

Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario

Client: Wildpine Trails Inc.

Type of Document: Final

Project Name: Phase Two Environmental Site Assessment

Project Number: OTT-00263154-A0

Prepared By: Leah Wells, P. Eng.,

Reviewed By: Chris Kimmerly, P. Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted: 2021-10-01

100-2650 Queensview Drive | Ottawa, Ontario K2B 8H6 | Canada t: +1.613.688.1899 | f: +1.613.225.7337 | exp.com

i

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Legal Notification

This report was prepared by EXP Services Inc. for the account of Wildpine Trails Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

ii

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Table of Contents

Legal N	lotifica	tion	i
Executi	ive Sun	nmary	1
1.0	Introd	luction	3
	1.1	Site Description	3
	1.2	Property Ownership	3
	1.3	Current and Proposed Future Use	3
	1.4	Applicable Site Condition Standards	3
2.0	Backg	round Information	5
	2.1	Physical Setting	5
	2.2	Past Investigations	5
3.0	Scope	of the Investigation	7
	3.1	Overview of Site Investigation	7
	3.2	Scope of Work	7
	3.3	Media Investigated	7
	3.4	Phase One Conceptual Site Model	7
	3.5	Deviations from Sampling and Analysis Plan	8
	3.6	Impediments	8
4.0	Invest	igation Methodology	9
	4.1	Test Pits	9
	4.2	Soil: Sampling	9
	4.3	Field Screening Measurements	9
	4.4	Groundwater: Monitoring Well Installation	10
	4.5	Groundwater: Field Measurement and Water Quality Parameters	10
	4.6	Groundwater: Sampling	10
	4.7	Sediment: Sampling	10
	4.8	Analytical Testing	10
	4.9	Residue Management	10
	4.10	Elevation Surveying	10
	4.11	Quality Assurance and Quality Control Measures	11
5.0	Revie	w and Evaluation	12
	5.1	Geology	12
	5.2	Groundwater: Elevations and Flow Direction	12
	5.3	Groundwater: Hydraulic Gradients and Single Well Response Tests	12

5.4	Soil: Tex	ture	12				
5.5	Soil: Fiel	d Screening	12				
5.6	Soil: Qua	ality	12				
	5.6.1	BTEX and PHC	12				
	5.6.2	РАН	13				
	5.6.3	Metals	13				
5.7	Ground	vater Quality	13				
	5.7.1	Chemical Transformation and Contaminant Sources	13				
	5.7.2	Evidence of Non-Aqueous Phase Liquid	13				
	5.7.3	Maximum Concentrations	13				
5.8	Sedimer	nt: Quality	13				
5.9	Quality /	Assurance and Quality Control Results	13				
5.10	10 Phase Two Conceptual Site Model						
	5.10.1	Introduction	14				
	5.10.2	Physical Site Description	14				
	5.10.3	Geological and Hydrogeological	15				
	5.10.4	Utilities	15				
	5.10.5	Potentially Contaminating Activities	16				
	5.10.6	Areas of Potential Environmental Concern/Potential Contaminants of Concern	16				
	5.10.7	Investigation	16				
	5.10.8	Contaminants of Concern	17				
	5.10.9	Contaminant Fate and Transport	17				
Conc	lusion						
Refer	rences						
Gono	rallimita	tions	20				
Gene			20				
Signa	itures		21				

6.0 7.0

8.0 9.0

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

List of Figures

Figure 1 – Phase Two ESA - Site Location Plan Figure 2 – Phase Two ESA - APECs Figure 3 – Phase Two ESA - Testpit Location

List of Appendices

Appendix A: Figures Appendix B: Survey Plan Appendix C: Sampling and Analysis Plan Appendix D: Borehole Logs Appendix E: Analytical Summary Tables Appendix F: Laboratory Certificates of Analysis Appendix G: Grain Size Analysis

Executive Summary

EXP Services Inc. (EXP) was retained by Wildpine Trails Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 37 Wildpine Court in Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

EXP understands that the most recent use of the Phase Two property is residential and that the proposed future use is also residential. Therefore, a Record of Site Condition (RSC) is not required.

The Phase Two property is located at the end of Wildpine Court and Ravenscroft Court, on the east side of Stittsville Main Street as shown in Figure 1. The Phase Two property is roughly rectangular in shape with an area of approximately 2.05 hectares.

At the time of the investigation, the Phase Two property was improved with a residential bungalow, Quonset hut and storage shed, all located at the southwest corner of the property. The remainder of the property consisted of woods and low-lying wetland area. Surrounding properties consist of residential and commercial properties to the north, east, south, and vacant wetland to the west. It is anticipated that groundwater flows in a northeast direction towards Poole Creek, which flows through a portion of the site along the east part of the Phase Two property.

EXP prepared a report entitled *Phase One Environmental Site* Assessment, 37 Wildpine Court, Ottawa, *Ontario* dated September 9, 2021. Based on the results of the Phase One ESA, EXP identified two areas of potential environmental concern (APEC):

Area of Potential Environmental Concern (APEC)Location of APEC on Phase One PropertyPotentially Contaminating Activity (PCA)		Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)	
APEC #1	Area near basement heating oil AST	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Benzene, Toluene, Ethylbenzene, Xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and/or groundwater
APEC #2	South part of Phase One property	PCA #30 – Importation of Fill Material of Unknown Quality	On-Site	BTEX, PHC, polycyclic aromatic hydrocarbons (PAH)	Soil and/or groundwater

Table EX.1: Areas of Potential Environmental Concern

The scope of work for the Phase Two ESA was as follows:

- Retain a private utility locating company to mark any underground utilities present in the vicinity of the test pit locations;
- Excavate a total of eight test pits;
- Collect representative soil samples for chemical analysis of PHC, BTEX, PAH and metals;
- Measure groundwater levels in the piezometers;
- Complete a survey of the piezometer locations relative to a geodetic or other permanent benchmark and in reference with the Universal Transverse Mercator (UTM) coordinate system for vertical and horizontal control; and
- Review the analytical data and prepare a report of the findings.

Based on the Phase Two ESA results, the following summary is provided:

- On September 21, 2021, a total of seven test pits (TP-8 to TP-14) were advanced at the Phase Two property to address APEC #1 and one testpit (TP-15) was advanced to address APEC #2.
- The investigation revealed that the subsurface conditions is comprised of a surficial layer of topsoil or granular fill overlying heterogenous fill material, which is underlain by sandy silt and/or glacial till;
- Soil samples were submitted for laboratory analysis of BTEX, PHC, PAH and metals. All of the soil samples were within the MECP Table 3 SCS for all parameters that were analysed, with the exception of the fill sample from TP-11 which exceeded for acenaphthene, anthracene, fluoranthene, and phenanthrene.
- The native soil sample from TP-11 was within the MECP Table 9 SCS for all PAH parameters analyzed, indicating that the impact is limited to the fill material and has not impacted the underlying groundwater.
- It is recommended that the area of impacted fill material should be removed from the Phase Two property during redevelopment.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

1.0 Introduction

EXP Services Inc. (EXP) was retained by Wildpine Trails Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 37 Wildpine Court in Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. The objective of the Phase Two ESA investigation is to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

The most recent use of the property is residential, and the proposed future use is also residential. Therefore, as per Ontario Regulation 153/04, a Record of Site Condition (RSC) is not required.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

Leah Wells, P.Eng. conducted the field assessment work and was the report author for this project. Chris Kimmerly, M.Sc., P. Geo. reviewed the report and is a Qualified Person, as defined by Ontario Regulation 153/04

1.1 Site Description

The Phase Two property is located at the end of Wildpine Court and Ravenscroft Court, on the east side of Stittsville Main Street as shown in Figure 1. The Phase Two property is roughly rectangular in shape with an area of approximately 2.05 hectares.

At the time of the investigation, the Phase Two property was improved with a residential bungalow, Quonset hut and storage shed, all located at the southwest corner of the property. The remainder of the property consisted of woods and low-lying wetland area. Surrounding properties consist of residential and commercial properties to the north, east, south, and vacant wetland to the west. It is anticipated that groundwater flows in a northeast direction towards Poole Creek, which flows through a portion of the site along the east part of the Phase Two property.

The legal description of the Phase Two property is Part of Lot 24 Concession 11, Goulbourn. The property identification number (PIN) is 044590068. The approximate Universal Transverse Mercator (UTM) coordinates for the Phase Two property are Zone 18, 427211 m E and 5012989 m N. The UTM coordinates are based on measurements from Google Earth Pro, published by the Google Limited Liability Company (LLC). The accuracy of the centroid is estimated to be less than 10 m.

1.2 Property Ownership

The Phase Two property is owned by Wildpine Trails Inc. Authorization to proceed with this investigation was provided by Raad Akrawi on behalf of Wildpine Trails Inc. Contact information for Mr. Akrawi is 100-768 Boulevard St-Joseph, Gatineau, Quebec, J8Y 4B8.

1.3 Current and Proposed Future Use

The current use of the Phase Two property is residential. The proposed land use also residential.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the

environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2 applicable to sites with potable groundwater and full depth restoration;
- Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- Table 4 applicable to sites with potable groundwater and stratified restoration;
- Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site);
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site);
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 9 SCS in a non-potable groundwater condition for residential/ parkland/institutional property use. The selection of this category was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- Poole Creek crosses the Phase Two property;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Although there is a potable well present on the Phase Two property, the surrounding properties as well as any future development on the property are provided potable water by the City of Ottawa through its water distribution system;
- The Phase Two property is not located in an area designated in a municipal official plan as a well-head protection area;
- The Phase Two property is planned for residential use; and,
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

2.0 Background Information

2.1 Physical Setting

The Phase Two property is located at the end of Wildpine Court and Ravenscroft Court, on the east side of Stittsville Main Street as shown in Figure 1. The Phase Two property is roughly rectangular in shape with an area of approximately 2.05 hectares.

The Phase Two property is occupied by a residential bungalow, Quonset hut and storage shed, all located at the southwest corner of the property. The remainder of the property consisted of woods and low-lying wetland area. Surrounding properties consist of residential and commercial properties to the north, east, south, and vacant wetland to the west. It is anticipated that groundwater flows in a northeast direction towards Poole Creek, which flows through a portion of the site along the east part of the Phase Two property.

The Phase Two property is located in a mixed commercial/residential area. Although there is a potable well present on the Phase Two property, the surrounding properties as well as any future development on the property are provided potable water by the City of Ottawa through its water distribution system.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does include part of a water body as Poole Creek runs through the Phase One property near the east property line. The east part of the Phase One property also encompasses wetlands that comprise part of the floodplain of Poole Creek.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Bedrock in the general area of the Phase Two property consists of consists of limestone of the Bobcaygeon Formation.

2.2 Past Investigations

EXP prepared a report entitled *Phase One Environmental Site Assessment, 37 Wildpine Court, Ottawa, Ontario* dated September 9, 2021. The following PCAs were identified:

- PCA #10 Commercial Autobody Shops; 1300 Stittsville Main Street (located 170 m west of the Phase one property), former service garage;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks; 1280 Stittsville Main Street (located 100 m west of the Phase One property), former gas station;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks; 37 Wildpine Court (Phase One property), onsite heating oil AST;
- PCA #30 Importation of Fill Material of Unknown Quality; 37 Wildpine Court (Phase One property), on-site fill material;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), 1300 Stittsville Main Street (located 170 m west of the Phase one property), former dry cleaner;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), 1250 Stittsville Main Street (located 250 m northwest of the Phase one property), dry cleaner;

Based on the intervening distance and cross-gradient location from the Phase One property, none of the off-site PCAs identified in the Phase One study area are an environmental concern to the Phase One property.

Based on the results of the Phase One ESA, EXP identified two areas of potential environmental concern (APEC). The locations of the APECs are shown in Figure 2 in Appendix A. Table 2.1 provides details of the APEC.

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property (PCA)		Location of PCA (On-Site or Off-Site)	Location of PCA (On-Site Contaminants of or Potential Concern Off-Site)	
APEC #1	APEC #1 Area near basement heating oil AST PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks		On-Site	Benzene, Toluene, Ethylbenzene, Xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and/or groundwater
APEC #2	South part of Phase One property	PCA #30 – Importation of Fill Material of Unknown Quality	On-Site	BTEX, PHC, polycyclic aromatic hydrocarbons (PAH)	Soil and/or groundwater

Table 2.1: Findings of Phase One ESA

A geotechnical investigation was also completed by EXP at the Phase Two property. The fieldwork for the geotechnical investigation was completed on December 11 and 18, 2020 and May 5, 2021, and consisted of the advancement six boreholes ad the excavation of 12 test pits advanced to depths ranging between 1.1 m and 6.4 m below the existing ground surface.

The investigation determined that subsurface conditions at the Phase Two property generally consisted of silty sand with gravel fill extending to depths ranging from 0.9 m to 3.0 m, underlain by organic silty sand to sandy silt to depths ranging from 1.9 m to 4.1 m. The organic soils are underlain by sandy silt to depths of 5.1 m and 5.8 m, and by glacial till extending to termination depths/auger refusals depths of 2.0 m to 6.4 m.

The groundwater table was established at depths ranging from 2.3 m to 2.8 m below ground surface in the standpipes installed in each of the boreholes.

3.0 Scope of the Investigation

3.1 Overview of Site Investigation

The purpose of the Phase Two ESA was to investigate the soil and/or groundwater quality at the Phase Two property within the APEC shown on Figure 2 in Appendix A.

3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Retain a private utility locating company to mark any underground utilities present in the vicinity of the test pit locations;
- Excavate a total of eight test pits;
- Collect representative soil samples for chemical analysis of PHC, BTEX, PAH and metals;
- Measure groundwater levels in the piezometers;
- Complete a survey of the piezometer locations relative to a geodetic or other permanent benchmark and in reference with the Universal Transverse Mercator (UTM) coordinate system for vertical and horizontal control; and
- Review the analytical data and prepare a report of the findings.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil on the Phase Two property. Based on site observations, depth to water table, results of the spoil analytical testing and the nature of the APEC identified in the Phase One ESA, groundwater was not investigated. Based on the location of the APECs identified in the Phase One with respect to the location of Pool Creek, sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

Based on a review of historical aerial photographs, historical maps, and other records, it appears that the phase One property was first developed with the current residence circa 1971. Prior to residential development, the Phase One property consisted of agricultural land.

The following on-site PCA were identified:

- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks; 37 Wildpine Court (Phase One property), onsite heating oil AST;
- PCA #30 Importation of Fill Material of Unknown Quality; 37 Wildpine Court (Phase One property), on-site fill material;

The following off-site PCA were identified but not considered an environmental concern due to intervening distance and cross-gradient location from the Phase One property:

- PCA #10 Commercial Autobody Shops; 1300 Stittsville Main Street (located 170 m west of the Phase one property), former service garage;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks; 1280 Stittsville Main Street (located 100 m west of the Phase One property), former gas station;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), 1300 Stittsville Main Street (located 170 m west of the Phase one property), former dry cleaner;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), 1250 Stittsville Main Street (located 250 m northwest of the Phase one property), dry cleaner.

The following APEC were identified (see Figure 2):

- APEC #1 Area near heating oil AST (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks)
- APEC #2 South part of Phase One property (PCA #30 Importation of Fill Material of Unknown Quality)

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4. No significant deviations from the sampling and analysis plan (SAAP), as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property.

3.6 Impediments

No physical impediments were encountered during the field investigation. The entire Phase Two property was accessible at the time of the investigation.

4.0 Investigation Methodology

4.1 Test Pits

The site investigative activities consisted of the advancement of eight test pits to facilitate the collection of soil samples for chemical analysis and to record relevant field information.

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the property.

On September 21, 2021, seven test pits (TP-08 to TP-14) were advanced to address APEC 1 and one testpit (TP-15) was advanced to address AEC 2. The testpits were advanced by Thomas Cavanagh Construction (Cavanagh), under the full-time supervision of EXP staff. An excavator was used to complete the test pits. Dedicated nitrile gloves (one pair per sample) were used during sample handling.

Soil samples were collected at regular depth intervals to a maximum of 3.0 m in the overburden materials. EXP staff continuously monitored the excavating activities to log the stratigraphy observed from the pits, to record the depth of the samples, to record total depths of excavation, and to screen the samples by recording visual or olfactory observations of potential impacts and measuring petroleum vapours. Field observations are documented on the test pit logs provided in Appendix D.

4.2 Soil: Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C.

Grab soil samples for geologic characterization were collected on a continuous basis in the overburden materials during test pit excavation. Geologic details of the test pits and recovered cores were logged by EXP field staff. EXP staff continuously monitored the excavation activities to log the stratigraphy observed from the recovered soil samples, to record the depth of soil sample collection, to record total depths of excavation, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix D.

Soil samples identified for possible laboratory analysis were collected from the test pits and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories (BV Labs) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

4.3 Field Screening Measurements

Soil samples were screened during the borehole advancement. Soil samples were placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of potential hydrocarbon vapour concentrations in the soil samples collected during the test pitting investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv to 1,000 ppmv, 50 ppmv increments from 1,000 ppmv to 10,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within $\pm 10\%$ of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than $\pm 10\%$ of the standard gas value then the instrument is re-calibrated prior to use.

The field screening measurements, in parts per million by volume (ppmv), are presented in the borehole logs provided in Appendix D. A worst-case soil sample was submitted for laboratory analysis of BTEX, PHC, PAH, and metals.

4.4 Groundwater: Monitoring Well Installation

Depth to groundwater was investigated during the geotechnical investigation and determined to be 2.3 to 2.8 m bgs. Due to the depth to groundwater table, site observations of soil conditions, soil analytical results (see Section 5.6) and the nature of the APECs identified in the Phase One, groundwater was not investigated and no additional monitoring wells for environmental purposes were installed on the Phase Two property.

4.5 Groundwater: Field Measurement and Water Quality Parameters

Piezometers installed during the geotechnical investigation indicated that groundwater levels were 2.3 to 2.8 m bgs.

4.6 Groundwater: Sampling

Based on the nature of the APEC identified in the Phase One report and results of soil analytical testing, groundwater sampling was not determined to be required at the Phase Two property.

4.7 Sediment: Sampling

Based on the nature and location of the APEC identified in the Phase One report, groundwater sampling was not determined to be required at the Phase Two property.

4.8 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all groundwater samples was Bureau Veritas (BV) Laboratories. BV is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.9 Residue Management

Test pits were backfilled with the excavated material upon completion.

4.10 Elevation Surveying

An elevation survey was conducted of the test pit locations.

4.11 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, Bureau Veritas Laboratories (BV Labs). Bureau Veritas Laboratories is accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and,
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
 preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
 to ensure the integrity of the samples is maintained.

Bureau Veritas Laboratories QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5.0 Review and Evaluation

5.1 Geology

The detailed soil profiles encountered in the borehole are provided on the borehole logs in Appendix D. Boundaries of soils indicated on the logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

Based on the geotechnical and environmental investigation, the soil at the Phase Two property consisted of silty sand and gravel fill from 0.9 m to 3.0 m, underlain by sandy silt to depths ranging from 1.9 m to 4.1 m, and by glacial till extending to termination depths/auger refusals depths of 2.0 m to 6.4 m.

Bedrock was not encountered during the investigation.

5.2 Groundwater: Elevations and Flow Direction

Groundwater conditions were not evaluated during this investigation. Piezometers installed during the geotechnical investigation indicated that groundwater levels were 2.3 to 2.8 m bgs.

5.3 Groundwater: Hydraulic Gradients and Single Well Response Tests

Horizontal hydraulic gradients were not calculated for the groundwater flow.

5.4 Soil: Texture

Based on field observations and grain size analysis conducted during the geotechnical investigation, the fill material was determined to be coarse textured. Grain-size analyses are included in Appendix G. The fill composition is 15 percent gravel, 43 percent sand and 42 percent silt and clay. Composition of the native sandy silt was 0 percent gravel, 36 percent sand, and 64 percent silty and clay.

5.5 Soil: Field Screening

Field screening involved using the combustible vapour meter to measure vapour concentrations, in ppmv, in the collected soil samples in order to assess the presence of soil gases which would imply potential petroleum hydrocarbon impact. The test pit vapour readings ranged from non-detectable to 10 ppmv. No staining or odours were observed in any of the soil samples.

5.6 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples from each borehole was based on field visual or olfactory evidence of impacts and/or presence of potential water bearing zones. Summaries of the soil analytical results are found in Appendix E. Copies of the laboratory Certificates of Analysis for the tested soil samples are provided in Appendix F.

5.6.1 BTEX and PHC

Eleven (11) soil samples were submitted for analysis of BTEX and PHC. As shown in Table 1 in Appendix D, the concentrations of PHC and BTEX measured in the analysed soil samples were less than the MECP 2011 Table 9 SCS.

5.6.2 PAH

Ten soil samples were submitted for PAH analyses. As shown in Table 2 in Appendix D, the concentrations of PAH measured in the analysed soil samples were less than the MECP 2011 Table 9 SCS, with the exception of the fill sample from TP-11 which exceeded for acenaphthene, anthracene, fluoranthene, and phenanthrene. The native soil sample from TP-11 collected underlying the fill was within the MECP Table 9 SCS for all PAH parameters analyzed, indicating that the impact is limited to the fill material.

5.6.3 Metals

Ten soil samples were submitted for analysis of metals. As shown in Table 3 in Appendix D, the concentrations of metals measured in the analysed soil samples were less than the MECP 2011 Table 3 SCS.

5.7 Groundwater Quality

Considering that there was no impact to the native soil, groundwater quality was not assessed as part of this investigation.

5.7.1 Chemical Transformation and Contaminant Sources

One fill sample had several PAH parameters which exceeded the MECP Table 9 SCS. Based on the soil results from the underlying native soil and the depth to groundwater table, the impacted soil is not expected to have impacted the groundwater.

5.7.2 Evidence of Non-Aqueous Phase Liquid

Groundwater quality was not assessed as part of this investigation.

5.7.3 Maximum Concentrations

The maximum soil concentrations are provided in Table 4 in Appendix D.

5.8 Sediment: Quality

Based on the nature and location of the APEC identified in the Phase One report, sediment sampling was not determined to be required at the Phase Two property.

5.9 Quality Assurance and Quality Control Results

Bureau Veritas Laboratories' (BV Labs) QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by BV Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

A review of field activity documentation indicated that recommended sample volumes were collected from groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (MOE, 2011). Samples were preserved at the required temperatures in insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Certificates of Analysis (COA) were received from BV Labs reporting the results of all the chemical analyses performed on the submitted soil and groundwater. Copies of the COA are provided in Appendix F. A review of the Certificates of Analysis

prepared by BV labs indicates that they were in compliance with the requirements set out under subsection 47(3) of Ontario Regulation 153/04 (as amended).

Review of the laboratory QA/QC results reported indicated that they were all within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by BV Labs are of acceptable quality and further data qualifications are not required.

5.10 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.10.1 Introduction

EXP Services Inc. (EXP) was retained by Wildpine Trails Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 37 Wildpine Court in Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. The objective of the Phase Two ESA investigation is to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

EXP understands that the most recent use of the Phase Two property is residential and that the proposed future use is also residential. Therefore, a RSC is not required.

5.10.2 Physical Site Description

The Phase Two property is located at the end of Wildpine Court and Ravenscroft Court, on the east side of Stittsville Main Street as shown in Figure 1. The Phase Two property is roughly rectangular in shape with an area of approximately 2.05 hectares.

The Phase Two property is occupied by a residential bungalow, Quonset hut and storage shed, all located at the southwest corner of the property. The remainder of the property consisted of woods and low-lying wetland area. Surrounding properties consist of residential and commercial properties to the north, east, south, and vacant wetland to the west. It is anticipated that groundwater flows in a northeast direction towards Poole Creek, which flows through a portion of the site along the east part of the Phase Two property.

The Phase Two property is located in a mixed commercial/residential area. Although there is a potable well present on the Phase Two property, the surrounding properties as well as any future development on the property are provided potable water by the City of Ottawa through its water distribution system.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does include part of a water body as Poole Creek runs through the Phase One property near the east property line. The east part of the Phase One property also encompasses wetlands that comprise part of the floodplain of Poole Creek.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Bedrock in the general area of the Phase Two property consists of consists of limestone of the Bobcaygeon Formation.

Refer to Table 5.1 for the Site identification information.

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Civic Address	37 Wildpine Court, Ottawa, Ontario
Current Land Use	Residential
Proposed Future Land Use	Residential
Property Identification Number	044590068
UTM Coordinates	NAD83 18T 427211 m E and 5012989 m N
Site Area	2.05 hectares
Property Owner	Wildpine Trails inc.

Table 5.1: Site Identification Details

The Phase One Conceptual Site Model is provided as Figures 1 to 3 in Appendix A.

5.10.3 Geological and Hydrogeological

Based on the geotechnical and environmental investigation, the soil at the Phase Two property consisted of silty sand and gravel fill from 0.9 m to 3.0 m, underlain by sandy silt to depths ranging from 1.9 m to 4.1 m, and by glacial till extending to termination depths/auger refusals depths of 2.0 m to 6.4 m.

A summary of factors that apply to the Phase Two property is provided in Table 5.2

Characteristic	Description					
Minimum Depth to Bedrock	6.4 mbgs (inferred at refusal – geotechnical investigation)					
Minimum Depth to Overburden Groundwater	2.3 mbgs (March 30, 2021 – geotechnical investigation)					
Shallow Soil Property	No, bedrock is more than 2.0 mbgs					
Proximity to water body or ANSI	On-Site (Poole Creek)					
Soil pH	N/A					
Soil Texture	Coarse (geotechnical investigation)					
Current Property Use	Residential					
Future Property Use	Residential					
Proposed Future Building	Residential					
Areas Containing Suspected Fill	South part of Site					

Table 5-2: Site Characteristics

5.10.4 Utilities

The Phase One property is serviced by a domestic water well and septic tank. The septic tank is located on the west side of the residence and the well is located off the southeast corner of the residence. Overhead hydro services are also present.

Municipal services have been installed along Wildpine Court and capped at the cul-de-sac to accommodate future development at the site

5.10.5 Potentially Contaminating Activities

Ontario Regulation (O. Reg.) 153/04 defines a Potential Contaminating Activity (PCA) as one of fifty-nine (59) industrial operations set out in Table 2 of Schedule D that occurs or has occurred in the Phase One study area. The following PCA were identified for the Phase One property and the Phase One study area:

The following PCAs were identified:

- PCA #10 Commercial Autobody Shops; 1300 Stittsville Main Street (located 170 m west of the Phase one property), former service garage;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks; 1280 Stittsville Main Street (located 100 m west of the Phase One property), former gas station;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks; 37 Wildpine Court (Phase One property), onsite heating oil AST;
- PCA #30 Importation of Fill Material of Unknown Quality; 37 Wildpine Court (Phase One property), on-site fill material;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), 1300 Stittsville Main Street (located 170 m west of the Phase one property), former dry cleaner; and
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), 1250 Stittsville Main Street (located 250 m northwest of the Phase one property), dry cleaner.

No other PCAs that took place within the Phase Two study area were identified.

5.10.6 Areas of Potential Environmental Concern/Potential Contaminants of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. Based on this Phase One ESA, the following APECs were identified.

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Area near basement heating oil AST	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Benzene, Toluene, Ethylbenzene, Xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and/or groundwater
APEC #2	South part of Phase One property PCA #30 – Importation of Fill Material of Unknown Quality		On-Site	BTEX, PHC, polycyclic aromatic hydrocarbons (PAH), metals	Soil and/or groundwater

5.10.7 Investigation

The Phase Two ESA was conducted to assess the soil quality at the Phase Two property. As indicated in the APEC Table (above), the analytical program of the Phase Two ESA included testing of soil for BTEX and PHC, PAH, and metals. The test pit locations are shown on Figure 3 in Appendix A.

5.10.8 Contaminants of Concern

One fill sample exceeded the Table 9 SCS for acenaphthene, anthracene, fluoranthene, and phenanthrene. The source of the impact is poor quality fill material.

5.10.9 Contaminant Fate and Transport

PAH impacted soil was identified in one fill sample from TP-11 and is associated with poor fill quality. The depth of fil at this location was 0.3 to 1.5 m bgs. As the underlying native soil sample from TP-11 did not have any PAH exceedances, the area of impact is constrained to the fill layer.

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COCs in soil, the contribution of which is dependent on the soil conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

Only a small part of the Phase Two property appears to be impacted and the contaminants do not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property.

Based on the results of the soil sampling, groundwater sampling was not determined to be required at the Phase Two property.

6.0 Conclusion

Based on the Phase Two ESA results, the following summary is provided:

- On September 21, 2021, a total of seven test pits (TP-8 to TP-14) were advanced at the Phase Two property to address APEC #1 and one testpit (TP-15) was advanced to address APEC #2.
- The investigation revealed that the subsurface conditions is comprised of a surficial layer of topsoil or granular fill overlying heterogenous fill material, which is underlain by sandy silt and/or glacial till;
- Soil samples were submitted for laboratory analysis of BTEX, PHC, PAH and metals. All of the soil samples were within the MECP Table 3 SCS for all parameters that were analysed, with the exception of the fill sample from TP-11 which exceeded for acenaphthene, anthracene, fluoranthene, and phenanthrene.
- The native soil sample from TP-11 was within the MECP Table 9 SCS for all PAH parameters analyzed, indicating that the impact is limited to the fill material and has not impacted the underlying groundwater.
- It is recommended that the area of impacted fill material should be removed from the Phase Two property during redevelopment.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

7.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- EXP Services Inc., Phase One Environmental Site Assessment, 37 Wildpine Court, Ottawa, Ontario, September 9, 2021.
- EXP Services Inc., Geotechnical Investigation and Slope Stability Analysis, Proposed Residential Development, 37 Wildpine Court, Ottawa, Ontario, August 24, 2021.
- Ontario Ministry of the Environment, Conservation and Parks, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Guide for Completing Phase Two Environmental Site* Assessments under Ontario Regulation 153/04, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Protocol for Analytical Methods Used in the* Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Regulation 153/04, made under the *Environmental Protection Act*, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the *Environmental Protection Act*, as amended.

8.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or Wildpine Trails Inc. ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

9.0 Signatures

We trust this report meets your current needs. If you have any questions pertaining to the investigation undertaken by EXP, please do not hesitate to contact the undersigned.

ct the unit of the second seco 100501933 Chris T. Kimmerly, M.Sc., P.Geo. Leah Wells, P. Eng. Environmental Engineer Senior Project Manager .OQ THOUNCE OF ONTARIO Earth and Environment Earth and Environment

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix A: Figures

Filename: E:\OTT\OTT-00263154-A0\60 Execution\65 Drawings\env\ph1\263154-A0.dwg Last Saved: Oct 1, 2021 3:39 PM Last Plotted: Oct 1, 2021 3:39 PM Plotted by: mc

SCALE		DESIGNED BY	REVIEWED BY	CLIENT
0 3m HORIZONTAL	6m 12m 1:300			
NORTH				**e

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix B: Survey Plan

SUBJECT TO THE CONDITIONS, IF ANY, SET FORTH IN OUR LETTER $\ensuremath{\mathsf{DATED}}$

THIS DRAFT PLAN IS APPROVED BY THE CITY OF OTTAWA UNDER SECTION 51 OF THE PLANNING ACT. THIS _____ DAY OF ______, 20___.

-----·

DERRICK MOODIE, MANAGER DEVELOPMENT REVIEW-WEST PLANNING, INFRASTRUCTURE AND ECONOMIC DEVELOPMENT DEPARTMENT, CITY OF OTTAWA

3:094

- - ----

5

PART 10

 \bigcirc

 \square

- - - -----

 \odot

Ś

 \cap

 \bigcirc

r----- PART IO

L____J

DRAFT PLAN OF SUBDIVISION OF PART OF LOT 24 **CONCESSION 11** Geographic Township of Goulbourn **CITY OF OTTAWA**

Prepared by Annis, O'Sullivan, Vollebekk Ltd.

Metric

DISTANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

SURVEYOR'S CERTIFICATE

I CERTIFY THAT :

The boundaries of the lands to be subdivided and their relationship to adjoining lands have been accurately and correctly shown.

_____ Date

T. Hartwick ONTARIO LAND SURVEYOR

OWNER'S CERTIFICATE

This is to certify that I am the owner of the lands to be subdivided and that this plan was prepared in accordance with my instructions.

Date

Wild Pine Trails Inc. I have authority to bind the corporation.

ADDITIONAL INFORMATION REQUIRED UNDER SECTION 51-17 OF THE PLANNING ACT (a) see plan

- (b) see plan
- (c) see plan (d) multi-family residential housing, open space
- (e) see plan
- (f) see plan
- (g) see plan (h) City of Ottawa
- (i) see soils report
- (j) see plan (k) sanitary, storm sewers, municipal water, bell, hydro, cable and
- gas to be available
- (I) see plan

ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Gate, Suite 500 Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-1079 Email: Nepean@aovltd.com

Job No. 21203–20 Zayoun Pt Lt 24 CII GO DPS DI

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix C: Sampling and Analysis Plan

OTT-00263154-A0 37 Wildpine Court, Ottawa, Ontario Sampling and Analysis Plan

Project Objective

The Phase Two ESA was conducted to address areas of potential environmental concern identified in the Phase One ESA conducted by EXP.

Based on the Phase One ESA, the following on-site potentially contaminating activities (PCA) were identified:

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	APEC #1 Area near basement heating oil AST		On-Site	Benzene, Toluene, Ethylbenzene, Xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and/or groundwater
APEC #2	South part of Phase One property	PCA #30 – Importation of Fill Material of Unknown Quality	On-Site	BTEX, PHC, polycyclic aromatic hydrocarbons (PAH), metals	Soil and or groundwater

<u>Test Pits</u>

- Fifteen test pits will be excavated at the Site
- Two soil samples shall be collected from each test pit 1 fill and 1 native
- Bedrock is not expected to be present
- As drilling progresses, log each sample, describing soil type, colour, staining, odour, petroleum vapour.

<u>Locates</u>

• See project folder and HASP binder.

<u>Soil Sampling</u>

- Soil samples should be submitted to BV Labs
- All soil samples should be submitted for analysis of BTEX, PHC, ICPMS metals, and PAH
- Submit one fill sample from each test pit and three native soil samples for analysis

Soil Cuttings

1

• Test pits will be backfilled upon completion

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix D: Borehole Logs

	Log of E	Borehole TP-1	*ovr	7
Project No:	OTT-00263154-A0			-
Project:	Proposed Residential Development		Pigure No. $\underline{D-r}$	
Location:	37 Wildpine Court, Ottawa, Ontario		Page. I of I	
Date Drilled:	'December 18, 2020	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	'Excavator	Auger Sample II — SPT (N) Value O	Natural Moisture Content X Atterberg Limits ————————————————————————————————————	
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus Strain at Failure	
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
l s l		Standard Penetration Test N Value	Combustible Vapour Reading (ppm)	٦

			(Geodetic		eodetic e 20 40				40 60 80			250 500 750				Ă	A M Natural			
	Ϊ	B O	SOLE DESCRIPTION		m	t h	Sh	ear S	Stren	gth				kPa	Atterb	berg Lim	its (%	Dry V	/eight)	Ē	kN/m ³
+		L <u>`,\ <i>l</i>.,` .</u>	TOPSOIL ~100 mm thick	11	16.07 16.0	0			50	1	00	150	200		2	20] : : : :	40	6		: S	
			FILL Silty sand with gravel (SM), cobbles – boulders, topsoil, wood chips, concre pieces, foam insulation, asphalt piec tree roots, brown, moist	and ete – es,	10.0															33	4
				_		1														×	9 BS1
			_	_		2										×					BS2
	, ,		ORGANIC SILTY SAND TO SANDY S (SM TO ML) Silty sand to sandy silt with pieces of decaying wood and topsoil, dark brow moist to wet	SILT	13.8	3														· · · · · · · · · · · · · · · · · · ·	
			SANDY SILT (ML) Trace gravel, grey, moist to wet	11	12.9															· · · · · · · · · · · · · · · · · · ·	_
1				11	12:12.07																BS3
1 PIT LOGS.GPJ TROW OTTAWA.GDT 9/28/21			Test Pit Terminated at 4.0 m De	pth																	
TES		TES:	ble data requires interpretation by EVD before		WATER	R LE	EVE	L RI	ECC	RD	S		CORE DRILLING REC				ECOR	D			
ENV	י. ב ע	use by		Date		Le	Wat evel	ter (m))		Hole Op To (m	ben I)	R	Run Depth % Rec. RQI No. (m)				RQD %			
□ ∠. I est Pit backfilled upon completion of excavation. Completion				Completion	on		4.0)		1											

LOG OF BOREHOLE 3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00263154-A0

WATER LEVEL RECORDS			CORE DRILLING RECORD			
Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Completion	4.0					
	Log of E	Borehole TP-	-2 🕺	evn		
---------------	------------------------------------	--------------------------------------	--	----------		
Project No:	OTT-00263154-A0			CNP		
Project:	Proposed Residential Development					
Location:	37 Wildpine Court, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-		
Date Drilled:	'December 18, 2020	Split Spoon Sample	Combustible Vapour Reading			
Drill Type:	'Excavator	Auger Sample II — SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊸		
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus		
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test			
		_ Standard Penetration Test N Valu	Le Combustible Vapour Reading (pp	m) Ş		

Γ		S		Geodetic D Standard Penetration Test N Value Combustible Vapour Reading (ppr 250 500 750						ppm)	SA	Natural												
	WL	В О	SOIL DESCRIPTION	Eleval	tion p	e p t	Shea	20 ar St	renat	4(h	0 6	60	8	30 kP		N Atte	atura	al Mois g Limit	ture s (%	Conte	nt %	ó (ht)	PL	Unit Wt.
		Ľ		115.6	7 0	h 0		50		10	0 1	150	2	00			20		40		<u>60</u>	,	E S	KIN/III
		<u>× //</u>	TOPSOIL ~200 mm thick	115.5		1:		÷							÷1				1÷					
		\bigotimes	FILL Silty sand with gravel (SM) organic			:																		
		\bigotimes	cobbles and boulders, concrete and	_		+							<u></u>									<u></u>		
		\otimes	asphalt pieces, tree roots, brown, moi	ist		ŀ	: ::::								÷ŀ				÷					
		\otimes			1			÷		• • •					÷	÷ : : :		X		÷÷÷		÷÷÷	5	BS1
		\bigotimes			'	1		·:	: · · · ·	• • •			÷ : · :			÷ : : : :			÷		1:			
		\otimes				1.													-					
		\bigotimes	_	_		ŀ								<u></u>			-		+	· · · ·	+		\square	
		\bigotimes							1 · · · · · · · · · · · · · · · · · · ·							······································								
																		X					RM2	BS2
		\otimes	_	_	2	2	÷ :- :	::.	::::				÷÷÷ ∴;;;			:::::: ::::::::::::::::::::::::::::::			<u> </u> ;	;;;;;	1:	::::		
		XX		113.4		1																		
		<u>``'</u>	<u>ORGANIC SILTY SAND TO SANDY S</u> -(SM TO MI)			Ŀ												· · · · · ·				<u></u>		
		<u>// \/ /</u>	Silty sand to sandy silt with pieces of			1:	::::	÷	:::::				÷ ; ; ;		÷				÷	:				
		<u>\''/</u>	decaying wood and topsoil, dark brow	vn,		ŀ							÷÷÷											
			SANDY SILT (ML)	112.7	3	3 -							<u> </u>		:	· · · ·				: : : : : : :		<u></u>	\square	
			Trace to some gravel, grey, moist to v	vet									÷ : · :			÷ : · : ·						÷ : • •	- 	000
						-		÷								······							M	500
			Tost Pit Terminated at 3.6 m Den			-				-	+++++	÷			÷				-		Ŧ÷		\vdash	
TROW OTTAWA.GDT 9/28/21																								
PIT LOGS.GPJ																								
TEST	NO	TES:		WA	TER L	LE\	VEL	RE	COF	RDS	;					С	OR	E DRI		NG F	EC	ORD		
ENV	1.1	Boreho use by	ole data requires interpretation by EXP before others	Date		N	Vate	r		ŀ	lole Op	en		Run	Τ	De	pth		ç	% Re	C.		R	2D %
ЦĒ	2.	Test Pi	t backfilled upon completion of excavation.	Completion		Le/	Dry	<u>(11)</u>	+		10 (11))		INO.	+	(I	<u>n)</u>					+		
EH	3.	Field w	ork supervised by an EXP representative.																					
BOF	4.	See No	otes on Sample Descriptions																					
LOG OF	5.1	Log to	be read with EXP Report OTT-00263154-A0																					

	Log of I	Borehole TP-3	*eyn
Project No:	OTT-00263154-A0		
Project:	Proposed Residential Development		
Location:	37 Wildpine Court, Ottawa, Ontario		Page. I of I
Date Drilled:	'December 18, 2020	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	'Excavator	Auger Sample II — SPT (N) Value O	Natural Moisture Content X Atterberg Limits ————————————————————————————————————
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by + Vane Test S	Shear Strength by Area Penetrometer Test
s		Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

	G W L	Y B O L	SOIL DESCRIPTION	1	Geodetic Elevation m	e p t h	Sh	iear s	20 Streng 50	4 gth 1(0	60 150) 2	80 	кРа	At	25 Natu terb 2	50 ural M erg Li 0	50 oistu mits 41	00 Jre C (% I 0	7: Conter Dry W 6	50 nt % /eight 0	t)	AMPLES	Natural Unit Wt. kN/m ³
			TOPSOIL ~100 mm thick FILL Silty sand with gravel (SM), cobbles –boulders, rootlets, brown, moist	and	117.8																			-900	
			-	_		1											C								BS1
			-	_																				SUN2	BS2
			_	1	115.5	2																			DOZ
5T PIT LOGS.GPJ TROW OTTAWA.GDT 9/28/21			Test Pit Terminated at 2.4 m De	pth																					
NV TES	1.I	າ⊏ວ: Boreho use bv	le data requires interpretation by EXP before others	Data	WATE	R L	EVE Wa	L RI	ECO	RDS I	3 Hole Oj	реі	n	Ru	in	(COP Pept	RE D	RIL	LIN %	G R	ECO	RD	RC	QD %
LOG OF BOREHOLE E	2. 3. 4.: 5.	Test Pi Field w See No Log to	t backfilled upon completion of excavation. ork supervised by an EXP representative. otes on Sample Descriptions be read with EXP Report OTT-00263154-A0	Complet	lion	L	<u>eve</u> Dr	<u>I (m)</u> У			<u>To (n</u>	<u>n)</u>		No	D.		<u>(m</u>)								

		Log o	of Boi	rehole	TP-4	1	evn
Project No:	OTT-0026315	54-A0					CAP.
Project:	Proposed Res	sidential Development				Figure No. $D-1L$	
Location:	37 Wildpine C	Court, Ottawa, Ontario				Page. I of I	<u></u>
Date Drilled:	'December 18	, 2020	s	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	'Excavator		A S	Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elev	ation	[Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A. Neguss	Checked by: A. Nader	- s	Shear Strength by /ane Test	+ s	Shear Strength by Penetrometer Test	
s			D	Standard Penetrati	ion Test N Value	Combustible Vapour Reading (ppm) S

	G	Y		Geodetic	De							2	50 5	00 7	50	″_Ā ⊻	Natural
Γ	Ľ	BO	SOIL DESCRIPTION	Elevation	p t	Shea	_∠ ar S	trength	iU 6	0	kPa	Nat Atterb	ural Moist erg Limits	ure Conte s (% Dry V	nt % Veight)		kN/m ³
L		Ĺ		116.5	n 0		5	0 1	00 1	50 2	200	2	20 4	40 6	50	S	
	ľ	. <u></u>	<u>TOPSOIL</u> ~300 mm			1444	÷	• • • • • • •				++++++					
		1/		116.2												:1	
	ł	\otimes	FILL				÷	• • • • • • •	+ + + + + + +		+	++++++		+		-	
	ł	$\times\!\!\times\!\!\times$	-Slity sand with gravel (SM), concrete an	a –												:	
		$\times\!\!\times\!\!\times$	brown moist				÷	• • • • • • • •									
		$\times\!\!\times\!\!\times$	Slowii, moloc			12.01	3					×					BS1
		\otimes	_	_	1		:			<u> : : : :</u>	+ : : : :					÷Ľ	
	ł	\otimes															
	ł	$\times\!\!\times\!\!\times$				299	÷	· · · · · · · · ·	1999 P	12 ÷ 12	++++++++++++++++++++++++++++++++++++++	++++++	· ? · ? ? ?	+ : : : : : :	1999 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	÷	
		\propto		115.0												:	
		<u></u>	ORGANIC SILTY SAND TO SANDY SILT	<u>r</u>			÷	• • • • • • •			++++++	+++++				-	
		<u>1/ \/</u>	(SM IO ML)				Ż										
		14	decaying wood and topsoil dark brown	114.5		1999	÷	· • • • • • •	÷:			÷÷÷÷				÷	
		TH/	The caying wood and topson, dark brown,	7	2												1
	ł	988		/													
		<i>6/1</i> 0	Silty sand with gravel (SM) cobbles and				2										
	ĺ	LAN S	-boulders, grey, moist	_			÷			<u> </u>	++++++	×		$\left \begin{array}{c} \cdot \cdot$	ŀ	<u>: m</u>	BS2
		1 D					1									1	
		<u>H</u> A					÷					6666				: .	
	ĥ	LA S		113.5		1223	÷		12122	1.2.2.2.2		****		+ ÷ ? ÷ ÷ ÷		2	
			Test Pit Terminated at 3.0 m Depth		ľ		:	::::								:	
																-	
							:								1 : : : :	:	
																-	
							:									:	
																:	
						1 : : :	:							1 : : : :	1 : : :	:	
						1	:	::::							1 : : :	:	
																-	
							:	::::								:	
							-									:	
																-	
						: : :	:	::::							1 : : : :	:	
5																:	
						1	÷	::::			1 : : : :			1 : : : :	1 : : :	:	
2																	
2																:	
5							-									:	
5																:	
S							-									:	
2							-									:	
Ľ					_	L											
ĪΠ	NO	TES:		14/4					2			00			-005		
:		- ·		WATE	КL	EVEL	RE	CORD	5		1	CO	KE DRII	LLING R	FCOR	υ	

NOTES:	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD								
1.Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %					
2. Test Pit backfilled upon completion of excavation.	Completion	Dry	· /		• • · ·							
3. Field work supervised by an EXP representative.												
4. See Notes on Sample Descriptions												
5. Log to be read with EXP Report OTT-00263154-A0												

LOG OF BOREHOLE ENV TEST PIT LOGS.GPJ TROW OTTAWA.GDT 9/28/21

	Log of Bo	orehole	TP-5		exp
Project No:	OTT-00263154-A0			E N D 11	CAP.
Project:	Proposed Residential Development			Figure No. <u>D-11</u>	
Location:	37 Wildpine Court, Ottawa, Ontario			Page1_01 _1	_
Date Drilled:	'December 18, 2020	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	'Excavator	Auger Sample		Natural Moisture Content	×
		SPT (N) Value	0	Atterberg Limits	θ
Datum:	Geodetic Elevation	Shelby Tube		% Strain at Failure	\oplus
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
		Standard Penetration	on Test N Value	Combustible Vapour Reading (n	nm) S

Γ		S			Geodetic.						Value Combustible Vapour Reading (p				ng (ppm	pm) S A Natural		
	G W	M B	SOIL DESCRIPTION	Eleva	ation	e p	2	20 Strong	4	10 E	60	80 kDa	Na Atter	tural Mois	sture Conte	ou ent % Veight)	- M P	Unit Wt.
L	-	Ľ		n 117. <u>؛</u>	n 58	h S	fiear a	50	10 	00 1	50 2	кга 200		20	40 (50	E S	KN/m ⁻
			TOPSOIL ~125 mm thick	117.5	5												-	-
			FILL Silty sand with gravel (SM), cobbles a	and					÷÷									
	k	**	– boulders, grey, moist	_									X				m	BS1
		×	GLACIAL TILL	116.7	7												-	
			Silty sand with gravel (SM), occasion	al					÷ ; .									
			cobbles and boulders, grey, moist															
			_	_					<u></u>						+ + + + + + + + + + + + + + + + + + + +		-	
													X				m	BS2
		1D																
			-	_		2												
		B		115 2	,													
	ŕ	////	Test Pit Terminated at 2.4 m Dep	oth	-				÷ † •									
						:			:::									
									: :									
									::									
121									::									
9/26									::									
Б									::									
NA.0																		
TTA																		
N N									::									
LIN C																		
G																		
GS.(
12																		
STPI	NO			I	I	L	· · · ·	1	-			i				1		
V TE	1.6	Boreho	le data requires interpretation by EXP before	W	ATER	LEVE		ECOI	RDS	S		D	CC			ECOR	D	
EN	l	use by	others	Date		vva Leve	iter il (m)			noie Op To (m))	No.	Dep (m)	% Re	С.	R	QD %
10LE	2.1	est Pit	backfilled upon completion of excavation.	Completion		D	ry											
REF	3.F	-ield w	ork supervised by an EXP representative.															
FBC	4.8	see No	tes on Sample Descriptions															
0	5.L	_og to l	be read with EXP Report OT I-00263154-A0															

	Log of Bo	orehole	TP-6		eyn
Project No:	OTT-00263154-A0				UNP.
Project:	Proposed Residential Development			Figure No. $D-12$	
Location:	37 Wildpine Court, Ottawa, Ontario			Page. I of I	
Date Drilled:	'December 18, 2020	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	'Excavator	Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊖
Datum:	Geodetic Elevation	Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	•
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
		Standard Dapatrati	an Test NI Value	Combustible \/apour Booding (pp)	

V V L	9 V	SY MBOL	SOIL DESCRIPTION	Geodetic Elevation m 115.86	c E n p t	t Shear Stren 50 20	<u>40 60 8</u> gth 100 150 2	80 kPa 800	250 Natural Mc Atterberg Lin 20	500 750 isture Content % hits (% Dry Weight) 40 60		Natural Unit Wt. kN/m ³
		<u></u>	TOPSOIL ~200 mm	115.7							÷.	
			FILL Silty sand with gravel (SM), organic, cobbles and boulders, concrete, wood, and asphalt pieces, tree roots, brown and black moist to wet		1	1			×		E E	BS1
			-	_	2	2			×		E Contraction	· BS2
<u> </u>			- ORGANIC SILTY SAND TO SANDY SILT (SM TO ML) Silty sand to sandy silt with pieces of decaying wood and topsoil, dark brown, -moist to wet	113.5 113.1	16	······································						
			<u>SANDY SILT (ML)</u> – Trace gravel, grey, moist to wet	112.6					*		E E	BS3
PIT LOGS.GPJ TROW OTTAWA.GDT 9/28/21			Test Pit Terminated at 4.0 m Depth									
TES ¹	101	TES:		WAT	ERI	LEVEL RECC	RDS		CORE D	RILLING RECOF	RD	
EN<	1.E U	Boreho Jse by	le data requires interpretation by EXP before others	Date		Water	Hole Open	Run	Depth	% Rec.	R	QD %
LOG OF BOREHOLE	2.1 3.F 4.S 5.L	Fest Pi Field w See No Log to	t backfilled upon completion of excavation. ork supervised by an EXP representative. vites on Sample Descriptions be read with EXP Report OTT-00263154-A0	npletion		<u>∟evel (m)</u> 2.7	10 (m)	<u> INO. </u>	<u>(m)</u>			

	Log of Be	orehole	TP-7	1	evn
Project No:	OTT-00263154-A0				CAP.
Project:	Proposed Residential Development			Figure No. D-13	
Location:	37 Wildpine Court, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'December 18, 2020	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	'Excavator	Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
		Standard Penetrati	on Test N Value	Combustible Vapour Reading (p	pm) S

	G	S Y B	SOIL DESCRIPTION	Geodetic Elevation	D e p	Shoor	20		40 (60 a	30 kPo	2: Nati	50 5 ural Moist	00 7: ure Conte	50 50 /eight)	A M P	Natural Unit Wt.
		L		m 116.66	h	Shear	50	ngun 1	00 1	50 2	кга 200	2	0 4	0 6	i0	ES	KN/m°
			FILL Silty sand with gravel (SM), concrete, wood, and asphalt pieces, cobbles and boulders, roots, brown, moist	_	0												
				_	1							*				IS	BS1
	~ ~ ~ ~		ORGANIC SILTY SAND TO SANDY SILT (SM TO ML) Silty sand to sandy silt with pieces of	115.1 114.8	2												
	T V V V V V V V V		GLACIAL TILL - Silty sand with gravel (SM), cobbles and									*	· · · · · · · · · · · · · · · · · · ·			S	BS2
	P	YZA	boulders, grey, moist	114.0	-											-	
T PIT LOGS GPJ TROW OTTAWA.GDT 9/28/21																	
∎ T EST	101	TES:		\\\\\ TEF					c			00	יימת סב				
Ë	1 0	Dorohol	a data vaguiras internetation by EVD before	WAIEF	ΥL	EVELF	ΚEC	URD	5			CO		LING R	FCORD		

 WOTES:

 1. Borehole data requires interpretation by EXP before use by others

 2. Test Pit backfilled upon completion of excavation.

 3. Field work supervised by an EXP representative.

 4. See Notes on Sample Descriptions

 5. Log to be read with EXP Report OTT-00263154-A0

		Log of B	Sorehole TP-8	*	eve
Project No:	OTT-0026315	54-A0			unp
Project:	Proposed Re	sidential Development		Figure No. <u>D-14</u>	
Location:	37 Wildpine (Court, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'September 2	1, 2021	Split Spoon Sample 🛛 🕅	Combustible Vapour Reading	
Drill Type:	'Excavator		Auger Sample II — SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ──⊖
Datum:	Geodetic Elev	ation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	L. Wells	Checked by: C. Kimmerly	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
S		Conduit	D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S A Natural

	Τ	S		Condati	Standard Penetration Test N Value							Combu	Combustible Vapour Reading (p 250 500 750				n) S A	Natural
G W	V	м В	SOIL DESCRIPTION	Elevatio	n p	Shoor	20 Strong	4	0 6	50 a	30 kDo	Na Atte	atural Mo	sture	Conte	nt %		Unit Wt.
	-	Ľ		m 115.83	h	Snear	Streng 50	gin 1(00 1	50 2	кра 00	Alle	20	40	Ely V	so	ĒS	kN/m°
	Ķ	<u>∖</u> <i>1,₁.</i>	TOPSOIL ~100 mm thick	115.7	0												÷	-
	₿	\otimes	FILL Silty sand with gravel, cobbles and									-						
	₿	\otimes	– boulders, brown, moist	_				÷::-				· · · · · · · · ·		***	****		·:-	
	₿	\otimes	, ,					÷.;.				h						S1
	Ķ	\otimes						÷÷				0						
	Ķ	\otimes	_	_	1					11111					<u> </u>			
	K	\otimes																
	K	\otimes						÷÷	****						÷÷÷	÷÷:	÷	
	k	XX		114.3				÷ :			+				· · · · ·			-
			Trace gravel, grey, moist))			62
			0 / 0 //	110.0				÷.;				10						32
	┢		Test Pit Terminated at 2.0 m De	113.8	- 2		+++	÷÷					+ + + +	÷	<u></u>		÷	
			rest i it reminated at 2.0 m De	,pui				÷÷									:	
								::						: :			÷	
								÷÷										
								÷÷									-	
								::									:	
								÷÷						: : :	::::		:	
								::						: :	:::		:	
								::										
								÷÷						: :	::::		:	
																	-	
								::						: :	: : : : : :		:	
								::						: :	:::		÷	
								÷÷									-	
								÷÷							::::			
																	÷	
_								::						: :	:::		÷	
8/2								÷÷										
6/6								÷÷							::::		:	
GDI								÷÷						: :				
WA.																	-	
ATT								::						: :	: : : : : :		:	
o ≥								::						: :			÷	
NO.								÷÷										
2								÷÷									:	
SG								:::						: :	::::			
Ö								::						: :	::::		:	
ËL								::						: :	:::		:	
T S L	ЮТ	ES:																
۳.	1.Borehole data requires interpretation by EXP before					EVEL F	RECO	RDS	3		CORE D					ECOF	۶D 	
Ľ.	use by others Date				1	Water	1)		Hole Op To (m)	en	Run No	De /n	pth n)	% Rec.			F	QD %
븨	2. T	est Pi	t backfilled upon completion of excavation.					<u> </u>										
비 :	3.F	ield w	ork supervised by an EXP representative.															

LOG OF BORE! 4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00263154-A0

	Log of B	orehole TP-9	*eyr
Project No:	OTT-00263154-A0		
Project:	Proposed Residential Development		Figure No. $\underline{D-1c}$
Location:	37 Wildpine Court, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>
Date Drilled:	'September 21, 2021	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	'Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure
Logged by:	L. Wells Checked by: C. Kimmerly	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S		Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

	G	S Y M	SOIL DESCRIPTION	Geode	etic	De	U.	20 40 60 80		2	250 tural Moi	500	75 Conter	50 50 51 %	"Ă M	Natural			
	Ë	В С L		m		t s	Shear	Stren	gth 1	00 1	50 0	kPa	Atter	berg Lim	its (%	Dry W	(eight)	L E	kN/m ³
F		· <u>, 1, 1, -</u> XXX	~100 mm thick		1	0													-
		\otimes	FILL Silty sand with gravel organic brow	n														····	
		\otimes	moist, no odours or staining	n, 			····	+ :	:::: ::::							· · · · ·	·:-:	·: · 	
		\otimes	-															M	S1
		\otimes					(* 1 *) (* 1 *)		0000 0000							: -: :- : :: :-	-0-0-1 -0-0-1	÷.	
			_	-	1	1												· · · ·	
	4	\bigotimes														: -:- : : -:- :		÷+	-
		\otimes	_				÷ : :		÷÷										
		\bigotimes																	
	5		SANDY SILT	114.3			::::: ::::::::::::::::::::::::::::::::		÷.;.									÷.	-
			- Grey, wet, no odours or staining	-	:	2			÷÷;				h					- 100	52 S2
			Test Pit Terminated at 2.2 m De	pth 113.9			· · · ·		<u>.</u>										
						:	::::		::									:	
									::									-	
						:			÷÷									:	
									::									-	
							:::		::									:	
									::									-	
									::									-	
						:			÷÷									:	
									::									-	
						:	::::		::									:	
									::										
							::::		::									:	
									::									-	
121																			
9/28						:	::::		::									:	
BDT																		-	
WA.						-	:::		::									:	
TTA						:	::::		::									:	
Ň									::										
Я									::									:	
GPJ																		-	
OGS.									:::									:	
Ë						:			::									:	
ESTE	NO	TES:		14/4															
11 ≥	1.1	Boreho	others	VVA			⊏∟ R ater		CORDS CC				DRILLING RECC				QD %		
DLE EI	2	Test Pi	it backfilled upon completion of excavation.	Date	+	Lev	el (m)		<u>To (m</u>))	No.	(m	ı)	-				

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

LOG OF BOREHO 5.Log to be read with EXP Report OTT-00263154-A0

			Log of	f Bo) r	rehole	TP-1	0			10	2	vn
Pı	roject	No:	OTT-00263154-A0			•		—		D 10		-	NΡ
Pı	roject	:	Proposed Residential Development					F	igure No.		4		
Lo	ocatio	on:	37 Wildpine Court, Ottawa, Ontario						Page.	_1_ of			
Da	ate D	rilled:	'September 21, 2021		_	Split Spoon Sample	\boxtimes		Combustible V	√apour Readi	ng		
Dr	ill Ty	pe:	'Excavator			Auger Sample			Natural Moist	ure Content			×
Da	atum:		Geodetic Elevation		-	Dynamic Cone Test	<u> </u>		Undrained Tri	axial at			Ð
Lo	Logged by: L. Wells Checked by: C. Kimmer			<u>erl</u> y		Shelby Tube Shear Strength by Vane Test	■ + s		% Strain at Fa Shear Strengt Penetrometer	th by Test			
G W L	S Y B O L		SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Standard Penetra 20 40 Shear Strength	tion Test N Value	kPa	Combustible 250 Natural M Atterberg L	Vapour Readi 500 7 Ioisture Conte imits (% Dry V	ng (ppm) 50 nt % Veight)	SAMPLIE	Natural Unit Wt. kN/m ³
		<u>GRA</u>	<u>NULAR FILL</u>	116.83	0							3 8	S1
		FILL Silty odou	sand with gravel, brown, moist, no rs or staining –		1							E S	S2
	\bigotimes	_	-	114.7	2								

Test Pit Terminated at 2.1 m Depth

9/28/21	
TROW OTTAWA.GDT	
F PIT LOGS.GPJ	
ENV TES ⁻	
G OF BOREHOLE	
2	l

NOTES:	TAW	ER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
use by others	Date	Water Level (m)	Hole Open To (m)	ole Open Run Depth To (m) No. (m)	Depth (m)	% Rec.	RQD %
2. Test Pit backfilled upon completion of excavation.							
3. Field work supervised by an EXP representative.							
4. See Notes on Sample Descriptions							
5. Log to be read with EXP Report OTT-00263154-A0							

	Log of	Bo	rehole 7	FP-1 1	1	evn		
Project No:	OTT-00263154-A0				- D 17	unp		
Project:	Proposed Residential Development							
Location:	37 Wildpine Court, Ottawa, Ontario				Page. <u>1</u> of <u>1</u>			
Date Drilled:	'September 21, 2021		Split Spoon Sample		Combustible Vapour Reading			
Drill Type:	'Excavator		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	×		
Datum:	Geodetic Elevation		Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	•		
Logged by:	L. Wells Checked by: C. Kimme	erly	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	▲		
S S S M	SOIL DESCRIPTION	Geodetic	D e 20 40	Test N Value	Combustible Vapour Reading (ppm) 250 500 750 Natural Mojeture Content %	S A M Natural		

	W	B	SOIL DESCRIPTION	Elevation	n p	20 Shear Stren	40 ath	60	80 kPa	Natural Mo Atterberg Lir	isture Content % nits (% Dry Weight)	P	Unit Wt.
		Ľ		116.18	h	50	100	150	200	20	40 60	E S	KIN/III
		· <u>···</u> ·	<u>TOPSOIL</u> ~250 mm	115.0			÷: [÷			· • • • • • • • • • • •			
			FILL	115.9									1
		\otimes		asphalt _			***						
		\otimes	pieces, cobbles and boulders, brown	, moist			÷:			• • • • • • • • • •	• • • • • • • • • • •	·:	
		\otimes								h			S1
		\otimes	_	_	1		***			0		÷	
		\otimes					÷:				•••••••••••••••••		
		\otimes											
		\times		114.7									
		\mathbb{Z}	GLACIAL TILL				÷ + + + + + + + + + + + + + + + + + + +				••••••	÷.	
		1 A	boulders arey moist										
		KS.			2					<u>h::::::::::</u>		m	S2
					1					10	• • • • • • • • • • • • •		
		U/D		112.9									
			Test Pit Terminated at 2.4 m Der	oth			***			+	+++++++++++++++++++++++++++++++++++++++		
							:::					:	
												:	
												-	
												:	
												:	
							:: :		: : : : :			:	
							:: :		: : : : : :			:	
2/0												:	
R.												:	
Ž												:	
A.													
2													
5													
ŝ												:	
=													
5													
3													
-													
Ī				I	!								1
2	NO	TES:		WAT	ER L	EVEL RECO	RDS			CORE D	RILLING RECOF	RD	
2	1.I	1.Borehole data requires interpretation by EXP before use by others				Water	Hol	e Open	Run	Depth	% Rec.	R	QD %
ц	2 .	Test Pi	t backfilled upon completion of excavation	Date	L	_evel (m)	Т	o (m)	No.	(m)			
킭	2.	Field y	ork supervised by an EYP representative										
цĹ	J.1		ork supervised by an EAP representative.								1		

č a c/ c f

LOG OF BOREH 4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00263154-A0

	Log of	f Bc)r	rehole	TP	-12	4.0.0 6.0	F	vr	2
Project No:	OTT-00263154-A0							-	~~	-
Project:	Proposed Residential Development					F	$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$			
Location:	37 Wildpine Court, Ottawa, Ontario						Page I of _ I			
Date Drilled	: 'September 21, 2021			Split Spoon Sample		\boxtimes	Combustible Vapour Reading			
Drill Type:	'Excavator			Auger Sample SPT (N) Value		0	Natural Moisture Content Atterberg Limits		× ⊸⊖	
Datum:	Geodetic Elevation		-	Dynamic Cone Test Shelby Tube		-	Undrained Triaxial at % Strain at Failure		\oplus	
Logged by:	L. Wells Checked by: C. Kimme	<u>ərly</u>		Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test			
G Y W B L O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t b	Standard Penetra 20 40 Shear Strength	ation Test N 60	N Value 80 kPa	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	SA PL	Natural Unit Wt. kN/m ³	

	-	Ĕ		m 117 29	t Shear Strength 0 50 100 150 2			50 2	kPa Atterberg			perg Lim 20	Limits (% Dry Weigh		LES	kN/m ³			
			TOPSOIL ~100 mm thick FILL Silty sand with gravel, cobbles and –boulders, brown, moist	117.2															51
			GLACIAL TILL Silty sand with gravel, cobbles and [–] boulders, grey, moist	115.8	1								0						s2
rLogs.gpj trow ottawa.gdt 9/28/21			Test Pit Terminated at 1.5m Dep	vth															
TEST P	101	TES:		WAT	ER L	.EVE	EL R	ECO	RDS	3				СО	REDR	RILLING	RECOF	RD	
ENV	1.E U	sorehouse by	e data requires interpretation by EXP before others	Date	L	Wa _eve	ater el (m)	ŀ	lole Op To (m)	en	Run No.		Dep (m)	% R	ec.	F	RQD %
LOG OF BOREHOLE	∠. I 3.F 4.S 5.L	Field w Field w See No Log to	t packing upon completion of excavation. ork supervised by an EXP representative. otes on Sample Descriptions be read with EXP Report OTT-00263154-A0																

		Log o	f Bc)r	ehol	e TI	- 13	•		*c	2	xn
Proj	ect No:	OTT-00263154-A0						-			-	ΛP.
Proj	ect:	Proposed Residential Development						Figure No.	<u>D-18</u>	4		
Loca	ation:	37 Wildpine Court, Ottawa, Ontario						Page	or _	<u> </u>		
Date	Drilled:	'September 21, 2021			Split Spoon Sam	ple	\boxtimes	Combustible Va	pour Readin	g		
Drill	Type:	'Excavator			Auger Sample			Natural Moisture	e Content			×
Datum: Geodetic Elevation					Dynamic Cone T	est 🗕		Undrained Triax % Strain at Failu		⊕		
Logo	ged by:	L. Wells Checked by: C. Kimn	nerly		Shear Strength b Vane Test	у	+ s	Shear Strength Penetrometer To	by est			A
G W L		SOIL DESCRIPTION	Geodetic Elevation m	D e p t	Standard P 20 Shear Strength	enetration Tes	t N Value 80 kP	Combustible Va 250 Natural Moi Atterberg Lim	apour Readin 500 75 sture Conter its (% Dry W	g (ppm) 60 nt % eight)	S A M P L	Natural Unit Wt. kN/m ³
 		SOIL ~100 mm thick	116.19 116.1	0	50	100 150	200	20	40 6	D	S	
	FILL Silty bould mois	sand with gravel, cobbles and ders, some concrete debris, brown, t	_								s S	S1

.....

0

B S2

2

.....

113.9

113.4

SANDY SILT (ML) Trace gravel, grey, moist to wet

Test Pit Terminated at 2.8 m Depth

TES	NOTES:	WAT	TER LEVEL RECO	RDS		CORE DR	ILLING RECO	RD
≥ ■	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Щ Q	2. Test Pit backfilled upon completion of excavation.							
삙	3. Field work supervised by an EXP representative.							
Я	4. See Notes on Sample Descriptions							
9	5. Log to be read with EAF Report OTT-00200104-A0							

Log	of B	oreho	le <u>TP</u>	<u>-13</u>

		Log o	f Bc)ľ	ehole TP	-14		2	xn
Proj	ect No:	OTT-00263154-A0						-	ΛP.
Proj	ect:	Proposed Residential Development				I			
Loca	ation:	37 Wildpine Court, Ottawa, Ontario					Page. <u>1</u> of <u>1</u>		
Date	e Drilled:	'September 21, 2021			Split Spoon Sample	\boxtimes	Combustible Vapour Reading		
Drill	Type:	'Excavator		Auger Sample			Natural Moisture Content		×
					SPT (N) Value	0	Atterberg Limits		Ð
Datu	ım:	Geodetic Elevation			Dynamic Cone Test	_	Undrained Triaxial at % Strain at Failure		\oplus
Log	ged by:	L. Wells Checked by: C. Kimm	erly		Shelby Tube Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test		
G U U	S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m 117 35	D e p t h	Standard Penetration Test N 20 40 60 Shear Strength 50 100 150	Value 80 kPa 200	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	SAMPLES	Natural Jnit Wt. kN/m ³
.'' .''		SOIL ~100 mm thick	117.3	0					
	Silty	sand with gravel, cobbles and							

		ÖL		m 117 35	ť	Sł	hear S	Streng	gth 10	0	150	2	kPa 00	I	Atter	berg Lim 20	its (% Dry 40	Weight) 60	LES	kN/m ³
			TOPSOIL ~100 mm thick FILL Silty sand with gravel, cobbles and boulders, brown, moist	117.3 	1									0						S1
			_	_	2									0						S2
PTLOGS.GPJ TROW OTTAWA.GDT 9/28/21			Test Pit Terminated at 3.0 m Dep	114.9 oth																
NV TEST	1.1	TES: Boreho use bv	ole data requires interpretation by EXP before others	WAT	ER L	.EVE Wa	EL RI	ECO	RDS F	; Hole O	pen		Run	1	CC Dep	RE DF	RILLING F	RECOF	D R	QD %
LOG OF BOREHOLE E	2. ⁻ 3.1 4.9 5.1	Test P Field v See No Log to	it backfilled upon completion of excavation. work supervised by an EXP representative. otes on Sample Descriptions be read with EXP Report OTT-00263154-A0	LAIE	<u> </u>	_eve	<u>I (m)</u>			<u>To (r</u>	<u>n)</u>		No.		(m	ı <u>)</u>				

			Log of	f Bo	D	rehol	е	T	P- ′	15				*		xn
Pr	oject	No:	OTT-00263154-A0										<u>ر</u> م	1	-	Λp.
Pr	oject	:	Proposed Residential Development							_ F	Igure No)	D-2	!		
Lc	catio	n:	37 Wildpine Court, Ottawa, Ontario								Page	e. <u>1</u>	l_of	1		
Da	ate Dr	illed:	'September 21, 2021		Split Spoon Sample					Combustible Vapour Reading						
Dr	Drill Type: <u>'Excavator</u>				Auger Sample						Natural Mo Atterberg L	isture C	Content	F		×
Da	Datum: Geodetic Elevation				_	Dynamic Cone	est	-			Undrained % Strain at	Triaxial Failure	at	•		\oplus
Logged by: L. Wells Checked by: C. Kimmerly				<u>erl</u> y		Shear Strength Vane Test	у		+ s		Shear Stre Penetrome	ngth by ter Tes	, t			
G W L	S Y B O L		SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Standard F	Penetr 40	ation Te	st N Valı 8	ue 0 kPa	Combustib 250 Natura Atterber	ole Vapo 50 al Moistu g Limits	our Readin 00 7 ure Conte (% Dry V	ng (ppm) 50 nt % Veight)	SAMPLEO	Natural Unit Wt. kN/m ³
		FILL Sanc	<u>SOIL</u> ~100 mm thick	- 116.84 - 116.7 -	1					ο 						S1

		_ <u>IOPSOIL</u> ~100 mm thick	116.7		1999949	÷÷÷	+ ÷ ÷ ÷ ÷ +	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot$	+:::::	+ ÷ ÷ ÷ ÷ ÷	1.2 ÷ ÷ ÷	: • : : : : : : : : : : : : : : : : : :	$\frac{1}{2}$	2 	
	\otimes	FILL Sand, brown, moist, no odours or sta	aining												
	\bigotimes	_	_											: 	0.1
	\bigotimes									0				M	S1
	\bigotimes	_	_	1									****		
	\bigotimes														
	\otimes														
	\bigotimes	_	_			<u>.</u>								<u>:</u>	
	\bigotimes														
	\bigotimes	_						•••••••••••••••••••••••••••••••••••••••			· · · · · · ·	•••••••			60
	\bigotimes	_		2						.0				74	52
	\bigotimes											••••••			
	XXX	Test Pit Terminated at 2.5 m De	114.3												
			P • • •												
						::::								:	
						::::								:	
														:	
														:	
						::::								:	
														:	
_															
7197						::::								:	
5															
A.GL															
AW						::::									
$\overline{\mathbf{S}}$															
						::::								:	
2															
2														:	
Ĭ															
				I						1:::		: : : : : :		:	
	TES:		WAT	WATER LEVEL RECO						CO	RE DF		ECOR	D	
> 1.8 Z u	ise by	others	Date		Water			en	Run	Dept	th	% Red	C.	R	2D %
≝ 2.т	lest Pi	t backfilled upon completion of excavation.				+	10 (11)		110.						
Ξ́ 3.F	ield w	ork supervised by an EXP representative.													

4. See Notes on Sample Descriptions

LOG OF BORE 5.Log to be read with EXP Report OTT-00263154-A0

Log of Borehole <u>BH-2</u>

	*ex	n
)-1	OA	<u> </u>

0

Project:	Proposed Residential Development		Figure No. <u>D-1</u>
Location:	37 Wildpine Court, Ottawa, Ontario		
Date Drilled:	'December 11, 2020	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	'Track Mounted Drill Rig	Auger Sample II SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

--+ NI \/-

	G W	S Y M B	1	SOIL DESCRIPTION		Geodetic Elevation	D e p	20	40 60	stin vai 8	ue 80	25 Natu	tible var 50 ural Mois	500 7: sture Conter	19 (ppm 50 nt %) Å M P	Natural Unit Wt.
	L	0 L				m 115 7	h	Shear Streng 50	gth 100 150	2	кРа 00	Allerb	erg Limi 0	40 6	o (light)	LES	kN/m [°]
		<u>\</u> \ 1,	<u>v.</u> † .	TOPSOIL ~150 mm thick		115.6	0						X				
				FILL Silty sand with gravel (SM), organic, -cobbles and boulders, some pieces wood, brown, moist, (loose to compa	of — ict)							*				m	BS1
				-	_	114 2	1						×			X	SS2
A DA DA DA			<u>× ×</u> <u>< </u>	ORGANIC SILTY SAND TO SANDY S (SM TO ML) Silty sand to sandy silt with pieces of decaying wood and topsoil, dark bro- moist, (very loose)	<u>SILT</u> wn,		2	2 O				*				X	SS3
NO NO NO			2 <u> /</u>	-	_	113.3		3 								89. */	4 SS4
			<u>-</u> <u>\</u> \ <u>-</u> \\	-	_	112.3	3									154 X	1.9 SS5
				– <u>SANDY SILT (ML)</u> Grey, wet, (compact) –	_		4						*				SS6
		655		- - GLACIAL TILL		110.6 110.5	5	20 •				***	<pre></pre>				SS7
V OLLAWA.GUL 8/20/				Silty sand with gravel (SM), brown to wet Borehole Terminated at 5.2 m De	grey, pth											•	
- 2 [NC	TES	S:]			21		RDS			00			ECOP		
	1.	1.Borehole data requires interpretation by EXP before use by others			Date		、 L	Water	Hole Open		CORE DF		h	ORILLING RECOF			QD %
	2.A 19 mm diameter standpipe installed upon completion Com			Comple	Date L Completion		<u>.evel (m)</u> 3.4	To (m)		No.	(m)	-		_			
	3. Field work supervised by an EXP representative.			Jan. 5, 2 May 7, 2	2021	2.4											

LOG OF BOR 4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00263154-A0

Project No: OTT-00263154-A0

	Log of E	Borehole	BH-3	1	exp
Project No:	OTT-00263154-A0				CAP.
Project:	Proposed Residential Development			Figure No. $D-2$	
Location:	37 Wildpine Court, Ottawa, Ontario			Page. I of I	_
Date Drilled:	'December 11, 2020	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	Track Mounted Drill Rig	Auger Sample —— SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢—⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A

Shear Strength by Vane Test

+ s

	G W L	SOIL DESCRIPTION		Geodetic Elevation m	D e p t h		Shea	20 20 ar St	dard rengt	Pen 4 th	etrati	ion T 6	est N 0	Valı 8	ue 0kF	^v a	Combus 2 Nat Atterb	stible \ 50 ural M erg Li	apou 50 bistur nits (ur Rea 0 re Cor (% Dry	ntent We	g (ppm)) : % eight)	SAMPLEO	Natural Unit Wt. kN/m ³
ŀ		ASPHALT ~60 mm thick	/	116.58	0							:::					_	Î : :	40	, 	1			
		GRANULAR FILL Silty sand with gravel, grey, dry	/	116.0													×						M	BS1
		FILL Silty sand with gravel, cobbles ar boulders, grey, moist, (compact t dense)	d o very _		1			·····		- 37 O				· · · · ·		· · · · ·	×							SS2
		—	-	-										· · · · · · · · · · · · · · · · · · ·		· · · ·								7
			-	-	2				3 Э							· · · · ·	×				· · · · ·			SS3
	V	with organics from 2.3 m to 2.9 n	depths	- 440.00									7(C) 		· · · ·	X			· · · · · ·			\mathbb{N}	SS4
	<u>*</u>	ORGANIC SILTY SAND TO SANI	OY SILT	113.6	3			· · · · · · · · · · · · · · · · · · ·						·····		· · · ·								1
		M (SM TO ML) Silty sand to sandy silt with piece M L Control L	s of prown, _	_			7							· · · · ·		· · · ·							174	SS5
		$\frac{\sqrt{2}}{\sqrt{2}}$	-	112.5	4		8 O	·····						· · · · · · · · · · · · · · · · · · ·		· · · · ·						×		
		SANDY SILT (ML) Grey, wet, (compact)	-													· · · · ·	>							SS6
5			-	111.4	5			16 ☉						· · · · ·		· · · ·	>	<						SS7
PIT LOGS.GPJ TROW OTTAWA.GDT 9/28/2		Borehole Terminated at 5.2 n	Depth																					
NV TEST	NO 1.	OTES: I. Borehole data requires interpretation by EXP before		WATEF	٦L	.EV W	'EL 'ate	RE r	COF	RDS F	3 Hole	Ope	en		Rur		CO Dep	RE D	RILI	LING % F	RE Rec.	CORD	R	OD %
OREHOLE E	2. 3. 4.	2. Borehole backfilled upon completion of drilling. B. Field work supervised by an EXP representative. See Notes on Sample Descriptions	Comp	letion	L	<u>_ev</u>	<u>el (</u> 1 2.7	<u>m)</u>			To	(<u>m)</u>			No.		(m)						
LOG OF B	5.	5. Log to be read with EXP Report OTT-00263154-A0																						

WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD						
Date	Water	Hole Open To (m)	Run No	Depth (m)	% Rec.	RQD %				
Completion	2.7			(,						
	WAT Date Completion	WATER LEVEL RECO Date Water Level (m) Completion 2.7	WATER LEVEL RECORDS Date Water Level (m) Hole Open To (m) Completion 2.7	WATER LEVEL RECORDS Date Water Level (m) Hole Open To (m) Run No. Completion 2.7	WATER LEVEL RECORDS CORE DF Date Water Level (m) Hole Open To (m) Run No. Depth No. Completion 2.7 Image: Core of the second	WATER LEVEL RECORDS CORE DRILLING RECORDS Date Water Hole Open Level (m) To (m) Completion 2.7				

Log of Borehole <u>BH-4</u> Project No: OTT-00263154-A0

	Log of Bo	orehole E	3H-4	1	exp
Project No:	OTT-00263154-A0				CAP.
Project:	Proposed Residential Development			Page. <u>D-3</u>	
Location:	37 Wildpine Court, Ottawa, Ontario				
Date Drilled:	'December 11, 2020	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	Track Mounted Drill Rig	Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊷
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by Vane Test		Shear Strength by Penetrometer Test	A

	_	S Y		Geode	tic D) :	Standar	d Per	etration '	Test N Va	lue	Combu:	stible Vap	our Readir	ng (ppm 50) S A	Natural
	Ŵ	M B	SOIL DESCRIPTION	Elevati	ion p	Sho	20	4 ath	0 0	60	80 kDa	Nat Atter	ural Mois	ture Conte	nt %	P	Unit Wt.
	-	L		m 116.72	, h	Silea	50 af Stren	901 1(00 1	50	кга 200		20	40 6	io	Ē	KN/m ⁻
			FILL Silty sand with gravel (SM), grey to b cobbles and boulders, damp to mois _(dense to very dense)	rown, t	- 0		······································					×				1	BS1
			_	_	1			37 O				*				\mathbb{N}	SS2
	ほんはんていていて				2					88	for 250 r	nm X				X	SS3
			Silty sand with gravel (SM), cobbles boulders, grey, moist to wet, (very de _	and inse) –	1.02		······································			85 1	or 275 m	m X					SS4
N D N D N	NAR NYAR		_	_	3												
			_	_													RUN1
			_	_	4			· · · · · ·								· · · · · · ·	
ŀ	Ξ÷	¢Ľ	Borebole Terminated at 4.2 m De	112.5													
3[NO 1	TES:	le data requires interpretation by EVD before	WA	TER L	EVEL	RECC	RDS	3			CO	RE DRI	RILLING RECOF		D	
	ı. 2.	use by	me data requires interpretation by EXP before others m diameter standpipe installed upon completion	Date	L	Wate _evel (r m <u>)</u>		Hole Op To (m	en)	Run No.	Dep (m	th)	% Re	C.	R	QD %
	3.	ot drilli Field v	ng. vork supervised by an EXP representative.	Jan. 5, 2021 May 7, 2021		2.7 2.7											

LOG OF BOF 4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00263154-A0

Log of Borehole <u>BH-6</u>

Project No: OTT-00263154-A0

	"OV	n
	UN.	U.
4		

0

		Fi	aure No. D-4	1111
Proposed Residential Development				
37 Wildpine Court, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	
'December 11, 2020	Split Spoon Sample		Combustible Vapour Reading	
'Track Mounted Drill Rig	Auger Sample		Natural Moisture Content	×
	SPT (N) Value O		Atterberg Limits	O
Geodetic Elevation	Dynamic Cone Test		Undrained Triaxial at	\oplus
	Shelby Tube		% Strain at Failure	-
A. Neguss Checked by: A. Nader	Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test	A
	Proposed Residential Development 37 Wildpine Court, Ottawa, Ontario 'December 11, 2020 'Track Mounted Drill Rig Geodetic Elevation A. Neguss Checked by: A. Nader	Proposed Residential Development 37 Wildpine Court, Ottawa, Ontario 'December 11, 2020 Split Spoon Sample 'Track Mounted Drill Rig Auger Sample Geodetic Elevation Dynamic Cone Test A. Neguss Checked by: A. Nader Shear Strength by Vane Test S	Proposed Residential Development Fi 37 Wildpine Court, Ottawa, Ontario Split Spoon Sample 'December 11, 2020 Split Spoon Sample 'Track Mounted Drill Rig SPT (N) Value Geodetic Elevation Dynamic Cone Test A. Neguss Checked by: A. Nader Shelby Tube Shelby Tube	Proposed Residential Development Figure No4 37 Wildpine Court, Ottawa, Ontario Page0 f 'December 11, 2020 Split Spoon Sample Combustible Vapour Reading 'Track Mounted Drill Rig SPT (N) Value O Geodetic Elevation Dynamic Cone Test Undrained Triaxial at A. Neguss Checked by: <u>A. Nader</u> Shear Strength by Yane Test Shear Strength by Penetrometer Test

	G N L	S Y B O	SOIL DESCRIPTION		Geodetic Elevation m	Depth	20 Shear Streng	gth	<u>0 6</u>		30 kPa	2 Nat Atterb	50 5 ural Mois perg Limit	500 7 ture Conte s (% Dry V	50 10 voight)		Natural Unit Wt. kN/m ³
		L (1/2)	TOPSOIL ~150 mm thick		116.19	0	50	10	00 15	0 2	00	2	20	40	30 T : : :	- 5	5
	TARK I		FILL Silty sand with gravel (SM), organic, - cobbles and boulders, brown, moist, (loose)		116.0												ß BS1
			_	_		1	5						*				SS2
			GLACIAL TILL		114.2	2	6 0			·····		×					SS3
			Silty sand with gravel (SM), cobbles a boulders, grey to brown, moist to wet _(compact to very dense)	and t,	113.89		23- O					>	K				SS4
	A A A A A A A A A A A A A A A A A A A		-	_		3	2	9				*					SS5
	CALL CONTRACTOR		-	_		4						×					SS6
			Borehole Terminated at 4.8 m De	epth	111.4					83 fo	r 225 mm	×					SS7
PIT LOGS.GPJ TROW OTTAWA.GDT 9/28/21																	
EST.	TON	ES:			WATER	२ ।	EVEL RECO	RD	3			0.0			FCO	חא	
T VV	1.B u	Boreho se by	le data requires interpretation by EXP before others			· L	Water		- Hole Ope	n	Run	Dep	th	% Re	<u></u> c.		RQD %
F BOREHOLE E	2.A 0 3.F 4.S	19 m f drillir ield w See No	m diameter standpipe installed upon completion ng. ork supervised by an EXP representative. otes on Sample Descriptions	Comple Jan. 5, 1 May 7, 1	etion 2021 2021	L	<u>evel (m)</u> 2.4 2.3 2.3		<u>To (m)</u>		No.	<u>(m</u>)				
LOG C	5.L	og to l	be read with EXP Report OTT-00263154-A0														

NOTES.	WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD						
1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
2. A 19 mm diameter standpipe installed upon completion	Completion	2.4									
or drining.	Jan. 5, 2021	2.3									
3. Field work supervised by an EXP representative.	May 7, 2021	2.3									
4. See Notes on Sample Descriptions											
5.Log to be read with EXP Report OTT-00263154-A0											

Log of Borehole <u>BH-7</u>

	Log of Be	orehole BH-7	1	exp
Project No:	OTT-00263154-A0			CAP.
Project: Location:	Proposed Residential Development 37 Wildpine Court, Ottawa, Ontario		Pigure No. <u>D-5</u> Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'December 11, 2020	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	'Track Mounted Drill Rig	Auger Sample II SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

	G	S Y		Geodetic	D e	Sta	ndard P	enetration	i lest N Va	lue	Combus 2	50 5	our Readin 00 7	ng (ppm) 50	A	Natural
'	N	B	SOIL DESCRIPTION	Elevation m	p t	Shear S	20 Strength	40	60	80 kPa	Nati Atterb	ural Moist erg Limits	ure Conte s (% Dry V	nt % /eight)	P	Unit Wt. kN/m ³
		Ĺ		116.09	n 0	5	i0	100	150 2	200	2	0 4	0 6	0	S	
			TOPSOIL ~100 mm thick FILL Silty sand with gravel (SM), organic, pieces of wood and rootlete. (very loose to	116.0							×				E S	BS1
			compact)		1										\mathbb{N}	
				-							*				Å	SS2
				-	2	3					×				X	SS3
				113 3		- 6 -0					×					SS4
			ORGANIC SILTY SAND TO SANDY SILT - (SM TO ML) - Silty sand to sandy silt with pieces of decaying wood and topsoil, dark brown,		3	6 Q)	240 V	.5
<u> </u>	Ľ		moist, (loose) 	112.7									X		\wedge	
				-	4						>	<			X	SS6
				-	5		21 0				×					SS7
GDT 9/28/21																
DW OTTAWA.(GLACIAL TILL – Silty sand with gravel (SM), cobbles and – boulders, brown, wet, (very dense)	110.3	6				76 for 2	25 mm						558
TR(H)		109.7			• • • • •								\square	550
IT LOGS.GPJ			Auger Refusal at 6.4 m Depth													
ST F		TES														

E	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD						
≥ E	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
비는	2. Borehole backfilled upon completion of drilling.	Completion	3.7	· · · ·								
Ĭ	3. Field work supervised by an EXP representative.											
힒	4. See Notes on Sample Descriptions											
히	5. Log to be read with EXP Report OTT-00263154-A0											

Log of Borehole <u>BH-8</u>

Project No: OTT-00263154-A0

	1.	
	* ex	\mathbf{O}
e	0/1	<u> </u>
<u>-0</u>		

Project:	Proposed Residential Development		F	Figure No. $D-6$	
Location:	37 Wildpine Court, Ottawa, Ontario			Page. <u>I</u> of <u>I</u>	
Date Drilled:	'December 11, 2020	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	'Track Mounted Drill Rig	Auger Sample SPT (N) Value		Natural Moisture Content	×
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	<u> </u>	Undrained Triaxial at % Strain at Failure	⊕
Logged by:	A. Neguss Checked by: A. Nader	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	

	G	S Y		Geodetic	eodetic D e Standard Penetration Test N Va					/alue Combustible Vapour Reading (pp 250 500 750			ig (ppm) 50	A	Natural		
	Ľ	B O	SOIL DESCRIPTION	Elevation m	p t	Shea	20 ar St	rength	40 6	50	80 kPa	Nati Atterb	ural Moistu erg Limits	re Conter (% Dry W	nt % 'eight)	P	Unit Wt. kN/m ³
		L 	TOPSOU - 100 mm thick	115.79	0		50	· · · · · · ·	00 1	50 2	200		04	0 6	0	S	
2	Ц Д		FILL Silty sand with gravel (SM), organic,	115.7			16 ⊙					· · · · · · · · · · · · · · · · · · ·	<			Ì	BS1
			– cobbles and boulders, pieces of wood, some topsoil, moist, (loose to compact)	_												//	
			_	_	1	10							· · · · · · · · · · · · · · · · · · ·			V	000
	21 BEALE															\wedge	552
			_			7										V	SS 3
	SALES AU	$\underline{}$	ORGANIC SILTY SAND TO SANDY SILT	113.8	2			·····					······			Λ	
	SALEA	<u>'' \'</u>	(SM TO ML) Silty sand to sandy silt with pieces of _decaying wood and topsoil, dark brown,	_		1							• • • • • • • • •			165	5.1
		<u>', \)</u> \),	moist, (very loose)	112.99		•							· · · · · · · · · · · · · · · · · · ·)		SS4
		<u>, , , ,</u>	_	_	3	2					·····					146	5.7
	AREAR	<u>~~</u> <u>/, _\/</u> 111		112.3		Ŏ							Y			Ň	SS5
SA KSA	5208520		Grey, wet, (compact)														
000000			_	_	4	10 O						>				X	SS6
			_	_			••••••	···· ·· ·								//	
							21 C	1 · · · · · · · · · · · · · · · · · · ·				×	· · · · · · · · · · · · · · · · · · ·			N	SS7
8/21			_	_	5								· · · · · · · · · · · · · · · · · · ·			Λ	
GDT 9/2			_	_													
TTAWA	Ë.		Auger Refusal at 5.9 m Denth	109.9													
J TROW O																	
1T LOGS.GF																	
/ TEST F	- NO 1 F	TES: Borebr	ble data requires interpretation by EXP before	WATER	R LI	EVEL	RE	CORD	S		CORE DRILLING RECORD						

ЦЩ	NOTES:	WAT	ER LEVEL RECC	RDS		CORE DRILLING RECORD					
ENV	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %			
Ē	2.A 19 mm diameter standpipe installed upon completion	Completion	3.5	, ,							
H		Jan. 5, 2021	2.9								
0R	3. Field work supervised by an EXP representative.	May 7, 2021	2.8								
Ш	4. See Notes on Sample Descriptions										
LOG C	5.Log to be read with EXP Report OTT-00263154-A0										

EXP Services Inc.

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix E: Analytical Summary Tables

Table 1 - Analytical Results in Soil - BTEX and PHC 37 Wildpine Court, Ottawa, Ontario

Table 1 - Analytical Results in Soil 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0	- BTEX and PHC												^{ss} exp.
Parameter		MECP Table 9 ¹	TP-8 S1	TP-8 S2	TP-9 S1	TP-10 S1	TP-11 S1	TP-11 S2	TP-12 S1	TP-13 S1	TP-14 S1	TP-14 S2	TP-15 S2
Sampling Date	Units		21-Sep-21										
Sample Depth (m bgs)			0.5	1.7	0.5	0.5	0.7	1.3	0.4	0.5	0.5	2.8	2.3
Sample ID		Bold	QSK239	QSK240	QSK241	QSK235	QSK236	QSK237	QSK234	QSK238	QSK233	QSK243	QSK278
Certificate of Analysis			C1R3429										
BTEX													
Benzene	ug/g dry	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	ug/g dry	0.2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	ug/g dry	0.05	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	ug/g dry	NV	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
p+m-Xylene	ug/g dry	NV	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	< 0.040
Total Xylenes	ug/g dry	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
PHC													
F1 (C6-C10)	ug/g dry	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2 (C10-C16)	ug/g dry	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	ug/g dry	240	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34-C50)	ug/g dry	120	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic SCS for Use within 30 m of a Waterbody in a Non-Potable Groundwater Condition for 1 Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use (coarse textured soil)

Non-detectable results are shown as "< RDL" where RDL represents

< the reporting detection limit. For RDL of reportable results, see the

NV No Value

N/A Not Applicable

Parameter not analyzed -

Metres below ground surface m bgs

BOLD Indicates soil exceedance of MECP Table 9

Table 2 - Analytical Results in Soil - PAH 37 Wildpine Court, Ottawa, Ontario

able 2 - Analytical Results in 5 7 Wildpine Court, Ottawa, Onta 0TT-00263154-A0	Soil - PAH ario											^{**} exp.
Parameter		MECP Table 9 ¹	TP-8 S1	TP-8 S2	TP-9 S1	TP-10 S1	TP-11 S1	TP-11 S2	TP-12 S1	TP-13 S1	TP-14 S1	TP-14 S2
ampling Date	Units		21-Sep-21									
ample Depth (m bgs)	1		0.5	1.7	0.5	0.5	0.7	1.3	0.4	0.5	0.5	2.8
aboratory ID	1		QSK239	QSK240	QSK241	QSK235	QSK236	QSK237	QSK234	QSK238	QSK233	QSK243
ertificate of Analysis			C1R3429									
cenaphthene	ug/g dry	0.072	<0.0050	<0.0050	<0.0050	<0.0050	0.12	<0.0050	<0.0050	<0.050	<0.0050	<0.0050
cenaphthylene	ug/g dry	0.093	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.050	<0.0050	< 0.0050
Inthracene	ug/g dry	0.22	<0.0050	<0.0050	<0.0050	<0.0050	0.33	< 0.0050	<0.0050	<0.050	<0.0050	< 0.0050
enzo(a)anthracene	ug/g dry	0.36	0.0073	<0.0050	<0.0050	<0.0050	0.32	< 0.0050	<0.0050	<0.050	<0.0050	< 0.0050
Benzo(a)pyrene	ug/g dry	0.3	0.0089	<0.0050	<0.0050	<0.0050	0.23	< 0.0050	<0.0050	<0.050	<0.0050	<0.0050
enzo(b/j)fluoranthene	ug/g dry	0.47	0.016	<0.0050	<0.0050	0.0066	0.30	0.0061	0.0068	<0.050	<0.0050	<0.0050
enzo(ghi)perylene	ug/g dry	0.68	0.0067	<0.0050	<0.0050	<0.0050	0.092	< 0.0050	<0.0050	<0.050	<0.0050	<0.0050
Benzo(k)fluoranthene	ug/g dry	0.48	<0.0050	<0.0050	<0.0050	<0.0050	0.12	< 0.0050	<0.0050	< 0.050	<0.0050	< 0.0050
Chrysene	ug/g dry	2.8	0.0082	< 0.0050	<0.0050	< 0.0050	0.25	< 0.0050	0.0051	< 0.050	< 0.0050	< 0.0050
Dibenzo(a,h)anthracene	ug/g dry	0.1	< 0.0050	< 0.0050	<0.0050	< 0.0050	0.035	< 0.0050	<0.0050	< 0.050	< 0.0050	< 0.0050
luoranthene	ug/g dry	0.69	0.014	<0.0050	<0.0050	0.0087	0.88	0.0065	0.0078	<0.050	<0.0050	<0.0050
luorene	ug/g dry	0.19	<0.0050	< 0.0050	<0.0050	<0.0050	0.19	< 0.0050	<0.0050	< 0.050	< 0.0050	< 0.0050
ndeno(1,2,3-cd)pyrene	ug/g dry	0.23	0.0063	<0.0050	<0.0050	<0.0050	0.12	< 0.0050	<0.0050	<0.050	<0.0050	<0.0050
-Methylnaphthalene	ug/g dry	0.59	<0.0050	<0.0050	<0.0050	<0.0050	0.035	< 0.0050	<0.0050	< 0.050	<0.0050	< 0.0050
-Methylnaphthalene	ug/g dry	0.59	<0.0050	<0.0050	<0.0050	<0.0050	0.040	< 0.0050	<0.0050	< 0.050	<0.0050	< 0.0050
1ethylnaphthalene, 2-(1-)	ug/g dry	0.59	<0.0071	<0.0071	<0.0071	<0.0071	0.074	<0.0071	<0.0071	<0.071	<0.0071	<0.0071
laphthalene	ug/g dry	0.09	<0.0050	<0.0050	<0.0050	<0.0050	0.057	<0.0050	<0.0050	< 0.050	<0.0050	<0.0050
Phenanthrene	ug/g dry	0.69	0.0053	<0.0050	<0.0050	<0.0050	1.1	<0.0050	<0.0050	< 0.050	<0.0050	<0.0050
vrene	ua/a dry	1	0.012	<0.0050	<0.0050	0.0067	0.59	0.0053	0.0062	<0.050	<0.0050	<0.0050

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic SCS for Use within 30 m of a Waterbody in a Non-Potable Groundwater Condition for 1 Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use (coarse textured soil)

Non-detectable results are shown as "< RDL" where RDL ND

represents the reporting detection limit. For RDL of reportable

NV No Value

N/A Not Applicable

Parameter not analyzed -

m bgs BOLD Metres below ground surface

Indicates soil exceedance of MECP Table 9

Table 3 - Analytical Results in Soil - Metals
37 Wildpine Court, Ottawa, Ontario

Table 3 - Analytical Results in 5 37 Wildpine Court, Ottawa, Onta OTT-00263154-A0	Soil - Metals ario											*exp.
Parameter		MECP Table 9 ¹	TP-8 S1	TP-8 S2	TP-9 S1	TP-10 S1	TP-11 S1	TP-11 S2	TP-12 S1	TP-13 S1	TP-14 S1	TP-14 S2
Sampling Date	Units		21-Sep-21									
Sample Depth (m bgs)			0.5	1.7	0.5	0.5	0.7	1.3	0.4	0.5	0.5	2.8
Sample ID		Bold	QSK239	QSK240	QSK241	QSK235	QSK236	QSK237	QSK234	QSK238	QSK233	QSK243
Certificate of Analysis			C1R3429									
Metals												
Antimony	ug/g dry	1.3	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	ug/g dry	18	2.5	<1.0	1.2	1.2	1.5	1.4	<1.0	1.4	2.8	2.0
Barium	ug/g dry	220	93	100	100	72	45	46	33	56	98	110
Beryllium	ug/g dry	2.5	0.50	0.34	0.39	0.34	0.28	0.30	0.26	0.37	0.64	0.53
Boron	ug/g dry	36	5.0	<5.0	<5.0	5.6	<5.0	<5.0	<5.0	<5.0	5.7	<5.0
Cadmium	ug/g dry	1.2	0.23	<0.10	0.15	0.13	0.11	0.16	0.12	0.19	0.18	0.11
Chromium	ug/g dry	70	22	18	21	16	13	15	12	15	32	32
Cobalt	ug/g dry	22	7.1	6.4	7.3	6.2	6.1	6.3	4.9	5.9	15	19
Copper	ug/g dry	92	14	17	17	12	12	12	9.1	12	24	34
Lead	ug/g dry	120	16	4.7	5.7	9.5	11	9.6	8.0	8.1	12	9.1
Molybdenum	ug/g dry	2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.56	<0.50
Nickel	ug/g dry	82	15	14	15	12	9.6	10	7.9	9.9	26	24
Selenium	ug/g dry	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	ug/g dry	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	ug/g dry	1	0.19	0.17	0.17	0.14	0.12	0.13	0.076	0.12	0.54	0.51
Uranium	ug/g dry	2.5	0.73	0.55	0.56	0.59	0.43	0.52	0.52	0.61	0.67	0.72
Vanadium	ug/g dry	86	35	30	32	28	30	34	28	30	54	66
Zinc	ug/g dry	290	50	27	32	32	40	39	30	41	65	73

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic SCS for Use within 30 m of a Waterbody in a Non-Potable Groundwater Condition for 1 Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use (coarse textured soil)

Non-detectable results are shown as "< RDL" where RDL represents the

< reporting detection limit. For RDL of reportable results, see the

NV No Value

N/A Not Applicable

Parameter not analyzed -

m bgs Metres below ground surface

BOLD Indicates soil exceedance of MECP Table 9

Table 4 - Maximum Soncentrations in Soil

37 Wildpine Court, Ottawa, Ontario

OTT-00263154-A0

Sample ID	Sample Location	Sample Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table 9
втех					
Benzene	All Locations	0.5 to 2.8	21-Sep-21	<0.020	0.02
Toluene	All Locations	0.5 to 2.8	21-Sep-21	<0.020	0.2
Ethylbenzene	All Locations	0.5 to 2.8	21-Sep-21	<0.020	0.05
Total Xylenes	All Locations	0.5 to 2.8	21-Sep-21	<0.040	0.05
РНС		•			
F1 (C6-C10)	All Locations	0.5 to 2.8	21-Sep-21	<10	25
F2 (C10-C16)	All Locations	0.5 to 2.8	21-Sep-21	<10	10
F3 (C16-C34)	All Locations	0.5 to 2.8	21-Sep-21	<50	240
F4 (C34-C50)	All Locations	0.5 to 2.8	21-Sep-21	<50	120
РАН		•			
Acenaphthene	TP-11 S1	0.7	21-Sep-21	0.12	0.072
Acenaphthylene	All Locations	0.5 to 2.8	21-Sep-21	<0.0050	0.093
Anthracene	TP-11 S1	0.7	21-Sep-21	0.33	0.22
Benzo(a)anthracene	TP-11 S1	0.7	21-Sep-21	0.32	0.36
Benzo(a)pyrene	TP-11 S1	0.7	21-Sep-21	0.23	0.3
Benzo(b/j)fluoranthene	TP-11 S1	0.7	21-Sep-21	0.30	0.47
Benzo(ghi)perylene	TP-11 S1	0.7	21-Sep-21	0.092	0.68
Benzo(k)fluoranthene	TP-11 S1	0.7	21-Sep-21	0.12	0.48
Chrysene	TP-11 S1	0.7	21-Sep-21	0.25	2.8
Dibenzo(a,h)anthracene	TP-11 S1	0.7	21-Sep-21	0.035	0.1
Fluoranthene	TP-11 S1	0.7	21-Sep-21	0.88	0.69
Fluorene	TP-11 S1	0.7	21-Sep-21	0.19	0.19
Indeno(1,2,3-cd)pyrene	TP-11 S1	0.7	21-Sep-21	0.12	0.23
1-Methylnaphthalene	TP-11 S1	0.7	21-Sep-21	0.035	0.59
2-Methylnaphthalene	TP-11 S1	0.7	21-Sep-21	0.040	0.59
Methylnaphthalene, 2-(1-)	TP-11 S1	0.7	21-Sep-21	0.074	0.59
Naphthalene	TP-11 S1	0.7	21-Sep-21	0.057	0.09
Phenanthrene	TP-11 S1	0.7	21-Sep-21	1.1	0.69
Pyrene	TP-11 S1	0.7	21-Sep-21	0.59	1
Metals		•			
Antimony	All Locations	0.5 to 2.8	21-Sep-21	<0.20	1.3
Arsenic	TP-14 S1	0.5	21-Sep-21	2.5	18
Barium	TP-14 S2	2.8	21-Sep-21	110	220
Beryllium	TP-14 S1	0.5	21-Sep-21	0.64	2.5
Boron	TP-14 S1	0.5	21-Sep-21	5.7	36
Cadmium	TP-8 S1	0.5	21-Sep-21	0.23	1.2
Chromium	TP-14	0.5 to 2.8	21-Sep-21	32	70
Cobalt	TP-14 S2	2.8	21-Sep-21	19	22
Copper	TP-14 S2	2.8	21-Sep-21	34	92
Lead	TP-8 S1	0.5	21-Sep-21	16	120
Molybdenum	TP-14 S1	0.5	21-Sep-21	0.56	2
Nickel	TP-14 S1	0.5	21-Sep-21	26	82
Selenium	All Locations	0.5 to 2.8	21-Sep-21	<0.50	1.5
Silver	All Locations	0.5 to 2.8	21-Sep-21	<0.20	0.5
Thallium	TP-14 S1	0.5	21-Sep-21	0.54	1
Uranium	TP-8 S1	0.5	21-Sep-21	0.73	2.5
Vanadium	TP-14 S2	2.8	21-Sep-21	66	86
Zinc	TP-14 S2	2.8	21-Sep-21	73	290

Notes:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 9 Generic SCS for Use within 30 m of a Waterbody in a Non-Potable Groundwater Condition for

Residential/Parkland/Institutional/Industrial/Commercial/Community Land Use (coarse textured soil)

EXP Services Inc.

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix F: Laboratory Certificates of Analysis

Your Project #: OTT-00259416-A0 Your C.O.C. #: 847134-03-01, 847134-02-01

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/27 Report #: R6829101 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1R3429

Received: 2021/09/21, 14:00

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	10	N/A	2021/09/27	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	9	N/A	2021/09/23	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	2	N/A	2021/09/24	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	11	2021/09/24	2021/09/24	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS (1)	10	2021/09/23	2021/09/24	CAM SOP-00447	EPA 6020B m
Moisture (1)	11	N/A	2021/09/22	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	10	2021/09/24	2021/09/25	CAM SOP-00318	EPA 8270D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods

Page 1 of 32

Your Project #: OTT-00259416-A0 Your C.O.C. #: 847134-03-01, 847134-02-01

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2021/09/27 Report #: R6829101 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1R3429

Received: 2021/09/21, 14:00

September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Bureau Veritas 27 Sep 2021 14:13:27

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 ICPMS METALS (SOIL)

BV Labs ID		QSK233	QSK234	QSK235	QSK236		QSK237		
Sampling Date		2021/09/21 08:00	2021/09/21 08:15	2021/09/21 08:45	2021/09/21 09:45		2021/09/21 10:00		
COC Number		847134-03-01	847134-03-01	847134-03-01	847134-03-01		847134-03-01		
	UNITS	TP-14 S1	TP-12 S1	TP-10 S1	TP-11 S1	QC Batch	TP-11 S2	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	<0.20	7596280	<0.20	0.20	7596441
Acid Extractable Arsenic (As)	ug/g	2.8	<1.0	1.2	1.5	7596280	1.4	1.0	7596441
Acid Extractable Barium (Ba)	ug/g	98	33	72	45	7596280	46	0.50	7596441
Acid Extractable Beryllium (Be)	ug/g	0.64	0.26	0.34	0.28	7596280	0.30	0.20	7596441
Acid Extractable Boron (B)	ug/g	5.7	<5.0	5.6	<5.0	7596280	<5.0	5.0	7596441
Acid Extractable Cadmium (Cd)	ug/g	0.18	0.12	0.13	0.11	7596280	0.16	0.10	7596441
Acid Extractable Chromium (Cr)	ug/g	32	12	16	13	7596280	15	1.0	7596441
Acid Extractable Cobalt (Co)	ug/g	15	4.9	6.2	6.1	7596280	6.3	0.10	7596441
Acid Extractable Copper (Cu)	ug/g	24	9.1	12	12	7596280	12	0.50	7596441
Acid Extractable Lead (Pb)	ug/g	12	8.0	9.5	11	7596280	9.6	1.0	7596441
Acid Extractable Molybdenum (Mo)	ug/g	0.56	<0.50	<0.50	<0.50	7596280	<0.50	0.50	7596441
Acid Extractable Nickel (Ni)	ug/g	26	7.9	12	9.6	7596280	10	0.50	7596441
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	7596280	<0.50	0.50	7596441
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	7596280	<0.20	0.20	7596441
Acid Extractable Thallium (Tl)	ug/g	0.54	0.076	0.14	0.12	7596280	0.13	0.050	7596441
Acid Extractable Uranium (U)	ug/g	0.67	0.52	0.59	0.43	7596280	0.52	0.050	7596441
Acid Extractable Vanadium (V)	ug/g	54	28	28	30	7596280	34	5.0	7596441
Acid Extractable Zinc (Zn)	ug/g	65	30	32	40	7596280	39	5.0	7596441
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

O.REG 153 ICPMS METALS (SOIL)

BV Labs ID		QSK238	QSK238		QSK239	QSK240	QSK241		
Sampling Date		2021/09/21	2021/09/21		2021/09/21	2021/09/21	2021/09/21		
		10:30	10:30		11:00	11:30	12:00		
COC Number		847134-03-01	847134-03-01	[]	847134-03-01	847134-03-01	847134-03-01		
	UNITS	TP-13 S1	TP-13 S1 Lab-Dup	QC Batch	TP-8 S1	TP-8 S2	TP-9 S1	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	7596441	<0.20	<0.20	<0.20	0.20	7596280
Acid Extractable Arsenic (As)	ug/g	1.4	1.2	7596441	2.5	<1.0	1.2	1.0	7596280
Acid Extractable Barium (Ba)	ug/g	56	50	7596441	93	100	100	0.50	7596280
Acid Extractable Beryllium (Be)	ug/g	0.37	0.34	7596441	0.50	0.34	0.39	0.20	7596280
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	7596441	5.0	<5.0	<5.0	5.0	7596280
Acid Extractable Cadmium (Cd)	ug/g	0.19	0.15	7596441	0.23	<0.10	0.15	0.10	7596280
Acid Extractable Chromium (Cr)	ug/g	15	13	7596441	22	18	21	1.0	7596280
Acid Extractable Cobalt (Co)	ug/g	5.9	5.4	7596441	7.1	6.4	7.3	0.10	7596280
Acid Extractable Copper (Cu)	ug/g	12	11	7596441	14	17	17	0.50	7596280
Acid Extractable Lead (Pb)	ug/g	8.1	7.3	7596441	16	4.7	5.7	1.0	7596280
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	7596441	<0.50	<0.50	<0.50	0.50	7596280
Acid Extractable Nickel (Ni)	ug/g	9.9	9.1	7596441	15	14	15	0.50	7596280
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	7596441	<0.50	<0.50	<0.50	0.50	7596280
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	7596441	<0.20	<0.20	<0.20	0.20	7596280
Acid Extractable Thallium (Tl)	ug/g	0.12	0.10	7596441	0.19	0.17	0.17	0.050	7596280
Acid Extractable Uranium (U)	ug/g	0.61	0.61	7596441	0.73	0.55	0.56	0.050	7596280
Acid Extractable Vanadium (V)	ug/g	30	27	7596441	35	30	32	5.0	7596280
Acid Extractable Zinc (Zn)	ug/g	41	37	7596441	50	27	32	5.0	7596280
RDL = Reportable Detection Limit			·						
QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

O.REG 153 ICPMS METALS (SOIL)

BV Labs ID		QSK243		
Sampling Date		2021/09/21 08:30		
COC Number		847134-03-01		
	UNITS	TP-14 S2	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	7596441
Acid Extractable Arsenic (As)	ug/g	2.0	1.0	7596441
Acid Extractable Barium (Ba)	ug/g	110	0.50	7596441
Acid Extractable Beryllium (Be)	ug/g	0.53	0.20	7596441
Acid Extractable Boron (B)	ug/g	<5.0	5.0	7596441
Acid Extractable Cadmium (Cd)	ug/g	0.11	0.10	7596441
Acid Extractable Chromium (Cr)	ug/g	32	1.0	7596441
Acid Extractable Cobalt (Co)	ug/g	19	0.10	7596441
Acid Extractable Copper (Cu)	ug/g	34	0.50	7596441
Acid Extractable Lead (Pb)	ug/g	9.1	1.0	7596441
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	7596441
Acid Extractable Nickel (Ni)	ug/g	24	0.50	7596441
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	7596441
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	7596441
Acid Extractable Thallium (Tl)	ug/g	0.51	0.050	7596441
Acid Extractable Uranium (U)	ug/g	0.72	0.050	7596441
Acid Extractable Vanadium (V)	ug/g	66	5.0	7596441
Acid Extractable Zinc (Zn)	ug/g	73	5.0	7596441
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

O.REG 153 PAHS (SOIL)

BV Labs ID		QSK233	QSK234		QSK235	QSK236	QSK237		
Sampling Date		2021/09/21 08:00	2021/09/21 08:15		2021/09/21 08:45	2021/09/21 09:45	2021/09/21 10:00		
COC Number		847134-03-01	847134-03-01		847134-03-01	847134-03-01	847134-03-01		
	UNITS	TP-14 S1	TP-12 S1	QC Batch	TP-10 S1	TP-11 S1	TP-11 S2	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	7593501	<0.0071	0.074	<0.0071	0.0071	7593898
Polyaromatic Hydrocarbons		•	•		•	•	•		
Acenaphthene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.12	<0.0050	0.0050	7599078
Acenaphthylene	ug/g	<0.0050	<0.0050	7599078	<0.0050	<0.0050	<0.0050	0.0050	7599078
Anthracene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.33	<0.0050	0.0050	7599078
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.32	<0.0050	0.0050	7599078
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.23	<0.0050	0.0050	7599078
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0068	7599078	0.0066	0.30	0.0061	0.0050	7599078
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.092	<0.0050	0.0050	7599078
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.12	<0.0050	0.0050	7599078
Chrysene	ug/g	<0.0050	0.0051	7599078	<0.0050	0.25	<0.0050	0.0050	7599078
Dibenzo(a,h)anthracene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.035	<0.0050	0.0050	7599078
Fluoranthene	ug/g	<0.0050	0.0078	7599078	0.0087	0.88	0.0065	0.0050	7599078
Fluorene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.19	<0.0050	0.0050	7599078
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.12	<0.0050	0.0050	7599078
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.035	<0.0050	0.0050	7599078
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.040	<0.0050	0.0050	7599078
Naphthalene	ug/g	<0.0050	<0.0050	7599078	<0.0050	0.057	<0.0050	0.0050	7599078
Phenanthrene	ug/g	<0.0050	<0.0050	7599078	<0.0050	1.1	<0.0050	0.0050	7599078
Pyrene	ug/g	<0.0050	0.0062	7599078	0.0067	0.59	0.0053	0.0050	7599078
Surrogate Recovery (%)								-	
D10-Anthracene	%	100	97	7599078	95	88	95		7599078
D14-Terphenyl (FS)	%	92	94	7599078	91	90	91		7599078
D8-Acenaphthylene	%	81	83	7599078	79	84	81		7599078
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								

O.REG 153 PAHS (SOIL)

BV Labs ID		QSK238		QSK239	QSK240	QSK241	QSK243		
Sampling Date		2021/09/21		2021/09/21	2021/09/21	2021/09/21	2021/09/21		
		10:30		11:00	11:30	12:00	08:30		
COC Number		847134-03-01		847134-03-01	847134-03-01	847134-03-01	847134-03-01		
	UNITS	TP-13 S1	RDL	TP-8 S1	TP-8 S2	TP-9 S1	TP-14 S2	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.071	0.071	<0.0071	<0.0071	<0.0071	<0.0071	0.0071	7593898
Polyaromatic Hydrocarbons									
Acenaphthene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Acenaphthylene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Anthracene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Benzo(a)anthracene	ug/g	<0.050	0.050	0.0073	<0.0050	<0.0050	<0.0050	0.0050	7599078
Benzo(a)pyrene	ug/g	<0.050	0.050	0.0089	<0.0050	<0.0050	<0.0050	0.0050	7599078
Benzo(b/j)fluoranthene	ug/g	<0.050	0.050	0.016	<0.0050	<0.0050	<0.0050	0.0050	7599078
Benzo(g,h,i)perylene	ug/g	<0.050	0.050	0.0067	<0.0050	<0.0050	<0.0050	0.0050	7599078
Benzo(k)fluoranthene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Chrysene	ug/g	<0.050	0.050	0.0082	<0.0050	<0.0050	<0.0050	0.0050	7599078
Dibenzo(a,h)anthracene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Fluoranthene	ug/g	<0.050	0.050	0.014	<0.0050	<0.0050	<0.0050	0.0050	7599078
Fluorene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Indeno(1,2,3-cd)pyrene	ug/g	<0.050	0.050	0.0063	<0.0050	<0.0050	<0.0050	0.0050	7599078
1-Methylnaphthalene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
2-Methylnaphthalene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Naphthalene	ug/g	<0.050	0.050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7599078
Phenanthrene	ug/g	<0.050	0.050	0.0053	<0.0050	<0.0050	<0.0050	0.0050	7599078
Pyrene	ug/g	<0.050	0.050	0.012	<0.0050	<0.0050	<0.0050	0.0050	7599078
Surrogate Recovery (%)	•		-					-	
D10-Anthracene	%	114		102	101	85	93		7599078
D14-Terphenyl (FS)	%	97		98	99	76	89		7599078
D8-Acenaphthylene	%	89		88	85	62	79		7599078
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		QSK233			QSK233			QSK234	QSK235		
Sampling Date		2021/09/21 08:00			2021/09/21 08:00			2021/09/21 08:15	2021/09/21 08:45		
COC Number		847134-03-01			847134-03-01			847134-03-01	847134-03-01		
	UNITS	TP-14 S1	RDL	QC Batch	TP-14 S1 Lab-Dup	RDL	QC Batch	TP-12 S1	TP-10 S1	RDL	QC Batch
Inorganics											
Moisture	%	5.8	1.0	7593993				9.7	8.8	1.0	7593993
BTEX & F1 Hydrocarbons											
Benzene	ug/g	<0.020	0.020	7597158	<0.020	0.020	7597158	<0.020	<0.020	0.020	7597158
Toluene	ug/g	<0.020	0.020	7597158	<0.020	0.020	7597158	<0.020	<0.020	0.020	7597158
Ethylbenzene	ug/g	<0.020	0.020	7597158	<0.020	0.020	7597158	<0.020	<0.020	0.020	7597158
o-Xylene	ug/g	<0.020	0.020	7597158	<0.020	0.020	7597158	<0.020	<0.020	0.020	7597158
p+m-Xylene	ug/g	<0.040	0.040	7597158	<0.040	0.040	7597158	<0.040	<0.040	0.040	7597158
Total Xylenes	ug/g	<0.040	0.040	7597158	<0.040	0.040	7597158	<0.040	<0.040	0.040	7597158
F1 (C6-C10)	ug/g	<10	10	7597158	<10	10	7597158	<10	<10	10	7597158
F1 (C6-C10) - BTEX	ug/g	<10	10	7597158	<10	10	7597158	<10	<10	10	7597158
F2-F4 Hydrocarbons			-			-				-	
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	7598138				<10	<10	10	7598138
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	7598138				<50	<50	50	7598138
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	7598138				<50	<50	50	7598138
Reached Baseline at C50	ug/g	Yes		7598138				Yes	Yes		7598138
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	104		7597158	103		7597158	105	102		7597158
4-Bromofluorobenzene	%	91		7597158	84		7597158	85	98		7597158
D10-o-Xylene	%	105		7597158	109		7597158	87	101		7597158
D4-1,2-Dichloroethane	%	102		7597158	102		7597158	104	102		7597158
o-Terphenyl	%	88		7598138				86	91		7598138
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate											

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		QSK236	QSK237	QSK238	QSK239	QSK240		
Sampling Date		2021/09/21	2021/09/21	2021/09/21	2021/09/21	2021/09/21		
		09:45	10:00	10:30	11:00	11:30		
COC Number		847134-03-01	847134-03-01	847134-03-01	847134-03-01	847134-03-01		
	UNITS	TP-11 S1	TP-11 S2	TP-13 S1	TP-8 S1	TP-8 S2	RDL	QC Batch
Inorganics								
Moisture	%	12	12	6.7	6.2	18	1.0	7593993
BTEX & F1 Hydrocarbons								
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	7597158
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	7597158
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	7597158
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	7597158
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	7597158
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	7597158
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	7597158
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	7597158
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	10	7598138
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	7598138
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	7598138
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		7598138
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	100	103	98	104	104		7597158
4-Bromofluorobenzene	%	83	93	94	81	96		7597158
D10-o-Xylene	%	94	90	87	87	92		7597158
D4-1,2-Dichloroethane	%	101	106	99	103	102		7597158
o-Terphenyl	%	81	84	84	81	90		7598138
RDL = Reportable Detection L	imit							
QC Batch = Quality Control B	atch							

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		QSK240			QSK241	QSK243	QSK278			
Sampling Date		2021/09/21			2021/09/21	2021/09/21	2021/09/21			
		11:30			12:00	08:30	12:40			
COC Number		847134-03-01			847134-03-01	847134-03-01	847134-02-01			
	UNITS	TP-8 S2 Lab-Dup	RDL	QC Batch	TP-9 S1	TP-14 S2	TP-15 S2	RDL	QC Batch	
Inorganics										
Moisture	%				10	3.9	27	1.0	7593993	
BTEX & F1 Hydrocarbons		•				•				
Benzene	ug/g				<0.020	<0.020	<0.020	0.020	7597158	
Toluene	ug/g				<0.020	<0.020	<0.020	0.020	7597158	
Ethylbenzene	ug/g				<0.020	<0.020	<0.020	0.020	7597158	
o-Xylene	ug/g				<0.020	<0.020	<0.020	0.020	7597158	
p+m-Xylene	ug/g				<0.040	<0.040	<0.040	0.040	7597158	
Total Xylenes	ug/g				<0.040	<0.040	<0.040	0.040	7597158	
F1 (C6-C10)	ug/g				<10	<10	<10	10	7597158	
F1 (C6-C10) - BTEX	ug/g				<10	<10	<10	10	7597158	
F2-F4 Hydrocarbons	-		-							
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	7598138	<10	<10	<10	10	7598138	
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	7598138	<50	<50	<50	50	7598138	
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	7598138	<50	<50	<50	50	7598138	
Reached Baseline at C50	ug/g	Yes		7598138	Yes	Yes	Yes		7598138	
Surrogate Recovery (%)	-		-						-	
1,4-Difluorobenzene	%				102	101	99		7597158	
4-Bromofluorobenzene	%				87	95	82		7597158	
D10-o-Xylene	%				87	97	98		7597158	
D4-1,2-Dichloroethane	%				101	100	101		7597158	
o-Terphenyl	%	84		7598138	82	80	88		7598138	
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplicate										

Acid Extractable Metals by ICPMS

exp Services Inc Client Project #: OTT-00259416-A0 Sampler Initials: LW

TEST SUMMARY

BV Labs ID: QSK233 Sample ID: TP-14 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593501	N/A	2021/09/27	Automated	l Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596280	2021/09/23	2021/09/24	Viviana Cai	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK233 Dup Sample ID: TP-14 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
BV Labs ID: QSK234 Sample ID: TP-12 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593501	N/A	2021/09/27	Automated	l Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596280	2021/09/23	2021/09/24	Viviana Cai	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK235 Sample ID: TP-10 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nietnyinaphtnaiene Sum		7593898	N/A	2021/09/27	Automated	
Petroleum Hydro. CCIVIE F1 & BTEX IN Soli		7597158	N/A	2021/09/23		All
Acid Extractable Motals by ICBMS		7596380	2021/09/24	2021/09/24	Viviana Ca	nin Li
Moisture	BAI	7593993	N/A	2021/09/24	Kruti litesh	Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Bai	
BV Labs ID: QSK236 Sample ID: TP-11 S1 Matrix: Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2021/09/21 2021/09/21
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/24	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li

7596280

ICP/MS

Bureau Veritas Laboratories 100 – 36 Antares Dr. Nepean, ON, K2E 7W5 Phone: 613-274-0573 Website: www.bvlabs.com

2021/09/23

2021/09/24

Viviana Canzonieri

TEST SUMMARY

BV Labs ID: QSK236 Sample ID: TP-11 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK237 Sample ID: TP-11 S2 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	d Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596441	2021/09/23	2021/09/24	Viviana Ca	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	n Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK238 Sample ID: TP-13 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	d Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596441	2021/09/23	2021/09/24	Viviana Ca	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	n Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK238 Dup Sample ID: TP-13 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals by ICPMS	ICP/MS	7596441	2021/09/23	2021/09/24	Viviana Ca	nzonieri
BV Labs ID: QSK239 Sample ID: TP-8 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	d Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596280	2021/09/23	2021/09/24	Viviana Ca	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	

TEST SUMMARY

BV Labs ID: QSK240 Sample ID: TP-8 S2 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	d Statchk
Petroleum Hydro. CCME F1 & BTEX in Soi	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mad	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596280	2021/09/23	2021/09/24	Viviana Ca	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	n Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK240 Dup Sample ID: TP-8 S2 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
BV Labs ID: QSK241 Sample ID: TP-9 S1 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	d Statchk
Petroleum Hydro. CCME F1 & BTEX in Soi	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596280	2021/09/23	2021/09/24	Viviana Ca	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	n Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK243 Sample ID: TP-14 S2 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	7593898	N/A	2021/09/27	Automated	d Statchk
Petroleum Hydro. CCME F1 & BTEX in Soi	HSGC/MSFD	7597158	N/A	2021/09/24	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Li
Acid Extractable Metals by ICPMS	ICP/MS	7596441	2021/09/23	2021/09/24	Viviana Ca	nzonieri
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	n Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	7599078	2021/09/24	2021/09/25	Mitesh Raj	
BV Labs ID: QSK278 Sample ID: TP-15 S2 Matrix: Soil					Collected: Shipped: Received:	2021/09/21 2021/09/21
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soi	HSGC/MSFD	7597158	N/A	2021/09/23	Abdikarim	Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7598138	2021/09/24	2021/09/24	(Kent) Mac	olin Lí
Moisture	BAL	7593993	N/A	2021/09/22	Kruti Jitesh	n Patel

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	6.3°C	
Sample	QSK238 [TP-13 S	1]:PAH Analysis	: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00259416-A0 Sampler Initials: LW

_			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	ס
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7597158	1,4-Difluorobenzene	2021/09/23	99	60 - 140	98	60 - 140	101	%		
7597158	4-Bromofluorobenzene	2021/09/23	100	60 - 140	101	60 - 140	97	%		
7597158	D10-o-Xylene	2021/09/23	91	60 - 140	93	60 - 140	83	%		
7597158	D4-1,2-Dichloroethane	2021/09/23	101	60 - 140	93	60 - 140	104	%		
7598138	o-Terphenyl	2021/09/24	82	60 - 130	83	60 - 130	85	%		
7599078	D10-Anthracene	2021/09/25	106	50 - 130	101	50 - 130	102	%		
7599078	D14-Terphenyl (FS)	2021/09/25	77	50 - 130	102	50 - 130	96	%		
7599078	D8-Acenaphthylene	2021/09/25	69	50 - 130	92	50 - 130	80	%		
7593993	Moisture	2021/09/22							3.0	20
7596280	Acid Extractable Antimony (Sb)	2021/09/27	100	75 - 125	104	80 - 120	<0.20	ug/g	6.3	30
7596280	Acid Extractable Arsenic (As)	2021/09/27	108	75 - 125	100	80 - 120	<1.0	ug/g	0.77	30
7596280	Acid Extractable Barium (Ba)	2021/09/27	NC	75 - 125	99	80 - 120	<0.50	ug/g	3.9	30
7596280	Acid Extractable Beryllium (Be)	2021/09/27	107	75 - 125	100	80 - 120	<0.20	ug/g	5.0	30
7596280	Acid Extractable Boron (B)	2021/09/27	97	75 - 125	100	80 - 120	<5.0	ug/g	9.9	30
7596280	Acid Extractable Cadmium (Cd)	2021/09/27	106	75 - 125	100	80 - 120	<0.10	ug/g	4.1	30
7596280	Acid Extractable Chromium (Cr)	2021/09/27	NC	75 - 125	103	80 - 120	<1.0	ug/g	5.9	30
7596280	Acid Extractable Cobalt (Co)	2021/09/27	104	75 - 125	101	80 - 120	<0.10	ug/g	2.9	30
7596280	Acid Extractable Copper (Cu)	2021/09/27	NC	75 - 125	100	80 - 120	<0.50	ug/g	11	30
7596280	Acid Extractable Lead (Pb)	2021/09/27	NC	75 - 125	102	80 - 120	<1.0	ug/g	4.4	30
7596280	Acid Extractable Molybdenum (Mo)	2021/09/27	108	75 - 125	102	80 - 120	<0.50	ug/g	10	30
7596280	Acid Extractable Nickel (Ni)	2021/09/27	107	75 - 125	102	80 - 120	<0.50	ug/g	2.3	30
7596280	Acid Extractable Selenium (Se)	2021/09/27	108	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
7596280	Acid Extractable Silver (Ag)	2021/09/27	104	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
7596280	Acid Extractable Thallium (TI)	2021/09/27	106	75 - 125	103	80 - 120	<0.050	ug/g	20	30
7596280	Acid Extractable Uranium (U)	2021/09/27	106	75 - 125	102	80 - 120	<0.050	ug/g	20	30
7596280	Acid Extractable Vanadium (V)	2021/09/27	NC	75 - 125	100	80 - 120	<5.0	ug/g	1.7	30
7596280	Acid Extractable Zinc (Zn)	2021/09/27	NC	75 - 125	103	80 - 120	<5.0	ug/g	0.029	30
7596441	Acid Extractable Antimony (Sb)	2021/09/24	97	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
7596441	Acid Extractable Arsenic (As)	2021/09/24	100	75 - 125	102	80 - 120	<1.0	ug/g	13	30
7596441	Acid Extractable Barium (Ba)	2021/09/24	NC	75 - 125	96	80 - 120	<0.50	ug/g	12	30
7596441	Acid Extractable Beryllium (Be)	2021/09/24	101	75 - 125	99	80 - 120	<0.20	ug/g	9.7	30
7596441	Acid Extractable Boron (B)	2021/09/24	98	75 - 125	97	80 - 120	<5.0	ug/g	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00259416-A0 Sampler Initials: LW

_			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7596441	Acid Extractable Cadmium (Cd)	2021/09/24	100	75 - 125	99	80 - 120	<0.10	ug/g	19	30
7596441	Acid Extractable Chromium (Cr)	2021/09/24	99	75 - 125	100	80 - 120	<1.0	ug/g	11	30
7596441	Acid Extractable Cobalt (Co)	2021/09/24	98	75 - 125	100	80 - 120	<0.10	ug/g	7.8	30
7596441	Acid Extractable Copper (Cu)	2021/09/24	95	75 - 125	100	80 - 120	<0.50	ug/g	9.3	30
7596441	Acid Extractable Lead (Pb)	2021/09/24	100	75 - 125	101	80 - 120	<1.0	ug/g	10	30
7596441	Acid Extractable Molybdenum (Mo)	2021/09/24	101	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
7596441	Acid Extractable Nickel (Ni)	2021/09/24	99	75 - 125	101	80 - 120	<0.50	ug/g	7.9	30
7596441	Acid Extractable Selenium (Se)	2021/09/24	103	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
7596441	Acid Extractable Silver (Ag)	2021/09/24	100	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
7596441	Acid Extractable Thallium (TI)	2021/09/24	100	75 - 125	102	80 - 120	<0.050	ug/g	18	30
7596441	Acid Extractable Uranium (U)	2021/09/24	100	75 - 125	99	80 - 120	<0.050	ug/g	0.29	30
7596441	Acid Extractable Vanadium (V)	2021/09/24	NC	75 - 125	102	80 - 120	<5.0	ug/g	10	30
7596441	Acid Extractable Zinc (Zn)	2021/09/24	NC	75 - 125	105	80 - 120	<5.0	ug/g	9.6	30
7597158	Benzene	2021/09/23	102	50 - 140	90	50 - 140	<0.020	ug/g	NC	50
7597158	Ethylbenzene	2021/09/23	109	50 - 140	96	50 - 140	<0.020	ug/g	NC	50
7597158	F1 (C6-C10) - BTEX	2021/09/23					<10	ug/g	NC	30
7597158	F1 (C6-C10)	2021/09/23	97	60 - 140	87	80 - 120	<10	ug/g	NC	30
7597158	o-Xylene	2021/09/23	106	50 - 140	92	50 - 140	<0.020	ug/g	NC	50
7597158	p+m-Xylene	2021/09/23	108	50 - 140	95	50 - 140	<0.040	ug/g	NC	50
7597158	Toluene	2021/09/23	99	50 - 140	87	50 - 140	<0.020	ug/g	NC	50
7597158	Total Xylenes	2021/09/23					<0.040	ug/g	NC	50
7598138	F2 (C10-C16 Hydrocarbons)	2021/09/24	84	50 - 130	84	80 - 120	<10	ug/g	NC	30
7598138	F3 (C16-C34 Hydrocarbons)	2021/09/24	85	50 - 130	84	80 - 120	<50	ug/g	NC	30
7598138	F4 (C34-C50 Hydrocarbons)	2021/09/24	86	50 - 130	85	80 - 120	<50	ug/g	NC	30
7599078	1-Methylnaphthalene	2021/09/25	66	50 - 130	99	50 - 130	<0.0050	ug/g	21	40
7599078	2-Methylnaphthalene	2021/09/25	57	50 - 130	92	50 - 130	<0.0050	ug/g	27	40
7599078	Acenaphthene	2021/09/25	75	50 - 130	101	50 - 130	<0.0050	ug/g	13	40
7599078	Acenaphthylene	2021/09/25	70	50 - 130	95	50 - 130	<0.0050	ug/g	8.8	40
7599078	Anthracene	2021/09/25	75	50 - 130	108	50 - 130	<0.0050	ug/g	16	40
7599078	Benzo(a)anthracene	2021/09/25	71	50 - 130	107	50 - 130	<0.0050	ug/g	11	40
7599078	Benzo(a)pyrene	2021/09/25	57	50 - 130	92	50 - 130	<0.0050	ug/g	9.3	40
7599078	Benzo(b/j)fluoranthene	2021/09/25	84	50 - 130	102	50 - 130	<0.0050	ug/g	12	40

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00259416-A0 Sampler Initials: LW

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7599078	Benzo(g,h,i)perylene	2021/09/25	69	50 - 130	96	50 - 130	<0.0050	ug/g	13	40
7599078	Benzo(k)fluoranthene	2021/09/25	79	50 - 130	103	50 - 130	<0.0050	ug/g	15	40
7599078	Chrysene	2021/09/25	74	50 - 130	107	50 - 130	<0.0050	ug/g	11	40
7599078	Dibenzo(a,h)anthracene	2021/09/25	69	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
7599078	Fluoranthene	2021/09/25	56	50 - 130	114	50 - 130	<0.0050	ug/g	12	40
7599078	Fluorene	2021/09/25	78	50 - 130	106	50 - 130	<0.0050	ug/g	20	40
7599078	Indeno(1,2,3-cd)pyrene	2021/09/25	64	50 - 130	102	50 - 130	<0.0050	ug/g	13	40
7599078	Naphthalene	2021/09/25	56	50 - 130	97	50 - 130	<0.0050	ug/g	21	40
7599078	Phenanthrene	2021/09/25	NC	50 - 130	104	50 - 130	<0.0050	ug/g	16	40
7599078	Pyrene	2021/09/25	NC	50 - 130	112	50 - 130	<0.0050	ug/g	13	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TAS	INV	DICE TO:				REPORT TO:				1		PROJEC	TINFORMATIO	NC	T II		\cap
Marao	#17498 exp Serv	ices Inc	Cor	moany Name						Quotation	1#	B917	18		C	1R3429) Order #:
red lie	Accounts Payable		Atte	ention Ch	mis Kim	merchy			_	PO#			+		ODI	EN UZ LOOK	
	100-2650 Queens	view Drive	Ada	tress.		7		-	_	Project		OTT-0	00259416-A0		SPJ	ENV-1336	134
	Ottawa ON K2B 8	H6	7				-	•		Project Na	ame	-			80.00		Project manager.
	(613) 688-1899	Fax (013) 220-733	Tel	de al	e Videnne	Fa CULDOVO CO	MA-lach	hiolis	Contract	Site #	By	Lhi				C#847134-03-01	Kathenne Szozda
	AF@exp.com, Ka	WATER OR WATER INTENDED		NI CONSUMPTIO	DAL MULET RI	a idle chice	- ICHA	- NA KAL	A	NALYSIS RE	QUESTED	PLEASE B	BE SPECIFIC)			Turnaround Time (TAT)	Required
E REG	SUBMITTED O	N THE BV LABS DRINKING WA	TER CHAIN	OF CUSTODY	JN WUST B	1.5	~									Please provide advance notice	for rush projects
eculati	on 153 (2011)	Other Regulation	ons	Speci	al Instructions	(cle)	1500		-						Regular (S	itandard) TAT: id if Rush TAT is not specified)	[
Squar.	Res/Park Medium/	Fine CCME Sanitary Sev	wer Bylaw			0 >	T L		(Soil						Standard TA	T = 5-7 Working days for most lests	L
Ē	Ind/Somm Coarse	Reg 558 Storm Sewe	Bylaw			oleas	EXF	1 7	etals						Please note.	Standard TAT for certain tests such as typur Project Manager for details	s BOD and Dioxins/Furans are
· []	Agri/Other For RSC	MISA Municipality		< 1		d) pa	s B7	S (50	VS W						Ich Specifi	c Rush TAT lif applies to entire sul	hmission)
		PWQO Reg 406 Ta	sble	-		Ilter	Hd	PAH	(CP)			10			Date Require	d]	Time Required:
						Die Die	(153	150	151					1	Rush Confirm	nation Number:	(call lab for #)
	Include Criteria	Sample (Location) Identification	Cinia Sairie	Ture Saraci	ad Matr	i i i	(Reg	Reg	C Reg						# of Botties	Cum	ments
23.000	s rais o rais capies	Sample (Location) internation	Dule damp		-		1	1.	1.1	1					11		
		TP-14 SI	21091	11 8:00	1 5	>	X	X	X	1		-		-	4		
		10 10 51	1	10.15			1	1	1						1		
		16-1521		18.10			1	11	11	-	-				-		
	*	TD-1051		1.4	<												
	· · · · · · · · · · · · · · · · · · ·	11 10 31		Dail					++++	-	-						
		TP-1151	1	12:00	5 1		11					ME	CEIVED	INOTTAN			
		TT TT OT		- prode	4		-+	++		-				AWA			
		TP-11 SZ		(0:0	0					-							
		TA 12 CI		10:2	0	22 1220				-							
		10-10-01		10 30						_		-		~			
		TO OCI		11:00)			1		-							
		16-201	-	11+0 -			++	1	++	-		-			-		
	(TO 852		1. 30	1			11					2.2.2				
		14-030	+ +	11. 24					++	-	-	-		~		14.04	-
	-	TD - 9451		12:00	2					1	-					ON	dec
		TP 11 (7)	V				1.17	11	V	-					1.11		
		1P-1472	4	18:30			Y	V	V						V		
à	RELINQUISHED BY: (Sig	nature/Print) Date; (Y	Y/MM/GD)	Time	RECE	IVED BY: (Signatu	re/Print)		Date: (Y	Y/MM/DD)	1	lime	# jars used not submit	and ted	Labora	Itory Use Only	Saal Van Is
12	ulles	21/0	1/21	2:00 10	mp ,	Juny	m	-	2021	09,21	14	r.a.		Time Sensitive	Temperat	ure (°C) on Recei Custody Preser	nt y
-	I south In	Inns It	1		· Chel	ADICUM	1 MANN	MA	DADIL	19122	DO	M	1		1 71	SI C Intac	1 24

		Bureau Veritas Labo 6740 Campobello R	oratories Road, Mississiauga (Ontario Cana	ada L5N 2L	8 Tel (905) 817-5	700 Toll-free	800-563-6266 Fax	(905) 817-	5777 www	v bvtabs con	π		•				CHAI	N OF CUS	TODY RECOR	D	P	199 or
		INVOICE TO:					A RE	PORT TO:						PROJE	CT INFORM	ATION:			T	Lab	oratory Use O	nlv:	
ompany Nar	me #17498 exp S	ervices Inc			Company	Name D	p					Quotatio	n#	B917	18			-		BV Labs Job 4	#:	Bottle Order #:	
lention Idress	100-2650 Quee	nsview Drive		-	Attention Address	CUM	SKIM	neily				PO#			00259416	6-A0			-			8471	
	(613) 688-1899	0 010	(613) 225 723	27		_						Project N	lame:	_						COC #:		Project M	lanager:
ail	AP@exp.com; I	Fax Karen Burke@exp	(013) 225-755 .com -	<u> </u>	Tel Email:	dinis.	Kimmeri	HORKE (CV	niloal	n wel	Beer	Site # Sampled	Ву	-	CW				1110	C#847134-02-0		Kathenne	Szozda
MOER	EGULATED DRINKI SUBMITTED	ON THE BV LABS	DRINKING WA	D FOR HU	IMAN CO	NSUMPTION JSTODY	MUST BE		1		AN	ALYSIS R	EQUESTE	D (PLEASE	BE SPECIFI	C)		T		Tumarou Please provide	and Time (TAT) Rea	juired: rush projects	
Regul Table 1 Sable 2 Sable 3	ation 153 (2011) Res/Park Mediu Ind/Comm Coars Agri/Other For R	m/Fine CCME e Reg 558. SC MISA	Other Regulation	ons wer Bylaw r Bylaw		Special In	structions	(please circle) Ig / Cr VI	ITEX/F1-F4 (Sou	(10)	Vetals (Soil)								Regular ((will be apple Standard TA Please note	Standard) TAT: ed if Rush TAT is not a T = 5-T Working days Standard TAT for cert	specified). for most tests tain tests such as BOI) and Dioxins/Fu	Irans are :
Table	-	PWQO Other	Reg 406 Ta	able				I Filtered	53 PHCs, E	S) PAHs (S	53 ICPMS 1								Job Specifi Date Require	ic Rush TAT (if applied	ies to entire submis	sion) Required	
1	Include Criter	a on Certificate of A	Analysis (Y/N)?					Field	ed 16	51 50	GL Be								Rush Confin	nation Number	tcall	lab for #)	1
- Sale	the barchoe Label	Sample (Location	1) Identification	Date Se	beigina	Time Sampled	Matrix		a a	0	0								# of Bottles		Commen	ts	
		TP-15	SQ	Sept.	21/21	12:40	S		X										4				
													+										
	,													*									
			Ť.							-													
					-									REC	IVED	NO	MATT	A					
										-													
	4																						
	0						1											1.3			_		_
1	RELINQUISHED BY: (SI	inature/Print)	Date: (YY/	MM/DD)	Time		RECEIVED	BY: (Signature/Pr	intj		Date: (YY/N	M/DD)	Ti	me	# jars use	ed and	-		Laborat	on Use Only			
P	Julos	-0	2109	21	2		See	p1					1.		not subr	nitted	Time S	ensitive	Tamparat	m (IC) on Down	Custody Seal	Yes	N
SS OTHER		TING, WORK SUBMITTE	D ON THIS CHAIN I	OF CUSTOD	Y IS SUBJE	CT TO BV LABS	SCC STANDARD TE	PAOP	ONS. SIG	NING OF 1	THIS CHAIN	OF CUSTO	DY DOCUM	MENT IS	1				remperato	e (C) on Kecal	Present Intact		-
HE RESPO	DISIBILITY OF THE RELIN	IQUISHER TO ENSURE	THE ACCURACY OF	F THE CHAIN	OF CUSTO	DDY RECORD. AN	INCOMPLETE	CHAIN OF CUSTO	DY MAY RI	ESULTIN	ANALYTICA	L TAT DEL	AYS		s	AMPLES	MUST BE	KEPT CO	DL (< 10° C) F	ROM TIME OF SAMP	PLING	Labs Ye	mow: C

exp Services Inc Client Project #: OTT-00259416-A0 Client ID: TP-8 S2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

EXP Services Inc.

Wildpine Trails Inc. Phase Two Environmental Site Assessment 37 Wildpine Court, Ottawa, Ontario OTT-00263154-A0 October 1, 2021

Appendix G: Grain Size Analysis

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

Unified Soil Classification System

EXP Project No.:	OTT-00263154-A0	Project Name :		Proposed Resid	ential De	evelopment				
Client :	Wildpine Trails Inc.	Project Location	1:	37 Wildpine Cou						
Date Sampled :	December 11, 2020	Borehole No:		BH-2	Sam	ple No.:	SS2	[Depth (m) :	0.8-1.4
Sample Description :		% Silt and Clay	42	% Sand	43	% Gravel	1	5		
Sample Description :		FILL: Silty SAND with Gravel (SM)						ľ	ngure .	

Percent Passing

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

SAND GRAVEL CLAY AND SILT Fine Medium Coarse Coarse Fine GRAIN SIZE IN MICROMETERS SIEVE DESIGNATION (Imperial) 3 5 1 10 30 50 75 3/8" 1/2" 3/4" 1" 3" #200 #100 #50 #16 #4 100.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.001 0.01 0.1 1 10 100

Grain Size (mm)

EXP Project No.:	OTT-00263154-A0	Project Name :		Proposed Resid					
Client :	Wildpine Trails Inc.	Project Location	:	37 Wildpine Cou					
Date Sampled :	December 11, 2020	Borehole No:		BH-3	ple No.:	S	65	Depth (m) :	3.0-3.7
Sample Description :	% Silt and Clay	64	% Sand	36 % Gravel			0	Figuro :	
Sample Description :		Organic	Sandy S	rigure .					

Unified Soil Classification System