inlet sewer 250 mm dia. with an isolation valve and trash basket
- Two submersible sewage pumps capable of pumping about 7.0 L/s
- Twin forcemains, 100 mm dia. each (HDPE/PVC, SS inside the swabbing chamber)
- Bypass MH (upstream of the wet well) to allow bypassing the wet well during inspections/repairs or emergency situations
- Swabbing/Bypass Chamber d/s of the wet well
- Precast concrete control building with HVAC, for process, electrical and SCADA equipment
- Permanent power supply
- Soft starters for well pumps
- Standby Power: Generator (diesel or natural gas)

Reference: LeBreton Flats Subdivision PS - Functional Design

SCADA control and communication

The Swabbing/Bypass Chamber downstream of the wet well will have the following components:

- Swab launcher at each of the two 100 mm forcemains (FMs)
- 75 mm Bypass Connections with isolation valves at each of the two FMs
- Flowmeters at each of the two FMs
- Isolation valves at entry and exist within the chamber
- Drain valves and sump pit (gravity drain back to the well could be an option)

The PS facility with be equipped with the following:

- Security fence, 2.4 m tall with a sliding access gate 4.0 m wide.
- Asphalt access road and parking (2 spots) with a turning point
- Granular or asphalt walkways to the control building and generator
- Protective bollards
- Yard hydrant and flow metering chamber (if connection to the City water supply system is possible).
 Or water trucks will be used when occasional cleanup of the wet well is required.

TRENCHLESS CROSSING OF LRT CORRIDOR

The proposed 100 mm dia. twin FMs will cross the existing LRT corridor using trenchless construction method. More detailed geotechnical evaluation is required to determine the most suitable trenchless method, installation depth, allowable vibration and settlement limits etc.

At this point it appears that a 600 mm dia. casing installed by pipe ramming might be a suitable option. The pipe material for two 100 mm FMs crossing the LRT inside the casing are anticipated to be HDPE. The casing would be grouted or filled with blown-in sand after the installation of FMs.

REVIEW OF PROPOSED LOCATION OPTIONS

In both options part of the arch of the existing old bridge would need to be removed to allow installation of pipes. The first 10 m of the arch bridge will remain intact as it is considered a heritage structure. The remaining portion of the arch bridge (about 20 m) is already abandoned, buried and filled with stone under the arch. The proposed open cut will remove a section of the abandoned arch for installation of the FMs/sewer/access road.

In both options the proposed new pipes will cross <u>above</u> the existing 1,650 mm dia. watermain, this will greatly reduce the risk of any damage to the watermain.

The pros and cons of two options are presented below:

Description	Option 1: PS near the LRT	Option 2: PS north of arch bridge
PS Layout	Simpler	More complicated
Lot size requirement	Approx. 14.0 x 23.0 m	Approx. 20.0 x 20.0 m (irreg.)

Reference: LeBreton Flats Subdivision PS – Functional Design

Pipe alignment	Simple, straight, FM easier to swab. Only one pipe (gravity sewer) crossing the arch bridge. Swabbing connection might not be needed as the short FM could be cleaned with water jets from the MH side, if ever needed.	Longer, more bends for FM, more difficult to swab. Three pipes crossing the arch bridge.
Access Road	Longer access road needed, wider cut at arch bridge needed	Short road, no road over the arch bridge
Water Supply and YH for cleaning	Longer water line needed (water truck could be more economical for occasional cleaning of wet well)	Shorter line, from the new development
Trenchless crossing of LRT	Same	Same
Power Supply	Likely from Street 5, to be designed as part of the plan of subdivision.	Likely from Street 5, to be designed as part of the plan of subdivision
Property/easement acquisition issues	On the NCC property to be conveyed to the City of Ottawa for City park.	On the NCC property to be conveyed to the City of Ottawa for City park

Please let us know if you have any comments or questions. We look forward to discussing this Memo with all interested parties and stakeholders.

Regards,

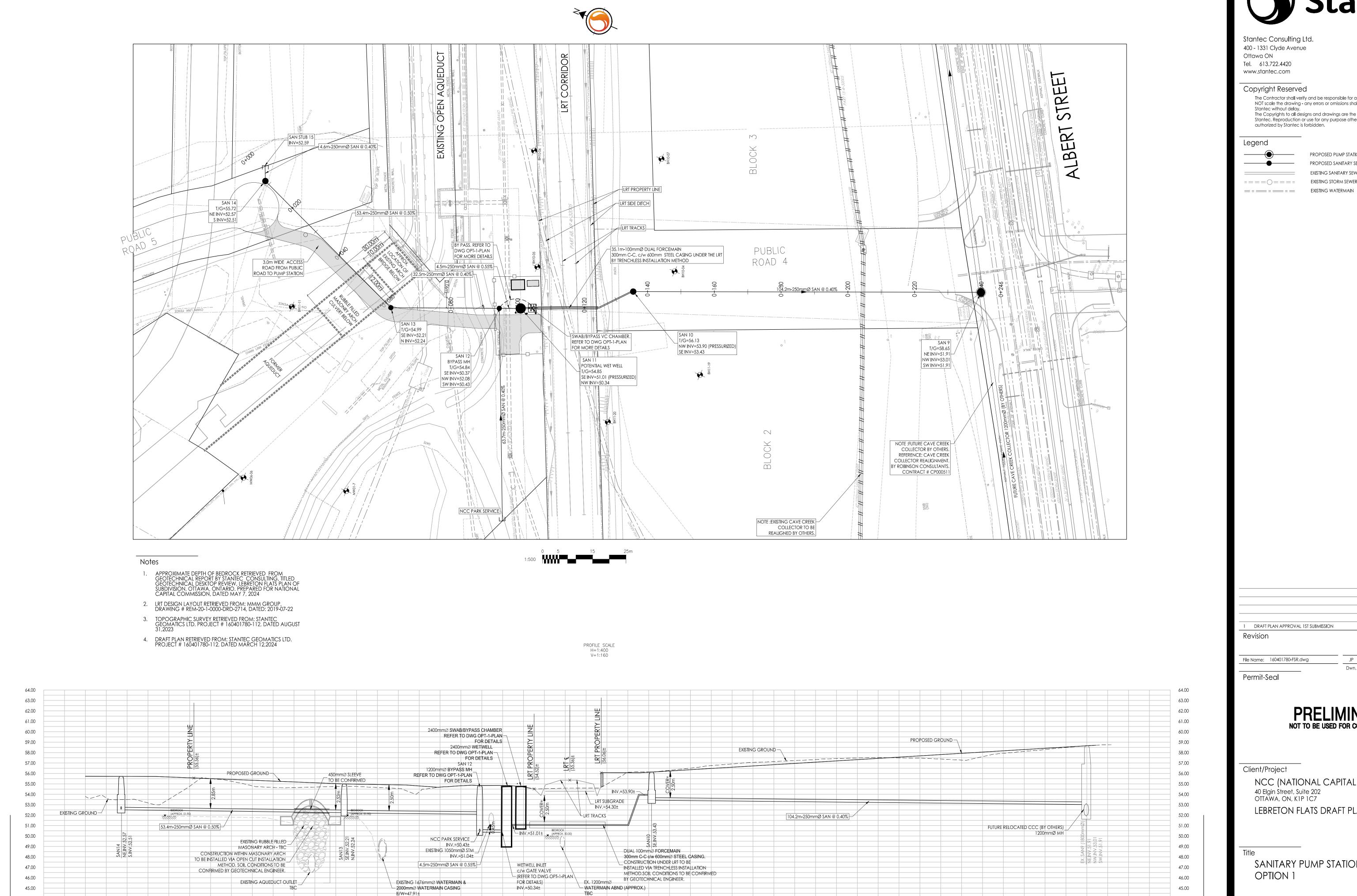
STANTEC CONSULTING LTD.

Gregory Chochlinski P.Eng., M.Eng.

Senior Associate Mobile: 613-290-2322

gregory.chochlinski@stantec.com

stantec.com

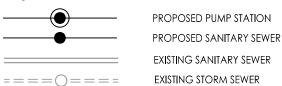

Attachments:

1. Functional Design Drawings – Plan and Profile – Option 1 and 2

Reference: LeBreton Flats Subdivision PS – Functional Design

Attachment 1

Functional Design Drawings



Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

PROPOSED SANITARY SEWER EXISTING SANITARY SEWER

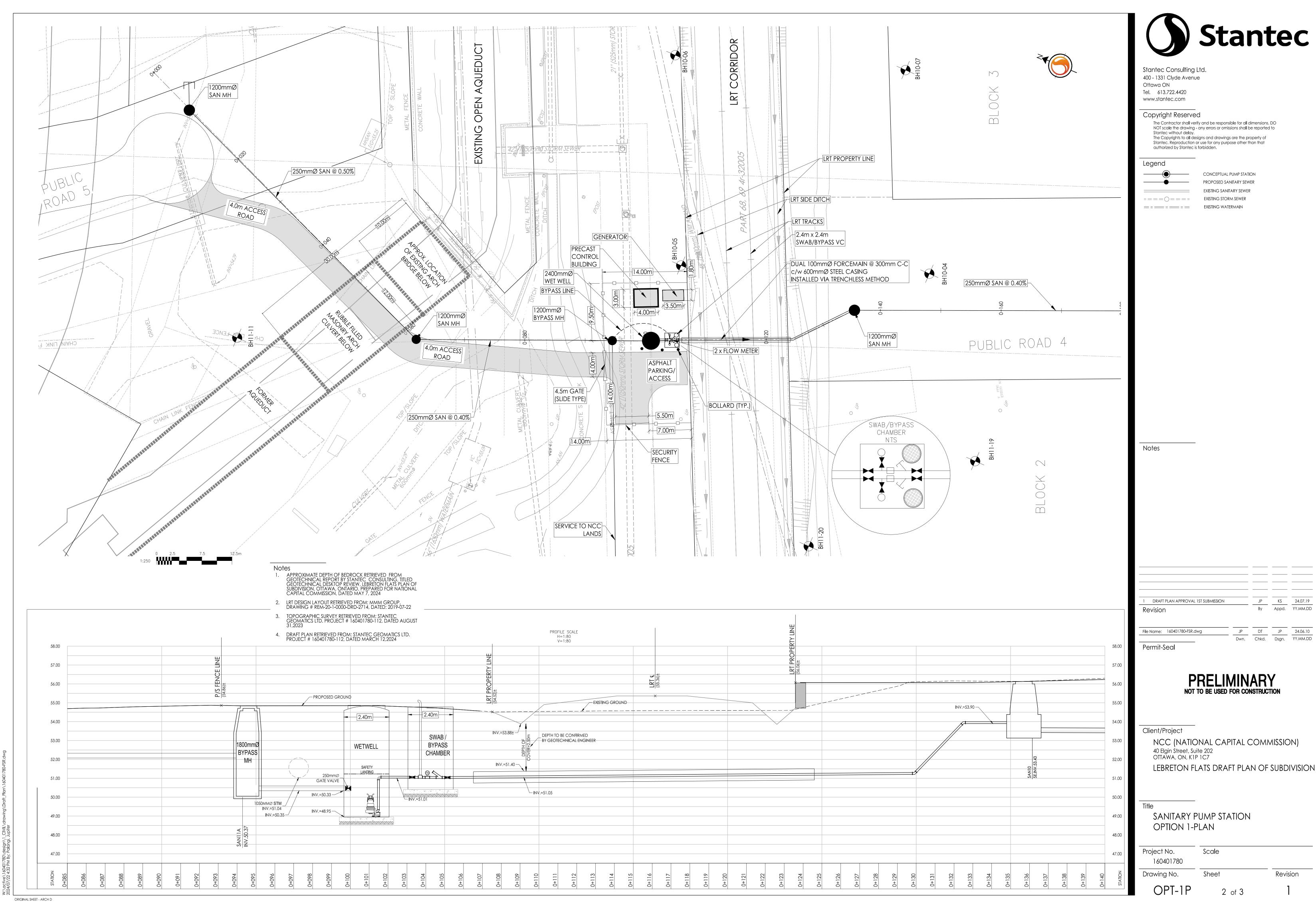
KS 24.07.19 DRAFT PLAN APPROVAL 1ST SUBMISSION By Appd. YY.MM.DD Revision
 JP
 DT
 JP
 24.06.10

 Dwn.
 Chkd.
 Dsgn.
 YY.MM.DD

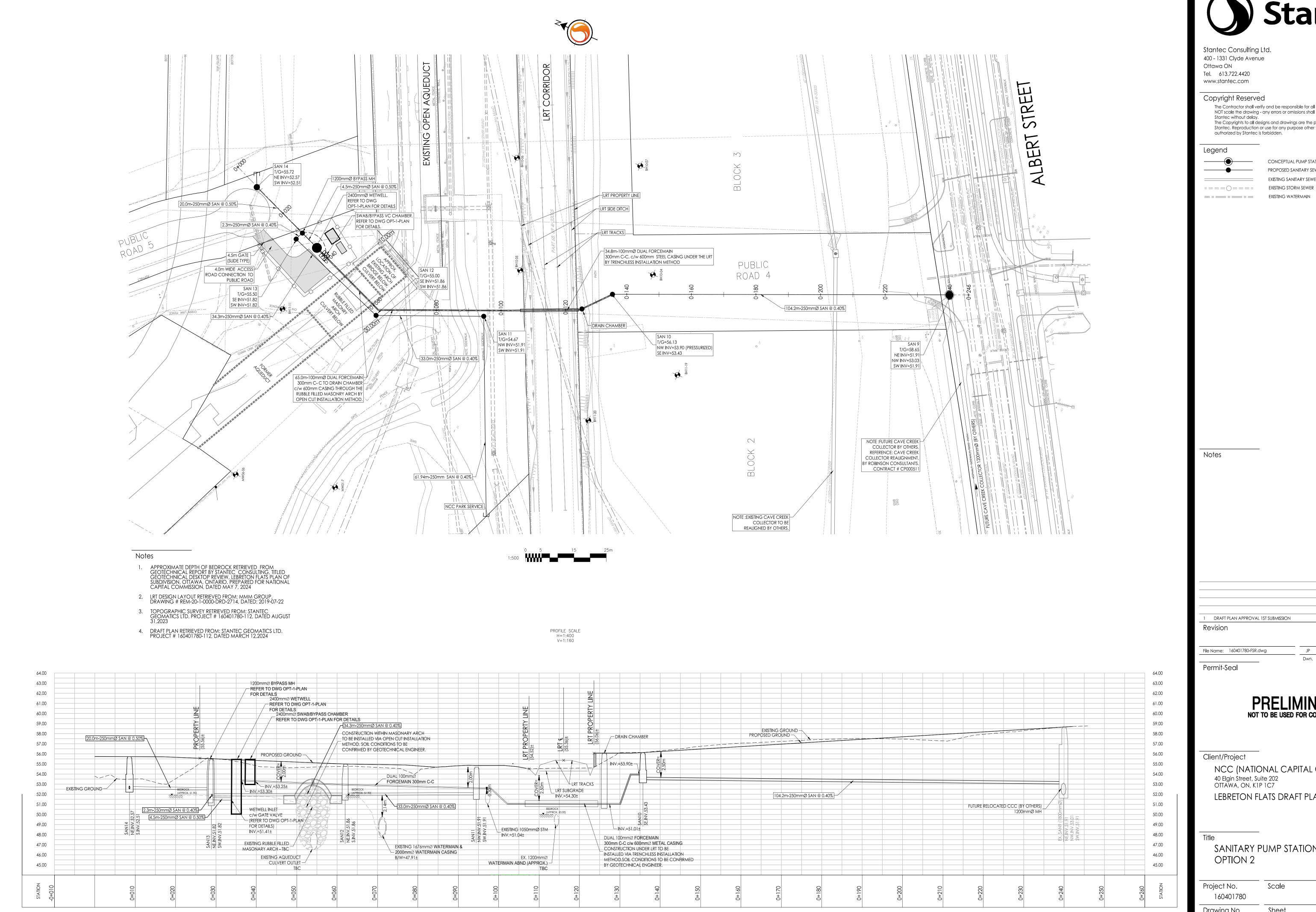
File Name: 160401780-FSR.dwg

PRELIMINARY NOT TO BE USED FOR CONSTRUCTION

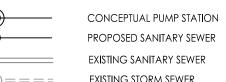
Client/Project


NCC (NATIONAL CAPITAL COMMISSION) 40 Elgin Street, Suite 202 OTTAWA, ON, K1P 1C7

LEBRETON FLATS DRAFT PLAN OF SUBDIVISION


SANITARY PUMP STATION OPTION 1

Project No. Scale 160401780 Drawing No. Sheet Revision 1 of 3


ORIGINAL SHEET - ARCH D

JP KS 24.07.19 By Appd. YY.MM.DD

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

1 DRAFT PLAN APPROVAL 1ST SUBMISSION Revision			KS Appd.	24.07.19 YY.MM.DE
File Name: 160401780-FSR.dwg	JP Dwn.	DT Chkd.	JP Dsgn.	24.06.10 YY.MM.DE

PRELIMINARY NOT TO BE USED FOR CONSTRUCTION

NCC (NATIONAL CAPITAL COMMISSION)

LEBRETON FLATS DRAFT PLAN OF SUBDIVISION

SANITARY PUMP STATION

Project No.	Scale	
160401780		
Drawing No.	Sheet	Revision
OPT-2	3 of 3	1

ORIGINAL SHEET - ARCH D

Appendix D Stormwater Management

D.1 Modified Rational Method Calculations

Project Number: 160401780 Appendix D-8

File No: 160401780 Project: LeBreton Flats 23-May-24 Date:

SWM Approach: Post-development to 5-yr Storm C=0.7, Tc=10min

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub	-catchme Area	ent		Area (ha)	(Runoff Coefficient			Overall Runoff
Catchment Type	702	ID / Descriptio	n	"A"		"C"	"A x	C"	Coefficier
Controlled - Tributary		BLK-17	Hard	0.827		0.9	0.744		
			Soft Subtotal	0.064	0.89	0.2	0.013	0.757	0.850
Controlled - Tributary		BLK-15	Hard	0.308		0.9	0.277		
			Soft Subtotal	0.024	0.33	0.2	0.005	0.282	0.850
Controlled - Tributary		BLK-14	Hard	0.278		0.9	0.250		
			Soft Subtotal	0.021	0.30	0.2	0.004	0.255	0.850
Controlled - Tributary		BLK-13	Hard	0.253		0.9	0.228		
			Soft Subtotal	0.019	0.27	0.2	0.004	0.232	0.850
Controlled - Tributary		BLK-12	Hard	0.235		0.9	0.212		
			Soft Subtotal	0.018	0.25	0.2	0.004	0.215	0.850
Controlled - Tributary		BLK-11	Hard	0.263		0.9	0.237		
			Soft Subtotal	0.020	0.28	0.2	0.004	0.241	0.850
Controlled - Tributary		BLK-10	Hard	0.222		0.9	0.200		
			Soft Subtotal	0.017	0.24	0.2	0.003	0.203	0.850
Controlled - Tributary		BLK-9	Hard	0.409		0.9	0.368		
			Soft Subtotal	0.031	0.44	0.2	0.006	0.374	0.850
Controlled - Tributary		BLK-8	Hard	0.317		0.9	0.285		
			Soft Subtotal	0.024	0.34	0.2	0.005	0.290	0.850
Controlled - Tributary		BLK-7	Hard	0.410		0.9	0.369		
·			Soft Subtotal	0.032	0.44	0.2	0.006	0.375	0.850
Controlled - Tributary		BLK-6	Hard	0.285		0.9	0.257		
,			Soft Subtotal	0.022	0.31	0.2	0.004	0.261	0.850
Controlled - Tributary		BLK-5	Hard	0.368		0.9	0.331		
······,			Soft Subtotal	0.028	0.40	0.2	0.006	0.337	0.850
Controlled - Tributary		BLK-4	Hard	0.371	0.40	0.9	0.334	5.501	3.000
		JLK 4	Soft Subtotal	0.029	0.40	0.2	0.006	0.340	0.850
Controlled - Tributary		BLK-3	Hard	0.463	0.40	0.9	0.416	0.040	3.000
Controlled - Hibutary		DLN-3	Soft	0.463	0.50	0.9	0.416	0.424	0.050
Controlled Talkets		DI V O	Subtotal	2 524	0.50	0.0	2 200	0.424	0.850
Controlled - Tributary		BLK-2	Hard Soft	2.521 0.194	0.74	0.9 0.2	2.269 0.039	0.007	0.050
Controlled Talketon		DIKA	Subtotal	0.000	2.71	0.0	0.755	2.307	0.850
Controlled - Tributary		BLK-1	Hard Soft	0.838 0.064	2.22	0.9 0.2	0.755 0.013	0.700	0.055
			Subtotal		0.90			0.768	0.850
-	tal				9.01			7.661	

Total Roof Areas Total Tributary Surface Areas (Controlled and Uncontrolled) Total Tributary Area to Outlet 0.000 ha 9.013 ha 9.013 ha Total Uncontrolled Areas (Non-Tributary) 0.000 ha

Total Site 9.013 ha

Project #160401780, LeBreton Flats Modified Rational Method Calculations for Storage

5 yr Intensity	$I = a/(t + b)^{c}$	a =	998.071	t (min)	I (mm/hr)
City of Ottawa		b =	6.053	10	104.19
		c =	0.814	20	70.25
				30	53.93
				40	44.18
				50	37.65
				60	32.94
				70	29.37
				80	26.56
				90	24.29
				100	22.41
				110	20.82
				120	19.47

Subdrainage Area:	BLK-1/
Area (ha):	0.89
C:	0.85

Controlled - Tributary

oubulaniage Alea.	DLIX-11
Area (ha):	0.89
C:	0.85

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	ı
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
10	104.19	219.33	180.62	38.71	23.22	
20	70.25	147.88	147.88	0.00	0.00	
30	53.93	113.52	113.52	0.00	0.00	
40	44.18	93.01	93.01	0.00	0.00	
50	37.65	79.26	79.26	0.00	0.00	
60	32.94	69.35	69.35	0.00	0.00	
70	29.37	61.83	61.83	0.00	0.00	
80	26.56	55.91	55.91	0.00	0.00	
90	24.29	51.13	51.13	0.00	0.00	
100	22.41	47.17	47.17	0.00	0.00	
110	20.82	43.83	43.83	0.00	0.00	
120	19.47	40.98	40.98	0.00	0.00	

Storage: Block 17 Onsite

Design Discharge							
Area	С	tc	I (5-yr)	Release			
(ha)		(min)	(mm/hr)	(L/s)			
0.89	0.70	10.00	104.19	180.62			

Onsite Storage					
5-year	Vminimum	Volume	Vexcess		
Vreq (m3)	(m ³)	Check	(m ³)		
23.22	157.00	OK	133.78		

Controlled - Tributary

tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	104.19	81.66	67.25	14.41	8.65
20	70.25	55.06	55.06	0.00	0.00
30	53.93	42.27	42.27	0.00	0.00
40	44.18	34.63	34.63	0.00	0.00
50	37.65	29.51	29.51	0.00	0.00
60	32.94	25.82	25.82	0.00	0.00
70	29.37	23.02	23.02	0.00	0.00
80	26.56	20.82	20.82	0.00	0.00
90	24.29	19.04	19.04	0.00	0.00
100	22.41	17.56	17.56	0.00	0.00
110	20.82	16.32	16.32	0.00	0.00
120	19.47	15.26	15.26	0.00	0.00

Storage: Block 15 Onsite

	Design Discharge						
Area	Area C tc I (5-yr) Release						
(ha)		(min)	(mm/hr)	(L/s)			
0.33	0.70	10.00	104.19	67.25			

Onsite Storage						
5-year Vminimum Volume Vexcess						
Vreq (m3)	(m ³)	Check	(m ³)			
8.65	59.00	OK	50.35			

tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	104.19	73.74	60.72	13.01	7.81
20	70.25	49.72	49.72	0.00	0.00
30	53.93	38.16	38.16	0.00	0.00
40	44.18	31.27	31.27	0.00	0.00
50	37.65	26.65	26.65	0.00	0.00
60	32.94	23.31	23.31	0.00	0.00
70	29.37	20.79	20.79	0.00	0.00
80	26.56	18.80	18.80	0.00	0.00
90	24.29	17.19	17.19	0.00	0.00
100	22.41	15.86	15.86	0.00	0.00
110	20.82	14.74	14.74	0.00	0.00
120	19.47	13.78	13.78	0.00	0.00

Storage: Block 14 Onsite

1	Design Discharge							
	Area	С	tc	I (5-yr)	Release			
	(ha)		(min)	(mm/hr)	(L/s)			
	0.30	0.70	10.00	104.19	60.72			

Onsite Storage					
5-year Vminimum Volume Vexcess					
Vreq (m ³)	(m ³)	Check	(m ³)		
7.81	53.00	OK	45.19		

Controlled - Tributary

tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	104.19	67.21	55.35	11.86	7.12
20	70.25	45.32	45.32	0.00	0.00
30	53.93	34.79	34.79	0.00	0.00
40	44.18	28.50	28.50	0.00	0.00
50	37.65	24.29	24.29	0.00	0.00
60	32.94	21.25	21.25	0.00	0.00
70	29.37	18.95	18.95	0.00	0.00
80	26.56	17.13	17.13	0.00	0.00
90	24.29	15.67	15.67	0.00	0.00
100	22.41	14.45	14.45	0.00	0.00
110	20.82	13.43	13.43	0.00	0.00
120	19.47	12.56	12.56	0.00	0.00

Storage: Block 13 Onsite

Design Discharge						
Area	С	tc	I (5-yr)	Release		
(ha)		(min)	(mm/hr)	(L/s)		
0.27	0.70	10.00	104.19	55.35		
· · · · · · · · · · · · · · · · · · ·						
	Onsite Storage					

Project #160401780, LeBreton Flats Modified Rational Method Calculations for Storage

100 yr Intensity	$I = a/(t + b)^c$	a =	1735.688	t (min)	I (mm/hr)
City of Ottawa		b =	6.014	10	178.56
		c =	0.820	20	119.95
				30	91.87
				40	75.15
				50	63.95
				60	55.89
				70	49.79
				80	44.99
				90	41.11
				100	37.90
				110	35.20
				120	32.89

100 YEAR Modified Rational Method for Entire Site

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	442.20	180.62	261.58	156.95
20	119.95	297.06	180.62	116.43	139.72
30	91.87	227.51	180.62	46.89	84.40
40	75.15	186.10	180.62	5.47	13.14
50	63.95	158.38	158.38	0.00	0.00
60	55.89	138.42	138.42	0.00	0.00
70	49.79	123.30	123.30	0.00	0.00
80	44.99	111.42	111.42	0.00	0.00
90	41.11	101.81	101.81	0.00	0.00
100	37.90	93.87	93.87	0.00	0.00
110	35.20	87.18	87.18	0.00	0.00
120	32.89	81.46	81.46	0.00	0.00

rage: Block 17 Onsite

Design Discharge						
Area	С	tc	I (5-yr)	Release		
(ha)		(min)	(mm/hr)	(L/s)		
0.89	0.70	10.00	104.19	180.62		

Onsite Storage					
100-year Vminimum Volume Vexcess					
Vreq (m3)	(m ³)	Check	(m ³)		
156.95	157.00	OK	0.05		

Controlled - Tributary

tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	178.56	164.64	67.25	97.39	58.44
20	119.95	110.60	67.25	43.35	52.02
30	91.87	84.71	67.25	17.46	31.42
40	75.15	69.29	67.25	2.04	4.89
50	63.95	58.97	58.97	0.00	0.00
60	55.89	51.54	51.54	0.00	0.00
70	49.79	45.91	45.91	0.00	0.00
80	44.99	41.48	41.48	0.00	0.00
90	41.11	37.91	37.91	0.00	0.00
100	37.90	34.95	34.95	0.00	0.00
110	35.20	32.46	32.46	0.00	0.00
120	32.89	30.33	30.33	0.00	0.00

Storage: Block 15 Onsite

Design Discharge					
Area	С	tc	I (5-yr)	Release	
(ha)		(min)	(mm/hr)	(L/s)	
0.33	0.70	10.00	104.19	67.25	

Onsite Storage							
100-year	Vminimum	Volume	Vexcess				
Vreq (m3)	(m ³)	Check	(m ³)				
58.44	59.00	OK	0.56				

Controlled - Tributary

tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	178.56	148.67	60.72	87.94	52.76
20	119.95	99.87	60.72	39.14	46.97
30	91.87	76.49	60.72	15.76	28.37
40	75.15	62.56	60.72	1.84	4.42
50	63.95	53.25	53.25	0.00	0.00
60	55.89	46.54	46.54	0.00	0.00
70	49.79	41.45	41.45	0.00	0.00
80	44.99	37.46	37.46	0.00	0.00
90	41.11	34.23	34.23	0.00	0.00
100	37.90	31.56	31.56	0.00	0.00
110	35.20	29.31	29.31	0.00	0.00
120	32.89	27.39	27.39	0.00	0.00

e: Block 14 Onsite

Design Discharge						
Area	С	tc	I (5-yr)	Release		
(ha)		(min)	(mm/hr)	(L/s)		
0.30	0.70	10.00	104.19	60.72		

Onsite Storage						
100-year	Vminimum	Volume	Vexcess			
Vreq (m ³)	(m ³)	Check	(m ³)			
52.76	53.00	OK	0.24			

Controlled - Tributary

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	135.51	55.35	80.16	48.09
20	119.95	91.03	55.35	35.68	42.82
30	91.87	69.72	55.35	14.37	25.86
40	75.15	57.03	55.35	1.68	4.03
50	63.95	48.53	48.53	0.00	0.00
60	55.89	42.42	42.42	0.00	0.00
70	49.79	37.78	37.78	0.00	0.00
80	44.99	34.14	34.14	0.00	0.00
90	41.11	31.20	31.20	0.00	0.00
100	37.90	28.76	28.76	0.00	0.00
110	35.20	26.71	26.71	0.00	0.00
120	32.89	24.96	24.96	0.00	0.00
	(min) 10 20 30 40 50 60 70 80 90 100 110	(min) (mm/hr) 10 178.56 20 119.95 30 91.87 40 75.15 50 63.95 60 55.89 70 49.79 80 44.99 90 41.11 100 37.90 110 35.20	(min) (mm/hr) (L/s) 10 178.56 135.51 20 119.95 91.03 30 91.87 69.72 40 75.15 57.03 50 63.95 48.53 60 55.89 42.42 70 49.79 37.78 80 44.99 34.14 90 41.11 31.20 100 37.90 28.76 110 35.20 26.71	(min) (mm/hr) (L/s) (L/s) 10 178.56 135.51 55.35 20 119.95 91.03 55.35 30 91.87 69.72 55.35 40 75.15 57.03 55.35 50 63.95 48.53 48.53 60 55.89 42.42 42.42 70 49.79 37.78 37.78 80 44.99 34.14 34.14 90 41.11 31.20 31.20 100 37.90 28.76 28.76 110 35.20 26.71 26.71	(min) (mm/hr) (Us) (Us) (Us) 10 178.56 135.51 55.35 80.16 20 119.95 91.03 55.35 35.68 30 91.87 69.72 55.35 14.37 40 75.15 57.03 55.35 14.87 50 63.95 48.53 48.53 0.00 60 55.89 42.42 42.42 0.00 70 49.79 37.78 37.78 0.00 80 44.99 34.14 34.14 0.00 90 41.11 31.20 0.00 100 37.90 28.76 28.76 0.00 110 35.20 26.71 26.71 0.00

Storage: Block 13 Onsite

Design Discharge						
Area	С	tc	I (5-yr)	Release		
(ha)		(min)	(mm/hr)	(L/s)		
0.27	0.70	10.00	104.19	55.35		
	Onsite Storage					
	(ha)	Area C (ha)	Area C tc (min) 0.27 0.70 10.00	(ha) (min) (mm/hr) 0.27 0.70 10.00 104.19		

		5-year Vreq (m³)	Vminimum (m³) 49.00	Volume Check	Vexcess (m³)
		7.12	49.00	OK	41.88
drainage Area: Area (ha):	BLK-12 0.25				Contro
C:	0.85 I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min) 10	(mm/hr) 104.19	(L/s) 62.37	(L/s) 51.37	(L/s) 11.01	(m^3) 6.60
20 30	70.25 53.93	42.06 32.28	42.06 32.28	0.00	0.00
40	44.18 37.65	26.45 22.54	26.45	0.00	0.00
50 60 70	32.94 29.37	19.72	22.54 19.72	0.00	0.00
80	26.56	17.58 15.90	17.58 15.90	0.00	0.00
90 100	24.29 22.41	14.54 13.41	14.54 13.41	0.00	0.00
110 120	20.82 19.47	12.47 11.65	12.47 11.65	0.00	0.00
Storage: B	lock 12 On				
	Area (ha)	C	esign Dischar tc (min)	ge I (5-yr) (mm/hr)	Release (L/s)
	0.25	0.70	10.00	104.19	51.37
		5-year	Onsite S Vminimum	torage Volume	Vexcess
		Vreq (m ³) 6.60	(m ³) 45.00	Check	(m ³) 38.40
		0.00	10.00	JI.	
drainage Area: Area (ha): C:	BLK-11 0.28 0.85				Contro
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10 20	104.19 70.25	69.68 46.98	57.39 46.98	12.30 0.00	7.38 0.00
30 40	53.93 44.18	36.07 29.55	36.07 29.55	0.00	0.00
50 60	37.65 32.94	25.18 22.03	25.18 22.03	0.00	0.00
70 80	29.37 26.56	19.64 17.76	19.64 17.76	0.00	0.00
90 100	24.29 22.41	16.24 14.99	16.24 14.99	0.00	0.00
110 120	20.82	13.93 13.02	13.93 13.02	0.00	0.00
Storage: B					
	Araa	C	esign Dischar		Dalagas
	Area (ha) 0.28	0.70	tc (min) 10.00	I (5-yr) (mm/hr) 104.19	(L/s) 57.39
,	0.20	0.70	10.00	104.19	57.39
		5-year	Onsite S Vminimum	torage Volume	Vexcess
		Vreq (m ³) 7.38	(m ³) 50.00	Check OK	(m³) 42.62
Irainage Area: Area (ha):	BLK-10 0.24				Contro
C:	0.85 I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min) 10	(mm/hr) 104.19	(L/s) 58.85	(L/s) 48.47	(L/s) 10.39	(m^3) 6.23
20 30	70.25 53.93	39.68 30.46	39.68 30.46	0.00	0.00
40 50	44.18 37.65	24.96 21.27	24.96 21.27	0.00	0.00
60 70	32.94 29.37	18.61 16.59	18.61 16.59	0.00	0.00
80 90	26.56 24.29	15.00 13.72	15.00 13.72	0.00	0.00
100 110	22.41	12.66 11.76	12.66 11.76	0.00	0.00
120	19.47	11.00	11.00	0.00	0.00
Storage: B	lock 10 On		esign Dischar	ne ne	
	Area (ha)	С	tc (min)	I (5-yr) (mm/hr)	Release (L/s)
	0.24	0.70	10.00	104.19	48.47
		5-year	Onsite S Vminimum	torage Volume	Vexcess
		Vreq (m ³) 6.23	(m ³) 43.00	Check OK	(m ³) 36.77
drainage Area: Area (ha):	BLK-9 0.44				Contro
C:	0.85	Opotural	Orologge	Oetorod I	Vetorad
tc (min) 10	I (5 yr) (mm/hr) 104.19	Qactual (L/s) 108.45	Qrelease (L/s) 89.31	Qstored (L/s) 19.14	Vstored (m^3) 11.48
20 30	70.25 53.93	73.12 56.13	73.12 56.13	0.00 0.00	0.00 0.00
40 50	44.18	45.99	45.99	0.00	0.00
60	37.65 32.94	39.19 34.29	39.19 34.29	0.00	0.00
70 80	29.37 26.56	30.57 27.65	30.57 27.65	0.00	0.00
90 100	24.29 22.41	25.28 23.32	25.28 23.32	0.00	0.00
110 120	20.82 19.47	21.67 20.26	21.67 20.26	0.00	0.00
Storage: B	lock 9 Ons				
	Area (ha)	С	esign Dischar tc (min)	I (5-yr) (mm/hr)	Release (L/s)
	0.44	0.70	10.00	104.19	89.31
		5-year	Onsite S Vminimum	torage Volume	Vexcess
		Vreq (m ³) 11.48	(m ³) 78.00	Check OK	(m³) 66.52
-1 :	P				
ainage Area: Area (ha): C:	BLK-8 0.34 0.85				Contro

Project #160401780, LeBreton Flats Modified Rational Method Calculations for Sto

Modified Ra	tionai i	vietnoa Ca	aiculations	s for Storag	е		
			100-year Vreq (m³) 48.09	Vminimum (m³) 49.00	Volume Check OK	Vexcess (m³) 0.91	
Subdrainag Ar	ge Area: rea (ha): C:	BLK-12 0.25 1.00				Controll	ed - Tributary
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
	10 20	178.56 119.95	125.76 84.48	51.37 51.37	74.39 33.11	44.63 39.73	•

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	125.76	51.37	74.39	44.63
20	119.95	84.48	51.37	33.11	39.73
30	91.87	64.70	51.37	13.33	24.00
40	75.15	52.92	51.37	1.56	3.74
50	63.95	45.04	45.04	0.00	0.00
60	55.89	39.37	39.37	0.00	0.00
70	49.79	35.07	35.07	0.00	0.00
80	44.99	31.69	31.69	0.00	0.00
90	41.11	28.95	28.95	0.00	0.00
100	37.90	26.69	26.69	0.00	0.00
110	35.20	24.79	24.79	0.00	0.00
120	32.89	23.17	23.17	0.00	0.00

Storage: Block 12 Onsite

	D	esign Dischar	ge	
Area	С	tc	I (5-yr)	Release
(ha)		(min)	(mm/hr)	(L/s)
0.25	0.70	10.00	104.19	51.37

Onsite Storage						
100-year	Vminimum	Volume	Vexcess			
Vreq (m ³)	(m ³)	Check	(m ³)			
44.63	45.00	OK	0.37			

ubdrainage Area: BLK-11 Controlled - Tributary
Area (ha): 0.28
Controlled - Tributary

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	140.49	57.39	83.10	49.86
20	119.95	94.38	57.39	36.99	44.39
30	91.87	72.28	57.39	14.90	26.81
40	75.15	59.12	57.39	1.74	4.17
50	63.95	50.32	50.32	0.00	0.00
60	55.89	43.98	43.98	0.00	0.00
70	49.79	39.17	39.17	0.00	0.00
80	44.99	35.40	35.40	0.00	0.00
90	41.11	32.35	32.35	0.00	0.00
100	37.90	29.82	29.82	0.00	0.00
110	35.20	27.70	27.70	0.00	0.00
120	32.89	25.88	25.88	0.00	0.00

Storage: Block 11 Onsite

Design Discharge							
Area	С	tc	I (5-yr)	Release			
(ha)		(min)	(mm/hr)	(L/s)			
0.28	0.70	10.00	104.19	57.39			

Onsite Storage							
100-year Vminimum Volume Vexcess							
(m ³)	Check	(m ³)					
50.00	OK	0.14					
	Vminimum (m³)	Vminimum Volume (m³) Check					

Subdrainage Area: BLK-10 Area (ha): 0.24

Controlled - Tributary

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	118.65	48.47	70.19	42.11
20	119.95	79.71	48.47	31.24	37.49
30	91.87	61.05	48.47	12.58	22.65
40	75.15	49.93	48.47	1.47	3.52
50	63.95	42.50	42.50	0.00	0.00
60	55.89	37.14	37.14	0.00	0.00
70	49.79	33.09	33.09	0.00	0.00
80	44.99	29.90	29.90	0.00	0.00
90	41.11	27.32	27.32	0.00	0.00
100	37.90	25.19	25.19	0.00	0.00
110	35.20	23.39	23.39	0.00	0.00
120	32.89	21.86	21.86	0.00	0.00

Storage: Block 10 Onsite

	Design Discharge							
Area	С	tc	I (5-yr)	Release				
(ha)		(min)	(mm/hr)	(L/s)				
0.24	0.70	10.00	104.19	48.47				

Onsite Storage						
100-year Vminimum Volume Vexcess						
Vreq (m3)	(m ³)	Check	(m ³)			
42.11	43.00	OK	0.89			

 Subdrainage Area:
 BLK-9
 Controlled - Tributary

 Area (ha):
 0.44

 C:
 1.00

tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	178.56	218.66	89.31	129.34	77.61
20	119.95	146.89	89.31	57.57	69.09
30	91.87	112.50	89.31	23.18	41.73
40	75.15	92.02	89.31	2.71	6.50
50	63.95	78.32	78.32	0.00	0.00
60	55.89	68.45	68.45	0.00	0.00
70	49.79	60.97	60.97	0.00	0.00
80	44.99	55.09	55.09	0.00	0.00
90	41.11	50.34	50.34	0.00	0.00
100	37.90	46.41	46.41	0.00	0.00
110	35.20	43.11	43.11	0.00	0.00
120	32.89	40.28	40.28	0.00	0.00

Storage: Block 9 Onsite

Design Discharge							
Area	С	tc	I (5-yr)	Release			
(ha)		(min)	(mm/hr)	(L/s)			
0.44	0.70	10.00	104.19	89.31			

Onsite Storage							
100-year	Vminimum	Volume	Vexcess				
Vreq (m ³)	(m ³)	Check	(m ³)				
77.61	78.00	OK	0.39				

Subdrainage Area: BLK-8 Controlled - Tributary
Area (ha): 0.34
C: 1.00

(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
10	178.56	169.30	69.15	100.14	60.09	•
20	119.95	113.73	69.15	44.58	53.49	

Controlled - Tributary

Controlled - Tributary

Controlled - Tributary

Controlled - Tributary

Vstored (m^3) 77.73

69.20 41.80 6.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Project #160401780, LeBreton Flats Modified Rational Method Calculation Project #160401780, LeBreton Flats 91.87 75.15 63.95 55.89 49.79 44.99 43.46 35.61 30.34 26.55 23.67 21.41 19.57 18.06 16.78 15.69 87.10 71.25 60.64 52.99 47.21 42.66 38.98 35.94 33.38 31.19 43.46 35.61 30.34 26.55 23.67 21.41 19.57 18.06 16.78 15.69 30 40 50 60 70 80 90 100 110 120 41.11 37.90 35.20 32.89 24.29 22.41 20.82 19.47 sign Dischard tc Onsite 5-year Vminimum Vreq (m³) (m³) 8.89 61.00 Controlled - Tributary nage Area: Area (ha): C: nage Area: Area (ha): C: Vstored (m^3) 11.50 I (100 yr) Qrelea. (L/s) 99.45 I (5 yr) Qstore (L/s) 19.17 Qactua (L/s) Qactua (L/s) Qstore (L/s) Qreleas (L/s) 73.24 56.22 46.06 39.25 34.34 30.62 27.69 25.32 23.36 21.71 20.30 20 30 40 50 60 70 80 90 100 110 120 147.12 112.67 92.16 78.44 68.55 61.07 55.18 50.42 46.49 43.18 40.34 89.45 89.45 78.44 68.55 61.07 55.18 50.42 46.49 43.18 40.34 57.66 23.22 2.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20 30 40 50 60 70 80 90 100 110 27.69 25.32 23.36 21.71 20.30 5-year Vreq (m³) 11.50 Volume Check OK 100-year Vreq (m³) 77.73 Volume Check OK (m³) 78.00 Controlled - Tributary Vstored (m^3) 8.01 I (100 yı Qstore (L/s) 13.35 (L/s) 152.5 (L/s) 75.66 (L/s) 62.31 (L/s) 62.31 (L/s) 90.24 51.01 39.16 32.09 27.34 23.92 21.33 19.29 17.64 16.27 15.12 14.14 51.01 39.16 32.09 27.34 23.92 21.33 19.29 17.64 16.27 15.12 14.14 20 30 40 50 60 70 80 90 100 110 120 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 102.48 78.48 64.20 54.64 47.75 42.54 38.44 35.12 32.38 30.07 28.10 62.31 62.31 54.64 47.75 42.54 38.44 35.12 32.38 30.07 28.10 40.17 16.17 1.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20 30 40 50 60 70 80 90 100 110 120 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Design Discharge sign Discha tc 5-yea nage Area: Area (ha): C: nage Area: Area (ha): C: Controlled - Tributary Qrels (L/s) 80.42 (L/s) (L/s) (L/s) (m^3) 10.34 80.42 80.42 80.42 70.52 61.63 54.90 49.61 45.33 41.80 38.82 36.27 65.85 50.55 41.41 35.29 30.88 27.53 24.90 22.77 21.00 19.52 18.25 20 30 40 50 60 70 80 90 100 110 120 132.27 101.30 82.86 70.52 61.63 54.90 49.61 45.33 41.80 38.82 36.27 5-year Vreq (m³) 10.34 BLK-4 0.40 1.00 Controlled - Tributary (100 y Qactua (L/s) (m^3) 81.01 66.32 50.91 41.71 35.55 31.10 27.73 25.08 70.25 53.93 44.18 37.65 32.94 29.37 26.56 98.37 66.32 50.91 41.71 35.55 31.10 27.73 25.08 198.32 133.22 102.03 83.46 71.03 62.08 55.30 49.97 20 30 40 50 60 70 80 90 100 110 120 20 30 40 50 60 70 80 90 100 110 120 91.87 75.15 63.95 55.89 49.79 44.99 24.29 22.41 20.82 19.47 22.93 21.15 19.66 18.38 45.66 42.10 39.10 36.54

Design Discharge

Design Discharge

Project #160401780, LeBreton Flats

Project #160401780, LeBreton Flats Modified Rational Method Calculations Release (L/s) 81.01 Check OK Controlled - Tributary nage Area: Area (ha): C: I (5 yr) (mm/hr) 104.19 Qactua (L/s) 122.70 Qreleas (L/s) 101.05 82.73 63.51 52.03 44.34 38.80 34.59 31.28 28.60 26.39 24.52 22.93 Vstored (m^3) 12.99 70.25 53.93 44.18 37.65 32.94 29.37 26.56 20 30 40 50 60 70 80 90 100 110 120 82.73 63.51 52.03 44.34 38.80 34.59 31.28 28.60 26.39 24.52 22.93 24.29 22.41 20.82 19.47 5-year Vminimum Vreq (m³) (m³) 12.99 88.00 Controlled - Tributary I (5 yr) (mm/hr) Qactual (L/s) 668.36 Qreleas (L/s) 550.41 Vstored (m^3) 70.77 Qstored (L/s) 117.95 tc (min) 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 450.63 345.92 283.43 241.53 211.32 188.41 170.39 155.80 143.73 133.57 124.88 20 30 40 50 60 70 80 90 100 110 120 Design Discharg 5-year Vminimum Vreq (m³) (m³) 70.77 479.00 Check OK inage Area: Area (ha): C: Controlled - Tributary I (5 yr) (L/s) 222.32 (L/s) 183.09 (L/s) 39.23 (m^3) 23.54 20 30 40 50 60 70 80 90 100 110 120 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 149.90 115.07 94.28 80.34 70.29 62.67 56.68 51.82 47.81 44.43 41.54 149.90 115.07 94.28 80.34 70.29 62.67 56.68 51.82 47.81 44.43 41.54 Onsite 5-year Vminimum Vreq (m³) (m³) 23.54 160.00 Vexcess

artied l	Rational I	Area	alculations C	tc	I (5-yr)	Release	
		(ha) 0.40	0.70	(min) 10.00	(mm/hr) 104.19	(L/s) 81.01	
				0			ī
			100-year	Onsite S Vminimum (m³)	Volume	Vexcess (m³)	
			Vreq (m ³) 70.39	71.00	OK OK	0.61	
Subdraii	nage Area: Area (ha): C:	BLK-3 0.50 1.00				Control	led - Tributary
ĺ	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
	10 20	178.56 119.95	247.38 166.18	101.05 101.05	146.34 65.14	87.80 78.16	•
	30 40	91.87 75.15	127.28 104.11	101.05 101.05	26.23 3.06	47.22 7.35	
	50 60	63.95 55.89	88.60 77.44	88.60 77.44	0.00	0.00 0.00	
	70 80	49.79 44.99	68.98 62.33	68.98 62.33	0.00	0.00	
	90 100	41.11 37.90	56.96 52.51	56.96 52.51	0.00	0.00	
	110 120	35.20 32.89	48.77 45.57	48.77 45.57	0.00	0.00	
	Storage: B	llock 3 Ons					1
		Area (ha)	C	esign Discharg tc (min)	I (5-yr) (mm/hr)	Release (L/s)	
		0.50	0.70	10.00	104.19	101.05	1
			100-year	Onsite S Vminimum	Volume	Vexcess	
			Vreq (m ³) 87.80	(m ³) 88.00	Check OK	(m ³) 0.20]
Subdraii	nage Area: Area (ha): C:	BLK-2 2.71 1.00				Control	led - Tributary
1	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
	10 20	178.56 119.95	1347.51 905.22	550.41 550.41	797.10 354.81	478.26 425.77	
	30 40	91.87 75.15	693.29 567.09	550.41 550.41	142.88 16.68	257.18 40.03	
	50 60	63.95 55.89	482.64 421.81	482.64 421.81	0.00	0.00	
	70 80	49.79 44.99	375.74 339.53	375.74 339.53	0.00	0.00	
	90 100	41.11 37.90	310.25 286.04	310.25 286.04	0.00	0.00	
	110 120	35.20 32.89	265.66 248.24	265.66 248.24	0.00	0.00 0.00	
	Storage: B	Block 2 Ons	ite				
		Area	C De	esign Discharg tc (min)	I (5-yr) (mm/hr)	Release (L/s)	
		(ha) 2.71	0.70	10.00	104.19	550.41	
			100-year	Onsite S Vminimum	torage Volume	Vexcess	
			Vreq (m³) 478.26	(m ³) 479.00	Check OK	(m ³) 0.74	
Subdraii	nage Area: Area (ha): C:	BLK-1 0.90 1.00				Control	led - Tributary
ļ	tc (min)	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	Ī
	(min) 10 20	178.56	(L/s) 448.23 301.11	(L/s) 183.09 183.09	(L/s) 265.14 118.02	(m^3) 159.09 141.62	1
	30 40	119.95 91.87 75.15	301.11 230.61 188.63	183.09 183.09 183.09	118.02 47.53 5.55	85.55 13.32	
	50 60	63.95 55.89	160.54 140.31	160.54 140.31	0.00	0.00	
	70 80	49.79 44.99	124.98 112.94	124.98 112.94	0.00	0.00	
	90 100	41.11 37.90	103.20 95.15	103.20 95.15	0.00	0.00	
	110 120	35.20 32.89	88.37 82.57	88.37 82.57	0.00 0.00	0.00 0.00	
	Storage: B	lock 1 Ons					1
		Area (ha) 0.90	C 0.70	tc (min) 10.00	I (5-yr) (mm/hr) 104.19	Release (L/s) 183.09	
				Onsite S	torage		1
			100-year Vreq (m³)	Vminimum (m³)	Volume Check	Vexcess (m³)	
			159.09	160.00	OK	0.91	I
MARY '	TO OUTLET					V	Marie III
IMARY '		Tri	ibutary Area			Vrequired	Vavailable*
IMARY '	Tot	Tri al 100yr Flo Non-Tri	ibutary Area ow to Sewer ibutary Area	1,827 0.000	L/s ha		
IMARY '	Tot	Tri al 100yr Flo Non-Tri 00yr Flow U	ibutary Area ow to Sewer	1,827 0.000 0 9.013	L/s ha L/s ha		_

UMMARY TO OUTLET

Tributary Area Total 5yr Flow to Sewer

> Total Area Total 5yr Flow

Non-Tributary Area Total 5yr Flow Uncontrolled 9.013 ha 1,827 L/s

0.000 ha 0 L/s

9.013 ha 1,827 L/s 235

1,596 m³

File No: 160401780

LeBreton Flats - Block Sites

Date: 15-May-2024

Created By: MW
Checked By: DT
Revision: 1

100-YEAR SUMMARY OF BLOCK (SITE) STORAGE

SWM Approach: Post-development to 5year with C=0.70 and tc = 10 min

100-year IDF City of Ottawa

Project:

$I = a/(t + b)^{c}$	a =	1735.688	t (min)	l (mm/hr)
	b =	6.014	10	178.56
	c =	0.820	20	119.95
			30	91.87
			40	75.15
			50	63.95
			60	55.89
			70	49.79
			80	44.99
			90	41.11
			100	37.90
			110	35.20
			120	32.89

All Mixed-Use Blocks (Site) Post-Development Conditions:

Tributary	(ha)
Fleet	2.90
Albert	5.22
Aqueduct	0.89
Total Area:	9.01
Overall C:	1.00

Target	(L/s)
To Fleet	588
To Albert	1059
To Aqueduct	181
Total Target	1828

t _c	Runoff Rate	Maximum Allowable Discharge	Required Storage Volume	Required Storage Rate
(min)	(L/s)	(L/s)	(m ³)	(m³/ha)
10	4474	1828	1588	176
20	3006	1828	1414	157
30	2302	1828	854	95
40	1883	1828	133	15
50	1602	1828	0	0
60	1401	1828	0	0

BLOCK ID	Area	С	С	Runoff Rate	Maximum Allowable Discharge	Required Storage Volume
	(ha)	(5-yr)	(100-yr)	(L/s)	(L/s)	(m ³)
BLOCK 1	0.90	0.85	1.00	448	183	159
BLOCK 2	2.71	0.85	1.00	1348	550	478
BLOCK 3	0.50	0.85	1.00	247	101	88
BLOCK 4	0.40	0.85	1.00	198	81	70
BLOCK 5	0.40	0.85	1.00	197	80	70
BLOCK 6	0.31	0.85	1.00	153	62	54
BLOCK 7	0.44	0.85	1.00	219	89	78
BLOCK 8	0.34	0.85	1.00	169	69	60
BLOCK 9	0.44	0.85	1.00	219	89	78
BLOCK 10	0.24	0.85	1.00	119	48	42
BLOCK 11	0.28	0.85	1.00	140	57	50
BLOCK 12	0.25	0.85	1.00	126	51	45
BLOCK 13	0.27	0.85	1.00	136	55	48
BLOCK 14	0.30	0.85	1.00	149	61	53
BLOCK 15	0.33	0.85	1.00	165	67	58
BLOCK 17	0.89	0.85	1.00	442	181	157

D.2 Storm Sewer Design Sheet

Project Number: 160401780 Appendix D-9

		D	lats Draft Pi				STORM	1 SEWE	R		DESIGN	PARAME	TERS																										
Stantec		LeBreton I	lats Draft Pl	an			DESIGN	N SHEE	Т		I = a / (t+			(As per C	ity of Otta	wa Guide	ines, 2012	2)																					
Starrece	DATE:			-07-23			(City of	f Ottawa)				_	1:5 yr	1:10 yr		4																							
	REVISION			1 IP	FILE NUM	IDED.	16040178	•			a = b =	732.951 6.199	998.071	1174.184 6.014		MANNING		0.013 2.00		BEDDING	CLASS =	В																	
	CHECKE)T	FILE NUM	IBEK:	10040170	.0			C =	0.810	6.053 0.814	0.816		TIME OF			m min																				
LOCATION															AINAGE A	_																	PIPE SELEC	CTION					
AREA ID	FROM		AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC		AxC					ACCUM.	T of C	I _{2-YEAR}	I _{S-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}		PIPE WIDTH		PIPE	MATERIAL	CLASS	SLOPE	Q_CAP	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR) (ha)	(10-YEAR) (ha)	(100-YEAR (ha)	R) (ROOF) (ha)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR) (ha)	AxC (2YR) (ha)	(5-YEAR) (ha)	AxC (5YR) (ha)	(10-YEAR) (ha)	AxC (10YR (ha)	(100-YEAR (ha)) AxC (100YR (ha)	(min)	(man fe)	(mm (h)	(mm fb.)	(mm/h)	(L/s)	Q _{CONTROL} (L/s)	(CIA/360) (L/s)	(m)	R DIAMETE (mm)	HEIGHT (mm)	SHAPE (-)	(-)	()	96	(FULL) (L/s)	(-)	(FULL) (m/s)	(ACT) (m/s)	FLOW (min)
	1		(na)	(na)	(na)	(na)	(na)	(-)	(-)	(-)	(-)	(na)	(na)	(na)	(na)	(na)	. ,	(na)	(na)	(min)	(mm/n)	(mmvn)	(mm/n)	(mmvn)	(L/S)	(L/S)	, , , ,	(m)	(mm)		(+)	(-)	(-)	70	(L/S)	(-)	(mvs)	(mrs)	
C15A C16A, C16B	15 16	16 14	0.00	0.44 3.21	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.000	0.000	0.306 2.732	0.306	0.000	0.000	0.000	0.000	10.00 10.84	76.81 73.73	104.19 99.97	122.14		0.0	0.0	88.5 843.5	90.2 78.5	300 975	300 975	CIRCULAR	PVC		2.00 0.20	136.0 1045.6	65.09% 80.68%	1.93	1.80	0.84
C16A, C16B	14	12	0.00	0.43	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.299	3.337	0.000	0.000	0.000	0.000	11.82	70.47	95.49	111.89		0.0	0.0	885.0	66.6	975	975	CIRCULAR	CONCRETE	- :	0.20	1045.6			1.34	0.82
																				12.63																			
C13B, C13A	13	12	0.00	0.48	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.000	0.000	0.381	0.381	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	110.3	84.8	450	450	CIRCULAR	CONCRETE		0.20	133.0	82.93%	0.81	0.81	1.75
																				11.75																			
C12A, C12B	12		0.00	0.80	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.677	4.394	0.000	0.000	0.000	0.000	12.63	67.99	92.08	107.88	157.61	0.0	0.0	1124.0	74.7	1050	1050	CIRCULAR	CONCRETE		0.20	1274.0	88.22%	1.43	1.45	0.86
	11	11A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	4.394	0.000	0.000	0.000	0.000	13.49 13.58	65.57	88.77	103.98	151.89	0.0	0.0	1083.6	7.8	1050 1050	1050 1050	CIRCULAR	CONCRETE	-	0.20	1274.0	85.05%	1.43	1.43	0.09
																				13.30									1030	1030									
C19B, C19A	19	18	0.00	0.99	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.000	0.000	0.830	0.830	0.000	0.000	0.000	0.000	10.00 10.86	76.81	104.19	122.14	178.56	0.0	0.0	240.3	64.4	600 600	600 600	CIRCULAR	CONCRETE	-	0.41	409.6	58.66%	1.40	1.25	0.86
																				10.00									000	000									
C7A	7	7A	0.00	0.89	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.757	0.757	0.000	0.000	0.000	0.000	10.00 10.25	76.81	104.19	122.14	178.56	0.0	0.0	219.2	15.5	600 600	600 600	CIRCULAR	CONCRETE	-	0.25	320.5	68.38%	1.10	1.04	0.25
																				10.25									000	000									
C6A, C6D, C6C, C6B C5A, C5B, C5C	6 5	5	0.00	1.79 0.91	0.00	0.00	0.00	0.00	0.76 0.85	0.00	0.00	0.000	0.000	1.355	1.355	0.000	0.000	0.000	0.000	10.00 10.40	76.81	104.19		178.56 174.95	0.0	0.0	392.0 604.5	42.7	600 900	600 900	CIRCULAR	CONCRETE	-	0.70	535.9	73.15%		1.77	0.40 2.78
CSA, CSB, CSC	5	4	0.00	0.91	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.777	2.131	0.000	0.000	0.000	0.000	13.18	75.29	102.11	119.09	174.95	0.0	0.0	004.5	185.2	900	900	CIRCULAR	CONCRETE		0.15	/31.4	82.64%	1.11	1.11	2.78
C4AA	4A	4	0.00	0.33	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.282	0.282	0.000	0.000	0.000	0.000	10.00	76.81	404.40	400.44	178.56	0.0	0.0	81.6	54.2	375	375	CIRCULAR	PVC		0.40	404.0	78.27%	0.00	0.97	0.93
C4AA	4A	4	0.00	0.33	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.282	0.282	0.000	0.000	0.000	0.000	10.00	70.81	104.19	122.14	178.50	0.0	0.0	81.0	54.2	3/5	3/5	CIRCULAR	PVC		0.40	104.3	18.21%	0.99	0.97	0.93
C4B, C4C, C4D		3	0.00	1.07	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.000	0.000	0.859	3.272	0.000	0.000	0.000	0.000	13.18	66.41	00.00	405.04	153.88	0.0	0.0	817.3	63.6	4050	1050	CIRCULAR	CONCRETE		0.45	4400.0	74.08%	4.00	1.19	0.00
C4B, C4C, C4D	4	3	0.00	1.07	0.00	0.00	0.00	0.00	0.80	0.00	0.00	0.000	0.000	0.859	3.212	0.000	0.000	0.000	0.000	14.08	00.41	89.92	105.34	153.66	0.0	0.0	617.3	03.0	1050	1050	CIRCULAR	CONCRETE		0.15	1103.3	74.08%	1.23	1.19	0.89
2011		3																			70.04			470.50						300	CIRCULAR	PVC							0.46
C3AA	3A	3	0.00	0.24	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.000	0.000	0.203	0.203	0.000	0.000	0.000	0.000	10.00 10.46	76.81	104.19	122.14	178.56	0.0	0.0	58.8	28.9	300	300	CIRCULAR	PVC		0.60	74.5	78.95%	1.06	1.04	0.46
C3B	3	0	0.00	0.11	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.000	0.000	0.000	0.555	0.000	0.000	0.000	0.000	44.00	04.00	00.00	404.50	148 25	0.0	0.0	855.8	72.1	1050	4050	CIRCULAR	CONCRETE		0.15	1103.3	77.56%	1 23	4.00	1.00
СЗВ	2	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	3.555	0.000	0.000	0.000	0.000	15.08	61.59	83.31	97.56	148.25	0.0	0.0	822.7	95.3	1050	1050	CIRCULAR	CONCRETE	- :	0.15	1103.3		1.23	1.19	1.34
	1 1A	1A 1B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	3.555	0.000	0.000	0.000	0.000	16.42	58.62	79.25	92.78	135.46	0.0	0.0	782.6	3.1	1050	1050	CIRCULAR	CONCRETE	-	0.15		70.93%		1.17	0.04
	1A	18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	3.555	0.000	0.000	0.000	0.000	16.46 16.57	58.52	79.12	92.63	135.24	0.0	0.0	781.3	8.0	1050 1050	1050 1050	CIRCULAR	CONCRETE		0.15	1103.3	70.81%	1.23	1.17	0.11
																				10.00	70.01	101.10	100.11	170.50					1000	1000				0.45	4676.0		1.05		
	10 9	9 9B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.00	76.81 76.81	104.19 104.19	122.14 122.14		0.0	0.0	0.0	20.2	1200 1200	1200 1200	CIRCULAR	CONCRETE	- 1	0.15 0.15	1575.3 1575.3		1.35	0.00	0.00
	9B	9A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		76.81	104.19	122.14	178.56	0.0	0.0	0.0	8.9	1200	1200 1200	CIRCULAR	CONCRETE	-	0.15	1575.3	0.00%	1.35	0.00	0.00
																				10.00									1200	1200									

D.3 Quality Control MTD Sizing Calculations

Project Number: 160401780 Appendix D-10

Quality Manufactured Treatment Device (MTD) Sizing

Lebreton Flats 19-Jul-24

	Area C		I (25mm)	Q (25mm)	Q (5yr)
			(Per MECP SWMPDM Equation 4.9)	(Rational Method)	(Per Sewer Design Sheet)
СЗВ	0.11	0.70			
C4B	0.35	0.70			
C6A	0.36	0.70			
C6D	0.73	0.70			
Total	1.55	0.70	36.0	109	781 1x JF12 (Offline)
C12A	0.40	0.85			
C13B	0.17	0.70			
C13A	0.31	0.85			
Total	0.88	0.82	41.2	83	209 1x JF10 (Online)
C12B	0.40	0.85			
C14A	0.12	0.70			
C14B	0.31	0.70			
C15A	0.44	0.70			
C16B	0.50	0.85			
Total	1.77	0.78	39.3	150	885 1x JF12 (Offline)
C19A	0.90	0.85			
C19B	0.09	0.70			
Total	0.99	0.84	41.9	96	240 1 X JF10 (Online)

	Max			
Jellyfish	Treatment	Max Online		
Model#	Flow Rate	Flow Rate		
JF6	32.8	146.1		
JF8	55.5	197.1		
JF10	106.2	332.7		
JF12	148.9	375.4		

D.4 Conceptual Major System PCSWMM Model Input/Output Files

Project Number: 160401780 Appendix D-11

[TITLE] ;;Project Title/Notes

[OPTIONS]

;;Option FLOW_UNITS Value LPS INFILTRATION HORTON FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING DYNWAVE ELEVATION

YES SKIP_STEADY_STATE NO

START_DATE 07/17/2024 START_TIME
REPORT_START_DATE 00:00:00 07/17/2024 REPORT_START_TIME 00:00:00 END_DATE 07/17/2024 END_TIME 06:00:00 SWEEP_START SWEEP_END 01/01 12/31 DRY_DAYS REPORT_STEP 00:01:00 WET_STEP DRY_STEP 00:01:00 00:01:00

ROUTING_STEP 1 00:00:00 RULE_STEP

INERTIAL_DAMPING PARTIAL NORMAL_FLOW_LIMITED BOTH FORCE_MAIN_EQUATION H-W VARIABLE_STEP LENGTHENING_STEP 0 MIN_SURFAREA MAX TRIALS 8 HEAD_TOLERANCE 0.0015 SYS_FLOW_TOL LAT_FLOW_TOL

POST-DEVELOPMENT MODEL

MINIMUM_STEP 0.5 THREADS 8

[EVAPORATION]

;;Data Source Parameters

CONSTANT 0.0

DRY_ONLY NO

[RAINGAGES]

;;Name Format Interval SCF Source

;;-----RG1 INTENSITY 0:10 1.0 TIMESERIES 03H120C

[SUBCATCHMENTS]

;;Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope	CurbLen	SnowPack
;;								
;0.7 33	RG1	SPR-B00	0.769436	71.43	173.123	3	0	
;0.7 34	RG1	ELM-BOO	0.784973	71.43	176.619	3	0	
;0.7 37	RG1	B00-LP1	0.699023	71.43	157.28	3	0	
;0.7 38	RG1	ELM-ROC	0.788085	71.43	177.319	3	0	
;0.7 39	RG1	PRI-LOR	1.208135	71.43	271.83	3	0	
;0.7 40	RG1	ALB-PRI	0.227745	71.43	51.243	3	0	
;0.7								

41	RG1	ALB-LO	POST-DEVELOPMENT R 0.196647		44.246	3	0
	KGI	ALD-LO	N 0.150047	71.43	44.240	5	V
;0.7 42	RG1	PRI	0.677902	71.43	152.528	3	0
;0.7 43	RG1	PRI-EM	P 0.379017	71.43	85.279	3	0
;0.7 44	RG1	LOR	0.781348	71.43	175.803	3	0
;0.7 45	RG1	ALB-RO	C 0.684771	71.43	154.073	3	0
;0.7 46	RG1	ALB-BC	0.436649	71.43	98.246	3	0
;0.7 47	RG1	ALB-PR	E 0.76698	71.43	172.57	3	0
;0.7 48	RG1	ROC-LP	1.407692	71.43	316.731	3	0
;0.7 49	RG1	BOO-LP	2 0.62678	71.43	141.026	3	0
;0.7 50	RG1	PRI-BO	0 0.735359	71.43	165.456	3	0
;0.7 51	RG1	PRE	0.556116	71.43	125.126	3	0
;0.7 52	RG1	ELM-PR	I 1.137188	71.43	255.867	3	0
[SUBAREAS] ;;Subcatchment	N-Imperv	N-Perv S	-Imperv S-Perv	PctZero	Route	To P	ctRouted

			POST-D	EVELOPMENT	MODEL	
;;	0.013	0.25	4 57	4 67		OUTLET
33 34	0.013 0.013	0.25 0.25	1.57 1.57	4.67 4.67	0	OUTLET
3 4 37						
38	0.013 0.013	0.25 0.25	1.57	4.67 4.67	0	OUTLET
39			1.57		0	OUTLET
40	0.013	0.25	1.57	4.67	0 0	OUTLET
41	0.013 0.013	0.25 0.25	1.57 1.57	4.67 4.67	0	OUTLET OUTLET
42	0.013			4.67	0	
42		0.25	1.57		0	OUTLET
	0.013	0.25	1.57	4.67		OUTLET
44	0.013	0.25	1.57	4.67	0	OUTLET
45	0.013	0.25	1.57	4.67	0	OUTLET
46	0.013	0.25	1.57	4.67	0	OUTLET
47	0.013	0.25	1.57	4.67	0	OUTLET
48	0.013	0.25	1.57	4.67	0	OUTLET
49	0.013	0.25	1.57	4.67	0	OUTLET
50	0.013	0.25	1.57	4.67	0	OUTLET
51	0.013	0.25	1.57	4.67	0	OUTLET
52	0.013	0.25	1.57	4.67	0	OUTLET
[INFILTRATION]						
;;Subcatchment	Param1	Param2	Param3	Param4	Param5	
;;						
33	76.2	13.2	4.14	7	0	
34	76.2	13.2	4.14	7	0	
37	76.2	13.2	4.14	7	0	
38	76.2	13.2	4.14	7	0	
39	76.2	13.2	4.14	7	0	
40	76.2	13.2	4.14	7	0	
41	76.2	13.2	4.14	7	0	
42	76.2	13.2	4.14	7	0	
43	76.2	13.2	4.14	7	0	
44	76.2	13.2	4.14	7	0	
45	76.2	13.2	4.14	7	0	
46	76.2	13.2	4.14	7	0	
47	76.2	13.2	4.14	7	0	
48	76.2	13.2	4.14	<i>,</i> 7	0	
49	76.2	13.2	4.14	7	0	
					-	

POST-	-DEVEL	OPMENT	MODEL

			P051	-DEVELO	PMENT MOD	EL	
50	76.2	13.2	4.14	7	0		
51	76.2	13.2	4.14	7	0		
52	76.2	13.2	4.14	7	0		
[OUTFALLS]							
;;Name	Elevati	on Type	Stage Da	ata	Gated	Route To	
;; ALB-OF	0	FREE			NO		
0F1	0	FREE			NO		
0F2	0	FREE			NO		
0F3	0	FREE			NO		
OF4	0	FREE			NO		
OF5	0	FREE			NO		
0F6	0	FREE			NO		
OF7	0	FREE			NO		
SU1	0	FREE			NO		
SU10	0	FREE			NO		
SU11	0	FREE			NO		
SU12	0	FREE			NO		
SU13	0	FREE			NO		
SU14	0	FREE			NO		
SU15	0	FREE			NO		
SU16	0	FREE			NO		
SU17	0	FREE			NO		
SU2	0	FREE			NO		
SU3	0	FREE			NO		
SU4	0	FREE			NO		
SU5	0	FREE			NO		
SU6	0	FREE			NO		
SU7	0	FREE			NO		
SU8	0	FREE			NO		
SU9	0	FREE			NO		
[STORAGE]							
;;Name	Elev.	MaxDepth	InitDepth	Shape	Cur	ve Name/Params	:

				POST-DEVELOPMENT	МО	DEL				
ALB-BOO	61.78	0.4	0	FUNCTIONAL	0	0	0	0	0	
ALB-LOR	62.33	0.4	0	FUNCTIONAL	0	0	0	0	0	
ALB-PRE	58.95	0.4	0	FUNCTIONAL	0	0	0	0	0	
ALB-PRI	62.47	0.4	0	FUNCTIONAL	0	0	0	0	0	
ALB-ROC	60.67	0.4	0	FUNCTIONAL	0	0	0	0	0	
B00-LP1	62.23	0.4	0	FUNCTIONAL	0	0	0	0	0	
B00-LP2	62.25	0.4	0	FUNCTIONAL	0	0	0	0	0	
ELM-BOO	64.98	0.4	0	FUNCTIONAL	0	0	0	0	0	
ELM-PRI	62.36	0.4	0	FUNCTIONAL	0	0	0	0	0	
ELM-ROC	63.04	0.4	0	FUNCTIONAL		0	0	0	0	
LOR	76.87	0.4	0	FUNCTIONAL		0	0	0	0	
PRE	61.31	0.4	0	FUNCTIONAL		0	0	0	0	
PRI	62.87	0.4	0	FUNCTIONAL		0	0	0	0	
PRI-BOO	62.37	0.4	0	FUNCTIONAL		0	0	0	0	
PRI-EMP	80.19	0.4	0	FUNCTIONAL		0	0	0	0	
PRI-LOR	72	0.4	0	FUNCTIONAL		0	0	0	0	
ROC-LP1	61.36	0.4	0	FUNCTIONAL		0	0	0	0	
SPR-B00	71.56	0.4	0	FUNCTIONAL	0	0	0	0	0	
[CONDUTTC]										
[CONDUITS] ;;Name	From Nod	•	To Node	Length		Poughnoss	InOffcot	OutOffcot	Ini+Elou	
MaxFlow	FI OIII NOU	e	10 Noue	Length		Rougilless	Illorrset	outorrset	IIIICFIOW	
										_
,,										
C1	SPR-B00		ELM-BOO	81.637		0.013	71.56	64.98	0	0
									-	-
C10	PRE		ALB-PRE	120.656		0.013	61.31	59.03	0	0
C11	PRI-BOO		B00-LP1	71.962		0.013	62.37	62.23	0	0
C12	B00-LP1		B00-LP2	41.708		0.013	62.23	62.25	0	0
C13	B00-LP2		ALB-BOO	59.074		0.013	62.25	61.88	0	0
C14	ELM-PRI		ROC-LP1	91.928		0.013	62.36	61.36	0	0
C15	ROC-LP1		ALB-ROC	65.3		0.013	61.36	60.77	0	0

		POST-DE	VELOPMENT M	ODFI				
C16	ALB-BOO	ALB-ROC	123.296	0.013	61.78	60.67	0	0
C17	ALB-ROC	ALB-PRE	192.513	0.013	60.67	58.95	0	0
C2	ELM-BOO	PRI-BOO	79.055	0.013	64.98	62.37	0	0
C3	LOR	PRI-LOR	68.101	0.013	76.87	72	0	0
C4	PRI-LOR	ALB-LOR	185.838	0.013	72	62.43	0	0
C5	PRI-EMP	PRI-LOR	96.195	0.013	80.19	72	0	0
C6	PRI	ALB-PRI	91.889	0.013	62.87	62.57	0	0
C7	ALB-PRI	ALB-LOR	48.944	0.013	62.47	62.33	0	0
C8	ALB-LOR	ALB-BOO	77.391	0.013	62.33	61.78	0	0
C9	ELM-ROC	ELM-PRI	80.486	0.013	63.04	62.36	0	0
;;	arge RoadWidth	To Node RoadSurf Coeff.	Curve		-			
		ALB-OF		59.18	1.67	NO	0	0
		To Node		•	-	ole/Qcoeff		
OL1 NO	ALB-PRE	SU17	58.95	TABULAR/HE	AD 10CE	3_S0.03		
OL10 NO	PRI-LOR	OF2	72	TABULAR/HE	AD 10CE	3_S0.03		

		POST-DE	VELOPMENT MO	DDEL	
OL11 NO	PRI-EMP	SU15	80.19	TABULAR/HEAD	1CB_S0.03
OL12 NO	PRI	SU14	62.87	TABULAR/HEAD	8CB_S0.03
0L13	ALB-PRI	SU13	62.47	TABULAR/HEAD	4CB_S0.03
NO OL14 NO	ALB-LOR	SU12	62.33	TABULAR/HEAD	4CB_S0.03
OL15 NO	ALB-BOO	SU10	61.78	TABULAR/HEAD	4CB_S0.03
OL16 NO	B00-LP2	SU9	62.25	TABULAR/HEAD	3CB_SAG
OL17 NO	B00-LP1	SU8	62.23	TABULAR/HEAD	3CB_SAG
OL18 NO	PRI-BOO	OF3	62.37	TABULAR/HEAD	3CB_S0.03
OL19 NO	PRI-LOR	0F1	72	TABULAR/HEAD	6CB_S0.03
OL2 NO	PRE	SU1	61.31	TABULAR/HEAD	1CB_S0.03
OL20 NO	PRI-BOO	SU7	62.37	TABULAR/HEAD	10CB_S0.03
OL21 NO	ELM-BOO	SU5	64.98	TABULAR/HEAD	10CB_S0.03
OL22 NO	ELM-PRI	SU3	62.36	TABULAR/HEAD	10CB_S0.03
0L23 NO	PRE	OF7	61.31	TABULAR/HEAD	10CB_S0.03
OL24 NO	ROC-LP1	SU2	61.36	TABULAR/HEAD	2CB_SAG
0L3	ALB-ROC	SU11	60.67	TABULAR/HEAD	10CB_S0.03
NO OL4	ROC-LP1	OF6	61.36	TABULAR/HEAD	10CB_S0.03
NO OL5	ELM-PRI	OF5	62.36	TABULAR/HEAD	4CB_S0.03
NO OL6 NO	ELM-ROC	SU4	63.04	TABULAR/HEAD	6CB_S0.03

OL7 NO	ELM-BOO	0F4		64.98		ABULAR/HEA	D 3	CB_S0.03	
OL8 NO	SPR-B00	SU6		71.56	Т	ABULAR/HEA	D 9	CB_S0.03	
OL9 NO	LOR	SU16	6	76.87	' Т	ABULAR/HEA	D 2	CB_S0.03	
[XSECTIONS]									
;;Link	Shape	Geom1		Geom2	Geom3	Geom	4	Barrels	Culvert
;; C1	IRREGULAR	18m							
C10	IRREGULAR	20m Pres	ston						
C11	IRREGULAR	18m							
C12	IRREGULAR	18m							
C13	IRREGULAR	18m							
C14	IRREGULAR	18m							
C15	IRREGULAR	18m							
C16	IRREGULAR		lbert_OS						
C17	IRREGULAR		lbert_OS						
C2	IRREGULAR	18m							
C3 C4	IRREGULAR	18m 18m							
C5	IRREGULAR IRREGULAR	18m							
C6	IRREGULAR	18m							
C7	IRREGULAR		lbert OS						
C8	IRREGULAR		lbert OS						
C9	IRREGULAR	18m							
W1	RECT_OPEN	0.2		10	0	0			
[TRANSECTS]									
;;Transect Data	in HEC-2 form	nat							
;									
NC 0.013 0.01		0.0	11 5	0.0	0 0	0.0	0.0	0.0	
X1 15.5m_Albert_		0.0			0.0	0.0 15	0.0	0.0	
GR 0.23 0	0	11.5	0.15	11.5	0.23	15			
NC 0.2 0.2	0.013								
X1 18m	7	4.25						0.0	

0.0 0 13.75

0.0 17.5

GR GR ;	0.35 0.15	0 13.75		0.15 0.35		4.25 18	0	POST-	DEVELOPME 4.25		9
NC X1 GR	0.013 20m_Prest 0.2 0.15	on 0		7 0.15		2.5			0.0 2.5		0.0 10
;;L	SSES] ink		Kent	ry	Ke	exit	Kavg		Flap Ga	ate Seepa	age
	RVES] ame		Туре	! 	X-	·Value	Y-Va	lue			
10C 10C 10C 10C 10C 10C 10C 10C 10C 10C	B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03 B_S0.03			ng	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 02 03 04 05 06 07 08 09 1	0 5 17 57 110 146 179 216 256 298 335 380 390 390				
1CB 1CB 1CB 1CB 1CB	_S0.03 _S0.03 _S0.03 _S0.03 _S0.03 _S0.03 _S0.03 _S0.03		Rati	Ü	0.0.0.0.0.0	.02 .03 .04	0 0.5 1.7 5.7 11 14.6 17.9 21.6				

			POST
1CB S0.03		0.08	25.6
1CB_S0.03		0.09	29.8
1CB S0.03		0.1	33.5
1CB S0.03		0.11	38
1CB_S0.03		0.12	39
1CB S0.03		0.4	39
_			
1CB SAG	Rating	0	0
1CB SAG	· ·	0.01	1
1CB SAG		0.02	2
1CB SAG		0.03	4
1CB SAG		0.04	7
1CB_SAG		0.05	11
1CB_SAG		0.06	16
1CB_SAG		0.07	20
1CB_SAG		0.08	36
1CB_SAG		0.09	48
1CB_SAG		0.1	61
1CB_SAG		0.11	73
1CB_SAG		0.12	86
1CB_SAG		0.13	99
1CB_SAG		0.14	109
1CB_SAG		0.15	120
1CB_SAG		0.16	129
1CB_SAG		0.17	136
1CB_SAG		0.18	145
1CB_SAG		0.19	150
1CB_SAG		0.2	156
1CB_SAG		0.21	161
1CB_SAG		0.22	167
1CB_SAG		0.23	172
1CB_SAG		0.24	176
1CB_SAG		0.25	181
1CB_SAG		0.26	186
1CB_SAG		0.27	189
1CB_SAG		0.28	194
1CB_SAG		0.29	199
1CB_SAG		0.3	202

2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03 2CB_S0.03	Rating	0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.11	0 1 3.4 11.4 22 29.2 35.8 43.2 51.2 59.6 67 76 78
2CB_SAG	Rating	0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21	0 2 4 8 14 22 32 40 72 96 122 146 172 198 218 240 258 300 312 322

POST-DEVELOPMENT MODEL 2CB_SAG 0.22 2CB_SAG 0.23 344 2CB_SAG 0.24 352 2CB_SAG 0.25 362 2CB_SAG 2CB_SAG 372 0.26 0.27 378 2CB_SAG 2CB_SAG 0.28 388 0.29 398 2CB_SAG 404 0.3 Rating 3CB_S0.03 0 0 3CB_S0.03 0.01 1.5 3CB_S0.03 0.02 5.1 3CB_S0.03 0.03 17.1 3CB_S0.03 0.04 33 3CB_S0.03 0.05 43.8 3CB_S0.03 0.06 53.7 3CB_S0.03 0.07 64.8 3CB_S0.03 0.08 76.8 3CB_S0.03 0.09 89.4 3CB_S0.03 100.5 0.1 3CB_S0.03 3CB_S0.03 3CB_S0.03 114 0.11 117 0.12 0.4 117 3CB_SAG 3CB_SAG 3CB_SAG Rating 0 0 0.01 3 6 0.02 3CB_SAG 12 0.03 3CB_SAG 0.04 21 3CB_SAG 0.05 33 3CB_SAG 0.06 48 3CB_SAG 3CB_SAG 0.07 60 0.08 108 3CB_SAG 0.09 144 3CB_SAG 0.1 183 3CB_SAG 3CB_SAG 0.11 219 0.12 258

			POST-DEVELOPMENT MODEL
3CB SAG		0.13	297
3CB SAG		0.14	327
3CB SAG		0.15	360
3CB SAG		0.16	387
3CB_SAG		0.17	408
3CB SAG		0.18	435
3CB SAG		0.19	450
3CB_SAG		0.2	468
3CB_SAG		0.21	483
3CB_SAG		0.22	501
3CB_SAG		0.23	516
3CB_SAG		0.24	528
3CB_SAG		0.25	543
3CB_SAG		0.26	558
3CB_SAG		0.27	567
3CB_SAG		0.28	582
3CB_SAG		0.29	597
3CB_SAG		0.3	606
4CB_S0.03	Rating	0	0
4CB_S0.03		0.01	2
4CB_S0.03		0.02	6.8
4CB_S0.03		0.03	22.8
4CB_S0.03		0.04	44
4CB_S0.03		0.05	58.4
4CB_S0.03		0.06	71.6
4CB_S0.03		0.07	86.4
4CB_S0.03		0.08	102.4
4CB_S0.03		0.09	119.2
4CB_S0.03		0.1	134
4CB_S0.03		0.11	152
4CB_S0.03		0.12	156
4CB_S0.03		0.4	156
5CB_S0.03	Rating	0	0
5CB_S0.03		0.01	2.5
5CB_S0.03		0.02	8.5
5CB_S0.03		0.03	28.5

POST-DEVELOPMENT MODEL 5CB_S0.03 0.04 55 5CB_S0.03 0.05 73 5CB S0.03 0.06 89.5 5CB_S0.03 0.07 108 5CB_S0.03 5CB_S0.03 0.08 128 0.09 149 5CB_S0.03 5CB_S0.03 5CB_S0.03 0.1 167.5 190 0.11 195 0.12 5CB_S0.03 0.4 195 6CB_S0.03 6CB_S0.03 Rating 0 0 0.01 3 6CB_S0.03 0.02 10.2 6CB_S0.03 0.03 34.2 6CB_S0.03 0.04 66 6CB_S0.03 0.05 87.6 6CB_S0.03 0.06 107.4 6CB_S0.03 0.07 129.6 6CB S0.03 0.08 153.6 6CB S0.03 0.09 178.8 6CB_S0.03 6CB_S0.03 6CB_S0.03 6CB_S0.03 201 0.1 228 0.11 0.12 234 234 0.4 7CB_S0.03 Rating 0 0 7CB_S0.03 7CB_S0.03 3.5 0.01 11.9 0.02 7CB_S0.03 0.03 39.9 7CB_S0.03 0.04 77 7CB_S0.03 0.05 102.2 7CB_S0.03 0.06 125.3 7CB_S0.03 0.07 151.2 7CB_S0.03 0.08 179.2 7CB_S0.03 0.09 208.6 7CB_S0.03 7CB_S0.03 234.5 0.1 0.11 266

			POST-DEVELOPMENT	MODEL
7CB_S0.03		0.12	273	
7CB_S0.03		0.4	273	
8CB_S0.03	Rating	0	0	
8CB_S0.03		0.01	4	
8CB_S0.03		0.02	13.6	
8CB_S0.03		0.03	45.6	
8CB_S0.03		0.04	88	
8CB_S0.03		0.05	116.8	
8CB_S0.03		0.06	143.2	
8CB_S0.03		0.07	172.8	
8CB_S0.03		0.08	204.8	
8CB_S0.03		0.09	238.4	
8CB_S0.03		0.1	268	
8CB_S0.03		0.11	304	
8CB_S0.03		0.12	312	
8CB_S0.03		0.4	312	
9CB_S0.03	Rating	0	0	
9CB_S0.03			4.5	
9CB_S0.03		0.02	15.3	
9CB_S0.03		0.03	51.3	
9CB_S0.03		0.04	99	
9CB_S0.03		0.05	131.4	
9CB_S0.03		0.06	161.1	
9CB_S0.03		0.07	194.4	
9CB_S0.03			230.4	
9CB_S0.03		0.09	268.2	
9CB_S0.03		0.1	301.5	
9CB_S0.03		0.11	342	
9CB_S0.03			351	
9CB_S0.03		0.4	351	
[TTMCCCDTCC]				
[TIMESERIES]	Dato	Timo	Value	
;;Name ;;		Time		
03H100C		0:00		
03H100C		0:10		
03111000		0.10	0.05	

		POST-DEVELOPMENT M
03H100C	0:20	7.54
03H100C	0:30	10.16
03H100C	0:40	15.97
03H100C	0:50	40.65
03H100C	1:00	178.56
03H100C	1:10	54.05
03H100C	1:20	27.32
03H100C	1:30	18.24
03H100C	1:40	13.74
03H100C	1:50	11.06
03H100C	2:00	9.29
03H100C	2:10	8.02
03H100C	2:20	7.08
03H100C	2:30	6.35
03H100C	2:40	5.76
03H100C	2:50	5.28
03H100C	3:00	4.88
03H120C	0:00	0
03H120C	0:10	7.26
03H120C	0:20	9.048
03H120C	0:30	12.192
03H120C	0:40	19.164
03H120C	0:50	48.78
03H120C	1:00	214.272
03H120C	1:10	64.86
03H120C	1:20	32.784
03H120C	1:30	21.888
03H120C	1:40	16.488
03H120C	1:50	13.272
03H120C	2:00	11.148
03H120C	2:10	9.624
03H120C	2:20	8.496
03H120C	2:30	7.62
03H120C	2:40	6.912
03H120C	2:50	6.336
03H120C	3:00	5.856

POST-DEVELOPMENT MODEL

[REPORT]
;;Reporting Options
INPUT YES
CONTROLS NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL

[TAGS]

[MAP]				
DIMENSIONS	366080.2087	5030220.22155	366695.2693	5030739.82745
UNITS	Meters			
[COORDINATES]				
;;Node	X-Coord	Y-Coord		
;;				
ALB-OF	366143.745	5030491.113		
OF1	366561.224	5030486.487		
0F2	366561.962	5030485.749		
0F3	366487.932	5030457.828		
OF4	366521.881	5030385.55		
OF5	366379.435	5030410.818		
OF6	366346.034	5030492.952		
OF7	366197.772	5030338.959		
SU1	366196.986	5030339.745		
SU10	366423.129	5030613.526		
SU11	366317.45	5030549.462		
SU12	366489.932	5030653.498		
SU13	366534.832	5030681.424		
SU14	366570.424	5030600.933		
SU15	366652.01	5030522.084		
SU16	366589.041	5030422.427		
SU17	366152.634	5030447.615		
SU2	366345.376	5030493.61		
SU3	366378.777	5030411.476		
SU4	366408.893	5030335.912		
SU5	366521.143	5030386.288		

		FOST-DEVELOPMENT MODEL
SU6	366554.544	5030311.272
SU7	366487.194	5030458.566
SU8	366459.816	5030525.917
SU9	366443.389	5030564.793
ALB-BOO	366429.516	5030630.229
ALB-LOR	366495.464	5030670.72
ALB-PRE	366161.116	5030463.904
ALB-PRI	366537.409	5030695.935
ALB-ROC	366323.562	5030567.191
B00-LP1	366468.067	5030537.126
B00-LP2	366451.58	5030575.434
ELM-BOO	366528.923	5030398.925
ELM-PRI	366386.601	5030423.171
ELM-ROC	366418.363	5030349.222
LOR	366595.842	5030437.476
PRE	366210.835	5030353.976
PRI	366575.96	5030612.53
PRI-BOO	366497.404	5030471.42
PRI-EMP	366657.702	5030537.068
PRI-LOR	366568.929	5030500.03
ROC-LP1	366349.02	5030507.061
SPR-B00	366561.898	5030324.249
[VERTICES]		
	X-Coord	
	266564 007	
	366561.087	
	366486.731	
0L21	366519.9	5030396.484
0L22	366377.233	5030420.154
0L23	366209.658	5030342.429
0L24	366340.592	5030502.152
[POLYGONS]		
;;Subcatchment	Y-Coond	Y-Coord
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Λ-C001 u	
33	366619.39	
33	366592.332	
,,	300332.332	2020222.02

```
33
                  366592.332
                                      5030253.03
33
                  366552.97
                                      5030243.84
33
                  366552.97
                                      5030243.84
33
                  366527.372
                                      5030297.603
33
                  366527.372
                                      5030297.603
33
                  366544.282
                                      5030311.094
33
                  366544.282
                                      5030311.094
33
                  366537.925
                                      5030336.48
33
                  366537.925
                                      5030336.48
33
                  366541.376
                                      5030359.772
33
33
                  366541.376
                                      5030359.772
                  366581.91
                                      5030377.77
33
                  366581.91
                                      5030377.77
33
                  366619.39
                                      5030289.71
34
34
                  366467.569
                                      5030415.215
                                      5030449.668
                  366548.303
34
                  366548.303
                                      5030449.668
34
                  366548.485
                                      5030449.745
34
                  366548.485
                                      5030449.745
34
                  366581.91
                                      5030377.77
34
                  366581.91
                                      5030377.77
34
                  366541.376
                                      5030359.772
34
                  366541.376
                                      5030359.772
34
34
34
                  366537.925
                                      5030336.48
                  366537.925
                                      5030336.48
                  366516.325
                                      5030327.358
34
34
34
34
34
                  366516.325
                                      5030327.358
                  366512.08
                                      5030329.18
                  366512.08
                                      5030329.18
                                      5030333.8
                  366508.26
                  366508.26
                                      5030333.8
34
                  366503.303
                                      5030331.783
34
                  366503.303
                                      5030331.783
34
                  366467.569
                                      5030415.215
37
                  366473.55
                                      5030550.784
37
                  366503.256
                                      5030564.221
37
                  366503.256
                                      5030564.221
                  366523.663
                                      5030511.484
```

		PUST-DEVELOPMENT MODE
37	366523.663	5030511.484
37	366475.109	5030502.782
37	366475.109	5030502.782
37	366418.8	5030478.49
37	366418.8	5030478.49
37	366409.03	5030482.37
37	366409.03	5030482.37
37	366408.26	5030482.17
37	366408.26	5030482.17
37	366401.53	5030479.211
37	366401.53	5030479.211
37	366395.54	5030498.39
37	366395.54	5030498.39
37	366385.68	5030511.057
37	366385.68	5030511.057
37	366378.272	5030523.863
37	366378.272	5030523.863
37	366392.307	5030530.098
37	366392.307	5030530.098
37	366452.237	5030556.15
	366452.237	5030556.15
37	366473.55	5030550.784
38	366397.9	5030385.485
38	366467.569	5030415.215
38	366467.569	5030415.215
38	366503.303	5030331.783
38	366503.303	5030331.783
38	366494.117	5030328.046
38	366494.117	5030328.046
38	366500.756	5030313.631
38	366500.756	5030313.631
38	366490.04	5030303.83
38	366490.04	5030303.83
38	366454.418	5030288.218
38	366454.418	5030288.218
38	366450.874	5030289.664
38	366450.874	5030289.664
38	366415.316	5030342.551

```
38
                                     5030342.551
                  366415.316
38
                  366397.9
                                      5030385.485
39
                  366548.485
                                      5030449.745
39
                  366548.303
                                      5030449.668
39
                  366548.303
                                      5030449.668
39
                  366531.64
                                      5030490.871
39
                                      5030490.871
                  366531.64
39
                  366523.663
                                      5030511.484
39
                  366523.663
                                      5030511.484
39
                  366503.256
                                      5030564.221
39
39
                 366503.256
366481.219
                                      5030564.221
                                      5030621.173
39
                  366481.219
                                      5030621.173
39
                  366502.985
                                      5030642.015
39
                  366502.985
                                      5030642.015
39
                  366531.021
                                      5030654.341
39
                  366531.021
                                      5030654.341
39
                  366539.111
                                      5030632.511
39
                  366539.111
                                      5030632.511
39
                  366563.37
                                      5030585.01
39
                  366563.37
                                      5030585.01
39
                  366573.07
                                      5030551.98
39
                  366573.07
                                      5030551.98
39
                  366589.47
                                      5030530.98
39
                  366589.47
                                      5030530.98
39
                  366617.51
                                      5030534.77
39
39
39
                  366617.51
                                     5030534.77
                  366626.497
                                      5030514.457
                  366626.497
                                      5030514.457
39
                                      5030495.579
                  366583.83
39
                  366583.83
                                      5030495.579
39
                  366574.4
                                      5030463.87
39
                  366574.4
                                      5030463.87
39
                  366548.485
                                      5030449.745
40
                  366515.191
                                      5030686.248
40
                  366562.582
                                     5030716.209
40
                  366562.582
                                      5030716.209
                  366566.792
                                      5030706.813
40
```

		FOST-DEVELOFFICIAL FIODEI
40	366566.792	5030706.813
40	366576.585	5030690.905
40	366576.585	5030690.905
40	366582.947	5030674.588
40	366582.947	5030674.588
40	366531.021	5030654.341
40	366531.021	5030654.341
40	366522.11	5030675.305
40	366522.11	5030675.305
40	366515.191	5030686.248
41	366466.27	5030655.32
41	366515.191	5030686.248
41	366515.191	5030686.248
41	366522.11	5030675.305
41	366522.11	5030675.305
41	366531.021	5030654.341
41	366531.021	5030654.341
41	366502.985	5030642.015
41	366502.985	5030642.015
41	366481.219	5030621.173
41	366481.219	5030621.173
41	366471.07	5030647.4
41	366471.07	5030647.4
41	366466.27	5030655.32
42	366531.021	5030654.341
42	366582.947	5030674.588
42	366582.947	5030674.588
42	366596.751	5030639.188
42	366596.751	5030639.188
42	366617.63	5030596.572
42	366617.63	5030596.572
42	366619.259	5030561.197
42	366619.259	5030561.197
42	366589.47	5030530.98
42	366589.47	5030530.98
42	366573.07	5030551.98
42	366573.07	5030551.98
42	366563.37	5030585.01

```
42
                 366563.37
                                     5030585.01
42
                 366539.111
                                     5030632.511
42
                 366539.111
                                     5030632.511
                 366531.021
                                     5030654.341
43
                 366629.51
                                     5030483.795
43
                 366627.384
                                     5030512.453
43
                 366627.384
                                     5030512.453
43
                 366626.497
                                     5030514.457
43
                 366626.497
                                     5030514.457
43
                 366617.51
                                     5030534.77
43
                                     5030534.77
                 366617.51
43
                                     5030530.98
                 366589.47
43
                 366589.47
                                     5030530.98
43
                 366619.259
                                     5030561.197
43
                 366619.259
                                     5030561.197
43
                 366617.63
                                     5030596.572
43
                 366617.63
                                     5030596.572
43
                 366620.419
                                     5030596.721
43
                 366620.419
                                     5030596.721
43
                 366639.85
                                     5030595.64
43
                 366639.85
                                     5030595.64
43
                 366652.84
                                     5030596.3
43
                 366652.84
                                     5030596.3
43
                                     5030582.215
                 366656.016
43
                 366656.016
                                     5030582.215
43
                 366667.312
                                     5030555.751
                 366667.312
43
                                     5030555.751
43
                 366661.449
                                     5030546.897
43
                 366661.449
                                     5030546.897
                 366653.74
                                     5030529.165
43
                 366653.74
43
                                     5030529.165
43
                 366629.51
                                     5030483.795
44
                 366581.91
                                     5030377.77
44
                 366548.485
                                     5030449.745
44
                 366548.485
                                     5030449.745
44
                 366574.4
                                     5030463.87
44
                 366574.4
                                     5030463.87
44
                 366583.83
                                     5030495.579
```

		FOST-DEVELOFFICIAL FIODEL
44	366583.83	5030495.579
44	366626.497	5030514.457
44	366626.497	5030514.457
44	366627.384	5030512.453
44	366627.384	5030512.453
44	366629.51	5030483.795
44	366629.51	5030483.795
44	366653.97	5030470.53
44	366653.97	5030470.53
44	366663.764	5030454.432
44	366663.764	5030454.432
44	366615.153	5030433.885
44	366615.153	5030433.885
44	366632.08	5030396.264
44	366632.08	5030396.264
44	366581.91	5030377.77
45	366301.091	5030575.904
45	366350.63	5030599.04
45	366350.63	5030599.04
45	366357.918	5030587.259
45	366357.918	5030587.259
45	366357.58	5030568.31
45	366357.58	5030568.31
45	366360.287	5030562.069
45	366360.287	5030562.069
45	366361.77	5030544.67
45	366361.77	5030544.67
45	366333.939	5030522.615
45	366333.939	5030522.615
45	366268.163	5030488.683
45	366268.163	5030488.683
45	366259.789	5030504.914
45	366259.789	5030504.914
45	366260.266	5030513.543
45	366260.266	5030513.543
45	366244.367	5030541.042
45	366244.367	5030541.042
45	366267.964	5030555.544

```
366267.964
                                     5030555.544
45
45
                 366291.967
                                     5030570.296
45
                 366291.967
                                     5030570.296
45
                 366301.091
                                     5030575.904
46
                 366357.918
                                     5030587.259
46
                 366440.91
                                     5030639.287
46
                 366440.91
                                     5030639.287
46
                 366466.27
                                     5030655.32
                                     5030655.32
46
                 366466.27
46
                 366471.07
                                     5030647.4
                 366471.07
366481.219
                                     5030647.4
46
                                     5030621.173
46
46
                 366481.219
                                     5030621.173
46
                 366472.49
                                     5030616.02
46
                 366472.49
                                     5030616.02
46
                 366447.398
                                     5030604.888
46
                 366447.398
                                     5030604.888
46
                 366431.26
                                     5030587.84
46
                 366431.26
                                     5030587.84
46
                 366413.62
                                     5030580.29
46
                 366413.62
                                     5030580.29
46
                 366387.985
                                     5030574.085
46
                 366387.985
                                     5030574.085
46
                 366360.287
                                     5030562.069
46
                 366360.287
                                     5030562.069
46
                 366357.58
                                     5030568.31
46
                 366357.58
                                     5030568.31
46
                 366357.918
                                     5030587.259
47
                 366150.516
                                     5030439.185
                                     5030436.46
                 366144.31
47
47
                 366144.31
                                     5030436.46
47
                 366125.161
                                     5030426.264
47
                 366125.161
                                     5030426.264
47
                 366108.166
                                     5030455.608
47
                 366108.166
                                     5030455.608
47
                 366140.746
                                     5030476.592
47
                 366140.746
                                     5030476.592
47
                 366166.263
                                     5030493.026
```

		POST-DEVELOPMENT MODE
47	366166.263	5030493.026
47	366166.791	5030493.366
47	366166.791	5030493.366
47	366213.887	5030522.31
47	366213.887	5030522.31
47	366225.944	5030529.72
47	366225.944	5030529.72
47	366244.367	5030541.042
47	366244.367	5030541.042
47	366260.266	5030513.543
47	366260.266	5030513.543
47	366259.789	5030504.914
47	366259.789	5030504.914
47	366268.163	5030488.683
47	366268.163	5030488.683
47	366212.111	5030459.768
47	366212.111	5030459.768
47	366212.097	5030459.803
47	366212.097	5030459.803
47	366212.111	5030459.768
47	366212.111	5030459.768
47	366182.194	5030444.334
47	366182.194	5030444.334
47	366150.516	5030439.185
48	366285.83	5030399.63
48	366247.248	5030383.591
48	366247.248	5030383.591
48	366234.603	5030403.004
48	366234.603	5030403.004
48	366212.111	5030459.768
48	366212.111	5030459.768
48	366268.163	5030488.683
48	366268.163	5030488.683
48	366333.939	5030522.615
48	366333.939	5030522.615
48	366361.77	5030544.67
48	366361.77	5030544.67
48	366370.863	5030536.669

		POST-DEVELOPMENT MODEL
48	366370.863	5030536.669
48	366378.272	5030523.863
48	366378.272	5030523.863
48	366385.68	5030511.057
48	366385.68	5030511.057
48	366395.54	5030498.39
48	366395.54	5030498.39
48	366401.53	5030479.211
48	366401.53	5030479.211
48	366389.087	5030472.996
48	366389.087	5030472.996
48	366351.34	5030449.657
48	366351.34	5030449.657
48	366307.543	5030424.064
48	366307.543	5030424.064
48	366285.83	5030399.63
49	366503.256	5030564.221
49	366473.55	5030550.784
49	366473.55	5030550.784
49	366452.237	5030556.15
49	366452.237	5030556.15
49	366392.307	5030530.098
49	366392.307	5030530.098
49	366378.272	5030523.863
49	366378.272	5030523.863
49	366370.863	5030536.669
49	366370.863	5030536.669
49	366361.77	5030544.67
49	366361.77	5030544.67
49	366360.287	5030562.069
49	366360.287	5030562.069
49	366387.985	5030574.085
49	366387.985	5030574.085
49	366413.62	5030580.29
49	366413.62	5030580.29
49	366431.26	5030587.84
49	366431.26	5030587.84
49	366447.398	5030604.888

POST-DEVELOPMENT MODEL 5030604.888 5030616.02 5030621.173 5030621.173

5030564.221

366548.303 5030449.668 366467.569 5030415.215 366467.569 5030415.215 366454.19 5030445.56 366454.19 5030445.56 366432.29 5030449.492 5030449.492 366432.29 366418.8 5030478.49 366418.8 5030478.49 366475.109 5030502.782 366475.109 5030502.782 366523.663 5030511.484 366523.663 5030511.484 366531.64 5030490.871 366531.64 5030490.871

 50
 366531.64
 5030490.871

 50
 366548.303
 5030449.668

 51
 366247.248
 5030383.591

 51
 366246.32
 5030366.3

 51
 366246.32
 5030366.3

366447.398

366472.49

366472.49

366481.219

366481.219

366503.256

49

49

49

49

49 49

50

50

50

50 50 50

 51
 366223.36
 5030355.55

 51
 366223.36
 5030355.55

 51
 366200.48
 5030354.42

 51
 366200.48
 5030354.42

 51
 366182.086
 5030395.395

51 366182.086 5030395.395 51 366174.41 5030392.2 51 51 366174.41 5030392.2 366166.84 5030409.15 51 366166.84 5030409.15 51 366150.516 5030439.185

51 366150.516 5030439.185 51 366182.194 5030444.334

POST-DEVELOPMENT MODEL

51	366182.194	5030444.334
51	366212.111	5030459.768
51	366212.111	5030459.768
51	366234.603	5030403.004
51	366234.603	5030403.004
51	366247.248	5030383.591
52	366467.569	5030415.215
52	366397.9	5030385.485
52	366380.24	5030393.48
52	366339.15	5030374.4
52	366304.45	5030352.87
52	366296.88	5030370.78
52	366285.83	5030399.63
52	366307.543	5030424.064
52	366351.34	5030449.657
52	366389.087	5030472.996
52	366401.53	5030479.211
52	366408.26	5030482.17
52	366409.03	5030482.37
52	366418.8	5030478.49
52	366432.29	5030449.492
52	366454.19	5030445.56

;;Storage Node X-Coord Y-Coord

5030415.215

366467.569

[SYMBOLS]

;;Gage X-Coord Y-Coord

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

Element Count ********					
Number of rain gages Number of subcatchme Number of nodes Number of links Number of pollutants Number of land uses	nts 18 43 42 0				

Raingage Summary *******					
Name	Data Source			Data Type	Recording Interval
RG1	03H120C			INTENSITY	10 min.

Subcatchment Summary **********					
Name	Area	Width	%Tmnerv	%Slone	Rain Gage

Name Outlet	Area	Width	%Imperv	%Slope Rain Gage
33	0.77	173.12	71.43	3.0000 RG1
SPR-B00				
34	0.78	176.62	71.43	3.0000 RG1
ELM-BOO				
37	0.70	157.28	71.43	3.0000 RG1
B00-LP1				
38	0.79	177.32	71.43	3.0000 RG1
ELM-ROC				
39	1.21	271.83	71.43	3.0000 RG1
PRI-LOR				
40	0.23	51.24	71.43	3.0000 RG1
ALB-PRI				
41	0.20	44.25	71.43	3.0000 RG1
ALB-LOR				
42	0.68	152.53	71.43	3.0000 RG1
PRI				
43	0.38	85.28	71.43	3.0000 RG1

PRI-EMP				
44	0.78	175.80	71.43	3.0000 RG1
LOR				
45	0.68	154.07	71.43	3.0000 RG1
ALB-ROC				
46	0.44	98.25	71.43	3.0000 RG1
ALB-BOO				
47	0.77	172.57	71.43	3.0000 RG1
ALB-PRE				
48	1.41	316.73	71.43	3.0000 RG1
ROC-LP1				
49	0.63	141.03	71.43	3.0000 RG1
B00-LP2	0 = 4		=4 40	2 2222 224
50	0.74	165.46	71.43	3.0000 RG1
PRI-BOO	0.54	105 10	=4 40	2 2222 224
51	0.56	125.13	71.43	3.0000 RG1
PRE		255 27	74 42	2 2222 254
52	1.14	255.87	71.43	3.0000 RG1
ELM-PRI				

Node Summary

Name		Invert Elev.	Depth		
ALB-OF	OUTFALL	0.00			
OF1	OUTFALL	0.00	0.00	0.0	
OF2	OUTFALL	0.00	0.00	0.0	
OF3	OUTFALL	0.00	0.00	0.0	
OF4	OUTFALL	0.00	0.00	0.0	
0F5	OUTFALL	0.00	0.00	0.0	
0F6	OUTFALL	0.00	0.00	0.0	
0F7	OUTFALL	0.00	0.00	0.0	
SU1	OUTFALL	0.00	0.00	0.0	
SU10	OUTFALL	0.00	0.00	0.0	
SU11	OUTFALL	0.00	0.00	0.0	
SU12	OUTFALL	0.00	0.00	0.0	
SU13	OUTFALL	0.00	0.00	0.0	
SU14	OUTFALL	0.00	0.00	0.0	
SU15	OUTFALL	0.00	0.00	0.0	
SU16	OUTFALL	0.00	0.00	0.0	
SU17	OUTFALL	0.00	0.00	0.0	
SU2	OUTFALL	0.00	0.00	0.0	
SU3	OUTFALL	0.00	0.00	0.0	
SU4	OUTFALL	0.00	0.00	0.0	
SU5	OUTFALL	0.00	0.00	0.0	
SU6	OUTFALL	0.00	0.00	0.0	
SU7	OUTFALL	0.00	0.00	0.0	

SU8		OUTFALL	0.00	0.00	0.0	
SU9		OUTFALL	0.00	0.00	0.0	
ALB-BO)	STORAGE	61.78	0.40	0.0	
ALB-LOF	₹	STORAGE	62.33	0.40	0.0	
ALB-PRE	Ē	STORAGE	58.95	0.40	0.0	
ALB-PR	[STORAGE	62.47	0.40	0.0	
ALB-RO	-	STORAGE	60.67	0.40	0.0	
B00-LP1	L	STORAGE	62.23	0.40	0.0	
B00-LP2	<u> </u>	STORAGE	62.25	0.40	0.0	
ELM-BO)	STORAGE	64.98	0.40	0.0	
ELM-PR	[STORAGE	62.36	0.40	0.0	
ELM-RO	_	STORAGE	63.04	0.40	0.0	
LOR		STORAGE	76.87	0.40	0.0	
PRE		STORAGE	61.31	0.40	0.0	
PRI		STORAGE	62.87	0.40	0.0	
PRI-BOO)	STORAGE	62.37	0.40	0.0	
PRI-EMF)	STORAGE	80.19	0.40	0.0	
PRI-LOF		STORAGE	72.00	0.40	0.0	
ROC-LP1		STORAGE	61.36	0.40	0.0	
SPR-BOO		STORAGE	71.56	0.40	0.0	
***** Link Su						
*****	-					
Name %Slope Ro	oughness	From Node	To Node	Туре	Length	
C1		SPR-BOO	ELM-BOO	CONDUIT	81.6	
8.0864	0.0130					
C10		PRE	ALB-PRE	CONDUIT	120.7	
1.8900	0.0130					
C11		PRI-BOO	B00-LP1	CONDUIT	72.0	
0.1945	0.0130					
C12		B00-LP1	B00-LP2	CONDUIT	41.7	
-0.0480	0.0130					
C13		B00-LP2	ALB-BOO	CONDUIT	59.1	
0.6263	0.0130	200 2. 2			35.12	
C14	0.0130	ELM-PRI	ROC-LP1	CONDUIT	91.9	
1.0879	0.0130	LLII I IXI	NOC LI I	CONDOIT	J1.J	
C15	0.0130	ROC-LP1	ALB-ROC	CONDUIT	65.3	
0.9036	0.0130	ROC-LFI	ALD-NOC	CONDUIT	03.3	
	0.0130	ALD DOO	ALD DOC	CONDUITT	122.2	
C16	0.0130	ALB-BOO	ALB-ROC	CONDUIT	123.3	
0.9003	0.0130	ALD DOC	ALD DDE	CONDUTT	102 5	
C17	0.0430	ALB-ROC	ALB-PRE	CONDUIT	192.5	
0.8935	0.0130	ELM BOC	DDT DCC	COMPLITE	=0.4	
C2	0 0155	ELM-BOO	PRI-BOO	CONDUIT	79.1	
3.3033	0.0130					

С3		LOR	PRI-LOR	CONDUIT	68.1
7.1695	0.0130				
C4	0.0400	PRI-LOR	ALB-LOR	CONDUIT	185.8
5.1565	0.0130	DDT EMD	DDT 10D	COMPLIET	06.3
C5 8.5450	0.0130	PRI-EMP	PRI-LOR	CONDUIT	96.2
6.3430 C6	0.0130	PRI	ALB-PRI	CONDUIT	91.9
0.3265	0.0130	1 114	ALD THE	CONDOIT	21.2
C7	0.0130	ALB-PRI	ALB-LOR	CONDUIT	48.9
0.2860	0.0130				
C8		ALB-LOR	ALB-BOO	CONDUIT	77.4
0.7107	0.0130				
C9		ELM-ROC	ELM-PRI	CONDUIT	80.5
0.8449	0.0130				
W1		ALB-PRE	ALB-OF	WEIR	
OL1		ALB-PRE	SU17	OUTLET	
0L10		PRI-LOR	OF2	OUTLET	
0L11		PRI-EMP	SU15	OUTLET	
0L12		PRI	SU14	OUTLET	
0L13		ALB-PRI	SU13	OUTLET	
0L14		ALB-LOR	SU12	OUTLET	
0L15		ALB-BOO	SU10	OUTLET	
0L16		B00-LP2	SU9	OUTLET	
0L17		B00-LP1	SU8	OUTLET	
0L18		PRI-BOO	OF3	OUTLET	
0L19		PRI-LOR	OF1	OUTLET	
OL2		PRE	SU1	OUTLET	
0L20		PRI-BOO	SU7	OUTLET	
0L21		ELM-BOO	SU5	OUTLET	
0L22		ELM-PRI	SU3	OUTLET	
0L23		PRE	OF7	OUTLET	
0L24		ROC-LP1	SU2	OUTLET	
OL3		ALB-ROC	SU11	OUTLET	
OL4		ROC-LP1	OF6	OUTLET	
OL5		ELM-PRI	OF5	OUTLET	
OL6		ELM-ROC	SU4	OUTLET	
OL7		ELM-BOO	OF4	OUTLET	
OL8		SPR-BOO	SU6	OUTLET	
OL9		LOR	SU16	OUTLET	

Full Full Hyd. Max. No. of Full Conduit Shape Depth Area Rad. Width Barrels Flow

C1	18m	0.35	3.56	0.19	18.00	1
25310.06						
C10	20m_Preston	0.20	2.00	0.10	20.00	1
4499.28						
C11	18m	0.35	3.56	0.19	18.00	1
3925.81	10	0.25	2.56	0.10	10.00	4
C12 1949.04	18m	0.35	3.56	0.19	18.00	1
C13	18m	0.35	3.56	0.19	18.00	1
7044.06	10111	0.55	5.50	0.15	10.00	
C14	18m	0.35	3.56	0.19	18.00	1
9283.36		0,00	2120	0.12		_
C15	18m	0.35	3.56	0.19	18.00	1
8460.47						
C16	15.5m_Albert_OS	0.23	1.46	0.10	15.00	1
2240.10						
C17	15.5m_Albert_OS	0.23	1.46	0.10	15.00	1
2231.59						
C2	18 m	0.35	3.56	0.19	18.00	1
16176.70	10	0.35	2.56	0.10	10.00	4
C3	18m	0.35	3.56	0.19	18.00	1
23832.00 C4	18m	0.35	3.56	0.19	18.00	1
20211.25	10111	0.33	3.30	0.19	10.00	1
C5	18m	0.35	3.56	0.19	18.00	1
26017.86	20	0.33	3.30	0.25	20.00	_
C6	18m	0.35	3.56	0.19	18.00	1
5085.65						
C7	15.5m_Albert_OS	0.23	1.46	0.10	15.00	1
1262.66						
C8	15.5m_Albert_OS	0.23	1.46	0.10	15.00	1
1990.28						_
C9	18m	0.35	3.56	0.19	18.00	1
8181.22						

Transect 15.5m_Albert_OS Area:

0.0004	0.0014	0.0033	0.0058	0.0090
0.0130	0.0177	0.0231	0.0293	0.0362
0.0438	0.0521	0.0611	0.0709	0.0814
0.0926	0.1045	0.1172	0.1306	0.1447
0.1595	0.1751	0.1913	0.2083	0.2261
0.2445	0.2637	0.2836	0.3042	0.3255
0.3476	0.3704	0.3939	0.4187	0.4449

	0 4724	0 5012	0 5215	0 5621	0.5960
	0.4724 0.6303	0.5013 0.6660	0.5315 0.7030	0.5631 0.7413	0.7811
	0.8221	0.8646		0.7413	
Hrad:	0.0221	0.0040	0.9084	0.9555	1.0000
пгац.	0.0234	0.0467	0.0701	0.0934	0.1168
	0.1402	0.1635	0.1869	0.2102	0.2336
	0.2569	0.2803	0.3037	0.3270	0.2530
	0.3737	0.3971	0.4205	0.4438	0.4672
	0.4905	0.5139	0.5373	0.5606	0.4672
	0.6073	0.6307	0.6540	0.6774	0.7008
	0.7241	0.7475	0.7633	0.7690	0.7764
	0.7241	0.7473	0.8073	0.8198	0.8332
	0.8474	0.8623	0.8779	0.8940	0.9107
l.låd+b.	0.9278	0.9453	0.9632	0.9814	1.0000
Width:	0.0152	0 0207	0.0460	0.0612	0 0767
	0.0153 0.0920	0.0307	0.0460	0.0613	0.0767
	0.1687	0.1073	0.1227 0.1993	0.1380 0.2147	0.1533 0.2300
		0.1840			
	0.2453	0.2607	0.2760	0.2913	0.3067
	0.3220	0.3373	0.3527	0.3680	0.3833
	0.3987	0.4140	0.4293	0.4447	0.4600
	0.4753	0.4907	0.5113	0.5400	0.5688
	0.5975	0.6263	0.6550	0.6838	0.7125
	0.7413	0.7700	0.7988	0.8275	0.8563
	0.8850	0.9138	0.9425	0.9713	1.0000
Transact 18	m				
Transect 18	m				
Transect 18 Area:		a aa2a	0 0045	a aasi	0 0126
	0.0005	0.0020 0.0247	0.0045 0.0322	0.0081 0.0408	0.0126 0.0503
	0.0005 0.0181	0.0247	0.0322	0.0408	0.0503
	0.0005 0.0181 0.0609	0.0247 0.0725	0.0322 0.0851	0.0408 0.0986	0.0503 0.1132
	0.0005 0.0181 0.0609 0.1288	0.0247 0.0725 0.1454	0.0322 0.0851 0.1631	0.0408 0.0986 0.1816	0.0503 0.1132 0.2003
	0.0005 0.0181 0.0609 0.1288 0.2190	0.0247 0.0725 0.1454 0.2378	0.0322 0.0851 0.1631 0.2571	0.0408 0.0986 0.1816 0.2770	0.0503 0.1132 0.2003 0.2975
	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186	0.0247 0.0725 0.1454 0.2378 0.3402	0.0322 0.0851 0.1631 0.2571 0.3625	0.0408 0.0986 0.1816 0.2770 0.3853	0.0503 0.1132 0.2003 0.2975 0.4087
	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346
	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751
	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751
	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926 0.4270	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109 0.4628	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292 0.4975	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551 0.5304	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911 0.5618
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926 0.4270 0.5917	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109 0.4628 0.6201	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292 0.4975 0.6471	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551 0.5304 0.6727	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911 0.5618 0.6971
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926 0.4270 0.5917 0.7203	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109 0.4628 0.6201 0.7424	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292 0.4975 0.6471 0.7633	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551 0.5304 0.6727 0.7833	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911 0.5618 0.6971 0.8023
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926 0.4270 0.5917 0.7203 0.8203	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109 0.4628 0.6201 0.7424 0.8375	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292 0.4975 0.6471 0.7633 0.8539	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551 0.5304 0.6727 0.7833 0.8695	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911 0.5618 0.6971 0.8023 0.8844
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926 0.4270 0.5917 0.7203 0.8203 0.8986	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109 0.4628 0.6201 0.7424 0.8375 0.9121	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292 0.4975 0.6471 0.7633 0.8539 0.9249	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551 0.5304 0.6727 0.7833 0.8695 0.9372	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911 0.5618 0.6971 0.8023 0.8844 0.9489
Area:	0.0005 0.0181 0.0609 0.1288 0.2190 0.3186 0.4327 0.5615 0.7049 0.8630 0.0183 0.1097 0.2012 0.2926 0.4270 0.5917 0.7203 0.8203	0.0247 0.0725 0.1454 0.2378 0.3402 0.4573 0.5890 0.7354 0.8964 0.0366 0.1280 0.2194 0.3109 0.4628 0.6201 0.7424 0.8375	0.0322 0.0851 0.1631 0.2571 0.3625 0.4825 0.6171 0.7664 0.9303 0.0549 0.1463 0.2377 0.3292 0.4975 0.6471 0.7633 0.8539	0.0408 0.0986 0.1816 0.2770 0.3853 0.5082 0.6458 0.7980 0.9649 0.0731 0.1646 0.2560 0.3551 0.5304 0.6727 0.7833 0.8695	0.0503 0.1132 0.2003 0.2975 0.4087 0.5346 0.6751 0.8302 1.0000 0.0914 0.1829 0.2743 0.3911 0.5618 0.6971 0.8023 0.8844

	0.0284	0.0568	0.0853	0.1137	0.1421
	0.1705	0.1989	0.2274	0.2558	0.2842
	0.3126	0.3410	0.3694	0.3979	0.4263
	0.4547	0.4831	0.5115	0.5278	0.5278
	0.5278	0.5372	0.5537	0.5703	0.5868
	0.6033	0.6199	0.6364	0.6529	0.6694
	0.6860	0.7025	0.7190	0.7356	0.7521
	0.7686	0.7851	0.8017	0.8182	0.8347
	0.8512	0.8678	0.8843	0.9008	0.9174
	0.9339	0.9504	0.9669	0.9835	1.0000
Transect	20m_Preston				
Area:					
	0.0004	0.0016	0.0036	0.0064	0.0100
	0.0144	0.0196	0.0256	0.0324	0.0400
	0.0484	0.0576	0.0676	0.0784	0.0900
	0.1024	0.1156	0.1296	0.1444	0.1600
	0.1764	0.1936	0.2116	0.2304	0.2500
	0.2704	0.2916	0.3136	0.3364	0.3600
	0.3844	0.4096	0.4356	0.4624	0.4900
	0.5184	0.5476	0.5776	0.6084	0.6400
	0.6724	0.7056	0.7396	0.7744	0.8100
	0.8464	0.8836	0.9216	0.9604	1.0000
Hrad:					
	0.0199	0.0398	0.0597	0.0796	0.0995
	0.1194	0.1393	0.1592	0.1791	0.1990
	0.2189	0.2388	0.2587	0.2786	0.2985
	0.3184	0.3383	0.3582	0.3781	0.3980
	0.4179	0.4378	0.4577	0.4776	0.4975
	0.5175	0.5374	0.5573	0.5772	0.5971
	0.6170	0.6369	0.6568	0.6767	0.6966
	0.7165	0.7364	0.7565	0.7768	0.7971
	0.8173	0.8376	0.8579	0.8782	0.8985
. باخاند .	0.9188	0.9391	0.9594	0.9797	1.0000
Width:	0 0200	0.0400	0.000	0 0000	0 1000
	0.0200	0.0400	0.0600	0.0800	0.1000
	0.1200	0.1400	0.1600	0.1800	0.2000
	0.2200	0.2400	0.2600	0.2800	0.3000
	0.3200	0.3400	0.3600	0.3800	0.4000
	0.4200	0.4400	0.4600	0.4800	0.5000
	0.5200	0.5400	0.5600	0.5800	0.6000
	0.6200	0.6400	0.6600	0.6800	0.7000
	0.7200	0.7400	0.7600	0.7800	0.8000
	0.8200 0.9200	0.8400 0.9400	0.8600 0.9600	0.8800 0.9800	0.9000 1.0000
	0.3200	0.3400	0.9000	0.9000	1.0000

Analysis Options ********

Flow Units	LPS	
Process Models: Rainfall/Runoff	YES	
RDII	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	YES	
Water Quality	NO	
Infiltration Method	HORTON DYNWAVE	
Flow Routing Method Surcharge Method	EXTRAN	
Starting Date		30
Ending Date		
Antecedent Dry Days	0.0	,,
Report Time Step		
Wet Time Step		
Dry Time Step		
Routing Time Step		
Variable Time Step	NO	
Maximum Trials	=	
Number of Threads		
Head Tolerance	0.001500 m	
********	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm
*********	1 106	
Total Precipitation	1.106	86.000
Evaporation Loss Infiltration Loss	0.000 0.173	0.000 13.470
Surface Runoff	0.920	71.504
Final Storage	0.014	1.126
Continuity Error (%)	-0.116	1,110
(1)		
********	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.920	9.198
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.916	9.162
Flooding Loss	0.000	0.000
Evaporation Loss Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000 0.000	0.000 0.000
Final Stored Volume	0.000	0.000
I THAT DIOLEA ANTAIME	0.000	0.000

Continuity Error (%) 0.399 ********* Highest Continuity Errors Node ALB-PRE (3.51%) Node ALB-ROC (-1.21%) ********** Highest Flow Instability Indexes ********** All links are stable. *********** Most Frequent Nonconverging Nodes ********** Convergence obtained at all time steps. *************** Routing Time Step Summary ******** Minimum Time Step 1.00 sec Average Time Step 1.00 sec Maximum Time Step 1.00 sec % of Time in Steady State 0.00 Average Iterations per Step : 2.00 0.00 % of Steps Not Converging ********* Subcatchment Runoff Summary ********* Total Total Total Total **Imperv** Perv Total Total Peak Runoff Runon Infil Runoff Precip Evap Runoff Runoff Runoff Runoff Coeff Subcatchment mm mm mmmm mm 10^6 ltr **LPS** mm mm

0.00

0.00

13.47

60.38

86.00

11.12	71.50	0.55 429.09	0.831			
34	74 50	86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.56 437.76	0.831	0.00	42.47	60.00
37	74 50	86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.50 389.83	0.831		40.4	
38	-4 -0	86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.56 439.49	0.831			
39		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.86 673.74	0.831			
40		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.16 127.01	0.831			
41		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.14 109.66	0.831			
42		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.48 378.05	0.831			
43		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.27 211.37	0.831			
44		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.56 435.74	0.831			
45		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.49 381.88	0.831			
46		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.31 243.51	0.831			
47		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.55 427.72	0.831			
48		86.00	0.00	0.00	13.47	60.38
11.12	71.50	1.01 785.03	0.831			
49		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.45 349.54	0.831			
50		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.53 410.09	0.831			
51		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.40 310.13	0.831			
52		86.00	0.00	0.00	13.47	60.38
11.12	71.50	0.81 634.18	0.831			

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	0ccu	of Max rrence hr:min	Reported Max Depth Meters
ALB-OF	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF3	OUTFALL	0.00	0.00	0.00	0	00:00	0.00

OF4	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF5	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF6	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF7	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU10	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU11	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU12	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU13	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU14	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU15	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU16	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU17	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU3	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU4	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU5	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU6	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU7	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU8	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU9	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
ALB-BOO	STORAGE	0.02	0.18	61.96	0	01:10	0.18
ALB-LOR	STORAGE	0.02	0.17	62.50	0	01:10	0.17
ALB-PRE	STORAGE	0.03	0.38	59.33	0	01:13	0.38
ALB-PRI	STORAGE	0.01	0.10	62.57	0	01:10	0.10
ALB-ROC	STORAGE	0.02	0.21	60.88	0	01:10	0.21
B00-LP1	STORAGE	0.02	0.16	62.39	0	01:10	0.16
B00-LP2	STORAGE	0.02	0.11	62.36	0	01:10	0.11
ELM-BOO	STORAGE	0.01	0.08	65.06	0	01:10	0.08
ELM-PRI	STORAGE	0.01	0.10	62.46	0	01:10	0.10
ELM-ROC	STORAGE	0.01	0.09	63.13	0	01:10	0.09
LOR	STORAGE	0.01	0.07	76.94	0	01:10	0.07
PRE	STORAGE	0.01	0.05	61.36	0	01:10	0.05
PRI	STORAGE	0.01	0.09	62.96	0	01:10	0.09
PRI-BOO	STORAGE	0.01	0.12	62.49	0	01:10	0.12
PRI-EMP	STORAGE	0.01	0.05	80.24	0	01:10	0.05
PRI-LOR	STORAGE	0.01	0.09	72.09	0	01:10	0.09
ROC-LP1	STORAGE	0.02	0.12	61.48	0	01:10	0.12
SPR-BOO	STORAGE	0.01	0.06	71.62	0	01:10	0.06

Inflow	Balance		Lateral	Total	Time	of Max	Inflow	
			Inflow	Inflow	0ccu	rrence	Volume	
Volume Node	Error	Typo	I DC	LPS	dayıcıl	hr:min	10^6 ltr	10^6
ltr	Percent	Type	LP3	LF3	uays	1111 · 1111	10 0 101	10 0
20.	. c. ccc							
ALB-0	 E	OUTFALL	0.00	983.37	a	01:13	0	
0.542	0.000	OUTFALL	0.00	303.37	Ø	01.13	Ø	
0.542 0F1	0.000	OUTFALL	0.00	189.10	а	01:10	0	
0.343	0.000	OOTTALL	0.00	100.10	Ū	01.10	· ·	
0F2	0.000	OUTFALL	0.00	315.17	0	01:10	0	
0.571	0.000						_	
OF3		OUTFALL	0.00	116.23	0	01:10	0	
0.158	0.000							
OF4		OUTFALL	0.00	76.34	0	01:10	0	
0.121	0.000							
OF5		OUTFALL	0.00	136.64	0	01:10	0	
0.212	0.000							
0F6		OUTFALL	0.00	390.00	0	01:08	0	
0.692	0.000							
OF7		OUTFALL	0.00	157.38	0	01:10	0	
0.241	0.000							
SU1		OUTFALL	0.00	15.74	0	01:10	0	
0.0241	0.000				_			
SU10		OUTFALL	0.00	156.00	0	01:03	0	
0.378	0.000	OUTEALL	0.00	200 00	•	04 04		
SU11	0.000	OUTFALL	0.00	390.00	0	01:04	0	
0.793	0.000	OUTEALL	0.00	156 00	0	01.03	0	
SU12	0.000	OUTFALL	0.00	156.00	0	01:03	0	
0.343 SU13	0.000	OUTFALL	0.00	132.04	0	01:10	0	
0.182	0.000	OUTFALL	0.00	132.04	v	01.10	Ø	
SU14	0.000	OUTFALL	0.00	230.16	а	01:10	0	
0.373	0.000	OOTTALL	0.00	250.10	O	01.10	O	
SU15	0.000	OUTFALL	0.00	15.37	0	01:10	0	
0.0284	0.000	OOTTALL	0.00	13.37	Ū	01.10	· ·	
SU16		OUTFALL	0.00	43.45	0	01:10	0	
0.0932	0.000						-	
SU17		OUTFALL	0.00	390.00	0	01:03	0	
1.06	0.000							
SU2		OUTFALL	0.00	176.99	0	01:10	0	
0.171	0.000							
SU3		OUTFALL	0.00	341.61	0	01:10	0	
0.529	0.000							
SU4		OUTFALL	0.00	178.45	0	01:10	0	
0.326	0.000							
SU5		OUTFALL	0.00	254.46	0	01:10	0	

0.405	0.000						
SU6	0.000	OUTFALL	0.00	159.88	0	01:10	0
0.271	0.000	OOTTALL	0.00	133.00	J	01.10	O .
SU7	0.000	OUTFALL	0.00	387.42	0	01:10	0
0.526	0.000						_
SU8		OUTFALL	0.00	395.00	0	01:10	0
0.542	0.000						
SU9		OUTFALL	0.00	205.36	0	01:10	0
0.238	0.000						
ALB-BOO		STORAGE	243.51	1383.15	0	01:10	0.312
1.19	-0.147						
ALB-LOR		STORAGE	109.66	973.51	0	01:10	0.141
0.892	-0.069						
ALB-PRE		STORAGE	427.72	2117.22	0	01:10	0.548
1.66	3.643						
ALB-PRI		STORAGE	127.01	267.16	0	01:10	0.163
0.275	-0.187						
ALB-ROC		STORAGE	381.88	2146.20	0	01:10	0.49
1.75	-1.198						
B00-LP1		STORAGE	389.83	641.79	0	01:10	0.5
0.664	0.105				_		
B00-LP2		STORAGE	349.54	567.92	0	01:10	0.448
0.57	-0.026	5700.65	40			04 40	
ELM-B00		STORAGE	437.76	705.78	0	01:10	0.561
0.841	-0.047	CTODACE	624 10	002 55	0	01.10	0.013
ELM-PRI		STORAGE	634.18	892.55	0	01:10	0.813
1.05 ELM-ROC	-0.005	STORAGE	439.49	439.49	0	01:10	0.564
0.564	-0.053	STURAGE	459.49	439.49	О	01.10	0.364
LOR	-0.055	STORAGE	435.74	435.74	0	01:10	0.559
0.559	-0.076	STURAGE	455.74	433.74	Ø	61.16	0.339
PRE	-0.070	STORAGE	310.13	310.13	0	01:10	0.398
0.398	-0.511	STORAGE	510.15	510.15	0	01.10	0.556
PRI	-0.511	STORAGE	378.05	378.05	0	01:10	0.485
0.485	-0.038	STORAGE	370.03	370.03	J	01.10	0.405
PRI-BOO		STORAGE	410.09	780.30	a	01:10	0.526
0.841	-0.016	31010102	.20.05	, 00.30	Ū	02.20	0.520
PRI-EMP		STORAGE	211.37	211.37	0	01:10	0.271
0.271	-0.128						
PRI-LOR		STORAGE	673.74	1259.92	0	01:10	0.864
1.57	0.040						
ROC-LP1		STORAGE	785.03	1190.39	0	01:10	1.01
1.32	0.407						
SPR-B00		STORAGE	429.09	429.09	0	01:10	0.55
0.55	-0.029						

Node Surcharge Summary ***********

No nodes were surcharged.

No nodes were flooded.

	Average	Avg	Evap	Exfil	Maximum	Max	Time of
Max Maximum	\/olumo	Dont	Dont	Dont	Volume	Dont	
Occurrence Outflow	Volume	Pcnt	Pcnt	Pcnt	volume	Pcnt	
Storage Unit	1000 m³	Full	Loss	Loss	1000 m³	Full	days
hr:min LPS	1000 111	1 411	2033	2033	1000 111	IUII	aays
ALB-BOO	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 1336.68							
ALB-LOR	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 956.33							
ALB-PRE	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 1373.37							
ALB-PRI	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 264.71							
ALB-ROC	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 2002.33	0.000	0.0	0 0	0.0	0.000	0 0	0
B00-LP1	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 615.49 BOO-LP2	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 551.81	0.000	0.0	0.0	0.0	0.000	0.0	V
ELM-B00	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 701.17	0.000	0.0	0.0	0.0	0.000	0.0	Ü
ELM-PRI	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 883.83							-
ELM-ROC	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 436.88							
LOR	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 434.66							
PRE	0.000	0.0	0.0	0.0	0.000	0.0	0

00:00	306.18							
PRI		0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	370.55							
PRI-BO	כ	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	756.65							
PRI-EM	•	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	210.39							
PRI-LO	₹	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	1236.88							
ROC-LP:	1	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	1168.57							
SPR-BO	כ	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00	427.93							

Outfall Node	Freq	Flow	Flow	Total Volume 10^6 ltr
ALB-OF	5.69	440.90	983.37	0.542
OF1	64.43	24.62	189.10	0.343
OF2	68.90	38.37	315.17	0.571
OF3	57.48	12.71	116.23	0.158
OF4	57.85	9.71	76.34	0.121
OF5	61.48	15.93	136.64	0.212
OF6	71.42	44.86	390.00	0.692
OF7	64.95	17.15	157.38	0.241
SU1	52.32	2.13	15.74	0.024
SU10	63.86	27.43	156.00	0.378
SU11	67.53	54.34	390.00	0.793
SU12	58.35	27.21	156.00	0.343
SU13	59.06	14.30	132.04	0.182
SU14	67.63	25.54	230.16	0.373
SU15	64.55	2.03	15.37	0.028
SU16	69.19	6.23	43.45	0.093
SU17	68.49	71.50	390.00	1.058
SU2	63.09	12.54	176.99	0.171
SU3	69.12	35.43	341.61	0.529
SU4	68.83	21.95	178.45	0.326
SU5	66.36	28.24	254.46	0.405
SU6	68.52	18.29	159.88	0.271
SU7	65.77	37.03	387.42	0.526
SU8	67.81	37.03	395.00	0.542
SU9		16.45		0.238

******* Link Flow Summary **********

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow			Veloc		Full
Link	Type	LPS		hr:min	m/sec		Depth
C1	CHANNEL	260.05		01.10	 1 F1	0.01	0.20
C1 C10	CHANNEL CHANNEL	268.05	0	01:10	1.51	0.01	0.20
C10 C11		133.06	0 0	01:10 01:10	0.82	0.03 0.06	0.63 0.40
C11 C12	CHANNEL CHANNEL	253.01 220.55	0	01:10	0.35 0.33	0.11	0.39
C12 C13	CHANNEL	346.64	0	01:10	0.84	0.11	0.39
C14	CHANNEL	405.58	0	01:10	0.89	0.04	0.32
C14 C15	CHANNEL	601.73	0	01:10	1.11	0.07	0.35
C16	CHANNEL	1180.68	0	01:10	1.11	0.53	0.85
C17	CHANNEL	1612.33	0	01:10	1.25	0.72	0.85
C2	CHANNEL	370.37	0	01:10	1.15	0.72	0.28
C3	CHANNEL	391.21	0	01:10	1.13	0.02	0.24
C4	CHANNEL	732.63	0	01:10	2.24	0.04	0.24
C5	CHANNEL	195.02	0	01:10	1.19	0.04	0.21
C6	CHANNEL	140.46	0	01:10	0.56	0.03	0.21
C7	CHANNEL	132.66	0	01:10	0.30	0.03	0.57
C8	CHANNEL	800.33	0	01:10	1.05	0.40	0.76
C9	CHANNEL	258.43	0	01:10	0.77		0.70
W1	WEIR	983.37	0	01:13	0.77	0.05	0.76
OL1	DUMMY	390.00	0	01:03			0.70
0L10	DUMMY	315.17	0	01:10			
0L10 0L11	DUMMY	15.37	0	01:10			
0L12	DUMMY	230.16	0	01:10			
0L12	DUMMY	132.04	0	01:10			
0L14	DUMMY	156.00	0	01:03			
0L15	DUMMY	156.00	0	01:03			
0L16	DUMMY	205.36	0	01:10			
0L17	DUMMY	395.00	0	01:10			
0L18	DUMMY	116.23	0	01:10			
0L19	DUMMY	189.10	0	01:10			
0L2	DUMMY	15.74	0				
0L20	DUMMY	387.42	0	01:10			
0L21	DUMMY	254.46	0	01:10			
0L22	DUMMY	341.61	0	01:10			
0L23	DUMMY	157.38	0	01:10			
0L24	DUMMY	176.99	0	01:10			
0L3	DUMMY	390.00	0	01:04			
0L4	DUMMY	390.00	0	01:08			
0L5	DUMMY	136.64	0	01:10			

0L6	DUMMY	178.45	0	01:10
0L7	DUMMY	76.34	0	01:10
0L8	DUMMY	159.88	0	01:10
0L9	DUMMY	43.45	0	01:10

	Adjusted			Fract	ion of	Time	in Elo	w Clas	c
	Adjusted			TTUCC	1011 01	1 11110	111 1 10	w cius	5
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm
Inlet	1	Davis	D	D	C 3. F	C: T	C	C +	144
Conduit Ctrl	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Lta
 C1	1.00	0.09	0.03	0.00	0.34	0 54	0.00	0.00	0.47
0.00	1.00	0.05	0.05	0.00	0.54	0.54	0.00	0.00	0.47
C10	1.00	0.12	0.00	0.00	0.09	0.00	0.00	0.79	0.09
0.00	1 00	0 00	0.09	0 00	0 02	0 00	0 00	0 00	0.04
C11 0.00	1.00	0.08	0.09	0.00	0.83	0.00	0.00	0.00	0.94
C12	1.00	0.07	0.02	0.00	0.91	0.00	0.00	0.00	0.68
0.00									
C13 0.00	1.00	0.09	0.00	0.00	0.00	0.00	0.00	0.91	0.00
C14	1.00	0.07	0.07	0.00	0.59	0.27	0.00	0.00	0.93
0.00									
C15	1.00	0.08	0.00	0.00	0.00	0.01	0.00	0.91	0.01
0.00 C16	1.00	0.08	0.02	0.00	0.36	0.54	0.00	0.00	0.04
0.00	1.00	0.00	0.02	0.00	0.30	0.51	0.00	0.00	0.01
C17	1.00	0.09	0.07	0.00	0.40	0.44	0.00	0.00	0.88
0.00 C2	1.00	0.12	0.04	0.00	Q 21	0.53	0.00	0.00	0.46
0.00	1.00	0.12	0.04	0.00	0.31	0.33	0.00	0.00	0.40
C3	1.00	0.06	0.00	0.00	0.33	0.60	0.00	0.00	0.78
0.00	1 00	0.43	0.00	0.00	0.00	0.00	0.00	0 07	0.00
C4 0.00	1.00	0.13	0.00	0.00	0.00	0.00	0.00	0.87	0.00
C5	1.00	0.06	0.00	0.00	0.33	0.61	0.00	0.00	0.48
0.00									
C6 0.00	1.00	0.09	0.00	0.00	0.00	0.00	0.00	0.91	0.00
0.00									

C7	1.6	0.12	0.05	0.00	0.83	0.00	0.00	0.00	0.92
0.00									
C8	1.6	0.08	0.10	0.00	0.78	0.04	0.00	0.00	0.87
0.00									
C 9	1.6	0.07	0.01	0.00	0.36	0.56	0.00	0.00	0.04
0.00									

Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
C10	0.01	0.01	0.23	0.01	0.01
C17	0.01	0.01	0.34	0.01	0.01

Analysis begun on: Fri Jul 19 10:00:24 2024 Analysis ended on: Fri Jul 19 10:00:25 2024

Total elapsed time: 00:00:01