

Transportation Impact Assessment – Step 4: Analysis

CRT Phase 4

IBI

Prepared for CRT Development Inc. by IBI Group May 6, 2022

TIA Plan Reports - Certification

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of developmentrelated transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associate documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below:

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- I am either a licensed¹ or registered¹ professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering □ or transportation planning □.

¹ License or registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa this 6th day of May, 2022. (City)

Name: David Hook, P.Eng.

Professional Title: Project Engineer

Signature of Individual certifier that she/he meets the above four criteria

Office Contact Information (Please Print)
Address: 400-333 Preston Street
City / Postal Code: K1S 5N4
Telephone / Extension: 613-225-1311 ext. 64074
E-Mail Address: ben.pascolo-neveu@ibigroup.com

Stamp

Document Control Page

CLIENT:	CRT Development Inc.
PROJECT NAME:	CRT Phase 4
REPORT TITLE:	Transportation Impact Assessment
IBI REFERENCE:	136944
VERSION:	Draft
DIGITAL MASTER:	136944 CRT Lands Phase 4 - Internal Documents\6.0_Technical\ 6.23_Traffic\03_Reports\TTR_crt_ph4_TIA_MASTER_2021-12-13.docx
ORIGINATOR:	Isabel Loewen
REVIEWER:	David Hook/Ben Pascolo-Neveu
AUTHORIZATION:	David Hook
CIRCULATION LIST:	Patrick McMahon - City of Ottawa Transportation Project Manager
HISTORY:	TIA Step 1 Submitted for City Review – December 9, 2021 TIA Step 2 Submitted for City Review – January 17, 2022 TIA Step 3 Submitted for City Review – February 8, 2022 TIA Step 4 Submitted for City Review – May 6, 2022

Executive Summary

IBI Group (IBI) was retained by CRT Development Inc. to undertake a Transportation Impact Assessment (TIA) in support of a Draft Plan of Subdivision application for the proposed CRT Phase 4 "Westwood" residential development to be located at 1555 Shea Road and 5500 Abbott Street East, Ottawa. Access to the site will be provided via two new all-movement intersections, including direct connections from Abbott Street East and Shea Road, as well as internally through CRT Phases 1 to 3 via the Fernbank & Goldhawk intersection to the south and the Robert Grant & Cope roundabout to the east.

The proposed development will consist of 286 single-family homes, 270 street townhomes and 54 back-toback townhomes for a total of 610 residential dwelling units. The proposed CRT Phase 4 development is anticipated to be constructed in a single phase, with full occupancy of the development by end of 2025. A horizon year of 2030 was, therefore, assumed in this study. There are twelve known developments of significance in the vicinity of the proposed development that were considered in the analysis for this TIA.

Based on the traffic analysis results in this study, the proposed residential development is expected to generate up to 480 and 517 two-way person-trips during the weekday morning and afternoon peak hours, respectively. These person-trips were assigned mode share targets and trip distributions, consistent with the Kanata/Stittsville Traffic Assessment Zone (TAZ) in the 2011 O-D Survey with further adjustments to account for the slightly substandard transit coverage. The resulting two-way vehicular trip generation is, therefore, 253 and 276 vehicles during the weekday morning and afternoon peak hours, respectively.

As indicated by the analysis conducted for this study, all study area intersections are expected to operate at an acceptable level of service (i.e. LOS 'D' or better) during the weekday peak hours under Future (2025) Total Traffic conditions. By 2030, the Fernbank & Goldhawk intersection may approach its theoretical capacity as an unsignalized intersection due to increased through traffic on Fernbank Road, however this condition is expected to be resolved once the Cope Drive extension to Shea Road is implemented as part of subsequent phases of CRT Lands west of the hydro corridor. Given that these capacity issues are not exacerbated by or a direct consequence of the proposed development and that there is sufficient spare capacity at the key study area intersections to accommodate site-generated vehicular traffic upon full build-out, it can be concluded that the Cope Drive extension is required as a long-term solution to support increased background traffic growth in the area.

An all-way stop warrant analysis conducted for the Cope & Goldhawk intersection indicated that the intersection would operate at an acceptable Level of Service as a two-way stop-controlled intersection, but would ultimately require configuration as an all-way stop-controlled intersection upon the extension of Cope Drive to Shea Road. As a central junction within the proposed subdivision lands, this form of traffic control will also facilitate increased pedestrian mobility and access to City facilities, including potential bus stop locations, as well as a park and school block identified on the Draft Plan adjacent to this intersection.

Based on the queue length analysis conducted for the Fernbank & Goldhawk intersection, the design components proposed within the RMA Materials submitted as part of the CRT Phase 3 study would experience some potential exceedance. This queuing issue, however, has been shown to be resolved with the planned extension of Cope Drive to provide an alternative east-west travel option for vehicles and therefore no revisions are required to the functional design of this intersection.

A segment-based multi-modal analysis of identified deficiencies in the site's boundary streets and potential remediation measures have been suggested which the City could consider to meet the prescribed targets, however it is not expected that such measures would be addressed within the horizon year of this study.

The proposed Abbott Street East & Granite Ridge intersection requires off-site road modifications to incorporate the Bobolink Ridge extension and allow for its conversion from a 3-legged to 4-legged junction. As such, an RMA Materials (i.e. functional design and preliminary cost estimate) was prepared to support

the redesign of this intersection to include Bobolink as its southern leg. Since all study area intersections are expected to operate acceptably with the inclusion of site-generated traffic at full build-out/occupancy of the proposed development, a post-development Monitoring Plan is <u>not</u> required as part of this TIA.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

Table of Contents

1	Introdu	uction		7
2	TIA Sc	reening]	8
3	Project	t Scopi	ng	8
	3.1	Descri	ption of Proposed Development	8
		3.1.1	Site Location	8
		3.1.2	Land Use Details	10
		3.1.3	Development Phasing & Date of Occupancy	10
	3.2	Existin	g Conditions	12
		3.2.1	Existing Road Network	12
		3.2.2	Existing Bicycle and Pedestrian Facilities	14
		3.2.3	Existing Transit Facilities and Service	14
		3.2.4	Collision History	15
	3.3	Planne	ed Conditions	16
		3.3.1	Transportation Network	16
		3.3.2	Future Adjacent Developments	19
		3.3.3	Network Concept Screenline	22
	3.4	Study /	Area	22
	3.5	Time F	Periods	23
	3.6	Existin	g Lane Configurations & Traffic Volumes	23
		3.6.1	Existing Lane Configurations	23
		3.6.2	Existing Traffic Volumes	23
	3.7	Analys	is Years	26
	3.8	Exemp	tions Review	26
4	Foreca	sting		27
	4.1	Develo	opment Generated Traffic	27
		4.1.1	Trip Generation Methodology	27
		4.1.2	Trip Generation Results	27

	4.1.3	Trip Distribution and Assignment	30
4.2	Backg	round Network Traffic	32
	4.2.1	Changes to the Background Transportation Network	32
	4.2.2	General Background Growth Rates	32
	4.2.3	Other Area Development	32
4.3	Dema	nd Rationalization	32
	4.3.1	Description of Capacity Issues	32
	4.3.2	Adjustment to Development Generated Demands	33
	4.3.3	Adjustment to Background Network Demands	33
4.4	Traffic	Volume Summary	34
	4.4.1	Future Background Traffic Volumes	34
	4.4.2	Future Total Traffic Volumes	34
Analy	/sis		39
5.1	Develo	opment Design	39
	5.1.1	Design for Sustainable Modes	39
	5.1.2	Circulation and Access	41
	5.1.3	New Street Networks	41
5.2	Parkin	ıg	41
5.3	Bound	lary Streets	43
	5.3.1	Mobility	43
	5.3.2	Road Safety	44
5.4	Acces	s Intersections	45
	5.4.1	Location and Design of Access	45
	5.4.2	Intersection Control	45
	5.4.3	Access Intersection-Based MMLOS	47
5.5	Transp	portation Demand Management (TDM)	47
	5.5.1	Context for TDM	47
	5.5.2	Need and Opportunity	47
	5.5.3	TDM Program	47

5

5.6	Neighb	ourhood Traffic Management	48
	5.6.1	Adjacent Neighbourhoods	48
5.7	Transit		48
	5.7.1	Route Capacity	48
	5.7.2	Transit Priority Measures	49
5.8	Review	of Network Concept	49
5.9	Interse	ction Design	49
	5.9.1	Intersection Control	49
	5.9.2	Intersection Analysis Criteria (Automobile)	50
	5.9.3	Intersection Capacity Analysis	51
	5.9.4	Intersection-Based MMLOS	56
5.10	Geome	tric Review	56
	5.10.1	Sight Distance and Corner Clearances	56
	5.10.2	Auxiliary Lane Analysis	56
5.11	Summa	ary of Recommended Improvements	58
	5.11.1	Abbott Street East & Granite Ridge Drive/Bobolink Ridge	58
	5.11.2	Abbott Street East & Shea Road	58
	5.11.3	Robert Grant Avenue & Cope Drive	58
	5.11.4	Fernbank Road & Goldhawk Drive (future intersection)	58
	5.11.5	Fernbank & Shea Road	59
	5.11.6	Shea Road & Street 12	59
	5.11.7	Cope & Goldhawk	59
	5.11.8	Goldhawk & Bobolink	59
Conclu	icion		60
CONCIU			00

6

List of Tables

Table 1 - Land Use Statistics	. 10
Table 2 – Reported Collisions within Vicinity of Proposed Development	. 15
Table 3 - Future Adjacent Developments	. 20
Table 4 - Exemptions Review	. 26
Table 5 – Peak Period Person-Trip Generation Results	. 27
Table 6 – Existing Mode Share & Proposed Mode Share Targets	. 28
Table 7 – Peak Period Person-Trips by Mode	. 29
Table 8 – Peak Hour Person-Trips by Mode	. 29
Table 9 – Segment-based MMLOS	. 43
Table 10 - Detailed Collision Analysis	. 44
Table 11 – AWSC Warrant Analysis Results	. 46
Table 12 - Livability Threshold Review	. 48
Table 13 - 2030 Development Generated Transit Demand	. 49
Table 14 - LOS Criteria for Unsignalized Intersections & Roundabouts	. 50
Table 15 - Intersection Capacity Analysis: Existing (2022) Traffic	. 51
Table 16 - Intersection Capacity Analysis: Future (2025) Background Traffic	. 52
Table 17 - Intersection Capacity Analysis: Future (2030) Background Traffic	. 53
Table 18 - Intersection Capacity Analysis: Future (2025) Total Traffic	. 54
Table 19 - Intersection Capacity Analysis: Future (2030) Total Traffic	. 55
Table 20 - Auxiliary Left-Turn Storage Analysis at Unsignalized Intersections	. 57

List of Figures

Figure 1 - Existing Transit Service	15
Figure 2 - Future Road Network Projects	16
Figure 3 - Fernbank Community Design Plan - Network Concept	17
Figure 4 - Future 'Affordable RTTP Network Projects'	18
Figure 5 – Future 'RTTP Network Concept'	19

List of Exhibits

Exhibit 1 – Site Location	9
Exhibit 2 – Proposed Development	11
Exhibit 3 – Adjacent Developments	21
Exhibit 4 – Existing (2022) Lane Configurations and Intersection Controls	24
Exhibit 5 – Existing (2022) Traffic	25
Exhibit 6 – Site Generated Traffic	31
Exhibit 7 – Future (2025) Background Traffic	35
Exhibit 8 – Future (2030) Background Traffic	36
Exhibit 9 – Future (2025) Total Traffic	37
Exhibit 10 – Future (2030) Total Traffic	38
Exhibit 11 – Proposed Mobility Plan	40
Exhibit 12 – Proposed Traffic Calming Plan	42

List of Appendices

- Appendix A City Circulation Comments
- Appendix B Screening Form
- Appendix C OC Transpo Routes
- Appendix D Collision Data
- Appendix E Traffic Count Data
- Appendix F Trip Generation Data
- Appendix G MMLOS Analyses
- Appendix H Intersection Control Warrants
- Appendix I Transportation Demand Management
- Appendix J Intersection Capacity Analyses
- Appendix K Auxiliary Lane Analyses
- Appendix L RMA Materials

1 Introduction

IBI Group (IBI) was retained by CRT Development Inc. to undertake a Transportation Impact Assessment (TIA) in support of a Draft Plan of Subdivision application for the proposed CRT Phase 4 "Westwood" residential development to be located at 1555 Shea Road and 5500 Abbott Street East, Ottawa.

In accordance with the City of Ottawa's Transportation Impact Assessment Guidelines, published in June 2017, the following report is divided into four major components:

- Screening Prior to the commencement of a TIA, an initial assessment of the proposed development is undertaken to establish the need for a comprehensive review of the site based on three triggers: Trip Generation, Location and Safety.
- **Scoping** This component of the TIA report describes both the existing and planned conditions in the vicinity of the development and defines study parameters such as the study area, analysis periods and analysis years of the development. It also provides an opportunity to identify any scope exemptions that would eliminate elements of scope described in the TIA Guidelines that are not relevant to the development proposal, based on consultation with City staff.
- **Forecasting** The Forecasting component of the TIA is intended to review both the development-generated travel demand and the background network travel demand and provides an opportunity to rationalize this demand to ensure projections are within the capacity constraints of the transportation network.
- Analysis This component documents the results of any analyses undertaken to ensure that the transportation related features of the proposed development are in conformance with prescribed technical standards and that its impacts on the transportation network are both sustainable and effectively managed. It also identifies a development strategy to ensure that what is being proposed is aligned with the City of Ottawa's city-building objectives, targets and policies.

Throughout the development of a TIA report, each of the four study components above are submitted in draft form to the City of Ottawa and undergo a review by a designated Transportation Project Manager. Any comments received are addressed to the satisfaction of the City's Transportation Project Manager before proceeding with subsequent components of the study. All technical comments and responses throughout this process are included in **Appendix A**.

Dependent on the findings of this report, the complete submission of this Transportation Impact Assessment may also require Functional Design Drawings of recommended roadway improvements to support a Roadway Modification Application (RMA). This submission may also require a post-development Monitoring Plan to track performance of the planned TIA Strategy. The need for these two elements will be confirmed through the analysis undertaken for this report.

2 TIA Screening

An initial screening was completed to confirm the need for a Transportation Impact Assessment by reviewing the following three triggers:

- **Trip Generation**: Based on the proposed number of residential dwelling units, the minimum development size threshold has been exceeded and therefore the Trip Generation trigger is satisfied.
- **Location**: The proposed development's internal road network includes the Cope Drive extension, a major collector, which is designated as part of the Spine Bicycle network and will bisect the subject lands. As such, the Location trigger is satisfied.
- **Safety**: Boundary street conditions were reviewed to determine if there is an elevated potential for safety concerns adjacent the site. As the subject development proposes an access intersection within a horizontal curve on Shea Road and less than 300 metres from the Fernbank & Shea roundabout, there may be potential for safety concerns. As such, the Safety trigger is satisfied.

As the proposed development meets the Trip Generation, Location and Safety triggers, the need to undertake a Transportation Impact Assessment is confirmed.

A copy of the Screening Form is provided in Appendix B.

3 Project Scoping

3.1 Description of Proposed Development

3.1.1 Site Location

The proposed development is located at 1555 Shea Road and 5500 Abbott Street East in the Stittsville community of Ottawa, Ontario. The site occupies approximately 37 hectares and is generally bound by Abbott Street to the north, Phases 1-3 of the CRT Westwood subdivision (under construction) to the east, Fernbank Road to the south and a hydro corridor to the west.

The site location and its surrounding context is illustrated in **Exhibit 1**.

CRT Phase 4 Transportation Impact Assessment

Β

Exhibit 1: Site Location PROJECT No. SCALE: 136944

3.1.2 Land Use Details

Table 1 below summarizes the proposed land uses included in this development.

Table 1 - Land Use Statistics

LAND USE	SIZE (APPROX. # OF UNITS)
Single-Family Homes	286
Street Townhomes	270
Back-to-Back Townhomes	54
Total	610

The Draft Plan of Subdivision for the proposed development is illustrated in **Exhibit 2** below.

Direct access to the site will be provided via two external all-movement connections: one on Shea Road and one on Abbott Street East. Five internal intersections will also connect the proposed development to CRT Phases 1 to 3 which will be constructed immediately to the east. The functional need for the extension of Cope Drive to Shea Road to accommodate the travel demands of the proposed Phase 4 development will be assessed as part of this study.

The subject site is currently an undeveloped greenfield site and, according to GeoOttawa, is zoned DR – Development Reserve.

3.1.3 Development Phasing & Date of Occupancy

The proposed CRT Phase 4 development is anticipated to be built out and occupied in a single phase by the end of 2025.

3.2 Existing Conditions

3.2.1 Existing Road Network

3.2.1.1 Roadways

The proposed development is bound by the following streets:

- **Fernbank Road** is a rural arterial road under the jurisdiction of the City of Ottawa that extends from Dwyer Hill Road in the west to Eagleson Road in the east. Fernbank Road currently has a 26.0m Right-of-Way (ROW) through the context area and a ROW protection of 37.5m. It presently consists of a two-lane cross-section with paved shoulders and a posted speed limit of 80km/h that becomes 60km/h on the westbound approach to the Shea Road. West of the Shea Road roundabout, the posted speed limit is further reduced to 40km/h.
- Abbott Street East is a major collector road under the jurisdiction of the City of Ottawa that extends from Stittsville Main Street in the west to Terry Fox Drive in the east. The existing cross-section of Abbott Street E is two lanes, undivided and the posted speed limit is 40km/h during school days between 7-9:30 AM and 2-5 PM within the school zones in close proximity to the site and 50km/h otherwise. Abbott Street E currently has a ROW of 20.0m and a ROW protection of 26m.
- Shea Road is a rural collector road under the jurisdiction of the City of Ottawa that currently extends from Abbott Street East in the north to Perth Street in the south. Shea Road has a 20.0m ROW with a two-lane cross-section and a posted speed limit of 60 km/h that transitions to 50km/h approximately 400m south of Abbott Street E to its northern terminus.
- **Robert Grant Avenue** is an urban arterial road under the jurisdiction of the City of Ottawa that currently extends from Abbott Street East in the north to Fernbank Road in the south. Robert Grant Avenue has a variable-width ROW up to 51.5m (ROW protection 44.5m) with a two-lane, undivided cross-section and a posted speed limit of 60 km/h.

Other streets within the vicinity of the proposed development are as follows:

- **Cope Drive** is a major collector road under the jurisdiction of the City of Ottawa that currently extends from Eagleson Road to approximately 700m west of Robert Grant Avenue. It has a 26.0m ROW, a two-lane urban cross-section and an unposted speed limit of 50 km/h.
- **Bobolink Ridge** is a local road under the jurisdiction of the City of Ottawa that currently extends from Asturcon Street to approximately 700m west of Robert Grant Avenue at Angel Heights within CRT Phase 1. It has a 24.0m ROW with a two-lane cross section and a posted speed limit of 40km/h.
- **Granite Ridge Drive** is a local road under the jurisdiction of the City of Ottawa that extends north from Abbott Street East to Harry Douglas Drive. It has a 20.0m ROW, a two-lane urban cross-section, and a posted speed limit of 40 km/h.

3.2.1.2 Intersections

The following existing intersections have the greatest potential to be impacted by the proposed development:

• Fernbank Road & Shea Road is a four-legged roundabout with a single circulating lane. Type "D" pedestrian crossovers (PXO's) are provided on each leg of the junction. This roundabout is located southwest of the subject site.

- Abbott Street East & Shea Road is a three-legged all-way stop-controlled intersection with on-street bicycle lanes and pedestrian crosswalks on all three approaches. The Trans-Canada Trail passes along the southern leg of the intersection. This stopcontrolled intersection is located northwest of the subject site.
- Abbott Street East & Granite Ridge Drive is a three-legged all-way stop-controlled intersection with bike lanes on both sides of Abbott Street E and pedestrian crosswalks on the west and north legs. This stop-controlled intersection is located north of the subject site and Bobolink Ridge will form the south leg of this intersection.
- Robert Grant Avenue & Cope Drive is a fourlegged roundabout with a single circulating lane. Type "D" pedestrian crossovers (PXO's) are provided on each leg of the intersection. Gradeseparated cycle tracks exist on both the north and south legs. This roundabout is located east of the subject site.

3.2.1.3 Driveways Adjacent to Development Access

Granite Ridge Care Community has two driveways within 200m of the proposed access intersection on Abbott Street. No driveways currently within 200m of the proposed intersection on Shea Road.

3.2.1.4 Traffic Management Measures

There are currently no existing traffic management or traffic calming measures on the boundary streets within the vicinity of the proposed development. Traffic calming measures, however, have been planned along the internal collector roads (Cope Drive and Goldhawk Drive) in prior phases of the CRT Westwood subdivision now under construction. The measures are limited to curb extensions which periodically narrow the road from 11.0 metres to between 7.0 and 7.8 metres.

3.2.2 Existing Bicycle and Pedestrian Facilities

The following cycling and pedestrian facilities exist within the context area:

- On-Street cycling facilities on Abbott Street East
- Trans-Canada Trail multi-use path (MUP) parallel to Abbott Street E with a connection near Granite Ridge;
- Concrete sidewalks on the north side of Abbott Street E;
- A MUP on the north side of Cope Drive and a concrete sidewalk on the south side;
- There are no pedestrian facilities on Shea but paved shoulders are provided for cyclists;
- Concrete sidewalks on select local roads are under construction within Phases 1 to 3 of the CRT Westwood subdivision.

3.2.3 Existing Transit Facilities and Service

The following transit routes, operated by OC Transpo, exist within the vicinity of the site:

- Route #61 & #62 provides regular, all-day service between Tunney's Pasture Station and the CARDELREC Goulbourn Complex and operates on 15- to 30-minute headways. During weekday peak periods, select buses serving Route #61 extended to Gatineau.
- **Route #167** provides regular, weekday service between the intersection of Cope Drive & Yellowtail Walk and the Terry Fox Park & Ride and operates on 30- to 60-minute headways.
- **Route #252** provides weekday peak period service between the intersection of Cope Drive & Yellowtail Walk and Tunney's Pasture Station and operates with 15-minute headways.
- **Route #261** provides weekday peak period service between the Tunney's Pasture Station & Stittsville and operates on 30-minute headways.
- **Route #262** provides weekday peak period service between the Tunney's Pasture Station & West Ridge and operates on 30-minute headways.

The nearest bus stops to the proposed development are presently located near the future site access intersection of Abbott/Granite Ridge, providing access to Route #62.

The existing transit network within the vicinity of the proposed development is illustrated in **Figure 1**. Transit service maps for the individual routes above are provided in **Appendix C**.

Figure 1 - Existing Transit Service

Source: OC-Transpo

3.2.4 Collision History

A review of historical collision data has been conducted for the road network surrounding the proposed development. The TIA Guidelines require a safety review of at least six collisions for any one movement or of a discernible pattern, over a five-year period have occurred. **Table 2** summarizes all reported collisions between January 1, 2015 and December 31, 2019.

Table 2 – Reported Collisions within Vicinity of Proposed Development

LOCATION	# OF REPORTED COLLISIONS		
INTERSECTIONS			
Abbott Street East & Granite Ridge Drive	8		
Abbott Street East & Shea Road	2		
Robert Grant Avenue & Bobolink Ridge	2		
Fernbank Road & Robert Grant Avenue	1		
Fernbank Road & Shea Road	13		
SEGMENTS			
Fernbank Road – Urban Boundary to Shea Road	9		
Shea Road – Abbott Street East to Fernbank Road	5		

Based on the collision history noted above, the intersections of Abbott Street East & Granite Ridge Drive and Fernbank Road & Shea Road along with the segment of Fernbank Road from the Urban Boundary to Shea Road may require further review.

Detailed collision records are provided in Appendix D.

3.3 Planned Conditions

3.3.1 Transportation Network

3.3.1.1 Future Road Network Projects

Goldhawk Drive is presently under construction within previous phases of the CRT Westwood subdivision (Phases 1 & 2). As part of Phase 3, Goldhawk Drive will connect to Fernbank Road and will operate as a stop-controlled intersection. A roadway Modification Application (RMA) is currently in progress through the Phase 3 subdivision approvals process.

The 2013 Transportation Master Plan (TMP) outlines future road network modifications required in the 2031 'Affordable Network'. The following projects were noted that may have an impact on area traffic within the vicinity of the site:

- Stittsville North-South Arterial (Phase 2) Planned extension of the Stittsville North-South Arterial from Abbott Street East to Palladium Drive (Phase 2: 2022-2025). Robert Grant Avenue from Fernbank Road to Abbott Street East was Phase 1 of the Stittsville North-South Arterial.
- **Eagleson Road** Planned widening from two to four lanes from north of Fernbank Road to Terry Fox Drive / Hope Side Road (Phase 2: 2022-2025).
- **Hope Side Road** Planned widening from two to four lanes between Eagleson Road and Old Richmond Road (Phase 3: 2026-2031).

Figure 2 below illustrates the planned changes to the arterial road network projects in the broader area, as per the TMP 'Affordable Network'. It should be noted that the first phase of the Stittsville North-South Arterial has been constructed, and that the Old Richmond Road/West Hunt Club Road widening (also known as the Kanata South Link project) was completed in early 2021.

Figure 2 - Future Road Network Projects

Source: 2013 Transportation Master Plan – Map 11 '2031 Affordable Network'

Development Charges Background Study

The Development Charges Background Study (March 2019), published well after the 2013 TMP, indicates that the timeframe for the above projects has been revised as follows:

- Stittsville North-South Arterial: According to the DC Background Study, this project was expected to be fully implemented between 2022 and 2024, however based on further discussions with City staff, it is our understanding that the portion of Robert Grant from Abbott Street East to Hazeldean Road is slated for construction in 2023, while the remaining segment from Hazeldean to Palladium has no specific timing but is expected prior to the City's 2031 planning horizon.
- Eagleson Road widening is expected to be implemented between 2025 and 2029.
- **Hope Side Road**: According to the DC Background Study, this road widening is expected to be implemented between 2030 and 2031, however subsequent to this report, City technical staff have indicated that the timeline for the implementation of this project is uncertain.

Fernbank CDP

The Fernbank Community Design Plan (CDP) identifies the proposed network of arterial and collector roads that will serve the Fernbank Community, as indicated in **Figure 3**. Cope Drive will ultimately extend west to intersect with Shea Road before curving south to intersect with Fernbank Road. The CDP also indicates a collector road extending from Abbott Street to Fernbank Road through the CRT Westwood subdivision, however the alignment has since been modified. South of Cope Drive, the alignment has been maintained and is presently under construction, however the connection to Abbott Street will now be made as an extension of Bobolink Ridge to Granite Ridge, approximately 350 metres to the west.

Figure 3 - Fernbank Community Design Plan - Network Concept

Source: Fernbank Community Design Plan

3.3.1.2 Future Transit Facilities and Services

The 2013 TMP outlines the future rapid transit and transit priority (RTTP) network. The following projects were noted in the 'Affordable RTTP Network' that may have a future impact on study area traffic:

• Stittsville North-South Arterial Transit Priority Corridor – This corridor, now referred to as Robert Grant Avenue, is expected to be upgraded with transit signal priority and/or queue jump lanes between Palladium Drive and Fernbank Road. There is presently no specific timing available for the implementation of this project, as segments of this corridor have yet to be constructed.

Figure 4 below shows the transit infrastructure projects in the vicinity of the proposed development that are part of the 2031 Affordable Network.

As shown previously in **Figure 3**, the Fernbank CDP identifies the eventual construction of a Rapid Transit Corridor in the future median of Robert Grant Avenue. The implementation of this corridor, however, is presently not expected to occur within the City's 2031 planning horizon.

Source: 2013 Transportation Master Plan – Map 5 '2031 Affordable Network'

The 2013 TMP also notes the following projects in the 2031 'Network Concept' that may have an impact on the study area in the longer term:

• **Stittsville Main Street** – Transit signal and queue jump lanes between Fernbank Road and Light Rail Transit (LRT) with Hazeldean Road.

Figure 5 below shows the transit infrastructure projects in the vicinity of the proposed development that are part of the 2031 'Network Concept'.

Source: 2013 Transportation Master Plan – Map 4 '2031 Network Concept'

3.3.1.3 Future Cycling and Pedestrian Facilities

The Transportation Master Plan (TMP) designates Fernbank Road, Robert Grant Avenue and Cope Drive as 'Spine' or City-wide Cycling Routes, which form part of a system linking the commercial, employment, institutional, residential and educational nodes throughout the city. The Ottawa Cycling Plan identifies a Major Pathway within the hydro corridor immediately to the west of the subject site.

The TransCanada Trail currently extends east-west along the south side of Abbott Street East. The Fernbank CDP recommended that sufficient right-of-way (ROW) be protected along this corridor for the long-term grade-separation of the TransCanada Trail at Robert Grant Avenue, if and when required. It also recommended that cycling facilities be provided along all arterial corridors, such as Fernbank Road and Robert Grant Avenue. Segregated cycling facilities have since been established on the existing section of Robert Grant, while there are no immediate plans to urbanize Fernbank Road in the near future to accommodate enhanced cycling facilities.

In late 2019, Ottawa City Council approved a set of Neighborhood Collector Road Guidelines intended to encourage future network roadways within developing communities that provide a more balanced distribution of infrastructure within the City right-of-way to support active transportation modes while calming traffic. The proposed development includes the construction of portions of Cope Drive (major collector) and Bobolink Ridge (collector). The specific design of these roadways will be established through the Draft Plan approval process in consultation with City Staff, however it should be noted that portions of these roads beyond the site limits have already been approved through adjacent development applications and therefore, for consistency, the extension of these collector roads may include similar configurations.

3.3.2 Future Adjacent Developments

The City of Ottawa Transportation Impact Assessment (TIA) Guidelines specify that all significant developments proposed within the surrounding area which are likely to occur within the study's

horizon year must be identified and taken into consideration in the development of future background traffic projections.

There are currently 12 development applications of significance in the vicinity of the proposed development, as shown in **Table 3** below:

Table 3 - Future Adjacent Developments	Table 3 -	- Future Ad	iacent Dev	elopments
--	-----------	-------------	------------	-----------

DEVELOPMENT	LAND USE	EXPECTED BUILD-OUT YEAR
700 Cope Drive - OCDSB Stittsville High School	 Secondary school accommodating ~1,460 students 	2024
Fernbank Crossing (Phase 3 – Block 129)	• 96 residential units	2019 ¹
Fernbank Crossing (Phase 3 – Block 135)	• 58 residential units	2019 ¹
Fernbank Crossing (Phase 4)	• 146 residential units	2025
CRT Phase 1 & 2	 <u>Phase 1:</u> 658 residential dwelling units Elementary school for ~500 students <u>Phase 2:</u> 216 residential dwelling units 	2025
CRT Phase 3	 206 single family homes 261 street townhomes 130 back-to-back townhomes	2025
Blackstone (Phase 4-8)	955 residential unitsElementary school for ~650 students	2025
René's Court	• 504 residential units	2023
5769 Fernbank Road	• ~70 residential units	2025
5969 Fernbank Road	• 357 residential units	2020 ¹
6041 Fernbank Road	638 residential units	2025
Davidson Lands	• 792 residential units	2023

1- Assumed to be built out by 2025 to coincide with the full build-out of CRT Phase 4

All known developments of significance in the vicinity of the proposed development indicated above are shown in **Exhibit 3**.

Blackstone

(Phase 4-8)

ukm Radius Context Area

René's Court

CRT Phase 1 & 2 Rebolink Ridge Fernbank Crossing (Phase 3 Block 135)

Cope Drive OCDSB Stittsville High School

CRT Phase 4

(Phase 4) Fernbank

Fernbank Crossing

> Crossing (Phase 3 - Block 129)

Proposed Development

nwylde

5769 Fernbank Road

5969 Fernbank Road

6041 Fernbank Road

Legend Traffic Signal Stop Sign Roundabout

Davidson Lands

CRT Phase 4Exhibit 3:PROJECT No. 136944Transportation Impact AssessmentAdjacent DevelopmentsSCALE: 0m 2001

<u>200m 400m</u>

3.3.3 Network Concept Screenline

Not Applicable: The Fernbank CDP planned for CRT Phase 4 to be primarily 'low density residential', which is consistent with the proposed Draft Plan shown previously in **Exhibit 2**. Further, screenline analysis was conducted as part of the CDP to account for this development, therefore Module 4.8 – Network Concept is not required for this TIA.

3.4 Study Area

With consideration of the information presented thus far, a study area bound by Abbott Street to the north, Fernbank Road to the south, Robert Grant Avenue to the east and Shea Road to the west will provide a sufficient assessment of the development's impact on the adjacent transportation network.

The following intersections have been identified as being most impacted by the proposed development and will be assessed for vehicular capacity as part of this study:

- Abbott Street East & Shea Road (existing All-Way Stop Control intersection)
- Abbott Street East & Granite Ridge Drive (existing All-Way Stop Control intersection)
- Robert Grant Avenue & Cope Drive (existing roundabout)
- Fernbank Road & Goldhawk Drive (future intersection)
- Fernbank Road & Shea Road (existing roundabout)
- Abbott Street East & Street 12 (future intersection)

This study will also review conditions at key internal collector junctions, including Cope/Goldhawk and Goldhawk/Bobolink at the study horizon year only to confirm the appropriate level of intersection control.

The Robert Grant & Bobolink roundabout was excluded from the study area, as site-generated traffic will contribute less to this roundabout relative to Robert Grant & Cope due to traffic dilution.

A preliminary analysis of site traffic generation and trip distribution suggests that an extension of Cope Drive beyond the Hydro Corridor to Shea road is not necessary to accommodate the mobility needs of the CRT Westwood development. The exclusion of the future Cope/Shea intersection from this study will provide a baseline evaluation of network conditions without the connection and determine if this connection is required to address any impacts directly related to traffic generated by the subject development phases. If required as a mitigation measure to address network capacity concerns, supplemental analysis will be undertaken to determine the relative network impacts on travel patterns and intersection capacity relating to the establishment of this transportation link within the community.

An intersection-based Multi-Modal Level of Service (MMLOS) evaluation will be conducted only for the locations noted above if traffic signals are identified as a future form of traffic control. Stopcontrolled intersections and roundabouts are exempt from this analysis, as no methodology currently exists for evaluating MMLOS at unsignalized intersections. Intersection control requirements for future intersections will be determined through intersection capacity analyses and control warrants, which will be undertaken in subsequent components of this study. Segmentbased MMLOS analysis will only be conducted for the segments of Abbott Street East and Shea Road to which the proposed development will provide direct access.

3.5 Time Periods

As the proposed development will consist solely of residential land uses, traffic generated during the weekday morning and afternoon peak hours is expected to result in the most significant impact to traffic operations on the adjacent network.

3.6 Existing Lane Configurations & Traffic Volumes

3.6.1 Existing Lane Configurations

The existing lane configurations and traffic controls for the study area are shown in **Exhibit 4** below.

3.6.2 Existing Traffic Volumes

As the proposed development will consist solely of residential land uses, the weekday peak hour traffic conditions will be most affected by the associated increase in traffic. The following weekday morning and afternoon peak hour turning movement counts at intersections within close proximity to the site were therefore obtained:

- Abbott Street East & Granite Ridge Drive (December 2021)
- Robert Grant Avenue & Cope Drive (June 2019)
- Fernbank Road & Shea Road (December 2021)
- Abbott Street East & Shea Road (December 2021)

A growth rate was applied to the above noted turning movement count data to approximate existing (2022) traffic volumes. Justification of background growth rates is discussed further in the Forecasting section of this study.

A review of link volumes at the Fernbank & Shea roundabout was conducted, comparing the prepandemic traffic data collected by the City of Ottawa at Fernbank & Robert Grant (August 2018), with nominal growth applied to new data collected in December 2021. Based on this comparison, the 2021 volumes were determined to be representative of typical conditions and therefore the no growth factor was applied to data collected during the COVID-19 pandemic as part of this study.

Peak hour traffic volumes representative of existing conditions are shown in **Exhibit 5**. The traffic count data is provided in **Appendix E**.

CRT Phase 4 **Transportation Impact Assessment** Exhibit 5 - Existing (2022) Traffic

PROJECT No. 136944 N.T.S. SCALE:

3.7 Analysis Years

The following future analysis years will be assessed in this study:

- Year 2025 Full Build-out / Occupancy of Proposed Development
- Year 2030 5 Years Beyond Full Build-out/ Occupancy

3.8 Exemptions Review

The TIA Guidelines provide exemption considerations for elements of the Design Review and Network Impact components. **Table 3** summarizes the TIA modules that are not applicable to this study.

Table 4 - Exemptions Review

TIA MODULE	ELEMENT	EMENT EXEMPTION CONISDERATIONS		
DESIGN REVIEW	COMPONENT			
4.1 Development Design	4.1.2 Circulation and Access	Only required for site plans	X	
	4.1.3 New Street Networks	 Only required for plans of subdivision 	\checkmark	
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	X	
	4.2.2 Spillover Parking	• Only required for site plans where parking supply is 15% below unconstrained demand	×	
NETWORK IMPAC	T COMPONENT			
4.5 Transportation Demand Management	All Elements	 Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time 	<	
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	 Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds 	<	
4.8 Network Concept	n/a	Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	×	

4 Forecasting

4.1 Development Generated Traffic

4.1.1 Trip Generation Methodology

Peak hour residential site-generated traffic volumes were developed using the 2020 TRANS Trip Generation Summary Report. The TRANS trip generation rates are based on blended rates derived from the 49 trip generation studies undertaken between 2008 and 2012, the Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Edition) and the 2011 TRANS O-D Travel Survey. Separate peak period person-trip generation rates were developed for single-detached housing, low-rise multifamily housing (i.e. two storeys or less) and high-rise multifamily housing (i.e. three storeys or more). Site-generated peak period person-trips were estimated using these rates and subsequently subdivided based on representative mode share percentages applicable to the study area. Mode-specific adjustment factors were then applied to these peak period person-trips to determine the number of peak hour vehicle, passenger, transit, cycling and pedestrian trips.

Local mode share targets were based on the 2020 TRANS Trip Generation Summary Report which provides blended mode share distributions based on the 2011 TRANS Origin-Destination (O-D) Survey for select land uses for each of the Traffic Assessment Zones (TAZs) in the O-D Survey. The proposed development is located within the Kanata/Stittsville TAZ, which has been referenced for this study.

4.1.2 Trip Generation Results

4.1.2.1 Peak Period Person-Trip Generation

Peak period person-trip volumes associated with the CRT Phase 4 development were derived using trip generation rates from the 2020 TRANS Trip Generation Summary Report.

The peak period person-trip generation results for the proposed development have been summarized in **Table 5** below. Relevant sections of the 2020 TRANS Trip Generation Summary Report are included in **Appendix F**.

	SIZE		GENERATED TRIPS			
LAND USE		PERIOD	IN	OUT	TOTAL	
Single-Family Units	286 units	AM	176	410	586	
		PM	440	270	709	
Multi-Unit (Low-Rise)	270 units	AM	109	255	365	
Residential		PM	239	188	427	
Multi-Unit (High-Rise)	54 units	AM	13	30	43	
Residential ¹		PM	28	20	49	
TOTAL	АМ	299	695	994		
IUIAL	РМ	707	478	1,184		

Table 5 – Peak Period Person-Trip Generation Results

Notes: ¹ Defined as 3 storeys or higher in the 2020 TRANS Trip Generation Summary Report.

4.1.2.2 Mode Share Proportions

The 2020 TRANS Trip Generation Summary Report provides approximations of the existing modal share within the Kanata/Stittsville Traffic Assessment Zone (TAZ).

The proposed mode share targets were developed using a weighted average (i.e. blended rate) of the three dwelling types defined in the 2020 TRANS, according to their respective proportions within the proposed development, and further refined to account for specific characteristics of the site. Based on a preliminary analysis of transit coverage for the subject development, 85% of units are expected to be within a 400-metre walking distance of an existing or potential transit stop relative to the City's target of 95%. A factor of 85/95 was therefore applied to decrease the transit mode, reflecting the slightly substandard transit coverage expected within the proposed development, and the difference was allocated to the auto driver mode share.

The existing mode share and proposed mode share targets for each analysis year are identified for the Kanata/Stittsville TAZ in **Table 6** below. Relevant extracts from 2020 TRANS Trip Generation Summary Report and the 2011 O-D Survey are provided in **Appendix F**.

	E>	KISTING	MODE S					
TRAVEL MODE	SINGLE FAMILY DETACHED		LOW-RISE MULTIFAMILY RESIDENTIAL		HIGH-RISE MULTIFAMILY RESIDENTIAL		BLENDED MODE SHARE	MODE SHARE TARGETS ¹
	АМ	РМ	АМ	РМ	AM	РМ		
Auto Driver	52%	56%	52%	58%	43%	55%	51%	53%
Auto Passenger	15%	19%	14%	17%	26%	19%	16%	16%
Transit	20%	14%	22%	17%	28%	21%	22%	20%
Cycling	1%	1%	0%	0%	0%	0%	1%	1%
Walking	12%	9%	11%	8%	4%	5%	10%	10%
TOTAL	100%	99%	99%	100%	101%	100%	100%	100%

Table 6 –	Existing	Mode	Share a	& F	Proposed	Mode	Share	Targets

Notes:

¹Adjusted mode share targets based on overall proximity to potential transit routes.

As discussed in the TIA Scoping, there is currently no timeline for the implementation of transit priority measures along Robert Grant Avenue and there are no specific plans to upgrade regional pedestrian/cycling facilities in the vicinity of the proposed development. It is therefore assumed that the local transit, pedestrian and cyclist mode shares will not change significantly within the timeframe of this study.

4.1.2.3 Trip Generation by Mode

The mode share targets identified previously in **Table 6** were segregated by travel mode for both <u>peak periods</u> and are summarized in **Table 7** below.

	_			_			
Table	7 –	Peak	Period	Person-	Trips	hv	Mode
1 0010		1 0011	1 01104	1 010011	11100	~,	1110000

MODE	А	M	РМ		
WODE	IN	OUT	IN	OUT	
Auto Driver	158	368	375	253	
Auto Passenger	48	111	113	76	
Transit	60	139	141	96	
Cycling	3	7	7	5	
Walking	30	70	71	48	
Total Person-Trips	952		1,137		

4.1.2.4 Peak Hour Trip Generation

The *peak period* to *peak hour* conversion factors for TRANS trip generation rates vary by trip type and are applied to the peak period trips resulting from the mode share distribution.

The results after applying the appropriate conversion factors have been summarized in **Table 8** below.

MODE	PEAK HOUR	A	М	PM		
	CONVERSION FACTOR (AM/PM)	IN	OUT	IN	OUT	
	0 48/0 44	76	177	165	111	
	0.40/0.44	2	53	276		
Auto Passenger	0.48/0.44	23	53	50	34	
Transit	0.55/0.47	33	76	66	45	
Cycling	0.58/0.42	2	4	3	2	
Walking	0.58/0.52	17	40	37	25	
Total Person-Trips	0.50/0.44	480		517		

Table 8 – Peak Hour Person-Trips by Mode

4.1.3 Trip Distribution and Assignment

With consideration that the proposed development will consist solely of residential land uses, it is anticipated that the distribution of site-generated traffic in each of the four cardinal directions will align with the AM Peak commuter flow patterns identified in the 2011 O-D Survey. Assignment of site-generated traffic along logical routes for each direction has been based on engineering judgement, concentration of commercial and employment nodes within the Kanata/Stittsville TAZ, travel times during weekday peak hour conditions and intersection-level traffic count data at each of the study area intersections. It should be noted as well that the global distribution assumed for this study is consistent with other recently conducted TIAs in support of adjacent developments:

- 45% to/from the North
 - 30% on Robert Grant Avenue ¹
 - 15% on Iber Road/Huntmar Road
- 40% to/from the East
 - o 25% on Fernbank Road
 - 10% on Abbott St E
 - 5% on Cope Drive
- 5% to/from the South
 - o 5% Shea Road
- 10% to/from the West
 - 5% on Abbott Street East
 - o 5% on Fernbank Road

Note: ¹ Assumes that Robert Grant Avenue is extended further north of Abbott Street East to intersect with Hazeldean Road prior to build-out/occupancy of the subject site.

Applying the estimated number of new auto trips to the above distribution, future site-generated traffic volumes from **Table 8** are illustrated in **Exhibit 6** below at each of the study area intersections.

4.2 Background Network Traffic

4.2.1 Changes to the Background Transportation Network

To properly assess future traffic conditions, planned modifications to the transportation network that may impact travel patterns or demand within the study area have been considered. The Scoping section of this TIA reviewed the anticipated changes to the study area transportation network based on the Transportation Master Plan (TMP) and the 2019 Development Charges (DC) Amendment Background Study. Based on a review of these planning policy documents, the following major transportation network modifications are anticipated within the timeframe of this study and within the 2025 build-out year of the proposed development:

- The extension of Robert Grant Avenue (Stittsville North-South Arterial) is expected to be implemented from Abbott Street East to Hazeldean Road by the end of 2023.
- The extension of Goldhawk Drive to Fernbank Road is anticipated to be constructed in 2023.

4.2.2 General Background Growth Rates

The background growth rate is intended to represent regional growth from outside the study area that will travel along the adjacent road network. Consistent with approved TIAs completed in the broader study area, a linear growth rate of 2% per annum is proposed for the calculation of future background traffic estimates. This growth rate has been applied to all through movements on Fernbank Road and Robert Grant Avenue. No growth rates have been applied to collector or lower-order roads, as traffic generation relating to all known future adjacent developments has been explicitly accounted for in the analysis.

4.2.3 Other Area Development

All current adjacent development applications and future potential developments of significance within the study area were previously identified in **Exhibit 5**. Each of these developments have been accounted for in the estimation of future background volume projections. Site-generated traffic volumes were extracted from each of the TIAs, interpolated to align with the analysis years of this study and assigned to the study area intersections. The developments represent specific areas of growth within the study area and are therefore considered in addition to the general background growth rate discussed previously.

4.3 Demand Rationalization

The purpose of this section is to rationalize future travel demands within the study area to account for potential capacity limitations in the transportation network and its ability to effectively absorb the additional demand generated by a new development.

4.3.1 Description of Capacity Issues

As previously shown in **Exhibit 4**, weekday morning and afternoon peak hour volumes on Fernbank Road and Robert Grant Avenue are in the order of 260 and 620 vehicles per hour, respectively, in the peak direction which are both within the capacity limitations for two-lane arterial roadways.

The 5969 Fernbank Road TIA (Parsons, 2018) identified potential capacity issues at the Fernbank & Shea roundabout, however the study assumed a 3% growth rate which indicates that this singlelane roundabout may experience capacity constraints in the future. The Analysis section of this TIA will confirm any additional traffic operational issues at each study area intersection under both background and total traffic conditions and suggest mitigation measures where applicable.

4.3.2 Adjustment to Development Generated Demands

In accordance with the TIA Guidelines, the effects of peak-hour spreading have been considered in future analysis years of this study. It is anticipated that as traffic volumes continue to gradually increase, trips will have a natural tendency to be more evenly distributed across the peak hour (PHF = 1.0) and eventually increase demands in the shoulders of the peak as well. The impacts of peak spreading are accounted for in the Synchro modelling, completed as part of the Analysis component of this study.

As discussed previously, the mode share targets proposed for this study will remain unchanged relative to the existing blended mode share derived from the 2020 TRANS Trip Generation Summary Report, with the exception of a slight decrease in the transit mode share to account for overall coverage of only 85% which is assumed based on the configuration of the internal collector road network from the Fernbank Community Design Plan.

4.3.3 Adjustment to Background Network Demands

The mode share targets developed for this study were limited to site-generated traffic volumes and therefore were not applied to existing and future adjacent development volumes. It is important to note, however, that many of the background developments referenced in this study have likely assumed a higher auto mode share and were developed using the 2009 TRANS Trip Generation Study methodology. Further, the extension of Robert Grant Avenue from Abbott to Hazeldean will help to strengthen the arterial road network within the broader area and provide additional vehicular capacity which was not considered in many of these previous TIAs.

The CRT Phases 1 & 2 TIA Memorandum (IBI, 2011) traffic volumes were conducted prior to the usage of the 2009 TRANS methodology and therefore the residential traffic volumes developed for that study have been adjusted by multiplication factors of 0.60 and 0.64 during the weekday morning and afternoon peak hours, respectively, to better align with the residential trip rates prescribed in the 2020 TRANS Trip Generation Summary Report.

Since the Fernbank CDP was developed, the north-south collector road network through the subject site has also been modified to include a vehicular connection on Abbott Street opposite Granite Ridge. This connection will now be located approximately 360 metres west of the original location planned for in the CDP and, as a result, is less likely to serve as an attractive route for CRT Phase 1 & 2 traffic travelling north or east. Northbound right-turn and westbound left-turn traffic volumes generated by CRT Phases 1 & 2 through the Abbott Street East & Granite Ridge/Bobolink intersection were consequently decreased by an additional 25% to account for the re-routing of some traffic to the Cope & Bobolink intersection.

The proposed connection of Bobolink to Abbott Street will result in a minor redistribution of traffic from previous Phases of CRT. Volumes at the internal subdivision intersections of Goldhawk/Bobolink and Goldhawk/Cope were not previously developed and have therefore been estimated for the purposes of establishing appropriate intersection control under future Total Traffic conditions with consideration of Phase 4 traffic volumes.

4.4 Traffic Volume Summary

4.4.1 Future Background Traffic Volumes

Future background traffic volume projections have been established by superimposing adjacent development traffic and background traffic derived through the application of a growth rate, as discussed previously. **Exhibit 7** and **Exhibit 8** present the future background traffic volumes anticipated for the 2025 and 2030 analysis years, respectively.

4.4.2 Future Total Traffic Volumes

Future total volumes have been derived by combining site-generated traffic volumes with future background volumes, and with consideration of latent demand associated with the introduction of a south leg at the existing Abbott & Granite Ridge intersection. **Exhibit 9** and **Exhibit 10** present the future total traffic volumes anticipated for the 2025 and 2030 analysis years, respectively.

5 Analysis

5.1 Development Design

5.1.1 Design for Sustainable Modes

The City of Ottawa transit coverage target is for 95% of units to be within 5-minute (400m) walking distance of transit. Currently, the nearest bus stop to the proposed development is located near the intersection of Abbott St E & Granite Ridge. Approximately 81 dwelling units are within a 400m walking distance from this stop, representing just 14% of units within the proposed development. As such, additional transit stops and modifications to transit routes will be required to achieve high transit coverage. The collector road network within the subject lands will be extended further north to intersect with Abbott Street East opposite Granite Ridge as part of this development which will permit transit routes to circulate internally through the site. A temporary turning circle is proposed within the hydro corridor to allow for buses on Cope Drive to turn-around prior to its future connection to Shea Road. New bus stops on Goldhawk Drive near Bobolink, Cope, Street 9, Street 12, as well as Shea Road near Street 12 would significantly increase the transit coverage for the site to approximately 85%, which is just marginally below the City's target.

Within the proposed development, it is expected that Cope Drive will be extended further west through the subject site and maintain the cross-section from CRT Phase 1 & 2 which consists of a multi-use path on the north side and a sidewalk on the south side, while the segment of Bobolink Ridge through the subject lands will accommodate sidewalks and cycle tracks on both sides per the 2019 Collector Road Guidelines. Goldhawk Drive will maintain the cross-section that was approved as part of CRT Phase 2 but will include concrete sidewalks on both sides for the final 500m section between Street 9/Barnsbury Road and Fernbank Road within Phase 3. Per the new Official Plan, concrete sidewalks will also be provided on at least one side of all local roads within Phase 4 to facilitate safe pedestrian mobility within the subdivision. The internal road network has been designed using a modified grid pattern with short block lengths and frequent minor intersections to provide permeability for active transportation modes.

The proposed mobility plan for the subject site is illustrated in Exhibit 11 below.

The TDM-Supportive Development Design and Infrastructure Checklist is only applicable to multifamily or residential condominium developments and, as such, is not required for this study.

CRT Phase 4 **Transportation Impact Assessment**

Exhibit 11: Proposed Mobility Plan

SCALE:

0m 30m 60m

5.1.2 Circulation and Access

Not Applicable: The Circulation and Access element is exempt from this TIA, as defined in the study scope. This element is not required for Draft Plan of Subdivision applications.

5.1.3 New Street Networks

The road network within the proposed development is organized in a modified grid pattern with relatively short road segments to create a more porous, walkable community in accordance with the Building Better and Smarter Suburbs policy framework. The overall road network design will promote driver behaviour that is consistent with the roadway classifications.

In late 2019, Ottawa City Council approved a set of Neighborhood Collector Road Guidelines intended to encourage future network roadways within developing communities that provide a more balanced distribution of infrastructure within the City right-of-way to support active transportation modes while calming traffic. Within the limits of this subdivision, active transportation facilities including cycle tracks and concrete sidewalks are planned on both sides of the extension of Bobolink Ridge through the subject lands. The remainder of the internal collector road network will maintain the cross-section elements which were previously-approved as part of CRT Phases 1 & 2, as discussed previously.

In accordance with the City of Ottawa's Local Residential Streets 30km/h Design Toolbox (September 2021), specific design elements such as bulb-outs, speed humps, chicanes and reduced curb radii will be considered within the site's internal road network following Draft Approval and prior to Registration of the subdivision lands.

A conceptual traffic calming plan for the proposed development is provided in **Exhibit 12** below.

5.2 Parking

Not Applicable: The Parking Supply and Spillover Parking elements are exempt from this TIA, as previously defined in the Scoping section. These elements are not required for a Draft Plan of Subdivision application.

CRT Phase 4 Transportation Impact Assessment

Β

Exhibit 12: Proposed Traffic Calming Plan

PROJECT No. 136944

SCALE:

0m 30m 60m

5.3 Boundary Streets

The proposed development is accessed by Fernbank Road, Shea Road and Abbott Street East. Segment-based Multi-Modal Level of Service (MMLOS) analysis has been completed for all boundary streets.

5.3.1 Mobility

The MMLOS targets for each road vary based on a variety of factors such as the Official Plan designation/policy area, as well as road classification, cycling network and transit network classification and whether the road is on a truck route.

Segment-based MMLOS results for segments of Fernbank Road, Shea Road and Abbott Street East directly abutting the site are provided in **Table 9** below. Details of the MMLOS analysis are provided in **Appendix G**.

	LEVEL OF SERVICE BY MODE						
	PEDESTRIAN	BICYCLE	TRANSIT	TRUCK			
	(PLOS)	(BLOS)	(TLOS)	(TkLOS)			
SEGMENTS							
Fernbank Road	F	F	D	C			
	(Target: C)	(Target: C)	(Target: D)	(Target: E)			
Shea Road	F	F	D	D			
	(Target: C)	(Target: D)	(Target: D)	(Target: N/A)			
Abbott Street East	C	C	D	C			
	(Target: C)	(Target: B)	(Target: D)	(Target: N/A)			

Table 9 – Segment-based MMLOS

The results of the segment-based MMLOS presented in **Table 9** above indicate that both Shea Road and Fernbank Road are not meeting their PLOS targets and that all three segments analyzed are not meeting their respective BLOS targets.

In order to achieve these targets, the following modifications have been identified which could improve conditions for each boundary street:

- Fernbank Road An analysis indicates that 2.0m wide sidewalks with 2.0m wide boulevards combined with a reduction in operating speeds to 60 km/h or less would permit Fernbank Road to meet its PLOS target. For consistency with the portion of Fernbank Road near Shea Road, however, an extension of the multi-use path on the north side of this arterial would sufficiently address the existing cycling and pedestrian level of service deficiencies noted along the site's frontage. These improvements would likely require a complete reconstruction and urbanization of Fernbank Road, however no such capital project is planned by the City within the timeframe of this study.
- Shea Road The introduction of 1.5m wide sidewalks with 2.0m wide boulevards along with an operating speed reduction to 60km/h or less would allow Shea Road to meet the City's PLOS target of C, based on supplementary analysis conducted for this road segment. Implementation of these measures would likely require urbanization of Shea Road and there are no known plans for the City to undertake such improvements in the foreseeable future.
- Abbott Street East Despite the BLOS of C being below the City's BLOS target of B, the presence of the MUP along the south side provides an alternative route with a more comfortable experience for cyclists.

It should be noted that these deficiencies in the segment-based MMLOS along the boundary streets represent existing conditions. The implementation of formal pedestrian and cycling facilities should be considered by the City upon future reconstruction or renewal of these key roadways in the study area.

5.3.2 Road Safety

A summary of all reported collisions within the study period over the past five years was presented in the Scoping component of this report. The City requires a safety review if at least six collisions for any one movement or of a discernible pattern have occurred over the study period. Based on these criteria, the segment of Fernbank Road from Shea Road to 520m east of Robert Grant Avenue along with the Fernbank & Shea and Abbott & Granite Ridge intersections warrant further analysis, as presented in **Table 10** below.

	COLLISION TYPE						
INTERSECTION/SEGMENT	Angle	Turning Movement	Rear-End	Single Motor Vehicle	Other	Total	COLLISIONS PER MVE ¹
Abbott Street E & Granite Ridge	4	1	3			8	0.24
Fernbank & Shea	11		1	1		13	0.20
Fernbank Road – Shea to 520m east of Robert Grant		1	2	5	1	9	n/a
Total	15	2	6	6	1	30	-

Table 10 - Detailed Collision Analysis

¹ – Million Vehicles Entering (MVE)

As indicated above in **Table 10**, the results of the detailed collision analysis show no significant collision patterns within the noted segment of Fernbank Road and the intersection of Abbott Street E & Granite Ridge. No mitigation measures are recommended at those locations.

Based on the collision records reviewed for this study, there were 11 angle collisions reported at the Fernbank & Shea roundabout between January 2015 and December 2019. The majority of these collisions occurred within the weekday morning peak period, suggesting that peak hour congestion could be a potential cause. Nearly all of the angled collisions involved eastbound vehicles (see Figure 6 below) entering the roundabout and colliding with vehicles already within the circulating lanes. This pattern could indicate the existence of a sightline issue which should be investigated further by the City. It should be noted that all of the reported collisions within the Fernbank & Shea junction resulted in property damage only and therefore can be considered minor in nature.

Source: Google Streetview (August 2019)

5.4 Access Intersections

5.4.1 Location and Design of Access

The proposed development will provide direct access to the adjacent road network at these locations:

- Abbott Street East & Granite Ridge Drive/Bobolink Ridge An existing three-legged, unsignalized intersection with access to the proposed development through the new fourth leg as the extension of Bobolink Ridge. All four approaches will be stop-controlled, as confirmed by the intersection capacity analysis in subsequent sections of this report.
- **Goldhawk Drive & Bobolink Ridge** A new four-legged intersection approximately 330m south of Abbott Street E,
- **Goldhawk Drive & Street #2** A new three-legged intersection approximately 450m south of Abbott Street E,
- **Goldhawk Drive & Street #12** A new three-legged intersection approximately 230m north of Fernbank Road,
- **Goldhawk Drive & Cope Drive** A new four-legged intersection approximately 750m west of the Robert Grant Avenue & Cope Drive roundabout; and
- Shea Road & Street #12 A new three-legged intersection approximately 230m north of the Fernbank Road & Shea Road roundabout.

The above noted intersections include both the external all-movement connections and the internal connections which will provide access to not only the proposed development but also the adjacent development of CRT Phases 1 through 3 which will be constructed immediately to the east.

5.4.2 Intersection Control

5.4.2.1 Traffic Signal Warrants

Based on the projected traffic volumes presented in this study, none of the site access intersections warrant traffic signals under Future (2030) Total Traffic conditions.

The results of the traffic signal warrants are provided in **Appendix H**.

5.4.2.2 Roundabout Analysis

As per the City's Roundabout Implementation Policy, intersections that satisfy any of the following criteria should be screened utilizing the Roundabout Initial Feasibility Screening Tool:

- At any new City intersection
- Where traffic signals are warranted
- At intersections where capacity or safety problems are being experienced

The Street 12 & Shea, Fernbank & Goldhawk, Cope & Goldhawk and Goldhawk & Bobolink intersections satisfy the first criterion as 'new City intersections', therefore the Roundabout Feasibility Screening Tool was utilized to assess the feasibility of implementing a roundabout at these locations. The results of the screening tool indicate that roundabouts may be problematic due to significant differences in directional flows (i.e. primarily east-west traffic) and/or a lack of suitability factors (i.e. no safety or capacity issues anticipated) at these locations. The results of the Roundabout Feasibility Screening Tool are provided in **Appendix H**.

5.4.2.3 All-Way Stop Control (AWSC) Warrants

The Ontario Traffic Manual (OTM) indicates that all-way stop control should only be considered at a minor road when the following conditions are met:

- Total vehicle volume on all approaches exceeds 350 vehicles per hour for the highest hour;
- Volume split does not exceed 65/35. Volume is defined as vehicle only.

Table 11 below provides a summary of projected weekday morning and afternoon peak hour volumes under Future (2030) Total Traffic conditions. It should be noted that the traffic volumes analysed at the Cope & Goldhawk intersection considers the shift in travel patterns anticipated to occur in the longer-term once the extension of Cope Drive to Shea Road is implemented and fully operational.

	PEAK	NORTH-SOUTH APPROACHES		EAST-WEST APPROACHES		TOTAL	
SCENARIO	HOUR PERIOD	VEHICLE VOLUME	VOLUME SPLIT	VEHICLE VOLUME	VOLUME SPLIT	VEHICLE VOLUME	
GOLDHAWK & BOBOLINK							
2030 Total Traffic	AM	183	56%	144	44%	327	
	PM	148	46%	174	54%	322	
GOLDHAWK & COPE							
2030 Total Traffic (with Cope Extension) ¹	AM	261	33%	426	67%	687	
	PM	271	35%	504	65%	775	

Table 11 – AWSC Warrant Analysis Results

Note: ¹ Considers long-term traffic impacts associated with the Cope Drive connection with Shea Road.

As indicated by the results presented in **Table 11** above, it is not expected that the Goldhawk & Bobolink intersections will sustain traffic volumes above the minimum 350-vehicle threshold during either weekday peak hour and therefore it can be concluded that all-way stop control is not appropriate for this intersection.

Based on the re-routing of traffic expected to occur with the future Cope Drive connection to Shea Road, the Goldhawk & Cope intersection is likely to experience traffic volumes well above the 350-vehicle threshold, as well as a balanced split of at least 35/65 during the weekday afternoon peak hour. The all-way stop control warrant is therefore expected to be triggered once the Cope Drive extension is complete, which is likely to occur by the 2030 horizon year of this study.

An intersection capacity analysis conducted in subsequent sections of this TIA will verify the operational performance of the Goldhawk & Cope intersection configured with this form of traffic control. It should be noted that implementing AWSC at this location will also allow for improved pedestrian connectivity, which is an important consideration given its proximity to public facilities including a future park, school and potential bus stop locations.

5.4.3 Access Intersection-Based MMLOS

The proposed site access intersections will remain unsignalized and therefore no intersectionbased Multi-Modal Level of Service (MMLOS) analysis is required.

5.5 Transportation Demand Management (TDM)

The City of Ottawa is committed to implementing Transportation Demand Management (TDM) measures on a City-wide basis in an effort to reduce automobile dependence, particularly during the weekday peak travel periods. All private development applications are also required to include a TDM strategy by identifying proposed measures to reduce the overall vehicular impact of the development.

5.5.1 Context for TDM

As described in the Forecasting section of this report, the mode share targets referenced from the Kanata/Stittsville Traffic Assessment Zone (TAZ) in the 2020 TRANS Trip Generation Summary Report and used to estimate future development traffic were based on the expected blend of residential dwelling types planned for within the proposed development. Further adjustments were applied to reflect the slightly substandard transit coverage of 85% of units within a 400-metre walking distance of an existing or potential transit stop relative to the City's target of 95%, with the difference allocated to the auto driver mode share.

The proposed development aligns with the objectives of the Building Better and Smarter Suburbs (BBSS) policy document that promotes sustainable and compact growth. More than half of all dwelling units are either street townhomes or back-to-back townhomes, which is considered an appropriate level of density given the suburban context of this development. It should be noted as well that this development is not located within close proximity to either a Transit-Oriented Development (TOD) zone or Design Priority Area (DPA).

5.5.2 Need and Opportunity

To promote sustainable transportation for local trips, the internal road network of the proposed development has been configured with short street segments and frequent intersections to provide direct connections to the internal collector roads which will be capable of supporting transit service. Sidewalks and appropriate pedestrian connections will be provided throughout the subdivision to facilitate access to local amenities, recreational pathways, as well as the adjacent road and transit network.

Consideration has been given to strategically locating bus stops at regular intervals along the internal collector road network, including Goldhawk Drive, Cope Drive and Bobolink Ridge to maximize the number dwelling units that are within a 5-minute walk of a bus stop. Providing regular, all-day transit service within the community will help promote the use of transit as a convenient and efficient mode of transportation, thereby reducing dependence on private automobile usage. Transit routes and specific bus stop locations will be established in consultation with OC Transpo, following Draft Approval and prior to detailed design of the internal road network. As prior phases of the CRT Westwood subdivision are already under construction, it is expected that transit access within reasonable walking to the Phase 4 development will be available upon first occupancy.

5.5.3 TDM Program

The proposed development conforms to the City's TDM principles by providing convenient and direct connections to adjacent pedestrian, cycling and transit facilities where available.

The City of Ottawa's TDM Measures Checklist was completed for the proposed development and is provided in **Appendix I**. In order to promote sustainable transportation, new residents will be provided with a multi-modal travel information package to educate the community about existing pedestrian and bicycle networks, as well as, identify nearby transit routes and stops.

5.6 Neighbourhood Traffic Management

5.6.1 Adjacent Neighbourhoods

As the development is reliant on collector and major collector roads for access, a review of Neighbourhood Traffic Management thresholds is required as part of the TIA process. The results of the Livability Threshold Review are summarized in **Table 12** below.

BOUNDARY	CLASSIFICATION	LIVABILITY THRESHOLD	FUTURE (2030) TOTAL TRAFFIC
STREET		(PER LANE)	PEAK DIRECTION VOLUMES
Abbott	Major Collector	600 Vehicles/Hour (5,000	452 Vehicles/Hour (AM Peak)
Street East	Road	Vehicles/Day)	489 Vehicles/Hour (PM Peak)
Cope Drive	Major Collector	600 Vehicles/Hour (5,000	375 Vehicles/Hour (AM Peak)
	Road	Vehicles/Day)	315 Vehicles/Hour (PM Peak)
Goldhawk	Collector Drive	300 Vehicles/Hour (2,500	169 Vehicles/Hour (AM Peak)
Drive		Vehicles/Day)	159 Vehicles/Hour (PM Peak)
Shea Road	Collector Road	300 Vehicles/Hour (2,500 Vehicles/Day)	616 Vehicles/Hour (AM Peak) 477 Vehicles/Hour (PM Peak)

Table 12 - Livability Threshold Review

The TIA Guidelines prescribe a liveability threshold of 300 vehicles per hour per lane (vphpl) for collector roads and 600 vphpl for major collector roads. As shown in **Table 12** above, all boundary streets are operating within the livability threshold for their respective road classifications with the exception of Shea Road. Shea is currently classified as a collector road but has characteristics of a higher-order road due to its minimal direct frontage. The volumes projected on Shea Road under the 2025 and 2030 Total Traffic conditions are expected to remain under the 600 vehicle per hour threshold in the PM peak hour but may occasionally exceed this threshold in the AM peak hour. It is not uncommon, however, for collector roads which provide direct access to the arterial road network to exceed liveability thresholds within close proximity to a major intersection. It should be noted that this is an existing condition that will be exacerbated by background growth and not traffic generated by the proposed development. The eventual extension of Cope Drive to Shea Road may alleviate this condition by providing an additional east-west route through the community.

5.7 Transit

5.7.1 Route Capacity

The estimated Future (2030) Total transit ridership within the study area was provided previously in the Forecasting component of this study. The results have been summarized in **Table 13** below.

DEDIOD	PEAK HOUR DEMAND				
PERIOD	IN	OUT	TOTAL		
AM	33	76	109		
PM	66	45	111		

Table 13 - 2030 Development Generated Transit Demand

As indicated in **Table 13** above, the proposed development is expected to contribute approximately 109 to 111 additional two-way transit trips during the weekday peak hours. This represents a significant increase in transit ridership along existing routes. Given that there are currently six transit routes operating in the vicinity of the proposed development and that a typical OC Transpo bus can only accommodate 100 passengers, it is recommended that OC Transpo review the local transit routes to ensure that there is sufficient capacity and coverage to accommodate the additional demand.

5.7.2 Transit Priority Measures

The Transportation Master Plan 2031 'Affordable Rapid Transit and Transit Priority Network' identifies Robert Grant Avenue as a future transit priority corridor with isolated transit priority measures such as transit signal priority and/or queue jump lanes. It is expected that these measures will sufficiently offset any additional delay induced by site-generated transit demand. As such, no further transit priority measures are recommended.

5.8 Review of Network Concept

Not Applicable: The Fernbank CDP planned for the subject lands now referred to as CRT Phase 4 to be primarily 'low density residential', which is consistent with the proposed Draft Plan shown previously in **Exhibit 2**. Further, screenline analysis was conducted as part of the CDP to account for this development, therefore Module 4.8 – Network Concept is not required for this TIA.

5.9 Intersection Design

5.9.1 Intersection Control

The results of the intersection control warrants discussed below are provided in Appendix H.

5.9.1.1 Traffic Signal Warrants

Traffic signal warrants for site access intersections were discussed previously in Section 5.4. The remaining study area intersections presently exist as roundabouts or are expected to operate at acceptable levels of service throughout the timeframe of this study, with the exception of the Fernbank & Goldhawk intersection which may experience some minor capacity issues by the horizon year of the study.

Traffic signal warrant analysis for the future Fernbank & Goldhawk intersection was conducted under Future (2030) Total Traffic conditions, confirming that the need for traffic signalization is not triggered. In the longer term with the build-out of the final phase of the CRT Westwood development (i.e. west of the hydro corridor) and the connection of Cope Drive to Shea Road, the traffic volumes on Fernbank Road are expected to decline as a result of redistributed east-west traffic demand, thereby further decreasing the likelihood that traffic signal warrants would be met.

5.9.1.2 Roundabout Analysis

Roundabout analysis for site access intersections was discussed previously in Section 5.4. The remaining study area intersections are either presently configured as roundabouts or do not meet the criteria requiring the completion of a Roundabout Initial Feasibility Screening Tool.

5.9.2 Intersection Analysis Criteria (Automobile)

The following section outlines the City of Ottawa's methodology for determining motor vehicle Level of Service (LOS) at unsignalized and roundabout intersections.

5.9.2.1 Intersection Capacity Analysis Methodology

The capacity of an unsignalized intersection can also be expressed in terms of the LOS it provides. For an unsignalized intersection, the Level of Service is defined in terms of the average movement delays at the intersection. This is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line; this includes the time required for a vehicle to travel from the last-in-queue position to the first-in-queue position. The average delay for any particular minor movement at the un-signalized intersection is a function of the capacity of the approach and the degree of saturation.

The Highway Capacity Manual 2010 (HCM), prepared by the Transportation Research Board, includes the following Levels of Service criteria for un-signalized intersection and roundabouts, related to average movement delays at the intersection, as indicated in **Table 14** below.

1.05	UNSIGNALIZED	ROUNDABOUT		
203	DELAY (seconds)	DELAY (seconds)		
А	<10s	<10s		
В	>10s and <15s	>10s and <20s		
С	>15s and <25s	>20s and <35s		
D	>25s and <35s	>35s and <50s		
E	>35s and <50s	>50s and <70s		
F	>50s	>70s		

Table 14 - LOS Criteria for Unsignalized Intersections & Roundabouts

The unsignalized intersection capacity analysis technique included in the HCM and used in the current study provides an indication of the Level of Service for each movement of the intersection under consideration. By this technique, the performance of the unsignalized intersection can be compared under varying traffic scenarios, using the Level of Service concept in a qualitative sense. One unsignalized intersection can be compared with another unsignalized intersection using this concept. Level of Service 'E' represents the capacity of the movement under consideration and generally, in large urban areas, Level of Service 'D' is considered to represent an acceptable operating condition. Level of Service 'E' is considered an acceptable operating condition for planning purposes for intersections located within proximity to major rapid transit stations, as well as Ottawa's Urban Core and its vicinity. Level of Service 'F' indicates that the movement is operating beyond its design capacity.

5.9.3 Intersection Capacity Analysis

Following the established intersection capacity analysis criteria described above, the existing and future conditions are analysed using the weekday peak hour traffic volumes derived in this study.

The subsequent section presents the results of the intersection capacity analysis. All tables summarize study area intersection LOS results during the weekday morning and afternoon peak hour periods.

The intersection capacity analysis reports have been provided in Appendix J.

5.9.3.1 **Existing Traffic**

An intersection capacity analysis has been undertaken using the Existing (2022) Traffic volumes presented previously in Exhibit 5.

The results of the intersection capacity analysis are summarized in **Table 15** below.

able 15 - Intersection Capacity Analysis. Existing (2022) Trainc					
		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)
Abbott Street E & Shea Road	Unsignalized	B (12.3s)	WBTL (12.3s)	C (17.4s)	WBTL (17.4s)
Abbott Street E & Granite Ridge Drive	Unsignalized	B (10.7s)	EBTRL (10.7s)	B (12.5s)	WBTRL (12.5s)
Robert Grant Avenue & Cope Drive	Roundabout	A (5.8s)	NBTRL (5.8s)	A (5.7s)	SBTRL (5.7s)
Fernbank Road & Shea Road	Roundabout	B (11.9s)	NBTRL (11.9s)	B (13.9s)	WBTRL (13.9s)

Table 15 - Intersection Capacity Analysis: Existing (2022) Traffic

The results of the analysis indicate that the study area intersections in **Table 15** above are operating at acceptable Levels of Service (i.e. LOS 'D' or better) under existing traffic conditions during both the weekday morning and afternoon peak hours.

5.9.3.2 Future (2025) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2025) Background Traffic volumes presented previously in Exhibit 7.

The results of the intersection capacity analysis are summarized in **Table 16** below.

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)
Abbott Street E & Shea Road	Unsignalized	C (23.4s)	NBRL (23.4s)	D (31.5s)	WBTL (31.5s)
Abbott Street E & Granite Ridge Drive	Unsignalized	B (11.1s)	EBTRL (11.1s)	B (13.4s)	WBTRL (13.4s)
Robert Grant Avenue & Cope Drive	Roundabout	B (13.1s)	NBTRL (13.1s)	B (11.5s)	SBTRL (11.5s)
Fernbank Road & Goldhawk Drive	Unsignalized	C (17.3s)	SBRL (17.3s)	D (28.7s)	SBRL (28.7s)
Fernbank Road & Shea Road	Roundabout	C (18.4s)	EBTRL (18.4s)	C (22.3s)	WBTRL (22.3s)

Table 16 - Intersection Capacity	Analysis: Future	(2025) Background	Traffic
----------------------------------	------------------	-------------------	---------

The results of the intersection capacity analysis presented in **Table 16** above indicate that the study area intersections are operating at acceptable Levels of Service (i.e. LOS 'D' or better) under Future (2025) Background Traffic conditions during both the weekday morning and afternoon peak hours.

5.9.3.3 Future (2030) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2030) Background Traffic volumes presented previously in **Exhibit 8**.

The results of the intersection capacity analysis are summarized in Table 17 below.

Table 17 - Intersection Capacity Analysis: Future (2030) Background Traffic

		AM PE	AK HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)
Abbott Street E & Shea Road	Unsignalized	C (23.4s)	NBRL (23.4s)	D (31.5s)	WBTL (31.5s)
Abbott Street E & Granite Ridge Drive	Unsignalized	B (11.1s)	EBTRL (11.1s)	B (13.4s)	WBTRL (13.4s)
Robert Grant Avenue & Cope Drive	Roundabout	B (14.8s)	NBTRL (14.8s)	B (12.2s)	SBTRL (12.2s)
Fernbank Road & Goldhawk Drive	Unsignalized	C (18.6s)	SBRL (18.6s)	D (32.8s)	SBRL (32.8s)
Fernbank Road & Shea Road	Roundabout	C (20.2s)	EBTRL (20.2s)	C (24.5s)	WBTRL (24.5s)

The results of the intersection capacity analysis presented in **Table 17** above indicate that the study area intersections are expected to operate at acceptable levels of service (i.e. LOS 'D' or better) under Future (2030) Background Traffic conditions.

5.9.3.4 Future (2025) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2025) Total Traffic volumes presented previously in **Exhibit 9**.

The results of the intersection capacity analysis are summarized in Table 18 below.

Table 18 - Intersection Capacity Analysis: Future (2025) Total Traffic

		AM PE	AM PEAK HOUR		K HOUR
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)
Abbott Street E & Shea Road	Unsignalized	C (24.3s)	NBRL (24.3s)	D (32.9s)	WBTL (32.9s)
Abbott Street E & Granite Ridge Drive/Bobolink Ridge	Unsignalized	B (11.9s)	EBTRL (11.9s)	C (17.3s)	WBTRL (17.3s)
Robert Grant Avenue & Cope Drive	Roundabout	B (14.6s)	NBTRL (14.6s)	B (13.1s)	SBTRL (13.1s)
Fernbank Road & Goldhawk Drive	Unsignalized	C (19.2s)	SBRL (19.2s)	D (33.1s)	SBRL (33.1s)
Fernbank Road & Shea Road	Roundabout	C (18.9s)	EBTRL (18.9s)	C (23.6s)	WBTRL (23.6s)
Shea Road & Street 12	Unsignalized	B (14.1s)	WBRL (14.1s)	B (11.3s)	NBTR (11.3s)
Cope Drive & Goldhawk Drive	Unsignalized	A (7.9s)	SBTRL (7.9s)	A (8.3s)	SBTRL (8.3s)
Goldhawk Drive & Bobolink Ridge	Unsignalized	B (10.1s)	NBTRL (10.1s)	B (10.0s)	NBTRL (10.0s)

Based on the intersection capacity analysis shown in **Table 18** above, all study area intersections are expected to operate at an acceptable levels of service (i.e. LOS 'D' or better) under Future (2025) Total Traffic conditions. This analysis provides an indication that the adjacent road network has sufficient capacity to accommodate site-generated and background traffic demand without the Cope Drive extension to Shea Road.

5.9.3.5 Future (2030) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2030) Total Traffic volumes presented previously in **Exhibit 10**.

The results of the intersection capacity analysis are summarized in Table 19 below.

Table 19 - Intersection Capacity Analysis: Future (2030) Total Traffic

		AM PE	AK HOUR	PM PEAK HOUR		
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS	
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	
Abbott Street E & Shea Road	Unsignalized	C (24.3s)	NBRL (24.3s)	D (32.9s)	WBTL (32.9s)	
Abbott Street E & Granite Ridge Drive/Bobolink Ridge	Unsignalized	B (11.9s)	EBTRL (11.9s)	C (17.3s)	WBTRL (17.3s)	
Robert Grant Avenue & Cope Drive	Roundabout	C (16.7s)	NBTRL (16.7s)	B (14.1s)	SBTRL (14.1s)	
Fernbank Road &	Unsignalized	C (20.9s)	SBRL (20.9s)	E (38.4s)	SBRL (38.4s)	
Goldhawk Drive	Unsignalized ¹	C (19.4s)	SBRL (19.4s)	D (30.7s)	SBRL (30.7s)	
Fernbank Road & Shea Road	Roundabout	C (20.8s)	EBTRL (20.8s)	D (26.1s)	WBTRL (26.1s)	
Shea Road & Street No 12	Unsignalized	B (14.1s)	WBRL (14.1s)	B (13.6s)	WBRL (13.6s)	
Cope Drive & Goldhawk Drive	Unsignalized	A (8.0s)	SBTRL (8.0s)	A (8.3s)	SBTRL (8.3s)	
	Unsignalized ¹	B (10.2s)	EBTRL (10.2s)	B (11.1s)	WBTRL (11.1s)	
Goldhawk Drive & Bobolink Ridge	Unsignalized	B (10.2s)	NBTRL (10.2s)	B (10.0s)	NBTRL (10.0s)	

Notes: ¹ Includes redistribution of traffic volumes to reflect future Cope Drive extension to Shea Road.

Based on the intersection capacity analysis shown in **Table 19** above, all study area intersections are expected to operate at an acceptable levels of service (i.e. LOS 'D' or better) under Future (2030) Total Traffic conditions with the exception of the Fernbank & Goldhawk intersection which may approach its theoretical capacity during the weekday afternoon peak hour.

It is important to recognize, however, that this potential capacity constraint is limited to the study horizon year of 2030, where considerable uncertainty exists with respect the build-out of the

collector road network and timing of future phases of CRT Lands. This TIA has assumed as a worst case without the Cope Drive extension, however it is possible that the Cope Drive connection to Shea Road will be constructed prior to 2030, which would provide sufficient capacity to allow the Fernbank & Goldhawk intersection to operate at LOS 'D' during the critical weekday peak hour, as indicated above.

5.9.4 Intersection-Based MMLOS

Not Applicable – An Intersection-based Multi-Modal Level of Service (MMLOS) analysis is only required for signalized intersections, as no methodology presently exists for evaluating other forms of traffic control, including stop-controlled intersections or roundabout. Given that none of the study area intersections are presently configured with traffic signals or are proposed to operate with this form of traffic control throughout the timeframe of this study, an intersection-based MMLOS evaluation is not required for this TIA.

5.10 Geometric Review

The following section provides a review of all geometric requirements for proposed vehicular connections to the adjacent road network as part of the subject development.

5.10.1 Sight Distance and Corner Clearances

The site access intersection proposed on Abbott Street East will form the southern leg of an existing three-legged, all-way stop-controlled intersection which exists on a segment of road with no significant horizontal or vertical constraints.

The Street 12 intersection with Shea Road is proposed within the area of influence of a roundabout, as identified in the TIA Screening Form. Although this access is planned within a horizontal curve, the curvature of this road segment is gradual enough to achieve the minimum stopping sight distance of 105 metres both upstream and downstream. Further, given that this is a local road intersection, it is expected that traffic volumes using this access intersection will be minimal.

Sight distances and corner clearances are therefore not expected to be a concern at either of the above noted locations. As such, no further review of this proposed intersection with respect to sightline visibility is required as part of this study.

5.10.2 Auxiliary Lane Analysis

Auxiliary lane analyses were limited to the Fernbank & Goldhawk and Shea & Street 12 intersections for this study, with the following rationale provided for exempting the remaining study area intersections:

- Existing or proposed All-Way Stop Control intersections were exempt from this analysis, as it is generally not desirable to have a multi-lane approach controlled with a stop-controlled sign. Further, the three AWSC study area intersections were shown to operate at acceptable levels of service under Future (2030) Total Traffic conditions.
- The Fernbank & Shea and Robert Grant & Cope roundabouts were recently constructed and are expected to operate at acceptable levels of service throughout the timeframe of this study with their existing configurations, therefore these junctions were also exempt from any auxiliary lane analysis.
- Despite the high northbound left- and eastbound right-turn volumes at the Bobolink & Goldhawk intersection, which are in the order of 100-150 vehicles per hour, the through volumes on these approaches are projected to be very low at no more than 25 vehicles per hour. As such, shared approaches can effectively be used as de-facto turning lanes

to accommodate these higher turning volumes. The intersection is expected to operate at LOS 'A' throughout the timeframe of this study under the weekday peak hours conditions as well, therefore no auxiliary left- or right-turn lanes were deemed necessary for this location.

5.10.2.1 Auxiliary Left-Turn Lane Requirements (Unsignalized Intersections)

Auxiliary left-turn lane warrants were conducted under Future (2030) Total Traffic conditions for the Fernbank & Goldhawk intersection. This analysis was conducted with and without the Cope Drive extension and was limited to the critical weekday afternoon peak hour.

The operating speed on Fernbank Road was assumed to be 90 km/h, representing 10 km/h above the posted speed limit.

The results of the left-turn lane warrant analyses are summarized in **Table 20** below. Relevant extracts from the MTO Design Supplement for TAC Geometric Design Guide for Canadian Roads have been provided in **Appendix K**.

	APPROACH	VOLUME ADVANCING (V _A)	VOLUME OPPOSING (Vo)	% LEFT TURN (V _A)	PARALLEL LANE LENGTH (M)	STORAGE DEFICIENCY RELATIVE TO RMA (M)
Fernbank Road & Goldhawk Drive ¹	EB	524	747	7%	30m	5m
Fernbank Road & Goldhawk Drive ²	EB	465	663	8%	25m	Storage Adequate

Table 20 - Auxiliary Left-Turn Storage Analysis at Unsignalized Intersections

Notes:

¹ Does not include Cope Drive extension to Shea Road.

² Includes redistribution of traffic volumes to reflect Cope Drive extension to Shea Road.

As shown in **Table 20** above, the left-turn warrant evaluation for the eastbound approach at the proposed Fernbank & Goldhawk intersection indicates a slight exceedance of the 25-metre left-turn auxiliary lane length included in the RMA functional design for the CRT Phase 3 TIA (IBI, 2021).

This slight deficiency of 5 metres represents less than one standard vehicle length and is expected to be a temporary constraint, until Cope Drive is extended to Shea Road. Once this extension is implemented, the two-way projected vehicular volumes on Fernbank Road at Goldhawk Drive are expected to decrease. As such, in the longer-term, the 25-metre parallel lane length designed for in the RMA functional design will sufficiently accommodate traffic volumes and therefore no revisions are required to the functional design for this intersection.

The Shea Road & Street 12 intersection is forecasted to experience nominal left-turning volumes on the southbound approach of at most 5 vehicles during the weekday peak hours. These negligible volumes are at most 1.8% of the overall approach volumes and therefore a southbound left-turn auxiliary lane is not warranted at this location.

5.10.2.2 Auxiliary Right-Turn Lane Requirements (Unsignalized Intersections)

The Transportation Association of Canada (TAC) suggests that auxiliary right-turn lanes be considered "when the volume of decelerating or accelerating vehicles compared with through vehicles causes undue hazard." Consideration for auxiliary right-turn lanes is typically given when the right-turning traffic exceeds 10% of the approach volume and is at least 60 vehicles per hour, particularly on high-speed arterial roads.

Consistent with the RMA carried for the CRT Phase 3 TIA, the westbound approach at the intersection of Fernbank & Goldhawk was identified as requiring a right-turn auxiliary lane. The westbound right-turn volume under Future (2030) Total Traffic conditions is forecasted to be in the order of 120 vehicles during the weekday afternoon peak hour, which constitutes approximately 15% of the overall approach volume. As both of the criteria for a right-turn lane are met and this segment of Fernbank Road can be classified as a 'high-speed arterial road', it has been confirmed that a right-turn lane is warranted at this location.

The Street 12 & Shea intersection is projected to experience nominal northbound right-turn volumes of 8 and 17 vehicles during the weekday peak hours, respectively. A northbound right-turn auxiliary lane is not required at this intersection.

5.11 Summary of Recommended Improvements

Based on the intersection capacity analyses, Segment-based Multi-Modal Level of Service (MMLOS) and auxiliary lane analyses results presented above, off-site improvements to the adjacent road network have been recommended in order to accommodate multi-modal demands of both background and site-generated traffic.

5.11.1 Abbott Street East & Granite Ridge Drive/Bobolink Ridge

The Bobolink site access intersection will form the fourth leg of this existing all-way stop-controlled intersection. As such, RMA Materials (i.e. functional design and preliminary cost estimate) were prepared for these off-site road network modifications and are included in **Appendix L**.

With the inclusion of this fourth leg, the Abbott & Granite Ridge intersection is expected to continue operating at an acceptable level of service (i.e. LOS 'D' or better) beyond the 2030 study horizon year, as shown through the analysis conducted for this study.

5.11.2 Abbott Street East & Shea Road

The results of the intersection capacity analysis indicate that the Abbott Street East & Shea Road intersection is expected to operate at an acceptable level of service (i.e. LOS 'D') with its existing all-way stop control configuration. As such, no modifications to this intersection are expected to be required within the 2030 study horizon year, based on the analysis conducted in this study.

5.11.3 Robert Grant Avenue & Cope Drive

The results of the intersection capacity analysis indicate that the Robert Grant Avenue & Cope Drive junction is expected to operate at an acceptable level of service (i.e. LOS 'D') with its existing single-lane roundabout configuration. As such, no modifications to this roundabout are expected within the 2030 study horizon year, based on the analysis conducted in this study.

5.11.4 Fernbank Road & Goldhawk Drive (future intersection)

Based on the intersection capacity analysis conducted for this study, the proposed Fernbank Road & Goldhawk Drive intersection may experience slight capacity issues under Future (2030) Total Traffic conditions.

The potential for any capacity constraints, however, is limited to the weekday afternoon peak hour at the study horizon year and is not a direct consequence of site-generated traffic. Instead, these capacity constraints are a potential consequence of increased background traffic on Fernbank Road traffic abutting the site, until the extension of Cope Drive to Shea Road is implemented which will provide a more direct east-west vehicular connection for adjacent developments west of Shea Road and allow the Fernbank & Goldhawk intersection to operate at LOS 'D' during the critical weekday peak hour in the longer-term.

RMA materials were previously submitted for off-site road network modifications as part of the CRT Phase 3 TIA (IBI, 2021). An updated auxiliary lane analysis exercise conducted as part of this study indicated a potential slight exceedance of the 25-metre eastbound left-turn parallel lane length by the 2030 study horizon year. It is also possible that this potential constraint will already be addressed through the extension of Cope Drive to Shea Road through future CRT phases by this time. Given the temporary nature of this potential minor capacity issue and its long-term horizon, no modifications or resubmission of the Fernbank & Goldhawk RMA functional design are deemed necessary to support CRT Phase 4.

5.11.5 Fernbank & Shea Road

The results of the intersection capacity analysis indicate that the Fernbank & Shea roundabout is expected to operate at an acceptable level of service (i.e. LOS 'D') with its existing single-lane roundabout configuration. As such, no modifications to this roundabout are expected within the 2030 study horizon year, based on the analysis conducted in this study.

5.11.6 Shea Road & Street 12

The proposed Shea Road & Street 12 intersection will be configured as a two-way stop-controlled intersection, with shared lanes configured on each approach.

Based on the capacity analysis conducted as part of this study, this intersection is expected to operate at LOS 'B' under Future (2030) Total Traffic conditions both weekday peak hours.

5.11.7 Cope & Goldhawk

The Cope & Goldhawk intersection is expected to trigger the all-way stop control warrants, based overall traffic volumes exceeding 350 vehicles per hour and a balanced volume split exceeding 35/65 under Future (2030) Total Traffic volumes re-routed with consideration of the Cope Drive extension.

Providing AWSC at this key internal intersection within the proposed development will provide controlled pedestrian crossings on each approach, which is appropriate given its proximity to amenities, including a park, school block and bus stops.

With an all-way stop control configuration implemented, the Cope & Goldhawk intersection is expected to operate at well within acceptable standards. An additional scenario was tested under Future (2030) Total Traffic conditions, indicating that this intersection would operate at LOS 'B' and well within acceptable standards, even with added traffic resulting from the extension of Cope Drive to Shea Road.

5.11.8 Goldhawk & Bobolink

The Bobolink & Goldhawk was evaluated for all-way stop control, however unlike the Cope & Goldhawk intersection, this location did not meet the overall volume criteria of 350 vehicles during each weekday peak hour.

Configured as a two-way stop-controlled intersection with stop signs in the north-south directions on Goldhawk Drive and shared lane configurations on each approach, this intersection is projected to operate at LOS 'B' under Future (2030) Total Traffic conditions.

6 Conclusion

The proposed CRT Phase 4 development is expected to generate up to 480 and 517 two-way person-trips during the weekday morning and afternoon peak hours, respectively. These person-trips were assigned mode share targets and trip distributions, consistent with the Kanata/Stittsville Traffic Assessment Zone (TAZ) in the 2020 TRANS Trip Generation Summary Report, with further refinements to account for the slightly substandard transit coverage, resulting from limitations to the collector road network established by the Fernbank CDP.

The resulting two-way vehicular trip generation is, therefore, 253 and 276 vehicles during the weekday morning and afternoon peak hours, respectively. Site-generated traffic will access the adjacent road network directly via two new all-movement intersections on Abbott Street East and Shea Road, as well as internally through CRT Phases 1 to 3 via the Fernbank & Goldhawk intersection to the south and the Robert Grant & Cope roundabout to the east.

As indicated by the analysis conducted for this study, all study area intersections are expected to operate at an acceptable level of service (i.e. LOS 'D' or better) during the weekday peak hours under Future (2025) Total Traffic conditions. By 2030, the Fernbank & Goldhawk intersection may approach its theoretical capacity as an unsignalized intersection due to increased through traffic on Fernbank Road, however this condition is expected to be resolved once the Cope Drive extension to Shea Road is implemented as part of subsequent phases of CRT Lands west of the hydro corridor. Given that these capacity issues are not exacerbated by or a direct consequence of the proposed development and that there is sufficient spare capacity at the key study area intersections to accommodate site-generated vehicular traffic upon full build-out, it can be concluded that the Cope Drive extension is required as a long-term solution to support increased background traffic growth in the area.

An all-way stop warrant analysis conducted for Cope & Goldhawk indicated that this intersection would operate at an acceptable Level of Service with a two-way stop-controlled configuration, but would ultimately require configuration as an all-way stop-controlled intersection upon the extension of Cope Drive to Shea Road. As a central junction within the proposed subdivision lands, this form of traffic control will also facilitate increased pedestrian mobility and access to City facilities, including potential bus stop locations, as well as a park and school block identified on the Draft Plan adjacent to this intersection.

Based on the queue length analysis conducted for the Fernbank & Goldhawk intersection, any potential exceedance of the RMA design components identified in the CRT Phase 3 would be short-term and therefore the functional design submitted for the CRT Phase 3 TIA remains valid.

A segment-based multi-modal analysis of identified deficiencies in the site's boundary streets and potential remediation measures have been suggested which the City could consider to meet the prescribed targets, however it is not expected that such measures would be implemented within the horizon year of this study.

The proposed Abbott Street East & Granite Ridge intersection requires off-site road modifications to incorporate the Bobolink Ridge extension and allow for its conversion from a 3-legged to 4-legged junction. As such, RMA Materials were prepared to support the redesign of this intersection to include Bobolink as its southern leg. Since all study area intersections are expected to operate acceptably with the inclusion of site-generated traffic at full build-out/occupancy of the proposed development, a post-development Monitoring Plan is <u>not</u> required as part of this TIA.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

Appendix A – City Circulation Comments

Step 1 Submission (TIA Screening) Pre-Application Consultation Meeting - Comments

Meeting Held: December 10, 2021 Comments Received: February 7, 2022 Transportation Project Manager: Patrick McMahon

Note: The following represent only relevant transportation comments and do not constitute the complete set of comments resulting from the pre-application consultant meeting.

Transportation

1. Follow Traffic Impact Assessment Guidelines

- Please proceed with scoping.
- Applicant advised that their application will not be deemed complete until the submission of the draft steps 1-4, including the RMA package if applicable.

2. Cope Drive has a right of way protection of 24m, however a cross-section of 26m is recommended for consistency within the area.

3. As the site proposed is residential, AODA legislation applies for all areas accessible to the public (i.e. outdoor pathways, parking, etc.).

4. Geometric Road Design (GRD) drawings will be **required with the first submission of underground infrastructure and grading drawings.** These drawings should include such items as, but is not limited to:

- > Road Signage and Pavement Marking for the subdivision;
- > Intersection control measure at new internal intersections; and,
- > Location of depressed curbs and TWSIs.

5. Include traffic calming measures on roads within the limits of the subdivision to limit vehicular speed to 30 kph and improve pedestrian safety. These measures may include either vertical or horizontal features.

6. Sight triangles at the following locations on the final plan will be required:

- Local Road to Local Road: 3 metre x 3 metres;
- > Local Road to Collector Road: 5 metre x 5 metres; and,
- > Collector Road to Collector Road: 5 metre x 5 metres.

7. Any Development Charge road work may be front ended by the applicant, so long as the work is listed in the affordable network. Repayment will be based on warrants, as determined solely by Transportation Services Department. A Front Ending application is required.

8. Construction of the Robert Grant extension south of Hazeldean is expected to begin in late 2022.

CRT "Westwood" Phase 4 – Transportation Impact Assessment IBI Group

Step 2 Submission (Scoping) – Circulation Comments & Response

Report Submitted: January 17, 2022 Comments Received: January 21, 2022 Transportation Project Manager: Patrick McMahon

- 1) Section 3.2.1.1 Roadways: Include the paved shoulders on Fernbank Road. Note that the protected ROW for Abbott Street E is 26m. Include Goldhawk Drive.
 - IBI Response: Section 3.2.1.1 of the TIA has been updated accordingly. A desktop review of the study area indicates that Goldhawk Drive is not open to the public and is therefore not an existing roadway based on Google Earth aerial imagery dated June 2021. See Section 3.3.1.1 Future Road Network Projects.
- 2) Section 3.2.1.2 Intersections: There are inconsistencies between intersections with how sidewalks/cycling facilities are described. Please describe them all. There is no crosswalk on the east leg of Granite Ridge/Abbott E intersection.
 - > IBI Response: Section 3.2.1.2 of the TIA has been updated with the appropriate descriptions.
- 3) Section 3.2.3 Existing Transit Conditions: Figure 1 appears to be outdated with respect to what is shown on OC Transpo's website. Please also update with transit stops shown on the figure.
 - > IBI Response: Noted. Figure 1 in Section 3.2.3 of the TIA has been updated accordingly.
- 4) Section 3.4 Study Area: While a conservative analysis is appreciated, the study should be evaluating both access onto Shea road as they are planned for the future. Is it the developer's intention to only construct the accesses and not connect to Shea until the development abutting Shea directly is constructed? Early connection would be supported even if the network intersections demonstrate capacity.
 - IBI Response: The proposed connection of Cope Drive to Shea Road is not included in the core study, as it will not be functionally required to support CRT Phase 4 traffic. Including this connection may result in a significant amount of through-traffic from the Edenwylde, Idylea and Cavanagh developments west of Shea which could be problematic until construction is substantially complete for CRT Westwood. Additionally, the design of the Cope/Shea intersection would require knowledge of the traffic demands of CRT Phase 5 which are not known yet. Because of this, the Cope/Shea connection is being treated as a supplemental analysis to determine if the connection is required to reduce the background traffic at other study area intersections. This rationale was accepted by the City Transportation Project Manager via email on January 21, 2022.

CRT "Westwood" Phase 4 – Transportation Impact Assessment IBI Group

Step 3 Submission (Forecasting) – Circulation Comments & Response

Report Submitted: February 8, 2022 Comments Received: February 25, 2022 Transportation Project Manager: Patrick McMahon

- 1) Transportation Engineering Services: Review the total peak period person trips from table 7 (AM and PM) as they are lower than the values provided in table 5. Similarly, review the total peak-hour person trips from table 8 (AM and PM) as they are also low.
 - > IBI Response: Noted, Section 4.1.2.1 of the TIA has been updated accordingly. Projected traffic volumes in Tables 7 and 8 have been confirmed and updated.

Appendix B – Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development					
Municipal Address	1555 Shea Road, 5500 Abbott Street East				
Description of Location	Stittsville - North of Fernbank Road, east of Shea Road and south of Abbott Street East				
Land Use Classification	Residential				
Development Size (units)	286 Single Family Homes 336 Townhome Units 54 Back-to-back Townhome Units				
Development Size (m ²)	N/A				
Number of Accesses and Locations	Two (2) external all-movement access intersections: one (1) on Shea Road & one (1) on Abbott Street East Five (5) internal all-movement access intersections with Goldhawk Dr.				
Phase of Development	Single Phase				
Buildout Year	2025				

2. Trip Gen Trigger

Considering the Development's Land Use Type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size				
Single-family homes	40 units				
Townhomes or apartments	90 units				
Office	3,500 m ²				
Industrial	5,000 m ²				
Fast-food restaurant or coffee shop	100 m ²				
Destination Retail	1,000 m ²				
Gas Station or convenience market	75 m ²				

*If the development has a land use type other than what is presented in the table above, estimates of person trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

Based on the above, the Trip Generation Trigger is satisfied.

3. Location Triggers		
	Yes	Νο
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	V	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6) See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA.

Based on the above, the Location Trigger is satisfied.

4. Safety Triggers		
	Yes	No
Are posted speed limits on a boundary street 80km/hr or greater?		
Are there any horizontal/vertical curvatures on a boundary street that limit sight lines at a proposed driveway?		
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/suburban conditions?)		
Is the proposed driveway within auxiliary lanes of an intersection?		
Does the proposed driveway make use of an existing median break that serves an existing site?		\checkmark
Is there a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		
Does the development include a drive-thru facility?		
Based on the above, the Safety Trigger is satisfied.		

5. Summary		
	Yes	No
Does the development satisfy the Trip Generation Trigger?	\checkmark	
Does the development satisfy the Location Trigger?		
Does the development satisfy the Safety Trigger?		

Based on the results of the TIA Screening Form, the Trip Generation, Location and Safety Triggers are satisfied. As such, a TIA is required for the proposed development.

Appendix C – OC Transpo Routes

TERRY FOX STITTSVILLE TUNNEY'S PASTURE GATINEAU

7 days a week / 7 jours par semaine

All day service and limited overnight Service toute la journée et limité la nuit

2021.12

*Standard message rates may apply / Les tarifs réguliers de messagerie texte peuvent s'appliquer

CC Transpo

TERRY FOX STITTSVILLE TUNNEY'S PASTURE

7 days a week / 7 jours par semaine

All day service Service toute la journée

CC Transpo

TERRY FOX

COPE

Monday to Friday/ Lundi au vendredi

Selected time periods Périodes selectionnées

2021.09

Monday to Friday / Lundi au vendredi

PASTURE

COPE

Peak periods only Périodes de pointe seulement

Transitway & Station

Limited stops: Off only in AM / No stop in PM Arrêts limités : débarquement en AM seul. / aucun arrêt en PM

AM: Off only - PM: Full Service AM : débarquement seul. - PM : service complet

2021.09

*Standard message rates may apply / Les tarifs réguliers de messagerie texte peuvent s'appliquer

Customer Service Service à la clientèle	613-560-5000
Lost and Found / Objets perdus.	613-563-4011
Security / Sécurité	613-741-2478
Effective Septemb	er 5, 2021
En vigueur 5 septer	mbre 2021

Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

- Limited stops: Off only in AM / No stop in PM Arrêts limités : débarquement en AM seul. / aucun arrêt en PM
 - AM: Off only PM: Full Service AM : débarquement seul. - PM : service complet
 - Park & Ride / Parc-o-bus

2021.09

*Standard message rates may apply / Les tarifs réguliers de messagerie texte peuvent s'appliquer

Customer Service Service à la clientèle	613-560-5000
Lost and Found / Objets perdus	613-563-4011
Security / Sécurité	613-741-2478
Effective September	5, 2021
En vigueur 5 septemb	ore 2021

WEST RIDGE TUNNEY'S PASTURE

Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

2021.09

AM: Off only - PM: Full Service AM : débarquement seul. - PM : service complet

aucun arrêt en PM

Park & Ride / Parc-o-bus

Appendix D – Collision Data

Location: ABBOT	T ST @ GRAI	NITE RIDGE DR							
Traffic Control: Stop	o sign						Total Collisions:	8	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Mar-31, Tue,08:00	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Jun-29, Thu,15:15	Rain	Angle	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Turning left	Automobile, station wagon	Other motor vehicle	
2017-Dec-14, Thu,15:00	Clear	Angle	Non-fatal injury	Wet	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Pick-up truck	Other motor vehicle	
2018-Sep-22, Sat,17:15	Clear	Turning movement	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2019-Sep-07, Sat,17:06	Clear	Angle	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Cyclist	0
					North	Going ahead	Bicycle	Other motor vehicle	
2019-Oct-21, Mon,13:30	Clear	Angle	P.D. only	Dry	South	Going ahead	Bicycle	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Cyclist	
2019-Oct-25, Fri,14:33	Clear	Rear end	P.D. only	Dry	East	Going ahead	Unknown	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2019-Nov-13, Wed, 19:02	Clear	Rear end	P.D. only	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
Location: ABBOT	T ST @ SHEA	A RD							
Traffic Control: Stop	o sign						Total Collisions:	2	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	r Vehicle type	First Event	No. Ped
2017-Apr-18, Tue,21:43	Clear	SMV other	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Skidding/sliding	0
2019-Dec-05, Thu,12:04	Clear	Angle	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Turning left	Automobile, station wagon	Other motor vehicle	

Location: BOBOL	INK RDG @	ROBERT GRAN	T AVE						
Traffic Control: Rou	undabout						Total Collisions:	2	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2017-Oct-05, Thu,12:40	Clear	Angle	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Apr-10, Wed,06:50	Clear	Angle	P.D. only	Wet	West	Merging	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
Location: FERNE	BANK RD @ R	OBERT GRANT	AVE						
Traffic Control: Tra	ffic signal						Total Collisions:	1	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2016-Jun-23, Thu,20:08	Clear	Sideswipe	P.D. only	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
Location: FERNE	BANK RD @ S	HEA RD							
Traffic Control: Rou	undabout						Total Collisions:	13	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2016-Jan-23, Sat,08:54	Clear	Angle	P.D. only	Dry	North	Merging	Pick-up truck	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-May-31, Tue,09:21	Clear	Angle	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Nov-04, Fri,12:21	Clear	Angle	P.D. only	Dry	East	Merging	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Pick-up truck	Other motor vehicle	
2017-Feb-15, Wed,19:14	Snow	Angle	P.D. only	Loose snow	East	Merging	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Mar-08, Thu, 19:35	Snow	Rear end	P.D. only	Ice	West	Slowing or stopping	J Pick-up truck	Skidding/sliding	0
					West	Slowing or stopping	Automobile, station wagon	Skidding/sliding	

Location: FERNE	ANK RD @ S	HEA RD							
Traffic Control: Rou	Indabout						Total Collisions:	13	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	r Vehicle type	First Event	No. Ped
2018-Jul-27, Fri,18:03	Clear	Angle	P.D. only	Dry	East	Merging	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Aug-10, Fri,11:00	Clear	Angle	P.D. only	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Nov-14, Wed,07:46	Clear	Angle	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jan-21, Mon,14:03	Drifting Snow	SMV other	P.D. only	Packed snow	West	Slowing or stopping	g Passenger van	Skidding/sliding	0
2019-Feb-26, Tue,08:58	Clear	Angle	P.D. only	Dry	East	Merging	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Apr-01, Mon,07:10	Clear	Angle	P.D. only	Dry	West	Merging	Passenger van	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Nov-06, Wed,07:15	Clear	Angle	P.D. only	Dry	East	Merging	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Dec-04, Wed, 10:28	Clear	Angle	P.D. only	Wet	North	Merging	Passenger van	Other motor vehicle	0
					East	Going ahead	Delivery van	Other motor vehicle	
Location: FERNE	ANK RD btwr	GO/KA BOUNE	DARY & SHEA RD						
Traffic Control: No	control						Total Collisions:	9	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	r Vehicle type	First Event	No. Ped
2015-Apr-12, Sun,16:37	Clear	Rear end	P.D. only	Dry	East	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Jun-11, Thu,22:59	Clear	SMV other	P.D. only	Dry	West	Going ahead	Pick-up truck	Ditch	0
2015-Nov-17, Tue,22:05	Clear	SMV other	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Animal - wild	0

Location: FERNE	BANK RD btwr	n GO/KA BOUNDA	RY & SHEA RD						
Traffic Control: No	control				Total Collisions: 9				
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Feb-20, Sat, 12:40	Rain	Other	P.D. only	Wet	East	Overtaking	Pick-up truck	Other motor vehicle	0
					West	Reversing	Automobile, station wagon	Other motor vehicle	
2018-Oct-04, Thu,17:09	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Passenger van	Other motor vehicle	
					East	Going ahead	Pick-up truck	Other motor vehicle	
					East	Stopped	Pick-up truck	Other motor vehicle	
2019-Mar-08, Fri,14:40	Clear	SMV other	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Ran off road	0
2019-Jul-17, Wed,18:00	Clear	Turning movement	P.D. only	Dry	West	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Aug-07, Wed,01:30	Clear	SMV other	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Animal - wild	0
2019-Nov-14, Thu,08:50	Clear	SMV other	P.D. only	Dry	West	Turning left	Automobile, station wagon	Pole (sign, parking met	er) 0
Location: SHEA	RD btwn ABB	OTT ST E & FERN	BANK RD						
Traffic Control: No	control						Total Collisions	5	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Jan-15, Thu,19:28	Snow	Turning movement	P.D. only	Loose snow	South	Turning left	Passenger van	Other motor vehicle	0
					South	Overtaking	Pick-up truck	Other motor vehicle	
2016-Nov-05, Sat,19:04	Clear	SMV other	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Ran off road	0
2017-Mar-31, Fri,21:16	Snow	SMV other	P.D. only	Slush	South	Going ahead	Automobile, station wagon	Skidding/sliding	0
2018-Nov-22, Thu,07:47	Clear	SMV other	Non-fatal injury	Loose snow	North	Going ahead	Automobile, station wagon	Pole (utility, power)	0
2019-May-30, Thu,17:30	Clear	Turning movement	P.D. only	Dry	South	Making "U" turn	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	

Appendix E – Traffic Count Data

Printed on: 12/19/2021

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Turning Movement Count - Peak Hour Diagram ABBOTT ST @ SHEA RD

Comments

Turning Movement Count - Peak Hour Diagram ABBOTT ST @ SHEA RD

Comments

Appendix F – Trip Generation Data

3.2 Recommended Residential Trip Generation Rates

A blended trip rate was developed from the three data sources through application of a rank-sum weighting process, considering the strengths and weaknesses of each dataset for the dwelling type in question. The recommended blended **residential person-trip rates** are presented in **Table 3**. All rates represent person-trips per dwelling unit and are to be applied to the **AM or PM peak period**.

ITE Land Use Code	Dwelling Unit Type	Period	Person-Trip Rate
210	Single detached	AM	2.05
210	Single-detached	PM	2.48
220	Multi Upit (Low Piso)	AM	1.35
220	Multi-Offic (LOW-Rise)	PM	1.58
221 8 222	Multi I Init (High Dico)	AM	0.80
	Multi-Offic (High-Rise)	PM	0.90

Table 3: Recommended Residential Person-trip Rates

3.3 Adjustment Factors – Peak Period to Peak Hour

The various trip generation data sources require some adjustment to standardize the data for developing robust blended trip rates. The peak period conversion factor in **Table 4** may be used where applicable to develop trip generation rate estimates in the desired format.

Table 4: Adjustment Factors for Residential Trip Generation Rates

Factor	Application	Apply To	Period	Value
		Person-trip	AM	0.50
	Dock paried to peak hour	rates per peak period	PM	0.44
	conversion. Because the 2020	Vehicle trip	AM	0.48
Peak Period	TRANS Trip Generation Study reports trip generation rates by peak period, factors must be applied if the practitioner requires peak hour rates. In practice, the conversion to peak hour trip rates should occur after the application of model charge	rates per peak period	PM	0.44
		Transit trip	AM	0.55
Factor		rates per peak period	PM	0.47
		Cycling trip	AM	0.58
		period	PM	0.48
	application of modal shares.	Walking trip	AM	0.58
		rates per peak period	PM	0.52

Table 6: Residential Mode Share for Single-Detached Housing

		Mode				
District	Period	Auto	Auto	-		
		Driver	Pass.	Iransit	Cycling	Walking
	AM	37%	13%	17%	9%	25%
Ottawa Centre	PM	36%	12%	13%	8%	30%
	AM	36%	13%	17%	9%	25%
Ottawa Inner Area	PM	35%	12%	13%	9%	30%
Île de Lluil	AM	46%	13%	13%	0%	28%
lie de Hull	PM	53%	12%	11%	0%	24%
Ottowa Foot	AM	45%	15%	20%	9%	11%
Ollawa Easi	PM	48%	15%	17%	9%	12%
Baasan Hill	AM	51%	15%	20%	2%	12%
	PM	52%	21%	16%	4%	8%
Alto Misto	AM	49%	15%	21%	4%	11%
Alla Vista	PM	52%	18%	16%	3%	12%
	AM	48%	15%	29%	1%	7%
	PM	51%	19%	23%	1%	7%
Marinala	AM	52%	16%	21%	3%	8%
Merivale	PM	54%	18%	17%	3%	9%
Ottowe West	AM	43%	15%	19%	6%	16%
Ottawa west	PM	43%	13%	15%	6%	23%
Povoboro/Codorviow	AM	49%	15%	27%	2%	7%
Baysnore/Cedarview	PM	52%	18%	21%	2%	7%
Hull Dárinhária	AM	49%	17%	22%	4%	8%
riuii Feliphene	PM	51%	18%	18%	4%	9%
Orloane	AM	48%	14%	27%	1%	9%
Oneans	PM	54%	17%	22%	1%	6%
South Gloucester /	AM	54%	24%	12%	1%	9%
Leitrim	PM	55%	25%	9%	1%	10%
South Nenean	AM	51%	14%	25%	1%	9%
	PM	53%	19%	18%	1%	10%
Kanata - Stitteville	AM	52%	<mark>15%</mark>	20%	1%	12%
	PM	56%	19%	14%	1%	9%
Plateau	AM	47%	17%	24%	4%	7%
T lateau	PM	49%	19%	21%	3%	9%
Avlmer	AM	53%	17%	23%	2%	6%
Ayimer	PM	55%	21%	17%	2%	5%
Pointe Gatineau	AM	55%	15%	22%	2%	7%
	PM	55%	17%	19%	2%	7%
Gatineau Est	AM	54%	16%	20%	0%	10%
	PM	60%	18%	14%	1%	7%
Masson-Angers	AM	62%	13%	13%	11%	1%
	PM	62%	18%	12%	8%	1%
Other Rural Districts	AM	60%	14%	24%	2%	0%
Other Rural Districts	PM	67%	17%	14%	2%	0%

Table 7: Residential Mode Share for Low-Rise Multifamily Housing

		Mode				
District	Period	Auto	Auto	-		
		Driver	Pass.	Transit	Cycling	waiking
	AM	27%	9%	25%	9%	30%
Ottawa Centre	PM	31%	10%	20%	9%	30%
	AM	27%	8%	26%	9%	30%
Ottawa Inner Area	PM	31%	9%	20%	9%	31%
	AM	27%	9%	25%	9%	30%
	PM	34%	22%	16%	5%	22%
Ottowo Foot	AM	36%	11%	38%	7%	8%
Ollawa Easi	PM	39%	16%	29%	5%	11%
Peacen Hill	AM	45%	9%	35%	1%	10%
	PM	48%	16%	24%	1%	11%
	AM	38%	15%	35%	1%	10%
Alta vista	PM	38%	19%	31%	2%	10%
	AM	44%	11%	38%	1%	6%
	PM	47%	15%	29%	1%	8%
Morivala	AM	44%	11%	32%	6%	7%
Merivale	PM	44%	12%	29%	4%	11%
Ottowa West	AM	36%	12%	24%	10%	19%
Ollawa wesi	PM	35%	12%	16%	10%	27%
Boychoro/Codorviow	AM	43%	11%	31%	1%	13%
Bayshore/Cedarview	PM	44%	14%	25%	1%	15%
Hull Dárinhária	AM	46%	22%	22%	4%	6%
	PM	46%	17%	22%	3%	11%
Orleans	AM	47%	15%	29%	1%	9%
Oneans	PM	51%	19%	24%	1%	6%
South Gloucester /	AM	59%	20%	16%	1%	4%
Leitrim	PM	62%	18%	17%	1%	3%
South Nenean	AM	49%	13%	26%	2%	9%
	PM	49%	13%	24%	2%	12%
Kanata - Stittsville	AM	<mark>52%</mark>	14%	22%	0%	11%
Ranata - Otitisvine	PM	58%	17%	17%	0%	8%
Plateau	AM	44%	18%	28%	4%	6%
Tidtcau	PM	47%	17%	26%	2%	8%
Avlmer	AM	52%	18%	23%	0%	7%
/ tylinici	PM	52%	16%	20%	1%	12%
Pointe Gatineau	AM	46%	17%	23%	0%	14%
	PM	52%	16%	19%	1%	12%
Gatineau Est	AM	54%	17%	20%	1%	8%
	PM	56%	21%	16%	0%	7%
Masson-Angers	AM	60%	15%	21%	4%	1%
Massen Angelo	PM	63%	15%	17%	3%	1%
Other Rural Districts	AM	66%	13%	21%	1%	0%
Other Rural Districts	PM	62%	19%	16%	3%	0%

Table 8: Residential Mode Share for High-Rise Multifamily Housing

		Mode				
District	Period	Auto	Auto			
		Driver	Pass.	Iransit	Cycling	Walking
0 // 0 //	AM	18%	2%	26%	1%	52%
Ottawa Centre	PM	17%	9%	21%	1%	52%
	AM	26%	6%	28%	5%	34%
Ottawa Inner Area	PM	25%	8%	21%	6%	39%
Île de Lluil	AM	27%	3%	37%	12%	21%
lie de Hull	PM	26%	8%	27%	11%	28%
Ottowa Fast	AM	39%	7%	38%	2%	13%
Ollawa Easi	PM	40%	14%	28%	3%	15%
Deesen Lill	AM	48%	9%	30%	3%	10%
Beacon Hill	PM	52%	16%	28%	0%	4%
	AM	38%	12%	42%	2%	7%
Alla Vista	PM	45%	16%	28%	2%	9%
	AM	39%	6%	44%	1%	9%
	PM	44%	11%	35%	2%	9%
	AM	41%	6%	42%	2%	8%
Merivale	PM	41%	11%	33%	2%	13%
	AM	28%	11%	41%	3%	16%
Ottawa west	PM	33%	11%	26%	7%	23%
Devictore /Ordern inve	AM	40%	12%	38%	2%	8%
Bayshore/Cedarview	PM	40%	15%	33%	1%	11%
	AM	48%	11%	30%	1%	10%
Hull Peripherie	PM	47%	15%	23%	3%	13%
Orleane	AM	54%	7%	29%	0%	10%
Oneans	PM	61%	13%	21%	0%	6%
South Gloucester /	AM	50%	15%	25%	1%	9%
Leitrim	PM	53%	17%	21%	1%	9%
South Monoon	AM	58%	6%	30%	2%	4%
South Nepean	PM	54%	15%	25%	0%	7%
Kapata Stittavilla	AM	43%	26%	28%	0%	4%
Kanata - Stittsville	PM	55%	19%	21%	0%	5%
Distant	AM	53%	9%	35%	3%	1%
Plateau	PM	65%	7%	25%	2%	1%
Aulmor	AM	45%	17%	25%	0%	13%
Ayimer	PM	31%	21%	23%	4%	20%
Deinte Cetineeu	AM	44%	15%	24%	3%	14%
Pointe Gatineau	PM	52%	15%	20%	2%	11%
Gatineau Est	AM	53%	10%	25%	0%	12%
Gauneau ESI	PM	61%	10%	25%	0%	4%
Masson Angors	AM	63%	15%	19%	0%	3%
Masson-Angers	PM	64%	18%	16%	0%	1%
Other Rural Districts	AM	63%	15%	19%	0%	3%
Other Rural Districts	PM	64%	18%	16%	0%	1%

Demographic Characteristics

Population Employed Population Households	105,210 49,640 38,010	Actively Tray Number of V Area (km ²)	velled /ehicles	83,460 64,540 82.6
Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		24,670	19,590	44,260
Part Time Employed		1,540	3,840	5,380
Student		13,630	13,410	27,040
Retiree		6,480	8,350	14,820
Unemployed		850	940	1,790
Homemaker		160	3,310	3,470
Other		350	1,010	1,360
Total:		47,690	50,440	98,120
Traveller Characteristics		Male	Female	Total
Transit Pass Holders		5.940	6.920	12,860
Licensed Drivers		36,280	36,790	73,070
Telecommuters		200	380	580
Trips made by residents		135,300	143,330	278,630

Household Size		
1 person	5,810	15%
2 persons	11,660	31%
3 persons	7,490	20%
4 persons	8,890	23%
5+ persons	4,160	11%
Total:	38,010	100%

Households by Vehicle Availability				
0 vehicles	1,050	3%		
1 vehicle	14,090	37%		
2 vehicles	19,110	50%		
3 vehicles	3,000	8%		
4+ vehicles	770	2%		
Total:	38,010	100%		

Households by Dwelling	Туре	
Single-detached	21,610	57%
Semi-detached	3,890	10%
Townhouse	10,550	28%
Apartment/Condo	1,960	5%
Total:	38,010	100%

Selected Indicators	
Daily Trips per Person (age 5+)	2.84
Vehicles per Person	0.61
Number of Persons per Household	2.77
Daily Trips per Household	7.33
Vehicles per Household	1.70
Workers per Household	1.31
Population Density (Pop/km2)	1270

Employed Population

* In 2005 data was only collected for household members aged 11^{*} therefore these results cannot be compared to the 2011 data.

Travel Patterns

Top Five Destinations of Trips from Kanata - Stittsville

AM Peak Period

Summary of Trips to and from Kanata - Stittsville							
AM Peak Period (6:30 - 8:59)	Destinations of	(Origins of				
	Trips From		Trips To				
Districts	District	% Total	District	% Total			
Ottawa Centre	4,560	8%	140	0%			
Ottawa Inner Area	3,350	6%	970	2%			
Ottawa East	660	1%	260	1%			
Beacon Hill	280	0%	170	0%			
Alta Vista	1,810	3%	660	1%			
Hunt Club	490	1%	420	1%			
Merivale	3,410	6%	1,200	3%			
Ottawa West	2,020	4%	840	2%			
Bayshore / Cedarview	5,010	9%	2,420	5%			
Orléans	290	1%	500	1%			
Rural East	100	0%	30	0%			
Rural Southeast	50	0%	260	1%			
South Gloucester / Leitrim	60	0%	140	0%			
South Nepean	690	1%	1,800	4%			
Rural Southwest	1,130	2%	1,850	4%			
Kanata / Stittsvile	30,360	54%	30,360	66%			
Rural West	1,050	2%	3,250	7%			
Île de Hull	670	1%	30	0%			
Hull Périphérie	160	0%	30	0%			
Plateau	100	0%	230	0%			
Aylmer	0	0%	190	0%			
Rural Northwest	20	0%	60	0%			
Pointe Gatineau	20	0%	80	0%			
Gatineau Est	0	0%	60	0%			
Rural Northeast	30	0%	50	0%			
Buckingham / Masson-Angers	30	0%	10	0%			
Ontario Sub-Total:	55,320	98%	45,270	98%			
Québec Sub-Total:	1,030	2%	740	2%			
Total:	56,350	100%	46,010	100%			

Trips by Trip Purpose

24 Hours	From District		To District	W	Vithin District	
Work or related	27,180	29%	17,020	18%	14,550	9%
School	7,070	7%	2,500	3%	15,110	9%
Shopping	6,070	6%	9,150	10%	22,480	14%
Leisure	8,450	9%	10,590	11%	17,090	11%
Medical	2,520	3%	1,170	1%	2,660	2%
Pick-up / drive passenger	6,570	7%	5,470	6%	15,190	9%
Return Home	33,610	35%	45,620	48%	65,770	41%
Other	3,560	4%	3,590	4%	8,440	5%
Total:	95,030	100%	95,110	100%	161,290	100%
AM Peak (06:30 - 08:59)	From District		To District	v	Vithin District	
Work or related	18,030	69%	11,020	70%	7,430	24%
School	4,890	19%	2,280	15%	11,740	39%
Shopping	170	1%	320	2%	760	3%
Leisure	340	1%	400	3%	780	3%
Medical	330	1%	230	1%	350	1%
Pick-up / drive passenger	1,260	5%	580	4%	4,760	16%
Return Home	290	1%	380	2%	1,980	7%
Other	670	3%	430	3%	2,560	8%
Total:	25,980	100%	15,640	100%	30,360	100%
PM Peak (15:30 - 17:59)	From District		To District	v	Vithin District	
Work or related	390	2%	350	1%	930	2%
School	370	2%	0	0%	90	0%
Shopping	1,030	5%	1,910	7%	5,100	14%
Leisure	2,140	11%	3,080	11%	4,130	11%
Medical	230	1%	180	1%	400	1%
Pick-up / drive passenger	1,980	10%	1,980	7%	3,410	9%
Return Home	12,130	64%	20,550	71%	21,560	58%
Other	680	4%	860	3%	1,850	5%
Total:	18,950	100%	28,910	100%	37,470	100%
Peak Period (%)	Total:		% of 24 Hours	,	Within Distric	ct (%)
24 Hours	351,430				46%	
AM Peak Period	71,980		20%		42%	
PM Peak Period	85,330		24%		44%	

Trips by Primary Travel Mode

24 Hours	From District		To District	w	ithin Distric	t
Auto Driver	63,470	67%	63,830	67%	92,190	57%
Auto Passenger	15,220	16%	14,920	16%	31,880	20%
Transit	12,200	13%	12,270	13%	4,050	3%
Bicycle	360	0%	410	0%	960	1%
Walk	40	0%	50	0%	21,080	13%
Other	3,730	4%	3,660	4%	11,130	7%
Total:	95,020	100%	95,140	100%	161,290	100%
AM Peak (06:30 - 08:59)	From District		To District	W	ithin Distric	t
Auto Driver	15,360	59%	11,530	74%	13,630	45%
Auto Passenger	2,450	9%	1,160	7%	5,050	17%
Transit	6,230	24%	1,290	8%	1,210	4%
Bicycle	30	0%	80	1%	220	1%
Walk	0	0%	40	0%	5,730	19%
Other	1,900	7%	1,560	10%	4,510	15%
Total:	25,970	100%	15,660	100%	30,350	100%
PM Peak (15:30 - 17:59)	From District		To District	W	ithin Distric	t
Auto Driver	13,850	73%	17,660	61%	21,240	57%
Auto Passenger	3,240	17%	4,270	15%	8,570	23%
Transit	1,270	7%	5,980	21%	670	2%
Bicycle	40	0%	100	0%	260	1%
Walk	40	0%	0	0%	4,570	12%
Other	520	3%	910	3%	2,160	6%
Total:	18,960	100%	28,920	100%	37,470	100%
Avg Vehicle Occupancy	From District		To District	W	ithin Distric	t
24 Hours	1.24		1.23		1.35	
AM Peak Period	1.16		1.10		1.37	
PM Peak Period	1.23		1.24		1.40	
Transit Modal Split	From District		To District	W	ithin Distric	t
24 Hours	13%		13%		3%	
AM Peak Period	26%		9%		6%	
PM Peak Period	7%		21%		2%	

2011 TRANS O-D Survey Report

Appendix G – MMLOS Analyses

Multi-Modal Level of Service - Segments Form

Consultant	IBI Group	Project	CRT Phase 4 136944
Scenario	Existing/Future Conditions	Date	
Comments			

SEGMENTS		Fernbank	Shea	Abbott	Section	Section	Section	Section	Section	
SEGIMIEINTS		1	2	3	4	5	6	7	8	
	Sidewalk Width Boulevard Width	no sidewalk n/a	no sidewalk n/a	1.8 m 0.5 - 2 m						
	Avg Daily Curb Lane Traffic Volume	> 3000	≤ 3000	> 3000						
rian	Operating Speed On-Street Parking	> 60 km/h no	> 60 km/h no	> 30 to 50 km/h no						
st	Exposure to Traffic PLoS	F	F	С	-	-	-	-	-	
qe	Effective Sidewalk Width	2.0 m	1.5 m	2.0 m						Γ
Ре	Pedestrian Volume	250 ped/hr	250 ped/hr	250 ped/hr						T
	Crowding PLoS	В	В	В	-	-	-	-	-	
	Level of Service	F	F	С	-	-	-	-	-	
	Type of Cycling Facility	Mixed Traffic	Mixed Traffic	Curbside Bike Lane						
	Number of Travel Lanes	2-3 lanes total	2-3 lanes total	≤ 1 each direction						
	Operating Speed	≥ 60 km/h	≥ 60 km/h	≤ 50 km/h						
	# of Lanes & Operating Speed LoS	F	F	A	-	-	-	-	-	
<u>e</u>	Bike Lane (+ Parking Lane) Width	<u>≥ 1.8 m</u>	≥ 1.5 to <1.8 m	≥ 1.8 m						
Š	Bike Lane Width LoS	A	B	A	-	-	-	-	-	
Bi	Bike Lane Blockages	Rare	Rare	Rare						L
	Blockage LoS	A	A	A	-	-	-	-	-	Ļ
	Median Refuge Width (no median = < 1.8 m)	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge						_
	No. of Lanes at Unsignalized Crossing	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes						_
	Sidestreet Operating Speed	>50 to 60 km/h	>50 to 60 km/h	>50 to 60 km/h						_
	Unsignalized Crossing - Lowest Los	U U	ر د	ر ر	-	-	-	-	-	-
	Level of Service	F	F	С	-	-	-	-	-	
sit	Facility Type	Mixed Traffic	Mixed Traffic	Mixed Traffic						
Sun Sun	Friction or Ratio Transit:Posted Speed	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8						T
Tra	Level of Service	D	D	D	-	-	-	-	-	
	Truck Lane Width	≤ 3.5 m	≤ 3.3 m	≤ 3.5 m						
C K	Travel Lanes per Direction	1	1	1						
Tru	Level of Service	С	D	С	-	-	-	-	-	

Appendix H – Intersection Control Warrants

IBI

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	CRT	FPhase 4		Da	ate:	March 30, 2022
Project #:	136944					
Location:	Abbott Street E	at	Granite Ridge/Bobolink			
Orientation:	(Major Roadway) East/West		(Minor Roadway) North/South			
Municipality:	Ottawa		Scenario:	Future (2030) Total Traffic		

Justification 1 - Minimum Vehicle Volume

	N	IINIMUM RE	QUIREMEN	IT									
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all	490	720	490	720	770	385	385	385	1052	526	526	526	709/
approaches	400	720	460	720	100%	53%	53%	53%	100%	73%	73%	73%	1270
B. Vehicle volume along minor	100	470	400	470	194	97	97	97	175	87	87	87	CC0/
roads	120	170	120	170	100%	57%	57%	57%	100%	51%	51%	51%	00%

Justification 2 - Delay to Cross Traffic

	N	IINIMUM RE	QUIREMEN	IT	COMPLIANCE								
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along					576	288	288	288	877	438	438	438	
artery	480	720	480	720	80%	40%	40%	40%	100%	61%	61%	61%	60%
B. Combined vehicle and					66	33	33	33	45	22	22	22	
pedestrian volume crossing artery from minor roads	50	70	50	70	95%	47%	47%	47%	64%	32%	32%	32%	50%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	NO	NO
Justification 2 - Delay to Cross Traffic	NO	NO

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION		RESTRICTED	ADJUSTED	ADJUSTED	SECT	IONAL	ENTIDE %
		FREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%	
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	576	864	456	53%	
	B. Vehicle volume along minor roads (Average Hour)	120	170	144	204	92	45%	45%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	576	864	364	42%	240/
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	60	90	28	31%	31%

Projected Traffic Volumes:

Average Hourly Volume (AHV) Equation: AHV = (amPHV + pmPHV)/4

	AM Pe	eak H	our Vo	olumes		_		PM Pe	eak He	lour Volumes				Ave	erage H	Hourly	y Volumes (AHV)		
52 ⊮∠	0 ↓	33 וע	$r \uparrow r$	20 182 35		-	58 ⊮	0 ↓	25 וע	$\land \uparrow \urcorner$	29 342 111		_	28 ⊭∕	0 ↓	15 لا	$r \downarrow \gamma$	12 131 37	
	35	7	R	\uparrow	7	-		41	Z	Γ	\uparrow	7	-		19	7	Г	\uparrow	7
	285	\rightarrow	33	0	75			322	\rightarrow	20	0	72			152	\rightarrow	13	0	37
	20	Ы						32	Ы						13	Ы			

Eight Hour Traffic Volumes**:

			Major	Road					Dealt				
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Pea
7:00 AM	35	285	20	35	182	20	33	0	75	33	0	52	0
8:00 AM	18	143	10	17	91	10	17	0	38	17	0	26	0
9:00 AM	18	143	10	17	91	10	17	0	38	17	0	26	0
10:00 AM	18	143	10	17	91	10	17	0	38	17	0	26	0
3:00 PM	41	322	32	111	342	29	20	0	72	25	0	58	0
4:00 PM	21	161	16	56	171	15	10	0	36	13	0	29	0
5:00 PM	21	161	16	56	171	15	10	0	36	13	0	29	0
6:00 PM	21	161	16	56	171	15	10	0	36	13	0	29	0
* Number o	f pede	strians	s cross	sina th	e maio	or road	1						

** These are projected 8-hour traffic volumes.

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

3. The lowest sectional percentage governs the entire warrant.

4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

6. The crossing volumes are defined as the sum of:

- (a) Left-turns from both minor road approaches.
- (b) The heaviest through volume from the minor road.
- (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph (ii) the left-turn volume plus the opposing volume >720 vph
- (d) Pedestrians crossing the main road.

(a) i odobilidno probeilig tilo ilidali i a

CONCLUSION: The intersection does NOT meet the minimum warrants for traffic control signal

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

1 Lane per Direction

Restricted Flow

4-legged Intersection

Existing Intersection

IBI

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	CRT Pha	ase 4		Dat	e: March 30, 2022
Project #:	136944				
Location:	Fernbank Road	at	Goldhawk Drive		
Orientation:	(Major Roadway) East/West		(Minor Roadway) North/South		
Municipality:	Ottawa		Scenario:	Future (2030) Total Traffic	_

Justification 1 - Minimum Vehicle Volume

	Ν	IINIMUM RE	QUIREMEN	IT				COMPI	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all approaches	480	720	576	864	1056	528 92%	528 92%	528 92%	1482 100%	741	741 100%	741	97%
B. Vehicle volume along minor roads	120	170	216	306	121 56%	61 28%	61 28%	61 28%	90 41%	45 21%	45 21%	45 21%	31%

Justification 2 - Delay to Cross Traffic

	MINIMUM REQUIREMENT												
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along					935	467	467	467	1392	696	696	696	
artery	480	720	576	864	100%	81%	81%	81%	100%	100%	100%	100%	93%
B. Combined vehicle and					96	48	48	48	70	35	35	35	
pedestrian volume crossing artery from minor roads	50	70	60	84	100%	80%	80%	80%	100%	59%	59%	59%	77%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	N/A	N/A
Justification 2 - Delay to Cross Traffic	N/A	N/A

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT	COMPLIANCE				
WARRANT	DESCRIPTION		RESTRICTED	ADJUSTED	ADJUSTED	SECT			
		FREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%		
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	720	1080	635	88%	20%	
	B. Vehicle volume along minor roads (Average Hour)	120	170	270	383	53	20%		
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	720	1080	582	81%	500/	
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	75	113	42	56%	56%	

Projected Traffic Volumes:

Average Hourly Volume (AHV) Equation: AHV = (amPHV + pmPHV)/4

AM Peak Hour Volumes						PM Peak Hour Volumes							Average Hourly Volumes (AHV)						
25 ⊮∠	0 ↓	96 צ	$F \uparrow A$	65 343 0		_	19 ∠	0 ↓	70 וצ	$\land \uparrow \land$	121 747 0			11 ∠	0 ↓	42 لا	$r \uparrow \gamma$	46 273 0	
	22	Z	R	\uparrow	7	-		38	Z	Γ	\uparrow	Z			15	Z	Γ	\uparrow	7
	506	\rightarrow	0	0	0			486	\rightarrow	0	0	0			248	\rightarrow	0	0	0
	0	Ы						0	Ы						0	Ы			

Eight Hour Traffic Volumes**:

IBI

			Major	Road			Minor Road							
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Feu	
7:00 AM	22	506	0	0	343	65	0	0	0	96	0	25	0	
8:00 AM	11	253	0	0	171	32	0	0	0	48	0	13	0	
9:00 AM	11	253	0	0	171	32	0	0	0	48	0	13	0	
10:00 AM	11	253	0	0	171	32	0	0	0	48	0	13	0	
3:00 PM	38	486	0	0	747	121	0	0	0	70	0	19	0	
4:00 PM	19	243	0	0	374	60	0	0	0	35	0	10	0	
5:00 PM	19	243	0	0	374	60	0	0	0	35	0	10	0	
6:00 PM	19	243	0	0	374	60	0	0	0	35	0	10	0	
* Number of pedestrians crossing the major road														

** These are projected 8-hour traffic volumes.

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

3. The lowest sectional percentage governs the entire warrant.

4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

6. The crossing volumes are defined as the sum of:

- (a) Left-turns from both minor road approaches.
- (b) The heaviest through volume from the minor road.
- (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph (ii) the left-turn volume plus the opposing volume >720 vph

(d) Pedestrians crossing the main road.

CONCLUSION: The intersection does NOT meet the minimum warrants for traffic control sign

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

1 Lane per Direction

Free Flow

3-legged Intersection

New Intersection
IBI

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	CRT Ph	ase 4			Date:	March 30, 2022
Project #:	136944					
Location:	Shea Road	at	Street 12	_		
Orientation:	(Major Roadway) North/South		(Minor Roadway) East/West	_		
Municipality:	Ottawa		Scenario	Euture (2030) Total Traffic		

Justification 1 - Minimum Vehicle Volume

	Ν	IINIMUM RE	QUIREMEN	IT		COMPLIANCE								
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT	
A. Vehicle volumes, all approaches	480	720	576	864	757 100%	379 66%	379 66%	379 66%	727 100%	363 63%	363 63%	363 63%	73%	
B. Vehicle volume along minor roads	120	170	216	306	22 10%	11 5%	11 5%	11 5%	14 7%	7 3%	7 3%	7 3%	5%	

Justification 2 - Delay to Cross Traffic

	MINIMUM REQUIREMENT				COMPLIANCE								
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along					735	367	367	367	712	356	356	356	
artery	480	720	576	864	100%	64%	64%	64%	100%	62%	62%	62%	72%
B. Combined vehicle and					18	9	9	9	11	6	6	6	
pedestrian volume crossing artery from minor roads	50	70	60	84	30%	15%	15%	15%	19%	10%	10%	10%	15%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	N/A	N/A
Justification 2 - Delay to Cross Traffic	N/A	N/A

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION		RESTRICTED	ADJUSTED	ADJUSTED	SECT	IONAL	ENTIDE %
		FREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%	
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	720	1080	371	52%	001
	B. Vehicle volume along minor roads (Average Hour)	120	170	270	383	9	3%	3%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	720	1080	362	50%	
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	75	113	7	9%	9%

Projected Traffic Volumes:

Average Hourly Volume (AHV) Equation: AHV = (amPHV + pmPHV)/4

_	AM Pe	eak H	our Vo	olumes		_	PM Peak Hour Volumes							Average Hourly Volumes (AHV)						
0 Ľ	291 ↓	2 لا	$r \uparrow r$	4 0 18		_	0 12	266 ↓	5 لا	$\land \uparrow \urcorner$	3 0 11		_	0 ⊮	139 ↓	2 لا	$r \uparrow \gamma$	2 0 7		
	0	7	R	\uparrow	Z	=		0	Z	Γ	\uparrow	7	-		0	Z	Г	\uparrow	7	
	0	\rightarrow	0	434	8			0	\rightarrow	0	424	17			0	\rightarrow	0	215	6	
	0	Ы						0	Ы						0	М				

Eight Hour Traffic Volumes**:

|B|

					Minor	Road			De d*					
	Hour	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Pea
Ì	7:00 AM	0	434	8	2	291	0	0	0	0	18	0	4	0
	8:00 AM	0	217	4	1	146	0	0	0	0	9	0	2	0
	9:00 AM	0	217	4	1	146	0	0	0	0	9	0	2	0
	10:00 AM	0	217	4	1	146	0	0	0	0	9	0	2	0
	3:00 PM	0	424	17	5	266	0	0	0	0	11	0	3	0
	4:00 PM	0	212	9	3	133	0	0	0	0	6	0	1	0
	5:00 PM	0	212	9	3	133	0	0	0	0	6	0	1	0
	6:00 PM	0	212	9	3	133	0	0	0	0	6	0	1	0
	* Number of	f pede	strians	cross	sing th	e majo	or road	1						

** These are projected 8-hour traffic volumes.

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

3. The lowest sectional percentage governs the entire warrant.

4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

6. The crossing volumes are defined as the sum of:

- (a) Left-turns from both minor road approaches.
- (b) The heaviest through volume from the minor road.
- (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph (ii) the left-turn volume plus the opposing volume >720 vph
- (d) Pedestrians crossing the main road.

The intersection does NOT meet the minimum warrants for traffic control signals CONCLUSION:

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

1 Lane per Direction

Free Flow

3-legged Intersection

New Intersection

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	CR	T Phase 4		Date:	March 30, 2022
Project #:	136944				
Location:	Cope Drive	at	Goldhawk Drive		
Orientation:	(Major Roadway) East/West		(Minor Roadway) North/South		
Municipality:	Ottawa		Scenario:	Total (2030) Traffic	

Justification 1 - Minimum Vehicle Volume

	Ν	IINIMUM RE	QUIREMEN	IT									
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all	490	720	E76	964	687	344	344	344	775	387	387	387	E 20/
approaches	400	720	576	004	80%	40%	40%	40%	90%	45%	45%	45%	55%
B. Vehicle volume along minor	100	470			262	131	131	131	271	136	136	136	7.40/
roads	120	170	144	204	100%	64%	64%	64%	100%	66%	66%	66%	74%

Justification 2 - Delay to Cross Traffic

	N	IINIMUM RE	QUIREMEN	Т	COMPLIANCE								
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along					426	213	213	213	503	252	252	252	
artery	480	720	576	864	49%	25%	25%	25%	58%	29%	29%	29%	34%
B. Combined vehicle and					146	73	73	73	149	75	75	75	
pedestrian volume crossing artery from minor roads	50	70	60	84	100%	87%	87%	87%	100%	89%	89%	89%	91%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	N/A	N/A
Justification 2 - Delay to Cross Traffic	N/A	N/A

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION		RESTRICTED	ADJUSTED	ADJUSTED	SECT	IONAL	ENTIDE %
		FREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%	
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	720	1080	365	34%	0.497
	B. Vehicle volume along minor roads (Average Hour)	120	170	180	255	133	52%	34%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	720	1080	232	21%	0400
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	75	113	72	64%	21%

Projected Traffic Volumes:

Average Hourly Volume (AHV) Equation: AHV = (amPHV + pmPHV)/4

	AM Pe	eak H	our Vo	olumes		_	PM Peak Hour Volumes						-	Average Hourly Volumes (AHV)						
17 ∠	73 ↓	26 لا	$r \uparrow \gamma$	48 115 7		_	11 ∠	98 ↓	24 لا	$\land \uparrow \urcorner$	40 242 16		_	7 ⊮∠	43 ↓	13 لا	$\land \uparrow \land$	22 89 6		
	7	7	R	\uparrow	7	-		16	Z	Γ	\uparrow	7	-		6	7	Г	\uparrow	7	
	224	\rightarrow	24	96	26			164	\rightarrow	27	87	24			97	\rightarrow	13	46	13	
	24	Ы						27	Ы						13	Ы				

Eight Hour Traffic Volumes**:

|B|

Hour			Major	Road					Deals				
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Pea
7:00 AM	7	224	24	7	115	48	24	96	26	26	73	17	0
8:00 AM	4	112	12	4	58	24	12	48	13	13	37	8	0
9:00 AM	4	112	12	4	58	24	12	48	13	13	37	8	0
10:00 AM	4	112	12	4	58	24	12	48	13	13	37	8	0
3:00 PM	16	164	27	16	242	40	27	87	24	24	98	11	0
4:00 PM	8	82	13	8	121	20	13	43	12	12	49	5	0
5:00 PM	8	82	13	8	121	20	13	43	12	12	49	5	0
6:00 PM	8	82	13	8	121	20	13	43	12	12	49	5	0
* Number o	f pede	strians	s cross	sina th	e maio	or road	1						

** These are projected 8-hour traffic volumes.

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

3. The lowest sectional percentage governs the entire warrant.

4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

6. The crossing volumes are defined as the sum of:

- (a) Left-turns from both minor road approaches.
- (b) The heaviest through volume from the minor road.
- (c) 50% of the heavier left turn movement from major road when both of the following are met:

 - (i) the left-turn volume >120 vph (ii) the left-turn volume plus the opposing volume >720 vph

(d) Pedestrians crossing the main road.

The intersection does NOT meet the minimum warrants for traffic control sigr CONCLUSION:

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation,

1 Lane per Direction

Restricted Flow

4-legged Intersection

New Intersection

IBI

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	CRT P	hase 4		Date	e: March 30, 2022
Project #:	136944				
Location:	Goldhawk Drive	at	Bobolink Ridge		
Orientation:	(Major Roadway) North/South		(Minor Roadway) East/West		
Municipality:	Ottawa		Scenario:	Future (2030) Total Traffic	_

Justification 1 - Minimum Vehicle Volume

	Ν	IINIMUM RE	QUIREMEN	Т	COMPLIANCE									
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT	
A. Vehicle volumes, all	400	700	570	004	327	164	164	164	322	161	161	161	000/	
approacnes	480	720	576	804	38%	19%	19%	19%	37%	19%	19%	19%	23%	
B. Vehicle volume along minor	100	470			144	72	72	72	174	87	87	87	400/	
roads	120	170	144	204	71%	35%	35%	35%	85%	43%	43%	43%	49%	

Justification 2 - Delay to Cross Traffic

	N	IINIMUM RE	QUIREMEN	IT	COMPLIANCE									
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT	
A. Vehicle volumes, along					183	92	92	92	148	74	74	74		
artery	480	720	576	864	21%	11%	11%	11%	17%	9%	9%	9%	12%	
B. Combined vehicle and					33	17	17	17	30	15	15	15		
pedestrian volume crossing artery from minor roads	50	70	60	84	40%	20%	20%	20%	35%	18%	18%	18%	24%	

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	N/A	N/A
Justification 2 - Delay to Cross Traffic	N/A	N/A

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION		RESTRICTED	ADJUSTED	ADJUSTED	SECT	IONAL	ENTIDE %
		FREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%	
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	720	1080	163	15%	450/
	B. Vehicle volume along minor roads (Average Hour)	120	170	180	255	80	31%	15%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	720	1080	83	8%	
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	75	113	13	12%	8%

Projected Traffic Volumes:

Average Hourly Volume (AHV) Equation: AHV = (amPHV + pmPHV)/4

	AM Peak Hour Volumes			_	PM Peak Hour Volumes							Average Hourly Volumes (AHV)							
6 12	3 ↓	6 גע	$R \uparrow A$	3 23 9		_	3 ⊮∠	2 ↓	3 ਵ	トイレ	2 14 5			2 ⊮∠	1 ↓	2 لا	トトレ	1 9 3	
	2	7	R	\uparrow	7	-		3	7	R	\uparrow	7			1	Z	Г	\uparrow	7
	14	\rightarrow	149	14	5			22	\rightarrow	123	8	8			9	\rightarrow	68	6	3
	94	Ы						129	Ы						56	Ы			

Eight Hour Traffic Volumes**:

|B|

			Major	Road					De alt				
Hour	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Pea
7:00 AM	149	14	5	6	3	6	2	14	94	9	23	3	0
8:00 AM	75	7	3	3	1	3	1	7	47	4	11	1	0
9:00 AM	75	7	3	3	1	3	1	7	47	4	11	1	0
10:00 AM	75	7	3	3	1	3	1	7	47	4	11	1	0
3:00 PM	123	8	8	3	2	3	3	22	129	5	14	2	0
4:00 PM	61	4	4	2	1	2	1	11	65	3	7	1	0
5:00 PM	61	4	4	2	1	2	1	11	65	3	7	1	0
6:00 PM	61	4	4	2	1	2	1	11	65	3	7	1	0
* Number o	f pede	strians	s cross	sing th	e majo	or road	1						

** These are projected 8-hour traffic volumes.

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the values given above.

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

3. The lowest sectional percentage governs the entire warrant.

4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).

5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections.

6. The crossing volumes are defined as the sum of:

- (a) Left-turns from both minor road approaches.
- (b) The heaviest through volume from the minor road.
- (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph (ii) the left-turn volume plus the opposing volume >720 vph
- (d) Pedestrians crossing the main road.

(,)

CONCLUSION: The intersection does NOT meet the minimum warrants for traffic control signals

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

1 Lane per Direction

Restricted Flow

4-legged Intersection

New Intersection

City of Ottawa Roundabout Initial Feasability Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more detail.

1 Project Name:

CRT Phase 4`

2 Intersection:

Fernbank Road & Goldhawk Drive

3 Location and Description of Intersection: Lane Configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control The proposed intersection will be located approximately 700m west of the Fernbank Road & Robert Grant Avenue intersection. Both roadways have or will have a two-lane cross-section.

4 What traditional modifications are proposed? All-way stop control, traffic signals. auxiliary lanes, etc. Attach or sketch a diagram if necessary.

Two-way stop-control

- 5 What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet
- 6 Why is a roundabout being considered?

Single-lane roundabout

As an alternative to two-way stop-control

7 Are there contra-indications for

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high

No.	Contra-Indication	Outcome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes No X
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes No X
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes No X
4	Is the intersection located within a coordinated signal system?	Yes No X
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes No X
6	Are significant differences in directional flows or any situations of sudden high demand expected?	YesX No
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes No X

8 Are there suitability factors for a roundabout? If "Yes" is indicated for two or roundabout should be technica

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection.

No.	Suitability Factor	Outcome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes No X
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes No X
3	Are capacity problems currently being experienced, or expected in the future? ¹	Yes X No
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes No X
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes No X
6	Will Planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes NoX
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes No X

¹ Although slight exceedance of the acceptable capacity analysis thresholds may be experienced withing the timeframe of this study, longer-term capacity issues will be resolved through the extension of Cope Drive with Shea Road.

9 Conclusions/recommendation whether to proceed with an Intersection Control Study: Given the significant differences in directional flow (i.e. primarily east-west traffic) anticipated and the lack of suitability factors met, a roundabout is not recommended at this location.

City of Ottawa Roundabout Initial Feasability Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more

1 Project Name:

CRT Phase 4

2 Intersection:

4

3 Location and Description of Intersection: Lane Configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control Shea Road & Street #12

The proposed intersection will be located approximately 230m north of the Fernbank Road & Shea Road intersection. Both roadways have or will have a two-lane cross-section.

 What traditional modifications are proposed?

 All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.

 What size of roundabout is

 What size of roundabout is

5 what size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet

6 Why is a roundabout being considered?

As an alternative to two-way stop-control

7 Are there contra-indications for

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high

No.	Contra-Indication	Outcome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single- lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes No X
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes No X
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes No X
4	Is the intersection located within a coordinated signal system?	Yes No X
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes NoX
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes X No
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes No X

8 Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection.

No.	Suitability Factor	Outcome			
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes No X			
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes No X			
3	Are capacity problems currently being experienced, or expected in the future?	Yes No X			
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes No X			
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes No X			
6	Will Planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes No X			
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes No X			

9 Conclusions/recommendation whether to proceed with an Intersection Control Study:

Given the significant differences in directional flow (i.e. primarily north-south traffic) anticipated and the lack of suitability factors met, a roundabout is not recommended at this location.

City of Ottawa Roundabout Initial Feasability Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more

- 1 **CRT** Phase 4 Project Name: 2 Cope Drive & Goldhawk Drive Intersection: Location and Description of 3 The proposed intersection will be located approximately 750m Intersection: west of the Cope Drive & Robert Grant Avenue intersection. Lane Configuration, total or Both roadways have or will have a two-lane cross-section. approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control 4 All-way stop-control What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary. 5 What size of roundabout is Single-lane roundabout being considered? Describe, and attach a Roundabout Traffic Flow Worksheet
- 6 Why is a roundabout being considered?

As an alternative to all-way stop-control

7 Are there contra-indications for

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high

No.	Contra-Indication	Outcome		
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single- lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes No X		
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes No X		
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes No X		
4	Is the intersection located within a coordinated signal system?	Yes No X		
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes No X		
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes X No		
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes No X		

⁸ Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection.

No.	Suitability Factor	Outcome			
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes No X			
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes No X			
3	Are capacity problems currently being experienced, or expected in the future?	Yes No X			
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes No X			
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes No X			
6	Will Planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes No X			
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes No X			

9 Conclusions/recommendation whether to proceed with an Intersection Control Study: Given the significant differences in directional flow (i.e. primarily east-west traffic) anticipated and the lack of suitability factors met, a roundabout is not recommended at this location.

City of Ottawa Roundabout Initial Feasability Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more

1 Project Name:

CRT Phase 4

2 Intersection:

type of control

4

Bobolink Ridge & Goldhawk Drive

3 Location and Description of Intersection: Lane Configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate

The proposed intersection will be located approximately 330m south of the Abbott Street East & Goldhawk Drive intersection. Both roadways have or will have a two-lane cross-section.

What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	All-way stop-control

5 What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet

Single-lane roundabout

6 Why is a roundabout being considered?

As an alternative to all-way stop-control

7 Are there contra-indications for

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high

No.	Contra-Indication	Outcome	
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single- lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes NoX	
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes No X	
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes No X	
4	Is the intersection located within a coordinated signal system?	Yes No X	
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes No X	
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes No X	
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes No X	

⁸ Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection..

No.	Suitability Factor	Outcome		
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes No X		
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes No X		
3	Are capacity problems currently being experienced, or expected in the future?	Yes No X		
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes No X		
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes No X		
6	Will Planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes NoX		
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes No X		

9 Conclusions/recommendation whether to proceed with an Intersection Control Study: Given the lack of suitability factors met, a roundabout is not recommended at this location.

Appendix I – Transportation Demand Management

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	Not Applicable to Subdivisions
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	Not Applicable to Subdivisions
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

		TDM	measures: Residential developments		Check if proposed & add descriptions		
		3.	TRANSIT				
		3.1	Transit information				
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)		Not Applicable to Subdivisions		
BETTER		3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)		Not Applicable to Subdivisions		
		3.2	Transit fare incentives				
BASIC	*	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit				
BETTER		3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in				
		3.3	Enhanced public transit service				
BETTER	*	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>				
		3.4	Private transit service				
BETTER		3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	Not Applicable to Subdivisions			
		4.	CARSHARING & BIKESHARING				
		4.1	Bikeshare stations & memberships				
BETTER		4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)		Not Applicable to Subdivisions		
BETTER		4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>		Not Applicable to Subdivisions		
		4.2	Carshare vehicles & memberships				
BETTER		4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents		Not Applicable to Subdivisions		
BETTER		4.2.2	Provide residents with carshare memberships, either free or subsidized		Not Applicable to Subdivisions		
		5.	PARKING				
		5.1	Priced parking				
BASIC	*	5.1.1	Unbundle parking cost from purchase price (condominium)		Not Applicable to Subdivisions		
BASIC	*	5.1.2	Unbundle parking cost from monthly rent (multi-family)		Not Applicable to Subdivisions		

TDM	measures: Residential developments	Check if proposed & add descriptions
6.	TDM MARKETING & COMMUNICATION	S
6.1	Multimodal travel information	,
BASIC ★ 6.1.1	Provide a multimodal travel option information package to new residents	
6.2	Personalized trip planning	
BETTER ★ 6.2.1	Offer personalized trip planning to new residents	

Appendix J – Intersection Capacity Analyses

Existing (2022) Traffic

ersection
ersection Delay, s/veh 11.8
ersection LOS B

Movement	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		¢Î			ŧ	¥		
Traffic Vol, veh/h	1	123	122	148	110	97	179	
Future Vol, veh/h	1	123	122	148	110	97	179	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	0	5	9	7	4	9	10	
Mvmt Flow	1	137	136	164	122	108	199	
Number of Lanes	0	1	0	0	1	1	0	
Approach	EB			WB		NB		
Opposing Approach	WB			EB				
Opposing Lanes	1			1		0		
Conflicting Approach Left				NB		EB		
Conflicting Lanes Left	0			1		1		
Conflicting Approach Right	NB					WB		
Conflicting Lanes Right	1			0		1		
HCM Control Delay	10.8			12.3		12.2		
HCM LOS	В			В		В		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	35%	0%	57%
Vol Thru, %	0%	50%	43%
Vol Right, %	65%	50%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	276	246	258
LT Vol	97	0	148
Through Vol	0	124	110
RT Vol	179	122	0
Lane Flow Rate	307	273	287
Geometry Grp	1	1	1
Degree of Util (X)	0.44	0.371	0.426
Departure Headway (Hd)	5.166	4.88	5.355
Convergence, Y/N	Yes	Yes	Yes
Сар	699	738	674
Service Time	3.181	2.9	3.383
HCM Lane V/C Ratio	0.439	0.37	0.426
HCM Control Delay	12.2	10.8	12.3
HCM Lane LOS	В	В	В
HCM 95th-tile Q	2.3	1.7	2.1

Intersection	
Intersection Delay, s/veh	9.9
Intersection LOS	А

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ب	el 🗧		Y		
Traffic Vol, veh/h	35	255	182	20	33	52	
Future Vol, veh/h	35	255	182	20	33	52	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	9	4	5	0	6	6	
Mvmt Flow	39	283	202	22	37	58	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	10.7		9.3		8.7		
HCM LOS	В		А		А		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	12%	0%	39%
Vol Thru, %	88%	90%	0%
Vol Right, %	0%	10%	61%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	290	202	85
LT Vol	35	0	33
Through Vol	255	182	0
RT Vol	0	20	52
Lane Flow Rate	322	224	94
Geometry Grp	1	1	1
Degree of Util (X)	0.408	0.281	0.13
Departure Headway (Hd)	4.556	4.514	4.938
Convergence, Y/N	Yes	Yes	Yes
Сар	789	795	724
Service Time	2.584	2.544	2.978
HCM Lane V/C Ratio	0.408	0.282	0.13
HCM Control Delay	10.7	9.3	8.7
HCM Lane LOS	В	А	А
HCM 95th-tile Q	2	1.2	0.4

Intersection	
Intersection Delay, s/veh	14.5
Intersection LOS	D

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ef 🔰			÷	Y		
Traffic Vol, veh/h	157	76	204	191	108	152	
Future Vol, veh/h	157	76	204	191	108	152	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	3	1	3	6	4	5	
Mvmt Flow	174	84	227	212	120	169	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay	11.4		17.4		12.8		
HCM LOS	В		С		В		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	42%	0%	52%
Vol Thru, %	0%	67%	48%
Vol Right, %	58%	33%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	260	233	395
LT Vol	108	0	204
Through Vol	0	157	191
RT Vol	152	76	0
Lane Flow Rate	289	259	439
Geometry Grp	1	1	1
Degree of Util (X)	0.44	0.377	0.643
Departure Headway (Hd)	5.485	5.24	5.277
Convergence, Y/N	Yes	Yes	Yes
Сар	656	686	685
Service Time	3.524	3.277	3.309
HCM Lane V/C Ratio	0.441	0.378	0.641
HCM Control Delay	12.8	11.4	17.4
HCM Lane LOS	В	В	С
HCM 95th-tile Q	2.2	1.8	4.7

itersection
tersection Delay, s/veh 11.9
itersection LOS B

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ب	el 🗧		Y		
Traffic Vol, veh/h	41	302	342	29	25	58	
Future Vol, veh/h	41	302	342	29	25	58	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles, %	0	4	2	7	4	5	
Mvmt Flow	46	336	380	32	28	64	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	12		12.5		9.2		
HCM LOS	В		В		А		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	12%	0%	30%
Vol Thru, %	88%	92%	0%
Vol Right, %	0%	8%	70%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	343	371	83
LT Vol	41	0	25
Through Vol	302	342	0
RT Vol	0	29	58
Lane Flow Rate	381	412	92
Geometry Grp	1	1	1
Degree of Util (X)	0.488	0.521	0.136
Departure Headway (Hd)	4.611	4.546	5.327
Convergence, Y/N	Yes	Yes	Yes
Сар	777	791	668
Service Time	2.656	2.59	3.401
HCM Lane V/C Ratio	0.49	0.521	0.138
HCM Control Delay	12	12.5	9.2
HCM Lane LOS	В	В	А
HCM 95th-tile Q	2.7	3.1	0.5

Shea Road

MOVEMENT SUMMARY

V Site: ExistingAM

Fernbank Road & Shea Road Existing (2022) Traffic AM Peak Hour Roundabout

Movement Performance - Vehicles												
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South: S	Shea Road	ven/n	%	V/C	sec	_	ven	m	_	per ven	Km/n	
311		1	0.0	0 417	11 0	LOSB	1.8	14.4	0.63	0.66	51.0	
3	12	28	2.0	0.417	11.0		1.8	14.4	0.00	0.66	50.1	
8	τ1	178	2.0	0.417	11.0		1.0	14.4	0.00	0.00	50.1	
18	P2	56	2.0	0.417	11.9		1.0	14.4	0.00	0.00	/8 Q	
Approa	- 11 <u>2</u>	262	3.3	0.417	11.9		1.0	14.4	0.03	0.00	40.0	
Арргоа		202	5.5	0.417	11.9	L03 B	1.0	14.4	0.05	0.00	49.9	
East: Fe	ernbank Roa	d										
1	L2	41	2.0	0.344	9.2	LOS A	1.4	10.9	0.54	0.52	51.8	
6	T1	167	2.0	0.344	9.2	LOS A	1.4	10.9	0.54	0.52	51.9	
16	R2	44	2.0	0.344	9.2	LOS A	1.4	10.9	0.54	0.52	50.8	
Approa	ch	252	2.0	0.344	9.2	LOS A	1.4	10.9	0.54	0.52	51.7	
North: S	Shea Road											
7u	U	4	50.0	0.337	7.9	LOS A	1.5	11.4	0.44	0.35	50.8	
7	L2	65	2.0	0.337	7.9	LOS A	1.5	11.4	0.44	0.35	52.5	
4	T1	82	2.0	0.337	7.9	LOS A	1.5	11.4	0.44	0.35	52.6	
14	R2	140	2.0	0.337	7.9	LOS A	1.5	11.4	0.44	0.35	51.5	
Approad	ch	291	2.7	0.337	7.9	LOS A	1.5	11.4	0.44	0.35	52.0	
West: F	ernbank Roa	ad										
5	L2	192	2.0	0.547	11.4	LOS B	3.2	24.9	0.52	0.41	49.6	
2	T1	281	2.0	0.547	11.4	LOS B	3.2	24.9	0.52	0.41	49.7	
12	R2	24	2.0	0.547	11.4	LOS B	3.2	24.9	0.52	0.41	48.7	
Approad	ch	497	2.0	0.547	11.4	LOS B	3.2	24.9	0.52	0.41	49.6	
All Vehi	cles	1302	2.4	0.547	10.3	LOS B	3.2	24.9	0.53	0.47	50.6	

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 12:51:40 PM Project: D:\Users\isabel.loewen\Desktop\CRTPhase3 Fernbank&Shea 2022-02-01.sip6

SITE LAYOUT 😵 Site: ExistingPM Fernbank Road & Shea Road Existing (2022) Traffic PM Peak Hour Roundabout Shea Road 4N ľ Fernbank Road Fernbank Road 20 **V**²⁰ +1+ -+ 20 20 ┨

Shea Road

MOVEMENT SUMMARY

V Site: ExistingPM

Fernbank Road & Shea Road Existing (2022) Traffic PM Peak Hour Roundabout

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Average	
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South: S	Shea Roa	d	/0	v/C	360		Ven			perven	K11711	
3u	U	1	0.0	0.270	7.7	LOS A	1.1	8.2	0.48	0.43	53.6	
3	L2	46	2.0	0.270	7.7	LOS A	1.1	8.2	0.48	0.43	52.6	
8	T1	104	2.0	0.270	7.7	LOS A	1.1	8.2	0.48	0.43	52.8	
18	R2	58	6.0	0.270	7.7	LOS A	1.1	8.2	0.48	0.43	51.5	
Approac	h	209	3.1	0.270	7.7	LOS A	1.1	8.2	0.48	0.43	52.4	
East: Fe	ernbank F	Road										
1u	U	1	0.0	0.606	13.9	LOS B	4.0	31.5	0.62	0.58	49.3	
1	L2	101	11.0	0.606	13.9	LOS B	4.0	31.5	0.62	0.58	48.1	
6	T1	259	3.0	0.606	13.9	LOS B	4.0	31.5	0.62	0.58	48.6	
16	R2	137	3.0	0.606	13.9	LOS B	4.0	31.5	0.62	0.58	47.6	
Approac	h	498	4.6	0.606	13.9	LOS B	4.0	31.5	0.62	0.58	48.2	
North: S	hea Roa	d										
7u	U	4	50.0	0.419	10.8	LOS B	1.9	14.8	0.58	0.60	48.8	
7	L2	68	0.0	0.419	10.8	LOS B	1.9	14.8	0.58	0.60	50.5	
4	T1	114	0.0	0.419	10.8	LOS B	1.9	14.8	0.58	0.60	50.6	
14	R2	109	9.0	0.419	10.8	LOS B	1.9	14.8	0.58	0.60	49.2	
Approac	h	296	4.1	0.419	10.8	LOS B	1.9	14.8	0.58	0.60	50.0	
West: F	ernbank l	Road										
5u	U	2	50.0	0.367	8.9	LOS A	1.6	12.4	0.49	0.43	49.7	
5	L2	106	4.0	0.367	8.9	LOS A	1.6	12.4	0.49	0.43	51.3	
2	T1	157	3.0	0.367	8.9	LOS A	1.6	12.4	0.49	0.43	51.5	
12	R2	31	4.0	0.367	8.9	LOS A	1.6	12.4	0.49	0.43	50.3	
Approad	h	295	3.8	0.367	8.9	LOS A	1.6	12.4	0.49	0.43	51.3	
All Vehic	cles	1297	4.1	0.606	11.1	LOS B	4.0	31.5	0.56	0.53	49.9	

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Robert Grant Avenue

MOVEMENT SUMMARY

W Site: EX2022AM

Robert Grant Avenue & Cope Drive Existing (2022) Traffic AM Peak Hour Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: Robert Grant Avenue			V/C	sec	_	ven	m	_	per ven	Km/n	
3	L2	6	2.0	0.259	5.8	LOS A	1.1	8.8	0.12	0.04	54.8
8	- <u>-</u> T1	244	2.0	0.259	5.8	LOSA	1 1	8.8	0.12	0.04	55.0
18	R2	29	2.0	0.259	5.8	LOSA	1.1	8.8	0.12	0.04	53.8
Approach		279	2.0	0.259	5.8	LOSA	1.1	8.8	0.12	0.04	54.9
rippiouo		210	2.0	0.200	0.0	LOOM		0.0	0.12	0.04	04.0
East: Cope Drive											
1	L2	23	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	54.2
6	T1	1	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	54.4
16	R2	28	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	53.1
Approach		52	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	53.6
North: Robert Grant		ant Avenue									
7	L2	21	2.0	0.151	4.7	LOS A	0.6	4.5	0.12	0.04	55.3
4	T1	140	2.0	0.151	4.7	LOS A	0.6	4.5	0.12	0.04	55.5
14	R2	1	2.0	0.151	4.7	LOS A	0.6	4.5	0.12	0.04	54.2
Approach		162	2.0	0.151	4.7	LOS A	0.6	4.5	0.12	0.04	55.5
West: Co	ope Drive										
5u	U	1	2.0	0.013	4.0	LOS A	0.0	0.3	0.29	0.15	56.6
5	L2	1	2.0	0.013	4.0	LOS A	0.0	0.3	0.29	0.15	55.6
2	T1	3	2.0	0.013	4.0	LOS A	0.0	0.3	0.29	0.15	55.8
12	R2	7	2.0	0.013	4.0	LOS A	0.0	0.3	0.29	0.15	54.5
Approach		12	2.0	0.013	4.0	LOS A	0.0	0.3	0.29	0.15	55.1
All Vehicles		506	2.0	0.259	5.3	LOS A	1.1	8.8	0.15	0.06	54.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:12 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Robert Grant Avenue

MOVEMENT SUMMARY

W Site: EX2022PM

Robert Grant Avenue & Cope Drive Existing (2022) Traffic PM Peak Hour Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand I	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: Robert Grant Avenue				V/C	sec	_	ven	m	_	per ven	Km/n
3	L2	7	2.0	0.177	4.9	LOS A	0.7	5.4	0.11	0.03	55.5
8	T1	159	2.0	0.177	4.9	LOS A	0.7	5.4	0.11	0.03	55.7
18	R2	26	2.0	0.177	4.9	LOSA	0.7	5.4	0.11	0.03	54.4
Approach		191	2.0	0.177	4.9	LOS A	0.7	5.4	0.11	0.03	55.5
East: Cono Drivo											
1		30	2.0	0 070	4.6		0.3	2.1	0.20	0.18	54.0
6	L2 T1	1	2.0	0.079	4.0 4.6		0.3	2.1	0.29	0.10	54.2
16	R2	33	2.0	0.073	4.6		0.0	2.1	0.20	0.10	53 0
Approac	h	73	2.0	0.070	4.0		0.3	2.1	0.20	0.10	53.5
Арргоаст		75	2.0	0.079	4.0	LUSA	0.5	2.1	0.29	0.10	55.5
North: Robert Grant		ant Avenue									
7u	U	1	2.0	0.239	5.7	LOS A	1.0	7.8	0.17	0.07	55.7
7	L2	17	2.0	0.239	5.7	LOS A	1.0	7.8	0.17	0.07	54.7
4	T1	233	2.0	0.239	5.7	LOS A	1.0	7.8	0.17	0.07	54.9
14	R2	1	2.0	0.239	5.7	LOS A	1.0	7.8	0.17	0.07	53.7
Approach		252	2.0	0.239	5.7	LOS A	1.0	7.8	0.17	0.07	54.9
West: Co	ope Drive	9									
5	L2	4	2.0	0.023	4.6	LOS A	0.1	0.6	0.36	0.24	55.1
2	T1	2	2.0	0.023	4.6	LOS A	0.1	0.6	0.36	0.24	55.3
12	R2	12	2.0	0.023	4.6	LOS A	0.1	0.6	0.36	0.24	54.0
Approach		19	2.0	0.023	4.6	LOS A	0.1	0.6	0.36	0.24	54.4
All Vehicles		536	2.0	0.239	5.2	LOS A	1.0	7.8	0.17	0.08	54.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:13 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6
Future (2025) Background Traffic

ntersection	
ntersection Delay, s/veh	18.8
ntersection LOS	C

Movement	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		¢Î			ب ا	Y		
Traffic Vol, veh/h	1	141	172	188	139	179	309	
Future Vol, veh/h	1	141	172	188	139	179	309	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	5	9	7	4	9	10	
Mvmt Flow	1	141	172	188	139	179	309	
Number of Lanes	0	1	0	0	1	1	0	
Approach	EB			WB		NB		
Opposing Approach	WB			EB				
Opposing Lanes	1			1		0		
Conflicting Approach Left				NB		EB		
Conflicting Lanes Left	0			1		1		
Conflicting Approach Right	NB					WB		
Conflicting Lanes Right	1			0		1		
HCM Control Delay	14			16.6		23.4		
HCM LOS	В			С		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	37%	0%	57%
Vol Thru, %	0%	45%	43%
Vol Right, %	63%	55%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	488	314	327
LT Vol	179	0	188
Through Vol	0	141	139
RT Vol	309	173	0
Lane Flow Rate	488	314	327
Geometry Grp	1	1	1
Degree of Util (X)	0.75	0.489	0.554
Departure Headway (Hd)	5.532	5.603	6.104
Convergence, Y/N	Yes	Yes	Yes
Сар	649	637	589
Service Time	3.596	3.681	4.182
HCM Lane V/C Ratio	0.752	0.493	0.555
HCM Control Delay	23.4	14	16.6
HCM Lane LOS	С	В	С
HCM 95th-tile Q	6.7	2.7	3.4

Intersection					
Intersection Delay, s/veh	5				
Intersection LOS	А				

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	et F				
Traffic Vol, veh/h	35	285	182	20	33	52	
Future Vol, veh/h	35	285	182	20	33	52	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	9	4	5	0	6	6	
Mvmt Flow	35	285	182	20	33	52	
Number of Lanes	0	1	1	0	0	0	
Approach	EB		WB				
Opposing Approach	WB		EB				
Opposing Lanes	1		1				
Conflicting Approach Le	eft						
Conflicting Lanes Left	0		0				
Conflicting Approach Ri	ght						
Conflicting Lanes Right	0		0				
HCM Control Delay	5		5				
HCM LOS	А		А				

Lane	EBLn1V	VBLn1
Vol Left, %	11%	0%
Vol Thru, %	89%	90%
Vol Right, %	0%	10%
Sign Control	Stop	Stop
Traffic Vol by Lane	320	202
LT Vol	35	0
Through Vol	285	182
RT Vol	0	20
Lane Flow Rate	320	202
Geometry Grp	0	0
Degree of Util (X)	0	0
Departure Headway (Hd)	0	0
Convergence, Y/N	Yes	Yes
Сар	0	0
Service Time	0	0
HCM Lane V/C Ratio	0	0
HCM Control Delay	5	5
HCM Lane LOS	Ν	Ν
HCM 95th-tile O	0	0

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ľ	•	•	1	Y	
Traffic Vol, veh/h	22	471	319	53	70	25
Future Vol, veh/h	22	471	319	53	70	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	471	319	53	70	25

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	372	0	-	0	834	319	
Stage 1	-	-	-	-	319	-	
Stage 2	-	-	-	-	515	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1186	-	-	-	338	722	
Stage 1	-	-	-	-	737	-	
Stage 2	-	-	-	-	600	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1186	-	-	-	332	722	
Mov Cap-2 Maneuver	-	-	-	-	332	-	
Stage 1	-	-	-	-	723	-	
Stage 2	-	-	-	-	600	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.4		0		17.3		
HCM LOS					С		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR 3	SBLn1	
Capacity (veh/h)		1186	-	-	-	387	
HCM Lane V/C Ratio		0.019	-	-	-	0.245	
HCM Control Delay (s)	8.1	-	-	-	17.3	

С

1

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

А

0.1

-

-

-

-

Intersection	
Intersection Delay, s/veh	24.4
Intersection LOS	С

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	¢Î			ę	¥		
Traffic Vol, veh/h	184	176	278	208	156	262	
Future Vol, veh/h	184	176	278	208	156	262	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	3	1	3	6	4	5	
Mvmt Flow	184	176	278	208	156	262	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay	17.3		31.5		22.3		
HCM LOS	С		D		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	37%	0%	57%
Vol Thru, %	0%	51%	43%
Vol Right, %	63%	49%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	418	360	486
LT Vol	156	0	278
Through Vol	0	184	208
RT Vol	262	176	0
Lane Flow Rate	418	360	486
Geometry Grp	1	1	1
Degree of Util (X)	0.705	0.593	0.824
Departure Headway (Hd)	6.073	5.933	6.105
Convergence, Y/N	Yes	Yes	Yes
Сар	598	608	593
Service Time	4.095	3.976	4.131
HCM Lane V/C Ratio	0.699	0.592	0.82
HCM Control Delay	22.3	17.3	31.5
HCM Lane LOS	С	С	D
HCM 95th-tile Q	5.7	3.9	8.5

Intersection					
Intersection Delay, s/veh	5				
Intersection LOS	А				

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	et 👘				
Traffic Vol, veh/h	41	322	342	29	25	58	
Future Vol, veh/h	41	322	342	29	25	58	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	4	2	7	4	5	
Mvmt Flow	41	322	342	29	25	58	
Number of Lanes	0	1	1	0	0	0	
Approach	EB		WB				
Opposing Approach	WB		EB				
Opposing Lanes	1		1				
Conflicting Approach Le	ft						
Conflicting Lanes Left	0		0				
Conflicting Approach Right	ght						
Conflicting Lanes Right	0		0				
HCM Control Delay	5		5				
HCM LOS	А		А				

Lane	EBLn1V	VBLn1
Vol Left, %	11%	0%
Vol Thru, %	89%	92%
Vol Right, %	0%	8%
Sign Control	Stop	Stop
Traffic Vol by Lane	363	371
LT Vol	41	0
Through Vol	322	342
RT Vol	0	29
Lane Flow Rate	363	371
Geometry Grp	0	0
Degree of Util (X)	0	0
Departure Headway (Hd)	0	0
Convergence, Y/N	Yes	Yes
Сар	0	0
Service Time	0	0
HCM Lane V/C Ratio	0	0
HCM Control Delay	5	5
HCM Lane LOS	Ν	Ν
HCM 95th-tile Q	0	0

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	- ኘ	↑	↑	1	۰¥	
Traffic Vol, veh/h	38	457	697	95	53	19
Future Vol, veh/h	38	457	697	95	53	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	38	457	697	95	53	19

Major/Minor	Major1	Ν	/lajor2	ſ	Minor2		
Conflicting Flow All	792	0	-	0	1230	697	
Stage 1	-	-	-	-	697	-	
Stage 2	-	-	-	-	533	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	838	-	-	-	198	444	
Stage 1	-	-	-	-	498	-	
Stage 2	-	-	-	-	593	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	838	-	-	-	189	444	
Mov Cap-2 Maneuver	-	-	-	-	189	-	
Stage 1	-	-	-	-	476	-	
Stage 2	-	-	-	-	593	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.7		0		28.7		
HCM LOS					D		
Minor Long/Major Mur	nt	EDI	EDT			DIn1	
	ш	EBL	EDI	VVDI	WDR 3	DLIII	
Capacity (veh/h)		838	-	-	-	223	
HCM Lane V/C Ratio	`	0.045	-	-	-	0.323	
HCM Control Delay (s	5)	9.5	-	-	-	28.7	
HCM Lane LOS		A	-	-	-	D	
HCM 95th %tile Q(ver	n)	0.1	-	-	-	1.3	

W Site: BG2025AM

Fernbank Road & Shea Road Future (2025) Background Traffic AM Peak Hour Roundabout

Moverr	nent Perfo	rmance - Ve	ehicles								
Mov	OD	Demand	d Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: 9	Shoa Doad	veh/h	%	V/C	sec	_	veh	m		per veh	km/h
300011. C		4	0.0	0.452	14.0		2.0	45.5	0.00	0.70	40.0
3u	0	1	0.0	0.453	14.8	LOSB	2.0	15.5	0.08	0.73	49.0
3	L2	25	2.0	0.453	14.8	LOSB	2.0	15.5	0.68	0.73	48.2
8	11	160	2.0	0.453	14.8	LOS B	2.0	15.5	0.68	0.73	48.3
18	R2	50	8.0	0.453	14.8	LOS B	2.0	15.5	0.68	0.73	47.1
Approac	ch	236	3.3	0.453	14.8	LOS B	2.0	15.5	0.68	0.73	48.1
East: Fe	ernbank Roa	ad									
1	L2	41	2.0	0.493	11.8	LOS B	2.6	20.2	0.61	0.63	50.1
6	T1	274	2.0	0.493	11.8	LOS B	2.6	20.2	0.61	0.63	50.2
16	R2	54	2.0	0.493	11.8	LOS B	2.6	20.2	0.61	0.63	49.2
Approac	ch	369	2.0	0.493	11.8	LOS B	2.6	20.2	0.61	0.63	50.1
North: S	Shea Road										
7u	U	4	50.0	0.408	9.8	LOS A	1.8	14.2	0.54	0.50	49.3
7	L2	91	2.0	0.408	9.8	LOS A	1.8	14.2	0.54	0.50	50.9
4	T1	82	2.0	0.408	9.8	LOS A	1.8	14.2	0.54	0.50	51.1
14	R2	140	2.0	0.408	9.8	LOS A	1.8	14.2	0.54	0.50	50.0
Approad	ch	317	2.6	0.408	9.8	LOS A	1.8	14.2	0.54	0.50	50.5
West: F	ernbank Ro	ad									
5	L2	192	2.0	0.739	18.4	LOS C	7.3	56.6	0.74	0.68	45.6
2	T1	438	2.0	0.739	18.4	LOS C	7.3	56.6	0.74	0.68	45.7
12	R2	24	2.0	0.739	18.4	LOS C	7.3	56.6	0.74	0.68	44.9
Approad	ch	654	2.0	0.739	18.4	LOS C	7.3	56.6	0.74	0.68	45.7
All Vehi	cles	1576	2.3	0.739	14.6	LOS B	7.3	56.6	0.66	0.64	47.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 12:51:37 PM Project: D:\Users\isabel.loewen\Desktop\CRTPhase3 Fernbank&Shea 2022-02-01.sip6

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Created: Friday, April 01, 2022 12:56:32 PM Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_Fernbank&Shea_2022-02-01.sip6

W Site: BG2025PM

Fernbank Road & Shea Road Future (2025) Background Traffic PM Peak Hour Roundabout

Mover	nent Pe	rformance - V	ehicles								
Mov ID	OD Mov	Demano Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	Shea Ro	ad									
3u	U	1	0.0	0.286	9.1	LOS A	1.1	8.4	0.56	0.56	52.6
3	L2	41	2.0	0.286	9.1	LOS A	1.1	8.4	0.56	0.56	51.6
8	T1	94	2.0	0.286	9.1	LOS A	1.1	8.4	0.56	0.56	51.8
18	R2	52	6.0	0.286	9.1	LOS A	1.1	8.4	0.56	0.56	50.5
Approad	ch	188	3.1	0.286	9.1	LOS A	1.1	8.4	0.56	0.56	51.4
East: Fe	ernbank	Road									
1u	U	1	0.0	0.793	22.3	LOS C	8.8	68.8	0.81	0.81	44.5
1	L2	91	11.0	0.793	22.3	LOS C	8.8	68.8	0.81	0.81	43.5
6	T1	429	3.0	0.793	22.3	LOS C	8.8	68.8	0.81	0.81	43.9
16	R2	152	3.0	0.793	22.3	LOS C	8.8	68.8	0.81	0.81	43.1
Approad	ch	673	4.1	0.793	22.3	LOS C	8.8	68.8	0.81	0.81	43.7
North: S	Shea Roa	ad									
7u	U	4	50.0	0.471	13.5	LOS B	2.2	17.3	0.66	0.71	47.0
7	L2	79	0.0	0.471	13.5	LOS B	2.2	17.3	0.66	0.71	48.6
4	T1	103	0.0	0.471	13.5	LOS B	2.2	17.3	0.66	0.71	48.7
14	R2	98	9.0	0.471	13.5	LOS B	2.2	17.3	0.66	0.71	47.4
Approad	ch	284	3.8	0.471	13.5	LOS B	2.2	17.3	0.66	0.71	48.1
West: F	ernbank	Road									
5u	U	2	50.0	0.539	12.1	LOS B	3.1	24.4	0.58	0.54	48.1
5	L2	95	4.0	0.539	12.1	LOS B	3.1	24.4	0.58	0.54	49.5
2	T1	315	3.0	0.539	12.1	LOS B	3.1	24.4	0.58	0.54	49.7
12	R2	28	4.0	0.539	12.1	LOS B	3.1	24.4	0.58	0.54	48.6
Approac	ch	440	3.5	0.539	12.1	LOS B	3.1	24.4	0.58	0.54	49.6
All Vehi	cles	1585	3.8	0.793	16.4	LOS C	8.8	68.8	0.69	0.69	46.8

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Robert Grant Avenue

W Site: BG2025AM

Robert Grant Avenue & Cope Drive Future (2025) Background Traffic AM Peak Hour Roundabout

Movem	Movement Performance - Vehicles													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Average			
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
South: R	Robert Grant A	venue	/0	V/C	360		Ven			perven	N11//11			
3	L2	72	2.0	0.562	13.1	LOS B	3.5	26.7	0.63	0.64	49.1			
8	T1	329	2.0	0.562	13.1	LOS B	3.5	26.7	0.63	0.64	49.2			
18	R2	41	2.0	0.562	13.1	LOS B	3.5	26.7	0.63	0.64	48.2			
Approac	h	442	2.0	0.562	13.1	LOS B	3.5	26.7	0.63	0.64	49.1			
East: Co	pe Drive													
1	L2	35	2.0	0.341	10.4	LOS B	1.4	10.5	0.60	0.61	50.9			
6	T1	58	2.0	0.341	10.4	LOS B	1.4	10.5	0.60	0.61	51.1			
16	R2	120	2.0	0.341	10.4	LOS B	1.4	10.5	0.60	0.61	50.0			
Approac	h	213	2.0	0.341	10.4	LOS B	1.4	10.5	0.60	0.61	50.4			
North: R	obert Grant A	venue												
7	L2	112	2.0	0.494	10.0	LOS B	2.7	21.1	0.45	0.33	50.9			
4	T1	211	2.0	0.494	10.0	LOS B	2.7	21.1	0.45	0.33	51.1			
14	R2	139	2.0	0.494	10.0	LOS B	2.7	21.1	0.45	0.33	50.0			
Approac	h	462	2.0	0.494	10.0	LOS B	2.7	21.1	0.45	0.33	50.7			
West: Co	ope Drive													
5u	U	1	2.0	0.384	9.5	LOS A	1.7	12.9	0.54	0.50	51.2			
5	L2	160	2.0	0.384	9.5	LOS A	1.7	12.9	0.54	0.50	50.4			
2	T1	63	2.0	0.384	9.5	LOS A	1.7	12.9	0.54	0.50	50.5			
12	R2	71	2.0	0.384	9.5	LOS A	1.7	12.9	0.54	0.50	49.5			
Approac	h	295	2.0	0.384	9.5	LOS A	1.7	12.9	0.54	0.50	50.2			
All Vehic	les	1412	2.0	0.562	10.9	LOS B	3.5	26.7	0.55	0.51	50.1			

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:14 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Robert Grant Avenue

W Site: BG2025PM

Robert Grant Avenue & Cope Drive Future (2025) Background Traffic PM Peak Hour Roundabout

Movem	ent Perfo	ormance - Vel	hicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: B	obert Gra	ven/n nt Avenue	%	V/C	sec	_	ven	m	_	per ven	Km/n
3	12	63	2.0	0 439	9.5	LOSA	22	16.6	0 49	0.40	51.5
8	 T1	279	2.0	0.439	9.5	LOSA	22	16.6	0.49	0.40	51.7
18	R2	40	2.0	0.439	9.5	LOSA	22	16.6	0.49	0.40	50.6
Approac	h	382	2.0	0.439	9.5	LOSA	2.2	16.6	0.49	0.40	51.5
rippiouo		002	2.0	0.400	0.0	LOON	2.2	10.0	0.40	0.40	01.0
East: Co	pe Drive										
1	L2	50	2.0	0.234	8.0	LOS A	0.9	6.7	0.53	0.51	52.2
6	T1	39	2.0	0.234	8.0	LOS A	0.9	6.7	0.53	0.51	52.3
16	R2	72	2.0	0.234	8.0	LOS A	0.9	6.7	0.53	0.51	51.2
Approac	h	161	2.0	0.234	8.0	LOS A	0.9	6.7	0.53	0.51	51.8
North: R	obert Gran	nt Avenue									
7u	U	1	2.0	0.567	11.5	LOS B	3.5	27.4	0.49	0.35	51.1
7	L2	70	2.0	0.567	11.5	LOS B	3.5	27.4	0.49	0.35	50.3
4	T1	322	2.0	0.567	11.5	LOS B	3.5	27.4	0.49	0.35	50.4
14	R2	145	2.0	0.567	11.5	LOS B	3.5	27.4	0.49	0.35	49.3
Approac	h	538	2.0	0.567	11.5	LOS B	3.5	27.4	0.49	0.35	50.1
West: Co	ope Drive										
5	L2	124	2.0	0.323	9.1	LOS A	1.3	10.0	0.55	0.55	50.6
2	T1	41	2.0	0.323	9.1	LOS A	1.3	10.0	0.55	0.55	50.8
12	R2	63	2.0	0.323	9.1	LOS A	1.3	10.0	0.55	0.55	49.7
Approac	h	228	2.0	0.323	9.1	LOS A	1.3	10.0	0.55	0.55	50.4
All Vehic	les	1309	2.0	0.567	10.1	LOS B	3.5	27.4	0.50	0.42	50.8

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:14 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Future (2030) Background Traffic

itersection	
itersection Delay, s/veh	18.8
itersection LOS	С

Movement	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		4Î			र्भ	Y		
Traffic Vol, veh/h	1	141	172	188	139	179	309	
Future Vol, veh/h	1	141	172	188	139	179	309	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	5	9	7	4	9	10	
Mvmt Flow	1	141	172	188	139	179	309	
Number of Lanes	0	1	0	0	1	1	0	
Approach	EB			WB		NB		
Opposing Approach	WB			EB				
Opposing Lanes	1			1		0		
Conflicting Approach Left				NB		EB		
Conflicting Lanes Left	0			1		1		
Conflicting Approach Right	NB					WB		
Conflicting Lanes Right	1			0		1		
HCM Control Delay	14			16.6		23.4		
HCM LOS	В			С		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	37%	0%	57%
Vol Thru, %	0%	45%	43%
Vol Right, %	63%	55%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	488	314	327
LT Vol	179	0	188
Through Vol	0	141	139
RT Vol	309	173	0
Lane Flow Rate	488	314	327
Geometry Grp	1	1	1
Degree of Util (X)	0.75	0.489	0.554
Departure Headway (Hd)	5.532	5.603	6.104
Convergence, Y/N	Yes	Yes	Yes
Сар	649	637	589
Service Time	3.596	3.681	4.182
HCM Lane V/C Ratio	0.752	0.493	0.555
HCM Control Delay	23.4	14	16.6
HCM Lane LOS	С	В	С
HCM 95th-tile Q	6.7	2.7	3.4

Intersection			
Intersection Delay, s/veh	5		
Intersection LOS	А		

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	et 👘				
Traffic Vol, veh/h	35	285	182	20	33	52	
Future Vol, veh/h	35	285	182	20	33	52	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	9	4	5	0	6	6	
Mvmt Flow	35	285	182	20	33	52	
Number of Lanes	0	1	1	0	0	0	
Approach	EB		WB				
Opposing Approach	WB		EB				
Opposing Lanes	1		1				
Conflicting Approach Le	eft						
Conflicting Lanes Left	0		0				
Conflicting Approach Ri	ght						
Conflicting Lanes Right	0		0				
HCM Control Delay	5		5				
HCM LOS	А		А				

Lane	EBLUIV	VBLNI
Vol Left, %	11%	0%
Vol Thru, %	89%	90%
Vol Right, %	0%	10%
Sign Control	Stop	Stop
Traffic Vol by Lane	320	202
LT Vol	35	0
Through Vol	285	182
RT Vol	0	20
Lane Flow Rate	320	202
Geometry Grp	0	0
Degree of Util (X)	0	0
Departure Headway (Hd)	0	0
Convergence, Y/N	Yes	Yes
Сар	0	0
Service Time	0	0
HCM Lane V/C Ratio	0	0
HCM Control Delay	5	5
HCM Lane LOS	Ν	Ν
HCM 95th-tile Q	0	0

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	↑	†	1	۰¥	
Traffic Vol, veh/h	22	506	343	53	70	25
Future Vol, veh/h	22	506	343	53	70	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	506	343	53	70	25

Major/Minor	Major1	Ν	/lajor2	[Minor2		
Conflicting Flow All	396	0	-	0	893	343	
Stage 1	-	-	-	-	343	-	
Stage 2	-	-	-	-	550	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1163	-	-	-	312	700	
Stage 1	-	-	-	-	719	-	
Stage 2	-	-	-	-	578	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1163	-	-	-	306	700	
Mov Cap-2 Maneuver	-	-	-	-	306	-	
Stage 1	-	-	-	-	705	-	
Stage 2	-	-	-	-	578	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.3		0		18.6		
HCM LOS					С		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		1163	-	-	-	359	
HCM Lane V/C Ratio		0.019	-	-	-	0.265	
HCM Control Delay (s	;)	8.2	-	-	-	18.6	

С

1

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

А

0.1

-

-

-

-

Intersection	
Intersection Delay, s/veh	24.4
Intersection LOS	С

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	¢Î			ę	¥		
Traffic Vol, veh/h	184	176	278	208	156	262	
Future Vol, veh/h	184	176	278	208	156	262	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	3	1	3	6	4	5	
Mvmt Flow	184	176	278	208	156	262	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay	17.3		31.5		22.3		
HCM LOS	С		D		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	37%	0%	57%
Vol Thru, %	0%	51%	43%
Vol Right, %	63%	49%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	418	360	486
LT Vol	156	0	278
Through Vol	0	184	208
RT Vol	262	176	0
Lane Flow Rate	418	360	486
Geometry Grp	1	1	1
Degree of Util (X)	0.705	0.593	0.824
Departure Headway (Hd)	6.073	5.933	6.105
Convergence, Y/N	Yes	Yes	Yes
Сар	598	608	593
Service Time	4.095	3.976	4.131
HCM Lane V/C Ratio	0.699	0.592	0.82
HCM Control Delay	22.3	17.3	31.5
HCM Lane LOS	С	С	D
HCM 95th-tile Q	5.7	3.9	8.5

Intersection		
Intersection Delay, s/veh	5	
Intersection LOS	А	

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	et 👘				
Traffic Vol, veh/h	41	322	342	29	25	58	
Future Vol, veh/h	41	322	342	29	25	58	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	4	2	7	4	5	
Mvmt Flow	41	322	342	29	25	58	
Number of Lanes	0	1	1	0	0	0	
Approach	EB		WB				
Opposing Approach	WB		EB				
Opposing Lanes	1		1				
Conflicting Approach Le	ft						
Conflicting Lanes Left	0		0				
Conflicting Approach Ri	ght						
Conflicting Lanes Right	0		0				
HCM Control Delay	5		5				
HCM LOS	А		А				

Lane	EBLn1V	VBLn1
Vol Left, %	11%	0%
Vol Thru, %	89%	92%
Vol Right, %	0%	8%
Sign Control	Stop	Stop
Traffic Vol by Lane	363	371
LT Vol	41	0
Through Vol	322	342
RT Vol	0	29
Lane Flow Rate	363	371
Geometry Grp	0	0
Degree of Util (X)	0	0
Departure Headway (Hd)	0	0
Convergence, Y/N	Yes	Yes
Сар	0	0
Service Time	0	0
HCM Lane V/C Ratio	0	0
HCM Control Delay	5	5
HCM Lane LOS	Ν	Ν
HCM 95th-tile O	0	0

Intersection							
Int Delay, s/veh	1.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	2
Lane Configurations		↑	•	1	۰¥		
Traffic Vol, veh/h	38	486	747	95	53	19)
Future Vol, veh/h	38	486	747	95	53	19)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	è
Storage Length	250	-	-	250	0	-	
Veh in Median Storage	,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0)
Mvmt Flow	38	486	747	95	53	19)

Major/Minor	Major1	Ν	/lajor2	ſ	Vinor2		
Conflicting Flow All	842	0	-	0	1309	747	
Stage 1	-	-	-	-	747	-	
Stage 2	-	-	-	-	562	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	802	-	-	-	177	416	
Stage 1	-	-	-	-	472	-	
Stage 2	-	-	-	-	575	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	802	-	-	-	169	416	
Mov Cap-2 Maneuver	• -	-	-	-	169	-	
Stage 1	-	-	-	-	450	-	
Stage 2	-	-	-	-	575	-	
Approach	FB		WB		SB		
HCM Control Delay s	: 07		0		32.8		
HCM LOS	, U.1		U		02.0 D		
					U		
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		802	-	-	-	200	
HCM Lane V/C Ratio		0.047	-	-	-	0.36	
HCM Control Delay (s	5)	9.7	-	-	-	32.8	
HCM Lane LOS		А	-	-	-	D	

1.5

-

HCM 95th %tile Q(veh)

0.1

🕅 Site: BG2030AM

Fernbank Road & Shea Road Future (2030) Background Traffic AM Peak Hour Roundabout

Movem	ent Perforn	nance - V	ehicles								
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back c	f Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Coutby C	haa Daad	veh/h	%	V/C	sec		veh	m		per veh	km/h
South: S	nea Road										
3u	U	1	0.0	0.466	15.5	LOS C	2.1	16.0	0.69	0.75	48.5
3	L2	25	2.0	0.466	15.5	LOS C	2.1	16.0	0.69	0.75	47.7
8	T1	160	2.0	0.466	15.5	LOS C	2.1	16.0	0.69	0.75	47.9
18	R2	50	8.0	0.466	15.5	LOS C	2.1	16.0	0.69	0.75	46.7
Approac	h	236	3.3	0.466	15.5	LOS C	2.1	16.0	0.69	0.75	47.6
East: Fe	rnbank Road										
1	L2	41	2.0	0.514	12.3	LOS B	2.8	21.9	0.62	0.65	49.8
6	T1	290	2.0	0.514	12.3	LOS B	2.8	21.9	0.62	0.65	49.9
16	R2	54	2.0	0.514	12.3	LOS B	2.8	21.9	0.62	0.65	48.9
Approac	h	385	2.0	0.514	12.3	LOS B	2.8	21.9	0.62	0.65	49.7
North: S	hea Road										
7u	U	4	50.0	0.414	10.1	LOS B	1.9	14.7	0.55	0.53	49.1
7	L2	91	2.0	0.414	10.1	LOS B	1.9	14.7	0.55	0.53	50.7
4	T1	82	2.0	0.414	10.1	LOS B	1.9	14.7	0.55	0.53	50.9
14	R2	140	2.0	0.414	10.1	LOS B	1.9	14.7	0.55	0.53	49.8
Approac	h	317	2.6	0.414	10.1	LOS B	1.9	14.7	0.55	0.53	50.3
West: Fe	ernbank Road	t									
5	L2	192	2.0	0.771	20.2	LOS C	8.4	65.0	0.79	0.74	44.6
2	T1	466	2.0	0.771	20.2	LOS C	8.4	65.0	0.79	0.74	44.8
12	R2	24	2.0	0.771	20.2	LOS C	8.4	65.0	0.79	0.74	43.9
Approac	h	682	2.0	0.771	20.2	LOS C	8.4	65.0	0.79	0.74	44.7
All Vehic	les	1620	2.3	0.771	15.7	LOS C	8.4	65.0	0.69	0.68	47.3

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 12:51:38 PM Project: D:\Users\isabel.loewen\Desktop\CRTPhase3 Fernbank&Shea 2022-02-01.sip6

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Created: Friday, April 01, 2022 12:56:32 PM Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_Fernbank&Shea_2022-02-01.sip6

W Site: BG2030PM

Fernbank Road & Shea Road Future (2030) Background Traffic PM Peak Hour Roundabout

Movem	ent Perform	ance - V	ehicles								
Mov ID	OD Mov	Demano Total	d Flows HV	Deg. Satn	Average Delav	Level of Service	95% Back o Vehicles	f Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: S	hea Road										
3u	U	1	0.0	0.290	9.3	LOS A	1.1	8.5	0.56	0.56	52.5
3	L2	41	2.0	0.290	9.3	LOS A	1.1	8.5	0.56	0.56	51.5
8	T1	94	2.0	0.290	9.3	LOS A	1.1	8.5	0.56	0.56	51.7
18	R2	52	6.0	0.290	9.3	LOS A	1.1	8.5	0.56	0.56	50.4
Approacl	า	188	3.1	0.290	9.3	LOS A	1.1	8.5	0.56	0.56	51.3
East: Fei	mbank Road										
1u	U	1	3.0	0.820	24.5	LOS C	9.9	78.1	0.85	0.86	43.3
1	L2	91	11.0	0.820	24.5	LOS C	9.9	78.1	0.85	0.86	42.4
6	T1	453	3.0	0.820	24.5	LOS C	9.9	78.1	0.85	0.86	42.9
16	R2	152	3.0	0.820	24.5	LOS C	9.9	78.1	0.85	0.86	42.1
Approacl	า	697	4.0	0.820	24.5	LOS C	9.9	78.1	0.85	0.86	42.6
North: Sh	nea Road										
7u	U	4	50.0	0.482	14.1	LOS B	2.3	17.9	0.67	0.72	46.7
7	L2	79	0.0	0.482	14.1	LOS B	2.3	17.9	0.67	0.72	48.2
4	T1	103	0.0	0.482	14.1	LOS B	2.3	17.9	0.67	0.72	48.3
14	R2	98	9.0	0.482	14.1	LOS B	2.3	17.9	0.67	0.72	47.0
Approacl	า	284	3.8	0.482	14.1	LOS B	2.3	17.9	0.67	0.72	47.8
West: Fe	rnbank Road										
5u	U	2	3.0	0.555	12.5	LOS B	3.3	26.0	0.59	0.56	50.0
5	L2	95	4.0	0.555	12.5	LOS B	3.3	26.0	0.59	0.56	49.2
2	T1	329	3.0	0.555	12.5	LOS B	3.3	26.0	0.59	0.56	49.4
12	R2	28	4.0	0.555	12.5	LOS B	3.3	26.0	0.59	0.56	48.4
Approacl	า	454	3.3	0.555	12.5	LOS B	3.3	26.0	0.59	0.56	49.3
All Vehic	les	1623	3.7	0.820	17.5	LOS C	9.9	78.1	0.71	0.72	46.2

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Robert Grant Avenue

W Site: BG2030AM

Robert Grant Avenue & Cope Drive Future (2030) Background Traffic AM Peak Hour Roundabout

Movem	ent Perfo	rmance - Ve	hicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: R	obert Grar	ven/n	%	V/C	sec	_	ven	m	_	per ven	Km/n
3	12	84	2.0	0.613	14.8	LOSB	42	32.1	0.68	0.72	48.0
8	 T1	351	2.0	0.613	14.8	LOSB	4.2	32.1	0.68	0.72	48.1
18	R2	41	2.0	0.613	14.8	LOSB	4.2	32.1	0.68	0.72	47.2
Annroac	h	476	2.0	0.613	14.8	LOS B	4.2	32.1	0.68	0.72	48.0
7.001000		470	2.0	0.010	14.0	LOOD	7.2	02.1	0.00	0.72	40.0
East: Co	pe Drive										
1	L2	35	2.0	0.368	11.3	LOS B	1.5	11.7	0.63	0.65	50.3
6	T1	65	2.0	0.368	11.3	LOS B	1.5	11.7	0.63	0.65	50.4
16	R2	120	2.0	0.368	11.3	LOS B	1.5	11.7	0.63	0.65	49.4
Approac	h	220	2.0	0.368	11.3	LOS B	1.5	11.7	0.63	0.65	49.8
North: R	obert Gran	t Avenue									
7	L2	112	2.0	0.537	11.1	LOS B	3.1	24.0	0.50	0.38	50.3
4	T1	224	2.0	0.537	11.1	LOS B	3.1	24.0	0.50	0.38	50.4
14	R2	157	2.0	0.537	11.1	LOS B	3.1	24.0	0.50	0.38	49.3
Approac	h	493	2.0	0.537	11.1	LOS B	3.1	24.0	0.50	0.38	50.0
West: Co	ope Drive										
5u	U	1	2.0	0.412	10.1	LOS B	1.9	14.6	0.56	0.54	50.8
5	L2	169	2.0	0.412	10.1	LOS B	1.9	14.6	0.56	0.54	50.0
2	T1	67	2.0	0.412	10.1	LOS B	1.9	14.6	0.56	0.54	50.1
12	R2	76	2.0	0.412	10.1	LOS B	1.9	14.6	0.56	0.54	49.1
Approac	h	313	2.0	0.412	10.1	LOS B	1.9	14.6	0.56	0.54	49.8
All Vehic	les	1502	2.0	0.613	12.1	LOS B	4.2	32.1	0.59	0.56	49.3

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:15 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Robert Grant Avenue

W Site: BG2030PM

Robert Grant Avenue & Cope Drive Future (2030) Background Traffic PM Peak Hour Roundabout

Movem	ent Perfo	ormance - Vel	nicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back c	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: F	Robert Grai	nt Avenue	%	V/C	sec	_	ven	m	_	per ven	Km/n
3	L2	65	2.0	0.465	10.1	LOS B	2.3	18.0	0.52	0.43	51.1
8	T1	293	2.0	0.465	10.1	LOS B	2.3	18.0	0.52	0.43	51.3
18	R2	40	2.0	0.465	10.1	LOS B	2.3	18.0	0.52	0.43	50.2
Approac	h	398	2.0	0.465	10.1	LOS B	2.3	18.0	0.52	0.43	51.1
East: Co	ne Drive										
1		50	20	0 242	83	LOSA	0.9	6.9	0.54	0.54	52.0
6	 T1	40	2.0	0.242	8.3	LOSA	0.9	6.9	0.54	0.54	52.1
16	R2	72	2.0	0.242	8.3	LOSA	0.9	6.9	0.54	0.54	51.0
Approac	:h	162	2.0	0.242	8.3	LOSA	0.9	6.9	0.54	0.54	51.6
N. U. D					0.0	20071	0.0	0.0	0.0.	0101	0.110
North: R	obert Grar	nt Avenue									
7u	U	1	2.0	0.596	12.2	LOS B	3.9	30.1	0.51	0.37	50.5
7	L2	70	2.0	0.596	12.2	LOS B	3.9	30.1	0.51	0.37	49.8
4	T1	343	2.0	0.596	12.2	LOS B	3.9	30.1	0.51	0.37	49.9
14	R2	150	2.0	0.596	12.2	LOS B	3.9	30.1	0.51	0.37	48.9
Approac	h	564	2.0	0.596	12.2	LOS B	3.9	30.1	0.51	0.37	49.6
West: Co	ope Drive										
5	L2	136	2.0	0.362	10.0	LOS A	1.5	11.7	0.58	0.58	50.1
2	T1	45	2.0	0.362	10.0	LOS A	1.5	11.7	0.58	0.58	50.2
12	R2	69	2.0	0.362	10.0	LOS A	1.5	11.7	0.58	0.58	49.2
Approac	h	250	2.0	0.362	10.0	LOS A	1.5	11.7	0.58	0.58	49.9
All Vehic	les	1374	2.0	0.596	10.7	LOS B	3.9	30.1	0.53	0.45	50.3

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:16 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Future (2025) Total Traffic

ersection	
ersection Delay, s/veh	19.4
prediction LOS	C

Movement	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		ef 👘			÷	Y		
Traffic Vol, veh/h	1	143	174	188	143	183	309	
Future Vol, veh/h	1	143	174	188	143	183	309	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	5	9	7	4	9	10	
Mvmt Flow	1	143	174	188	143	183	309	
Number of Lanes	0	1	0	0	1	1	0	
Approach	EB			WB		NB		
Opposing Approach	WB			EB				
Opposing Lanes	1			1		0		
Conflicting Approach Left				NB		EB		
Conflicting Lanes Left	0			1		1		
Conflicting Approach Right	NB					WB		
Conflicting Lanes Right	1			0		1		
HCM Control Delay	14.3			16.9		24.3		
HCM LOS	В			С		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	37%	0%	57%
Vol Thru, %	0%	45%	43%
Vol Right, %	63%	55%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	492	318	331
LT Vol	183	0	188
Through Vol	0	143	143
RT Vol	309	175	0
Lane Flow Rate	492	318	331
Geometry Grp	1	1	1
Degree of Util (X)	0.761	0.498	0.564
Departure Headway (Hd)	5.565	5.636	6.135
Convergence, Y/N	Yes	Yes	Yes
Сар	645	636	583
Service Time	3.63	3.717	4.215
HCM Lane V/C Ratio	0.763	0.5	0.568
HCM Control Delay	24.3	14.3	16.9
HCM Lane LOS	С	В	С
HCM 95th-tile Q	7	2.8	3.5

Intersection

Intersection Delay, s/veh10.6 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			¢			¢		
Traffic Vol, veh/h	35	285	20	35	182	20	33	0	75	33	0	52	
Future Vol, veh/h	35	285	20	35	182	20	33	0	75	33	0	52	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	9	4	0	0	5	0	0	0	0	6	0	6	
Mvmt Flow	35	285	20	35	182	20	33	0	75	33	0	52	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ghNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	11.9			10			9			9.1			
HCM LOS	В			А			А			А			

Lane	NBLn1	EBLn1\	VBLn1	SBLn1
Vol Left, %	31%	10%	15%	39%
Vol Thru, %	0%	84%	77%	0%
Vol Right, %	69%	6%	8%	61%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	108	340	237	85
LT Vol	33	35	35	33
Through Vol	0	285	182	0
RT Vol	75	20	20	52
Lane Flow Rate	108	340	237	85
Geometry Grp	1	1	1	1
Degree of Util (X)	0.151	0.454	0.314	0.123
Departure Headway (Hd)	5.018	4.803	4.772	5.221
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	706	745	747	679
Service Time	3.107	2.868	2.843	3.314
HCM Lane V/C Ratio	0.153	0.456	0.317	0.125
HCM Control Delay	9	11.9	10	9.1
HCM Lane LOS	А	В	А	А
HCM 95th-tile Q	0.5	2.4	1.3	0.4

2.5					
EBL	EBT	WBT	WBR	SBL	SBR
٢	•	•	1	Y	
22	471	319	65	96	25
22	471	319	65	96	25
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
250	-	-	250	0	-
e,# -	0	0	-	0	-
-	0	0	-	0	-
100	100	100	100	100	100
2	2	2	2	2	2
22	471	319	65	96	25
	2.5 EBL 22 22 0 Free - 250 e, # - - 100 2 22	2.5 EBL EBT ↑ ↑ 22 471 22 471 0 0 Free Free - None 250 - e, # - 0 - 0 100 100 2 2 22 471	2.5 EBL EBT WBT 22 471 319 22 471 319 22 471 319 0 0 0 Free Free Free - None - 250 e, # - 0 0 100 100 2 2 2 22 471 319	2.5 EBL EBT WBT WBR 1 1 1 1 22 471 319 65 22 471 319 65 22 471 319 65 0 0 0 0 Free Free Free Free 250 - 250 - 250 e, # 0 0 - - 100 100 100 - - 100 100 100 100 - 22 2 2 2 2 22 471 319 65	2.5 EBL EBT WBT WBR SBL ↑ ↑ ↑ ↑ ↑ 22 471 319 65 96 22 471 319 65 96 0 0 0 0 0 Free Free Free Stop - None - None 250 - 250 0 e, # 0 0 - 0 100 100 100 100 100 22 2 2 2 2 2 220 471 319 65 96

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	384	0	-	0	834	319	
Stage 1	-	-	-	-	319	-	
Stage 2	-	-	-	-	515	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1174	-	-	-	338	722	
Stage 1	-	-	-	-	737	-	
Stage 2	-	-	-	-	600	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1174	-	-	-	332	722	
Mov Cap-2 Maneuver	· -	-	-	-	332	-	
Stage 1	-	-	-	-	723	-	
Stage 2	-	-	-	-	600	-	
Approach	FB		WB		SB		
HCM Control Delay s	0.4		0		19.2		
HCM LOS	0.1		Ū		С.		
					Ū		
Minor Lane/Major Mvi	nt	EBL	EBT	WBT	WBR	SBLn1	
Capacity (veh/h)		1174	-	-	-	374	
HCM Lane V/C Ratio		0.019	-	-	-	0.324	
HCM Control Delay (s	5)	8.1	-	-	-	19.2	
HCM Lane LOS		А	-	-	-	С	
HCM 95th %tile Q(vel	n)	0.1	-	-	-	1.4	

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		el 👘			÷
Traffic Vol, veh/h	18	4	434	8	2	291
Future Vol, veh/h	18	4	434	8	2	291
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	18	4	434	8	2	291

Major/Minor	Minor1	Μ	ajor1	Ν	lajor2		
Conflicting Flow All	733	438	0	0	442	0	
Stage 1	438	-	-	-	-	-	
Stage 2	295	-	-	-	-	-	
Critical Hdwy	6.4	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	391	623	-	-	1129	-	
Stage 1	655	-	-	-	-	-	
Stage 2	760	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuve	r 390	623	-	-	1129	-	
Mov Cap-2 Maneuve	r 390	-	-	-	-	-	
Stage 1	655	-	-	-	-	-	
Stage 2	758	-	-	-	-	-	

Approach	WB	NB	SB	
HCM Control Delay, s	14.1	0	0.1	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRW	'BLn1	SBL	SBT
Capacity (veh/h)	-	-	418	1129	-
HCM Lane V/C Ratio	-	- (0.053	0.002	-
HCM Control Delay (s)	-	-	14.1	8.2	0
HCM Lane LOS	-	-	В	А	Α
HCM 95th %tile Q(veh)	-	-	0.2	0	-

Intersection Delay, s/veh 7.6 Intersection LOS A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	9	27	9	4	19	44	4	52	27	30	79	4
Future Vol, veh/h	9	27	9	4	19	44	4	52	27	30	79	4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	9	27	9	4	19	44	4	52	27	30	79	4
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.6			7.3			7.5			7.9		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	20%	6%	27%	
Vol Thru, %	63%	60%	28%	70%	
Vol Right, %	33%	20%	66%	4%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	83	45	67	113	
LT Vol	4	9	4	30	
Through Vol	52	27	19	79	
RT Vol	27	9	44	4	
Lane Flow Rate	83	45	67	113	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.092	0.054	0.074	0.132	
Departure Headway (Hd)	3.996	4.318	3.997	4.191	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	884	834	901	846	
Service Time	2.08	2.32	1.998	2.262	
HCM Lane V/C Ratio	0.094	0.054	0.074	0.134	
HCM Control Delay	7.5	7.6	7.3	7.9	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.3	0.2	0.2	0.5	
Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			\$	
Traffic Vol, veh/h	2	14	94	9	23	3	149	0	5	6	3	6
Future Vol, veh/h	2	14	94	9	23	3	149	0	5	6	3	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	2	14	94	9	23	3	149	0	5	6	3	6

Major/Minor N	Major1		N	Major2		ſ	Minor1		٨	/linor2			
Conflicting Flow All	26	0	0	108	0	0	112	109	61	111	155	25	
Stage 1	-	-	-	-	-	-	65	65	-	43	43	-	
Stage 2	-	-	-	-	-	-	47	44	-	68	112	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1601	-	-	1495	-	-	870	785	1010	872	741	1057	
Stage 1	-	-	-	-	-	-	951	845	-	976	863	-	
Stage 2	-	-	-	-	-	-	972	862	-	947	807	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1601	-	-	1495	-	-	858	780	1010	863	736	1057	
Mov Cap-2 Maneuver	-	-	-	-	-	-	858	780	-	863	736	-	
Stage 1	-	-	-	-	-	-	950	844	-	975	858	-	
Stage 2	-	-	-	-	-	-	957	857	-	941	806	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			1.9			10.1			9.1			
HCM LOS							В			А			
Minor Lane/Major Mvm	it I	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		862	1601	-	-	1495	-	-	898				
HCM Lano V/C Datio		0 170	0.001			0.006			0.017				

HCM Lane V/C Ratio	0.179 ().001	-	- ().006	-	- (0.017	
HCM Control Delay (s)	10.1	7.3	0	-	7.4	0	-	9.1	
HCM Lane LOS	В	А	А	-	А	А	-	А	
HCM 95th %tile Q(veh)	0.6	0	-	-	0	-	-	0.1	

ntersection	
ntersection Delay, s/veh	25.4
ntersection LOS	D

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	¢Î			ę	¥		
Traffic Vol, veh/h	189	180	278	211	159	262	
Future Vol, veh/h	189	180	278	211	159	262	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	3	1	3	6	4	5	
Mvmt Flow	189	180	278	211	159	262	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay	18		32.9		23.1		
HCM LOS	С		D		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	38%	0%	57%
Vol Thru, %	0%	51%	43%
Vol Right, %	62%	49%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	421	369	489
LT Vol	159	0	278
Through Vol	0	189	211
RT Vol	262	180	0
Lane Flow Rate	421	369	489
Geometry Grp	1	1	1
Degree of Util (X)	0.716	0.612	0.835
Departure Headway (Hd)	6.119	5.966	6.146
Convergence, Y/N	Yes	Yes	Yes
Сар	594	605	592
Service Time	4.142	4.015	4.177
HCM Lane V/C Ratio	0.709	0.61	0.826
HCM Control Delay	23.1	18	32.9
HCM Lane LOS	С	С	D
HCM 95th-tile Q	5.9	4.1	8.8

Intersection

Intersection Delay, s/veh14.9 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			¢			\$		
Traffic Vol, veh/h	41	322	32	111	342	29	20	0	72	25	0	58	
Future Vol, veh/h	41	322	32	111	342	29	20	0	72	25	0	58	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	4	0	0	2	7	0	0	0	4	0	5	
Mvmt Flow	41	322	32	111	342	29	20	0	72	25	0	58	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ghNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	14.1			17.3			9.8			9.9			
HCM LOS	В			С			А			А			

Lane	NBLn1	EBLn1\	NBLn1	SBLn1
Vol Left, %	22%	10%	23%	30%
Vol Thru, %	0%	82%	71%	0%
Vol Right, %	78%	8%	6%	70%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	92	395	482	83
LT Vol	20	41	111	25
Through Vol	0	322	342	0
RT Vol	72	32	29	58
Lane Flow Rate	92	395	482	83
Geometry Grp	1	1	1	1
Degree of Util (X)	0.148	0.552	0.664	0.137
Departure Headway (Hd)	5.779	5.031	4.962	5.934
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	619	715	728	603
Service Time	3.83	3.065	2.994	3.987
HCM Lane V/C Ratio	0.149	0.552	0.662	0.138
HCM Control Delay	9.8	14.1	17.3	9.9
HCM Lane LOS	А	В	С	А
HCM 95th-tile Q	0.5	3.4	5.1	0.5

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ľ	•	1	1	Y	
Traffic Vol, veh/h	38	457	697	121	70	19
Future Vol, veh/h	38	457	697	121	70	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	38	457	697	121	70	19

Major/Minor	Major1	N	/lajor2		Minor2		 	
Conflicting Flow All	818	0	-	0	1230	697		
Stage 1	-	-	-	-	697	-		
Stage 2	-	-	-	-	533	-		
Critical Hdwy	4.1	-	-	-	6.4	6.2		
Critical Hdwy Stg 1	-	-	-	-	5.4	-		
Critical Hdwy Stg 2	-	-	-	-	5.4	-		
Follow-up Hdwy	2.2	-	-	-	3.5	3.3		
Pot Cap-1 Maneuver	819	-	-	-	198	444		
Stage 1	-	-	-	-	498	-		
Stage 2	-	-	-	-	593	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuve	r 819	-	-	-	189	444		
Mov Cap-2 Maneuve	r -	-	-	-	189	-		
Stage 1	-	-	-	-	475	-		
Stage 2	-	-	-	-	593	-		
Approach	EB		WB		SB			
HCM Control Delay,	s 0.7		0		33.1			
HCM LOS					D			
Minor Lane/Major Mv	rmt	EBL	EBT	WBT	WBR S	SBLn1		
Capacity (veh/h)		819	-	-	-	215		
HCM Lane V/C Ratio		0.046	-	-	-	0.414		
HCM Control Delay (s)	9.6	-	-	-	33.1		
HCM Lane LOS	,	A	-	-	-	D		

-

HCM 95th %tile Q(veh)

0.1

Intersection						
Intersection Delay, s/veh	10.6					
Intersection LOS	В					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		el 🕴			र्स
Traffic Vol, veh/h	11	3	424	17	5	266
Future Vol, veh/h	11	3	424	17	5	266
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	11	3	424	17	5	266
Number of Lanes	1	0	1	0	0	1
Approach	WB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	NB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right	SB		WB			
Conflicting Lanes Right	1		1		0	
HCM Control Delay	8.6		11.3		9.5	

Lane	NBLn1	WBLn1	SBLn1
Vol Left, %	0%	79%	2%
Vol Thru, %	96%	0%	98%
Vol Right, %	4%	21%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	441	14	271
LT Vol	0	11	5
Through Vol	424	0	266
RT Vol	17	3	0
Lane Flow Rate	441	14	271
Geometry Grp	1	1	1
Degree of Util (X)	0.502	0.021	0.329
Departure Headway (Hd)	4.102	5.425	4.365
Convergence, Y/N	Yes	Yes	Yes
Сар	864	662	829
Service Time	2.195	3.439	2.367
HCM Lane V/C Ratio	0.51	0.021	0.327
HCM Control Delay	11.3	8.6	9.5
HCM Lane LOS	В	А	А
HCM 95th-tile Q	2.9	0.1	1.4

А

HCM LOS

А

В

Intersection Intersection Delay, s/veh 8 Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\$			4			\$		
Traffic Vol, veh/h	6	17	6	9	43	32	9	90	25	34	111	9	
Future Vol, veh/h	6	17	6	9	43	32	9	90	25	34	111	9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Mvmt Flow	6	17	6	9	43	32	9	90	25	34	111	9	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	ft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ghtNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	7.7			7.8			7.9			8.3			
HCM LOS	А			А			А			А			

Lane	NBLn1	EBLn1	VBLn1	SBLn1
Vol Left, %	7%	21%	11%	22%
Vol Thru, %	73%	59%	51%	72%
Vol Right, %	20%	21%	38%	6%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	124	29	84	154
LT Vol	9	6	9	34
Through Vol	90	17	43	111
RT Vol	25	6	32	9
Lane Flow Rate	124	29	84	154
Geometry Grp	1	1	1	1
Degree of Util (X)	0.145	0.036	0.101	0.184
Departure Headway (Hd)	4.212	4.528	4.34	4.305
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	854	793	828	839
Service Time	2.224	2.544	2.354	2.305
HCM Lane V/C Ratio	0.145	0.037	0.101	0.184
HCM Control Delay	7.9	7.7	7.8	8.3
HCM Lane LOS	А	А	А	А
HCM 95th-tile Q	0.5	0.1	0.3	0.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	3	22	129	5	14	2	123	8	8	3	2	3
Future Vol, veh/h	3	22	129	5	14	2	123	8	8	3	2	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	3	22	129	5	14	2	123	8	8	3	2	3

Major/Minor	Major1		Ν	Najor2		ſ	Minor1		Ν	/linor2			
Conflicting Flow All	16	0	0	151	0	0	121	119	87	126	182	15	
Stage 1	-	-	-	-	-	-	93	93	-	25	25	-	
Stage 2	-	-	-	-	-	-	28	26	-	101	157	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1615	-	-	1442	-	-	859	775	977	852	716	1070	
Stage 1	-	-	-	-	-	-	919	822	-	998	878	-	
Stage 2	-	-	-	-	-	-	994	878	-	910	772	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1615	-	-	1442	-	-	851	771	977	835	712	1070	
Mov Cap-2 Maneuver	-	-	-	-	-	-	851	771	-	835	712	-	
Stage 1	-	-	-	-	-	-	917	820	-	996	875	-	
Stage 2	-	-	-	-	-	-	986	875	-	892	770	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			1.8			10			9.2			
HCM LOS							В			A			
Minor Lane/Major Mvr	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				

Capacity (veh/h)	852	1615	-	-	1442	-	-	869
HCM Lane V/C Ratio	0.163	0.002	-	-	0.003	-	-	0.009
HCM Control Delay (s)	10	7.2	0	-	7.5	0	-	9.2
HCM Lane LOS	В	А	А	-	А	А	-	А
HCM 95th %tile Q(veh)	0.6	0	-	-	0	-	-	0

🗑 Site: TT2025AM

Fernbank Road & Shea Road Future (2025) Total Traffic AM Peak Hour Roundabout

Moverr	ent Perforn	nance - Vo	ehicles								
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: 9	Shea Road	ven/n	%	V/C	sec		ven	m		per ven	Km/n
20		1	0.0	0.456	15.0		2.0	15.7	0.60	0.74	49.0
Su	0	05	0.0	0.450	15.0		2.0	15.7	0.09	0.74	40.9
3	LZ T4	25	2.0	0.450	15.0	LUSB	2.0	15.7	0.69	0.74	48.1
8	11	160	2.0	0.456	15.0	LOSB	2.0	15.7	0.69	0.74	48.2
18	R2	50	8.0	0.456	15.0	LOS B	2.0	15.7	0.69	0.74	47.0
Approac	h	236	3.3	0.456	15.0	LOS B	2.0	15.7	0.69	0.74	47.9
East: Fe	ernbank Road										
1	L2	41	2.0	0.497	12.0	LOS B	2.6	20.5	0.62	0.64	50.0
6	T1	274	2.0	0.497	12.0	LOS B	2.6	20.5	0.62	0.64	50.1
16	R2	54	2.0	0.497	12.0	LOS B	2.6	20.5	0.62	0.64	49.1
Approac	:h	369	2.0	0.497	12.0	LOS B	2.6	20.5	0.62	0.64	49.9
North: S	hea Road										
7u	U	4	50.0	0.431	10.2	LOS B	2.0	15.7	0.55	0.52	49.1
7	L2	91	2.0	0.431	10.2	LOS B	2.0	15.7	0.55	0.52	50.7
4	T1	82	2.0	0.431	10.2	LOS B	2.0	15.7	0.55	0.52	50.8
14	R2	158	2.0	0.431	10.2	LOS B	2.0	15.7	0.55	0.52	49.7
Approac	h	335	2.6	0.431	10.2	LOS B	2.0	15.7	0.55	0.52	50.2
West: F	ernbank Road	b									
5	L2	200	2.0	0.749	18.9	LOS C	7.6	58.8	0.75	0.70	45.3
2	T1	438	2.0	0.749	18.9	LOS C	7.6	58.8	0.75	0.70	45.4
12	R2	24	2.0	0.749	18.9	LOS C	7.6	58.8	0.75	0.70	44.6
Approac	h	662	2.0	0.749	18.9	LOS C	7.6	58.8	0.75	0.70	45.4
All Vehic	cles	1602	2.3	0.749	14.9	LOS B	7.6	58.8	0.67	0.66	47.7

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 12:51:36 PM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3 Fernbank&Shea 2022-02-01.sip6

W Site: TT2025PM

Fernbank Road & Shea Road Future (2025) Total Traffic PM Peak Hour Roundabout

Mover	nent Per	formance - Ve	ehicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: S	Shea Roa	d	/0	V/C	360		ven	111		per veri	K11711
3u	U	1	0.0	0.291	9.3	LOS A	1.1	8.5	0.57	0.57	52.4
3	L2	41	2.0	0.291	9.3	LOS A	1.1	8.5	0.57	0.57	51.5
8	T1	94	2.0	0.291	9.3	LOS A	1.1	8.5	0.57	0.57	51.6
18	R2	52	6.0	0.291	9.3	LOS A	1.1	8.5	0.57	0.57	50.4
Approac	ch	188	3.1	0.291	9.3	LOS A	1.1	8.5	0.57	0.57	51.3
East: Fe	ernbank R	load									
1u	U	1	3.0	0.807	23.6	LOS C	9.2	72.1	0.84	0.86	43.7
1	L2	91	11.0	0.807	23.6	LOS C	9.2	72.1	0.84	0.86	42.8
6	T1	429	3.0	0.807	23.6	LOS C	9.2	72.1	0.84	0.86	43.3
16	R2	152	3.0	0.807	23.6	LOS C	9.2	72.1	0.84	0.86	42.5
Approac	ch	673	4.1	0.807	23.6	LOS C	9.2	72.1	0.84	0.86	43.0
North: S	Shea Road	d									
7u	U	4	50.0	0.489	14.0	LOS B	2.4	18.5	0.67	0.72	46.7
7	L2	79	0.0	0.489	14.0	LOS B	2.4	18.5	0.67	0.72	48.3
4	T1	103	0.0	0.489	14.0	LOS B	2.4	18.5	0.67	0.72	48.4
14	R2	109	9.0	0.489	14.0	LOS B	2.4	18.5	0.67	0.72	47.1
Approac	ch	295	4.0	0.489	14.0	LOS B	2.4	18.5	0.67	0.72	47.8
West: F	ernbank F	Road									
5u	U	2	3.0	0.559	12.6	LOS B	3.4	26.4	0.60	0.56	49.9
5	L2	112	4.0	0.559	12.6	LOS B	3.4	26.4	0.60	0.56	49.1
2	T1	315	3.0	0.559	12.6	LOS B	3.4	26.4	0.60	0.56	49.3
12	R2	28	4.0	0.559	12.6	LOS B	3.4	26.4	0.60	0.56	48.2
Approac	ch	457	3.3	0.559	12.6	LOS B	3.4	26.4	0.60	0.56	49.2
All Vehic	cles	1613	3.7	0.807	17.1	LOS C	9.2	72.1	0.71	0.72	46.4

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Robert Grant Avenue

W Site: TO2025AM

Robert Grant Avenue & Cope Drive Future (2025) Total Traffic AM Peak Hour Roundabout

Movem	ent Perfo	rmance - Vel	hicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: R	Robert Gran	ven/n	%	V/C	sec	_	ven	m	_	per ven	Km/n
3	L2	79	2.0	0.597	14.6	LOS B	3.9	29.8	0.68	0.73	48.1
8	 T1	329	2.0	0.597	14.6	LOSB	3.9	29.8	0.68	0.73	48.2
18	R2	41	2.0	0.597	14.6	LOSB	3.9	29.8	0.68	0.73	47.3
Approac	: 	449	2.0	0.597	14.6	LOSB	3.9	29.8	0.68	0.73	48.1
-		110	2.0	0.001	11.0	200 2	0.0	20.0	0.00	0.10	10.1
East: Co	pe Drive										
1	L2	35	2.0	0.363	11.2	LOS B	1.5	11.5	0.62	0.64	50.4
6	T1	62	2.0	0.363	11.2	LOS B	1.5	11.5	0.62	0.64	50.5
16	R2	120	2.0	0.363	11.2	LOS B	1.5	11.5	0.62	0.64	49.4
Approac	h	217	2.0	0.363	11.2	LOS B	1.5	11.5	0.62	0.64	49.9
North: R	obert Gran	t Avenue									
7	L2	112	2.0	0.516	10.5	LOS B	2.9	22.5	0.48	0.36	50.6
4	T1	211	2.0	0.516	10.5	LOS B	2.9	22.5	0.48	0.36	50.8
14	R2	154	2.0	0.516	10.5	LOS B	2.9	22.5	0.48	0.36	49.7
Approac	h	477	2.0	0.516	10.5	LOS B	2.9	22.5	0.48	0.36	50.4
West: Co	ope Drive										
5u	U	1	2.0	0.463	11.0	LOS B	2.3	18.0	0.58	0.57	50.2
5	L2	195	2.0	0.463	11.0	LOS B	2.3	18.0	0.58	0.57	49.4
2	T1	72	2.0	0.463	11.0	LOS B	2.3	18.0	0.58	0.57	49.5
12	R2	88	2.0	0.463	11.0	LOS B	2.3	18.0	0.58	0.57	48.5
Approac	h	356	2.0	0.463	11.0	LOS B	2.3	18.0	0.58	0.57	49.2
All Vehic	les	1499	2.0	0.597	12.0	LOS B	3.9	29.8	0.58	0.56	49.3

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:16 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Robert Grant Avenue

W Site: TO2025PM

Robert Grant Avenue & Cope Drive Future (2025) Total Traffic PM Peak Hour Roundabout

Movem	ent Perforn	nance - <u>Ve</u>	hicles								
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: R	obert Grant	ven/n Avenue	%	V/C	sec	_	ven	m	_	per ven	Km/n
3	L2	80	2.0	0.472	10.4	LOS B	2.4	18.6	0.53	0.46	50.8
8	T1	279	2.0	0.472	10.4	LOS B	2.4	18.6	0.53	0.46	51.0
18	R2	40	2.0	0.472	10.4	LOS B	2.4	18.6	0.53	0.46	49.9
Approac	h	399	2.0	0.472	10.4	LOS B	2.4	18.6	0.53	0.46	50.8
East: Co	pe Drive										
1	L2	50	2.0	0.256	8.6	LOS A	1.0	7.4	0.55	0.55	51.8
6	T1	47	2.0	0.256	8.6	LOS A	1.0	7.4	0.55	0.55	52.0
16	R2	72	2.0	0.256	8.6	LOS A	1.0	7.4	0.55	0.55	50.8
Approac	h	169	2.0	0.256	8.6	LOS A	1.0	7.4	0.55	0.55	51.4
North: R	obert Grant A	Avenue									
7u	U	1	2.0	0.618	13.1	LOS B	4.3	33.6	0.56	0.44	50.0
7	L2	70	2.0	0.618	13.1	LOS B	4.3	33.6	0.56	0.44	49.2
4	T1	322	2.0	0.618	13.1	LOS B	4.3	33.6	0.56	0.44	49.4
14	R2	179	2.0	0.618	13.1	LOS B	4.3	33.6	0.56	0.44	48.3
Approac	h	572	2.0	0.618	13.1	LOS B	4.3	33.6	0.56	0.44	49.0
West: Co	ope Drive										
5	L2	147	2.0	0.382	10.1	LOS B	1.6	12.7	0.58	0.59	50.0
2	T1	47	2.0	0.382	10.1	LOS B	1.6	12.7	0.58	0.59	50.1
12	R2	75	2.0	0.382	10.1	LOS B	1.6	12.7	0.58	0.59	49.1
Approac	h	269	2.0	0.382	10.1	LOS B	1.6	12.7	0.58	0.59	49.7
All Vehic	les	1409	2.0	0.618	11.2	LOS B	4.3	33.6	0.55	0.49	49.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:17 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Future (2030) Total Traffic

ntersection	
ntersection Delay, s/veh	19.4
ntersection LOS	С

Movement	EBU	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		ef 👘			ب ا	Y		
Traffic Vol, veh/h	1	143	174	188	143	183	309	
Future Vol, veh/h	1	143	174	188	143	183	309	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	5	9	7	4	9	10	
Mvmt Flow	1	143	174	188	143	183	309	
Number of Lanes	0	1	0	0	1	1	0	
Approach	EB			WB		NB		
Opposing Approach	WB			EB				
Opposing Lanes	1			1		0		
Conflicting Approach Left				NB		EB		
Conflicting Lanes Left	0			1		1		
Conflicting Approach Right	NB					WB		
Conflicting Lanes Right	1			0		1		
HCM Control Delay	14.3			16.9		24.3		
HCM LOS	В			С		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	37%	0%	57%
Vol Thru, %	0%	45%	43%
Vol Right, %	63%	55%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	492	318	331
LT Vol	183	0	188
Through Vol	0	143	143
RT Vol	309	175	0
Lane Flow Rate	492	318	331
Geometry Grp	1	1	1
Degree of Util (X)	0.761	0.498	0.564
Departure Headway (Hd)	5.565	5.636	6.135
Convergence, Y/N	Yes	Yes	Yes
Сар	645	636	583
Service Time	3.63	3.717	4.215
HCM Lane V/C Ratio	0.763	0.5	0.568
HCM Control Delay	24.3	14.3	16.9
HCM Lane LOS	С	В	С
HCM 95th-tile Q	7	2.8	3.5

Intersection

Intersection Delay, s/veh10.6 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\$			\$			¢		
Traffic Vol, veh/h	35	285	20	35	182	20	33	0	75	33	0	52	
Future Vol, veh/h	35	285	20	35	182	20	33	0	75	33	0	52	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	9	4	0	0	5	0	0	0	0	6	0	6	
Mvmt Flow	35	285	20	35	182	20	33	0	75	33	0	52	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ghNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	11.9			10			9			9.1			
HCM LOS	В			А			А			А			

Lane	NBLn1	EBLn1\	VBLn1	SBLn1
Vol Left, %	31%	10%	15%	39%
Vol Thru, %	0%	84%	77%	0%
Vol Right, %	69%	6%	8%	61%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	108	340	237	85
LT Vol	33	35	35	33
Through Vol	0	285	182	0
RT Vol	75	20	20	52
Lane Flow Rate	108	340	237	85
Geometry Grp	1	1	1	1
Degree of Util (X)	0.151	0.454	0.314	0.123
Departure Headway (Hd)	5.018	4.803	4.772	5.221
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	706	745	747	679
Service Time	3.107	2.868	2.843	3.314
HCM Lane V/C Ratio	0.153	0.456	0.317	0.125
HCM Control Delay	9	11.9	10	9.1
HCM Lane LOS	А	В	А	А
HCM 95th-tile Q	0.5	2.4	1.3	0.4

Intersection						
Int Delay, s/veh	2.5					
Movement	FBL	FRI	WBI	WBR	SBL	SBR
Lane Configurations	<u>۲</u>	↑	↑	1	۰¥	
Traffic Vol, veh/h	22	506	343	65	96	25
Future Vol, veh/h	22	506	343	65	96	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	506	343	65	96	25
Heavy Vehicles, % Mvmt Flow	2 22	2 506	2 343	2 65	2 96	2 25

Major/Minor	Major1	Ν	/lajor2		Minor2			
Conflicting Flow All	408	0	-	0	893	343		
Stage 1	-	-	-	-	343	-		
Stage 2	-	-	-	-	550	-		
Critical Hdwy	4.12	-	-	-	6.42	6.22		
Critical Hdwy Stg 1	-	-	-	-	5.42	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	-		
Follow-up Hdwy	2.218	-	-	-	3.518	3.318		
Pot Cap-1 Maneuver	1151	-	-	-	312	700		
Stage 1	-	-	-	-	719	-		
Stage 2	-	-	-	-	578	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	r 1151	-	-	-	306	700		
Mov Cap-2 Maneuver	r -	-	-	-	306	-		
Stage 1	-	-	-	-	705	-		
Stage 2	-	-	-	-	578	-		
Approach	FB		WB		SB			
HCM Control Delay	5 0.3		0		20.9			
HCMIOS	0.0		5		С			
					J			
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR S	SBLn1		
Capacity (veh/h)		1151	-	-	-	346		
HCM Lane V/C Ratio		0.019	-	-	-	0.35		
HCM Control Delay (s	5)	8.2	-	-	-	20.9		
HCM Lane LOS		А	-	-	-	С		

-

HCM 95th %tile Q(veh)

0.1

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		et 👘			- द
Traffic Vol, veh/h	18	4	434	8	2	291
Future Vol, veh/h	18	4	434	8	2	291
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	18	4	434	8	2	291

Major/Minor	Minor1	Μ	lajor1	Ν	lajor2		
Conflicting Flow All	733	438	0	0	442	0	
Stage 1	438	-	-	-	-	-	
Stage 2	295	-	-	-	-	-	
Critical Hdwy	6.4	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	391	623	-	-	1129	-	
Stage 1	655	-	-	-	-	-	
Stage 2	760	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuve	r 390	623	-	-	1129	-	
Mov Cap-2 Maneuve	r 390	-	-	-	-	-	
Stage 1	655	-	-	-	-	-	
Stage 2	758	-	-	-	-	-	

Approach	WB	NB	SB	
HCM Control Delay, s	14.1	0	0.1	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)	-	-	418	1129	-
HCM Lane V/C Ratio	-	- (0.053	0.002	-
HCM Control Delay (s)	-	-	14.1	8.2	0
HCM Lane LOS	-	-	В	А	Α
HCM 95th %tile Q(veh)	-	-	0.2	0	-

Intersection			
Intersection Delay, s/veh	7.8		
Intersection LOS	А		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	9	27	9	4	19	44	4	98	27	30	79	4
Future Vol, veh/h	9	27	9	4	19	44	4	98	27	30	79	4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	9	27	9	4	19	44	4	98	27	30	79	4
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.7			7.4			7.9			8		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	20%	6%	27%	
Vol Thru, %	76%	60%	28%	70%	
Vol Right, %	21%	20%	66%	4%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	129	45	67	113	
LT Vol	4	9	4	30	
Through Vol	98	27	19	79	
RT Vol	27	9	44	4	
Lane Flow Rate	129	45	67	113	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.146	0.055	0.076	0.133	
Departure Headway (Hd)	4.062	4.425	4.102	4.227	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	868	814	878	836	
Service Time	2.153	2.427	2.103	2.316	
HCM Lane V/C Ratio	0.149	0.055	0.076	0.135	
HCM Control Delay	7.9	7.7	7.4	8	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.5	0.2	0.2	0.5	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			¢			÷	
Traffic Vol, veh/h	2	14	94	9	23	3	149	14	5	6	3	6
Future Vol, veh/h	2	14	94	9	23	3	149	14	5	6	3	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	2	14	94	9	23	3	149	14	5	6	3	6

Major/Minor I	Major1		N	Najor2		ſ	Minor1		Ν	/linor2			
Conflicting Flow All	26	0	0	108	0	0	112	109	61	118	155	25	
Stage 1	-	-	-	-	-	-	65	65	-	43	43	-	
Stage 2	-	-	-	-	-	-	47	44	-	75	112	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1601	-	-	1495	-	-	870	785	1010	863	741	1057	
Stage 1	-	-	-	-	-	-	951	845	-	976	863	-	
Stage 2	-	-	-	-	-	-	972	862	-	939	807	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1601	-	-	1495	-	-	858	780	1010	842	736	1057	
Mov Cap-2 Maneuver	-	-	-	-	-	-	858	780	-	842	736	-	
Stage 1	-	-	-	-	-	-	950	844	-	975	858	-	
Stage 2	-	-	-	-	-	-	957	857	-	918	806	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			1.9			10.2			9.1			
HCM LOS							В			А			
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		855	1601	-	-	1495	-	-	889				
HCM Lana V/C Datio		0 104	0.001			0.004			0.017				

HCM Lane V/C Ratio	0.196 ().001	-	- 0	0.006	-	- (0.017	
HCM Control Delay (s)	10.2	7.3	0	-	7.4	0	-	9.1	
HCM Lane LOS	В	А	А	-	А	А	-	Α	
HCM 95th %tile Q(veh)	0.7	0	-	-	0	-	-	0.1	

Intersection	
Intersection Delay, s/veh	25.4
Intersection LOS	D

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ef 🔰			ب ا	Y		
Traffic Vol, veh/h	189	180	278	211	159	262	
Future Vol, veh/h	189	180	278	211	159	262	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	3	1	3	6	4	5	
Mvmt Flow	189	180	278	211	159	262	
Number of Lanes	1	0	0	1	1	0	
Approach	EB		WB		NB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left			NB		EB		
Conflicting Lanes Left	0		1		1		
Conflicting Approach Right	NB				WB		
Conflicting Lanes Right	1		0		1		
HCM Control Delay	18		32.9		23.1		
HCM LOS	С		D		С		

Lane	NBLn1	EBLn1	WBLn1
Vol Left, %	38%	0%	57%
Vol Thru, %	0%	51%	43%
Vol Right, %	62%	49%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	421	369	489
LT Vol	159	0	278
Through Vol	0	189	211
RT Vol	262	180	0
Lane Flow Rate	421	369	489
Geometry Grp	1	1	1
Degree of Util (X)	0.716	0.612	0.835
Departure Headway (Hd)	6.119	5.966	6.146
Convergence, Y/N	Yes	Yes	Yes
Сар	594	605	592
Service Time	4.142	4.015	4.177
HCM Lane V/C Ratio	0.709	0.61	0.826
HCM Control Delay	23.1	18	32.9
HCM Lane LOS	С	С	D
HCM 95th-tile Q	5.9	4.1	8.8

Intersection

Intersection Delay, s/veh14.9 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			¢			¢		
Traffic Vol, veh/h	41	322	32	111	342	29	20	0	72	25	0	58	
Future Vol, veh/h	41	322	32	111	342	29	20	0	72	25	0	58	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles, %	0	4	0	0	2	7	0	0	0	4	0	5	
Mvmt Flow	41	322	32	111	342	29	20	0	72	25	0	58	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			1			1			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	1			1			1			1			
Conflicting Approach Ri	ghNB			SB			WB			EB			
Conflicting Lanes Right	1			1			1			1			
HCM Control Delay	14.1			17.3			9.8			9.9			
HCM LOS	В			С			А			А			

Lane	NBLn1	EBLn1\	NBLn1	SBLn1
Vol Left, %	22%	10%	23%	30%
Vol Thru, %	0%	82%	71%	0%
Vol Right, %	78%	8%	6%	70%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	92	395	482	83
LT Vol	20	41	111	25
Through Vol	0	322	342	0
RT Vol	72	32	29	58
Lane Flow Rate	92	395	482	83
Geometry Grp	1	1	1	1
Degree of Util (X)	0.148	0.552	0.664	0.137
Departure Headway (Hd)	5.779	5.031	4.962	5.934
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	619	715	728	603
Service Time	3.83	3.065	2.994	3.987
HCM Lane V/C Ratio	0.149	0.552	0.662	0.138
HCM Control Delay	9.8	14.1	17.3	9.9
HCM Lane LOS	А	В	С	А
HCM 95th-tile Q	0.5	3.4	5.1	0.5

2.6					
EBL	EBT	WBT	WBR	SBL	SBR
٦	1	•	1	Y	
38	486	747	121	70	19
38	486	747	121	70	19
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
250	-	-	250	0	-
,# -	0	0	-	0	-
-	0	0	-	0	-
100	100	100	100	100	100
0	0	0	0	0	0
20	407	7 4 7	101	70	10
	2.6 EBL 38 38 0 Free 250 4, # - 100 0 0	2.6 EBL EBT ↑ ↑ 38 486 38 486 0 0 Free Free - None 250 - 5, # - 0 - 0 100 100 0 0 200 400	2.6 EBL EBT WBT ↑ ↑ ↑ 38 486 747 38 486 747 38 486 747 0 0 0 Free Free Free - None - 250 5, # - 0 0 100 100 00 100 00	2.6 EBL EBT WBT WBR ↑ ↑ ↑ ↑ 38 486 747 121 38 486 747 121 38 486 747 121 0 0 0 0 Free Free Free Free 250 - 250 - 4 0 0 - 5 0 0 - 7 0 0 - 9 0 0 - 9 0 0 - 9 0 0 - 9 0 0 - 9 0 0 - 9 0 0 0 - 9 0 0 0 - 9 0 0 0 - 9 0 0 0 - 9 0 0 0 - 9 0<	2.6 EBL EBT WBT WBR SBL ↑ ↑ ↑ ↑ ↑ ↑ 38 486 747 121 70 38 486 747 121 70 38 486 747 121 70 0 0 0 0 0 Free Free Free Free Stop - None - 250 0 - 9, # - 0 0 0 0 0 9, # - 0 00 100 100 100 100 100 100 100 100 100 100 0 0 0 0 0

Major/Minor	Major1	Ν	Aajor2	[Minor2		
Conflicting Flow All	868	0	-	0	1309	747	
Stage 1	-	-	-	-	747	-	
Stage 2	-	-	-	-	562	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	785	-	-	-	177	416	
Stage 1	-	-	-	-	472	-	
Stage 2	-	-	-	-	575	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	785	-	-	-	169	416	
Mov Cap-2 Maneuver	-	-	-	-	169	-	
Stage 1	-	-	-	-	449	-	
Stage 2	-	-	-	-	575	-	
Approach	FB		WB		SB		
HCM Control Delay s	0.7		0		38.4		
HCM LOS	0.7		Ū		E		
Minor Lang/Major Myr	nt	EDI	EDT			DIn1	
	III		EDI	VVDI	WDR .		
Capacity (ven/n)		/85	-	-	-	194	
HCIVI Lane V/C Ratio	、	0.048	-	-	-	0.459	
HCM Control Delay (s)	9.8	-	-	-	38.4	
HUM Lane LUS	、	A	-	-	-	E	
HCM 95th %tile Q(ver	1)	0.2	-	-	-	2.2	

Major/Minor	Minor1	М	ajor1	Ν	lajor2		
Conflicting Flow All	709	433	0	0	441	0	
Stage 1	433	-	-	-	-	-	
Stage 2	276	-	-	-	-	-	
Critical Hdwy	6.4	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	404	627	-	-	1130	-	
Stage 1	658	-	-	-	-	-	
Stage 2	775	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuve	r 402	627	-	-	1130	-	
Mov Cap-2 Maneuve	r 402	-	-	-	-	-	
Stage 1	658	-	-	-	-	-	
Stage 2	771	-	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, s	13.6	0	0.2
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRWBL	n1 SBL	SBT	
Capacity (veh/h)	-	- 4	35 1130	-	
HCM Lane V/C Ratio	-	- 0.0	32 0.004	-	
HCM Control Delay (s)	-	- 13	3.6 8.2	0	
HCM Lane LOS	-	-	B A	А	
HCM 95th %tile Q(veh)	-	- (0.1 0	-	

Intersection			
Intersection Delay, s/veh	8		
Intersection LOS	А		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	17	6	9	43	32	9	90	25	34	111	9
Future Vol, veh/h	6	17	6	9	43	32	9	90	25	34	111	9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	6	17	6	9	43	32	9	90	25	34	111	9
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.7			7.8			7.9			8.3		
HCM LOS	А			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	7%	21%	11%	22%	
Vol Thru, %	73%	59%	51%	72%	
Vol Right, %	20%	21%	38%	6%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	124	29	84	154	
LT Vol	9	6	9	34	
Through Vol	90	17	43	111	
RT Vol	25	6	32	9	
Lane Flow Rate	124	29	84	154	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.145	0.036	0.101	0.184	
Departure Headway (Hd)	4.212	4.528	4.34	4.305	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	854	793	828	839	
Service Time	2.224	2.544	2.354	2.305	
HCM Lane V/C Ratio	0.145	0.037	0.101	0.184	
HCM Control Delay	7.9	7.7	7.8	8.3	
HCM Lane LOS	А	А	А	А	
HCM 95th-tile Q	0.5	0.1	0.3	0.7	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			÷			¢			÷	
Traffic Vol, veh/h	3	22	129	5	14	2	123	8	8	3	2	3
Future Vol, veh/h	3	22	129	5	14	2	123	8	8	3	2	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	3	22	129	5	14	2	123	8	8	3	2	3

Major/Minor	Major1		[Major2		[Vinor1		Ν	/linor2			
Conflicting Flow All	16	0	0	151	0	0	121	119	87	126	182	15	
Stage 1			-	-	-	-	93	93	-	25	25	-	
Stage 2	-		-	-	-	-	28	26	-	101	157	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-		-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-		-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2		-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1615) -	-	1442	-	-	859	775	977	852	716	1070	
Stage 1	-		-	-	-	-	919	822	-	998	878	-	
Stage 2	-		-	-	-	-	994	878	-	910	772	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1615	; ; -	-	1442	-	-	851	771	977	835	712	1070	
Mov Cap-2 Maneuver			-	-	-	-	851	771	-	835	712	-	
Stage 1	-		-	-	-	-	917	820	-	996	875	-	
Stage 2	-		-	-	-	-	986	875	-	892	770	-	
Annroach	FR	2		W/R			MR			SR			
Approach	0.1	,		1.0			10			0.0			
HCM LOS	0.1			1.0						9.Z			
							В			А			
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (yoh/h)		050	1415			1//2			040				

Capacity (veh/h)	852	1615	-	- 1442	-	-	869
HCM Lane V/C Ratio	0.163	0.002	-	- 0.003	-	-	0.009
HCM Control Delay (s)	10	7.2	0	- 7.5	0	-	9.2
HCM Lane LOS	В	А	А	- A	А	-	А
HCM 95th %tile Q(veh)	0.6	0	-	- 0	-	-	0

W Site: TT2030AM

Fernbank Road & Shea Road Future (2030) Total Traffic AM Peak Hour Roundabout

Movement Performance - Vehicles												
Mov	OD	Demanc	d Flows	Deg.	Average	Level of	95% Back c	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South: S	Shea Road	ven/n	%	V/C	sec	_	ven	III	_	per ven	KM/N	
3u	U	1	0.0	0.470	15.7	LOS C	2.1	16.2	0.70	0.75	48.4	
3	12	25	2.0	0.470	15.7		2.1	16.2	0.70	0.75	47.6	
8	 T1	160	2.0	0.470	15.7	LOSC	2.1	16.2	0.70	0.75	47.7	
18	R2	50	8.0	0.470	15.7	LOS C	2.1	16.2	0.70	0.75	46.6	
Approad	ch	236	3.3	0.470	15.7	LOS C	2.1	16.2	0.70	0.75	47.5	
East E	mala and a Data	- J										
East: Fe	ernbank Roa	10	0.0	0.540	40.5		0.0	00.0	0.00	0.00	40.0	
1	L2	41	2.0	0.518	12.5	LOSB	2.9	22.2	0.63	0.66	49.6	
6	11	290	2.0	0.518	12.5	LOS B	2.9	22.2	0.63	0.66	49.8	
16	R2	54	2.0	0.518	12.5	LOS B	2.9	22.2	0.63	0.66	48.7	
Approad	ch	385	2.0	0.518	12.5	LOS B	2.9	22.2	0.63	0.66	49.6	
North: S	Shea Road											
7u	U	4	50.0	0.438	10.5	LOS B	2.1	16.2	0.57	0.55	48.9	
7	L2	91	2.0	0.438	10.5	LOS B	2.1	16.2	0.57	0.55	50.5	
4	T1	82	2.0	0.438	10.5	LOS B	2.1	16.2	0.57	0.55	50.6	
14	R2	158	2.0	0.438	10.5	LOS B	2.1	16.2	0.57	0.55	49.6	
Approad	ch	335	2.6	0.438	10.5	LOS B	2.1	16.2	0.57	0.55	50.1	
West: F	ernbank Roa	ad										
5	L2	200	2.0	0.780	20.8	LOS C	8.8	67.8	0.80	0.76	44.3	
2	T1	466	2.0	0.780	20.8	LOS C	8.8	67.8	0.80	0.76	44.4	
12	R2	24	2.0	0.780	20.8	LOS C	8.8	67.8	0.80	0.76	43.6	
Approad	ch	690	2.0	0.780	20.8	LOS C	8.8	67.8	0.80	0.76	44.4	
All Vehi	cles	1646	2.3	0.780	16.0	LOS C	8.8	67.8	0.70	0.69	47.1	

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 12:51:34 PM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3 Fernbank&Shea 2022-02-01.sip6

W Site: TT2030PM

Fernbank Road & Shea Road Future (2030) Total Traffic PM Peak Hour Roundabout

Moven	Movement Performance - Vehicles													
Mov	OD	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	lotal	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed km/b			
South: S	Shea Roa	d	/0	V/C	360		VGIT				K111/11			
3u	U	1	0.0	0.295	9.5	LOS A	1.1	8.6	0.57	0.57	52.3			
3	L2	41	2.0	0.295	9.5	LOS A	1.1	8.6	0.57	0.57	51.4			
8	T1	94	2.0	0.295	9.5	LOS A	1.1	8.6	0.57	0.57	51.5			
18	R2	52	6.0	0.295	9.5	LOS A	1.1	8.6	0.57	0.57	50.2			
Approa	ch	188	3.1	0.295	9.5	LOS A	1.1	8.6	0.57	0.57	51.1			
East: Fe	ernbank F	Road												
1u	U	1	3.0	0.835	26.1	LOS D	10.5	82.4	0.88	0.93	42.5			
1	L2	91	11.0	0.835	26.1	LOS D	10.5	82.4	0.88	0.93	41.7			
6	T1	453	3.0	0.835	26.1	LOS D	10.5	82.4	0.88	0.93	42.0			
16	R2	152	3.0	0.835	26.1	LOS D	10.5	82.4	0.88	0.93	41.3			
Approa	ch	697	4.0	0.835	26.1	LOS D	10.5	82.4	0.88	0.93	41.8			
North: S	Shea Roa	d												
7u	U	4	50.0	0.502	14.6	LOS B	2.4	19.1	0.68	0.73	46.4			
7	L2	79	0.0	0.502	14.6	LOS B	2.4	19.1	0.68	0.73	47.9			
4	T1	103	0.0	0.502	14.6	LOS B	2.4	19.1	0.68	0.73	48.0			
14	R2	109	9.0	0.502	14.6	LOS B	2.4	19.1	0.68	0.73	46.7			
Approa	ch	295	4.0	0.502	14.6	LOS B	2.4	19.1	0.68	0.73	47.5			
West: F	ernbank F	Road												
5u	U	2	3.0	0.576	13.1	LOS B	3.6	28.2	0.61	0.58	49.6			
5	L2	112	4.0	0.576	13.1	LOS B	3.6	28.2	0.61	0.58	48.8			
2	T1	329	3.0	0.576	13.1	LOS B	3.6	28.2	0.61	0.58	49.0			
12	R2	28	4.0	0.576	13.1	LOS B	3.6	28.2	0.61	0.58	48.0			
Approa	ch	471	3.3	0.576	13.1	LOS B	3.6	28.2	0.61	0.58	48.9			
All Vehi	cles	1651	3.7	0.835	18.5	LOS C	10.5	82.4	0.73	0.76	45.6			

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Robert Grant Avenue

W Site: TO2030AM

Robert Grant Avenue & Cope Drive Future (2030) Total Traffic AM Peak Hour Roundabout

Movem	Movement Performance - Vehicles													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back c	of Queue	Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
South: R	obert Gra	ven/n nt Avenue	%	V/C	sec	_	ven	m	_	per ven	Km/h			
3	12	91	2.0	0.651	16.7	LOSIC	4.6	35.9	0.73	0.80	46.8			
8	- <u>-</u> T1	351	2.0	0.651	16.7		4.6	35.9	0.73	0.80	46.9			
18	R2	41	2.0	0.651	16.7		4.6	35.9	0.70	0.80	46.0			
Approac	h	483	2.0	0.651	16.7		4.6	35.9	0.73	0.80	46.8			
Appload		400	2.0	0.001	10.7	200.0	4.0	00.0	0.70	0.00	40.0			
East: Co	pe Drive													
1	L2	35	2.0	0.391	12.2	LOS B	1.6	12.7	0.65	0.67	49.7			
6	T1	69	2.0	0.391	12.2	LOS B	1.6	12.7	0.65	0.67	49.8			
16	R2	120	2.0	0.391	12.2	LOS B	1.6	12.7	0.65	0.67	48.8			
Approac	h	224	2.0	0.391	12.2	LOS B	1.6	12.7	0.65	0.67	49.3			
North: R	obert Grar	nt Avenue												
7	L2	112	2.0	0.560	11.7	LOS B	3.4	26.4	0.53	0.42	49.9			
4	T1	224	2.0	0.560	11.7	LOS B	3.4	26.4	0.53	0.42	50.0			
14	R2	172	2.0	0.560	11.7	LOS B	3.4	26.4	0.53	0.42	49.0			
Approac	h	508	2.0	0.560	11.7	LOS B	3.4	26.4	0.53	0.42	49.6			
West: Co	ope Drive													
5u	U	1	2.0	0.494	11.8	LOS B	2.6	20.4	0.61	0.62	49.6			
5	L2	204	2.0	0.494	11.8	LOS B	2.6	20.4	0.61	0.62	48.9			
2	T1	76	2.0	0.494	11.8	LOS B	2.6	20.4	0.61	0.62	49.0			
12	R2	94	2.0	0.494	11.8	LOS B	2.6	20.4	0.61	0.62	48.0			
Approac	h	375	2.0	0.494	11.8	LOS B	2.6	20.4	0.61	0.62	48.7			
All Vehic	les	1590	2.0	0.651	13.3	LOS B	4.6	35.9	0.62	0.62	48.5			

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:17 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6

Robert Grant Avenue

W Site: TO2030PM

Robert Grant Avenue & Cope Drive Future (2030) Total Traffic PM Peak Hour Roundabout

Movem	Movement Performance - Vehicles													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Average			
ID	Mov	Total veh/h	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed km/h			
South: R	obert Grant A	venue	/0	V/C	300		VCII				KI17/11			
3	L2	82	2.0	0.499	11.1	LOS B	2.7	21.0	0.56	0.51	50.4			
8	T1	293	2.0	0.499	11.1	LOS B	2.7	21.0	0.56	0.51	50.5			
18	R2	40	2.0	0.499	11.1	LOS B	2.7	21.0	0.56	0.51	49.4			
Approac	h	415	2.0	0.499	11.1	LOS B	2.7	21.0	0.56	0.51	50.4			
East: Co	pe Drive													
1	L2	50	2.0	0.266	9.0	LOS A	1.0	7.7	0.56	0.56	51.5			
6	T1	49	2.0	0.266	9.0	LOS A	1.0	7.7	0.56	0.56	51.7			
16	R2	72	2.0	0.266	9.0	LOS A	1.0	7.7	0.56	0.56	50.6			
Approac	h	171	2.0	0.266	9.0	LOS A	1.0	7.7	0.56	0.56	51.2			
North: R	obert Grant Av	venue												
7u	U	1	3.0	0.649	14.1	LOS B	5.0	38.5	0.59	0.48	49.3			
7	L2	70	2.0	0.649	14.1	LOS B	5.0	38.5	0.59	0.48	48.6			
4	T1	343	2.0	0.649	14.1	LOS B	5.0	38.5	0.59	0.48	48.7			
14	R2	184	2.0	0.649	14.1	LOS B	5.0	38.5	0.59	0.48	47.7			
Approac	h	598	2.0	0.649	14.1	LOS B	5.0	38.5	0.59	0.48	48.4			
West: Co	ope Drive													
5	L2	159	2.0	0.422	11.1	LOS B	1.9	15.0	0.61	0.63	49.3			
2	T1	51	2.0	0.422	11.1	LOS B	1.9	15.0	0.61	0.63	49.5			
12	R2	81	2.0	0.422	11.1	LOS B	1.9	15.0	0.61	0.63	48.5			
Approac	h	291	2.0	0.422	11.1	LOS B	1.9	15.0	0.61	0.63	49.1			
All Vehic	les	1475	2.0	0.649	12.0	LOS B	5.0	38.5	0.58	0.53	49.4			

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: IBI GROUP | Processed: Friday, April 01, 2022 10:43:18 AM

Project: D:\Users\isabel.loewen\Desktop\CRTPhase3_RobertGrant&Cope_2020-11-30.sip6
Future (2030) Total Traffic Including Cope Extension

Intersection Delay, s/veh 9.6 Intersection LOS A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Traffic Vol, veh/h	9	224	24	7	115	48	24	96	26	26	73	17
Future Vol, veh/h	9	224	24	7	115	48	24	96	26	26	73	17
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	9	224	24	7	115	48	24	96	26	26	73	17
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.2			9.1			9.3			9.1		
HCM LOS	В			А			А			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	16%	4%	4%	22%	
Vol Thru, %	66%	87%	68%	63%	
Vol Right, %	18%	9%	28%	15%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	146	257	170	116	
LT Vol	24	9	7	26	
Through Vol	96	224	115	73	
RT Vol	26	24	48	17	
Lane Flow Rate	146	257	170	116	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.202	0.336	0.222	0.163	
Departure Headway (Hd)	4.98	4.709	4.706	5.053	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	714	758	757	703	
Service Time	3.054	2.77	2.774	3.13	
HCM Lane V/C Ratio	0.204	0.339	0.225	0.165	
HCM Control Delay	9.3	10.2	9.1	9.1	
HCM Lane LOS	А	В	А	А	
HCM 95th-tile Q	0.8	1.5	0.8	0.6	

Intersection Delay, s/veh 10.3 Intersection LOS B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	16	164	27	16	242	40	27	87	24	24	98	11
Future Vol, veh/h	16	164	27	16	242	40	27	87	24	24	98	11
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	16	164	27	16	242	40	27	87	24	24	98	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10			11.1			9.7			9.7		
HCM LOS	А			В			А			А		

	NDL			0.01
Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	20%	8%	5%	18%
Vol Thru, %	63%	79%	81%	74%
Vol Right, %	17%	13%	13%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	138	207	298	133
LT Vol	27	16	16	24
Through Vol	87	164	242	98
RT Vol	24	27	40	11
Lane Flow Rate	138	207	298	133
Geometry Grp	1	1	1	1
Degree of Util (X)	0.204	0.288	0.396	0.199
Departure Headway (Hd)	5.327	5.013	4.893	5.385
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	676	720	739	669
Service Time	3.343	3.013	2.893	3.401
HCM Lane V/C Ratio	0.204	0.287	0.403	0.199
HCM Control Delay	9.7	10	11.1	9.7
HCM Lane LOS	А	А	В	А
HCM 95th-tile Q	0.8	1.2	1.9	0.7

Intersection						
Int Delay, s/veh	2.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	۳	•	•	1	۰¥	
Traffic Vol, veh/h	22	460	315	68	103	25
Future Vol, veh/h	22	460	315	68	103	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	460	315	68	103	25

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	383	0	-	0	819	315	
Stage 1	-	-	-	-	315	-	
Stage 2	-	-	-	-	504	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1175	-	-	-	345	725	
Stage 1	-	-	-	-	740	-	
Stage 2	-	-	-	-	607	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1175	-	-	-	338	725	
Mov Cap-2 Maneuver	· -	-	-	-	338	-	
Stage 1	-	-	-	-	726	-	
Stage 2	-	-	-	-	607	-	
Approach	FB		WB		SB		
HCM Control Delay, s	0.4		0		19.4		
HCM LOS			Ū		С		
Minor Long/Major Mu	mt	EDI	ГОТ				
ivinor Lane/iviajor IVivi	m	EBL	FRI	WRI	WRR	SRFUI	
Capacity (veh/h)		11/5	-	-	-	3/1	
HCM Lane V/C Ratio		0.019	-	-	-	0.34	
HCM Control Delay (s	5)	8.1	-	-	-	19.4	
HCM Lane LOS		A	-	-	-	С	
HCM 95th %tile Q(vel	n)	0.1	-	-	-	1.5	

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ኘ	↑	1	1	Y	
Traffic Vol, veh/h	38	427	663	127	75	19
Future Vol, veh/h	38	427	663	127	75	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	250	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	38	427	663	127	75	19

Major/Minor	Major1	N	/lajor2	ſ	Minor2		
Conflicting Flow All	790	0	-	0	1166	663	
Stage 1	-	-	-	-	663	-	
Stage 2	-	-	-	-	503	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	839	-	-	-	216	465	
Stage 1	-	-	-	-	516	-	
Stage 2	-	-	-	-	612	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	839	-	-	-	206	465	
Mov Cap-2 Maneuver	-	-	-	-	206	-	
Stage 1	-	-	-	-	493	-	
Stage 2	-	-	-	-	612	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.8		0		30.7		
HCM LOS					D		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		839	-	-	-	232	
HCM Lane V/C Ratio		0.045	-	-	-	0.405	
HCM Control Delay (s)	9.5	-	-	-	30.7	
HCM Lane LOS		A	-	-	-	D	
HCM 95th %tile Q(veh	ı)	0.1	-	-	-	1.8	

Appendix K – Auxiliary Lane Analyses

Appendix L – RMA Materials

IBI GROUP 400–333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 241 3300 fax 613 241 1130 ibigroup.com

Abbott / Granite Ridge / Bobolink Protected Intersection Functional Design Cost Estimate

DESCRIPTION	ESTIMATED COST					
Section A - General		\$	20,400.00			
Section B - Road		\$	428,985.00			
Section C - Streetlighting		\$	26,330.00			
Section D - Labour and Equipment		\$	10,005.60			
Co	nstruction Subtotal	\$	485,720.60			
	Inflation 10%	\$	48,572.06			
City of Ottawa Design Fees		\$	5,000.00			
Street Lighting	\$ 5,000.00					
	Subtotal	\$	539,292.66			
	Contingency 20%	\$	107,858.53			
	GRAND TOTAL	\$	647,151.19			

Note:

1. Cost for utility relocation / protection is not included.

2. Prices do not includes HST.

3. Tree compensation planting is not included.