

Geotechnical Investigation

Proposed Residential Development

Cedar Lake Subdivision - Part of Lot 8, Concession 3 Phase 3 & 4, Greely, Ontario

Prepared for 6980848 Canada Inc.

Report PG6871-1 Revision 1 dated December 5, 2023

Table of Contents

		PAGE
1.0	Introduction	
2.0	Proposed Development	
3.0 3.1	Method of Investigation	
3.1	5	
3.3	,	
3.3 3.4		
-	,	
4.0 4.1	Observations	
4.1		
4.3		
5.0	Discussion	
5.0	Geotechnical Assessment	
5.2		
5.3		
5.4	5	
5.5		
5.6		
6.0	Design and Construction Precautions	
6.1	-	
6.2	-	
6.3		
6.4	-	
6.5	Groundwater Control	12
6.6		
6.7	Corrosion Potential and Sulphate	13
6.8	-	
7.0	Recommendations	
8.0	Statement of Limitations	

Appendices

- Appendix 1Soil Profile and Test Data SheetsSymbols and TermsAnalytical Testing Results
- Appendix 2Figure 1 Key PlanDrawing PG6532-1 Test Hole Location PlanDrawing PG6532-2 Permissible Grade Raise PlanDrawing PG6532-3 Tree Planting Setbacks Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by 6980848 Canada Inc. to prepare a Geotechnical Investigation Report for the proposed residential development located to be located at Cedar Lakes Subdivision in Greely, Ontario (reference should be made to Figure 1 - Key Plan in Appendix 2 of this report for the general site location).

The objectives of the Geotechnical Investigation Report are to:

- Determine the subsoil and groundwater conditions at this site by means of existing test holes.
- Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

Based on the available drawings, it is understood that the proposed development will consist of a series of single-family residential dwellings with attached garages and associated driveways and landscaped areas. It is also understood that the residential dwellings will be serviced with a private well and septic system for each home.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The current field investigation was carried out on October 4, 2023, which consisted of a total of 7 test pits (TP 1-23 through TP 7-23) and were put down within Phase 3 and 4 of the subject site and were advanced to a maximum depth of 5.2 m below the existing ground surface, using an hydraulic excavator.

The initial field investigation was carried out on November 24, 2009, which consisted of a total of 12 test pits (TP 1 through TP 12) were put down within Phase 1 and 2 and were advanced to a maximum depth of 5.25 m below the existing grade, using a rubber-tired backhoe. The test pit locations were distributed in a manner to provide general coverage of the subject site, taking into consideration underground services and available access.

In August and September 2010, a total of 8 additional test pits (MW 1 through MW 8) were excavated on the subject property. The intent of these subsequent investigations was to accurately delineate the direction of groundwater flow within the overburden and to establish the in-situ surficial soil infiltration rates. An additional 4 hand auger holes (AH 1 through AH 4) were completed during the same investigation date.

In January 2011, 17 additional test pits (TP 13 through TP 29) and two (2) hand auger holes (AH 5 - AH 6) were put down within Phase 3 and 4 of the subject site and were advanced to a maximum depth of 4.8 m below the existing ground.

The subsurface conditions observed at the test pit and auger hole locations are provided on the Soil Profile and Test Data sheets, in Appendix 1 of this report. The approximate locations of the test pits and hand auger holes are shown on Drawing PG6871-1 - Test Hole Location Plan included in Appendix 2.

All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The test pitting procedure consisted of excavating to the required depths at the selected locations and sampling the overburden.

Sampling and In Situ Testing

Soil samples from the test pits from the current investigation were recovered from the side walls of the open excavation and all soil samples were initially classified on-site. All samples were transported to our laboratory for further examination and classification.

The depths at which the grab samples were recovered from the test pits are shown as G on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

The open hole groundwater infiltration levels were observed at the time of excavation at each test pit and hand auger hole location. Our observations are presented in the Soil Profile and Test Data sheets in Appendix 1.

3.2 Field Survey

The locations of the test pit and hand auger hole locations are presented on Drawing PG6871 - 1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Review

The soil samples recovered from the test holes were returned to our laboratory and visually examined to review the results of the field logging.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped and mostly vegetated with shrubs and mature trees. It should be noted that Cedar Lake borders the northwest portion of the site.

The site is bordered by Stagecoach Road to the east, undeveloped land to the south, and by residential dwellings to the north and west. The existing ground surface across the site has an undulating profile, with elevations ranging from approximate geodetic elevations of 98 to 100.90 m.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile at the subject site consists of an approximate 0.1 to 0.3 m thick layer of topsoil or peat underlain by a deposit of silty sand to sandy silt. At the southwest portion of the site, the silty sand to sandy silt was observed to be underlain by a stiff to firm grey silty clay deposit below approximate depths of 0.6 to 3.9 m.

A glacial till deposit was encountered underlying the silty sand to sandy silt and/or silty clay across the majority of the site at approximate depths ranging from 0.5 to 3.7 m below the existing ground surface.

Reference should be made to the Soil Profile and Test Data Sheets in Appendix 1 for details of the soil and bedrock profile encountered at each borehole location.

Bedrock

Based on available geological mapping, the bedrock in the subject area consists of dolomite of the Oxford Formation with an overburden drift thickness of 3 to 10 m.

4.3 Groundwater

Groundwater was observed within the open test pits and hand auger holes during the geotechnical investigations. Based on these observations, the groundwater level generally varies from approximate depths of 1 to 2 m below the existing ground surface. It should be noted that surface water was observed to be near the existing ground surface due to the presence of a peat layer overlying silty sand to silty clay. The pooled water is present as a result of poor surface drainage and the presence of an impermeable silty clay deposit. although groundwater was present at the ground surface in the southeast portion of the site, where surficial peat was encountered.

Furthermore, it should be noted that groundwater levels are subject to seasonal fluctuations, therefore, the groundwater levels could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. It is recommended that the proposed buildings be founded on conventional spread footings bearing on an undisturbed, loose to compact silty sand to sandy silt, firm to stiff silty clay or compact glacial till.

Depending on the founding depths of the proposed buildings, boulder removal may be required to complete the basement levels. All contractors should be prepared for oversized boulder and/or bedrock removal.

Due to the presence of a silty clay deposit within the southwestern portion of the site, a permissible grade raise restriction has been provided for these areas. This is discussed further in Section 5.3.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Fill Placement

Fill placed for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The imported fill material should be tested and approved prior to delivery.

The fill should be placed in a maximum 300 mm thick loose lifts and compacted by suitable compaction equipment. Fill placed beneath the building should be compacted to a minimum of 98% of the standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil could be placed as general landscaping fill where settlement of the ground surface is of minor concern.

These materials should be spread in lifts with a maximum thickness of 300 mm and compacted by the tracks of the spreading equipment to minimize voids.

Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls, unless used in conjunction with a geocomposite drainage membrane, such as Miradrain G100N or Delta Drain 6000.

5.3 Foundation Design

Bearing Resistance Values (Conventional Spread Footings)

Using continuously applied loads, isolated footings, placed over an undisturbed firm to stiff grey silty clay, loose to compact brown silty sand or compact glacial till bearing surface can be designed using the bearing resistance values presented in Table 1 below.

Table 1 - Recommer Foundations	ded Bearing Resistance V	/alues – Conventional Shallow
Bearing Surface	SLS (kPa)	ULS (kPa)
Grey Firm Silty Clay	75	125
Grey Stiff Silty Clay	125	175
Compact to dense Silty Sand to Sandy Silty	120	180
Compact to dense Glacial Till	150	225

Note: A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance values at ULS.

** For footings to be placed over silty clay, Pad footing up to 5 m wide and strip footings up to 3 m wide should be used.

Where the silty sand subgrade is observed to be in a loose state of compaction, proof-rolling under dry conditions and above freezing temperatures should be completed by an adequately sized roller making several passes to achieve optimum compaction levels.

The compaction program should be reviewed and approved by Paterson. Soft or poor performing areas should be sub-excavated and replaced with an approved engineered fill such as OPSS Granular A or Granular B Type II compacted to a minimum of 98% of the material's SPMDD.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen, or disturbed soil, have been removed, in the dry, prior to the placement of concrete footings.

Permissible Grade Raise Recommendation

A preliminary permissible grade raise restrictions has been provided for the southwest portion of the site where a silty clay deposit was encountered. Footings bearing upon a sand/silty sand, glacial till or bedrock bearing medium will not be subject to permissible grade raise restrictions. This is shown on Drawing PG6871-2 - Permissible Grade Raise Plan included in Appendix 2.

If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill, and/or other solutions may be recommended by the geotechnical consultant, if required, to mitigate the risks of unacceptable long-term post-construction total and differential settlements.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class D**. If a higher seismic site class is required (Class C), a site-specific shear wave velocity test may be completed to accurately determine the applicable seismic site classification for foundation design of the proposed buildings, as presented in Table 4.1.8.4.A of the Ontario Building Code (OBC) 2012.

Soils underlying the subject site are not susceptible to liquefaction. Reference should be made to the latest revision of the Ontario Building Code 2012 for a full discussion of the earthquake design requirements.

5.5 Basement Slab Construction

With the removal of all topsoil, peat, and deleterious fill having significant amounts of organic material, within the footprints of the proposed residential buildings, the existing soil subgrade, reviewed and approved by Paterson personnel at the time of construction, will be considered an acceptable subgrade surface on which to commence backfilling for floor-slab construction.

Any soft or poor performing areas should be removed and backfilled with appropriate backfill material prior to placing any fill.

It is recommended that the upper 200 mm of sub-floor fill consists of OPSS Granular A crushed stone, placed in 300 mm thick loose lifts and compacted to 98% of the material's SPMDD.

5.6 Pavement Design

Roadways and driveways are understood to be included as part of the proposed development at the subject site. The proposed pavement structures are presented in Tables 2 and 3 below.

Thickness (mm)	Material Description												
50 Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete													
150 BASE – OPSS Granular A Crushed Stone													
300	SUBBASE – OPSS Granular B Type II												

Table 3 - Recomm	ended Pavement Structure – Local Roadways
Thickness (mm)	Material Description
40	Wear Course - Superpave 12.5 Asphaltic Concrete
50	Binder Course - Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
400	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either over fill, in situ soil or	fill, in situ soil, bedrock or OPSS Granular B Type I or II material placed bedrock.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or II material. Minimum Performance Graded (PG) 64-28 asphalt cement should be used for the roadway, while minimum PG 58-34 asphalt cement should be used for the driveways. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable compaction equipment.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage and Waterproofing

It is recommended that a perimeter foundation drainage system be provided for each of the proposed buildings. The system should consist of a 150 mm diameter perforated and corrugated plastic pipe, wrapped in a geosock, surrounded on all sides by 150 mm of 19 mm clear crushed stone, which is placed at the footing level around the exterior perimeter of the structure. The clear crushed stone should be wrapped in a non-woven geotextile. The pipe should have a positive outlet, such as a gravity connection to the storm sewer or sump pump pit.

Due to the presence of a shallow groundwater table, once excavation is completed and the groundwater table is better assessed, Paterson may recommend a waterproofing membrane to be installed directly against the foundation walls. The membrane should consist of a spray-on or torch n' stick membrane to prevent water from infiltrating through the foundation walls. This should be assessed on a lot-by-lot basis prior to backfilling the proposed dwellings.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of freedraining, non-frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent thickness of soil cover and insulation) should be provided in this regard.

Other exterior unheated footings, such as those for isolated exterior piers and retaining walls, are more prone to deleterious movement associated with frost action. These should be provided with a minimum 2.1 m thick soil cover, or an equivalent thickness of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soils are considered to be a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

At least 150 mm of OPSS Granular A should be used for pipe bedding for sewer and water pipes. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe, should consist of OPSS Granular A or Granular B Type II with a maximum size of 25 mm. The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to 95% of the material's standard Proctor maximum dry density.

It should generally be possible to re-use the native soil above the cover material if the excavation and filling operations are carried out in dry weather conditions. Any stones greater than 200 mm in their longest dimension should be removed from these materials prior to placement.

The backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce potential differential frost heaving. The backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

6.5 Groundwater Control

Based on our observations, it is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Permit to Take Water

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum of 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.

If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

One (1) sample from TP 6-23 was submitted for testing. The analytical test results of the soil sample indicate that the sulphate content is less than 0.1%. These results along with the chloride and pH value are indicative that Type 10 Portland cement (Type GU) would be appropriate for this site. The chloride content and the pH of the sample indicate they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a moderate to aggressive environment.

6.8 Landscaping Considerations

Tree Planting Restrictions

Due to the absence of silty clay within the majority of the subject site, no tree planting and setback restrictions are applicable at the subject site. However, where clay is encountered, it is recommended that a minimum of 4.5 m tree planting setback is ensured from the proposed dwellings for small trees (mature height up to 7.5 m) and medium-sized trees (mature tree height 7.5 to 14 m) be used for areas of the site where a silty clay deposit was encountered.

Large trees (mature height over 14 m) can be planted provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g., in a park or other green space). These tree planting setbacks also require that the following conditions are met.

- □ The underside of footing (USF) is 1.8 m or greater below the lowest finished grade must be satisfied for footings within 10 m from the tree, as measured from the center of the tree trunk and verified by means of the Grading Plan as indicated procedural changes below.
- □ A small tree must be provided with a minimum of 25 m³ of available soil volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- □ The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.
- □ The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surrounding the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree).

Reference should be made to Drawing PG6871-3 - Tree Planting Restriction Areas attached to Appendix 2.

Swimming Pools, Hot Tubs, Decks and Additions

The in-situ soils are considered to be acceptable for in-ground and above-ground swimming pools. Pool construction is considered routine and can be constructed in accordance with the manufacturer's requirements and specifications.

Hot tub construction is considered routine and can be constructed in accordance with the manufacturer's requirements and specifications. Standard construction practices are considered acceptable for decks and additions.

7.0 Recommendations

It is recommended that the following be carried out by Paterson once preliminary and future details of the proposed development have been prepared:

□ Review preliminary and detailed grading, servicing, landscaping and structural plan(s) from a geotechnical perspective.

It is a requirement for the foundation design data provided herein to be applicable that a material testing and observation program be performed by the geotechnical consultant. The following aspects of the program should be performed by Paterson:

- □ Review and inspection of the installation of the foundation drainage systems.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling and follow-up field density tests to determine the level of compaction achieved.
- □ Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

All excess soil must be handled as per *Ontario Regulation 406/19: On-Site and Excess Soil Management*.

8.0 Statement of Limitations

The recommendations provided are in accordance with the present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than 6980848 Canada Inc., or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Puneet Bandi, M.Eng

Report Distribution:

- G980848 Canada Inc. (e-mail copy)
- Paterson Group (1 copy)

Faisal I. Abou-Seido, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS SYMBOLS AND TERMS ANALYTICAL TESTING RESULTS

	PATERS GROUP	01	V				SO		G	EC	DTE	Cŀ	INIC	CAL	IN\	/ES	STI	DA GAT y, On	ION
	DATUM: Geodetic EAST	ING:	37572	29.06		NO	RTHI	NG: 5	0112	07.3	383			ELEV	ΆΤΙΟ	N: 98	3.39		
	PROJECT: Proposed Res	sident	ial De	ev C	edar L	akes	Subd	ivisior	ו			FIL	E NO	P	G68	71			
	BORINGS BY: Excavator REMARKS:				D	ATE:	Octo	ber 4,	2023	3		но	LE NO	р. Т	P 1-	23			
	SAMPLE DESCRIPTION	STRATA PLOT			SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH (m)	Rem Str		ed S h (kl			ak Sh ngth		Blo	ws/0	Resist. 9.3m (50 9. Cone)	
		S	NO.	Туре		ź	WAT		0 2	55	07	5100	0 25 I	50 I	75100	0 2	55	0 7510	
	Ground Surface EL 98.39 m	<u> </u>	G1	T#1				0											1
	<u>0.16 m</u> , EL 98.23 m			[#]				-											
	Loose, brown SILTY SAND							- 1 - -											
	Loose, grey SILTY SAND with gravel and seashells		G3	[#]				- - - - - - - - - - - - - - - - - - -											
/ admin / October 06, 2	3.7 m EL 94.69 m GLACIAL TILL: Loose, grey silty sand with gravel, cobbles, occasional boulders, trace clay 4.5 m EL 93.89 m End of Test Pit (Groundwater infiltration at 1.5m depth)		G4	[#]															
RSLog / Geotechnical Borehole - Geodetic / paterson-group	DISCLAIMER: THE DATA PRESE	NTED								2504) IP						TWAS	
RSLog / (PRODUCED. THIS LOG SHOUL	D BE	READ	IN CO		TION	WITH I	TS CO	RRES	PON	DING	REF	PORT.						

	PATERS GROUP	01	V			;	SO	IL P	G	EC	DTE	Cł	E A INIC	CAL	- IN	IVE	STI	GA	TIC	ON
	DATUM: Geodetic EAST	ING:	3758	56.03´		NO	RTHI	\G : 5	0110	975.9	963			ELE	νατι	ON:	97.53	i		
	PROJECT: Proposed Res	siden	tial De	ev C	edar L	akes	Subd	ivisior	1			FIL	E NO	· P	G6	871				
	BORINGS BY: Excavator REMARKS:				D	ATE:	Octo	ber 4,	2023	3		но	LE N	о. Т	P 2	2-23	}			
	SAMPLE DESCRIPTION	STRATA PLOT		/IPLE Type	SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH	Rem Str 0 2	engt	th (kl	Pa)	-	-	(kPa) B m	lows/ nm Dia	Resis 0.3m a. Cor	(50 ne)	Piezometer Construction
	Ground Surface EL 97.53 m		I G1	π#			r	0	· · · ·										T	
	. TOPSOIL 0.16 m / EL 97.37 m /		G1 G2	∎# #				- 0 - - -												
	Loose, brown SILTY SAND		G3	#															1	
	- grey by 0.9m depth							- - - - - -												
)4:17 PM								-2												
, 2023 0	<u>3.9 m</u> EL 93.63 m	: : . ///						-4						-35						
October	Firm, grey SILTY CLAY 44 mEL 93.13 m End of Test Pit	//	G4	[#]				- - - - -												
paterson-group /	(Groundwater infiltration at 1.0m depth)							- 5 - - -										+ ,		
RSLog / Geotechnical Borehole - Geodetic / paterson-group /																				
RSLog / Geote	DISCLAIMER: THE DATA PRESE PRODUCED. THIS LOG SHOU	D BE	READ	IN CO		TION	WITH I	TS CO	RRES	PON	IDING	REF	PORT.							

PATERS GROUP	01	V			;	SO		G	EOTE	ECF	INIC	CAL	. INV	'EST	F DA F IGATI ely, Ont	ON
DATUM: Geodetic EAST	ING:	37582	24.699)	NO	RTHI	NG: 5	0112	74.313			ELE\		N: 98.1	14	
PROJECT: Proposed Rea	sident	ial De	ev C	edar L	akes	Subd	livisior	۱		FIL	E NO.	Ρ	G687	71		
BORINGS BY: Excavator												, т	P 3-2	22		
REMARKS:				D	ATE:	Octo	ber 4,	2023		пО		J.	г J-2	23		
SAMPLE DESCRIPTION	STRATA PLOT		IPLE Type	SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH (m)		oulded S ength (k	Pa)		-	(kPa)	Blows mm [. Resist. s/0.3m (50 Dia. Cone) 50 75100	Piezon Constru
Cround Surface						3										<u> </u>
Ground Surface EL 98.14 m TOPSOIL 0.03 m EL 98.11 m Loose, brown SILTY SAND 0.4 m EL 97.74 m Loose, grey SILTY SAND with gravel 0.6 m EL 97.54 m Stiff, grey SILTY CLAY 1.1 m EL 97.04 m GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and seashells EL 95.84 m End of Test Pit (Groundwater infiltration at 0.7m depth)		G1 G2 G3 G4					- 0 - 1 - 1 - 2 - 3 - 4 - 4 - 5 6						79 82			
DISCLAIMER: THE DATA PRESE PRODUCED. THIS LOG SHOU	D BE	READ	IN CO	NJUNC	TION	WITH I	TS CO	RRESI		G REF	ORT.					<u>I</u>

	PATER GROU	ISOI JP	V			;	SO		GE	ΟΤΕ	ECH	INIC	AL	INV	EST	DA IGAT	ION
		ASTING:	3759	19.947	7	NO	RTHI	\G : 5	011167	.493	1	E	LEVA		1: 103.3	36	
		d Resident	tial De	ev C	edar L	akes	Subd	ivisior	ו		FIL	E NO.	PG	687	71		
	ORINGS BY: Excavato	Dr			D	ATE:	Octo	ber 4,	2023		HO	LE NO	. TP	4-2	23		
	SAMPLE DESCRIPTION	STRATA PLOT	SAN	/IPLE	SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH (m)	Remoul Streng				ık She ıgth (k		Blows	Resist. /0.3m (50 ia. Cone)	
		ST	No.	Туре	S R	N V	WATE		0 25	50 7	'5100	0 25	50	75100	0 25	50 7510	
Grour	nd Surface EL 10	3.36 m															
TOPS		0.3 m	G1	T# 1				- 0									
	e, brown SAND (pit-run) with el, cobbles and boulders		G2	[#]													
eotechnical Borehole - Geodetic / (TP d (TP d	ACIAL TILL: Grey silty clay wi rel and cobbles EL 98. of Test Pit dry upon completion) DISCLAIMER: THE DATA P	resented															-
RSLog ,	PRODUCED. THIS LOG S	HOULD BE	READ	IN CO	NJUNC	TION	WITH I	TS CO		NDING	G REP	ORT. F					

			1		ļ	SO	IL	PR	OF	ILE		ND	TR	ES	ΓD)AT	ΓΑ
PATERS	0	N									INIC						
GROUP		A						Part o		8, C						Onta	ario
PROJECT: Proposed Res								01097	8.983						72		
BORINGS BY: Excavator	sident	iai De	ev C	edar L	akes	Subd	IVISIOI	ו		FIL	E NO.	PG	i6 87	71			
REMARKS:				D	ATE:	Octo	ber 4,	2023		но	LE NC	. TP	9 5-2	23			
SAMPLE DESCRIPTION	STRATA PLOT	SAN	/IPLE	SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH (m)	Remo Stre	ulded S ngth (k			ak She ngth (k		Blow	n. Res /s/0.3r Dia. C	m (50	Piezometer Construction
	ST	No.	Туре	0.15	N V	WATE		0 25	50	75100	0 25 I	50 I	75100 I	0 25 I	50 I	7 5100	ЧÖ
Ground Surface EL 98.72 m	i je ne	G1	T#1				_ 0		:			:		:		<u> </u>	
Loose, brown SILTY SAND		G2	[#]				- - - -										
0.9 m_ EL 97.82 m		G3	[#]				- - 1										
Loose, brown SAND with gravel							-										
2.3 m. EL 96.42 m							-2 - - - -			 - - - - - - - - - - - - - - -	¢2	6					
Firm to stiff, grey SILTY CLAY		G4	[#]				- 					55					
End of Test Pit (Groundwater infiltration at 1.0m depth) DISCLAIMER: THE DATA PRESE PRODUCED. THIS LOG SHOUL							-4 								+		
(Groundwater infiltration at 1.0m							- - - - - - - - - - - - - - - - - - -										
lechnical Borehole							- - - - - - - - - - 7										
DISCLAIMER: THE DATA PRESE	LD BE	READ	IN CO	NJUNC	TION	WITH I	Y OF I TS CO		ONDIN	G REF	PORT. F						

	PATERS GROUP	01	V			;	SO		G	EC	DTE	CF	INIC	CAL) T . IN\ on 3	/ES	STI	GA	TIC	ON
	DATUM: Geodetic EAST	ING:	3762	32.883	3	NO	RTHI	NG: 5	0114	43.5	557			ELE\	/ATIO	N: 9	8.57			
	PROJECT: Proposed Res	sident	tial De	ev C	edar L	akes	Subd	ivisior	ı			FIL	E NO	Ρ	G68	71				
	BORINGS BY: Excavator REMARKS:				П	ΔΤΕ·	Octo	her 4	2023	3		но	LE NO	р. Т	P 6-	23				
			1				%	,												
	SAMPLE DESCRIPTION	STRATA PLOT	SAN	MPLE	SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH (m)	Rem Str		ed S th (kl			ak Sh ngth	iear (kPa)	Blo	ws/0	Resist).3m (a. Cor	(50	Piezometer Construction
		ST	No.	Туре	ол Ш	> N	WATE		02	55	07	5100	0 25	50	7510	0 0 2	25 5	6075	300 E	-0
	Ground Surface EL 98.57 m						1	LO									1			
	PEAT 0.3 m EL 98.27 m 0.6 m 		G1 G2 G3	[#] [#]				- 0 - - - - - - - - - - - - - - - - -												
	GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders																			
RSLog / Geotechnical Borehole - Geodetic / paterson-group / admin / October 06, 2023 04:17 PM	<u>3.8 m</u> EL 94.77 m End of Test Pit (Groundwater infiltration at 1.0m depth)		G4	[#]																
RSLog / Geotechi	DISCLAIMER: THE DATA PRESE PRODUCED. THIS LOG SHOUI	D BE	READ	IN CO		TION	WITH I	TS CO	RRES	PON	IDING	REF	ORT.							

Image: Second Surface EL 9666 m Compact, brown SULTY SAND Compact, brown SULTY SAND (Compact, grey SILTY SAND with graved, some day, occasional toobles, trace seashelds G1 [# 1] 0 G3 [# 1] G3 [# 1] 1 0 G4 [# 1]		PATERS GROUP	01	V			;	SO		G	EO	TE	Cŀ	INI	CAL	. IN\	/ES	STI	DA GAT /, On [*]	ON
BORINGS BY: Excavator REMARKS: DATE: October 4, 2023 HOLE NO. TP 6A-23 HOLE NO. TP 6A-23 HOLE NO. TP 6A-23 HOLE NO. TP 6A-23 HOLE NO. TP 6A-23 Frequencies of the series of the		DATUM: Geodetic EAST	ING:	37627	76.215	;	NO	RTHI	NG: 5	0114	67.1 [,]	43			ELE	VATIO	N: 98	3.66		
REMARKS: DATE: October 4, 2023 HOLE NO. TP 6A-23 SAMPLE DESCRIPTION Image: Construction of the strength (kPa) of t			sident	ial De	ev C	edar L	akes	Subd	ivisior	۱			FIL	E NO	• P	G68	71			
CLINKIG. DITL: Output SAMPLE DESCRIPTION Image: Comparison of the second													но		о Т	P 6/	1_22	2		
SAMPLE DESCRIPTION SAMPLE Starting of the second start of the s		REMARKS:				D	ATE:	Octo	ber 4,	2023			110		0. 1	1 07	1-20	,		
Ground Surface EL 68.66 m TOPSOLL Compact, Jong SULTY SAND 0.16, 17, 17, 18, 100 m Compact, grey SILTY SAND with gravel, some day, occasional could be trace seasibles 0.2 [# J] G3 [# J] GLACIAL TILL: Dense, grey silly sand with gravel, cobbles and boulders 0.4 [# J] GLACIAL TILL: Dense, grey silly sand with gravel, cobbles and boulders 0.4 [# J] GLACIAL TILL: Dense, grey silly sand with gravel, cobbles and boulders 0.4 [# J] Glace for the st Pit (Groundwater infiltration at 1.0 m 0.4 [# J] End of Test Pit (Groundwater infiltration at 1.0 m 0.5 [-5 [-5 [-5 [-5 [-5 [-5 [-5 [SAMPLE DESCRIPTION				SAMPLE % RECOVERY	N VALUE or RQD	VATER CONTENT %	DEPTH (m)	Stre	engtl	n (kF	Pa)	Stre	ength	(kPa)	Blo mm	ws/0 n Dia	.3m (50 . Cone)	Piezon Constru
TOPSOL Dog n / fill Image: fill (fill fill fill fill fill fill fil		Ground Surface EL 98.66 m	<u>ו</u>					>							I	<u> </u>			I	1
Compact. prove SILTY GAND ULL		TOPSOIL		G1	[#]				- 0		1									
Compact, grey SILTY SAND with gravel, some day, occasional cobbles, trace seashells CBLACIAL TILL: Dense, grey silty sand with gravel, cobbles and boulders ELGABER CA [#] CA [k			G2	[#]															
i cobbles, trace seashells 0.5 m² EL de tion EL de tion GLACIAL TILL: Dense, grey silty sand with gravel, cobbles and boulders G4 End of Test Pit G4 (Groundwater infiltration at 1.0m G4 bepti) G64 DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS		Compact, grey SILTY SAND with		G3	[#]				-			1								
GLACIAL TILL: Danse, grey silty sand with gravel, cobbles and boulders		achhlan trann anachalla							-1											-
End of Test Pit (Groundwater infiltration at 1.0m depth) DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS	(GLACIAL TILL: Dense, grey silty sand																		-
End of Test Pit (Groundwater infiltration at 1.0m depth) DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS				G4	[#]				- - - -											
(Groundwater infiltration at 1.0m depth) Groundwater infiltration at 1.0m DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS	- - -		[<i>[.</i>].								1	1							 	
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS		(Groundwater infiltration at 1.0m							- 4 - - - - - -											
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS									5	; ;		;						T		-
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS	16-100								-			-								
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS	/ parci								F			-								
									- - 6											-
PRODUCED. THIS LOG SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.			LD BE	READ	IN CO	NJUNC	TION	WITH I	TS CO	RRES	PON	DING	REF	PORT.						

	PATERS GROUP	01	V				SO		G	EC	DTE	CF	E A INI Conc	CA		NV	'ES	STI	GA	TI	ON
	DATUM: Geodetic EAST	ING: 3	37635	51.584	1	NO	RTHI	NG: 5	0114	67.6	606			ELI	EVA	TIO	1: 98	3.9			
	PROJECT: Proposed Res	sident	tial De	ev C	edar L	akes	Subd	ivisio	٦			FIL	E NC).	PG	68	71				
	BORINGS BY: Excavator														T D	7 0					
	REMARKS:				D	ATE:	Octo	ber 4,	2023	3		но	LE N	0.	IP	1-2	23				
	SAMPLE DESCRIPTION	STRATA PLOT		/IPLE	SAMPLE % RECOVERY	N VALUE or RQD	WATER CONTENT %	DEPTH (m)	Rem Str 0 2	engt	th (ki	Pa)		engt	Shea h (k		Blo mr	ws/0 n Dia	Resis).3m 1. Co 1. 7	(50 one)	Piezometer Construction
	Ground Surface EL 98.9 m						5									I					
	TORSOIL	\\//`.	G1	ד#ז				- 0													
	Loose, brown SILTY SAND		G2	[#]				-													
	- grey by 0.8m depth		G3	[#]												<u>.</u>					
	- grey by 0.011 depth			"				-				1 1 1		1		 			 		
	1.6 m EL 97.3 m											 				- - - - - -			 	- - - - - - - -	
	GLACIAL TILL: Dense, grey silty sand with gravel, cobbles and boulders							- - - - -													
_			G4	[#]								- 			 	 			 	- 	
3 04:17 PM	3.5 m EL 95.4 m End of Test Pit	Y /_						-								 					
6, 202;	(Groundwater infiltration at 1.0m							-4											, 		
RSLog / Geotechnical Borehole - Geodetic / paterson-group / admin / October 06, 2023 04:17 PM	depth)							- - - -											 		
lpe / dr								- - 5													
on-grou								Ē											1 1		
paters								F											 		
detic /								F											 		
e - Geo								-6							, , ,				¦'		
orehole												1 1 1 1		1					 		
nical Bo								Ē				 				 			 		
otechn								- 7								 			. 	1 1 1	
RSLog / Ge	DISCLAIMER: THE DATA PRESE PRODUCED. THIS LOG SHOU	D BE	READ	IN CO		TION	WITH I	TS CO	RRES	PON	IDING	REF	PORT.								

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft Soft Firm Stiff Very Stiff Hard	<12 12-25 25-50 50-100 100-200 >200	<2 2-4 4-8 8-15 15-30 >30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

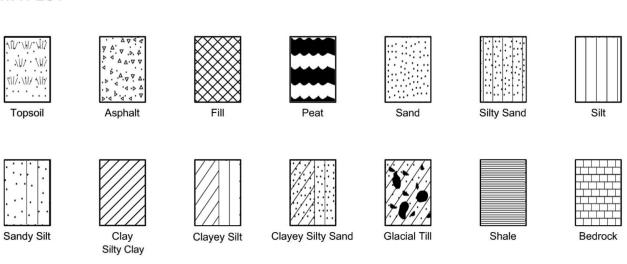
SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx D10	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size Grain size at which 10% of the soil is finer (effective grain size)
D60 Cc Cu	-	Grain size at which 60% of the soil is finer Concavity coefficient = $(D30)^2 / (D10 \times D60)$ Uniformity coefficient = $D60 / D10$
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

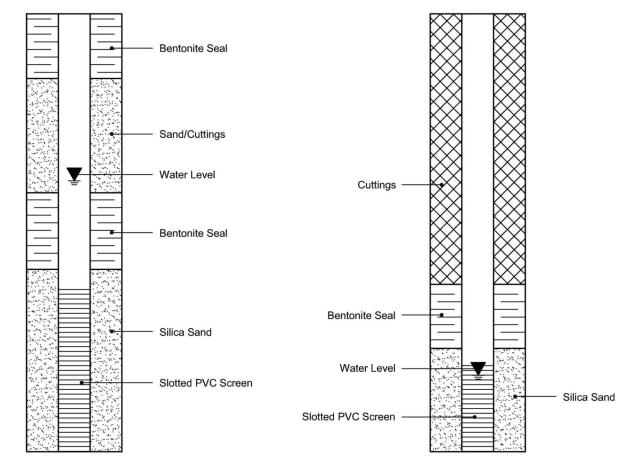
CONSOLIDATION TEST


p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_{c})
OC Ratio	C	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)


STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

MONITORING WELL CONSTRUCTION

PIEZOMETER CONSTRUCTION

patersong	ro	ur		nsulti	ng						Ά
28 Concourse Gate, Unit 1, Ottawa		-		gineer	R	lipley Su	bdivisio	on - Stageco	ologica bach R	al Study oad	
DATUM Grades interpolated ba	sed on to	opogr	aphic	inform					FILE	NO	
REMARKS										PH1276	5
BORINGS BY Backhoe				0	DATE	24 Novei	mber 20	09	HOLE	^{NO.} TP 1	
	To		SA	MPLE		DEDTU		Pen. R	esist.	Blows/0.3m	
SOIL DESCRIPTION			R	RY	Що	_ UEPTH (m)	(m)	• • 5	0 mm l	Dia. Cone	meter
	Intrava (Greely), Ontario FILE NO. Hole No. DATE 24 November 2009 OCRIPTION DEPTH CLEV. (m) Pen. Resist. Blov OCRIPTION OCRIPTION OCRIPTION OCRIPTION OLIGE DEPTH CLEV. (m) Pen. Resist. Blov OMAGE CE O.16 G DEPTH CLEV. (m) OWE OWE ON OCRIPTION OCRIPTION OCRIPTION OCRIPTION OCRIPTION OCRIPTION	ontent %	Piezo								
GROUND SURFACE				R	Z V	- 0-	- 99 00	20	40	60 80	
PEAT		G	1								
Brown medium SAND		G	2							······································	Ţ
	.86	6	2			1-	-98.00				
Soft, grey SANDY SILTY CLAY	.50	-	5					······			
Grey medium SAND with						2-	97.00				Piezometer Construction
shells		G	4			3-	96.00				
SLACIAL TILL: Grey silty						4-	95.00				
Water infiltration @ 0.5m & .0m depths)											
								20 4 20 4 Shear \$ ▲ Undisturb			

paterson 28 Concourse Gate, Unit 1, Otta				gineer	R	errain Ar ipley Sul	nalysis & bdivisio	k Hydroged n - Stageco	ND TEST DA	
DATUM Grades interpolated	d based on t	opogr	aphic	inform		ttawa (G by others		Untario	FILE NO. PH12	76
REMARKS										
BORINGS BY Backhoe					DATE	24 Nover	nber 200)9	TP 2	
SOIL DESCRIPTION	PLOT			/IPLE		DEPTH (m)	ELEV. (m)	1	esist. Blows/0.3m 0 mm Dia. Cone	neter Iction
	STRATA	TYPE	NUMBER	∾ RECOVERY	N VALUE or ROD			• N	later Content %	Piezometer Construction
GROUND SURFACE			<u> </u>	R	z °	0-	- 98.90	20	40 60 80	
TOPSOIL	0.30	-								
PEAT									• • • • • • • • • • • • • • • • • • •	·····
Soft, grey SANDY SILTY CLAY	1.40	G	5			1-	-97.90			
Grey SAND with shells	4.20					3	96.90 95.90 94.90			
End of Test Pit (Water infiltration @ u/s of beat & u/s of sandy silty clay)									40 60 80 Strength (kPa)	100

patersong	grou	uĶ		nsultiı gineer	ng s т			OFILE A & Hydroged		
28 Concourse Gate, Unit 1, Ottaw		_		-	R	ipley Sul ttawa (G	bdivisio	on - Stageco	bach Road	uuy
Grades interpolated b	based on to	pogr	aphic	inform					FILE NO.	PH1276
REMARKS									HOLE NO.	
BORINGS BY Backhoe				D	ATE	24 Nover	nber 20	09		TP 3
SOIL DESCRIPTION			SAN	MPLE]	DEPTH (m)	ELEV (m)		esist. Blov 0 mm Dia.	
		ТҮРЕ	NUMBER	* RECOVERY	N VALUE or ROD		(111)	0 N	ater Cont	ent %
ROUND SURFACE	STRATA	-	F	REC	z ö	0	102 50	20	40 60	80
OPSOIL Brown SILTY SAND with obbles	0.25 0.65 0.65	G	6			0-	-103.50	,		
						1-	-102.50			
GLACIAL TILL: Dense, brown silty sand with gravel, cobbles and boulders		G	7			2-	101.50			
nd of Test Pit	3.30	-				3-	100.50			
P dry upon completion)										

patersong	ro	Ur		nsultir	ng				ND TEST DAT	Ά
28 Concourse Gate, Unit 1, Ottawa		-	e Eng	gineer	R	errain Ar ipley Sul ttawa (G	bdivisio	n - Stageco	ological Study bach Road	
DATUM Grades interpolated ba	sed on to	opogr	aphic	informa				Ontario	FILE NO. PH1276	
REMARKS										
BORINGS BY Backhoe				· · · ·	ATE	24 Nover	nber 200	09	TP 4	
SOIL DESCRIPTION	PLOT			/IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	neter
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			• N	/ater Content %	Piezometer
GROUND SURFACE	01		7	RE	z °	0-	- 101.70	20	40 60 80	-0
Brown SILTY SAND with	.25					0	101.70			
						1-	-100.70			
GLACIAL TILL: Dense, brown silty sand with gravel, cobbles and boulders		G	8							
						2+	99.70		······································	
End of Test Pit	50 <u>\^^^</u> ^	-								
(TP dry upon completion)										
								20 20 Shear Shear S	60 80 100 Strength (kPa) Ped △ Remoulded	

SOIL PROFILE AND TEST DATA

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated base	d on to	pogra	aphic	inform	ation	by others			FILE NO. PH1276	. <u> </u>
REMARKS BORINGS BY Backhoe				г	DATE	24 Nover	nber 200	9	HOLE NO. TP 5	
SOIL DESCRIPTION	PLOT		SAI	MPLE	[DEPTH (m)		Pen. R	esist. Blows/0.3m 0 mm Dia. Cone	eter ction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD	(111)	(11)	0 N	later Content %	Piezometer Construction
GROUND SURFACE	01		24	RE	Z O		00 50	20	40 60 80	
TOPSOIL/PEAT: High to very high humic content 0.30)	_				0-	-99.50			₽
Brown to grey-brown medium SAND		G	9							
<u>1.2</u> 0		G	10			1-	-98.50			
GLACIAL TILL: Dense, brown silty sand with gravel, cobles and boulders						2-	-97.50			
End of Tost Dit3.20						3-	96.50			
End of Test Pit (Water infiltration @ 0.3m & 0.8m depth)										
								20 Shear ▲ Undistur	40 60 80 100 Strength (kPa) bed △ Remoulded	D

patersong 28 Concourse Gate, Unit 1, Ottawa		_		nsultiı gineer	R	errain Ar	alysis & divisio	OFILE A & Hydrogeo n - Stageco Ontario	ological St	udy	Α
DATUM Grades interpolated ba	ased on to	pogr	aphic	inform					FILE NO.	PH1276	
REMARKS BORINGS BY Backhoe				F		24 Nover	nhar 20(na	HOLE NO.	TP 6	
	H		SAN	/PLE				1	esist. Blov		
SOIL DESCRIPTION	A PLOT				що	DEPTH (m)	ELEV. (m)		0 mm Dia.		Piezometer
	STRATA	TYPE	NUMBER	~ RECOVERY	N VALUE or ROD	:		• N	later Cont	ent %	Piezo
GROUND SURFACE	OI		z	RE	a o	- 0-	- 100.20	20	40 60	80	
TOPSOIL	0.40										¥
Grey-brown medium SAND						1-	-99.20				
-		G	11			2-	-98.20				
End of Test Pit	.40	-				3-	97.20				
Water infiltration @ 0.4m & .0m depths)									40 60 Strength (80 100 kPa) noulded	

patersong	In	Ir	Co	nsulti	ום	SO		OFILE A	ND TES	T DAT	Α
28 Concourse Gate, Unit 1, Ottaw			J En	gineer	R	errain Ar ipley Sul ttawa (G	bdivisio	n - Stageco	ological Stu bach Road	ıdy	
DATUM Grades interpolated b	based on to	pogr	aphic	inform		· ·			FILE NO.	PH1276	
REMARKS									HOLE NO.		
BORINGS BY Backhoe				D	ATE	22 Janua	ary 2011			TP 6A	,
SOIL DESCRIPTION	PLOT		SA	MPLE		DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. (neter Iction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or ROD			• v	later Conte	ent %	Piezometer Construction
GROUND SURFACE				8	Z	0-	+100.20	20	40 60	80	
Grey-brown medium SAND	0.40					2-	-99.20 -98.20 -97.20				¥
	<u>4.50 · · · · · · · · · · · · · · · · · · ·</u>		1								
SILTY CLAY End of Test Pit	1.80	G	1								
(Water infiltration @ 1.0m depth)									40 60 Strength (k	80 100	

▲ Undisturbed △ Remoulded

patersong	ro	ur		nsultir gineer	ng s т				ND TEST DAT	Α
28 Concourse Gate, Unit 1, Ottawa,		_		,	R	ipley Sul ttawa (G	odivisio	n - Stagecoa	ach Road	
DATUM Grades interpolated bas	sed on to	opogra	aphic	inform	ation	by others			FILE NO. PH1276	;
REMARKS BORINGS BY Backhoe				-		O.4 Maxim			HOLE NO. TP 7	
BORINGS BY DACKING			<u>م</u> م			24 Nover			sist. Blows/0.3m	1
SOIL DESCRIPTION	A PLOT			1	Шо	DEPTH (m)	ELEV. (m)) mm Dia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			• Wa	ater Content %	Piezo
GROUND SURFACE	0		4	R	z °	0-	101.40	20	40 60 80	
TOPSOIL										
Red-brown to grey medium SAND	40	G	12			2-	- 100.40 - 99.40 - 98.40			¥
End of Test Pit										
(Water infiltration @ 1.1m depth)									40 60 80 100 Strength (kPa)	0

paterson	aro		Cor	nsultir	ng	SO		OFILE AND	TEST DAT	Α
28 Concourse Gate, Unit 1, Otta			🖉 Eng	gineer	R	errain Ar Ripley Sul Ottawa (G	bdivisio	& Hydrogeologic n - Stagecoach F Ontario	al Study Road	
DATUM Grades interpolated	based on to	pogr	aphic i	inform				FILE	^{NO.} PH1276	
REMARKS								HOLE	NO	
BORINGS BY Backhoe				D	ATE	22 Janua	ry 2011		TP 7A	T
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV (m)	Pen. Resist. • 50 mm	Blows/0.3m Dia. Cone	leter ction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			 Water (Content %	Piezometer Construction
GROUND SURFACE	01		2	RE	z °		-101.40	20 40	60 80	
TOPSOIL	_0.40						- 100.40			¥
Red-brown to grey medium SAND						2-	-99.40			
						3-	98.40			
	4.80					4-	97.40			
SILTY CLAY	5.10	G	1			5+	96.40		······································	
End of Test Pit (Water infiltration @ 1.1m						_	-			
depth)								Shear Streng	60 80 100 gth (kPa)	

paterson	grou	ur		nsultiı gineer	ng 's T				ND TEST DAT	Α
28 Concourse Gate, Unit 1, Otta		_	-	-	R	ipley Sub ttawa (Gi	odivisio	n - Stageco	ach Road	
DATUM Grades interpolated	based on to	pogra	aphic	inform					FILE NO. PH1276	
REMARKS										
BORINGS BY Backhoe				C	ATE	24 Noven	nber 200	09	TP 8	!
SOIL DESCRIPTION	PLOT		SAN	MPLE	1	DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	eter
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(11)	(11)	0 W	ater Content %	Piezometer Construction
GROUND SURFACE	Es	H	PN	REC	N N OL			20	40 60 80	٥،٢
TOPSOIL	0.23		<u> </u>			0-	-103.20)		
GLACIAL TILL: Dense, dark brown to grey-brown silty sand with gravel, cobbles and boulders		G	14			2-	-102.20 -101.20 -100.20			
End of Test Pit	3.60	-								
(TP dry upon completion)									40 60 80 100 Strength (kPa) bed △ Remoulded	

paterson	aroi	ır	Co	nsultir	ng	SOI		OFILE A	ND TEST DAT	A
28 Concourse Gate, Unit 1, Otta	-	_	Eng	gineer	R		odivisio	n - Stageco	ological Study bach Road	-
DATUM Grades interpolated	l based on to	pogra	aphic	inform					FILE NO. PH1276	<u> </u>
REMARKS										
BORINGS BY Backhoe				D	ATE	24 Nover	nber 200)9	TP 9	
SOIL DESCRIPTION	TOIT		SAN	VIPLE		DEPTH			esist. Blows/0.3m 0 mm Dia. Cone	eter Stion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	(m)	(m)	0 W	Vater Content %	Piezometer Construction
GROUND SURFACE	LS	H	- DN	REC	N OF			20	40 60 80	٥٦
TOPSOIL	0.25					- 0-	100.20			
		G	16			1-	-99.20			9
Red-brown to grey-brown medium SAND with gravel		G	17			2-	-98.20			Ţ
Firm, grey-brown SILTY CLAY	_ <u>2.75</u>	G	19			3-	97.20			
End of Test Pit		-								
(Water infiltration @ 2.2m depth)								20 Shear ▲ Undistur	40 60 80 100 Strength (kPa) 'bed △ Remoulded	0

patersongroup	SO
Patersong oup Engineers	Terrain A

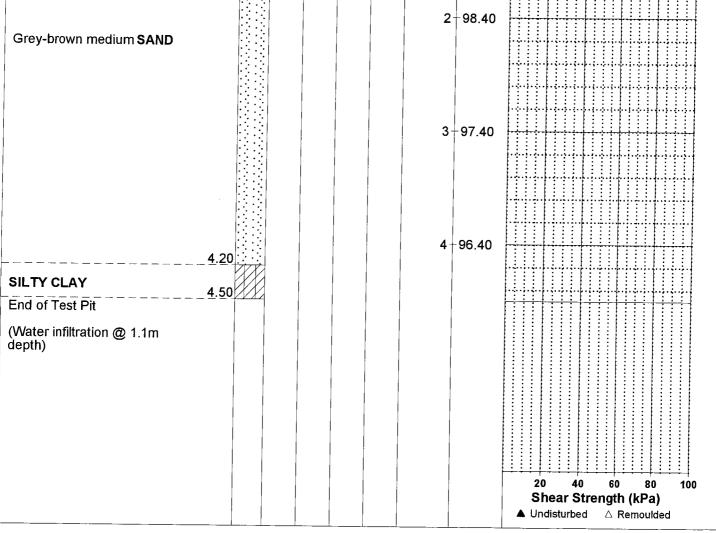
SOIL PROFILE AND TEST DATA

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated bas	ed on to	opogra	aphic	inform	ation	by others	-		FILE NO. PH1	1276
REMARKS						04.04	h	•	HOLE NO. TP	
BORINGS BY Backhoe		1		C	DATE	24 Nover	nber 200		L	
SOIL DESCRIPTION	TOIT A			VIPLE 문	Що	DEPTH (m)	ELEV. (m)		esist. Blows/0.: 0 mm Dia. Cone	55
	STRATA	TYPE	NUMBER	° SECOVERY	N VALUE or RQD				/ater Content %	Constr
GROUND SURFACE			ļ	Ř	×	0-	103.60	20	40 60 80	·
· · · · · · · · · · · · · · · · · · ·	1 <u>0</u> 									
Dark brown SILTY SAND	50 · . · · · · · · · · · · · · · · · · ·	G	20							
Dense, light brown SILTY SAND/SANDY SILT with gravel		G	21			1-	- 102.60			
						2-	-101.60			
2.8 End of Test Pit	0	_								
(TP dry upon completion)								20	40 60 80	100
									Strength (kPa)	

DATUM Grades interpolated based on topographic information by others. FILE NO PH1276 REMARKS BORINGS BY Backhoe DATE 24 November 2009 PILE NO. TP11 SOIL DESCRIPTION OF SAMPLE DEPTH ELEV. (m) PLE NO. TP11 GROUND SURFACE DEPTH ELEV. PILE NO. TP11 GROUND SURFACE DEPTH ELEV. PILE NO. TP11 GROUND SURFACE DEPTH ELE NO. PLE NO. TP10 GROUND SURFACE DEPTH ELE NO. PLE NO. </th <th>patersong 28 Concourse Gate, Unit 1, Ottawa, G</th> <th></th> <th>_</th> <th>Col</th> <th>nsultii gineer</th> <th>Ri</th> <th>errain An</th> <th>alysis 8 divisio</th> <th>DFILE AND TEST DATA A Hydrogeological Study n - Stagecoach Road Ontario</th>	patersong 28 Concourse Gate, Unit 1, Ottawa, G		_	Col	nsultii gineer	Ri	errain An	alysis 8 divisio	DFILE AND TEST DATA A Hydrogeological Study n - Stagecoach Road Ontario
BORINGS BY Backhoe HOLE NO. TP11 DATE 24 November 2009 OTOPSOIL O.30 GROUND SURFACE TOPSOIL O.30 G GLACIAL TILL: Light brown silty sand with gravel, cobbles and boulders G 22 End of Test Pit 2.70		ed on to	pogr	aphic	inform				FILE NO.
DATE 24 NOVEMBER 2009 SOIL DESCRIPTION Sample Depth for the second					_		0 / N		TD44
SOIL DESCRIPTION O DEPTH M ELEV. (m) • 50 mm Dia. Cone Diggetter (m) GROUND SURFACE 0 00 101.80 0 40 60 80 TOPSOIL 0.30 0 0 101.80 0 101.80 0 101.80 0 0 101.80 0 101.80 0 101.80 0 0 101.80 0 0 101.80 0 0 101.80 0 101.80 0 101.80 0 0 101.80 0 0 101.80 0 0 101.80 0	BORINGS BY BACKHOE			0 4 4		DATE	24 Nover	nber 200	
GROUND SURFACE 0 1 1 101.80 20 40 60 80 TOPSOIL 0.30 0 101.80 0 101.80 0 101.80 0	SOIL DESCRIPTION				1	61 0	-	1	● 50 mm Dia. Cone
GROUND SURFACE 0 0 0 101.80 20 40 60 80 TOPSOIL 0.30 0 1 101.80 0 101.80 0		TRAT?	ТҮРЕ	TUMBEL	COVEI				○ Water Content %
GLACIAL TILL: Light brown silty sand with gravel, cobbles and boulders End of Test Pit (Water infiltration @ 0.35m	GROUND SURFACE			4	RE	z °	0-	101.80	20 40 60 80
	GLACIAL TILL: Light brown silty sand with gravel, cobbles and boulders 2.7 End of Test Pit (Water infiltration @ 0.35m		G	22					


paterson	aroi	ır	Cor	nsultir	ng	SOI	L PRO	OFILE A	ND TEST DAT	Ά
28 Concourse Gate, Unit 1, Otta		-	J Eng	gineer	R	errain Ar ipley Sul ttawa (G	odivisio	n - Stageco	ological Study bach Road	
DATUM Grades interpolated	based on to	pogr	aphic i	informa					FILE NO. PH1276	;
REMARKS										
BORINGS BY Backhoe				D	ATE	24 Nover	nber 200)9	TP12	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	neter Iction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater Content %	Piezometer Construction
GROUND SURFACE			4	RE	z ^o	0.	100.50	20	40 60 80	
TOPSOIL	0.30									
Brown to grey-brown medium SAND	3.80	G	23			2-	- 99.50 - 98.50			¥
End of Test Pit										
(Water infiltration @ 1.0m depth)								20 Shear ▲ Undistur	40 60 80 100 Strength (kPa) bed △ Remoulded	0

patersong 28 Concourse Gate, Unit 1, Ottawa	, ON K2E	7T7			Ri Oʻ	ipley Sub ttawa (Gr	division eely), O	- Stageco	ological Study bach Road	
DATUM Grades interpolated ba	sed on to	pogra	iphic i	nform	ation	by others.	8		FILE NO. PH1	276
REMARKS							anno a Decard		HOLE NO. TP	13
BORINGS BY Backhoe				D	DATE	19 Janua	ry 2011		NA	
SOIL DESCRIPTION	PLOT			/IPLE	що	DEPTH (m)	ELEV. (m)		esist. Blows/0.3 0 mm Dia. Cone	0.0
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD			0 V	Vater Content %	Piez
GROUND SURFACE TOPSOIL).30		<u> </u>	RE(NO	0-	-103.50	20	40 60 80	
						1-	- 102.50			
GLACIAL TILL; Dense, dark						2-	- 101.50			
brown to grey-brown silty sand with gravel, cobbles and boulders						3-	-100.50			
						4-	-99.50			
Hard CLAY	5.00 5.25	G	1			5-	-98.50			
(GWL @ 3.7m depth)								20	40 60 80) 100

paterson	aroi	In	Con	sultin	g	SOI		OFILE AI	ND TEST DAT	Ά
28 Concourse Gate, Unit 1, Otta			Eng	ineers	R	errain An ipley Sut ttawa (Gi	odivisio	n - Stagecoa	logical Study ach Road	
DATUM Grades interpolated	based on to	pogra	phic i	nforma		•		Ontario	FILE NO. PH1276	3
REMARKS								-		
BORINGS BY Backhoe		ſ		D	ATE	19 Janua	ry 2011		TP14	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)		sist. Blows/0.3m mm Dia. Cone	neter uction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or ROD			○ Wa	ater Content %	Piezometer Construction
GROUND SURFACE				RE	z °	- 0-	102.50	20	40 60 80	
TOPSOIL Dense, dark brown to grey-brown SILTY SAND						1-	-101.50			¥
Hard CLAY	4.00									
End of Test Pit						4+	98.50			
(GWL @ 2.0m depth)								Shear S	40 60 80 10 Strength (kPa) red △ Remoulded	0

patersong 28 Concourse Gate, Unit 1, Ottawa		-	Cor Eng	nsultir gineer	R	errain An	alysis & divisior	Hydrogeolog 1 - Stagecoach	D TEST DAT/ nical Study n Road	A
DATUM Grades interpolated ba	ased on to	pogra	iphic i	inform					LE NO. PH1276	
REMARKS								НС	DLE NO. TP15	
BORINGS BY Backhoe				D	DATE	22 Janua	ry 2011			[·
SOIL DESCRIPTION	TOII		SAN	NPLE		DEPTH (m)	ELEV. (m)		st. Blows/0.3m m Dia. Cone	neter iction
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r ROD			○ Wate	r Content %	Piezometer Construction
GROUND SURFACE	ζΩ,		IN	REC	N VI of	0.	100.20	20 40	60 80	-0
Grey-brown medium SAND	<u>0.40</u>						-99.20 -98.20 -97.20			¥
End of Test Pit										
(Water infiltration @ 1.0m depth)								20 40 Shear Str ▲ Undisturbed	60 80 100 ength (kPa) △ Remoulded	D

natersona	roi		Co	nsultir	na	SOI		OFILE A	ND '	TEST	DAT	A
	DATUMGrades interpolated based on topographic information by others.SOIL PFSOIL PFTerrain AnalysisSOIL PFTerrain AnalysisRipley SubdivisiRipley SubdivisiOttawa (Greely),Ottawa (Greely),											
DATUM Grades interpolated bas	sed on to	pogra	aphic	inform					FILE	^{NO.} P	H1276	;
BORINGS BY Backhoe				D	ATE	22 Janua	ry 2011		HOLE	^{NO.} T	P16	
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH	ELEV.	Pen. Re		Blows/ Dia. Co		tion
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	(m)	(m)			Content	: %	Piezometer Construction
TOPSOIL	40					0-	-100.40	20	40	60	80	
						1-	-99.40					¥
Grey-brown medium SAND						2-	98.40				· · · · · · · · · · · · · · · · · · ·	

paterson 28 Concourse Gate, Unit 1, Of	-	_	Eng	jineer	R	errain Ar ipley Sul ttawa (G	bdivisio	k Hydrogeo n - Stageco Ontario	ological Sto bach Road	udy	
DATUM Grades interpolate	ed based on to	pogra	aphic i	inform	ation	by others			FILE NO.	PH1276	
REMARKS				_					HOLE NO.	TP17	
BORINGS BY Backhoe					DATE	22 Janua	iry 2011				1
SOIL DESCRIPTION				/IPLE	61	DEPTH (m)	ELEV. (m)		esist. Blov 0 mm Dia.		Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r ROD			• N	ater Conte	ent %	Piezor
GROUND SURFACE	ŭ	. .	E	REC	N OL		100.00	20	40 60	80	1
TOPSOIL	0.40					0-	100.30				
Grey-brown medium SAND	4.00					2- 3-	-99.30 -98.30 -97.30 96.30				Ţ
ILTY CLAY and of Test Pit Water infiltration @ 0.7m	4.30										
lepth)									40 60 Strength (bed △ Rer	80 100 kPa) noulded)

patersong 28 Concourse Gate, Unit 1, Ottawa		-		nsultir Jineer	R	errain Ar ipley Sul	alysis &	Hydroge - Stagec	ological	EST DAT	<u>~</u>
DATUM Grades interpolated ba	ased on to	pogra	aphic i	nform	ation	by others			FILE NO	^{o.} PH1276	;
REMARKS BORINGS BY Backhoe				-		7 Decem	h a z 2010		HOLEN	^{10.} TP18	
BORINGS BY DACKING			241	IPLE			ber 2010			llows/0.3m	
SOIL DESCRIPTION	A PLOT				Шо	DEPTH (m)	ELEV. (m)			ia. Cone	Piezometer
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD		0 V		Vater Co	ontent %	Piezol
GROUND SURFACE	oj.		24	RE	z °	0-	102.00	20	40	60 80	Ļ
TOPSOIL	0.60										
SAND with cobbles and poulders	L. <u>60</u>					1-	-101.00		· · · · · · · · · · · · · · · · · · ·		****
GLACIAL TILL: Silty clay with and, gravel, cobbles and boulders						2-	-100.00				
End of Test Pit	6. 10					3-	99.00				
TP dry upon completion)								20	40 6	0 80 10	

patersong	iroi		Co	nsultin	g	SO		OFILE A		ΟΑΤΑ
28 Concourse Gate, Unit 1, Ottaw		_	- En	gineers	Ri	pley Su	bdivisio	n - Stageco	ological Study bach Road	
DATUM Grades interpolated b	· · ·		aphic	informa			e reely), 6.	Ontario	FILE NO.	
REMARKS		-	-			-			PH	1276
BORINGS BY Backhoe				DA	TE 7	' Decem	ber 201	D	HOLE NO. TP	19
SOIL DESCRIPTION	PLOT		SA	MPLE		DEPTH	ELEV.	1	esist. Blows/0.	3m
SOIL DESCRIPTION	STRATA P.	E	BER	VERY	VALUE r ROD	(m)	(m)		0 mm Dia. Cone	zome struc
GROUND SURFACE	STR	ТУРЕ	NUMBER	RECOVERY	N VA of I			0 M 20	<pre>/ater Content % 40 60 80</pre>	C D S
TOPSOIL						0	100.00			,
	<u>0.30</u>									
SAND	0.70									
	0.70 									
						1-	-99.00			
GLACIAL TILL: Silty clay with sand, gravel, cobbles and										
boulders		i								
						2-	-98.00			
	2.60									
End of Test Pit										
Practical refusal on boulders @ 2.60m depth										
(TP dry upon completion)										
							i			
								20 Shear	40 60 80 Strength (kPa)	100

 \blacktriangle Undisturbed \triangle Remoulded

patersongr		Ir	Col	nsultir	ng	SOI	L PRO	OFILE A	ND TEST DAT	Ą
_		_	Eng	gineer				Hydrogeo n - Stageco	ological Study bach Road	
28 Concourse Gate, Unit 1, Ottawa, ON DATUM Grades interpolated based			aphic	inform	0	ttawa (G	reely), (FILE NO	
REMARKS		F-9-	1						PH1276	
BORINGS BY Backhoe				C	ATE	7 Decem	ber 2010)	HOLE NO. TP20	
	PLOT		SAN	MPLE		DEPTH	ELEV.	Pen. Re	esist. Blows/0.3m	55
SOIL DESCRIPTION			м	RY	Ľ۵	(m)	(m)	• 5	0 mm Dia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• N	ater Content %	Piezo
GROUND SURFACE	ŝ	_	F	RE	z ö	- 0	98.50	20	40 60 80	-0
TOPSOIL							00.00			
0.40									• • • • • • • • • • • • • • • • • • • •	
									•	Ţ
						 1-	97.50			
SAND										
						2-	96.50			
2.70 End of Test Pit										
(GWL @ 0.7m depth)										
							:			
									40 60 80 100 Strength (kPa))
								▲ Undistur		

DATUM Grades interpolated bas REMARKS BORINGS BY Backhoe SOIL DESCRIPTION GROUND SURFACE TOPSOIL 0.3 SAND 1.6 MARL 2.0 SAND with boulders 2.7 End of Test Pit GWL @ 1.6m depth)					R	errain Ar ipley Sul ttawa (G	bdivisio	n - Stageco	ological Study bach Road	Ά
BORINGS BY Backhoe SOIL DESCRIPTION GROUND SURFACE TOPSOIL 0.3 SAND 1.6 MARL 2.0 SAND with boulders End of Test Pit	ed on to	pogra	aphic	inform					FILE NO. PH1276	 ;
SOIL DESCRIPTION GROUND SURFACE TOPSOIL 0.3 SAND 1.6 MARL 2.0 SAND with boulders 2.7 End of Test Pit									HOLE NO. TP21	
GROUND SURFACE TOPSOIL 0.3 SAND 1.6 MARL 2.0 SAND with boulders 2.7 End of Test Pit 2.7					DATE	7 Decem	ber 2010			
TOPSOIL 0.3 SAND 1.6 MARL 2.0 SAND with boulders 2.7 End of Test Pit 2.7	PLOT		SAN	APLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	Piezometer
TOPSOIL 0.3 SAND 1.6 MARL 2.0 WAND with boulders MAND 2.7	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			• N	ater Content %	Piezon
0.3 SAND MARL1.6 MARL2.0 SAND with boulders 2.7 ind of Test Pit	S		z	Ë	¤ ⁰	0.	99.20	20	40 60 80	
SAND 1.6 MARL 2.0 SAND with boulders	20						99.20			
/IARL 2.0 SAND with boulders 2.7 End of Test Pit 2.7						1-	-98.20			
nd of Test Pit						2-	97.20			Ţ
	0									
								20	40 60 80 100	

patersongr	0	ır	Cor	nsultir	ng				ND TEST DAT	Α
28 Concourse Gate, Unit 1, Ottawa, C			e Eng	jineer	R	errain Ar ipley Sul ttawa (G	bdivisio	n - Stageco	ological Study bach Road	
DATUM Grades interpolated base	d on to	pogra	aphic	inform				Silano	FILE NO. PH1276	;
REMARKS									HOLE NO. TP22	
BORINGS BY Backhoe		<u> </u>			ATE	7 Decem	ber 201(
SOIL DESCRIPTION	PLOT			/IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	neter uction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or ROD			• v	Vater Content %	Piezometer Construction
GROUND SURFACE	s.		Z	RE	z °	- - 0-	99.40	20	40 60 80	
TOPSOIL	0_							·····		
SILTY CLAY with sand	0					1-	-98.40			¥
SILT with boulders						2-	-97.40			
3.50						3-	-96.40			
End of Test Pit	4.1.1.1									
(GWL @ 1.0m depth)								20	40 60 80 100	0
								Shear ▲ Undistu	Strength (kPa)	

	ig ^s Te
--	-----------------------

SOIL PROFILE AND TEST DATA

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely) Optario 28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATUM Grades interpolated ba	ased on to	pogra	aphic	inform		by others		mario	FILE NO. PH1276
REMARKS									
BORINGS BY Backhoe				D	ATE	7 Deceml	ber 2010		TP23
SOIL DESCRIPTION	TOIG		SAN	MPLE	1	DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	()	• V	esist. Blows/0.3m 0 mm Dia. Cone Vater Content %
GROUND SURFACE	02		24	RE	щ°	0-	-99.00	20	40 60 80
TOPSOIL	0.30								Σ
	0.50								
GLACIAL TILL: Silty sand with cobbles and boulders						2-	- 98.00 - 97.00 - 96.00		
End of Test Pit (GWL @ 0.2m depth)	3.50 <u>(^^^^</u>							20	
								20 Shea ▲ Undisti	r Strength (kPa)

natersonar		In	Cor	sultin	g	SOI		FILE A	ND TEST DAT	Ά
patersongr 28 Concourse Gate, Unit 1, Ottawa, ON			Eng	ineers	R	errain An ipley Suł ttawa (G	odivisio	n - Stageco	ological Study bach Road	
DATUM Grades interpolated based			phic i	nforma				Jilanu	FILE NO. PH1276	
REMARKS										
BORINGS BY Backhoe				D	ATE	7 Decem	ber 2010)	TP24	
SOIL DESCRIPTION	TOII		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	leter ction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or ROD		(,	• v	Vater Content %	Piezometer Construction
GROUND SURFACE	ŝ		E.	RE	z ö		99.70	20	40 60 80	
TOPSOIL 0.40 SILTY SAND 0.80						0	99.70	• • • • • • • • • • • • •		 ⊻
GLACIAL TILL: Slty sand with cobbles and boulders						1-	-98.70			· · · · · · · · · · · · · · · · · · ·
with cobbles and boulders							-97.70			•
<u>3.20</u> End of Test Pit										-
(GWL @ 0.7m depth)										
								20 Shea ▲ Undistu	r Strength (kPa)	00

patersongr		ir	Cor	nsultir	ng	SOI			ND TEST DAT	Α
28 Concourse Gate, Unit 1, Ottawa, ON			eng Eng	gineer	R	errain An ipley Sul ttawa (G	odivisio	n - Stagecoa	logical Study ach Road	
DATUM Grades interpolated based	l on to	pogra	aphic	inform					FILE NO. PH1276	 i
REMARKS										
BORINGS BY Backhoe				D	ATE	7 Decem	ber 2010	ן כ	TP25	
SOIL DESCRIPTION	PLOT		SAN	NPLE		DEPTH (m)	ELEV. (m)		sist. Blows/0.3m mm Dia. Cone	eter ction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or ROD	(,	(,	• Wa	ater Content %	Piezometer Construction
GROUND SURFACE	S		L F	REC	N C	0	101 00	20	40 60 80	щO
TOPSOIL 0.30						0-	-101.20			
SAND 3.00 End of Test Pit (GWL @ 0.5m depth)						2-	- 100.20 - 99.20 - 98.20			¥
									40 60 80 100 Strength (kPa) red △ Remoulded	D

natoreona	ro		Cor	nsultir	ng	SOI	L PRC	FILE A	ND TEST DAT	Α
patersong 28 Concourse Gate, Unit 1, Ottawa,		_	Eng	jineer	R	ipley Sub	odivisior	1 - Stageco	ological Study oach Road	
DATUM Grades interpolated bas			aphic i	inform		ttawa (Gi bv others		Ontario	FILE NO.	
REMARKS		-13-				,			PH1276	j
BORINGS BY Backhoe				D	ATE	17 Decen	nber 201	0	HOLE NO. TP26	
	Ę		SAN	/IPLE				Pen. R	esist. Blows/0.3m	
SOIL DESCRIPTION	PLOT			к	M	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia. Cone	mete
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			• V	Vater Content %	Piezometer Construction
GROUND SURFACE	L S	H	I NI	REC	N OL			20	40 60 80	٥Ū
TOPSOIL						- 0-	-98.90			
0	.35	_								
Brown SAND		G	1							
<u>0</u>	.80	-								
						1-	-97.90			
										Ţ
						2-	-96.90			
Light brown SAND		G	2							
		G	2							
						3	-95.90			
					, ,		33.30			
						:				
	.80 .00	-								
End of Test Pit	.00 ////	4				4-	94.90			
(GWL @ 1.8m depth)										
								²⁰ Shea	40 60 80 10 r Strength (kPa))0
								🔺 Undisti		

SOIL PROFILE AND TEST DATA

ngineers Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road

28 Concourse Gate, Unit 1, Ottawa, 0	ON K2E	7T7				ttawa (Gi	reely), C	ntario		
DATUM Grades interpolated base	ed on to	pogra	aphic	inform	ation	by others	•		FILE NO. PH1276	5
REMARKS								-	HOLE NO. TP27	
BORINGS BY Backhoe	<u> </u>	1		D	ATE	17 Decer	nber 201	0		
SOIL DESCRIPTION	PLOT		SAN	NPLE		DEPTH			sist. Blows/0.3m) mm Dia. Cone	eter ction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or ROD	(m)	(m)		ater Content %	Piezometer Construction
GROUND SURFACE	STE	F	NUN	RECO	N OR OF			20	40 60 80	۵Ö
						- 0-	102.80			, *
TOPSOIL	10									
Brown SAND		G	3							
						1-	-101.80			-
Light brown SAND						2-	-100.80			⊻
						3-	-99.80			• • • • • • • • • • • • • • • • • • • •
4.(00									
CLACIAL TILL Brown silty	20 <u>· · · · ·</u> 20 <u>· · · · ·</u> 20 <u>· · · · ·</u>					4-	-98.80	20	40 60 80 10	00
									Strength (kPa)	

SOIL PROFILE AND TEST DATA Terrain Analysis & Hydrogeological Study

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated bas	ed on to	pogra	aphic	inform	ation	by others			FILE NO	PH1276	5
REMARKS				_		47 Decem		0	HOLE NO	^{D.} TP28	
BORINGS BY Backhoe					ATE	17 Decer	nder 201				
SOIL DESCRIPTION	A PLOT		T	VIPLE	Но	DEPTH (m)	ELEV. (m)		esist. Bi 0 mm Di	ows/0.3m a. Cone	Piezometer Construction
r	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or ROD				Vater Co		Piezo Const
GROUND SURFACE				<u>щ</u>	4	0-	100.30	20	40 6	0 80	-
TOPSOIL0.	30										
						1-	-99.30				-
Brown SAND						2-	98.30				
						3-	-97.30				
End of Test Pit	80										-
(GWL @ 2.0m depth)								20	40 6		00
								Shea ▲ Undist	r Streng		

SOIL PROFILE AND TEST DATA Terrain Analysis & Hydrogeological Study

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated based	on to	pogra	aphic i	nform	ation	by others			FILE NO	^{o.} PH1276	
REMARKS									HOLE		
BORINGS BY Backhoe	1			D	ATE	17 Decen	nber 201	0			
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)			Blows/0.3m Jia. Cone	leter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)		• V	Vater Co	ontent %	Piezometer Construction
GROUND SURFACE	L2	н	N	REC	N N			20	40	60 80	
						- 0-	-102.30				
						1-	-101.30				¥
Brown SAND						2-	- 100.30				
						3-	-99.30				
4.00 Brown SILT 4.20 End of Test Pit (GWL @ 0.8m depth)						4-	-98.30				
								20 Shea ▲ Undist	r Stren	60 80 1 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road

28 Concourse Gate, Unit 1, Ottawa, C	N K2E	7T7				itawa (Gi		I - Stayect Ontario		ч	
DATUM Grades interpolated base	d on to	pogra	aphic	inform	ation	by others	•		FILE NO.	PH1276	
REMARKS									HOLE NO		
BORINGS BY Hand Auger				D	ATE	4 Octobe	r 2010			[″] AH 1	1
SOIL DESCRIPTION	гол		SA	MPLE		DEPTH			esist. Blo 0 mm Dia	ows/0.3m a. Cone	eter ction
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r ROD	(m)	(m)	0 N	Vater Con	itent %	Piezometer Construction
GROUND SURFACE	LS	F	DN	REC	N OL		00.15	20	40 60	0 80	щО
TOPSOIL (high humic content)	5					0-	-99.15				
						1-	-98.15				
Brown medium SAND											
						2-	-97.15				¥
2.30											
End of Auger Hole											
(GWL @ 2.12m depth)								20 Shea ▲ Undistu	40 60 r Strength írbed △ F		0

patersongr		ır	Co	nsultir	ng	SOI	L PRC	OFILE AND TEST DATA
28 Concourse Gate, Unit 1, Ottawa, C			- Eng	gineer	R	lipley Sub	odivisior	k Hydrogeological Study n - Stagecoach Road
DATUM Grades interpolated base			aphic	inform		ttawa (G by others		FILE NO. PH1276
REMARKS								
BORINGS BY Hand Auger		r		D	ATE	4 Octobe	r 2010	AH 2
SOIL DESCRIPTION	тола		SAM	MPLE		DEPTH		Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE or ROD	(m)	(m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content %
GROUND SURFACE	LS	E E	N	REC	N OF	1		20 40 60 80
TOPSOIL (high humic content)	5					- 0-	- 100.50	
Brown medium SAND, trace silt								
						1-	99.50	
End of Auger Hole	<u>):: .:</u>							
(GWL @ 1.3m depth)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr	0	Jr		nsulti	ng					ST DAT	Α
28 Concourse Gate, Unit 1, Ottawa, Of			Eng	gineer	Ri	ipley Sul	bdivision	Hydroged - Staged	ological S bach Roa	tudy d	
DATUM Grades interpolated based	l on to	pogra	aphic	inform		-	reely), C	Intario	FILE NO.		
REMARKS									HOLE NO	PH1276	
BORINGS BY Hand Auger		T			ATE	4 Octobe	r 2010		HOLE NO	AH 3	·
SOIL DESCRIPTION	PLOT		SAI	MPLE		DEPTH			esist. Blo 0 mm Dia		ter tion
	STRATA I	TYPE	NUMBER	% RECOVERY	VALUE SE ROD	(m)	(m)		later Con		Piezometer Construction
GROUND SURFACE	STE	Ţ	NUN.	RECO	N V		100.40	20	40 60		Ξ°Ω
TOPSOIL (high humic content)0.30							-100.10				
Brown medium SAND											
1.10						1-	-99.10				
End of Auger Hole	<u> </u>										Ā
(GWL @ 1.1m depth)								20 Shear	40 60 Strength	80 100 (kPa)	

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road

SOIL PROFILE AND TEST DATA

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Ottawa (Greely), Ontario

DATUM Grades interpolated base	ed on to	opogra	aphic	inform	ation	by others	i.				FI	LE N	0.	P	H12	276	
REMARKS											н	DLE	NO.		H		
BORINGS BY Hand Auger		1.		E	DATE	7 Decem	ber 2010)						A	. П 4	4	
SOIL DESCRIPTION	PLOT		SAI	MPLE	1	DEPTH (m)	ELEV. (m)		Pen •			st. I ım D				n	eter ction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD		(11)		0	w	ate	er C	ont	ent	%		Piezometer Construction
GROUND SURFACE	LS		NU	REC	N	0	98.50		2	0	40)	60		80		ш0
TOPSOIL						0	90.50										
0.2	25							-	 					 			
										•							
																	¥
SAND					:												_
						1-	97.50	-		++					++		
														• • •			
1.6																	
End of Auger Hole																	
(GWL @ 0.8m depth)																	
								· · ·	20		40		60 61		: : 80 22)	 10	0
									Sr Une			ren d 4			'a) uldeo	ł	

patersongr	01	ur		nsultiı gineer		errain Ar	nalysis &	Hydroged	ological S		Α
28 Concourse Gate, Unit 1, Ottawa, C					0	ttawa (G	reely), C	n - Stageco Ontario		1	
DATUM Grades interpolated base	d on to	pogra	aphic	inform	ation	by others	S.		FILE NO.	PH1276	I
REMARKS				_		7 Decer	hor 0040		HOLE NO.	AH 5	
BORINGS BY Hand Auger	-		0.44	MPLE	DATE	7 Decem			aniat Dia		
SOIL DESCRIPTION	TOIT 1				N -	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia.		Piezometer Construction
	STRATA	TYPE	NUMBER	& RECOVERY	N VALUE or RQD		:	0 N	Vater Cont	ent %	Piezo
GROUND SURFACE	S		Z	RE	¤ °	0	-98.00	20	40 60	80	
TOPSOIL 0.2 SAND						1-	-97.00				¥
End of Auger Hole (GWL @ 0.8m depth)								20 Shear ▲ Undistur	40 60 Strength	80 100 (kPa)	D

patersongroup	SOIL PROFILE AND TEST DATA
• • •	
28 Concourse Gate Unit 1 Ottawa ON K2E 7T7	Ripley Subdivision - Stagecoach Road

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7					R	Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario								
DATUM Grades interpolated based on topographic information by othe											5			
REMARKS									HOLE NO	·				
BORINGS BY Backhoe				D	ATE	28 Augus	st 2010			MW 1				
SOIL DESCRIPTION		SAMPLE			1	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			Piezometer Construction			
		TYPE	NUMBER	% RECOVERY	N VALUE or ROD		,	• V	Nater Content %					
GROUND SURFACE	STRATA		Z	RE	z °	- 0-	99.00	20	40 60	80				
TOPSOIL	.15					0	00.00							
Medium SAND , trace silt	20					1-	-98.00				<u> 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000</u>			
Brown SAND	00													
End of Monitoring Well						2⁼	-97.00							
(GWL @ 1.4m-Sept. 22/10)														
								20 Shea ▲ Undistu	40 60 r Strength urbed △ F	80 10 I (kPa) Remoulded	bo			

natereonar			Coi	nsultir	ng	SO		OFILE A	ND TE	ST DAT	Α
28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7 28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7											
DATUM Grades interpolated base			aphic	inform				Untario	FILE NO.	DUIAD	
REMARKS									HOLE NO	PH1276)
BORINGS BY Backhoe				C	ATE	28 Augus	st 2010		HOLE NO	[°] MW 2	
SOIL DESCRIPTION			SAN	NPLE		DEPTH ELEV.			esist. Blo 0 mm Dia	ows/0.3m	ter
	STRATA PLOT	E	BER	% RECOVERY	N VALUE or RQD	(m)	(m)				Piezometer Construction
	STR	LT.	TYPE NUMBER RECOVER N VALUE					ыщ С С Б			
GROUND SURFACE							99.25	20	40 60) 80	
Medium SAND, trace silt											s sindnanda na kanana sa
Brown SAND						1-	-98.25				
						2-	-97.25				
End of Monitoring Well											
(GWL @ 1.5m depth)								20	40 60	80 10	0
									Strength		
	1							💻 onaistu		ennonided	

patersongroup	SOIL PROFILE AND TEST DAT				
	Terrain Analysis & Hydrogeological Study				
28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7	Ripley Subdivision - Stagecoach Road				

28 Concourse Gate, Unit 1, Uttawa, ON K2E 717						0	Ottawa (Greely), Ontario						
DATUM (Grades interpolated ba	sed on to	pogra	aphic ii	nform	ation	by others	•		FILE NO.			
REMARKS										HOLE NO.			
BORINGS BY	Hand Auger		ł		D	ATE	29 Augus	t 2010					
SOIL DESCRIPTION	LOT	SAMPLE				DEPTH	ELEV.		esist. Blov				
	LA PL	63	ΞR	ŝRΥ	Ea	(m)	(m)	50 mm Dia.					

PH1276

MW 3

Blows/0.3m

SOIL DESCRIPTION	PLOT	SAMPLE		DEPTH		Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone		
SOIL DESCRIPTION		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content %
GROUND SURFACE	STRATA		DN	REC	N			20 40 60 80
						0-	99.20	
Red-brown SAND, trace silt								
0.50		_						
Brown SAND		-				1-	-98.20	
End of Monitoring Well								
(GWL @ 1.2m-Sept. 22/10)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

paterson	
----------	--

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

Terrain Analysis & Hydrogeological Study

28 Concourse Gate, Unit 1, Ottawa	a, ON K2E	7T7			Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario								
DATUM Grades interpolated b	ased on to	pogra	aphic	informa					FILE NO.	PH1276			
REMARKS BORINGS BY Backhoe				D	ΔTE	24 Nover	nber 20(09	HOLE NO. MW 4				
	PLOT		SAI	MPLE		DEPTH		Pen. R	esist. Blo		r D		
SOIL DESCRIPTION			ER	ERY	E G	(m)	(m)	• • •	50 mm Dia	. Cone	comete		
GROUND SURFACE	STRATA	туре	NUMBER	% RECOVERY	N VALUE or ROD	ло 10		0 V 20	Vater Con 40 60		Piezometer Construction		
						0-	99.40						
TOPSOIL Red-brown SAND, trace silt	<u>0.2</u> 0									•			
	0.50									• • • • • • • • • • • • • • • • • • • •			
										• • • • • • • • • • • • • • • • • • • •			
											IIIIIII IIIIIIII		
						1-	-98.40						
		i											
Brown SAND													
					ĺ	2	97.40						
						2	97.40						
2	.00												
End of Monitoring Well	<u></u>					3-	96.40				<u></u>		
(GWL @ 0.9m-Sept. 22/10)													
		ļ											
								20 Shear	40 60 Strength	80 100 (kPa)			

SOIL PROFILE AND TEST DATA Terrain Analysis & Hydrogeological Study

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated b	based of	n to	pogra	iphic i	nform	ation I				FILE	E NO.	PH	1276	
REMARKS					_			ah ar 200	0	HOL	E NO.	M	N 5	
BORINGS BY Backhoe SOIL DESCRIPTION		PLOT		SAN	/IPLE		24 Noven DEPTH	ELEV.	Pen. R		. Blo n Dia.	ws/0	.3m	tion
SOIL DESCRIPTION		STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			Cont			Piezometer Construction
GROUND SURFACE		E S	H	NN	REC	N OL V	0-	-102.30	20	40	60	8	0	
TOPSOIL	0.20						0	102.30						
Red-brown SAND , trace silt	0.50			• •							·····			ततित्तित्तित्तित्ति
							1-	- 101.30						25 የተኛሪቸውን በዓንባ በማስቀሳበት በማስሰብ አስባት የሚያስት በማስቀሳበት በማስቀሳበት በ 25 በሚሰር በተሰለቀስ በማስቀሳበት በማስቀሳበት በማስቀሳበት በበት በማስቀሳበት በማስቀሳበት በ
Brown SAND							2-	- 100.30		· · · · · · · · · · · · · · · · · · ·				
	3.00						2	-99.30						
End of Monitoring Well							5	55.50						
(GWL @ 0.7m depth)									20 Shea ▲ Undistr			8 (kPa	a)	00

SOIL PROFILE AND TEST DATA

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated based on topographic information by others. FILE NO. PH1276											
REMARKS BORINGS BY Backhoe				r		24 Nover	nher 200	9	HOLE N	^{o.} MW 6	
SOIL DESCRIPTION	TA PLOT			MPLE		DEPTH (m)		Pen. R		lows/0.3m ia. Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or ROD			0 W 20		ntent % 60 80	Piez
GROUND SURFACE						0-	-102.40				
Red-brown SAND, trace silt	0.20 0.50							·····	•••••		
						1-	- 101.40				<u>ะ รู้ได้เกิดสินให้สี่ยังคำเป็นในให้เป็นให้เป็นให้สี่มีสี่ยังค</u> าย []]
Brown SAND											
						2-	100.40				
	<u>3.00</u>					3-	99.40				
End of Monitoring Well (GWL @ 3.0m-Sept. 22/10)											
										0 80 1 th (kPa) Remoulded	00

Terrain Analysis & Hydrogeological Study Ripley Subdivision - Stagecoach Road

SOIL PROFILE AND TEST DATA

SOIL DESCRIPTION SOIL DESCRIPTION COPSOIL 0.20 Red-brown SAND, trace silt 0.50	PLOT			D	ATE (ł	IOLE	NO		112		
SOIL DESCRIPTION SROUND SURFACE OPSOIL 0.20 Red-brown SAND, trace silt 0.50	PLOT			D									M	IW '	7	
SROUND SURFACE OPSOIL 0.20 Red-brown SAND, trace silt 0.50	PLOT					24 Noven	nber 2009					-				
SROUND SURFACE OPSOIL 0.20 Red-brown SAND, trace silt 0.50			SAN	IPLE		DEPTH (m)	ELEV. (m)	F		Res				0.3m ne		Piezometer Construction
OPSOIL 0.20	STRATA	ΡE	BER	overy •	N VALUE or RQD	(111)	(111)			14/				0/	_	ezom nstru
OPSOIL 0.20	STR	TYPE	NUMBER	NECOVERY	N V3				0 20		ter (40	on. 60	tent	% 80		٥
Red-brown SAND , trace silt						0-	-100.90									
<u>0.5</u> C) 															
								,								
) 															n hindra Table ta
																n na serie e s En serie e serie
						1-	-99.90									annan a
																III III III III III
Brown SAND																
						2-	-98.90									
														• • • • • •		
									<u>.</u>							
3.00						2_	-97.90									
nd of Monitoring Well						5	51,50									
GWL @ 1.4m-Sept. 22/10)																
				1				1 : :	: 1	: : :	1 : :	: 1	:::	1::	ΞĒ	
									20		10	60		80	10	

SOIL PROFILE AND TEST DATA Terrain Analysis & Hydrogeological Study

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Ripley Subdivision - Stagecoach Road Ottawa (Greely), Ontario

DATUM Grades interpolated based on topographic information by others. FILE NO. PH1276												
REMARKS				-		24 Novor	nhor 200	0	HOL	E NO.	MW 8	
BORINGS BY Backhoe	I		SAI	MPLE		24 Nover		Pen. R	esist.			
SOIL DESCRIPTION	A PLOT		æ	RY	Що	DEPTH (m)	ELEV. (m)	• 5	0 mm	n Dia. C	one	mete
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			• v	Vater	Conte	nt %	Piezometer Construction
GROUND SURFACE			24	R	R A	0-	103.70	20	40	60 · · · · · ·	80	
TOPSOIL0.2	0											
Red-brown SAND, trace silt	0											្លុះជាក់ជាក់ទៅក្នុងទំនាក់ប្រាក់ជាក់ទោកក្នុងទៅក្នុងទៅក្នុងទៅក្នុងទៅក្នុងទាក់ក្រុង 111
<u>U</u> .										÷		<u> </u> ▲
										*		ուրդուր անցեր
						1-	-102.70					րիրիի ներեր
												լիրիրի հերրի
					1							
Brown SAND												
									•			
						2-	-101.70					
<u>3.0</u>	0					3-	-100.70					
End of Monitoring Well							100.10					
(GWL @ 0.6m depth)												
								20	40	60		00
					-			Shea		ength (I ∆ Ren	k Pa) noulded	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %				
Very Loose	<4	<15				
Loose	4-10	15-35				
Compact	10-30	35-65				
Dense	30-50	65-85				
Very Dense	>50	>85				

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value			
Very Soft	<12	<2			
Soft	12-25	2-4			
Firm	25-50	4-8			
Stiff	50-100	8-15			
Very Stiff	100-200	15-30			
Hard	>200	>30			

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth			
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample			
Ccr	-	Recompression index (in effect at pressures below p'c)			
Cc	-	Compression index (in effect at pressures above p'_c)			
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o			
Void Ratio		Initial sample void ratio = volume of voids / volume of solids			
Wo	-	Initial water content (at start of consolidation test)			

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

6	Ρ	A	R	A	С	Ε	L
					ES		

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58528

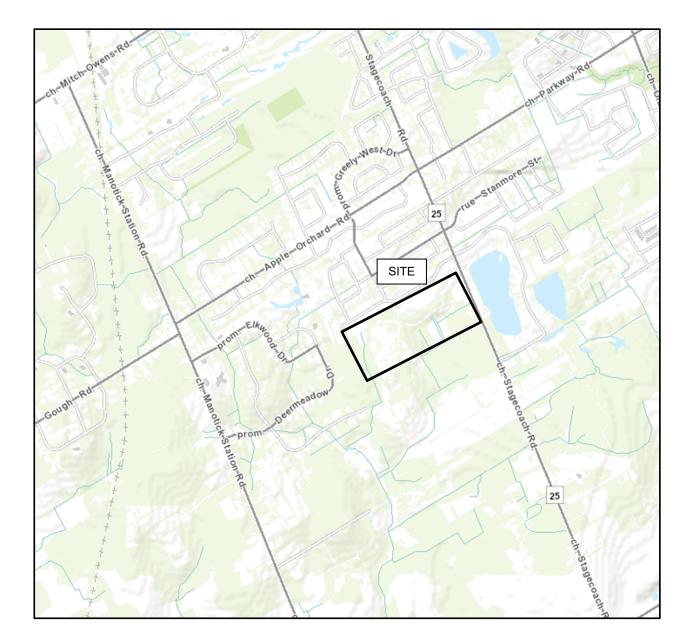
Order #: 2340432

Report Date: 12-Oct-2023 Order Date: 5-Oct-2023

Project Description: PG6871

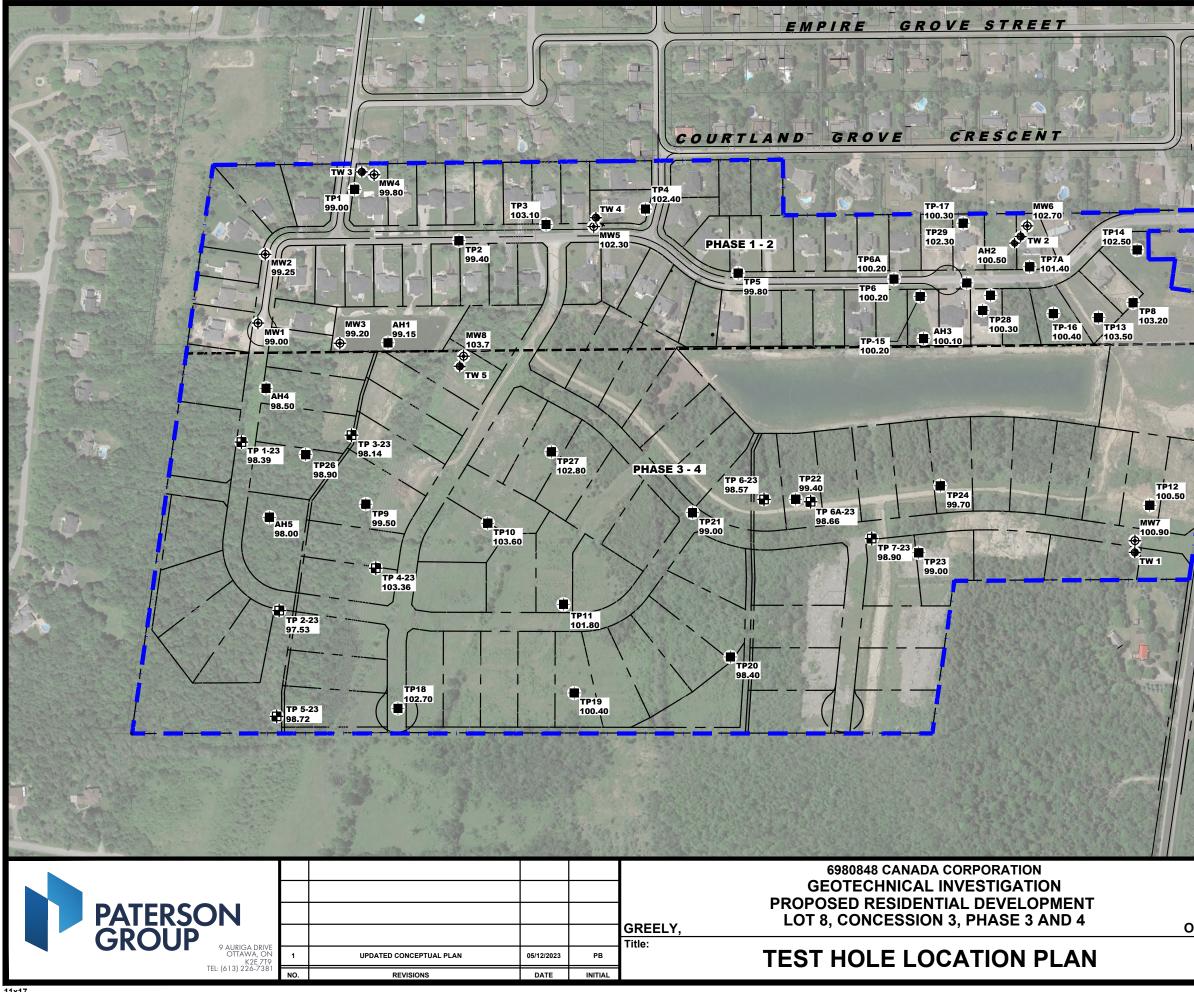
Client ID:	TP6-23, G4	-	-	-		
Sample Date:	05-Oct-23 09:00	-	-	-	-	-
Sample ID:	2340432-01	-	-	-		
Matrix:	Soil	-	-	-		
MDL/Units						
•			•			
0.1 % by Wt.	81.7	-	-	-	-	-
0.05 pH Units	7.49	-	-	-	-	-
0.1 Ohm.m	31.5	-	-	-	-	-
			•		•	
10 ug/g	12	-	-	-	-	-
10 ug/g	153	-	-	-	-	-
	Sample Date: Sample ID: Matrix: MDL/Units 0.1 % by Wt. 0.05 pH Units 0.1 Ohm.m 10 ug/g	Sample Date: 05-Oct-23 09:00 Sample ID: 03-Oct-23 09:00 Matrix: Soil MDL/Units Soil 0.1 % by Wt. 81.7 0.05 pH Units 7.49 0.1 Ohm.m 31.5 10 ug/g 12	Sample Date: 05-Oct-23 09:00 - Sample ID: 2340432-01 - Matrix: Soil - MDL/Units - - 0.1 % by Wt. 81.7 - 0.05 pH Units 7.49 - 0.1 Ohm.m 31.5 - 10 ug/g 12 -	Sample Date: 05-Oct-23 09:00 - </td <td>Sample Date: 05-Oct-23 09:00 -<!--</td--><td>Sample Date: 05-Oct-23 09:00 -<!--</td--></td></td>	Sample Date: 05-Oct-23 09:00 - </td <td>Sample Date: 05-Oct-23 09:00 -<!--</td--></td>	Sample Date: 05-Oct-23 09:00 - </td

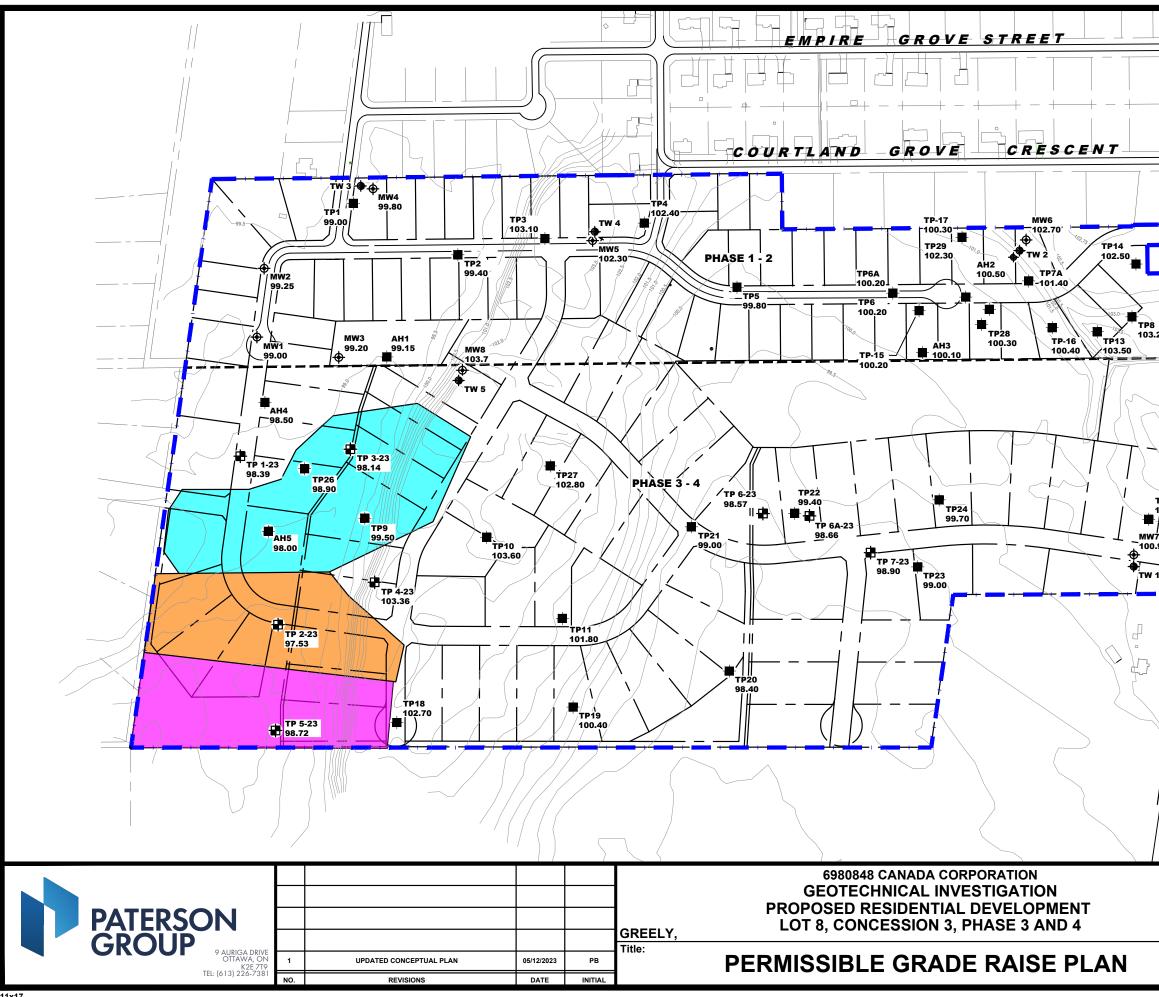
OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL


1-800-749-1947 • www.paracellabs.com

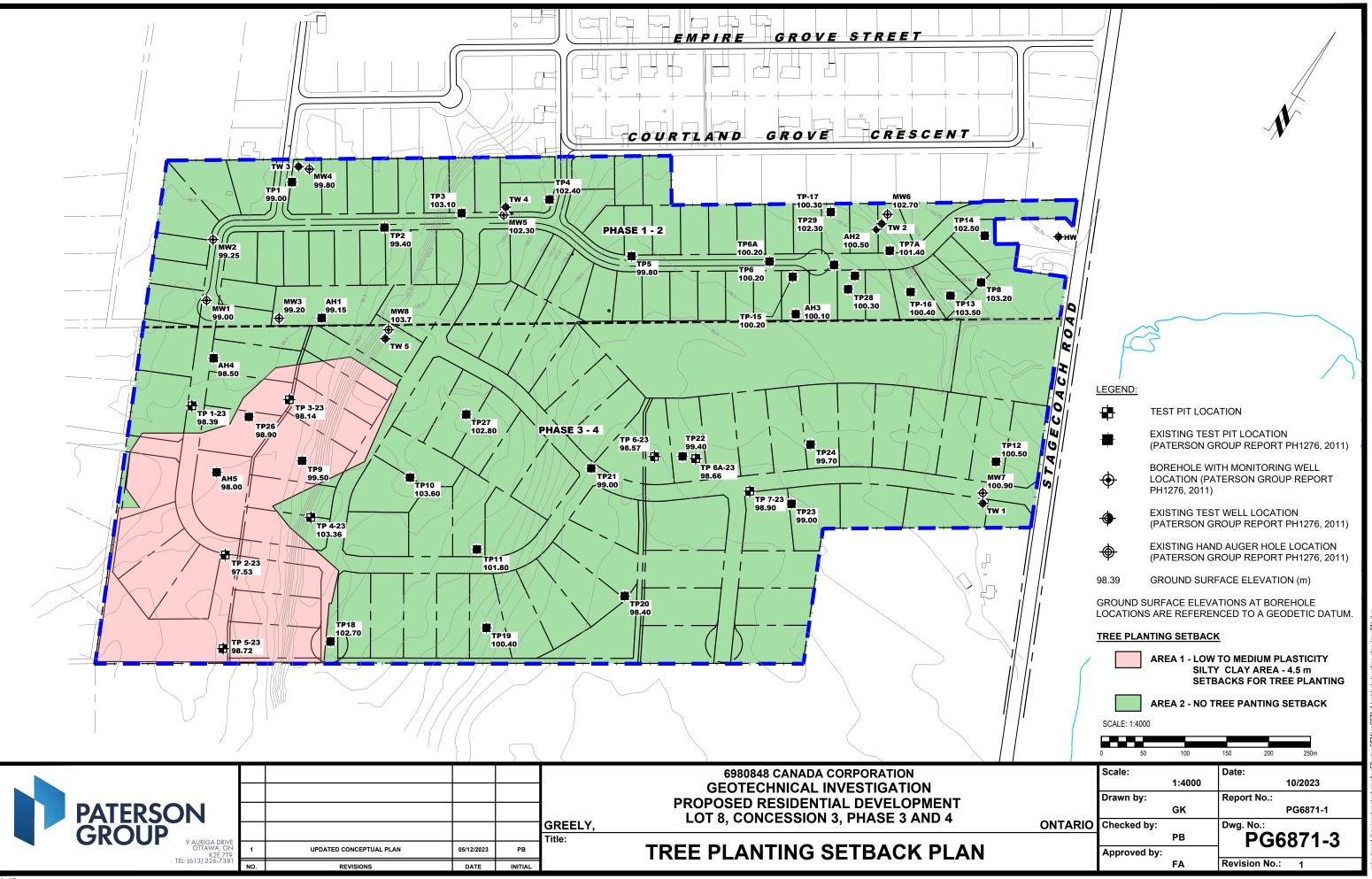
Page 3 of 8

APPENDIX 2


FIGURE 1 – KEY PLAN DRAWING PG6871-1 – TEST HOLE LOCATION PLAN DRAWING PG6871-2 – PERMISSIBLE GRADE RAISE PLAN DRAWING PG6871-3 – TREE PLANTING SETBACK PLAN


FIGURE 1

KEY PLAN



120.000		Milling!		the stat	
1313			12	6 9 ³ 19 19	
		ALL ALL ALL	30.03		- Carl
	1.08	RILO	BRRE	39.01	1
Hw					
TP3	10000				0 12 1
	-		122.34	80 0 ·	
	te design	1	-	211	
101					
	2.20				
V					
	LEGEND:				
	₽	TEST PIT LOC			
	-	EXISTING TES (PATERSON G		ON RT PH1276, 20	11)
	÷	BOREHOLE W LOCATION (PA PH1276, 2011)	ATERSON GR		
	+	EXISTING TES			
1 2 3	•			RT PH1276, 20	11)
13.3	\			DLE LOCATION RT PH1276, 20	
	98.39	GROUND SUR	RFACE ELEVA	TION (m)	
		SURFACE ELEV S ARE REFERE			ŪΜ
	SCALE: 1:4000				
1	0 50	100	150 200	250m	
	Scale:	1:4000	Date:	10/2023	
	Drawn by:	GK	Report No.:	PG6871-1	
ONTARIO	Checked by	y: PB	Dwg. No.:	6871-1	
	Approved b		Revision No.		
		FA	1.64131011 140.		

	LEGEND:			
		EST PIT LOCA	TION	
тр12 U		XISTING TEST PATERSON GF		N F PH1276, 2011)
	BC LC	OREHOLE WIT OCATION (PAT H1276, 2011)	TH MONITORI	NG WELL
		XISTING TEST PATERSON GF		TION T PH1276, 2011)
	-44111	XISTING HANI PATERSON GF		E LOCATION
<i>i</i> i	98.39 G	ROUND SURF	ACE ELEVAT	ON (m)
		RFACE ELEVA		
	PERMISSIBLE	GRADE RAIS	<u>SE</u>	
		UP TO 2.0) m	
		UP TO 2.2	2 m	
<i>I</i>		UP TO 2.5	5 m	
	SCALE: 1:4000		_	,
	0 50	100	150 200	250m
	Scale:	1:4000	Date:	10/2023
	Drawn by:	GK	Report No.:	PG6871-1
ONTARIO		PB	Dwg. No.: PG	ODETIC DATUM. 250m 10/2023 PG6871-1 6871-2 : 1
	Approved by	/: FA	Revision No.	: 1

