

3718 Greenbank Road: Servicing and Stormwater Management Report

Stantec Project No. 160401657

January 18, 2022

Prepared for:

Mattamy Homes Ltd.

Prepared by:

Stantec Consulting Ltd. 400-1331 Clyde Avenue Ottawa ON K2C 3G4

Revision	Description		Author	Qu	ality Check	Indep	endent Review
1	Issued for Approval	NN	2022-01-13	NC	2021-01-14	DT	2021-01-18

This document entitled 3718 Greenbank Road: Servicing and Stormwater Management Report was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Mattamy Homes Ltd. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Nwanise Nwanise, EIT

Jansmy

Prepared by ____

Francine Lei, EIT

Reviewed by ______

Neal Cody, P.Eng.

2/10

Approved by _____

Dustin Thiffault, P.Eng.

Table of Contents

1.0	INTRODUCTION	1.1
1.1	OBJECTIVE	1.2
2.0	REFERENCES	2.1
3.0	POTABLE WATER SERVICING	3.1
3.1	BACKGROUND	
3.2	PROPOSED WATERMAIN SIZING AND LAYOUT	3.1
	3.2.1 Ground Elevations	
	3.2.2 Domestic Water Demands	
3.3	LEVEL OF SERVICE	
	3.3.1 Allowable Pressures	
	3.3.2 Fire Flow	
3.4		
	3.4.1 Boundary Conditions3.4.2 Model Development	
	3.4.2 Model Development3.4.3 Ground Elevations	
3.5	HYDRAULIC MODELING RESULTS	
3.5	3.5.1 Average Day (AVDY)	
	3.5.2 Peak Hour (PKHR)	
	3.5.3 Maximum Day Plus Fire Flow (MXDY+FF)	
3.6	POTABLE WATER SUMMARY	3.8
40	WASTEWATER SERVICING	49
4.0 4 1	WASTEWATER SERVICING	-
4.1	BACKGROUND	4.9
4.1 4.2	BACKGROUND DESIGN CRITERIA	4.9 4.9
4.1 4.2 4.3	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN	4.9 4.9 4.10
4.1 4.2 4.3 5.0	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING	4.9 4.9 4.10 5.1
4.1 4.2 4.3 5.0 5.1	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS	4.9 4.9 4.10 5.1 5.1
4.1 4.2 4.3 5.0	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS DESIGN CRITERIA AND CONSTRAINTS	4.9 4.9 4.10 5.1 5.1
4.1 4.2 4.3 5.0 5.1	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System	4.9 4.9 4.10 5.1 5.1 5.1 5.1
4.1 4.2 4.3 5.0 5.1 5.2	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System	4.9 4.9 4.10 5.1 5.1 5.1 5.1 5.2
4.1 4.2 4.3 5.0 5.1	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS. DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL	4.9 4.10 5.1 5.1 5.1 5.1 5.1 5.2 5.3
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS. DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate	4.9 4.9 4.10 5.1 5.1 5.1 5.1 5.1 5.2 5.3 5.3
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS. DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate QUALITY CONTROL.	4.9 4.10 5.1 5.1 5.1 5.1 5.1 5.2 5.3 5.3 5.1
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate QUALITY CONTROL WATER BALANCE – ETOBICOKE EXFILTRATION SYSTEM	4.9 4.9 4.10 5.1 5.1 5.1 5.1 5.2 5.3 5.3 5.11 5.11
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS. DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate QUALITY CONTROL.	4.9 4.9 4.10 5.1 5.1 5.1 5.1 5.2 5.3 5.3 5.11 5.11
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate QUALITY CONTROL WATER BALANCE – ETOBICOKE EXFILTRATION SYSTEM 5.5.1 Etobicoke Exfiltration System Monitoring	4.9 4.9 4.10 5.1 5.1 5.1 5.2 5.3 5.3 5.11 5.11 5.12 5.12 5.12
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 5.5 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS. DESIGN CRITERIA AND CONSTRAINTS. 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate QUALITY CONTROL WATER BALANCE – ETOBICOKE EXFILTRATION SYSTEM 5.5.1 Etobicoke Exfiltration System Monitoring GEOTECHNICAL CONSIDERATIONS AND GRADING GEOTECHNICAL INVESTIGATION	4.9 4.9 4.10 5.1 5.1 5.1 5.1 5.3 5.3 5.11 5.11 5.12 5.12 6.1
 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 5.5 6.0 	BACKGROUND DESIGN CRITERIA SANITARY SERVICING DESIGN STORMWATER MANAGEMENT AND SERVICING PROPOSED CONDITIONS DESIGN CRITERIA AND CONSTRAINTS 5.2.1 Minor System 5.2.2 Major System STORMWATER QUANTITY CONTROL 5.3.1 Allowable Release Rate QUALITY CONTROL WATER BALANCE – ETOBICOKE EXFILTRATION SYSTEM 5.5.1 Etobicoke Exfiltration System Monitoring	4.9 4.9 4.10 5.1 5.1 5.1 5.1 5.3 5.3 5.11 5.12 5.12 6.1 6.1

7.0	APPROVALS	7.1
8.0	EROSION CONTROL	8.1
9.0	CONCLUSIONS AND RECOMMENDATIONS	9.1
9.1	POTABLE WATER SERVICING	9.1
9.2	WASTEWATER SERVICING	9.1
9.3	STORMWATER MANAGEMENT AND SERVICING	9.1
9.4	GRADING	9.2
9.5	APPROVALS/PERMITS	9.2

LIST OF TABLES

Table 3–1: Residential Water Demands	3.2
Table 3–2: Boundary Conditions	3.3
Table 3–3: C-Factors Used in Watermain Hydraulic Model	3.4
Table 4–1 Summary of Proposed Sanitary Peak Flows	4.10
Table 5-1 Target Release Rate Proportional Method	5.4
Table 5-2: Target Release Rate Summary	5.4
Table 5-3: Surface Storage Volumes	5.5
Table 5-4 : Peak Surface Volume and Controlled Discharge (2-Year Storm SCS Event)	5.5
Table 5–5 : Peak Surface Volume and Controlled Discharge (2-Year Storm Chicago	
Event)	5.6
Table 5–6 : Peak Surface Volume and Controlled Discharge (100-Year Storm SCS	
Event)	5.6
Table 5–7 : Peak Surface Volume and Controlled Discharge (100-Year Storm Chicago	
Event)	5.7
Table 5–8 : Peak Surface Volume and Controlled Discharge (100-Year + 20% Stress	
Test Storm SCS Event)	5.7
Table 5–9 : Peak Surface Volume and Controlled Discharge (100-Year + 20% Stress	
Test Storm Chicago Event)	5.8
Table 5–10: Uncontrolled Non-Tributary Area (UNC-1)	5.8
Table 5–11: Uncontrolled Non-Tributary Area (UNC-2)	5.9
Table 5–12: Storm Sewer Freeboard to Underside of Footing	5.9
Table 5–13: Summary of Total 2-Year, 100-Year and 100-Year + 20% Stress Test Event	
Release Rates	5.10
Table 5–14: 22mm Event Simulated EES Volumes	5.12

LIST OF FIGURES

Figure 1: Key Plan of 3718 Greenbank Road Development Area	1.1
Figure 2: Watermain Model Nodes	3.4
Figure 3: Ground Elevations (m) in Hydraulic Model	
Figure 4: Pressures (psi) Under AVDY Demand Scenario	
Figure 5: Pressures (psi) Under PKHR Demand Scenario	3.7
Figure 6: Available Fire Flows (L/s) for MXDY+FF Demand Scenario	

LIST OF APPENDICES

APPE	NDIX A	POTABLE WATER SERVICING	. A.1
A.1		nand Calculations	
A.2	Fire Flow F	Requirements per FUS Guidelines	. A.2
A.3	Hydraulic (Capacity and Modelling	. A.3
APPE	NDIX B	DRAFT SITE PLAN	.B.1
		SANITARY SERVICING	
C.1	Sanitary S	ewer Design Sheet	C.1
APPE	NDIX D	STORMWATER MANAGEMENT	.D.1
		/er Design Sheet	
D.2		CSWMM Input (100yr Chicago)	
D.3	Sample PC	CSWMM Output (100yr Chicago)	. D.3
APPE		EXTERNAL REPORTS	. E.1
E.1		ef (Site Servicing Study) for the Ridge (Brazeau Lands) By DSEL (July	E.1
E.2	Stormwate	r Management Report for the Ridge (Brazeau LANDS) BY JFSA (July	
E.3	Geotechno	ial Investigation report by Paterson Inc. (March 2020)	E.3
APPE	NDIX F	DRAWINGS	. F.1

Introduction

1.0 INTRODUCTION

Mattamy Homes Ltd. has retained Stantec Consulting Ltd. to prepare this Stormwater and Servicing Report in support of a site plan control application for 3718 Greenbank Road (Half Moon Bay South Phase 8 - Residential). The subject site is located within the Brazeau Lands development area otherwise known as The Ridge, located at 3809 Borrisokane Road within the Barrhaven South Urban Expansion Area (BSUEA) in the City of Ottawa. It is bound by Dundonald Drive to the north, Obsidian Street to the west and Future Greenbank Road to the east as illustrated in **Figure 1** below.

Figure 1: Key Plan of 3718 Greenbank Road Development Area

Introduction

The development land is approximately 3.09ha in area and comprising 19 blocks of townhouses with a total of 228 units. This servicing and stormwater management report will demonstrate that the subject site can be freely serviced by the existing municipal water, sanitary, and storm services while complying with established design criteria recommended in background studies and City of Ottawa guidelines. The proposed site plan is included in **Appendix B** for reference.

This parcel is currently zoned MR1 and is currently undergoing zoning amendment for future development. The bulk of the current phase of the proposed development has been recently cleared of topsoil which has been stockpiled in several piles across the site. Generally, the ground surface across the subject site is relatively flat within the central portion of the development and sloping sharply towards the north and east property lines. It should be noted that parts of the subject site had undergone excavation and in-filling activities as part of a previous sand extraction operation. The property is within the Jock River watershed and is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA).

1.1 OBJECTIVE

This Site Servicing and Stormwater Management Brief has been prepared to present a servicing scheme that is free of conflicts and presents the most suitable servicing approach that complies with the relevant City design guidelines. The use of the existing infrastructure as obtained from available as-built drawings has been determined in consultation with David Schaeffer Engineering Ltd. (DSEL), J. F. Sabourin and Associates Inc. (JFSA), City of Ottawa staff, and the adjoining property owners. Infrastructure requirements for water supply, sanitary sewer, and storm sewer services are presented in this report.

Criteria and constraints provided by Brazeau Lands (The Ridge) Design brief and the City of Ottawa have been used as a basis for the servicing design of the proposed development. Specific elements and potential development constraints to be addressed are as follows:

- Potable Water Servicing
 - Estimate water demands to characterize the feed for the proposed development which will be serviced by an existing 300mm diameter PVC watermain fronting the site along Obsidian Street.
 - Watermain servicing for the development is to be able to provide average day and maximum day and peak hour demands (i.e., non-emergency conditions) at pressures within the allowable range of 40 to 80 psi (276 to 552 kPa).
 - Under fire flow (emergency) conditions with maximum day demands, the water distribution system is to maintain a minimum pressure greater than 20 psi (140 kPa).
- Prepare a grading plan in accordance with the proposed site plan and existing grades.
- Stormwater Management and Servicing
 - Define major and minor conveyance systems inline with guidelines used for the stormwater management of the Brazeau lands subdivision, as well as those provided in the October 2012

Introduction

City of Ottawa Sewer Design Guidelines and subsequent technical memorandums, and generally accepted stormwater management design guidelines.

- As documented in the Barrhaven South Urban Expansion Area Master Servicing Study, by J. L Richards 2018, the development will also have Etobicoke Exfiltration Systems (EES) implemented within this subdivision. These EES will be installed within local roadways of the subdivision, to exfiltrate runoff from the development for the more frequent events.
- Coordinate with the Mechanical Engineer to convey run-off from rooftops to catchbasins within parking area.
- Connect to the existing storm maintenance hole structure at the intersection of Haiku and Obsidian Street.
- Wastewater Servicing
 - Estimate wastewater flows generated by the development and size sanitary sewers which will outlet to the existing sanitary sewer stub fronting the site, located off the Haiku and Obsidian Street intersection. The existing maintenance hole (SAN MH3A) will be relocated and cored into for the proposed connection.

The accompanying **Drawing SSP-1** included in **Appendix F** illustrates the proposed internal servicing scheme for the site.

References

2.0 **REFERENCES**

The following documents were referenced in the preparation of this stormwater management and servicing report:

- City of Ottawa Sewer Design Guidelines, 2nd Edition, City of Ottawa, October 2012.
- *City of Ottawa Design Guidelines Water Distribution*, First Edition, Infrastructure Services Department, City of Ottawa, July 2010.
- Design Brief for Cavian Greenbank Development Corporation, The Ridge (Brazeau Lands), David Schaeffer Engineering Ltd., July 2020.
- *Geotechnical Investigation,* Proposed Mixed Use Development Half Moon Bay South Phase 8 3718 Greenbank Road Ottawa, PG5690-1, Paterson Group, March, 2020.
- *Hydraulic Capacity and Modeling Analysis Brazeau Lands*, Final Report, GeoAdvice Engineering Inc., July 2020.
- *Master Servicing Study Barrhaven South Urban Expansion Area,* J.L. Richards & Associates Limited, Revision 2, May 2018.
- Pond Design Brief for Brazeau Subdivision, by J.F. Sabourin and Associates, July 2020.
- Stormwater Management Report for Brazeau Subdivision, by J.F. Sabourin and Associates (July 2020).
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003.
- Technical Bulletin ISTB-2014-02 Revision to Ottawa Design Guidelines Water, City of Ottawa, May 2014.
- Technical Bulletin PIEDTB-2016-01 Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 2016.

Potable Water Servicing

3.0 POTABLE WATER SERVICING

3.1 BACKGROUND

The subject site is located within Zone 3SW of the City of Ottawa water distribution system. The proposed residential development will include 19 blocks with 228 townhome units. The subject site is within The Ridge (Brazeau lands) subdivision for which David Schaeffer Engineering Ltd. (DSEL) conducted a servicing and stormwater management study in July 2020.

The development will be serviced via two existing 200mm diameter private watermain services located within Obsidian street and fed from the existing 300mm diameter watermain terminating at Dundonald Drive and the future New Greenbank Road alignment and a 400mm diameter watermain from the existing Cambrian Road forming part of the Tamarack Meadows, as shown in the design brief by DSEL in **Appendix E.1**.

In July 2020, GeoAdvice carried out a watermain analysis to determine the hydraulic capacity of the watermain network within Brazeau Lands which includes the residential portion of 3718 Greenbank Road. The analysis was based on boundary conditions obtained from the City of Ottawa. Refer to GeoAdvice water analysis in enclosed in **Appendix A.3**.

3.2 PROPOSED WATERMAIN SIZING AND LAYOUT

The proposed watermain alignment and sizing for the development is demonstrated on **Drawing SSP-1** in **Appendix F**. A 200mm diameter watermain is proposed to loop around the street fronting Block 1, and a second 200mm diameter watermain is proposed to loop around the street fronting Block 18. The connection points are as follows:

- A 200mm diameter watermain will loop and connect to the existing 200mm stub at Haiku Street via 45° horizontal bend.
- A 200mm diameter watermain will loop and connect to the existing 300mm watermain along Obsidian Street via existing 200mm stub connection at the southwest boundary of the site.

3.2.1 Ground Elevations

The proposed ground elevations within the development range from approximately 103.1 m to 106.5 m, with the ground elevations highest in the southeast corner of the site. This significant variation in ground elevations was largely dictated by the original topography of the site, and to suit tie-in elevations at Obsidian Street.

Potable Water Servicing

3.2.2 Domestic Water Demands

The 3718 Greenbank Road development will contain a total of 19 blocks with 228 townhome units and outdoor amenity areas having a total estimated population of 616 persons. Refer to **Appendix A.1** for detailed domestic water demand calculations.

Water demands for the development were calculated using the City of Ottawa's Water Distribution Design Guidelines. For residential developments, the average day (AVDY) per capita water demand is 280L/cap/d. For maximum day (MXDY) demand, AVDY was multiplied by a factor of 2.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 2.2. For maximum day (MXDY) demand of amenity areas, AVDY was multiplied by a factor of 1.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 1.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 1.8. The calculated residential water consumption is represented in Table 3-1 below:

Table 3–1: Residential Water Demands

Unit Type	Units/ Amenity areas (m ²)	Persons/Unit	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Townhome	228 units	2.7	616	1.99	4.99	10.97
		Total	616	1.99	4.99	10.97

3.3 LEVEL OF SERVICE

3.3.1 Allowable Pressures

The City of Ottawa Water Distribution Design Guidelines state that the desired range of system pressures under normal demand conditions (i.e. basic day, maximum day, and peak hour) should be in the range of 350 to 552 kPa (50 to 80 psi) and no less than 275 kPa (40 psi) at the ground elevation in the streets (i.e. at hydrant level). The maximum pressure at any point in the distribution system is to be no higher than 552 kPa (80 psi). As per the Ontario Building Code & Guide for Plumbing, if pressures greater than 552 kPa (80 psi) are anticipated, pressure relief measures (such as pressure reducing valves) are required. Under emergency fire flow conditions, the minimum pressure in the distribution system is allowed to drop to 138 kPa (20 psi).

3.3.2 Fire Flow

The FUS fire flow calculation spreadsheets for the governing fire flow demand scenarios (see **Appendix A.2**) were generated to calculate the expected fire flow demands from the proposed site.

The ground floor area of a single storey of each block was estimated to be 470m² based on the average lot sizes shown on the site plan. For assessment of the worst case fire flow requirement, building exposures were reviewed on a block by block basis. Blocks 8 and 11 were determined to be the critical

Potable Water Servicing

units for assessment given exposures from adjacent units on all sides. The remaining blocks maintain exposures on at most three sides. Blocks 8 and 1 were selected for assessment as they are generally representative of these two site conditions. Fire flow calculations were performed with consideration of a firewall separating the governing block at either midblock (Block 1 and similar areas), or at the 1/4 and 3/4 mark of the overall building width (Blocks 8 and 11). For the specified configurations, the maximum required fire flow was estimated to be 167 L/s (see **Appendix A.2**).

Fire separation via firewalls will keep the maximum ground floor area of residential blocks below 600m² as per building code requirements, and location of firewalls within these blocks has been indicated on the grading plan (**Drawing GP-1**).

3.4 HYDRAULIC MODEL

3.4.1 Boundary Conditions

Boundary conditions for the connections servicing the proposed development were based on the GeoAdvice hydraulic model for the overarching subdivision. Connection points for the model mere determined to be located at approximately nodes J-41 (north connection) and J-78 (south connection). GeoAdvice Model outputs for the varying boundary condition scenarios are noted in the table below:

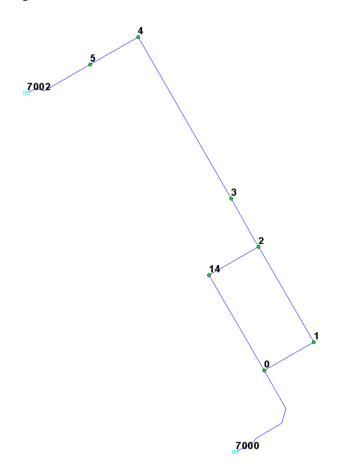
Demand Scenario	J-41 Head (m)	J-78 Head (m)
AVDY	156.10	156.10
PKHR	139.22	137.82
MXDY + FF	135.70	135.70

Table 3–2: Boundary Conditions

The GeoAdvice report notes that the boundary conditions supplied are for consideration prior to completion of the SUC Zone Reconfiguration. As noted in the report, post-reconfiguration pressure values are only expected to increase during the critical PKHR and MXDY+FF demand scenarios. As such, the model presented can be considered as conservative with respect to available fire flows.

3.4.2 Model Development

New watermains were added to the hydraulic model to simulate the proposed distribution system. A 200 mm dia. watermain network is used throughout the site following locations of proposed hydrants. Hazen-Williams coefficients (C-factors) were applied to the proposed watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines. The C-factors used are given in **Table 3-3** below.

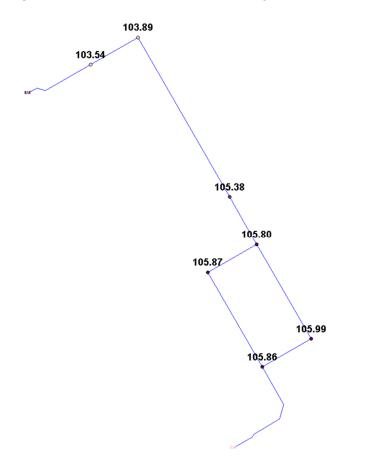

Potable Water Servicing

Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
Over 600	130

Table 3–3: C-Factors Used in Watermain Hydraulic Model

The labelling of the watermain junctions and reservoirs (representing boundary conditions at connections to the existing watermain network) is shown in **Figure 2**.

Figure 2: Watermain Model Nodes



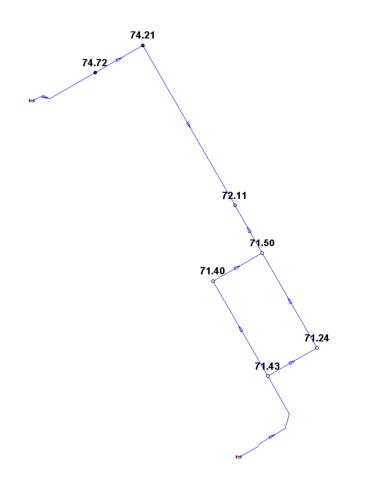
Potable Water Servicing

3.4.3 Ground Elevations

The ground elevations used at each node along the watermain model network are shown in **Figure 3** below. These elevations were interpolated from the detailed grading plan for the site (**Drawing GP-1**, included in **Appendix E**).

Figure 3: Ground Elevations (m) in Hydraulic Model

3.5 HYDRAULIC MODELING RESULTS

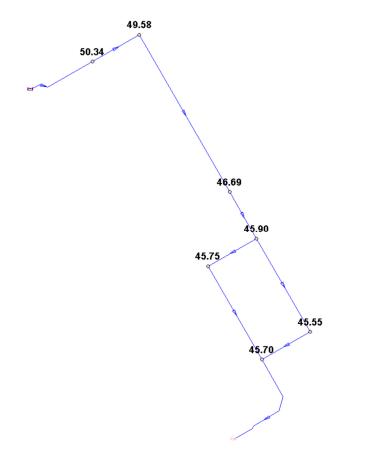

3.5.1 Average Day (AVDY)

The hydraulic modeling results show that under basic day demands the pressure in the distribution network falls between 491 kPa (71.2 psi) and 515 kPa (74.7 psi). Hydraulic modeling results are given in **Figure 4**.

 \bigcirc

Potable Water Servicing

Figure 4: Pressures (psi) Under AVDY Demand Scenario



3.5.2 Peak Hour (PKHR)

The hydraulic modeling results show that under peak hour demands the pressure in the distribution network ranges between 314 kPa (45.6 psi) and 347 kPa (50.3 psi). Hydraulic modeling results are given in **Figure 5**.

Potable Water Servicing

Figure 5: Pressures (psi) Under PKHR Demand Scenario

3.5.3 Maximum Day Plus Fire Flow (MXDY+FF)

A hydraulic analysis using the H₂OMap Water model was conducted to determine if the proposed water distribution network can achieve the required FUS fire flow while maintaining a residual pressure of at least 138 kPa (20 psi), per City Water Distribution Design Guidelines. This was accomplished using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of the software. Hydraulic modeling results are shown on **Figure 6**.

Potable Water Servicing

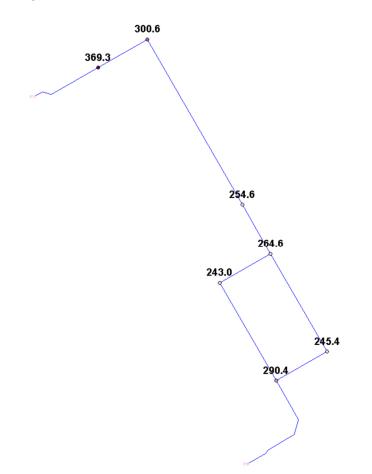


Figure 6: Available Fire Flows (L/s) for MXDY+FF Demand Scenario

A fire flow of 10,000 L/min was achieved at all serviced nodes (see **Appendix A** for details). Sufficient fire flows for each type of unit are provided at every point within the distribution network for the proposed development.

3.6 POTABLE WATER SUMMARY

The proposed watermain alignment and sizing is capable of achieving the required level of service throughout the development. Based on the hydraulic analysis conducted using H₂OMap Water, the following conclusions were made:

- The proposed water distribution system consists entirely of 200mm diameter mains.
- During peak hour conditions, the proposed system is capable of operating above the minimum pressure objective of 276 kPa (40 psi).
- During fire conditions, the proposed system is capable of providing 10,000 L/min fire flows at all modeled nodes, which are sufficient based on FUS calculations for the units within the proposed site.

 \bigcirc

Wastewater Servicing

4.0 WASTEWATER SERVICING

4.1 BACKGROUND

The subject site is located within the study of the Barrhaven South Urban Expansion Area (BSUEA) for which JLR associates prepared a Master Servicing Study in 2018. The study at conceptual level, provided design data for wastewater servicing and estimated residual capacities for sanitary trunk sewer in the area, as shown in the MSS extract in **Appendix E.1.** The subject site is referred to as Mattamy West (Residential) in this study. DSEL relied on this study to prepare a design brief for adjacent The Ridge subdivision (Brazeau Lands).

There is an existing 375mm diameter sanitary sewer collecting wastewater from the Ridge (Brazeau lands), which includes 3718 Greenbank Road, and flows into the sanitary sewer on Greenbank Road. Refer to **Appendix E.1** for The Ridge site servicing study by DSEL (2020). The estimated peak sanitary flows for the subject site were originally determined as 4.45L/s (for a residential area of 1.90ha and a commercial area of 2.99ha) using City of Ottawa design criteria. DSEL estimated the subject site (referred to as Mattamy West (residential) area) to be 1.90ha with a projected population of 162 persons, peak factor of 3.54 and total flow of 2.49L/s which is 13% of the sanitary sewer full capacity. The residential area has subsequently been expanded to 3.09 ha for this site plan application with a corresponding reduction in the future commercial lands.

The proposed development will be serviced by the existing sanitary sewer stub fronting the site, located off the Haiku and Obsidian Street intersection. The existing maintenance hole (SAN MH3A) will be relocated and cored into for the future connection. The wastewater contributions from the site will tie-in to this structure via a 200mm diameter PVC pipe.

4.2 DESIGN CRITERIA

As outlined in the City's Sewer Design Guidelines, the following design parameters were used to calculate estimated wastewater flow rates and to preliminarily size on-site sanitary sewers for the subject site:

- Minimum Full Flow Velocity 0.6 m/s
- Maximum Full Flow Velocity 3.0 m/s
- Manning's roughness coefficient for all smooth-walled pipes 0.013
- Townhouse persons per unit 2.7
- Extraneous Flow Allowance 0.33 L/s/ha
- Residential Average Flows 280 L/cap/day
- Maintenance Hole Spacing 120 m
- Minimum Cover 2.5m
- Harmon Correction Factor 0.8

Wastewater Servicing

In addition, a residential peak factor based on Harmon's Equation was used to determine the peak design flows per Ottawa's Sewer Design Guidelines.

Refer to Appendix C.1 for the sanitary sewer design sheet for 3718 Greenbank Road

4.3 SANITARY SERVICING DESIGN

200 mm diameter sanitary sewers are proposed along the private roadways of the subject site. All sanitary sewers within the site ultimately outlet to existing SAN MH 3A located off Haiku/Obsidian Street at the intersection fronting Block 1. Existing MH SAN 3A is proposed to be relocated slightly closer to the site and cored to allow for connection to the property.

The proposed layout of the sanitary infrastructure is shown on **Drawing SA-1** in **Appendix F.** Sanitary peak flows will be directed to the 200mm diameter sanitary sewer on Obsidian Street which discharges to a 375mm diameter PVC sanitary sewer at Dundonald Drive which is ultimately directed to the sanitary sewer on Future Greenbank road. The connections to the existing sanitary sewer network and the associated peak flows are summarized in **Table 4–1** below.

Table 4–1 Summary of Proposed Sanitary Peak Flows

Are	ea ID Number	Total area (ha)	No. Units	Population	Total Peak Flow (L/s)
	Total Site	3.09	228	616	7.8

A population density of 2.7ppu was applied to the residential townhouse units on site. A residential peak factor, based on Harmon Equation, was used to determine the peak design flows. An allowance of 0.33 L/s/effective gross ha (for all areas) was used to generate peak extraneous flows.

The total design peak flow for the subject site to be conveyed to the connections at the Obsidian street sewer is 7.8L/s. This value is slightly higher than the previous estimate of 2.49L/s by DSEL based on a service area of 1.9 ha and population of 162 people. The difference (4.68L/s) can be accommodated by the 200mm receiving sewer in Obsidian Street.

JLR Associates identified in its MSS for the BSUEA that there is residual capacity within the sanitary sewers draining Mattamy lands west to new Greenbank road based on a Stantec (2015) hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater), which in turn demonstrated that the existing downstream trunk system could accommodate the flows generated with no risk of surcharging or basement flooding. Consequently, Stantec concluded that system upgrades were not required. The residual capacity in the sanitary sewer downstream of Greenbank road was estimated as 74.0L/s (Refer to **Appendix E.1** for details).

Stormwater Management and Servicing

5.0 STORMWATER MANAGEMENT AND SERVICING

The following sections describe the stormwater management (SWM) design for 3718 Greenbank Road in accordance with the background documents and governing criteria.

5.1 **PROPOSED CONDITIONS**

The proposed residential development encompasses approximately 3.09 ha of land and consists of 228 back-to-back townhomes and outdoor amenity areas. J.F. Sabourin and Associates Inc. (JFSA) were retained by David Schaeffer Engineering Ltd. (DSEL) to prepare a Stormwater Management (SWM) Plan for the adjacent Ridge (Brazeau) Subdivision.

It should be noted that 1.93 ha was considered as the area of the proposed development, this value was adopted in all SWM analysis by JFSA. The design criteria, constraints and recommendations established by JFSA remain the governing criteria for the site and would be complied with in the SWM design of the subject site.

5.2 DESIGN CRITERIA AND CONSTRAINTS

The design criteria and guidelines used for the stormwater management of the subject subdivision are those that were developed in the background documents by JFSA, DSEL and JLR in the BSUEA MSS as well as those provided in the October 2012 *City of Ottawa Sewer Design Guidelines* and subsequent technical memorandums, and generally accepted stormwater management design guidelines.

The Stormwater Management Report for the Ridge (Brazeau) Subdivision has divided the catchment area to two subcatchments (A109RES and A2260COM), the SWM design will ensure that the majority of storm runoff within the site be controlled, and site release restricted to the peak flow of 401 L/s for the 2-Year flow and peak flow of 435 L/s for the 100-Year flow calculated using a proportional method for the site based on the new residential catchment area of 3.05ha. Details can be found in Section 5.3.1. No adjustments to downstream infrastructure will be required to service the site.

Storm runoff within the site will be controlled and directed to an existing storm control point identified as MH 3 in JFSA SWM model. MH 3 has a maximum upstream Hydraulic Grade Line of 99.716m based on JFSA's simulation under the 100-year 3-hour Chicago storm, 100-year 24-hour SCS Type II storm, and the three historical events.

As identified by JFSA and the City of Ottawa's Sewer Design Guidelines, the minor and major system stormwater management design criteria and constraints will consist of:

5.2.1 Minor System

a) Storm sewers are to be designed to provide a minimum 2-year level of service, plus 5-year inflows on collector roads and 10-year inflows on arterial roads.

Stormwater Management and Servicing

- b) The 100-year hydraulic grade line (HGL) within the development minor systems must be maintained at least 0.3 m below the underside of footing elevation where gravity house connections are installed.
- c) For less frequent storms (i.e. larger than 1:2 year or 1:5 year on collector / 1:10 year on arterial roads), the minor system shall, if required, will be limited with the use of inlet control devices to prevent excessive hydraulic surcharges and to maximize the use of surface storage on the road where desired.
- d) Catchbasins on the road are to be equipped with City standard type S19 (fish) grates or City standard type S22 side inlets, and grates for catchbasins in rear yards, park and open spaces with pedestrian traffic are to be City standard type S19, S30 and S31.
- e) Single catchbasins are to be equipped with 200 mm minimum lead pipes, and double catchbasins are to be equipped with 250 mm minimum lead pipes.
- f) Rear yard catchbasins are to be equipped with 250 mm minimum lead pipes. Catchbasins installed on the street, where rear yard catchbasins connect to the main storm sewer through the catchbasin, are to be equipped with 250 mm minimum lead pipes for both single and double catchbasins.
- g) Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 3.0 m/s. Where velocities over 3.0 m/s are proposed, provisions shall be made to protect against displacement of sewers by sudden jarring or movement. Velocities greater than 6 m/s are not permitted.

5.2.2 Major System

- a) The major system shall be designed with enough road surface storage to allow the excess runoff of a 100-year storm to be retained within road ponding areas where desired.
- b) Inlet control devices would be sized such that they do not create surface ponding on the road during the 2-year design storm on local roads (5-year design storm on collector and 10-year design storm on arterial roads); it should be noted that surface ponding over grates is present during rainfall under any design, as an appropriate depth of water is required for runoff to enter the grate.
- c) Roof leaders shall be installed to direct the runoff to splash pads and on to grassed areas.
- d) For the 100-year storm, the maximum total depth of water (static + dynamic) on all roads shall not exceed 35 cm at the gutter.
- e) During the 100-year + 20% stress test, the maximum extent of surface water on streets, rear yards, public space and parking areas shall not touch the building envelope.

Stormwater Management and Servicing

- f) When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas.
- g) The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.
- h) The excess major system flows up to the 100-year return period are to be retained on-site in development blocks such as the proposed development.
- i) There must be at least 15 cm of vertical clearance between the spill elevation on the street and the ground elevation at the nearest building envelope that is in the proximity of the flow route or ponding area.
- j) There must be at least 30 cm of vertical clearance between the rear yard spill elevation and the ground elevation at the adjacent building envelope.

5.3 STORMWATER QUANTITY CONTROL

Stormwater runoff from the proposed development will be directed to an existing 675mm diameter storm sewer located at the northern boundary of the site along Atlas Terrance and then east along Cope Drive towards the existing Fernbank SWM Pond 8. The proposed site servicing plan and existing storm sewer infrastructure on Atlas Terrance are shown on **Drawing SSP-1** in **Appendix F**.. A rational method design sheet for the proposed storm sewer can be found in **Appendix D.1**.

5.3.1 Allowable Release Rate

A PCSWMM Model was employed to assess the rate and volume of runoff during post-development conditions.

The site was subdivided into subcatchments (subareas) tributary to stormwater controls as defined by the location of inlet control devices. A summary of subareas and runoff coefficients is provided in **Drawing SD-1** in **Appendix F**. indicates the stormwater management subcatchments.

Based on the JFSA's Stormwater Management Plan for the Ridge (Brazeau) subdivision the subject site is to control the 100-year flow on site and the minor system for the total site will be restricted to the 100 year storm event release rate of 230 L/s for Subcatchment A109RES and 382 L/s for Subcatchment A2260COM. The 2-year minor system outflow is to be controlled to 201 L/s for Subcatchment Area A109RES and 371 L/s for Subcatchment Area A2260COM. A proportional method based on CAD measured area was then used to determine the target 2-Year and 100-Year flow rate for the proposed catchment areas in this study as detailed in **Table 5–1**.

Runoff coefficients (C) for the proposed catchment areas have been calculated based on actual pervious and impervious areas shown on the proposed site plan. C coefficient values have been increased by 25% for the post-development 100-year storm event based on MTO Drainage Manual recommendations. Peak flow rates have been calculated using the modified rational method as follows:

Stormwater Management and Servicing

Q = 2.78 CiA Where: Q = peak flow rate, L/s A = drainage area, ha I = rainfall intensity, mm/hr (per Ottawa IDF curves) C = site runoff coefficient

Table 5–1 Target Release Rate Proportional Method

Study Area		Subcatchments A109RES	Subcatchments A2260COM
	Area (ha)	1.64	2.68
	2-Year Flow Rate (L/s)	201	371
Ridge (Brazeau) Subdivision SWM	100-Year Flow Rate (L/s)	230	382
Plan	2-Year Unit Flow Rate (L/s/ha)	122.4	138.4
	100-Year Unit Flow Rate (L/s/ha)	140.1	142.5
	Area (ha)	1.63	1.45
378 Greenbank Road SWM Plan	2-Year Flow Rate (L/s)	200	201
	100-Year Flow Rate (L/s)	228	207

The target release rate for the site is summarized in **Table 5–2** below:

Table 5–2: Target Release Rate Summary

Design Storm	Target Flow Rate (L/s)
2yr Event	401
100yr Event	435

5.3.2 Storage Requirements

The site requires quantity control measures to meet the restrictive stormwater release criteria. It is proposed that inlet-control devices in combination with surface storage be used to reduce site peak outflow to target rates.

5.3.2.1 Surface and Subsurface Storage

It is proposed to detain stormwater within parking and amenity areas tributary to catchbasins equipped with vertical orifice controls to reduce peak outflow from the proposed site. The catchbasins will release by gravity to the proposed storm sewer outlet for the site. Should catchbasin discharge orifices become blocked; flows will spill from catchbasin grates overland to the northwest corner of the property out to

Stormwater Management and Servicing

Obsidian Street. Maximum surface storage elevations lie well below proposed building opening elevations to ensure adequate drainage of the property.

Surface storage volumes have been estimated based on surface models created via AutoCAD for the proposed grading plan. **Table 5–3** below summarizes surface storage depths and volumes within the proposed site.

Drainage Area ID	Structure	Ponding Depth (m)	Ponding Area (m²)	Ponding Volume (m ³)
L101A	CB101A	0.10	13.8	0.5
L102A	CB102A	0.35	363.4	103.37
L103A	CB103A	0.20	176.8	11.8
L104A	CB104A	0.35	734.3	85.7
L105A	CB105A	0.31	196.5	20.3
L105B	STM 110	0.31	196.5	20.3
L105C	CB105C	0.05	12.0	0.2
L108A	CB108A	0.35	668.6	78.0
L110A	CB110A	0.35	255.5	29.8
L110B	CB110B	0.20	74.7	5.0
L110C	CB110C	0.35	808.3	94.3
L110D	CB110D	0.22	184.3	13.5

 Table 5–3: Surface Storage Volumes

A PCSWMM Model to determine the peak volume stored in catchbasins & surface storage areas. Inlet control devices were sized to fully utilize surface storage during the 100-year storm event. **Table 5–4** - **Table 5–9** summarizes the estimated storm release rates and storage volumes for controlled subcatchments during the 2-Year, 100-Year and 100-Year + 20% stress test events (includes additional volume supplied as in-pipe storage for areas where storage is required during the 2-year event). Discharge curves are as provided by the manufacturer for the selected IPEX Tempest ICDs.

Drainage Area ID	ICD Type	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)	V _{available} (m ³)
L101A	300 mm CIRCULAR ORIFICE	0.24	48.87	0	0.5
L102A	115 mm CIRCULAR ORIFICE	1.53	46.31	10	103.37
L103A	IPEX TEMPEST LMF-40	3.35	7.56	2	11.8
L104A	165 mm CIRCULAR ORIFICE	1.45	87.43	14	85.7
L105A	IPEX TEMPEST LMF-105	1.43	13.68	1	20.3
L105B	130 mm CIRCULAR ORIFICE	0.13	17.23	7	26.3

Stormwater Management an	nd Servicing
--------------------------	--------------

L105C	IPEX TEMPEST LMF-90	0.11	2.61	0	0.2
L108A	102 mm CIRCULAR ORIFICE	1.38	64.05	33	78.0
L110A	IPEX TEMPEST LMF-90	3.16	23.54	7	29.8
L110B	IPEX TEMPEST LMF-80	1.29	7.39	0	5.0
L110C	IPEX TEMPEST LMF-105	1.43	54.35	41	94.3
L110D	88 mm CIRCULAR ORIFICE	1.30	17.77	0	13.5
TOTAL			373.56	108	442.47

Table 5–5 : Peak Surface Volume and Controlled Discharge (2-Year Storm Chicago Event)

Drainage Area ID	ІСД Туре	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)	V _{available} (m ³)
L101A	300 mm CIRCULAR ORIFICE	0.28	61.46	0	0.5
L102A	115 mm CIRCULAR ORIFICE	1.55	60.02	14	103.37
L103A	IPEX TEMPEST LMF-40	3.33	8.13	2	11.8
L104A	165 mm CIRCULAR ORIFICE	1.48	108.24	22	85.7
L105A	IPEX TEMPEST LMF-105	0.76	10.39	0	20.3
L105B	130 mm CIRCULAR ORIFICE	0.13	14.67	4	26.3
L105C	IPEX TEMPEST LMF-90	0.03	0.8	0	0.2
L108A	102 mm CIRCULAR ORIFICE	1.39	81.96	35	78.0
L110A	IPEX TEMPEST LMF-90	3.17	28.14	7	29.8
L110B	IPEX TEMPEST LMF-80	1.37	8.93	1	5.0
L110C	IPEX TEMPEST LMF-105	1.43	69.28	43	94.3
L110D	88 mm CIRCULAR ORIFICE	1.46	21.19	2	13.5
TOTAL			458.54	126	442.47

Table 5–6 : Peak Surface Volume and Controlled Discharge (100-Year Storm SCS Event)

Drainage Area ID	ІСД Туре	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)	V _{available} (m ³)
L101A	300 mm CIRCULAR ORIFICE	0.61	121.27	0	0.5
L102A	115 mm CIRCULAR ORIFICE	1.75	105.07	67	103.37
L103A	IPEX TEMPEST LMF-40	3.49	19.9	16	11.8
L104A	165 mm CIRCULAR ORIFICE	1.69	227.96	129	85.7
L105A	IPEX TEMPEST LMF-105	1.99	36.78	17	20.3
L105B	130 mm CIRCULAR ORIFICE	0.13	48.5	27	26.3
L105C	IPEX TEMPEST LMF-90	1.45	17	1	0.2
L108A	102 mm CIRCULAR ORIFICE	1.57	147.64	128	78.0
L110A	IPEX TEMPEST LMF-90	3.39	63.38	46	29.8

Stormwater Management and Servicing

L110B	IPEX TEMPEST LMF-80	1.56	18.14	10	5.0
L110C	IPEX TEMPEST LMF-105	1.59	133.84	145	94.3
L110D	88 mm CIRCULAR ORIFICE	1.63	42.71	21	13.5
TOTAL			933.69	580	442.47

Table 5–7 : Peak Surface Volume and Controlled Discharge (100-Year Storm Chicago Event)

Drainage Area ID	ІСД Туре	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)	V _{available} (m ³)
L101A	300 mm CIRCULAR ORIFICE	1.02	167.15	0	0.5
L102A	115 mm CIRCULAR ORIFICE	1.76	147.69	71	103.37
L103A	IPEX TEMPEST LMF-40	3.49	27.5	17	11.8
L104A	165 mm CIRCULAR ORIFICE	1.7	303.21	136	85.7
L105A	IPEX TEMPEST LMF-105	1.99	47.69	17	20.3
L105B	130 mm CIRCULAR ORIFICE	0.13	44.75	27	26.3
L105C	IPEX TEMPEST LMF-90	1.45	17.33	1	0.2
L108A	102 mm CIRCULAR ORIFICE	1.57	207.17	131	78.0
L110A	IPEX TEMPEST LMF-90	3.4	85.87	47	29.8
L110B	IPEX TEMPEST LMF-80	1.57	25.29	10	5.0
L110C	IPEX TEMPEST LMF-105	1.61	177.49	157	94.3
L110D	88 mm CIRCULAR ORIFICE	1.64	59.66	21	13.5
TOTAL			1266.05	608	442.47

Table 5–8 : Peak Surface Volume and Controlled Discharge (100-Year + 20% Stress Test Storm SCS Event)

Drainage Area ID	ІСД Туре	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)	V _{available} (m ³)
L101A	300 mm CIRCULAR ORIFICE	1.45	227.59	1	0.5
L102A	115 mm CIRCULAR ORIFICE	1.79	159.91	82	103.37
L103A	IPEX TEMPEST LMF-40	3.51	24.07	21	11.8
L104A	165 mm CIRCULAR ORIFICE	1.73	279.49	162	85.7
L105A	IPEX TEMPEST LMF-105	2.01	44.77	22	20.3
L105B	130 mm CIRCULAR ORIFICE	0.13	49.74	27	26.3
L105C	IPEX TEMPEST LMF-90	1.45	21.36	1	0.2
L108A	102 mm CIRCULAR ORIFICE	1.6	177.52	150	78.0
L110A	IPEX TEMPEST LMF-90	3.42	76.62	54	29.8
L110B	IPEX TEMPEST LMF-80	1.62	89.75	14	5.0

Stormwater Management and Servicing

L110C	IPEX TEMPEST LMF-105	1.64	248.12	181	94.3
L110D	88 mm CIRCULAR ORIFICE	1.66	96.72	25	13.5
TOTAL			1445.92	713	442.47

Table 5–9 : Peak Surface Volume and Controlled Discharge (100-Year + 20% Stress Test Storm Chicago Event)

Drainage Area ID	ІСД Туре	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)	V _{available} (m ³)
L101A	300 mm CIRCULAR ORIFICE	1.47	250.12	2	0.5
L102A	115 mm CIRCULAR ORIFICE	1.78	181.25	80	103.37
L103A	IPEX TEMPEST LMF-40	3.52	33.56	22	11.8
L104A	165 mm CIRCULAR ORIFICE	1.73	380.44	161	85.7
L105A	IPEX TEMPEST LMF-105	2.01	59.94	22	20.3
L105B	130 mm CIRCULAR ORIFICE	0.13	49.87	27	26.3
L105C	IPEX TEMPEST LMF-90	1.45	24.19	1	0.2
L108A	102 mm CIRCULAR ORIFICE	1.6	249.55	153	78.0
L110A	IPEX TEMPEST LMF-90	3.41	105.55	51	29.8
L110B	IPEX TEMPEST LMF-80	1.62	75.12	15	5.0
L110C	IPEX TEMPEST LMF-105	1.64	256.55	185	94.3
L110D	88 mm CIRCULAR ORIFICE	1.66	73.84	25	13.5
TOTAL			1690.11	717	442.47

It should be noted that in instances where the stored volume exceeds the available volume, overland flow is occurring within the site.

5.3.2.2 Uncontrolled Area

Due to grading restrictions, two subcatchments has been designed without a storage component. The catchment areas discharge off-site uncontrolled to the adjacent streets surrounding the proposed site. Peak discharges from uncontrolled areas have been considered in the overall SWM plan and have been balanced through overcontrolling proposed site discharge rates to meet target levels.

Table 5–10: Uncontrolled Non-Tributary Area (UNC-1)

Design Storm	Discharge (L/s)		
2-Year (SCS)	17.20		
2-Year (Chicago)	18.91		
100-Year (SCS)	43.96		
100-Year (Chicago)	60.96		
100-Year + 20% Stress Test (SCS)	92.53		

Stormwater Management and Servicing

100-Year + 20% Stress Test (Chicago)	142.29
--------------------------------------	--------

Table 5–11: Uncontrolled Non-Tributary Area (UNC-2)

Design Storm	Discharge (L/s)
2-Year (SCS)	12.76
2-Year (Chicago)	16.04
100-Year (SCS)	30.59
100-Year (Chicago)	42.97
100-Year + 20% Stress Test (SCS)	37.04
100-Year + 20% Stress Test (Chicago)	52.25

5.3.2.3 Hydraulic Grade Line

As identified within the JFSA modeling of the downstream subdivision, the maximum 100-year HGL for the subject site's connection point to the downstream sewer on Obsidian Street at MH 3 is 99.716 m. A design sheet has been prepared for the proposed storm sewer in **Appendix D.1** demonstrating all on-site sewers remain free-flowing (HGLs within the sewer) using an uncontrolled 5-year rate. **Table 5–12** below demonstrates that the minimum 300mm freeboard from underside of footing has been achieved to the HGL of the upstream storm sewer per City of Ottawa guidelines:

Table 5–12: Storm Sewer Freeboard to Underside of Footing, 100 year

Block #	USF (m)	Adjacent STM MH HGL (m)	Freeboard (m)	
1	101.48	99.74	1.74	
2	101.71	100.10	1.61	
3	101.99	100.10	1.89	
4	102.59	100.91	1.68	
5	102.89	100.91	1.98	
6	102.08	100.79	1.29	
7	102.46	100.79	1.67	
8	102.80	99.65	3.15	
9	103.04	101.36	1.68	
10	103.14	101.36	1.78	
11	103.75	99.65	4.10	
12	103.75	99.65	4.10	
13	103.77	101.77	2.00	
14	103.77	100.31	3.46	

Stormwater Management and Servicing

Block #	USF (m)	Adjacent STM MH HGL (m)	Freeboard (m)
15	103.93	100.31	3.62
16	104.09	100.31	3.78
17	103.92	102.35	1.57
18	103.72	102.35	1.37
19	103.72	102.35	1.37

As can be seen from the table, there is more than the minimum 0.3m vertical clearance between HGL and USF provided in all cases.

5.3.2.4 Results

Table 5–13 demonstrates the proposed stormwater management plan and demonstrates adherence to target peak outflow rates for the site.

Table 5–13: Summary of Total 2-Year, 100-Year and 100-Year + 20% Stress Test Event	t
Release Rates	

	2-Year Storm Peak Discharge (L/s)		100-Year Storm Peak Discharge (L/s)		100-Year + 20% Stress Test Peak Discharge (L/s)	
	SCS	Chicago	SCS	Chicago	SCS	Chicago
Uncontrolled – Surface	29.96	34.95	74.55	103.93	129.57	194.54
Controlled – Surface	52.68	20.08	359.2	229.2	517.23	325.2
Total	82.64	55.03	433.75	333.13	646.80	519.74
Target	401 L/s		435 L/s		N/A	

5.3.3 Climate Change Event

Two climate change events were simulated using the PCSWMM model: 1) 100 year + 20% 12-hour SCS event, and 2) 100 year + 20% 3-hour Chicago event.

As shown in **Table 5**–13, the 100 year +20% 12-hour SCS model results in site outflows of 646.8 L/s and 519.7 L/s during the 3-hour Chicago event.

The site has been graded to spill from high-point to high-point through parking access routes to the downstream Obsidian Street ROW. All proposed building openings exceed the minimum freeboard of 300mm from the static spill elevations equivalent to the 100-year storm event depth of ponding. No flooding concerns have been identified for the climate change scenarios based on sewer hydraulic grade lines noted within the supplied PCSWMM models.

Stormwater Management and Servicing

5.4 QUALITY CONTROL

Quality treatment of runoff will be partially provided through installation of an Etobicoke Exfiltration System (EES) as highlighted in section 5.5 below. This system has been sized to collect and infiltrate runoff from first flush rainfall events up to and including the 22mm rainfall event to meet water balance requirements noted below. In addition, further quality control for the overall development will be provided by the existing downstream oil-grit separator (OGS) for The Ridge subdivision located downstream of the proposed development and discharging to the Jock River via an existing ditch on the west side of Borrisokane Road. The oil-and-grit separator has previously been sized to ensure 80% Total Suspended Solids (TSS) removal for the development inclusive of the proposed site. For more details regarding the OGS units within the downstream development, please refer to JFSA's July 2020, Pond Design Brief for the Ridge (Brazeau) Subdivision.

Based on assumptions made during design of the downstream phases, Phase 8 lands were assumed to contribute at an overall average imperviousness of 68%, and the OGS was sufficiently sized to provide the appropriate level of control at this value. Based on subcatchment parameters listed above, the proposed development overall imperviousness is 75.7%. It is anticipated that the high level of treatment provided by implementation of the proposed on-site EES system (22mm of the required 25mm first flush storm event) in conjunction with the existing OGS via treatment train will provide sufficient quality control to meet design criteria for the development.

5.5 WATER BALANCE – ETOBICOKE EXFILTRATION SYSTEM

As a Best Management Practices (BMP) approach the Barrhaven South Urban Expansion Area (J.L. Richards & Associates, 2018) MSS requires the capture and infiltration of stormwater via exfiltration system installed on local roads, such as the private roads within the subject site, where the surface runoff is not impacted by the City's winter road salting program to meet pre-development water balance criteria.

The City and RVCA determined that predevelopment infiltration levels should be maintained under post development conditions and that the infiltration should be provided across the development and not simply concentrated to one or two locations. JFSA determined the infiltration target for the site to be of the average simulated annual rainfall volume (552.0 mm), which is calculated to be 220.8mm annually as reported by JFSA in **Appendix E.2**.

An Etobicoke Exfiltration System (EES) has been proposed to be located below the storm sewer of the subject site (on sewer sections not identified as catch basin leads), the proposed locations of which are highlighted in **Drawing SD-1** in **Appendix F**.

For this exercise, the EES has been conservatively sized assuming no infiltration during rain events (seepage = 0 mm/hr). The EES units will be installed underneath storm sewers in specific areas and will consist of a 300 mm diameter perforated pipe surrounded by a 2.5 m deep by 1.50 m wide clear stone trench. 600mm deep sumps will be installed in upstream catchbasins in order to prevent/mitigate debris and potential oils from entering the perforated pipe system.

Stormwater Management and Servicing

Pipe ID	Length (m)	Trench Height (m)	Trench Width (m)	Available Volume (m ³)	Used Volume (m ³) ³
101-100-E_1	35.2	2.5	1.5	52.8	53.7
102-101-E_1	59.4	2.5	1.5	89.1	57.3
103-101-E_1	28.7	2.5	1.5	43.1	7.7
104-103-E_1	68.1	2.5	1.5	102.1	103.1
105-104-E_1	42.7	2.5	1.5	64.1	8.4
107.105-E_1	44.2	2.5	1.5	66.3	23.4
108-107-E_1	35.2	2.5	1.5	52.8	53.3
110-108-E_1	79.0	2.5	1.5	118.5	120.6
Total	392.5			588.8	427.6

Table 5–14: 22mm Event Simulated EES Volumes

1. The porous trench height in the model is set as 1.0 m tall. This represents 40% of the total trench height to account for the 40% clear stone porosity.

2. The available volume for each trench section was calculated based on the cross section shown on Drawing SSP-1

3. Volumes used incorporate storage volume provided via 300mm perforated pipe within the EES.

As can be seen in the above table, approximately 72.6% of the available volume in the overall EES system will be used in the 22mm event. In sections where the used volume is greater than the available volume, water spills into the next downstream segment, however there is no outflow from the site during the 22mm event (except for uncontrolled areas UNC-1 and UNC-2).

5.5.1 Etobicoke Exfiltration System Monitoring

Due to the unique nature of the proposed site stormwater management plan, monitoring requirements have been included for construction stages in addition to the post-construction criteria. In order to ensure the stormwater infrastructure is functioning as designed, the following maintenance and monitoring is recommended for the site. Monitoring described below is in addition to groundwater quality monitoring requirements described further within the BSUEA Environmental Management Plan.

5.5.2 Monitoring During Construction

The following practices are recommended during construction:

- Surface flows to be directed away from EES clear stone bedding as it is being installed prior to backfill;
- Fueling of machinery to be done at designated locations away from proposed EES locations;
- Storage of machinery and material, fill, etc. to be done in designated areas away proposed EES locations;
- Equipment movement through proposed EES locations to be controlled;

Stormwater Management and Servicing

- Regular inspection and maintenance of erosion control features corresponding to catch basins, catch basin manholes, and perforated subdrains.
- The EES system is to be jet flushed and inspected via CCTV upon construction completion prior to activation.

5.5.3 Monitoring Post Construction

The post-construction monitoring program is recommended to be phased into two periods as follows:

<u>Stage 1 – years 1 to 2:</u> frequent monitoring and inspection following significant rainfall events >22mm or at least twice per year from May to October (inclusive)

<u>Stage 2 – after year 2:</u> annual monitoring and inspection in the spring to identify any maintenance needed as a result of winter weather/operations.

Monitoring during stage 1 will be required to provide sufficient evidence of compliant performance of the LID features as required by the City of Ottawa for LID projects. Monitoring during stage 2 will be required to ensure the system continues to operate properly and is in compliance with assumed criteria outlined in the MECP ECA to be established for the development.

Monitoring locations are to be within manholes located immediately upstream of City rights-of-way to limit requirements for access easements/agreements, as well as to minimize requirements for additional infrastructure and related costs. The proposed monitoring location for the development is manhole STM 100.

Monitoring wells are to be installed at the base of these manholes for groundwater monitoring, and pressure transducers for continuous water level monitoring are to be installed within the adjacent clear stone media of the EES at the upstream perforated pipe connection to monitor water levels within the EES system. Flow monitoring is to be completed for the outgoing traditional storm sewer to identify EES overflows. Grab samples for quality (TSS% sampling) can be attempted within the same manhole locations and are to occur once per year following significant rainfall events (>22mm) during potential EES overflow events, or as determined through continuous water level monitoring. The monitoring program is expected to continue for the entirety of Stage 1.

Monitoring data is to confirm that the facility is able to drawdown to below the invert level of the perforated pipe connection within 48 hours after a significant rainfall event. Significant increase in drawdown time identifies the need for maintenance flushing of the EES system.

During stage 2, annual inspections of the system at the manholes is to visually confirm that drawdown is occurring within the manhole sump to the invert level of the upstream perforated pipe of the EES within 48 hours of a rainfall event.

5.5.4 Annual Maintenance

Annual maintenance of the EES is to occur during both Stages 1 and 2, and is to include:

Stormwater Management and Servicing

- Removal of accumulated trash and debris from sumps and grates
- Removal of accumulated sediment depth in manholes / catch basins

Preventative maintenance via jet pressure washing of the conventional and EES system perforated pipes is to occur every 20 years, or as identified through annual drawdown inspections

Geotechnical Considerations and Grading

6.0 GEOTECHNICAL CONSIDERATIONS AND GRADING

6.1 GEOTECHNICAL INVESTIGATION

A geotechnical investigation report for the development was completed by Paterson Group on March 30, 2021. The geotechnical investigation report is included in **Appendix E.3**.

The objective of the investigation was to determine the subsoil and groundwater conditions at this site by means of a borehole program and to provide geotechnical recommendations for the design of the proposed development based on the results on the results of the boreholes and other soil information available.

The field program was carried out between February 17 and 23, 2021 and consisted of advancing a total of 12 boreholes to a maximum depth of 9.8 m below existing grade. Previous investigations were completed within the general area and surroundings of the subject site and consisted of a series of boreholes and test pits advanced to a maximum depth of 9.1 m below ground surface. The borehole locations were distributed in a manner to provide general coverage of the subject site and taking into consideration current site conditions.

Based on the Paterson's report, the subject site is a former agricultural land. The bulk of the current phase of the proposed development has been recently cleared of topsoil which has been stockpiled in several piles across the site. Generally, the ground surface across the subject site is relatively flat within the central portion and slopes up towards the edges. It should be noted that parts of the subject site had undergone excavation and in-filling activities as part of a previous sand extraction operation. Historical aerial photographs of the site indicating fill movement activities since 1976 were included in Appendix 2 of Paterson's report. The area to the south is significantly elevated. The area to the north and west also present a steep slope where fill was encountered.

Generally, the subsurface profile across the subject site consists of varying amounts of fill consisting of silty sand mixed with occasional silty clay, gravel and cobbles. It should be noted that the fill thickness within BH 9-21, BH 10-21 and BH 11-21 ranged from 4.5 m and up to 8.23 m below ground surface. A deep deposit of compact to dense brown silty sand to underlie the fill layer. Gravel and cobbles were occasionally encountered within the silty sand layer. The silty sand was observed to be underlain by a glacial till deposit composed of dense brown sandy silt to silty sand with gravel, cobbles and boulders within BH 3-21. Practical refusal to augering was encountered at a range between 4.6 m and 8.3 m below existing ground surface. Practical refusal to DCPT was encountered at 9.8 m below existing ground surface at BH 7-21. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Geotechnical Considerations and Grading

6.1.1 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum of 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application. From a geotechnical perspective, the subject site is suitable for the proposed mixed-use development. It is anticipated that the proposed buildings will be founded over conventional footings placed over an undisturbed compact to dense silty sand or dense glacial till bearing surface or an engineered fill pad over an approved fill subgrade bearing medium.

6.2 GRADING PLAN

The proposed development site measures 3.09ha in area. The topography across the site includes a moderate grade change with site grades on the east side of the property measuring approximately three (3) metres higher than the western property line. A detailed Grading Plan (**Drawing GP-1** in **Appendix F**) has been provided to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions, and provide for minimum cover requirements for the storm and sanitary sewers where possible. Site grading has been established to provide emergency overland flow routes required for stormwater management in accordance with City of Ottawa requirements.

The site maintains emergency overland flow routes for flows in excess of major system storm events to Obsidian Street in accordance with the subdivision design report. A primary grading consideration for this development is the interface between the subject lands and the future Greenbank Road ROW. The proposed elevations along the property line shared with the future Greenbank Road ROW have been coordinated with the design team for Greenbank Road for this submission. As the design for Greenbank Road is currently ongoing, further communication with the City of Ottawa and the design team for Greenbank Road will be required throughout the design stage to ensure the proposed site development utilizes the latest Greenbank Road profiles and resulting property line elevations.

Approvals

7.0 APPROVALS

An Environmental Compliance Approval (ECA) may be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed works in relation to the Etobicoke Exfiltration System. If the site remains under single ownership, it will comply with the exemptions from O.Reg. 525/98 and an ECA for traditional storm and sanitary sewers would not be required. These exemptions require that the site is not on industrial land or for industrial use, would drain to an approved outlet and would be under single ownership. If however the land will be divided into separate legal properties either through severance or through the condominium process an ECA would then be required for traditional storm and sanitary sewers in addition to the EES. The Rideau Valley Conservation Authority will need to be consulted in order to obtain municipal approval for site development.

An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry may be required as noted in **Section 6.0** above.

No other approval requirements from other regulatory agencies have been identified at the time of this report.

Erosion Control

8.0 **EROSION CONTROL**

In order to protect downstream water quality and prevent sediment build up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit the extent of the exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering works.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Conclusions and Recommendations

9.0 CONCLUSIONS AND RECOMMENDATIONS

9.1 POTABLE WATER SERVICING

The model by GeoAdvice provided by DSEL demonstrates that the pressures in the proposed development's watermain stubs fall within the range of target system pressures with a maximum basic day pressure of 76 psi and 72 psi at J-41 (connection point 1) and J-86 (connection point 2) respectively.

The subject lands can be adequately serviced by the 300mm watermain along Haiku Street and 300mm diameter watermain on Obsidian Street. Private watermains will provide sufficient fire flow to meet FUS requirements. System pressures will fall within the City of Ottawa Water Distribution Guidelines.

9.2 WASTEWATER SERVICING

The total design peak flow for the subject site to be conveyed to the connections at the Obsidian Street sewer is 7.7 L/s. This value is slightly higher than the previous estimate of 2.49L/s by DSEL based on a service area of 1.9 ha and population of 162 people. The difference (4.68L/s) can be accommodated by the 200mm receiving sewer in Obsidian Street.

JLR Associates identified in its MSS for BSUEA stated that there is residual capacity within the sanitary sewers draining Mattamy lands west to new Greenbank Road based on a Stantec (2015) hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater), which in turn demonstrated that the existing downstream trunk system could accommodate the flows generated with no risk of surcharging or basement flooding.

9.3 STORMWATER MANAGEMENT AND SERVICING

The following summarizes the stormwater management conclusions for the proposed development:

- All storm runoff within the site will be controlled and directed to an existing storm control point identified as MH 3 in JFSA SWM model.
- The proposed stormwater management plan is in compliance with the objectives specified in the City of Ottawa Sewer Design Guidelines and in the background reports for the site.
- The minor system (storm sewers) is sized to convey the 2-year storm event under free-flow conditions using City of Ottawa I-D-F parameters.
- ICDs installed on the proposed catch basins force flows in excess of the 2-year event to be conveyed by overland paved areas and stored within proposed parking and access regions.
- Quality control for the development has been provided by an existing downstream oil-grit separator in conjunction with installation of an on-site Etobicoke Exfiltration System.

Conclusions and Recommendations

An Etobicoke Exfiltration System has been proposed to be located below the storm sewer on private roads of the subject site to meet water balance requirements of the BSUEA. The stormwater drainage plan has been designed to achieve stormwater servicing that is free of conflict with other services, respects the stormwater management requirement listed in background studies and in conformity with the City of Ottawa guidelines.

9.4 GRADING

The topography across the site includes a moderate grade change with site grades on the east side of the property measuring three (3) metres higher than the western property line. A detailed Grading Plan has been provided to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions, and provide for minimum cover requirements for the storm and sanitary sewers where possible. A primary grading consideration for this development is the interface between the subject lands and the future Greenbank Road ROW.

9.5 APPROVALS/PERMITS

An Environmental Compliance Approval (ECA) will be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed works. An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry may be required as noted in Section 6.0 above. No other approval requirements from other regulatory agencies were identified at the time of this report. The Rideau Valley Conservation Authority will need to be consulted in order to obtain municipal approval for site development.

APPENDICES

Appendix A Potable Water Servicing

Appendix A POTABLE WATER SERVICING

A.1 WATER DEMAND CALCULATIONS

Half Moon Bay South Phase 8 - Domestic Water Demand Estimates

Project No. 160401657 Based on Site plan provided by Mattamy Homes dated Dec. 2, 2021.

Densities as per City Guidelines:

Townhomes 2.7 ppu

Stantec

				Daily Rate of Demand	Avg D	Avg Day Demand	Max Day	Max Day Demand ¹	Peak Hour	Peak Hour Demand ²
Building ID	Amenity Area (m²)	No. of Units	Population	(L/cap/d or L/ha/d)	(L/min)	(r/s)	(L/min)	(r/s)	(L/min)	(r/s)
Back-to-Back Townhomes										
Block 1		12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 2	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 3	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 4	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 5	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 6	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 7	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 8	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 9	ı	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 10	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 11	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 12	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 13	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 14	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 15	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 16	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 17	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 18	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Block 19	I	12	32.4	280	6.3	0.11	15.8	0.26	34.7	0.58
Total Site :		228.0	616		119.7	2.00	299.3	4.99	658.4	10.97

Average day water demand for residential areas: 280 L/cap/d , 28000/L/ha/d for commercial/amenity areas

The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

1 maximum day demand rate = 2.5 x average day demand rate for residential

2 peak hour demand rate = 2.2 x maximum day demand rate for residential

3 Water demand criteria used to estimate peak demand rates for amenity/common areas are as follows:

maximum daily demand rate = 1.5 x average day demand rate peak hour demand rate = 1.8 x maximum day demand rate

Appendix A Potable Water Servicing

A.2 FIRE FLOW REQUIREMENTS PER FUS GUIDELINES

Block 1 B2B Towns W:\active\160401657\design\analysis\WTR\SPA\2022-01-14_FUS.xlsx

Date:1/18/2022 Stantec Consulting Ltd.

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)
L	Determine Type of Construction				Wood Frame	ne		1.5	-
c	Determine Ground Floor Area of One Unit			Approx.	Approx. area of townhome block	nhome bloc	K	235	-
N	Determine Number of Adjoining Units		Includes ad	ijacent wood	l frame struc	tures separa	includes adjacent wood frame structures separated by 3m or less	l	ı
3	Determine Height in Storeys		Does not in	nclude floors	: >50% below	' grade or op	Does not include floors >50% below grade or open attic space	3	-
4	Determine Required Fire Flow		(F =	(F = 220 x C x $A^{1/2}$). Round to nearest 1000 L/min	^{1/2}). Round to	o nearest 100	00 L/min	-	0006
5	Determine Occupancy Charge			[]	Limited Combustible	ustible		-15%	7650
					None			%0	
`	Cotorior Carialita Cation			Non-Star	Non-Standard Water Supply or N/A	Supply or N/	۷	%0	C
0				Not F	Not Fully Supervised or N/A	ed or N/A		%0	5
				% Cove	% Coverage of Sprinkler System	nkler System		%0	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	I	1
		North	10.1 to 20	13.5	3	31-60	Wood Frame or Non-Combustible	13%	
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	21	3	61-90	Wood Frame or Non-Combustible	14%	8270
		South	20.1 to 30	13.5	3	31-60	Wood Frame or Non-Combustible	8%	0/07
		West	0 to 3	21	3	61-90	Ordinary or Fire Resistive (Blank Wall)	%0	
			Tot	tal Required	Fire Flow in L	/min, Round	fotal Required Fire Flow in L/min, Rounded to Nearest 1000L/min		10000
o	Pottomino Eised Doctrinod Eise				Total Requ	Total Required Fire Flow in L/s	w in L/s		166.7
0					Required Duration of Fire Flow (hrs)	ation of Fire	Flow (hrs)		2.00
					Required Volume of Fire Flow (m^3)	lume of Fire	Flow (m³)		1200

FUS Fire Flow Calculation Sheet

Stantec

Fire Flow Calculation #: 1 Description: 4 Back-to-Back 12-Unit Townhouse Block (Block 1) Stantec Project #: 160401657 Project Name: Mattamy Homes -Half Moon Bay South Phase 8 Date: 1/18/2022

Notes: 3-storey building with slab on grade. Back-to-back townhouse units with fire wall at mid-block. Building Classification C.

Stantec

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401657 Project Name: Mattamy Homes - Half Moon Bay South Phase 8 Date: 1/18/2022 Fire Flow Calculation #: 2 Description: 4 Back-to-Back 12-Unit Townhouse Block (Block 8) Worst Case: 3-storey building with slab on grade. Back-to-back townhouse units with fire walls at 1/4 and 3/4 of building length.

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction				Wood Frame	ne		1.5	-
ſ	Determine Ground Floor Area of One Unit			Approx.	Approx. area of townhome block	nhome bloc	~	235	'
7	Determine Number of Adjoining Units		Includes adj	acent wooc	d frame struc	tures separa	includes adjacent wood frame structures separated by 3m or less	-	T
3	Determine Height in Storeys		Does not ir	aclude floors	; >50% below	/ grade or op	Does not include floors >50% below grade or open attic space	3	-
4	Determine Required Fire Flow		(F =	= 220 x C x A	(F = 220 x C x $A^{1/2}$). Round to nearest 1000 L/min) nearest 100	00 L/min	'	0006
5	Determine Occupancy Charge				Limited Combustible	ustible		-15%	7 650
					None			%0	
7	Determine Seriel/les Ded. Letter			Non-Stan	Non-Standard Water Supply or N/A	Supply or N/	A`	%0	c
0				Not F	Not Fully Supervised or N/A	ed or N/A		%0	D
				% Cove	% Coverage of Sprinkler System	nkler System		%0	-
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m × stories)	Construction of Adjacent Wall	T	ı
		North	0 to 3	21	3	61-90	Ordinary or Fire Resistive (Blank Wall)	%0	
~	Determine Increase for Exposures (Max. 75%)	East	20.1 to 30	13.5	3	31-60	Wood Frame or Non-Combustible	8%	2071
		South	0 to 3	21	3	61-90	Ordinary or Fire Resistive (Blank Wall)	%0	/00
		West	10.1 to 20	13.5	3	31-60	Wood Frame or Non-Combustible	13%	
			Tot	al Required	Fire Flow in L	/min, Round	fotal Required Fire Flow in L/min, Rounded to Nearest 1000L/min		0006
o	Dotormino Einal Boardinad Eiro Elaur				Total Requ	lotal Required Fire Flow in L/s	w in L/s		150.0
0					Required Duration of Fire Flow (hrs)	ation of Fire	Flow (hrs)		2.00
					Required Vo	Required Volume of Fire Flow (m^3)	Flow (m³)		1080

Date:1/18/2022 Stantec Consulting Ltd.

Appendix A Potable Water Servicing

A.3 HYDRAULIC CAPACITY AND MODELLING

Hydraulic Model Results - Average Day (AVDY)

Junction Results

ID	Demand	Elevation	Head	Pres	sure
	(L/s)	(m)	(m)	(psi)	(Kpa)
0	0.11	105.86	156.10	71.43	492.50
1	0.21	105.99	156.10	71.24	491.19
14	0.21	105.87	156.10	71.40	492.29
2	0.21	105.80	156.10	71.50	492.98
3	0.53	105.38	156.10	72.11	497.18
4	0.21	103.89	156.10	74.21	511.66
5	0.42	103.54	156.10	74.72	515.18

Pipe Results

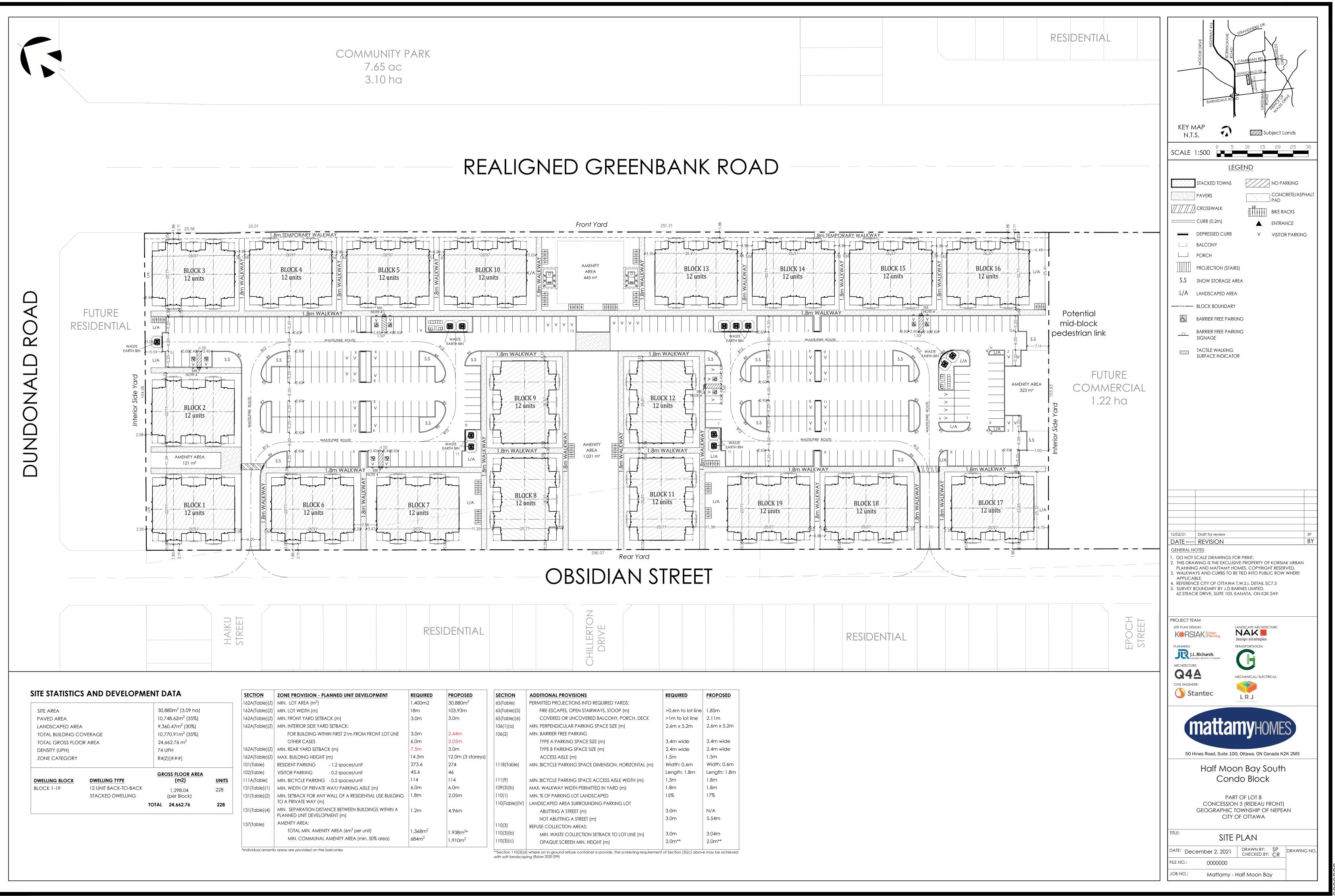
ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
10	Node	TO NOUE	(m)	(mm)	Rouginess	(L/s)	(m/s)
1000	1	0	36.17	200	110	-0.43	0.01
1001	2	1	69.94	200	110	-0.22	0.01
1002	3	2	35.12	200	110	-0.17	0.01
1003	4	3	117.50	200	110	0.36	0.01
1004	5	4	35.03	200	110	0.57	0.02
1005	5	7002	45.09	200	110	-0.99	0.03
1008	7000	0	72.04	200	110	0.91	0.03
1013	14	0	69.94	200	110	-0.37	0.01
1014	2	14	36.24	200	110	-0.16	0.00

Hydraulic Model Results - Peak Hour (PKHR)

Junction Results

ID	Demand	Elevation	Head	Pres	sure
	(L/s)	(m)	(m)	(psi)	(Kpa)
0	0.58	105.86	138.00	45.70	315.09
1	1.16	105.99	138.03	45.55	314.06
14	1.16	105.87	138.06	45.75	315.44
2	1.16	105.80	138.09	45.90	316.47
3	2.89	105.38	138.22	46.69	321.92
4	1.16	103.89	138.77	49.58	341.84
5	2.31	103.54	138.95	50.34	347.08

Pipe Results


ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
	Node	TO NOUE	(m)	(mm)	Rouginiess	(L/s)	(m/s)
1000	1	0	36.17	200	110	8.91	0.28
1001	2	1	69.94	200	110	10.07	0.32
1002	3	2	35.12	200	110	21.66	0.69
1003	4	3	117.50	200	110	24.55	0.78
1004	5	4	35.03	200	110	25.71	0.82
1005	5	7002	45.09	200	110	-28.02	0.89
1008	7000	0	72.04	200	110	-17.60	0.56
1013	14	0	69.94	200	110	9.27	0.30
1014	2	14	36.24	200	110	10.43	0.33

Hydraulic Model Results - MXDY+FF (167 L/s)

ID	Static Demand	Static P	ressure	Static Head	Fire-Flow Demand	Residual	Pressure	Available Flow at Hydrant		ble Flow ssure
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
0	0.26	42.42	292.48	135.70	167	34.25	236.15	290.43	20.00	137.90
1	0.53	42.23	291.17	135.70	167	31.19	215.05	245.38	20.00	137.90
14	0.53	42.40			167	31.07	214.22	242.99	20.00	137.90
2	0.53	42.49	292.96	135.70	167	32.75	225.80	264.55	20.00	137.90
3	1.32	43.10	297.17	135.69	167	32.30	222.70	254.58	20.00	137.90
4	0.53	45.21	311.71	135.70	167	36.59	252.28	300.58	20.00	137.90
5	1.05	45.71	315.16	135.70	167	39.67	273.52	369.35	20.00	137.90

Appendix B Draft Site Plan

Appendix B DRAFT SITE PLAN

Appendix C Sanitary Servicing

Appendix C SANITARY SERVICING

C.1 SANITARY SEWER DESIGN SHEET

		SUBDIVISION:	Job N	ame					SANIT DES	ARY S		२											DESIGN P	ARAMETERS											
									(Či	ty of Otta	wa)				MAX PEAK F	ACTOR (RES	.)=	4.0		AVG. DAILY	FLOW / PERS	ON	280	l/p/day		MINIMUM VE	LOCITY		0.60	m/s					
		DATE:		1/12	2/2022										MIN PEAK F	ACTOR (RES.)=	2.0		COMMERCI			28,000	l/ha/day		MAXIMUM V	ELOCITY		3.00	m/s					
()) Stan	tec	REVISION:			1											CTOR (INDU	,	2.4		INDUSTRIAL	. ,			l/ha/day		MANNINGS			0.013						
		DESIGNED B			NN	FILE NUM	MBER:	16040165	57							CTOR (ICI >2	0%):	1.5		INDUSTRIAL	. ,		,	l/ha/day		BEDDING CL			i						
		CHECKED BY	Y:		DT										PERSONS /			3.4		INSTITUTION			.,	l/ha/day		MINIMUM CO			2.5						
																TOWNHOME		2.7		INFILTRATIC	N		0.33	l/s/Ha		HARMON CO	ORRECTION F	ACTOR	8.0						
100	ATION		1			DEGIDENT	AL AREA AND						IERCIAL			APARTMENT		1.8	JTIONAL	00551			1	INFILTRATION						-					
AREA ID	FROM	то	AREA		UNITS	RESIDENTI	POP.			PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	C+I+I PEAK	TOTAL	ACCU.	INFILT.	TOTAL FLOW	LENGTH	DIA	MATERIAL		SLOPE	CAP.	CAP, V	VEL.	VEL.
NUMBER	M.H.	M.H.	741251	SINGLE		APT	101.	AREA	POP.	FACT.	FLOW	7.1.1271	AREA	744274	AREA	7.1.1251	AREA	, utert	AREA	7.0.1271	AREA	FLOW	AREA	AREA	FLOW		LENGIN	201		02100	02012				(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
874		<u>^</u>	0.45	_	10			0.45		0.00			0.00		0.00						0.00		0.15	0.45							4.00	00.4	1.049	4.05	
R7A	/	6	0.15	0	12	0	32	0.15	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.15	0.15	0.1	0.4	27.7	200	PVC	SDR 35	1.00	33.4	1.31%	1.05	0.30
R10A	10	9	0.57	0	39	0	105	0.57	105	3.59	1.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.57	0.57	0.2	1.4	95.1	200	PVC	SDR 35	0.40	21.1	6.68%	0.67	0.31
R12A	12	11	0.53	0	36	0	97	0.53	97	3.60	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.53	0.53	0.2	1.3	93.5	200	PVC	SDR 35	0.40	21.1	6.19%	0.67	0.30
	11	9	0.00	0	0	0	0	0.53	97	3.60	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.53	0.2	1.3	36.1	200	PVC	SDR 35	0.40	21.1	6.19%	0.67	0.30
R109A	9	8	0.13	0	24	0	65	1.23	267	3.48	3.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.13	1.23	0.4	3.4	41.1	200	PVC	SDR 35	0.40	21.1	16.16%	0.67	0.40
ITTO SA	5	0	0.15	U	27	U	00	1.20	201	0.40	5.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.10	1.20	0.4	5.4	71.1	200	1.40	ODICOD	0.40	21.1	10.1078	0.07	0.40
R13A	13	8	0.58	0	48	0	130	0.58	130	3.57	1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.58	0.58	0.2	1.7	64.5	200	PVC	SDR 35	0.40	21.1	7.99%	0.67	0.33
R108A	8	6	0.57	0	36	0	07	2.38	494	3.38	5.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.57	2.38	0.8	6.2	117.5	200	PVC	SDR 35	0.40	21.1	29.31%	0.67	0.49
R IUOA	0	0	0.57	0	30	U	97	2.30	494	3.30	5.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.57	2.30	0.0	0.2	117.5	200	FVG	3DK 33	0.40	21.1	29.31%	0.07	0.49
G6A	6	4	0.04	0	0	0	0	2.57	527	3.37	5.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.0	0.08	2.61	0.9	6.6	35.4	200	PVC	SDR 35	0.40	21.1	31.26%	0.67	0.49
D44	-		0.00	•	04	•	05	0.00	05	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.4	0.0	00.0	000	11005	000.05	0.40	01.1	4 000/	0.07	0.07
R4A	5	4	0.30	U	24	U	65	0.30	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.30	0.30	0.1	0.9	68.9	200	HDPE	SDR 35	0.40	21.1	4.08%	0.67	0.27
G6A	4	2	0.00	0	0	0	0	2.87	591	3.35	6.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.0	0.00	2.91	1.0	7.4	3.7	200	PVC	SDR 35	0.40	21.1	34.88%	0.67	0.51
R3A	3	2	0.17	0	24	0	65	0.17	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.17	0.17	0.1	0.8	30.3	200	PVC	SDR 35	0.50	23.6	3.47%	0.74	0.29
G2A	2	1	0.04	0	0	0	0	3.08	656	3.33	7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.08	0.0	0.08	3.16	1.0	8.1	29.4	200	PVC	SDR 35	0.40	21.1	38.40%	0.67	0.52
	1	EX MH 3A	0.00	0	0	0	0	3.08	656	3.33	7.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.0	0.00	3.16	1.0	8.1	3.8	200 200	PVC	SDR 35	0.40	21.1	38.40%	0.67	0.52

Appendix D Stormwater Management

Appendix D STORMWATER MANAGEMENT

D.1 STORM SEWER DESIGN SHEET

	НА	FMOON	BAY PHAS	SE 8			STORM				DESIGN	PARAMET	<u>rers</u>																										
Stanted			-				DESIGN				l = a / (t+t	o) ^c		<u>, ,</u>	<u> </u>	wa Guide	ines, 201	2)																					
	DATE.		2021	-07-21			(City of	Ottawa)				1:2 yr	. ,	,	,																								
	REVISION		м	1 IJS	FILE NUN		16040165	7				732.951		1174.184 6.014		MANNING		0.013 2.00		BEDDING (CLASS =	В																	
	CHECKED			DT		IDER:	10040105				b = c =	6.199 0.810	6.053 0.814	0.816		MINIMUM TIME OF E		2.00																					
LOCATION	1		_								Ū.	0.010	0.011		AINAGE AF																		PIPE SELEC	TION					
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR)	AxC (100YR)								(CIA/360)		OR DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
L106A	106	105	0.31	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.00	0.260	0.260	0.000	0.000	0.000	0.000	0.000	0.000	10.00 11.31	76.81	104.19	122.14	178.56	0.0	0.0	55.4	75.5	300	300	CIRCULAR	PVC	-	0.50	68.0	81.48%	0.97	0.96	1.31
L108B L108C, L108A L107A	108A 108 107	108 107 105	0.16 0.15 0.31	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.68 0.74 0.86	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.106 0.108 0.267	0.106 0.215 0.482	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	10.00 10.29 12.00 12.61	76.81 75.69 69.90	104.19 102.67 94.71	122.14 120.34 110.98	178.56 175.92 162.16	0.0 0.0 0.0	0.0 0.0 0.0	22.7 45.1 93.6	17.3 84.9 36.1	200 300 450	200 300 450	CIRCULAR CIRCULAR CIRCULAR	PVC PVC CONCRETE	- - -	1.00 0.40 0.40	33.3 60.8 188.1	68.16% 74.21% 49.75%	1.05 0.86 1.15	0.98 0.83 0.98	0.29 1.70 0.61
L105C, L105A	105 104	104 103	0.33 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.52 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.171 0.000	<mark>0.912</mark> 0.912	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	<mark>12.61</mark> 13.84 14.90	68.05 64.65	92.17 87.50	107.98 102.50	157.76 149.71	0.0 0.0	0.0 0.0	172.5 163.9	85.0 72.1	525 525	525 525	CIRCULAR CIRCULAR	CONCRETE CONCRETE		0.40 0.40	283.8 283.8	60.78% 57.75%	1.27 1.27	1.15 1.13	1.23 1.06
L103A	103A	103	0.11	0.00	0.00	0.00	0.00	0.78	0.00	0.00	0.00	0.089	0.089	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.29	76.81	104.19	122.14	178.56	0.0	0.0	18.9	16.1	200	200	CIRCULAR	PVC	-	1.00	33.3	56.84%	1.05	0.93	0.29
L103C, L103B	103	101	0.51	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.419	1.420	0.000	0.000	0.000	0.000	0.000	0.000	14.90 15.39	62.01	83.89	98.24	143.47	0.0	0.0	244.6	38.1	525	525	CIRCULAR	CONCRETE	-	0.40	283.8	86.21%	1.27	1.28	0.50
L102A, L102B	102	101	0.23	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.191	0.191	0.000	0.000	0.000	0.000	0.000	0.000	10.00 11.49	76.81	104.19	122.14	178.56	0.0	0.0	40.7	72.2	300	300	CIRCULAR	PVC	-	0.40	60.8	67.01%	0.86	0.81	1.49
L101A	101 100 I	100 EX MH 109	0.25 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.75 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.187 0.000	<mark>1.798</mark> 1.798	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	15.39 15.77 15.90	60.85 60.01	82.30 81.15	96.38 95.03	140.73 138.75	0.0 0.0		303.9 299.7	30.2 10.4	600 750 750	600 750 750	CIRCULAR CIRCULAR	CONCRETE	-	0.40 0.40	405.1 734.5	75.02% 40.81%	1.39 1.61	1.34 1.30	0.37 0.13

Appendix D Stormwater Management

D.2 SAMPLE PCSWMM INPUT (100YR CHICAGO)

[TITLE] ;;Project Title/Note	S
[OPTIONS] ;;Option FLOW_UNITS INFLITRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE	Value LPS HORTON DYNWAVE ELEVATION Ø YES NO
START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTING_STEP RULE_STEP	07/23/2009 00:00:00 07/23/2009 00:00:00 07/23/2009 12:00:00 01/01 12/31 0 00:00:05 00:00:05 00:00:05 2 00:00:00
INERTIAL_DAMPING NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION SURCHARGE_METHOD VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP	PARTIAL BOTH H-W Slot 0 0 8 0.0015 5 5 0.005

THREADS	6							
[EVAPORATION] ;;Data Source ;;								
	0.0 NO							
[RAINGAGES] ;;Name	Format 1	Interval SCF	Source					
		0:10 1.0		C				
[SUBCATCHMENTS] ;;Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope	CurbLen	SnowPack
;;								
;.077 L101A	Raingage1	101A	0.352027	81.429	106.359	1.647	0	
;0.85 L102A	Raingage1	102A	0.300799	92.857	115.434	2.719	0	
;0.64 L103A	Raingage1	103A	0.058908	62.857	49.09	3.7	0	
;0.75 L104A	Raingage1	104A	0.641173	78.571	176.127	3.096	0	
;0.55 L105A	Raingage1	105A	0.111952	50	46.647	1.2	0	
;0.60 L105B	Raingage1	105B	0.187382	57.143	78.076	1.2	0	
;0.29 L105C	Raingage1	105C	0.057701	12.857	21.654	3	0	

;0.83

[SUBAREAS] ;;Subcatchment	N-Imperv	N-Perv S-Imperv	S-Perv P	ctZero Route	To PctRouted
;0.56 UNC-2	Raingage1	Greenbank_Rd	0.091544 51	.429 305.147	3 0
;0.41 UNC-1	Raingage1	Obsidian_St-1	0.134741 30	449.137	3 0
;0.75 L110D	Raingage1	110D	0.124195 78	.571 95.535	2.7 0
;0.82 L110C	Raingage1	110C	0.364461 88	.571 140.177	1.6 0
;0.75 L110B	Raingage1	110B	0.052601 78	.571 27.685	2.6 0
;0.69 L110A	Raingage1	110A	0.186561 70	77.734	2 0
L108A	Raingage1	108A	0.423988 90	188.397	1.537 0

;;							
L101A	0.013	0.25	1.57	4.67	25	OUTLET	
L102A	0.013	0.25	1.57	4.67	25	OUTLET	
L103A	0.013	0.25	1.57	4.67	25	OUTLET	
L104A	0.013	0.25	1.57	4.67	25	OUTLET	
L105A	0.013	0.25	1.57	4.67	25	PERVIOUS	100
L105B	0.013	0.25	1.57	4.67	25	PERVIOUS	100
L105C	0.013	0.25	1.57	4.67	25	PERVIOUS	100
L108A	0.013	0.25	1.57	4.67	25	OUTLET	
L110A	0.013	0.25	1.57	4.67	25	OUTLET	
L110B	0.013	0.25	1.57	4.67	25	OUTLET	
L110C	0.013	0.25	1.57	4.67	25	OUTLET	
L110D	0.013	0.25	1.57	4.67	25	OUTLET	
UNC-1	0.013	0.25	1.57	4.67	25	PERVIOUS	100
UNC-2	0.013	0.25	1.57	4.67	25	PERVIOUS	100
	0.015	0.25	1.57	4.07	25	1 210000	100

[INFILTRATION]

;;Subcatchment		Param2		Param4	Param5
;; L101A	76.2	13.2	4.14	7	0
L101A L102A	76.2	13.2	4.14	7	0
L102A	76.2	13.2	4.14	7	0
L103A	76.2	13.2	4.14	7	0
L104A	76.2	13.2	4.14	, 7	0
L105A	76.2	13.2	4.14	, 7	0
L105C	76.2	13.2	4.14	, 7	0
L108A	76.2	13.2	4.14	7	0
L110A	76.2		4.14	7	0
L110B	76.2		4.14	7	0
L110C	76.2	13.2	4.14	7	0
L110D	76.2	13.2	4.14	7	0
UNC-1	76.2	13.2	4.14	7	0
UNC-2	76.2	13.2	4.14	7	0
[JUNCTIONS]					
;;Name	Elevation	MaxDepth	InitDepth	SurDepth	Aponded
;;					
;1500mm 100	96.82	c 20	0	0	0
;1500mm	90.82	0.29	0	0	0
101	96.71	6.82	0	0	0
;1200mm	50.71	0.82	0	0	0
102	98.62	5.87	0	0	0
;1500mm	50.02	5.07	0	Ũ	0
103	97.38	6.5	0	0	0
;1500mm					
104	98.66	6.23	0	0	0
;1200mm					
105	99.18	6.2	0	0	0
105B	102.53	2	0	0	0
;1200mm					
106	99.65	5.61	0	0	0
;1200mm					
107	99.59	6.31	0	0	0
;1200mm					
108	99.77	6.11	0	0	0
;1200mm					

109 • 1200mm	100.31	5.75	0	0	0				
;1200mm 110	100.24	5.5	0	0	0				
J1	97.833	5.751	0	0	0				
J10	102.35	2.74	0	0	0				
J2	97.093	6.473	0	0	0				
]3	97.979	5.956	0	0	0				
J4 J5	96.525 98.75	6.597 6.162	0 0	0 0	0 0				
J6	99.222	6.172	0	0	0				
J7	99.599	6.3	0	0	0				
38	99.85	6.026	0	0	0				
[OUTFALLS] ;;Name ;;		on Type	Stage Da		ated Route 1	ō			
,, ;Null Structure EX_109		FREE		N					
Greenbank_Rd	a	FREE		N					
Obsidian_St-1	0	FREE		N					
Obsidian_St-2	105.59	FREE		N					
Obsidian_St-3	102.98	FREE		N	J				
[STORAGE] ;;Name Psi Ksat ;;	Elev. IMD			•	Curve Name/Pa		N/A	Fevap	
;CB									
101A ;CB	101.73	1.54	0	TABULAR	101A		0	0	
102A	101.98	1.84	0	TABULAR	102A		0	0	
;CB 103A	100.31	3.6	0	TABULAR	103A		0	0	
;CB 104A	102.66	1.79	0	TABULAR	104A		0	0	
;1200mm 105A	103.32	2.08	0	TABULAR	105A		0	0	
;CB			-				-	-	
105C	103.82	1.53	0	TABULAR	105C		0	0	
108A	104.15	1.65	0	TABULAR	108A		0	0	
108A ;CB 110A		1.65 3.49	0 0	TABULAR TABULAR	108A 110A		0 0	0 0	
108A ;CB 110A ;CB									
108A ;CB 110A ;CB 110B ;CB	102.61	3.49	0	TABULAR	110A		0	0	
108A ;CB 110A ;CB 110B ;CB 110C ;CB	102.61 104.13 104.11	3.49 1.65 1.69	0 0 0	TABULAR TABULAR TABULAR	110A 110B 110C		0 0 0	0 0 0	
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D	102.61 104.13 104.11	3.49 1.65	0 0	TABULAR TABULAR	110A 110B		0 0	0 0	
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow	102.61 104.13 104.11 104.31 From Nod	3.49 1.65 1.69 1.73	0 0 0 0 To Node	TABULAR TABULAR TABULAR TABULAR Length	110A 110B 110C 110D Roughness	InOffset	0 0 0 0 OutOffset	0 0 0 0 InitFlow	
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;;	102.61 104.13 104.11 104.31 From Nod	3.49 1.65 1.69 1.73	0 0 0 0 To Node	TABULAR TABULAR TABULAR TABULAR Length	110A 110B 110C 110D Roughness		0 0 0 0 OutOffset	0 0 0 0 InitFlow	
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; ;600mm	102.61 104.13 104.11 104.31 From Nod	3.49 1.65 1.69 1.73	0 0 0 0 To Node	TABULAR TABULAR TABULAR TABULAR Length	110A 110B 110C 110D Roughness		0 0 0 0 OutOffset	0 0 0 0 InitFlow	
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; ;600mm 101-100	102.61 104.13 104.11 104.31 From Nod	3.49 1.65 1.69 1.73 le	0 0 0 To Node	TABULAR TABULAR TABULAR TABULAR Length	110A 110B 110C 110D Roughness		0 0 0 OutOffset	0 0 0 InitFlow	
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; ;600mm 101-100-E_1	102.61 104.13 104.11 104.31 From Nod 101 101	3.49 1.65 1.69 1.73 le	0 0 0 70 Node 100	TABULAR TABULAR TABULAR TABULAR Length 36.236 35.2	110A 110B 110C 110D Roughness 0.013	99.36	0 0 0 0utOffset 99.17	0 0 0 InitFlow 0	0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; ;600mm 101-100 101-100-E_1 101A-Obsidian_St ;750mm	102.61 104.13 104.11 104.31 From Nod 101 101 creet-3 10	3.49 1.65 1.69 1.73 Ne 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 70 Node 100 04 20bsidian_St-3	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28	110A 110B 110C 110D Roughness 0.013 0.013 0.013	99.36 96.71 103.17	0 0 0 0utOffset 99.17 96.525 102.98	0 0 0 InitFlow 0 0 0	0 0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;;	102.61 104.13 104.11 104.31 From Nod 101 101	3.49 1.65 1.69 1.73 Ne 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 10 Node 100	TABULAR TABULAR TABULAR TABULAR Length 36.236 35.2	110A 110B 110C 110D Roughness 0.013 0.013 0.013	99.36 96.71	0 0 0 0utOffset 99.17 96.525	0 0 0 InitFlow 0 0	0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;;	102.61 104.13 104.11 104.31 From Nod 101 101 creet-3 10	3.49 1.65 1.69 1.73 le 1 2 201A (1)	0 0 0 70 Node 100 04 20bsidian_St-3	TABULAR TABULAR TABULAR TABULAR Length 36.236 35.2 17.28	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013	99.36 96.71 103.17	0 0 0 0utOffset 99.17 96.525 102.98	0 0 0 InitFlow 0 0 0	0 0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; ;600mm 101-100-E_1 101A-Obsidian_St ;750mm 101-EX_109 ;300mm 102-101	102.61 104.13 104.11 104.31 From Nod 101 101 creet-3 10 100	3.49 1.65 1.69 1.73 le 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 To Node 100 04 Dbsidian_St-3	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28 10.421	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013 0.013	99.36 96.71 103.17 99.14	0 0 0 0utOffset 99.17 96.525 102.98 99.09	0 0 0 InitFlow 0 0 0	0 0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;;	102.61 104.13 104.11 104.31 From Nod 101 101 creet-3 10 100 102	3.49 1.65 1.69 1.73 le 1 2 21A	0 0 0 0 70 Node 100 04 0bsidian_St-3 EX_109 101	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28 10.421 62.924	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013 0.013	99.36 96.71 103.17 99.14 100.67	0 0 0 0utOffset 99.17 96.525 102.98 99.09 99.73	0 0 0 InitFlow 0 0 0 0	0 0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; 5;00mm 101-100-E_1 101A-Obsidian_St ;750mm 101-EX_109 ;300mm 102-101 102-101-E_1 102A-101A ;525mm	102.61 104.13 104.11 104.31 From Nod 101 101 100 100 102 102	3.49 1.65 1.69 1.73 le	0 0 0 0 To Node 100 14 Dbsidian_St-3 EX_109 101	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28 10.421 62.924 59.379	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	99.36 96.71 103.17 99.14 100.67 98.62	0 0 0 0 0utOffset 99.17 96.525 102.98 99.09 99.73 97.833	0 0 0 InitFlow 0 0 0 0 0	0 0 0 0
;CB 108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;;	102.61 104.13 104.11 104.31 From Nod 101 101 101 100 102 102 102 102 102 103	3.49 1.65 1.69 1.73 Ne 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 70 Node 100 14 Dbsidian_St-3 EX_109 101 11 101A 101	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28 10.421 62.924 59.379 19.13 32.026	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	99.36 96.71 103.17 99.14 100.67 98.62 103.72 99.83	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110C ;CB 110D [CONDUITS] ;;Name MaxFlow ;; 5;00mm 101-100-E_1 101A-Obsidian_St ;750mm 101-EX_109 ;300mm 102-101 102-101-E_1 102A-101A ;525mm	102.61 104.13 104.11 104.31 From Nod 101 101 101 102 102 102 102 102 102 102	3.49 1.65 1.69 1.73 le 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 70 Node 100 14 Dbsidian_St-3 EX_109 101 101 101 101 101 12	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28 10.421 62.924 59.379 19.13 32.026 28.692	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	99.36 96.71 103.17 99.14 100.67 98.62 103.72 99.83 97.38	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0
108A ;CB 110A ;CB 110B ;CB 110C ;CB 110D [CONDUITS] ;Name MaxFlow MaxFlow ;;	102.61 104.13 104.11 104.31 From Nod 101 101 101 100 102 102 102 102 102 103	3.49 1.65 1.69 1.73 le 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 70 Node 100 14 Dbsidian_St-3 EX_109 101 11 101A 101	TABULAR TABULAR TABULAR Length 36.236 35.2 17.28 10.421 62.924 59.379 19.13 32.026	110A 110B 110C 110D Roughness 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	99.36 96.71 103.17 99.14 100.67 98.62 103.72 99.83	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0

;525mm 104-103	104	103	72.069	0.013	100.61	99.89	0	0
104-103-E_1	104	33	68.139	0.013	98.66	97.979	0	0
104A-104B	104A	102A	35.203	0.013	104.35	103.78	0	0
;525mm 105-104	105	104	44.684	0.013	101.13	100.68	0	0
105-104-E_1	105	35	42.654	0.013	99.18	98.75	0	0
105A-104A	105A	104A	68	0.013	105.31	104.29	0	0
105C-104A	105C	104A	53.3	0.013	105.25	104.29	0	0
;300mm 106-105	106	105	43.743	0.013	101.5	101.28	0	0
107.105-E_1	107	36	44.166	0.013	99.59	99.222	0	0
;525mm 107-105	107	105	45.352	0.013	101.61	101.16	0	0
;450mm 108-107	108	107	36.101	0.013	101.72	101.54	0	0
108-107-E_1	108	37	35.176	0.013	99.77	99.599	0	0
;300mm 109-107	109	107	70.452	0.013	102.11	101.76	0	0
;300mm 110-108	110	108	79.889	0.013	102.19	101.79	0	0
110-108-E_1	110	38	79.009	0.013	100.24	99.85	0	0
110B-S	110B	Obsidian_St-2	18	0.013	105.68	105.59	0	0
110C-110B	110C	110B	5	0.013	105.7	105.68	0	0

110D		110B		9.63	0.013	105.94	105.68	0	0
105B		J10		59.5	0.013	102.53	102.35	0	0
	Node	To Node		Туре	Offset	Qcoeff	Gated	CloseTim	e
101A		101		SIDE	101.73	0.572	NO	0	
102A		102		SIDE	101.98	0.572	NO	0	
1044		104		CTDE	102 66	0 572	NO	٥	
1044		104		SIDE	102.00	0.572	NO	0	
108A		108		SIDE	104.15	0.572	NO	0	
1100		110		SIDE	104.36	0.572	NO	0	
J10		105		SIDE	102.35	0.572	NO	0	
From	Node	To Node		Туре	CrestHt	Qcoeff	Gated	EndCon	
Surcharge	RoadWidth	RoadSurf	Coeff.	Curve					
		110C			105.7	1.38	NO	0	0
110A		110D		TRANSVERSE	106	1.38	NO	0	0
		To Node			Туре	-	-	Qexpon	
103A		103		100.31	TABULAR/HE	AD IPE	X-40		
105A		105		103.32	TABULAR/HE	AD IPE	X-105		
	1058 From 101A 102A 104A 108A 1100 J10 Surcharge 108A 110A From 103A	101A 102A 104A 108A 110D J10 Surcharge RoadWidth 108A 110A From Node	105BJ10From NodeTo Node101A101102A102104A104108A108110D110J10105SurchargeRoadWidth108A110C110A110D108To NodeFrom NodeTo Node108A110C108A110C108A100108A100	105BJ10From NodeTo Node101A101102A102104A104108A108110D110J10105SurchargeRoadWidthTo Node108A110C110A110D108A110C108A110C108A110D108A110D108A110D108A100From NodeTo Node103A103	105BJ1059.5From NodeTo NodeType101A101SIDE102A102SIDE104A104SIDE108A108SIDE110D110SIDEJ10105SIDE108A110CTRAPEZOIDAN108A110DTRANSVERSEFrom NodeTo NodeOffset108A110DTRANSVERSE108A110DTRANSVERSE108A103100.31	105B J10 59.5 0.013 From Node To Node Type Offset 101A 101 SIDE 101.73 102A 102 SIDE 101.98 104A 104 SIDE 102.66 108A 108 SIDE 104.15 110D 110 SIDE 104.36 101 105 SIDE 102.35 Surcharge RoadWidth RoadSurf Coeff. Curve 108A 110C TRAPEZOIDAL 105.7 110A 110D TRANSVERSE 106 From Node To Node Offset Type 103A	105B J10 59.5 0.013 102.53 From Node To Node Type Offset Qcoeff 101A 101 SIDE 101.73 0.572 102A 102 SIDE 101.98 0.572 104A 104 SIDE 102.66 0.572 108A 108 SIDE 104.15 0.572 110D 110 SIDE 104.36 0.572 110D 105 SIDE 104.36 0.572 Surcharge RoadWidth RoadSurf Coeff. Curve 108A 110D TRAPEZOIDAL 105.7 1.38 110A 110D TRANSVERSE 106 1.38 From Node To Node Offset Type QTal 103A 103 100.31 TABULAR/HEAD IPE	105B J10 59.5 0.013 102.53 102.35 From Node To Node Type Offset Qcoeff Gated 101A 101 SIDE 101.73 0.572 NO 102A 102 SIDE 101.98 0.572 NO 104A 104 SIDE 102.66 0.572 NO 108A 108 SIDE 104.15 0.572 NO 110D 110 SIDE 104.36 0.572 NO 108A 108 SIDE 104.45 0.572 NO 110D 110 SIDE 104.36 0.572 NO Surcharge RoadWidth To Node Type CrestHt Qcoeff Gated 108A 110C TRAPEZOIDAL 105.7 1.38 NO 110A 10D TRANSVERSE 106 1.38 NO 110A 10D TRANSVERSE 106 1.38 NO 103A 103 100.31 TABULAR/HEAD IPEX-40	105B J10 59.5 0.013 102.53 102.35 0 From Node To Node Type Offset Qcoeff Gated CloseTime 101A 101 SIDE 101.73 0.572 NO 0 102A 102 SIDE 101.98 0.572 NO 0 104A 104 SIDE 102.66 0.572 NO 0 108A 108 SIDE 104.15 0.572 NO 0 110D 110 SIDE 104.36 0.572 NO 0 Surcharge RoadWidth To Node Type CrestHt Qcoeff Gated EndCon 108A 110C TRAPEZOIDAL 105.77 1.38 NO 0 108A 110D TRANSVERSE 106 1.38 NO 0 108A 110D TO Node Offset Type Qtable/Qcoeff Qexpon 108A 110D TANSVERSE 106 1.38 NO 0 103A 103 100.

NO ;200mm 110A-01 13 NO ;200mm 110B-01 13 NO ;200mm	05C 10A 10B 10C	105 110 110 110	:	103.82 102.61 104.16 104.11	TABULAR/H TABULAR/H TABULAR/H TABULAR/H	IEAD IF IEAD IF	EX-90 EX-90 EX-80 EX-105	
NO ;200mm 110A-01 1: NO ;200mm 110B-01 1: NO ;200mm 110C-01 1:	10A 10B	110 110	:	102.61 104.16	TABULAR/H TABULAR/H	IEAD IF IEAD IF	EX-90 EX-80	
;200mm 110A-01 1: NO ;200mm 110B-01 1: NO ;200mm 110C-01 1:	10B	110	:	104.16	TABULAR/H	IEAD IF	EX-80	
110A-01 1: NO ;200mm 110B-01 1: NO ;200mm 110C-01 1:	10B	110	:	104.16	TABULAR/H	IEAD IF	EX-80	
NO ;200mm 110B-01 11 NO ;200mm 110C-01 11	10B	110	:	104.16	TABULAR/H	IEAD IF	EX-80	
110B-01 11 NO ;200mm 110C-01 11								
NO ;200mm 110C-01 11								
;200mm 110C-01 11	10C	110	:	104.11	TABULAR/H		FX-105	
110C-01 11	10C	110	:	104.11	TABULAR/H		EX_105	
	10C	110		104.11	TABULAR/H		FY_105	
NO						IEAD IF	LX 105	
[XSECTIONS]								
	hape	Geom1	Geom	2 Ge	om3 Ge	eom4 E	arrels	Culvert
;;								
	IRCULAR	0.675	0	0	0	1		
	ECT_CLOSED		1.5	0	0	1		
101A-Obsidian_Stree					0	1		
		0.675	_ 0	0	0	1		
		0.3	0	0	0	1		
	ECT_CLOSED		1.5	0	0	1		
	RREGULAR	7.9_ROW_1.4_>	(-Fall 0	0	0	1		
		0.525	0	0	0	1		
	ECT_CLOSED		1.5	0	0	1		
_	RREGULAR	6.40_ROW_2.0_	X-Fall 0	0	0	1		
104-103 CI	IRCULAR	0.525	0	0	0	1		
		1	1.5	0	0	1		
	RREGULAR	6.40_ROW_1.6_	X-Fall 0	0	0	1		
105-104 CI	IRCULAR	0.45	0	0	0	1		
105-104-E_1 RE	ECT_CLOSED	1	1.5	0	0	1		
	RREGULAR	11.6_ROW_1.3_		0	0	1		
	RREGULAR	11.6_ROW_1.3_		0	0	1		
	IRCULAR	0.3	0	0	0	1		
107.105-E_1 RE	ECT_CLOSED	1	1.5	0	0	1		
107-105 CI	IRCULAR	0.45	0	0	0	1		
		0.525	0	0	0	1		
108-107-E_1 RE		1	1.5	0	0	1		
109-107 CI	IRCULAR	0.3	0	0	0	1		
110-108 CI	IRCULAR	0.45	0	0	0	1		
	IRCULAR ECT_CLOSED		0 1.5	0 0	0 0	1		
110-108-E_1 RE			1.5	0				
110-108-E_1 RE 110B-S IF	ECT_CLOSED	1	1.5 _X-Fall 0	0 0	0	1		
110-108-E_1 RE 110B-S IF 110C-110B IF	ECT_CLOSED RREGULAR	1 6.40_ROW_2.3_	1.5 _X-Fall 0 _X-Fall 0	0 0	0 0	1 1		
110-108-E_1 RH 110B-S IF 110C-110B IF 110D-110B IF C1 C1	ECT_CLOSED RREGULAR RREGULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_	1.5 _X-Fall 0 _X-Fall 0	0 0 0	0 0 0	1 1 1		
110-108-E_1 RH 110B-S IH 110C-110B IH 110D-110B IH C1 C1 101A-01 C1	ECT_CLOSED RREGULAR RREGULAR RREGULAR IRCULAR IRCULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3	1.5 _X-Fall 0 _X-Fall 0 _X-Fall 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1		
110-108-E_1 RI 110B-S IF 110C-110B IF 110D-110B IF C1 C2 101A-01 C2 102A-01 C2	ECT_CLOSED RREGULAR RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115	1.5 _X-Fall 0 _X-Fall 0 _X-Fall 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1		
110-108-E_1 RI 110B-S IF 110C-110B IF 110C-110B IF C1 C2 101A-01 C2 102A-01 C2 104A-01 C2	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165	1.5 _X-Fall 0 _X-Fall 0 _X-Fall 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 RI 110B-S IF 110C-110B IF 110D-110B IF C1 C1 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102	1.5 [X-Fall 0 [X-Fall 0 [X-Fall 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If C1 C1 101A-01 C1 104A-01 C1 104A-01 C1 1088A-01 C1 110D-01 C1	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.165 0.102 0.088	1.5 X-Fall 0 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If 101A-01 C1 102A-01 C1 108A-01 C1 108A-01 C1 008A-01 C1 00F1 C1	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.888 0.13	1.5 X-Fall 0 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If 101A-01 C1 102A-01 C1 108A-01 C1 108A-01 C1 100-10 C1 108A-110C Tf	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.75 0.3 0.115 0.165 0.165 0.102 0.088 0.13 0.1	1.5 X-Fall 0 X-Fall 0 2-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 RI 110B-S II 110C-110B IF 110D-110B IF 101A-01 C1 102A-01 C1 108A-01 C1 110D-01 C1 108A-110C TF	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR	1 6.40_ROW_2.3_ 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.888 0.13	1.5 X-Fall 0 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 Ri 110B-S If 110C-110B If 110D-110B If 110D-110B If 101A-01 C1 102A-01 C1 108A-01 C1 1071 C1 108A-01 C1 108A-110C Tf 110A-110D Ri [TRANSECTS] ;;Transect Data in	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.088 0.13 0.1 0.1	1.5 X-Fall 0 X-Fall 0 2-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 RH 110B-S IF 110C-110B IF C1 C1 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 110A-110D RH [TRANSECTS] ;;Transect Data in ;	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.088 0.13 0.1 0.1	1.5 X-Fall 0 X-Fall 0 2-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		
110-108-E_1 Rf 110B-S IF 110C-110B IF C1 C1 101A-01 C1 104A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR APEZOIDAL ECT_OPEN HEC-2 forma 0.013	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.165 0.102 0.088 0.13 0.1 0.1	1.5 [X-Fall 0 [X-Fall 0 [X-Fall 0 0 0 0 0 0 0 0 0 0 6.4 6.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1		0
110-108-E_1 Rf 110B-S IF 110C-110B IF C1 C1 101A-01 C1 104A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C TF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_R0W_1.3_X-F	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.088 0.13 0.1 0.1 0.1 .1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0 0.0	0.	0
110-108-E_1 Rf 110B-S IF 110C-110B IF 110D-110B IF C1 C1 101A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 ST 11.6_ROW_1.3_X-F GR 0.198 -7.4	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR HEC-2 forma 0.013 Fall 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6 6.40_ROW_0.6 0.75 0.3 0.115 0.105 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1	1.5 [X-Fall 0 [X-Fall 0 [X-Fall 0 0 0 0 0 0 0 0 0 0 6.4 6.4	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1		8
110-108-E_1 RH 110B-S IF 110C-110B IF C1 C1 102A-01 C1 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 110A-110D RH [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.3 5.8	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR HEC-2 forma 0.013 Fall 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.088 0.13 0.1 0.1 0.1 .1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0 0.0	0.	0
110-108-E_1 RH 110B-S IF 110C-110B IF 110D-110B IF C1 C1 102A-01 C1 104A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-10C TF 110A-110D RH [TRANSECTS] ;; XT 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 GR 0.3 5.8 ; ;	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR HEC-2 forma 0.013 Fall 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6 6.40_ROW_0.6 0.75 0.3 0.115 0.105 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0 0.0	0.	0
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If C1 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C Tf 110A-110D Rf [TRANSECTS] ;; Transect Data in ; NC 0.025 0.025 X1 1.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.3 5.8 ; NC 0.025 0.025 0.025	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013	1 6.40_ROW_2.3 6.40_ROW_0.6 6.40_ROW_0.6 0.75 0.3 0.115 0.105 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 0 0.0	0.	0
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If 101A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C Tf 110A-110D Rf [TRANSECTS] ;; ;; Transect Data in ; C 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.3 5.8 ; NC 0.025 0.025 X1 14.6_ROW_1.3_X-F 3.8 ; NC 0.025 0.025 X1 14.75_ROW 3.8	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.165 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15	0. 5.8	0
110-108-E_1 RH 110B-S IF 110C-110B IF 110D-110B IF 110D-110B IF 1010-110B IF 1010-110B IF 102A-01 CI 102A-01 CI 108A-01 CI 108A-01 CI 108A-01 CI 108A-10C TF 110D-11 CI 108A-110C TF 110A-110D RH [TRANSECTS] ;;;rransect Data in ; R 0.925 0.025 X1 11.6_ROW_1.3_X-F RH GR 0.3 5.8 ; NC 0.025 0.025 X1 X1 14.75_ROW GR 0.2 0	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6 6.40_ROW_0.6 0.75 0.3 0.115 0.165 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 0.6 0.15 0.0	0. 5.8 0.0	0
110-108-E_1 Ri 110B-S If 110C-110B If 110D-110B If 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C If 110D-11 C1 108A-110C If I10A-110D Ri [TRANSECTS] ; ; Transect Data in ; R 0.025 0.025 X1 1.6_ROW_1.3_X-F GR 0.198 ; NC NC 0.025 X1 1.4.75_ROW GR 0.2 GR 0.2 GR 0.15	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 0.6 0.15 0.0	0. 5.8 0.0	0
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If 101A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C Tf 110A-110D Rf [TRANSECTS] ;; Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.198 -7.4 GR 0.25 0.025 X1 14.75_ROW GR 0.2 0 GR 0.15 10 ; 105 10 ; 10	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0	0. 5.8 0.0 10	0
110-108-E_1 Rf 110B-S If 110C-110B If 110D-110B If 101A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C Tf 110A-110D Rf [TRANSECTS] ;; ; Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.3 5.8 ; NC 0.025 0.025 X1 14.75_ROW GR 0.15 10 ; ; NC 0.025 0.025 X1 14.75_ROW GR 0.15 10 ; ; NC 0.025 0.025	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 0.6 0.15 0.0	0. 5.8 0.0	0
110-108-E_1 Rf 110B-S IF 110C-110B IF 110C-110B IF C1 C1 C1 102A-01 C1 102A-01 C1 102A-01 C1 102A-01 C1 102A-01 C1 108A-01 C1 108A-01 C1 108A-110C IF I10A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.198 -7.4 GR 0.25 0.025 X1 14.75_ROW GR 0.2 0 GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.35 0	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0	0. 5.8 0.0 10	
110-108-E_1 Ri 110B-S If 110C-110B If 110D-110B If 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-10C If 110D-11 C1 108A-110C If I10A-110D Ri [TRANSECTS] ;; ; Transect Data in ; R 0.025 0.025 X1 1.6_ROW_1.3_X-F GR 0.198 ; R NC 0.025 X1 1.4.75_ROW GR 0.2 GR 0.15 ; NC NC 0.025 ; 1.0 ; 1.0 ; 1.0 ; 0 ; 0 ; 0 ; 0 ; <t< td=""><td>ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15</td><td>1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td><td>1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 6.4 6.4 6.4 5.8 0 0 0 5.8 0.0 1.5</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0.6 0.15 0.0 0.0</td><td>0. 5.8 0.0 10 0.0</td><td></td></t<>	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 6.4 6.4 6.4 5.8 0 0 0 5.8 0.0 1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0.0	0. 5.8 0.0 10 0.0	
110-108-E_1 Rf 110B-S IF 110C-110B IF 110C-110B IF C1 C1 C1 101A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.15 10 ; NC 0.025 0.025 X1 14.75_ROW GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.15 13.25 ;	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15 0.35	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 6.4 6.4 6.4 5.8 0 0 0 5.8 0.0 1.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0.0	0. 5.8 0.0 10 0.0	
110-108-E_1 Rf 110B-S IF 110C-110B IF 110C-110B IF 110D-110B IF 110D-110B IF 102A-01 CI 102A-01 CI 104A-01 CI 108A-01 CI 108A-01 CI 108A-01 CI 108A-01 CI 108A-110C IF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 14.75_ROW GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.15 13.25 ; NC 0.025 0.025 NC 0.025 0.02	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15 0.35 0.013 7 0.15 0.35 0.013	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0 0.0 0	0. 5.8 0.0 10 0.0 13.25	
110-108-E_1 Rf 110B-S IF 110C-110B IF 110D-110B IF C1 C1 102A-01 C1 102A-01 C1 102A-01 C1 102A-01 C1 102A-01 C1 104A-01 C1 108A-10C IF 108A-110C IF 108A-110C IF (TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 14.75_ROW GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.35 0 GR 0.15 13.25 ; NC 0.025 0.025 X1 18.00_ROWLS	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15 0.35 0.013 4	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0.0	0. 5.8 0.0 10 0.0	
110-108-E_1 Rf 110B-S IF 110C-110B IF 110C-110B IF C1 C1 C1 102A-01 C1 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 108A-110C TF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.25 0.025 X1 14.75_ROW GR 0.2 0 GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.35 0 GR 0.15 13.25 ; NC 0.025 0.025 X1 18.00_ROW_LS GR 0.35 0	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15 0.35 0.013 4	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0 0.0 0	0. 5.8 0.0 10 0.0 13.25	
110-108-E_1 Rf 110B-S IF 110C-110B IF 110D-110B IF C1 C1 101A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-10C TF 108A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.15 10 ; NC 0.025 0.025 X1 14.75_ROW GR 0.2 0 GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.35 0 GR 0.15 13.25 ; NC 0.025 0.025 X1 18.00_ROW_LS GR 0.35 0 ;	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR APEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.35 0.013 7 0.15 0.35 0.013 4 0.013 4 0.15	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.6 0.15 0.0 0 0.0 0	0. 5.8 0.0 10 0.0 13.25	
110-108-E_1 Rf 110B-S IF 110C-110B IF 110C-110B IF C1 C1 C1 102A-01 C1 102A-01 C1 102A-01 C1 104A-01 C1 108A-01 C1 108A-01 C1 108A-110C TF 108A-110C TF 110A-110D Rf [TRANSECTS] ;;Transect Data in ; NC 0.025 0.025 X1 11.6_ROW_1.3_X-F GR 0.198 -7.4 GR 0.198 -7.4 GR 0.198 -7.4 GR 0.25 0.025 X1 14.75_ROW GR 0.2 0 GR 0.15 10 ; NC 0.025 0.025 X1 18.00_ROW GR 0.35 0 GR 0.15 13.25 ; NC 0.025 0.025 X1 18.00_ROW_LS GR 0.35 0	ECT_CLOSED RREGULAR RREGULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR IRCULAR RAPEZOIDAL ECT_OPEN HEC-2 forma 0.013 Fall 7 0.15 0.349 0.013 7 0.15 0.35 0.013 7 0.15 0.35 0.013 4 0.15 0.35 0.013 4 0.15 0.013 4 0.15 0.013 4 0.15 0.013 4 0.013 1 0.013 1 0.013 1 0.013 0.015 0.013 0.015 0.013 0.013 0.015 0.015 0.015 0.015 0.015 0.015	1 6.40_ROW_2.3 6.40_ROW_0.6_ 6.40_ROW_0.6_ 0.75 0.3 0.115 0.102 0.088 0.13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.5 X-Fall 0 X-Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0 0.15 0.0 0.0 0.0	0. 5.8 0.0 10 0.0 13.25 0.0	

NC 0.025 0.025 0.013 X1 6.40_ROW_1.2_X-Fall 5 -3.2 3.2 0.0 0.0 0.0 0.0 0.0 GR 0.15 -3.2 0 -3.2 0.04 0 0.08 3.2 0.23 3.2 NC 0.025 0.025 0.013 X1 6.40_ROW_1.4_X-Fall 7 -3.2 3.2 0.0 0.0 0.0 0.0 0.0 0 GR 0.213 0.15 -3.2 0 -5.3 -3.2 0.045 0.09 3.2 GR 0.24 3.2 0.288 4.8 NC 0.025 0.025 0.013 -3.2 3.2 0.0 0.0 0.0 X1 6.40_ROW_1.6_X-Fall 5 0.0 0.0 -3.2 0.05 Ø 0.1 3.2 GR 0.15 -3.2 0 0.25 3.2 0.025 NC 0.025 0.013 3.2 0 X1 6.40_ROW_2.0_X-Fall 7 GR 0.216 -5.4 0.15 -3.2 -3.2 0.0 0.0 0.0 0.0 0.0 -3.2 0.065 ø 0.13 3.2 GR 0.28 3.2 0.328 4.8 NC 0.025 0.025 0.013 X1 6.40_ROW_2.3_X-Fall 7 3.2 -3.2 0.0 0.0 0.0 0.0 0.0 -7.1 0.15 -3.2 0 -3.2 0.075 0 GR 0.267 0.15 3.2 GR 0.3 0.417 3.2 7.1 NC 0.025 0.025 0.013 X1 7.9_ROW_1.4_X-Fall 5 GR 0.15 -3.95 0 -3.95 3.95 0.0 0.0 0.0 0.0 0.0 -3.95 0.055 0 0.11 3.95 0.26 3.95 [LOSSES] ;;Link Kentry Kexit Kavg Flap Gate Seepage ;;----------- ---------101-100 0.157 NO 0 0 0 101-EX 109 0 NO 0 0.168 0 102-101 1.344 0 NO 0 0 103-101 0 0.021 0 NO 0 104-103 1.344 NO 0 0 0 105-104 0.021 0 NO 0 0 106-105 1.344 NO 0 0 0 107-105 0 0.021 0 NO 0

0

1.344

NO

109-107 0.021 0 0 NO 110-108 Ø 1.344 0 NO [CURVES] ;;Name Туре X-Value Y-Value ;;-------------------P1-0 Pump1 0 2 1000 P1-Q 2 IPEX-105 Rating Ø Ø IPEX-105 0.1 3.11 **TPFX-105** 0.2 4.39 IPEX-105 0.3 5.37 IPEX-105 0.4 6.19 6.92 IPEX-105 0.5 IPEX-105 0.6 7.58 IPEX-105 0.7 8.19 8.76 IPEX-105 0.8 IPEX-105 9.29 0.9 9.79 IPEX-105 1 IPEX-105 1.1 10.27 10.73 IPEX-105 1.2 IPEX-105 1.3 11.16 IPEX-105 1.4 11.58 IPEX-105 1.5 11.99 IPEX-105 1.6 12.39 IPEX-105 1.7 12.77 13.14 IPEX-105 1.8 IPEX-105 1.9 13.5 IPEX-105 2 13.85 IPEX-105 2.1 14.19 IPEX-105 2.2 14.52 IPEX-105 2.3 14.85 IPEX-105 2.4 15.17 IPEX-105 2.5 15.48 IPEX-105 2.6 15.79 IPEX-105 2.7 16.09 IPEX-105 2.8 16.39 IPEX-105 2.9 16.68 IPEX-105 3 16.96

108-107

ø

0 0

0

IPEX-105		3.1	17.24
IPEX-105		3.2	17.52
IPEX-105		3.3	17.79
IPEX-105		3.4	18.06
IPEX-105		3.5	18.32
IPEX-105		3.6	18.58
IPEX-105		3.7	18.84
IPEX-105		3.8	19.09
IPEX-105		3.9	19.34
IPEX-105		4	19.59
IPEX-105		4.1	19.83
IPEX-105		4.2	20.07
IPEX-105		4.3	20.31
IPEX-105		4.4	20.55
IPEX-105		4.5	20.78
IPEX-105		4.6	21.01
IPEX-105		4.7	21.24
IPEX-105		4.8	21.46
IPEX-105		4.9	21.68
IPEX-105		5	21.9
	Rating		
IPEX-40	Rating	0	0
IPEX-40 IPEX-40	Rating	0 0.1	0 0.42
IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2	0 0.42 0.59
IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3	0 0.42 0.59 0.73
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4	0 0.42 0.59 0.73 0.85
IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3	0 0.42 0.59 0.73
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5	0 0.42 0.59 0.73 0.85 0.95
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6	0 0.42 0.59 0.73 0.85 0.95 1.04
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35 1.42
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35 1.42 1.48
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35 1.42 1.48 1.55 1.61 1.66
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35 1.42 1.48 1.55 1.61 1.66 1.72
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35 1.42 1.48 1.55 1.61 1.66 1.72 1.77
IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40 IPEX-40	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6	0 0.42 0.59 0.73 0.85 0.95 1.04 1.13 1.21 1.28 1.35 1.42 1.48 1.55 1.61 1.66 1.72

IPEX-40		1.9	1.88
IPEX-40		2	1.93
IPEX-40		2.1	1.97
IPEX-40		2.2	2.02
IPEX-40		2.3	2.07
IPEX-40		2.4	2.11
IPEX-40		2.5	2.16
IPEX-40		2.6	2.2
IPEX-40		2.7	2.24
IPEX-40		2.8	2.28
IPEX-40		2.9	2.32
IPEX-40		3	2.37
IPEX-40		3.1	2.4
IPEX-40		3.2	2.44
IPEX-40		3.3	2.48
IPEX-40		3.4	2.52
IPEX-40		3.5	2.56
IPEX-40		3.6	2.59
IPEX-40		3.7	2.63
IPEX-40		3.8	2.67
IPEX-40		3.9	2.7
IPEX-40		4	2.74
IPEX-40		4.1	2.77
IPEX-40		4.2	2.8
IPEX-40		4.3	2.84
IPEX-40		4.4	2.87
IPEX-40		4.5	2.9
IPEX-40		4.6	2.94
IPEX-40		4.7	2.97
IPEX-40		4.8	3
IPEX-40		4.9	3.03
IPEX-40		5	3.06
IPEX-50	Rating	0	0
IPEX-50	0	0.1	0.73
IPEX-50		0.2	1.02
IPEX-50		0.3	1.24
IPEX-50		0.4	1.43
IPEX-50		0.5	1.59
IPEX-50		0.6	1.75

IPEX-50	0.7	1.88
IPEX-50	0.8	2.02
IPEX-50	0.9	2.14
IPEX-50	1	2.25
IPEX-50	1.1	2.36
IPEX-50	1.2	2.47
IPEX-50	1.3	2.57
IPEX-50	1.4	2.67
IPEX-50	1.5	2.76
IPEX-50	1.6	2.85
IPEX-50	1.7	2.94
IPEX-50	1.8	3.03
IPEX-50	1.9	3.11
IPEX-50	2	3.19
IPEX-50	2.1	3.27
IPEX-50	2.2	3.35
IPEX-50	2.3	3.42
IPEX-50	2.4	3.5
IPEX-50	2.5	3.57
IPEX-50	2.6	3.64
IPEX-50	2.7	3.71
IPEX-50	2.8	3.78
IPEX-50	2.9	3.85
IPEX-50	3	3.91
IPEX-50	3.1	3.98
IPEX-50	3.2	4.04
IPEX-50	3.3	4.11
IPEX-50	3.4	4.17
IPEX-50	3.5	4.23
IPEX-50	3.6	4.29
IPEX-50	3.7	4.35
IPEX-50	3.8	4.41
IPEX-50	3.9	4.46
IPEX-50	4	4.52
IPEX-50	4.1	4.58
IPEX-50	4.2	4.63
IPEX-50	4.3	4.69
IPEX-50	4.4	4.74
IPEX-50	4.5	4.8
IPEX-50	4.6	4.85

IPEX-50		4.7	4.9
IPEX-50		4.8	4.96
IPEX-50		4.8	5.01
IPEX-50		5	5.06
II LX 50		5	5.00
IPEX-55	Rating	0	0
IPEX-55		0.1	0.9
IPEX-55		0.2	1.23
IPEX-55		0.3	1.49
IPEX-55		0.4	1.72
IPEX-55		0.5	1.91
IPEX-55		0.6	2.09
IPEX-55		0.7	2.26
IPEX-55		0.8	2.42
IPEX-55		0.9	2.56
IPEX-55		1	2.7
IPEX-55		1.1	2.83
IPEX-55		1.2	2.96
IPEX-55		1.3	3.08
IPEX-55		1.4	3.2
IPEX-55		1.5	3.31
IPEX-55		1.6	3.42
IPEX-55		1.7	3.53
IPEX-55		1.8	3.63
IPEX-55		1.9	3.73
IPEX-55		2	3.83
IPEX-55		2.1	3.92
IPEX-55		2.2	4.01
IPEX-55		2.3	4.11
IPEX-55		2.4	4.19
IPEX-55		2.5	4.28
IPEX-55		2.6	4.37
IPEX-55		2.7	4.45
IPEX-55		2.8	4.53
IPEX-55		2.9	4.61
IPEX-55		3	4.69
IPEX-55		3.1	4.77
IPEX-55		3.2	4.85
IPEX-55		3.3	4.92
IPEX-55		3.4	5

IPEX-80 IPEX-80 IPEX-80 IPEX-80 IPEX-80 IPEX-80 IPEX-80 IPEX-80 IPEX-80 IPEX-80		1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2	6.26 6.52 6.76 7 7.23 7.45 7.67 7.88 8.08 8.28 8.48
IPEX-80 IPEX-8		2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5	8.67 8.85 9.04 9.21 9.39 9.56 9.73 9.9 10.06 10.22 10.38 10.54 10.69 10.84 10.99 11.14 11.29 11.43 11.57 11.71 11.85 11.99 12.12 12.26 12.39 12.52 12.65 12.78
IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90 IPEX-90	Rating	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	0 2.21 3.17 3.9 4.51 5.65 5.54 5.99 6.41 6.8 7.17

IPEX-55		3.5	5.07
IPEX-55		3.6	5.14
IPEX-55		3.7	5.21
IPEX-55		3.8	5.29
IPEX-55		3.9	5.35
IPEX-55		4	5.42
IPEX-55		4.1	5.49
IPEX-55		4.2	5.56
IPEX-55		4.3	5.62
IPEX-55		4.4	5.69
IPEX-55		4.5	5.75
IPEX-55		4.6	5.82
IPEX-55		4.7	5.88
IPEX-55		4.8	5.94
IPEX-55		4.9	6.01
IPEX-55		5	6.07
IPEX-80	Rating	0	0
IPEX-80	-	0.1	1.81
IPEX-80		0.2	2.56
IPEX-80		0.3	3.13
IPEX-80		0.4	3.61
IPEX-80		0.5	4.04
IPEX-80		0.6	4.43
IPEX-80		0.7	4.78
IPEX-80		0.8	5.11
IPEX-80		0.9	5.42
IPEX-80		1	5.71
IPEX-80		1.1	5.99
IPEX-80		1.2	6.26
IPEX-80		1.3	6.52
IPEX-80		1.4	6.76
IPEX-80		1.5	7
IPEX-80		1.6	7.23
IPEX-80		1.7	7.45
IPEX-80		1.8	7.67
IPEX-80		1.9	7.88
IPEX-80		2	8.08
IPEX-80		2.1	8.28
IPEX-80		2.2	8.48

IPEX-90	1.1	7.52
IPEX-90	1.2	7.86
IPEX-90	1.3	8.19
IPEX-90	1.4	8.5
IPEX-90	1.5	8.8
IPEX-90	1.6	9.09
IPEX-90	1.7	9.37
IPEX-90	1.8	9.64
IPEX-90	1.9	9.91
IPEX-90	2	10.17
IPEX-90	2.1	10.42
IPEX-90	2.2	10.66
IPEX-90	2.3	10.9
IPEX-90	2.4	11.14
IPEX-90	2.5	11.37
IPEX-90	2.6	11.6
IPEX-90	2.7	11.82
IPEX-90	2.8	12.04
IPEX-90	2.9	12.25
IPEX-90	3	12.46
IPEX-90	3.1	12.67
IPEX-90	3.2	12.87
IPEX-90	3.3	13.07
IPEX-90	3.4	13.27
IPEX-90	3.5	13.46
IPEX-90	3.6	13.65
IPEX-90	3.7	13.84
IPEX-90	3.8	14.03
IPEX-90	3.9	14.21
IPEX-90	4	14.4
IPEX-90	4.1	14.58
IPEX-90	4.2	14.75
IPEX-90	4.3	14.93
IPEX-90	4.4	15.1
IPEX-90	4.5	15.27
IPEX-90	4.6	15.44
IPEX-90	4.7	15.61
IPEX-90	4.8	15.77
IPEX-90	4.9	15.94
IPEX-90	5	16.1

101A	Storage	0	0.36
101A		1.34	0.36
101A		1.44	13.8
101A		1.54	13.81
102A	Storage	0	0.36
102A		1.39	0.36
102A		1.74	363.4
102A		1.84	363.41
102B	Storage	0	0.36
102B		1.38	0.36
102B		1.63	113.2
102B		1.73	113.21
103A	Storage	0	0.36
103A		3.3	0.36
103A		3.5	176.8
103A		3.6	176.81
104A	Storage	0	0.36
104A		1.34	0.36
104A		1.69	734.3
104A		1.79	734.31
104B	Storage	0	0.36
104B		1.38	0.36
104B		1.63	140.5
104B		1.73	140.51
105A	Storage	0	0.36
105A		1.78	0.36
105A		1.98	158.7
105A		2.08	158.71
105C	Storage	0	0.36
105C		1.38	0.36
105C		1.43	12
105C		1.53	12.01

108A	Storage	0	0.36
108A		1.2	0.36
108A		1.55	668.6
108A		1.65	668.61
110A	Storage	0	0.36
110A		3.04	0.36
110A		3.39	255.5
110A		3.49	255.51
110B	Storage	0	0.36
110B		1.32	0.36
110B		1.55	74.7
110B		1.65	74.71
110C	Storage	0	0.36
110C		1.24	0.36
110C		1.59	808.3
110C		1.69	808.31
110D	Storage	0	0.36
110D		1.41	0.36
110D		1.63	174.1
110D		1.73	174.11
C655B-V	Storage	0	0
C655B-V		1	0
C655B-V		1.001	0
C655B-V		3	0
C664B-V	Storage	0	38.5
C664B-V		1	38.5
C664B-V		1.001	0
C664B-V		3	0
C666B-V	Storage	0	49.9
C666B-V		1	49.9
C666B-V		1.001	0
C666B-V		3	0

C668A-V C668A-V C668A-V C668A-V	Storage	0 1 1.001 3.17	11.6 11.6 0 0
C719A-V C719A-V C719A-V C719A-V	Storage	0 1 1.001 3	7.2 7.2 0
C724B-V C724B-V C724B-V C724B-V	Storage	0 1 1.001 3	25.2 25.2 0 0
C726B-V C726B-V C726B-V C726B-V	Storage	0 1 1.001 3	12.3 12.3 0 0
C731C-V C731C-V C731C-V C731C-V	Storage	0 1 1.001 3	26.12 26.12 0 0
	Date	0:20	Value 0 2.81 3.5 4.69 7.3 18.21 76.81 24.08 12.36 8.32
002C		1:40	6.3

002C 002C 002C 002C 002C 002C 002C 002C		1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00	5.09 4.29 3.72 3.29 2.95 2.68 2.46 2.28
002S 002S 002S 002S 002S 002S 002S 002S	07/23/2009 (07/23/2009 (07/23	00:15:00 00:30:00 00:45:00 01:45:00 01:15:00 01:45:00 02:00:00 02:15:00 02:30:00 02:45:00 03:45:00 03:45:00 04:45:00 04:45:00 04:45:00 05:45:00 05:45:00 05:45:00 06:00:00 06:15:00 06:40:00 06:40:00 07:15:00	1.08 1.08 1.08 1.08 1.08 1.08 1.296 1.296 1.296 1.296 1.296 1.728 1.728 1.728 1.728 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592 2.592
0025 0025 0025 0025 0025 0025 0025 0025	07/23/2009 0 07/23/2009 0	08:00:00 08:15:00 08:30:00 08:45:00 09:00:00 09:15:00 09:45:00 10:00:00 10:15:00 10:30:00 11:00:00 11:5:00 11:30:00	2.592 1.512 1.512 1.512 1.512 1.512 1.512 1.512 1.512 1.512 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864
002S 002S 002S 002S 002S 002S 002S 002S	07/23/2009 (07/23/2009 (07/23/2000 (07/23/200 (07/23/	08:00:00 08:00:00 08:15:00 08:30:00 08:45:00 09:00:00 09:00:00 09:30:00 09:45:00 10:00:00 10:45:00 11:00:00 11:00:00 11:30:00 11:00 0:10 0:20 0:30 0:40 0:50 1:40 1:40 1:50 2:10 2:10 2:10 2:10 2:20 2:30 2:50 3:00	1.512 1.512 1.512 1.512 1.512 1.512 1.512 1.512 1.512 0.864 0.864 0.864 0.864 0.864 0.864 0.864 0.864

0055	07/23/2009	10:30:00	1.152
0055	07/23/2009	10:45:00	1.152
005S	07/23/2009	11:00:00	1.152
0055	07/23/2009	11:15:00	1.152
0055	07/23/2009	11:30:00	1.152
0055	07/23/2009	11:45:00	1.152
005S	07/23/2009	12:00:00	0
0105	07/23/2009	00:00:00	1.68
010S	07/23/2009	00:15:00	1.68
0105	07/23/2009	00:30:00	1.68
0105	07/23/2009	00:45:00	1.68
0105	07/23/2009	01:00:00	1.68
0105	07/23/2009	01:15:00	1.68
0105	07/23/2009	01:30:00	1.68
0105	07/23/2009	01:45:00	1.68
0105	07/23/2009	02:00:00	2.02
0105	07/23/2009	02:15:00	2.02
0105	07/23/2009	02:30:00	2.02
0105	07/23/2009	02:45:00	2.02
0105	07/23/2009	03:00:00	2.69
0105	07/23/2009	03:15:00	2.69
0105	07/23/2009	03:30:00	2.69
0105	07/23/2009	03:45:00	2.69
0105	07/23/2009	04:00:00	4.03
0105	07/23/2009	04:15:00	4.03
0105	07/23/2009	04:30:00	5.38
0105	07/23/2009	04:45:00	5.38
0105	07/23/2009	05:00:00	8.06
010S	07/23/2009	05:15:00	8.06 32.26
0105	07/23/2009	05:30:00	
0105	07/23/2009	05:45:00 06:00:00	88.70
010S 010S	07/23/2009 07/23/2009	06:00:00 06:15:00	12.10 12.10
010S 010S	07/23/2009	06:30:00	5.38
0105	07/23/2009	06:30:00 06:45:00	5.38
010S 010S	07/23/2009	06:45:00	5.38 4.03
010S 010S	07/23/2009	07:15:00	4.03
010S 010S	07/23/2009	07:30:00	4.03
0105	07/23/2009	07:45:00	4.03
0105	0772572005	07.45.00	4.05

005S	07/23/2009	00:30:00	1.44
005S	07/23/2009	00:45:00	1.44
005S	07/23/2009	01:00:00	1.44
005S	07/23/2009	01:15:00	1.44
005S	07/23/2009	01:30:00	1.44
005S	07/23/2009	01:45:00	1.44
005S	07/23/2009	02:00:00	1.728
005S	07/23/2009	02:15:00	1.728
005S	07/23/2009	02:30:00	1.728
005S	07/23/2009	02:45:00	1.728
005S	07/23/2009	03:00:00	2.304
005S	07/23/2009	03:15:00	2.304
005S	07/23/2009	03:30:00	2.304
005S	07/23/2009	03:45:00	2.304
005S	07/23/2009	04:00:00	3.456
005S	07/23/2009	04:15:00	3.456
005S	07/23/2009	04:30:00	4.608
005S	07/23/2009	04:45:00	4.608
005S	07/23/2009	05:00:00	6.912
005S	07/23/2009	05:15:00	6.912
005S	07/23/2009	05:30:00	27.648
005S	07/23/2009	05:45:00	76.032
005S	07/23/2009	06:00:00	10.368
005S	07/23/2009	06:15:00	10.368
005S	07/23/2009	06:30:00	4.608
005S	07/23/2009	06:45:00	4.608
005S	07/23/2009	07:00:00	3.456
005S	07/23/2009	07:15:00	3.456
005S	07/23/2009	07:30:00	3.456
005S	07/23/2009	07:45:00	3.456
005S	07/23/2009	08:00:00	2.016
005S	07/23/2009	08:15:00	2.016
005S	07/23/2009	08:30:00	2.016
005S	07/23/2009		2.016
005S	07/23/2009	10:00:00	1.152
005S	07/23/2009	10:15:00	1.152

0105	07/23/2009	08:00:00	2.35
0105	07/23/2009	08:15:00	2.35
010S	07/23/2009	08:30:00	2.35
010S	07/23/2009	08:45:00	2.35
010S	07/23/2009	09:00:00	2.35
010S	07/23/2009		2.35
0105	07/23/2009	09:30:00	2.35
0105	07/23/2009	09:45:00	2.35
0105	07/23/2009		1.34
0105	07/23/2009		1.34
0105	07/23/2009		1.34
0105	07/23/2009		1.34
0105	07/23/2009		1.34
0105	07/23/2009		1.34
0105	07/23/2009		1.34
0105	07/23/2009		1.34
010S	07/23/2009	12:00:00	0.00
022M		0:10	1.334157488
022M		0:20	1.539221509
022M		0:30	1.829269592
022M		0:40	2.273590134
022M		0:50	3.046310774
022M		1:00	4.747597332
022M		1:10	11.83434263
022M		1:20	49.91741282
022M		1:30	15.64955899
022M		1:40	8.035504354
022M		1:50	5.409986874
022M		2:00	4.096737441
022M		2:10	3.311349782
022M		2:20	2.789038359
022M		2:30	2.416326443
022M		2:40	2.136703141
022M		2:50	1.918926607
022M		3:00	1.744318025
022M		3:10	1.601074776
022M		3:20	1.48131328
022M		3:30	1.379613173
022M		3:40	1.292113904

022M	3:50	1.215981807
022M	4:00	1.149098129
022-tess	0:00	0
022-tess	0:01	0
022-tess	0:02	0
022-tess	0:03	0
022-tess	0:04	0
022-tess	0:05	0
022-tess	0:06	0
022-tess	0:07	0
022-tess	0:08	0
022-tess	0:09	0
022-tess	0:10	0.133415749
022-tess	0:11	0.266831498
022-tess	0:12	0.400247246
022-tess	0:13	0.533662995
022-tess	0:14	0.667078744
022-tess	0:15	0.800494493
022-tess	0:16	0.933910242
022-tess	0:17	1.06732599
022-tess	0:18	1.200741739
022-tess	0:19	1.334157488
022-tess	0:20	1.35466389
022-tess	0:21	1.375170292
022-tess	0:22	1.395676694
022-tess	0:23	1.416183096
022-tess	0:24	1.436689499
022-tess	0:25	1.457195901
022-tess	0:26	1.477702303
022-tess	0:27	1.498208705
022-tess	0:28	1.518715107
022-tess	0:29	1.539221509
022-tess	0:30	1.568226317
022-tess	0:31	1.597231126
022-tess	0:32	1.626235934
022-tess	0:33	1.655240742
022-tess	0:34	1.684245551
022-tess	0:35	1.713250359
022-tess	0:36	1.742255167

022-tess	0:37	1.771259975
022-tess	0:38	1.800264784
022-tess	0:39	1.829269592
022-tess	0:40	1.873701646
022-tess	0:41	1.9181337
022-tess	0:42	1.962565755
022-tess	0:43	2.006997809
022-tess	0:44	2.051429863
022-tess	0:45	2.095861917
022-tess	0:46	2.140293971
022-tess	0:47	2.184726026
022-tess	0:48	2.22915808
022-tess	0:49	2.273590134
022-tess	0:50	2.350862198
022-tess	0:51	2.428134262
022-tess	0:52	2.505406326
022-tess	0:53	2.58267839
022-tess	0:54	2.659950454
022-tess	0:55	2.737222518
022-tess	0:56	2.814494582
022-tess	0:57	2.891766646
022-tess	0:58	2.96903871
022-tess	0:59	3.046310774
022-tess	1:00	3.21643943
022-tess	1:01	3.386568086
022-tess	1:02	3.556696741
022-tess	1:03	3.726825397
022-tess	1:04	3.896954053
022-tess	1:05	4.067082709
022-tess	1:06	4.237211365
022-tess	1:07	4.40734002
022-tess	1:08	4.577468676
022-tess	1:09	4.747597332
022-tess	1:10	5.456271862
022-tess	1:11	6.164946392
022-tess	1:12	6.873620921
022-tess	1:13	7.582295451
022-tess	1:14	8.290969981
022-tess	1:15	8.999644511
022-tess	1:16	9.708319041

022-tess	1:17	10.41699357
022-tess	1:18	11.1256681
022-tess	1:19	11.83434263
022-tess	1:20	15.64264965
022-tess	1:21	19.45095667
022-tess	1:22	23.25926369
022-tess	1:23	27.06757071
022-tess	1:24	30.87587773
022-tess	1:25	34.68418474
022-tess	1:26	38.49249176
022-tess	1:27	42.30079878
022-tess	1:28	46.1091058
022-tess	1:29	49.91741282
022-tess	1:30	46.49062744
022-tess	1:31	43.06384205
022-tess	1:32	39.63705667
022-tess	1:33	36.21027129
022-tess	1:34	32.78348591
022-tess	1:35	29.35670052
022-tess	1:36	25.92991514
022-tess	1:37	22.50312976
022-tess	1:38	19.07634437
022-tess	1:39	15.64955899
022-tess	1:40	14.88815353
022-tess	1:41	14.12674806
022-tess	1:42	13.3653426
022-tess	1:43	12.60393714
022-tess	1:44	11.84253167
022-tess	1:45	11.08112621
022-tess	1:46	10.31972074
022-tess	1:47	9.558315281
022-tess	1:48	8.796909818
022-tess	1:49	8.035504354
022-tess	1:50	7.772952606
022-tess	1:51	7.510400858
022-tess	1:52	7.24784911
022-tess	1:53	6.985297362
022-tess	1:54	6.722745614
022-tess	1:55	6.460193866
022-tess	1:56	6.197642118

022-tess	1:57	5.93509037
022-tess	1:58	5.672538622
022-tess	1:59	5.409986874
022-tess	2:00	5.278661931
022-tess	2:01	5.147336987
022-tess	2:02	5.016012044
022-tess	2:03	4.884687101
022-tess	2:04	4.753362157
022-tess	2:05	4.622037214
022-tess	2:06	4.490712271
022-tess	2:07	4.359387328
022-tess	2:08	4.228062384
022-tess	2:09	4.096737441
022-tess	2:10	4.018198675
022-tess	2:11	3.939659909
022-tess	2:12	3.861121143
022-tess	2:13	3.782582377
022-tess	2:14	3.704043611
022-tess	2:15	3.625504846
022-tess	2:16	3.54696608
022-tess	2:17	3.468427314
022-tess	2:18	3.389888548
022-tess	2:19	3.311349782
022-tess	2:20	3.25911864
022-tess	2:21	3.206887497
022-tess	2:22	3.154656355
022-tess	2:23	3.102425213
022-tess	2:24	3.05019407
022-tess	2:25	2.997962928
022-tess	2:26	2.945731786
022-tess	2:27	2.893500644
022-tess	2:28	2.841269501
022-tess	2:29	2.789038359
022-tess	2:30	2.751767167
022-tess	2:31	2.714495976
022-tess	2:32	2.677224784
022-tess	2:33	2.639953593
022-tess	2:34	2.602682401
022-tess	2:35	2.565411209
022-tess	2:36	2.528140018

022-tess	2:37	2.490868826
022-tess	2:38	2.453597635
022-tess	2:39	2.416326443
022-tess	2:40	2.388364113
022-tess	2:41	2.360401783
022-tess	2:42	2.332439452
022-tess	2:43	2.304477122
022-tess	2:44	2.276514792
022-tess	2:45	2.248552462
022-tess	2:46	2.220590132
022-tess	2:47	2.192627801
022-tess	2:48	2.164665471
022-tess	2:49	2.136703141
022-tess	2:50	2.114925488
022-tess	2:51	2.093147834
022-tess	2:52	2.071370181
022-tess	2:53	2.049592527
022-tess	2:54	2.027814874
022-tess	2:55	2.006037221
022-tess	2:56	1.984259567
022-tess	2:57	1.962481914
022-tess	2:58	1.94070426
022-tess	2:59	1.918926607
022-tess	3:00	1.901465749
022-tess	3:01	1.884004891
022-tess	3:02	1.866544032
022-tess	3:03	1.849083174
022-tess	3:04	1.831622316
022-tess	3:05	1.814161458
022-tess	3:06	1.7967006
022-tess	3:07	1.779239741
022-tess	3:08	1.761778883
022-tess	3:09	1.744318025
022-tess	3:10	1.7299937
022-tess	3:11	1.715669375
022-tess	3:12	1.70134505
022-tess	3:13	1.687020725
022-tess	3:14	1.6726964
022-tess	3:15	1.658372076
022-tess	3:16	1.644047751

022-tess	3:17	1.629723426
022-tess	3:18	1.615399101
022-tess	3:19	1.601074776
022-tess	3:20	1.589098626
022-tess	3:21	1.577122477
022-tess	3:22	1.565146327
022-tess	3:23	1.553170178
022-tess	3:24	1.541194028
022-tess	3:25	1.529217878
022-tess	3:26	1.517241729
022-tess	3:27	1.505265579
022-tess	3:28	1.49328943
022-tess	3:29	1.48131328
022-tess	3:30	1.471143269
022-tess	3:31	1.460973259
022-tess	3:32	1.450803248
022-tess	3:33	1.440633237
022-tess	3:34	1.430463226
022-tess	3:35	1.420293216
022-tess	3:36	1.410123205
022-tess	3:37	1.399953194
022-tess	3:38	1.389783184
022-tess	3:39	1.379613173
022-tess	3:40	1.370863246
022-tess	3:41	1.362113319
022-tess	3:42	1.353363392
022-tess	3:43	1.344613465
022-tess	3:44	1.335863538
022-tess	3:45	1.327113612
022-tess	3:46	1.318363685
022-tess	3:47	1.309613758
022-tess	3:48	1.300863831
022-tess	3:49	1.292113904
022-tess	3:50	1.284500694
022-tess	3:51	1.276887485
022-tess	3:52	1.269274275
022-tess	3:53	1.261661065
022-tess	3:54	1.254047855
022-tess	3:55	1.246434646
022-tess	3:56	1.238821436

022-tess	3:57	1.231208226
022-tess	3:58	1.223595017
022-tess	3:59	1.215981807
022-tess	4:00	1.209293439
022-tess	4:01	1.202605071
022-tess	4:02	1.195916704
022-tess	4:03	1.189228336
022-tess	4:04	1.182539968
022-tess	4:05	1.1758516
022-tess	4:06	1.169163232
022-tess	4:07	1.162474865
022-tess	4:08	1.155786497
022-tess	4:09	1.149098129
022-tess	4:10	1.034188316
022-tess	4:11	0.919278503
022-tess	4:12	0.80436869
022-tess	4:13	0.689458877
022-tess	4:14	0.574549064
022-tess	4:15	0.459639252
022-tess	4:16	0.344729439
022-tess	4:17	0.229819626
022-tess	4:18	0.114909813
022-tess	4:19	-1.51268E-14
022-tess	4:20	0
025M	0:10	1.516088055
025M	0:20	1.749115351
025M	0:30	2.078715445
025M	0:40	2.583625152
025M	0:50	3.461716789
025M	1:00	5.394996968
025M	1:10	13.44811663
025M	1:20	56.72433275
025M	1:30	17.78358976
025M	1:40	9.131254948
025M	1:50	6.147712357
025M	2:00	4.655383456
025M	2:10	3.762897479
025M	2:20	3.169361772
025M	2:30	2.745825503

025M		2:40	2.428071751
025M		2:50	2.180598417
025M		3:00	1.982179574
025M		3:10	1.819403154
025M		3:20	1.683310546
025M		3:30	1.567742242
025M		3:40	1.468311255
025M		3:50	1.381797508
025M		4:00	1.305793328
0255	07/23/2009	0:00:00	1.98
0255	07/23/2009	0:15:00	1.98
025S	07/23/2009		1.98
0255	07/23/2009	0:45:00	1.98
025S	07/23/2009		2.376
025S	07/23/2009		2.376
0255	07/23/2009		2.376
025S	07/23/2009		2.376
0255	07/23/2009		3.168
0255	07/23/2009		3.168
0255	07/23/2009		3.168
0255	07/23/2009		3.168
0255	07/23/2009		4.752
0255	07/23/2009		4.752
0255	07/23/2009		6.336
0255	07/23/2009		6.336
0255	07/23/2009		9.504
0255	07/23/2009		9.504
025S	07/23/2009		38.016
0255	07/23/2009		104.544
025S	07/23/2009		14.256
025S	07/23/2009		14.256
025S	07/23/2009		6.336
025S	07/23/2009		6.336
025S	07/23/2009		4.752
025S	07/23/2009	7:15:00	4.752

025S 025S	07/23/2009 07/23/2009		4.752 4.752
025S	07/23/2009	8:00:00	2.772
025S	07/23/2009	8:15:00	2.772
025S	07/23/2009	8:30:00	2.772
025S	07/23/2009	8:45:00	2.772
0255	07/23/2009	9:00:00	2.772
025S	07/23/2009	9:15:00	2.772
025S	07/23/2009		2.772
025S	07/23/2009		2.772
025S	07/23/2009		1.584
025S	07/23/2009		1.584
025S	07/23/2009		1.584
0255	07/23/2009		1.584
0255	07/23/2009		1.584
0255	07/23/2009		1.584
0255	07/23/2009		1.584
0255	07/23/2009		1.584
0255	07/23/2009	12:00:00	0
100C		0.00	•
1000		0:00	0
100C		0:00	0 6.05
100C 100C		0:10 0:20	6.05 7.54
100C 100C 100C		0:10 0:20 0:30	6.05 7.54 10.16
100C 100C 100C 100C		0:10 0:20 0:30 0:40	6.05 7.54 10.16 15.97
100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50	6.05 7.54 10.16 15.97 40.65
100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00	6.05 7.54 10.16 15.97 40.65 178.56
100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10	6.05 7.54 10.16 15.97 40.65 178.56 54.05
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:20 1:20 1:30 1:40 1:50 2:00 2:10	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08 6.35
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08 6.35 5.76
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:20 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08 6.35 5.76 5.28
100C 100C 100C 100C 100C 100C 100C 100C		0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40	6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08 6.35 5.76

100S	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009		1.92
1005	07/23/2009	12:00:00	0
120C		0:00	0
120C 120C		0:10	7.26
1200		0:20	9.048
120C 120C		0:30	12.192
120C 120C		0:40	12.192
120C 120C		0:50	48.78
120C 120C		1:00	214.272
120C 120C		1:10	64.86
120C 120C		1:20	32.784
120C 120C		1:30	21.888
		1:40	16.488
120C		1:50	
120C 120C		2:00	13.272 11.148
		2:10	9.624
120C 120C		2:10	9.624 8.496
120C 120C		2:20	7.62
120C 120C		2:40	6.912
120C 120C		2:40	6.336
120C 120C		3:00	5.856
1200		5:00	5.850
1205	07/23/2009	0:00:00	2.88
1205	07/23/2009	0:15:00	2.88
1205	07/23/2009	0:30:00	2.88
1205	07/23/2009		2.88
1205	07/23/2009		2.88
1205	07/23/2009		2.88
1205	07/23/2009		2.88
1205	07/23/2009		2.88
1205	07/23/2009		3.46
1205	07/23/2009		3.46
	,,,		

1005	07/23/2009	00:00:00	2.4
1005		00:15:00	2.4
1005	07/23/2009	00:30:00	2.4
1005	07/23/2009	00:45:00	2.4
1005	07/23/2009	01:00:00	2.4
1005	07/23/2009	01:15:00	2.4
1005	07/23/2009	01:30:00	2.4
1005	07/23/2009	01:45:00	2.4
1005	07/23/2009		2.88
1005	07/23/2009	02:15:00	2.88
1005		02:30:00	2.88
1005		02:45:00	2.88
1005	07/23/2009		3.84
1005	07/23/2009	03:15:00	3.84
1005	07/23/2009		3.84
1005	07/23/2009		3.84
1005	07/23/2009		5.76
1005	07/23/2009	04:15:00	5.76
1005	07/23/2009		7.68
1005	07/23/2009		7.68
1005	07/23/2009		11.52
1005	07/23/2009	05:15:00	11.52
1005	07/23/2009		46.08
1005		05:45:00	126.72
1005	07/23/2009		17.28
1005	07/23/2009	06:15:00	17.28
1005	07/23/2009		7.68
1005		06:45:00	7.68
1005		07:00:00	5.76
100S	07/23/2009	07:15:00	5.76
1005	07/23/2009	07:30:00	5.76
100S	07/23/2009	07:45:00	5.76
100S	07/23/2009	08:00:00	3.36
1005	07/23/2009	08:15:00	3.36
100S	07/23/2009	08:30:00	3.36
1005		08:45:00	3.36
1005	07/23/2009	09:00:00	3.36
1005		09:15:00	3.36
1005	07/23/2009	09:30:00	3.36 3.36
1005	07/23/2009	09:45:00	3.30

120S	07/23/2009	2:30:00	3.46
120S	07/23/2009	2:45:00	3.46
120S	07/23/2009	3:00:00	4.61
120S	07/23/2009	3:15:00	4.61
120S	07/23/2009	3:30:00	4.61
120S	07/23/2009	3:45:00	4.61
120S	07/23/2009	4:00:00	6.91
1205	07/23/2009	4:15:00	6.91
1205	07/23/2009	4:30:00	9.22
1205	07/23/2009	4:45:00	9.22
1205	07/23/2009		13.82
1205	07/23/2009	5:15:00	13.82
1205	07/23/2009	5:30:00	55.30
1205	07/23/2009	5:45:00	152.06
1205	07/23/2009	6:00:00	20.74
1205	07/23/2009	6:15:00	20.74
1205	07/23/2009	6:30:00	9.22
1205	07/23/2009	6:45:00	9.22
1205	07/23/2009		6.91
1205	07/23/2009	7:15:00	6.91
1205	07/23/2009	7:30:00	6.91
1205	07/23/2009	7:45:00	6.91
1205	07/23/2009	8:00:00	4.03
1205	07/23/2009	8:15:00	4.03
1205	07/23/2009	8:30:00	4.03
1205	07/23/2009	8:45:00	4.03
1205	07/23/2009	9:00:00	4.03
1205	07/23/2009	9:15:00	4.03
1205	07/23/2009	9:30:00	4.03
1205	07/23/2009	9:45:00	4.03
1205	07/23/2009	10:00:00	2.30
120S	07/23/2009		2.30
120S		11:15:00	2.30
120S		11:30:00	
120S		11:45:00	
1205	07/23/2009	12:00:00	0.00

[REPORT] ;;Reporting Options INPUT YES CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL

[TAGS]		
Node	100	MN-STOR
Node	101	MN-STOR
Node	102	MN-STOR
Node	103	MN-STOR
Node	104	MN-STOR
Node	105	MN-STOR
Node	106	MN-STOR
Node	107	MN-STOR
Node	108	MN-STOR
Node	109	MN-STOR
Node	110	MN-STOR
Node	EX_109	HMBS_8
Node	101A	RD
Node	102A	RD
Node	103A	RD
Node	104A	RD
Node	105A	RD
Node	105C	RD
Node	108A	C-DRAN
Node	110A	RD
Node	110B	RD
Node	110C	RD
Node	110D	RD
Link	101-100	HMBS_8
Link	101-100-E_1	EES
Link	101A-Obsidian_St	reet-3 MJ
Link	101-EX_109	HMBS_8
Link	102-101	HMBS_8
Link	102-101-E_1	EES
Link	102A-101A	MJ
Link	103-101	HMBS_8

Link	103-101-E	1 EES			
Link	103A-101A	MJ			
Link	104-103	HMB	S 8		
Link	104-103-E				
Link	104A-104B	MJ			
Link	105-104	HMB	S_8		
Link	105-104-E_	1 EES			
Link	105A-104A	MJ			
Link	105C-104A				
Link	106-105	HMB	S_8		
Link	107.105-E_	1 EES			
Link	107-105				
Link	108-107	HMB	S_8		
Link	108-107-E_				
Link	109-107	HMB			
Link			-		
Link					
Link	110B-S	MJ			
Link	110C-110B				
Link		MJ			
Link		C-D			
Link	102A-01	C-D			
Link	104A-01	C-D			
Link	108A-01	C-D			
Link		HMB			
Link					
Link	105C01	C-D			
Link	110A-01	HMB			
Link	110B-01	C-D C-D			
Link	110C-01	C-D	KAN		
[MAP]					
DIMENSIONS	36/1	16 23915	5011263 2806	364407.77185	5011603.0794
UNITS	Mete		5011205.2000	504407.77105	5011005.0754
UNITS	The eet	5			
[COORDINA]	ES]				
;;Node	- X-Co	ord	Y-Coord		
;;					
100		76.242	5011508.872		
101	3642	07.711	5011526.837		

102	364238.956	5011472.218
103	364235.53	5011542.703
104	364271.443	5011480.22
105	364293.705 364239.123	5011441.477
105B	364239.123	5011414.885
106	364255.778	5011419.684
107	364316.3	5011402.155
108	364285.001	5011384.165
109	364351.416	5011341.079
110	364324.819	5011314.908
J1	364210.797	5011525.2
J10	364284.113	5011439.19
J2	364210.954	5011526.298
J3	364238.57	5011540.501
J4	364177.288	5011508.465
J5	364273.27	5011479.233
	364294.84	5011441.037
]7	364315.483	5011400.5
J8	364315.483 364286.973	5011383.47
EX 109	364165.865	5011507.924
Greenbank Rd	364325.797	5011469.904
Obsidian_St-1 Obsidian_St-2 Obsidian_St-3	364226.349	5011402.655
Obsidian St-2	364280.982	5011312.693
Obsidian St-3	364167.572	5011509.531
101A _	364188.35	5011516.875
102A	364214.041	5011509.028
103A	364227.405	5011556.639
104A	364243.789	5011490.104
105A	364284.265	5011443.41
105C	364296.99	5011457.909
108A	364306.495	5011381.006
110A	364339.775	5011323.503
110B	364300.626	5011324.07
110C	364321.81	5011355.162
110D	364325.098	5011310.985
[VERTICES]		
	X-Coord	Y-Coord
	364207.881	5011523.239
· -		

101-100-E 1	364178.844	5011507.859
101A-Obsidian_St	reet-3 364175.952	5011509.736
102-101-E_1	364239.73	5011474.345
102A-101A	364203.956	5011515.104
103-101-E 1	364235.177	5011540.246
103A-101A	364228.326	5011542.192
103A-101A	364225.995	5011538.442
104-103-E 1	364271.541	5011483.269
105-104-E_1	364293.872	5011444.584
	364274.476	5011478.582
105A-104A		5011448.016
105A-104A		5011474.098
107.105-E_1	364316.807	5011404.404
107.105-E_1	364296.192	5011440.514
108-107-E_1		5011384.479
108-107-E 1	364314.779	5011399.073
110-108-E 1	364325,079	5011318.247
110-108-E_1	364287.931	5011383.132
110-108-E_1 110C-110B 110C-110B	364316.108	5011383.132 5011337.015 5011326.84
110C-110B	364316.108 364305.283	5011326.84
110D-110B	364317.878	5011323.622
[POLYGONS]		
;;Subcatchment	X-Coord	Y-Coord
;;	X-Coord	
[SYMBOLS]		
;;Gage	X-Coord	Y-Coord
;;	X-Coord	

3718 GREENBANK ROAD: SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix D Stormwater Management

D.3 SAMPLE PCSWMM OUTPUT (100YR CHICAGO)

Element Count						

Number of rain ga Number of subcatc						
Number of nodes .						
Number of links .						
Number of polluta Number of land us						

Name	Data Source			Data Type	Recording Interval	
Raingage1	100C			INTENSITY	10 min.	
*****	***					
Subcatchment Summ *********						
Name	Area	Width	%Imperv	%Slope	Rain Gage	Outlet
L101A	0.35	106.36	81.43	1 6/170	Raingage1	101A
L102A	0.30	115.43	92.86		Raingage1	101A 102A
L103A	0.06	49.09	62.86	3.7000	Raingage1	103A
L104A	0.64	176.13	78.57		Raingage1	104A
L105A L105B	0.11 0.19	46.65 78.08	50.00 57.14		Raingage1 Raingage1	105A 105B
L105C	0.06	21.65	12.86		Raingage1	105B 105C
L108A	0.42	188.40	90.00		Raingage1	108A
L110A	0.19	77.73	70.00	2.0000	Raingage1	110A
L110B	0.05	27.68	78.57		Raingage1	1108
L110C	0.36	140.18	88.57	1.6000	Raingage1	110C
L110C L110D	0.36 0.12	140.18 95.53	88.57 78.57	1.6000 2.7000	Raingage1 Raingage1	110C 110D
L110C	0.36	140.18	88.57	1.6000 2.7000 3.0000	Raingage1	110C
L110C L110D UNC-1 UNC-2	0.36 0.12 0.13	140.18 95.53 449.14	88.57 78.57 30.00	1.6000 2.7000 3.0000	Raingage1 Raingage1 Raingage1	110C 110D Obsidian_St-1
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13	140.18 95.53 449.14	88.57 78.57 30.00	1.6000 2.7000 3.0000	Raingage1 Raingage1 Raingage1	110C 110D Obsidian_St-1
L110C L110D UNC-1 UNC-2	0.36 0.12 0.13	140.18 95.53 449.14 305.15	88.57 78.57 30.00 51.43	1.6000 2.7000 3.0000 3.0000	Raingage1 Raingage1 Raingage1 Raingage1	110C 110D Obsidian_St-1 Greenbank_Rd
L110C L110D UNC-1 UNC-2 ************ Node Summary ************ Name	0.36 0.12 0.13	140.18 95.53 449.14 305.15	88.57 78.57 30.00	1.6000 2.7000 3.0000 3.0000	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09	140.18 95.53 449.14 305.15 I	88.57 78.57 30.00 51.43	1.6000 2.7000 3.0000 3.0000	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************ Node Summary ************ Name	0.36 0.12 0.13 0.09	140.18 95.53 449.14 305.15 I	88.57 78.57 30.00 51.43 nvert Elev.	1.6000 2.7000 3.0000 3.0000 Max. I Depth	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Infl	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 *********** Node Summary *********** Name 	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15	88.57 78.57 30.00 51.43 nvert Elev. 	1.6000 2.7000 3.0000 3.0000 Max. I Depth 6.29 6.82 5.87	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 *********** Node Summary *********** Name 	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15	88.57 78.57 30.00 51.43 nvert Elev. 	1.6000 2.7000 3.0000 3.0000 Max. Depth 6.29 6.82 5.87 6.50	Raingage1 Raingage1 Raingage1 Raingage1 Area Inf1 0.0 0.0 0.0 0.0 0.0	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15	88.57 78.57 30.00 51.43 Plev. 96.82 96.71 98.62 97.38 98.66	1.6000 2.7000 3.0000 3.0000 3.0000 Max. D Depth 6.29 6.82 5.87 6.50 6.23	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 *********** Node Summary *********** Name 	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15	88.57 78.57 30.00 51.43 nvert Elev. 	1.6000 2.7000 3.0000 3.0000 Max. Depth 6.29 6.82 5.87 6.50	Raingage1 Raingage1 Raingage1 Raingage1 Area Inf1 0.0 0.0 0.0 0.0 0.0	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************ Node Summary *********** Name 	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I	88.57 78.57 30.00 51.43 nvert Elev. 	1.6000 2.7000 3.0000 3.0000 Max. 1 Depth 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61	Raingage1 Raingage1 Raingage1 Raingage1 Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I	88.57 78.57 30.00 51.43 91.43 96.82 96.71 98.62 97.38 98.66 99.18 92.53 99.65 99.59	1.6000 2.7000 3.0000 3.0000 3.0000 Max. D Depth 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.31	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15	88.57 78.57 30.00 51.43 nvert Elev. 96.82 96.71 98.66 99.18 02.53 99.65 99.59 99.77	1.6000 2.7000 3.0000 3.0000 3.0000 4.000 6.29 6.29 6.22 5.87 6.50 6.23 6.20 2.00 5.61 6.31 6.31 6.11	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I	88.57 78.57 30.00 51.43 91.43 96.82 96.71 98.62 97.38 98.66 99.18 92.53 99.65 99.59	1.6000 2.7000 3.0000 3.0000 3.0000 Max. D Depth 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.31	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1	88.57 78.57 30.00 51.43 96.82 96.71 98.62 97.38 98.66 99.18 02.53 99.65 99.59 99.59 99.77 00.31 00.24 97.83	1.6000 2.7000 3.0000 3.0000 3.0000 4.29 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.31 6.11 5.75 5.50 5.75	Raingage1 Raingage1 Raingage1 Raingage1 Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 91.43 98.62 97.38 98.66 99.18 02.53 99.59	1.6000 2.7000 3.0000 3.0000 3.0000 4.000 5.29 6.29 6.29 6.23 6.20 2.00 5.61 6.31 6.31 6.31 6.31 6.31 5.75 5.50 5.75 2.74	Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Infl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 91.43 96.82 96.71 98.62 97.38 98.66 99.18 02.53 99.55 99.59 99.77 00.31 00.24 97.83 02.35 97.09	1.6000 2.7000 3.0000 3.0000 3.0000 4.000 5.61 6.23 6.20 2.00 5.61 6.21 6.21 6.20 2.00 5.61 6.11 5.75 5.50 5.75 2.74 6.47	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 nvert Elev. 96.82 96.71 98.62 97.38 98.66 99.18 02.53 99.65 99.59 99.59 99.57 00.31 00.24 97.83 02.35 97.09 97.09	1.6000 2.7000 3.0000 3.0000 3.0000 4.0000 5.01 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.21 6.21 6.21 5.75 5.50 5.75 2.74 6.47 5.96	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Infl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 91.43 96.82 96.71 98.62 97.38 98.66 99.18 02.53 99.55 99.59 99.77 00.31 00.24 97.83 02.35 97.09	1.6000 2.7000 3.0000 3.0000 3.0000 4.000 5.61 6.23 6.20 2.00 5.61 6.21 6.21 6.20 2.00 5.61 6.11 5.75 5.50 5.75 2.74 6.47	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1	88.57 78.57 30.00 51.43 91.43 92.51 96.82 96.71 98.62 97.38 98.66 99.18 02.53 99.55 99.55 99.57 99.55 99.57 00.31 00.24 97.83 02.35 97.09 97.88 96.53 97.09 97.98 96.53 98.75 99.22	1.6000 2.7000 3.0000 3.0000 3.0000 Depth	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION	140.18 95.53 449.14 305.15 I 1 1 1 1 1	88.57 78.57 30.00 51.43 nvert Elev. 96.82 96.71 98.62 97.38 98.66 99.18 02.53 99.65 99.59 99.77 00.31 00.24 97.83 02.35 97.09 97.98 96.53 98.75 99.22 99.60	1.6000 2.7000 3.0000 3.0000 3.0000 5.00 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.11 5.75 5.50 5.75 2.74 6.47 5.96 6.60 6.16 6.17 6.30	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Infl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 96.62 96.71 98.62 97.38 98.66 99.18 02.53 99.65 99.59 99.77 00.31 00.24 97.83 02.35 97.98 97.98 97.98 96.53 97.99 97.98 96.53 98.75 99.22 99.60 99.85	1.6000 2.7000 3.0000 3.0000 3.0000 0.000 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.31 6.11 5.75 5.50 5.75 2.74 6.47 5.96 6.60 6.16 6.17 6.30 6.03	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 90.00 51.43 91.43 98.62 99.73 98.66 99.18 02.53 99.65 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 97.98 96.53 97.09 97.98 96.53 97.98 96.53 97.98 96.53 97.98 96.53 97.98 96.53 97.98 96.53 97.98 96.53 99.22 99.60 99.85 99.09	1.6000 2.7000 3.0000 3.0000 3.0000 Depth 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.31 6.31 6.31 6.31 6.31 5.75 5.50 5.75 2.74 6.47 5.96 6.60 6.16 6.17 6.30 6.03 0.68	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1	88.57 78.57 30.00 51.43 96.62 96.71 98.62 97.38 98.66 99.18 02.53 99.65 99.59 99.77 00.31 00.24 97.83 02.35 97.98 97.98 97.98 96.53 97.99 97.98 96.53 98.75 99.22 99.60 99.85	1.6000 2.7000 3.0000 3.0000 3.0000 0.000 6.29 6.82 5.87 6.50 6.23 6.20 2.00 5.61 6.31 6.11 5.75 5.50 5.75 2.74 6.47 5.96 6.60 6.16 6.17 6.30 6.03	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow
L110C L110D UNC-1 UNC-2 ************************************	0.36 0.12 0.13 0.09 JUNCTION	140.18 95.53 449.14 305.15 I I 1 1 1 1 1 1	88.57 78.57 30.00 51.43 90.51.43 91.43 92.53 93.66 99.18 92.53 99.65 99.59 99.59 99.59 99.77 00.31 00.24 97.38 99.65 99.59 99.77 00.31 00.24 97.83 02.35 97.09 97.88 96.53 97.09 97.88 96.53 97.09 97.98 96.53 98.75 99.22 99.60 99.85 99.09 0.00	1.6000 2.7000 3.0000 3.0000 3.0000 3.0000 5.00 5.87 6.29 6.23 6.20 2.00 5.61 6.23 6.20 2.00 5.61 6.23 6.20 2.00 5.61 6.31 6.11 5.75 5.50 5.75 2.74 6.47 5.96 6.60 6.16 6.17 6.30 6.03 0.68 0.00	Raingage1 Raingage1 Raingage1 Raingage1 Raingage1 Ponded Exte Area Inf1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	110C 110D Obsidian_St-1 Greenbank_Rd rnal ow

102A 103A 104A	STORAGE STORAGE STORAGE	101.98 100.31 102.66	1.84 3.60 1.79	0.0 0.0 0.0
105A 105C	STORAGE	103.32	2.08	0.0 0.0
103C 108A 110A	STORAGE	103.82	1.65	0.0
110B	STORAGE STORAGE	104.13	1.65	0.0 0.0
110C 110D	STORAGE STORAGE	104.11 104.31	1.69 1.73	0.0 0.0

********	*
Link Summar	-

Name	From Node	To Node	Туре	Length	%Slope R	oughness
101-100	101	100	CONDUIT	36.2	0.5243	0.0130
101-100-E_1	101	J4	CONDUIT	35.2	0.5256	0.0130
101A-Obsidian	Street-3 101A	Obsidi	an_St-3 CONDUIT		17.3 1.	0996 0
101-EX_109	100	EX_109	CONDUIT	10.4	0.4798	0.0130
102-101	102	101	CONDUIT	62.9	1.4940	0.0130
102-101-E_1	102	J1	CONDUIT	59.4	1.3255	0.0130
102A-101A	102A	101A	CONDUIT	19.1	2.8763	0.0130
103-101	103	101	CONDUIT	32.0	0.9992	0.0130
103-101-E_1	103	J2	CONDUIT	28.7	1.0003	0.0130
103A-101A	103A	101A	CONDUIT	71.1	0.9002	0.0130
104-103	104	103	CONDUIT	72.1	0.9991	0.0130
104-103-E_1	104	J3	CONDUIT	68.1	0.9995	0.0130
104A-104B	104A	102A	CONDUIT	35.2	1.6194	0.0130
105-104	105	104	CONDUIT	44.7	1.0071	0.0130
105-104-E_1	105	J5	CONDUIT	42.7	1.0082	0.0130
105A-104A	105A	104A	CONDUIT	68.0	1.5002	0.0130
105C-104A	105C	104A	CONDUIT	53.3	1.8014	0.0130
106-105	106	105	CONDUIT	43.7	0.5029	0.0130
107.105-E_1	107	J6	CONDUIT	44.2	0.8332	0.0130
107-105	107	105	CONDUIT	45.4	0.9923	0.0130
108-107	108	107	CONDUIT	36.1	0.4986	0.0130
108-107-E_1	108	J7	CONDUIT	35.2	0.4861	0.0130
109-107	109	107	CONDUIT	70.5	0.4968	0.0130

110-108	110	108	CONDUIT	79.9	0.5007	0.0130
110-108-E_1	110	J8	CONDUIT	79.0	0.4936	0.0130
110B-S	110B	Obsidian_St-2	CONDUIT	18.0	0.5000	0.0130
110C-110B	110C	110B	CONDUIT	5.0	0.4000	0.0130
110D-110B	110D	110B	CONDUIT	9.6	2.7009	0.0130
C1	105B	J10	CONDUIT	59.5	0.3025	0.0130
101A-01	101A	101	ORIFICE			
102A-01	102A	102	ORIFICE			
104A-01	104A	104	ORIFICE			
108A-01	108A	108	ORIFICE			
110D-01	110D	110	ORIFICE			
0F1	J10	105	ORIFICE			
108A-110C	108A	110C	WEIR			
110A-110D	110A	110D	WEIR			
103A-01	103A	103	OUTLET			
105A-01	105A	105	OUTLET			
105C01	105C	105	OUTLET			
110A-01	110A	110	OUTLET			
110B-01	110B	110	OUTLET			
110C-01	110C	110	OUTLET			

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels		
101-100	CIRCULAR	0.68	0.36	0.17	0.68	1	608.72	
101-100-E_1	RECT_CLOSED	1.00	1.50	0.30	1.50	1	3748.92	
101A-Obsidian_St	reet-3 6.40_ROW_1.4_>	K-Fall	0.29	1.82	0.20	10.10	1	4944.00
101-EX_109	CIRCULAR	0.68	0.36	0.17	0.68	1	582.29	
102-101	CIRCULAR	0.30	0.07	0.07	0.30	1	118.21	
102-101-E_1	RECT_CLOSED	1.00	1.50	0.30	1.50	1	5953.58	
102A-101A	7.9_ROW_1.4_X-Fall	0.26	1.62	0.19	7.90		1 7082.7	7
103-101	CIRCULAR	0.53	0.22	0.13	0.53	1	429.92	
103-101-E_1	RECT_CLOSED	1.00	1.50	0.30	1.50	1	5172.01	
103A-101A	6.40_ROW_2.0_X-Fall	0.33	2.04	0.21	10.2	0	1 5211.	92
104-103	CIRCULAR	0.53	0.22	0.13	0.53	1	429.89	
104-103-E_1	RECT_CLOSED	1.00	1.50	0.30	1.50	1	5169.81	

104A-104B 105-104 105-104-E_1 105A-104A 105C-104A 106-105 107.105-E_1 107-105 108-107 108-107-E_1 109-107 110-108 110-108-E_1 110B-S 110C-110B 110D-110B C1	CIRC L RECT 11.6 CIRC L RECT CIRC CI	0_ROW_1.6_X. ULAR T_CLOSED 5_ROW_1.3_X. 5_ROW_1.3_X. ULAR ULAR T_CLOSED ULAR T_CLOSED ULAR T_CLOSED ULAR T_CLOSED 3_ROW_2.3_X. 5_ROW_0.6_X. 3_ROW_0.6_X. ULAR	0.45 1.00 Fall 0 0.30 1.00 0.45 0.53 1.00 0.45 1.00 0.45 1.00 0.45 1.00 0.45 1.00 0.45 1.00 0.45 1.00 0.53 1.00 0.53 1.00 0.53 1.00 0.53 1.00 0.53 1.00 0.53 1.00 0.53 1.00 0.55 0.55	.25 1.28 0.16 1.50 .35 3.50 0.07 1.50 0.16 0.22 1.50 0.16 0.22 1.50 1.50 0.16 1.50 0.07 0.16 1.50 1.9 1.09 0.44 0.44	0.19 0.11 0.30 0.24 0.07 0.30 0.11 0.13 0.30 0.07 0.11 0.30 0.23 0.16 0.19	$\begin{array}{c} 6.40\\ 0.45\\ 1.50\\ 14.80\\ 0.30\\ 1.50\\ 0.45\\ 0.53\\ 1.50\\ 0.30\\ 0.45\\ 1.50\\ 14.20\\ 6.40\\ 0.75\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
*********** Transect Su **********	ummary						
Transect 11 Area:	1.6_ROW_1.3	3_X-Fall					
Area:	0.0005 0.0194 0.0652 0.1379 0.2375 0.3579 0.4883 0.6200 0.7517 0.8855	0.0022 0.0264 0.0776 0.1557 0.2606 0.3833 0.5146 0.6463 0.7781 0.9134	0.0048 0.0345 0.0910 0.1745 0.2842 0.4093 0.5410 0.6727 0.8044 0.9418	0.0086 0.1056 0.1944 0.3083 0.4356 0.5673 0.6990 0.8310 0.9707	0.0135 0.0539 0.1212 0.2154 0.3329 0.4619 0.5937 0.7254 0.8580 1.0000		
Hrad:	0.0142 0.0850 0.1558	0.0283 0.0992 0.1700	0.0425 0.1133 0.1842	0.0567 0.1275 0.1983	0.0708 0.1417 0.2125		
Width:	0.2267 0.2975 0.4238 0.5448 0.6672 0.7903 0.9117	0.2408 0.3187 0.4485 0.5692 0.6918 0.8149 0.9346	0.2550 0.3460 0.4725 0.5936 0.7164 0.8395 0.9569	0.2692 0.3726 0.4964 0.6181 0.7410 0.8642 0.9787	0.2833 0.3985 0.5205 0.6427 0.7657 0.8883 1.0000		
	0.0365 0.2188 0.4012 0.5836 0.7659 0.8547 0.8919 0.8919 0.8919 0.8919 0.9384	0.0729 0.2553 0.4377 0.6200 0.7918 0.8704 0.8919 0.8919 0.8919 0.8919 0.8919	0.1094 0.2918 0.4741 0.6565 0.8075 0.8861 0.8919 0.8919 0.8922 0.9692	0.1459 0.3282 0.5106 0.6930 0.8232 0.8919 0.8919 0.8919 0.8919 0.9076 0.9846	0.1824 0.3647 0.5471 0.7294 0.8390 0.8919 0.8919 0.8919 0.9230 1.0000		
Transect 14	1.75_ROW						
Area:	0.0005 0.0182 0.0613 0.1298 0.2206 0.3234 0.4457 0.5787 0.5787 0.7208 0.8722	0.0020 0.0248 0.0730 0.1465 0.2395 0.3465 0.4715 0.6064 0.7504 0.9036	0.0046 0.0324 0.0857 0.1642 0.2593 0.3704 0.4978 0.6344 0.7803 0.9354	0.0081 0.0411 0.0994 0.1829 0.2798 0.3950 0.5244 0.6629 0.8106 0.9675	0.0127 0.0507 0.1141 0.2017 0.3012 0.4202 0.5513 0.6917 0.8412 1.0000		
Hrad:	0.8722 0.0161 0.0968 0.1774 0.2581 0.3764 0.5182 0.6302 0.7356	0.9036 0.0323 0.1129 0.1935 0.2742 0.4079 0.5421 0.6517 0.7560	0.9354 0.0484 0.1290 0.2097 0.2903 0.4380 0.5648 0.6730 0.7761	0.9675 0.0645 0.1452 0.2258 0.3131 0.4663 0.5867 0.6941 0.7960	1.0000 0.0806 0.1613 0.2419 0.3448 0.4930 0.6085 0.7149 0.8157		

	0.8351	0.8544	0.8733	0.8921	0.93
	0.9289	0.9470	0.9649	0.9825	1.00
Width:	0.9209	0.9470	0.9049	0.9029	1.00
Midelii.	0.0310	0.0621	0.0931	0.1241	0.1
	0.1862	0.2172	0.2482	0.2793	0.3
	0.3413	0.3724	0.4034	0.4344	0.4
	0.4965	0.5275	0.5585	0.5763	0.5
	0.5763	0.5908	0.6164	0.6419	0.6
	0.6929	0.7184	0.7439	0.7633	0.7
	0.7858	0.7971	0.8084	0.8197	0.8
	0.8422	0.8535	0.8647	0.8760	0.8
	0.8986	0.9098	0.9211	0.9324	0.94
	0.9549	0.9662	0.9775	0.9887	1.00
Transect	18.00_ROW				
Area:					
	0.0005	0.0019	0.0043	0.0076	0.0
	0.0171	0.0233	0.0304	0.0385	0.04
	0.0575	0.0684	0.0803	0.0931	0.10
	0.1216	0.1373	0.1539	0.1714	0.1
	0.2067	0.2244	0.2428	0.2619	0.28
	0.3021	0.3232	0.3451	0.3676	0.39
	0.4147	0.4393	0.4646	0.4906	0.5
	0.5446	0.5726	0.6014	0.6308	0.6
	0.6917	0.7232	0.7554	0.7883	0.8
	0.8561	0.8910	0.9267	0.9630	1.00
Hrad:					
	0.0175	0.0349	0.0524	0.0699	0.0
	0.1048	0.1223	0.1398	0.1573	0.1
	0.1922	0.2097	0.2272	0.2446	0.20
	0.2796	0.2971	0.3145	0.3393	0.3
	0.4078	0.4420	0.4748	0.5059	0.5
	0.5637	0.5906	0.6163	0.6408	0.6
	0.6869	0.7086	0.7295	0.7496	0.70
	0.7877	0.8058	0.8233	0.8403	0.8
	0.8728	0.8884	0.9035	0.9183	0.9
	0.9468	0.9605	0.9740	0.9871	1.00
Width:					
	0.0254 0.1526	0.0509 0.1780	0.0763 0.2034	0.1017 0.2288	0.1
					0.2

	0.2797	0.3051	0.3306	0.3560	0.3814
	0.4068	0.4323	0.4577	0.4722	0.4722
	0.4722	0.4828	0.5013	0.5197	0.5382
	0.5567	0.5751	0.5936	0.6121	0.6306
	0.6490	0.6675	0.6860	0.7044	0.7229
	0.7414	0.7599	0.7783	0.7968	0.8153
	0.8337	0.8522	0.8707	0.8892	0.9076
	0.9261	0.9446	0.9631	0.9815	1.0000
Transe	ct 18.00 ROW LS				
Area:	ee 10.00_kow_cc	•			
	0.0005	0.0019	0.0043	0.0076	0.0119
	0.0171	0.0233	0.0304	0.0385	0.0475
	0.0575	0.0684	0.0803	0.0931	0.1069
	0.1216	0.1373	0.1539	0.1714	0.1890
	0.2067	0.2244	0.2428	0.2619	0.2816
	0.3021	0.3232	0.3451	0.3676	0.3908
	0.4147	0.4393	0.4646	0.4906	0.5172
	0.5446	0.5726	0.6014	0.6308	0.6609
	0.6917	0.7232	0.7554	0.7883	0.8218
	0.8561	0.8910	0.9267	0.9630	1.0000
Hrad:					
	0.0175	0.0349	0.0524	0.0699	0.0874
	0.1048	0.1223	0.1398	0.1573	0.1747
	0.1922	0.2097	0.2272	0.2446	0.2621
	0.2796	0.2971	0.3145	0.3393	0.3736
	0.4078	0.4420	0.4748	0.5059	0.5355
	0.5637	0.5906	0.6163	0.6408	0.6643
	0.6869	0.7086	0.7295	0.7496	0.7689
	0.7877	0.8058	0.8233	0.8403	0.8568
	0.8728	0.8884	0.9035	0.9183	0.9327
	0.9468	0.9605	0.9740	0.9871	1.0000
Width:	0.0254	0 0500	0.0760	0 1017	0 1071
	0.0254	0.0509	0.0763	0.1017	0.1271
	0.1526	0.1780	0.2034	0.2288	0.2543
	0.2797	0.3051	0.3306	0.3560	0.3814
	0.4068	0.4323	0.4577	0.4722	0.4722
	0.4722	0.4828	0.5012	0.5197	0.5382
	0.5567	0.5751	0.5936	0.6121	0.6306
	0.6490	0.6675	0.6860	0.7044	0.7229

	0.7414	0.7599	0.7783	0.7968	0.8153
	0.8337	0.8522	0.8707	0.8892	0.9076
	0.9261	0.9446	0.9631	0.9815	1.0000
Transect 6	5.40_ROW_0.0	5_X-Fall			
Area:					
	0.0011	0.0042	0.0096	0.0170	0.0265
	0.0382	0.0520	0.0680	0.0860	0.1062
	0.1282	0.1506	0.1729	0.1953	0.2176
	0.2400	0.2624	0.2847	0.3071	0.3294
	0.3518	0.3741	0.3965	0.4188	0.4412
	0.4635	0.4859	0.5082	0.5306	0.5529
	0.5753	0.5976	0.6200	0.6424	0.6647
	0.6871	0.7094	0.7318	0.7541	0.7765
	0.7988	0.8212	0.8435	0.8659	0.8882
	0.9106	0.9329	0.9553	0.9776	1.0000
Hrad:					
	0.0117	0.0234	0.0351	0.0468	0.0585
	0.0702	0.0819	0.0936	0.1053	0.1170
	0.1341	0.1573	0.1805	0.2036	0.2266
	0.2496	0.2725	0.2954	0.3182	0.3409
	0.3637	0.3863	0.4089	0.4315	0.4540
	0.4764	0.4988	0.5212	0.5435	0.5657
	0.5879	0.6100	0.6321	0.6542	0.6761
	0.6981	0.7200	0.7418	0.7636	0.7853
	0.8070	0.8287	0.8502	0.8718	0.8933
	0.9147	0.9361	0.9575	0.9788	1.0000
Width:					
	0.0950	0.1900	0.2850	0.3800	0.4750
	0.5700	0.6650	0.7600	0.8550	0.9500
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000
	T.0000	1.0000	1.0000	T.0000	1.0000

Transect 6.40_ROW_1.2_X-Fall

Area:					
	0.0007	0.0028	0.0063	0.0111	0.0174
	0.0251	0.0341	0.0445	0.0564	0.0696
	0.0842	0.1002	0.1176	0.1364	0.1566
	0.1782	0.2012	0.2253	0.2495	0.2737
	0.2979	0.3221	0.3463	0.3705	0.3947
	0.4189	0.4432	0.4674	0.4916	0.5158
	0.5400	0.5642	0.5884	0.6126	0.6368
	0.6611	0.6853	0.7095	0.7337	0.7579
	0.7821	0.8063	0.8305	0.8547	0.8789
	0.9032	0.9274	0.9516	0.9758	1.0000
Hrad:					
	0.0127	0.0253	0.0380	0.0507	0.0633
	0.0760	0.0887	0.1013	0.1140	0.1267
	0.1393	0.1520	0.1647	0.1773	0.1900
	0.2027	0.2153	0.2355	0.2604	0.2853
	0.3101	0.3348	0.3595	0.3841	0.4086
	0.4330	0.4574	0.4817	0.5060	0.5302
	0.5543	0.5783	0.6023	0.6262	0.6501
	0.6739	0.6976	0.7212	0.7448	0.7683
	0.7918	0.8152	0.8385	0.8618	0.8850
	0.9081	0.9312	0.9542	0.9771	1.0000
Width:					
	0.0575	0.1150	0.1725	0.2300	0.2875
	0.3450	0.4025	0.4600	0.5175	0.5750
	0.6325	0.6900	0.7475	0.8050	0.8625
	0.9200	0.9775	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
Transect Area:	6.40_ROW_1.4	4_X-Fall			
	0.0006	0.0026	0.0058	0.0104	0.0162
	0.0234	0.0318	0.0415	0.0526	0.0649
	0.0785	0.0935	0.1097	0.1272	0.1461
	0.1661	0.1864	0.2067	0.2269	0.2472

	0.2675	0.2878	0.3081	0.3284	0.3487
	0.3689	0.3895	0.4107	0.4325	0.4549
	0.4779	0.5015	0.5257	0.5505	0.5759
	0.6020	0.6286	0.6556	0.6825	0.7095
	0.7364	0.7634	0.7908	0.8189	0.8475
	0.8768	0.9067	0.9372	0.9683	1.0000
Hrad:					
	0.0144	0.0289	0.0433	0.0578	0.0722
	0.0866	0.1011	0.1155	0.1300	0.1444
	0.1588	0.1733	0.1877	0.2022	0.2166
	0.2363	0.2647	0.2930	0.3212	0.3493
	0.3773	0.4052	0.4330	0.4607	0.4883
	0.5158	0.5431	0.5692	0.5942	0.6182
	0.6412	0.6633	0.6845	0.7049	0.7245
	0.7434	0.7616	0.7804	0.7996	0.8190
	0.8386	0.8586	0.8785	0.8977	0.9163
	0.9342	0.9514	0.9682	0.9843	1.0000
Width:					
	0.0406	0.0811	0.1217	0.1622	0.2028
	0.2433	0.2839	0.3244	0.3650	0.4055
	0.4461	0.4867	0.5272	0.5678	0.6083
	0.6337	0.6337	0.6337	0.6337	0.6337
	0.6337	0.6337	0.6337	0.6337	0.6337
	0.6337	0.6519	0.6709	0.6899	0.7089
	0.7279	0.7469	0.7659	0.7850	0.8040
	0.8230	0.8416	0.8416	0.8416	0.8416
	0.8416	0.8479	0.8669	0.8859	0.9050
	0.9240	0.9430	0.9620	0.9810	1.0000
Transect	6.40_ROW_1.0	5_X-Fall			
Area:		_			
	0.0006	0.0025	0.0056	0.0100	0.0156
	0.0225	0.0306	0.0400	0.0506	0.0625
	0.0756	0.0900	0.1056	0.1225	0.1406
	0.1600	0.1806	0.2025	0.2256	0.2500
	0.2750	0.3000	0.3250	0.3500	0.3750
	0.4000	0.4250	0.4500	0.4750	0.5000
	0.5250	0.5500	0.5750	0.6000	0.6250
	0.6500	0.6750	0.7000	0.7250	0.7500
	0.7750	0.8000	0.8250	0.8500	0.8750

Hrad:	0.9000	0.9250	0.9500	0.9750	1.0000
in au.	0.0131	0.0262	0.0392	0.0523	0.0654
	0.0785	0.0915	0.1046	0.1177	0.1308
	0.1438	0.1569	0.1700	0.1831	0.1962
	0.2092	0.2223	0.2354	0.2485	0.2615
	0.2872	0.3129	0.3384	0.3639	0.3893
	0.4146	0.4399	0.4650	0.4901	0.5151
	0.5401	0.5650	0.5897	0.6145	0.6391
	0.6637	0.6882	0.7126	0.7369	0.7612
	0.7854	0.8095	0.8336	0.8576	0.8815
	0.9053	0.9291	0.9528	0.9764	1.0000
Vidth:					
	0.0500	0.1000	0.1500	0.2000	0.2500
	0.3000	0.3500	0.4000	0.4500	0.5000
	0.5500	0.6000	0.6500	0.7000	0.7500
	0.8000	0.8500	0.9000	0.9500	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000
	6.40_ROW_2.0	0_X-Fall			
Area:	0.0005	0.0021	0.0047	0.0083	0.0130
	0.0187	0.0021	0.0047	0.0085	0.0130
	0.0628	0.0234	0.0332	0.1017	0.1168
	0.1329	0.0748	0.1682	0.1017	0.1108
	0.2282	0.2488	0.2694	0.2904	0.3121
	0.3345	0.3577	0.3815	0.4060	0.4313
	0.4572	0.4838	0.5112	0.5388	0.5665
	0.5941	0.6218	0.6494	0.6771	0.7047
	0.7324	0.7600	0.7877	0.8159	0.8448
	0.8745	0.9048	0.9358	0.9676	1.0000
Hrad:	0.0/45	0.9048	0.9338	0.9070	1.0000
n au.	0.0155	0.0309	0.0464	0.0619	0.0773
	0.0928	0.1082	0.1237	0.1392	0.1546
	0.0328	0.1856	0.2010	0.2165	0.1340
	0.1/01	0.1000	0.2010	0.2105	0.2320

	0.2474	0.2629	0.2783	0.2938	0.3120
	0.3422	0.3723	0.4024	0.4317	0.4597
	0.4863	0.5118	0.5361	0.5594	0.5818
	0.6032	0.6238	0.6436	0.6642	0.6852
	0.7066	0.7281	0.7499	0.7719	0.7940
	0.8162	0.8385	0.8610	0.8834	0.9048
	0.9254	0.9452	0.9641	0.9824	1.0000
Width:					
	0.0317	0.0633	0.0950	0.1266	0.1583
	0.1900	0.2216	0.2533	0.2850	0.3166
	0.3483	0.3799	0.4116	0.4433	0.4749
	0.5066	0.5383	0.5699	0.6016	0.6275
	0.6275	0.6275	0.6303	0.6518	0.6732
	0.6946	0.7161	0.7375	0.7590	0.7804
	0.8018	0.8233	0.8431	0.8431	0.8431
	0.8431	0.8431	0.8431	0.8431	0.8431
	0.8431	0.8431	0.8499	0.8714	0.8928
	0.9142	0.9357	0.9571	0.9786	1.0000
	6.40_ROW_2.3	3_X-Fall			
		-			
	0.0005	- 0.0018	0.0041	0.0074	0.0115
	 0.0005 0.0165	- 0.0018 0.0225	0.0294	0.0372	0.0459
	 0.0005 0.0165 0.0556	- 0.0018 0.0225 0.0662	0.0294 0.0776	0.0372 0.0900	0.0459 0.1034
	0.0005 0.0165 0.0556 0.1176	- 0.0018 0.0225 0.0662 0.1328	0.0294 0.0776 0.1488	0.0372 0.0900 0.1657	0.0459 0.1034 0.1833
	0.0005 0.0165 0.0556 0.1176 0.2017	- 0.0018 0.0225 0.0662 0.1328 0.2207	0.0294 0.0776 0.1488 0.2405	0.0372 0.0900 0.1657 0.2610	0.0459 0.1034 0.1833 0.2822
	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267	0.0294 0.0776 0.1488 0.2405 0.3501	0.0372 0.0900 0.1657 0.2610 0.3741	0.0459 0.1034 0.1833 0.2822 0.3989
	 0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.3267 0.4507	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305
	 0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693
	 0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.3041 0.4244 0.5570 0.6991	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.3267 0.4507 0.5840 0.7297	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257
Area:	 0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693
Area:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.3267 0.4507 0.5840 0.7297 0.8932	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000
Area:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.0180	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840 0.7297 0.8932 0.0359	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898
Area:	 0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.8591 0.0180 0.1078	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.3267 0.5840 0.7297 0.8932 0.0359 0.1258	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539 0.1438	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719 0.1617	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898 0.1797
Area:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.8591 0.0180 0.1078 0.1977	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.5840 0.7297 0.8932 0.0359 0.1258 0.2156	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539 0.1438 0.2336	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719 0.1617 0.2516	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898 0.1797 0.2695
Area:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.0180 0.1078 0.1977 0.2875	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840 0.7297 0.8932 0.0359 0.1258 0.2156 0.3055	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539 0.1438 0.2336 0.3237	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719 0.1617 0.2516 0.3581	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898 0.1797 0.2695 0.3904
Area:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.0180 0.1078 0.1977 0.2875 0.4209	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840 0.7297 0.8932 0.0359 0.1258 0.2156 0.3055 0.4497	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539 0.1438 0.2336 0.3237 0.4770	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719 0.1617 0.2516 0.3581 0.5029	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898 0.1797 0.2695 0.3904 0.5276
Area:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.0180 0.1078 0.1977 0.2875 0.4209 0.5510	- 0.0018 0.0025 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840 0.7297 0.8932 0.0359 0.1258 0.2156 0.3055 0.4497 0.5735	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539 0.1438 0.2336 0.3237 0.4770 0.5949	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719 0.1617 0.2516 0.3581 0.5029 0.6154	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898 0.1797 0.2695 0.3904 0.5276 0.6351
Transect Area: Hrad:	0.0005 0.0165 0.0556 0.1176 0.2017 0.3041 0.4244 0.5570 0.6991 0.8591 0.0180 0.1078 0.1977 0.2875 0.4209	- 0.0018 0.0225 0.0662 0.1328 0.2207 0.3267 0.4507 0.5840 0.7297 0.8932 0.0359 0.1258 0.2156 0.3055 0.4497	0.0294 0.0776 0.1488 0.2405 0.3501 0.4773 0.6117 0.7609 0.9281 0.0539 0.1438 0.2336 0.3237 0.4770	0.0372 0.0900 0.1657 0.2610 0.3741 0.5039 0.6401 0.7929 0.9637 0.0719 0.1617 0.2516 0.3581 0.5029	0.0459 0.1034 0.1833 0.2822 0.3989 0.5305 0.6693 0.8257 1.0000 0.0898 0.1797 0.2695 0.3904 0.5276

	0.8575	0.8756	0.8929	0.9097	0.9260
	0.9417	0.9569	0.9717	0.9860	1.0000
Width:					
	0.0251	0.0501	0.0752	0.1002	0.1253
	0.1504	0.1754	0.2005	0.2255	0.2506
	0.2757	0.3007	0.3258	0.3508	0.3759
	0.4009	0.4260	0.4510	0.4706	0.4901
	0.5097	0.5293	0.5489	0.5685	0.5880
	0.6076	0.6272	0.6468	0.6663	0.6859
	0.7055	0.7251	0.7254	0.7254	0.7254
	0.7259	0.7455	0.7651	0.7846	0.8042
	0.8238	0.8434	0.8630	0.8825	0.9021
	0.9217	0.9413	0.9608	0.9804	1.0000
	9_ROW_1.4_X	-Fall			
Area:	0.0005	0.0004	0.0054	0.0005	0 01 50
	0.0006	0.0024	0.0054	0.0096	0.0150
	0.0216	0.0294	0.0384	0.0486	0.0600
	0.0725	0.0863	0.1013	0.1175	0.1349
	0.1535	0.1733	0.1943	0.2164	0.2398
	0.2644	0.2898 0.4166	0.3151 0.4420	0.3405 0.4673	0.3659
	0.3912				0.4927
	0.5180	0.5434	0.5688	0.5941	0.6195
	0.6449	0.6702 0.7971	0.6956 0.8224	0.7210	0.7463
	0.7717 0.8985	0.9239	0.8224	0.8478 0.9746	0.8732 1.0000
Hrad:	0.0905	0.9239	0.9495	0.9746	1.0000
Hrau:	0.0132	0.0263	0.0395	0.0526	0.0658
	0.0132	0.0203	0.1053	0.0526	0.0058
	0.0789 0.1447	0.1579	0.1055	0.1184	0.1316
	0.1447	0.1579	0.2368	0.1842	0.1974
	0.2763	0.3003	0.2368	0.3519	0.2632
	0.2763	0.4289	0.3261	0.3519	0.5053
	0.4033	0.4289	0.4545	0.6063	0.6314
			0.7062	0.7310	
	0.6564 0.7805	0.6813 0.8051	0.7062	0.7310	0.7558 0.8787
Width:	0.9031	0.9274	0.9517	0.9759	1.0000
width:	0.0473	0 0045	0.1418	0.1891	0.2364
	0.0473	0.0945 0.3309	0.1418	0.1891	0.2364
	0.2830	6.5265	0.3/82	0.4200	0.4/2/

0.5200	0.5673	0.6145	0.6618	0.7091
0.7564	0.8036	0.8509	0.8982	0.9455
0.9927	1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000
1.0000	1.0000	1.0000	1.0000	1.0000

Number of Threads 6 Head Tolerance 0.001500 m

*****	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.221	71.667
Evaporation Loss	0.000	0.000
Infiltration Loss	0.035	11.474
Surface Runoff	0.183	59.301
Final Storage	0.003	0.892
Continuity Error (%)	-0.001	
*****	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.183	1.831
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.120	1.201
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.060	0.597
Continuity Error (%)	1.850	

Highest Continuity Errors		

Node 102 (18,50%)		

Node 102 (18.50%) Node 110 (12.15%) Node 107 (5.51%) Node 105 (4.73%) Node 104 (4.66%)

***** Time-Step Critical Elements ******* Link 101-EX_109 (7.89%)

***** Link 101-100-E_1 (51) Link 103-101-E_1 (20) Link 102-101-E_1 (9) Link 108-107-E_1 (9) Link 107.105-E_1 (7)

***** Routing Time Step Summary ********** Minimum Time Step Average Time Step Maximum Time Step 0.81 sec : 1.99 sec : 2.00 sec : Percent in Steady State : Average Iterations per Step : Percent Not Converging : Time Step Frequencies : 0.00 2.02 0.04 e Step Frequencies : 2.000 - 0.956 sec : 0.956 - 0.457 sec : 0.457 - 0.219 sec : 0.219 - 0.105 sec : 0.105 - 0.050 sec : 100.00 % 0.00 % 0.00 % 0.00 %

0.00 %

otal Peak	Runoff	Total	Total	Total	Total	Imperv	Perv	Total	
		Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	
unoff Runoff Subcatchment tr LPS	Coeff	mm	mm	mm	mm	mm	mm	mm	10^6
L101A 0.22 167.15	0.872	71.67	0.00	0.00	8.24	57.40	5.07	62.47	
L102A 0.20 147.69	0.941	71.67	0.00	0.00	3.13	65.45	1.99	67.44	
L103A 0.03 27.50	0.762	71.67	0.00	0.00	16.35	44.31	10.27	54.58	
L104A 0.39 303.16	0.855	71.67	0.00	0.00	9.49	55.38	5.86	61.25	
L105A 0.05 47.69	0.619	71.67	0.00	0.00	26.74	35.24	44.34	44.34	
L105B 0.09 84.33	0.663	71.67	0.00	0.00	23.51	40.28	47.48	47.48	
L105C 0.02 17.33	0.423	71.67	0.00	0.00	41.19	9.06	30.33	30.33	
L108A 0.28 207.17	0.924	71.67	0.00	0.00	4.39	63.44	2.77	66.21	
L110A 0.11 85.87	0.803	71.67	0.00	0.00	13.32	49.34	8.18	57.52	
L110B 0.03 25.18	0.855	71.67	0.00	0.00	9.44	55.38	5.92	61.30	
L110C 0.24 177.49	0.915	71.67	0.00	0.00	5.03	62.43	3.16	65.59	
L110D 0.08 59.66	0.856	71.67	0.00	0.00	9.41	55.38	5.95	61.33	
UNC-1 0.05 60.96	0.521	71.67	0.00	0.00	33.94	21.15	37.37	37.37	
UNC-2	0.321	71.67	0.00	0.00	25.60	36.25	45.46	45.46	

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	irrence	Max Depth
Node	Туре	Meters	Meters	Meters	days	hr:min	Meters
100		 2 17	 2 C2			01.44	
100	JUNCTION JUNCTION	2.17 2.48	2.63 2.94	99.45 99.65	0	01:44 01:44	2.63 2.94
101	JUNCTION	2.48	2.94	100.79	0	01:44 01:37	2.94
102						01:37	
	JUNCTION	2.21	2.69	100.07	0		2.69
104	JUNCTION	1.81	2.21	100.87	0	01:44	2.21
105	JUNCTION	1.77	2.15	101.33	0	01:43	2.15
105B	JUNCTION	0.04	1.66	104.19	0	01:14	1.66
106	JUNCTION	0.00	0.00	99.65	0	00:00	0.00
107	JUNCTION	1.78	2.18	101.77	0	01:42	2.18
108	JUNCTION	1.81	2.16	101.93	0	01:34	2.16
109	JUNCTION	0.00	0.00	100.31	0	00:00	0.00
110	JUNCTION	1.78	2.11	102.35	0	01:33	2.11
J1	JUNCTION	2.55	2.95	100.79	0	01:35	2.95
J10	JUNCTION	0.06	1.84	104.19	0	01:13	1.84
J2	JUNCTION	2.47	2.98	100.07	0	01:44	2.98
33	JUNCTION	2.45	2.89	100.87	0	01:44	2.89
34	JUNCTION	2.66	3.13	99.65	0	01:44	3.13
35	JUNCTION	2.16	2.58	101.33	0	01:42	2.58
J6	JUNCTION	2.11	2.55	101.77	0	01:42	2.55
]7	JUNCTION	1.98	2.33	101.93	0	01:34	2.33
J8	JUNCTION	2.14	2.51	102.36	0	01:30	2.51
EX 109	OUTFALL	0.06	0.29	99.38	0	01:44	0.29
Greenbank_Rd	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
Obsidian St-1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
Obsidian St-2	OUTFALL	0.00	0.01	105.60	0	01:17	0.01
Obsidian St-3	OUTFALL	0.00	0.00	102.98	0	00:00	0.00
101A	STORAGE	0.03	1.02	102.75	0	01:10	1.02
102A	STORAGE	0.21	1.76	103.74	õ	01:20	1.76
103A	STORAGE	0.95	3.49	103.80	õ	01:31	3.49
104A	STORAGE	0.21	1.70	104.36	ø	01:21	1.70
	STORAGE	0.21	1.70	104.00	5	31.21	1.,0

105A	STORAGE	0.16	1.99	105.31	0	01:22	1.99
105C	STORAGE	0.05	1.45	105.27	0	01:12	1.45
108A	STORAGE	0.38	1.57	105.72	0	01:20	1.57
110A	STORAGE	0.59	3.40	106.01	0	01:21	3.40
110B	STORAGE	0.20	1.57	105.70	0	01:17	1.57
110C	STORAGE	0.68	1.61	105.72	0	01:32	1.61
110D	STORAGE	0.17	1.64	105.95	0	01:11	1.64

Node Inflow Summary *****

			Maximum			Lateral		Flow	
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance	
		Inflow			rrence	Volume	Volume	Error	
ode	Туре	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent	
00	JUNCTION	0.00	228.26	0	01:44	0	1.11	0.252	
01	JUNCTION	0.00	228.05	0	01:44	0	1.17	2.404	
02	JUNCTION	0.00	63.57	0	01:25	0	0.206	22.693	
03	JUNCTION	0.00	181.99	0	01:44	0	0.894	2.499	
04	JUNCTION	0.00	179.88	0	01:43	0	0.972	4.884	
05	JUNCTION	0.00	130.22	0	01:21	0	0.646	4.966	
05B	JUNCTION	84.33	84.33	0	01:10	0.089	0.089	-0.328	
06	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
07	JUNCTION	0.00	114.96	0	01:38	0	0.554	5.835	
08	JUNCTION	0.00	77.12	0	01:33	0	0.614	4.849	
09	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
10	JUNCTION	0.00	83.00	0	01:22	0	0.464	13.831	
1	JUNCTION	0.00	53.67	0	01:25	0	0.0634	0.000	
10	JUNCTION	0.00	76.93	0	01:10	0	0.0893	0.313	
2	JUNCTION	0.00	150.25	0	01:22	0	0.0317	0.000	
3	JUNCTION	0.00	103.61	0	01:10	0	0.0716	0.000	
4	JUNCTION	0.00	99.60	0	01:03	0	0.031	0.000	
5	JUNCTION	0.00	114.90	0	01:21	0	0.0449	0.000	
6	JUNCTION	0.00	95.76	0	01:38	0	0.0405	0.000	
7	JUNCTION	0.00	37.44	0	01:11	0	0.0327	0.000	
8	JUNCTION	0.00	67.73	0	01:21	0	0.0734	0.000	

EX 109	OUTFALL	0.00	228.28	0	01:44	0	1.11	0.000
Greenbank Rd	OUTFALL	42.97	42.97	0	01:10	0.0416	0.0416	0.000
Obsidian St-1	OUTFALL	60.96	60.96	0	01:10	0.0504	0.0504	0.000
Obsidian_St-2	OUTFALL	0.00	0.92	0	01:17	0	0.000583	0.000
Obsidian_St-3	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
101A	STORAGE	167.15	167.15	0	01:10	0.22	0.224	0.000
102A	STORAGE	147.69	147.69	0	01:10	0.203	0.203	0.015
103A	STORAGE	27.50	27.50	0	01:10	0.0322	0.0322	0.045
104A	STORAGE	303.16	303.21	0	01:10	0.393	0.394	0.112
105A	STORAGE	47.69	47.69	0	01:10	0.0496	0.0496	0.020
105C	STORAGE	17.33	17.33	0	01:10	0.0175	0.0175	-1.169
108A	STORAGE	207.17	207.17	0	01:10	0.281	0.29	0.014
110A	STORAGE	85.87	85.87	0	01:10	0.107	0.107	-0.007
110B	STORAGE	25.18	25.29	0	01:10	0.0322	0.0394	0.054
110C	STORAGE	177.49	177.49	0	01:10	0.239	0.252	0.003
110D	STORAGE	59.66	59.66	0	01:10	0.0762	0.0779	0.166

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
105B	JUNCTION	0.18	0.908	0.342
J1	JUNCTION	10.78	1.953	2.798
J10	JUNCTION	0.27	1.088	0.902
J2	JUNCTION	10.62	1.976	3.497
J3	JUNCTION	10.93	1.894	3.062
J4	JUNCTION	10.95	2.128	3.469
J5	JUNCTION	10.69	1.577	3.585
J6	JUNCTION	10.38	1.550	3.622
37	JUNCTION	10.79	1.327	3.973
38	JUNCTION	10.72	1.508	3.518

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pcnt	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	0ccu	of Max rrence hr:min	Maximum Outflow LPS
101A	0.000	0	0	0	0.000	14	0	01:10	166.88
102A	0.005	5	0	0	0.071	70	0	01:20	41.34
103A	0.003	7	0	0	0.017	46	0	01:31	2.56
104A	0.009	5	0	0	0.136	67	0	01:21	69.67
105A	0.001	3	0	0	0.017	54	0	01:22	13.80
105C	0.000	1	0	0	0.001	50	0	01:12	12.72
108A	0.020	11	0	0	0.131	71	0	01:20	49.94
110A	0.005	7	0	0	0.047	66	0	01:21	17.32
110B	0.001	5	0	0	0.010	62	0	01:17	8.00
110C	0.039	18	0	0	0.157	70	0	01:32	20.06
110D	0.001	2	0	0	0.021	58	0	01:11	22.02

Outfall Loading Summary **********

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
EX_109	52.00	51.01	228.28	1.108
Greenbank_Rd	15.02	6.50	42.97	0.042

Obsidian_St-1	10.52	11.22	60.96	0.050
Obsidian_St-2	4.26	0.31	0.92	0.001
Obsidian_St-3	0.00	0.00	0.00	0.000
System	16.36	69.04	270.17	1.201

Link Flow Summary ********

		Maximum	Time	of Max	Maximum	Max/	- /
		Flow		urrence	Veloc	Full	Full
Link	Туре	LPS	days	hr:min	m/sec	Flow	Depth
101-100	CONDUIT	228.26	0	01:44	1.55	0.37	0.43
101-100-E_1	CONDUIT	99.60	0	01:03	0.14	0.03	1.00
101A-Obsidian_Street	-3 CHANNEL	0.0	0	0 00:00	0.00	0.00	0.00
101-EX_109	CONDUIT	228.28	0	01:44	1.48	0.39	0.44
102-101	CONDUIT	33.93	0	01:37	1.40	0.29	0.38
102-101-E_1	CONDUIT	53.67	0	01:25	0.19	0.01	1.00
102A-101A	CHANNEL	7.01	0	01:20	0.57	0.00	0.07
103-101	CONDUIT	182.05	0	01:44	1.90	0.42	0.46
103-101-E_1	CONDUIT	150.25	0	01:22	0.22	0.03	1.00
103A-101A	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
104-103	CONDUIT	179.43	0	01:44	1.77	0.42	0.48
104-103-E_1	CONDUIT	103.61	0	01:10	0.22	0.02	1.00
104A-104B	CHANNEL	0.77	0	01:21	0.27	0.00	0.04
105-104	CONDUIT	112.00	0	01:43	1.69	0.39	0.44
105-104-E_1	CONDUIT	114.90	0	01:21	0.42	0.02	1.00
105A-104A	CHANNEL	0.00	0	00:00	0.00	0.00	0.10
105C-104A	CHANNEL	4.08	0	01:12	0.09	0.00	0.11
106-105	CONDUIT	0.00	0	00:00	0.00	0.00	0.08
107.105-E_1	CONDUIT	95.76	0	01:38	0.58	0.02	1.00
107-105	CONDUIT	77.21	0	01:42	1.50	0.27	0.36
108-107	CONDUIT	78.27	0	01:41	1.07	0.26	0.41
108-107-E_1	CONDUIT	37.44	0	01:11	0.15	0.01	1.00
109-107	CONDUIT	0.00	0	00:00	0.00	0.00	0.02
110-108	CONDUIT	51.59	0	01:33	1.02	0.26	0.36

110-108-E_1	CONDUIT	67.73	0	01:21	0.20	0.02	1.00
110B-S	CHANNEL	0.92	0	01:17	0.21	0.00	0.03
110C-110B	CHANNEL	4.99	0	01:32	0.23	0.00	0.09
110D-110B	CHANNEL	2.86	0	01:11	0.36	0.00	0.06
C1	CONDUIT	76.93	0	01:10	0.68	0.13	1.00
101A-01	ORIFICE	166.88	0	01:10			1.00
102A-01	ORIFICE	34.33	0	01:20			1.00
104A-01	ORIFICE	68.91	0	01:21			1.00
108A-01	ORIFICE	25.52	0	01:20			1.00
110D-01	ORIFICE	19.16	0	01:11			1.00
0F1	ORIFICE	44.79	0	01:13			1.00
108A-110C	WEIR	24.42	0	01:20			0.20
110A-110D	WEIR	4.06	0	01:21			0.06
103A-01	DUMMY	2.56	0	01:31			
105A-01	DUMMY	13.80	0	01:22			
105C01	DUMMY	8.64	0	01:12			
110A-01	DUMMY	13.26	0	01:21			
110B-01	DUMMY	7.08	0	01:17			
110C-01	DUMMY	12.42	0	01:32			

	ljusted 'Actual		Up	Fract Down	ion of Sub	Time Sup	in Flo Up	w Clas Down	s Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
101-100	1.00	0.09	0.00	0.00	0.00	0.00	0.00	0.91	0.00	0.00
101-100-E_1	1.00	0.01	0.00	0.00	0.98	0.00	0.00	0.00	0.03	0.00
101A-Obsidian_Street-3	3 1.00	1.0	0.0	0 0.0	0.0	0 0.0	0.0	0 0.0	0 0.0	0 0.00
101-EX_109	1.00	0.09	0.00	0.00	0.65	0.26	0.00	0.00	0.00	0.00
102-101	1.00	0.13	0.00	0.00	0.00	0.00	0.00	0.87	0.00	0.00
102-101-E_1	1.00	0.02	0.00	0.00	0.98	0.01	0.00	0.00	0.06	0.00
102A-101A	1.00	0.97	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00
103-101	1.00	0.11	0.01	0.00	0.00	0.00	0.00	0.88	0.00	0.00
103-101-E_1	1.00	0.02	0.00	0.00	0.98	0.01	0.00	0.00	0.08	0.00
103A-101A	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

104-103	1.00	0.10	0.00	0.00	0.00	0.00	0.00	0.90	0.00	0.00
104-103-E_1	1.00	0.01	0.00	0.00	0.98	0.01	0.00	0.00	0.05	0.00
104A-104B	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
105-104	1.00	0.10	0.01	0.00	0.00	0.04	0.00	0.85	0.03	0.00
105-104-E_1	1.00	0.08	0.00	0.00	0.92	0.01	0.00	0.00	0.01	0.00
105A-104A	1.00	0.94	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00
105C-104A	1.00	0.94	0.04	0.00	0.02	0.00	0.00	0.00	0.90	0.00
106-105	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
107.105-E_1	1.00	0.11	0.00	0.00	0.89	0.00	0.00	0.00	0.01	0.00
107-105	1.00	0.12	0.02	0.00	0.00	0.02	0.00	0.84	0.02	0.00
108-107	1.00	0.11	0.00	0.00	0.86	0.00	0.00	0.03	0.75	0.00
108-107-E_1	1.00	0.01	0.00	0.00	0.98	0.00	0.00	0.00	0.03	0.00
109-107	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110-108	1.00	0.11	0.01	0.00	0.00	0.00	0.00	0.88	0.00	0.00
110-108-E_1	1.00	0.01	0.00	0.00	0.98	0.01	0.00	0.00	0.04	0.00
110B-S	1.00	0.95	0.00	0.00	0.04	0.01	0.00	0.00	0.00	0.00
110C-110B	1.00	0.90	0.01	0.00	0.00	0.00	0.00	0.08	0.00	0.00
110D-110B	1.00	0.95	0.03	0.00	0.01	0.00	0.00	0.00	0.90	0.00
C1	1.00	0.74	0.04	0.00	0.22	0.00	0.00	0.00	0.85	0.00

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
101-100-E_1	10.94	10.94	10.95	0.01	0.01
102-101-E_1	10.48	10.48	10.78	0.01	0.01
103-101-E_1	10.59	10.59	10.62	0.01	0.01
104-103-E_1	10.78	10.78	10.93	0.01	0.01
105-104-E_1	10.61	10.61	10.69	0.01	0.01
107.105-E_1	10.33	10.33	10.38	0.01	0.01
108-107-E_1	10.74	10.74	10.79	0.01	0.01
110-108-E_1	10.58	10.58	10.72	0.01	0.01
C1 -	0.18	0.18	0.27	0.01	0.01

Analysis begun on: Thu Jan 13 12:51:09 2022 Analysis ended on: Thu Jan 13 12:51:11 2022 Total elapsed time: 00:00:02

3718 GREENBANK ROAD: SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix E External Reports

Appendix E EXTERNAL REPORTS

E.1 DESIGN BRIEF (SITE SERVICING STUDY) FOR THE RIDGE (BRAZEAU LANDS) BY DSEL (JULY 2020)

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

DESIGN BRIEF

FOR

CAIVAN GREENBANK DEVELOPMENT CORPORATION

THE RIDGE (BRAZEAU LANDS)

3809 BORRISOKANE ROAD

CITY OF OTTAWA

PROJECT NO.: 18-1030 JULY 27TH, 2020 4TH SUBMISSION © DSEL

DESIGN BRIEF FOR CAIVAN GREENBANK DEVELOPMENT CORPORATION

THE RIDGE (BRAZEAU LANDS)

PROJECT NO: 18-1030

TABLE OF CONTENTS

TABL	.ES2
1.0 1.1	INTRODUCTION
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS
2.1	Existing Studies, Guidelines, and Reports2
3.0	WATER SUPPLY SERVICING
3.1	Existing Water Supply Services5
3.2	Water Supply Servicing Design5
3.3	Summary of Hydraulic Modeling Analysis8
3.4	Fire Flows – Fire Underwriters Survey8
3.5	Water Supply Conclusion9
4.0	WASTEWATER SERVICING10
4.1	Existing Wastewater Services10
4.2	Wastewater Design10
	 4.2.1 Brazeau (The Ridge) Lands
4.3	Wastewater Servicing Conclusion12
5.0	STORMWATER CONVEYANCE
5.1	Existing Stormwater Drainage13
5.2	Proposed Stormwater Management Strategy13
	5.2.1 Infiltration – Etobicoke Exfiltration System (EES)145.2.2 EES Temporary Monitoring15
5.3	Post-Development Stormwater Management Targets
	5.3.1 Quality Control 17 5.3.2 Quantity Control – Dry Pond 18

18-1030

5.4	Stormwater Management Design 5.4.1 Borrisokane Road – Ministry of Transportation Requirements	
5.5	Proposed Minor System	20
5.6	Quality Control (OGS Units)	22
5.7	Hydraulic Grade Line Analysis	22
5.8	Proposed Major System	22
5.9	Stormwater Servicing Conclusions	22
6.0	PROPOSED GRADING	23
7.0	EROSION AND SEDIMENT CONTROL	23
7.1	EES Protection During Construction	24
8.0	CONCLUSION AND RECOMMENDATIONS	24

TABLES

Table 1A	Water Supply Design Criteria (System Level Demands)	

- Table 1B
 Estimated Water Demands Brazeau Land Updates
- Table 1CWater Supply Design Criteria (Typical)
- Table 2Wastewater Design Criteria
- Table 3Storm Sewer Design Criteria

APPENDICES

- Appendix A Figure 1 Key Plan Figure 2 - MPlan
- Appendix B Excerpts from JLR Master Servicing Study Boundary Condition Request Hydraulic Capacity and Modeling Analysis – GeoAdvice (Jul 2020) Figure WAT-1 (Watermain Servicing Plan)
- Appendix C Excerpts from JLR Master Servicing Study - Master Sanitary Drainage Area (MSAN)
 - MSS Table 6-3 & 6-4 and Figure 4-2
 - Sanitary Drainage Area Plans (The Ridge)
 - Sanitary Design Sheet (DSEL, July 2020)
- Appendix D Excerpts from JLR Master Servicing Study
 - Figure 3-1
 - Table 5-2 & 5-5
 - Master Storm Drainage Plan (MST-2)
 Paterson Groundwater Infiltration Review (Memo)
 The Ridge Phase 1 Subdivision (Brazeau) LID Design Update (JFSA)

Storm Drainage Area Plans (The Ridge)

18-1030

	Storm Design Sheet (DSEL, July 2020) SWM Pond Drawings (No. 77 to 80) OGS Unit Sizing Determinations OGS Drainage Area Figure C1 Excerpts from BSUEA MSS (Section 5 excerpts)
Appendix E	Grading Plans Figure 3, 3A, 3B and 3C – General Plan Overview

18-1030

DESIGN BRIEF FOR CAIVAN GREENBANK DEVELOPMENT CORPORATION

THE RIDGE (BRAZEAU LANDS)

CITY OF OTTAWA PROJECT NO: 18-1030

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare the detailed design of the Brazeau Lands development area located at 3809 Borrisokane Road within the Barrhaven South Urban Expansion Area (**BSUEA**) on behalf of Caivan Greenbank Development Corporation (CGDC). This design brief is submitted in support of that development. The development is now being referred to as "The Ridge" Subdivision for marketing purposes.

The proposed development area is illustrated in *Figure 1* (see *Appendix A*) and is located north of Barnsdale Road, east of Highway 416 (and Borrisokane Road), south of Cambrian Road and west of the future New Greenbank Road alignment. The current zoning is Mineral Extraction (ME) and is amended to permit low-rise residential uses. The western portion of the property is outside of the urban boundary and will remain at the current zoning while the eastern side (approximately 24.7 ha) is within the urban boundary and is to be rezoned as noted above. The development will also include a 0.91 ha block for a road connection to Borrisokane Road, a future 0.89 ha right-of-way (ROW) area within the Drummond Lands (also owned by CGDC) for servicing outlets, and a 3.94 ha pond block within the Drummond Lands that will service both properties. The lands are planned to be developed with a mix of detached single homes, townhomes, park blocks, SWM blocks, open space and a road network (see *Figure 2* for the lotted legal plan in *Appendix A*).

This design brief is prepared to demonstrate conformance with the design criteria of the City of Ottawa, background studies, including the Master Servicing Study, and general industry practice.

1.1 Existing Conditions

The Ridge subdivision was previously an aggregate extraction pit operated in accordance with the Ontario Aggregate Resources Act and Regulations. Processes have been undertaken to remove this designation.

The property ground surface is significantly disturbed as a result of the mineral extraction activities that have occurred over the years with stockpiles of materials at

18-1030

various locations and elevations. The eastern portion of the site adjacent to the New Greenbank Road future alignment range in elevations from approximately 108.0m to 104.5m. On-site elevations vary due to the various stockpiles of materials but are general averaging about 99.0m. Drainage is generally conveyed westward towards Borrisokane Road which is owned by, and under the jurisdiction of, the Ministry of Transportation.

The property is within the Jock River watershed and is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA).

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (Sewer Design Guidelines)
 - Technical Bulletin ISDTB-2014-01 City of Ottawa, February 5, 2014 (*ITSB-2014-01*)
 - Technical Bulletin PIEDTB-2016-01 City of Ottawa, September 6, 2016 (*PIEDTB-2016-01*)
 - Technical Bulletin ISTB-2018-01 City of Ottawa, March 21, 2018 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-04 City of Ottawa, June 27, 2018 (ISTB-2018-04)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010.
 (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-2 City of Ottawa, May 27, 2014. (ISDTB-2014-2)

18-1030

- Technical Bulletin ISTB-2018-02 City of Ottawa, March 21, 2018 (ISTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, Conservation and Parks, 2008. (formerly MOECC) (MECP Design Guidelines)
- Highway Drainage Design Standards (MTO 2008)
- Drainage Management Manual (MTO 1997), Ministry of Transportation. (*MTO Manuals*)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- City of Ottawa Official Plan, adopted by Council 2003. (Official Plan)
- South Nepean Collector: Phase 2 Hydraulics Review / Assessment Technical Memorandum Novatech, August 2015 (Novatech SNC Memo)
- Master Servicing Study Barrhaven South Urban Expansion Area, J.L. Richards & Associates Limited, Revision 2, May 2018 (BSUEA MSS)
- Servicing Brief Quinn's Pointe Residential Stages 2, 3 & 4, J.L. Richards & Associates Limited, Revision 1, October 2018 (File No. 26610-001.1) (*Quinn's Pointe Brief*)
- Stormwater Management Report for Brazeau Subdivision, by J.F. Sabourin and Associates (July 2020) (JFSA SWM Report)
- Pond Design Brief for Brazeau Subdivision, by J.F. Sabourin and Associates (July 2020) (JFSA Pond Report)
- Caivan Brazeau/Drummond Development LID Design Update, by J.F. Sabourin and Associates (July 2020) (JFSA LID Analysis)

18-1030

- Geotechnical Investigation, Proposed Residential Development, Brazeau Lands

 Borrisokane Road, Paterson Group (January 2019)
 (Geotechnical Report)
- Groundwater Infiltration Review, Proposed Residential Development, Brazeau Pit and Drummonds Pit – Borrisokane Road, Paterson Group (August 2019) (*Infiltration Review*)
- Supplemental Hydrogeological Review, Proposed Residential Development, The Ridge – Borrisokane Road, Paterson Group (March 4, 2020) (Hydrogeological Review)
- Borrisokane Ditch Erosion Assessment: The Ridge (Brazeau) Subdivision, J.F. Sabourin and Associates Inc. (June 2020)
 (JFSA Erosion Assessment)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The **BSUEA MSS** provided an overview of the existing watermain infrastructure associated with the BSUEA. The **BSUEA MSS** completed an overall assessment of the water supply for the area in order to examine the feasibility of the extension of existing infrastructure that would meet the required City and MECP criteria for the whole of the development area.

The 'Master Watermain" plan (Drawing MWM) from the **BSUEA MSS** is provided in **Appendix B** and illustrates the existing watermains in proximity to The Ridge development area. In addition, a conceptual watermain plan (Drawing CWM) from the preliminary Servicing Brief for Minto's Quinn's Pointe (Stages 2, 3 & 4) residential area is provided for reference. The proposed watermain servicing connections points for The Ridge development area are as follows:

- Existing 300mm diameter watermain terminating at Dundonald Drive and the future New Greenbank Road alignment;
- Proposed 300mm diameter watermain from the existing Cambrian Road 400mm diameter watermain forming part of the Tamarack Meadows development network located north of The Ridge and Drummond lands.

As adjacent developments to the east are advanced there will be a future required connection to the development from the existing 300mm diameter watermain on Kilbirnie Drive at Alex Polowin Avenue (or future extension location that is dependent upon the advancement of the Quinn's Pointe development).

3.2 Water Supply Servicing Design

The **BSUEA MSS** presents overall watermain infrastructure details for the BSUEA. The subject property was deemed serviceable and the **MSS** reviewed a number of servicing scenarios (i.e. existing and built-out conditions) that confirmed that the area could be adequately serviced conforming to relevant City and MECP Guidelines and Policies.

The water analysis contained in the **BSUEA MSS** utilized system level water demands as developed by the City due to the fact that the number of units and densities resulted in an overall population that would exceed 3,000. The excerpt of the system level demands listed in Table 7-1 of the **MSS** can be found in **Appendix B** and are summarized as follows:

18-1030

Table 1A: Water Supply Design Criteria (System Level Demands)

Land Use Type	Consumption Rate				
JLR BSUEA MSS, May 2018 for Population Exceeding 3000 Persons					
Single Family Residential	180 L/cap/day				
Multi-unit Residential (Townhouse / Back to Back)	198 L/cap/day				
Apartment Residential	219 L/cap/day				
Commercial	50,000 L/ha/day				
Institutional	50,000 L/ha/day				
Outdoor Water Demand	1049 L/unit/day (single detached)				

The estimated water demands within the **BSUEA MSS** were summarized in Table 7-2 (excerpt found in **Appendix B**). The table summarized a total population of 1,194 for the Brazeau Lands development area along with some commercial and institutional components. Based on the current development concept the water demand table is refined to reflect a revised residential unit count and the removal of the commercial, institutional and high density components. Based on the development layout illustrated in **Figure 2** the development area will have 347 single family homes and 279 towns with associated populations of 1,180 and 754 respectively. The adjusted water demands for comparison purposes are summarized in the following table:

 Table 1B:
 Estimated Water Demands - Brazeau Land Updates

Design Parameter	Area (ha)	Units	Pop.	ADD SFH 1	ADD MLT ²	ADD APT ³	ADD COM ⁴	ADD INS ⁵	Total BSDY	OWD ⁶	Total MXDY
From Table 7-2 of MSS	12.72	398	1194	1.56	0.87	0.17	0.39	0.85	3.84	2.67	6.51
Revised per Updated Development Plan (Residential Area)	23.83	626 ⁷	1934	2.45	1.73	0	0	0	4.18	4.21	8.39
		+228	+740						+0.34	+1.54	+1.88

1 Daily Demand, Single Family Homes, L/s (see Table 1A for Consumption Rate)

2 Average Daily Demand, Multi-Units (Townhouses and Back to Back Unit) L/s

3 Average Daily Demand, Apartment Units, L/s

4 Average Daily Demand, Commercial, L/s

5 Average Daily Demand, Institutional, L/s

6 Outdoor Water Demand, L/s, calculated as 1,049 L per SFH unit per day per MSS

7 Comprised of 347 Singles Family Homes and 279 Townhouses

With reference to Table 7-2, the overall Total BSDY increased by 0.34 L/s (to 19.00 L/s) which is a 1.8% increase over the previous 18.66 L/s. The total MXDY increases by 1.88 L/s which is a 5.9% increase over the previous 31.48 L/s.

The typical Water Supply Design Criteria used are as summarized in the following table:

18-1030

Design Parameter	Value			
Residential – Single Family	3.4 p/unit			
Residential – Semi-Detached	2.7 p/unit			
Residential – Townhome	2.7 p/unit			
Residential – Average Daily Demand	350 L/p/day			
Residential – Maximum Daily Demand	2.5 x Average Daily Demand			
Residential – Maximum Hourly Demand	2.2 x Maximum Daily Demand			
Residential – Minimum Hourly Demand	0.5 x Average Daily Demand			
Commercial / Institutional Average Daily Demand	50,000 L/ha/day			
Park Average Daily Demand	28,000 L/ha/day			
Commercial / Institutional / Park Maximum Daily Demand	1.5 x Average Daily Demand			
Commercial / Institutional / Park Maximum Hour Demand	1.8 x Maximum Daily Demand			
Commercial / Institutional / Park Minimum Hourly Demand	0.5 x Average Daily Demand			
Fire Flow	Calculated as per the Fire Underwriter's Survey 1999.			
Minimum Watermain Size	150 mm diameter			
Service Lateral Size	19 mm dia. Copper or equivalent			
Minimum Donth of Covor	2.4 m from top of watermain to finished			
Minimum Depth of Cover	grade			
Peak hourly demand operating pressure	275 kPa and 690 kPa			
Fire flow operating pressure minimum	140 kPa			
Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July 2010), ISDTB-2010-2				

Table 1C: Water Supply Design Criteria

A boundary condition request was submitted (provided in *Appendix B* for reference) in order to obtain water supply parameters for use in the hydraulic modelling assessment of the network. A hydraulic analysis was prepared for the water distribution network to confirm that water supply is available within the required pressure range, under the anticipated demand during average day, peak hour and fire flow conditions and was based on boundary conditions requested from the City of Ottawa. Refer to the *Hydraulic Capacity and Modeling Analysis, Brazeau Lands* prepared by *GeoAdvice Engineering Inc. dated June 10, 2020 (GeoAdvice Water Analysis)*, enclosed in *Appendix B.*

The proposed water layout is shown in the general plan of services overview presented in *Figures 3, 3A, 3B* at the back of this report as well as in the GeoAdvice report figures. The Ridge development will initially require a minimum of two watermain feeds to the service the property. Based on the nearby existing infrastructure, and surrounding development plans, it is proposed that an extension of the existing Dundonald Drive 300mm watermain will provide service to the northeast portion of the property. In addition, the second proposed feed to service The Ridge will be through the Drummond Lands from the proposed 300mm watermain that is being advanced for the Tamarack Meadows development north of the property. Ultimately there will be future connections to Greenbank Road and Kilbirnie Drive (to the south) when those development areas are advanced.

18-1030

3.3 Summary of Hydraulic Modeling Analysis

A complete watermain analysis has been prepared to confirm that the network is sized adequately, which is the greater of maximum day plus fire and maximum hour for both the Phase 1 and Phase 1&2 scenario. Refer to the *GeoAdvice Report*, enclosed in *Appendix B*.

System Pressures

The modeling indicates that the development can be adequately serviced by the proposed watermain network. Modeled service pressures for the development are summarized in the following table. The detailed pipe and junction tables are contained in the *GeoAdvice Report*, enclosed in *Appendix B*.

		our Demand Pressure	Peak Hour Demand Minimum Pressure		
	kPA	psi	kPA	psi	
Phase 1	538	78	290	42	
Phases 1&2	538	78	262	38	

Table 1D: Summary of Available System Pressures

The generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi) as outlined in the City of Ottawa Design Guidelines. Low pressures (slightly below 40 psi) are predicted in the south and southeast area of the site due to higher ground elevations. However, this is without considering provision of the future watermain connection from the Quinn's Pointe development area. Per Section 4.1 of the *GeoAdvice Report*, this future additional connection (as required by the *BSUEA MSS*) will provide an additional head of up to seven meters and resolve this low pressure condition. Should the availability of the additional watermain feed not be in place during the advancement of Phase 2 of The Ridge, it would be recommended that oversized service laterals be provided in order to compensate. For now, the current design drawings have demonstrated the requirement of a 25mm water service lateral in the areas that are slightly below the 40psi threshold.

3.4 Fire Flows – Fire Underwriters Survey

Fire Flow requirements are established in the boundary condition request found in *Appendix B* as prepared by GeoAdvice. Calculations for the single detached dwellings and traditional townhomes reached the City of Ottawa's cap of 10,000 L/min (167 L/s) as outlined in *ISDTB-2014-02*. At this time, there is not enough information available to calculate the required fire flows of the park so a required fire flow of 250 L/s was assumed, which is a typical requirement for similar land uses. The fire flows are calculated in accordance with the Fire Underwriters Survey's Water Supply for Public

18-1030

Fire Protection Guideline (1999). Detailed FUS calculations can be found in the GeoAdvice reporting.

Available Fire Flows

The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire. A summary of the available fire flows is presented in the following table. The detailed fire flow reports are found in the **GeoAdvice Report** enclosed in **Appendix B**.

	Required Fire Flow (L/s)	Minimum Available Flow (L/s)	Junction ID
Phase 1	167	177	J-45
	250	249	J-47
Phase 1 & 2	167	194	J-66
	250	269	J-47

1E: Summary of Available Fire Flows

As shown in the above table the model predicts the network will be able to provide all required fire flows within the development limits. Detailed results are included in the *GeoAdvice Report*, enclosed in *Appendix B*.

3.5 Water Supply Conclusion

The subject lands have been previously reviewed within the **BSUEA MSS** for the BSUEA development areas. The interim condition of The Ridge subdivision can be serviced by City of Ottawa infrastructure through the extension of the existing 300mm watermain from Dundonald Road from the east side of the property and a proposed connection north of the property, through the Drummond Lands, to a new 300mm watermain extension from Cambrian Road. In the interim condition for Phase 2 areas (i.e. only two feeds into the development area) there are pockets of low pressure (slightly below 40psi) areas along the southern boundary that are proposed to have 25mm water service laterals to compensate. Ultimately there will be additional connections to future watermains along Greenbank Road and Kilbirnie Drive (from the south as the Minto Quinn's Pointe development advances) that will alleviate the low pressure condition. See *Figure WAT-1* in *Appendix B* for the watermain network overview. These extensions are in accordance with the *MSS* projected infrastructure. The proposed water supply design conforms to all relevant City and MECP Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

Sanitary flows from the **BSUEA** were proposed to outlet to the existing 900mm diameter Greenbank Road sanitary trunk sewer. The existing South Nepean Collector (SNC) will provide the sanitary outlet for the entire Barrhaven South Community, which includes the BSUEA development area.

Trunk sanitary sewers exist north of the Brazeau Lands area and are located along Cambrian Road (see JLR's *Master Sanitary Drainage Area* plan 'MSAN' in *Appendix C*). The outlet connection point to existing for the Brazeau Lands is as follows:

Existing 500 mm / 600 mm / 750 mm diameter sanitary trunk running east on Cambrian Road then extending north along existing Greenbank Road and east to the South Nepean Collector (SNC). The current sewer termination is at the New Greenbank Road alignment.

As per the **BSUEA MSS** the subject property is tributary to the existing sanitary trunk sewer along Cambrian Road.

4.2 Wastewater Design

The subject property will be serviced by an internal gravity sanitary sewer system that will generally follow the local road network with select servicing easements and land crossing permissions as required to achieve efficiencies in servicing and grading designs. The wastewater layout can be found in the general plan of services overview presented in *Figures 3, 3A and 3B* at the back of this report. The sanitary drainage area plans and design sheets, along with background *BSUEA MSS* information, can all be found in *Appendix C* for reference.

The **BSUEA MSS** proposed that the wastewater outlet from the Brazeau Lands would tie into the off-site Cambrian Road trunk sewer at existing sanitary 'EX MH57A' via the Future Greenbank Road alignment and that is now the intent of The Ridge (Brazeau) design. The *Master Sanitary Drainage Area* plan 'MSAN' from the **BSUEA MSS** is provided in **Appendix C** for reference. Sanitary flows from the adjacent Drummond Lands were originally proposed to be conveyed to Cambrian Road (MA11 to MA10) through Tamarack's "The Meadows Phase 7 & 8" (**Meadows**) development area at 3640 Greenbank Road (D07-16-18-0011) in the **BSUEA MSS**. Although there were prior concepts of bringing The Ridge sanitary flows through the Drummond/Tamarack properties, the current sanitary sewer alignments, that are in line with the **BSUEA MSS**, are proposed in order to minimize overall sewer depths and alleviate City concerns with alternate routing.

18-1030

4.2.1 Brazeau (The Ridge) Lands

In the **BSUEA MSS**, Table 6-3 (provided in **Appendix C**) summarized the anticipated flows from the "Brazeau Aggregate Extraction Area" lands (i.e. The Ridge development). With the more detailed development concept, the site statistics are refined and the sanitary design sheet found in **Appendix C** more accurately reflects the anticipated sanitary flows. As per Section 3.2 of this report, the anticipated unit count for The Ridge is 347 single family homes and 279 townhouse units.

When applying the City of Ottawa wastewater design criteria the estimated peak sanitary flows from The Ridge and other areas tributary to the sewer network results in the following:

- i) The Ridge residential area + 4.3 ha of Drummond lands (~31.06 L/s);
- ii) Drummond Lands (direct to Greenbank Road (~20.29 L/s);
- iii) Mattamy lands adjacent to Future Greenbank Road (residential area of 1.90 ha and commercial area of 2.99 ha) (~4.45 L/s);
- iv) Future Brazeau commercial area (13.83 ha) west of the subdivision (~9.05 L/s)
- v) Commercial area (ABIC) (~4.84 L/s)

For comparison to the **MSS** Table 6-3 values, criteria the estimated peak sanitary flows from The Ridge and Mattamy areas is approximately 49.38 L/s. This would be in comparison to the **MSS** sum of the 21.50 L/s (Brazeau Lands flow), 1.8 L/s Mattamy Commercial, and approximately 1.9 L/s Mattamy Residential. For comparison this would be 69.69 L/s versus the 25.2 L/s (i.e. +44.49 L/s) previously summarized in the JLR's Table 6-3.

Table 6-4 in the **BSUEA MSS** identified critical residual capacities in existing trunk sanitary sewers associated with the BSUEA area. Specifically, the Cambrian Road sewer is the outlet for the Brazeau Lands property and has a limiting pipe reach from existing MH13A to MH15A with a residual capacity of approximately 52.9 L/s. The additional 44.49 L/s of anticipated sanitary flows uses approximately ~84% of the residual capacity leaving 8.41 L/s. Review of the **BSUEA MSS** sanitary design sheet indicates that there are no other sanitary sewer constraints up to the SNC.

4.2.2 Greenbank Road Sewer Alignment

As noted, the sanitary outlet for The Ridge will be along the Future Greenbank Road EA alignment as per the **BSUEA MSS**. As per JLR's *Master Sanitary Drainage Area* plan 'MSAN' in **Appendix C** this alignment is represented by the sewer run from MH900 to EXMH57A on Cambrian Road ranging in size from 250mm to 375mm. The proposed design has a 375mm sanitary (capacities of the design can be seen in the sewer design sheet). MH900 would equate to the MH402A proposed within The Ridge design. Per Section 6.3.1.2 the depth of the sewer at this location was estimated to have a cover depth of approximately 7.43m. Based on The Ridge detailed design, which has taken into consideration all of the site grading and sewer crossing constraints that result from

18-1030

detailed design, the proposed cover is 8.5m at MH402A per the profile drawing for this trunk sewer (See Drawing 61 in *Appendix C*). The elevated EA road profile results in the greater depth of the sewer at this location. As the sewer progresses northward towards Cambrian Road the depth of cover is gradually reduced as the road profile drops down in elevation. The proposed sanitary sewer is set at either minimum slopes, to mitigate depth of cover, or at slopes to establish flow capacities that are approximately 75%-78% of the proposed sewer's capacity. See markups of the profile drawings in *Appendix C* for reference.

4.2.3 Wastewater Design Criteria

The following table summarizes the City design guidelines and criteria applied in the preliminary sanitary design information above and detailed in *Appendix C*.

Design Parameter	Value				
Current Desi	gn Guidelines				
Residential - Single Family / Townhome	3.4 p/unit & 2.7 p/unit respectively				
Residential – Apartment	1.8 p/unit				
Average Daily Demand	280 L/d/person				
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0				
Commercial / Institutional Flows	28,000 L/ha/day				
Commercial / Institutional Peak Factor	1.5				
Infiltration and Inflow Allowance	0.33 L/s/ha				
Park Flows	28,000 L/ha/d				
Park Peaking Factor	1.0				
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$				
Minimum Sewer Size	200mm diameter				
Minimum Manning's 'n'	0.013				
Minimum Depth of Cover	2.5m from crown of sewer to grade				
Minimum Full Flowing Velocity	0.6m/s				
Maximum Full Flowing Velocity	3.0m/s				
Extracted from Sections 4 and 6 of the City of Ottawa Sewer De subdivisions in City of Ottawa.	esign Guidelines, October 2012, and recent residential				

Table 2: Wastewater Design Criteria

4.3 Wastewater Servicing Conclusion

The subject property will be serviced by local sanitary sewers which will outlet to the Future Greenbank Road ROW alignment via new sanitary sewers. The sewer will connect to existing sewers along Cambrian Road as demonstrated in the **BSUEA MSS** at 'EX MH57A' per JLR's *Drawing MSAN*. There is residual capacity in the downstream sewers providing sufficient capacity for the peak sanitary flows for the subject property.

5.0 STORMWATER CONVEYANCE

5.1 Existing Stormwater Drainage

The **BSUEA** is tributary to three sub-watersheds as depicted in the 'Figure 3-1' excerpt from the **BSUEA MSS** provided in **Appendix D**. The Brazeau Lands are within the Jock River Subwatershed.

Due to the recent land use for mineral extraction the majority of the land area is lower than the surrounding topography. As identified in the **BSUEA MSS**, the BSUEA *Existing Condition Report* identified that the original drainage pattern for the development area was northwards via overland flow paths with no defined channels. Per the existing topography characterized within available City of Ottawa base mapping, flows from the subject property will now be ultimately conveyed to the Jock River by storm systems (pipes and ditches as required) along Borrisokane Road.

5.2 Proposed Stormwater Management Strategy

The future flows from the land area are planned to meet the following criteria per the **BSUEA MSS**:

- Meet the existing flow in the downstream system;
- Meet the quality control target of 80% TSS removal as per the Jock River Reach One Subwatershed Study (Stantec, 2007); and,
- > Preserve pre-infiltration condition levels (Section 5.3.4 of **BSUEA MSS**)

In order to provide drainage conveyance to a Borrisokane Road storm outlet, the site grading will be adjusted to convey flows westward. As noted in the **BSUEA MSS**, the *Existing Conditions Report* for the BSUEA identified that the culvert downstream of the aggregate properties receives a pre-development flow of 1,300 L/s during the 1:100 year event (see Figure 3-1, and Tables 5-2 and 5-5 in **Appendix D** from the ECR noting the constrained culvert CVR-C1). Servicing of both The Ridge and Drummond properties have been developed such that the downstream pre-development flow is not exceeded. Any downstream systems should have sufficient capacity for the pre-development flow.

The **BSUEA MSS** conceptualized the following requirements for the development areas:

The design of the storm drainage system has been undertaken using the dualdrainage approach. The BSUEA MSS sets out the design criteria for future draft plan and site plan applications for the BSUEA.

- Two (2) separate storm servicing solutions were developed; one conventional servicing strategy and one that incorporates the Etobicoke Exfiltration System (EES) or alternative, which was recommended (see **BSUEA MSS** Drawing MST-2 for details and Section 5.2.1 of this report for discussion).
- The downstream boundary conditions or flow criteria to achieve are developed in the **BSUEA MSS** and are used in the design constraints.
- Allowable minor system release rates were set at the required storm event and future design should maintain the same release rate criteria.
- Stormwater management facilities have been identified in the stormwater management solution for the aggregate extraction areas.

The stormwater management designs will consist of:

- A storm sewer system designed to capture at least the minimum design capture events required under PIETB-2016-01;
- One dry Stormwater Management (SWM) Pond designed to provide required quantity controls along with oil-grit separator (OGS) units that will provide an Enhanced Level of Protection [80% total suspended solids (TSS) removal] per MECP guidelines. The SWM pond will provide controls to levels which respect any downstream pre-development flows;
- An on-site road network designed to maximize the available storage in the onsite road network for the 100-year design event, where possible, with controlled release of stormwater to the minor storm system; and
- An overland flow route designed to safely convey stormwater runoff flows in excess of the on-site road storage.

5.2.1 Infiltration – Etobicoke Exfiltration System (EES)

Within the **BSUEA MSS**, Section 5.4.4 discussed the recommendation of distributed infiltration for development areas. An analysis was carried out and summarized in the *Existing Conditions Report* which determined the various contributions of the water budget based on long-term simulation.

The section also notes that the overall pre-development infiltration from the **BSUEA MSS** area was determined but that the aggregate extraction areas were excluded in that determination. Ongoing investigations for both the Brazeau and Drummond properties have been completed and are summarized in the attached "*Groundwater Infiltration Review*" memorandum completed by Paterson Group (see **Appendix D** for reference). The memorandum summarizes the estimate infiltration rates that could be anticipated throughout the sites for various soil type conditions that were found during their investigations. These values were used during the detailed design determinations.

18-1030

Section 5.5 of the **BSUEA MSS** discusses the various storm servicing strategies for the development areas. The section went through the various options to achieve the required infiltration targets with the preferred arrangement being the Etobicoke Exfiltration System (EES) Infiltration Strategy. Other alternatives were reviewed, however the EES system is the most suitable for the site and is proposed to be implemented in accordance with the City's preference.

A key point of note, as required by the **MSS**, is that capture of stormwater by the exfiltration system has strategically located insofar as the system is to be installed on local roads (where required to achieve the required infiltration levels) where the surface runoff is less impacted by the City's winter road salting program. Therefore collector and arterial roads will have conventional storm sewer installations that will convey flows to a proposed downstream oil-grit-separator (OGS) units and end-of-line dry pond facility. JFSA has prepared their *JFSA LID Analysis* design memo to assess the infiltration volumes anticipated for the EES system proposed. See *Appendix D* for the analysis. A visual representation of the EES system and drainage capture areas can be seen in the *Figure 2* of the JFSA technical memorandum and can also be seen in the Storm Drainage Area plans.

As summarized in the JFSA analysis, there will be a total of 24 EES systems implemented within the development area in order to meet the infiltration requirements. The EES units will be installed underneath storm sewers within the ROW in specific areas determined as being suitable based on site constraints. Each system will consist of one or two 250 mm diameter perforated pipes surrounded by a 0.85 m deep by 1.20 m wide clear stone trench. Goss traps will be installed in upstream catchbasins in order to prevent/mitigate debris and potential oils from entering the perforated pipe system. Detail drawings of the proposed EES units provided in Figure 1 of the *JFSA LID Analysis*. See *Appendix D* for the full summary of the design parameters for each EES in Tables A1 and A2 (pipe diameter, system lengths and volumes, inverts etc).

For protection measures of the EES system during construction see Section 7.1.

5.2.2 EES Temporary Monitoring

As per Section 5.5.1.8 of the **BSUEA MSS** there are requirements for temporary monitoring of the proposed infiltration system in order to assess and confirm that the EES operates as intended. The objectives of the monitoring will be to estimate the drawdown time of the EES (i.e. time for water levels to drop) to see if the infiltration values projected are in line with the results, and to determine the average rate of capture before runoff is conveyed by the traditional storm sewer system. The final locations and configuration will be coordinated with City staff through this detailed design process as it has been indicated that the City has vetted a "Smart Cover" arrangement through the advancement of the adjacent Minto development area.

18-1030

Proposed monitoring locations have been circulated to the City and are identified in a markup of the *Figure 2* from the *JFSA LID Analysis* provided in *Appendix D*. The City has concurred with the preliminary locations pending full acceptance of the EES design.

5.3 Post-Development Stormwater Management Targets

Stormwater management requirements for the proposed alternative Stormwater management scheme have been adopted from the *Jock River SWS*, *City Standards*, and the *MECP SWMP Manual*.

Given the general criteria mentioned above, the following specific standards are expected to be required for stormwater management within the subject property:

- Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average TSS removal efficiency of 80%, as defined by the MECP prescribed treatment levels;
- Downstream receiving drainage features, culverts, and sewers will be assessed for responses to planned stormwater management outflows, and infrastructure rehabilitation or capacity improvement measures will be planned, as required;
- Storm sewers on local roads are to be designed to provide at least a 2-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01;
- Storm sewers on collector roads are to be designed to provide at least a 5-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01;
- For less frequent storms (i.e. larger than 2-year or 5-year), the minor system sewer capture will be restricted with the use of inlet control devices to prevent excessive hydraulic surcharges;
- Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s;
- For the 100-year storm and for all roads, the maximum depth of water (static and/or dynamic) on streets, rear yards, public space and parking areas shall not exceed 0.35 m at the gutter;
- The major system shall be designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public right-of-way ROW, or adjacent to the ROW, provided the water level does not touch any part of the building envelope; must remain below all building openings during the stress test event (100-year + 20%); and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope;

18-1030

- Flow across road intersections shall not be permitted for minor storms (generally 5-year or less);
- When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas. A minimum of 30 cm of vertical clearance is required between the rear yard spill elevation and the ground elevation at the adjacent building envelope; and
- The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.

5.3.1 Quality Control

As per the *Jock River SWS*, Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average Total Suspended Solid removal efficiency of 80%, as described by the MECP prescribed treatment levels. This will be achieved via the proposed EES system installations (where possible) and OGS unit(s) for all other areas. The location/details of the OGS units near the SWM pond inlet can be seen in '*Storm Drainage Plan*' Drawing No. 88 and SWM Pond Drawings No. 77/79 found in *Appendix D*.

The **BSUEA MSS** reviewed the quality control aspects of the proposed EES installations. Section 5.5.1.3 of the **MSS** concludes that based on the EES sizing for the 22mm rainfall (i.e. 95th percentile rainfall event) the storage requirements satisfies the requirements for water quality control per the MECP land uses and further downstream control measures would not be required.

5.3.1.1 EES Infiltration Targets

As a part of the **BSUEA MSS** it was determined that pre-development infiltration within the study area accounted for 40% of the overall site's water budget. The City and RVCA determined that pre-development infiltration levels should be maintained under postdevelopment conditions and that the infiltration should be provided across the development and not simply concentrated to one or two locations.

The EES is intended to capture frequent storm events and the initial "first flush" of large storm events by trapping flow in the perforated pipe sub drain and surrounding media. It is also intended to infiltrate runoff from frequent events into the surrounding soils, while runoff from larger events will overtop the capacity of the EES system and would then overflow to the conventional storm sewer system above

As specified by the Master Servicing Study, the proposed development should infiltrate 40% of the annual runoff. As the hourly rainfall data used in this simulation does not extend the full year, the infiltration target for this analysis has been assumed to be 40% of the average simulated rainfall volume (552.0 mm), which is calculated to be 220.8mm or 59,744 m³ based on the study area. See the *JFSA LID Analysis* for full details.

18-1030

5.3.2 Quantity Control – Dry Pond

The **BSUEA MSS** currently shows a stormwater pond servicing scenario on each of The Ridge and Brazeau Lands outside of the urban development area (refer to attached 'Barrhaven South Urban Expansion Area – Master Storm Drainage Plan EES') drawing from the **BSUEA MSS** for illustration). However, this two pond concept was proposed in the **BSUEA MSS** due to the desire at that time in order to not have the two properties 'linked' and therefore they would not be dependent upon one another in order to advance development.

As noted in prior sections of this report, the two properties have now coordinated servicing strategies to the benefit of both properties, as well as the City, as follows (refer to the Storm Drainage Area Plan and Pond Plan in *Appendix D*):

- The single pond option will be a dry facility with OGS units to treat stormwater requiring treatment. This is in line with the **MSS**;
- If a pond was proposed within the Brazeau Lands location shown in the **MSS**, it would have required a large box culvert outlet in order to convey emergency flow out to Borrisokane Road due to topography constraints. Based on an increase in elevation downstream of that outlet, the emergency flows could not be conveyed overland. With the single pond concept on the Drummond Lands, a box culvert would no longer be required due to the more suitable topography at the Drummond outlet and the associated availability of emergency relief;
- A single pond option keeps more infrastructure within the new development areas and minimizes infrastructure proposed within the Borrisokane Road rightof-way (ROW);
- In accordance with the City's typical preference, there will be a reduction in maintenance costs with one less facility to manage.

Similar to the changes associated with the sanitary outlet revision, the only impacted properties are those proponents that are directly benefitting from the changes and would be considered a Minor Change per Section 11.1.1 of the **BSUEA MSS**.

As noted in the *Jock River SWS*, quantity control is not required for the Jock River; however, based on past reports (*BSUEA MSS* and Existing Condition Report), the limited capacity of the ditch infrastructure along Borrisokane Road will require that the stormwater management facility provide a storage volume for quantity control. Any infrastructure upgrades or adjustments relating to the Borrisokane Road ROW will require appropriate permits and approvals from the Ministry of Transportation until such time as the ongoing process for the transfer of the roadway to be under the jurisdiction of the City of Ottawa is completed.

18-1030

5.3.2.1 Erosion Targets – Borrisokane Road ROW

As requested by City staff an erosion assessment has been completed for the Borrisokane Road ditch outlet. JFSA has prepared a technical memorandum under separate cover entitled "*Borrisokane Ditch Erosion Assessment: The Ridge (Brazeau) Subdivision*" (June 2020) which reviewed the pond outlet for the site (the west ditch of Borrisokane Road north of Cambrian Road). The study concluded that the critical erosion velocity of the receiver is approximately 1.2 m/s which was then converted to a critical discharge threshold using a 1D HEC-RAS model of the ditch which determined that the threshold ranges from 4.20 m³/s to 7.9 m³/s for the middle and lower reaches of the ditch. From JFSA's hydrologic modelling of the ditch, under proposed conditions, the peak flow is assessed at 3.82 m³/s for the 100-year 24-hour SCS event which is lower than the existing threshold range determined.

5.4 Stormwater Management Design

As shown in the *Storm Drainage Area Plan*, the proposed stormwater management design consists of OGS units for quality control and an end-of-line dry SWM pond for quantity control prior to discharge along Borrisokane Road. The pond will be located within the portion of the Drummond quarry land that is between the future Drummond residential area to be developed (within the urban boundary) and Borrisokane Road. The facility will be sized to meet the required level of quantity control based on a restricted outflow of 1,300 L/s as noted in Section 5.2. See the *JFSA Pond Report* under separate cover for full details of the SWM pond design.

In accordance with the Paterson *Hydrogeological Review* (under separate cover) for the area of the pond, the bottom elevation has been set at an elevation of 96.00m and will be lined as required to mitigate the inflow of perched groundwater in the area due to seasonal conditions.

The SWM pond will outlet to the Borrisokane Road roadside ditch. It is proposed that there will be a new 900mm/1200mm storm sewer installation along Borrisokane Road which extends northward to the vicinity of Cambrian Road where it discharges to the western roadside ditch. The proposed alignment was submitted via the City's Municipal Consent process at the City's request. No significant concerns were raised with the proposal.

5.4.1 Borrisokane Road – Ministry of Transportation Requirements

Borrisokane Road, along the frontage of The Ridge development area and northwards to Cambrian Road, is currently owned by, and under the jurisdiction of, the Ministry of Transportation. As such, any proposed underground stormwater infrastructure or grading/landscaping will require permits to facilitate the design and implementation of those works until such time that the process underway to transfer jurisdiction to the City of Ottawa is complete. We are working directly with MTO for the required permitting.

18-1030

Culverts:

For any stormwater flows outletting to any existing, or new, Borrisokane Road ROW culverts the stormwater management reporting will evaluate peak flow rates, velocities and headwater levels at pre- and post-development conditions for design and regulatory storms.

Ditches:

For any stormwater flows outletting to existing Borrisokane Road ROW ditches, the stormwater management reporting will evaluate peak flow rates, velocities and depth of flow at pre- and post-development conditions for design and regulatory storms.

Inlet Control Devices:

Insofar as the Ministry has indicated that they do not recognize any benefit from the attenuation of storm water runoff from inlet control devices. In the circumstance where on-site SWM measures do not operate as intended water from the pond will spill to the Borrisokane roadside ditch via a reinforced grassed emergency spillway as shown in the 'SWM Pond' Drawing No. 76.

5.5 Proposed Minor System

The subject property will be serviced by an internal gravity storm sewer system that follows the local road network and servicing easements as required. The drainage is conveyed within the underground piped sewer system to the proposed SWM pond with select areas of local streets that will have the EES installed to achieve infiltration targets.

Street catchbasins will collect drainage from the streets and front yards, while rear yard catchbasins will capture drainage from backyards. Perforated catch basin leads will be provided in rear yards, to add to the infiltration network, except the last segment where it connects to the right-of-way which will be solid pipe, per City standards.

The preliminary rational method design of the minor system captures drainage for storm events up to and including the 2-year (local) and 5-year (collector) event assuming the use of inlet control devices (ICD) for all catchbasins within the subject property. The peak design flows are calculated based on an average predicted runoff coefficient (C-value) ranging from 0.71 to 0.54 for most of the development area (see storm design sheet in *Appendix D* for details. The storm system has also been sized to consider the potential for future commercial lands to the west where required.

The following table summarizes the standards that will be employed in the detailed design of the storm sewer network. The drainage area information can be found in the *Storm Drainage Plans* and rational method design sheets provided in *Appendix D*.

18-1030

Design Parameter	Value		
Minor System Design Return Period	1:2 yr (PIEDTB-2016-01) for local roads, without ponding 1:5 yr for collector roads, without ponding		
Major System Design Return Period	1:100 year		
Intensity Duration Frequency Curve (IDF) 2-year storm event: A=732.951 B=6.199 C=0.810 5-year storm event: A = 998.071 B = 6.053 C = 0.814	$i = \frac{A}{\left(t_c + B\right)^C}$		
Minimum Time of Concentration	10 minutes		
Rational Method	Q = CiA		
Storm sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$		
Runoff coefficient for paved and roof areas	0.9		
Runoff coefficient for landscaped areas	0.2		
Minimum Sewer Size	250 mm diameter 0.013		
Minimum Manning's 'n' for pipe flow Minimum Depth of Cover			
Minimum Full Flowing Velocity	1.5 m from crown of sewer to grade 0.8 m/s		
Maximum Full Flowing Velocity	6.0 m/s		
Clearance from 100-Year Hydraulic Grade Line	0.30 m		
to Building Opening Max. Allowable Flow Depth on Municipal Roads	35 cm above gutter (PIEDTB-2016-01)		
Extent of Major System	Contained within the ROW, or adjacent to the ROW, provided that the water level not touch any part of the building envelope and remains below the lowest building opening during the stress test event (100-yea + 20%) and 15cm vertical clearance is maintained between spill elevation on the street and the ground elevation at the building envelope (PIEDTB-2016-01)		
Stormwater Management Model	DDSWMM (release 2.1), SWMHYMO (v. 5.02)		
Model Parameters	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr, D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm		
Imperviousness	Based on runoff coefficient (C) where Percent Imperviousness = (C - 0.2) / 0.7 x 100%.		
Design Storms	Chicago 3-hour Design Storms and 24-hour SCS Type II Design Storms. Max. Intensity averaged over 10 minutes.		
Historical Events	July 1st, 1979, August 4th, 1988 and August 8th, 1996		
Climate Change Street Test	20% increase in the 100-year, 3-hour Chicago storm		
Design Parameter	Value		

Table 3: Storm Sewer Design Criteria

18-1030

5.6 Quality Control (OGS Units)

Enhanced quality treatment for the development, corresponding to a long-term average Total Suspended Solid removal efficiency of 80%, will be achieved via the proposed EES system installations and two OGS unit(s). The location/details of the OGS units near the SWM pond inlet can be seen in '*Storm Drainage Plan*' Drawing No. 88 and SWM Pond Drawings No. 77/79 found in *Appendix D* along with the details of the OGS unit sizing provided by Contech. The units have been configured as off-line units to allow for the bypass of larger flows.

5.7 Hydraulic Grade Line Analysis

A detailed hydraulic grade line (HGL) modelling analysis has been completed for the proposed system based on the 100-year 3-hour Chicago, 12-hour SCS, and 24-hour SCS design storms, including historical design storms and climate change stress test as required. The HGL is provided in the plan and profile drawings for the subdivision and details of the modelling can be found in the *JFSA SWM Report*.

5.8 Proposed Major System

Major system conveyance, or overland flow (OLF), is provided to accommodate flows in excess of the minor system capacity. OLF is accommodated by generally storing stormwater up to the 100-year design event in road sags then routing additional surface flow along the road network and service easements towards the proposed drainage features to the Jock River, as shown in the *Storm Drainage Plans*. Stormwater ultimately discharges to the Borrisokane Road ROW which will require appropriate permits and approvals from the Ministry of Transportation if the process to change the jurisdiction to the City of Ottawa does not occur.

5.9 Stormwater Servicing Conclusions

The stormwater runoff is designed to be captured by an internal gravity sewer system that is to convey flows to an end-of-line dry SWM pond facility and OGS units for the quality control treatment of stormwater flows that originate from collector and arterial roadways due to City salting procedures. An Enhanced Level of protection will be provided for stormwater runoff from the subject property before ultimately being discharged to the Jock River. Quantity control is not required for the Jock River, notwithstanding, some quantity control by on-site and SWM pond storage will be provided due to downstream infrastructure constraints.

Infiltration targets noted in the MSS will be achieved via the installation of the EES system within local ROWs which will also provide Enhanced Level quality control as detailed in the **MSS**.

18-1030

6.0 PROPOSED GRADING

The grading design includes a saw-toothed road design with varying road grades in order to maximize available surface storage for management of flows up to the 100-year design event where possible. The proposed site grading has also been developed to optimize earthworks and provide major system conveyance to the end-of-line facility which eventually outlets to the Borrisokane Road ROW and then to the Jock River. Roadway connections to the future New Greenbank Road will be coordinated with that future design based on the Environmental Assessment Study profile for that roadway. Reduced size grading plans are found in *Appendix E* in order to provide an overview context for the proposed grading.

The geotechnical review of the site makes note of the significant grade raises that will be found within the development area. No grade raise restrictions are indicated for the site. However, an extensive earthworks program is being undertaken which will be continuously monitored by the geotechnical consultant in order to ensure that appropriate fill material, placement, and compaction are provided throughout the property. The monitoring program is based on the detailed grading proposed and will ultimately be reviewed and signed off by a licensed Geotechnical Engineer. Any grading onto adjacent properties has been coordinated with adjacent landowners for permissions and retaining walls will be implemented where required.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosions losses is exaggerated during construction where the vegetation has been removed and the top layer of soil is disturbed.

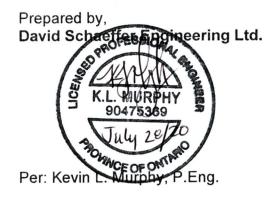
- Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.
- > Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- > Install silt fence to prevent sediment from entering existing ditches.
- > No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- Installation of mud mats at construction accesses.

18-1030

7.1 EES Protection During Construction

From the *Low Impact Development Stormwater Management Planning and Design Guide* prepared by CVC and TRCA (ver 1.0, 2010):

- Prior to site works, the location of LIDs should be marked and vehicles are to avoid the area other than during the installation of the LID. Drainage not to be directed to the LID;
- To minimize siltation in the newly installed EES system, both the upstream and downstream ends of the EES system should be plugged immediately during the construction phase. The upstream plug is to be removed at approximately an occupancy of 80% similar to the Quinn's Pointe development;
- Upland drainage areas need to be properly stabilized with vegetation as soon as possible in order to reduce sediment loads;
- The facility should be excavated to design dimensions from the side using a backhoe or excavator. The base of the facility should be level or match the slope of the above storm sewer;
- > The bottom of the facility should be scarified to improve infiltration; and
- Geotextile fabric should be correctly installed to optimize system function. When laying the geotextile, the width should include sufficient material to compensate for perimeter irregularities in the facility and a 150mm minimum top overlap.


8.0 CONCLUSION AND RECOMMENDATIONS

This report provides details on the planned on-site municipal services for the subject property and demonstrates that adequate municipal infrastructure capacity for the planned development of the subject property:

- The subject lands have been reviewed by the BSUEA MSS and has shown that water supply to the property can be provided. An analysis completed by GeoAdvice also documents the water supply network and results. The network will be expanded through neighboring properties to enhance/meet the water demands of the proposed development as adjacent properties are also developed.
- Sanitary service is to be provided to the subject property via connection to the sanitary sewer located along Cambrian Road through the Future Greenbank Road ROW as per the **MSS**. With the inclusion of the subject property, the existing downstream sewers have sufficient capacity to accommodate the subject property's proposed sanitary flows.

18-1030

- Stormwater service is to be provided by capturing stormwater runoff via an internal gravity sewer system that will convey flows to a proposed end-of-line dry SWM pond facility for quantity control. Quality control will be provided for arterial and collector roadway (and select local roadway) drainage via the use of OGS units to an Enhanced Level of protection (80% TSS removal) prior to discharge to the SWM Pond. Quality control for local streets will be provided via the proposed Etobicoke Exfiltration System as documented in the MSS, as well as within the OGS units downstream. Quantity control is not required for the Jock River, however, some quantity control by on-site and SWM pond storage will be provided due to downstream infrastructure constraints. An erosion threshold assessment has been completed by JFSA for the Borrisokane Road west side ditch north of Cambrian Road (pond outlet) and has confirmed that the projected flows are lower than the threshold determined.
- As suggested in the BSUEA MSS the infiltration will be achieved via use of the preferred EES system. The JFSA reporting demonstrates that the required infiltration targets are met.
- Erosion and sediment control measures will be implemented and maintained throughout construction.
- The design of The Ridge has been completed in general conformance with the City of Ottawa Design Guidelines and criteria presented in other background study documents.

© DSEL 2020-07-27_Brazeau_Servicing_Subm4.doc

Hydraulic Capacity and Modeling Analysis Brazeau Lands

Final Report

Prepared for: David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

Prepared by: GeoAdvice Engineering Inc. Unit 203, 2502 St. John's Street Port Moody, BC V3H 2B4

Submission Date: July 28, 2020

Contact: Mr. Werner de Schaetzen, Ph.D., P.Eng. **Project:** 2019-091-DSE

Copyright © 2020 GeoAdvice Engineering Inc.

Project ID: 2019-091-DSE

Page | 1

Document History and Version Control

Revision No.	Date	Document Description	Revised By	Reviewed By
RO	November 7, 2019	Draft	Ben Loewen	Werner de Schaetzen
R1	December 20, 2019	Final	Ben Loewen	Werner de Schaetzen
R2	June 10, 2020	Updated Draft	Ferdinand de Schoutheete	Werner de Schaetzen
R3	July 28, 2020	Final	Ferdinand de Schoutheete	Werner de Schaetzen

Confidentiality and Copyright

This document was prepared by GeoAdvice Engineering Inc. for David Schaeffer Engineering Ltd. The material in this document reflects the best judgment of GeoAdvice in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. GeoAdvice accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or actions based on this document. Information in this document is to be considered the intellectual property of GeoAdvice Engineering Inc. in accordance with Canadian copyright law.

Statement of Qualifications and Limitations

This document represents GeoAdvice Engineering Inc. best professional judgment based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by a member of the engineering profession currently practicing under similar conditions. No warranty, express or implied is made.

Project ID: 2019-091-DSE

Page | 2

Contents

1	Intr	roduction	4
2	Мо	odeling Considerations	6
	2.1	Water Main Configuration	6
	2.2	Elevations	6
	2.3	Consumer Demands	6
	2.4	Fire Flow Demand	8
	2.5	Boundary Conditions	9
3	Hyd	draulic Capacity Design Criteria	10
	3.1	Pipe Characteristics	10
	3.2	Pressure Requirements	10
4	Hyd	draulic Capacity Analysis	11
	4.1	Development Pressure Analysis	11
	4.2	Development Fire Flow Analysis	12
5	Oth	her Servicing Considerations	14
	5.1	Water Supply Security	14
	5.2	Valves	14
	5.3	Hydrants	15
6	Con	nclusions	16
A	opendi	dix A Domestic Water Demand Calculations and Allocation	
A	opendi	dix B FUS Fire Flow Calculations and Allocation	
A	opendi	dix C Boundary Conditions	
A	opendi	dix D Pipe and Junction Model Inputs	
A	opendi	dix E MHD and PHD Model Results	
A	opendi	dix F MDD+FF Model Results	

1 Introduction

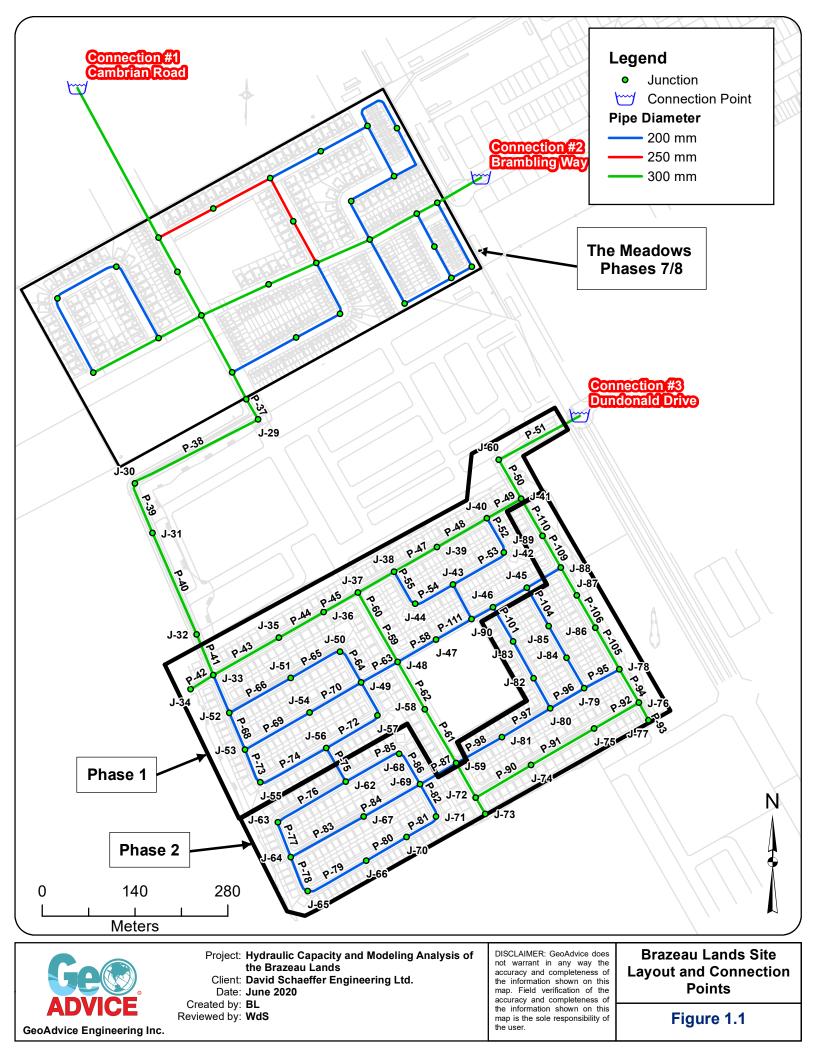
GeoAdvice Engineering Inc. ("GeoAdvice") was retained by David Schaeffer Engineering Ltd. ("DSEL") to size the proposed water main network for the Brazeau Lands development ("Development") in the City of Ottawa, ON ("City").

Under existing conditions, the development will be serviced by the Barrhaven pressure zone; however, in the future, it will be serviced by pressure zone 3C.

There are 347 single detached dwellings, 279 traditional townhomes and 1 park serviced as part of the development.

The Brazeau Lands development will have three (3) connections to the City water distribution system:

- Connection 1: Apolune Street and Cambrian Road;
- Connection 2: Jackdaw Avenue and Future Greenbank Road; and
- Connection 3: Dundonald Drive and Future Greenbank Road.


The development site is shown in **Figure 1.1** on the following page, with the final recommended pipe diameters.

This report describes the assumptions and results of the hydraulic modeling and capacity analysis using InfoWater (Innovyze), a GIS water distribution system modeling and management software application.

The results presented in this memo are based on the analysis of steady state simulations. The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi. No extended period simulations were completed in this analysis to assess the water quality or to assess the hydraulic impact on storage and pumping.

2 Modeling Considerations

2.1 Water Main Configuration

The water main network was modeled based on the drawing prepared by DSEL (1030_Gen_Rev4.dwg) and provided to GeoAdvice on June 2nd, 2020.

2.2 Elevations

Elevations of the modeled junctions were assigned according to a site grading plan prepared by DSEL (1030_Grad_Rev4.dwg) and provided to GeoAdvice on June 2nd, 2020.

2.3 Consumer Demands

Demand factors used for this analysis were taken according to the City of Ottawa 2010 Design Guidelines *Table 4.2 Consumption Rate for Subdivisions of 501 to 3,000 Persons*. Population densities were assigned according to *Table 4.1 Per Unit Populations* from the City of Ottawa Design Guidelines. A summary of these tables highlighting relevant data for this development is shown in **Table 2.1** below.

Demand Type	Amount	Units
Average Day Demand		
Residential	350	L/c/d
Park	28,000	L/ha/d
Maximum Daily Demand		
Residential	2.5 x avg. day	L/c/d
Park	1.5 x avg. day	L/ha/d
Peak Hour Demand		
Residential	2.2 x max. day	L/c/d
Park	1.8 x max. day	L/ha/d
Minimum Hour Demand		
Residential	0.5 x avg. day	L/c/d
Park	0.5 x avg. day	L/ha/d

Table 2.1: City of Ottawa Demand Factors

Table 2.2 and **Table 2.4** summarize the residential water demand calculations for the BrazeauLands development.

Project ID: 2019-091-DSE

Page | 6

100								
Dwelling Type	Number of Units	Persons Per Unit*	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)	
Single Detached	172	3.4	585	2.37	5.92	13.03	1.18	
Traditional Townhome	133	2.7	360	1.46	3.65	8.02	0.73	

Table 2.2: Development Population and Demand Calculations – Phase 1

*City of Ottawa Design Guidelines

Table 2.3: Development Population and Demand Calculations – Phases 1&2

Dwelling Type	Number of Units	Persons Per Unit*	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Single Detached	347	3.4	1,180	4.78	11.95	26.29	2.39
Traditional Townhome	279	2.7	754	3.05	7.64	16.80	1.53

*City of Ottawa Design Guidelines

Table 2.6 summarizes the non-residential water demand calculations for the Brazeau Lands development (included in both Phase 1 and Phases 1&2).

Land Use Type	Area (ha)	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Park	1.72	0.56	0.84	1.51	0.28

Table 2.4: Non-Residential Demand Calculations

Table 2.5 summarizes the demands for the Meadows Phases 7/8 subdivision development located north of the Brazeau Lands and downstream of Connections 1 and 2 (accounted for in the HGLs provided by the City in the boundary conditions request).

Maximum	Peak	Minimum					
Day	Hour	Hour					
Demand	Demand	Demand					
(L/s)	(L/s)	(L/s)					
13.50	28.50	3.10					
	Maximum Day Demand (L/s)	Maximum Peak Day Hour Demand Demand (L/s) (L/s)					

Table 2.5: The Meadows Phases 7/8

Demands were grouped into demand polygons then uniformly distributed to the model nodes located within each polygon. Detailed calculations of demands as well as the illustrated allocation areas are shown in **Appendix A**.

2.4 Fire Flow Demand

Fire flow calculations were completed for all dwelling types in accordance with the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999) and City of Ottawa Technical Bulletin ISTB-2018-02 as summarized in **Appendix B**.

All the single detached dwellings have a minimum separation of 10 m between the backs of adjacent units and are, therefore, subject to the 10,000 L/min (167 L/s) cap outlined in City of Ottawa Technical Bulletin ISDTB-2014-02.

Most of the traditional townhouse dwellings comply with the City of Ottawa Technical Bulletin ISDTB-2014-02 and are, therefore, subject to the 10,000 L/min (167 L/s) cap.

The traditional townhouse dwellings located on Blocks 168 and 384 do not have a minimum separation of 10 m between the backs of adjacent units and therefore do not comply with the provisions under the City of Ottawa Technical Bulletin ISDTB-2014-02. The required fire flow for those blocks were calculated to be 167 L/s based on the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999). The agreement of this calculation with the City of Ottawa cap of 167 L/s is purely coincidental.

At this time, there is not enough information available to calculate the required fire flow of the park. As such, a required fire flow of 250 L/s was assumed for the park. This is a typical, conservative value for similar land use.

Fire flow simulations were completed at each model node in the Brazeau development. The locations of nodes do not necessarily represent hydrant locations.

Detailed FUS fire flow calculations as well as the illustrated spatial allocation of the required fire flows are shown in **Appendix B**.

2.5 Boundary Conditions

The boundary conditions were provided by the City of Ottawa in the form of Hydraulic Grade Line (HGL) at the following locations:

- Connection 1: Apolune Street and Cambrian Road;
- Connection 2: Jackdaw Avenue and Future Greenbank Road; and
- Connection 3: Dundonald Drive and Future Greenbank Road.

The above connection points are illustrated in Figure 1.1.

Boundary conditions were provided for Peak Hour, Maximum Day plus Fire and Minimum Hour (high pressure check) conditions.

Under existing conditions, the Brazeau Lands development will be serviced by the Barrhaven pressure zone; however, in the future, it will be serviced by pressure zone 3C. As such, boundary conditions were provided under the existing and future pressure zone configurations.

In total, two (2) sets of boundary conditions were provided by the City and can be found in **Appendix C**.

The boundary conditions for the existing pressure zone configuration are more conservative. As such, the results presented in this report are based on the boundary conditions for the existing pressure zone configuration.

Table 2.6 summarizes the boundary conditions used to size the Brazeau Lands water network.

Condition	Connection 1 HGL (m)	Connection 2 HGL (m)	Connection 3 HGL (m)
Min Hour (max. pressure)	156.4	156.4	156.4
Peak Hour (min. pressure)	135.7	135.6	135.7
Max Day + Fire Flow (167 L/s)	144.0	141.2	142.0
Max Day + Fire Flow (250 L/s)	135.4	129.9	131.5

Table 2.6: Existing Boundary Conditions

3 Hydraulic Capacity Design Criteria

3.1 Pipe Characteristics

Pipe characteristics of internal diameter (ID) and Hazen-Williams C factors were assigned in the model according to the City of Ottawa Design Guidelines for PVC water main material. Pipe characteristics used for the development are outlined in **Table 3.1** below.

	•	
Nominal Diameter	ID PVC	Hazen Williams
(mm)	(mm)	C-Factor (/)
200	204	110
250	250	110
300	297	120

Table 3.1: Model Pipe Characteristics

3.2 Pressure Requirements

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). Pressure requirements are outlined in **Table 3.2.**

Table 3.2: Pressure Requirements

Demand Condition	Minimum	Pressure	Maximum Pressure	
Demand Condition	(kPa)	(psi)	(kPa)	(psi)
Normal Operating Pressure (maximum daily flow)	350	50	480	70
Peak Hour Demand (minimum allowable pressure)	276	40	-	-
Maximum Fixture Pressure (Ontario Building Code)	-	-	552	80
Maximum Distribution Pressure (minimum hour check)	-	-	552	80
Maximum Day Plus Fire	140	20	-	-

4 Hydraulic Capacity Analysis

The proposed water mains within the development were sized to the minimum diameter which would satisfy the greater of maximum day plus fire and peak hour demand. Modeling was carried out for minimum hour, peak hour and maximum day plus fire flow using InfoWater. Only the existing pressure zone configuration was analyzed, since the boundary conditions are more conservative.

Detailed pipe and junction model input data can be found in **Appendix D**.

4.1 Development Pressure Analysis

Modeled service pressures for the development are summarized in **Table 4.1** below.

Phase	Minimum Hour Demand Maximum Pressure	Peak Hour Demand Minimum Pressure
Phase 1	538 kPa (78 psi)	290 kPa (42 psi)
Phases 1&2	538 kPa (78 psi)	262 kPa (38 psi)

Table 4.1: Summary of the Brazeau Lands Available Service Pressures

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi).

Low pressures are predicted at junctions J-66, J-70, J-71, J-72, J-73, J-74, J-75, J-76 and J-77 under peak hour demand. Those low pressures are due to high elevations in the southern part of the Brazeau Lands development and are within 5% of the minimum allowable pressure of 276 kPa (40 psi). The future Zone 3C boundary conditions will provide an additional head of about seven (7) meters at each connection point, and will thus resolve the low PHD pressures at the southern part of the Brazeau Lands development.

Detailed pipe and junction result tables and maps can be found in **Appendix E**.

4.2 Development Fire Flow Analysis

A summary of the minimum available fire flows in the Brazeau Lands development is shown below in **Table 4.2**.

Phase	Required Fire Flow	Minimum Available Flow	Junction ID
Phase 1	167 L/s	177 L/s	J-45
	250 L/s	249 L/s	J-47
Phases 1&2	167 L/s	194 L/s	J-66
	250 L/s	269 L/s	J-47

Table 4.2: Summary of the Brazeau Lands Minimum Available Fire Flows

As shown in the table above, the available fire flow is greater than the required fire flow under both Phase 1 and Phases 1&2 conditions.

A summary of the residual pressures in the Brazeau Lands is shown below in **Table 4.3**. The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire.

Phase	Maximum Residual Pressure	Average Residual Pressure	Minimum Residual Pressure
Phase 1	365 kPa (53 psi)	296 kPa (43 psi)	140 kPa (20 psi)
Phases 1&2	365 kPa (53 psi)	296 kPa (43 psi)	159 kPa (23 psi)

Table 4.3: Summary of the Brazeau Lands Residual Pressures (MDD + FF)

There is sufficient residual pressure at all the junctions within the Brazeau Lands development.

Detailed fire flow results and figures illustrating the fire flow results can be found in **Appendix F**.

5 Other Servicing Considerations

5.1 Water Supply Security

The City of Ottawa Design Guidelines allow single feed systems for developments up to a total average day demand of 50 m³/day and require two (2) feeds if the development exceeds 50 m³/day for supply security, according to Technical Bulletin ISDTB-2014-02.

The Brazeau Lands services a total average day demand of 725 m^3/day ; as such, two (2) feeds are required.

5.2 Valves

No comment has been made in this technical memorandum with respect to exact placement of isolation valves within the distribution network for the Brazeau Lands other than to summarize the City of Ottawa Design Guidelines for number, location, and spacing of isolation valves:

- Tee intersection two (2) valves
- Cross intersection three (3) valves
- Valves shall be located 2 m away from the intersection
- 300 m spacing for 150 mm to 400 mm diameter valves
- Gate valves for 100 mm to 300 mm diameter mains
- Butterfly valves for 400 mm and larger diameter mains

Drain valves are not strictly required under the City of Ottawa Design Guidelines for water mains under 600 mm in diameter. The Guidelines indicate that "small diameter water mains shall be drained through hydrant via pumping if needed."

Air valves are not strictly required under the City of Ottawa Design Guidelines for water mains up to and including 400 mm in diameter. The Guidelines indicate that air removal "can be accomplished by the strategic positioning of hydrant at the high points to remove the air or by installing or utilizing available 50 mm chlorination nozzles in 300 mm and 400 mm chambers."

The detailed engineering drawings for the Brazeau Lands are expected to identify valves in accordance with the requirements noted above.

5.3 Hydrants

No comment has been made in this technical memorandum with respect to exact placement of hydrants within the distribution network for the Brazeau Lands other than to summarize the City of Ottawa Design Guidelines for maximum hydrant spacing:

- 125 m for single family unit residential areas on lots where frontage at the street line is 15 m or longer
- 110 m for single family unit residential areas on lots where frontage at the street line is less than 15 m and for residential areas zoned for row housing, doubles or duplexes
- 90 m for institutional, commercial, industrial, apartments and high-density areas

The detailed engineering drawings for the Brazeau Lands development are expected to identify hydrants in accordance with the requirements noted above.

6 Conclusions

The hydraulic capacity and modeling analysis of Phase 1 of the Brazeau Lands development yielded the following conclusions:

- The proposed water main network can deliver all domestic flows, with service pressures expected to range between 290 kPa (42 psi) and 538 kPa (78 psi).
- The proposed water main network is able to deliver fire flows to all junctions.
- Hydraulic modeling was only completed for the existing pressure zone configuration since the boundary conditions are more conservative.

The hydraulic capacity and modeling analysis of Phases 1&2 of the Brazeau Lands development yielded the following conclusions:

- The proposed water main network can deliver all domestic flows except for junctions J-66, J-70, J-71, J-72, J-73, J-74, J-75, J-76 and J-77, with service pressures expected to range between 262 kPa (38 psi) and 538 kPa (78 psi).
- The junctions with low pressures are due to high elevations in the southern part of the Brazeau Lands development and are within 5% of the minimum allowable pressure of 276 kPa (40 psi).
- The future Zone 3C boundary conditions will provide an additional head of about seven (7) meters at each connection point, and will thus resolve the low PHD pressures at the southern part of the Brazeau Lands development.
- The proposed water main network is able to deliver fire flows to all junctions.
- Hydraulic modeling was only completed for the existing pressure zone configuration since the boundary conditions are more conservative.

Hydraulic Capacity and Modeling Analysis Brazeau Lands

Submission

Prepared by:

Ferdinand de Schoutheete Hydraulic Modeler / Project Engineer

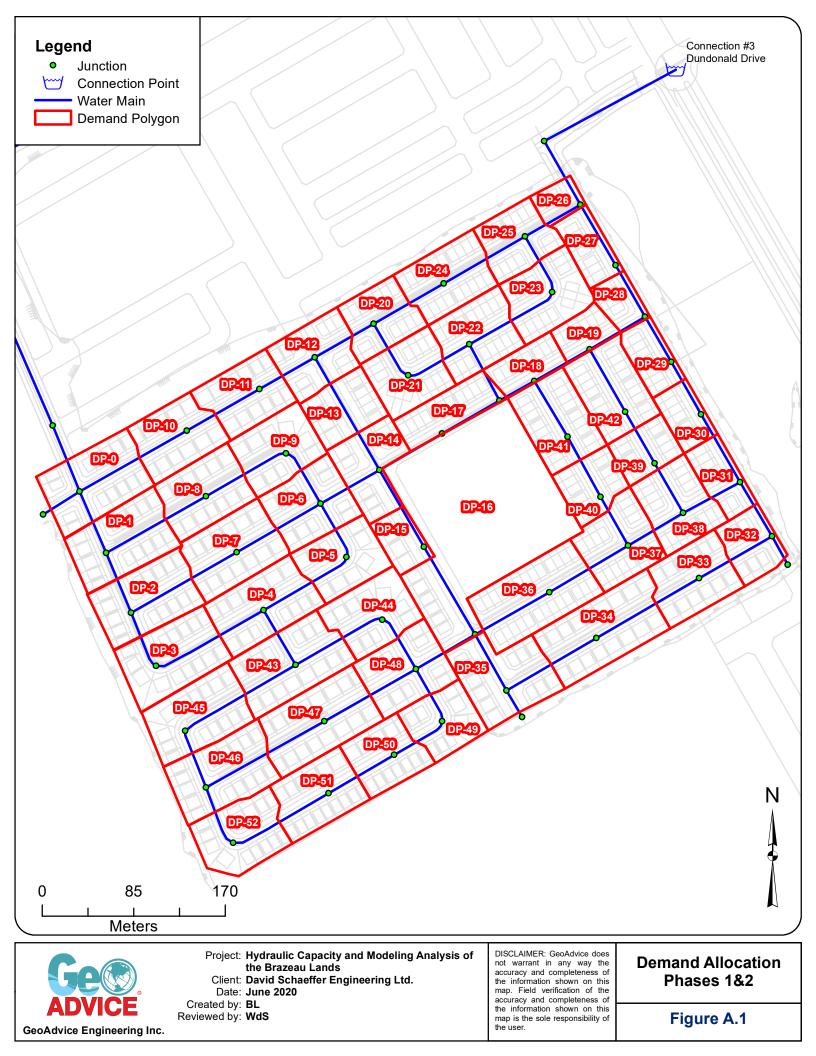
Approved by: ROFESSIONAL de Sc 1001 Werner de Schaetzen, Ph.D., P.Eng.

Senior Modeling Review Project Manager

Project ID: 2019-091-DSE

Page | 17

Appendix A Domestic Water Demand Calculations and Allocation



Appendix A Domestic Water Demand Calculations and Allocation

Consumer Water Demands

Phase 1 Residential Demands

	Number of		Population **	tion ** Average Day Demand		Max Day Fire Flow		Peak Hour	Min Hour	
Dwelling Type	Number of	Persons per	Population Per Dwelling	(1 / a / d)	(1 (4)	(1./2)	2.5 x Avg. Day		2.2 x Max Day	0.5 x Avg. Day
	Units	Unit	Туре	(L/c/d)	(L/d)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
Single Detached	172	3.4	585	350	204,750	2.37	5.92	167*	13.03	1.18
Traditional Townhome	133	2.7	360	350	126,000	1.46	3.65	167*	8.02	0.73
Subtotal	305		945		330,750	3.83	9.57		21.05	1.91

Phases 1&2 Residential Demands

	Number of	Population ** Average Day Demand		Max Day Fire Flow		Peak Hour	Min Hour			
Dwelling Type		Persons per	Population Per Dwelling	(I /c/d)	(1 (4)	(1./c)	2.5 x Avg. Day		2.2 x Max Day	0.5 x Avg. Day
	Units	Unit	Туре	(L/c/d)	(L/d)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
Single Detached	347	3.4	1,180	250	413,000	4.78	11.95	167*	26.29	2.39
Traditional Townhome	279	2.7	754	350	263,900	3.05	7.64	167*	16.80	1.53
Subtotal	626		1,934		676,900	7.83	19.59		43.09	3.92

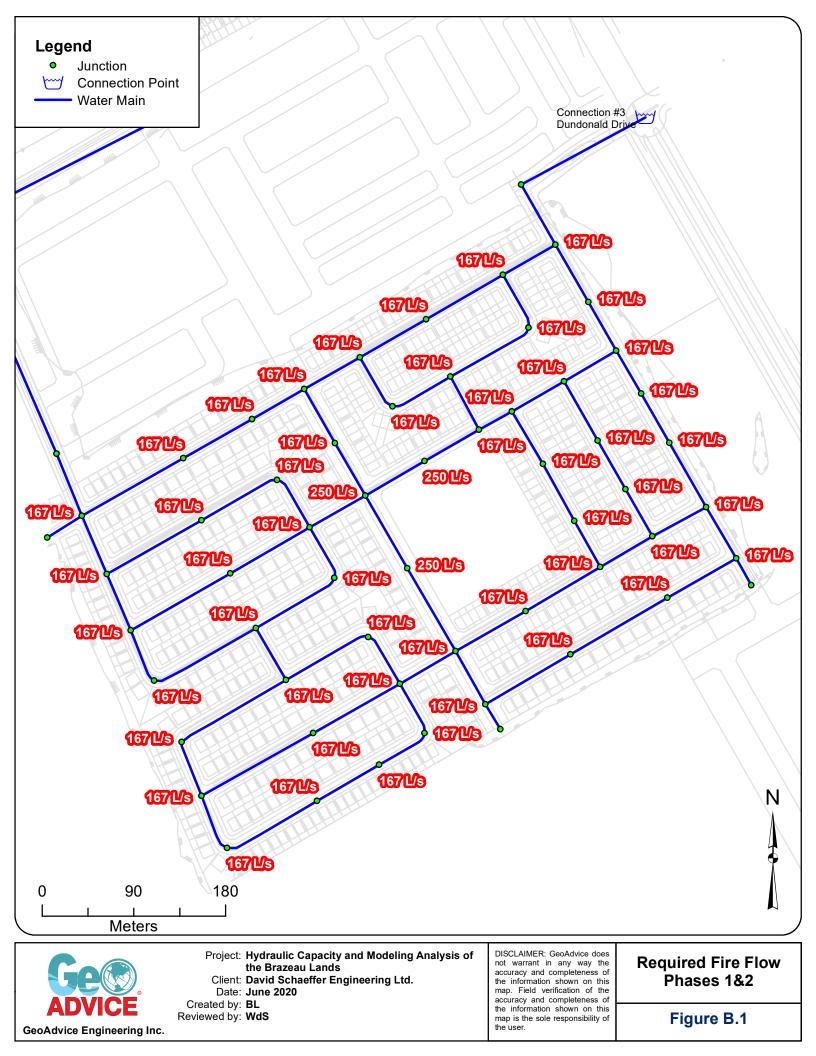
Non Residential Demands

	Area	Ave	rage Day Dem	and	Max Day	Fire Flow	Peak Hour	Min Hour
Property Type	Area (ba)	**	(1 (d)	(1. /2)	1.5 x Avg. Day		1.8 x Max Day	0.5 x Avg. Day
	(ha)	(L/ha/d)	(L/d)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
Park w/ Splash Pad	1.72	28,000	48,160	0.56	0.84	250**	1.51	0.28
Subtotal	1.72		48,160	0.56	0.84		1.51	0.28

The Meadows Phases 7/8		ADD (L/s)	MDD (L/s)	PHD (L/s)	MHD (L/s)
Total Demand:		6.20	13.50	28.50	3.10
	-			(- ()	
		ADD (L/s)	MDD (L/s)	PHD (L/s)	MHD (L/s)
Without the Meadows Phases 7/8 Demands	Phase 1	4.39	10.41	22.56	2.19
without the Meadows Phases 7/8 Demands	Phases 1&2	8.39	20.42	44.59	4.20
With the Meadows Phases 7/8 Demands	Phase 1	10.59	23.91	51.06	5.29
with the Meadows Phases 7/8 Demanus	Phases 1&2	14.59	33.92	73.09	7.30

*Based on FUS fire flow calculation

**Assumed based on similar information from previously completed projects, as agreed upon with DSEL



Appendix B FUS Fire Flow Calculations and Allocation

Project ID: 2019-091-DSE

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-091-DSE

Development: Brazeau Lands

Zoning: Multi Family Residential

Date: November 6, 2019

A. Type of Construction:	Wood Frame Construction	
B. Ground Floor Area: Note: ground floor area based on drawing pro	<u>1927</u> m ² ovided to GeoAdvice on September 12, 2019	Note: The single detached dwellings are separated by less than 3 m; therefore, they must be considered as one fire
C. Number of Storeys:	2	area. The combined area of 14 units is considered in this
Note: all buildings, including adjacent building		calculation.
D. Required Fire Flow*:	$F = 220C\sqrt{A}$	
C: Coefficient related to the type	of construction	C = 1.5
A: Effective area		$A = 3854 \text{ m}^2$ (Combined area of 14 units)
The total floor area in m ² in the building	being considered	
		F = 20,486 L/min D = 20,000 L/min*
E. Occupancy		
Occupancy content hazard	Limited Combustible	% of D3,000 L/min E = 17,000 L/min
F. Sprinkler Protection		
Automatic sprinkler protection	None	% of E L/min F = 17,000 L/min
G. Exposures		
Side Separation Side Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure Exposure
West 20.1 to 30 m	0-30 m-storeys	Wood Frame or Non-Combustible 8%
East 20.1 to 30 m	0-30 m-storeys	Wood Frame or Non-Combustible 8%
North 10.1 to 20 m	Over 120 m-storeys	Wood Frame or Non-Combustible 15%
South 20.1 to 30 m	Over 120 m-storeys	Wood Frame or Non-Combustible 10%
		Total 41%
		% of E <u>+ 6,970</u> L/min G = 23,970 L/min
H. Wood Shake Charge	No	L/min H = 23,970 L/min
For wood shingle or shake roofs		

Blocks 300-313, Single Detached

For wood shingle or shake roofs

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The single detached dwellings comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required	10,000	L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 1999.

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Required Duration of Fire Flow				
Fire Flow Required (L/min)	Duration (hours)			
2,000 or less	1.00			
3000	1.25			
4000	1.50			
5000	1.75			
6000	2.00			
7000	2.00			
8000	2.00			
9000	2.00			
10000	2.00			
11000	2.00			
12000	2.50			
13000	2.75			
14000	3.00			
	3.25			
15000 16000	3.25			
17000	3.50			
18000	4.00			
19000	4.25			
20000	4.50			
21000	4.75			
22000	5.00			
23000	5.25			
24000	5.50			
25000	5.75			
26000	6.00			
27000	6.25			
28000	6.50			
29000	6.75			
30000	7.00			
31000	7.25			
32000	7.50			
33000	7.75			
34000 35000	8.00 8.25			
36000	8.25 8.50			
37000	8.50			
38000	9.00			
39000	9.25			
40000 and over	9.50			

	Length-Height Factor of Exposed Wall of Adjacent Structure	Construction of Exposed Wall of Adjacent Structure			
Separation Distance		Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%
	31-60 m-storeys	5%	5%	5%	0%
	61-90 m-storeys	5%	5%	5%	0%
	91-120 m-storeys	5%	5%	5%	0%
	Over 120 m-storeys	5%	5%	5%	0%
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%
	31-60 m-storeys	0%	0%	0%	0%
	61-90 m-storeys	0%	0%	0%	0%
	91-120 m-storeys	0%	0%	0%	0%
	Over 120 m-storeys	0%	0%	0%	0%
Fire Wall	0-30 m-storeys	10%	10%	10%	10%
	31-60 m-storeys	10%	10%	10%	10%
	61-90 m-storeys	10%	10%	10%	10%
	91-120 m-storeys	10%	10%	10%	10%
	Over 120 m-storeys	10%	10%	10%	10%

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands				
Type of Construction	Wood Frame Construction			
Construction Coefficient	1.5			
Effective Total Area (m ²)	3,854			
Required Fire Flow (L/min)	20,000			
Occupancy Charge	-15			
Sprinkler Protection Reduction	0			
Exposure (%)				
North (%)	8%			
East (%)	8%			
South (%)	15%			
West (%)	10%			
Total Exposure (%)	41%			
Wood Shake Charge (L/min)	0			
Total Required Fire Flow (L/min)	10,000			
Total Required Fire Flow (L/s)	167			

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-091-DSE

Development: Brazeau Lands

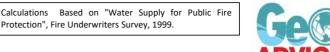
Zoning: Multi Family Residential

Date: November 6, 2019

A. Type of Construction:	Wood Frame Construction	
B. Ground Floor Area:	474 m ²	Note: The townhouse dwellings are separated by less
Note: ground floor area based on drawing pr	ovided to GeoAdvice on September 12, 2019	 than 3 m; therefore, they must be considered as one fire
C. Number of Storeys:	2	area. The combined area of 5 units is considered in this
Note: all buildings, including adjacent buildin	gs, assumed to be 2 storeys.	calculation.
D. Required Fire Flow*:	$F = 220C\sqrt{A}$	
C: Coefficient related to the type	of construction	C = 1.5
A: Effective area		$A = 947 \text{ m}^2$ (Combined area of 5 units)
The total floor area in m ² in the building	being considered	
		F = 10,156 L/min D = 10,000 L/min*
E. Occupancy		
Occupancy content hazard	Limited Combustible	% of D 1,500 L/min E = 8,500 L/min
F. Sprinkler Protection		
Automatic sprinkler protection	None	% of E L/min F = 8,500 L/min
G. Exposures		
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure Exposure
West 3.1 to 10 m	0-30 m-storeys	Wood Frame or Non-Combustible 17%
East 3.1 to 10 m	0-30 m-storeys	Wood Frame or Non-Combustible 17%
North 10.1 to 20 m	61-90 m-storeys	Wood Frame or Non-Combustible 14%
South 20.1 to 30 m	31-60 m-storeys	Wood Frame or Non-Combustible 8%
		Total 56%
		% of E <u>+ 4,760</u> L/min G = 13,260 L/min
H. Wood Shake Charge	No	0 L/min H = 13,260 L/min
For wood shingle or shake roofs		

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The townhouse dwellings comply with the provisions of the Bulletin; therefore, the required fire flow is:

Blocks 173, Traditional Townhouse


С,	bulletin, therefore, the required file flow is.		
	Total Fire Flow Required	10,000	L/min*
		167	L/s
	Required Duration of Fire Flow	2	Hrs
	Required Volume of Fire Flow	1,200	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Required Duration of Fire Flow				
Fire Flow Required (L/min) Duration (hours)				
2,000 or less	1.00			
3000	1.25			
4000	1.50			
5000	1.75			
6000	2.00			
7000	2.00			
8000	2.00			
9000	2.00			
10000	2.00			
11000	2.00			
12000	2.50			
13000	2.75			
14000	3.00			
	3.25			
15000 16000	3.25			
17000	3.50			
18000	4.00			
19000	4.25			
20000	4.50			
21000	4.75			
22000	5.00			
23000	5.25			
24000	5.50			
25000	5.75			
26000	6.00			
27000	6.25			
28000	6.50			
29000	6.75			
30000	7.00			
31000	7.25			
32000	7.50			
33000	7.75			
34000 35000	8.00 8.25			
36000	8.25 8.50			
37000	8.50			
38000	9.00			
39000	9.25			
40000 and over	9.50			

	Length-Height Factor of Exposed Wall of Adjacent Structure	Construction of Exposed Wall of Adjacent Structure			
Separation Distance		Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%
	31-60 m-storeys	5%	5%	5%	0%
	61-90 m-storeys	5%	5%	5%	0%
	91-120 m-storeys	5%	5%	5%	0%
	Over 120 m-storeys	5%	5%	5%	0%
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%
	31-60 m-storeys	0%	0%	0%	0%
	61-90 m-storeys	0%	0%	0%	0%
	91-120 m-storeys	0%	0%	0%	0%
	Over 120 m-storeys	0%	0%	0%	0%
Fire Wall	0-30 m-storeys	10%	10%	10%	10%
	31-60 m-storeys	10%	10%	10%	10%
	61-90 m-storeys	10%	10%	10%	10%
	91-120 m-storeys	10%	10%	10%	10%
	Over 120 m-storeys	10%	10%	10%	10%

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands				
Type of Construction	Wood Frame Construction			
Construction Coefficient	1.5			
Effective Total Area (m ²)	947			
Required Fire Flow (L/min)	10,000			
Occupancy Charge	-15			
Sprinkler Protection Reduction	0			
Exposure (%)				
North (%)	17%			
East (%)	17%			
South (%)	14%			
West (%)	8%			
Total Exposure (%)	56%			
Wood Shake Charge (L/min)	0			
Total Required Fire Flow (L/min)	10,000			
Total Required Fire Flow (L/s)	167			

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-091-DSE

Development: Brazeau Lands

Zoning: Multi Family Residential

Blocks 384, Traditional Townhouse Date: November 6, 2019

Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 1999.

				_					
B. Ground Floor Area	:	380 m ²	Note: T	he townl	nouse dwe	llings are	separa	ted by le	SS
Note: ground floor area b	ased on drawing pro	ovided to GeoAdvice on September 12,	2019. than 3 i	m; theref	ore, they n	nust be c	onsider	ed as on	e fire
C. Number of Storeys: 2		2	area. Th	area. The combined area of 4 units is considered in this				this	
Note: all buildings, includ	ing adjacent buildin	gs, assumed to be 2 storeys.	calculat	ion.					
D. Required Fire Flow	v*:	$F = 220C\sqrt{A}$							
C: Coefficient relat	ed to the type	of construction	C =		_				
A: Effective area			A =	760	m²	(Combi	ined are	ea of 4 u	nits)
The total floor area in	m ² in the building	being considered							
			F =	9,095	L/min		D =	9,000	L/min
E. Occupancy									
Occupancy conten	t hazard	Limited Combustible	-15	% of D	-1,350	_L/min	E =	7,650	L/min
F. Sprinkler Protectio	on								
Automatic sprinkle	r protection	None	0	% of E	0	_L/min	F =	7,650	L/min
G. Exposures									
Side	Separation Distance	Length-Height Factor - Adjacent Structure	Construction Typ	oe - Adja	cent Struct	ure		Exposur	e
West	10.1 to 20 m	0-30 m-storeys	Wood Fram	ne or Nor	n-Combusti	ible		12%	
East	Beyond 45 m	0-30 m-storeys	Wood Fram	ne or Nor	n-Combusti	ible		0%	
North	3.1 to 10 m	0-30 m-storeys	Wood Fram	ne or Nor	n-Combusti	ible		17%	
South	20.1 to 30 m	0-30 m-storeys	Wood Fram	ne or Nor	n-Combusti	ible	=	8%	=
							Total	37%	_
				% of E	+ 2,831	_L/min	G =	10,481	L/min
H. Wood Shake Char	ge	No		0	L/min		H =	10,481	L/min
For wood shingle o					<u>.</u> .			-,	,

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The townhouse dwellings do not comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required		L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit	
Yes	4000	L/min	
No	0	L/min	

Required Duration of Fire Flow					
Fire Flow Required (L/min) Duration (hours)					
2,000 or less	1.00				
3000	1.25				
4000	1.50				
5000	1.75				
6000	2.00				
7000	2.00				
8000	2.00				
9000	2.00				
10000	2.00				
11000	2.00				
12000	2.50				
13000	2.75				
14000	3.00				
	3.25				
15000 16000	3.25				
17000	3.50				
18000	4.00				
19000	4.25				
20000	4.50				
21000	4.75				
22000	5.00				
23000	5.25				
24000	5.50				
25000	5.75				
26000	6.00				
27000	6.25				
28000	6.50				
29000	6.75				
30000	7.00				
31000	7.25				
32000	7.50				
33000	7.75				
34000 35000	8.00 8.25				
36000	8.25 8.50				
37000	8.50				
38000	9.00				
39000	9.25				
40000 and over	9.50				

	Length-Height Factor of Exposed Wall of Adjacent Structure	Construction of Exposed Wall of Adjacent Structure					
Separation Distance		Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall		
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%		
	31-60 m-storeys	23%	22%	17%	0%		
	61-90 m-storeys	24%	23%	18%	0%		
	91-120 m-storeys	25%	24%	19%	0%		
	Over 120 m-storeys	25%	25%	20%	0%		
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%		
	31-60 m-storeys	18%	16%	12%	0%		
	61-90 m-storeys	19%	18%	14%	0%		
	91-120 m-storeys	20%	19%	15%	0%		
	Over 120 m-storeys	20%	19%	15%	0%		
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%		
	31-60 m-storeys	13%	11%	8%	0%		
	61-90 m-storeys	14%	13%	10%	0%		
	91-120 m-storeys	15%	14%	11%	0%		
	Over 120 m-storeys	15%	15%	12%	0%		
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%		
	31-60 m-storeys	8%	7%	5%	0%		
	61-90 m-storeys	9%	8%	6%	0%		
	91-120 m-storeys	10%	9%	7%	0%		
	Over 120 m-storeys	10%	10%	8%	0%		
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%		
	31-60 m-storeys	5%	5%	5%	0%		
	61-90 m-storeys	5%	5%	5%	0%		
	91-120 m-storeys	5%	5%	5%	0%		
	Over 120 m-storeys	5%	5%	5%	0%		
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%		
	31-60 m-storeys	0%	0%	0%	0%		
	61-90 m-storeys	0%	0%	0%	0%		
	91-120 m-storeys	0%	0%	0%	0%		
	Over 120 m-storeys	0%	0%	0%	0%		
Fire Wall	0-30 m-storeys	10%	10%	10%	10%		
	31-60 m-storeys	10%	10%	10%	10%		
	61-90 m-storeys	10%	10%	10%	10%		
	91-120 m-storeys	10%	10%	10%	10%		
	Over 120 m-storeys	10%	10%	10%	10%		

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands				
Type of Construction	Wood Frame Construction			
Construction Coefficient	1.5			
Effective Total Area (m ²)	760			
Required Fire Flow (L/min)	9,000			
Occupancy Charge	-15			
Sprinkler Protection Reduction	0			
Exposure (%)				
North (%)	12%			
East (%)	0%			
South (%)	17%			
West (%)	8%			
Total Exposure (%)	37%			
Wood Shake Charge (L/min)	0			
Total Required Fire Flow (L/min)	10,000			
Total Required Fire Flow (L/s)	167			

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2019-091-DSE

Development: Brazeau Lands

Zoning: Multi Family Residential

Date: November 6, 2019

Blocks 168, Traditional Townhouse

A. Type of Construction:	Wood Frame Construction	
B. Ground Floor Area: Note: ground floor area based on drawing pr	380 m ²	Note: The townhouse dwellings are separated by less than 3 m; therefore, they must be considered as one fire
C. Number of Storeys:	2	area. The combined area of 4 units is considered in this
Note: all buildings, including adjacent buildir	gs, assumed to be 2 storeys.	calculation.
D. Required Fire Flow*:	$F = 220C\sqrt{A}$	
C: Coefficient related to the type	of construction	C = 1.5
A: Effective area		$A = 760 \text{ m}^2$ (Combined area of 4 units)
The total floor area in m ² in the building	g being considered	· · ·
		F = 9,095 L/min D = 9,000 L/min*
E. Occupancy		
Occupancy content hazard	Limited Combustible	15_% of D 1,350 _L/min E = 7,650 L/min
F. Sprinkler Protection		
Automatic sprinkler protection	None	% of E L/min F = 7,650 L/min
G. Exposures		
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure Exposure
West 30.1 to 45 m	0-30 m-storeys	Wood Frame or Non-Combustible 5%
East 10.1 to 20 m	0-30 m-storeys	Wood Frame or Non-Combustible 12%
North 3.1 to 10 m	0-30 m-storeys	Wood Frame or Non-Combustible 17%
South Beyond 45 m	31-60 m-storeys	Wood Frame or Non-Combustible 0%
		Total <u>34%</u>
		% of E <u>+ 2,601</u> L/min G = 10,251 L/min
H. Wood Shake Charge For wood shingle or shake roofs	No	L/min H = 10,251 L/min

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.2. The townhouse dwellings **do not** comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required		L/min*
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Brazeau Lands development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 1999.

Type of Construction	Coefficient	Unit
Wood Frame Construction	1.5	-
Ordinary Construction	1	-
Non-Combustible Construction	0.8	-
Fire Resistive Construction (< 2 hrs)	0.7	-
Fire Resistive Construction (> 2 hrs)	0.6	-

Occupancy Fire Hazard	Factor	Unit
Non-Combustible	-25	%
Limited Combustible	-15	%
Combustible	0	%
Free Burning	15	%
Rapid Burning	25	%

Sprinkler Protection	Factor	Unit
None	0	%
Automatic	-30	%
Automatic + Standard Supply	-40	%
Fully Supervised	-50	%
Fully Supervised + Fire Resistive	-70	%

Zoning
Single Family Residential
Multi Family Residential
Commercial
Institutional
Industrial

Wood Shake Charge	Factor	Unit
Yes	4000	L/min
No	0	L/min

Required Duration of Fire Flow				
Fire Flow Required (L/min)	Duration (hours)			
2,000 or less	1.00			
3000	1.25			
4000	1.50			
5000	1.75			
6000	2.00			
7000	2.00			
8000	2.00			
9000	2.00			
10000	2.00			
11000	2.00			
12000	2.50			
13000	2.75			
14000	3.00			
	3.25			
15000 16000	3.25			
17000	3.50			
18000	4.00			
19000	4.25			
20000	4.50			
21000	4.75			
22000	5.00			
23000	5.25			
24000	5.50			
25000	5.75			
26000	6.00			
27000	6.25			
28000	6.50			
29000	6.75			
30000	7.00			
31000	7.25			
32000	7.50			
33000	7.75			
34000 35000	8.00 8.25			
36000	8.25 8.50			
37000	8.50			
38000	9.00			
39000	9.25			
40000 and over	9.50			

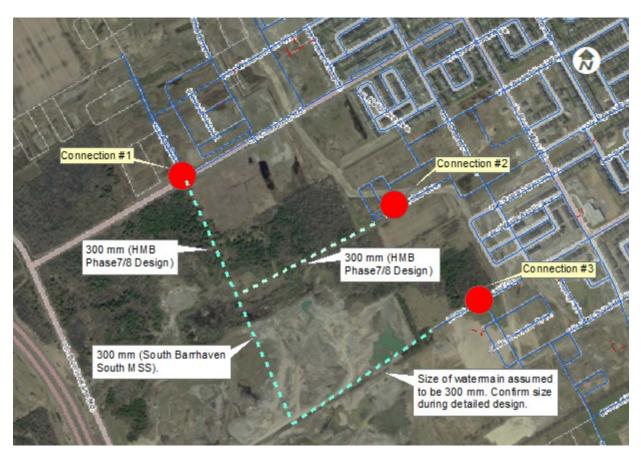
	Length-Height	Construction of Exposed Wall of Adjacent Structure			
	Factor of Exposed Wall of Adjacent Structure	Wood Frame or Non- Combustible	Ordinary or Fire- Resistive with Unprotected Openings	Ordinary or Fire- Resistive with Semi- Protected Openings	Ordinary or Fire- Resistive with Blank Wall
0.0 to 3 m	0-30 m-storeys	22%	21%	16%	0%
	31-60 m-storeys	23%	22%	17%	0%
	61-90 m-storeys	24%	23%	18%	0%
	91-120 m-storeys	25%	24%	19%	0%
	Over 120 m-storeys	25%	25%	20%	0%
3.1 to 10 m	0-30 m-storeys	17%	15%	11%	0%
	31-60 m-storeys	18%	16%	12%	0%
	61-90 m-storeys	19%	18%	14%	0%
	91-120 m-storeys	20%	19%	15%	0%
	Over 120 m-storeys	20%	19%	15%	0%
10.1 to 20 m	0-30 m-storeys	12%	10%	7%	0%
	31-60 m-storeys	13%	11%	8%	0%
	61-90 m-storeys	14%	13%	10%	0%
	91-120 m-storeys	15%	14%	11%	0%
	Over 120 m-storeys	15%	15%	12%	0%
20.1 to 30 m	0-30 m-storeys	8%	6%	4%	0%
	31-60 m-storeys	8%	7%	5%	0%
	61-90 m-storeys	9%	8%	6%	0%
	91-120 m-storeys	10%	9%	7%	0%
	Over 120 m-storeys	10%	10%	8%	0%
30.1 to 45 m	0-30 m-storeys	5%	5%	5%	0%
	31-60 m-storeys	5%	5%	5%	0%
	61-90 m-storeys	5%	5%	5%	0%
	91-120 m-storeys	5%	5%	5%	0%
	Over 120 m-storeys	5%	5%	5%	0%
Beyond 45 m	0-30 m-storeys	0%	0%	0%	0%
	31-60 m-storeys	0%	0%	0%	0%
	61-90 m-storeys	0%	0%	0%	0%
	91-120 m-storeys	0%	0%	0%	0%
	Over 120 m-storeys	0%	0%	0%	0%
Fire Wall	0-30 m-storeys	10%	10%	10%	10%
	31-60 m-storeys	10%	10%	10%	10%
	61-90 m-storeys	10%	10%	10%	10%
	91-120 m-storeys	10%	10%	10%	10%
	Over 120 m-storeys	10%	10%	10%	10%

Brazeau Lands - FUS Required Fire Flow Summary

Brazeau Lands			
Type of Construction	Wood Frame Construction		
Construction Coefficient	1.5		
Effective Total Area (m ²)	760		
Required Fire Flow (L/min)	9,000		
Occupancy Charge	-15		
Sprinkler Protection Reduction	0		
Exposure (%)			
North (%)	5%		
East (%)	12%		
South (%)	17%		
West (%)	0%		
Total Exposure (%)	34%		
Wood Shake Charge (L/min)	0		
Total Required Fire Flow (L/min)	10,000		
Total Required Fire Flow (L/s)	167		

Appendix C Boundary Conditions

Project ID: 2019-091-DSE


Boundary Conditions for HMB Phases 7 and 8 and Brazeau Lands

Information Provided:

Date provided: September 2019

	Demand		
Scenario	L/min	L/s	
Average Daily Demand	846	14.10	
Maximum Daily Demand	1961	32.69	
Peak Hour	4224	70.40	
Fire Flow Demand #1	10000	166.67	
Fire Flow Demand #2	15000	250.00	
Fire Flow Demand #3	17000	283.33	

Location:

Results

Connection 1 - Cambrian Road

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	102.9	147.7	77.3
Peak Hour	135.7	60.4	142.8	70.4
Max Day plus Fire (#1)	144.0	72.2	140.0	66.4
Max Day plus Fire (#2)	135.4	59.9	134.9	59.2
Max Day plus Fire (#3)	133.7	57.4	132.5	55.7

¹ Ground Elevation = 93.3 m

Connection 2 - Brambling Way

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	100.1	147.7	74.6
Peak Hour	135.6	57.4	142.7	67.5
Max Day plus Fire (#1)	141.2	65.4	139.9	63.5
Max Day plus Fire (#2)	129.9	49.4	134.6	56.0
Max Day plus Fire (#3)	126.6	44.7	132.1	52.4

¹ Ground Elevation = 95.2 m

Connection 3 - Dundonald Drive

	Existing Barrhaven PZ		Future	Zone 3C
Demand Scenario	Head (m)	Pressure ¹ (psi)	Head (m)	Pressure ¹ (psi)
Maximum HGL	156.4	86.5	147.7	61.0
Peak Hour	135.7	43.9	142.6	53.7
Max Day plus Fire (#1)	142.0	52.9	138.6	48.1
Max Day plus Fire (#2)	131.5	38.0	132.2	38.9
Max Day plus Fire (#3)	128.7	34.0	128.9	34.3

¹ Ground Elevation = 104.8 m

Notes:

- 1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.

- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.
- 2) A third pump was turned on during all fire simulations under Existing Barrhaven Pressure.
- 3) Future pipes were added to the water model as shown in the figure above.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

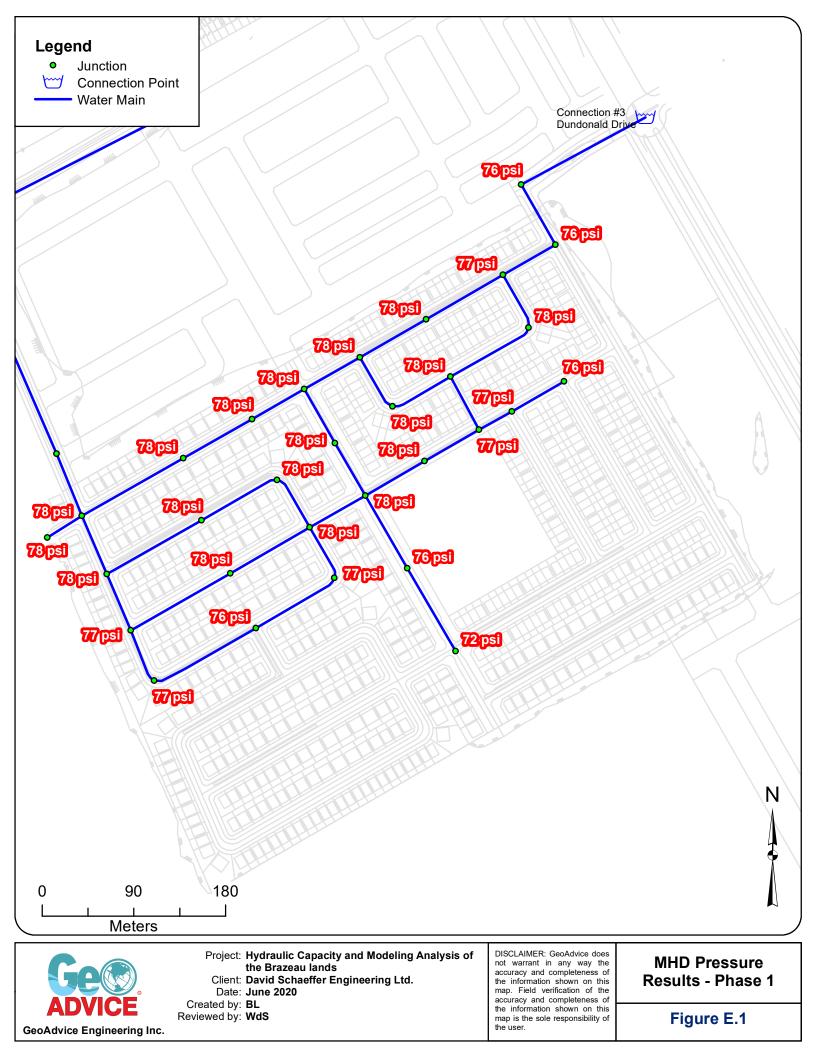
Appendix D Pipe and Junction Model Inputs

Project ID: 2019-091-DSE

Model Inputs - Phases 1 and 2

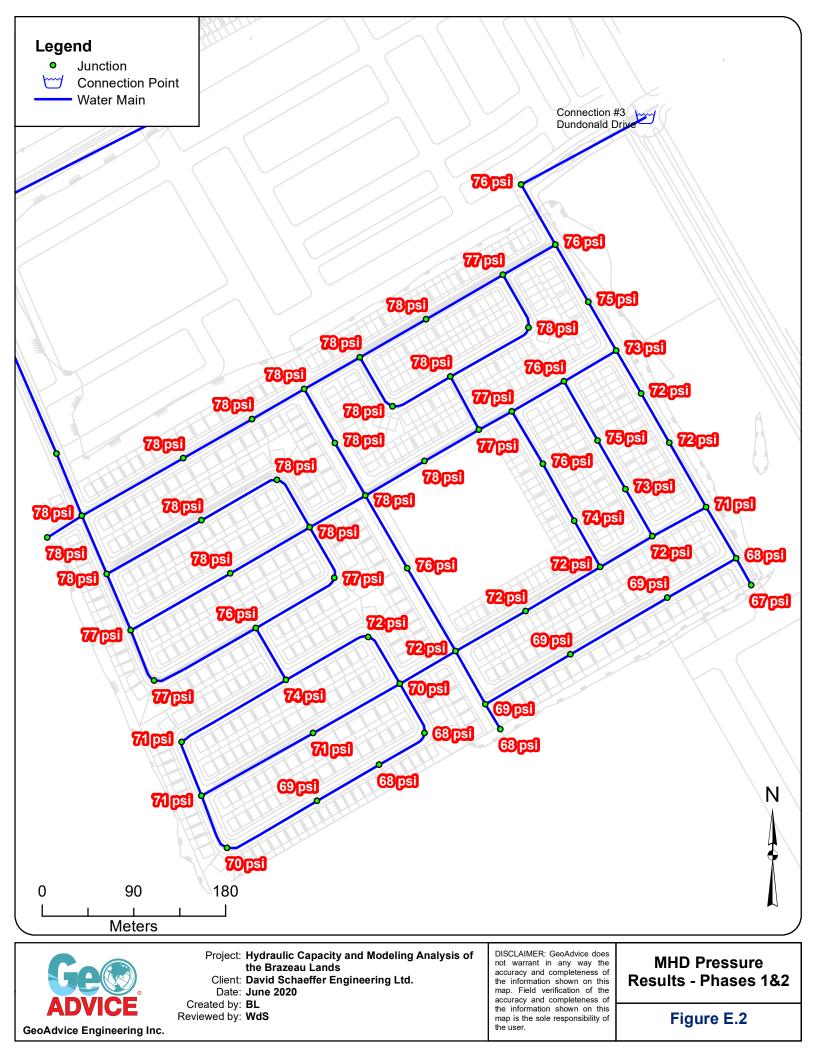
ID	From	То	Length (m)	Diameter (mm)	Roughness ()
P-100	J-82	J-83	63.79	204	110
P-101	J-83	J-46	60.03	204	110
P-102	J-79	J-84	53.32	204	110
P-103	J-84	J-85	55.04	204	110
P-104	J-85	J-45	66.63	204	110
P-105	J-78	J-86	72.81	297	120
P-106	J-86	J-87	55.90	297	120
P-107	J-87	J-88	48.49	297	120
P-108	J-45	J-88	59.54	204	110
P-109	J-88	J-89	55.04	297	120
P-110	J-89	J-41	65.11	297	120
P-111	J-90	J-47	61.51	204	110
P-112	J-43	J-90	59.19	204	110
P-42	J-33	J-34	40.11	297	120
P-43 P-44	J-33 J-35	J-35 J-36	114.35 77.83	297 297	120 120
P-44 P-45	J-35	J-30 J-37	59.20	297	120
P-45	J-30	J-38	62.88	297	120
P-40	J-38	J-38 J-39	74.92	297	120
P-48	J-39	J-40	87.18	297	120
P-40	J-39 J-40	J-40 J-41	59.39	297	120
P-49	J-40 J-41	J-41 J-60	67.93	297	120
P-51	J-60	CONNECTION 3	138.92	297	120
P-52	J-40	J-42	58.39	204	110
P-53	J-42	J-43	83.72	204	110
P-54	J-43	J-44	72.67	204	110
P-55	J-44	J-38	58.67	204	110
P-56	J-45	J-46	59.20	204	110
P-57	J-46	J-90	81.24	204	110
P-58	J-47	J-48	84.62	204	110
P-59	J-48	J-61	59.65	297	120
P-60	J-61	J-37	60.99	297	120
P-61	J-59	J-58	94.07	297	120
P-62	J-58	J-48	82.47	297	120
P-63	J-48	J-49	63.07	204	110
P-64	J-49	J-50	57.71	204	110
P-65	J-50	J-51	84.62	204	110
P-66	J-51	J-52	106.76	204	110
P-67	J-33	J-52	62.05	204	110
P-68	J-52	J-53	60.2	204	110
P-69	J-53	J-54	112.78	204	110
P-70 P-71	J-54 J-49	J-49	90	204 204	110
P-71 P-72	J-49 J-57	J-57 J-56	56.32 92.28	204	110 110
P-72	J-53	J-55	55.27	204	110
P-74	J-55	J-56	113.38	204	110
P-75	J-56	J-62	58.69	204	110
P-76	J-62	J-63	119.4	204	110
P-77	J-63	J-64	56.35	204	110
P-78	J-64	J-65	58.6	204	110
P-79	J-65	J-66	100.76	204	110
P-80	J-66	J-70	70.42	204	110
P-81	J-70	J-71	55.7	204	110
P-82	J-71	J-69	54.8	204	110
P-83	J-64	J-67	125.85	204	110
P-84	J-67	J-69	97.99	204	110
P-85	J-62	J-68	92.12	204	110
P-86	J-68	J-69	56.42	204	110
P-87	J-69	J-59	63.46	204	110
P-88	J-59	J-72	59.77	297	120
P-89	J-72	J-73	28.67	297	120
P-90	J-72	J-74	96.85	297	120
P-91	J-74	J-75	110.13	297	120
P-92	J-75	J-76	78.16	297	120
P-93 P-94	J-77 J-76	J-76 J-78	30.34 58.2	297 297	120 120
P-94 P-95	J-78	J-78 J-79	59.97	297	120
P-95 P-96	J-78 J-79	J-79 J-80	59.39	204	110
P-90	J-80	J-80 J-81	85.15	204	110
P-98	J-81	J-59	79.25	204	110
P-99	J-80	J-82	51.74	204	110
				·	

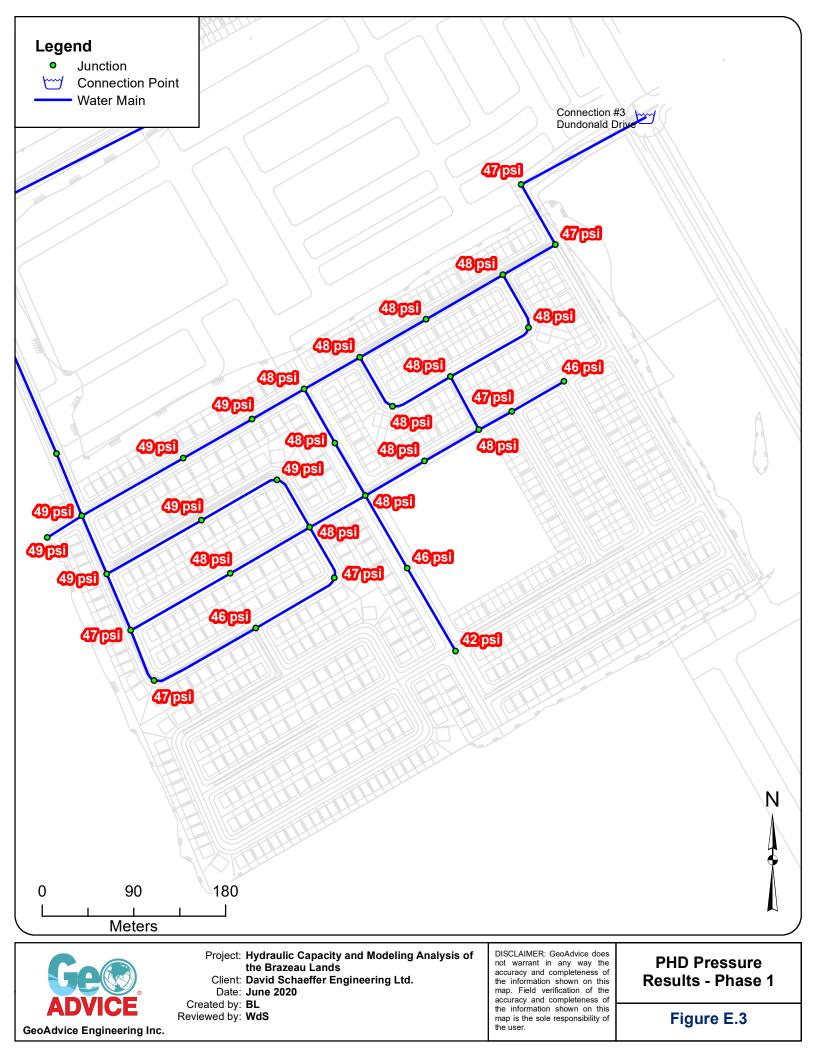
ID	Elevation (m)	ADD (L/s)
J-33	101.29	0.18
J-34	101.41	0.00
J-35	101.33	0.16
J-36	101.25	0.16
J-37	101.64	0.06
J-38	101.46	0.14
J-39	101.83	0.20
J-40	101.96	0.14
J-41	102.65	0.04
J-42	101.87	0.16
J-43	101.72	0.18
J-44	101.59	0.16
J-45	103.27	0.06
J-46	102.38	0.08
J-47	102.30	0.12
J-47	101.83	0.06
J-48	101.74	0.14
-		
J-50	101.40	0.12
J-51	101.41	0.18
J-52	101.35	0.20
J-53	102.22	0.20
J-54	101.87	0.20
J-55	102.52	0.20
J-56	103.00	0.20
J-57	102.46	0.12
J-58	102.95	0.06
J-59	105.68	0.64
J-60	102.80	0.00
J-61	101.51	0.06
J-62	104.21	0.00
J-63	106.39	0.20
J-64	106.74	0.20
J-65	107.17	0.20
J-66	107.78	0.18
J-67	106.62	0.20
J-68	106.00	0.22
J-69	107.07	0.14
J-70	108.43	0.14
J-71	108.62	0.16
J-72	107.85	0.12
J-73	108.47	0.16
J-74	107.68	0.00
J-75	108.00	0.24
J-76	108.27	0.16
J-77	108.93	0.08
J-78	106.17	0.00
J-79	105.57	0.06
J-80	105.54	0.18
J-81	105.54	0.18
J-82	104.30	0.10
J-83	103.10	0.12
J-83	103.10	0.12
J-84 J-85	104.73	0.20
	103.68	
J-86		0.20
J-87	105.51	0.08
J-88	104.78	0.08
J-89	103.69	0.04
J-90	102.07	0.08



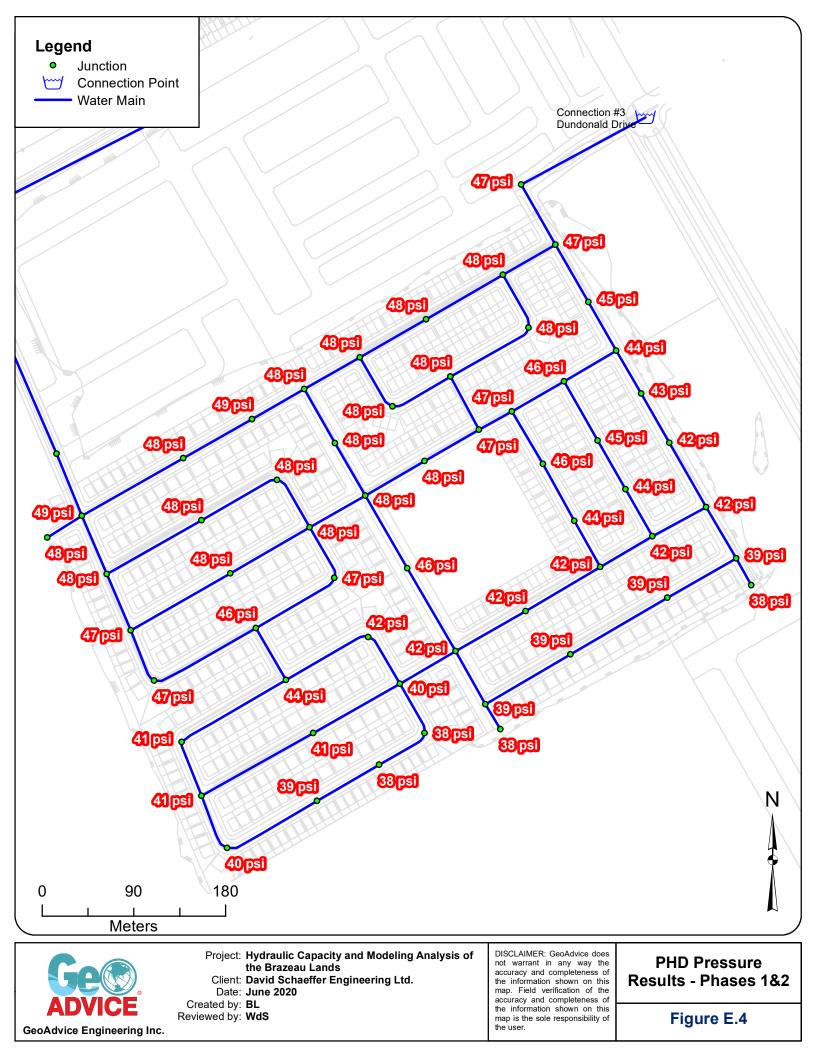
Appendix E MHD and PHD Model Results

Project ID: 2019-091-DSE




ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	-0.09	0.00	0.00	0.00
P-44	J-35	J-36	77.83	297	120	-0.16	0.00	0.00	0.00
P-45	J-36	J-37	59.20	297	120	-0.25	0.00	0.00	0.00
P-46	J-37	J-38	62.88	297	120	-0.88	0.01	0.00	0.00
P-47	J-38	J-39	74.92	297	120	-1.05	0.02	0.00	0.00
P-48	J-39	J-40	87.18	297	120	-1.15	0.02	0.00	0.00
P-49	J-40	J-41	59.39	297	120	-1.68	0.02	0.00	0.00
P-50	J-41	J-60	67.93	297	120	-1.69	0.02	0.00	0.00
P-51	J-60	CONNECTION_3	138.92	297	120	-1.69	0.02	0.00	0.00
P-52	J-40	J-42	58.39	204	110	0.45	0.01	0.00	0.00
P-53	J-42	J-43	91.90	204	110	0.37	0.01	0.00	0.00
P-54	J-43	J-44	64.49	204	110	-0.02	0.00	0.00	0.00
P-55	J-44	J-38	58.67	204	110	-0.10	0.00	0.00	0.00
P-56	J-45	J-46	59.20	204	110	-0.03	0.00	0.00	0.00
P-57	J-46	J-90	37.06	204	110	-0.08	0.00	0.00	0.00
P-58	J-47	J-48	67.31	204	110	0.16	0.00	0.00	0.00
P-59	J-48	J-61	59.65	297	120	-0.58	0.01	0.00	0.00
P-60	J-61	J-37	60.99	297	120	-0.61	0.01	0.00	0.00
P-61	J-59	J-58	94.07	297	120	-0.32	0.00	0.00	0.00
P-62	J-58	J-48	82.47	297	120	-0.35	0.01	0.00	0.00
P-63	J-48	J-49	63.07	204	110	0.36	0.01	0.00	0.00
P-64	J-49	J-50	57.71	204	110	0.04	0.00	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.02	0.00	0.00	0.00
P-66	J-51	J-52	106.76	204	110	-0.11	0.00	0.00	0.00
P-67	J-33	J-52	62.05	204	110	0.42	0.01	0.00	0.00
P-68	J-52	J-53	60.20	204	110	0.21	0.01	0.00	0.00
P-69	J-53	J-54	112.78	204	110	-0.01	0.00	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-0.10	0.00	0.00	0.00
P-71	J-49	J-57	56.32	204	110	0.14	0.00	0.00	0.00
P-72	J-57	J-56	92.28	204	110	0.08	0.00	0.00	0.00
P-73	J-53	J-55	55.27	204	110	0.12	0.00	0.00	0.00
P-74	J-55	J-56	113.38	204	110	0.02	0.00	0.00	0.00
P-111	J-90	J-47	61.51	204	110	0.22	0.01	0.00	0.00
P-112	J-43	J-90	59.19	204	110	0.30	0.01	0.00	0.00

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.09	101.29	156	78
J-34	0.00	101.41	156	78
J-35	0.08	101.33	156	78
J-36	0.08	101.25	156	78
J-37	0.03	101.64	156	78
J-38	0.07	101.46	156	78
J-39	0.10	101.83	156	78
J-40	0.07	101.96	156	77
J-41	0.02	102.65	156	76
J-42	0.08	101.87	156	78
J-43	0.09	101.72	156	78
J-44	0.08	101.59	156	78
J-45	0.03	103.27	156	76
J-46	0.04	102.38	156	77
J-47	0.06	101.77	156	78
J-48	0.03	101.83	156	78
J-49	0.07	101.74	156	78
J-50	0.06	101.40	156	78
J-51	0.09	101.41	156	78
J-52	0.10	101.35	156	78
J-53	0.10	102.22	156	77
J-54	0.10	101.87	156	78
J-55	0.10	102.52	156	77
J-56	0.10	103.00	156	76
J-57	0.06	102.46	156	77
J-58	0.03	102.95	156	76
J-59	0.32	105.68	156	72
J-60	0.00	102.80	156	76
J-61	0.03	101.51	156	78
J-90	0.00	102.07	156	77


ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	0.35	0.01	0.00	0.00
P-44	J-35	J-36	77.83	297	120	0.28	0.00	0.00	0.00
P-45 P-46	J-36 J-37	J-37 J-38	59.20 62.88	297 297	120 120	0.20	0.00	0.00	0.00
P-46 P-47	J-37 J-38	J-38 J-39	74.92	297	120	-0.73	0.01	0.00	0.00
P-47 P-48	J-39	J-39 J-40	87.18	297	120	-0.95	0.01	0.00	0.00
P-49	J-40	J-41	59.39	297	120	-1.56	0.02	0.00	0.00
P-50	J-41	J-60	67.93	297	120	-3.05	0.02	0.00	0.01
P-51	J-60	CONNECTION_3	138.92	297	120	-3.05	0.04	0.00	0.01
P-52	J-40	J-42	58.39	204	110	0.44	0.01	0.00	0.00
P-53	J-42	J-43	83.72	204	110	0.35	0.01	0.00	0.00
P-54	J-43	J-44	72.67	204	110	-0.07	0.00	0.00	0.00
P-55	J-44	J-38	58.67	204	110	-0.15	0.00	0.00	0.00
P-56	J-45	J-46	59.20	204	110	0.21	0.01	0.00	0.00
P-57	J-46	J-90	81.24	204	110	-0.10	0.00	0.00	0.00
P-58	J-47	J-48	84.62	204	110	0.18	0.01	0.00	0.00
P-59 P-60	J-48 J-61	J-61 J-37	59.65 60.99	297	120 120	-0.87 -0.90	0.01	0.00	0.00
P-60 P-61	J-59	J-58	94.07	297	120	-0.90	0.01	0.00	0.00
P-61 P-62	J-59 J-58	J-38 J-48	94.07	297	120	-0.55	0.01	0.00	0.00
P-63	J-48	J-48	63.07	204	110	0.45	0.01	0.00	0.00
P-64	J-49	J-50	57.71	204	110	-0.03	0.00	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.09	0.00	0.00	0.00
P-66	J-51	J-52	106.76	204	110	-0.18	0.01	0.00	0.00
P-67	J-33	J-52	62.05	204	110	0.62	0.02	0.00	0.00
P-68	J-52	J-53	60.20	204	110	0.33	0.01	0.00	0.00
P-69	J-53	J-54	112.78	204	110	-0.03	0.00	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-0.13	0.00	0.00	0.00
P-71	J-49	J-57	56.32	204	110	0.28	0.01	0.00	0.00
P-72 P-73	J-57 J-53	J-56 J-55	92.28 55.27	204	110 110	0.22	0.01	0.00	0.00
P-73	J-55	J-55	113.38	204	110	0.26	0.01	0.00	0.00
P-111	J-90	J-30	61.51	204	110	0.17	0.01	0.00	0.00
P-112	J-43	J-90	59.19	204	110	0.33	0.01	0.00	0.00
P-75	J-56	J-62	58.69	204	110	0.29	0.01	0.00	0.00
P-76	J-62	J-63	119.4	204	110	0.19	0.01	0.00	0.00
P-77	J-63	J-64	56.35	204	110	0.10	0.00	0.00	0.00
P-78	J-64	J-65	58.6	204	110	0.09	0.00	0.00	0.00
P-79	J-65	J-66	100.76	204	110	0.00	0.00	0.00	0.00
P-80	J-66	J-70	70.42	204	110	-0.10	0.00	0.00	0.00
P-81	J-70	J-71	55.7	204	110	-0.18	0.01	0.00	0.00
P-82	J-71	J-69	54.8	204	110	-0.24	0.01	0.00	0.00
P-83	J-64	J-67	125.85	204	110	-0.09	0.00	0.00	0.00
P-84 P-85	J-67 J-62	J-69 J-68	97.99 92.12	204	110 110	-0.20	0.01	0.00	0.00
P-85 P-86	J-62 J-68	J-69	92.12 56.42	204	110	-0.07	0.00	0.00	0.00
P-87	J-69	J-59	63.46	204	110	-0.59	0.02	0.00	0.00
P-88	J-59	J-33	59.77	204	110	-0.29	0.02	0.00	0.00
P-89	J-72	J-73	28.67	297	120	0.00	0.00	0.00	0.00
P-90	J-72	J-74	96.85	297	120	-0.37	0.01	0.00	0.00
P-91	J-74	J-75	110.13	297	120	-0.49	0.01	0.00	0.00
P-92	J-75	J-76	78.16	297	120	-0.57	0.01	0.00	0.00
P-93	J-77	J-76	30.34	297	120	0.00	0.00	0.00	0.00
P-94	J-76	J-78	58.2	297	120	-0.61	0.01	0.00	0.00
P-95	J-78	J-79	59.97	204	110	0.21	0.01	0.00	0.00
P-96	J-79	J-80	59.39	204	110	0.22	0.01	0.00	0.00
P-97	J-80	J-81	85.15	204	110	0.23	0.01	0.00	0.00
P-98 P-99	J-81 J-80	J-59 J-82	79.25 51.74	204	110 110	0.09 -0.10	0.00	0.00	0.00
P-99 P-100	J-80 J-82	J-82 J-83	63.79	204	110	-0.10	0.00	0.00	0.00
P-100 P-101	J-83	J-85	60.03	204	110	-0.16	0.00	0.00	0.00
P-101 P-102	J-79	J-40 J-84	53.32	204	110	-0.26	0.00	0.00	0.00
P-103	J-84	J-85	55.04	204	110	-0.15	0.00	0.00	0.00
P-104	J-85	J-45	66.63	204	110	-0.25	0.01	0.00	0.00
P-105	J-78	J-86	72.81	297	120	-0.86	0.01	0.00	0.00
P-106	J-86	J-87	55.9	297	120	-0.89	0.01	0.00	0.00
P-107	J-87	J-88	48.49	297	120	-0.93	0.01	0.00	0.00
P-108	J-45	J-88	59.54	204	110	-0.49	0.01	0.00	0.00
		1.00	55.04	297	120	-1.44	0.02	0.00	0.00
P-109	J-88	J-89 J-41	33.04	231	120	-1.48	0.02	0.00	0.00

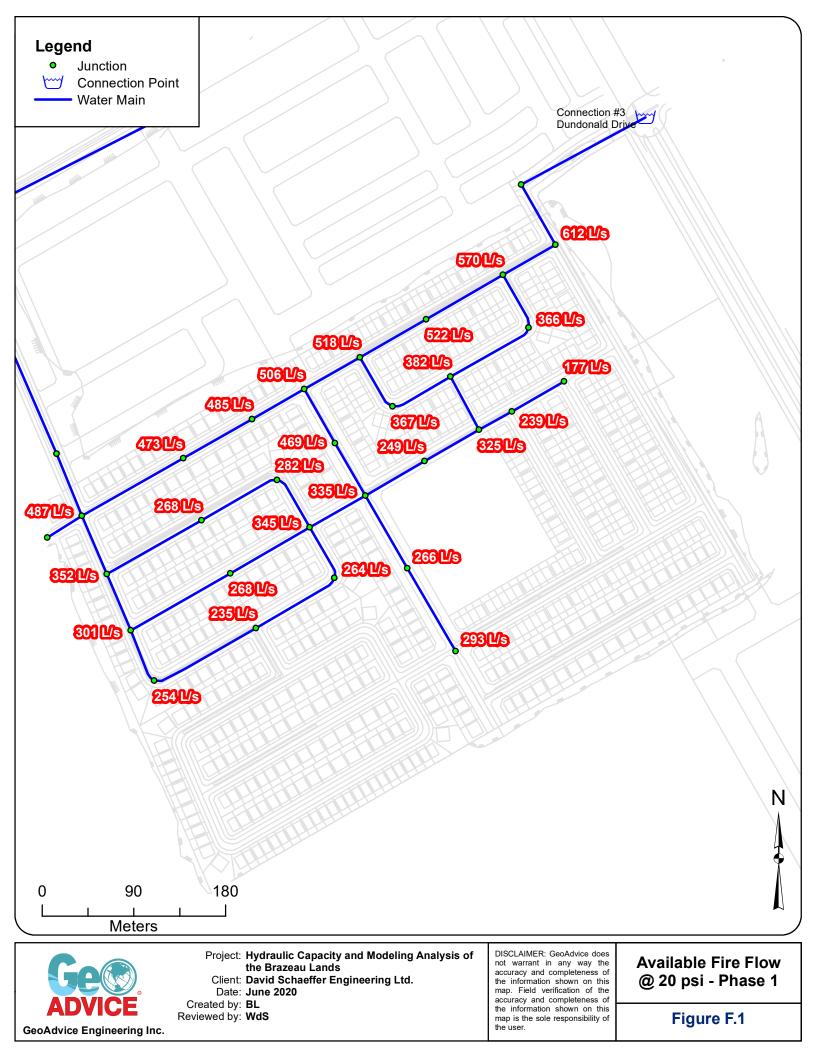
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.09	101.29	156	78
J-34	0.00	101.41	156	78
J-35	0.08	101.33	156	78
J-36	0.08	101.25	156	78
J-37	0.03	101.64	156	78
J-38	0.07	101.46	156	78
J-39	0.10	101.83	156	78
J-40	0.07	101.96	156	77
J-41	0.02	102.65	156	76
J-42	0.02	101.87	156	78
J-42	0.09	101.72	156	78
J-43	0.03	101.72	156	78
J-44	0.08	101.33	156	76
J-45 J-46	0.03	103.27	156	78
J-47	0.06	101.77	156	78
J-48	0.03	101.83	156	78
J-49	0.07	101.74	156	78
J-50	0.06	101.40	156	78
J-51	0.09	101.41	156	78
J-52	0.10	101.35	156	78
J-53	0.10	102.22	156	77
J-54	0.10	101.87	156	78
J-55	0.10	102.52	156	77
J-56	0.10	103.00	156	76
J-57	0.06	102.46	156	77
J-58	0.03	102.95	156	76
J-59	0.32	105.68	156	72
J-60	0.00	102.80	156	76
J-61	0.03	101.51	156	78
J-90	0.00	102.07	156	77
J-62	0.10	104.21	156	74
J-63	0.10	106.39	156	71
J-64	0.10	106.74	156	71
J-65	0.09	107.17	156	70
J-66	0.10	107.78	156	69
J-67	0.11	106.62	156	71
J-68	0.07	106.00	156	72
J-69	0.07	107.07	156	70
J-70	0.08	108.43	156	68
J-71	0.06	108.62	156	68
J-72	0.08	107.85	156	69
J-73	0.00	108.47	156	68
J-74	0.12	107.68	156	69
J-75	0.08	108.00	156	69
J-76	0.04	108.27	156	68
J-77	0.04	108.27	156	67
J-77	0.00	106.93	156	71
J-79	0.03	105.57	156	72
J-79	0.09	105.57	156	72
J-80 J-81	0.09	105.54	156	72
J-81 J-82	0.14	105.54	156	72
J-83	0.10	103.10	156	76
J-84	0.06	104.73	156	73
J-85	0.10	103.68	156	75
J-86	0.04	105.81	156	72
J-87	0.04	105.51	156	72
J-87 J-88 J-89	0.02	104.78 103.69	156 156	73 75

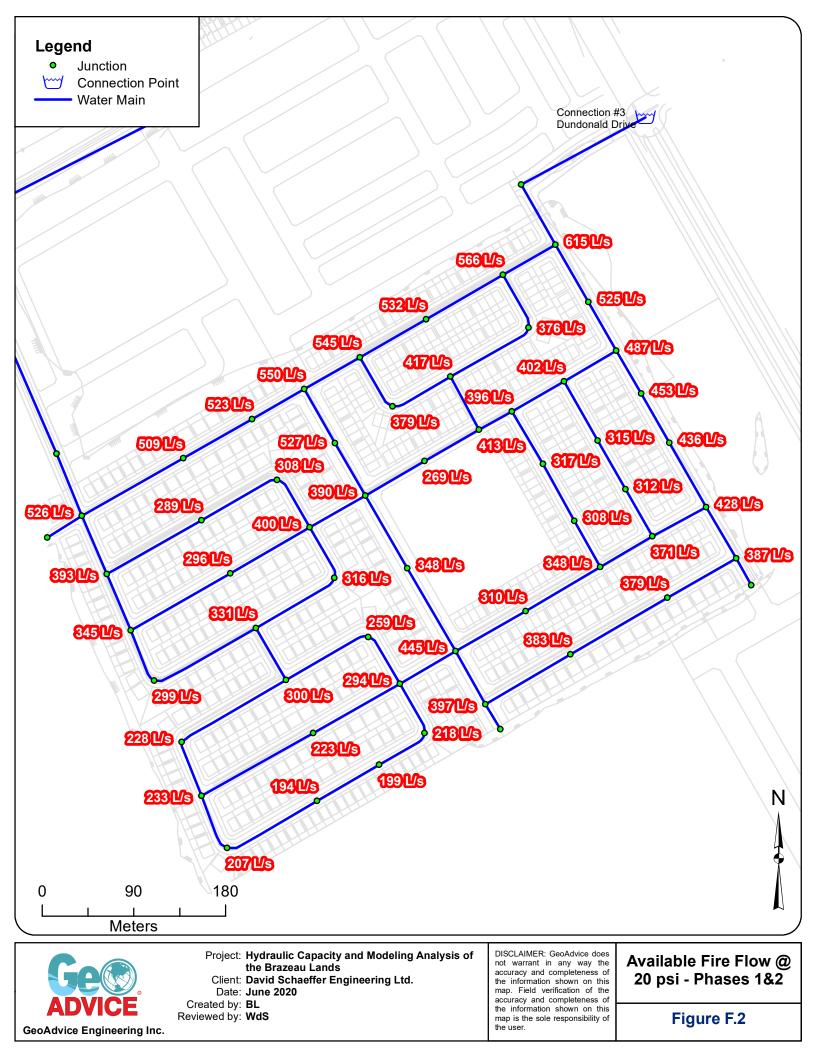
ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	-2.53	0.04	0.00	0.01
P-44	J-35	J-36	77.83	297	120	-3.36	0.05	0.00	0.01
P-45	J-36	J-37	59.20	297	120	-4.27	0.06	0.00	0.02
P-46	J-37	J-38	62.88	297	120	-10.16	0.15	0.01	0.11
P-47	J-38	J-39	74.92	297	120	-11.85	0.17	0.01	0.15
P-48	J-39	J-40	87.18	297	120	-13.00	0.19	0.02	0.18
P-49	J-40	J-41	59.39	297	120	-18.81	0.27	0.02	0.35
P-50	J-41	J-60	67.93	297	120	-18.99	0.27	0.02	0.36
P-51	J-60	CONNECTION_3	138.92	297	120	-18.99	0.27	0.05	0.36
P-52	J-40	J-42	58.39	204	110	5.02	0.15	0.01	0.23
P-53	J-42	J-43	91.90	204	110	4.12	0.13	0.01	0.16
P-54	J-43	J-44	64.49	204	110	-0.06	0.00	0.00	0.00
P-55	J-44	J-38	58.67	204	110	-0.91	0.03	0.00	0.01
P-56	J-45	J-46	59.20	204	110	-0.36	0.01	0.00	0.00
P-57	J-46	J-90	37.06	204	110	-0.84	0.03	0.00	0.01
P-58	J-47	J-48	67.31	204	110	1.65	0.05	0.00	0.03
P-59	J-48	J-61	59.65	297	120	-5.28	0.08	0.00	0.03
P-60	J-61	J-37	60.99	297	120	-5.59	0.08	0.00	0.04
P-61	J-59	J-58	94.07	297	120	-1.96	0.03	0.00	0.01
P-62	J-58	J-48	82.47	297	120	-2.26	0.03	0.00	0.01
P-63	J-48	J-49	63.07	204	110	4.29	0.13	0.01	0.17
P-64	J-49	J-50	57.71	204	110	0.63	0.02	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.06	0.00	0.00	0.00
P-66	J-51	J-52	106.76	204	110	-1.04	0.03	0.00	0.01
P-67	J-33	J-52	62.05	204	110	4.28	0.13	0.01	0.17
P-68	J-52	J-53	60.20	204	110	2.10	0.06	0.00	0.04
P-69	J-53	J-54	112.78	204	110	-0.21	0.01	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-1.27	0.04	0.00	0.02
P-71	J-49	J-57	56.32	204	110	1.63	0.05	0.00	0.03
P-72	J-57	J-56	92.28	204	110	0.95	0.03	0.00	0.01
P-73	J-53	J-55	55.27	204	110	1.17	0.04	0.00	0.02
P-74	J-55	J-56	113.38	204	110	0.11	0.00	0.00	0.00
P-111	J-90	J-47	61.51	204	110	2.31	0.07	0.00	0.05
P-112	J-43	J-90	59.19	204	110	3.16	0.10	0.01	0.10

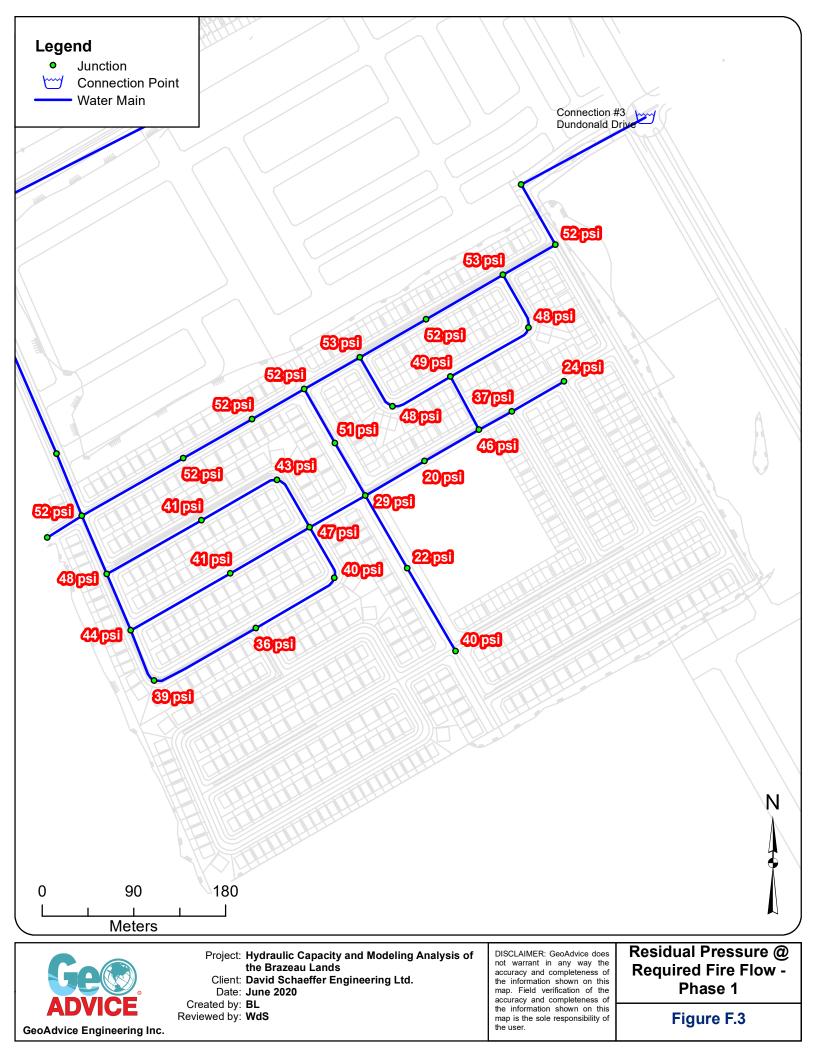
ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-33	0.99	101.29	136	49
J-34	0.00	101.41	136	49
J-35	0.83	101.33	136	49
J-36	0.91	101.25	136	49
J-37	0.30	101.64	136	48
J-38	0.78	101.46	136	49
J-39	1.15	101.83	136	48
J-40	0.78	101.96	136	48
J-41	0.18	102.65	136	47
J-42	0.90	101.87	136	48
J-43	1.02	101.72	136	48
J-44	0.84	101.59	136	48
J-45	0.36	103.27	136	46
J-46	0.48	102.38	136	47
J-47	0.66	101.77	136	48
J-48	0.38	101.83	136	48
J-49	0.76	101.74	136	48
J-50	0.68	101.40	136	49
J-51	0.99	101.41	136	49
J-52	1.14	101.35	136	49
J-53	1.14	102.22	136	47
J-54	1.06	101.87	136	48
J-55	1.06	102.52	136	47
J-56	1.06	103.00	136	46
J-57	0.68	102.46	136	47
J-58	0.30	102.95	136	46
J-59	1.96	105.68	136	42
J-60	0.00	102.80	136	47
J-61	0.30	101.51	136	48
J-90	0.00	102.07	136	48

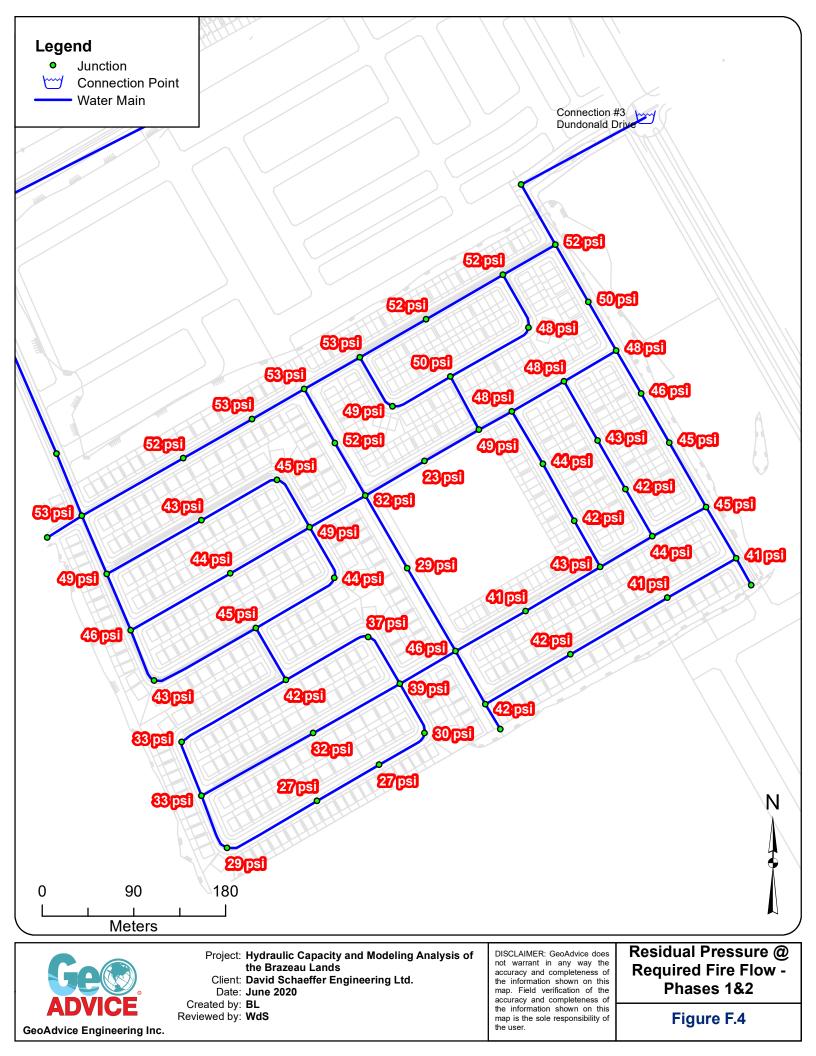
ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/km)
P-42	J-33	J-34	40.11	297	120	0.00	0.00	0.00	0.00
P-43	J-33	J-35	114.35	297	120	3.16	0.05	0.00	0.01
P-44	J-35	J-36	77.83	297	120	2.33	0.03	0.00	0.01
P-45	J-36	J-37	59.20	297	120	1.42	0.02	0.00	0.00
P-46	J-37	J-38	62.88	297 297	120	-8.04	0.12	0.00	0.07
P-47 P-48	J-38 J-39	J-39 J-40	74.92 87.18	297	120 120	-10.35 -11.49	0.15	0.01	0.12
P-49	J-39 J-40	J-40 J-41	59.39	297	120	-11.49	0.25	0.01	0.14
P-50	J-41	J-60	67.93	297	120	-33.05	0.48	0.02	1.01
P-51	J-60	CONNECTION 3	138.92	297	120	-33.05	0.48	0.14	1.01
P-52	J-40	J-42	58.39	204	110	4.72	0.14	0.01	0.20
P-53	J-42	J-43	83.72	204	110	3.82	0.12	0.01	0.14
P-54	J-43	J-44	72.67	204	110	-0.68	0.02	0.00	0.01
P-55	J-44	J-38	58.67	204	110	-1.52	0.05	0.00	0.02
P-56	J-45	J-46	59.20	204	110	2.27	0.07	0.00	0.05
P-57	J-46	J-90	81.24	204	110	-0.92	0.03	0.00	0.01
P-58	J-47	J-48	84.62	204	110	1.88	0.06	0.00	0.04
P-59	J-48	J-61	59.65	297	120	-8.86	0.13	0.01	0.09
P-60 P-61	J-61 J-59	J-37 J-58	60.99 94.07	297 297	120 120	-9.16 -4.98	0.13	0.01	0.09
P-61 P-62	J-59 J-58	J-58 J-48	94.07	297	120	-4.98	0.07	0.00	0.03
P-62	J-38 J-48	J-48 J-49	63.07	297	120	-5.28	0.08	0.00	0.23
P-64	J-48 J-49	J-49 J-50	57.71	204	110	-0.22	0.01	0.00	0.00
P-65	J-50	J-51	84.62	204	110	-0.90	0.03	0.00	0.01
P-66	J-51	J-52	106.76	204	110	-1.89	0.06	0.00	0.04
P-67	J-33	J-52	62.05	204	110	6.57	0.20	0.02	0.37
P-68	J-52	J-53	60.20	204	110	3.54	0.11	0.01	0.12
P-69	J-53	J-54	112.78	204	110	-0.41	0.01	0.00	0.00
P-70	J-54	J-49	90.00	204	110	-1.48	0.05	0.00	0.02
P-71	J-49	J-57	56.32	204	110	3.06	0.09	0.01	0.09
P-72	J-57	J-56	92.28	204	110	2.38	0.07	0.01	0.06
P-73 P-74	J-53 J-55	J-55 J-56	55.27 113.38	204 204	110 110	2.82	0.09	0.00	0.08
P-74 P-111	J-55 J-90	J-56 J-47	61.51	204	110	2.55	0.05	0.00	0.03
P-112	J-43	1-90	59.19	204	110	3.47	0.11	0.00	0.11
P-75	J-56	J-62	58.69	204	110	3.08	0.09	0.01	0.09
P-76	J-62	J-63	119.4	204	110	2.11	0.06	0.01	0.05
P-77	J-63	J-64	56.35	204	110	1.05	0.03	0.00	0.01
P-78	J-64	J-65	58.6	204	110	0.97	0.03	0.00	0.01
P-79	J-65	J-66	100.76	204	110	-0.01	0.00	0.00	0.00
P-80	J-66	J-70	70.42	204	110	-1.15	0.04	0.00	0.01
P-81	J-70	J-71	55.7	204	110	-2.06	0.06	0.00	0.04
P-82	J-71	J-69	54.8	204	110	-2.67	0.08	0.00	0.07
P-83	J-64	J-67	125.85	204	110	-1.06	0.03	0.00	0.01
P-84	J-67	J-69	97.99	204	110	-2.27	0.07	0.01	0.05
P-85 P-86	J-62 J-68	J-68 J-69	92.12 56.42	204 204	110 110	-0.17 -0.93	0.01 0.03	0.00	0.00
P-80 P-87	J-68 J-69	J-59	63.46	204	110	-0.93	0.03	0.00	0.01
P-87	J-69 J-59	J-59 J-72	59.77	204	110	-0.03	0.20	0.02	0.01
P-89	J-33	J-72	28.67	297	120	0.00	0.00	0.00	0.00
P-90	J-72	J-74	96.85	297	120	-3.74	0.05	0.00	0.02
P-91	J-74	J-75	110.13	297	120	-5.03	0.07	0.00	0.03
P-92	J-75	J-76	78.16	297	120	-5.93	0.09	0.00	0.04
P-93	J-77	J-76	30.34	297	120	0.00	0.00	0.00	0.00
P-94	J-76	J-78	58.2	297	120	-6.39	0.09	0.00	0.05
P-95	J-78	J-79	59.97	204	110	2.36	0.07	0.00	0.06
P-96	J-79	J-80	59.39	204	110	2.34	0.07	0.00	0.05
P-97	J-80	J-81	85.15	204	110	2.34	0.07	0.00	0.05
P-98	J-81	J-59	79.25	204	110	0.78	0.02	0.00	0.01
P-99 P-100	J-80	J-82	51.74	204	110	-0.96	0.03	0.00	0.01
P-100 P-101	J-82 J-83	J-83 J-46	63.79 60.03	204	110 110	-1.63 -2.71	0.05	0.00	0.03
P-101 P-102	J-83 J-79	J-46 J-84	60.03 53.32	204	110	-2.71	0.08	0.00	0.07
P-102 P-103	J-79 J-84	J-84 J-85	55.04	204	110	-0.94	0.03	0.00	0.01
P-105 P-104	J-84 J-85	J-65	66.63	204	110	-1.54	0.03	0.00	0.03
P-104	J-85	J-45	72.81	204	120	-2.02	0.08	0.00	0.09
P-105	J-86	J-80	55.9	297	120	-9.53	0.13	0.01	0.10
P-107	J-87	J-88	48.49	297	120	-9.95	0.14	0.01	0.10
	J-45	J-88	59.54	204	110	-5.25	0.16	0.01	0.24
P-108									
P-108 P-109	J-45	J-89	55.04	297	120	-15.45	0.22	0.01	0.25

1-33 0.99 101.29 135 49 $1-34$ 0.00 101.41 135 49 $1-36$ 0.91 101.25 135 49 $1-36$ 0.91 101.25 135 49 $1-37$ 0.30 101.46 135 48 $1-39$ 1.15 101.46 135 48 $1-40$ 0.78 101.46 135 48 $1-41$ 0.18 102.65 135 47 $1-42$ 0.90 101.87 135 48 $1-43$ 0.26 103.27 135 48 $1-44$ 0.36 103.27 135 48 $1-45$ 0.36 101.77 135 48 $1-46$ 0.48 102.38 135 47 $1-47$ 0.66 101.74 135 48 $1-50$ 0.68 101.40 135	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
1-35 0.83 101.33 135 49 $1-36$ 0.91 101.25 135 49 $1-36$ 0.78 101.46 135 48 $1-38$ 0.78 101.46 135 48 $1-39$ 1.15 101.46 135 48 $1-40$ 0.78 101.96 135 48 $1-41$ 0.18 102.65 135 48 $1-42$ 0.90 101.72 135 48 $1-43$ 1.02 101.72 135 48 $1-44$ 0.36 103.27 135 48 $1-46$ 0.48 102.38 135 48 $1-46$ 0.66 101.74 135 48 $1-46$ 0.68 101.40 135 48 $1-51$ 0.99 101.41 135 48 $1-52$ 1.14 101.62 135 <	J-33	0.99	101.29	135	49
1-35 0.83 101.33 135 49 $1-36$ 0.91 101.25 135 49 $1-36$ 0.78 101.46 135 48 $1-38$ 0.78 101.46 135 48 $1-39$ 1.15 101.46 135 48 $1-40$ 0.78 101.96 135 48 $1-41$ 0.18 102.65 135 48 $1-42$ 0.90 101.72 135 48 $1-43$ 1.02 101.72 135 48 $1-44$ 0.36 103.27 135 48 $1-46$ 0.48 102.38 135 48 $1-46$ 0.66 101.74 135 48 $1-46$ 0.68 101.40 135 48 $1-51$ 0.99 101.41 135 48 $1-52$ 1.14 101.62 135 <	J-34	0.00	101.41	135	48
1-36 0.91 101.25 135 49 $1-37$ 0.30 101.46 135 48 $1-39$ 0.78 101.46 135 48 $1-39$ 1.15 101.83 135 48 $1-40$ 0.78 101.96 135 47 $1-42$ 0.90 101.87 135 48 $1-43$ 0.265 135 48 $1-44$ 0.44 101.59 135 48 $1-45$ 0.36 103.27 135 48 $1-44$ 0.48 102.38 135 47 $1-47$ 0.66 101.77 135 48 $1-48$ 0.38 101.40 135 48 $1-50$ 0.68 101.40 135 47 $1-50$ 0.68 102.22 135 47 $1-55$ 1.06 102.52 135 47 <td></td> <td></td> <td></td> <td></td> <td></td>					
J-37 0.30 101.64 135 48 $J-38$ 0.78 101.46 135 48 $J-40$ 0.78 101.96 135 48 $J-40$ 0.78 101.96 135 48 $J-40$ 0.78 101.96 135 48 $J-41$ 0.18 102.55 135 48 $J-44$ 0.84 101.72 135 48 $J-44$ 0.84 102.38 135 47 $J-46$ 0.48 102.38 135 48 $J-46$ 0.48 102.38 135 48 $J-49$ 0.76 101.74 135 48 $J-50$ 0.68 101.41 135 48 $J-51$ 0.99 101.41 135 47 $J-54$ 1.06 102.52 135 47 $J-55$ 1.06 102.46 135					
J-38 0.78 101.46 135 48 J-39 1.15 101.86 135 48 J-40 0.78 101.96 135 48 J-41 0.18 102.65 135 47 J-42 0.90 101.72 135 48 J-43 1.02 101.72 135 48 J-44 0.84 102.38 135 47 J-46 0.48 102.38 135 48 J-46 0.66 101.71 135 48 J-47 0.66 101.74 135 48 J-48 0.38 101.40 135 48 J-50 0.68 101.41 135 48 J-51 0.99 101.41 135 47 J-54 1.06 103.00 135 47 J-55 1.06 103.00 135 47					
J-39 1.15 101.83 135 48 $J-40$ 0.78 101.96 135 48 $J-41$ 0.18 102.65 135 47 $J-42$ 0.90 101.87 135 48 $J-42$ 0.90 101.87 135 48 $J-43$ 0.66 103.27 135 46 $J-45$ 0.36 103.27 135 46 $J-46$ 0.48 102.38 135 47 $J-47$ 0.66 101.77 135 48 $J-48$ 0.38 101.43 135 48 $J-50$ 0.68 101.40 135 48 $J-51$ 0.99 101.41 135 48 $J-52$ 1.14 101.35 135 47 $J-54$ 1.06 102.22 135 47 $J-55$ 1.06 102.45 135 42 $J-56$ 1.06 103.00 13					-
1-40 0.78 101.96 135 48 $1-41$ 0.18 102.65 135 47 $1-42$ 0.90 101.87 135 48 $1-43$ 1.02 101.72 135 48 $1-44$ 0.84 101.59 135 48 $1-46$ 0.48 102.38 135 47 $1-46$ 0.48 102.38 135 47 $1-47$ 0.66 101.77 135 48 $1-49$ 0.76 101.74 135 48 $1-50$ 0.68 101.40 135 48 $1-52$ 1.14 101.87 135 48 $1-52$ 1.06 103.00 135 47 $1-56$ 106 103.00 135 47 $1-56$ 106.22 135 47 $1-56$ 106.20 135 47					
1-41 0.18 102.65 135 47 $1+42$ 0.90 101.87 135 48 $1+43$ 1.02 101.72 135 48 $1+44$ 0.84 101.59 135 48 $1+45$ 0.36 103.27 135 48 $1+46$ 0.48 102.38 135 47 $1+47$ 0.66 101.77 135 48 $1+48$ 0.38 101.43 135 48 $1+49$ 0.76 101.74 135 48 $1-50$ 0.68 101.40 135 48 $1-51$ 0.99 101.41 135 48 $1-52$ 1.14 102.22 135 47 $1-54$ 1.06 103.00 135 47 $1-55$ 1.06 103.00 135 47 $1-56$ 1.06 103.00 135					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
i+4 0.84 101.59 135 48 $i+45$ 0.36 103.27 135 46 $i+46$ 0.48 102.38 135 47 $i+47$ 0.66 101.77 135 48 $i+48$ 0.38 101.43 135 48 $i+49$ 0.76 101.74 135 48 $i+50$ 0.68 101.40 135 48 $i+51$ 0.99 101.41 135 48 $i+52$ 1.14 102.22 135 47 $i+54$ 1.06 103.00 135 47 $i+55$ 1.06 103.00 135 47 $i+56$ 0.06 102.46 135 47 $i+56$ 0.06 102.46 135 47 $i+56$ 0.30 105.68 135 41 $i+56$ 0.30 105.71 135					-
1-45 0.36 103.27 135 46 $1-46$ 0.48 102.38 135 47 $1-47$ 0.66 101.77 135 48 $1-48$ 0.38 101.83 135 48 $1-48$ 0.76 101.74 135 48 $1-50$ 0.68 101.40 135 48 $1-51$ 0.99 101.41 135 48 $1-52$ 1.14 102.22 135 47 $1-54$ 1.06 102.52 135 47 $1-54$ 1.06 102.52 135 47 $1-54$ 1.06 102.46 135 47 $1-56$ 106 102.46 135 47 $1-56$ 130 1135 44 47 $1-56$ 103.00 135 41 46 $1-50$ 0.00 102.07 135					-
1-46 0.48 102.38 135 47 $1-47$ 0.66 101.77 135 48 $1-49$ 0.76 101.74 135 48 $1-49$ 0.76 101.74 135 48 $1-50$ 0.68 101.40 135 48 $1-52$ 0.68 101.41 135 48 $1-52$ 1.14 101.35 135 48 $1-55$ 1.06 102.52 135 47 $1-56$ 106 102.52 135 47 $1-56$ 106.266 135 47 $1-58$ 0.30 102.95 135 44 $1-50$ 000 102.80 136 47 $1-61$ 0.30 101.51 135 44 $1-61$ 0.30 101.71 135 41 $1-62$ 1.14 106.74 135 41 <td></td> <td></td> <td></td> <td></td> <td>-</td>					-
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
j-48 0.38 101.83 135 48 $j-49$ 0.76 101.74 135 48 $j-50$ 0.68 101.40 135 48 $j-51$ 0.99 101.41 135 48 $j-51$ 0.99 101.41 135 48 $j-52$ 1.14 101.35 135 47 $j-54$ 1.06 102.22 135 47 $j-55$ 1.06 103.00 135 46 $j-57$ 0.68 102.46 135 47 $j-56$ 0.06 102.80 136 47 $j-60$ 0.00 102.07 135 47 $j-60$ 0.00 102.07 135 47 $j-61$ 1.14 106.74 135 41 $j-62$ 1.24 104.21 135 44 $j-63$ 1.06 106.39 135 41 $j-64$ 1.14 106.74 13					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	J-47	0.66	101.77	135	48
1-50 0.68 101.40 135 48 $1-51$ 0.99 101.41 135 48 $1-52$ 1.14 101.35 135 48 $1-53$ 1.14 102.22 135 47 $1-55$ 1.06 101.87 135 47 $1-56$ 1.06 102.52 135 47 $1-56$ 1.06 102.46 135 46 $1-57$ 0.68 102.46 135 46 $1-58$ 0.30 102.95 135 46 $1-59$ 1.96 105.68 135 47 $1-60$ 0.30 101.51 135 48 $1-60$ 0.00 102.07 135 44 $1-61$ 0.30 101.51 135 41 $1-62$ 1.14 106.74 135 41 $1-65$ 0.98 107.17 135	J-48	0.38	101.83	135	
J-51 0.99 101.41 135 48 $J-52$ 1.14 101.35 135 48 $J-51$ 1.14 101.35 135 44 $J-54$ 1.06 101.87 135 48 $J-55$ 1.06 102.22 135 47 $J-56$ 1.06 102.300 135 46 $J-57$ 0.68 102.46 135 47 $J-58$ 0.30 102.56 135 44 $J-60$ 0.00 102.07 135 44 $J-60$ 0.00 102.07 135 44 $J-60$ 0.00 102.07 135 41 $J-62$ 1.14 106.74 135 41 $J-63$ 1.06 106.21 135 41 $J-64$ 1.14 106.74 135 38 $J-76$ 0.76 107.07 135	J-49	0.76	101.74	135	48
J-51 0.99 101.41 135 48 $J-52$ 1.14 101.35 135 48 $J-51$ 1.14 101.35 135 44 $J-54$ 1.06 101.87 135 48 $J-55$ 1.06 102.22 135 47 $J-56$ 1.06 102.300 135 46 $J-57$ 0.68 102.46 135 47 $J-58$ 0.30 102.56 135 44 $J-60$ 0.00 102.07 135 44 $J-60$ 0.00 102.07 135 44 $J-60$ 0.00 102.07 135 41 $J-62$ 1.14 106.74 135 41 $J-63$ 1.06 106.21 135 41 $J-64$ 1.14 106.74 135 38 $J-76$ 0.76 107.07 135	J-50	0.68	101.40	135	48
J-52 1.14 101.35 135 48 $J-53$ 1.14 102.22 135 47 $J-54$ 1.06 101.87 135 48 $J-55$ 1.06 102.52 135 47 $J-56$ 1.06 103.00 135 46 $J-50$ 0.88 102.46 135 47 $J-58$ 0.30 102.95 135 46 $J-50$ 0.90 102.80 136 47 $J-60$ 0.00 102.07 135 44 $J-60$ 0.00 102.07 135 44 $J-61$ 0.30 101.51 135 48 $J-90$ 0.00 102.07 135 44 $J-61$ 1.14 106.71 135 41 $J-66$ 1.14 107.77 135 40 $J-66$ 1.21 106.62 135	J-51	0.99	101.41		48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J-52	1.14	101.35		48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J-53	1.14		135	47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.14	104.21		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.14	106.74	135	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.98	107.17		40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J-66	1.14	107.78	135	39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J-67	1.21	106.62	135	41
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J-68	0.76	106.00	135	42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J-69	0.76	107.07	135	40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J-70	0.91	108.43	135	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
J-80 0.96 105.54 135 43 J-81 1.56 105.54 135 42 J-82 0.66 104.30 135 44 J-83 1.08 103.10 135 46 J-84 0.60 104.73 135 44 J-85 1.08 103.68 135 45 J-84 0.60 104.73 135 44 J-84 0.60 105.78 135 44 J-85 1.08 103.68 135 45 J-86 0.42 105.81 135 42 J-87 0.42 105.51 135 43					
J-81 1.56 105.54 135 42 J-82 0.66 104.30 135 44 J-83 1.08 103.10 135 46 J-84 0.60 104.73 135 44 J-85 1.08 103.68 135 44 J-85 0.60 104.73 135 44 J-85 0.42 105.81 135 42 J-86 0.42 105.51 135 43					
J-82 0.66 104.30 135 44 J-83 1.08 103.10 135 46 J-84 0.60 104.73 135 44 J-85 1.08 103.68 135 44 J-85 1.08 103.68 135 45 J-86 0.42 105.81 135 42 J-87 0.42 105.51 135 43					-
J-83 1.08 103.10 135 46 J-84 0.60 104.73 135 44 J-85 1.08 103.68 135 45 J-86 0.42 105.81 135 42 J-87 0.42 105.51 135 43					
J-84 0.60 104.73 135 44 J-85 1.08 103.68 135 45 J-86 0.42 105.81 135 42 J-87 0.42 105.51 135 43					
J-85 1.08 103.68 135 45 J-86 0.42 105.81 135 42 J-87 0.42 105.51 135 43					-
J-86 0.42 105.81 135 42 J-87 0.42 105.51 135 43					
J-87 0.42 105.51 135 43	J-85	1.08			-
	J-86	0.42	105.81	135	42
	J-87	0.42	105.51	135	43
J-88 0.24 104.78 135 44	J-88	0.24	104.78	135	44
J-89 0.42 103.69 135 45	J-89	0.42	103.69	135	45

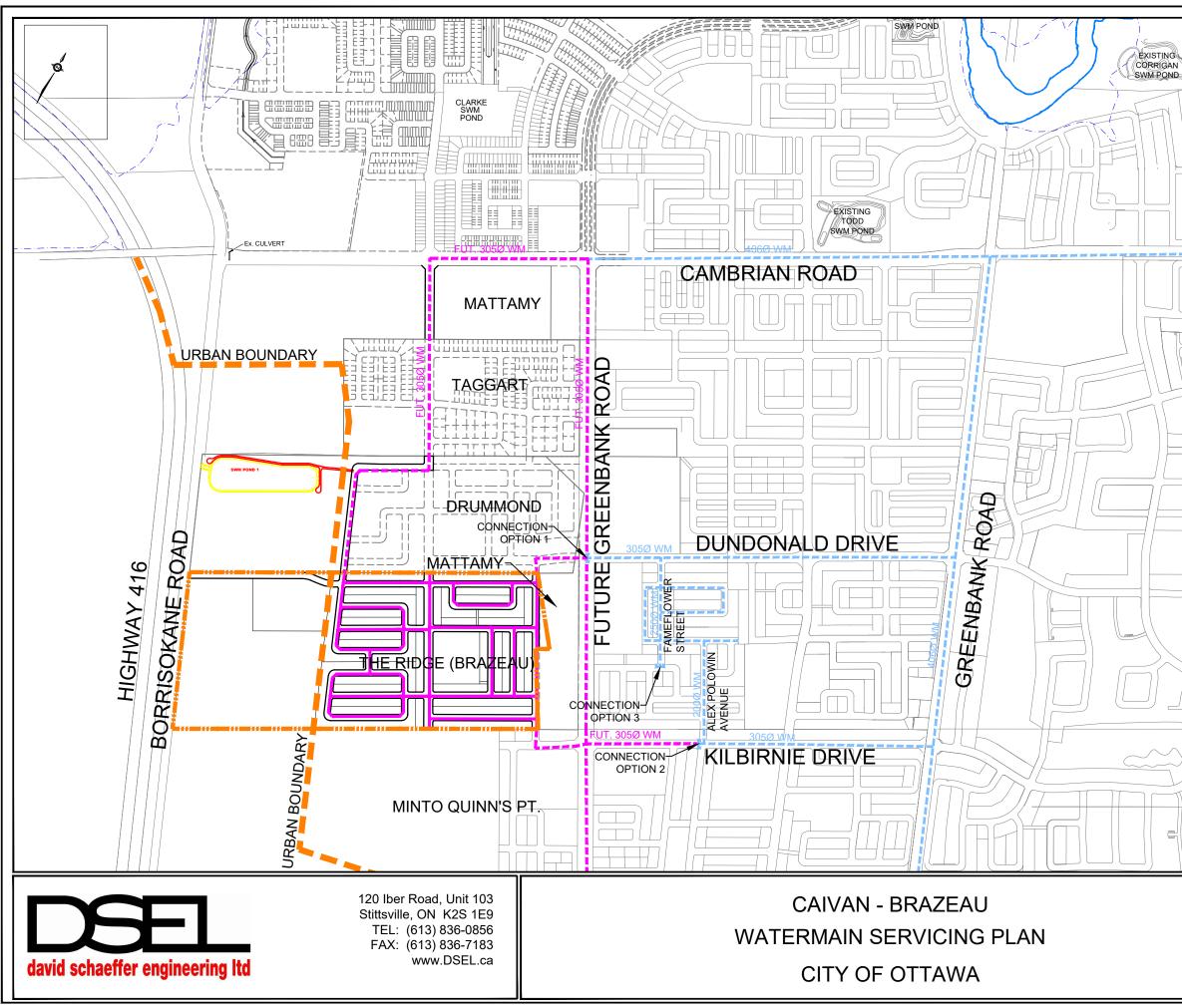



Appendix F MDD+FF Model Results


Project ID: 2019-091-DSE

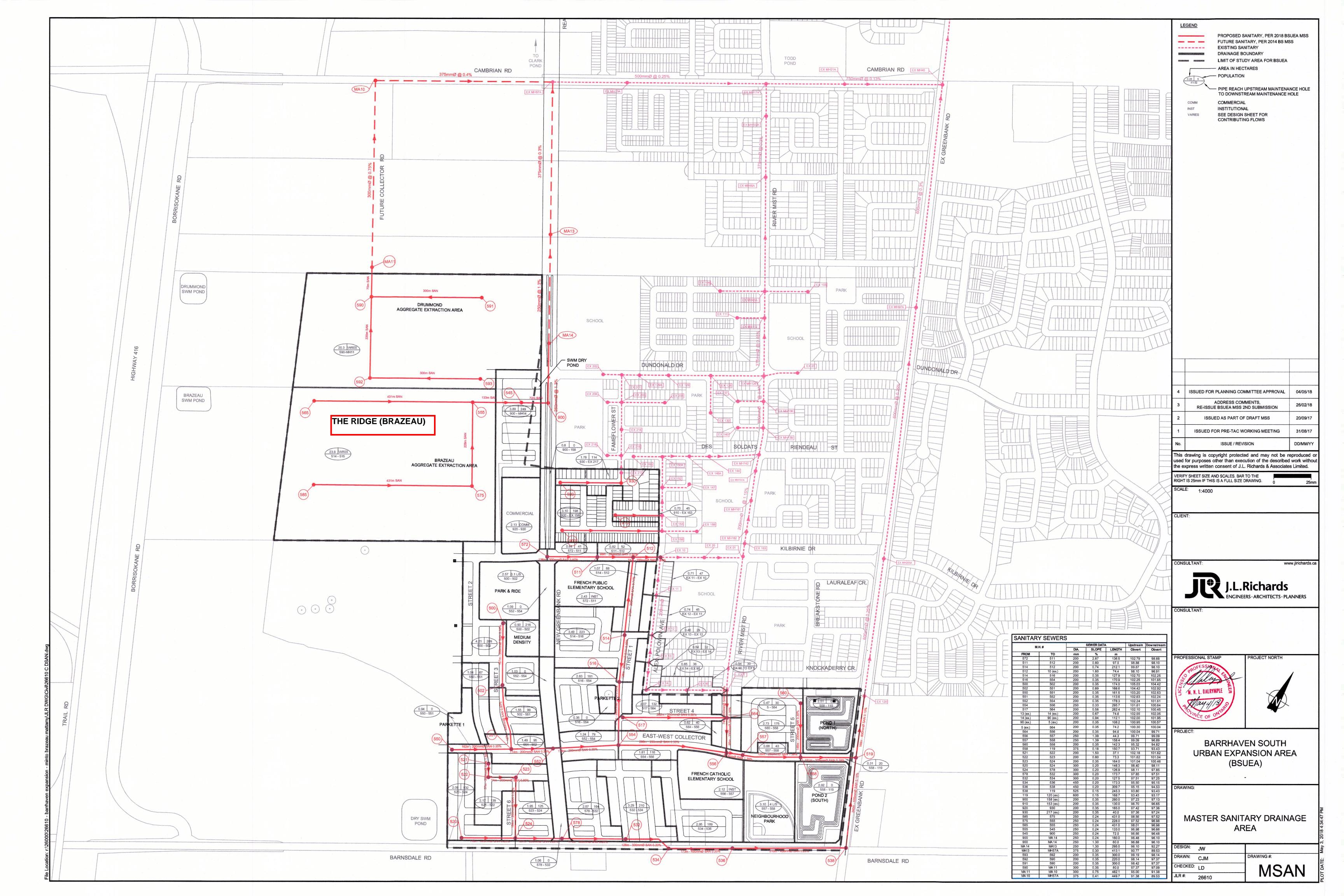


Fire Flow Modeling Results - Phase 1


ID	Static Demand (L/s)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Available Flow at Hydrant (L/s)	Available Flow Pressure (psi)
J-33	0.45	167	52	487	20
J-35	0.38	167	52	473	20
J-36	0.41	167	52	485	20
J-37	0.14	167	52	506	20
J-38	0.36	167	53	518	20
J-39	0.52	167	52	522	20
J-40	0.36	167	53	570	20
J-41	0.08	167	52	612	20
J-42	0.41	167	48	366	20
J-43	0.47	167	49	382	20
J-44	0.38	167	48	367	20
J-45	0.16	167	24	177	20
J-46	0.22	167	37	239	20
J-49	0.34	167	47	345	20
J-50	0.31	167	43	282	20
J-51	0.45	167	41	268	20
J-52	0.52	167	48	352	20
J-53	0.52	167	44	301	20
J-54	0.48	167	41	268	20
J-55	0.48	167	39	254	20
J-56	0.48	167	36	235	20
J-57	0.31	167	40	264	20
J-59	1.04	167	40	293	20
J-61	0.14	167	51	469	20
J-90	0.00	167	46	325	20
J-47	0.30	250	20	249	20
J-48	0.17	250	29	335	20
J-58	0.14	250	22	266	20

Fire Flow Modeling Results - Phases 1 and 2

ii)	Available Flow Pressure (psi)	Available Flow at Hydrant (L/s)	Residual Pressure (psi)	Fire-Flow Demand (L/s)	Static Demand (L/s)	ID
	20	526	53	167	0.45	J-33
	20	509	52	167	0.38	J-35
	20	523	53	167	0.41	J-36
	20	550	53	167	0.14	J-37
	20	545	53	167	0.36	J-38
Conn	20	532	52	167	0.52	J-39
Exist	20	566	52	167	0.36	J-40
	20	615	52	167	0.08	J-41
node	20	376	48	167	0.41	J-42
Obsid	20	417	50	167	0.47	J-43
- inters	20	379	49	167	0.38	J-44
	20	402	48	167	0.16	J-45
Block	20	396	48	167	0.22	J-46
	20	400	49	167	0.34	J-49
	20	308	45	167	0.31	J-50
	20	289	43	167	0.45	J-51
	20	393	49	167	0.52	J-52
	20	345	46	167	0.52	J-53
	20	296	44	167	0.48	J-54
	20	299	43	167	0.48	J-55
	20	331	45	167	0.48	J-56
	20	316	44	167	0.31	J-57
	20	445	46	167	1.04	J-59
	20	527	52	167	0.14	J-61
	20	300	42	167	0.52	J-62
	20	228	33	167	0.48	J-63
	20	233	33	167	0.52	J-64
	20	207	29	167	0.45	J-65
	20	194	27	167	0.52	J-66
	20	223	32	167	0.55	J-67
	20	259	37	167	0.34	J-68
	20	294	39	167	0.34	J-69
	20	199	27	167	0.41	J-70
	20	218	30	167	0.28	J-71
	20	397	42	167	0.41	J-72
	20	383	42	167	0.58	J-74
	20	379	41	167	0.41	J-75
	20	387	41	167	0.21	J-76
	20	428	45	167	0.16	J-78
	20	371	44	167	0.44	J-79
	20	349	43	167	0.44	J-80
	20	310	41	167	0.71	J-81
	20	308	42	167	0.30	J-82
\neg	20	317	44	167	0.49	J-83
	20	312	42	167	0.27	J-84
Co	20	315	43	167	0.49	J-85
Exi	20	436	45	167	0.19	J-86
	20	453	46	167	0.19	J-87
	20					
noc	20	487	48	167	0.11	J-88
			48 50	167 167	0.11 0.19	J-88 J-89
noc	20	487				
noc	20 20	487 525	50	167	0.19	J-89
noc	20 20 20	487 525 413	50 49	167 167	0.19 0.00	J-89 J-90


Connection point 1: Existing watermain node off Haiku/ Obsidian street ntersection fronting Block 1.

Connection point 2: Existing watermain node on Obsidian street

IOCIZIALE ROBO	
	SITE BOUNDARY EXISTING WATERMAIN FUTURE WATERMAIN (B,O.)
	LOCAL WATERMAIN URBAN BOUNDARY
PROJECT No.:	18-1030
SCALE:	1:10,000
DATE:	APRIL 2020
FIGURE:	WAT-1

APPENDIX C

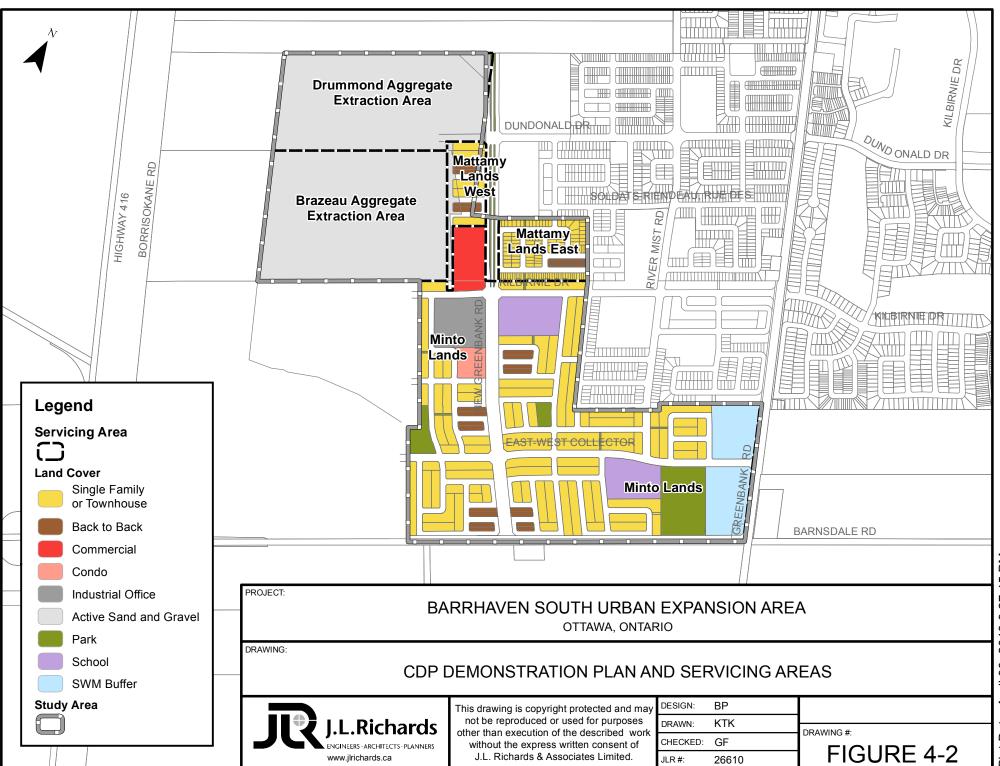
was assumed to have 4 washbasins that deliver 375 L/d and four (4) water closets that generate 150 L/hr for 10 hr/day resulting in a total flow of 7500 L/day.

Land Use	Flow Rate	Area (ha)	Units	Pop.	Average Flow (L/S)	Peak Factor	Infiltrati on	Total Flows (L/s)
					A F F		PO	
Minto and Mattamy Land							1	
Schools	28,000 L/ha/d	4.55			1.50	1.5	1.50	3.8
Park Block	4 L/s	4.39			4.0	1	1.45	5.5
Commercial	28,000 L/ha/d	2.13			0.70	1.5	0.70	1.8
Low-Medium density Residential	280 l/c/d	35.26	1080	3378	11.0	2.92	11.64	43.6
High Density Residential	280 l/c/d	0.90	120	216	0.7	3.51	0.30	2.8
Roads	-	27.00				1	8.91	8.9
Park and Ride		2.57			0.1	1	0.85	1.0
Total		76.8	1200	3594	17.95		25.35	67.4
Brazeau Aggregate Extra	action Area							
Schools	28,000 L/ha/d	1.47			0.48	1.5	0.49	1.2
Commercial	28,000 L/ha/d	0.67			0.22	1.5	0.22	0.6
Low-Medium Density Residential	280 l/c/d	10.27	360	1126	3.65	3.21	3.39	15.1
High Density Residential	280 l/c/d	0.28	38	68	0.22	3.63	0.09	0.9
Roads	-	7.95				1	2.62	2.6
Park Block	-	1.48				1	0.49	0.5
Pond Blocks	-	1.78				1	0.59	0.6
Total		23.9		1194	4.57		7.89	21.5
Drummond Aggregate Ex	xtraction Area						•	•
Schools	28,000 L/ha/d	1.25			0.41	1.5	0.41	1.0
Commercial	28,000 L/ha/d	0.57			0.18	1.5	0.19	0.5
Low-Medium Density Residential	280 l/c/d	8.72	288	900	2.92	3.26	2.88	12.4
High Density Residential	280 l/c/d	0.24	32	58	0.19	3.64	0.08	0.8
Roads	-	6.75				1	2.23	2.2

	Table 6-3: Land	Use and	Theoretical	Wastewater	Flows
--	-----------------	---------	-------------	------------	-------

Land Use	Flow Rate	Area (ha)	Units	Pop.	Average Flow (L/S)	Peak Factor	Infiltrati on	Total Flows (L/s)
Park Blocks	-	1.26				1	0.42	0.4
Pond Blocks	-	1.51				1	0.50	0.5
<u>Total</u>		20.3		958	3.70		6.71	17.8
Barrhaven South Urban I	Expansion Area	a Totals						
<u>Total</u>		121.0		5746	26.22		40.0	106.7

Based on the land uses presented on the Demonstration Plan (Figure 4-2), the BSUEA would generate a peak wastewater flow of approximately 106.7 L/s.


6.3 Wastewater Collection System Strategy

6.3.1 Proposed Sewer System Layout and Sizing

A trunk sanitary sewer system layout was developed based on the ROW corridors identified on the BSUEA Demonstration Plan for the purposes of demonstrating the feasibility of providing wastewater servicing for the BSUEA lands, refer to the Key Servicing Plans. Proposed trunk sanitary sewers were sized based on the aforementioned design criteria and the drainage areas depicted on the Master Sanitary Drainage Area Drawing MSAN, refer to the BSUEA Sanitary Sewer Design Sheet (Appendix J) for detailed calculations. Final configuration and sizing of the wastewater collection system will be confirmed at detailed design of each subdivision stage. At such time, refinements may be implemented.

The proposed BSUEA trunk sanitary sewers will discharge to existing/planned sanitary sewers at the following six (6) locations, as shown on Figure 6-2:

- 1. The Future Collector Road
- 2. New Greenbank Road
- 3. Flameflower Street
- 4. Alex Polowin Avenue
- 5. Kilbirnie Drive
- 6. Greenbank Road

Barrhaven Expansion - Minto Brazeau Mattamy\JLR DWG\GIS\26610 C CDP.mxd т File Location: R:\26000\26610

Plot Date: April 30, 2018 3:27:45 PM

It is noted that the residual capacity in the River Mist Road trunk sanitary sewer has in fact increased with the addition of the BSUEA peak flows. This is the result of adding a relatively small tributary area while reducing the average daily residential flow from 350 L/cap to 280 L/cap combined with diverting some existing drainage areas, located in Quinn's Pointe, away from the outlet.

Existing Trunk Sanitary Sewer	Limiting Pipe reach	Current Minimum Residual Capacity	Proposed BSUEA Tributary Lands	Proposed BSUEA Tributary Area	Revised Minimum Residual Capacity with inclusion of BSUEA Peak Flow
Cambrian Road	MH 13A to MH15A	51.4 L/s	Drummond, Brazeau, Mattamy West (Residential only)	48 ha	52.9 L/s 🗲
River Mist Road	MH 102A to MH 17A	14.4 L/s	Mattamy East, Mattamy West (Commercial only), Northwest corner of Minto	12 ha	30.5 L/s
River Mist Road	MH 1 to MH 163	5.58 L/s	Minto	5 ha	4.63 L/s
Greenbank Road	MH 45 to MH 435A	295.4 L/s	Minto	60 ha	283.2 L/s

 Table 6-4: Residual Capacity Comparison in the BSC Trunk Sanitary Sewers

With the addition of the BSUEA lands, a total theoretical peak wastewater flow of 403.7 L/s was calculated at the most downstream maintenance hole in the BSC (MH 501A on Greenbank Road), as indicated in the Sanitary Sewer Design Sheet in Appendix J. This calculated theoretical peak flow is less than the 590 L/s allocated for all of the BSC in Stantec's City-wide 2013 Wastewater Collection System Assessment. In this assessment, Stantec created a hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater) which demonstrated that the existing downstream trunk system could accommodate the theoretical flow of 590 L/s generated by the BSC with no risk of surcharging or basement flooding. Consequently, Stantec concluded that system upgrades were not required to accommodate the anticipated growth in the BSC. Since the Stantec assessment considered a peak flow that was 186 L/s greater than that calculated for the BSC and the BSUEA combined, it is understood that the existing trunk sanitary sewers located downstream of the BSC can accommodate the additional flows generated by the BSUEA.

CITY OF OTTAWA MINTO COMMUNITIES INC. JLR NO. 26610

			DESIGN PARAMETERS		
Single Family	3.4	pers/unit	q =	280	L/cap/day
Semi-Detached/Townhouse (row)	2.7	pers/unit	I =	0.330	L/s/ha
Apt Units	1.8	pers/unit	inst. =	28000	L/ha/day
Manning's Coeff. N =	0.013		CI Peaking Factor* =	1.0/1.5	

*ICI Peaking Factor = 1.5 if ICI in contributing area is >20%, 1.0 if ICI in contributing area is <20%

						RE	SIDENTIAL					с	OMMERC	AL	INS	STITUTIO	NAL	(Infilitration)											
	м	н. #			NUMBER OF U			CUMU	LATIVE	PEAKING	POPUL.		CUMM.	INST.		симм	INST.	PEAK EXTR.	PLUG	PEAK DES.			SEWER DA	TA		RESIDUAL		UPST	FREA
STREET	FROM	то	SING.	MULT.	APT.	AREA ha	POPUL.	POPUL.	AREA ha	FACTOR	FLOW /s	AREA ha	AREA ha	FLOW /s	AREA ha	AREA ha	FLOW I/s	FLOW Vs	FLOW /s	FLOW /s	DIA. mm	SLOPE %	CAPAC.	VEL. m/s	LENGTH m	CAP.	Center Line	Obvert	In
MINTO LANDS WITHIN BSUEA (OUTLETS				<u> </u>		na	peop.	peop.	na	I	/s	na	na	/s	na	na	l/s	VS	/s	/s	mm	%	VS	m/s	<u> </u>	/s	Line		<u> </u>
	I	Ĺ				1			1	1	1			1			1	1		1		1		1					T
Kilbirnie Dr. Kilbirnie Dr.	572 511	511 512		10		0.64	27 73	27 100	0.64	3.69	0.32	0.00	0.00	0.00	2.43 0.00	2.43 2.43	1.18 0.79	1.01		2.52 3.24	200 200	2.87	57.9 30.6	1.79 0.94	136.50 97.52	55.40 27.37	107.40 103.50	102.79 98.88	10
Street 1	514	512	21	_		1.07	71	71	1.07	3.62	0.84	0.00	0.00	0.00	0.00	0.00	0.00	0.35		1.19	200	0.74	29.4	0.91	212.06	28.24	105.60	99.67	99
Kilbirnie Dr.	512	10 (ex.)					0	171	2.53	3.54	1.96	0.00	0.00	0.00	0.00	2.43	0.79	1.64		4.39	200	1.60	43.3	1.33	74.41	38.89	103.40	98.10	97
MINTO LANDS WITHIN BSUEA (OUTLETS	S TO EXISTING	GREENBANK	0																										
																													1
Street 1 Street 1	514 516	516 554	14 20	104 54	1	3.49 3.18	328 214	328 542	3.49 6.67	3.45	3.67		0.00	0.00		0.00	0.00	1.15	-	4.82 8.11	200	0.35	20.2 20.2	0.62	127.86 170.90	15.42 12.13	105.60 105.40	102.70	10
																													1
Street 3	500	502	25	70	115	7.16	481	481	7.16	3.39	5.28		0.00	0.00		0.00	0.00	2.36	0.10	7.74	200	0.35	20.2	0.62	174.02	12.50	108.10	105.03	104
Street 3	502	551	8	44		1.55	146	627	8.71	3.34	6.78		0.00	0.00		0.00	0.00	2.87		9.76	200	0.89	32.3	1.00	168.60	22.52	107.90	104.42	104
East-West Collector	550	551	20			1.98	68	68	1.98	3.63	0.80		0.00	0.00		0.00	0.00	0.65		1.45	200	0.35	20.2	0.62	161.54	18.79	105.50	103.20	10
East-West Collector	551	552				1.49	75	770	12.18	3.30	8.23		0.00	0.00		0.00	0.00	4.02		12.34	200		20.2		113.56	7.90	105.90	102.63	
East-West Collector	552	554	12	20		3.36	95	865	15.54	3.30	9.17		0.00	0.00		0.00	0.00	5.13		12.34	200	0.35	20.2	0.62	178.26	5.84	105.90	102.63	10
East-West Collector	554	556	11	34		1.01	100	1506	24.02	2.14	15.60		0.00	0.00		0.00	0.00	7.02		22.65	250	0.22	25.6	0.70	205.67	11.00	105.20	101.61	10
East-West Collector				34		1.81	129	1536	24.02	3.14	15.62		0.00	0.00		0.00	0.00	7.93		23.65	250	0.33	35.6	0.70	295.67	11.99	105.20	101.61	10
Street 4	517	564	20	35		2.07	163	163	2.07	3.54	1.87		0.00	0.00		0.00	0.00	0.68		2.55	200	0.58	26.2	0.81	282.43	23.60	105.30	102.10	10
Alex Polowin Ave.	13 (ex.)	14 (ex.)	12			0.54	41	41	0.54	3.67	0.49		0.00	0.00		0.00	0.00	0.18		0.67	200	0.67	28.0	0.86	74.56	27.34	105.00	102.55	10
Alex Polowin Ave Russet Terrace	14 (ex.) 90 (ex.)	90 (ex.) 5 (ex.)	13	-		0.65	44 20	85 105	1.19 1.73	3.61 3.59	0.99		0.00	0.00		0.00	0.00	0.39 0.57		1.39 1.79	200 200	0.94	33.2 20.2	1.02 0.62	112.06 108.16	31.79 18.45	105.00 103.93	102.00 100.95	10
River Mist Rd.	50 (ex.)	564	8	1		0.34	20	132	2,20	3.59	1.53		0.00	0.00		0.00	0.00	0.57		2.25	200	0.35	20.2	0.62	74.22	17.99	103.93	100.30	10
			_							1																		<u> </u>	1
River Mist Rd.	564	556	7	9		0.64	48	343	4.91	3.44	3.83		0.00	0.00		0.00	0.00	1.62		5.55	200	0.35	20.2	0.62	94.59	14.70	103.65	100.04	99
East-West Collector	556	557					0	1879	20.02	2.00	18.79		0.00	0.00	2.20	2.20	0.71	10.07		20.97	250	1 20	70.4	1.44	44.05	40.07	102 55	00.71	
East-West Collector	557	558	6			1.12	0 20	1879	28.93 30.05	3.09	18.79		0.00	0.00	2.20 2.86	2.20	0.71	10.27 11.59	4.00	29.87 36.30	250 250	1.39	73.1 73.1	1.44	44.25 158.35	43.27 36.85	103.55 102.78	99.71 99.09	99
Street 5	560	550	50			3.09	170	170	2.00	2.54	1.05		0.00	0.00		0.00	0.00	1.02		2.07	200	0.95	20.2	0.60	140.07	17.07	00.00	05.00	
		558	50			3.09	170	170	3.09	3.54	1.95		0.00	0.00		0.00	0.00	1.02		2.97	200	0.35	20.2	0.62	142.27	17.27	98.80	95.32	95
East-West Collector	558	119				5.74	0	2069	38.88	3.06	20.51		0.00	0.00		5.06	1.64	14.50		40.75	375	0.18	77.6	0.68	150.71	36.85	99.90	93.71	93
Street 6	521	522	24	33		2.17	171	171	2.17	3.54	1.96		0.00	0.00		0.00	0.00	0.72		2.68	200	1.50	41.9	1.29	37.09	39.23	105.18	102.18	10
	522 523	523 524		71		1.95	0 192	171 363	2.17 4.12	3.54 3.43	1.96 4.04		0.00	0.00		0.00	0.00	0.72		2.68 5.40	200 200	0.80	30.6 20.2	0.94	73.27 164.00	27.93 14.84	104.50 105.11	101.62 101.04	10
						1.85	192	303	4.12	0.40	4.04			0.00		0.00	0.00			3.40	200	0.00	20.2	0.02	104.00	14.04		101.04	
Adjacent to Barnsdale Rd	520	524	41	-		2.06	139	139	2.06	3.56	1.60		0.00	0.00		0.00	0.00	0.68	-	2.28	300	0.20	45.1	0.62	146.25	42.83	102.80	98.40	98
Adjacent to Barnsdale Rd	524	578					0	502	6.18	3.38	5.50		0.00	0.00		0.00	0.00	2.04		7.54	300	0.20	45.1	0.62	126.92	37.58	103.50	98.11	97
Adjacent to Barnsdale Rd Adjacent to Barnsdale Rd	578 532	532 534	50	87 26		3.63	235 240	737 977	9.81	3.31	7.89		0.00	0.00		0.00	0.00	3.24		11.13 14.60	300 300	0.20	45.1 45.1	0.62	173.72 127.45	33.98 30.52	104.92 103.80	97.85 97.51	- 9 - 9
Adjacent to Barnsdale Rd	534	536	55	20		2.96	187	1164	16.06	3.21	12.09		0.00	0.00		0.00	0.00	5.30		17.39	450	0.20	133.0	0.81	173.27	115.63	103.00	95.50	9
Easement (Barnsdale to E-W Collector)	536 538	538 119		_			0	1164 1164	16.06	3.21	12.09 12.09		0.00	0.00		0.00	0.00	5.30 5.30		17.39 17.39	450 525	0.20	133.0 173.8	0.81	309.73 245.34	115.63 156.37	101.56 99.75	95.15 93.80	94
Ex. Greenbank Rd.	119	120 (ex.)		-	1		0	3233	54.94	2.93	30.72		0.00	0.00		5.06	1.64	19.80	-	56.26	600 600	0.15	248.1	0.85	168.66	191.83	99.55	93.43	92
MATTAMY LANDS EAST OUTLETS TO D	UNDONALD D	R. & DES SOL	DATS		-						T		T								T	1			T				_
	900	158 (ex.)	31	51		3.10	243	243	3.10	3.49	2.75	0.00	0.00	0.00		0.00	0.00	1.02		3.77	200	0.35	20.2	0.62	280.00	16.47	106.62	97.23	97
	010	152 (ov.)		29		0.71	76	76	0.71	2.62		0.00	0.00	0.00		0.00	0.00	0.00		1.10	200				120.00	10.10	104.00		
	910	153 (ex.)		28		0.71	76	76	0.71	3.62	0.89	0.00	0.00	0.00		0.00	0.00	0.23		1.12	200	0.35	20.2	0.62	130.00	19.12	104.00	96.70	96
	920 930	930 217 (ex.)	36		-	1.81	122	122 122	1.81 1.81	3.57 3.57	1.42 1.42	2.13 0.00	2.13 2.13	1.04 1.04		0.00	0.00	1.30 1.30		3.75 3.75	200 200	0.35	20.2 20.2	0.62	165.00 40.00	16.49 16.49	106.07 101.70	97.42 97.36	97
								122	1.01	5.07	.42	0.00	2.13	1.04		0.00	0.00	1.00		5.75	200	0.00	20.2	0.02	40.00	10.49	101.70	51.00	+ "
BRAZEAU AGGREGATE EXTRACTION A	REA OUTLETS	TO NEW GRE	ENBANK	ROAD*	1			1	1	1	1	-	-	-	1		1	1			1	-	1	1	1				-
	585	575	178	236	37	21,77	1309	1309	21.77	3.18	13.48	0.68	0.68	0.22	1.45	1.45	0.47	7.89		22.06	250	0.24	30.4	0.60	431.00	8.34		98.56	98
	575	555					0	1309	21.77		0.00		0.68	0.22		1.45	0.47	7.89		8.58	250	0.24	30.4	0.60	228.00	21.82		97.52	9
	565	555					0	0	0.00	1	0.00		0.00	0.00		0.00	0.00	0.00		0.00	250	0.24	30.4	0.60	431.00	30.39		98.01	9
	555	545	-				0	1309	21.77	 	0.00		0.68	0.22		1.45	0.47	7.89		8.58	250	0.24	30.4	0.60	133.00	21.82		96.98	96
	545	900					Ó	1309	21.77	1	0.00		0.68	0.22		1.45	0.47	7.89		8.58	250	0.24	30.4	0.60	72.00	21.82	104.31	96.66	96
	900	MA 14	1	-						1	1			<u> </u>							250	0.24	30.4	0.60	160.00	30.39		96.48	96
MATTAMY LANDS WEST OUTLETS TO N	NEW GREENBA	NK RD	-		-						-			•			-	-			-				-		-		
Realigned Greenbank Rd.	900	MA 14	8	102		3,89	303	1612	25.66	3.13	16.32	0.00	0.68	0.22	0.00	1.45	0.47	9.17		26.18	250	1.30	70.7	1.40	60.00	44.55	104.31	96.88	96
	MA 14	MA13				0.00	0	1612	25.66	3.13	16.32	0.00	0.68	0.22	0.00	1.45	0.47	9.17		26.18	250	1.30	70.7	1.40	295.00	44.50	103.00	96.10	95
	MA13	MH57A						1612	25.66	3.13	16.32		0.68	0.22		1.45	0.47	9.17		26.18	375	0.30	100.2	0.88	413.10	74.00	92.27	90.77	91
DRUMMOND AGGREGATE EXTRACTION	AREA OUTLE	TS TO PROPO	SED COL	LECTOR	RD.*				1	-	-	1		-				-			-	-		1					
	593	592	1	-						 	+			<u> </u>			<u> </u>	I			200	0.35	20.2	0.62	300.00	20.24		99.19	98
	592	590																			200	0.35		0.62	220.00	20.24		98.14	
	591	590	1	-						 	+			<u> </u>			<u> </u>	I			200	0.35	20.2	0.62	300.00	20.24		98.42	98
				0	<i></i>	10.10			46.15		40.51	0	0							10.55									
	590 MA 11	MA 11 MA 10	151	226	31	18.48	1179 0	1179 1179	18.48 18.48	3.20 3.20	12.24 12.24	0.58	0.58	0.19	0.40	0.40	0.13	6.42 6.42		18.98 18.85	300 300	0.35	59.7 87.4	0.82	80.00 482.10	40.70 68.52	100.00	97.37 95.00	9 [.] 9
	MA 10	MH57A					0	1179	18,48	3.20	12.24		0.58	0.19		0.40		6.42		18,85	375	0.41	117.3	1.03	449.70	98.47	93.50	91.38	9
*ONLX ELOW CONTRIBUTIONS ERON	1	L	1	1	L	1	0			I	1		1	1				1			1	1	1	1	1			L	1

ONLY FLOW CONTRIBUTIONS FROM BSUEA ARE SHOWN, FOR SANITARY FLOWS FROM OTHER CONTRIBUTING AREAS TRIBUTARY TO CAMBRIAN ROAD, SEE OVERALL SANITARY SPREADSHEET

BSUEA SANITARY SEWER DESIGN SHEET

Designed by: A.T Checked by: H.M

Date : February 2018

REAM		DOWNSTR	EAM			ICI Peakin	g Factor
Invert	Cover	Center	Obvert	Invert	Cover	ICI/	P.F
		Line				TOTAL	
[[1	[[[
102.59 98.68	4.61 4.62	103.50 103.40	98.88 98.10	98.68 97.90	4.62 5.30	0.79	1.50
99.47	5.93	103.40	98.10	97.90	5.30	0.00	1.00
97.90	5.30	101.18	96.91	96.71	4.27	0.00	1.00
102.50 102.05	2.90 3.15	105.40 105.20	102.25 101.65	102.05 101.45	3.15 3.55	0.00	1.00
104.827	3.07	107.90	104.42	104.218	3.48	0.00	1.00
104.218	3.48	105.90	102.92	102.717	2.98	0.00	1.00
103.00	2.30	105.90	102.63	102.43	3.27	0.00	1.00
102.43	3.27	106.15	102.24	102.03	3.91	0.00	1.00
102.03	3.91	105.20	101.61	101.41	3.59	0.00	1.00
101.36	3.59	103.55	100.64	100.38	2.91	0.00	1.00
101.90	3.20	103.65	100.45	100.25	3.20	0.00	1.00
102.35	2.45	105.52	102.05	101.85	3.47	0.00	1.00
101.80 100.75	3.00 2.98	103.96 103.80	101.95 100.57	101.75 100.37	2.01 3.23	0.00	1.00
100.10	3.60	103.80	100.04	99.84	3.76	0.00	1.00
99.84	3.61	103.55	99.71	99.51	3.84	0.00	1.00
99.46	3.84	102.78	99.09	98.84	3.69	0.07	1.00
98.84	3.69	99.90	96.89	96.64	3.01	0.09	1.00
95.12	3.48	99.90	94.82	94.62	5.08	0.00	1.00
93.32	6.20	99.55	93.43	93.05	6.12	0.00	1.00
101.98	3.00 2.88	104.50 105.11	101.62 101.04	101.42 100.83	2.88 4.07	0.00	1.00
100.83	4.07	103.50	100.46	100.26	3.04	0.00	1.00
98.10	4.40	103.50	98.11	97.80	5.39	0.00	1.00
	5.00	404.00			7.07		4.00
97.80 97.55	5.39 7.07	104.92 103.80	97.85 97.51	97.55 97.20	7.07 6.29	0.00	1.00
97.20	6.29 7.50	103.00	97.25	96.95	5.75 6.41	0.00	1.00
95.04 94.70	6.41	101.56 99.75	95.15 94.53	94.70 94.08	5.22	0.00	1.00
93.26	5.95	99.55	93.43	92.89	6.12	0.00	1.00
92.82	6.12		93.17	92.57		0.00	1.00
97.02	9.39	101.03	97.13	97.13	3.90	0.00	1.00
96.49	7.30	100.35	96.65	96.65	3.70	0.00	1.00
97.21	8.65	101.70	97.36	97.16	4.34	0.54	1.50
97.16	4.34	101.70	97.24	97.04	4.46	0.54	1.50
98.30			97.52	97.27		0.09	1.00
97.27			96.98	96.72		0.03	1.00
97.76			96.98	96.72		0.00	1.00
96.72 96.40	7.65	103.00	96.66 96.48	96.40 96.23	6.52	0.03	1.00
96.23			96.10	95.85			
		<u> </u>					
96.63	7.43	103.00	96.10	95.85	6.90	0.03	1.00
95.85	6.90	95.20	92.27	92.02	2.93	0.03	1.00
90.39	1.50	93.60	89.53	89.15	4.07	0.03	1.00
		-					
98.99			98.14	97.94			1.00
97.94			97.37	97.17			1.00
98.22			97.37	97.17			1.00
97.07		100.00	97.09	96.79	2.91	0.05	1.00
94.69	5.00	93.50	91.38	91.08	2,12	0.03	1.00
91.00	2.12	93.60	89.53	89.15	4.07		1.00

					PROPOSED A	ND BSUEA I	DESIGN PARAM	ETERS	1										CITY OF O TO COMMI	DTTAWA UNITIES INC.										
	Single Family Semi-Detached/Townhouse (row)	3.4 2.7	pers/unit pers/unit		q =	280 0.330		L/cap/day L/s/ha											JLR NO.		N SOUT	HSAN	TAR	V SE	VER	DESI	CN SI	HEET		
	Apt Units	1.8 0.013	, pers/unit		Inst./Comm. = Commerial PF*=	28000 1.0/1.5		L/ha/day																		DEGI	Designe	ed by: AT ed by:HM		
	Manning's Coeff. N =				*1.5 if ICI in contribu	ting area is >					-	Legend		Proposed							O MH5		12.80) L/s			Checke	a by:nivi		
	Sources:	Quinn's Poir	te - Excluding	g Arteria l s∙	-Sanitary sewer de	sign sheet	prepared by J.L	. Richards ((2015)	ed by Stantec (2015)				Proposed Existing	by Others						AREAS					7				
		Barrhaven S	outh Master	Servicing \$	Study Addendum -	Sanitary se	wer design she	eet prepare	d Stantec (2014)	1					P	OPUL		DNS /	AND P	EAK F	ACTO	RS)							
							RE	SIDENTIAL					OMMERC	AL	INS		AL	GREEN/	UNUSED								Date: Feb	oruary 2018		
STREET	SOURCE	м.	H.#	NUM SING.	IBER OF UNITS MULT APT	AREA TOTAL	POPULATION TOTAL	CUMU POPUL	JLATIVE AREA	PEAKING FACTOR	POPUL. FLOW	AREA	CUMM. AREA	INST. FLOW	AREA	CUMM. AREA	INST. FLOW	AREA	CUMM. AREA	PEAK EXTR. FLOW	PLUG FLOW	PEAK DES. FLOW	DIA.		EWER DA	TA VEL.	LENGTH	RESIDUAL CAP.	ICI/	ICI* Peaking
	TURE REALIGNED GREENBANK AND	FROM	то			ha	peop.	peop.	ha		l/s	ha	ha	l/s	ha	ha	Vs	ha	ha	l/s	l/s	l/s	mm	%	l/s	m/s	m	l/s	TOTAL	Factor
Drummond Aggregate Extraction Are	a	545	MA11	151	226 31.00	18.48	1179	1179	18.48	3.20	12.24	0.58	0.58	0.19	1.23	1.23	0.40	0.50	0.00	6.70		19.5	350	0.5	87.4	1.20	300.00	67.85	0.09	1.00
Future Collector Road Cambrian Rd.	Stantec (2014) Stantec (2014)	MA11 MA10	MA10 MH57A			14.23 12.81	1523 1371	2702 4073	32.71 45.52	2.98 2.86	26.13 37.76		0.58	0.19	2.80 7.22	4.03 11.25		2.50 14.49	2.50 16.99	13.14 24.53		40.77 66.13	300 375	0.75	87.4 115.7	1.20	482.10 449.70	46.60 49.55	0.12 0.16	1.00
Brazeau Aggregate Extraction Area +		900	MA14	186	368 37.00	25.66	1693	1693	25.66	3.11	17.08	0.68	0.68	0.22	1.45	1.45	0.47		0.00	9.17		26.9	250	1.30	70.7	1.40	350.00	43.80	0.08	1.00
New Greenbank Road	Stantec (2014) Stantec (2014)	MA14 MA13	MA13 MH57A			4.79 10.99	513 1176	2206 3382	30.45 41.44	3.04 2.92	21.75 31.98		0.68	0.33	7.45	8.90 8.90	4.33 2.88	0.53	0.00	13.21 17.01		39.61 52.10	250 375	1.30 0.30	70.7 100.2	1.40 0.88	295.00 413.10	31.12 48.09	0.24 0.19	1.50 1.00
																									105 -		0.10.77			1.00
Cambrian Road Cambrian Road	Stantec Stantec	MH57A MH13A	MH13A MH15A			4.29 6.21	458 634	7913 8547	91.25 97.46	2.64 2.62	67.80 72.51	3.44	4.70	1.52	0.00	20.15 20.15			17.52 17.52	44.09 46.14		119.95 126.70	500 500	0.25	197.0 176.2	0.97	216.50 165.20	77.01 49.46	0.19	1.00
Cambrian Road	Stantec	MH15A	MH17A			5.61	870	9417	103.07	2.58	78.87		4.70	1.52	0.00	20.15	6.53		17.52	48.00		134.92	600	0.13	231.0	0.79	202.00	96.04	0.17	1.00
QUINN'S POINTE OUTLET TO MH1 Kilbirnie Drive	63 RIVER MIST RD.	572	511		10	103.07 0.64	9417 27	27	0.64	3.69	0.32	I	0.00	0.00	2.43	2.43	1.18		0.00	1.01		2.52	200	2.87	57.9	1.79	136.50	55.38	0.79	1.50
Kilbirnie Drive		511	512		27	0.82	73	100	1.46	3.59	1.17		0.00	0.00		2.43	1.18		0.00	1.28		3.63	200	0.80	30.6	0.94	97.50	26.97	0.62	1.50
Future Collector Road		514	512	21		1.07	71	71	1.07	3.63	0.83		0.00	0.00		0.00	0.00		0.00	0.35		1.19	200	0.74	29.4	0.91	212.10	28.25	0.00	1.00
Kilbirnie Drive		512	EX10			0.00	0	171	2.53	3.54	1.96		0.00	0.00		2.43	1.18		0.00	1.64		4.78	200	1.60	43.3	1.33	74.00	38.50	0.49	1.50
River Mist Road		EX5	EX4	12		0.55	41	41	0.55	3.67	0.49		0.00	0.00		0.00	0.00		0.00	0.18		0.67	200	0.33	19.8	0.61	74.90	19.10	0.00	1.00
Boddington Street Boddington Street		EX101 EX100	EX100 EX4	14 8		0.72 0.44	48 27	48 75	0.72 1.16	3.65 3.62	0.57 0.88		0.00	0.00		0.00	0.00		0.00	0.24 0.38		0.81 1.26	200 200	0.98 0.91	33.8 32.6	1.04 1.01	90.13 91.40	33.00 31.34	0.00	1.00 1.00
River Mist Road		EX4	EX3	12		0.53	41	157	2.24	3.55	1.81		0.00	0.00		0.00	0.00		0.00	0.74		2.54	200	0.32	19.4	0.60	74.95	16.82	0.00	1.00
Clonfadda Terrace Clonfadda Terrace		EX111 EX110	EX110 EX3	13 15		0.62	44 51	44 95	0.62	3.66 3.60	0.52		0.00	0.00		0.00	0.00		0.00	0.20		0.73	200 200	1.04	34.8 31.2	1.07	76.25 108.32	34.10 29.67	0.00	1.00
River Mist Road		EX3	EX2	3		0.32	10	262	3.82	3.48	2.96		0.00	0.00		0.00	0.00		0.00	1.26		4.22	200	0.35	20.2	0.62	100.22	16.00	0.00	1.00
River Mist Road		EX2	EX1		14	0.55	38	300	4.37	3.46	3.37		0.00	0.00		0.00	0.00		0.00	1.44		4.81	200	1.77	45.5	1.40	112.11	40.65	0.00	1.00
Alex Polowin Avenue Alex Polowin Avenue		EX13 EX12	EX12 EX11	11 24		0.46 0.74	37 82	37 119	0.46	3.67 3.58	0.44		0.00	0.00		0.00	0.00		0.00	0.15		0.59 1.78	200 200	1.01 2.14	34.4 50.1	1.06 1.54	74.36 107.77	33.77 48.32	0.00	1.00 1.00
Alex Polowin Avenue		EX11	EX10	17		0.71	58	177	1.91	3.53	2.03		0.00	0.00		0.00	0.00		0.00	0.63		2.66	200	1.65	44.0	1.36	103.97	41.35	0.00	1.00
Kilbirnie Drive		EX10	EX20		14	0.57	38	386	5.01	3.42	4.28		0.00	0.00		2.43	1.18		0.00	2.46		7.92	200	0.32	19.3	0.60	118.98	11.42	0.33	1.50
Block 251 (School)		Stub	EX20			0.00	0	0	0.00	3.80	0.00		0.00	0.00	2.83	2.83	1.38		0.00	0.93		2.31	200	0.32	19.3	0.60	11.00	16.99	1.00	1.50
Kilbirnie Drive		EX20	EX1		15	0.54	41	427	5.55	3.41	4.71		0.00	0.00		5.26	2.56		0.00	3.57		10.84	200	0.32	19.4	0.60	106.01	8.52	0.49	1.50
River Mist Road		EX1	MH163			0.08	0	727	10.00	3.31	7.79		0.00	0.00		5.26	2.56		0.00	5.04		15.39	200	0.32	19.3	0.60	39.41	3.96	0.34	1.50
River Mist Road	ROAD OUTLETS VIA CAMBRIAN R Stantec (2015)	MH163	EX162			10.00 0.08	0	727	10.08	3.31	7.79		0.00	0.00			2.56		0.00	5.06		15.41	250	0.85	57.2	1.13	36.30	41.78	0.34	1.50
River Mist Road		EX162	EX161			0.20	0	727	10.28	3.31	7.79		0.00	0.00		5.26	2.56	0.04	0.00	5.13		15.48	250	1.15	66.5	1.31	44.40	51.05	0.34	1.50
River Mist Road		EX161A	EX161			0.00	0	0	0.00	3.80	0.00		0.00	0.00		0.00		0.91	0.91	0.30		0.30	150	1.00	15.9	0.87	14.00	15.59	0.00	1.00
River Mist Road		EX161	151			0.19	0	727	10.47	3.31	7.79		0.00	0.00	0.77	5.26			0.91	5.49		15.84	250	1.15	66.5	1.31	57.70	50.69	0.32	1.50
River Mist Road		EX151A	151 EX151			0.00	0	0	0.00	3.80	0.00		0.00	0.00	2.77	2.77 8.03	1.35 3.90		0.00	0.91		2.26	200	1.00	15.9	0.87	12.70	13.63	1.00	1.50
River Mist Road		151 EX151	EX151 MH142			0.09	0	727 727	10.56	3.31	7.79		0.00	0.00		8.03			0.91 0.91	6.44 6.44		18.13 18.13	300 300	1.40 1.40	119.4 119.4	1.64 1.64	17.90 44.40	101.23 101.23	0.41	1.50
Buffalograss Cres.	Stantec (2015)	EX159	EX158		24	0.56	65	65	0.56	3.63	0.77		0.00	0.00		0.00	0.00		0.00	0.18		0.95	200	0.40	21.6	0.67	95.50	20.69	0.00	1.00
Mattamy Lands East		900	EX158	31	51	3.10	243	243	3.10	3.49	2.75		0.00	0.00		0.00	0.00		0.00	1.02		3.77	200	0.35	20.2	0.62	280.00	16.46	0.00	1.00
Alex Polowin ave.		EX158	EX153	0	0	0.13	0	308	3.79	3.46	3.45		0.00	0.00		0.00	0.00		0.00	1.25		4.70	200	0.40	21.6	0.67	45.00	16.94	0.00	1.00
Mattamy Lands East		910	EX153		28	0.71	76	76	0.71	3.62	0.89		0.00	0.00		0.00	0.00		0.00	0.23		1.13	200	0.35	20.2	0.62	130.00	19.12	0.00	1.00
Alex Polowin ave. Alex Polowin ave.		EX153 EX152	EX152 EX150			0.12	0	384 384	4.62	3.42 3.42	4.26 4.26		0.00	0.00		0.00	0.00		0.00	1.52 1.52		5.79 5.79	200 200	0.80	30.6 30.6	0.94	70.00 85.70	24.82 24.82	0.00	1.00
Rue Des Soldats Riendeau St.		EX165	EX150	17		0.67	58	58	0.67	3.64	0.68		0.00	0.00		0.00	0.00		0.00	0.22		0.91	200	1.50	41.9	1.29	101.20	41.00	0.00	1.00
Rue Des Soldats Riendeau St.	Stantec (2015)	EX150	EX100	6		0.30	20	462	5.59	3.39	5.08		0.00	0.00		0.00	0.00		0.00	1.84		6.93	200	0.80	30.6	0.94	72.00	23.68	0.00	1.00

		PROPOSED AN	ND BSUEA DESIG	IN PARAMETERS				CITY OF OTTAWA MINTO COMMUNITIES INC.
Single Family	3.4 pers/unit	q =	280	L/cap/day				JLR NO. 26610
Semi-Detached/Townhouse (row)	2.7 pers/unit	I =	0.330	L/s/ha				BARRHAVEN SOUTH
Apt Units	1.8 pers/unit	Inst./Comm. =	28000	L/ha/day				
Manning's Coeff. N =	0.013	Commerial PF*=	1.0/1.5			_		
		*1.5 if ICI in contribut	ing area is >20%,	1.0 if ICI in contributing area is	<20%	Legend	Proposed	
Sources:	Half Moon Bay South Sub	odivision - Phase 4 - Excludin	g Arterials- Sani	tary sewer design sheet pre	pared by Stantec (2015)		Proposed by Others	
	Quinn's Pointe - Excluding	g Arterials-Sanitary sewer des	sign sheet prepa	red by J.L Richards (2015)			Existing	
	Barrhaven South Master	Servicing Study Addendum -	Sanitary sewer of	design sheet prepared Stan	ec (2014)			

								RE	SIDENTIA	-			C	OMMERC	AL	IN	STITUTION/	AL	GREEN	UNUSED	1										
			H.#	NU	MBER OF U	NITS	AREA	POPULATION	CUM	ULATIVE	PEAKING	POPUL.		CUMM.	INST.		CUMM.	INST.		CUMM.	PEAK EXTR.	PLUG	PEAK DES.			SEWER D	ATA		RESIDUAL		ICI*
STREET	SOURCE	141.	n.#	SING.	MULT.	APT.	TOTAL	TOTAL	POPUL.	AREA	FACTOR	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	FLOW	FLOW	DIA.	SLOPE	CAPAC	VEL.	LENGTH	CAP.	ICI/	Peaking
		FROM	TO				ha	peop.	peop.	ha		/s	ha	ha	/s	ha	ha	/s	ha	ha	/s	/s	/s	mm	%	/s	m/s	m	l/s	TOTAL	Factor
Remora Way		EX147	EX146	20			0.94	68	68	0.94	3.63	0.80		0.00	0.00		0.00	0.00		0.00	0.31		1.11	200	1.00	34.2	1.06	78.20	33.11	0.00	1.00
		=>////0	-				0.00		507		0.07	5.00			0.00						0.40				0.50		0.75	40.00			
Rue Des Soldats Riendeau St.		EX146	EX145	2			0.08	7	537	6.61	3.37	5.86		0.00	0.00		0.00	0.00		0.00	2.18		8.04	200	0.50		0.75	19.30	16.15	0.00	1.00
Rue Des Soldats Riendeau St.		EX145	EX144	-			0.07	0	537	6.68	3.37	5.86		0.00	0.00		0.00	0.00		0.00	2.20		8.06	200	0.50	24.2	0.75	35.90	16.13	0.00	1.00
Rue Des Soldats Riendeau St.		EX144	EX143	9			0.54 0.00	<u>31</u> 0	568	7.22	3.36 3.36	6.18		0.00	0.00		0.00	0.00		0.00	2.38		8.56 8.56	200	0.50	24.2 21.6	0.75	114.90	15.63	0.00	1.00
Rue Des Soldats Riendeau St.		EX143	MH142				0.00	0	568	7.22	3.30	6.18		0.00	0.00		0.00	0.00		0.00	2.38		0.00	200	0.40	21.0	0.67	21.50	13.08	0.00	1.00
River Mist Road		MH142	EX139	3			0.26	10	1305	18.04	3.18	13.44		0.00	0.00		8.03	3.90		0.91	8.90		26.25	300	0.40	63.8	0.87	74.80	37.56	0.30	1.50
		EX140	EX139	7			0.40	24	24	0.40	3.70	0.29		0.00	0.00		0.00	0.00		0.00	0.13		0.42	200	0.65	27.6	0.85	67.70	27.17	0.00	1.00
River Mist Road		EX139	EX136	10			0.47	34	1363	18.91	3.17	13.99		0.00	0.00		8.03	3.90		0.91	9.19		27.08	300	0.41	64.6	0.89	64.70	37.51	0.29	1.50
		EX137	EX136	15			0.84	51	51	0.84	3.65	0.60		0.00	0.00		0.00	0.00		0.00	0.28		0.88	200	0.65	27.6	0.85	67.80	26.71	0.00	1.00
River Mist Road		EX136	MH126	4			0.29	14	1428	20.04	3.16	14.60		0.00	0.00		8.03	3.90		0.91	9.56		28.07	300	0.41	64.6	0.89	78.90	36.52	0.28	1.50
Mattamy Lands East		920	930	36			1.83	122	122	1.83	3.58	1.41	2.13	2.13	1.04		0.00	0.00		0.00	1.31		3.76	200	0.35	20.2	0.62	165.00	15.50	0.54	1.50
Mattamy Lands East		930	EX217					0	122	1.83	3.58	1.41		2.13	1.04		0.00	0.00		0.00	1.31		3.76	200	0.36	20.5	0.63	40.00	15.50	0.54	1.50
Flameflower St.		EX217	EX215				0.05	0	122	1.88	3.58	1.41		2.13	1.04		0.00	0.00		0.00	1.32		3.77	200	2.00	48.4	1.49	34.50	44.62	0.53	1.50
Flameflower St.	Stantec (2015)	EX216	EX215		5		0.19	14	14	0.19	3.72	0.17		0.00	0.00		0.00	0.00		0.00	0.06		0.23	200	0.65	27.6	0.85	45.20	27.35	0.00	1.00
Flameflower St.		EX215	EX214		15		0.34	41	177	2.41	3.53	2.03		2.13	1.04		0.00	0.00		0.00	1.50		4.56	200	2.00	48.4	1.49	72.00	43.83	0.47	1.50
Flameflower St.		EX214	EX203		15		0.35	41	218	2.76	3.51	2.48		2.13	1.04		0.00	0.00		0.00	1.61		5.13	200	2.00	48.4	1.49	73.50	43.26	0.44	1.50
Devario Cres.		EX204	EX203				0.54	62	62	0.54	3.64	0.73		0.00	0.00		0.00	0.00	3.10	3.10	1.20		1.93	200	1.50	41.9	1.29	36.50	39.97	0.00	1.00
Devario Cres.		EX208	EX203	_			2.50	187	187	2.50	3.53	2.14		0.00	0.00		0.00	0.00		0.00	0.83		2.96	200	0.40	21.6	0.67	120.00	18.68	0.00	1.00
Flameflower St.		EX203	EX201				0.12	0	467	5.92	3.39	5.13		2.13	0.69		0.00	0.00		3.10	3.68		9.50	200	0.40	21.6	0.67	73.70	12.14	0.19	1.00
Dundonald Dr.		EX202	EX201	4			0.53	14	14	0.53	3.72	0.17		0.00	0.00		0.00	0.00		0.00	0.17		0.34	200	3.25	61.7	1.90	50.00	61.34	0.00	1.00
Dundonald Dr.		EX201	EX129A	3			0.21	10	491	6.66	3.38	5.38		2.13	0.69		0.00	0.00		3.10	3.92		10.00	200	0.40	21.6	0.67	47.80	11.64	0.18	1.00
Dundonald Dr.		EX129A	EX129A	18			0.75	61	552	7.41	3.36	6.01		2.13	0.69		0.00	0.00		3.10	4.17		10.87	200	0.40	21.6	0.67	100.90	10.77	0.10	1.00
Dundonald Dr.		EX129	EX123	11			0.58	37	589	7.99	3.35	6.39		2.13	0.69		0.00	0.00		3.10	4.36		11.45	200	0.40		0.67	91.70	10.19	0.16	1.00
Lamprey St.		EX130	EX128				1.16	85	85	1.16	3.61	0.99		0.00	0.00		0.00	0.00	0.40	0.40	0.51		1.51	200	0.50	24.2	0.75	96.50	22.69	0.00	1.00
Dundonald Dr.		EX128	EX127	9			0.37	31	705	9.52	3.31	7.57		2.13	0.69		0.00	0.00		3.50	5.00		13.26	200	0.50	24.2	0.75	49.80	10.93	0.14	1.00
Dundonald Dr.		EX127	MH126	13			0.66	44	749	10.18	3.30	8.01		2.13	0.69		0.00	0.00		3.50	5.22		13.92	200	0.32	19.4	0.60	97.80	5.43	0.13	1.00
Dundonald Dr.		EX23	MH126				1.06	71	71	1.06	3.63	0.83		0.00	0.00		0.00	0.00		0.00	0.35		1.18	200	1.47	41.5	1.28	89.30	40.30	0.00	1.00
School		EX123A	EX123				0.00	0	0	0.00	3.80	0.00		0.00	0.00	2.06	2.06	1.00		0.00	0.68		1.68	250	0.89	58.5	1.16	15.80	56.85	1.00	1.50
River Mist. Dr.		MH126	EX123		5		0.29	14	2262	31.57	3.03	22.25		2.13	1.04		8.03	3.90		4.41	15.23		42.41	375	0.45	122.7	1.08	122.00	80.29	0.22	1.50
River Mist. Rd.		EX123	MH112		7		0.34	19	2281	31.91	3.03	22.42		2.13	1.04		10.09	4.90		4.41	16.02		44.38	375	0.42	118.5	1.04	90.30	74.16	0.25	1.50
White Arctic Ave.		EX111	MH112				3.39	378	378	3.39	3.43	4.20		0.00	0.00		0.00	0.00		0.00	1.12		5.32	200	0.32	19.4	0.60	74.80	14.04	0.00	1.00
WHILE AICLIC AVE.		EATT	WITTZ				5.55	3/0	3/0	5.55	5.45	4.20		0.00	0.00		0.00	0.00		0.00	1.12		3.52	200	0.52	15.4	0.00	74.00	14.04	0.00	1.00

'H SANITARY SEWER DESIGN SHEET Designed by: AT Checked by:HM

Date: February 2018

					PRO	POSED AND BSUEA	DESIGN PARA	METERS	7										CITY OF OT O COMMUN											
	Single Family	3.4 p	pers/unit		q =			L/cap/day											JLR NO. 2	6610										
	Semi-Detached/Townhouse (row) Apt Units		pers/unit		l = Inst./Com	0.000		L/s/ha L/ha/day										F	BARR	HAVE	N SOUT	H SAN	ITAR	Y SE	WER	DESI		HEET ed by: AT		
	Manning's Coeff. N =	0.013	pers/unit		Commeria	ial PF*= 1.0/1.5	00% 4.0 % [0]			o/		1		-		٦												ed by:HM		
	Sources:				Phase 4	in contributing area is > - Excluding Arterials-	- Sanitary sew	er design sh	eet prepare			Legend			by Others															
						sewer design sheet p Idendum - Sanitary se				2014)				Existing																
				_																							Date: Feb	oruary 2018		
				NUN	MBER OF	UNITS AREA		ESIDENTIAL	JLATIVE	PEAKING	POPUL.	C	OMMERCI	AL INST.	INS	CUMM.	NST.	GREEN/U		PEAK EXTR.	PLUG	PEAK DES			SEWER DA	TA		RESIDUAL	li	CI*
STREET	SOURCE	M.H. FROM	.# то	SING.	MULT.		TOTAL peop.	POPUL. peop.		FACTOR	FLOW Vs	AREA ha	AREA ha	FLOW I/s	AREA ha	AREA ha	FLOW Vs	AREA ha	AREA ha	FLOW /s	FLOW I/s	FLOW I/s	DIA. mm	SLOPE	CAPAC.	VEL. m/s	LENGTH m	CAP. I/s	ICI/ TOTAL	Peaking Factor
River Mist. Rd.		MH112	EX102			0.14	0	2659	35.44	2.99	25.76		2.13	1.04		10.09	4.90		4.41	17.18	113	48.88	375	0.31	101.8	0.89	68.00	52.96	0.23	1.50
Dutchmans Way		EX103	EX102	18		0.14	61	61	0.80	3.64	0.72		0.00	0.00		0.00	0.00		0.00	0.26		0.98	200	2.02	48.6	1.50	120.00	47.65	0.23	1.00
Song Sparrow St.		EX103	EX102	10		3.83	386	386	3.83	3.42	4.28		0.00	0.00		0.00	0.00		0.00	1.26		5.55	200	0.44	22.7	0.70	114.60	17.15	0.00	1.00
River Mist Road	Stantec (2015)	EX104	EX102			0.07	0	3106	40.14	2.94	29.63		2.13	1.04		10.09	4.90		4.41	18.73		54.30	375	0.44	98.5	0.86	34.00	44.20	0.00	1.50
	Stantec (2013) Stantec (2014)	EX102 EX101 MH43A	MH43A MH44A			0.00	0 352	3100 3106 3458	40.14 40.14 46.70	2.94 2.94 2.91	29.63		2.13	1.04		10.09	4.90		4.41	18.73		54.30 57.49	375	0.30	100.2 100.2	0.88	38.00 81.00	45.88 42.70	0.22	1.50
		MH43A MH44A MH45A	MH45A MH46A			0.00	0	3458 3458	46.70 46.70	2.91 2.91	32.63		2.13 2.13 2.13	0.69		10.09	3.27 3.27 3.27		4.41	20.90		57.49 57.49 57.49	375	0.30	100.2	0.88	64.00 85.00	42.70 42.70 42.70	0.19	1.00
		MH46A MH47A	MH47A MH101A			8.40	562	4020	55.10 55.10	2.87	37.33		2.13	0.69		10.09	3.27 3.27 3.27	1.60	6.01 6.01	24.20		65.49 65.49	375	0.30	100.2	0.88	41.00 64.00	34.70 34.70	0.13	1.00
River Mist Road	Stantec (2014)	MH47A MH101A MH102A	MH101A MH102A MH17A			0.00	0 0 420	4020 4020 4440	55.10 55.10 60.34	2.87	37.33		2.13 2.13 2.13	0.69		10.09	3.27 3.27 3.27		6.01 6.01	24.20 24.20 25.93		65.49 65.49 70.67	375 375 375	0.30	100.2 100.2 100.2	0.88	64.00 64.00 81.00	34.70 34.70 29.52	0.17 0.17 0.16	1.00
		MH 102A	MITITA						60.34	2.03	40.78		2.13	0.09		10.09	3.27		0.01	23.93		70.07	375	0.30	100.2	0.00	81.00	29.52	0.10	1.00
CAMBRIAN RD. FROM MH17A TO Cambrian Rd.	Stantec (2014)	MH17A	MH21A	<u> </u>		60.34 26.01	1956	15813		2.76	141.19		6.83	2.21	2.96	33.20			28.63	75.72		229.88	750	0.13		0.92	204.30	189.62	0.16	1.00
Cambrian Rd.	Stantec (2014)	MH21A	MH45			7.04	408	16221	196.46	2.74	144.25		6.83	2.21		33.20	10.76	0.00	28.63	78.04		235.26	750	0.13	419.5	0.92	277.80	184.24	0.15	1.00
MINTO LANDS WITHIN BSUEA OL	JTLETS TO 120 (QUINN'S POINTE) EXIS	STING GREENBAN	IK RD.			196.46		1	1		1											1	T							
Future Collector		514	516	16	104	3.49	335	335	3.49	3.45	3.74		0.00	0.00	0.00	0.00	0.00		0.00	1.15		4.89	200	0.35	20.2	0.62	127.90	15.35	0.00	1.00
Future Collector Future Collector		516	554	20	54	3.18	214	549	6.67	3.36	5.98		0.00	0.00	0.00	0.00	0.00		0.00	2.20		8.18	200	0.35	20.2	0.62	170.90	12.06	0.00	1.00
Future Collector		500	502	25	70	115 7.16	481	481	7.16	3.39	5.28		0.00	0.00	0.00	0.00	0.00		0.00	2.36	0.10	7.74	200	0.35	20.2	0.62	174.00	11.41	0.00	1.00
Future Collector		502	551	8	44	1.55	146	627	8.71	3.34	6.78		0.00	0.00	0.00	0.00	0.00		0.00	2.87		9.76	200	0.88	32.1	0.99	171.30	20.22	0.00	1.00
East-West Collector		550	551	20		1.98	68	68	1.98	3.63	0.80		0.00	0.00	0.00	0.00	0.00		0.00	0.65		1.45	200	0.35	20.2	0.62	99.90	18.73	0.00	1.00
East-West Collector East-West Collector		551 552	552 554	22 12	0 20	1.49 3.36	75 95	770 865	12.18 15.54	3.30 3.27	8.23 9.17		0.00	0.00 0.00	0.00	0.00	0.00 0.00		0.00	4.02 5.13		12.34 14.40	200 200	0.35	20.2 20.2	0.62 0.62	175.00 178.30	7.90 3.37	0.00	1.00 1.00
East-West Collector		554	556	11	34	1.81	129	1543	24.02	3.14	15.68		0.00	0.00	0.00	0.00	0.00		0.00	7.93		23.71	250	0.33	35.6	0.70	295.60	9.15	0.00	1.00
Future Collector		517	564	20	35	2.07	163	163	2.07	3.54	1.87		0.00	0.00	0.00	0.00	0.00		0.00	0.68		2.55	200	0.59	26.3	0.81	280.00	23.71	0.00	1.00
Alex Polowin Ave.		13 14	14	12 13	0	0.54	41	41 85	0.54	3.67 3.61	0.49		0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.49	200 200	0.67	28.0 33.1	0.86	74.56	27.53 32.13	0.00	1.00
Alex Polowin Ave. Alex Polowin Ave. River Mist Road		90	90 5	13 11 0	0	0.65	37 0	122	1.73	3.58	1.41		0.00	0.00 0.00 0.00	0.00	0.00	0.00		0.00	0.00		1.41 1.41	200 200 200	0.94 0.35 0.42	20.3	0.63	112.06 108.16 80.00	18.87 20.76	0.00 0.00 0.00	1.00
River Mist Road		563	563 564	8		0.00	27	122 149	2.20	3.55	1.72		0.00	0.00	0.00	0.00	0.00		0.00	0.00		2.44	200	0.42	22.2	0.68	50.00	19.73	0.00	1.00
River Mist Road		564	556	7	9	0.64	48	360	4.91	3.43	4.01		0.00	0.00		0.00	0.00		0.00	1.62		5.63	200	0.35	20.2	0.62	95.00	14.62	0.00	1.00
East-West Collector East-West Collector		556 557	557 558	6		1.12	20	1903 1923	28.93 30.05	3.08 3.08	19.01 19.19		0.00	0.00	2.20 2.86	2.20 5.06	0.71 1.64		0.00	10.27 11.59	4.00	30.09 36.42	300 300	1.39	118.9 118.9	1.63 1.63	44.30 158.40	84.53 80.38	0.07 0.14	1.00
		560		6 50	0	3.09	20	1923	30.05	3.08	19.19		0.00	0.00	2.00	0.00	0.00		0.00	11.59	4.00	2.97		0.35		0.62	158.40	17.27	0.14	1.00
Future Collector East-West Collector		558	558 119	50	0	5.74	0	2093	38.88	3.06	20.73		0.00	0.00		5.06	1.64		0.00	14.50		40.97	200 450	0.35	20.2	0.62	150.00	63.75	0.00	1.00
Future Collector		521	522	24	33	2,17	171	171	2.17	3.54	1.96		0.00	0.00		0.00	0.00		0.00	0.72		2.68	200	1.26			230.00	35.74	0.02	1.00
		522	523	24				171	2.17	3.54	1.90		0.00	0.00		0.00	0.00		0.00	0.72		2.00	200	1.20	30.4	1.10	200.00	30.74		
Euturo Collector				41						3.56	1.60									0.68		2.28	200	0.26	17.4	0.54	72.20	15.16		
				41			1.59																							
Future Collector		578	532	50	87	3.63	235	737	9.81	3.31	7.89		0.00	0.00		0.00	0.00		0.00	3.24		11.13	300	0.20	45.1	0.62	173.70	33.98	0.00	1.00
Future Collector		534	536	55	20	2.96	187	1164	16.06	3.21	12.09		0.00	0.00	0.00	0.00	0.00		0.00	5.30		17.39	450	0.20	133.0	0.81	173.27	115.63	0.00	1.00
		536	538 119	0		0.00	0	1164	16.06	3.21	12.09		0.00	0.00	0.00	0.00	0.00		0.00	5.30		17.39	450 525	0.20	173.8	0.81	245.34	156.37	0.00	1.00
Greenbank Rd.		119	EX120				0	3257	54.94	2.93	30.92		0.00	0.00		5.06	1.64		0.00	19.80		56.46	600	0.15	248.1	0.85	168.66	187.53	0.08	1.00
QUINN'S POINTE OUTLETS TO M	H205A EXISTING GREENBANK RD.					54.94	4 325	7			1										I									
Greenbank Road		EX120	EX121			0.22	0	3257	55.16	2.93	30.92		0.00	0.00	0.00	5.06	1.64		0.00	19.87	4.10	56.53	600	0.16	259.0	0.89	58.09	202.51	0.08	1.00
Greenbank Road		EX121	EX122			0.28	0	3640	61.99	2.90	34.16		0.00	0.00	0.00	6.63	2.15		0.00	22.64	4.10	63.05	600	0.33	369.2	1.27	75.27	306.17	0.10	1.00
Future Collector Future Collector Future Collector Greenbank Rd, QUINN'S POINTE OUTLETS TO MI Greenbank Road	H205A EXISTING GREENBANK RD.	532 534 536 538 119 EX120	534 536 538 119 EX120 EX121		71 0 87 26	3.29 2.96 0.00 0.00 54.94	240 187 0 0 0 4 325	977 1164 1164 1164 3257 7 3257	13.10 16.06 16.06 54.94 55.16	3.25 3.21 3.21 3.21 2.93 2.93	10.27 12.09 12.09 12.09 30.92 30.92		0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 5.06 5.06	0.00 0.00 0.00 0.00 1.64		0.00 0.00 0.00 0.00 0.00 0.00 0.00	4.32 5.30 5.30 5.30 19.80		14.60 17.39 17.39 17.39 56.46	300 450 525 600 600	0.20 0.20 0.20 0.15 0.15 0.15	45.1 45.1 133.0 133.0 173.8 248.1 259.0	0.62 0.81 0.81 0.78 0.85	127.45 173.27 309.73 245.34 168.66 58.09	30.52 115.63 115.63 156.37 187.53 202.51	0.00 0.00 0.00 0.00 0.08	1.00 1.00 1.00 1.00 1.00 1.00 1.00

				[PROPO	SED AND BSUE	A DESIGN F	PARAMETERS											СІТҮ ОҒ О ГО СОММІ	OTTAWA UNITIES INC.										
	Single Family	3.4	pers/unit		q =	280		L/cap/d	ау										JLR NO.											
	Semi-Detached/Townhouse (row)	2.7	pers/unit		I =	0.330		L/s/ha											BARR	RHAVE	N SOUT	H SAN	ITAR	Y SE	WER	DESI	GN SI	HEET /		
	Apt Units	1.8	pers/unit		Inst./Comm.			L/ha/da	y																			ed by: AT	•	
	Manning's Coeff. N =	0.013			Commerial P		-									-											Checke	ed by:HM		
						contributing area					_	Legend		Proposed																
	Sources:									red by Stantec (2015)					by Others															
						wer design she					_			Existing																
		Barrhaven S	outh Master S	Servicing S	Study Adden	ndum - Sanitary	sewer desi	ign sheet prep	ared Stanted	(2014)	_																			
																											Date: Feb	ruary 2018		
				r				RESIDENT	A1			1	COMMERC	AI .	IN	TITUTION	A1	GPEEN	UNUSED	1							Date. Feb	uary 2010		
	Τ	_		NUM	BER OF UN	TS ARE	A POPUL		MULATIVE	PEAKING	POPUL.		CUMM.	INST.		CUMM	INST.	GILLIN/	CUMM.	PEAK EXTR.	PLUG	PEAK DES.	r		SEWER DA		1	RESIDUAL	r	ICI*
STREET	SOURCE	м.	H.#			APT. TOTA					FLOW	AREA		FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	FLOW	FLOW	DIA.	SLOPE	CAPAC.		LENGTH	CAP.	ICI/	Peaking
STREET	SOBILE	FROM	то	01110.	MOLI.	ha	pec			TACTOR	/s	ha	ha	l/s	ha	ha	Vs	ha	ha	l/s	l/s	l/s	mm	0LOF L	l/s	m/s	m	l/s	TOTAL	Factor
Greenbank Road		EX122	EX123R			0.45				2.90	34.16	114	0.00	0.00	0.00	6.63	2.15	114	0.00	22.79	4.10	63.20	600	0.21	291.1	1.00	121.02	227.90	0.10	1.00
Croonbarrer road		2/(122	LICILOIC			3.40		5040	02.11	2.00	00		0.00	0.00	0.00	0.00			0.00			00.20	000	0.21	20.11				00	
Easement		EX44	EX123R			0.00	0	259	2.62	3.48	2.93		0.00	0.00	0.00	0.00	0.00		0.00	0.86		3.79	300	0.35	59.9	0.82	19.00	56.12	0.00	1.00
Greenbank Road		EX123R	MH205A			0.43	0	3899	65.49	2.87	36.32		0.00	0.00	0.00	6.63	2.15		0.00	23.80	4.10	66.37	600	0.25	319.2	1.09	120.80	252.85	0.09	1.00
	H E (00(0)	51/0/							0.45	0.50	0.54	_	0.00	0.00	0.00	0.00	0.00		0.00	0.74		0.05		0.74		0.00	00.70	05.50	0.00	1.00
Kilbirnie Drive	JLR (2016)	EX24	MH205A		3	0.11	8	224	2.15	3.50	2.54	-	0.00	0.00	0.00	0.00	0.00		0.00	0.71		3.25	200	0.71	28.8	0.89	28.70	25.59	0.00	1.00
Existing Greenbank Road		MH205A	EX98A				0	4123	67.64	2.86	38.18	-	0.00	0.00	0.00	6.63	2.15		0.00	24.51	4.10	73.94	600	0.25	320.3	1.10	126.00	246.34	0.09	1.00
Existing Greenbank Road		WII 1203A	LABOA				0	4120	07.04	2.00	30.10		0.00	0.00	0.00	0.00	2.15		0.00	24.51	4.10	73.84	000	0.25	520.5	1.10	120.00	240.04	0.03	1.00
EXISTING GREENBANK RD, FROM	M MH 98A TO MH45A				<u> </u>	6.15	48	4																						
Existing Greenbank Road	B	EX98A	MH99A			0.00	0	4123	67.64	2.86	38.18	1	0.00	0.00	1	6.63	2.15	1	0.00	24.51	4.10	73.94	600	0.25	320.3		125.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH99A	MH100A			0.00				2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25			108.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH100A	MH204A			0.00				2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25			105.00	246.34	0.09	1.00
Existing Greenbank Road	IBI IBI	MH204A	MH206A			0.00				2.86	38.18 38.18	_	0.00	0.00		6.63	2.15		0.00	24.51 24.51	4.10	73.94 73.94	600 600	0.25	320.3 320.3		103.00	246.34 246.34	0.09	1.00
Existing Greenbank Road Existing Greenbank Road	BI	MH206A MH97A	MH97A MH96A			19.95				2.86	51.29	-	0.00	0.00		6.63 6.63	2.15 2.15	0.81	0.00	24.51	4.10	93.90	600	0.25	320.3	-	125.00 98.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH96A	MH95A			0.00				2.75	51.29		0.00	0.00		6.63	2.15	0.01	0.81	31.36	4 10	93.90	600	0.30			129.00	256.95	0.07	1.00
Existing Greenbank Road	B	MH95A	MH201A			0.00				2.75	51.29		0.00	0.00		6.63	2.15		0.81	31.36	4.10	93.90	600	0.30	350.8		123.00	256.95	0.07	1.00
Existing Greenbank Road	B	MH201A	MH201B			12.13	78	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.30	350.8		124.00	246.83	0.06	1.00
Existing Greenbank Road	IBI	MH201B	MH200A			0.00	-			2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.30			68.00	246.83	0.06	1.00
Existing Greenbank Road	IBI	MH200A	MH200C			0.00				2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.50	452.9		48.00	348.93	0.06	1.00
Existing Greenbank Road	IBI	MH200C	MH45			0.00	0	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.12	221.9		26.00	117.88	0.06	1.00
Existing Greenbank Road	Stantec (2014)	MH45	MH435A			5.12	54	8 2331	301.30	2.27	171.38		6.83	2.21		39.83	12.91	0.00	29.44	124.54	4.10	320.14	900	0.10	597.2		296.00	277.08	0.12	1.00
North	Stantec (2014)	101114-3	WITH 35A			3.12		2001	001.30	2.21	1/1.50		0.00	2.21		35.03	12.01	0.00	23.44	124.04	H. 10	520.14	300	0.10	331.2		230.00	211.00	0.12	1.00
		MA9	MA8			22.23	237	78 2378	22.23	3.02	23.28	0.00	0.00	0.00	2.45	2.45	0.79	9.54	9.54	11.29		35.37	450	0.11	98.4		507.50	63.03	0.07	1.00
		MA8	MA7			2.88				2.99	25.99	0.00	0.00	0.00	0.00	2.45	0.79	0.78	10.32	12.50		39.29	450	0.11	98.4		317.10	59.11	0.06	1.00
		MA7	MA6			18.50				2.82	42.61	0.00	0.00	0.00	0.00	2.45		0.00	10.32	18.61		62.01	450	0.11			573.10	36.39	0.04	1.00
Realigned Greenbank Road		MA6	MA5			21.68				2.69	60.80	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32	25.76		87.36	525	0.10	140.5		473.90	53.14	0.03	1.00
Realigned Greenbank Road		MA5 MA4	MA4			9.53				2.64	68.49 74.87	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32	28.90 32.37		98.19 108.03	525 525	0.10	140.5		439.40	42.31	0.03	1.00
Realigned Greenbank Road		MA4 MH521A	MH521A MH522A			3.80	86			2.61	74.87	0.00	0.00	0.00	0.00	2.45 2.45	0.79	2.42	12.74 12.76	32.37 33.63		108.03	525 600	0.10	140.5 201.5		530.70 49.90	32.47 90.52	0.02	1.00
		MH521A MH522A	MH522A MH435A			0.00				2.60	76.56	0.00	0.00	0.00	0.00	2.45	0.79	0.02	12.76	33.63		110.98	600	0.10			49.90	90.52	0.02	1.00
	¥.	IN IOLEN	MITTOON			3.00		5050	00.00	2.00	10.00	0.00	0.00	0.00	0.00	20	00	0.00		00.00		110.00	000	00	201.0			00.02	0.02	
		MH435A	MH501A			0.00	0	3240	387.99	2.16	226.39	0.00	6.83	2.21	0.00	42.28	13.70	0.00	42.20	158.17	4.10	409.57	900	0.10	597.0		13.30	187.43	0.10	1.00
																1	-								-					

SANITA Manning's n	RY SEWER CA		TION SH	IEET																						\bigcirc	ottav	N
vianning s n	LOCATION					RESIDENTIAL AREA AN				1		со	MM	INS	TIT	PAR	RK	C+I+I		INFILTRATIO	N		1			PIPE	000-1	
	STREET	FROM	TO	AREA	UNITS	UNITS UNITS	POP.	CUM	JLATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	1
		M.H.	M.H.			Singles Townhouse		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	
				(ha)				(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(n
Drummond F	-uture Road	Plua	305A	0.89			67	0.89	67	2.62	0.79		0.00		0.00		0.00	0.00	0.89	0.89	0.29	1.08	8.0	200	0.35	19.40	0.06	0.
To Expansion	n Road, Pipe 305A - 306A	Plug	305A	0.69			07	0.89	67	3.03	0.79		0.00		0.00		0.00	0.00	0.69	0.89	0.29	1.00	0.0	200	0.35	19.40	0.06	0
TO Expansion	TROAU, FIDE 303A - 300A							0.09	07				0.00		0.00		0.00			0.09								-
Future Resid	lential																											
	1	Ctrl 3A	109A	1.90			162	1.90	162	3.54	1.86		0.00		0.00		0.00	0.00	1.90	1.90	0.63	2.49	11.0	200	0.35	19.40	0.13	0
To Obsidian	Street, Pipe 109A - 400A							1.90	162				0.00		0.00		0.00			1.90								
Focality Cres	scent						-																			=		
		107A 108A	108A 110A	0.14	3	3	9 14	0.14	9 23		0.11		0.00		0.00		0.00	0.00	0.14	0.14	0.05	0.16	12.5 50.5	200 200	2.45 0.35	51.34 19.40	0.00	1.
To Haiku Stre	eet, Pipe 110A - 1100A	TUOA	TIUA	0.17	5	5	14	0.31	23	3.70	0.20		0.00		0.00		0.00	0.00	0.17	0.31	0.10	0.36	50.5	200	0.35	19.40	0.02	0.
			1	1		1 1		0.01	20				0.00		5.00		0.00			0.01			1	1	1	1		
1		107A	112A	0.45	18	18	49	0.45	49	3.65	0.58		0.00		0.00		0.00	0.00	0.45	0.45	0.15	0.73	73.5	200	0.70	27.44	0.03	0.
		112A	113A	0.43	16	16	44	0.88	93		1.09		0.00		0.00		0.00	0.00	0.43	0.88	0.29	1.38	70.5	200	0.35	19.40	0.07	0.
		113A	114A	0.12	3	3	9	1.00	102	3.59			0.00		0.00		0.00	0.00	0.12	1.00	0.33	1.52	12.5	200	0.35	19.40	0.08	0.
To Upiling Of		114A	115A	0.18	5	5	14	1.18	116	3.58	1.35		0.00		0.00		0.00	0.00	0.18	1.18	0.39	1.74	50.5	200	0.40	20.74	0.08	0.
TO HAIKU Stre	eet, Pipe 115A - 111A			-				1.18	116	+			0.00		0.00		0.00			1.18								_
Sturnidae St	reet			1				-		+													1		1			
		124A	125A	0.60	18	18	62	0.60	62	3.64	0.73		0.00		0.00		0.00	0.00	0.60	0.60	0.20	0.93	101.0	200	0.65	26.44	0.04	0
		125A	126A	0.50	12	12	41	1.10	103	3.59			0.00		0.00		0.00	0.00	0.50	1.10	0.36	1.56	91.0	200	0.35	19.40	0.08	0
Contribution	From Montology Way, Pip		4					0.81	63				0.00		0.00		0.00		0.81	1.91								
		126A	106A					1.91	166	3.54	1.91		0.00		0.00		0.00	0.00	0.00	1.91	0.63	2.54	63.0	200	0.35	19.40	0.13	0.
To Elevation	Road, Pipe 106A - 116A							1.91	166				0.00		0.00		0.00			1.91								_
Park							-																					
raik		Ctrl 4A	104A					0.00					0.00		0.00	172	1.72	0.19	1.72	1.72	0.57	0.75	10.5	200	0.35	19.40	0.04	0.
To Chillerton	Drive, Pipe 104A - 106A	our n't	10					0.00	0				0.00		0.00		1.72	0.10		1.72	0.01	0.10	10.0	200	0.00	10.10	0.01	0.
Canadensis	Lane																											
		229A 230A	230A 103A	0.42	15 18	15	41 49	0.42	41	3.67	0.49		0.00		0.00		0.00	0.00	0.42	0.42	0.14	0.63	73.5	200	2.00	46.38	0.01	1.
To Chillorton	Drive, Pipe 103A - 104A	230A	103A	0.48	18	18	49	0.90	90 90	3.60	1.05		0.00		0.00		0.00	0.00	0.48	0.90	0.30	1.35	90.0	200	3.00	56.81	0.02	1.
TO CHINERION	Drive, Fipe 103A - 104A							0.90	90				0.00		0.00		0.00			0.90								-
Surface Lan	e																											_
		227A	228A	0.47	18	18	49	0.47	49	3.65	0.58		0.00		0.00		0.00	0.00	0.47	0.47	0.16	0.74	72.5	200	2.00	46.38	0.02	1.
		228A	102A	0.48	18	18	49	0.95	98	3.60	1.14		0.00		0.00		0.00	0.00	0.48	0.95	0.31	1.46	90.0	200	0.85	30.24	0.05	0.
To Chillerton	Drive, Pipe 102A - 103A							0.95	98				0.00		0.00		0.00			0.95								
Chillerton Dr	iho			+			-	+		+										l				I			l	+
Chillerton Di	IAA	101A	102A	0.14	3	3	9	0.14	9	3 74	0.11		0.00		0.00		0.00	0.00	0.14	0.14	0.05	0.16	25.5	200	2.60	52.89	0.00	1.
Contribution	From Surface Lane, Pipe		102/1	0.17			Ŭ	0.95	98	0.74	0.11		0.00		0.00		0.00	0.00	0.95	1.09	0.00	0.10	20.0	200	2.00	02.00	0.00	
		102A	103A	0.22	7	7	19	1.31	126	3.57	1.46		0.00		0.00		0.00	0.00	0.22	1.31	0.43	1.89	59.0	200	1.70	42.76	0.04	1.
																								I				
Contribution	From Canadensis Lane, P							0.90	90				0.00		0.00		0.00		0.90	2.21								
		103A	104A	0.46	14	14	38	2.67	254	3.49	2.87		0.00		0.00		0.00	0.00	0.46	2.67	0.88	3.75	120.0	200	0.50	23.19	0.16	0.
Contribution	From Park, Pipe 4A - 104/							0.00	0				0.00		0.00		1.72		1.72	4.39								
		104A	106A	0.08	1	1	3	2.75	257	3.49	2.90		0.00		0.00		1.72	0.19	0.08	4.47	1.48	4.56	45.5	200	0.35	19.40	0.24	0.
To Elevation	Road, Pipe 106A - 116A							2.75	257				0.00		0.00		1.72			4.47								
Durl Flore		0000	1.4 (-)	0.4070 *	DESIGN	PARAMETERS									Designed:					PROJECT	Г:		0					
Park Flow = Average Daily	Flow -	9300 280	L/ha/da I/p/day	0.10764		I/s/Ha		Industrial	Peak Facto		MOEG	nh							SLM				Clava	Comm	unities - E	nazeau P	nase 1	
Comm/Inst Flo		2800	L/ha/da	0.3241		l/s/Ha		Extraneou		- as per	0.330				Checked:			5		LOCATIO	N.							
Industrial Flow		35000	L/ha/da	0.40509		l/s/Ha			Velocity =		0.600				2.100100.										City of	Ottawa		
Max Res. Peal		3.80						Manning's	,	(Conc)	0.013		0.013					A	ADF.									
Commercial/In	st./Park Peak Factor =	1.00						Townhous	se coeff=		2.7				Dwg. Refe	rence:				File Ref:				Date:			Shee	et No.
Institutional =		0.32	l/s/Ha						use coeff=		3.4							No. 80-83					18-1030		27 Jul 2020			

Sanitary design calculation for the proposed HMB phase 8 site by DSEL (2020)

SANITARY SEWER CA Manning's n=0.013	LCULA	TION SH	EET																							6	ttaw	а	
LOCATION					RESIDENT	IAL AREA AND	POPULATION	1				CO	мм	INS	STIT	PA	RK	C+I+I		INFILTRATIO	N					PIPE			
STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.	CUM	JLATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	EL.
	M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
Epoch Street										-																	-		
	220A	221A	0.42	10		10	27	0.42	27	3.69	0.32		0.00		0.00		0.00	0.00	0.42	0.42	0.14	0.46	77.5	200	0.95	31.97	0.01	1.02	0.35
	221A	222A	0.49	18		18	49	0.91	76	3.62	0.89		0.00		0.00		0.00	0.00	0.49	0.91	0.30	1.19	93.0	200	0.35	19.40	0.06	0.62	0.34
	222A	223A	0.52	20		20	54	1.43	130	3.57			0.00		0.00		0.00	0.00	0.52	1.43	0.47	1.98	100.5	200	0.35	19.40	0.10	0.62	0.40
To Elevation Road, Pipe 223A - 105A								1.43	130				0.00		0.00		0.00			1.43									
Eminence Street										-																	-		
	215A	216A	0.49	12	12		41	0.49	41	3.67	0.49		0.00		0.00		0.00	0.00	0.49	0.49	0.16	0.65	75.5	200	0.85	30.24	0.02	0.96	0.39
	216A	210/1 217A	0.72	17	17		58	1.21	99	3.60			0.00		0.00		0.00	0.00	0.72	1.21	0.40	1.55	113.5	200	0.35	19.40	0.02	0.62	0.37
	217A	219A	0.45	12	12		41	1.66	140	3.56			0.00		0.00		0.00	0.00	0.45	1.66	0.55	2.16	83.5	200	0.35	19.40	0.11	0.62	0.41
To Elevation Road, Pipe 219A - 223A								1.66	140				0.00		0.00		0.00			1.66									
Elevation Boad										_																			
Elevation Road	218A	219A	0.13	2	2		7	0.13	7	3.74	0.08		0.00	+	0.00		0.00	0.00	0.13	0.13	0.04	0.13	24.0	200	2.65	53.39	0.00	1.70	0.35
Contribution From Eminence Street. Pig			0.15	4	2		1	1.66	140	3.14	0.00		0.00	+	0.00		0.00	0.00	1.66	1.79	0.04	0.15	24.0	200	2.03	55.59	0.00	1.70	0.55
Contribution From Eminence Street, Ph	219A	223A	0.23	4	4		14	2.02	140	3.54	1.85	\vdash	0.00	+	0.00		0.00	0.00	0.23	2.02	0.67	2.52	59.0	200	0.85	30.24	0.08	0.96	0.58
Contribution From Epoch Street, Pipe 2		22011	0.20	-	-		17	1.43	130	0.04	1.00		0.00	1	0.00	ł	0.00	0.00	1.43	3.45	0.01	2.02	00.0	200	0.00	00.24	0.00	0.00	0.00
	223A	105A	0.42	6	6		21	3.87	312	3.46	3.50		0.00		0.00		0.00	0.00	0.42	3.87	1.28	4.77	82.5	200	0.70	27.44	0.17	0.87	0.65
	105A	106A	0.42	7	7		24	4.29	336	3.45	3.75		0.00		0.00		0.00	0.00	0.42	4.29	1.42	5.17	94.0	200	1.30	37.40	0.14	1.19	0.83
Contribution From Chillerton Drive, Pipe	104A - 106A							2.75	257				0.00		0.00		1.72		4.47	8.76						1	1		
Contribution From Sturnidae Street, Pip	e 126A - 106	A						1.91	166				0.00		0.00		0.00		1.91	10.67									
			0.35	11		11	30	9.30	789				0.00		0.00		1.72		0.35	11.02									
	106A	116A	0.35	8	8		28	9.65	817	3.28	8.69		0.00		0.00		1.72	0.19	0.35	11.37	3.75	12.63	118.0	200	0.35	19.40	0.65	0.62	0.66
To Haiku Street, Pipe 116A - 1160A								9.65	817				0.00		0.00		1.72			11.37									
			4.57				110	4.57	440	_			0.00	_	0.00		0.00		4.57	4.57									
	309A	310A	1.57 5.67				118 595	1.57 7.24	118 713	3.31	7.65		0.00		0.00		0.00	0.00	1.57 5.67	1.57 7.24	2.39	10.04	15.0	250	0.25	29.73	0.34	0.61	0.55
To Expansion Road, Pipe 310A - 1311A		310A	5.67				595	7.24	713	3.31	7.05		0.00		0.00		0.00	0.00	5.07	7.24	2.39	10.04	15.0	250	0.25	29.75	0.34	0.01	0.55
To Expansion Road, Fipe STOA - 1311	`							1.24	713				0.00		0.00		0.00			1.24								1	
Drummond Future Road																													
	301A	302A	1.27				95	1.27	95	3.60	1.11		0.00		0.00		0.00	0.00	1.27	1.27	0.42	1.53	94.5	200	0.35	19.40	0.08	0.62	0.36
To Expansion Road, Pipe 302A - 1180A								1.27	95				0.00		0.00		0.00			1.27									
Deserve and Externa David										-																			
Drummond Future Road			0.22				23	0.22	23				0.00		0.00	1.45	1.45		1.67	1.67									
	1303A	3031A	0.22				46	0.22	69	3.63	0.81		0.00		0.00	1.45	1.45	0.16	0.61	2.28	0.75	1.72	108.0	200	0.35	19.40	0.09	0.62	0.38
To Expansion Road, Pipe 3031A - 302A		303 IA	0.01				40	0.83	69	5.05	0.01		0.00		0.00		1.45	0.10	0.01	2.28	0.75	1.72	100.0	200	0.55	13.40	0.03	0.02	0.50
								0.00	00				0.00		0.00					2.20									
Expansion Road																													
			0.16				17	0.16	17				0.00		0.00		0.00		0.16	0.16									
	303A	3031A	0.19				14	0.35	31	3.68	0.37		0.00		0.00		0.00	0.00	0.19	0.35	0.12	0.49	65.0	200	0.65	26.44	0.02	0.84	0.32
Contribution From Drummond Future R				ļ				0.83	69				0.00	ļ	0.00	ļ	1.45		2.28	2.63						L			
	3031A	302A	0.22	l			17	1.40	117	3.58	1.36		0.00	 	0.00		1.45	0.16	0.22	2.85	0.94	2.45	59.0	200	0.35	19.40	0.13	0.62	0.42
Contribution From Expansion Road, Pip								1.27	95				0.00		0.00		0.00		1.27	4.12									
<u> </u>	302A 1180A	1180A 118A	0.20				15	2.87	227 227	3.50			0.00	+	0.00		1.45	0.16	0.20	4.32	1.43	4.16 4.16	49.5 11.0	200	0.35	19.40 19.40	0.21	0.62	0.49
To Haiku Street, Pipe 118A - 117A	TIOUA	τιδΑ						2.87	227	3.50	2.00		0.00	<u> </u>	0.00		1.45	0.16	0.00	4.32	1.43	4.10	11.0	200	0.35	19.40	0.21	0.02	0.49
				DESIGN	PARAME	TEDO									Designe	d:				PROJEC [*]	r.								
Park Flow =	9300	L/ha/da	0.10764	DESIGN	I/s/Ha	TENO									Designe	ч.				NOJEC			Ciava	n Commi	unities - E	Brazeau F	hase 1		
Average Daily Flow =	280	l/p/day						Industrial	Peak Facto	or = as pe	r MOE Gra	nph							SLM										
Comm/Inst Flow =	28000	L/ha/da	0.3241		l/s/Ha			Extraneou				L/s/ha			Checked	d:			200	LOCATIC	N:								
Industrial Flow =	35000	L/ha/da	0.40509		l/s/Ha			Minimum			0.600														City of	Ottawa			
Max Res. Peak Factor =	3.80							Manning's	,	(Conc)	0.013		0.013		1				ADF						, 51				
Commercial/Inst./Park Peak Factor =	1.00							Townhous		()	2.7	. ,			Dwg. Re	eference:				File Ref:				Date:			Shee	t No.	2
Institutional =	0.32	l/s/Ha						Single ho	use coeff=		3.4				Sanitary	Drainage F	lan. Dwas	s. No. 80-83	3	1			18-1030	1	27 Jul 202	0	1	of	6

SANITAF Manning's n=	RY SEWER CA		TION SH	EET																						6	ttaw	a	
	LOCATION					RESIDEN	FIAL AREA AND	D POPULATION	l				COMM	IN	ISTIT	PA	RK	C+I+I		NFILTRATIO	N					PIPE			
	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.	CUML	JLATIVE	PEAK	PEAK	AREA ACC		ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	ÆL.
		M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha) (ha		AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
				0.19				20	0.19	00			0.0		0.00		0.00		0.19										
		303A	305A	0.19				20	0.19	20 36	3.67	0.43	0.0		0.00		0.00	0.00	0.19	0.19	0.13	0.56	69.5	200	2.45	51.34	0.01	1.63	0.52
Contribution Fr	om Drummond Future F			0.21					0.89	67	0.07	0.10	0.0		0.00		0.00	0.00	0.89	1.29	0.10	0.00	00.0	200	2.10	01.01	0.01	1.00	0.02
				0.13				14	1.42	117			0.0		0.00		0.00		0.13	1.42									
		305A	306A	0.16				12	1.58	129	3.57	1.49	0.0		0.00		0.00	0.00	0.16	1.58	0.52	2.01	53.5	200	0.35	19.40	0.10	0.62	0.40
		306A 307A	307A 308A	0.13				10 31	1.71 2.12	139 170	3.56		0.0		0.00		0.00	0.00	0.13	1.71 2.12	0.56	2.17 2.65	10.5 78.0	200 200	0.35	19.40 19.40	0.11	0.62	0.41
		307A 308A	3033A	0.41		-		29	2.12	199	3.54		0.0		0.00		0.00	0.00	0.41	2.12	0.83	3.10	67.0	200	0.35	19.40	0.14	0.62	0.43
		3033A	310A	0.31				23	2.82	222	3.50		0.0	-	0.00		0.00	0.00	0.31	2.82	0.93	3.45	62.0	200	0.40	20.74	0.17	0.66	0.49
Contribution Fr	om Drummond Future F	Road, Pipe 30	9A - 310A						7.24	713.00			0.0	0	0.00		0.00		0.00	7.24									
				0.07				5	10.13	940		L	0.0		0.00		0.00		0.07	10.13			L			L	L		
		310A 1311A	1311A	1.22	 	+		128	11.35	1068	3.23		0.0		0.00	l	0.00	0.00	1.22	11.35	3.75	14.91	111.5	250 250	0.25	29.73	0.50	0.61	0.61
		1311A 1312A	1312A 1313A	4.04		+		424	11.35 15.39	1068 1492	3.23 3.14	11.16 15.21	0.0		0.00		0.00	0.00	0.00	11.35 15.39	3.75 5.08	14.91 20.29	111.0 108.5	250 250	0.25	29.73 29.73	0.50	0.61	0.61
		1312A 1313A	405A	7.04	1	1		724	15.39	1492	3.14	15.21	0.0		0.00	1	0.00	0.00	0.00	15.39	5.08	20.29	89.0	250	0.25	29.73	0.68	0.61	0.65
To Future Gree	enbank Road, Pipe 405/								15.39	1492	0.14		0.0	-	0.00		0.00	0.00	0.00	15.39	0.00	20.20	00.0	200	0.20	20.10	0.00	0.01	0.00
Drummond Co	mmoroial																												
Drummonu Co	ommerciai	1321A	3211A						0.00				7.40 7.4	0	0.00		0.00	2.40	7.40	7.40	2.44	4.84	11.0	200	0.50	23.19	0.21	0.74	0.58
To Haiku Stree	t, Pipe 3211A - 133A	102171	02117						0.00	0			7.4		0.00		0.00	2.40	7.40	7.40	2.44	4.04	11.0	200	0.00	20.10	0.21	0.74	0.00
Brazeau Com	mercial																												
To Upiling Otros	+ Dire 4004 00444	Ctrl 1A	132A			-			0.00	0			13.83 13.8 13.8		0.00		0.00	4.48	13.83	13.83 13.83	4.56	9.05	15.5	200	0.35	19.40	0.47	0.62	0.60
To Haiku Stree	t, Pipe 132A - 3211A								0.00	0			13.0	53	0.00		0.00			13.83									
Haiku Street											1																		
Contribution Fr	om Brazeau Commercia	al, Pipe 1A - 1	32A						0.00	0			13.8		0.00		0.00		13.83	13.83									
		132A	3211A	0.69				0	0.69	0			13.8		0.00		0.00	4.48	0.69	14.52	4.79	9.27	63.5	200	0.35	19.40	0.48	0.62	0.61
Contribution Fr	om Drummond Commer								0.00	0			7.4		0.00		0.00		7.40	21.92						10.10			
		3211A 133A	133A 134A	0.16				0	0.69	0			21.	-	0.00		0.00	6.88 6.88	0.00	21.92 22.08	7.23	14.11 14.17	9.5 61.5	200 200	0.35	19.40 19.40	0.73	0.62	0.67
		134A	134A	0.06				0	0.83	0			21.		0.00		0.00	6.88	0.16	22.08	7.31	14.17	39.5	200	0.35	19.40	0.73	0.62	0.67
To Haiku Stree	t, Pipe 135A - 118A	10.01	100/1	0.00				Ű	0.91	0			21.		0.00		0.00	0.00	0.00	22.14	1.01		00.0	200	0.00	10.10	0.10	0.02	0.01
Montology Wa	iy	40004	1074	0.04	2	2		44	0.04	44	0.70	0.40	0.0		0.00		0.00	0.00	0.04	0.04	0.00	0.04	07.5	200	0.05	00.44	0.04	0.04	0.04
-		1260A 127A	127A 128A	0.24 0.13	3	3		11	0.24	11 18	3.73	0.13	0.0		0.00		0.00	0.00	0.24	0.24 0.37	0.08	0.21 0.34	37.5 12.5	200 200	0.65	26.44 19.40	0.01	0.84	0.24
		128A	129A	0.48	12	12		41	0.85	59	3.64	0.70	0.0		0.00		0.00	0.00	0.48	0.85	0.28	0.98	76.5	200	0.35	19.40	0.05	0.62	0.32
		129A	130A	0.60	17	17		58	1.45	117	3.58	1.36	0.0		0.00		0.00	0.00	0.60	1.45	0.48	1.84	102.0	200	0.35	19.40	0.09	0.62	0.39
		130A	131A						1.45	117	3.58	1.36	0.0	-	0.00		0.00	0.00	0.00	1.45	0.48	1.84	7.5	200	0.35	19.40	0.09	0.62	0.39
To Montology \	Way, Pipe 131A - 135A								1.45	117			0.0	0	0.00		0.00			1.45									<u> </u>
Rugosa Street				<u> </u>					-		<u> </u>			_	1								<u> </u>			<u> </u>	<u> </u>	+	+
Jungeou ou ou	-	211A	204A	0.49	12	12		41	0.49	41	3.67	0.49	0.0	0	0.00		0.00	0.00	0.49	0.49	0.16	0.65	89.0	200	0.80	29.34	0.02	0.93	0.37
		204A	205A	0.74	19	19		65	1.23	106	3.59		0.0		0.00		0.00	0.00	0.74	1.23	0.41	1.64	120.0	200	0.35	19.40	0.08	0.62	0.37
		205A	206A						1.23	106	3.59	1.23	0.0		0.00		0.00	0.00	0.00	1.23	0.41	1.64	13.5	200	0.35	19.40	0.08	0.62	0.37
To Appalachia	n Circle, Pipe 206A - 20	7A		 	<u> </u>				1.23	106	<u> </u>		0.0	0	0.00		0.00		<u> </u>	1.23			<u> </u>	<u> </u>	ļ	 	 		<u> </u>
						+																	1			1			1
		•				PARAME	TERS	•							Designe	d:				PROJECT	Г:								
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha																	Ciava	n Commu	unities - E	Brazeau P	hase 1		
Average Daily F		280	l/p/day	0.0044		14-01				Peak Facto	r = as pe				Charle	J.			SLM	LOCATIO	NI.								
Comm/Inst Flow Industrial Flow =	-	28000	L/ha/da L/ha/da	0.3241		l/s/Ha l/s/Ha			Extraneou			0.330	L/s/ha		Checked	u:				LOCATIO	'IN:				City of	Ottown			
Industrial Flow = Max Res. Peak I	Factor =	35000 3.80	L/na/da	0.40509		i/s/Ha			Minimum Manning's	,	(Conc)	0.600		13					ADF						City of	Ottawa			
	./Park Peak Factor =	1.00							Townhous		(0010)	2.7			Dwg. Re	eference:				File Ref:				Date:			Shee	t No.	3
Institutional =		0.32	l/s/Ha						Single hou	use coeff=		3.4				Drainage P	lan. Dwas	No. 80-8	3	1			18-1030		27 Jul 202	0	1	0	f 6

SANITARY SEWER C Manning's n=0.013		TION SH	EET																					6	ttaw	a	
LOCATIO	DN				RESIDEN	FIAL AREA ANI	D POPULATION					COMM	INSTIT		PARK	C+I+I		INFILTRATI	ON					PIPE			
STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.	CUM	JLATIVE	PEAK	PEAK	AREA ACCL		CCU. AR			TOTAL		INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	1	/EL.
	M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha) (ha)		REA (ha) (ha	ARE a) (ha		AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
Appalachian Circle																											
••	209A	210A	0.08	1	1		4	0.08	4	3.76	0.05	0.00) (0.00	0.0	0 0.00	0.08	0.08	0.03	0.08	12.5	200	2.95	56.33	0.00	1.79	0.29
	210A	211A	0.20	4	4		14	0.28	18	3.71	0.22	0.00) (0.00	0.0	0 0.00	0.20	0.28	0.09	0.31	50.5	200	3.80	63.94	0.00	2.04	0.52
	211A	212A	0.19	4	4		14	0.47	32	3.68		0.00		0.00	0.0				0.16	0.54	50.0	200	0.45	22.00	0.02	0.70	0.29
	212A	213A	0.09	1	1		4	0.56	36	3.67	0.43	0.00		0.00	0.0				0.18	0.61	12.5	200	1.55	40.83	0.02	1.30	0.47
	213A	214A	0.53	14	14		48	1.09	84	3.61	0.98	0.00		0.00	0.0		0.53		0.36	1.34	86.5	200	2.35	50.28	0.03	1.60	0.68
To Foundation Lane, Pipe 214A - 1	19A	1						1.09	84			0.00) (0.00	0.0	0	-	1.09	-		-					-	-
	209A	201A	0.58	18	18		62	0.58	62	3.64	0.73	0.00) (0.00	0.0	0 0.00	0.58	0.58	0.19	0.92	93.5	200	0.65	26.44	0.03	0.84	0.39
	201A	202A	0.69	22	22		75	1.27	137	3.56	1.58	0.00		0.00	0.0				0.42	2.00	116.5	200	0.95	31.97	0.06	1.02	0.56
	202A	203A	0.18	3	3		11	1.45	148	3.55		0.00		0.00	0.0			_	0.48	2.18	13.5	200	0.80	29.34	0.07	0.93	0.54
	203A	206A	0.17	4	4		14	1.62	162	3.54	1.86	0.00		0.00	0.0				0.53	2.40	50.5	200	1.10	34.40	0.07	1.09	0.62
Contribution From Rugosa Street, P								1.23	106			0.00		0.00	0.0	-	1.23										
	206A	207A	0.20	5	5		17	3.05	285	3.47		0.00		0.00	0.0				1.01	4.21	50.5	200	0.35	19.40	0.22	0.62	0.49
	207A	208A	0.12	2	2		7	3.17	292	3.47		0.00		0.00	0.0				1.05	4.33	12.0	200	0.35	19.40	0.22	0.62	0.50
	208A	214A	0.65	18	18		62	3.82	354	3.44	3.94	0.00		0.00	0.0		0.65		1.26	5.20	112.5	200	1.90	45.21	0.12	1.44	0.95
To Unknown Road1 - 07, Pipe 214A	- 119A							3.82	354			0.00) (0.00	0.0	0		3.82									
Foundation Lane																											
Contribution From Appalachian Circ	e Pine 2084 - 2	21/4						3.82	354			0.00		0.00	0.0	0	3.82	3.82	-		-						
Contribution From Appalachian Circ								1.09	84			0.00		0.00	0.0		1.09										
	214A	119A	0.08				0	4.99	438	3.40	4.83	0.00		0.00	0.0	-			1.65	6.48	59.0	200	0.35	19.40	0.33	0.62	0.55
To Montology Way, Pipe 119A - 120							-	4.99	438			0.00		0.00	0.0			4.99									
Travertine Way																											
	119A	122A	0.52	13	13		45	0.52	45	3.66		0.00		0.00	0.0				0.17	0.71	86.5	200	0.65	26.44	0.03	0.84	0.36
	122A	123A	0.09	1	1		4	0.61	49	3.65		0.00		0.00	0.0				0.20	0.78	12.5		1.50	40.17	0.02	1.28	0.50
T 01 11 01 1 D' 1004 10	123A	126A	0.20	4	4		14	0.81	63	3.63	0.74	0.00		0.00	0.0		0.20		0.27	1.01	50.0	200	3.20	58.67	0.02	1.87	0.70
To Sturnidae Street, Pipe 126A - 10			-		-			0.81	63			0.00		0.00	0.0		4.00	0.81							-	_	_
Contribution From Foundation Lane	119A	9A 120A	0.60	17	17		58	4.99	438 496	3.38	5.43	0.00		0.00	0.0		4.99		1.84	7.28	103.5	200	0.35	19.40	0.38	0.62	0.57
	120A	120A 121A	0.80	2	2			5.73	503	3.38		0.00		0.00	0.0				1.89	7.40	103.5	200	0.35	19.40	0.38	0.62	0.57
	120A	131A	0.43	10	10		34	6.16	537	3.37		0.00		0.00	0.0				2.03	7.89	110.0		0.90	31.12	0.25	0.99	0.82
Contribution From Montology Way,			0.40	10	10		04	1.45	117	0.01	0.00	0.00		0.00	0.0		1.45		2.00	1.00	110.0	200	0.00	01.12	0.20	0.00	0.02
j,	131A	135A	0.19	4	4		14	7.80	668	3.32	7.20	0.00		0.00	0.0				2.57	9.77	58.5	200	0.35	19.40	0.50	0.62	0.62
To Haiku Street, Pipe 135A - 118A								7.80	668			0.00		0.00	0.0			7.80									
Haiku Street																											
Contribution From Montology Way,		A						7.80	668			0.00		0.00	0.0		7.80										
Contribution From Haiku Street, Pip								0.91	0			21.2		0.00	0.0		22.14										
	135A	118A						8.71	668	3.32	7.20	21.2	-	0.00	0.0				9.88	23.96	6.5	250	0.25	29.73	0.81	0.61	0.67
Contribution From Expansion Road,	Pipe 1180A - 11 118A	18A 117A						2.87	227 895	3.26	9.47	0.00		0.00	1.4		4.32		9.88	00.00	119.0	300	0.20	43.25	0.61	0.61	0.04
Contribution From Haiku Street - Lo								11.58 0.70	895 65	3.26	9.47	0.00	_	0.00	1.4		0.00	0.70	9.88	26.38	119.0	300	0.20	43.25	0.61	0.61	0.64
Contribution Florin Haiku Street - Lo	117A	116A - 117A	-		-			12.28	960	2.25	10.11	21.2		0.00	1.4		0.00		10.11	27.26	125.5	375	0.15	67.91	0.40	0.61	0.58
Contribution From Elevation Road, I					+			9.65	817	5.23	10.11	0.00	_	0.00	1.4		11.37		10.11	21.20	120.0	515	0.15	01.91	0.40	0.01	0.00
	116A	1160A						21.93	1777	3.10	17.85	21.2		0.00	3.1		-		13.86	38.94	17.0	375	0.15	67.91	0.57	0.61	0.63
To Haiku Street, Pipe 1160A - 1150		1100/1						21.93	1777	0.10		21.2		0.00	3.1		0.00	42.01	10.00	00.01		0.0	0.10	01.01	0.01	0.01	0.00
, , , , , , , , , , , , , , , , ,																											
				DESIGN	PARAME	TERS							De	signed:				PROJEC	CT:								
Park Flow =	9300	L/ha/da	0.10764		l/s/Ha																Ciava	n Comm	unities - I	Brazeau I	Phase 1		
Average Daily Flow =	280	l/p/day							Peak Facto	r = as pe							SLM										
Comm/Inst Flow =	28000	L/ha/da	0.3241		l/s/Ha			Extraneou			0.330		Ch	ecked:				LOCATI	ON:								
Industrial Flow =	35000	L/ha/da	0.40509		l/s/Ha			Minimum	,		0.600												City of	Ottawa			
Max Res. Peak Factor =	3.80							Manning's		(Conc)		(Pvc) 0.01		D (ADF	Elli D. (D. t.			<u>c</u> :		
Commercial/Inst./Park Peak Factor =	1.00							Townhous Single hou			2.7			vg. Referen		uno N- 00	00	File Ref:			10 1000	Date:	07 1-1 000		Shee	et No.	4
nstitutional =	0.32	l/s/Ha						Single ho	use coeff=		3.4		Sa	nitary Draina	age Plan, D	wgs. No. 80	-೮೨				18-1030	1	27 Jul 202	:0	1	0	of 6

SANITAF Manning's n=(RY SEWER CA	LCULA	TION SH	EET																							6	ttaw	a	
	LOCATION					RESIDENT	TIAL AREA AND	POPULATION					co	MM	INS	STIT	PAF	RK	C+I+I		INFILTRATIC	N					PIPE			
	STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	UNITS Singles	UNITS Townhouse	POP.	CUMU AREA (ha)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DIST (m)	DIA (mm)	SLOPE (%)	CAP. (FULL) (I/s)	RATIO Q act/Q cap		(ACT.) (m/s)
Haiku Street -	Local Sewer				-																									
To Haiku Stree	t, Pipe 1100A - 109A	109A	1100A	0.20	6		6	17	0.20	17 17	3.71	0.20		0.00		0.00		0.00	0.00	0.20	0.20	0.07	0.27	55.5	200	1.00	32.80	0.01	1.04	0.30
TO Haiku Stree	t, Fipe 1100A - 109A									17								0.00			0.20									
To Hoiku Stree	t, Pipe 1160A - 115A	1150A	1160A	0.24	6		6	17	0.24	17 17	3.71	0.20		0.00		0.00		0.00	0.00	0.24	0.24	0.08	0.28	41.5	200	0.65	26.44	0.01	0.84	0.27
To Halku Stree	t, Pipe 1160A - 115A								0.24	17				0.00		0.00		0.00			0.24									
		110A	111A	0.41	16		16	44	0.41	44	3.66	0.52		0.00		0.00		0.00	0.00	0.41	0.41	0.14	0.66	74.5	200	0.65	26.44	0.02	0.84	0.35
To Haiku Stree	t, Pipe 111A - 110A								0.41	44				0.00		0.00		0.00			0.41									
		111A	115A	0.49	19		19	52	0.49	52	3.65	0.61		0.00		0.00		0.00	0.00	0.49	0.49	0.16	0.78	87.5	200	0.65	26.44	0.03	0.84	0.37
To Haiku Stree	t, Pipe 115A - 111A								0.49	52				0.00		0.00		0.00			0.49									
		118A	117A	0.70	19	19		65	0.70	65	3.63	0.77		0.00		0.00		0.00	0.00	0.70	0.70	0.23	1.00	119.0	200	0.65	26.44	0.04	0.84	0.40
To Haiku Stree	t, Pipe 117A - 116A								0.70	65				0.00		0.00		0.00			0.70									
		117A	116A	0.67	15	15		51	0.67	E1	3.65	0.60		0.00		0.00		0.00	0.00	0.67	0.67	0.22	0.82	125.5	200	0.65	26.44	0.03	0.84	0.38
To Haiku Stree	t, Pipe 116A - 1160A	IIIA	TIOA	0.67	15	15		51	0.67	51 51	3.05	0.00		0.00		0.00		0.00	0.00	0.07	0.67	0.22	0.62	125.5	200	0.05	20.44	0.03	0.64	0.30
Haiku Street		10.1.100.1							00.00	4000				04.00		0.00		3.17		10.00	40.00									
	om Haiku Street, Pipe 1 om Haiku Street - Local		1150A - 1160A						22.60 0.24	1828 17.00				21.23 0.00		0.00		0.00		42.68	42.68 0.24									
		1160A	1150A						22.84	1845	3.09	18.48		21.23		0.00		3.17	7.22	0.00	42.92	14.16	39.86	41.5	375	0.15	67.91	0.59	0.61	0.64
0 1 1 1 5	E 14 0 1 E	1150A	115A						22.84	1845	3.09	18.48		21.23		0.00		3.17	7.22	0.00	42.92	14.16	39.86	4.5	375	0.15	67.91	0.59	0.61	0.64
	om Focality Crescent, P om Haiku Street - Local								1.18 0.67	116 51.00				0.00		0.00		0.00		1.18	44.10 0.67									
		115A	111A						24.69	2012	3.07	20.00		21.23		0.00		3.17	7.22	0.00	44.77	14.77	41.99	87.5	375	0.15	67.91	0.62	0.61	0.65
Contribution Fr	om Haiku Street - Local	Sewer, Pipe 111A	110A - 111A 110A						0.70 25.39	65.00 2077	0.00	20.59		0.00		0.00		0.00	7.22	0.00	0.70	15.01	42.81	74.5	375	0.15	67.91	0.63	0.61	0.65
Contribution Fr	om Focality Crescent, P								25.39	2077	3.06	20.59		0.00		0.00		0.00	1.22	0.00	45.47	15.01	42.81	74.5	3/5	0.15	67.91	0.63	0.61	0.65
		110A	1100A						25.70	2100	3.06	20.79		21.23		0.00		3.17	7.22	0.00	45.78	15.11	43.12	4.0	375	0.15	67.91	0.64	0.61	0.65
Contribution Fr	om Haiku Street - Local								0.20	17.00	2.05	00.05		0.00		0.00		0.00	7.00	0.00	0.20	45.47	40.04		075	0.45	07.04	0.04	0.01	0.05
To Obsidian St	reet, Pipe 109A - 400A	1100A	109A						25.90 25.90	2117 2117	3.05	20.95		21.23 21.23		0.00		3.17	7.22	0.00	45.98 45.98	15.17	43.34	55.5	375	0.15	67.91	0.64	0.61	0.65
Future Comme	ercial	0.4	2250A						0.00				2.99	2.99		0.00		0.00	0.97	2.99	2.99	0.99	1.96	11.0	200	0.35	19.40	0.10	0.62	0.39
To Obsidian St	reet, Pipe 2250A - 226A	2A	ZZOUA						0.00	0			2.99	2.99		0.00		0.00	0.97	2.99	2.99	0.99	1.96	11.0	200	0.35	19.40	0.10	0.62	0.39
Obsidian Stree	ət	224A	225A	0.33	9		9	25	0.33	25	3.69	0.30		0.00		0.00		0.00	0.00	0.33	0.33	0.11	0.41	75.0	200	0.65	26.44	0.02	0.84	0.30
		224A 225A	2250A	0.33	8		8	23	0.60	47	3.66	0.56		0.00		0.00		0.00	0.00	0.33	0.60	0.20	0.41	67.5	200	0.90	31.12	0.02	0.84	0.30
Contribution Fr	om Future Commercial,								0.00	0	_			2.99		0.00		0.00		2.99	3.59		-							
		2250A 226A	226A 109A	0.15	3		3	9 25	0.75	56 81	3.64 3.61	0.66		2.99		0.00		0.00	0.97	0.15	3.74 4.08	1.23 1.35	2.86 3.26	46.0 92.0	200 200	1.40	38.81 41.49	0.07	1.24	0.71
Contribution Fr	om Haiku Street, Pipe 1		103A	0.34	3	1	9	25	25.90	2117	3.01	0.95		2.99		0.00		3.17	0.97	45.98	50.06	1.55	3.20	92.0	200	1.00	41.49	0.00	1.52	0.70
Contribution Fr	om Future Residential, I								1.90	162				0.00		0.00		0.00		1.90	51.96									
To Drummord	Future Road , Pipe 400	109A	400A	0.09				0	28.98 28.98	2360 2360	3.02	23.12		24.22 24.22		0.00		3.17 3.17	8.19	0.09	52.05 52.05	17.18	48.49	63.0	375	0.15	67.91	0.71	0.61	0.67
	i uture rivau , ripe 400.		I	·	DESIGN	PARAME	TERS		20.90	2300	L	L	<u> </u>	24.22	L	Designed:		J.17	I	I	PROJEC	Г:	I		1		1	1		I
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha]								Ciava	n Commu	inities - E	Brazeau F	hase 1		
Average Daily Fl		280	l/p/day	0.2244		1/=/11:				Peak Factor	= as per					Chasks 1				SLM	LOCATIC	NI.								
Comm/Inst Flow Industrial Flow =		28000 35000	L/ha/da L/ha/da	0.3241 0.40509		l/s/Ha l/s/Ha			Extraneou Minimum '			0.330 0.600				Checked:					LOCATIC	vin:				City of	Ottawa			
Max Res. Peak F	actor =	3.80	Erriaraa	5.10000					Manning's	n =	(Conc)	0.013		0.013						ADF			<u>_</u>							
Commercial/Inst Institutional =	/Park Peak Factor =	1.00	1/6/140						Townhous Single box			2.7				Dwg. Refe		lan Durr-	No. 90.0		File Ref:			19 1000	Date:	27 101 202	•	Shee	ί No.	5
risulutional =		0.32	l/s/Ha						Single hou	ISE COETT=		3.4				Sanitary Dr	rainage Pl	ian, Dwgs	s. No. 80-83	5	1			18-1030	1	27 Jul 202	U	1	of	f 6

SANITARY SEWER CALCULATION SHEET	
----------------------------------	--

SANITAI Manning's n=		LCULA	TION SH	IEET																							6	ttaw	a	
	LOCATION		r		1		TIAL AREA AND							мм	INS		PA		C+I+I		NFILTRATIO				1		PIPE	1		
	STREET	FROM M.H.	TO M.H.	AREA	UNITS	UNITS Singles	UNITS Townhouse	POP.	CUML AREA	JLATIVE POP.	PEAK FACT.	PEAK FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	PEAK FLOW	TOTAL AREA	ACCU. AREA	INFILT. FLOW	TOTAL FLOW	DIST	DIA	SLOPE	CAP. (FULL)	RATIO Q act/Q cap		EL. (ACT.)
				(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
Drummond Fu	uture Road																													
	rom Obsidian Street, Pip	e 109A - 400	A				1		28.98	2360				24.22		0.00		3.17		52.05	52.05									
		400A	401A	0.24				25	29.22	2385		23.34		24.22		0.00		3.17		0.24	52.29	17.26	48.79	72.5	375	0.15	67.91	0.72	0.61	0.67
		401A	402A	0.14				15	29.36	2400	3.02	23.48		24.22		0.00		3.17	8.19	0.14	52.43	17.30	48.97	62.0	375	0.15	67.91	0.72	0.61	0.67
To future Gree	enbank Road, Pipe 402A	- 403A							29.36	2400				24.22		0.00		3.17			52.43									
Future Green	bank Road																													
	rom Drummond Future R	load, Pipe 40	1A - 402A				1		29.36	2400				24.22		0.00		3.17		52.43	52.43									
		402A	403A	0.38				0	29.74	2400	3.02	23.48		24.22		0.00		3.17	8.19	0.38	52.81	17.43	49.09	80.0	375	0.15	67.91	0.72	0.61	0.67
		403A	404A	0.33				0	30.07	2400		23.48		24.22		0.00		3.17		0.33	53.14	17.54	49.20	80.0	375	0.15	67.91	0.72	0.61	0.67
a		404A	405A	0.33	 			0	30.40	2400	3.02	23.48		24.22		0.00		3.17	8.19	0.33	53.47	17.65	49.31	81.0	375	0.15	67.91	0.73	0.61	0.67
Contribution Fr	rom Expansion Road, Pi			0.25	+			0	15.39	1492 3892	2.00	26.20		0.00		0.00		0.00	9.10	0.00	15.39	22.04	67.06	50 F	275	0.25	97.67	0.77	0.70	0.97
		405A 406A	406A 407A	0.25	+	+		0	46.04 46.39	3892	2.88	36.26 36.26		24.22	6.06	0.00		3.17 3.17	8.19 10.15	0.25 6.41	69.11 75.52	22.81 24.92	67.26 71.34	59.5 83.5	375 375	0.25	87.67 96.03	0.77	0.79	0.87
		400A 407A	407A 408A	0.35				0	46.85	3892	2.88			24.22	0.00	6.06		3.17		0.41	75.98	24.92	71.49	110.0	375	0.30	96.03	0.74	0.87	0.95
		407A	400A 409A	0.40	1	1		0	47.25	3892		36.26	1	24.22		6.06	1	3.17		0.40	76.38	25.21	71.62	96.5	375	0.30	96.03	0.75	0.87	0.95
		409A	410A	0.51				0	47.76	3892	2.88	36.26		24.22		6.06		3.17		0.51	76.89	25.37	71.79	120.0	375	0.30	96.03	0.75	0.87	0.95
		410A	570A	0.30				0	48.06	3892	2.88	36.26		24.22		6.06		3.17	10.15	0.30	77.19	25.47	71.89	63.0	375	0.30	96.03	0.75	0.87	0.95
		570A	57A						48.06	3892	2.88	36.26		24.22		6.06		3.17	10.15	0.00	77.19	25.47	71.89	15.0	375	0.50	123.98	0.58	1.12	1.16
			-																											
						-																		-			-			
																											1			
						-						-																		
						-																								
						-																								
				+	+	+	<u> </u>										 	<u> </u>	l								 		+	<u> </u>
			1	1	+	1					<u> </u>						1							1			+	-	1	ł
																		1						1			1			
				o 1087 ·	DESIGN	N PARAME	TERS									Designe	ed:				PROJECT	Г:		0.1-1						
Park Flow =		9300	L/ha/da	0.10764		l/s/Ha																		Ciavai	Commu	inities - E	Brazeau P	nase 1		
Average Daily F Comm/Inst Flow		280 28000	l/p/day L/ha/da	0.3241		l/s/Ha			Industrial I Extraneou	Peak Factor	= as per		ıph L/s/ha			Checke	d.			SLM	LOCATIO	NI-								
Industrial Flow		28000 35000	L/na/da L/ha/da	0.3241		l/s/Ha						0.330				UIECK6	u.				LUCATIO	1N.				City of	Ottawa			
Max Res. Peak		35000	L/na/da	0.40509		i/s/Ha			Minimum ' Manning's		(Conc)	0.600		0.013						ADF						City of	Gliawd			
	t./Park Peak Factor =	1.00							Townhous		(0010)	2.7	(0.010		Dwg. Re	eference:				File Ref:				Date:			Shee	t No.	6
Institutional =		0.32	l/s/Ha						Single hou			3.4						lan, Dwgs	s. No. 80-83	3	1			18-1030		27 Jul 202	0		of	6

3718 GREENBANK ROAD: SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix E External Reports

E.2 STORMWATER MANAGEMENT REPORT FOR THE RIDGE (BRAZEAU LANDS) BY JFSA (JULY 2020)

Stormwater Management Report for The Ridge (Brazeau) Subdivision

City of Ottawa July 2020

Prepared for:

Prepared by:

David Schaeffer Engineering Ltd.

J.F. Sabourin and Associates Inc. www.jfsa.com

JFSA Ref. No.: 1800-19

S

Stormwater Management Report for The Ridge (Brazeau) Subdivision

in the City of Ottawa

July 2020

Prepared for :

David Schaeffer Engineering Ltd.

Prepared by :

witte

Jonathon Burnett, B.Eng., P.Eng.

JFSA Ref. No.: 1800-19

Stormwater Management Report for The Ridge (Brazeau) Subdivision in the City of Ottawa

TABLE OF CONTENTS

1	INTRODUCTION AND OBJECTIVES	1
	DESIGN CRITERIA AND GUIDELINES	
	2.1 Minor System2.2 Major System	4
	ASSUMPTIONS AND SOURCE OF DATA USED IN THIS STUDY	
4	PROPOSED MINOR AND MAJOR SYSTEM DRAINAGE	7
	4.1 Major System and SWM Analysis4.2 Minor System and Hydraulic Grade line Analysis	9 14
5	EROSION AND SEDIMENT CONTROL DURING AND AFTER CONSTRUCTION	23
6	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	25

APPENDICES

Appendix A:	Rational Method Design Sheets (as per DSEL)
Appendix B:	Inlet Control Devices
Appendix C:	Manhole Loss Coefficient Nomograph and Table; Pipe Data and Hydraulic Simulation Results
Appendix D:	Tables and Calculation Sheets
Back Pocket:	CD with PCWMM and SWMHYMO Modelling Files

LIST OF TABLES

Table 1:	Summary of Major System Results for the 100-Year 3-Hour Chicago Storm	Page 11
Table 2:	Comparison of Minor System Flows to the Pond	Page 12
Table 3:	Composite Hydraulic Grade Line Results for 100-Year Design Storms	Page 14

LIST OF FIGURES

Figure 1:	General Site Location	Page 3
Figure 2:	Proposed Minor System	
Figure 3:	Proposed Major System	
Figure 4:	Extent of Surface Storage	
Figure 5:	Silt Control Measures during Construction (Silt fences)	Page 23
Figure 6:	Silt Control Measures during Construction (Catchbasin protection)	Page 23

Stormwater Management Report for The Ridge (Brazeau) Subdivision in the City of Ottawa July 2020

1 INTRODUCTION AND OBJECTIVES

J.F. Sabourin and Associates Inc. (JFSA) were retained by David Schaeffer Engineering Ltd. (DSEL) to prepare a Stormwater Management (SWM) Plan for the Ridge (Brazeau) Subdivision, located within the City of Ottawa. As shown by the image provided on the cover page, the future development is located east of Borrisokane and Highway 416, and south of Cambrian Road. The proposed development will be serviced by a dry SWM pond that will be implemented in the northwest corner of the development and will discharge to the Jock River via an existing ditch on the west side of Borrisokane Road. The proposed development will also be serviced by two oil-and-grit separators that discharge to the SWM pond, that have been sized to ensure 80% Total Suspended Solids (TSS) removal, for more details regarding the OGS units with the development please refer to JFSA's July 2020, Pond Design Brief for the Ridge (Brazeau) Subdivision. As documented in the Barrhaven South Urban Expansion Area Master Servicing Study, by J. L Richards 2018, the development will also have Etobicoke Exfiltration Systems (EES) implemented within this subdivision. These EES will be installed within local roadways of the subdivision, to exfiltrate runoff from the development for the more frequent events. To ensure that the SWM analysis is conservative, these EES's have not been included in this detailed analysis. Please refer to JFSA's "The Ridge (Brazeau) LID Design Report" July 2020 for full details regarding the operations and benefits of the proposed Etobicoke Exfiltration Systems within the site.

The Ridge (Brazeau) development has a total drainage area of 37.03 ha, including a 3.94 ha pond block, a 1.72 ha park block, 2.68 ha of commercial blocks and 28.69 ha of residential development. The proposed development will be treated by the dry pond, along with 21.21 ha of external future commercial development and 13.5 ha of external residential development, for a total drainage area of 71.75 ha. Figure 1 provides an overview of the location of these respective blocks within the subdivision.

The purpose of this report is to evaluate the major and minor system flows of the proposed development with respect to new proposed stormwater management guidelines and to check the adequacy of the proposed pipe sizes to convey the 2-year (5-year on collector and 10-year on arterial roads) and the 100-year storm flows from within the development and from external areas. Background documents that were reviewed in preparing this report include the following:

- *Stormwater Management Planning and Design Manual*, Ministry of the Environment, March 2003.

- Jock River Flood Risk Mapping (within the City of Ottawa) Hydraulics Report, PSR Group Ltd. and J.F. Sabourin and Associates Inc., November 2004.
- *Erosion and Sediment Control Guidelines for Urban Construction*, Conservation Halton et al., December 2006.
- Draft City of Ottawa Stormwater Management Facility Design Guidelines, IBI Group, April 2012.
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012.
- Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, February 2014.
- City of Ottawa Technical Bulletin PIEDTB-2016-01, City of Ottawa, September 2016.
- City of Ottawa Technical Bulletin ISTB-2018-04, City of Ottawa, June 2018.
- Functional Servicing Report for Caivan Communities, Brazeau Lands, 3809 Borrisokane Road, David Schaeffer Engineering Limited, September 2019.
- Design Brief for the Stormwater Management Pond for the Ridge (Brazeau) Subdivision, David Schaeffer Engineering Limited and J.F. Sabourin and Associates Inc., April 2020.

As per the new approach formalized in the September 2016 *City of Ottawa Technical Bulletin PIEDTB-2016-01*, the proposed subdivision has been designed with a 2-year minor system level of service on local roads and 5-year level of service on collector roads (Elevation Road). Where possible with grading and minor system capture limitations, road ponding areas up to 35 cm deep were used to contain the 100-year major system flows.

The SWMHYMO and PCSWMM computer programs were used to model the major and minor systems, to ensure that all the new stormwater management requirements are satisfied. The general SWM design criteria and guidelines that are to be met are described in Section 2.

Figure 1: General Site Location

J.F. Sabourin and Associates Inc. Water Resources and Environmental Consultants Stormwater Management Report The Ridge (Brazeau) Subdivision

2 DESIGN CRITERIA AND GUIDELINES

The design criteria and guidelines used for the stormwater management of the subject subdivision are those that were developed in the background documents, as well as those provided in the October 2012 *City of Ottawa Sewer Design Guidelines* and subsequent technical memorandums, and generally accepted stormwater management design guidelines.

The detailed design of the proposed development determined that the 37.03 ha subdivision has an average imperviousness of 54%. The total 71.75 ha drainage area to the dry pond has an average imperviousness of 64%.

A detailed analysis of the proposed dual drainage system was required to confirm that the following general design criteria and guidelines for the minor and major systems would be met.

2.1 Minor System

- a) Storm sewers are to be designed to provide a minimum 2-year level of service, plus 5-year inflows on collector roads (Elevation Road) and 10-year inflows on arterial roads.
- b) The 100-year hydraulic grade line (HGL) within the development minor systems must be maintained at least 0.3 m below the underside of footing elevation where gravity house connections are installed.
- c) For less frequent storms (i.e. larger than 1:2 year or 1:5 year on collector / 1:10 year on arterial roads), the minor system shall, if required, will be limited with the use of inlet control devices to prevent excessive hydraulic surcharges and to maximize the use of surface storage on the road where desired.
- d) Catchbasins on the road are to be equipped with City standard type S19 (fish) grates or City standard type S22 side inlets, and grates for catchbasins in rear yards, park and open spaces with pedestrian traffic are to be City standard type S19, S30 and S31.
- e) Single catchbasins are to be equipped with 200 mm minimum lead pipes, and double catchbasins are to be equipped with 250 mm minimum lead pipes.
- f) Rearyard catchbasins are to be equipped with 250 mm minimum lead pipes. Catchbasins installed on the street, where rearyard catchbasins connect to the main storm sewer through the catchbasin, are to be equipped with 250 mm minimum lead pipes for both single and double catchbasins.
- g) Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 3.0 m/s. Where velocities over 3.0 m/s are proposed,

provisions shall be made to protect against displacement of sewers by sudden jarring or movement. Velocities greater than 6 m/s are not permitted.

2.2 Major System

- a) The major system shall be designed with enough road surface storage to allow the excess runoff of a 100-year storm to be retained within road ponding areas where desired.
- b) Inlet control devices should be sized such that they do not create surface ponding on the road during the 2-year design storm on local roads (5-year design storm on collector and 10-year design storm on arterial roads); it should be noted that surface ponding over grates is present during rainfall under any design, as an appropriate depth of water is required for runoff to enter the grate (refer to Tables D-6 of Appendix D).
- c) Roof leaders shall be installed to direct the runoff to splash pads and on to grassed areas.
- d) For the 100-year storm, the maximum total depth of water (static + dynamic) on all roads shall not exceed 35 cm at the gutter.
- e) During the 100-year + 20% stress test, the maximum extent of surface water on streets, rearyards, public space and parking areas shall not touch the building envelope.
- f) When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas.
- g) The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.
- h) The excess major system flows up to the 100-year return period are to be retained on-site in development blocks such as parks, schools, commercial, etc.
- i) There must be at least 15 cm of vertical clearance between the spill elevation on the street and the ground elevation at the nearest building envelope that is in the proximity of the flow route or ponding area.
- j) There must be at least 30 cm of vertical clearance between the rearyard spill elevation and the ground elevation at the adjacent building envelope.

3 ASSUMPTIONS AND SOURCE OF DATA USED IN THIS STUDY

Sources of information and assumptions made in this study are listed below:

Sources of information and assumption	tions made in this study are listed below:
- Stormwater management model:	SWMHYMO (version 5.50), and PCSWMM (version 7.2)
- Minor system design:	1:2 year, plus 1:5-year inflows on collector roads and
	1:10 year on arterial roads. See the Rational Method
	Calculations in Appendix A.
- Major system design:	1:100 year
- Max. 100-yr water depth on roads	•
- Extent of the major system:	Shall not touch the building envelope during the 100-year
	+ 20% stress test
- PCSWMM model parameters:	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr,
L	D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm (as per
	2012 City of Ottawa Sewer Design Guidelines)
	Detailed Area Imperviousness: based on development
	layout. Lumped Area Imperviousness: based on runoff
	coefficient (C) where $C = 0.7 x$ imperviousness ratio + 0.2.
- Design storms:	2-, 5-, 10- and 100-year 3-hour Chicago and 100-year 24-
C	hour SCS Type II storms as per 2012 City of Ottawa
	Sewer Design Guidelines; peak averaged over 10 minutes.
- Historical Events:	July 1 st , 1979; August 4 th , 1988; and August 8 th , 1996
	events as per 2012 City of Ottawa Sewer Design
	Guidelines.
- Stress Test:	20% increase in the 100-year 3-hour Chicago storm.
- Street catchbasin covers:	City Standard Type S19 (fish) or City Standard Type S22
	(side inlet). Type S19 approach flow-capture curves as per
	MTO design charts (equivalent to OPSD 400.010). Type
	S22 approach flow-capture curves as per the 2004 City of
	Ottawa Guidelines.
- Rearyard catchbasin covers:	City Standard Type S19, S30 and S31
- Curb and gutter:	City Standard SC1.3 (mountable) and SC1.1 (barrier). In
	the absence of flow capture curves for these curbs and
	gutters, OPSD 600.010 curb and gutters are assumed.
- Manning's' roughness coeff.:	0.013 for concrete and PVC pipes (free flow).
- Minor system losses:	Refer to Appendix C for maintenance hole loss
	coefficients.
- Underside of footing elevations:	As provided by DSEL.
- Freeboard in HGL analysis:	0.3 m between the underside of footing elevation and 100-
	year hydraulic gradeline.
- Inlet Control Devices:	Refer to Appendix B for Plas-Tech ICD details.
- Depth of backyard swales:	As per DSEL's Grading Plan
- Street and pipe dimensions:	As per DSEL's Plan and Profiles
- Right-of-way characteristics:	As per DSEL's Details of Roads
- Downstream HGL:	92.5 <i>m</i> based on the top of bank elevation of the ditch that
	the SWM pond will outlet to.

Stormwater Management Report The Ridge (Brazeau) Subdivision

4 PROPOSED MINOR AND MAJOR SYSTEM DRAINAGE

The proposed minor and major system drainage routes are shown in plan view in Figures 2 and 3. The residential areas where enough detail was available were modelled in PCSWMM. External or large undetailed future development areas within the subdivision were modelled in SWMHYMO based on the preliminary design information available. The hydrographs generated by SWMHYMO were then read into the PCSWMM model as external hydrographs.

Per the new proposed standards, the minor system has been designed to accommodate a minimum of the 2-year post-development flows from within the site and from external areas, plus 5-year inflows on collector roads (Elevation Road) and 10-year inflows on arterial roads. A Rational Method design was conducted by DSEL (refer to Appendix A) to estimate minor system flows based on the City of Ottawa IDF relationship and selected runoff coefficients.

The minor system release rates from the parklands were set to the 5-year flow based on the rational method, with onsite storage provided up to the 100-year event. The east most commercial lands were limited to the 2-year rational method, with onsite storage provided up to the 100-year event. The ABIC commercial lands were limited to the 2-year pre-development flow per the rational method, and the Brazeau Commercial site limited to maximum flow $1.8m^3/s$ (as per the most recent analysis for the Commercial Brazeau lands), with both sites assumed to have onsite storage provided to the 100-year event. Refer to DSEL's June 2020 Site Plan Report for more details regarding the ABIC site. The collector roads (Elevation Road) were limited to the 5-year rational method as per the City guidelines. The residential lands were limited to 2-year Chicago 3-hour flow + 14% (as calculated by SWMHYMO) to account for additional capture during the 100-year storm as a result of increased head over the catchbasins and lead pipes or inlet control devices, with onsite storage provided to the 100-year event.

For these residential lands under the stress test scenario (100-year Chicago 3-hour +20%) it was assumed that the minor system was set at 107% of 100-year capture, and 100-year + 20% stress test storage set to 145% of 100-year storage. This approach for the residential lands is based on the Abbottsville Crossing was a pilot project. Which looked at the 2-year capture on local road and containment of excess 100-year flows in road ponding areas. Minor system capture during the 100-year + 20% stress test at the detailed design stage for a subdivision or site plan can be evaluated based on the actual design information, e.g. catch basin grate and ICD head-capture relationships, surface storage volumes, simulated water depth, etc. However, there is no set standard or easy rule of thumb for excess capture through catch basin grates, lead pipes and Inlet Control Devices (ICDs) during the 100-year + 20% stress test for undetailed future development areas, where these details don't exist yet. As such, the detailed modelling for the Abbottsville Crossing pilot project has been used as a reference to create a rule of thumb for undetailed areas. As shown in Table D-8 of Appendix D of the September 2018 SWM Report for the Abbottsville Crossing subdivision, minor system capture in the detailed subdivision modelling during the 100-year + 20% storm was 107% greater than the 100-year capture. Similarly, 100-year + 20% surface storage volumes used were 155% greater than those used during the 100-year storm. This was reduced to 145% to be conservative for preliminary

modelling of undetailed areas. Refer to Table D-3C in Appendix D for the simulated release rates for the various undetailed lands for the full suite of return periods based on the SWMHYMO modelling.

As noted earlier in this report, where possible with grading limitations, road ponding areas up to 35 cm deep were used to contain the 100-year major system flows in the development. Note that rearyard catchbasins were connected to catchbasins on the road where possible, to allow rearyard runoff access to the storage in road ponding areas at regular intervals. In a design of this type where lots are serviced by gravity house connections, inlet control devices (ICDs) can be used to limit minor system capture at each catchbasin to the appropriate level of service.

Within the development, circular orifice plate type Inlet Control Devices (ICDs) of City standard diameters 83 mm, 94 mm, 102 mm, 108 mm, 127 mm, 152 mm and 178 mm will be used to limit minor system capture to a minimum of the 2-year flow (refer to Appendix B for Plas-Tech ICD details), allowing for sub-surface storage of 0.5 m³ in single catchbasins, 1.0 m³ in double catch basins, and 1.9 m³ in catchbasin manholes. Note that this subsurface catchbasin storage has not been included in the modelling to be conservative.

The street segments within the proposed development have been designed using a 'saw tooth' or 'sagged' road profile. The runoff from within these segments will be conveyed to catchbasins located at the lowest point within the street segment. Flows more than the catchbasin capture rate will be temporarily stored within the 'sagged' street segments and released slowly to the storm sewers, up to the 100-year design storm. When the storage on a specific street segment is surpassed due to blockage or an event greater than the 100-year storm, the excess water will flow towards the next downstream street sag, and eventually to the pond. It should be noted that the major system would outlet during the 100-year + 20% stress test without flooding any of the properties within the subdivision.

If the drainage system's capacity to capture surface flows is exceeded, Figure 4 presents the maximum extent of static surface ponding and volume on the streets based on grading. Additionally, surface storage volumes that may exist in the rear yards have not been considered in this model, and runoff from these areas have been directed straight to the catchbasin that the rear yard swale will discharge to. This has been completed to ensure that the peak flows and ponding volumes calculated in the model are conservative.

The SWMHYMO and PCSWMM analyses, discussed in Sections 4.1 and 4.2, have demonstrated that the proposed drainage system for the subdivision will have sufficient capacity to control the excess flow during a 100-year storm and safely capture and convey the 2-year (plus 5-year on collector roads and 10-year on arterial roads) flow to the pond.

4.1 Major System and SWM Analysis

The PCSWMM and SWMHYMO computer programs were used to model the major and minor system flows within the proposed development and from external areas. As noted above, as the PCSWMM program is most appropriate for use in modelling small urban drainage areas, most undetailed future development areas were instead modelled using SWMHYMO.

The PCSWMM and SWMHYMO models were developed based on the information provided in Figures 2 and 3. Nine (9) simulations were conducted, one for each of the following rainfall events:

- i) The 25 mm, 3-hour Chicago storm;
- ii) the 2-year, 3-hour Chicago storm;
- iii) the 5-year, 3-hour Chicago storm;
- iv) the 100-year, 3-hour Chicago storm;
- v) the 100-year, 24-hour SCS Type II storm
- vi) the July 1st, 1979 historical event;
- vii) the August 4th, 1988 historical event;
- viii) the August 8th, 1996 historical event; and
- ix) the 100-year, 3-hour Chicago storm + 20%.

Note that the purpose of simulating the 100-year, 3-hour Chicago storm with a 20% increase is to stress test the drainage system for potential flooding, as per the October 2012 *City of Ottawa Sewer Design Guidelines*.

The depression storage and infiltration parameters in both the PCSWMM and SWMHYMO models are as per the October 2012 *City of Ottawa Sewer Design Guidelines*. The percent imperviousness of the detailed drainage areas was measured based on the proposed development layout. The proposed development layouts have been established based on zoning requirements and represent the largest allowable footprint on each lot. DSEL have measured the impervious area in each catchment discreetly, and as such, the percent impervious values can be considered to be based on zoning. The percent imperviousness of undetailed (lumped/external) drainage areas were calculated based on the runoff coefficient (C), where C = 0.7 x imperviousness ratio + 0.2. Figure 1 provides an overview of the subcatchments, and Table D-3A and D-3B provide a full summary of all subcatchment parameters modelled in PCSWMM and SWMHYMO respectively.

The approach flow/capture curves applied in the PCSWMM model were based on the values outlined in the City of Ottawa Sewer Design Guidelines (Appendix 7-A.13). These approach flow/capture curves were converted to a depth/capture curve using PCSWMM's diversion node and kinematic wave equations. A depth/capture curve was derived for each of the cross-section profiles and the various slopes. Where required inflows are limited by circular orifice plate type Inlet Control Devices (ICDs) of City standard diameters 83 mm, 94 mm, 102 mm, 108 mm, 127 mm, 152 mm and 178 mm. Note that 200 mm diameter lead pipes were assumed and are

required between single catchbasins and the storm sewers, and 250 mm diameter lead pipes were assumed and are required between rearyard catchbasins or single catchbasin manholes and the storm sewers. Double catchbasins and double catchbasin maintenance holes are to be equipped with 250 mm diameter lead pipes. No temporary CBs are required within the development. Refer to Table D-4A in Appendix D for the depth/capture curves applied in the model for catch basins on a constant slope, and Table D-4B for catchbasins at localized depressions with ICD's.

Within the proposed subdivision, the dynamic flow depth on the road (at the gutter) will be minimal during the 100-year Chicago storm, as the 100-year flows are mostly retained within the road ponding areas and do not accumulate as in a typical subdivision design. Furthermore, it was determined that for the 100-year storm at all major system segments, the product of the depth of water (m) at the gutter multiplied by the velocity of flow (m/s) will not exceed the maximum allowable $0.6 \text{ m}^2/\text{s}$ (refer to Table D-8 of Appendix D, where the calculated maximum was determined to be $0.56 \text{ m}^2/\text{s}$). Table D-9 of Appendix D presents the stress test results for dynamic flow depth on the road based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*. As shown in Table D-9, the maximum dynamic flow depth under these conditions is calculated as 0.48 cm, and the product of the depth of water at the gutter multiplied by the velocity of flow is $0.59 \text{ m}^2/\text{s}$. Refer below for an assessment of the ponding depth on the road.

Details of the 100-year street maximum water depth and surf elevations are provided in Table D-7 of Appendix D. Based on DSEL's grading the major system has approximately 896 m³ of storage at these localized low points throughout the development. Depths calculated by the PCSWMM model demonstrates that a total 100-year depth of water (static and dynamic) on the street at these ponding areas will not exceed the maximum depth of 35 cm.

Table D-7 of Appendix D also presents the street storage stress test results based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*. As shown in Table D-7, the maximum depth of water (static + dynamic overflow) at any ponding area under these conditions is calculated as 48 cm. The maximum extent of surface water during the 100-year + 20% stress test will not touch the building envelopes, refer to DSEL drawings number 95-97 for the flood extent of these ponding depths.

An overland flow route is to be provided on Expansion Road in the subdivision to safely convey flows to the pond (Junction C144). This overflow has been set that the crest of the spill elevation and has been represented in the model as a 5m wide open rectangular cross-section. The curb cut and overland flow route are to be constructed as required to convey the 100-year major system flow without exceeding 35 cm during the 100-year storm, and without touching the building envelopes during the 100-year + 20% stress test. Based on the PCSWMM model the overland flow route will have a maximum normal flow depth of 5 cm during the 100-year 3-hour Chicago storm and 6 cm during the 100-year + 20% stress test. Table 1 presents a summary of the major system results simulated in PCSWMM during the 100-year Chicago storm.

Table 1: Summary of Major System Results for the 100-							
Catch	Flow	Approach	Captured				
Basin ID	Depth	Flow	Flow				
Basin ID	(cm)	(m³/s)	(m³/s)				
CB 001	20	0.032	0.021				
CB 002	20	0.032	0.019				
CB_003	28	0.222	0.099				
CB_004	28	0.222	0.045				
CB_005	21	0.132	0.044				
CB_006	21	0.132	0.071				
CB_000	10	0.182	0.038				
CB_008	9	0.133	0.034				
CB_009	9	0.133	0.034				
CB_000	7	0.070	0.020				
CB_010 CB_011	7	0.070	0.020				
CB_011 CB_012	15	0.043	0.020				
CB_012 CB_013	15	0.043	0.018				
CB_014	5	0.048	0.014				
CB_015	5	0.048	0.014				
CB_016	5	0.064	0.016				
CB_017	9	0.747	0.195				
CB_018	10	0.414	0.036				
CB_019	10	0.453	0.034				
CB_020	9	0.406	0.033				
CB_021	27	0.120	0.033				
CB_022	27	0.120	0.033				
CB_023	13	0.085	0.021				
CB_024	29	0.177	0.073				
CB_025	29	0.177	0.046				
CB_026	23	0.077	0.019				
CB_027	23	0.077	0.024				
CB_028	23	0.076	0.032				
CB_029	23	0.076	0.019				
CB_030	28	0.204	0.051				
CB_031	28	0.204	0.073				
CB_032	20	0.101	0.070				
CB_033	20	0.101	0.019				
CB_034	5	0.054	0.011				
CB_035	4	0.056	0.012				
CB_036	8	0.113	0.026				
CB_037	8	0.113	0.026				
CB_038	9	0.249	0.035				
CB_039	25	0.190	0.098				
CB_040	25	0.190	0.064				
CB_041	7	0.112	0.023				
CB 042	7	0.112	0.023				
CB 043	9	0.192	0.030				
CB 044	9	0.192	0.030				
CB_045	27	0.197	0.089				
CB 046	27	0.197	0.065				
CB 047	29	0.307	0.090				
CB 048	29	0.307	0.090				
CB_049	27	0.168	0.045				
CB 050	27	0.168	0.072				
CB_000	29	0.192	0.072				
CB_001 CB_052	29	0.192	0.046				
CB_052 CB_053	10	0.496	0.033				
CB_053 CB_054	9	0.490	0.029				
CB_034 CB_055	9 12	0.412	0.029				
CD_000	12	0.420	0.042				

Table 1: Summary of Major System Results for the 100-Yea

Table 1: Summary of Major System Results for the 100-							
Catch	Flow	Approach	Captured				
Basin ID	Depth	Flow	Flow				
Basin ID	(cm)	(m³/s)	(m³/s)				
CB_056	9	0.130	0.030				
CB 057	9	0.130	0.030				
CB_058	10	0.273	0.039				
CB_059	8	0.210	0.029				
CB_060	8	0.210	0.029				
CB_061	6	0.112	0.022				
CB_062	6	0.112	0.022				
CB_065	3	0.032	0.006				
CB_066	6	0.047	0.016				
CB_000	6	0.047	0.016				
CB_068	6	0.074	0.017				
CB_000	6	0.074	0.017				
CB_009 CB_070	6	0.074	0.018				
CB_071	6	0.067	0.018				
CB_072	6	0.133	0.020				
CB_073	35	0.278	0.074				
CB_074	35	0.278	0.067				
CB_075	13	0.273	0.043				
CB_076	13	0.273	0.043				
CB_077	8	0.300	0.029				
CB_078	28	0.204	0.036				
CB_079	28	0.204	0.029				
CB_080	35	0.225	0.101				
CB_081	35	0.225	0.091				
CB_082	29	0.165	0.066				
CB_083	29	0.165	0.100				
CB_084	34	0.172	0.034				
CB_085	34	0.172	0.046				
CB_086	21	0.141	0.071				
CB_087	21	0.141	0.044				
CB_088	31	0.109	0.020				
CB_089	31	0.109	0.046				
CB_090	4	0.058	0.011				
CB_091	6	0.101	0.018				
CB_092	6	0.101	0.018				
CB_093	8	0.234	0.025				
CB_095	9	0.135	0.036				
CB_096	9	0.135	0.036				
CB_097	6	0.059	0.018				
CB_098	6	0.059	0.018				
CB_099	27	0.146	0.045				
CB_100	27	0.146	0.050				
CB_101	3	0.016	0.004				
CB_102	31	0.178	0.073				
CB_103	31	0.178	0.020				
CB 104	9	0.060	0.029				
CB_105	9	0.060	0.029				
CB 106	30	0.199	0.066				
CB_107	30	0.199	0.100				
CB_108	8	0.164	0.028				
CB 109	6	0.152	0.023				
CB_100	29	0.182	0.046				
CB_112	9	0.062	0.028				
CB 113	9	0.062	0.028				
CB_113 CB_114	26	0.181	0.028				
	20	0.101	0.012				

Table 1: Summary of Major System Results for the 100-Yea

	Flow	Approach	Captured
Catch	Depth	Flow	Flow
Basin ID	(cm)	(m ³ /s)	(m ³ /s)
CB_115	26	0.181	0.072
CB_116	12	0.071	0.043
CB_118	19	0.059	0.027
CB_119	19	0.059	0.024
CB_120	19	0.112	0.070
CB_121	19	0.112	0.044
CB_123	12	0.071	0.048
CB_124	16	0.050	0.035
CB_125	16	0.050	0.018
CB_126	19	0.069	0.021
CB_127	19	0.069	0.032
CB_128	10	0.180	0.038
CB_129	6	0.045	0.015
CB_130	6	0.045	0.015
CB_131	11	0.402	0.037
CB_201	0	0.012	0.012
CB_203	11	0.103	0.020
CB_204	0	0.014	0.014
CB_205	14	0.146	0.048
CB_206	16	0.090	0.021
CB_207	16	0.086	0.021
CB_208	0	0.018	0.018
DCB_063	28	0.170	0.033
DCB_064	28	0.170	0.051
DCB_110	29	0.182	0.073
DCB_117	5	0.160	0.082
DCB_122	5	0.160	0.042
DICB_1	22	0.052	0.019
DICB_2	22	0.052	0.019
DICB_3	25	0.097	0.025
DICB_4	25	0.097	0.025

Table 1: Summary of Major System Results for the 100-Yea

4.2 Minor System and Hydraulic Grade line Analysis

The minor system analysis was completed using the PCSWMM program based on the peak flows captured during the rainfall events. Note that the storm sewer design is as provided by DSEL, and a Manning's roughness coefficient of 0.013 was used for concrete and PVC storm sewer pipes. Refer to Appendix C for maintenance hole loss coefficients used in the PCSWMM model.

The minor system performance was analyzed under restrictive downstream conditions. Restrictive downstream conditions for the pond are based on the approximate top of bank elevation of 92.5 m at the existing Borrisokane Road ditch that the storm sewer will outlet too. Table 2 presents the peak minor system outflows obtained with the above-mentioned simulations.

	Table 2. Col	inparison of winter sys	tem r lows to the r o	iiu
	DSEL Rational	2-Year PCSWMM/	5-Year PCSWMM/	100-Year PCSWMM/
Location	Method Flow	SWMHYMO Flow	SWMHYMO Flow	SWMHYMO Flow
	(m ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)
MH 501 to Pond	1.028	2.924	3.966	5.175
MH 401 to Pond	4.787	2.836	4.252	5.737
Total ⁽¹⁾	5.815	5.76	8.218	10.912

⁽¹⁾The total flow is taken as the direct summation of peak inflows and does not consider the difference in the timing of peaks

Table 2 shows that the total 2-year flows simulated by the PCSWMM/SWMHYMO models are similar to the values calculated by DSEL's Rational Method calculations. Although there is a difference in the individual flows calculated at MH 401 and MH 501 between the Rational method and PCSWMM results. This can be explained by the fact that these two branches will be connected upstream at MH 313 and MH 307 to make full use of the OGS units and minor system infrastructure; this connection has been represented in the PCSWMM modelling but not in the Rational Method calculations.

The PCSWMM/SWMHYMO simulations have determined that for the selected 2-, 5- and 100year storms, the total minor system flows would be 5.76 m³/s, 8.218 m³/s and 10.912 m³/s, respectively. Note that the values above are simply a summation of peak flows from MH 501 and MH 401 and do not consider the timing of peaks. Although the 100-year flow will surcharge most parts of the minor system, a freeboard of 0.3 m between the 100-year hydraulic grade line and the underside of footings has been provided throughout the proposed development.

The proposed development will provide 80% TSS removal through the use of 2 OGS units, that will treat runoff from high pollutant areas. The total area directed to the OGS units is equal to 60.42 ha, note this does not include the Pond Block or ABIC lands which would not contribute to the OGS. The two OGS units (manufacturer: CDS model: PMSU5668_10) will be implemented within this development downstream of MH 313 and MH 307. Each unit will have a total holding capacity of 25,960 L, a sump capacity of 8,896 L and an oil capacity of 4,435 L. Note that the two units are identical as the flow to each unit will be close to equal for a given event due to the upstream flow connection, and have been sized based on this consideration. Full details of the OGS unit sizing and specifications can be found in JFSA's July 2020 Pond Design Brief for the Ridge (Brazeau) subdivision. Refer to DSEL drawing sheet number 79 for detailed drawings of the proposed OGS units.

A portion of the Ridge development will also be treated for water quality via EES units that will capture and infiltrate runoff from local street roads. For full details regarding the EES units within the development refer to JFSA July 2020 LID Memo for the Ridge (Brazeau) Development. Catchbasins that capture runoff to these EES units will be fitted with Goss traps. It has been assumed that the surrounding future lands will have independent water quality measures on-site, whether that be by way of OGS or EES units or SWM ponds.

Tables C-1A and C-1E of Appendix C summarizes the pipe data and hydraulic simulation results for the 100-year 3-hour Chicago storm, 100-year 24-hour SCS Type II storm and the three historical events. Note that a minimum freeboard of 0.3 m between the hydraulic grade line and the underside of footings has been provided throughout the proposed developments for the 100-year storms, and a minimum freeboard of 0 m has been provided throughout the proposed development for the historical events. Additionally, note that the majority of the flowing full pipe velocities are no less than 0.80 m/s and no greater than 3.0 m/s for all proposed pipes with the exception of 4 locations. Where velocities over 3.0 m/s are proposed, provisions shall be made to protect against displacement of sewers by sudden jarring or movement. Velocities greater than 6 m/s are not permitted.

Table C-1F of Appendix C presents the climate change stress test results for the hydraulic grade line analysis based on a 20% increase in the 100-year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*. Under these conditions, no locations within the proposed developments have a USF freeboard less than 0 m.

Table 3 presents the composite hydraulic grade line results for the 100-year 3-hour Chicago and 100-year 24-hour SCS Type II design storms. Note to simplify this analysis, the highest HGL and the lowest USF on a single pipe length are compared, if it is found that the freeboard between these two locations is either less than 0.3m or less than 0.0m this location is flagged yellow or red respectively. This flag then initiates a detailed analysis for this segment, where the HGL is interpolated along the full length of the pipe and then compared with the individual USF along with the distance, to confirm whether there is an HGL issue along that segment.

Table 3: Composi									
U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated H	
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
MH_401	POND	96.930	96.730	#N/A	#N/A	#N/A			
MH_501	POND	96.920	96.730	#N/A	#N/A	#N/A			
MH_1002	MH_1003	95.200	94.592	#N/A	#N/A	#N/A			
MH_1003	MH_1004	94.592	93.316	#N/A	#N/A	#N/A			
MH_1004	MH_1005	93.316	92.923	#N/A	#N/A	#N/A			
MH_1005	MH_1006	92.923	92.831	#N/A	#N/A	#N/A			
MH_1006	MH_1007	92.831	92.740	#N/A	#N/A	#N/A			
MH_1007	MH_1008	92.740	92.580	#N/A	#N/A	#N/A			
MH_1008	MH_1009	92.580	92.500	#N/A	#N/A	#N/A			
MH_101	MH_102	100.935	100.197	174-2	101.41	0.475			
MH_102	MH_103	100.197	99.575	172-5	100.47	0.273	50.0	0.0	00.040
				172-5	100.47	0.822	59.0	6.9	99.648
				173-1	100.78	1.014	59.0	18.1	99.766
				173-2	100.78	0.930	59.0	26.1	99.850 00.026
				173-3 173-4	101.1 101.1	1.174 1.090	59.0 59.0	33.3 41.3	99.926 100.010
				173-4	101.1	1.090	59.0 59.0	41.3	100.010
				173-5	101.41	1.241	59.0 59.0	46.9 56.3	100.091
MH_103	MH_104	99.575	99.245	169-2	99.81	0.235	33.0	50.5	100.103
		00.070	00.2-10	169-2	99.81	0.558	120.0	2.7	99.252
				169-3	99.81	0.538	120.0	10	99.273
				169-4	99.81	0.516	120.0	18	99.295
				170-1	99.93	0.606	120.0	28.6	99.324
				170-2	99.93	0.584	120.0	36.6	99.346
				170-3	99.93	0.563	120.0	44.2	99.367
				171-1	99.99	0.594	120.0	54.9	99.396
				171-2	99.99	0.572	120.0	62.9	99.418
				171-3	99.99	0.552	120.0	70.1	99.438
				171-4	99.99	0.530	120.0	78.1	99.460
				172-1	100.47	0.961	120.0	96.1	99.509
				172-2	100.47	0.939	120.0	104.1	99.531
				172-3	100.47	0.919	120.0	111.3	99.551
				172-4	100.47	0.903	120.0	117	99.567
MH_104	MH_106	99.245	99.115	169-1	99.81	0.565			
MH_105	MH_106	100.002	99.115	148	100.03	0.028			
				148	100.03	0.792	91.0	12.6	99.238
				147	100.16	0.803	91.0	24.8	99.357
				146	100.3	0.844	91.0	35	99.456
				145	100.42	0.855	91.0	46.2	99.565
				144	100.56	0.856	91.0	60.4	99.704
				143	100.93	1.092	91.0	74.2	99.838
		00.115	00.000	142	101.5	1.518	91.0	88.9	99.982
MH_106	MH_116	99.115	98.880	166-1	99.53	0.415			
MH_107	MH_108	99.460	99.478	176-1	100.1	0.640			
MH_107	MH_112	99.460	99.411	185-1	99.89	0.430			
MH_108	MH_110	99.478	99.456	175-1	100.15	0.672			
MH_109	MH_110	99.691	99.456	164-2	100.01	0.319	<u> </u>	4.0	00.404
				164-2	100.01	0.549	60.0	1.2	99.461
				164-3	100.25	0.768	60.0	6.7	99.482
				164-4	100.25	0.736	60.0	14.7	99.514 00.555
				165-1	100.42	0.865	60.0	25.3	99.555
				165-2 165-2	100.93	1.345	60.0	32.9	99.585 00.616
MH_110	MH_111	99.456	99.235	165-3 162-1	100.93 99.69	1.314 0.234	60.0	40.9	99.616
		33.400	JJ.200	188-4	99.89 99.86	0.234	75.0	2	99.241
				162-1	99.60 99.69	0.019	75.0 75.0	6.3	99.241 99.254
				102 1	00.00	0.400	, 0.0	0.0	00.201

U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated H	
MH	MH	U/S HGL	D/S HGL	Number		(2)	Length HGL	Dist. From D/S MH	HGL
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				188-3	99.86	0.598	75.0	9.2	99.262
				162-2	99.69	0.413	75.0	14.3	99.277
				188-2	99.86	0.574	75.0	17.2	99.286
				162-3	99.69	0.391	75.0	21.6	99.299
				188-1	99.86	0.552	75.0	24.8	99.308
				162-4	99.69	0.362	75.0	31.6	99.328
				187-4 163-1	99.86 99.77	0.520 0.417	75.0 75.0	35.5 40.2	99.340 99.353
				187-3	99.86	0.417	75.0 75.0	40.2	99.353 99.363
				163-2	99.77	0.394	75.0	47.8	99.376
				187-2	99.86	0.476	75.0	50.7	99.384
				163-3	99.77	0.371	75.0	55.8	99.399
				187-1	99.86	0.452	75.0	58.7	99.408
				164-1	100.01	0.579	75.0	66.5	99.431
MH_111	MH_115	99.235	99.046	159-1	99.58	0.345			
MH_112	MH_113	99.411	99.214	183-1	99.74	0.329			
MH_113	MH_114	99.214	99.146	181-1	99.85	0.636			
MH_1	MH_133	98.777	98.629	Est. Fut	99.86	1.083			
MH_114	MH_115	99.146	99.046	182-1	99.58	0.434			
MH_115 MH_116	MH_116 MH_117	99.046 98.880	98.880 98.727	157-1 30	99.46 99.32	0.414 0.440			
MH_117	MH_118	98.880 98.727	98.727 98.545	30 20	99.32 99.11	0.440			
		55.121	00.040	18	99.18	0.628	121.0	4.4	98.552
				2	99.16	0.603	121.0	7.7	98.557
				406	99.18	0.611	121.0	16.1	98.569
				404	99.18	0.604	121.0	20.3	98.576
				407	99.16	0.576	121.0	25.7	98.584
				405	99.18	0.589	121.0	30.5	98.591
				19	99.16	0.558	121.0	37.9	98.602
				3	99.14	0.534	121.0	40.7	98.606
				20	99.11	0.493	121.0	48.1	98.617
				4 21	99.14 99.12	0.518 0.486	121.0 121.0	51.2 59.3	98.622 98.634
				21 5	99.12 99.22	0.486 0.582	121.0	59.3 62.1	98.634 98.638
				22	99.22 99.21	0.552	121.0	71.5	98.653
				6	99.23	0.575	121.0	73.3	98.655
				23	99.22	0.550	121.0	82.9	98.670
				7	99.24	0.563	121.0	87.8	98.677
				24	99.28	0.589	121.0	97.3	98.691
				8	99.31	0.610	121.0	102.8	98.700
				25	99.36	0.645	121.0	113.1	98.715
MLL 440		00 5 45	00.404	9 #NI/A	99.4 #N/A	0.677	121.0	118.2	98.723
MH_118	MH_136	98.545	98.434	#N/A	#N/A	#N/A			
MH_119 MH_119	MH_120 MH_122	100.114 100.114	99.688 99.693	101 #N/A	100.65 #N/A	0.536 #N/A			
MH_1120	MH_122 MH_121	99.688	99.893 99.310	#N/A 116	#N/A 101.03	#IN/A 1.342			
MH_121	MH_132	99.310	99.510 98.588	106	99.54	0.230			
		00.010	00.000	106	99.54	0.906	114.0	7.2	98.634
				107	99.71	0.999	114.0	19.4	98.711
				108	99.88	1.098	114.0	30.6	98.782
				109	100.05	1.204	114.0	40.8	98.846
				110	100.15	1.224	114.0	53.4	98.926
				111	100.32	1.322	114.0	64.8	98.998
				112	100.48	1.404	114.0	77	99.076
				113	100.57	1.423	114.0	88.2	99.147
				114	100.57	1.359	114.0	98.4	99.211

HGL (m) HGL (m) HGL (m) HGL (m) HGL (m) HGL (m) HGL (m) Job 55 (m) Job 55 (m) D/S MH (m) (m)		ite Hydraulic Gra								
MH Dio Dio Dio Dio Dio Dis Hit Dis Hit Hit Dis Hit						USF				
Image: Metric Constraint of the second sec	MH	MH			Number		(2)			HGL
MH_122 MH_123 99.663 99.517 131 100.65 1.373 114.0 108.8 99.2 MH_123 MH_127 99.517 99.112 135 99.89 0.373 MH_124 MH_125 99.469 99.331 72 99.77 0.301 99.301 MH_124 MH_125 99.469 99.331 72 99.77 0.301 84 99.3 MH_124 MH_125 99.469 99.331 72 99.77 0.301 84 99.3 MH_125 99.469 99.331 72 99.78 0.424 101.0 84 99.3 MB 99.89 0.532 101.0 18.6 99.3 80 99.73 101.0 19.6 99.3 71 99.78 0.424 101.0 18.6 99.3 72 99.77 0.384 101.0 31.99.99 99.3 72 99.77 0.384 101.0 64.5 101.0 64.4 99.4						(100)	(172)			(100)
MH_122 MH_123 99.663 99.517 131 100.61 0.947 MH_123 MH_127 99.517 99.112 135 99.89 0.373 MH_124 MH_125 99.469 99.331 72 99.77 0.301 KH_124 MH_125 99.469 99.331 72 99.78 0.424 101.0 18.6 99.32 KH_125 MH_126 MH_126 MH_126 MH_126 99.77 0.384 101.0 31 99.32 KH_123 MH_128 MH_128 MH_128 MH_128 99.77 0.384 101.0 31 99.3 KH_128 MH_128 MH_128 MH_128 MH_128 MH_128 99.44 101.0			(m)	(m)	115			. ,		
MH_123 MH_124 MH_127 MH_125 99.517 99.469 99.112 99.331 135 72 99.89 99.77 0.301 0.301 82 99.89 0.552 101.0 5.4 99.3 99.89 0.552 101.0 18.6 99.3 99.89 70 99.78 0.424 101.0 18.6 99.3 99.78 0.424 101.0 18.6 99.3 99.79 81 99.89 0.532 101.0 18.6 99.3 71 99.78 0.408 101.0 29.7 99.3 99.3 71 99.78 0.404 101.0 18.6 99.3 71 99.78 0.404 101.0 29.7 99.3 99.3 72 99.77 0.384 101.0 29.7 99.3 73 99.82 0.419 101.0 51.1 99.4 72 99.77 0.384 101.0 64.5 101.0 64.4 99.4 74 99.82 0.419 101.0 61.3 99.4 413 99.93 0.499 101.0 63.4 <td< td=""><td>122</td><td>MH 123</td><td>00.663</td><td>00.517</td><td></td><td></td><td></td><td>114.0</td><td>106.6</td><td>99.211</td></td<>	122	MH 123	00.663	00.517				114.0	106.6	99.211
MH_124 MH_125 99.469 99.331 72 99.77 0.301 MH_125 99.469 99.331 72 99.77 0.301 5.4 99.3 69 99.84 0.498 101.0 5.4 99.3 70 99.78 0.424 101.0 18.6 99.3 81 99.89 0.532 101.0 18.6 99.3 80 99.92 0.547 101.0 31 99.3 71 99.77 0.384 101.0 31 99.3 72 99.77 0.384 101.0 31 99.3 72 99.77 0.384 101.0 31 99.3 73 99.82 0.419 101.0 51.1 99.4 78 100.04 0.6635 101.0 64.6 99.4 74 99.88 0.465 101.0 64.6 99.4 413 99.93 0.499 101.0 75.2 99.4 <td></td>										
82 99.89 0.552 101.0 5.4 99.3 69 99.84 0.498 101.0 8.4 99.3 70 99.78 0.424 101.0 18.6 99.3 81 99.89 0.532 101.0 18.6 99.3 71 99.78 0.408 101.0 29.7 99.3 72 99.77 0.384 101.0 31 99.3 73 99.82 0.419 101.0 51.1 99.4 73 99.82 0.419 101.0 51.1 99.4 74 99.88 0.465 101.0 61.3 99.4 74 99.88 0.465 101.0 61.3 99.4 415 100.04 0.6351 101.0 64.4 99.4 415 100.08 0.646 101.0 73.4 99.4 412 99.98 0.537 101.0 86.4 99.4 75 99.98 0.										
69 99.84 0.498 101.0 8.4 99.3 70 99.78 0.424 101.0 18.6 99.3 81 99.89 0.532 101.0 18.6 99.3 71 99.78 0.408 101.0 29.7 99.3 80 99.92 0.547 101.0 31 99.3 72 99.77 0.384 101.0 39.9 99.3 73 99.82 0.419 101.0 51.1 99.4 73 99.82 0.419 101.0 51.1 99.4 74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 415 100.08 0.646 101.0 86.4 99.4 412 99.98 0.537 101.0 86.4 99.4 412 99.98 0.53	·_ · z ·	1111_120	00.400	00.001				101.0	5.4	99.338
70 99.78 0.424 101.0 18.6 99.3 81 99.89 0.532 101.0 19.6 99.3 71 99.78 0.408 101.0 29.7 99.3 80 99.92 0.547 101.0 31 99.3 72 99.77 0.384 101.0 39.9 99.3 73 99.82 0.419 101.0 51.1 99.4 73 99.82 0.419 101.0 51.1 99.4 77 100.04 0.635 101.0 64.6 99.4 77 100 0.581 101.0 64.6 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 75.2 99.4 412 99.98 0.537 101.0 86.4 99.4 415 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 86.4 99.4 76 100.16 0.695										99.342
81 99.89 0.532 101.0 19.6 99.3 71 99.78 0.408 101.0 29.7 99.3 80 99.92 0.547 101.0 31 99.3 72 99.77 0.384 101.0 39.9 99.3 73 99.82 0.419 101.0 51.1 99.4 73 99.82 0.419 101.0 54.4 99.4 74 99.88 0.465 101.0 61.3 99.4 74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 75.2 99.4 415 100.08 0.666 101.0 75.2 99.4 412 99.98 0.521 101.0 86.4 99.4 414 100.1 0.651 101.0 86.4 99.4 415 100.16 0.695 101.0 84.9 99.4 415 100.16 0.6951										99.356
80 99.92 0.547 101.0 31 99.3 72 99.77 0.384 101.0 39.9 99.3 79 100.04 0.645 101.0 46.9 99.3 73 99.82 0.419 101.0 51.1 99.4 78 100.04 0.635 101.0 54.4 99.4 74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 4115 100.08 0.646 101.0 73.4 99.4 412 99.98 0.537 101.0 82.3 99.4 412 99.98 0.521 101.0 86.4 99.4 75 99.98 0.521 101.0 86.4 99.4 76 100.16 0.695 101.0 98.1 99.4 63 99.59 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>99.358</td></td<>										99.358
72 99.77 0.384 101.0 39.9 99.3 79 100.04 0.645 101.0 46.9 99.3 73 99.82 0.419 101.0 51.1 99.4 78 100.04 0.635 101.0 54.4 99.4 74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 4115 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 95 99.98 0.521 101.0 98.4 99.4 75 99.98 0.521 101.0 98.4 99.4 95 99.58 0.249 <td></td> <td></td> <td></td> <td></td> <td>71</td> <td>99.78</td> <td>0.408</td> <td>101.0</td> <td>29.7</td> <td>99.372</td>					71	99.78	0.408	101.0	29.7	99.372
79 100.04 0.645 101.0 46.9 99.3 73 99.82 0.419 101.0 51.1 99.4 78 100.04 0.635 101.0 54.4 99.4 74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 415 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.521 101.0 94.99.4 76 100.16 0.695 101.0 98.1 99.4 76 100.16 0.695 101.0 94.9 99.4 76 100.16 0.6670 9					80	99.92	0.547	101.0	31	99.373
73 99.82 0.419 101.0 51.1 99.44 78 100.04 0.635 101.0 54.4 99.44 74 99.88 0.465 101.0 61.3 99.44 77 100 0.581 101.0 64.6 99.44 413 99.93 0.499 101.0 73.4 99.44 415 100.08 0.646 101.0 75.2 99.44 412 99.98 0.537 101.0 82.3 99.44 412 99.98 0.521 101.0 86.4 99.44 414 100.1 0.651 101.0 86.4 99.44 412 99.98 0.521 101.0 86.4 99.44 414 100.1 0.651 101.0 86.4 99.44 75 99.98 0.521 101.0 98.1 99.44 76 100.16 0.695 101.0 98.1 99.44 63 99.59 0.438 91.5 16.6 99.14 63 99.59										99.386
78 100.04 0.635 101.0 54.4 99.4 74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 415 100.08 0.646 101.0 73.4 99.4 412 99.98 0.537 101.0 82.3 99.4 412 99.98 0.537 101.0 86.4 99.4 414 100.1 0.651 101.0 86.4 99.4 414 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.395
74 99.88 0.465 101.0 61.3 99.4 77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 415 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.521 101.0 86.4 99.4 76 100.16 0.695 101.0 94.4 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.401
77 100 0.581 101.0 64.6 99.4 413 99.93 0.499 101.0 73.4 99.4 415 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 82.3 99.4 414 100.1 0.651 101.0 82.3 99.4 75 99.98 0.521 101.0 86.4 99.4 76 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.405
413 99.93 0.499 101.0 73.4 99.4 415 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.521 101.0 86.4 99.4 76 100.16 0.695 101.0 94.4 99.4 76 100.16 0.695 101.0 94.4 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.415
415 100.08 0.646 101.0 75.2 99.4 412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.521 101.0 86.4 99.4 75 99.98 0.521 101.0 94 99.4 76 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249 91.5 16 99.1 63 99.59 0.438 91.5 16.6 99.1 87 99.82 0.637 91.5 29.7 99.1 64 99.59 0.405 91.5 30.3 99.1 99.2 86 99.65 0.440 91.5 41.1 99.2										99.419
412 99.98 0.537 101.0 82.3 99.4 414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.521 101.0 94.4 99.4 76 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.431 99.434
414 100.1 0.651 101.0 86.4 99.4 75 99.98 0.521 101.0 94 99.4 76 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.434 99.443
75 99.98 0.521 101.0 94 99.4 76 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249										99.443 99.449
76 100.16 0.695 101.0 98.1 99.4 MH_125 MH_127 99.331 99.112 65 99.58 0.249 0.249 63 99.59 0.438 91.5 16.6 99.1 63 99.59 0.438 91.5 16.6 99.1 64 99.59 0.405 91.5 30.3 99.1 86 99.65 0.440 91.5 41.1 99.2										99.459
MH_125 MH_127 99.331 99.112 65 99.58 0.249 88 99.82 0.670 91.5 16 99.1 63 99.59 0.438 91.5 16.6 99.1 87 99.82 0.637 91.5 29.7 99.1 64 99.59 0.405 91.5 30.3 99.1 86 99.65 0.440 91.5 41.1 99.2										99.465
88 99.82 0.670 91.5 16 99.1 63 99.59 0.438 91.5 16.6 99.1 87 99.82 0.637 91.5 29.7 99.1 64 99.59 0.405 91.5 30.3 99.1 86 99.65 0.440 91.5 41.1 99.2	H_125	MH_127	99.331	99.112						
8799.820.63791.529.799.16499.590.40591.530.399.18699.650.44091.541.199.2								91.5	16	99.150
6499.590.40591.530.399.18699.650.44091.541.199.2										99.152
86 99.65 0.440 91.5 41.1 99.2										99.183
										99.185
										99.210
										99.217
										99.245
										99.252 99.283
										99.203 99.290
										99.317
										99.325
MH_126 MH_127 100.307 99.112 #N/A #N/A #N/A	1_126	MH 127	100.307	99.112				50		
MH_127 MH_128 99.112 99.004 47 99.56 0.448		_								
MH_128 MH_129 99.004 98.958 45 99.49 0.486	H_128	MH_129			45					
MH_129 MH_130 98.958 98.842 43 99.41 0.452										
MH_130 MH_131 98.842 98.616 33 99.18 0.338										
MH_1302 MH_302 98.440 98.370 Est. Fut 99.36 0.920										
MH_1303 MH_303 98.435 98.291 Est. Fut 99.29 0.855										
MH_1304 MH_304 98.185 98.086 Est. Fut 98.86 0.675										
MH_131 MH_132 98.616 98.588 #N/A #N/A #N/A MH_210 07.027 07.953 Eat Fut 00.14 1.202										
MH_1312 MH_310 97.937 97.853 Est. Fut 99.14 1.203 MH_132 MH_136 98.588 98.434 103 99.33 0.742										
MH_132 MH_136 98.500 98.434 103 99.33 0.742 MH_133 MH_134 98.629 98.573 #N/A #N/A #N/A										
MH_133 MH_135 98.573 98.511 #N/A #N/A #N/A										
MH_135 MH_136 98.511 98.434 #N/A #N/A #N/A										
MH_136 MH_302 98.434 98.370 1 99.38 0.946										
MH_201 MH_202 105.434 104.453 321 105.28 -0.154										
321 105.28 0.757 119.5 8.5 104.5		· · · · · · · · · · · · · · · · · · ·						119.5	8.5	104.523
										104.540
										104.587
										104.635
233 107.4 2.705 119.5 29.5 104.4					233	107.4	2.705	119.5	29.5	104.695

U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated H	
MH	MH	U/S HGL	D/S HGL	Number		(2)	Length HGL	Dist. From D/S MH	HGL
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				429	105.37	0.658	119.5	31.5	104.712
				234	107.46	2.718	119.5	35.2	104.742
				320	105.45	0.638	119.5	43.7	104.812
				235	107.5	2.655	119.5	47.7	104.845
				319	105.56	0.657	119.5	54.8	104.903
				236	107.62	2.716	119.5	54.9	104.904
				318	105.66	0.673	119.5	65	104.987
				237	107.69	2.685	119.5	67.3	105.005
				238	107.8	2.748	119.5	73	105.052
				317	105.77	0.691	119.5	76.2	105.079
				239	107.87	2.709	119.5	86.2	105.161
				316	105.9	0.721	119.5	88.4	105.179
				240 315	107.99 106.02	2.783 0.748	119.5 119.5	91.9 99.8	105.207 105.272
				315 241	106.02	0.748 2.744	119.5 119.5	99.8 105.1	105.272
				241 242	108.06	2.744 2.797	119.5 119.5	105.1	105.316
				242 314	106.18	0.741	119.5 119.5	114	105.383
MH_202	MH_203	104.453	104.385	230	105.39	0.937	110.0		100.000
MH_203	MH_206	104.385	104.303	225	103.33	0.515			
MH_204	MH_205	103.979	103.873	285	104.64	0.661			
MH_205	MH_206	103.873	103.787	#N/A	#N/A	#N/A			
MH_206	MH_207	103.787	103.339	221	104.52	0.733			
MH_207	MH_208	103.339	103.021	219	104.39	1.051			
MH_208	MH_215	103.021	101.393	212	102.46	-0.561			
				271	102.46	0.938	112.0	8.9	101.522
				212	102.46	0.882	112.0	12.7	101.578
				270	102.67	0.941	112.0	23.1	101.729
				213	102.68	0.927	112.0	24.8	101.753
				214	102.89	0.988	112.0	35	101.902
				269	102.93	1.015	112.0	35.9	101.915
				215	103.1	1.035	112.0	46.2	102.065
				268	103.18	1.099	112.0	47.3	102.081
				216	103.36	1.118	112.0	58.4	102.242
				267	103.42	1.162	112.0	59.5	102.258
				217	103.62	1.212	112.0	69.8 70.7	102.408
				266 423	103.68 103.94	1.259 1.371	112.0 112.0	70.7 80.9	102.421
				423 421	103.94	1.371	112.0	80.9 82	102.569 102.585
				421 422	103.83	1.245	112.0	82 92	102.585
				422	104.04	1.294	112.0	92 93.1	102.730
				265	104.35	1.450	112.0	103.7	102.900
				218	104.3	1.372	112.0	105.6	102.928
MH_209	MH_201	105.833	105.434	313	106.24	0.407			
MH_209	MH_210	105.833	105.596	254	108.31	2.477			
MH_210	MH_212	105.596	103.579	258	105.12	-0.476			
				258	105.12	0.955	54.0	15.7	104.165
				257	105.54	0.938	54.0	27.4	104.602
				256	106.05	1.025	54.0	38.7	105.025
				255	106.58	1.178	54.0	48.8	105.402
MH_211	MH_212	104.040	103.579	#N/A	#N/A	#N/A			
MH_212	MH_204	103.579	103.979	284	104.71	1.131			
MH_212	MH_213	103.579	103.233	203	104.1	0.521			
MH_213	MH_214	103.233	103.053	204	104.02	0.787			
MH_214	MH_215	103.053	101.393	272	102.37	-0.683			
				272	102.37	0.841	90.0	7.4	101.529
				211	102.46	0.776	90.0	15.8	101.684

Table 3: Composit	b/S	deline Result Max.	ts for 100-Ye Max.	Lot	USF	Freeboard		nterpolated H	IGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				273	102.59	0.799	90.0	21.6	101.791
				210	102.68	0.771	90.0	28	101.909
				274	102.86	0.788	90.0	36.8	102.072
				209	102.89	0.792	90.0	38.2	102.098
				275	103.11	0.828	90.0	48.2	102.282
				208	103.15	0.846	90.0	49.4	102.304
				276 207	103.37 103.4	0.863 0.834	90.0 90.0	60.4 63.6	102.507 102.566
				207 277	103.4	0.834	90.0 90.0	67.9	102.500
				206	103.66	0.884	90.0 90.0	75	102.045
				278	103.55	0.613	90.0	83.7	102.937
				205	103.83	0.860	90.0	85.5	102.970
MH_215	MH_119	101.393	100.114	#N/A	#N/A	#N/A	00.0	00.0	102.010
MH_216	MH_217	105.511	105.093	346	105.85	0.339			
MH_217	MH_218	105.093	104.927	356	105.71	0.617			
MH_218	MH_220	104.927	104.166	357	105.75	0.823			
MH_219	MH_220	105.649	104.166	#N/A	#N/A	#N/A			
MH_220	MH_224	103.894	102.523	259	104.74	0.846			
MH_221	MH_222	103.088	102.811	396-1	103.56	0.472			
MH_222	MH_223	102.811	102.698	366-1	103.37	0.559			
MH_2	MH_2260	102.506	102.126	Est. Fut	103.49	0.984			
MH_223	MH_224	102.698	102.523	365-1	103.42	0.722			
MH_224	MH_105	102.025	100.067	141	101.9	-0.125			
				141	101.9	1.561	82.0	11.4	100.339
				140	102.18	1.502	82.0	25.6	100.678
				139	102.55	1.602	82.0	36.9	100.948
				138	102.92	1.728	82.0	47.1	101.192
				137 136	103.3	1.843	82.0	58.2 71.8	101.457
MH_225	MH_226	103.572	103.053	388-3	103.81 103.75	2.029 0.178	82.0	71.0	101.781
10111_225	10111_220	103.372	103.055	389-2	103.75	0.667	99.5	5.8	103.083
				389-1	103.75	0.610	82.0	13.8	103.140
				388-3	103.75	0.543	82.0	24.4	103.207
				388-2	103.88	0.624	82.0	32.1	103.256
				388-1	103.88	0.573	82.0	40.1	103.307
				387-4	104.02	0.646	82.0	50.7	103.374
				387-3	104.02	0.595	82.0	58.7	103.425
				387-2	104.02	0.550	82.0	65.9	103.470
				387-1	104.02	0.499	82.0	73.9	103.521
MH_2260	MH_227	102.126	101.119	392-1	102.46	0.334			
MH_226	MH_2260	103.053	102.126	391-3	103.08	0.027	A : -		
				391-3	103.08	0.921	64.0	2.3	102.159
				391-2	103.45	1.185	64.0	9.6	102.265
				391-1 200-2	103.45	1.069	64.0	17.6	102.381
				390-3 300-2	103.58	1.046	64.0	28.2	102.534
				390-2 390-1	103.58	0.930	64.0	36.2 43.8	102.650
				390-1 389-4	103.58 103.75	0.820 0.835	64.0 64.0	43.8 54.5	102.760 102.915
				389-4 389-3	103.75	0.835	64.0 64.0	54.5 62.5	102.915
MH_227	MH_109	101.119	99.691	394-3	100.86	-0.259	04.0	02.0	105.051
	103	101.119	33.031	394-3 394-4	100.86	0.874	93.0	19.2	99.986
				394-4 394-3	100.86	0.751	93.0 93.0	27.2	100.109
				394-3 394-2	100.00	1.039	93.0 93.0	34.5	100.221
				394-1	101.26	0.916	93.0	42.5	100.344
				393-3	101.49	0.968	93.0	54.1	100.522
				393-2	101.81	1.172	93.0	61.7	100.638
				500 L			00.0	01.7	

able 3: Composit U/S	D/S	Max.	Max.	Lot	USF	Freeboard		nterpolated H	IGL
MH	MH	U/S HGL	D/S HGL	Number		(2)	Length HGL	Dist. From D/S MH	HGL
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				393-1	101.81	1.049	93.0	69.7	100.761
				392-4	102.21	1.269	93.0	81.4	100.941
				392-3	102.21	1.146	93.0	89.4	101.064
MH_228	MH_229	102.612	101.073	384-3	102.12	-0.492			
				384-3	102.12	0.997	74.5	2.4	101.123
				379-2	102.14	0.997	74.5	3.4	101.143
				384-4	102.12	0.832	74.5	10.4	101.288
				379-1	102.14	0.832	74.5	11.4	101.308
				385-1	102.35	0.843	74.5	21	101.507
				378-3	102.57	1.043	74.5	22	101.527
				385-2	102.65	0.986	74.5	28.6	101.664
				378-2	102.67	0.983	74.5	29.7	101.687
				385-3	102.65	0.821	74.5	36.6	101.829
				378-1	102.67	0.818	74.5	37.7	101.852
				386-1	102.73	0.680	74.5	47.3	102.050
				377-4	103.02	0.949	74.5	48.3	102.071
				386-2	103.08	0.865	74.5	55.3	102.215
				377-3	103.28	1.044	74.5	56.3	102.236
				377-2	103.34	0.955	74.5	63.5	102.385
N/11 000				377-1	103.34	0.790	74.5	71.5	102.550
MH_229	MH_102	101.073	100.197	381-1	101.35	0.277	00 5	40.7	400.000
				382-1	101.52	1.184	86.5	13.7	100.336
				381-4	101.35	1.004	86.5	14.7	100.346
				382-2	101.52	1.103	86.5	21.7	100.417
				381-3	101.35	0.923	86.5	22.7	100.427
				382-3	101.52	1.030	86.5	28.9	100.490
				381-2	101.35	0.849	86.5	30	100.501
				382-4	101.52	0.949	86.5	36.9	100.571
				381-1	101.35	0.768	86.5	38	100.582
				383-1 380-3	101.62 101.59	0.941 0.901	86.5 86.5	47.6 48.6	100.679 100.689
				383-2	101.62	0.860	86.5	40.0 55.6	100.760
				380-2	101.52	0.800	86.5	56.6	100.770
				383-3	101.62	0.783	86.5	63.2	100.837
				380-1	101.59	0.743	86.5	64.2	100.847
				384-1	101.95	1.006	86.5	73.8	100.944
				379-4	101.96	1.000	86.5	74.9	100.944
				384-2	101.95	0.925	86.5	81.8	101.025
				379-3	101.96	0.923	86.5	82.9	101.037
MH_230	MH_231	102.557	100.982	374-3	102.03	-0.527			
	_ **			374-3	102.03	0.994	73.5	2.5	101.036
				368-3	102.24	1.151	73.5	5	101.089
				374-4	102.03	0.823	73.5	10.5	101.207
				368-2	102.24	0.979	73.5	13	101.261
				368-1	102.24	0.817	73.5	20.6	101.423
				375-1	102.4	0.964	73.5	21.2	101.436
				375-2	102.57	0.971	73.5	28.8	101.599
				367-3	102.71	1.057	73.5	31.3	101.653
				375-3	102.57	0.799	73.5	36.8	101.771
				367-2	102.71	0.886	73.5	39.3	101.824
				367-1	102.71	0.723	73.5	46.9	101.987
				376-1	103	1.002	73.5	47.4	101.998
				376-2	103	0.831		55.4	102.169
					103 103.37	0.831 1.044	73.5 73.5		
				376-2			73.5	55.4	102.169

U/S	D/S	Max.	Max.	Lot	USF	Freeboard	I	nterpolated H	IGL
MH	MH	U/S	D/S	Number		(2)	Length	Dist. From	HGL
		HGL	HGL				HGL	D/S MH	
		(m)	(m)		(m)	(m)	(m)	(m)	(m)
				371-3	100.56	0.775	87.0	13	99.785
				372-1	100.95	1.150	87.0	13.9	99.800
				371-2	100.56	0.645	87.0	21	99.915
				372-2	100.95	1.021	87.0	21.9	99.929
				371-1	100.56	0.522	87.0	28.6	100.038
				372-3	100.95	0.903	87.0	29.2	100.047
				372-4	100.95	0.773	87.0	37.2	100.177
				370-3	101.09	0.879	87.0	39.3	100.211
				370-2	101.09	0.750	87.0	47.3	100.340
				373-1	100.97	0.622	87.0	47.8	100.348
				370-1	101.09	0.627	87.0	54.9	100.463
				373-2	101.32	0.843	87.0	55.8	100.477
				373-3	101.32	0.720	87.0	63.4	100.600
				369-3	101.61	0.976	87.0	65.5	100.634
				369-2	101.61	0.846	87.0	73.5	100.764
				374-1	101.56	0.787	87.0	74.1	100.773
				369-1	101.61	0.722	87.0	81.2	100.888
				374-2	101.56	0.657	87.0	82.1	100.903
MH_302	MH_303	98.370	98.291	#N/A	#N/A	#N/A			
MH_303	MH_304	98.291	98.086	#N/A	#N/A	#N/A			
MH_304	MH_306TEE	98.086	97.813	#N/A	#N/A	#N/A			
MH_306TEE	MH_307	97.813	97.550	#N/A	#N/A	#N/A			
MH_313	MH_307	97.449	97.550	#N/A	#N/A	#N/A			
MH_307	MH_400	97.550	97.537	#N/A	#N/A	#N/A			
MH_309	MH_310	97.979	97.853	#N/A	#N/A	#N/A			
MH_310	MH_311	97.853	97.779	#N/A	#N/A	#N/A			
MH_3	MH_109	99.716	99.691	#N/A	#N/A	<mark>#N/A</mark>			
MH_3111TEE	MH_312	97.671	97.526	#N/A	#N/A	#N/A			
MH_311	MH_3111TEE	97.779	97.671	#N/A	#N/A	#N/A			
MH_312	MH_313	97.526	97.449	#N/A	#N/A	#N/A			
MH_313	MH_500	97.449	97.416	#N/A	#N/A	#N/A			
MH_400	OGS_1	97.537	97.517	#N/A	#N/A	#N/A			
OGS_1	OGS_1-Out	97.517	97.265	#N/A	#N/A	#N/A			
OGS_1-Out	MH_401	97.265	96.930	#N/A	#N/A	#N/A			
MH_4	MH_104	99.324	99.245	#N/A	#N/A	#N/A			
MH_500	OGS_2	97.416	97.406	#N/A	#N/A	#N/A			
OGS_2	OGS_2-Out	97.406	97.174	#N/A	#N/A	#N/A			
OGS_2-Out	MH_501	97.174	96.920	#N/A	#N/A	#N/A			

(2) Conservative estimate of freeboard based on U/S HGL and lowest USF connected to pipe. Actual HGL / freeboard at

all connecting lots interpolated where conservative estimate does not meet freeboard requirements.

⁽³⁾ Future USF elevations estimated as 1.8 m below the upstream top of manhole elevations.

Interpolated HGL elevation Freebaord Less than 0.3m

Freebaord Less than 0.0m

5 EROSION AND SEDIMENT CONTROL DURING AND AFTER CONSTRUCTION

Silt and erosion control strategies shall be implemented during construction activities to minimize the transfer of silt off-site. The following measures should be implemented:

- i) Silt control fences shall be installed as required to prevent the movement of silt off-site during rainfall events.
- ii) Construction of a mud mat shall be installed at the site entrance to promote self-cleaning of truck tires when leaving the site.
- iii) All catch basins shall be equipped with a crushed stone filter to prevent the capture of silt in the storm sewer system.
- iv) Regular cleaning of the adjacent roads shall be undertaken during the construction activities.
- v) Regular inspection and maintenance of the silt control measures shall be undertaken until the site has been stabilized.
- vi) The erosion and sediment control devices shall be removed after the site has been stabilized.

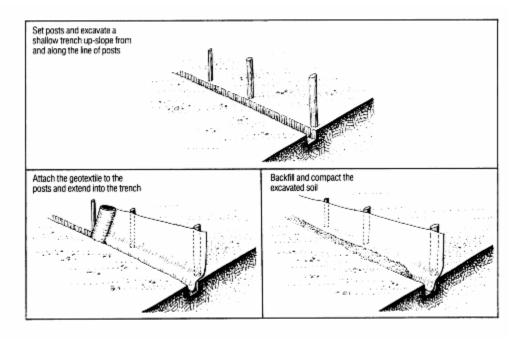


Figure 5: Typical installation of silt fences

Figure 6: Catchbasin with geotextile to protect storm sewer pipes from sediment contamination

6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The Ridge (Brazeau) development is in the City of Ottawa, east of Borrisokane and Highway 416, and south of Cambrian Road. The development has a total drainage area of 37.03 ha, which will be treated by two oil-and-grit separators for quality control, which then discharges to a dry SWM pond. The dry SWM pond discharges to the Jock River through an existing ditch running north, parallel to Borrisokane Road. The development will also have Etobicoke Exfiltration Systems (EES) implemented within this subdivision. These EES will be installed within local roadways of the subdivision, to exfiltrate runoff from the development for the more frequent events.

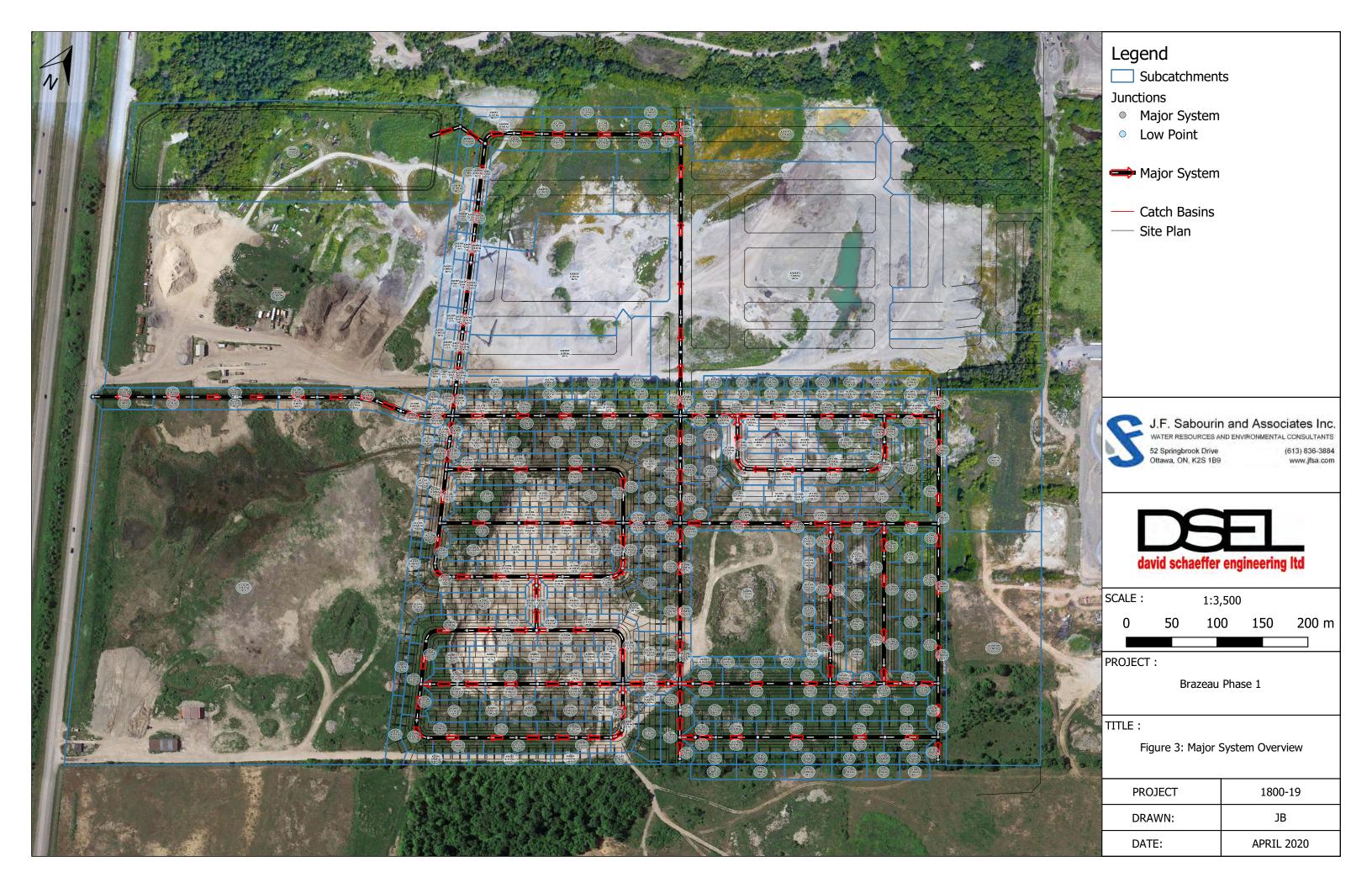
Per the City of Ottawa design guidelines, the minor system has been designed to accommodate a minimum of the 2-year post-development flows from within the site and from external areas (plus 5-year flows on collector and 10-year flows on arterial roads). The combined SWMHYMO / PCSWMM model analyses have determined that the minor system will surcharge in most parts of the system. However, with the use of Inlet Control Devices, a minimum freeboard of 0.3 m is provided between the 100-year hydraulic grade line and the underside of footings throughout the subdivision.

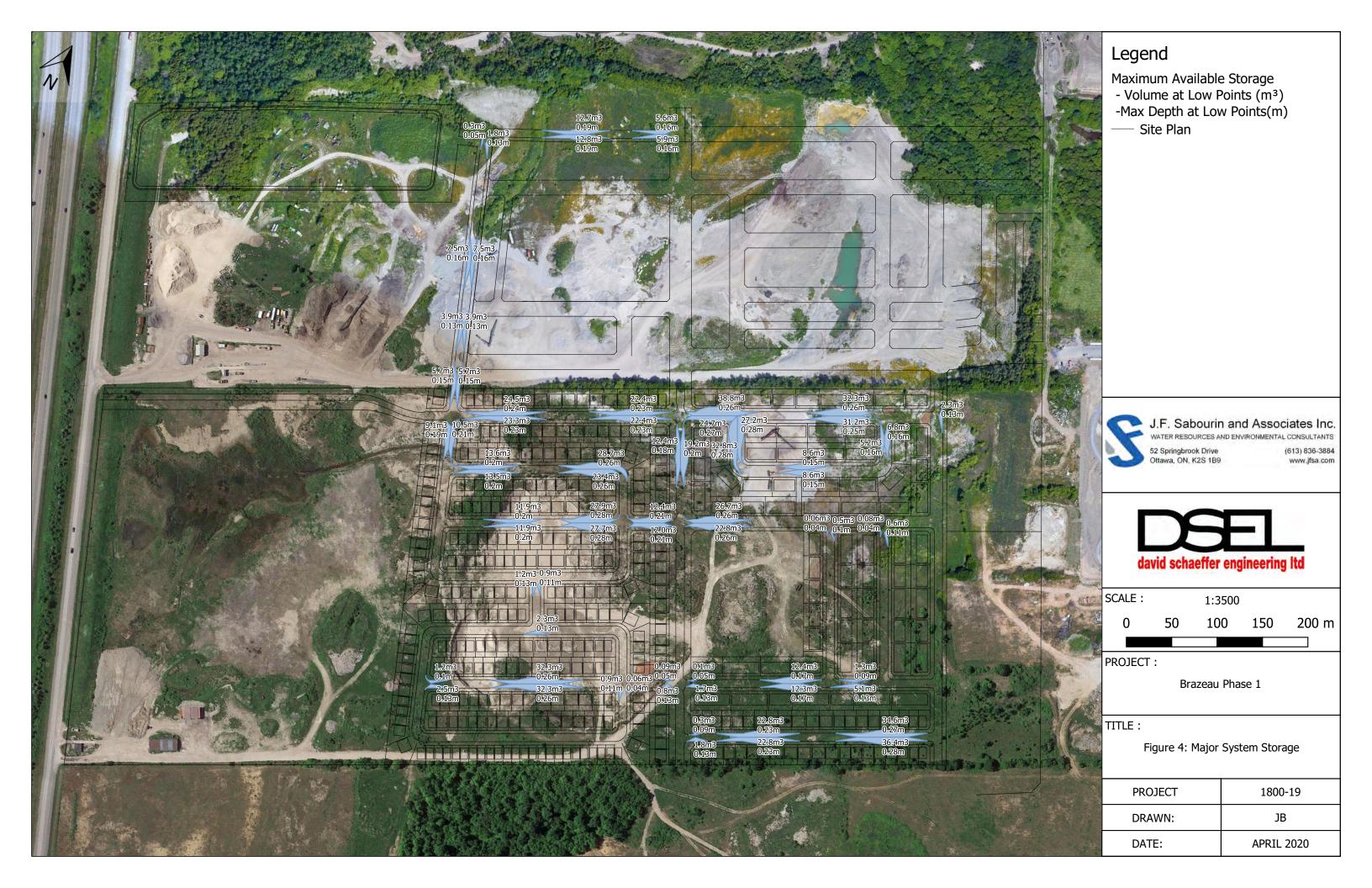
The PCSWMM/SWMHYMO simulations have determined that for the selected 2-, 5- and 100year storms, the total minor system flows would be $5.76 \text{ m}^3/\text{s}$, $8.218 \text{ m}^3/\text{s}$ and $10.912 \text{ m}^3/\text{s}$, respectively.

Within the subdivision, the peak water depths do not exceed the maximum allowable 35 cm depth at the gutter for the simulated 100-year storm (Table D-7 of Appendix D). Furthermore, it was determined that for the 100-year event, the product of the velocity and depth of flow does not exceed the maximum allowable 0.60 m²/s. Also as required, the maximum extent of surface water during the 100-year + 20% stress test will not touch the building envelopes.

Table C-1A- C1F of Appendix C summarizes the hydraulic grade line analysis for the various storm. Note that the full pipe velocities are generally no less than 0.80 m/s and no greater than 3.0 m/s for the proposed pipes. Where velocities over 3.0 m/s are proposed, provisions shall be made to protect against displacement of sewers by sudden jarring or movement.

Stress test results for the major and minor drainage systems based on a 20% increase in the 100year storm, as per the October 2012 *City of Ottawa Sewer Design Guidelines*, are summarized in Section 4.


Recommendations for silt and erosion control strategies to be implemented during construction are presented in Section 6.


In conclusion, the proposed design satisfies all selected design guidelines and requirements.

Rational Method Design Sheets (as per DSEL)

Water Resources and Environmental Consultants

STORM S			Local Road Collector F	ds Return F Roads Retur	requency =	2 years y = 5 years		DD)																					Dtt	aw	я
Manning	0.013		Arterial Ro	ads Keturn	Frequency	= 10 years				AREA (Ha)									FL	LOW							SEWER DA	ТА			
	LOCA	TION		2 Y	EAR	T		5 YI	EAR		10 YEAR			100	YEAR		Time of	Intensity	,	,	-	Peak Flow	DIA. (mm)	DIA. (mm)) TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
Location	From Node	To Node	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum. AREA 2.78 AC (Ha)	R Indiv. 2.78 AC	Accu 2.78		R	Indiv. 2.78 AC	Accum. 2.78 AC	Conc. (min)	2 Year (mm/h)	5 Year (mm/h)		100 Year (mm/h)	Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Q/Q full
FUTURE ROAD	D (DRUMMON	ND LAND)																													
To Expansion F	Plug Road. Pipe 30	304)4 - 306TEE	1.20	0.65	2.17	2.17 2.17			0.00	0.00 0.00	0.00	0.0			0.00	0.00	10.00 10.17	76.81	104.19	122.14	178.56	167	600	600	CONC	0.20	10.0	274.6	0.97	0.17	0.61
			1.00	0.65	1.81	1.81			0.00	0.00	0.00				0.00	0.00															
			1.00	0.05	0.00	1.81	1.45	0.40	1.61	1.61	0.00	0.0	C		0.00	0.00	15.00 15.00														
To Expansion F	Plug Road, Pipe 30	303)3 - 304			0.00	1.81 1.81			0.00	1.61 1.61	0.00	0.0			0.00	0.00	15.11 15.29	61.51	83.20	97.44	142.28	245	750	750	CONC	0.15	10.5	431.2	0.98	0.18	0.57
			0.99	0.65	1.79	1.79																									
	Plug	302	0.99	0.05	0.00	1.79			0.00	0.00	0.00	0.0			0.00	0.00	10.00	76.81	104.19	122.14	178.56	137	525	525	CONC	0.20	10.5	192.3	0.89	0.20	0.71
To Expansion F	Road, Pipe 30)2 - 303				1.79				0.00		0.0	0			0.00	10.20														
COMMERCIAL	BLOCK - SC	DUTH																													
	CTRL MH 1	133	13.83	0.75	28.84 0.00	28.84 28.84			0.00	0.00 0.00	0.00	0.0			0.00	0.00	13.00 13.00	66.93	90.63	106.17	155 11	1930	1500	1500	CONC	0.20	19.0	3161.3	1.79	0.18	0.61
To Haiku Street					0.00	28.84			0.00	0.00		0.0		<u> </u>	0.00	0.00	13.18	00.00								0.20		0.01.0		0.10	0.01
Haiku Street												1																			
COMMERCIAL From ABIC Pro		UTH, Pipe (<u>7.39</u>	<u>1 - 133</u> 0.30		28.84				0.00		0.0	0			0.00	13.18					210.40									
	133	134	0.58	0.90 0.90	1.45 0.78	30.29 31.06			0.00	0.00 0.00	0.00	0.0			0.00	0.00 0.00	13.18 14.01	66.43 64.22	89.95 86.91		153.93 148.69	2222 2205	1500	1500	CONC CONC	0.15	77.0	2737.8 2737.8	1.55 1.55	0.83 0.66	0.81 0.81
	134	135	0.31 0.05	0.54	0.08	31.14			0.00	0.00	0.00	0.0	C		0.00	0.00	14.01						1500	1500		0.15	61.0				
To Expansion F	135 Road, Pipe 13	136 36 - 302	0.18	0.71	0.36	31.49 31.49			0.00	0.00 0.00	0.00	0.0			0.00	0.00 0.00	14.01 14.46	64.22	86.91	101.80	148.69	2233	1650	1650	CONC	0.10	37.0	2882.2	1.35	0.46	0.77
Sturnidae Stre	et																														
			0.10	0.54	0.00	0.00	0.03	0.71	0.06	0.06	0.00	0.0			0.00	0.00															
To Montology V	126 Vay, Pipe 127	127 7 - 128	0.19	0.71	0.38	0.53 0.53			0.00	0.06 0.06	0.00	0.0	0		0.00	0.00 0.00	10.00 10.55	76.81	104.19	122.14	178.56	47	300	300	PVC	0.40	28.5	61.2	0.87	0.55	0.76
			0.23	0.54	0.35	0.35			0.00	0.00	0.00	0.0	D C		0.00	0.00															
	124	125	0.36 0.21	0.71 0.54	0.71	1.06 1.37			0.00	0.00 0.00	0.00	0.0			0.00	0.00	10.00	76.81	104.19	122.14	178.56	81	375	375	PVC	0.35	101.0	103.7	0.94	1.79	0.78
To Montology V	125 Vav. Pipe 127	127 7 - 128	0.34	0.71	0.67	2.04			0.00	0.00	0.00	0.0	C		0.00	0.00	11.79 13.20	70.55	95.59	112.01	163.68	144	600	600	CONC	0.25	91.5	307.0	1.09	1.40	0.47
Montology Wa		120				2.01						0.0	<u> </u>			0.00	10.20														
Contribution Fro	om Travertine					1.33				0.00		0.0				0.00	12.08	1													
Contribution Fre		· · ·				2.04 0.53				0.00 0.06		0.0				0.00 0.00	13.20 10.55														
	127 128	128 129			0.00	3.90 3.90			0.00	0.06 0.06	0.00	0.0			0.00	0.00 0.00	13.20 14.05	66.38 64.10	89.87 86.74	105.28 101.60	153.80 148.40	264 255	675 675	675 675	CONC CONC	0.20 0.30	54.0 13.5	375.9 460.4	1.05 1.29	0.86 0.17	0.70 0.55
			0.25	0.54	0.38	4.27			0.00	0.06	0.00	0.0	C		0.00	0.00															
	129	130	0.40	0.71 0.54	0.79 0.27	5.06 5.33			0.00	0.06 0.06	0.00	0.0			0.00	0.00 0.00	14.23	63.65	86.14	100.88	147.35	327	750	750	CONC	0.15	77.0	431.2	0.98	1.31	0.76
	130 131	131 132	0.40	0.71	0.79 0.00	6.12 6.12			0.00	0.06 0.06	0.00	0.0			0.00	0.00 0.00	15.54 17.26	60.51 56.90	81.84 76.90	95.83 90.03	139.93 131.41	375 353	750 1200	750 1200	CONC CONC	0.15 0.15	100.5 12.0	431.2 1510.0	0.98 1.34	1.72 0.15	0.87 0.23
To Travertine V	-				0.00	6.12			0.00	0.06		0.0		<u> </u>	0.00	0.00	17.41		. 0.00							0.10	. 2.0			0.10	0.20
Rugosa Street																															
To Appalachiar	211 Circle, Pipe	212 212 - 213	0.26	0.54	0.39	0.39 0.39			0.00	0.00 0.00	0.00	0.0			0.00	0.00 0.00	10.00 10.55	76.81	104.19	122.14	178.56	30	300	300	PVC	0.35	26.5	57.2	0.81	0.55	0.52
	212	204	0.42	0.51	0.00	0.00			0.00	0.00	0.00	0.0			0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.50	92.5	68.4	0.97	1.59	0.00
	204	205	0.49 0.50	0.54 0.71	0.74 0.99	0.74 1.72			0.00 0.00	0.00 0.00	0.00	0.0			0.00	0.00 0.00	11.59	71.18	96.47	113.04	165.19	123	525	525	CONC	0.20	118.0	192.3	0.89	2.21	0.64
Definitions:														1								Designed:			PROJECT						
Q = 2.78 AIR, wi Q = Peak Flow in		ond (L/a)								Notes: 1) Ottawa Rainfall-Inte	ansity Curvo											SLM Checked:			LOCATIO		Cia	avan Commu	nities - Bra	zeau Phas	e 1
A = Areas in hect	tares (ha)	0114 (L/S)								2) Min. Velocity = 0.80	•											ADF						City of (
I = Rainfall Inten R = Runoff Coeff																						Dwg. Refe Storm Drain	erence: nage Plan 84	-87	File Ref:		18-1030	Date: 15-Ju		Sheet No. 1 O	F 6

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years

ist is the set of th	Manning	0.013				n Frequency	•																							UVV	Л
Image: mart mart mart mart mart mart mart mart	in the second se					Trequency				AREA (Ha)										FL	_OW						SEWER DA	ТА			
contfieldfi		LUCA			2 Y	EAR			AR		10 YEAR				100 Y	EAR			,		, ,		DIA. (mm)	DIA. (mm)) TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
n n	Location	Erom Nodo	To Noda		R										R								(a atual)	(nominal)		(0/)	(m)	(1/a)	(m/a)	I OW (min	Ω/Ω full
	Location	FIOIII NODE	TO NODE	(11a)		2.76 AC	2.76 AC	(11a)	2.76 AC	2.76 AC (11a)	2.70	AC	2.76 AC	(114)		2.76 AC	2.76 AC	(mm)	(mm/n)	((((((((((((((((((((((((((((((((((((((((mm/n) (mm/n)	Q (1/8)	(actual)	(nominal)		(%)	(111)	(1/8)	(11/8)		Q/Q Iui
content content <t< td=""><td></td><td>205</td><td>206</td><td>0.25</td><td>0.71</td><td>0.49</td><td>2.22</td><td></td><td>0.00</td><td>0.00</td><td>0.</td><td>00</td><td>0.00</td><td></td><td></td><td>0.00</td><td>0.00</td><td>13.81</td><td>64.73</td><td>87.62</td><td>102.63 149.91</td><td>143</td><td>525</td><td>525</td><td>CONC</td><td>0.20</td><td>16.0</td><td>192.3</td><td>0.89</td><td>0.30</td><td>0.75</td></t<>		205	206	0.25	0.71	0.49	2.22		0.00	0.00	0.	00	0.00			0.00	0.00	13.81	64.73	87.62	102.63 149.91	143	525	525	CONC	0.20	16.0	192.3	0.89	0.30	0.75
100 100 <td>To Appalachiar</td> <td>n Circle, Pipe</td> <td>206 - 207</td> <td></td> <td></td> <td></td> <td>2.22</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td>0.00</td> <td>14.11</td> <td></td>	To Appalachiar	n Circle, Pipe	206 - 207				2.22			0.00			0.00				0.00	14.11													
100 100 <td></td>																															
12 24 36 37 49 63 64 65 65 65 65 <td>Appalachian C</td> <td>1</td> <td>210</td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0</td> <td>20</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>10.00</td> <td>76.91</td> <td>104.10</td> <td>122 14 179 56</td> <td>0</td> <td>200</td> <td>200</td> <td>DVC</td> <td>2.40</td> <td>12.0</td> <td>140.9</td> <td>2.12</td> <td>0.10</td> <td>0.00</td>	Appalachian C	1	210			0.00	0.00		0.00	0.00	0	20	0.00			0.00	0.00	10.00	76.91	104.10	122 14 179 56	0	200	200	DVC	2.40	12.0	140.9	2.12	0.10	0.00
				0.20	0.71																	<u> </u>									
11 11 171 171 171 174 <td>Contribution Fr</td> <td>-</td> <td>4</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>01</td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td>10010</td> <td>2.01</td> <td></td> <td>0110</td>	Contribution Fr	-	4			0.00			0.00		01					0.00										0.00		10010	2.01		0110
N N		212							0.00												118.85 173.72	59									0.50
1 1 1 1 1 0 0.7 </td <td></td> <td>213</td> <td>214</td> <td></td> <td>11.32</td> <td>72.08</td> <td>97.70</td> <td>114.49 167.33</td> <td>74</td> <td>375</td> <td>375</td> <td>PVC</td> <td>1.00</td> <td>13.5</td> <td>175.3</td> <td>1.59</td> <td>0.14</td> <td>0.42</td>		213	214															11.32	72.08	97.70	114.49 167.33	74	375	375	PVC	1.00	13.5	175.3	1.59	0.14	0.42
Light of the light of		214	215															11.46	71.61	07.06	113 74 166 21	174	375	375	PV/C	2.35	90.0	268.8	2 / 3	0.62	0.65
	To Foundation		_	0.44	0.71	0.07			0.00		0.	50				0.00				97.00	113.74 100.21	174	375	375	FVC	2.30	90.0	200.0	2.43	0.02	0.05
20 21 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2110</td><td></td><td></td><td>0100</td><td></td><td></td><td>0100</td><td></td><td></td><td></td><td>0.00</td><td>12:00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							2110			0100			0100				0.00	12:00													
Image <td></td> <td></td> <td></td> <td>0.07</td> <td>0.54</td> <td>0.11</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.</td> <td>00</td> <td></td>				0.07	0.54	0.11			0.00		0.	00																			
21 25 37 07 <td></td> <td>209</td> <td>201</td> <td></td> <td>10.00</td> <td>76.81</td> <td>104.19</td> <td>122.14 178.56</td> <td>46</td> <td>300</td> <td>300</td> <td>PVC</td> <td>0.55</td> <td>94.0</td> <td>71.7</td> <td>1.01</td> <td>1.54</td> <td>0.64</td>		209	201															10.00	76.81	104.19	122.14 178.56	46	300	300	PVC	0.55	94.0	71.7	1.01	1.54	0.64
307 307 40 50 507 60 507 60 607 60 607 60 607 60 607 60 607 60 607 60 607 60 607 60 607 60 607 60 607 60 607 60 6		204	000																74 0 4	00.00		400	075	075		0.00	140 5	100.0	4 5 4	4.00	0.00
Image: Property or state Image: Proper				0.37	0.71																										
matrix m		202	200	0.20	0.54													12.07	07.01	51.15		100				0.20	17.0	121.0	0.00	0.23	0.70
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		203	206															13.16	66.49	90.02	105.46 154.06	145	450	450	CONC	0.45	54.5	<u>19</u> 1.3	1.20	0.76	0.76
met	Contribution Fre	om Rugosa S	Street, Pipe															14.11													
207 208 0.00 4.70 0.00 4.70 0.00 4.70 0.00 <								 						↓ ↓																	•
Image: Provide line line line line line line line lin				0.14	0.71									+ +									-								
		207	208	0.12	0.54													14.71	62.47	84.51	98.98 144.54	299	600	600	CONC	1.90	12.5	846.4	2.99	0.07	0.35
Fundamental		208	215															14.78	62.30	84.28	98.70 144.15	349	600	600	CONC	1.90	112.0	846.4	2,99	0.62	0.41
opposition opposit	To Foundation			0.02	0.11	0.00			0.00			50				0.00			02.00	01.20		0.10				1.00	112.0	010.1	2.00	0.02	0.11
opposition opposit																															
Impute form Loss line 1/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1																															
1 1 0 </td <td></td> <td></td> <td>,</td> <td></td> <td>+ +</td> <td></td>			,											+ +																	
1.11 methods 1.11 methods<				1	r	0.39			0.00		0	20				0.00			60.84	82.28	96 35 140 69	512	675	675	CONC	1.60	55.0	1063 3	2 97	0.31	0.48
	To Travertine V	-		0.20	0.71	0.00			0.00		0.	50				0.00			00.04	02.20	00.00 140.00	012	0/0	0/0		1.00	00.0	1000.0	2.07	0.01	0.40
Image: marrier mar																															
119 122 0.21 0.71 0.41 0.64 0.00	Travertine Way	y																													
Image: Normal bit in the stand bit in the s		440	400															10.00	70.04	10110		40	200	200		0.55	00.0	74 7	1.01	1 10	0.00
122 123 127 123 127 1 133 0 000 000 000 000 000 11.88 11.85 166.09 85 300 300 PVC 15.0 130 120.4 17.0 0.43 0.77 Montalogy		119	122															10.00	76.81	104.19	122.14 178.56	49	300	300	PVC	0.55	90.0	/1./	1.01	1.48	0.69
123 127 127 127 127 127 128 127 133 0.00 0.00 0.00 0.00 0.00 1.00 7.14 9.64 12.8 16.7 96.30 900 <td></td> <td>122</td> <td>123</td> <td></td> <td>11.48</td> <td>71.56</td> <td>96.98</td> <td>113.65 166.09</td> <td>95</td> <td>300</td> <td>300</td> <td>PVC</td> <td>1.55</td> <td>13.0</td> <td>120.4</td> <td>1.70</td> <td>0.13</td> <td>0.79</td>		122	123															11.48	71.56	96.98	113.65 166.09	95	300	300	PVC	1.55	13.0	120.4	1.70	0.13	0.79
number for mondation lane, Pipe 21:1 → I 8.42 0																															0.77
Image: Note: Not																															
19 120 0.39 0.54 0.59 9.42 0.00 <	Contribution Fre	om Foundatio	on Lane, Pi _l	1	I				0.00							0.00		15.71		 											
120 121 I <td></td> <td>110</td> <td>120</td> <td></td> <td></td> <td></td> <td></td> <td>├</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15 74</td> <td>60.1.4</td> <td>Q1 00</td> <td>05.22 120.05</td> <td>567</td> <td>000</td> <td>000</td> <td></td> <td>0.20</td> <td>102.0</td> <td>800 e</td> <td>1 07</td> <td>1 25</td> <td>0.70</td>		110	120					├										15 74	60.1.4	Q1 00	05.22 120.05	567	000	000		0.20	102.0	800 e	1 07	1 25	0.70
Image: Note of the state of				0.39	0.04																										0.70
121 132 0.52 0.71 1.03 10.77 0.00 0.00 0.00 0.00 17.24 56.94 76.95 90.08 131.50 613 900 CONC 1.10 114.0 1898.7 2.98 0.64 0.32 ontribution From Montology Way, Pie 131 - 13 0.77 0.71 0.34 17.22 0.00 0.06 0.00 0.00 17.44 76.95 90.08 131.50 613 900 CONC 1.10 114.0 1898.7 2.98 0.64 0.32 ontribution From Montology Way, Pie 131 - 13 0.77 0.34 17.22 0.00 0.06 0.00 0.00 17.44 7 <t< td=""><td></td><td>0</td><td></td><td>0.21</td><td>0.54</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>000</td><td></td><td>102.00</td><td></td><td></td><td></td><td></td><td>0.20</td><td></td><td></td><td></td><td></td><td>5.57</td></t<>		0		0.21	0.54														000		102.00					0.20					5.57
132 0.17 0.71 0.34 17.22 0.00 0.06 0.00 0.00 0.00 17.88 57.1 75.88 82.1 21.86 99 120 CNC 0.20 0.20 0.00 0.00 0.00 0.00 17.88 57.1 75.88 82.1 21.862 99 1200 CNC 0.20 174.36 1.54 0.64 0.64 0.00 5 parasion Road, Pipe 136-302 1 1.785 0.06 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00						1.03			0.00		0.	00				0.00			56.94	76.95	90.08 131.50	613	900	900	CONC	1.10	114.0	1898.7	2.98	0.64	0.32
132 136 0.42 0.54 0.63 17.85 0.00 0.00 0.00 17.88 55.71 75.28 88.12 128.62 999 1200 1200 CONC 0.20 59.5 1743.6 1.54 0.64 0.57 0 Expansion	Contribution Fre	om Montolog	ıy Way, Pipe	1	1			Ī						↓ ↓				17.41		<u> </u>				ļ							
Deparation Road, Pipe 136 - 302 I		400	100											<u> </u>				17.00	EE 74	75.00		000	1000	1000		0.00	50 F	1740.0	1 5 4	0.64	0 57
ind ind <td>To Expansion F</td> <td>-</td> <td></td> <td>0.42</td> <td>0.54</td> <td>0.63</td> <td></td> <td> </td> <td>0.00</td> <td></td> <td>0.</td> <td></td> <td></td> <td>┨ ┃</td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td>/ 5.28</td> <td>00.12 128.62</td> <td>999</td> <td>1200</td> <td>1200</td> <td>CONC</td> <td>0.20</td> <td>59.5</td> <td>1743.6</td> <td>1.54</td> <td>0.64</td> <td>0.57</td>	To Expansion F	-		0.42	0.54	0.63			0.00		0.			┨ ┃		0.00				/ 5.28	00.12 128.62	999	1200	1200	CONC	0.20	59.5	1743.6	1.54	0.64	0.57
107 108 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100 0.00			00 - 002				17.00			0.00			0.00				0.00	10.52	1			1		<u> </u>	1	<u> </u>					
Image: 100 0.28 0.72 0.56 0.56 0.00 1.020 76.06 103.17 120.93 176.78 84 450 450 CONC 0.20 54.0 1.20 0.66 0.11 0 0 0.00 0 0 0.00 0 0 0.00 1.12 0.60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th< td=""><td>Focality Cresc</td><td>ent</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Focality Cresc	ent																													
108 100 0.34 0.55 1.11 0.00 0.00 0.00 0.00 0.00 102.0 76.66 103.17 120.93 176.78 84 450 450 CONC 0.20 54.0 127.5 0.80 1.12 0.66 0 Hakk Street, Pipe 110 - 111 0 0.00 0.00 0.00 0.00 11.32 0.00 11.32 0 0 0 0 0.00 11.32 0 0 0 0 0 0 0.00 11.32 0 <		107	108															10.00	76.81	104.19	122.14 178.56	0	300	300	PVC	0.65	13.0	78.0	1.10	0.20	0.00
11 0.00 0.00 0.00 11.2 0		400	440															40.00	70.00	400.47		0.1	450	450		0.00	540	407 5	0.00	4.40	0.00
Image: state	To Haiku Strad		_	0.34	0.58	0.55			0.00		0.0	10				0.00				103.17	120.93 176.78	84	450	450	CONC	0.20	54.0	127.5	0.80	1.12	0.66
SLM Ciave Communities - Brazeau Phase 1 Peak Flow in Litres per second (L/s) 1) Ottawa Rainfall-Intensity Curve = Areas in hectares (ha) 1) Ottawa Rainfall-Intensity Curve = Areas in hectares (ha) City of Ottawa = Rainfall Intensity (mm/h) File Ref: Date: Sheet No.							1.11			0.00			0.00				0.00	11.32													
SLM Ciave Communities - Brazeau Phase 1 Peak Flow in Litres per second (L/s) 1) Ottawa Rainfall-Intensity Curve = Areas in hectares (ha) 1) Ottawa Rainfall-Intensity Curve = Areas in hectares (ha) City of Ottawa = Rainfall Intensity (mm/h) File Ref: Date: Sheet No.	Definitions:	1	ļ		1		1			I	<u> </u>	I				ļ		1	<u> </u>	<u>.</u>	<u> </u>	Designed:	ļ.	ļ.	PROJECT	· ·:	ļ.		ļ.	1	
ADF City of Ottawa 2) Min. Velocity = 0.80 m/s Example 10.80 m/s Frainfall Intensity (mm/h) Dwg. Reference: File Ref: Date: Sheet No.	-																					SLM					Cia	avan Commu	inities - Bra	azeau Phas	e 1
Dwg. Reference:File Ref:Date:Sheet No.	-	•	cond (L/s)							,	•														LOCATIO	DN:					
		· · ·								2) Min. Velocity = 0.80) m/s														E1. D. C				Ottawa	CL M	
Storm Drainage Plan 05-00 10-1030 10-1030 2 OF 0		• • •																				•		8-86	File Ref:		18-1020		n-20		
	$\Lambda = \Lambda $ and $\Lambda = 0.001$																						iaye Fidii 03	,	1		10-1030	10-00	11 20	20	

Ot	(

ttawa

Manning	C	ocal Road	s Return Fr oads Returr	requency = n Frequency																								<u>)</u>	a
				i i equency	10 90010			ARE	A (Ha)									FL	.ow							SEWER DAT	TA		
	LOCATION		2 YE	EAR			5 YEAR			10 \	/EAR		100	YEAR		Time of	Intensity	Intensity	Intensity	Intensity	Peak Flow	DIA. (mm) I	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCIT	1 TI
		AREA	R	Indiv.	Accum.	AREA	R Indiv.	Accum.	AREA	R		Accum. AREA		Indiv.	Accum.	Conc.	2 Year			100 Year							 '	 '	
Location	From Node To Node	(Ha)	i.	2.78 AC	2.78 AC	(Ha)	2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC (Ha)		2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	'LOʻ
																										 	! '	·'	<u> </u>
	407 440			0.00	0.00		0.00	0.00			0.00	0.00		0.00	0.00	40.00	70.04	404.40	400.44	470.50	0	000	000		0.05		<u> </u>		\vdash
	107 112	0.04	0.72	0.00 0.08	0.00 0.08		0.00	0.00			0.00	0.00 0.00		0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.35	74.0	57.2	0.81	-
		0.04	0.72	0.08	0.00		0.00	0.00			0.00	0.00		0.00	0.00											┣───┦	<u> </u>	<u> </u> '	<u>}</u>
		0.22	0.58	0.35	0.68		0.00	0.00			0.00	0.00		0.00	0.00											├ ──┤	['	'	
	112 113	0.33	0.72	0.66	1.34		0.00	0.00			0.00	0.00		0.00	0.00	11.52	71.41	96.78	113.41	165.73	95	450	450	CONC	0.20	73.5	127.5	0.80	1
	113 114			0.00	1.34		0.00	0.00			0.00	0.00		0.00	0.00	13.05	66.78	90.43	105.94	154.76	89	450	450	CONC	0.20	13.0	127.5	0.80	(
		0.32	0.72	0.64	1.98		0.00	0.00			0.00	0.00		0.00	0.00												ļ'	'	
	114 115	0.34	0.58	0.55	2.53		0.00	0.00			0.00	0.00		0.00	0.00	13.32	66.03	89.40	104.73	152.98	167	675	675	CONC	0.40	54.0	531.6	1.49	(
To Haiku	Street, Pipe 115 - 116				2.53			0.00				0.00			0.00	13.93										$ \longrightarrow $	 '	 '	
COMMER	RCIAL BLOCK - EAST																									──┤	 '	 '	–
	CIAL BLOCK - EAST	2.68	0.75	5.59	5.59		0.00	0.00			0.00	0.00		0.00	0.00	12.50										┥───┤	t'	·'	–
	CTRL MH 2 2260	2.00	0.70	0.00	5.59		0.00	0.00			0.00	0.00		0.00	0.00	12.50	68.38	92.61	108.51	158.53	382	675	675	CONC	0.40	10.0	531.6	1.49	(
To Obsidi	an Street, Pipe 2260 - 227			0.00	5.59			0.00				0.00			0.00	12.61													
Obsidian																											<u> </u> '	<u> </u> '	
	225 226	0.27	0.72	0.54	0.54		0.00	0.00			0.00	0.00		0.00	0.00	10.00	76.81		122.14		42	300	300	PVC	0.50	99.5	68.4	0.97	
From CO	226 2260 MMERCIAL BLOCK - EAST- 122	0.20	0.72	0.40	0.94 5.59		0.00	0.00			0.00	0.00 0.00		0.00	0.00	11.71 12.61	70.79	95.93	112.41	164.27	67	300	300	PVC	1.05	64.0	99.1	1.40	(
	2260 227	<u>, i ipe C</u>		0.00	6.53		0.00	0.00			0.00	0.00		0.00	0.00	12.61	68.05	92.16	107.97	157.75	444	675	675	CONC	1.55	49.5	1046.5	2.92	
B	227 109	0.26	0.72	0.52	7.05		0.00	0.00			0.00	0.00		0.00	0.00			91.04				675		CONC				2.97	
To Haiku	Street, Pipe 109 - 110				7.05			0.00				0.00			0.00	13.42													
																											[]	[]	
Haiku Str	reet	4.00	0.00	0.05	0.05											44.50										↓	<u> </u> '	 '	_
<u> </u>	CTRL MH 3 109	1.93	0.68	3.65	3.65 3.65		0.00	0.00			0.00	0.00		0.00	0.00	11.50	71.49	96.89	112 54	165.92	261	600	600	CONC	0.40	10.0	388.3	1.37	(
Contributi	on From Obsidian Street, Pipe 2	27 - 109		0.00	7.05		0.00	0.00			0.00	0.00		0.00	0.00	13.42	11.49	90.09	113.04	105.92	201	000	000	COINC	0.40	10.0	300.3	1.37	
Contribut		0.18		0.36	11.06		0.00	0.00			0.00	0.00		0.00	0.00	13.42	65.78	89.05	104.31	152.38	727	750	750	CONC	0.70	60.0	931.4	2.11	(
Contributi	on From Focality Crescent, Pipe				1.11			0.00				0.00			0.00	11.32													
			0.58	0.26	12.42		0.00	0.00			0.00	0.00		0.00	0.00												<u> </u>	'	
		0.19	0.58	0.31	12.73		0.00	0.00			0.00	0.00		0.00	0.00	10.00			100.00		0.0.1				0.40		<u> </u> '	<u> </u>	\vdash
	<u> </u>	0.33 0.18	0.72 0.72	0.66 0.36	13.39 13.75		0.00	0.00			0.00	0.00 0.00		0.00	0.00	13.89 14.58		87.32 84.92	102.28 99.46			900 975		CONC CONC		75.0 91.0	1144.9 1002.2	1.80 1.34	(
Contributi	on From Focality Crescent, Pipe			0.30	2.53		0.00	0.00			0.00	0.00		0.00	0.00	13.93	02.77	04.92	99.40	145.25	003	975	975	CONC	0.20	91.0	1002.2	1.34	-
Contribut			<u> </u>	0.00	16.28	0.04	0.72 0.08	0.08			0.00	0.00		0.00	0.00	10.00										├ ──┤	'	·	-
		0.15	0.58	0.24	16.52		0.00	0.08			0.00	0.00		0.00	0.00														
		0.16	0.58	0.26	16.78		0.00	0.08			0.00	0.00		0.00	0.00														
		0.19	0.72	0.38	17.16		0.00	0.08			0.00	0.00		0.00	0.00	15.71	60.13	81.32	95.22	139.03	1038	1050	1050	CONC	0.50	59.0	1930.9	2.23	(
I o Inselb	erg Street, Pipe 116 - 117				17.16			0.08				0.00			0.00	16.16										──┤	 '	 '	–
PARK BL	ОСК																									├ ──┤	<u> </u> '	·'	├
	CTRL MH 4 104			0.00	0.00	1.72	0.40 1.91	1.91			0.00	0.00		0.00	0.00	10.00	76.81	104.19	122.14	178.56	199	525	525	CONC	0.40	9.5	272.0	1.26	(
To Chiller	ton Drive, Pipe 104 - 106				0.00			1.91				0.00			0.00	10.13													
													_														 '	 '	⊢
Canaden	sis Lane	0.01	0.72	0.02	0.02		0.00	0.00			0.00	0.00	_	0.00	0.00											──┤	 '	 '	┢──
		0.01	0.72	0.02	0.02		0.00	0.00			0.00	0.00 0.00	_	0.00	0.00											┨───┤	<u> </u> '	·'	┢
		0.03	0.58	0.05	0.07		0.00	0.00			0.00	0.00		0.00	0.00											├	t'	·'	-
		0.16	0.58	0.26	0.39		0.00	0.00			0.00	0.00		0.00	0.00											├ ──┤	· · · · · · · · · · · · · · · · · · ·	·'	
	230 231	0.19	0.72	0.38	0.77		0.00	0.00			0.00	0.00		0.00	0.00	10.00	76.81	104.19	122.14	178.56	59	300	300	PVC	2.00	73.5	136.8	1.93	(
		0.12	0.58	0.19	0.96		0.00	0.00			0.00	0.00		0.00	0.00												'	'	
			0.58	0.34	1.30		0.00	0.00			0.00	0.00		0.00	0.00					(=0.0=	150						<u> </u>	<u> </u> '	\vdash
	231 103 ton Drive, Pipe 103 - 104	0.41	0.72	0.82	2.12 2.12		0.00	0.00			0.00	0.00 0.00		0.00	0.00	10.63 11.15	74.46	100.96	118.34	1/2.9/	158	525	525	CONC	2.00	87.0	608.2	2.81	(
TO Chiller					2.12			0.00				0.00			0.00	11.15										├───┤	<u> </u> '	<u> </u> '	┢
																										├ ─── †	'	·'	\vdash
Definitions			!									•									Designed:]	PROJECT	:				-
Q = 2.78 A								Notes:	_												SLM					Cia	avan Commu	nities - Bra	izea
-	Flow in Litres per second (L/s)							,		ensity Curv	e										Checked:]	LOCATIO	N:		0:4	044-0	
	in hectares (ha) l Intensity (mm/h)							2) Min. Ve	1000 (0.80)	u m/S											ADF Dwg. Refer	ence.		File Ref:		,	City of C Date:		Sh
n n n n n n n n n n	1 IIIGHSILY (IIIII/II)																				IDWY. KEIEI	UILE.		LUC KEL		ļ	Date.		1 SU

STORM S	EWER C		ATION Local Road Collector R Arterial Ro	ls Return F loads Retur	requency = m Frequenc	2 years y = 5 years		OD)																						Stl	aw	a
wanning	LOCA		Alterial Ko		Trequency					AREA (Ha)										FL	.OW							SEWER DA	ТА			
				2 Y	EAR	A		5 Y	EAR		10 Y		A		100 YEA		A	Time of	Intensity 2 Year	Intensity 5 Year	Intensity 10 Year		Peak Flow	/ DIA. (mm) D	DIA. (mm)) TYPE	SLOPE	LENGTH	CAPACITY	VELOCIT	TIME OF	RATIO
Location	From Node	To Node	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum. AREA 2.78 AC (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R —		Accum. 2.78 AC	Conc. (min)	(mm/h)	(mm/h)	(mm/h)		Q (l/s)	(actual) ((nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Q/Q full
Currée de Larre																																
Surface Lane			0.17	0.58	0.27	0.27			0.00	0.00		0.00	0.00			0.00	0.00															
	228	229	0.31	0.72	0.62	0.89			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	69	300	300	PVC	2.00	74.5	136.8	1.93	0.64	0.50
	229	102	0.20 0.39	0.58 0.72	0.32	1.22 2.00			0.00	0.00		0.00	0.00			0.00	0.00	10.64	74.43	100.92	118.29	172.90	149	525	525	CONC	0.85	86.5	396.5	1.83	0.79	0.37
To Chillerton D				0.112		2.00			0.00	0.00			0.00			0.00	0.00	11.43					110	010	020							
Chillerton Driv																																
Chillerton Driv	101	102			0.00	0.00			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	2.60	30.5	155.9	2.21	0.23	0.00
Contribution F	rom Surface L 102	· · ·		0.70	0.00	2.00			0.00	0.00		0.00	0.00			0.00	0.00	11.43	74 70	07.01	112.01	400.47	100	505	505		4.55	50.0	505 A	0.47	0.40	0.20
Contribution F		103 sis Lane, Pi	0.13 ipe 231 - 10	0.72 03	0.26	2.26 2.12			0.00	0.00		0.00	0.00			0.00	0.00	11.43 11.15	/1./2	97.21	113.91	166.47	162	525	525	CONC	1.55	59.0	535.4	2.47	0.40	0.30
	103	104	0.19	0.72	0.38	4.76		ļ	0.00	0.00		0.00	0.00	1 1		0.00	0.00	11.83	70.44	95.44	111.84	163.43	335	750	750	CONC	0.40	120.0	704.1	1.59	1.25	0.48
From PARK B	LOCK - 123, F 104	Pipe CTRL	MH 4 - 104 0.26	0.72	0.52	0.00 5.28			0.00	1.91 1.91		0.00	0.00	+		0.00	0.00	10.13 13.08	66.70	90.32	105.80	154.56	525	1050	1050	CONC	0.15	41.5	1057.6	1.22	0.57	0.50
To Elevation R		6 - 116	0.20	0.12	0.02	5.28			0.00	1.91		0.00	0.00			0.00	0.00	13.65	00.70	00.02	100.00	104.00	520	1000	1000		0.10		1007.0	1.22	0.07	0.00
Enoch Street																																
Epoch Street	221	222	0.09	0.72	0.18	0.18			0.00	0.00		0.00	0.00	+		0.00	0.00	10.00	76.81	104.19	122.14	178.56	14	300	300	PVC	0.50	77.5	68.4	0.97	1.34	0.20
			0.11	0.58	0.18	0.36			0.00	0.00		0.00	0.00			0.00	0.00															
			0.22 0.31	0.72 0.54	0.44	0.80			0.00	0.00		0.00	0.00			0.00	0.00															
			0.31	0.58	0.47	1.76			0.00	0.00		0.00	0.00			0.00	0.00															
	222	223	0.40	0.72	0.80	2.56		0 = 1	0.00	0.00		0.00	0.00			0.00	0.00	11.34	72.03	97.63	114.41	167.21	185	600	600	CONC	0.15	95.5	237.8	0.84	1.89	0.78
	223	224	0.13	0.72	0.00	2.56 2.82	0.07	0.71	0.14 0.00	0.14 0.14		0.00	0.00			0.00	0.00	13.23	66.29	89.76	105.15	153.60	200	600	600	CONC	0.20	97.0	274.6	0.97	1.66	0.73
To Elevation R				0.112	0120	2.82			0.00	0.14		0.00	0.00			0.00	0.00	14.89	00120				200				0.20	0110	27.110			
Eminence Str																																
Emmence Su			0.09	0.54	0.14	0.14			0.00	0.00		0.00	0.00			0.00	0.00															
	2.1.2		0.11	0.54	0.17	0.30			0.00	0.00		0.00	0.00			0.00	0.00	10.00	====							51/0			107.0			
	216	217	0.39 0.25	0.71 0.54	0.77	1.07 1.45			0.00	0.00		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	82	375	375	PVC	0.60	75.5	135.8	1.23	1.02	0.61
			0.32	0.54	0.48	1.93			0.00	0.00		0.00	0.00			0.00	0.00															
	217	218	0.46	0.71	0.91	2.83 2.83	0.04	0.71	0.00 0.08	0.00 0.08		0.00	0.00			0.00	0.00	11.02	73.09	99.08	116.12	169.72	207	600	600	CONC	0.20	113.0	274.6	0.97	1.94	0.75
	218	220	0.10	0.71	0.00	3.03	0.04	0.71	0.08	0.08		0.00	0.00			0.00	0.00	12.96	67.04	90.78	106.34	155.36	210	600	600	CONC	0.20	80.5	274.6	0.97	1.38	0.77
To Elevation R	oad, Pipe 220) - 224				3.03				0.08			0.00				0.00	14.34														
Elevation Roa	d d																															
					0.00	0.00																										
To Flowetien D	Plug East	310	1.22	0.65	2.20	2.20			0.00	0.00		0.00	0.00			0.00	0.00	14.71	62.46	84.51	98.97	144.53	138	750	750	CONC	0.20	9.5	497.9	1.13	0.14	0.28
To Elevation R		J - 311				2.20				0.00			0.00				0.00	14.85														
					0.00	0.00	2.56	0.65	0.00	0.00		0.00	0.00			0.00	0.00	16.00														
	Plug South	310	5.09	0.65	0.00 9.20	0.00 9.20			0.00	0.00 4.63		0.00	0.00	+		0.00	0.00	16.00 16.00	59.50	80.46	94.21	137.55	919	1050	1050	CONC	0.15	17.5	1057.6	1.22	0.24	0.87
To Elevation R					5.20	9.20			-1.00	4.63		0.00	0.00			0.00	0.00	16.24	00.00	00.40	57.21	101.00	513		1000		0.10		1007.0	1.22	0.24	0.01
	040	000			0.00	0.00			0.00	0.00		0.00	0.00			0.00	0.00	40.00	70.04	104.40	400.44	470.50		200	200		0.05	05.0		0.00	0.40	0.00
Contribution F	219 rom Eminence	220 e Street, Pig	L De 218 - 22	0	0.00	0.00 3.03			0.00	0.00 0.08		0.00	0.00			0.00	0.00	10.00 14.34	76.81	104.19	122.14	178.56	U	300	300	PVC	2.65	25.0	157.4	2.23	0.19	0.00
		, · /			0.00	3.03	0.05	0.71	0.10	0.18		0.00	0.00			0.00	0.00															
	220	224	0.06	0.71	0.12	3.15 3.15	0.12	0.71	0.00	0.18 0.41		0.00	0.00	+		0.00	0.00	14.34	63.36	85 74	100.42	146.66	235	600	600	CONC	1.90	59.0	846.4	2.99	0.33	0.28
					0.00	5.15	0.12	0.71	0.24			0.00	0.00			0.00	0.00	14.34	03.30	00.74	100.42		200		000		1.30		040.4	2.33	0.00	0.20
	+													+					+			+		+								
Definitions: Q = 2.78 AIR, w	vhere									Notes:													Designed: SLM			PROJECT	`:	C :-	avan Commu	inities B-	Dogu Dhaa	o 1
Q = 2.78 AIR, w Q = Peak Flow i		cond (L/s)								1) Ottawa Rainfall-Inte	ensity Curve	9										ŀ	Checked:			LOCATIC	DN:	Cla			azeau riias	
A = Areas in hec	ctares (ha)									2) Min. Velocity = 0.80	•												ADF						City of (Ottawa		
I = Rainfall InterR = Runoff Coeff																							Dwg. Refe Storm Drain	erence: nage Plan 83-8	36	File Ref:		18-1030	Date: 15-Ju	n-20	Sheet No.	0F 6
																							John Diali	naye i iali oo-o				10-1030	10-00	11 20	40	/i U

STORM S	EWER C 0.013		Local Roa Collector	ds Return F Roads Retur	T (RATI Frequency = rn Frequency	2 years v = 5 years	METHO	DD)																					Dtl	aw	a
Manning			Arterial K	oads Return	Frequency	= 10 years				ARE	A (Ha)								FL	_OW							SEWER DA	ТА			
	LOCA			2 Y	'EAR			5 Y	/EAR	_		0 YEAR			100 YEAR	-	Time of	Intensity	,		Intensity	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCIT	TIME OF	RATIO
Location	From Node	To Node	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha) R	Indiv. 2.78 AC	Acc 2.78		R Indiv. 2.78 AC	Accum. 2.78 AC	Conc. (min)	2 Year (mm/h)	5 Year (mm/h)		100 Year (mm/h)	O(1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	O/O full
																	()						(,								
Contribution Fr	om Epoch St	reet, Pipe	223 - 224			2.82				0.14			0.			0.00	14.89														
			0.06	0.71	0.00	5.97 6.09	0.03	0.58	0.05	0.60		0.00	0.		0.00	0.00															
			0.00	0.54	0.12	6.26			0.00	0.60		0.00	0.		0.00	0.00															
	224	105			0.00	6.26	0.16	0.71	0.32	0.92		0.00	0.		0.00	0.00	14.89	62.02	83.91	98.26	143.50	465	600	600	CONC	1.90	82.0	846.4	2.99	0.46	0.55
	105	106			0.00	6.26	0.35	0.71	0.69	1.61		0.00	0.		0.00	0.00	15.35	60.96	82.45	96.55	140.98	514	675	675	CONC	1.40	91.0	994.6	2.78	0.55	0.52
Contribution Fr	om Chillerton	i Drive, Pip	0.20 0.20	0.58	0.32	5.28 11.86			0.00	1.91 3.52		0.00	0.		0.00	0.00	13.65														
			0.20	0.56	0.32	11.86	0.21	0.72	0.00	3.94		0.00	0.		0.00	0.00															
	106	116			0.00	11.86	0.22	0.71	0.43	4.37		0.00	0.		0.00	0.00	15.89	59.73	80.77	94.58	138.09	1062	1350	1350	CONC	0.20	122.5	2387.0	1.67	1.22	0.44
To Haiku Stree	t, Pipe 116 -	117				11.86				4.37			0.	00		0.00	17.12														
											├ ─── ├ ───		_																		
Haiku Street Contribution Fr	om Elevation	Road Din		1		11.86				4.37	├		0.	00	<u>├ </u>	0.00	17.12														
Contribution Fr						17.16			+	0.08			0.			0.00	16.16				<u> </u>										
		, , , , , , , , , , , , , , , , , , , ,	-		0.00	29.02	0.04	0.71	0.08	4.53		0.00	0.		0.00	0.00															
			0.13	0.54	0.20	29.21			0.00	4.53		0.00	0.		0.00	0.00															
			0.13	0.54	0.20	29.41 29.85			0.00	4.53 4.53	<u>├</u> ───	0.00	0.		0.00	0.00															
	116	117	0.29	0.54	0.44	29.85 30.46			0.00	4.53		0.00	0.		0.00	0.00	17.12	57.18	77.28	90.47	132.07	2092	1650	1650	CONC	0.10	122.5	2882.2	1.35	1.51	0.73
			0.01	0.54	0.23	30.68			0.00	4.53		0.00	0.		0.00	0.00															
			0.16	0.54	0.24				0.00			0.00			0.00	0.00															
	117	118	0.49	0.71	0.97	31.89			0.00	4.53		0.00			0.00	0.00	18.63	54.34	73.40	85.91	125.38	2066	1650	1650	CONC	0.10	121.0	2882.2	1.35	1.50	0.72
To Expansion	118 Road Pipe 13	136 36 - 302			0.00	31.89 31.89			0.00	4.53 4.53		0.00	0.		0.00	0.00	20.13 20.25	51.82	69.97	81.88	119.46	1970	1950	1950	CONC	0.10	11.0	4499.9	1.51	0.12	0.44
		50 - 502				51.05				4.00			0.	00		0.00	20.23														
Expansion Ro	ad																														
						0.00										0.00	1405														
Contribution Fr Contribution Fr			0			2.20 9.20				0.00 4.63			0.			0.00	14.85 16.24										+				
Contribution 1					0.00	11.40	0.06	0.54	0.09	4.72		0.00	0.		0.00	0.00	10.24														
			0.09	0.54	0.14	11.54			0.00	4.72		0.00	0.		0.00	0.00															
			0.16	0.71	0.32	11.85			0.00	4.72		0.00	0.		0.00	0.00															
	310	311	0.16	0.71	0.32	12.17 12.48			0.00	4.72 4.72		0.00	0.		0.00	0.00	16.24	58.99	79.76	93.38	136.34	1094	1200	1200	CONC	0.15	62.5	1510.0	1.34	0.78	0.72
	311	3111TEE		0.54	0.32	12.48			0.00	4.72		0.00	0.		0.00	0.00	17.02	57.38	77.56	90.79	132.54	1110	1200	1200	CONC	0.15	72.0	1510.0	1.34	0.90	0.74
	3111TEE	312			0.00	12.98			0.00	4.72		0.00			0.00	0.00	17.92	55.64	75.18	88.00	128.44	1077	1200	1200	CONC	0.15	76.5	1510.0	1.34	0.95	0.71
	312	313	0.06	0.54	0.09	13.07			0.00	4.72		0.00	0.		0.00	0.00	18.87	53.92	72.83	85.24	124.39	1048	1200	1200	CONC	0.15	21.5	1510.0	1.34	0.27	0.69
To POND INLE	T - 120, Pipe	e 313 - 500)			13.07				4.72			0.	00		0.00	19.14														
Contribution Fr	l om Haiku Str	eet Pine 1	18 - 136			31.89				4.53			0.	00		0.00	20.25														
Contribution Fr				5		17.85				0.06			0.			0.00	18.52														
Contribution Fr	om Haiku Str	eet, Pipe 1	35 - 136			31.49				0.00			0.	00		0.00	14.46														
	136	302	0.03	0.54	0.05	81.28			0.00	4.59	ļ	0.00	0.		0.00	0.00	20.25	51.63	69.70	81.57	119.01	4727	2250	2250	CONC	0.10	54.0	6590.6	1.66	0.54	0.72
From FUTURE	KUAD (DRU	IVIIVIOND L	<u>AND) - Plu</u> 0.06	g - 302 0.54	0.09	1.79 83.16			0.00	0.00 4.59	├──	0.00	0.		0.00	0.00	10.20				+										
	302	303	0.06	0.54	0.09	83.48			0.00	4.59		0.00	0.		0.00	0.00	20.79	50.79	68.55	80.22	117.03	4765	2250	2250	CONC	0.10	59.0	6590.6	1.66	0.59	0.72
From FUTURE						1.81				1.61			0.	00		0.00	15.29														
			0.09	0.54	0.14	85.42			0.00	6.21		0.00	0.		0.00	0.00									0.01						
			0.22	0.71	0.43	85.85			0.00	6.21	<u>├</u> ───	0.00	0.		0.00	0.00	21.39	49.90	67.35	78.80	114.95	4912	2250	2250	CONC	0.10	134.5	6590.6	1.66	1.35	0.75
From FUTURE			<u>-AND) - Plu</u> 0.10	g - 304 0.54	0.15	2.17 88.17			0.00	0.00 6.21		0.00	0.		0.00	0.00	10.17														
	304	306TEE		0.71	0.55	88.72			0.00	6.21		0.00	0.		0.00	0.00	22.74	48.00	64.76	75.76	110.49	4871	2250	2250	CONC	0.10	42.5	6590.6	1.66	0.43	0.74
POND INLET -						88.72				6.21			0.			0.00	23.17														
POND INLET	 	 		12		40.07				4 70	├ ─── │ ───		<u> </u>	00		0.00	40.44														
Contribution Fr	om Expansio 313	n Road, Pi 500	ipe 312 - 31	13	0.00	13.07 13.07			0.00	4.72 4.72	├	0.00	0.		0.00	0.00	19.14 19.14	53.46	72 10	84 40	123.30	1039	2250	2250	CONC	0.10	33.5	6590.6	1.66	0.34	0.16
	500	HW501			0.00	13.07			0.00	4.72		0.00	0.		0.00	0.00	19.14	52.89			123.30			2250			5.0	6590.6	1.66	0.05	0.16
																	_	_		_			_						_		
Definitions:																						Designed:			PROJECT						
Q = 2.78 AIR, w Q = Peak Flow in		ond (L/a)								Notes:	Rainfall-Intensity C	IN/A									ŀ	SLM Checked:			LOCATIC	N.	Cia	avan Commu	nities - Bra	azeau Phas	se 1
Q = Peak Flow II A = Areas in hec	•	onu (L/S)								,	locity = 0.80 m/s											ADF			LUCAIL	····.		City of (Ottawa		
I = Rainfall Inter	nsity (mm/h)									,	. ,											Dwg. Refe			File Ref:			Date:		Sheet No.	
	ficient																					Storm Drain	age Plan 83	-86	1		18-1030	15-Ju	n-20	50)F 6

STORM	SEWER C			SHEE7 ds Return F			METHO	OD)						
Manning	0.013		Collector I	Roads Retur oads Return	n Frequency	y = 5 years								
	LOCA									ARE	A (Ha)			
		-		2 Y	EAR			5 Y	EAR			10 `	YEAR	Γ.
Location	From Node	To Node	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	2 2
Contribution [- rom Expansio	n Road Dir				88.72				6.21				┢
Contribution	306TEE	307	0.18	0.71	0.36	89.08			0.00	6.21			0.00	┢
	307	400	0.10	0.71	0.00	89.08			0.00	6.21			0.00	┢──
	400	HW401			0.00	89.08			0.00	6.21			0.00	
POND OUTL	ET - CONSTA	NT FLOW F	1	1	0.00	0.00			0.00	0.00			0.00	┝
		4000	0.00	0.00	0.00	0.00			0.00	0.00			0.00	
	HW OUT 1002	1002 1003			0.00	0.00			0.00	0.00			0.00	┢──
			1004		0.00	0.00			0.00	0.00			0.00	┢
TO BOILINGO	<u>IXANE - 190, 1</u>		1004			0.00				0.00			+	┢
BORRISOKA	NE ROAD - CO			т Е 1300 L	/S									┢
	From POND O					0.00				0.00				F
	1003	1004			0.00	0.00			0.00	0.00			0.00	
	1004	1005			0.00	0.00			0.00	0.00			0.00	
	1005	1006			0.00	0.00			0.00	0.00			0.00	L
	1006	1007			0.00	0.00			0.00	0.00			0.00	┢
	1007	1008			0.00	0.00			0.00	0.00			0.00	┢
	1008	HW1009			0.00	0.00			0.00	0.00			0.00	┢
													+	┢──
														┢
														L
														L
														┢
														┣—
			-										+	┢──
													<u> </u>	┢─
														┢
														┡
														┢
													+	┢
													+	┢──
														┢
														L
														┡
		 		<u> </u>									+	┝
													+	┢
													+	┢
			1	1				1					+	┢
														┢
														\square
Definitions: Q = 2.78 AIR,										Notes:				
O = Dool Flow	in Litras nor soc	rand (I/s)								1) Ottown	Painfall_Inte	ncity Curv	0	

Q = Peak Flow in Litres per second (L/s)

A = Areas in hectares (ha)

= Rainfall Intensity (mm/h) R = Runoff Coefficient

1) Ottawa Rainfall-Intensity Curve 2) Min. Velocity = 0.80 m/s

		aw	7
ACITY	VELOCITY	TIME OF	RATIO
/s)	(m/s)	LOW (min	Q/Q full
			
90.6	1.66	0.13	0.73
90.6	1.66	0.13	0.73
90.6	1.66	0.16	0.73
)2.3	2.20	0.06	0.93
)2.3	2.20	0.21	0.93
)2.3	2.20	0.00	0.02
17.4	2.20 1.90	0.82 0.93	0.93 0.92
13.6	1.54	1.15	0.75
13.6	1.54	1.15	0.75
13.6	1.54	0.95	0.75
13.6	1.54	0.16	0.75
-			
		ı l	
ommu	nities - Bra	zeau Phase	e 1
ity of C	Ottawa		
ate:		Sheet No.	
15-Ju	n-20	6 O	F 6

																	- Dtt	aw	я
							FL	ow							SEWER DA				
		100 `	YEAR		Time of	Intensity	Intensity	Intensity	Intensity	Peak Flow	DIA. (mm)) DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCIT	TIME OF	RATIO
Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	Conc. (min)	2 Year (mm/h)	5 Year (mm/h)	10 Year (mm/h)	100 Year (mm/h)	Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	Ω/Ω full
2.70 AC	(i ia)		2.70 AC	2.70 AC	(11111)	(11111/11)	(1111/11)	(11111/11)	(11111/11)	Q (1/8)	(actual)	(IIOIIIIIai)		(70)	(111)	(1/8)	(11/8)		Q/Q Iuli
0.00				0.00	23.17														
0.00			0.00	0.00	23.17	47.44	63.99	74.85	109.17	4833	2250	2250	CONC	0.10	13.0	6590.6	1.66	0.13	0.73
0.00			0.00	0.00	23.30	47.27	63.76	74.58	108.77	4817	2250	2250	CONC	0.10	23.5	6590.6	1.66	0.24	0.73
0.00			0.00	0.00	23.53	46.96	63.34	74.09	108.05	4787	2250	2250	CONC	0.10	15.5	6590.6	1.66	0.16	0.73
0.00			0.00	0.00	20.00	10.00	00.01	11.00	100.00	1/0/	2200	2200	00110	0.10	10.0	0000.0	1.00	0.10	0.70
0.00			0.00	0.00						1300		-							
0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	1300	900	900	CONC	0.60	7.5	1402.3	2.20	0.06	0.93
0.00			0.00	0.00	10.06	76.59	103.89	121.79	178.04	1300	900	900	CONC	0.60	28.0	1402.3	2.20	0.21	0.93
0.00				0.00	10.27					1300									
0.00				0.00	10.27					1200									
0.00			0.00	0.00 0.00	10.27	75.79	102.80	120.50	176.14	1300 1300	900	900	CONC	0.60	108.5	1402.3	2.20	0.82	0.93
0.00			0.00	0.00	11.09	72.86	98.77	115.76	169.18	1300	975	975	CONC	0.00	106.0	1402.3	1.90	0.02	0.93
0.00			0.00	0.00	12.02	69.83	94.61	110.86	161.99	1300	1200	1200	CONC	0.20	106.0	1743.6	1.54	1.15	0.75
0.00			0.00	0.00	13.17	66.47	89.99	105.42	154.01	1300	1200	1200	CONC	0.20	106.0	1743.6	1.54	1.15	0.75
0.00			0.00	0.00	14.31	63.44	85.85	100.55	146.85	1300	1200	1200	CONC	0.20	88.0	1743.6	1.54	0.95	0.75
0.00			0.00	0.00	15.26	61.15	82.72	96.86	141.45	1300	1200	1200	CONC	0.20	14.5	1743.6	1.54	0.16	0.75
										ļ		1		ļ	ļ		1		
												1					1		
]																		
Ļ	Ļ		-			-	-			Designed:	-	÷	PROJECT	•	÷		-		
										SLM			1 0 0 ·		Cia	avan Commu	inities - Bra	azeau Phas	e 1
										Checked: ADF			LOCATIO	N:		C ites = f	Ottown		
										ADF Dwg. Refe	rence.		File Ref:			City of ODate:	Juawa	Sheet No.	
										Storm Drair		3-86			18-1030	15-Ju	n-20	6 O	F 6
										-						-		-	

3718 GREENBANK ROAD: SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix E External Reports

E.3 GEOTECHNCIAL INVESTIGATION REPORT BY PATERSON INC. (MARCH 2020)

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Noise and Vibration Studies

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Geotechnical Investigation

Proposed Mixed Use Development Half Moon Bay South - Phase 8 3718 Greenbank Road - Ottawa

Prepared For

Mattamy Homes

March 30, 2021

Report: PG5690-1

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

Table of Contents

1.0	Introduction 1
2.0	Proposed Development1
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing3
4.0	Observations4.1Surface Conditions44.2Subsurface Profile44.3Groundwater5
5.0	Discussion5.1Geotechnical Assessment.65.2Site Grading and Preparation75.3Foundation Design85.4Design of Earthquakes95.5Basement Slab/Slab-on-grade construction95.6Pavement Structure.9
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill116.2Protection Against Frost Action116.3Excavation Side Slopes116.4Pipe Bedding and Backfill126.5Groundwater Control136.6Winter Construction136.7Corrosion Potential and Sulphates14
7.0	Recommendations 15
8.0	Statement of Limitations

Appendices

- Appendix 1Soil Profile and Test Data Sheets
Symbols and Terms
Grain Size Distribution Test Results
Analytical Testing
- Appendix 2Figure 1 Key PlanFigure 2 to 5 Aerial PhotographsDrawing PG5690-1 Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Mattamy Homes to conduct a geotechnical investigation for Phase 8 of Half Moon Bay South development located at 3718 Greenbank Road, in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objective of the investigation was to:

- determine the subsoil and groundwater conditions at this site by means of a borehole program.
- provide geotechnical recommendations for the design of the proposed development based on the results of the boreholes and other soil information available.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains our findings and includes geotechnical recommendations pertaining to the design and construction of the proposed development as understood at the time of this report.

2.0 Proposed Development

It is understood that the current phase of the proposed development will consist of residential condominium blocks with or without basements and commercial areas consisting of slab on grade buildings. Associated driveways, local roadways and landscaping areas are also anticipated as part of the proposed development.

It is further understood that the proposed development will be serviced by future municipal water, sanitary and storm services.

3.0 Method of Investigation

3.1 Field Investigation

The field program for the current geotechnical investigation was carried out between February 17 and 23, 2021 and consisted of advancing a total of 12 boreholes to a maximum depth of 9.8 m below existing grade. Previous investigations were completed within the general area and surroundings of the subject site and consisted of a series of boreholes and test pits advanced to a maximum depth of 9.1 m below ground surface. The borehole locations were distributed in a manner to provide general coverage of the subject site and taking into consideration current site conditions. The test holes locations are shown on Drawing PG5690-1 - Test Hole Location Plan included in Appendix 2.

The test holes were completed using a track mounted drill operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of drilling to the required depths at the selected locations, and sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using a 50 mm diameter splitspoon (SS) sampler. All soil samples were visually inspected and initially classified on site. The auger, split-spoon and grab samples were placed in sealed plastic bags and transported to the our laboratory for examination and classification. The depths at which the auger, and split-spoon samples were recovered from the test holes are shown as AU, and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

The thickness of the silty sand deposit was evaluated by a dynamic cone penetration testing (DCPT) completed at BH 7-21. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed at the test hole locations were recorded in detail in the field. Our findings are presented in the Soil Profile and Test Data sheets in Appendix 1.

Groundwater Monitoring

All boreholes were fitted with flexible piezometers to allow groundwater level monitoring. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data sheets in Appendix 1.

Sample Storage

All samples from the current investigation will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were determined by Paterson personnel and surveyed in the field by Paterson using a handheld, high precision GPS. The ground surface elevation at each test hole location is referenced to a geodetic datum. The locations of the boreholes are presented on Drawing PG5690-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were collected from the subject site during the investigation and were visually examined in our laboratory to review the results of the field logging. Three grain size distribution analyses were completed on selected soil samples. The results of our testing are presented in Subsection 4.2 and on Grain Size Distribution Analysis sheets presented in Appendix 1.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is a former agricultural land. The bulk of the current phase of the proposed development has been recently cleared of topsoil and peat which has been stockpiled in several piles across the site. Generally, the ground surface across the subject site is relatively flat within the central portion and slopes up towards the edges. It should be noted that parts of the subject site had undergone excavation and in-filling activities as part of a previous sand extraction operation. Historical aerial photographs of the site indicating fill movement activities since 1976 are presented in Appendix 2. The area to the south is significantly elevated. The area to the north and west also present a steep slope where fill was encountered.

The site is bordered to the south by a park and vacant land and to the north and west by future residential developments and the east by the future Greenbank Road.

4.2 Subsurface Profile

Generally, the subsurface profile across the subject site consists of varying amounts of fill consisting of silty sand mixed with occasional silty clay, gravel and cobbles. It should be noted that the fill thickness within BH 9-21, BH 10-21 and BH 11-21 ranged from 4.5 m and up to 8.23 m below ground surface.

A deep deposit of compact to dense brown silty sand to underlain the fill layer. Gravel and cobbles were occasionally encountered within the silty sand layer. The silty sand was observed to be underlain by a glacial till deposit composed of dense brown sandy silt to silty sand with gravel, cobbles and boulders within BH 3-21.

Practical refusal to augering was encountered at a range between 4.6 m and 8.3 m below existing ground surface. Practical refusal to DCPT was encountered at 9.8 m below existing ground surface at BH 7-21.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Bedrock

Based on available geological mapping, the bedrock in the subject area consists of Paleozoic interbedded Sandstone and Dolomite from the March formation, with an overburden drift thickness of 10 to 15 m depth.

Grain Size Distribution and Hydrometer Testing

Grain size distribution (sieve and hydrometer analysis) testing was completed on three selected soil samples. The results of the grain size analysis are summarized in Table 1 and presented on the Grain-Size Distribution and Hydrometer Testing Results sheets in Appendix 1.

Table 1 - Grain Size Distribution										
Borehole	Sample	Gravel (%)	Sand (%)	Silt and Clay (%)						
BH2-21	SS3 & SS4	1.8	89.4	8.8						
BH4-21	SS4 & SS5	0	88.9	11.1						
BH8-21	SS4 & SS5	46.9	43.1	10						

4.3 Groundwater

Groundwater levels were measured in the groundwater monitoring wells on March 4, 2021. The piezometers in BH 7-21, BH 11-21 and BH 12-21 were damaged or buried and could not be recorded. The remaining boreholes were dry upon completion.

Long-term groundwater level can also be estimated based on the observed moisture levels, colour and consistency of the recovered soil samples. Based on these observations, the long-term groundwater table can be expected well below 8 m below existing ground surface. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed mixeduse development. It is anticipated that the proposed buildings will be founded over conventional footings placed over an undisturbed compact to dense silty sand or dense glacial till bearing surface or an engineered fill pad over an approved fill subgrade bearing medium.

To adequately distribute the foundation loads in areas where the existing fill is encountered below the building footprint, a woven geotextile liner, such as Terratrack 200 or equivalent, should be placed 500 mm below design underside of footing level and extend at least 1 m horizontally beyond the footing face. A biaxial geogrid, such as Terrafix TBX2500 or equivalent, should be placed over the woven geotextile liner. A minimum 500 mm thick pad, consisting of a Granular B Type II, compacted to 98% of its SPMDD should be placed up to design underside of footing level. Prior to placement of the abovenoted engineered fill pad, it is recommended that a proof-rolling program be completed by a vibratory roller making several passes and approved by Paterson personnel over the sub-excavated area below the proposed footings.

For areas where a fill layer is encountered below the granular layer for the floor slab, it is recommended to sub-excavate 500 mm below the underside of floor slab granulars and place a woven geotextile liner, such as Terratrack 200W or equivalent, and a biaxial geogrid, such as Terrafix TBX2500 or equivalent. It is recommended that a proof-rolling program be completed by a vibratory roller making several passes and approved by Paterson personnel prior to placement of the geotextile liner and biaxial geogrid. Any poor performing areas should be removed and reinstated with a select subgrade fill compacted to 98% of its SPMDD under dry and above freezing temperatures.

The proof-rolling program should also be completed across paved areas to ensure that any poor performing soils are removed prior to pavement structure placement.

Due to the absence of a silty clay deposit, the aforementioned site will not be subjected to permissible grade raise restrictions. Also, no tree planting setback restrictions are required for the subject phase of the proposed development due to the absence of a silty clay deposit.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Fill Placement

Fill used for grading beneath the proposed building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be placed in lifts of 300 mm thick or less and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 99% of the Standard Proctor Maximum Dry Density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of the SPMDD.

Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

Proof Rolling

Proof rolling of the subgrade is required in areas where the existing fill, free of significant amounts of organics and deleterious materials, is encountered. It is recommended that the subgrade surface be proof-rolled **under dry conditions and in above freezing temperatures** by an adequately sized roller making several passes to achieve optimum compaction levels. The compaction program should be reviewed and approved by the geotechnical consultant at the time of construction.

5.3 Foundation Design

Conventional Spread Footings

Footings placed directly on an undisturbed, compact silty sand or glacial till bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.

Footings placed over a minimum 500 mm thick geogrid reinforced engineered pad, consisting of a Granular A or Granular B Type II or approved granular fill alternative placed in maximum 300 mm loose lifts and compacted to 98% of its SPMDD, placed over a subgrade soil approved by the Paterson personnel at the time of construction, can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **250 kPa**.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Footings placed on a soil bearing surface and designed using the bearing resistance values at SLS given above will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively.

Where the silty sand subgrade is found to be in a loose state, the contractor should compact the subgrade under dry conditions and above freezing temperatures, using suitable compaction equipment, making several passes and approved by Paterson.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class D**. Based on the current information, including the level of groundwater table and compactness of the underlying sand layer, the soil underlying the subject site is not susceptible to liquefaction. Reference should be made to the latest revision of the 2012 Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Basement Slab / Slab-on-Grade Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the native soil and/or approved fill pad (placed as per Subsection 5.0) will be considered to be an acceptable subgrade surface on which to commence backfilling for the floor slab. Any poor performing areas should be removed and reinstated with an engineered fill, such as Granular B Type II.

For slab-on-grade areas, it is recommended that the upper 200 mm of sub-slab fill consist OPSS Granular A crushed stone. For basement slabs, it is recommended that the upper 200 mm of sub-floor fill consist of 19 mm clear crushed stone

5.6 Pavement Structure

Driveways, local residential roadways, heavy truck parking/loading areas and roadways with bus traffic are anticipated at this site. The proposed pavement structures are shown in Tables 2, 3 and 4.

Table 2 - Recommended Pavement Structure - Driveways and at-grade car parking areas								
Thickness (mm)	Material Description							
50	Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
300	SUBBASE - OPSS Granular B Type II							
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill								

Report: PG5690-1 March 30, 2021

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

Table 3 - Recommended Pavement Structure - Local Residential Roadways and Heavy Truck Parking / Loading Areas

Thickness (mm)	Material Description					
40	Wear Course - Superpave 12.5 Asphaltic Concrete					
50	Binder Course - Superpave 19.0 Asphaltic Concrete					
150	BASE - OPSS Granular A Crushed Stone					
400	SUBBASE - OPSS Granular B Type II					
SUBGRADE - Fither fill in situ soil or OPSS Granular B Type I or II material placed over in situ soil						

SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil

Material Description
Wear Course - Superpave 12.5 Asphaltic Concrete
Upper Binder Course - Superpave 19.0 Asphaltic Concrete
Lower Binder Course - Superpave 19.0 Asphaltic Concrete
BASE - OPSS Granular A Crushed Stone
SUBBASE - OPSS Granular B Type II

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment. Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

Proposed Mixed Use Development Half Moon Bay South - Phase 8 - 3718 Greenbank Road - Ottawa

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

A perimeter foundation drainage system is recommended for proposed structures. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated, corrugated, plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of freedraining, non frost susceptible granular materials. The site materials will be frost susceptible and, as such, are not recommended for re-use as backfill unless a composite drainage system (such as system Delta Drain 6000 or Miradrain G100N) connected to a perimeter drainage system is provided.

6.2 **Protection Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum 1.5 m thick soil cover should be provided for adequate frost protection of heated structured, or an equivalent combination of soil cover and foundation insulation.

Exterior unheated footings, such as those for isolated exterior piers and loading docks, are more prone to deleterious movement associated with frost action than the exterior walls of the heated structure and require additional protection, such as soil cover of 2.1 m or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of the excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertaken by opencut methods (i.e. unsupported excavations).

Unsupported Excavations

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

At least 150 mm of OPSS Granular A should be used for pipe bedding for sewer and water pipes. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe, should consist of OPSS Granular A or Granular B Type II with a maximum size of 25 mm. The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to 98% of the material's SPMDD.

It should generally be possible to re-use the site excavated materials above the cover material if the operations are carried out in dry weather conditions.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone, (about 1.5 m below finished grade) and above the cover material should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 225 mm thick lifts and compacted to 95% of the materials SPMDD.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Permit to Take Water

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum of 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project, where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a very low to slightly aggressive corrosive environment.

7.0 Recommendations

It is recommended that the following be completed once the master plan and site development are determined:

- **Q** Review detailed grading plan(s) from a geotechnical perspective.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to placing backfilling materials.
- **G** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with Paterson's recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with Paterson's present understanding of the project. Paterson requests permission to review the grading plan once available. Paterson's recommendations should be reviewed when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and the test hole log are furnished as a matter of general information only. Test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests to be notified immediately in order to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Mattamy Homes or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng

Report Distribution:

- Mattamy Homes (1 digital copy)
- Image: Paterson Group (1 copy)

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

GRAIN SIZE DISTRIBUTION ANALYSIS

ANALYTICAL TESTING

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

End of Borehole

(Piezometer dry - March 4, 2021)

FILE NO. PG5690

REMARKS										FG3090	J	
BORINGS BY CME 55 Power Auger				D	ATE 2	2021 Feb	ruary 17		HOLEN	^{ю.} BH 1-21		
SOIL DESCRIPTION			SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m				
	STRATA PLOT	ТҮРЕ	NUMBER	°8 ≈COVERY	N VALUE of RQD	(m)	(m)			ontent %	Piezometer Construction	
GROUND SURFACE	S.H.S	H	ĺΩN	REC	N O		100.45	20	40	60 80	Piez	
Compact to dense, brown SILTY		AU	1			0-	-103.45					
Compact to dense, brown SILTY SAND		ss	2	75	17	1-	-102.45					
		ss	3	75	14	2-	-101.45					
		ss	4	83	17							
- Trace gravel by 3.0 m depth		ss	5	83	13	3-	-100.45					
		ss	6	67	25	4-	-99.45					
		ss	7	75	11	5-	-98.45					
		ss	8	75	20		07.45					
		ss	9	83	27	6-	-97.45					
		ss	10	92	35	7-	-96.45					

SS

SS

8.99

11

12

83

83

24

32

8+95.45

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

REMARKS

FILE NO. PG5690

HOLE NO. BH 2-21 BORINGS BY CME 55 Power Auger DATE 2021 February 17 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0+102.61XXXXXXXX AU 1 Compact to dense, brown SILTY SAND 1+101.61 SS 2 75 25 SS 3 75 19 2+100.61 SS 4 75 56 3+99.61SS 5 83 32 4+98.61 SS 6 39 67 SS 7 75 28 5+97.61SS 8 75 32 6+96.61 SS 9 75 33 7+95.61 SS 10 75 30

SS

SS

8.99

11

12

75

75

37

30

8+94.61

- Trace gravel by 7.5 m depth

(Piezometer dry - March 4, 2021)

End of Borehole

20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FILE NO.

40

Shear Strength (kPa)

20

▲ Undisturbed

60

80

△ Remoulded

100

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PG5690	
REMARKS									HOLE NO	BH 3-21	
BORINGS BY CME 55 Power Auger				D	ATE 2	2021 Feb	ruary 18			DI1 J-2 I	
SOIL DESCRIPTION	РІОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		ير on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			• N	later Con	tent %	Piezometer Construction
GROUND SURFACE	E S	Ĥ	ŊŊ	REC	N V OF		407.00	20	40 6		Piez
FILL: Brown silty sand, some crushed stone and gravel 0.61		AU	1			0-	-107.88				
Dense brown SILTY SAND some gravel1.07		-ss	2	33	+50	1-	-106.88				
GLACIAL TILL: Dense brown sandy silt to silty sand with gravel, cobbles and boulders		ss	3	25	+50	2-	-105.88				
		ss	4	50	+50						
		ss	5	50	+50	3-	-104.88				
		ss	6	33	+50	4-	-103.88				
		ss	7	42	+50	5-	-102.88				
		ss	8	33	+50	6-	-101.88		· · · · · · · · · · · · · · · · · · ·		
6.86		ss	9	42	+50						
End of Borehole											
Practical refusal to augering at 6.86 m depth											
(Piezometer dry - March 4, 2021)											

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

TILL NO.	PG5690
HOLE NO.	

FILE NO.

BORINGS BY CME 55 Power Auger		-1		D	DATE 2	2021 Feb	ruary 18	HOLE NO. BH	4-21
SOIL DESCRIPTION						DEPTH	ELEV.	Pen. Resist. Blows/0. ● 50 mm Dia. Cone	
		ТҮРЕ	NUMBER	°⊗ RECOVERY	N VALUE or RQD	(m)	(m)	• Water Content %	e.
GROUND SURFACE FILL: Brown silty sand some clay, gravel, cobbles, trace topsoil		AU	1	<u></u>	-	0-	-105.21		30 C
Compact to dense, brown SILTY	3XXX	ss	2	50	14	1-	-104.21		
SAND		ss	3	50	27	2-	-103.21		
		ss	4	83	28	3-	-102.21		
		ss	5	83	25		102.21		
		ss	6	83	30	4-	-101.21		
		ss N	7	83	28	5-	-100.21		
		ss 7	8	83	34	6-	-99.21		
		ss	9	83	35	7-	-98.21		
		∦ ss ∦ ss	10 11	83 75	29 25				
		ss ss ss	12	58	31	8-	-97.21		
8.99) 								
Piezometer dry - March 4, 2021)									
								20 40 60 8 Shear Strength (kPa ▲ Undisturbed △ Remou	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

BORINGS BY CME 55 Power Auge

Geodetic

	PG5690
HOLE NO.	

FILE NO.

BH 5-21 DATE 2021 February 18 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone • (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Ο Water Content % **GROUND SURFACE** 80 20 40 60 0+105.57FILL: Brown silty sand with clay, AU 1 gravel, trace topsoil 0.81 1+104.57 SS 2 25 58 Compact to dense, reddish brown SILTY SAND SS 3 58 7 2+103.57SS 4 83 - Brown by 2.2 m depth 14 3+102.57 SS 5 83 9 4+101.57 SS 6 18 58 SS 7 32 83 5+100.57SS 8 100 16 6+99.57 SS 9 83 11 7+98.57 SS 10 75 19 SS 11 75 23 8+97.57 SS 12 75 24 8.99 End of Borehole (Piezometer dry - March 4, 2021) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

DATUM Geodetic

REMARKS

PG5690

FILE NO.

BORINGS BY CME 55 Power Auger	-	1	DATE 2021 February 19							BH 6-21			
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.		Resist. Bl 50 mm Di	ows/0.3m a. Cone	<u> </u>		
	STRATA I	ТҮРЕ	NUMBER	» RECOVERY	VALUE r RQD	(m)	(m)		Water Co		Piezometer Construction		
GROUND SURFACE	ິ້		n N	REC	N V.			20	40	60 80	Cor		
FILL: Brown silty sand		AU	1			-0-	-103.25						
Compact to dense brown SILTY		ss	2	75	46	1-	-102.25						
		ss	3	58	22	2-	-101.25						
		ss	4	75	25								
		ss	5	75	23	3-	-100.25						
		ss	6	67	29	4-	-99.25						
		ss	7	67	28	5-	-98.25						
		ss	8	67	26	6-	-97.25						
		ss	9	75	27								
		ss	10	67	22	7-	-96.25						
		ss	11	67	22	8-	-95.25						
8.99)	ss	12	67	20								
End of Borehole													
(Piezoemter dry - March 4, 2021)													
								20 She ▲ Undis	ar Streng		00		

SOIL PROFILE AND TEST DATA

FILE NO.

PG5690

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

				_			10		HOLE	^{NO.} BH	7-21	
BORINGS BY CME 55 Power Auger					ATE 2	2021 Feb	ruary 19					
SOIL DESCRIPTION	РГОТ			IPLE		DEPTH (m)	ELEV. (m)			Blows/0. Dia. Cone		tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0 V	Vater Co	ontent %	, 0	Piezometer Construction
GROUND SURFACE			ų	RE	zv	0-	-103.78	20	40	60 8	80	ΞŎ
FILL: Brown silty sand, some gravel		AU	1			0	100.70					
Compact to dense, brown SILTY SAND		ss	2	50	25	1-	-102.78					
Dynamic Cone Penetration Test		ss	3	75	28	2-	-101.78					
commenced at 2.13 m depth.		ss	4	75	17	3-	-100.78					
		ss	5	75	17				,			3
		ss	6	67	20	4-	-99.78					
- Trace gravel by 4.5 m depth		ss	7	67	53	5-	-98.78					
		ss	8	67	45	6-	-97.78					
- Some gravel by 6.7 m depth		ss	9	67	23						//*	20
		ss	10	75	49	7-	-96.78					
		ss	11	67	83	8-	-95.78				18	57
Practical refusal to augering 8.99 m		ss	12	75	57	9-	-94.78				12	8
depth 9.75											12	3
End of Borehole												
Practical refusal to DCPT at 9.75 m depth												
								20 Shea ▲ Undist		60 € gth (kPa △ Remou	a)	00

SOIL PROFILE AND TEST DATA

Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE N	o. PG569	90
REMARKS									HOLE	NO	
BORINGS BY CME 55 Power Auger				D	ATE 2	2021 Feb	ruary 22			BH 8-2	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	er
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD		()	• N	later Co	ontent %	Piezometer Construction
GROUND SURFACE	LS LS	H	NN	REC	N O		100.10	20	40	60 80	Piez Con
FILL: Brown silty sand with gravel and crushed stone0.61		AU	1			0-	-106.13				
Compact to dense, brown SILTY SAND with gravel and cobbles		ss	2	75	47	1-	-105.13				
		ss	3	75	55	2-	-104.13				
		ss	4	50	45						
		ss	5	50	51	3-	-103.13				
		ss	6	50	56	4-	-102.13				
		ss	7	33	49	5-	-101.13				
		ss	8	50	61						
		ss	9	50	24	6-	-100.13				
		ss	10	33	31	7-	-99.13				
		ss	11	50	51	8-	-98.13				
8.38 End of Borehole											
Practical refusal to augering at 8.38 m depth											
(Piezometer dry - March 4, 2021)											
								20	40	60 80	100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

FILE NO.	PG5690
HOLE NO.	

REMARKS										1 00000	
BORINGS BY CME 55 Power Auger				D	ATE 2	2021 Feb	ruary 22		HOLE NO	^{D.} BH 9-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Bl 0 mm Dia	ows/0.3m a. Cone	- u
	STRATA I	ТҮРЕ	NUMBER	°. © © © © © © ©	VALUE r rod	(m)	(m)		/ater Cor		Piezometer Construction
GROUND SURFACE		-	IN	REC	N OL	0-	-109.17	20	40 6	50 80	Pie Co
ORGANICS0.05	\mathbb{X}	AU	1			0	109.17				
FILL: Brown silty clay with sand, gravel, cobbles, trace topsoil		ss	2	17	21	1-	-108.17				
		ss	3	25	11	2-	-107.17				
		ss	4	8	4		100.17				
		ss	5	50	7	3-	-106.17				
4.57		ss	6	17	26	4-	-105.17				
End of Borehole	XXX.										
Practical refusal to augering at 4.57 m depth											
(Piezometer dry - March 4, 2021)											
								20 Shea ▲ Undist	ar Streng	50 80 1 th (kPa)	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS	10-21	
SOIL DESCRIPTION BOIL OF SOIL DESCRIPTION BOIL OF SOIL DESCRIPTION BOIL OF SO MANDIA. Cone		ion.
	zomet	Construction
	80 <u>6</u>	, p O
TOPSOIL 0+107.98		
FILL: Brown to grey silty clay with sand, gravel, cobbles, trace topsoil		
SS 2 42 12 1+106.98		
SS 3 42 5 2+105.98		
SS 4 17 3		
SS 5 33 5		
SS 6 25 5 4-103.98		
SS 7 50 10 5 100 00		
5.49		
FILL: Brown silty sand, some gravel SS 8 33 7		
FILL: Brown to grey silty clay with		
sand, gravel, trace wood and organics		
SS 10 33 6 7 100.96		
SS 11 4 9 8-99.98		
End of Borehole8.23		
(Piezometer dry - March 4, 2021)		
	0 100	
20 40 60 8 Shear Strength (kPa ▲ Undisturbed △ Remou		

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

-	PG5690

FILE NO.

HOLE NO. BH11-21 BORINGS BY CME 55 Power Auger DATE 2021 February 23 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY VALUE r ROD NUMBER TYPE o/0 \cap Water Content % N OF **GROUND SURFACE** 80 20 40 60 0+105.87TOPSOIL 0.05 AU 1 FILL: Brown silty clay some sand, gravel, trace topsoil 1+104.87 - Wood fragments present at 0.9 m SS 2 50 4 depth SS 3 33 5 2+103.87SS 4 6 50 3+102.87 SS 5 42 23 3.51 FILL: Brown silty sand with gravel, 4+101.87 trace clay SS 6 28 8 SS 7 33 21 5.03 5+100.87FILL: Brown silty clay with sand, gravel, cobbles, trace organics SS 8 25 11 6+99.87 - Increasing sand with depth SS 9 5 33 7+98.87 SS 10 17 +507.54 FILL: Brown silty sand with gravel, trace topsoil SS 11 42 28 8+97.87 8.23 Compact brown SILTY SAND with gravel, trace cobbles SS 12 42 67 9+96.879.14 End of Borehole SS 13 0 +50(Piezometer destroyed - March 4, 2021) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FILE NO.

PG5690

Geotechnical Investigation Proposed Mixed Use Development 3718 Greenbank Road - Ottawa, Ontraio

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

REMARKS		

Geodetic

BORINGS BY CME 55 Power Auger				п		2021 Feb	ruary 23		HOLE N	^{o.} BH12-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			lows/0.3m ia. Cone	, =
	STRATA F	ТҮРЕ	NUMBER	° ≈ © ©	N VALUE of RQD	(m)	(m)			intent %	Piezometer Construction
GROUND SURFACE	ŝ	•	ĨŇ	REC	zö	0	-101.30	20	40	60 80	Co Pie
FILL: Brown silty sand with gravel, trace clay		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1								-
		ss	2	50	64	1-	-100.30				
		ss	3	50	69	2-	-99.30				-
2.90		ss	4	42	28						
End of Borehole		<u> </u>									
(Piezometer destroyed - March 4, 2021)								20 Shea	40 ar Streng	60 80 1 pth (kPa)	00

Soil PROFILE AND TEST DATA Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. PG3607 HOLE NO. BORINGS BY CME 75 Power Auger DATE December 10, 2015

SOIL DESCRIPTION AROUND SURFACE ILL: Grey silty sand with clay, ravel and wood	PLOT		SAN	IPLE		Decembe	ELEV.	Pen. Resist. Blows/0.3m					
	STRATA PL	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD	(m)	(m)		Water Content %				
						0-	-108.75		0 60 80	P			
		ss	1	42	13	1-	-107.75	φ		111111111111			
		∦ss ∦ss	2 3	25 33	21 5	2-	-106.75						
		ss	4	42	4	3-	-105.75	0		իրդդիրի			
FILL: Grey silty sand with clay, ravel and wood		ss	5	42	3	4-	-104.75	•		յիկդիկիկ			
		ss	6	42	3	5-	-103.75	0					
		ss	7	17	5	6-	-102.75	0		ներիներե			
		∦ss −ss	8 9	25 0	37 50+	7-	-101.75			որիրիրի			
		ss	10	58	9			O					
		ss	11	0	1	8-	-100.75						
nd of Borehole	14	_				9-	-99.75						
3H dry to 9.14m depth - July 28, 016)													
								20 40 Shear S ▲ Undisturbe	trength (kPa)	00			

patersong	1	ır	Con	sulting		SOIL	PRO	FILE AI	ND 1	TEST DATA	
154 Colonnade Road South, Ottawa, O		-		jineers	Ba			igation ban Expa	nsion	l	
DATUM Geodetic elevations inter	rpolate	d from	n City	of Ottav	_				FILE	NO. PG3607	
REMARKS									HOL	^{E NO.} TP 1-15	
BORINGS BY Backhoe					TE [Decembe	er 2, 2015				
SOIL DESCRIPTION	A PLOT			MPLE 것	Шо	DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	oter
	STRATA	STRATA TYPE NUMBER © RECOVERY N VALUE						0 V	Vater	Content %	Piezometer Construction
GROUND SURFACE		G	1	RE	z v	0-	105.10	20	40	60 80	ΞŎ
			'								
						1 -	104.10				-
Compact, brown SILTY SAND.											-
Compact, brown SILTY SAND , trace boulders and cobbles											
		G	2								
											-
						2-	103.10				
											-
End of Test Pit		-				3-	-102.10				
(TP dry upon completion)											
										ength (kPa)	00
								▲ Undis	turbed	\triangle Remoulded	

patersong	n	Ir	Con	sulting		SOIL	. PROF	FILE AI	ND 1	EST	DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	Barrl			igation ban Expa	nsion	l		
DATUM Geodetic elevations inte	rpolate	d from	i City	of Ottav		-			FILE	NO.	G3607	
REMARKS									HOL	F NO		
BORINGS BY Backhoe				DA	TE De	cembe	r 2, 2015				P 2-15	
SOIL DESCRIPTION	PLOT		SAN			EPTH (m)	ELEV. (m)			Blows/ Dia. Co		er ion
	STRATA	ЭДХТ	NUMBER	RECOVERY	VALUE r ROD			0 V	Vater	Content	%	Piezometer Construction
GROUND SURFACE	ι. Γ		IN	RE(N O H	0	106 90	20	40	60	80	C Pie
0.	10	G	1				-106.80					
Compact, brown SILTY SAND							-105.80					
		G	2									
End of Test Pit (TP dry upon completion)	<u>00 </u>					3-	-103.80 -					
								20 Shea ▲ Undis		60 ength (k △ Rem	Pa)	00

patersong	n	ır	Con	sulting		SOIL	_ PROI		ND ⁻	TEST	DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	Ba			igation ban Expa	nsior	ı		
DATUM Geodetic elevations inte	rpolate	d from	n City	of Otta					FILE	E NO.	G3607	
REMARKS									HOL	F NO.		
BORINGS BY Backhoe					TE [Decembe	er 1, 2015		TP 8-1			
SOIL DESCRIPTION	A PLOT			APLE צ	E o	DEPTH (m)	ELEV. (m)			. Blows/ n Dia. Co		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0 \	Nater	Vater Content %		
GROUND SURFACE				8	N V	0-	109.30	20	40	60	80	ĒŎ
		G	1									
						1-	-108.30					
Dense, brown SILTY SAND												
										•••••••••••••••••••••••••••••••••••••••		
						2-	-107.30					-
3.	00	G	2			2	-106.30					
End of Test Pit (TP dry upon completion)						3-	-106.30					
								20 She ▲ Undis		60 ength (k △ Rem	Pa)	00

patersongr		ır	Con	sulting		SOIL	PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa, Ont		-		ineers	Ba	eotechnic arrhaven S tawa, Or	South Ur	igation ban Expa	nsion		
DATUM Geodetic elevations interp	olated	d from	n City	of Otta		-	Itario		FILE NO	D. PG3607	
REMARKS									HOLE	10	
BORINGS BY Backhoe					TE	Decembe	r 2, 2015			TP 9-15	
SOIL DESCRIPTION	PLOT.			/IPLE 건		DEPTH (m)	ELEV. (m)			lows/0.3m ia. Cone	ter tion
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD			0 V	Vater Co	ontent %	Piezometer Construction
GROUND SURFACE	01		2	RE	z	0-	-108.40	20	40	60 80	ĕĞ
TOPSOIL0.20		_									
Brown SILTY SAND , trace cobbles		_ G	1			1-	-107.40				
						2-	-106.40				
2.00		[–] G	2								
End of Test Pit (TP dry upon completion)		_ G	2			3-	-105.40				
								20 Shea ▲ Undist		60 80 1 gth (kPa) △ Remoulded	00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St, is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

Low Sensitivity:	St < 2
Medium Sensitivity:	2 < St < 4
Sensitive:	$4 < S_t < 8$
Extra Sensitive:	8 < St < 16
Quick Clay:	St > 16

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50 0-25	Poor, shattered and very seamy or blocky, severely fractured Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

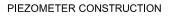
PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

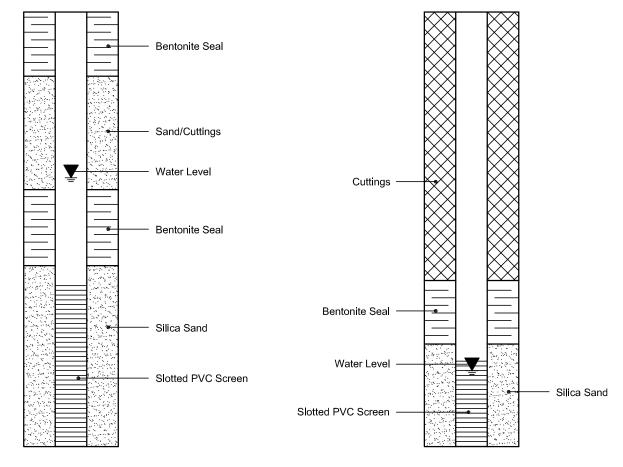
WC%	-	Natural water content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic Limit, % (water content above which soil behaves plastically)
PI	-	Plasticity Index, % (difference between LL and PL)
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
0	•	and the second discuss the second

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'c / p'o
Void Rati	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)


PERMEABILITY TEST


k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

patersongroup consulting engineers	group ineers						N	SIEVE ANAL YSIS ASTM C136	S	
CLIENT:	Mattamy Homes	DESCRIPTION:		Soil		FILE NO:			PG5690	
CONTRACT NO .:		SPECIFICATION:		Silty Sand		LAB NO:			23721	
PRO IFCT.	3718 Greenhank Road	INTENDED USE:				DATE RECEIVED:	ö		25-Mar-21	
		PIT OR QUARRY:		in-Situ		DATE TESTED:			26-Mar-21	
DATE SAMPLED:	17-Feb-21	SOURCE LOCATION:	:NO	BH2-21 SS3 & SS4	SS4	DATE REPORTED:	ED:		29-Mar-21	
SAMPLED BY:	G. Paterson	SAMPLE LOCATION:	:NC	1.5 - 2.9 m		TESTED BY:			DK	
0.01		0.1		Sieve Size (mm) 1	(mm	10			100	
100.0										[
0.06										
80.0										
70.0										
0.09										
% 50.0										
40.0										
000										
0.02										
20.0										
10.0										
0.0			Sand	-	-	Gravel	-	-		ר ר
	Slit and Clay	Fine	\vdash	Medium Coarse	Fine		Coarse		LODDIE	
Identification		Soil Classification	fication		MC(%)	LL	Ы	Ы	1 ₃₈	o Cu
	D100 D60 19.0 0.32	D30 0.19	D10 0.082	Gravel (%) 1.8	Sant 85	Sand (%) 89.4	Silt (%)		8.8	
	Comments:									
		_0	Curtis Beadow				Joe Fosyth, P. Eng.	1, P. Eng.		
REVIEWED BY:	BY:	n	~ hu			Bee	T			
						2				

patersongroup consulting engineers	Igroup gineers							SIEVE ANALYSIS ASTM C136	S	
CLIENT:	Mattamy Homes	DESCRIPTION:		S	Soil	FILE NO:			PG5690	
CONTRACT NO.:		SPECIFICATION:	ïz	Silty	Silty Sand	LAB NO:			23722	
PROJECT.	3718 Greenhank Road	INTENDED USE:	üi			DATE RECEIVED:	:D:		25-Mar-21	
		PIT OR QUARRY:	Υ.:	ini	in-Situ	DATE TESTED:			26-Mar-21	
DATE SAMPLED:	17-Feb-21	SOURCE LOCATION:	TION:	BH4-21 S	BH4-21 SS4 & SS5	DATE REPORTED:	ED:		29-Mar-21	
SAMPLED BY:	G. Paterson	SAMPLE LOCATION:	TION:	2.29 -	2.29 - 3.66 m	TESTED BY:			DK	
0.01		0.1		Sieve 1	Sieve Size (mm) 1	10			100	
100.0										
0.06										
80.0										
			*							
70.0										
60.0			<u> </u>							
			_							
20:0 %										
40.0										
30.0										
			•							
20.0										
10.0		•								
0.0										
	Silt and Clay		Fine Danu	Medium Coarse	Fine		Coarco		Cobble	
Identification		Soil Clas	ation		MC(%)		PL	- 2	ප	Cu
		030		Graval (9/)	ù	nd (0/)	#U	Silt (0/)	1.80 Clavi /o/)	- 81
	4.8 0.23	0.17	0.07	0.0	00	3anu (%) 88.9			оау 11.1	(%)
	Comments:									
			Curtis Beadow				Joe Fosyth, P. Eng.	th, P. Eng.		
REVIEWED BY:) BY:	1	a lin	1		De	As			
						2				

patersongroup consulting engineers	Igroup gineers						SIE	SIEVE ANALYSIS ASTM C136		
CLIENT:	Mattamy Homes	DESCRIPTION:		Soil		FILE NO:			PG5690	
CONTRACT NO .:		SPECIFICATION:		Silty Sand	8	LAB NO:			23723	
PROJECT.	3718 Greenhank Road	INTENDED USE:				DATE RECEIVED:	ö		25-Mar-21	
		PIT OR QUARRY:	Υ:	in-Situ		DATE TESTED:			26-Mar-21	
DATE SAMPLED:	17-Feb-21	SOURCE LOCATION:	TION:	BH8-21 SS4 & SS5	sS5	DATE REPORTED:	ED:		29-Mar-21	
SAMPLED BY:	G. Paterson	SAMPLE LOCATION:	TION:	2.29 - 3.66 m	ε	TESTED BY:			DK	
0.01	_	0.1		Sieve Size (mm) 1	(mm)	10			100	
I 00.0										
0.06										
80.0										
							•			
70.0										
60.0										
					•					
0.06 %										
40.0										
30.0										
20.0										
10.0										
0.0			Sand			Gravel	_			
	Silt and Clay		\vdash	Medium Coarse	Fine		Coarse	1	Cobble	
dentification		Soil Clas	Soil Classification		MC(%)	۲۲	Ы	Ы	S Ed	Cu 101 F
	D100 D60 37.5 6.8	D30 1.25	D10 0.065	Gravel (%) 46.9	San 4	Sand (%) 43.1	Silt (%)	10.0		
	mments:									
	-		Curtis Beadow				.loe Fosvth, P. Fng.	P. Fnd.		
REVIEWED BY:	D BY:	1/	and have			De	Detter	, D		
		2				11				

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 31927

Report Date: 25-Feb-2021

Order Date: 19-Feb-2021

Project Description: PG5690

	Client ID:	BH7-21-SS5	-	-	-
	Sample Date:	19-Feb-21 09:00	-	-	-
	Sample ID:	2108430-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	95.7	-	-	-
General Inorganics		•			
рН	0.05 pH Units	7.30	-	-	-
Resistivity	0.10 Ohm.m	143	-	-	-
Anions					
Chloride	5 ug/g dry	7	-	-	-
Sulphate	5 ug/g dry	<5	-	-	-

APPENDIX 2

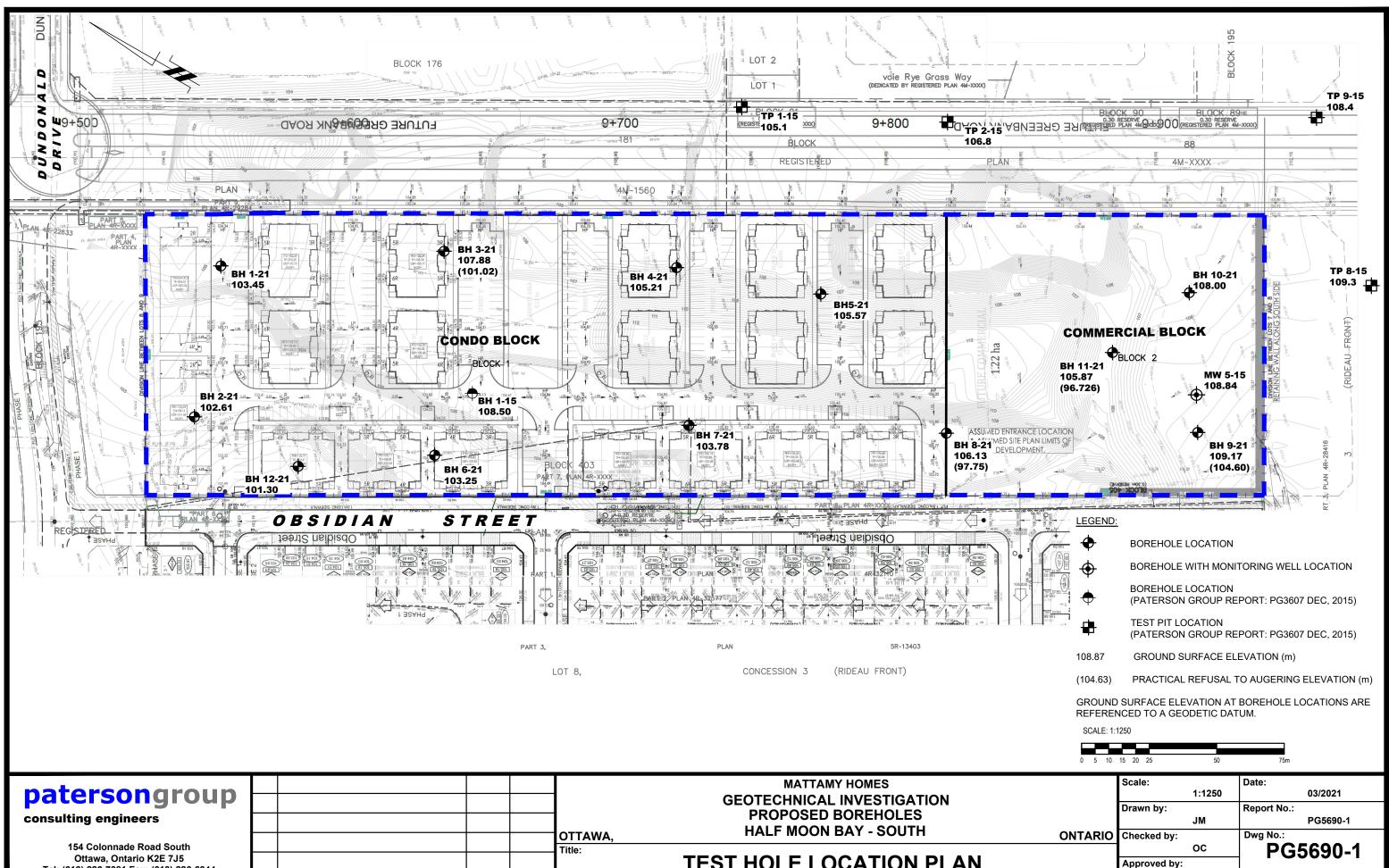
FIGURE 1 - KEY PLAN

FIGURE 2 TO 5 - AERIAL PHOTOGRAPHS

DRAWING PG5690-1 - TEST HOLE LOCATION PLAN

KEY PLAN

Aerial Photograph - 1976


Aerial Photograph - 2002

Aerial Photograph - 2008

Aerial Photograph - 2019

consulting	engineers
consulting	engineers

Tel: (613) 226-7381 Fax: (613) 226-6344

NO.

REVISIONS

DATE

INITIAL

TEST HOLE LOCATION PLAN

Revision No.:

DJG

Appendix F Drawings

Appendix F DRAWINGS

