

11654128 Canada Inc.

Geotechnical Investigation

Type of Document FINAL

Project Name

Proposed Residential Development 6171 Hazeldean Road, Ottawa, Ontario

Project Number OTT-00258780-B0

Prepared By: Gary Cui, EIT

Reviewed By: Ismail Taki, M.Eng, P.Eng

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

Date Submitted:

May 14, 2021 (supersedes July 24, 2020)

11654128 Canada Inc.

768 St. Joseph Boulevard, #100 Gatineau, Quebec J8Y 4B8

Attention: Mr. Carmine Zayoun

Geotechnical Investigation

Type of Document: Final

Project Name:

Proposed Residential Development 6171 Hazeldean Road, Ottawa, Ontario

Project Number: OTT-00258780-B0

Prepared By:

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

T: 613-688-1899 F: 613-225-7337 www.exp.com

Gary Cui, EIT.
Geotechnical Services
Earth and Environment

Date Submitted: May 14, 2021 (Supersede July 24, 2020) Ismail Taki, M.Eng, P.Eng.

Manager, Geotechnical Services

Earth and Environment

Legal Notification

This report was prepared by EXP Services Inc. for the account of 11654128 Canada Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

A geotechnical investigation was undertaken at the proposed residential development to be located at the site registered by the civic address of 6171 Hazeldean Road, City of Ottawa, Ontario. This work was authorized by Mr. Carmine Zayoun on behalf of 11654128 Canada Inc.

The geotechnical investigation was completed concurrently with a Phase I and Phase II Environmental Site Assessments (ESA), which are reported under separate covers.

Current plans call for the development of the subject site with residential buildings comprising of one nine (9) storey mixed used building with multi levels of underground parking, five (5) blocks of four (4) story condominium buildings with one to two levels of underground parking each, townhome blocks and single homes with one basement level. Amenities buildings, storm management pond, park, underground services and subdivision roadways will be also constructed as part of the proposed development.

Latest grading plans available indicates the proposed site grades along the roadways will vary from Elevation 122.22 m to Elevation 120.30 m along the west end of the site and from Elevation 118.0 m to Elevation 118.4 m along the east end of the site. A grade raise up to 3 m is proposed at the site as the results of the proposed development.

The fieldwork for the geotechnical investigation was completed in stages and comprised the drilling/excavation a total of sixteen (16) boreholes (Borehole Nos. 1 to 16) using a CME-55 track mounted drill rig and the excavation of thirty-six (36) test pits (Test Pit Nos. 1 to 36) using a 320 excavator to termination depths ranging between 0.2 m to 10.8 m below the existing ground surface. Monitoring wells and standpipes were installed in eight (8) boreholes for long-term monitoring of the groundwater at the site.

The investigation has revealed that the subsurface conditions at the site to comprise of 0.3 m to 3.4 m thick heterogenous fill deposit over the entire site extending to the surface of bedrock in the majority of the test holes and to the surface of a deposit of native silty sand/glacial till in localized areas of the site as described in detail in the main body of the report. Deposit of marl/clay crust and peat was encountered in the southern part of the site as well as in localized pockets in other areas of the site Refusal to augers/excavator bucket was met in all the test holes at depths ranging between 0.3 and 6.2 (Elevation 114.3 to 119.1 m). Washboring and core drilling used to advance Borehole Nos. 1 to 3 and 7 to 13 beyond the refusal depths revealed that the refusal was met on very strong limestone bedrock.

Groundwater measurements taken on March 1 in monitoring wells and standpipes installed in some of the boreholes indicate that the groundwater table to be at a depth of 1.34 to 3.6 m below grade, i.e., Elevation 117.31 m to 113.61. The groundwater table is subject to seasonal fluctuation and may be at higher depths during wet weather conditions. Groundwater infiltration was recorded in some of the test pits following the excavation as indicated in the report.

Available grading plans indicates that the grades at the site will be raised by up to 3 m which is considered acceptable from a geotechnical point of view.

The heterogenous fill encountered throughout the site, peat and marl are not considered suitable as founding material for the proposed residential development and roadways and therefore must be excavated

and replaced with engineered fill as described in detail on the main body of the report. It may be possible to leave some of the fill in place under the roadway pending further evaluation in the field and if peat and marl does not exist below the fill. It may be possible to leave the peat and marl as well as the fill in the area of the proposed park. For budgeting purpose, it should be assumed that all fill, peat and marl will require removal from the envelopes of the proposed buildings and roadways and replaced with engineered fill as per the final grading plan and the recommendation of the report.

Based on proposed grading and various type of structures, the founding medium throughout the site may vary from founding on surface of bedrock, some distance in the bedrock, on glacial till or on engineered fill. Footings founded on the surface of the bedrock below any weathered or broken rock may be designed for a bearing pressure at Ultimate Limit State (ULS) of ULS of 500 to 1500 KPa. Footing founded some distance in the bedrock such the nine-storey building may be designed for a bearing pressure at ULS of 2500 to 3500 KPa depending on the underside of footings elevations. Footings designed to bear on the compact silty sand /glacial till or on well-prepared engineered fill pad may be designed for a bearing pressure SLS of 150 kPa and factored geotechnical resistance ULS of 225 kPa. The factored ULS value includes a geotechnical resistance factor of 0.5. The available SLS/ULS bearing pressures for each structure will be further finalized by EXP once the final underside of footings are established and in consultation with the design team.

The basement and garage floor slabs of the proposed structures may be constructed as slabs-on-grade set on a bed of 300 mm of clear stone set over bedrock or engineered fill. Perimeter drainage as well as underfloor system will be required for the proposed structures. However, these requirements per type of structure proposed at the site will have to be established/refined as part of the grades for the site as well, number of basement levels for each of the proposed building.

Excavations in the overburden at the site may be undertaken as open cut provided they are cut back at a slope of 1H to 1V above the groundwater table and at slope of 2H:to 1V to 3H:1V below the groundwater table. Excavation of the bedrock would require the use of line drilling and blasting technique and may be undertaken with near vertical sides. Vibrations should be monitored during construction to prevent damage to adjacent structures and services especially along the high pressure watermain fronting the development along Hazeldean Road. A pre-condition survey of all the structures and services situated within proximity of the site will be required prior to commencement of construction and during the excavation of the bedrock. Seepage of surface and sub-surface water into the excavations should be anticipated, however it should be possible to collect the water entering the excavation in perimeter ditches and to remove it by pumping from sumps. The needs for high-capacity pumps should not be overlooked.

The subject site has been classified as **Class C** for seismic site response in relation to Section 4.1.8.4 of the 2012 Ontario Building Code (OBC 2012) provided that the foundations are placed on engineering fill pads or on glacial till with more than 3 m of soils exist between the underside of footings and bedrock surface. A **Class A** seismic site class can be used for footings placed directly on bedrock or in areas where the depth of overburden between the underside of footings and bedrock is less than 3 m.

The pavement structure for the parking areas, subdivision roadways and roadways to be used by bus traffic are presented in Table IX of the report.

The above and other related considerations are discussed in greater detail in the report.

Table of Contents

			Page			
Exec	utive Su	ımmary	i			
1	Intro	duction	1			
2	Back	ground Information	3			
3	Site I	Description	4			
4	Proc	edure	5			
5	Site a	Site and Soil Description				
	5.1	Topsoil	6			
	5.2	Fill Material	6			
	5.3	Peat/Marl/Clay Crust	7			
	5.4	Silty Sand	8			
	5.5	Till	8			
	5.6	Auger/Backhoe Refusal	9			
	5.7	Groundwater Level	12			
6	Grad	e Raise	14			
7	Site I	Preparation/Site Grading	15			
8	Foun	dation Considerations	16			
	8.1	Footings Directly on Bedrock	16			
	8.2	Footings on Engineered Fill Pad, On Silty Sand or on Glacial Till	17			
	8.3	General Recommendation	17			
9	Floor	Slabs and Drainage Requirements	18			
10	Pipe	Bedding Requirement	19			
11	Later	al Earth Pressure against Basement Walls	20			
12	Exca	vations	21			
	12.1	Dewatering Requirement	21			
13	Seisr	Seismic Site Classification				
14	Back	Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes 24				
15	Subd	livision Road and Parking Area	26			
16	Subs	surface Concrete Requirement	28			
17	Troo	Troe Planting				

18	Storm Management Pond
19	General Comments31
Lis	t of Tables
	Page
Table	I: Summary of Lab Test Results on Fill Samples
Table	II: Summary of Depth/Elevation of Peat/Marl in Test holes
Table	III: Summary of Lab Test Results on Silty Sand Sample
Table	IV: Summary of Lab Test Results on Till Sample
Table	V: Summary of Bedrock Depth and Elevation in Boreholes and Test Pits
Table	VI: Results of Unconfined Compression Tests on Rock Samples
Table	I: Summary of Groundwater Measurements in Boreholes/Test Pits
Table	VIII: Summary of Anticipated Founding Medium For Each type of Structure
Table	IX: Recommended Pavement Structure Thicknesses
Table	X: Results of pH, Chloride, Sulphate and Resistivity Tests on Selected Soil and Bedrock Samples
Lis	t of Figures
Figure	e 1
Figure	e 2:Borehole and Test Pit Location Plan
Figure	es 3 - 54: Borehole and Test Pit Logs
Figure	es 55 - 63:Grain-size Analyses
Figure	es 64 to 73: Photographs of Bedrock Cores
Ap	pendix

Appendix A: Logs of Testholes by Others

Appendix C: Chemical Test Certificate

Appendix B: GPR Shear Wave Velocity Measurement

1 Introduction

EXP Services Inc. (EXP) completed a geotechnical investigation for the proposed residential development to be located at the site registered by the street address of 6171 Hazeldean Road in the City of Ottawa, Ontario (Figure No. 1). This work was authorized by Mr. Carmine Zayoun on behalf of 11654128 Canada Inc.

Latest project plans call for the development of the site with the following residential products;

- One nine-storey, multi use building with one or more underground parking Totalling 175 units-Proposed Underside of footing (USF)=113.08
- Five residential four storey each condominium buildings (Block A to E), each of 35 unit and with one underground parking level; USF= 117.6 to 116.0 m
- Twenty (20) single homes with one basement level each; and Twenty townhome blocks of two (2) to eight (8) units each with one basement level; USF varying between 119.62 and to 115.5 m.
- Two amenity park buildings; and
- One storm management Pond with bottom elevation at 113.70 m

Underground services, subdivision roadways, will be also constructed as part of the facility.

Latest grading plan for the site indicates that the proposed grades along the roadways would range from 122.22 m to 120.10 m along the west end of the site and from 118.0 m to 118.6 m along the east end of the site A grade raise of up to 3 m is proposed for the site as the results of the proposed development.

The geotechnical investigation was undertaken to:

- Establish the subsurface soil/bedrock and groundwater conditions at the borehole and test pit locations;
- Classify the site for Seismic Site Response in accordance the requirements of the 2012 Ontario Building Code (OBC), and comment on the liquefaction potential of the subsurface soils;
- Establish the grade-raise restrictions at the site;
- Make recommendations regarding the most suitable type of foundations, founding depth, Serviceability Limit State (SLS) bearing pressure and Ultimate Limit State (ULS) factored geotechnical resistance of the founding strata for the various residential buildings proposed for the site;
- Discuss slab-on-grade construction and permanent drainage requirements foreach of the proposed building type;
- Discuss excavations and dewatering requirements during construction;
- Comment on backfilling requirements and suitability of on-site soils for backfilling purposes; and
- Recommend pavement structures for the proposed subdivision roadways.

The comments and recommendations given in this report assume that the above-described design concept will proceed to construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

2 Background Information

A geotechnical report prepared for the subject site by Paterson Group (Paterson), under Report PG4917-1 dated May 23, 2019 was provided to EXP as reference material. The report was prepared for Kavanagh Family Investments Ltd.

A series of test pits and boreholes were excavated/drilled by Paterson as part of the investigation as well as previous investigated distributed throughout the site. The report indicates that the elevation of the bedrock at the location of test pits/borehole ranged between to Elevation 117.93 m to lower than 113.6 m Paterson has also identified an area of peat and marl in the southern area of the site as well as fill in all the test holes. Infiltration of groundwater was recorded in some of the test pits at depths ranging between 2.5 m and 3.0 m below ground surface Logs of test pits/boreholes excavated by Paterson are attached in Appendix A.

Test pits excavated by Paterson group as well as bedrock data recorded at each location are presented in Figure 2. Relying on this data will be the sole responsibility of the user. The user must refer to the original report for the locations of test pits and boreholes as well as the subsurface conditions recorded.

3 Site Description

The subject is registered by the street address of 6171 Hazeldean Road, near the intersection of Carp Road, in Ottawa (Stittsville), Ontario. The property is legally described as Concession 12, Part of Lot 23, Parts 2, 4, and 6 of Registered Plan No. 4R-23045.

The property is currently unoccupied and covered by grass with some granular and asphaltic concrete patches. Sparse vegetation covers the western half of the subject site, with lightly wooded area occupying the western corner of the site. The property is bounded by Hazeldean Road to the southeastern side and by residential developments from all other sides.

Ground surface elevations at the site slopes in the easterly direction. Topographical survey prepared for the site should be referred for a more detailed information regarding the site grades and topography

Latest grading plans prepared by EXP Services Inc. as Drawing GPM Project OTT-00258780-A0 dated April 27, 2021 indicates the proposed site grades along the roadway will vary form Elevation 122.00 m to Elevation 120.20 m along the west end of the site and from 118.0 m to 118.6 m along the east end of the site. A grade raise of up to 3 m is proposed for the site as the results of the proposed development with some areas which will be in cut.

4 Procedure

The fieldwork for the geotechnical investigations was completed in three stages, i.e. between March 17 and March 24, 2020, between November 25 and December 9, 2020 and on February 23, 2021 and comprised the drilling of sixteen (16) boreholes (Borehole Nos. 1 to 16) using a CME-55 track mounted drill rig and the excavation of thirty-six (36) test pits (Test Pit Nos. 1 to 36) using a 320 excavator to termination depths ranging between 0.2 m to 10.8 m below the existing ground surface. The fieldwork was supervised on a full-time basis by a representative of EXP.

The locations and geodetic elevations of the boreholes and test pits were established in the field by representative of EXP as shown on Figure No. 2. Their locations were cleared from any underground services by USL-1 cable locators.

Standard penetration test samples were performed in the overburden in the boreholes at 0.75 m depth intervals and the soil samples retrieved by split-barrel sampler to refusal depth. Below the refusal depth, Borehole Nos. 1 to 3 and 7 to 13 were cased and advanced further using washboring and coring techniques with NQ-size core barrel to termination depths between 3.6 m to 10.8 m below the existing ground surface. During bedrock coring, a careful record of any sudden drops of the drill rods, colour of wash water and wash water return was kept. In the Test Pits, grab samples were collected from selected depths.

All the soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified. Similarly, the rock cores were logged, placed in core boxes and identified. On completion of the fieldwork, all the soil samples and rock cores were transported to the EXP laboratory in the City of Ottawa, Ontario where they were visually examined by a geotechnical engineer and borehole/test pits logs prepared. The engineer also assigned the laboratory testing, which consisted of performing natural moisture content on all soil samples and grain-size analysis tests on selected soil samples. In addition, unconfined compressive strength was completed on selected rock samples.

Water levels were measured in the open boreholes and test pits upon completion of drilling/excavation operations. In addition, 32 mm diameter monitoring wells and 19 mm diameter standpipes were installed in Borehole Nos. 1, 3, 5, 7, and 10 to 13 for long-term monitoring of the groundwater. The installation was completed in accordance with EXP standard practice and is documented on the respective borehole logs. The test pits were backfilled upon completion of the fieldwork.

5 Site and Soil Description

A detailed description of the geotechnical conditions encountered in the sixteen (16) boreholes and thirty (36) test pits are given on the borehole and test pit logs, Figure Nos. 3 to 54 inclusive. The borehole and test pit logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the location where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted. Boreholes and test pits were drilled to provide representation of subsurface conditions as part of a geotechnical exploration program and are not intended to provide evidence of potential environmental conditions.

A review of Figures Nos. 3 to 24 inclusive indicates that the lithology of the site consists of surficial topsoil or granular fill overlying a substantial deposit of fill material, which is underlain by native sand/silty sand, glacial till, or directly underlain by bedrock. Locally, deposits of marl/clay crust and peat are present underlying the fill material and overlying the native soils or bedrock.

5.1 Topsoil

A 50 mm to 250 mm thick layer of topsoil was encountered at the surface in Borehole Nos. 2, 6, 9 and 10 and at Test Pit Nos. 5, 11, 12, 13, 20 to 24, 27, 28, 30 to 34 and 36.

5.2 Fill Material

Heterogeneous fill material was encountered at all borehole and test pit locations and extended to depths ranging between 0.2 m to 2.9 m (Elevations 120.3 m to 114.2 m). The fill is generally heterogenous and variable and likely was deposited at the site over the years and from different sources and therefore other type and nature of fill may exist in areas not investigated by EXP. The fill comprised of a mixture of silty sand, silty gravelly sand, or gravelly sand with cobbles and boulders. Rootlets, wood pieces and bark fragments, and traces of other organic matter were detected within the fill material in some of the boreholes/test pits. Extensive and concentrated boulders were encountered within the fill at the locations of Test Pit Nos. 14, 17 and 18. In Test Pit Nos 11 and. 13, several large concrete blocks were present within the fill. The natural moisture content of the fill ranged between 3 to 30 percent, indicating moist to very moist conditions. It should be noted that the fill was likely deposited over the years and from different sources and therefore my have different matrix than recorded in other areas of the site. Therefore allowance must be made in the excavation contract in the event that unforeseen fill condition are encountered in some areas of the site which may require special handling and disposal. Previous reports indicated the presence of blast shattered rock fill in some areas of the site.

It is noted that hydrocarbon/organic odour was detected on the fill in TP-01, TP-02 and BH-15 which is likely localized to the type of fill imported to this area. Fill excavated from this area will need to be evaluated to established if it can remain on-site or dispose of site at a licenced facility.

Grain-size analysis performed on five (5) fill samples are presented on Figure Nos. 55 to 59 and summarized in Table V below.

Table I: Summary of Lab Test Results on Fill Samples					
Test Pit			E' No		
No.	Sample Depth (m)	Gravel (%)	Sand (%)	Silt and Clay (%)	Figure No.
BH-02	0.8 - 1.4	26	50	24	55
BH-03	0.8 - 1.4	51	39	10	56
BH-04	0 - 0.6	22	47	31	57
BH-09	0.8 – 2.1	29	45	26	58
TP 14	0 – 0.7	7	86	7	59

5.3 Peat/Marl/Clay Crust

Peat/marl complex deposit was encountered underlying the fill material in Borehole Nos. 2, 4, 5, 9 and 10 and in Test Pit Nos. 6 to 9, 12, 15, 22, 23, 24, 26 and 27 at depths ranging from 0.8 m to 2.3 (Elevations 118.5 m to 113.5 m) and extended to depths ranging from 1.4 m to 3.6 m (Elevations 118.5 m to 113.5 m). The approximate extent of the peat/marl organic deposit is shown on Figure 2. The peat/marl deposit extends to the surface of the bedrock in Test Pit Nos. 6, 9 and 12.

The organic peat/mark deposit is highly compressible and comprised of decomposed organic matter including wood fragments, bark pieces and rootlets fragments. The grey to grey-green calcareous marl is cohesive and often spongy in texture, indicating a high degree of saturation. A calcified tan to light brown clay crust was contacted between the peat and marl deposit in Test Pit No. 9. The natural moisture content of the peat/marl complex ranged between 22 to over 100 percent. Table II present the depths and elevations of the peat and marl in the test pits and boreholes by EXP.

	Table II: Summary of Depth/Elevation of Peat/Marl in Test holes					
Test	GS Elevation	Peat Depti	Peat Depth Interval		Elevation	
Hole	(m)	From (m)	To (m)	From (m)	To (m)	
BH-2	119.1	1.4	3.6	117.7	115.5	
BH-4	117.8	0.7	1.4	117.1	116.4	
BH-5	116.5	2.3	3.0	114.2	113.5	
BH-9	120.2	1.8	2.5	118.4	117.7	
BH-10	118.4	1.0	2.2	117.4	115.7	
TP-6	118.1	0.8	1.9	117.3	116.2 (Rock)	
TP-7	117.6	1.3	1.5	116.3	116.1	
TP-8	118.8	1.2	2.0	117.6	116.8	

	Table II: Summary of Depth/Elevation of Peat/Marl in Test holes (ctn'd)					
Test Hole	GS Elevation	Peat Deptl	h Interval	Peat	Elevation	
	(m)	From (m)	To (m)	From (m)	To (m)	
TP-9	118.8	1.2	3.1	117.6	115.7 (Rock)	
TP-12	119.6	2.0	2.3	117.6	117.3 (Rock)	
TP-15	120.2	1.4	1.7	118.8	118.5	
TP-22	118.2	0.6	0.9	117.6	117.3	
TP-23	118.2	0.9	1.2	117.3	117.0	
TP-24	118.6	1.0	1.3	117.6	117.3	
TP-26	118.7	1.2	2.7	117.5	116.0	
TP-27	117.8	0.9	2.1	116.9	115.7	

Additional information on the peat and marl can be found in the logs of test holes completed by Paterson group, attached in Appendix A.

5.4 Silty Sand

The organic peat in Borehole No. 5 is underlain by a deposit of silty sand with some gravel which extends to 5.3 m depth (Elevation 111.2 m). This deposit is compact as indicated by the SPT (N values) which ranged between 15 to 24 blows per 300 mm penetration of the split spoon sampler and has a natural moisture content ranging between 9 to 20 percent, indicating moist to very moist conditions. Grain-size analyses performed on one (1) sample from this deposit is presented on Figure No. 60 and summarized in Table III below.

Table III: Summary of Lab Test Results on Silty Sand Sample				
			n	
Test Pit No.	Sample Depth (m)	Gravel (%)	Sand (%)	Silt and Clay (%)
BH-05	3.8 - 4.4	1	56	43

5.5 Till

The peat/marl, fill and silty sand in in Borehole Nos. 2, 5, 6, 7, 8, 9, 12 and 14 and in Test Pit Nos. 7, 8, 15, 16, 18, 22 to 28 and 30 to 36 is underlain by glacial till which extends to termination depth or auger refusal depth, i.e., inferred surface of the bedrock contacted at 1.8 m to 6.2 m (Elevation 119.1 m to 110.3 m)

The glacial till is grey and comprised of silty sand with gravel to silty gravel with sand, and numerous cobbles and boulders. The glacial till is compact to very dense based on SPT (N values) which ranged from 16

blows to greater than 50 blows per 300 mm or less of penetration of the split spoon ampler. It has a natural moisture content ranging between 3 percent to 21 percent. Grain-size analysis performed on three (3) samples from this deposit is presented on Figure No 61 to 63 and summarized in Table IV below.

Table IV: Summary of Lab Test Results on Till Sample				
		Composi		n
Test Pit No.	Sample Depth (m)	Gravel (%)	Sand (%)	Silt and Clay (%)
BH-06	3.0 – 3.6	39	44	17
BH-07	1.5 – 2.1	39	50	11
BH-08	3.0 – 3.6	43	38	19

5.6 Auger/Backhoe Refusal

Refusal to augers or to excavator bucket advancement was encountered in all test holes except for Borehole No. 14 and Test Pit Nos. 26, 27, 32 and 36 at depths ranging between 0.2 and 6.2 m below the existing ground surface (Elevation 119.1 m to 114.3 m). The inferred depth and elevation of the bedrock at the location of the test holes is summarized in Table V.

Table V: Summary of Bedrock Depth and Elevation in Boreholes and Test Pits					
Borehole or Test Pit No.	Ground Surface Elevation (m)	Bedrock Depth (m)	Bedrock Elevation (m)		
BH-01	117.1	0.7	116.4		
BH-02	119.1	3.8	115.3		
BH-03	120.4	3.5	117.0		
BH-04	117.8	1.8	116.0		
BH-05	116.5	6.2	110.3		
BH-06	120.5	3.6	116.9		
BH-07	120.9	5.8	115.1		
BH-08	120.2	3.2	117.0		
BH-09	120.2	4.0	116.2		
BH-10	118.4	3.5	114.9		
BH-11	117.9	0.9	117.0		
BH-12	117.1	0.4	116.7		
BH-13	116.3	0.3	116.0		
BH-15	116.2	1.4	114.8		

Table V: Summary of Bedrock Depth and Elevation in Boreholes and Test Pits				
Borehole or Test Pit No.	Ground Surface Elevation (m)	Bedrock Depth (m)	Bedrock Elevation (m)	
BH-16	116.2	0.2	116.0	
TP-01	116.1	1.8	114.3	
TP-02	116.6	0.3	116.3	
TP-03	116.2	0.6	115.6	
TP-04	117.2	0.5	116.7	
TP-05	117.6	0.3	117.3	
TP-06	118.1	1.9	116.2	
TP-07	117.6	2.3	115.3	
TP-08	118.8	2.5	116.3	
TP-09	118.8	3.1	115.7	
TP-10	118.7	2.3	116.4	
TP-11	119.2	1.4	117.8	
TP-12	119.6	2.3	117.3	
TP-13	119.4	2.9	116.5	
TP-14	120.1	2.3	117.8	
TP-15	120.2	2.2	118.0	
TP-16	119.9	1.8	118.1	
TP-17	120.5	4.2	116.3	
TP-18	120.8	3.7	117.1	
TP-19	117.1	0.9	116.2	
TP-20	117.0	0.4	116.6	
TP-21	117.7	0.5	117.2	
TP-22	118.2	1.5	116.7	
TP-23	118.2	3.0	115.2	
TP-24	118.6	2.0	116.6	
TP-25	118.6	2.3	116.3	
TP-28	119.4	2.5	116.9	
TP-29	119.1	0.6	118.5	
TP-30	119.2	2.0	117.2	
TP-31	119.8	2.7	117.1	
TP-33	120.5	1.8 - 2.7	118.7-117.8	
TP-34	120.3	1.2	119.1	
TP-35	120.4	1.8- 2.4	118.6-118.0	

Washboring and core drilling techniques were used to advance beyond the refusal depth in Borehole Nos. 1 to 3 and 7 to 13 revealed that refusal was met on bedrock. A review of the recovered rock cores and geological maps revealed that the bedrock underlying the site is limestone bedrock of the Bobcaygeon Formation.

A Total Core Recovery (TCR) and Rock Quality Designation (RQD) of 61 to 100 percent and 0 to 100 percent respectively were obtained when core drilling the bedrock. On this basis, the bedrock quality within the depth investigated may be classified as very poor to excellent.

A total of fifteen (15) rock samples were selected for unconfined compressive strength testing and the test results are presented in Table VI. A review of the test results indicates a strong to very strong bedrock with compressive strength ranging between 91 MPa and 188 MPa (Canadian Foundation Engineering Manual, 4th edition, 2006). The unit weight of the bedrock ranged between 2643 kg/m³ and 2695 kg/m³.

Table VI: Results of Unconfined Compression Tests on Rock Samples					
Borehole No./RUN No.	Depth (m)	Compressive Strength (MPa)	Unit Weight of Bedrock (kg/m³)		
BH 1 – Run 1	0.9 – 1.0	153	2668		
BH 1 – Run 2	2.2 – 2.3	176	2680		
BH 1 – Run 3	3.1 – 3.3	124	2668		
BH 2 – Run 1	3.8 – 4.0	174	2673		
BH 2 – Run 2	5.6 – 5.7	182	2678		
BH 3 – Run 1	2.0 – 2.2	168	2695		
BH 3 – Run 3	3.6 – 3.7	127	2650		
BH 3 – Run 3	4.4 – 4.5	160	2695		
BH 7 – Run 2	6.4 – 6.6	122	2653		
BH 7 – Run 4	10.4 – 10.6	128	2660		
BH 8 – Run 2	5.4 – 5.6	188	2661		
BH 8 – Run 4	8.6 – 8.8	145	2667		
BH-9 – Run 2	5.4 – 5.6	199	2677		
BH 10 – Run 1	4.1 – 4.3	137	2661		
BH 11 – Run 3	3.5 – 3.7	91	2643		

Photographs of the recovered bedrock cores are presented on Figures Nos. 64 to 73.

5.7 Groundwater Level

Water level observations were made in the open boreholes and test pits upon completion of the field work and subsequently in monitoring wells installed in Borehole Nos. 1, 3, 5, 7, 10, 12 and 13. A summary of the observations made are presented in Table I.

Table I: Summary of Groundwater Measurements in Boreholes/Test Pits					
Monitoring Well ID	Ground Elevation (m)	Date of Last Reading	Depth to Water (m)	Elevation of Groundwater (m)	
		May 14, 2020	1.20	115.90	
BH-01	117.1	July 2, 2020	2.02	115.08	
БП-01	117.1	January 25, 2021	1.24	115.86	
		March 1, 2021	1.57	115.53	
		May 14, 2020	1.60	118.80	
BH-03	120.4	July 2, 2020	2.11	118.29	
BH-03	120.4	January 25, 2021	2.03	117.51	
		March 1, 2021	N/A	N/A	
		May 14, 2020	2.60	113.90	
B.1.05		July 2, 2020	2.75	113.75	
BH-05	116.5	January 25, 2021	2.75	113.75	
		March 1, 2021	2.89	113.61	
		January 25, 2021	3.38	117.52	
BH-07	120.9	March 1, 2021	3.59	117.31	
		January 25, 2021	2.12	116.28	
BH-10	118.4	March 1, 2021	2.08	116.32	
BH-12	117.1	March 1, 2021	1.48	115.62	
BH-13	116.3	March 1, 2021	1.34	115.76	

A review of Table I indicates the groundwater table in the boreholes to be at depths 1.20 m to 3.59 m below grade, i.e., Elevation 118.77 m to 113.61 m.

Water levels observations were made in the exploratory boreholes at the times and under the conditions stated in the scope of services. These data were reviewed and EXP's interpretation of them discussed in the text of the report. Note that fluctuations in the level of the groundwater may occur due to seasonal

variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

6 Grade Raise

The investigation has revealed that the site to be underlain by heterogenous fill deposit overlain by silty sand to silty sand and gravel and glacial till and limestone bedrock contacted at depths of ranging between 0.2 and 6.2 m below the existing ground surface (Elevation 118.1 m to 110.3 m). As part of the site preparation, all fill, peat and marl will be removed from the envelope of the proposed buildings and roadways and replaced with engineered fill.

Latest grading plan prepared for the site by EXP under Project OTT-00258780-A0, Drawing GPM and dated April 27, 2021 indicates that the grades at the site will be raised by up to 3 m whereas some areas will be in cut. This grade raise is considered feasible at the site from a geotechnical point of view.

7 Site Preparation/Site Grading

Site grading within the footprint of the proposed buildings and roadways should consist of the removal of fill, peat and marl to the surface of bedrock or native soil whichever occurs first. Under the roadways, it may be possible to leave some of the fill in place, if it is not underlain by any peat/marl and pending further evaluation and treatment on-site during construction. It also may be possible to leave the organic soils in the area of the proposed park.

The following recommendation are provided for the site development preparation:

- All fill, peat and organic material must be removed from the envelope of the proposed buildings, roadways box, underground services etc. to the surface of native soils or bedrock whichever occurs first, and the areas should be reviewed by a geotechnical engineer. In areas where the exposed approved surface of native soils or bedrock is below the proposed underside of footings, OPSS Granular B Type II should be placed in 300 mm lifts and each lift compacted to 100 percent and 98 percent of the Standard Maximum Proctor Dry density (SPMDD) in accordance with ASTM D698-12e2 for underside of footings to be founded on engineered fill or bedrock and services respectively.
- Along the roadways and following the removal of all the peat/organic and fill to subgrade level, the subgrade should be proofrolled using a 10 ton vibratory roller in the presence of a geotechnician. Any soft areas detected should be sub-excavated and replaced with imported material (as per Section 14) or by on-site approved material which is free of organic, boulders or cobbles; Approved subgrade fill should be placed in 300 mm lifts and each lift compacted to 98 % of SPMDD.
- The removal of unsuitable material should extend a sufficient distance beyond the perimeter of the structure/roadway box to accommodate a 1.0 m wide bench of engineered fill, which is thereafter sloped at an inclination of 1H:1V down to the native soil/bedrock.
- The engineered fill should be placed under the full-time supervision of a geotechnician working under the direction of a geotechnical engineer. In-place density tests should be undertaken on each lift of the engineered fill to ensure that it is properly compacted prior to placement of the subsequent lift.
- Management of the excess fill material should be done as per the recommendation of the Phase II
 Environmental Site Assessment report prepared by EXP for this site under a sperate report.

8 Foundation Considerations

The investigation has revealed the site to be underlain by heterogenous fill extending to depths of 0.2 m to 2.9 m below grade and by marl and peat and glacial till. The overburden is underlain by bedrock contacted at depths of 0.2 and 6.2 m below grade. The fill, peat and marl are not suitable as founding medium for the proposed residential development (building and roadways) and must be removed and replaced with engineered fill or footings placed on top of the limestone bedrock or the surface of the glacial till and silty sand contacted at localized areas throughout the site as described in Section 7 of the report.

Table VIII present the anticipated founding medium for each of the proposed buildings based on the information available to date.

Table VIII: Summary of Anticipated Founding Medium For Each type of Structure				
Building	Anticipated Founding Medium			
Nine-storey, multi use building with one or more underground parking	Limestone Bedrock= USF = 113.08 m			
Block A to E	Limestone Bedrock or Engineered Fill on Top of Bedrock- USF 117.28 m to 117.60 m			
Townhouse blocks	Limestone Bedrock/Engineered Fill or Glacial Till USF = 119.62 to 115.50 m			

The underside of footings noted above are as per latest grading plan prepared by EXP and may be updated/revised as part of the final design therefore various founding medium may be the case at the site and each scenario discussed .below

8.1 Footings Directly on Bedrock

Footings designed to bear on the surface or in the upper levels bedrock below any weathered or fractured zones such as the case for the low residential single, townhouses and four storey condominium building may be designed for a bearing pressure at a factored geotechnical resistance ULS of 500 to 1500 KPa. Footing founded some distance in the bedrock such the case of the nine-storey building may be designed for a bearing pressure at ULS of 2500 to 3500 KPa depending on the underside of footings elevations. The available SLS/ULS bearing pressures for each structure will be further finalized by EXP once the final underside of footings are established and in consultation with the design team.

The surface of the exposed bedrock at the underside of the footings should be examined by a geotechnical engineer and any fractured bedrock zones or fissured removed/cleaned prior to casting of the footings. Filling of the cleaned fissures with concrete and addition of rebar across any large fissures may be required and can be best established in the field by qualified geotechnical engineers or senior technicians.

Settlement of the footings designed for the ULS bearing pressure recommended above and properly constructed are expected to minimal.

8.2 Footings on Engineered Fill Pad, On Silty Sand or on Glacial Till

As indicated above, all fill, peat and marl should be removed from the envelope of the proposed buildings and replaced with engineered fill as indicated in Section 7.0 of the report.

Footings designed to bear on the native soils or on the well-prepared engineered fill pad may be designed for a bearing pressure SLS of 150 kPa and factored geotechnical resistance ULS of 225 kPa. The factored ULS value includes a geotechnical resistance factor of 0.5. The SLS value recommended assumes a maximum grade raise at the site of up to 2.0 m.

Settlement of the footings designed for the SLS bearing pressure recommended above and properly constructed are expected to be within the normally tolerated limits of 25 mm total and 19 mm differential.

8.3 General Recommendation

Footings should not be founded partly on engineered fill/native soils and partly on bedrock. In such cases, additional reinforcement should be provided to the footings and foundations in areas where the founding medium changes from bedrock to engineered fill. In addition, a transition zone treatment may be required in areas where the subgrade changes from overburden to bedrock and vice versa.

A minimum of 1.5 and 1.0 m of earth cover should be provided to the footings of a heated structure founded on engineered fill/native soil and on bedrock respectively. The frost cover should be increased to 2.1 and 1.5 m for unheated structures respectively.

All footing subgrades and beds should be examined by a geotechnical engineer to ensure that the founding surfaces can support the design bearing pressure and that the footing beds have been properly prepared as described above. In areas of glacial till, a 50 mm mud slab is recommended to be placed on the surface of the approved subgrade to minimize disturbance.

The recommended bearing pressures have been calculated by EXP from the borehole information for the design stage only. The investigation and comments are necessarily on-going as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes and test pits when foundation construction is underway. The interpretation between boreholes and test pits and the recommendations of this report must therefore be checked through field monitoring provided by an experienced geotechnical engineer to validate the information for use during the construction stage.

9 Floor Slabs and Drainage Requirements

The lowest basement of the nine-storey building, residential blocks and two-storey townhouse blocks may be constructed as slab-on-grade provided they are set on beds of well compacted 19 mm clear stone at least 200 mm thick placed on bedrock or on well compacted engineered fill. The clear stone would prevent the capillary rise of moisture to the floor slab. Adequate saw cuts should be provided in the floor slab to control cracking.

It is anticipated that perimeter drains would be required for the proposed residential blocks with basement. The perimeter drains may consist of 100 mm diameter perforated pipe wrapped with filter cloth (sock) and set on the footings and surrounded with 150 mm of 19 mm clear stone and properly outletted. The subsurface walls should be adequately waterproofed.

Underfloor drainage system will likely be required for some of the townhouse blocks, the nine-storey building and or the residential blocks with more than one level of underground parking. These requirements will be best established once the design has been finalized and underside of footings, number of underground parking levels established for each of the high-rise buildings as well as the residential townhouse blocks.

The finished exterior grade should be sloped away from the buildings to prevent surface ponding of water close to the exterior walls.

10 Pipe Bedding Requirement

It is recommended that the bedding for the underground services including material specification, thickness of cover material and compaction requirements conform to the local requirements of the municipality and/or Ontario provincial Standard Specification and Drawings (OPSS and OPSD).

For guidance, the pipe bedding may consist of 300 mm and 150 mm of OPSS 1010 Granular A for services founded on native soils/engineered fill and bedrock respectively. The bedding material should be also placed along the sides and on top of the pipes to provide a minimum cover of 300 mm. The bedding, spring line and cover should be compacted to at least 98 percent the Standard Proctor Maximum Dry Density (SPMDD).

Where the subgrade changes from bedrock to native soil, a transition zone must be provided to minimize the concentration of stresses along the change in the founding medium.

11 Lateral Earth Pressure against Basement Walls

The subsurface walls should be backfilled with free draining material, such as OPSS 1010 for Granular B, Type II and equipped with a perimeter drainage system to prevent the buildup of hydrostatic pressure behind the walls. The walls will be subjected to lateral static and dynamic (seismic) earth forces.

For design purposes, the lateral static earth thrust against the subsurface walls may be computed from the following equation:

 $P = K_0 H (q + \frac{1}{2} \gamma H)$

where P = lateral earth thrust acting on the subsurface wall; kN/m

 K_0 = lateral earth pressure coefficient for 'at rest' condition for Granular B Type II

backfill material = 0.5

 γ = unit weight of free draining granular backfill; Granular B = 22 kN/m³

H = Height of backfill adjacent to foundation wall, m

q = surcharge load, kPa

The lateral seismic thrust may be computed from the equation given below:

 $\Delta P_E = 0.32 \gamma H^2$

where ΔP_E = resultant thrust due to seismic activity; kN/m

 γ = unit weight of free draining granular backfill; Granular B Type II = 22 kN/m³

H = height of backfill behind wall, (m)

The ΔPE value does not take into account the surcharge load. The resultant load should be assumed to act at 0.63 H from the bottom of the wall.

The requirement of damproofing/waterproofing of the foundation walls of the various structures proposed for the site must be established once the design grades at the site have been finalized.

12 Excavations

Excavations for the construction of the residential blocks and underground services will be extended through the fill, native soils and into the bedrock in some areas of the site and will be below the groundwater table in some areas throughout the site. Excavation for the nine storey building will require extensive removal of the bedrock. Excavation will be below the groundwater table in some areas of the site.

Excavations at the site must comply with the latest version of Ontario Occupational Health and Safety Act, Ontario Regulations 213/91 (January 11, 2014), i.e. excavation in the overburden should be cut back at a slope of 1H to 1V above the groundwater table. Below the groundwater table, the excavations sides are expected to slough and will eventually stabilize at a slope of 2H:1V to 3H:1V. If space restriction prevents the provision of the above slopes, the excavation may be undertaken within the confines of a prefabricated support system, such as a trench box which is designed and installed in accordance with the requirement of OHSA 213/91. In the vicinity of Borehole No. 5, any excavation below the groundwater table in the silty sand will require additional pumping.

Excavation of the bedrock may be undertaken with near vertical sides and would require the use of line drilling and blasting techniques. To prevent any damage to the surrounding structures and services, the blasting operations would have to be carefully planned and closely monitored. It is recommended that the blasting contractor should retain the services of a blast specialist to provide him with a blasting plan. The contractor should have a licensed blaster on site always during the blasting and a vibration engineer on retainer. A condition survey of all the structures near the site should be undertaken prior to commencement of the excavation work. Vibration monitoring should be carried out during blasting operations. Vibrations should be monitored at property boundaries and should be limited so that there will be no damage to the existing structures or services. In addition, vibration monitoring should be completed along the high pressure watermain situated along the hazeldean road. Further coordination with the City of Ottawa will eb required for this purpose.

Water inflow into the excavation should be expected. However, it should be possible to adequately handle this inflow by collecting the water in perimeter ditches and pumping from properly filtered sumps. It is possible that additional localized sumps may be required in areas where the seepage is more extensive.

12.1 Dewatering Requirement

Seepage of the surface and subsurface water into the excavations is anticipated. Should such seepage occur, it should be possible to collect water entering the excavation in perimeter ditches and to remove it by pumping from sumps located at low points. In areas of high infiltration or in areas where more permeable layers may exist in the till, a higher seepage should be anticipated. Therefore, the need of high capacity pumps to keep the excavation dry should not be overlooked.

It is anticipated the civil work as well excavation for the residential development would necessitate groundwater removal from the site. It is noteworthy to mention that new legislation came into force in Ontario on March 29, 2016 to regulate groundwater takings for construction dewatering purposes. Prior to March 29, 2016, a Category 2 Permit to Take Water (PTTW) was required from the Ontario Ministry of the Environment and Climate Change (MOECC) for groundwater takings related to construction dewatering, where taking volumes were in excess of 50 m³/day, but less than 400 m³/day, and the taking duration was

no more than 30 consecutive days. The new legislation replaces the Category 2 PTTW for construction dewatering with a new process under the Environmental Activity and Sector Registry (EASR). The EASR is an on-line registry, which allows persons engaged in prescribed activities, such as water takings, to register with the MOECC instead of applying for a PTTW.

To be eligible for the new EASR process, the construction dewatering taking must be less than 400 m³/day under normal conditions. The water taking can be groundwater, storm water, or a combination of both. It should be noted that the 30-consecutive day limit on the water taking under the old Category 2 PTTW process has been removed in the new EASR process. Also, it should be noted that the EASR process requires two technical studies be prepared by a Qualified Person, prior to any water taking. These studies include a Water Taking Report, which provides assurance that the taking will not cause any unacceptable impacts, and a Discharge Plan, which provides assurance that the discharge will not result in any adverse impacts to the environment. A significant advantage of the new EASR process over the former Category 2 PTTW process, is that the groundwater taking may begin immediately after completing the on-line registration of the taking and paying the applicable fee, assuming the accompanying technical studies have been completed. The former PTTW process typically took more than 90 days, which had the potential to impact construction schedules.

Although this investigation has estimated the groundwater levels at the time of the fieldwork, and commented on dewatering and general construction problems, conditions may be present, which are difficult to establish from standard boring techniques and which may affect the type and nature of dewatering procedures used by the contractor in practice. These conditions include local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile, thin layers of soil with large or small permeabilities compared with the soil mass, etc. Only carefully controlled tests using pumped wells and observation wells will yield the quantitative data on groundwater volumes and pressures that are necessary to adequately engineer construction dewatering systems.

13 Seismic Site Classification

The investigation has revealed that the proposed residential buildings proposed for the site will be founded either on engineered fill pad, glacial till or on bedrock and that all the fill and organic material will be removed and replaced with well prepared and compacted engineered fill.

The results of the MASW survey are documented in Appendix B. The results of the MASW survey indicates that the overall shear wave velocity $V_{\rm S30}$ for the site from ground surface to a 30 m depth below ground surface is 1262.5 m/s, which corresponds to a site Class B for seismic site response as per Table 4.1.8.4.A of the 2012 Ontario Building Code (OBC). However, in accordance with the OBC, site class B as well as site class A can only be used if there is less than 3 m of soil from below the underside of the footing (USF) to the top of the bedrock. If there is more than a 3 m thick layer of soil from the underside of the footing to the top of the bedrock, the site class for seismic site response is site class C. In the case where there would be 2.0 m or less of soil between the overburden and the bottom of the foundation, the minimal $V_{\rm S30}$ value would be greater than 1500 m/s, allowing the use of site class A.

Therefore, the classification at the site for seismic site response is summarized as follows:

- Class C if the distance between the USF of the proposed buildings and the top bedrock is greater than 3.0 m.
- Class B if the distance between the USF of the proposed buildings and the top bedrock is between 2.0 m and 3.0 m.
- Class A if the distance between the USF of the proposed buildings and the top bedrock is less than 2.0 m.

Based on the results of the investigation, there is no liquefaction potential of the subsurface soil during a seismic event given that loose and soft areas will be sub-excavated and replaced with engineering fill during construction from under the foundations and services.

14 Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes

The material to be excavated from the site will comprise of excessive amount of heterogenous fill containing boulders, cobbles, peat and marl, wood fragments, construction debris, etc. native soils and bedrock.

The following recommendation are provided with respect to the re-use of the on-site excavated soils as backfill and subgrade fil as well as requirement for backfilling;

- Topsoil, peat and marl are not suitable for use as backfill and must be removed and disposed of site.
- The heterogenous fill is not suitable for use as subgrade fill or as fill against the foundation wall in its present state. Select fill material free of organics, boulders and cobbles may be used as subgrade fill in the landscaped area, i.e. in areas where some settlement is not of a concern Select on-site fill, free of organics, debris, boulders and cobbles may be used as subgrade material in the lower levels under the roadways provided it is reviewed on-site by a geotechnician and is placed and compacted in 300 mm lifts using 10 vibratory roller. Prior to the re-use of the on-site fill, all boulders, debris and organic must be removed from it. It should be noted that the amount of material available for this purpose, cannot be quantified due to its high variability and its heterogenous nature which was likely deposited at the site over the years and from different sources. Contractor bidding on this project should review the available data and decide on their own whether or not some of the on-site fill can be used for this purpose;
- Blast shattered bedrock excavated from the site with maximum size of 400 mm and containing sufficient fines to fill any voids may be used as subgrade fill in the lower levels to raise the grades under the roadways provided it is placed in 500 mm lifts and each lift compacted with a 10 tons vibratory roller under the supervision of a geotechnican. Blending of the blast/shattered rock with finer material such as OPSS 1010 Granular A may be required to fill any void within the rock matrix;
- Crushing of the excavated bedrock on-site for use as OPSS 1010 Granular B type II can be considered as an option by the contractor undertaking this work if considered feasible from an economic point of view; and
- Management of excess soils generated from the site should be undertaken as per the recommendation provided in the Phase II ESA report prepared for the site by EXP.

It is anticipated that most of the material required for backfilling purposes and subgrade fill will need to be imported and should preferably conform to the following specifications:

- Engineering fill under footing and basement floor
 OPSS 1010 Granular B Type II placed in 300
 mm thick lifts and compacted to 100 percent of the SPMDD under footings and to 100 percent of
 the SPMDD under the basement floors:
- Backfilling against exterior basement walls OPSS 1010 Granular B Type I or II, placed in 300 mm thick lifts and compacted to 95 percent of the SPMDD;

 Trench backfill and fill placement to subgrade level for pavement – OPSS 1010 Select Subgrade Material (SSM), free of organics, debris and with a natural moisture content within 2 percent of the optimum moisture content. It should be placed in 300 mm thick lifts compacted to minimum 95 percent of the SPMDD.

15 Subdivision Road and Parking Area

The subgrade under roadways is expected to engineered fill prepared as per the recommendation of this report. Pavement structure thicknesses required for the subdivision streets and driveways were computed and are shown on Table IX. The thicknesses are based upon an estimate of the subgrade soil properties determined from visual examination, textural classification of the soil samples and functional design life of 18 to 20 years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out.

Table IX: Recommended Pavement Structure Thicknesses								
Pavement Layer	Compaction Requirements	Pathway- Parkland	Cars Only	Subdivision Roadways	Bus Traffic			
Asphaltic Concrete (PG 58-34)	92 to 97% MRD	50 mm HL3F	65 mm HL3/SP12.5	40 mm SP12.5/HL3 50 mm SP19/HL8	50 mm SP12.5/HL3 70 mm SP19/HL8			
Granular A Base (crushed limestone)	100% SPMDD*	300	150 mm	150 mm	150 mm			
Granular B Sub-base, Type II	100% SPMDD*	-	300 mm	400 mm	500 mm			

SPMDD* Standard Proctor Maximum Dry Density, ASTM-D698

MRD denotes Maximum Relative Density, ASTM D2041

Asphaltic Concrete in accordance with OPSS 1150/1151- Category B is recommended

Additional comments on the construction of parking area are as follows:

- 1. As part of the subgrade preparation for the areas to be paved, the subdivision roadways should be stripped of topsoil, fill, marl as described in Section 7 of the report and any unsuitable material down to subgrade level. The exposed area should be proof rolled with a 10 tons vibratory roller. Any soft areas detected should be sub-excavated and replaced with approved imported material conforming to OPSS 1010 for Select subgrade Material (SSM) or with on-site approved fill which should be placed in 300 mm lifts and each lift compacted to 95 percent of the SPMDD.
- 2. The long-term performance of the pavement structure is highly dependent upon the subgrade support conditions. As a minimum, subdrains stubs should be installed between catchbasin and at low points. This will ensure no water collects in the granular course, which could result in pavement failure during the spring thaw. The location and extent of sub drainage required within the paved areas should be reviewed by this office in conjunction with the proposed site grading.
- To minimize the problems of differential movement between the pavement and catch basins/manhole due to frost action, the backfill around the structures should consist of free-draining granular preferably conforming to OPSS Granular B, Type II material. Weep holes should be

provided in the catch basins/manholes to facilitate drainage of any water that may accumulate in the granular fill.

- 4. The most severe loading conditions on light-duty pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted lanes, half-loads during paving, etc., may be required, especially if construction is carried out during unfavorable weather.
- 5. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catch basins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 6. Relatively weaker subgrade may develop over service trenches at subgrade level if wet soils is used to backfill of the service trenches. Therefore, only dry and compactible material should be used to backfill service trenches as recommended in Section 7 of the report.
- 7. The granular materials used for pavement construction should conform to OPSS 1010 for Granular A and Granular B, Type II and should be compacted to 100 percent of the SPMDD (ASTM D698-12 e2). The asphaltic concrete used, and its placement should meet OPSS 1150/1151 and 310/313 requirements. It should be compacted to 92 to 97 percent of the maximum relative density in accordance with ASTM D2041.

It is recommended that EXP be retained to review the final pavement structure design and drainage plans prior to construction to ensure that they are consistent with the recommendations of this report.

16 Subsurface Concrete Requirement

Chemical tests limited to pH, sulphate and resistivity were undertaken on three (3) selected soil samples and the results are shown in Table VI. The laboratory certificate of analysis for the chemical tests is shown in Appendix C.

Table X: Results of pH, Chloride, Sulphate and Resistivity Tests on Selected Soil and Bedrock Samples								
Borehole No Sample No.	Soil / Rock	Depth (m)	рН	Sulphate (%)	Resistivity (mS/cm)			
BH 7 – SS3	Glacial Till	1.5 – 2.1	8.11	0.0038	5465			
BH 8 – SS4	Glacial Till	2.3 – 2.9	8.03	0.0047	5319			
BH 9 – SS2	Fill	0.8 – 1.4	7.71	0.0103	3021			

The results indicate the soils have a negligible sulphate attack on subsurface concrete. The concrete should be designed in accordance with CSA A.23.1-14.

The results of the resistivity tests indicate that the soil at the site is moderately corrosive to mildly corrosive to bare steel as per the National Association of Corrosion Engineers (NACE). Appropriate measures should be undertaken to protect the buried bare steel from corrosion.

17 Tree Planting

Clayey soils were not encountered at the site and therefore there is no restriction on tree planting from a geotechnical point of view.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

18 Storm Management Pond

A storm management pond is proposed towards the south east corner of the site. Three boreholes and one test pit drilled/excavated in the vicinity of the proposed pond, i.e. Borehole Nos. 1, 12 and 13 and Test Pit 3 revealed the subsurface condition to comprise of a shallow deposit of overburden underlain by limestone bedrock contacted at Elevation 115.6 m to 116.7 m. The groundwater measurements taken at these locations ranged between 1.3 m to 1.5 m below grade, i.e. Elevation 115.6 m to 115.0 m.

The stormwater management pond is proposed with a bottom elevation at elevation 113.70 and 3H:1V side slopes to 116.10m. The 1:100 year elevation is 115.75 m and emergency spill elevation is set at 115.90 m. Six rows of 150mm diameter subdrains are proposed beneath the pond bottom, at roughly 6 metres on centre at elevations 113.1 to 113.0, sloping towards the outlet manhole. No infiltration is proposed beneath the dry pond, as the pond will be located within the limestone bedrock.

The Macro Grading Plan, GPM rev. 2, dated April 27, 2021, was reviewed with respect to the underside of footing elevation for both the proposed and adjacent residential units. The expected minimum underside of footing elevation within the proposed development is 115.90m, or 2.2m above the pond bottom. The underside of footing elevations within the adjacent residential units on Bandelier Way are 113.90m to 113.78m. The weeping tiles around the perimeter of the footings drain to the storm sewer system. The stormwater pond bottom was set at a similar elevation 113.70m vs 113.78m, as the adjacent underside of footing elevations on Bandelier Way that were obtained from drawings provided by the City.

The stormwater runoff from development will outlet through a 1,050mm diameter storm sewer, located within the walkway block, then flow east along Bandelier Way. On May 6, 2021 the stormwater flow in manhole MHST78509 (invert=111.70m) on Bandelier Way and MHST78510 (invert=111.35m) were observed, with no notable groundwater flow (refer to photos MHST78509, May 6, 2021 and MH78510, May 6, 21). Within this 68m length of storm sewer there are approximately 18 homes fronting Bandelier Way, with 45 homes upstream to the high point in the storm sewer system on Bandelier Way. The weeping tiles around the perimeter of the footings drain to the storm sewer system. This section of storm sewer, that was installed within the limestone bedrock, is approximately 2.0m to 2.3m below the proposed stormwater pond bottom elevation and 1.3m to 1.6m below the proposed subdrain elevations for the stormwater pond. The sanitary sewer along this section of Bandelier Way is 0.8m to 1.0m lower than the storm sewer or roughly 3.0m below the proposed pond bottom. It is expected that the blasted trenches for storm and sanitary sewers have lowered the ground water table, as there was no notable flow from the weeping tiles connect to the storm sewer system, from the May 6, 2021 field review. We expect that once blasted trenches for the sanitary and storm sewer are completed that the groundwater table will be lowered within the site and the vicinity of the proposed dry pond (Appendix D).

From a geotechnical point of view, there are no concerns regarding the proposed pond and its design and there is expected to be minimal groundwater flow, beneath the pond bottom once constructed. A subdrain system is proposed beneath the stormwater pond to aid in draining the dry pond after rainfall events.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

19 General Comments

The comments given in this report are intended only for the guidance of the design engineers. The number of boreholes and test pits required to determine the localized underground conditions, especially bedrock elevations between boreholes and test pits affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should in this light, decide on their own investigations, as well as their own interpretation of the factual borehole and test pit results to draw their own conclusions as to how the subsurface conditions may affect them.

The information contained in this report is not intended to reflect on environmental aspects of the soils and groundwater. Should specific information be required, including for example, the presence of pollutants, contaminants or other hazards in the soil, additional testing may be required.

We trust that this information is satisfactory for your purposes. Should you have any questions, please contact this office.

EXP Services Inc.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Figures

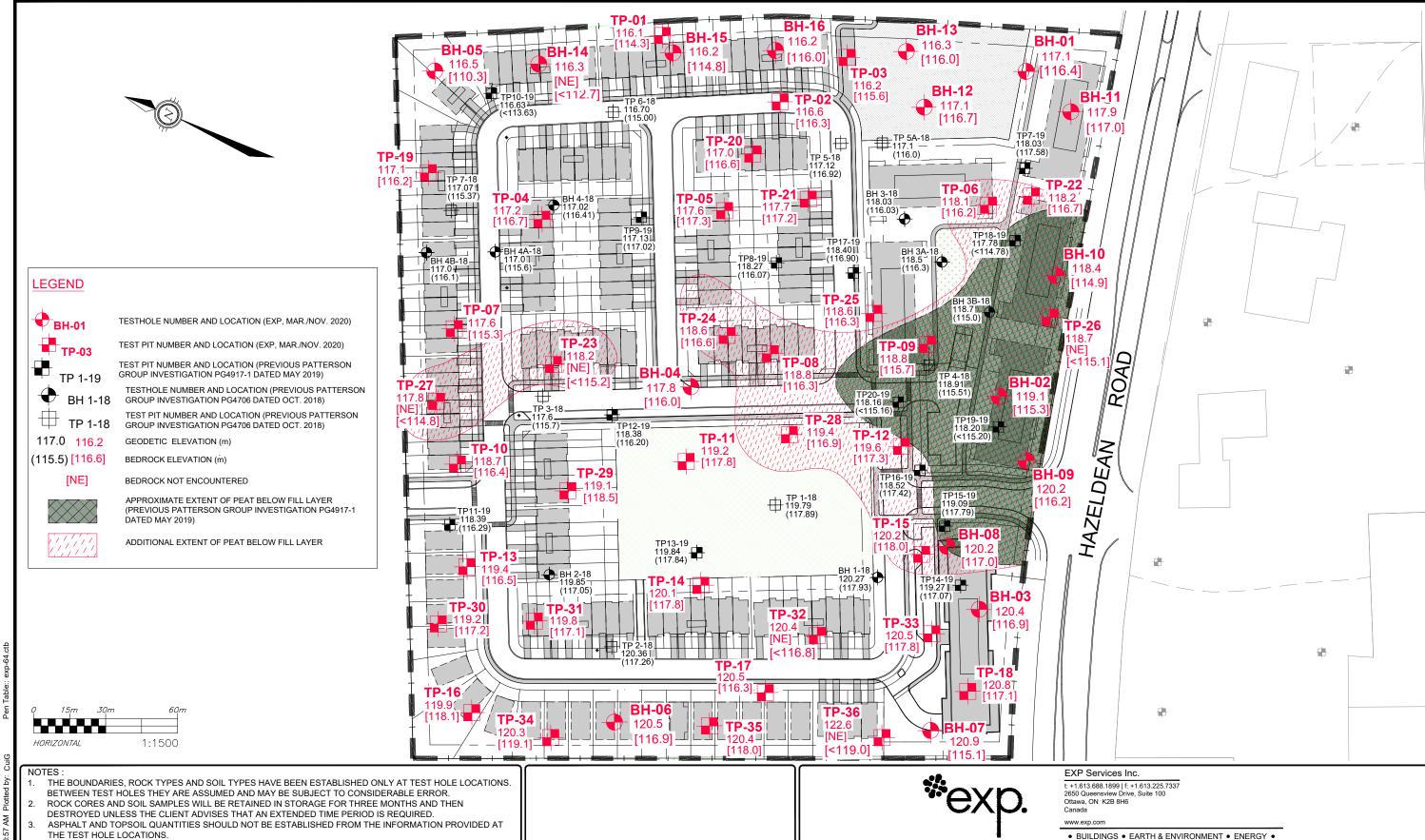
SITE LOCATION PLAN

1:20,000

FIG₁

Pen Table:: exp-64.ctb

CuiG Plotted by:


I.T.

DRAWN BY

I.T.

G.C.

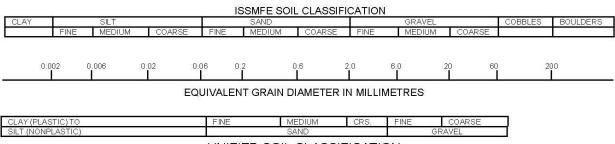
TITLE:

LOT(S) GRADES.

TEST HOLE ELEVATIONS SHOULD NOT BE USED TO DESIGN BUILDING(S) OR FLOOR SLABS OR PARKING

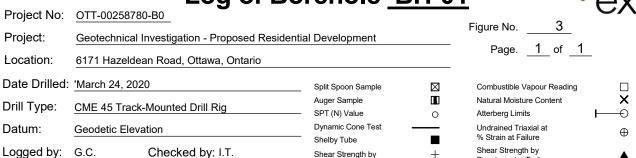
THIS DRAWING FORMS PART OF THE REPORT PROJECT NUMBER AS REFERENCED AND SHOULD BE USED ONLY IN CONJUNCTION WITH THIS REPORT.

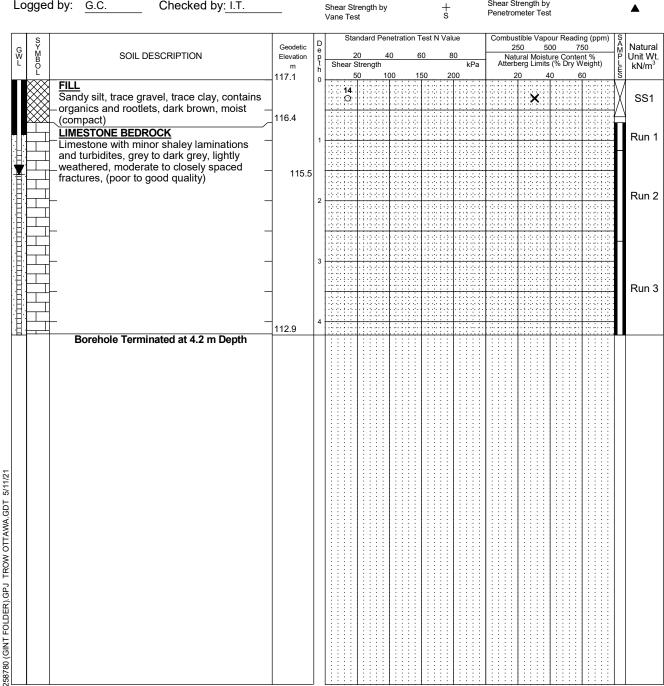
BASE PLAN OBTAINED FROM SURVEY PLAN BY FAIRHALL, MOFFATT & WOODLAND LTD., JOB NO. Z38800, REFERENCE NO. 415(A) - 12 GOULBOURN, DATED JANUARY 14, 2020.


TEST HOLE LOCATION BY OTHERS ARE APPROXIMATE - REFER TO ORIGINAL SITE PLAN FOR ACCURATE

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

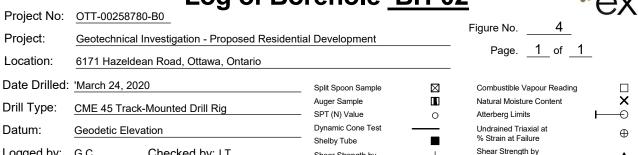
Notes On Sample Descriptions

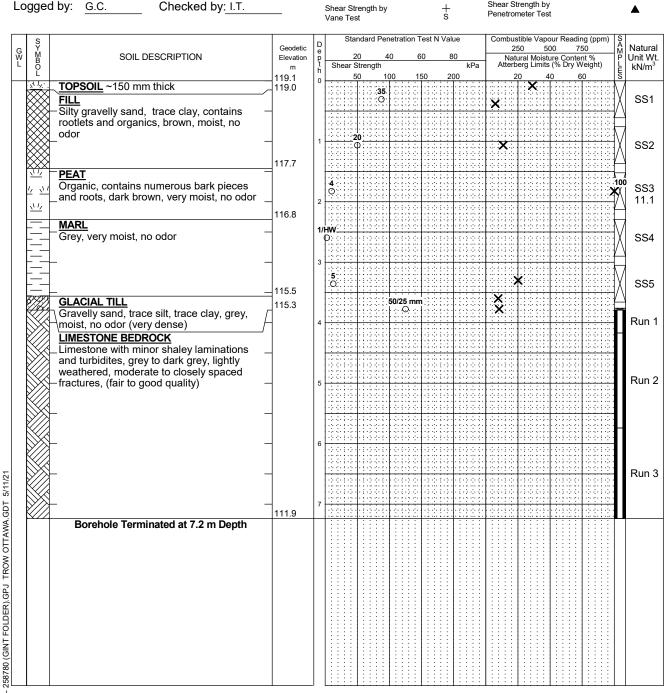

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by exp Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.



UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.




NOTES

- Borehole data requires interpretation by EXP before use by others
- 2.A 32 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

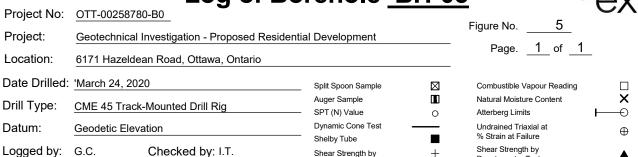
WATER LEVEL RECORDS					
Date	Date Water Level (m)				
11.4 1.04.0000		To (m)			
'March 24, 2020	Dry				
May 14, 2020	1.2				
July 2, 2020	2.0				
Jan 25, 2021	1.2				
March 1, 2021	1.6				

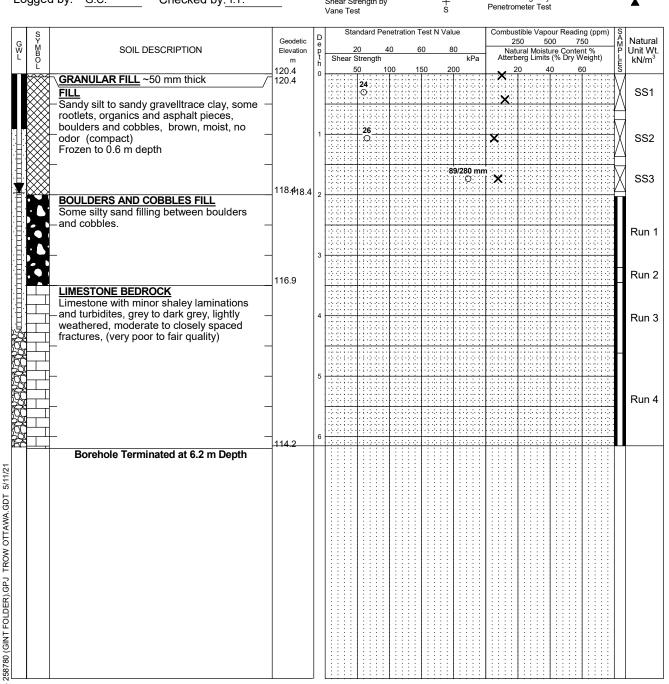
CORE DRILLING RECORD				
Run	Depth	% Rec.	RQD %	
No.	(m)			
1	0.71 - 1.17	100	61	
2	1.17 - 2.67	100	34	
3	2.67 - 4.22	98	72	

LOG OF

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

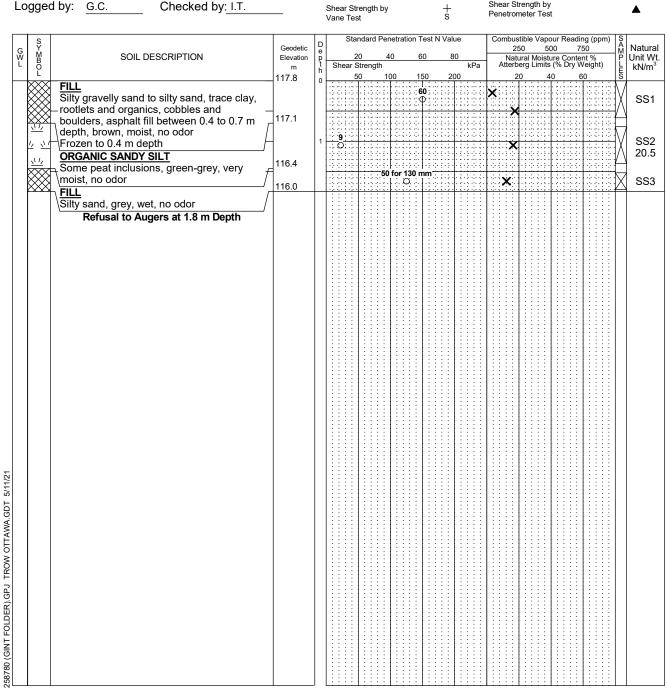

3. Field work supervised by an EXP representative.


4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS					
Date	Hole Open To (m)				
'March 24, 2020	Dry				

CORE DRILLING RECORD					
Run Depth % Rec. RQD % No. (m)					
1	3.79 - 4.17	100	47		
2	4.17 - 5.74	97	39		
3	5.74 - 7.24	100	61		
l	I	I			


NOTES:

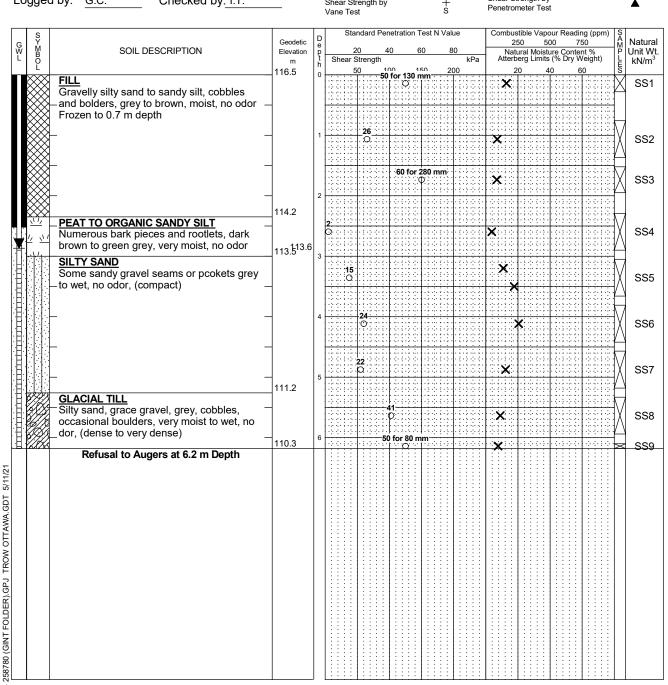
- Borehole data requires interpretation by EXP before use by others
- 2.A 32 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS				
Date	Water Level (m)	Hole Open To (m)		
'March 24, 2020	Dry			
May 14, 2020	1.6			
July 2, 2020	2.1			
Jan 25, 2021	2.3			

CORE DRILLING RECORD				
Run	Depth	% Rec.	RQD %	
No.	(m)			
1	2 - 3.2			
2	3.2 - 3.5			
3	3.5 - 4.6	61	30	
4	4.6 - 6.2	85	48	

	Log of	Во	rehole	BH-04		- CYI
Project No:	OTT-00258780-B0		-		-	
Project:	Geotechnical Investigation - Proposed Re	esidenti	ial Development		Figure No. 6	
Location:	6171 Hazeldean Road, Ottawa, Ontario				Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'March 24, 2020		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Orill Type:	CME 45 Track-Mounted Drill Rig		Auger Sample - SPT (N) Value		Natural Moisture Content Atterberg Limits	X —→
Datum:	Geodetic Elevation		Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	•
_ogged by:	G.C. Checked by: I.T.	_	Shelby Tube Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A
S G W M B		Geodetic Elevation	Standard Penetra	tion Test N Value	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content %	A Natura

BH LOGS


LOG OF BOREHOLE

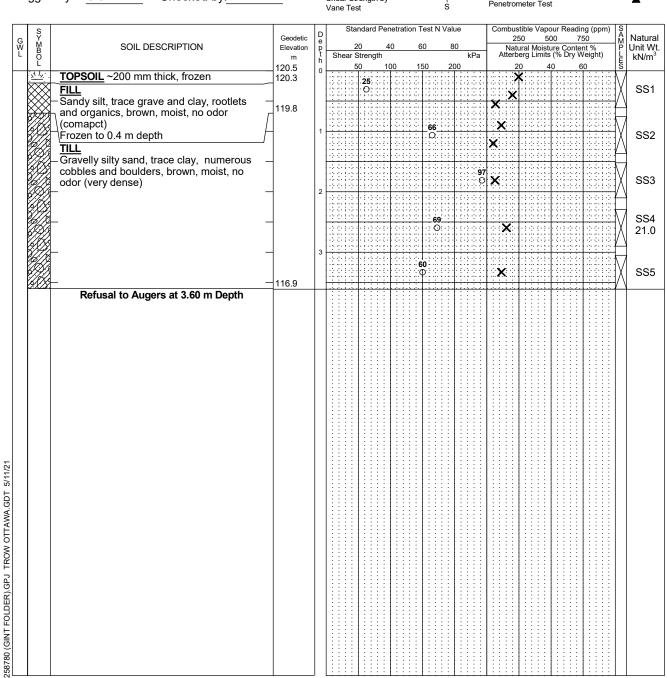
- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- $3. \mbox{Field}$ work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS					
Date	Water Level (m)	Hole Open To (m)			
'March 24, 2020	Dry				

CORE DRILLING RECORD				
Run	Depth	% Rec.	RQD %	
No.	(m)			

	_09 00	,, o., o., <u></u>	<u> </u>	<u> </u>	
Project No:	OTT-00258780-B0				
Project:	Geotechnical Investigation - Proposed Resident	tial Development		Figure No/	ı
Location:	6171 Hazeldean Road, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	-
Date Drilled:	March 24, 2020	_ Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 45 Track-Mounted Drill Rig	Auger Sample		Natural Moisture Content	×
Dim Type.	CIVIL 43 Track-Modified Drill ring	SPT (N) Value	0	Atterberg Limits	\longmapsto
Datum:	Geodetic Elevation	Dynamic Cone Test -		Undrained Triaxial at	\oplus
Logged by:	G.C. Checked by: I.T.	Shelby Tube Shear Strength by	±	% Strain at Failure Shear Strength by Penetrometer Test	A

NOTES

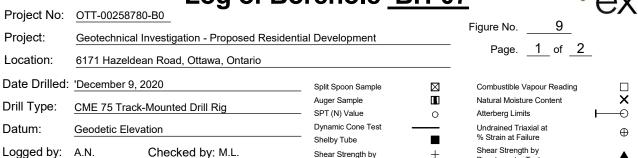

LOG OF

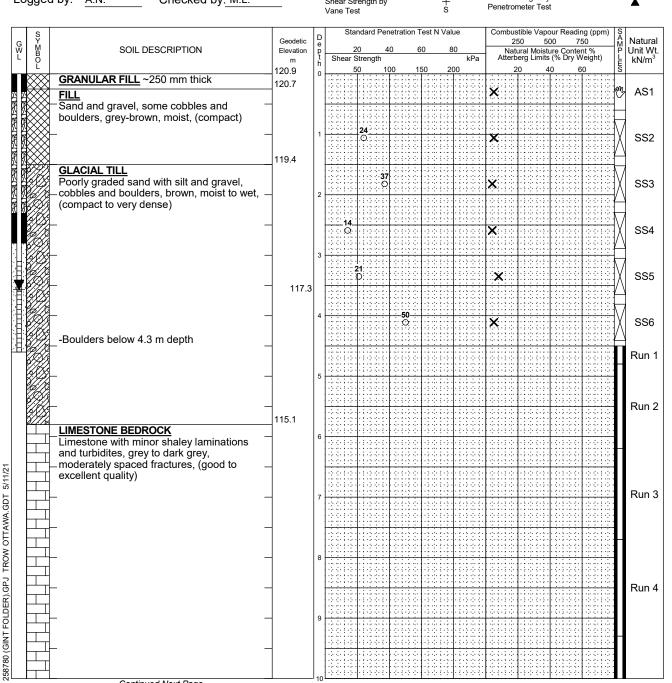
- Borehole data requires interpretation by EXP before use by others
- 2.A 32 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS				
Date	Hole Open To (m)			
'March 24, 2020	Dry			
May 14, 2020	2.6			
July 2, 2020	2.8			
Jan 25, 2021	2.8			
March 1, 2021	2.9			

CORE DRILLING RECORD					
Run Depth % Rec. RQD % No. (m)					
	` ,				

	Log of Bor	rehole	BH-06)	*eyn
Project No:	OTT-00258780-B0	-		•	
Project:	Geotechnical Investigation - Proposed Residential	Development		Figure No. 8	1
Location:	6171 Hazeldean Road, Ottawa, Ontario			rage. <u>I</u> of _	<u>'</u>
Date Drilled:	'March 24, 2020	Split Spoon Sample		Combustible Vapour Reading	
Orill Type:	CME 45 Track-Mounted Drill Rig	Auger Sample SPT (N) Value	II	Natural Moisture Content Atterberg Limits	× ⊷
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	G.C. Checked by: I.T.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A




LOG OF 1

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WAT	ER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)
'March 24, 2020	Dry	

CORE DRILLING RECORD													
Run No.	Depth	epth % Rec. RQD %											
INO.	(111)												

Continued Next Page

Borehole data requires interpretation by EXP before use by others

2.A 19 mm diameter standpipe installed as shown.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS												
Date	Water Level (m)	Hole Open To (m)										
December 9, 2020) N/A											
Jan 25, 2021	3.4											
March 1, 2021	3.6											

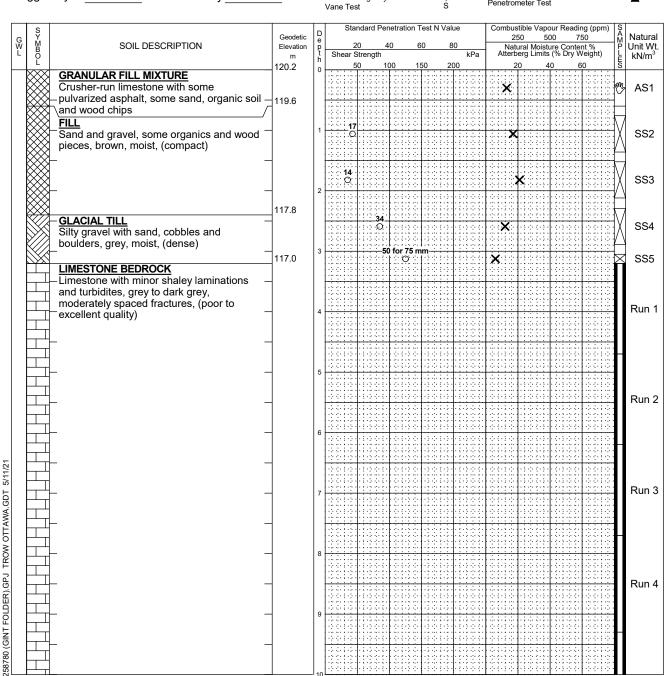
CORE DRILLING RECORD										
Run	Depth	RQD %								
No.	(m)									
1	4.5 - 4.8									
2	4.8 - 6.2									
3	6.2 - 7.7	100	79							
4	7.7 - 9.3	100	90							
5	9.3 - 10.8	96	96							

Project No: OTT-00258780-B0

Figure No.

Project: Geotechnical Investigation - Proposed Residential Development

Page. _2_ of _2


	Page. Z of Z Standard Penetration Test N Value Combustible Vapour Reading (ppm) S																						
٦	S		Geodetic	D											2	50		500) 7	50		S A M P	Natural
G W L	S M B O L	SOIL DESCRIPTION	Elevation	Depth	Shea	20 r St	rength	0	60)	80		Pa								Unit Wt. kN/m ³		
-	Ľ		m _110.9		Onea	50	-	00	15	0	200		ıa	′		20 20		40		60 60	,	LES	
	Ш		110.5	10		1	1441	100				(+)	÷ (+		· } · :-	1			· · · · · ·	1:		П	Run 5
	Н					1	1.3.3.1.						33			H						Ш	
			-			:::	1.5 (.1.				:::	1.1			: :	H	: : :			1::	· · · ·	11	
	Щ.,		110.1			:::			::		:::	:::	· · ·		• • • • •	1:		#				Ш	
		Borehole Terminated at 10.8 m Depth											: :	; ;	: :								
																H							
									:			H			: :	H							
					; ; ;			1 : : :		: : :	:	: :	: :	: :	: :	1:	: : :			1			
																H							
											:				: :	1:							
					: : :	:		: : :	:	$\vdots \vdots \vdots$	\vdots	: :	: :	: :	: :	1				:			
														; ;	: :	1				1			
					; ; ;	:	: : : :	; ; ;	:	: : :		: :	: :	: :	: :	1:	: : :			1:			
											\vdots			; ;	: :	1				1			
											\vdots			; ;	: :	1:				:			
														: :	: :	1							
					1 : : :	:	: : : :	1 : : :	:	\vdots \vdots	:	: :	: :	: :	: :	:	: : :		: : : :	1:	: : :		
						:										H							
														; ;	\vdots	1							
									:			H			: :	H							
					; ; ;			: : :		: : :	:	: :	: :	: :	: :	1:	: : :			1			
																H							
					1 : : :		: : : :	1 : : :		$\vdots \ \vdots$:	: :	: :	: :	\vdots	:	: : :			1	: : :		
					1 : : :		: : : :	1 : : :	:	$\vdots \ \vdots$:	: :	::	: :	\vdots	:	: : :		: : : :	1	: : :		
																H							
					1 : : :		\vdots \vdots \vdots	1 : : :	:	$\vdots \ \vdots$	\vdots	: :	::	: :	\vdots	:	: : :		: : : :	1	: : :		
																H							
					1 : : :		: : : :	:::	:	$\vdots \ \vdots$:	: :	: :	: :	\vdots	1:	: : :			1:	: : :		
																H							
					1 : : :	:	: : : :	1 : : :	:	\vdots \vdots	:	: :	: :	::	: :	:	: : :		: : : :	1:			
						:										H							
															: :	1							
_																							
5/11/21															: :	H							
												Ħ			::	1							
ا≽ ا												ij		: :	: :	:							
[≥																							
티					1 : : :		: : : :	1 : : :		$\vdots \ \vdots$:	: :	::	: :	\vdots	:	: : :		: : : :	1	: : :		
8														: :									
ř									:		\vdots		::	; ;	: :	:	: : :			1			
2											\vdots			; ;	: :	1				1			
(2) (3)					; ; ;		: : : :	; ; ;	:	: : :		: :	: :	: :	: :	1:	: : :			1:			
								; ; ;			\vdots			; ;	: :	1				1			
														; ;									
틸					; ; ;			; ; ;			\vdots			; ;	: :	1	: : :						
<u></u>								! ! !						! !									
- 258780 (GINT FOLDER) GPJ TROW OTTAWA.GDT					1:::			; ; ;			$ \cdot $; ;	: :	1	: : :			1:			
					L		<u> </u>	Liii	:	<u> </u>		<u>: :</u>		L	::	Ŀ				L			
S N											_												

- NOTES:
 1. Boreh use by
 2. A 19 r
 3. Field
 4. See N
 5. Log to Borehole data requires interpretation by EXP before use by others
 - 2.A 19 mm diameter standpipe installed as shown.
 - 3. Field work supervised by an EXP representative.
 - 4. See Notes on Sample Descriptions
 - 5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS													
Date	Date Water Level (m)												
December 9,	2020	N/A											
Jan 25, 202	21	3.4											
March 1, 20	21	3.6											

	CORE DRILLING RECORD											
ľ	Run No.	Depth (m)	RQD %									
H	1	4.5 - 4.8										
	2	4.8 - 6.2										
	3	6.2 - 7.7	100	79								
	4	7.7 - 9.3	100	90								
	5	9.3 - 10.8	96	96								

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development Page. 1 of 2 Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'December 9, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CME 75 Track-Mounted Drill Rig SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: A.N. Checked by: M.L. Shear Strength by Penetrometer Test

Continued Next Page

Borehole data requires interpretation by EXP before use by others

use by others

2. Borehole backfilled upon completion of drilling.

 ${\it 3.} \ {\it Field work supervised by an EXP representative}.$

4. See Notes on Sample Descriptions

LOG OF

5. Log to be read with EXP Report OTT-00258780-B0

	WATER LEVEL RECORDS													
	Date	Hole Open To (m)												
•	December 9, 2020) N/A												

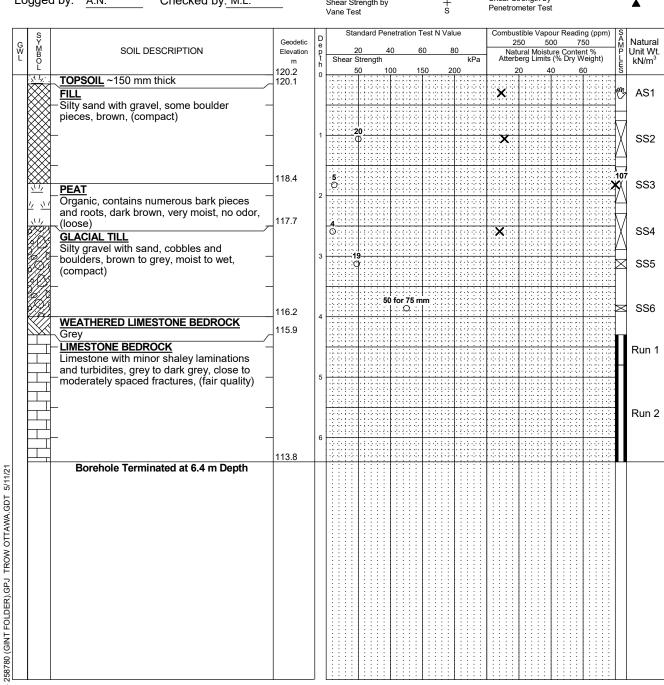
CORE DRILLING RECORD										
Run	Depth	RQD %								
No.	(m)									
1	3.2 - 4.7	100	42							
2	4.7 - 6.2	100	60							
3	6.2 - 7.7	100	67							
4	7.7 - 9.3	100	95							
5	9.3 - 10.8	100	100							

Project No: OTT-00258780-B0

Figure No.

Project: Geotechnical Investigation - Proposed Residential Development

2 of 2 Page.


П	S			T	T	St	anda	ard l	Pene	etratio	n Te	st N V	alue		C		stible V	ароц		ding (p	_	Ş	
G W L	SYMBOL	SOIL DESCRIPTION	Geodetic Elevation	e p t h		hoor	20 Stre	nati	40 60 80			kPa	┢	250 S Natural Mois		500 750 Moisture Content % Limits (% Dry Weight)		nt)	S A M Natu P Unit				
_	P.		110.2	h 10	o		50		10		150		200		 		20 T : : :	40 : T		60		ริ	kN/m³ Run 5
	廿																						TKUIT 5
	寸	_	109.4							· · · ·					<u> </u>				<u> </u>		· i · : · :		
		Borehole Terminated at 10.8 m De	epth 109.4		†			: :	#	: : :	Ħ				†			#	: : :		::		
															:								
															:								
															:								
															:								
															:								
															:								
															:								
															:								
															:								
					1										:								
															:								
															:								
															:								
															:								
															:								
															:								
NΩ	TES:			_'			:								_:			-: 1					
1.		ele data requires interpretation by EXP before others	WATER LEVEL RECO			OR		ole C)pei	_	-	Run		CO		E DRILLING RECORI			DRD	RC	QD %		
1			Date December 9, 2020	L	Leve			+		To (m)			No. 1	_	(m 3.2 -)		10		+		42
3.		ork supervised by an EXP representative.	_ 555551 5, 2020		14									2		4.7 -	6.2		10	0			60
4.	See No	otes on Sample Descriptions												3		6.2 - 7.7 -			10 10				67 95
2. 3. 4. 5.	Log to	be read with EXP Report OTT-00258780-B0												5).3 - 1			10				100
													L										

NOTES	S

	WATER LEVEL RECORDS			
	Date	Water Level (m)	Hole Open To (m)	
•	December 9, 2020) N/A		

CORE DRILLING RECORD			
Run No.	Depth (m)	% Rec.	RQD %
1	3.2 - 4.7	100	42
2	4.7 - 6.2	100	60
3	6.2 - 7.7	100	67
4	7.7 - 9.3	100	95
5	9.3 - 10.8	100	100

Project No:	OTT-00258780-B0	_09 0	<u> </u>	<u> </u>	_	CY
Project:	Geotechnical Investigat	ion - Proposed Resider	ntial Development		Figure No1	
Location:	6171 Hazeldean Road,	Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'December 9, 2020		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75 Track-Mounted	Drill Rig	Auger Sample — SPT (N) Value	II	Natural Moisture Content Atterberg Limits	× ⊢—⊖
Datum:	Geodetic Elevation		Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checke	ed by: M I	Shear Strength by	<u>-</u>	Shear Strength by	•

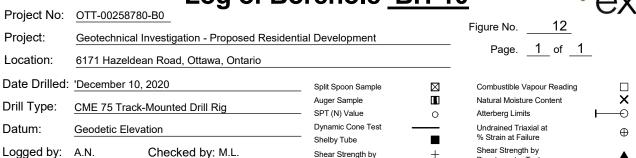
NOTES:

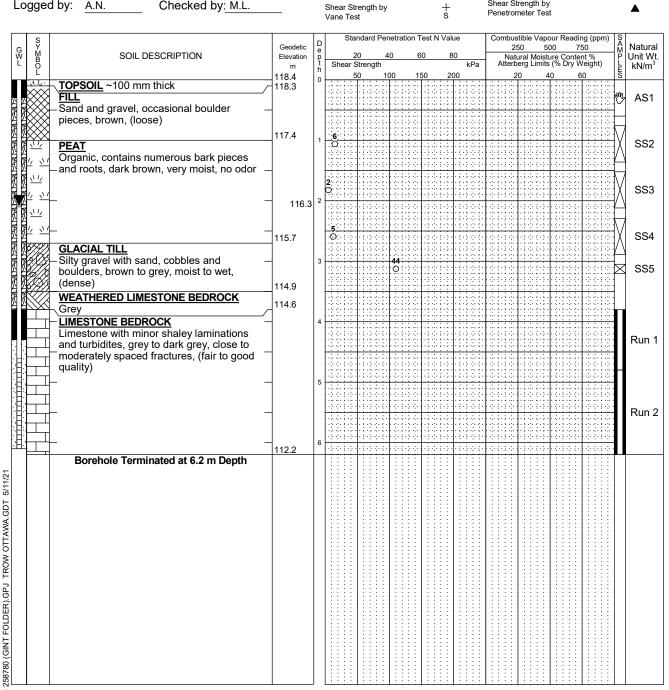
BH LOGS

LOG OF

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.


3. Field work supervised by an EXP representative.


4. See Notes on Sample Descriptions

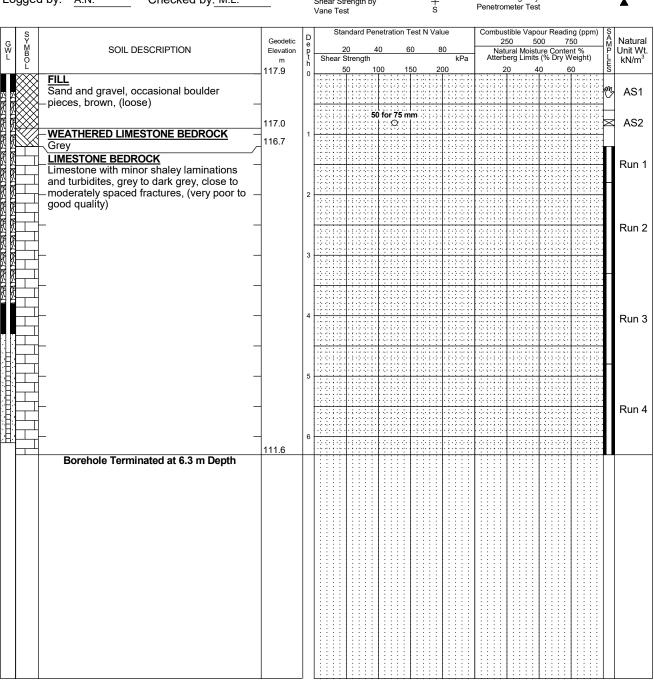
5. Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS		
Date	Water Level (m)	Hole Open To (m)
'December 9, 2020	N/A	

CORE DRILLING RECORD				
Depth (m)	% Rec.	RQD %		
4.3 - 4.8	100	68		
4.8 - 6.4	100	63		
	Depth (m) 4.3 - 4.8	Depth % Rec. (m) 4.3 - 4.8 100		

NOTES:

BH LOGS

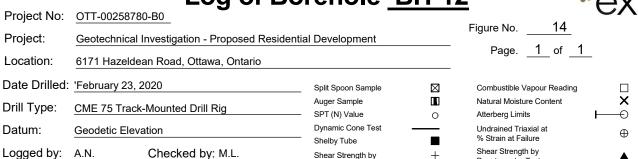

LOG OF

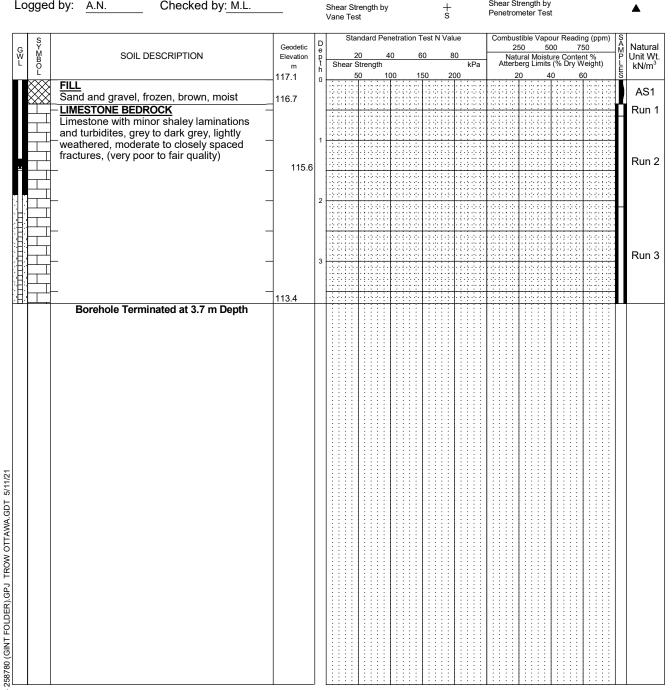
- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter standpipe installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00258780-B0

	WATER LEVEL RECORDS			
	Date	Water Level (m)	Hole Open To (m)	
۱,	ecember 10, 202	0 N/A	• •	
	Jan 25, 2021	2.1		
	March 1, 2021	2.1		

CORE DRILLING RECORD			
Depth (m)	% Rec.	RQD %	
3.8 - 4.8	100	68	
4.8 - 6.2	100	79	
	Depth (m) 3.8 - 4.8	Depth % Rec. (m) 3.8 - 4.8 100	

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development Page. 1 of 1 Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'December 10, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CME 75 Track-Mounted Drill Rig SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: A.N. Checked by: M.L. Shear Strength by


NOTES:

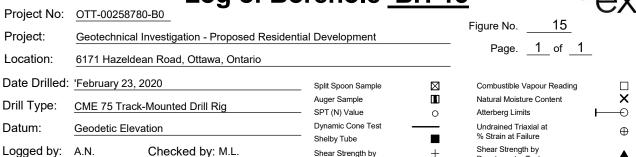

258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

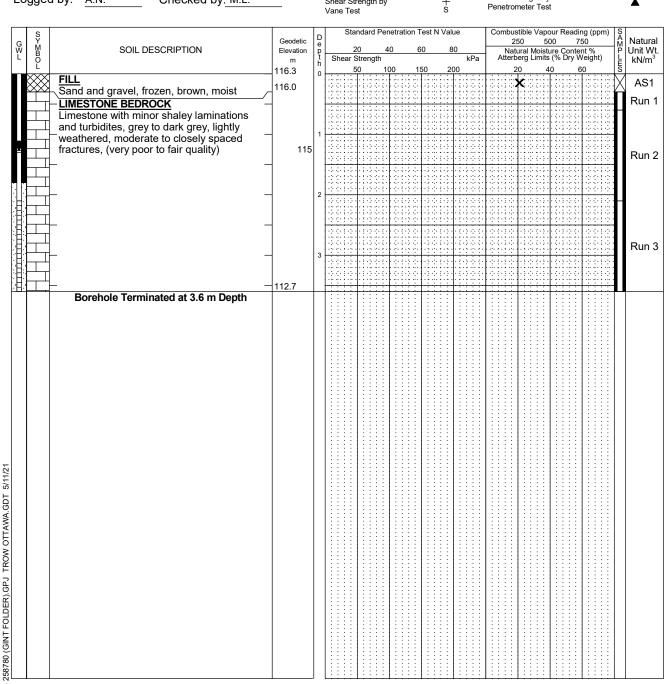
- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter standpipe installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00258780-B0

	WAT	RDS	
	Date	Water Level (m)	Hole Open To (m)
ו'	ecember 10, 202	0 N/A	

CORE DRILLING RECORD			
Run	Depth	% Rec.	RQD %
No.	(m)		
1	1.2 - 1.8	92	0
2	1.8 - 3.3	100	18
3	3.3 - 4.8	100	62
4	4.8 - 6.3	100	78

NOTES:


BH LOGS


LOG OF

- Borehole data requires interpretation by EXP before use by others
- 2.A 32 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WAT	WATER LEVEL RECORDS		
Date	Water Level (m)	Hole Open To (m)	
February 23, 2020	N/A		
March 1, 2021	1.5		

CORE DRILLING RECORD			
Run	Depth	% Rec.	RQD %
No.	(m)		
1	0.4 - 0.6	80	0
2	0.6 - 2.1	100	58
3	2.1 - 3.7	100	53

NOTES:

LOG OF

- Borehole data requires interpretation by EXP before use by others
- 2.A 32 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WAT	WATER LEVEL RECORDS		
Date	Water Level (m)	Hole Open To (m)	
February 23, 2020	N/A		
March 1, 2021	1.3		

CORE DRILLING RECORD									
Run No.	Depth (m)	% Rec.	RQD %						
1	0.3 - 0.3	100	0						
2	0.6 - 2.1	100	60						
3	2.1 - 3.6	100	58						

	Log of	Бо	r	eh	ole	<u> </u>	8H-	<u>14</u>				***(xr
Project No:	OTT-00258780-B0							F	igure N	√o.	16	`		
Project:	Geotechnical Investigation - Proposed I	Residenti	ial	Develo	pment			_	Pad	ae.	1 of	1		-
Location: 6171 Hazeldean Road, Ottawa, Ontario							_	•	' —					
Date Drilled:	Date Drilled: 'February 23, 2020			Split Spo	on Samp	le			Combustible Vapour Reading					
Drill Type:	Type: CME 75 Track-Mounted Drill Rig			Auger Sa					Natural M Atterbero	Moisture (Content	L		×
Datum:	Geodetic Elevation			` '	Cone Te	st			Undraine	d Triaxia				— Ф
Logged by:	A.N. Checked by: M.L.	_		Shelby T Shear St Vane Tes	rength by		+ s		Shear St	at Failure rength by neter Tes	/			▲
G W B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Shear S	20 4 Strength	40 (Test N Valu	kPa	2: Nati Atterb	50 5 ural Moist erg Limits	ure Conte s (% Dry W	50 nt %	SAMPLIES	Natural Unit Wt. kN/m³
topso mois	elly silty sand to sandy silt, some bil, cobbles and bolders, grey to brown, – t to wet, no odor, (dense to compact) ten to 0.7 m depth	.116.3	0		33		50 20		*					AS1
	_		1	16 ⊙	0				X				X	SS2 SS3 22.2
Silty s	CIAL TILL sand with gravel, grey, cobbles and ders, wet, no odor, (compact)	114.2	2	16 • • •										SS4 21.5
В	orehole Terminated at 3.6 m Depth	112.7	3		23 O					X				SS5

NOTES

LOG OF BOREHOLE BH LOGS

258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00258780-B0

	WATER LEVEL RECORDS									
	Date	Water Level (m)	Hole Open To (m)							
١.	February 23, 2020	Dry								

CORE DRILLING RECORD							
Run No.	Depth (m)	% Rec.	RQD %				

	Log of	f Bo	r	eh	ole	B	H-'	15					$\overline{}$	Vr
Project No:	OTT-00258780-B0		•	U	U 10						47	(X/
Project:	Geotechnical Investigation - Proposed	Residenti	al	Develo	pment			- -	Figure N	_				ı
Location:	6171 Hazeldean Road, Ottawa, Ontario	rio					_	Paç	ge	1_ of _	1			
Date Drilled:	'February 23, 2020		Split Spoon Sample				Combus	tible Vap	our Readir	ng				
Drill Type: CME 75 Track-Mounted Drill Rig			Auger Sa SPT (N)			•		Natural M		Content	· -	_	X ⊕	
Datum: Geodetic Elevation			Dynamic Shelby T	Cone Tes	st			Undraine % Strain					\oplus	
Logged by:	ogged by: A.N. Checked by: M.L.			,	rength by		+ s		Shear St Penetror	rength by	y		A	
G W B O L	SOIL DESCRIPTION	Geodetic Elevation m	tion p	e			250 500 75 Natural Moisture Conten kPa Atterberg Limits (% Dry Wo			nt % /eight)	SAMPLES	Natural Unit Wt. kN/m³		
piece	sand to gravelly sand, some wood so and organic material, petroleum – (compact) –	114.8	1	14 . O.					×	×				AS1 SS2 18.6
×××	Auger Refusal at 1.4 m depth	114.0												

NOTES

BH LOGS

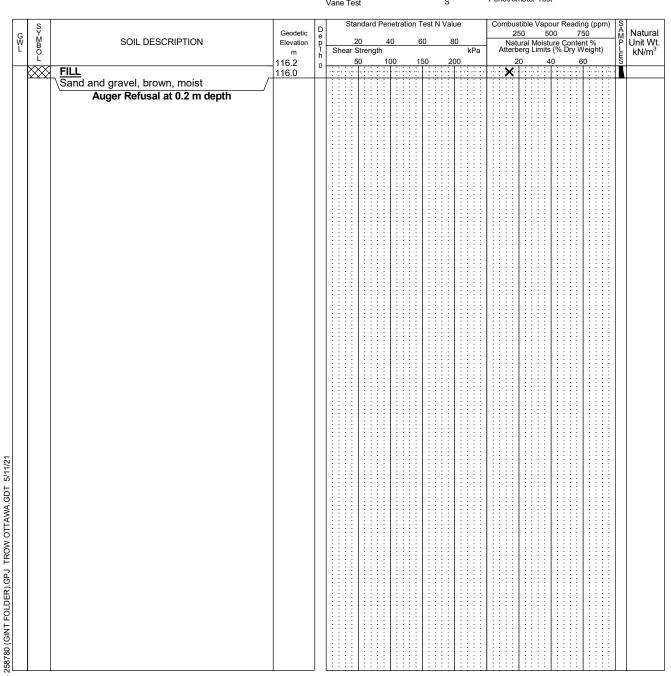
LOG OF BOREHOLE

258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.


4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS										
Date	Hole Open To (m)									
February 23, 2020	Dry									

CORE DRILLING RECORD							
Run No.	Depth (m)	% Rec.	RQD %				

		JOI CITOIC D		•	$\longrightarrow X$
Project No:	OTT-00258780-B0				
Project:	Geotechnical Investigation - Proposed Resid	Figure No18_			
Location:	6171 Hazeldean Road, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'February 23, 2020	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 75 Track-Mounted Drill Rig	Auger Sample		Natural Moisture Content	×
		SPT (N) Value Dynamic Cone Test	0	Atterberg Limits Undrained Triaxial at	\longrightarrow
Datum:	Geodetic Elevation	Shelby Tube		% Strain at Failure	\oplus
Logged by:	A.N. Checked by: M.L.	Shear Strength by	+	Shear Strength by	A

NOTES

BH LOGS

LOG OF BOREHOLE

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS								
Date	Date Water Level (m)							
February 23, 2020) Dry							

	CORE DRILLING RECORD							
Run	Depth	% Rec.	RQD %					
No.	(m)							

Project No:	OTT-00258780-B0							Figure N	0.	19	(^
Project:	Geotechnical Investigation - Proposed	Resident	tial	Development			_	Pag		of	— 1		•
Location:	6171 Hazeldean Road, Ottawa, Ontario)					_	ı ag	c. <u> </u>	_ 01	<u>. </u>		
Date Drilled:	'November 25, 2020		_	Split Spoon Samp	le	\boxtimes		Combustil	ole Vapou	r Reading			
Drill Type:				Auger Sample				Natural M		ntent			×
	Geodetic Elevation		-	SPT (N) Value Dynamic Cone Te	st			Atterberg Undrained		ıt	,		- О
	A.N. Checked by: M.L.		-	Shelby Tube		-		% Strain a Shear Stre					•
Logged by.	A.N. CHECKEU DY. WILL.			Shear Strength by Vane Test		+ s		Penetrom					•
s s			D	Standard Pe	netration T	est N Valu	ue	Combusti 250		r Reading		S A M P	Natural
G Y M B C O	SOIL DESCRIPTION	odetic Elevati m	tio a p	20 Shear Strength	10 6	60 80 kPa				e Content '% Dry Wei		PLES	Unit Wt.
wood and o below	elly sand to sand and gravel, some pieces, concrete pieces brick pieces organic material, some petroleum odor v 0.9 m depth.	114.3	1	50 1	00 15	0 20							
NOTES:			_	Liiiiliiii	Liiii		1 : : : :	1::::1			:::		

1. Borehole/Test Pit data requires Interpretation by exp. before use by others

2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

LOG OF BOREHOLE TP LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS										
	Elapsed	Water	Hole Open								
	Time	Level (m)	To (m)								
1"	lovember 25, 202	0 Dry									
		-									
-		•	•								

	CORE DR	ALLING RECOR	KD
Run No.	Depth (m)	% Rec.	RQD %

Project No:	OTT-00258780-B0	<u> </u>		ロス
riojectivo.	O11-00238780-B0		Figure No. 20	
Project:	Geotechnical Investigation - Proposed Residentia	l Development		_
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content Atterberg Limits	— —
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	A.N. Checked by: M.L.	Shear Strength by Vane Test S	Shear Strength by Penetrometer Test	A

_	S		Geodetic	D	Sta	anda	rd F	Pen	etra	tion	Te	st N	l Va	lue			Con		tible 50		oour 500		adin 75	g (pp 0	m)	S A M P	Natur
G N L	S Y M B O L	SOIL DESCRIPTION	Elevation	e p	Shear	20 Stro	n ath	40)		60		8	30	kPa	╬	Δι	Nati	ural	Mois	ture	Cor	nten	t % eight	\Box	PΙ	Jnit V
	P C		116.6	h o		Stre 50	ngun	1 10	0		150)	2	00	кРа		A		0		40	יום פ	60			LES	kN/m
	\bowtie	SAND AND GRAVEL FILL ~300 mm	thick	0		I.i.				.; .;		;;	; .;	I		T	: ; : ; .	; ; .	.;.			.;.;		.; ;.		000	
	\bowtie		440.0			1:	##			4	. .		;.;	1	444	٠,	<u>.</u> .	: .:	. ; .	: : :	43			44.	: :: N	m	
	\bowtie	WEATHERED BEDROCK	116.3			1:	: ::			-	. .	: ::	: :	-		٠.	: :				+:					-	
		Weathered limestone bedrock, petro	oleum			1:			:::			Ħ	:::	1:		1					1:	:::		::::			
		odour	7			H			:::				:::											<u> </u>			
		Defendate Francisco Deciliates 4.0	115.9	_		₽	<u>:</u>	4	-:-		4	11	: :	Į.		4	<u>: :</u>	<u> </u>	ļ.		4	∺	4		1	4	
		Refusal to Excavator Bucket at 0 Depth on Inferred Bedrock	.7 m																								
						1			: :					1													
						1			: :				: :	1								: :		: :			
						1			: :	: :			: :	1										: :			
						1	: :		: :			: :		1								: :		::			
						1																::					
																						::		: :			
						:			: :				: :														
						:			: :					1								: :		: :			
						1			: :				: :	1								: :		: :			
						1			: :				: :	1								: :		: :			
									: :	: :			: :	1								: :		: :			
									: :					1								: :		: :			
						1			: :					1										: :			
						1			: :					1													
						1	: :		: :	: :		: :	: :	1	: : :		: :	: :	:			: :		: :			
						1			: :	: :			: :	1								: :		: :			
									: :													: :		: :			
						1			: :	: :				1													
						1			: :					1								: :					
						1	: :		: :	: :			: :	1				: :				: :		: :			
									: :				: :														
						1			: :				: :	1													
						1			: :					1													
									: :													: :					
						1			: :	: :				1	: : :							: :		: :			
						1			: :													::					
														:													
														1													
									: :													: :		: :			
						1	: :					: :	: :												: :		
														1													
							<u>: :</u>		: :	:		<u>: :</u>	: :	1								<u>:</u> :		::			
O.	OTES: Borehole	e/Test Pit data requires Interpretation by exp.	WATE	R LI	EVEL R	EC	OR	DS	;									COI	RE	DRI	LLI	NG	RE	СО	RD		
	pefore u	se by others	Elapsed		Water		_	-	lole	0	nor	<u> </u>	+	-	lun	Т.	_	ep	414			% F	200			RC	D %
ŀ		backfilled with excavated material and y compacted using excavator bucket.	Time		evel (m) (n					lo.			(m)				% r	\ec		1	110	ر 10

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WAT	ER LEVEL RECO	RDS
	Elapsed	Water	Hole Open
	Time	Level (m)	To (m)
'n	lovember 25, 202	0 Dry	
		-	

CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %							
	, ,									

Project No:	OTT-00258780-B0	<u> </u>					·/
riojectivo.	O11-00238760-B0		F	igure No.	21		
Project:	Geotechnical Investigation - Proposed Residential	Development	•			-	
Location:	6171 Hazeldean Road, Ottawa, Ontario			Page.	_1_ of _1_	-	
Date Drilled:	'March 17, 2020	Split Spoon Sample	⊴	Combustible Va	apour Reading		
Orill Type:	CAT 320D Excavator	Auger Sample		Natural Moistur	e Content		X
Jilli Type.	CAT 320D Excavator	SPT (N) Value)	Atterberg Limits	3	-	$\overline{}$
Datum:	Geodetic Elevation	Dynamic Cone Test ———	_	Undrained Tria			\oplus
		Shelby Tube		% Strain at Fail			•
_ogged by:	G.C. Checked by: I.T.	Shear Strength by Vane Test	 	Shear Strength Penetrometer			•

_	S		Geodetic	D	Sta	anda	rd Pe	eneti	atior	n Te	st N V	/alue	е	С		ustik 250		300 500		ading 750	(ppm)	S A M P	Natur
G W L	S M B O L	SOIL DESCRIPTION	Elevation	e p t	Shear	20 Strei	nath	40		60		80	kPa	t	Na Atter	atura rber	al Moi g Lim	istur	re Co '% Dr	ntent v We	% iaht)	P	Unit V
	Ľ		116.2	h 0		50	•	100		150)	200		<u> </u>		20		40		60	· · · · · ·	ES	KIN/II
		FILL Gravelly sand to silty sand, some cobble	25	-					ij.;	.		.; .					ļ. į.			. j. j.		+	
	\bowtie	and boulders, clayey silt inclusions, bro	wn.		2012			+	• • • • •			:+		1:	::::	- -	: ::::	:+	: : : :	÷ ·	200	+	
		moist, no odor	,			1::		+:		:: :		:		1::		1		: +				1	
	\bowtie	_						1											::::			1	
	\bowtie	Defined to Freewater Bushet at 0.0	115.6	1		4		4:	! !	4	:::	4	: : : :	Į÷	<u>::::</u>	4		:	:::		: : : : : : : :	Ш	
		Refusal to Excavator Bucket at 0.6 r Depth on Inferred Bedrock	n					1	: :					:									
		Dopar on morrou Dourook						1						:									
						1 :			: :					:									
														:									
														:									
														:									
														:									
								1	: :					:									
														:									
						1:		1	: :					:					: : :				
						1		:	: :					:	: : :				: : :		: : : :		
														:									
									: :					:									
								1						:				:					
								1						:									
						1 :			: :					:									
						1			: :					:					: : :				
														:									
														:									
														:									
								1	: :					:									
						1			: :					:									
					::::	1		:	: :			:	: : : :	:	: : :			:	: : :		: : : :		
														:									
														:									
								1	: :					:									
								1	: :					:									
					::::	1	: : :	:	: :			:	: : : :	:	: : :			:	: : :		: : : :		
									: :					:									
														:									
														:									
														:									
						1			: :			\vdots		:									
												\vdots		:				\vdots					
						:			: :					:									
						1:		1	::					Ŀ									
	TES:	e/Test Pit data requires Interpretation by exp.	WATE	R LI	EVEL R	REC	ORE	s							CC	ORI	E DR	RILL	ING	RE	CORE)	
1.E	Borehole	bth										- 1											
1.E	efore u	backfilled with excavated material and y compacted using excavator bucket.	Elapsed Time	,	Water evel (m	.\			le O To (r		n		Run No.		De (n					Rec.		R	QD %

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS											
Elapsed	Water	Hole Open									
Time	Level (m)	To (m)									
'March 17, 2020	Dry										
	-										

CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %							
	, ,									

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Undrained Triaxial at Datum: Geodetic Elevation \oplus Shelby Tube % Strain at Failure Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test

						Vane	res	il				S				eter res					
	Τ	s		0	Ь		Star	ndard	Per	etrati	on Te	est N Va	lue	Comb	busti	ble Vap	our R	eadin	g (ppm)	Ş	
W L	;	S M B O L	SOIL DESCRIPTION	Geodetic Elevation	D e p t h		2	0	4	0	60)	80		250) 5	turo C	75	i0	SAMPLIES	Natural Unit Wt. kN/m³
ľ		B	GOIL DEGOTAL TION		l t	She	ear S	treng	th		- 01		kPa	Att	erbe	al Mois rg Limit	s (% [Ory W	eight)	닡	kN/m ³
L		L		m 117.2	0		5	0	10	00	15	0 2	200	 	20		40	. 60	0	ร	
	(XXXXX		Gravelly sand to silty sand, cobbles and boulders, some clayey silt inclusions, brown, moist	116.7																	
	K	KXX	Refusal to Excavator Bucket at 0.5 m	110.7		 	::		: :				 	 	\pm	: : : :	1::		++++		
			Depth on Inferred Bedrock																		

LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

₽

LOG OF .

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS									
Elapsed	Water	Hole Open							
Time	Level (m)	To (m)							
'March 17, 2020	Dry								
	-								

CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %							
	, ,									

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus Shelby Tube % Strain at Failure Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by +

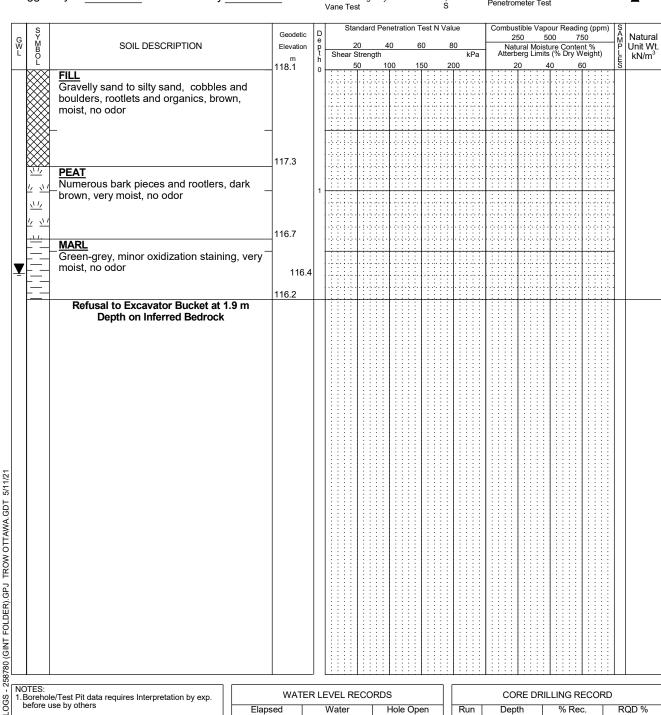
s			l -	Sta	andard	Pene	tration T	est N	l Valu	ie	Coml	bus	tible Vapo	ur Readi	ng (ppm)	şΙ	
Y	COLL DECODIDEION	Geodetic	D e									25	50 50	00 7	50	Μ	Natu
SYMBOL	SOIL DESCRIPTION	Elevation m	D e p t h	Shear	20 Strengt	<u>40</u> h	60 80 kPa		Att	vatu erb	ıral Moistu erg Limits	re Conte (% Dry V	ent % Veight)	SAMPLES	Unit Wt kN/m ³		
L Λ <i>Ι_{ν.}</i> ΄ .	TORONI 400 mans think	117.6	0		50	100	1	50	20	0	 	. 2	0 4	0	50	ន	
XX	TOPSOIL ~100 mm thick	117.5			11:33	- - -		13.5		. (.) (\cdot					
	FILL Silty sand, some gravel, brown, moist, no	117.3		2012	1::::	· ; - ·		30		. : : : : :	+ : : : :	÷			19999		
KXX	odor	/ 117.5			 	\pm					+:::				 		
	Refusal to Excavator Bucket at 0.3 m				1 : : :			::		::::	1 : : :	:					
	Depth on Inferred Bedrock																
											1 : : :						
				1 : : : :	1 : : :			::	::	: : : :	: : :	:					
				::::	1 : : :			::	: :	: : : :	1 : : :	:			: : : :		
											1 : : :						
				: : : :		:		H				:					
					1 : : :			1			1 : : :	:					
				1 : : : :	1 : : :			1 : :	::	::::	: : :	:			: : : :		
				1 1 1 1 1	1 : : :			1 : :	: :	: : : :	1 : : :	:	:::::	:::::	1 : : : :		
				::::	1 : : :			::	::	::::	: : :	:			1 : : : :		
				1 : : : :	1 : : :			::	::	::::	: : :	:			: : : :		
				1 : : : :	1 : : :			::	::	::::	: : :	:			: : : :		
				1 1 1 1	1 : : :			1 : :	::	: : : :	1 : : :	:			1 : : : :		
											1 : : :						
					1 : : :				: :		1 : : :	:					
				1 : : : :	: : :			1 : :	: :	::::	: : :	:					
												:					
				1 : : : :	1 : : :			1 : :	::	::::	: : :	:			1 : : : :		
				::::	1 : : :			::	::	: : : :	1 : : :	:	::::		: : : :		
				1 : : : :	1 : : :			1 : :	: :	: : : :	1 : : :	:	:::::	:::::	: : : :		
				: : : :	: : :			: :	::	: : : :	: : :	:		::::	: : : :		
				; ; ; ;	: : :			::		: : : :	1 : : :	:			: : : :		
											1:::						
			1	: : : :	1:::	: 1	: : : :	1 : :	: :	: : : :	1:::				1::::		

₽

NOTES: 1.Borehole/Test Pit data requires Interpretation by exp. before use by others

2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.

3. Field work supervised by an EXP representative.

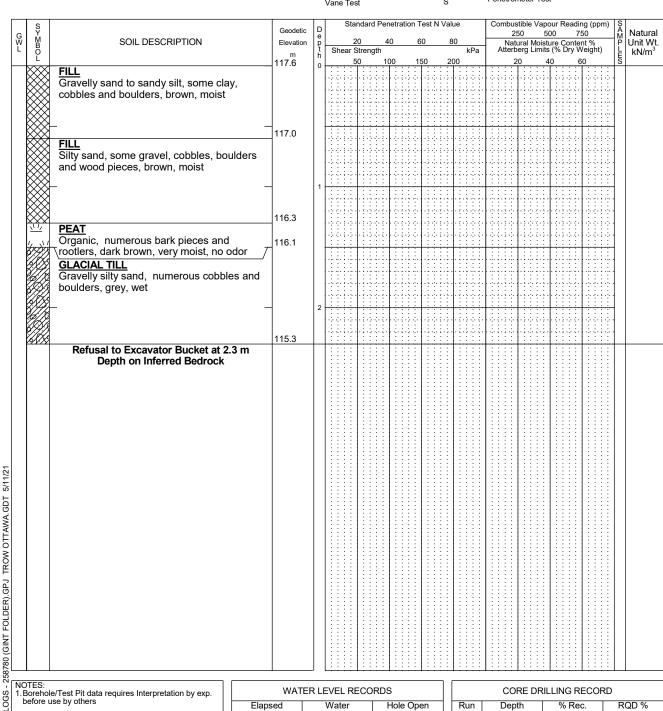

4. See Notes on Sample Descriptions

5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS									
Elapsed Time	Hole Open To (m)								
'March 17, 2020	Time Level (m) March 17, 2020 Dry								

CORE DRILLING RECORD												
Run No.	Depth	RQD %										
INO.	(111)											

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test

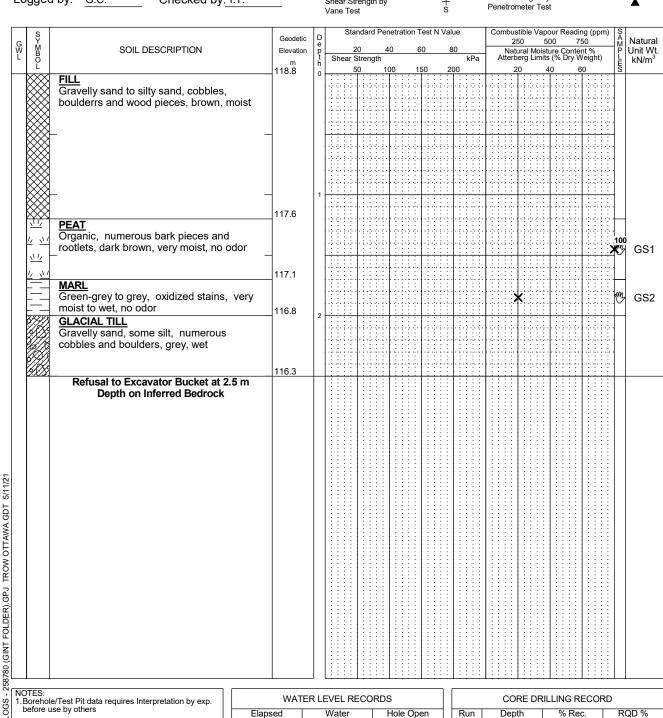

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS Elapsed Water Hole Open											
Elapsed	Hole Open To (m)										
Time	Time Level (m)										
'March 17, 2020											

CORE DRILLING RECORD												
Run No.	Depth	RQD %										
INO.	(111)											

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading X Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value Combustible Vapour Reading (ppm) Geodetic 250 500 750 SOIL DESCRIPTION Elevation Natural Moisture Content % Atterberg Limits (% Dry Weight) Shear Strength


₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS											
Elapsed	Water	Hole Open									
Time	To (m)										
'March 17, 2020											
	-										

CORE DRILLING RECORD												
Run No.	Depth	RQD %										
INO.	(111)											

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading X Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by

₽

NOTES: 1. Borehole/Test Pit data requires Interpretation by exp. before use by others

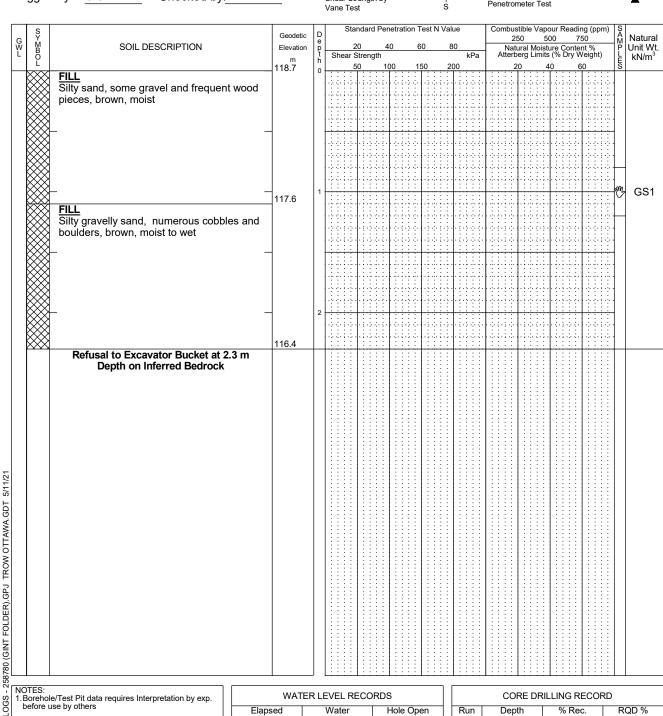
2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.

- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS										
Elapsed	Hole Open									
Time	Time Level (m)									
'March 17, 2020	March 17, 2020 Dry									
	-									

CORE DRILLING RECORD											
Depth (m)	RQD %										
ζγ											
		Depth % Rec.									

	_09 0	,	<u>'</u>	-x
Project No:	OTT-00258780-B0		- 5: 27	
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 27	_
Location:	6171 Hazeldean Road, Ottawa, Ontario	_	Page. <u>1</u> of <u>1</u>	_
Date Drilled:	March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	× ⊢—≎
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	G.C. Checked by: I.T.	Shear Strength by +	Shear Strength by	•

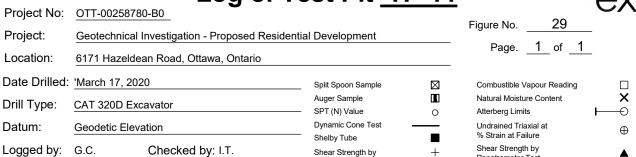

S		Geodetic	D		Stan	dard Pe	netra	ation 1	est N	l Valu	ie	Com	bust 25	ible Vap	our Readi 00 7	ng (ppm) 50	S	Natu
SYMBOL	SOIL DESCRIPTION	Elevation	e p t h		20		40	6	0	8	0	1	∠o Vatu	ral Moist	ure Conte s (% Dry V	ent %	AMP-LEG	Unit '
0		118.8		She	ar St 50	rength	100	1	50	20	kPa ı∩	Att	erbe 20			veignt)	Ĕ	kN/
\bowtie	FILL	110.0	0		ΞĬ		Τ÷		Ĭ			: : :	Ŧ		Ĭ	î : : : : i	Ĭ	
\otimes	Gravelly sand, trace silt, brown, moist, no					1.2.2.1												
\otimes	odor	118.5								: : :								
\bowtie	FILL Silty cond come gravel contains cabbles						4::			: : :		<u> </u>	4			<u></u>		
\bowtie	Silty sand, some gravel, contains cobbles and boulders, contains wood pieces,	_		 ; ; 		:::::	+÷	: : :		: : 	-:-:-	 : : :	\dashv	: : : :	 : : : :			
\bowtie	brown, moist			1			1		100		11111					1000		
\bowtie							10						11					
\bowtie													\mathbb{I}					
\bowtie	_		1	1 : :		: : : :	1:		1 : :	:::	: : : :	: : :	4	: : : :		: : : :		
\bowtie		1					4::		. ; . ; . ; . ; . ; . ; . ; . ; . ; .	: . ; . !			4		<u> </u>	ļ. <u>.</u>		
\bowtie	MARL	117.6			: i - i -	$\{\cdot\} \cdot \{\cdot\}$	4:		100	{·}·	- {-} - {-}		\rightarrow	: : : : : : : : : : : : : : : : : : :	14.14.4	1334		
	Green grey, moist						+ -					1:1:	\exists			10000		
	G. 55.1. g. 57,	117.3		100		1.7.0.1	1:1			: : :		1::::	#1					
1/	PEAT	7					1:					: : :						
7/ /	Numerous bark pieces and rootletrs, dark																ا 100	
1,	brown, very moist, no odor				J.	:::::;		: : :.		:::						*	100	G
_		1					4					<u>.</u> ;.;.;						
	CLAY CRUST	116.8	2	H		 	+ ∺		H	\vdots		 	∄		 	 	_	
	Silty clay, trace sand and gravel, light			100			1		100	1.1	- {- }- }- }-		\cdot			44.14		
	brown, no odor						1::			:::		1::::		×			m	G
				1			1::			:::		1 : : :					٦	
		116.3				: : : :	1:			:::		<u> </u>		: : : :				
\equiv	MARL						4.			: :						1.5.5.1.5.1		
	Green-grey to dark grey, very moist, no odor					1441	4		144	1.3	- [-] - [-]	1:4:	\mathbb{H}					
╼	0401			+++		$\{\cdot\}_{i=1}^{n}$	1:1		20	1:2:		1:11	\div	11111	11111	1999		
=										:::								
		115.7	3			::::	ΙΞ		1 : :	:::				:::::		1 : : : :		
	Refusal to Excavator Bucket at 3.1 m			; ;								; ; ;						
	Depth on Inferred Bedrock			1 : :		: : : :	1:		::	: :	::::	: : :		\vdots \vdots \vdots		: : : :		
				} }														
							1:					; ; ;						
				1 : :			1:			: :		: : :						
							1:											
				1 : :		: : : :	1:		::	: : :	: : : :	: : :		\vdots \vdots \vdots		: : : :		
		1		: :														
							1:									::::		
		1		; ;					H			[:::						
		1					1:									::::		
		1					1:					; ; ;				1::::		
		1					: :											
		1					1:		: :							::::		
			1	: : :	: :	: : : :	1:	: : :	: :	: :	: : : :	1:::		: : : :		1::::		

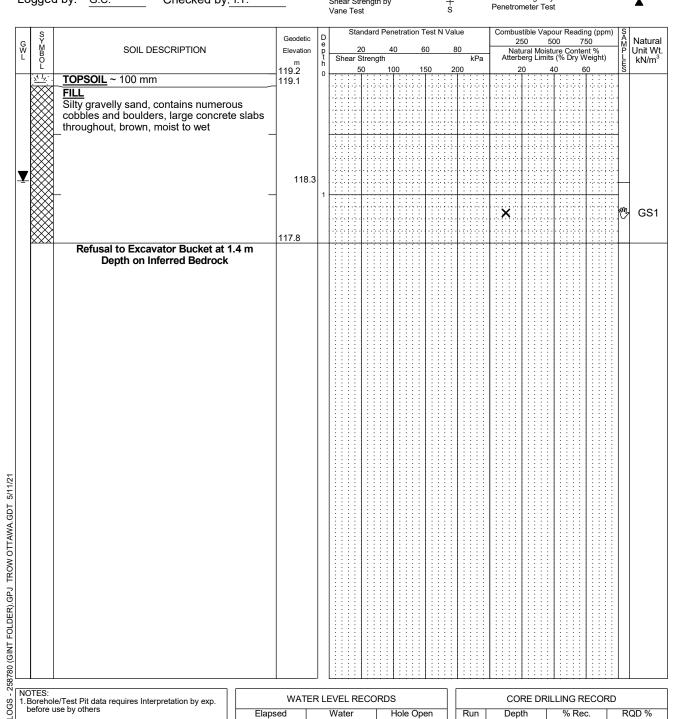
- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS Elapsed Water Hole Open											
Elapsed	Hole Open										
Time	To (m)										
'March 17, 2020											

CORE DRILLING RECORD			
Run No.	Depth (m)	% Rec.	RQD %
	• •		

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value Combustible Vapour Reading (ppm) Geodetic 250 500 750 SOIL DESCRIPTION Elevation

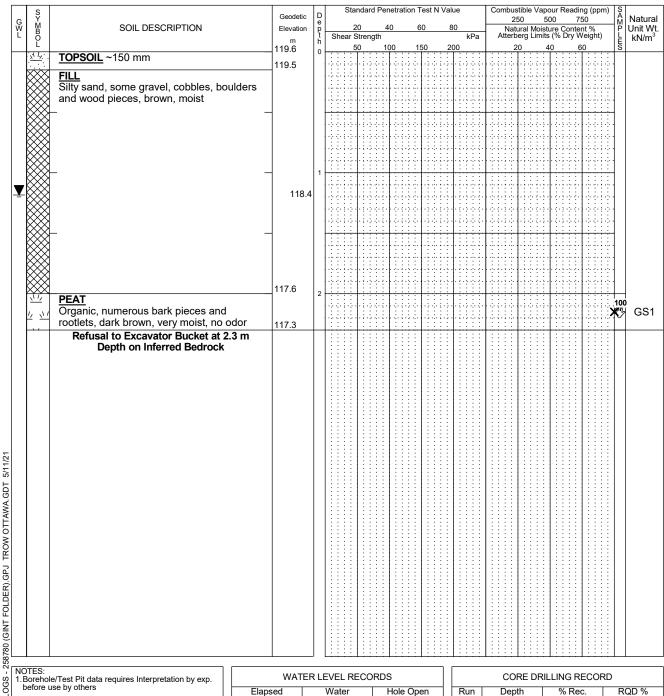



₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS			
Elapsed	Water	Hole Open	
Time	Level (m)	To (m)	
'March 17, 2020	Dry		
, i	,		

CORE DRILLING RECORD			
Depth (m)	% Rec.	RQD %	
···/			


₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS			
Elapsed	Water	Hole Open	
Time	Level (m)	To (m)	
'March 17, 2020	0.9		
·			

CORE DRILLING RECORD			
Run No.	Depth (m)	% Rec.	RQD %
	<u>,</u> /		

Log of Test Pit TP-12 Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value Combustible Vapour Reading (ppm) SYMBOL Geodetic 250 500 750 SOIL DESCRIPTION Elevation Natural Moisture Content % Atterberg Limits (% Dry Weight) Shear Strength 119.6 TOPSOIL ~150 mm 119.5

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS			
	psed	Water	Hole Open	
T	ime	Level (m)	To (m)	
'March	17, 2020	1.2		

CORE DRILLING RECORD			
Run	Depth	% Rec.	RQD %
No.	(m)		

Log of Test Pit TP-13 Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test Vane Test Combustible Vapour Reading (ppm) Standard Penetration Test N Value SYMBOL Geodetic Natural 250 500 750 G W L SOIL DESCRIPTION Elevation Natural Moisture Content % Atterberg Limits (% Dry Weight) Unit Wt. Shear Strength kN/m³ 119.4 TOPSOIL ~ 220 mm 119.2 Silty gravelly sand, numerous cobbles and boulders, large concrete slabs throughout, brown, moist to wet, no odor 116.8 116.5 Refusal to Excavator Bucket at 2.9 m Depth on Inferred Bedrock NOTES: 1. Borehole/Test Pit data requires Interpretation by exp. before use by others CODE DOILLING DECODE

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions

LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

₽

5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WAT	ER LEVEL RECO	RDS
Elapsed	Water	Hole Open
Time	Level (m)	To (m)
'March 17, 2020	2.6	

CORE DRILLING RECORD									
Run	Depth	% Rec.	RQD %						
No.	(m)								

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator 0 SPT (N) Value 0 Atterberg Limits Dynamic Cone Test Undrained Triaxial at Datum: Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by

SOIL DESCRIPTION SOIL DESCRIPTION FILL Granular fill over silty sand and gravel, wood pieces, brown, moist, no odor BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in lower levels Solution Peterlation 18st N value Cobbustive Natural Moisture Atterberg Limits (%) 50 100 150 200 20 40 119.4 Separation Peterlation 18st N value Cobbustive Natural Moisture Atterberg Limits (%) 50 100 150 200 20 40 119.4	Reading (ppm) 750 Content % P L S S S S S S S S S S S S S S S S S S
FILL Granular fill over silty sand and gravel, wood pieces, brown, moist, no odor BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	
FILL Granular fill over silty sand and gravel, wood pieces, brown, moist, no odor BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	
wood pieces, brown, moist, no odor 119.4 BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	
BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	
BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	*
BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	***
BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	
BOULDERS AND COBBLES FILL Some silty sand inclusions - possible till in	
Some silty sand inclusions - possible till in lower levels	
lower levels	12
	100
	M
	100100000
	,
Refusal to Excavator Bucket at 2.3 m	
Depth on Inferred Bedrock	
OTES:	
Borehole/Test Pit data requires Interpretation by exp. WATER LEVEL RECORDS CORE DRILLI	NG RECORD
before use by others Elapsed Water Hole Open Run Depth Time Level (m) To (m) No. (m)	% Rec. RQE

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WAT	ER LEVEL RECO	RDS
Elapsed	Water	Hole Open
Time	Level (m)	To (m)
'March 17, 2020	Dry	
	-	

CORE DRILLING RECORD									
Run No.	Depth (m)	% Rec.	RQD %						
	, ,								

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development Page. _1_ of 1 Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator 0 SPT (N) Value 0 Atterberg Limits Dynamic Cone Test Undrained Triaxial at Datum: Geodetic Elevation \oplus % Strain at Failure Shelby Tube Checked by: LT Shear Strength by

S		Geodetic	D	Sta	ndar	d Pei	netrat	ion T	est	N Va	lue		С					r Read		pm) S	Π.	11-4-
S Y M B O L	SOIL DESCRIPTION	Elevation	D e p t h		20		10	6	0	;	80		┢	Na	250 atura	al Moi	500 sture	Conte Dry \	50 nt %	pm) A	j	Natu Jnit ∖
Õ		m 120.2		hear \$	Stren 50		00	19	50	2	200	kPa		Atte	rber 20	g Lim	40		Veigh 30	t) L		kN/r
	FILL Granular fill (150mm) OVER silty sand with gravel, rootlets and asphalt pieces, cobbles and blulders below 0.8 m depth, brown, moist, no odor	- 120.2	0																			
	_		1																			
× -/- -/-	<u>PEAT</u> Organic, numerous bark pieces and roots,	118.8													×						2	GS
	dark brown, very moist, no odor GLACIAL TILL Gravelly sand, trace silt and gravel, oxidized stains, numerous cobbles and boulders, brown, wet	118.5	2																			
	boulders, brown, wet	118.0			1:::						1		-		. .		<u>.</u>					
	Refusal to Excavator Bucket at 2.2 m Depth on Inferred Bedrock																					

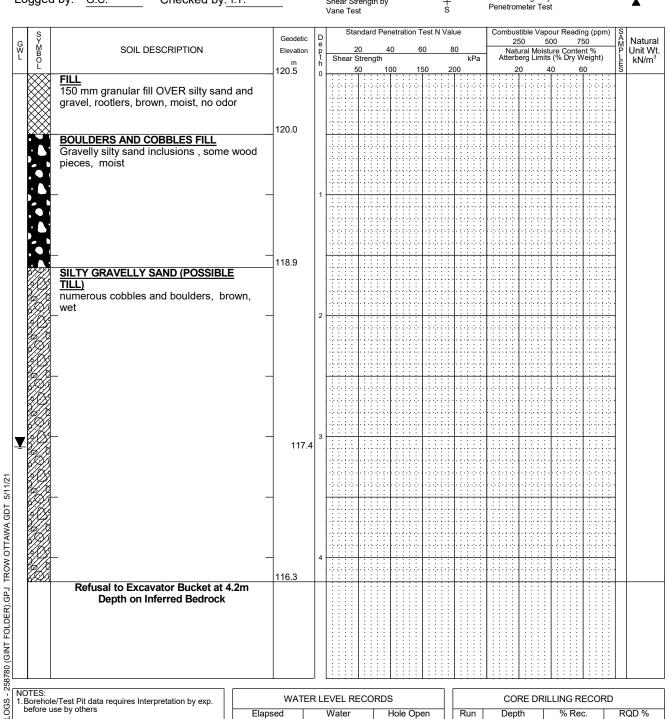
₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WAT	ER LEVEL RECO	
Elapsed	Water	Hole Open
Time	Level (m)	To (m)
'March 17, 2020	Dry	
	-	

CORE DRILLING RECORD									
Run No.	Depth (m)	% Rec.	RQD %						
	, ,								

					•		Х
Project No:	OTT-00258780-E	80_			Figure No. 34		•
Project:	Geotechnical Inv	estigation - Proposed Res	idential Development			_	
Location:	6171 Hazeldean	Road, Ottawa, Ontario			Page1_ of _1_	-	
Date Drilled:	'March 17, 2020		Split Spoon Sample		Combustible Vapour Reading		
Drill Type:	CAT 320D Excav	ator	Auger Sample SPT (N) Value	Ⅲ ○	Natural Moisture Content Atterberg Limits	—	X ⊕
Datum:	Geodetic Elevation	n	Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	G.C. C	hecked by: I.T.	Shear Strength by	+	Shear Strength by		•

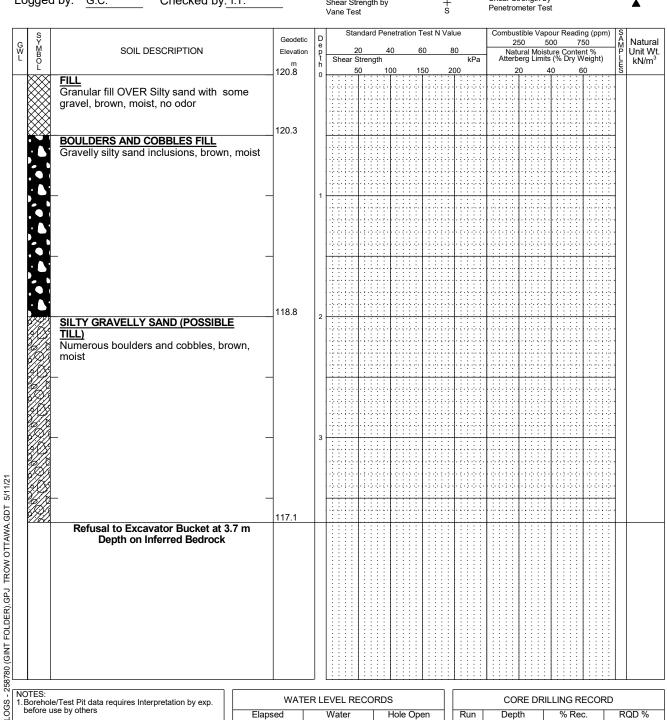

SOIL DESCRIPTION Elevation 119.9 FILL Silly sand, some gravel, wood pieces troughout, brown, moist Silly gravelly sand, numerous cobbles and boulders, brown, moist to wet Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock	SY		Geodetic	D		Sta	nda	rd Pe	ene	tratio	on Te	est N	l Val	ue		C		ustil 250		apoر 500		adin 75	ng (ppr 50	n) S	Natu
Silty sand, some gravel, wood pieces troughout, brown, moist	M M B O	SOIL DESCRIPTION		ı p	Sh	near \$	20 Strer	ngth	40		60)	8	0	kPa	r	Na Atter	atur	al Mo g Lin	istur nits (re Co (% D	onter ry W	nt % 'eight)	P	Unit \
SILTY SAND (POSSIBLE TILL) Silty gravelly sand, numerous cobbles and boulders, brown, moist to wet Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FILL	119.9				50		100		15	0	21	00				20		40) 	6	0	.;	
SILTY SAND (POSSIBLE TILL) Silty gravelly sand, numerous cobbles and boulders, brown, moist to wet Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock		troughout, brown, moist					- i- - i-											: -							
SILTY SAND (POSSIBLE TILL) Silty gravelly sand, numerous cobbles and boulders, brown, moist to wet Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock		_					- <u> - -</u> - -							- <u> -</u> -	: :: <u>:</u> :			+						: :	
SILTY SAND (POSSIBLE TILL) Silty gravelly sand, numerous cobbles and boulders, brown, moist to wet Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock					-00	- - - - - - - - - -						-2-0					(-	:			(+) + (+) + (+) +				
boulders, brown, moist to wet 118.1 Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock			118.9	1																					
Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock		Silty gravelly sand, numerous cobbles a	nd	'									;;;												
Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock		boulders, brown, moist to wet			100		- - - -																: : : : : : : : : : : : : : : : : : : :		
Refusal to Excavator Bucket at 1.8 m Depth on Inferred Bedrock		_	-				 		+				::			:-		+		#	:: :::			:	
Depth on Inferred Bedrock		Refueal to Excavator Rucket at 4.9 m	118.1						+				::::	. : .				+						:	lacksquare
OTES: WATER LEVEL RECORDS CORE DRILLING RECORD																									
Borenole/ Lest Pit data requires interpretation by exp. WALLET LEVEL INCOMES	NOTES:	e/Test Pit data requires Interpretation by exp	WATE	_ ER L	.EVE	L R	EC(DRE)S		: 1	-	::] [1:		l ;	CC	DRI	E DF	∴⊥ RILL	LINC	:::l	ECOF	: RD	
hafara usa hu athara			Elapsed		Wa	ter			Н			n					De	pth							RQD %

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WAT	ER LEVEL RECO	RDS
Elapsed	Water	Hole Open
Time	Level (m)	To (m)
'March 17, 2020	Dry	
	-	

CORE DRILLING RECORD									
Run No.	Depth (m)	% Rec.	RQD %						

	 09 01 10)		-x
Project No:	OTT-00258780-B0			
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 35	_
_ocation:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
oriii Type.	CAT 320D Excavator	SPT (N) Value	Atterberg Limits	\longmapsto
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at	\oplus
		Shelby Tube	% Strain at Failure	_
ogged by:	G.C. Checked by: I.T.	Shear Strength by +	Shear Strength by	



- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS											
Elapsed	Water	Hole Open									
Time	Level (m)	To (m)									
'March 17, 2020	3.1										

CORE DRILLING RECORD										
Run No.	Depth (m)	RQD %								
	<u>,,</u>									

	Log of Te	est Pit TP-18		eyn
Project No:	OTT-00258780-B0			
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 36	_ I
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
51 1 y p o .	OATT OZOB EXOCIVACION	SPT (N) Value	Atterberg Limits	\longmapsto
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	G.C. Checked by: I.T.	Shelby Tube Shear Strength by	Shear Strength by Penetrometer Test	A

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS											
Elapsed	Water	Hole Open									
Time	Level (m)	To (m)									
'March 17, 2020	Dry										
	•										

	CORE DRILLING RECORD										
Run No.	Depth (m)	RQD %									
140.	(111)										

	- 09 01 10	30t 1 1t <u>11 10</u>		-x
Project No:	OTT-00258780-B0	·		
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 37	_
_ocation:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× →
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
odded pv.	A N Checked by: M I	Shoor Strongth by	Shear Strength by	

SOIL DESCRIPTION Emerging FILL Sand and gravel, some brick pieces, concrete pieces and tree roots, brown, no odor 117.1 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 116.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 117.1 November 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 118.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedr	c	S		Geodetic	Ď	8	Stanc	ard P	enet	ration	Test	t N Va	lue		1	25	tible V 50	500)	750		S A	Natur
Sand and gravel, some brick pieces, concrete pieces and tree roots, brown, no oddr Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 116.2 Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock 107.EN. BryendoulTest Pit data requires Interpretation by exp. WATER LEVEL RECORDS CORE DRILLING RECORD	Ñ	M B O	SOIL DESCRIPTION		p	Shea	20 ar Str	enath			60			kPa	At	Natu	ural Mo erg Lir	oisture nits (e Cor % Dry	ntent (% ght)	P	Unit \
Sand and gravel, some brick pieces, concrete pieces and tree roots, brown, no oddr Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD		Ľ						-			150	2			ļ.,.							S S	KIN/I
Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock Page 2			Sand and gravel, some brick pieces, concrete pieces and tree roots, brown, n	o																			
Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock Page 2			_	116.2								0. 1. 2 0. 1. 2 0. 1. 2 0. 1. 2 0. 1. 2									· (- 1 - 2 · (- 1		
Borehole/Test Pit data requires Interpretation by exp. WATER LEVEL RECORDS CORE DRILLING RECORD			Refusal to Excavator Bucket at 0.9 m Depth on Inferred Bedrock																				
Borehole/Test Pit data requires Interpretation by exp. WATER LEVEL RECORDS CORE DRILLING RECORD																							
	NC	TES:	e/Test Pit data requires Interpretation by exp	WATE	R L	EVEL	REC	ORI	os							COF	RE DI	RILL	ING	REC	CORD)	
before use by others Elapsed Water Hole Open Run Depth % Rec. RQD % Time Level (m) To (m) No. (m)	b	efore u	se by others	Elapsed		Water	r	T	Но			\dashv)ept	th	T			T		QD %

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
1"	lovember 25, 202	0 Dry											
		-											
,													

CORE DRILLING RECORD										
Run No.	Depth (m)	RQD %								

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'November 25, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Undrained Triaxial at Datum: Geodetic Elevation \oplus Shelby Tube % Strain at Failure Shear Strength by Logged by: A.N. Checked by: M.L. Shear Strength by + s Penetrometer Test

					Vane Te	est					S		Penetro	mete	rrest				
	s			D	Sta	anda	rd Pe	enetra	ation T	est N	Value		Combu	stible	Vapo	ur Re	ading (ppm)	Ş	
G W L	S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation	e		20		40	6	0	80		No.	250	50	00	750	SAMPLES	Natural Unit Wt. kN/m ³
Ľ	B O	SOIL BLOCKII HOW	m	e p t h	Shear	Stre	ngth	-10			k	.Pa					ntent % ry Weight)	Ę	kN/m ³
	. '4 1 ^N . '	TORCOIL 50 mans think	117	0		50		100	15	50	200		 	20	40	0	60	ร	
		TOPSOIL ~50 mm thick SAND AND GRAVEL FILL	116.9			· : :		44				÷÷	14444	4.5.3				-	
	\bowtie	Brown, moist			12512	· : ·		+÷	::::::	200	***	÷÷	10000	1:::				m	
	\bowtie	Brown, moist	116.6			1::		†÷				:::	1:::::	1:::					
		WEATHERED BEDROCK			1			17				::::						\top	
	\gg	Weathered limestone bedrock	116.4					I				<u> </u>						$ box{}$	
		Refusal to Excavator Bucket at 0.6 m																	
		Depth on Inferred Bedrock			1 : : : :	1:	: : :	1:	: : :	: : :		\vdots	1 : : : :	1::	::				
						1							1::::						
					1 : : : :	1 :	: : :	1:	: : :	: : :		\vdots	1::::	1::		:::			
						1:		1				\vdots		1::					
					: : : :	1			: : :	: : :		: :	1::::	1::	::				
					1 : : : :	1	: : :	1	: : :	: : :		: :	1::::	1::		: : :			
					1 : : : :	1:	: : :	1:	: : :	1 1 1		$\vdots \\ \vdots$	1::::	: :	::				
					: : : :	1	: : :	1	: : :	: : :		: :	1::::	1::	::	: : :			
						1:							: : : :						
					1 : : : :	1	: : :	1:	: : :	: : :		\vdots	1 : : : :	1::	::	:::			
													1::::						
						1													
						1		1				: :	1::::	1::					
						1:							1::::		: :				
								:				: :							
												: :							
						:	: : :	:											
						1 :		1						1::					
						1 :	: : :	1:		: : :		: :		1:3	::	: : :			
						1:		1:				: :		1::					
						1 :		1				\vdots		1::					
				J	· · · · · ·	1:		:						1::					

LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

₽

LOG OF .

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS										
	Elapsed	Water	Hole Open								
	Time	Level (m)	To (m)								
1"	lovember 25, 202	0 Dry									
		-									
•											

CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %							

	3		_	$\Box X$
Project No:	OTT-00258780-B0		Figure No. 39	•
Project:	Geotechnical Investigation - Proposed Residentia	al Development		_
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u> _	_
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	× ⊢
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	A.N. Checked by: M.L.	Shear Strength by +	Shear Strength by	•

LO	ggec	d by: A.N. Checked by: M.L.			Shear Str Vane Tes	rength b	У		+ s		Penetr	rom	eter Te	est				A
	S		Geodetic	Ь	Sta	ndard Pe	enetr	ation T	est N Vali	ue	Comb	ust	ible Va	pou	r Readi	ng (ppm)	Ş	
G W L	S Y M B O L	SOIL DESCRIPTION	Elevation	D e p t h	Shear S	20 Strength	40	6	0 8	0 kPa	N	250 atu	o ral Moi:	500 sture	e Conte % Dry V	50 nt % Veight)	SAMPLES	Natural Unit Wt. kN/m ³
	. 74 1 ³⁷	TOPCOIL . FO man think	117.7	h 0			100	15	50 20	00		20		40		60 · · · · ·	Š	KIN/III
		TOPSOIL ~50 mm thick SILTY SAND TILL WITH GRAVEL FILL	117.6				+:					1					-	
		Brown, moist															m	
			117.2															
		Refusal to Excavator Bucket at 0.5 m Depth on Inferred Bedrock																
		Zopar on miorica Zoarcok																
				_		L : : : :	1:			Liiii	<u> </u>	: 1	: : :	: _		Liiii		

TP LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WAT	ER LEVEL RECO	RDS
	Elapsed	Water	Hole Open
	Time	Level (m)	To (m)
'n	lovember 25, 202	0 Dry	
		-	

CORE DRILLING RECORD										
Run	Depth	% Rec.	RQD %							
No.	(m)									

	Log of Te	est Pit	TP-22	•	*eyn
Project No:	OTT-00258780-B0	-		4.0	
Project:	Geotechnical Investigation - Proposed Residentia	al Development		Figure No. 40	I
Location:	6171 Hazeldean Road, Ottawa, Ontario			Page. <u>1</u> of _	<u></u>
Date Drilled:	'November 25, 2020	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Ⅲ ○	Natural Moisture Content Atterberg Limits	× ⊢—⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: M.L.	Shear Strength by	+	Shear Strength by	A

G hi	COLL DESCRIPTION	Geodetic	D e								t N Va			1	2	250	e Var	500	7	750		∞∢≦₽₋⊔⊔∞	Natu
SYMBO.	SOIL DESCRIPTION	Elevation m	t h	She	ear S	tren	gth	40		60		80	kPa	1						ent % Weigh	nt)	P L E	Unit \ kN/r
<u>'', 1</u> ". '	TOPSOIL ~125 mm thick	118.2 118.1	0			0	1	100	:::	150	:::	200	:::	+-		20	:::	40		60	:::	S	
	SAND AND GRAVEL FILL	7.10.1		100		. ; . ;		1:				11		1:		11		11					
$\otimes\!\!\!\otimes$	Some pieces of wood and tree roots,							П								11		I					
$\otimes\!\!\!\otimes$	brown, moist			1.3.3.	: : :	. : .:	. i. i	.] .:	. : . :			J	: :: :		<u>: : :</u>	. .:	<u>: ; ;</u>	1.	: :: ;		. : .: .	.	
$\otimes \otimes$	<u> </u>			ļ.:.:				 		4		H:	: : :	 	: : :	4:	: : :	H.	: : :	 		.	
$\langle \langle \rangle \rangle$	PEAT	117.6		100		• ! • !	+	+		- -		1		1:		44	÷ (+)	+		133			
1, \1	Numerous bark pieces and rootlers, dark			100		• ! • !	* : :	1:	1:2:		• • • • •	11	***	1:		44	· · · · ·	+ :-		1::			
12 21	brown, very moist, no odor	117.3		1::		• • • • •	* : :					11		1:	(-)-: : : :	11	:: : : : : : : :	1:					
	SILTY SAND TILL WITH GRAVEL		1	1		: :		I	::::		: : :	I	: : :		: : :	1:	: : :	T	: : :				
	Some cobbles and boulders, brown, moist		ľ	1.5.5.	: : :			. :	: : :			1.:			: : :	. . ;	: : :	1.			. ; . ; .	-000	
				100			4	4				1.				. . ;	: : : :: : : :	1				(E)	
				100		• ! • !	+	+		- -		1		1		44	÷ (+)	+		133			
		116.7		100		. : . :	* : :	1	• • • • •	1		11		1:		11	· · · · · ·	+ :-		1::	. : - : -	Н	
<i>r.w/ y/</i>	Refusal to Excavator Bucket at 1.5 m	1	T					Ť			- : : :	†		†	: : :	†	: : :	Ħ		1::		H	
	Depth on Inferred Bedrock											1		:									
				1 : :		: :								:		1							
				: :	: : :	: :	: :	:	: : :		: : :	1:	: : :	:	: : :	1:	: : :	1	: : :	1 : :			
														:		1							
						: :	::					1		:		1		1					
							: :				: : :									1 : :			
				1 : :								1		:									
				1 : :	: : :	: :	: :	:	: : :		: : :	1:	$\vdots \vdots \vdots$:	: : :	1:	: : :	1:	: : :	: :			
				1 : :																			
							: :							}									
				1 : :	: : :		: :	:	: : :		: : :	1:	: : :	:	: : :	1:	: : :			1::			
				: :										:									
							: :					1		:		1:							
							: :																
														:									
				1 : :		: :	::					1		:		1		1					
							: :				: : :									1 : :			
				1 : :			-					1		:		1:				1::			
				1 : :	: : :	: :	: :	:	: : :		: : :	1:	$\vdots \vdots \vdots$:	: : :	1:	: : :	1:	: : :	1 : :			
														:									
							::					1:				1							
				1::								1:		:			: : :	1:		1::			
					: :													1					
				; ;			::					1		:			\vdots	1		1::			
				1 : :			::					1:		:				1:					
												1						1					
												1		:									
OTE2		1						_						_									
OTES: Borehol	le/Test Pit data requires Interpretation by exp. use by others	WATE	R L	EVEL	RE	CC	RD	S							CC	DRE	DRI	LLIN	IG F	RECO	ORD		
	ise ov coders	osed		Wat	or			11.	le Op		\neg		lun		Dep			_	δRε		$\overline{}$	D	QD %

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
1"	lovember 25, 202	0 Dry											
		-											
-		•	•										

CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %							
	, ,									

	Log of Te	est Pit TP-23	*eyn
Project No:	OTT-00258780-B0		
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No41
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at
_ogged by:	A.N. Checked by: M.L.	Shear Strength by +	Shear Strength by Penetrometer Test

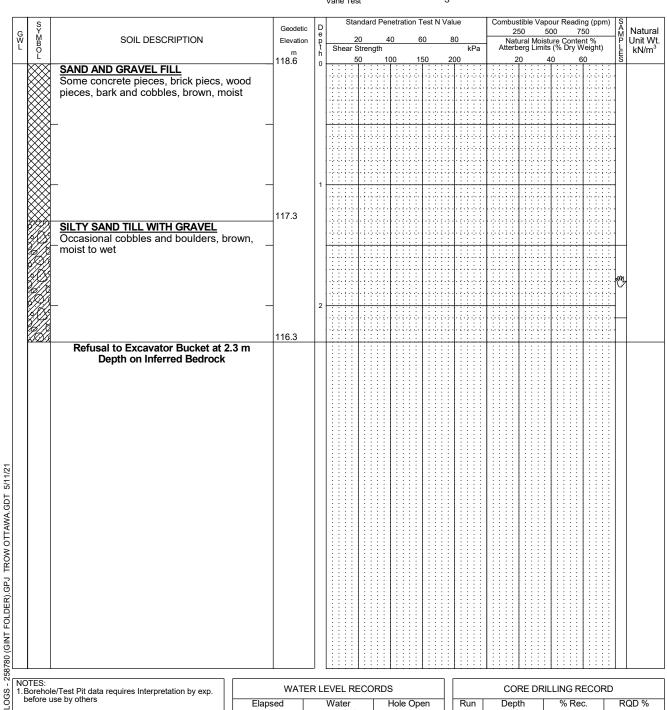
	%		Geodetic	D	8	Stanc	ard F	Pene	etrati	on T	est N	l Valu	ıe		Con						ng (ppm	i) S	Natro
1	SYMBOL	SOIL DESCRIPTION	Elevation	e p		20		40)	6	0	8				2t Nati	50 ural M	50 Joistu	00 ure C	75 onter	50 nt % /eight)	SAMP LEWS	Natur Unit V
-	Õ		118.2	h	Shea	ar Str 50	ength	ո 10	0	15	50	20		Pa	A	tterb 2	erg L 0		s (% L) 10	ry W 6		ES	kN/n
	<u> </u>	TOPSOIL ~100 mm thick	118.1	0		H					.; .;		. ; . ;		;. ;.	; ; .						m	
		SAND AND GRAVEL FILL Some concrete pieces, brick piecs and						. ; .			33	i.;.	. [.]	<u>.</u>	. <u></u> .	<u>;</u>	.;.;.	<u>.</u>		44.	 		
	\bowtie	wood pieces, brown, moist			1:::::			:::	÷ ;		: ::	: : :		:::		: :: ·	-:-	::::	1:::				
	\bowtie	_							:::					:: :: ::::									
	\bowtie								:::		. ; ;	: : :	. ; . ;	: : :- :-			.;.;.			.; ;.			
	\bowtie							- -	÷ į.		4	i - i - i	- [-]-	÷ [-	. <u></u>	<u>:</u> :	144	<u> </u>	144	÷ ; .		:	
	\bowtie		117.3					::	:::		***	: : :		: :- : :	::::	; :: ·	1.7.0	: : :	. :- :-	* :		: - :	
	<u> </u>	<u>PEAT</u>		1					: :		:::	:::	111	: :	: :	: :	1111	:::	1111	:::	1 1 1		
	1/ 1/	Numerous bark pieces and rootlers, dark brown, very moist, no odor						.;.	÷ ;	:	.; :	: . ; .	. ; . ; .	<u>:</u> ;.		: : : :: :	.;.;.	<u>.</u>					
	6X97.7	SILTY SAND TILL WITH GRAVEL	117.0				+ +		÷ ;			<u> </u>	• { • } •	÷÷	+		1.5.5	<u> </u>	1	÷ i-l	ritii.		
		Occasional cobbles and boulders, brown,			1 1 1				÷ : :		***	:::		: :·	:::					* : :			
		_moist to wet							:::					:::		:::					1		
								-:-}	÷ ;					: :. ::::	·	: :: ·		<u>.</u>					
						:		::	÷ ;			:::		÷:									
		_	4	2		\vdots	+++	4	: : :::				++	: :		! !	H		H	\vdots		-	
						-		•			-3-0												
						.: .			: :			: : :		<u>: :</u> .		<u>: :</u> .		<u>:</u> . ; .		.: :.		:	
		_	\dashv		1	\div		⊹	: :		::	::	::	::	:::	: :	H	$\frac{\cdot \cdot \cdot}{\cdot \cdot \cdot}$; ;	::		<u>:</u>	
									:::: ::::		***	1111		::: :::	* * *		111	1111	1				
						31.			:::: :::::::::::::::::::::::::::::::::					: : ::::									
			115.2			4			÷ ;		44		. ; . ;	<u>.</u>	·	: ÷ :	. ; . ;	<u>.</u>					
	V 277/	Test Pit Terminated at 3.0 m Depth	113.2	3		\vdots		Ħ	: :				Ħ	: : : :					Ħ			: 	
					1:::				: :												iiii		
									: :					: :	: :								
									: :					: :	: :					::			
					1 : : :				: :					: :	: :								
					1 : : :									: :	1 1								
					1 : : :				: :					::									
					1 : : :				: :		::		: :	: :	1								
					1 : : :				: :														
									: :						: :								
									: :						: :				; ;		i i i i i		
_				╛		:			::			: :		: :		: :	L	<u>: : </u>	L			:	
C	TES:	e/Test Pit data requires Interpretation by exp.	WATE	RL	EVEL	REC	OR	DS				7 [COI	RE F	 RII	LIN	G RI	ECOR	 D	
	OFFLICIE	or rest rit data requires interpretation by exp.	*****				٠. ١					11				- 01							
b	efore u	se by others Ela	apsed		Water	r		\neg	lole	Оре	en	7	Ru	n		Dept	th	Т	%	Rec).	R	QD %

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
ı	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
ľ	November 25, 202	0 2.1											
ı													
ı													
ı													

	CORE DRILLING RECORD								
Run	Depth	% Rec.	RQD %						
No.	(m)								

.	3	70t i it <u>ii z</u>	_	CX
Project No:	OTT-00258780-B0		Figure No. 42	•
Project:	Geotechnical Investigation - Proposed Residentia	al Development		_
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	A.N. Checked by: M.L.	Shear Strength by +	Shear Strength by	•


	s			_	S	tand	ard F	Pene	etrat	ion T	est l	N Val	ue		Co	ombu	stibl	e Var	pour	Rea	ding	(ppm)	Ş	
Š	SYMBOL	SOIL DESCRIPTION	Geodetic Elevation	De		20		40		6			0		1	2	250		500		750		NAMP-IIIO	Natu Unit \
-	B O	SOIL DESCRIPTION	m	t h	Shea	r Stre	ength	h					- 1	kPa	1			l Mois Limit		Dry	Wei	ght)	ΙΈΙ	kN/ı
\dashv	. 74 1 ^N	TOPSOIL ~250 mm thick	118.6	0		50	::	10	0	15	50	: :	00	::	-		20 :	: : :	40	::	60	:::	S	
	· ··· ·	TO SOIL 200 Him thick					* :			÷ ÷ †	***	• • • • •	1 : : :				12	÷ (+)				. (- 1 -)	1	
		SAND AND GRAVEL FILL	118.4															: : :					Ш	
	\bowtie	Some concrete pieces, brick piecs and							<u>:</u> :	: : :		. ; . ; .	. : . :	. <u></u> .				: : :		. ; . ;	: :	. : : :	.	
	₩.	-wood pieces, brown, moist	_				++	\pm	++	: : 		-:		++	H		+	: : :	H	÷÷	\pm	+++	┥.	
							*		++					++									. 60	
												· (·) · · (·) ·						-0-4-1 -1-1-1				· (·] · ? · (·] · .	1	
	\bowtie									j i.		. į . į .		ii.	ļ.i.;			;				. ! . ! . !	Ш	
	$\overset{\wedge}{\wedge}$	PEAT	117.6	1			++	-	÷÷	: :	-	++		++	: :		+	+++	+	++			+	
	/, \\	Dark brown, very moist, no odor											1:::	111									1	
		•	117.3									· (·) ·						211				·	1	
		SILTY SAND TILL WITH GRAVEL Occasional cobbles and boulders, brow	_							: :. : :.	.;;	. ; . ; .						: : : :: (: ;		. ; . ;			.	
		_Occasional cobbles and boulders, brow _moist to wet	''',		 	#	++	∄	: :	! ! 		÷÷	1	::	 : :	: : :	╁	: : :	-	÷÷	: :	+ + + +	+	
											:::	::::	:::		:::		1:	: : :					1	
]	
									÷.			. į . į .	. ; . ;	. i. i.			4.			. ; . ;			+	
	5 <i>7597</i> .X	Refusal to Excavator Bucket at 2.0 r	116.6 n	2		+	÷	∄	÷÷	÷		÷÷	H	÷÷	H	÷	╁	: : :	+	÷	+	÷÷	+	
		Depth on Inferred Bedrock										: :			: :									
																	:							
									: :			: :			: :									
					: : :				: :			: :			: :		1							
									: :			: :			: :					: :				
									: :			: :												
															: :		1							
									: :			: :			: :					: :				
									: :			: :			: :									
									: :			: :			: :		1			: :				
									: :								1							
									: :			: :			: :		1			: :				
									: :			: :			: :									
															: :									
									: :			: :					1							
									: :			: :			: :		1			: :				
									: :			: :					1			: :				
									: :						: :									
							: :		: :			: :			: :		1:			: :				
									: :			: :					1			: :				
								\vdots	: :			: :			: :									
								:							[:									
									<u>: :</u>			: :								<u>: :</u>				
ō	TES:		WATE	D I	EVE! !	DEC	'OP	פחי				7)DE		11 11 11	NC	DE(CORE	`	
	orehole	/Test Pit data requires Interpretation by exp.	WAIE	ıζL		KEU	UK	טט									'KE	טאו	ıLLII	NG	IXE(JUKL	,	
b.D	efore us	se by others	Elapsed		Water			Т	lole	Оре	en	7 1	Rı	ın T		Dep	oth	$\neg \tau$	-	% R	ec		R	QD %

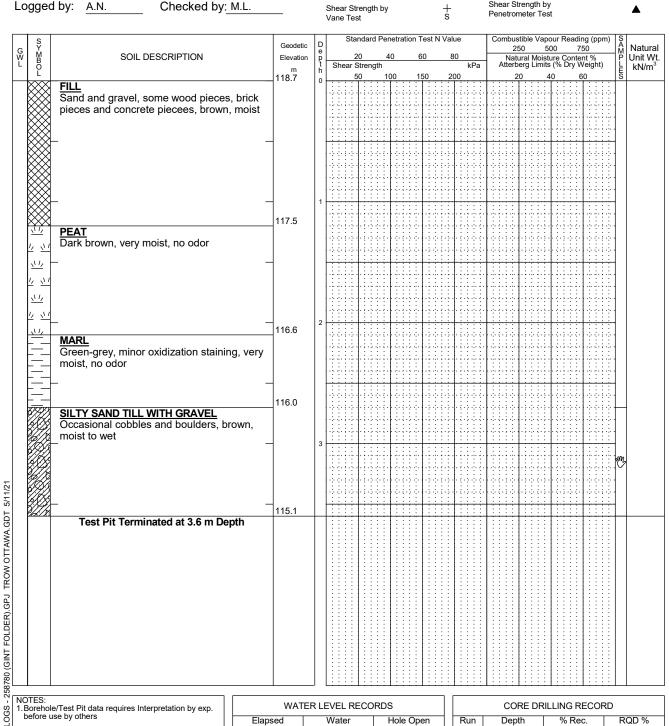
- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS							
	Elapsed	Water	Hole Open					
	Time	Level (m)	To (m)					
'n	lovember 25, 202	0 Dry						
		•						

	CORE DRILLING RECORD								
Run No.	Depth (m)	% Rec.	RQD %						
	•								

Project No:	OTT-00258780-B0	<u> </u>	<u> </u>	40		<i></i>
Project:	Geotechnical Investigation - Proposed Residential	Development	F	Figure No. 43	_	
Location:	6171 Hazeldean Road, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_	
Date Drilled:	'November 25, 2020	Split Spoon Sample	3	Combustible Vapour Reading		
Drill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	_	Natural Moisture Content Atterberg Limits	⊢	× ⊸
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	-	Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	A.N. Checked by: M.L.	Shear Strength by Vane Test S	- - 3	Shear Strength by Penetrometer Test		•

₽

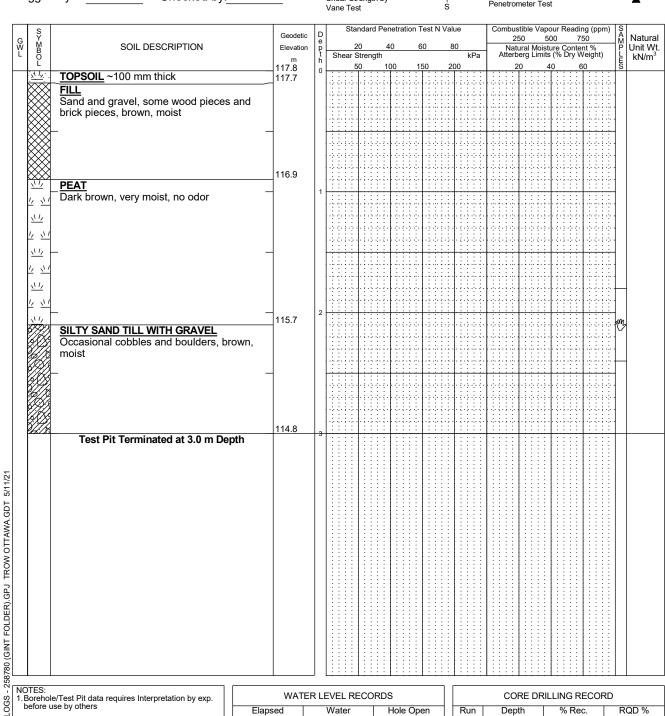

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WAT	ER LEVEL RECO	RDS
	Elapsed	Water	Hole Open
	Time	Level (m)	To (m)
1"	lovember 25, 202	0 Dry	
		-	
•			

	CORE DRILLING RECORD								
Run No.	Depth	% Rec.	RQD %						
INO.	(111)								

Log of Tast Dit TD-26

	Log of i	C 31 11 - 20		• · · ·	→ X
Project No:	OTT-00258780-B0			•	
Project:	Geotechnical Investigation - Proposed Reside	ntial Development	Figure No. 44		
_ocation:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of		
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Readii	ng	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content		×
om Type.	OAT 020D Excavator	— SPT (N) Value O	Atterberg Limits	⊢	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure		\oplus
oggod by:	A AL Charles d by a M L		Shear Strength by		



- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WAT	ER LEVEL RECO	RDS
	Elapsed	Water	Hole Open
	Time	Level (m)	To (m)
'n	November 25, 202	0 3.0	

	CORE DRILLING RECORD								
Run	Depth	% Rec.	RQD %						
No.	(m)								

	Log of Te	est Pit TP-27		*eyn
Project No:	OTT-00258780-B0		-: AF	
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 45 Page. 1 of	I
Location:	6171 Hazeldean Road, Ottawa, Ontario		1 age1_ 01 _	<u> </u>
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
• •	ON OLOB EXCAVACO	SPT (N) Value	Atterberg Limits	\longmapsto
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	A.N. Checked by: M.L.	Shelby Tube Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
1"	lovember 25, 202	0 2.1											

CORE DRILLING RECORD											
Run No.	Depth	% Rec.	RQD %								
INO.	(111)										

	Log of T	est Pit TP-28	*exn
Project No:	OTT-00258780-B0		
Project:	Geotechnical Investigation - Proposed Residen	ntial Development	Figure No46
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content X
Billi Typo.	Of 17 020D Execution	— SPT (N) Value O	Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure
Logged by:	A.N. Checked by: M.L.	Shelby Tube Shear Strength by	Shear Strength by Penetrometer Test

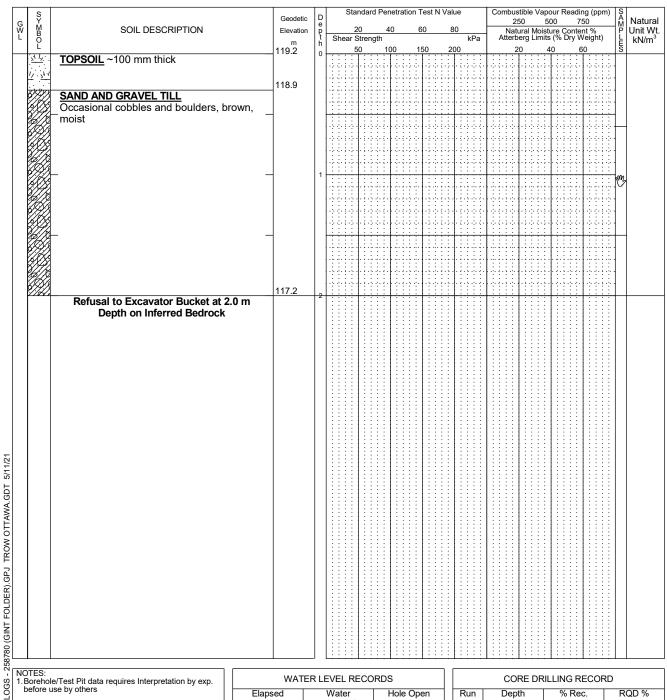
	d by: A.N. Checked by: M.L.	_		Shear S Vane T	est				+ s		Penetr					1	
SYMBOL	SOIL DESCRIPTION	Geodetic Elevation	D e p t h	s	tanda 20		netrati 10	on Te 60	st N Va	llue 80		250	50	00 7	ing (ppm) '50	SA M P	Natura Unit W
		m 119.4	t h o	Shear	Strei 50	ngth	00	150		kPa	Atte	20		ure Conte (% Dry \	Weight)	AMP LES	kN/m
<u>1.7</u>	TOPSOIL ~100 mm thick FILL Sand and gravel, some wood pieces,	119.3															
	concrete pieces and brick pieces, brown, moist					: : : : : : : : : : : : : : : : : : :											
	_		1														
	PEAT Dark brown vory moist no odor	117.8															
<u> </u>	Dark brown, very moist, no odor SILTY SAND TILL WITH GRAVEL	117.5	117.5													_	
	Occasional cobbles and boulders, brown, moist		2													inn.	
		116.9														_	
	Refusal to Excavator Bucket at 2.5 m Depth on Inferred Bedrock																

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
1"	lovember 25, 202	0 2.1											
•		•	•										

CORE DRILLING RECORD Run Depth % Rec. RQD %											
Run No.	Depth (m)										
	, ,										

	Log	of Test Pit TP-29		eyn
Project No:	OTT-00258780-B0			
Project:	Geotechnical Investigation - Proposed	Residential Development	Figure No. 47 Page. 1 of 1	- I
Location:	6171 Hazeldean Road, Ottawa, Ontar	io	1 agc1_ 01 _1_	_
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	X ⊢—⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: M.L.	Shear Strength by +	Shear Strength by Penetrometer Test	A

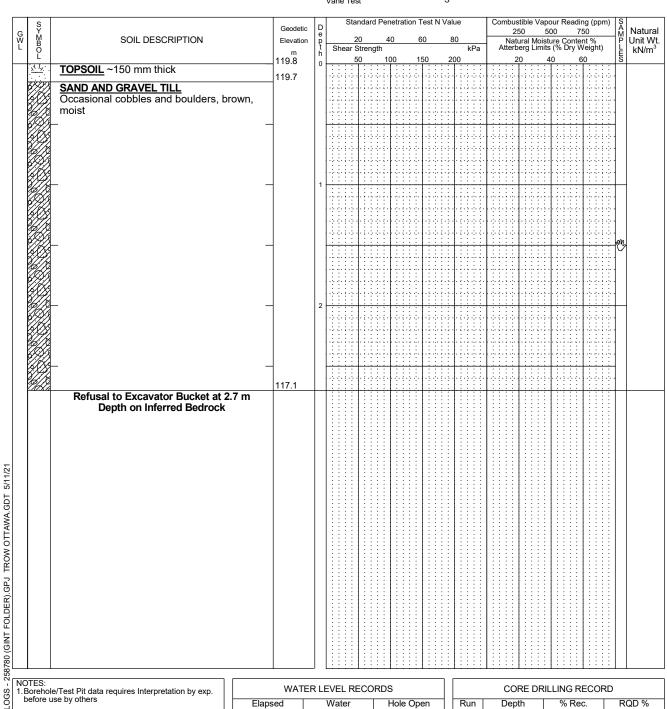

	S		Geodetic	D	,	Sta	anda	rd Pe	enet	tratio	n Te	est N	l Val	ue		Co		ıstibl 250		pour 500	Rea	ding 750	(ppm)	S	Natu
S N L	SYMBOL	SOIL DESCRIPTION	Elevation	Ιt	St	near	20 Stre	ngth	40		60)	8	80	kPa	H	Na Atter	tura berg	l Moi Lim	sture	Cor 6 Dry	tent Wei	% ight)	SAMP-LIES	Unit \
\perp	Ľ XX	SAND AND GRAVEL FILL ~600 mm thick	119.1	h 0			50		100		15	0	2	00		<u> </u>		20		40		60		S	
8	\boxtimes	SAND AND GRAVEL FILL ~600 Milli thick			1.3.3		1:		+							:					- -				
X	\bowtie																				:::			m	
×	\bowtie				:: :		.:					. ; ;	:::		: :: :	ļ :		:	<u>:</u> :		. ; . ;		: : : :	~	
8	₩	_	118.5		+	++	H	: : :	\pm		÷	+ :	: :	H	: : :	H		+:	: :	$\pm \pm i$: :	#		+	
Ŕ		WEATHERED BEDROCK																							
		Weathered limestone bedrock, petroleum odour			1.3.3					. ; .		di		ļ. į.		ļ	. ; .;		44.						
K	$\langle\!\langle$	odoui			1.1.1		1:		+										-		•				
		_		1			1.:			. ; . ;			;;;		<u> </u>				<u></u> ;.		. ; . ;				
4	X4	Refusal to Excavator Bucket at 1.2 m	117.9	+	+		H		+		\vdots		! !	H		H		+	++	+	! !	+		+	
		Depth on Inferred Bedrock																							
					: :		1					::	: :	H		:		:	: :		: :				
					1::		1					::	: :			:		:	: :		: :				
					1		1							H		:			: :		: :				
					: :		:						: :	:		:			: :		: :				
					1::		1						: :						: :		: :				
					1::		1					::	: :			:			: :		: :				
					1::		1						: :	H		:			: :		: :				
					1::		1					: :	: :	H		:			: :	: :	: :				
					: :		1						: :	H		:					: :				
					: :		:						: :	:		:			: :		: :				
													: :			:			: :		: :				
							1					: :	: :			:			: :		: :				
							1					: :	: :			:			: :		: :				
					1::		1					::	: :	H		:		:	: :		: :				
							1						: :	H		:			: :		: :				
							1						: :	H		:		:	: :		: :				
					: :		:						: :			:			: :						
													: :						: :		: :				
					: :		1					: :	\vdots	1		:		:	: :		$\vdots \\ \vdots$				
					: :		1						: :			:			: :		: :				
							1:									:									
				_	ننا		ı:		Ŀ		- 1			Ŀ		Ŀ		1:		:Ц:		: 1			
OTI Boi	ES: rehole	e/Test Pit data requires Interpretation by exp.	WATE	RL	.EVE	LR	EC	ORE	s								CC	RE	DR	RILLI	NG	RE	CORE		
			apsed ime	,	Wa _eve		`			ole (To (Ope	n			un		Dep (m				% F	Rec.		R	QD %
l es	st pit l minall		er 25, 2020		<u>eve</u> Dı			+		10 (111)			IN	lo.		(11	1)							

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
1"	lovember 25, 202	0 Dry											
		-											
•													

CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %								
	• •										

	Log c	of Te	es	st Pit <u>T</u>	P-30)		* 6	2	Y
Project No:	OTT-00258780-B0						iaure No. 48	•	ر	/\
Project:	Geotechnical Investigation - Proposed F	Residenti	ial I	Development				— 1		
Location:	6171 Hazeldean Road, Ottawa, Ontario	1					Page1_ of _	<u>-</u>		
Date Drilled:	'November 25, 2020		. ;	Split Spoon Sample			Combustible Vapour Reading			
Drill Type:	CAT 320D Excavator			Auger Sample SPT (N) Value			Natural Moisture Content Atterberg Limits	⊢		X
Datum:	Geodetic Elevation			Dynamic Cone Test			Undrained Triaxial at % Strain at Failure	•		Φ
Logged by:	A.N. Checked by: M.L.		,	Shelby Tube Shear Strength by Vane Test	+ s		Shear Strength by Penetrometer Test			A
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation	D e p	Standard Penetratio 20 40 Shear Strength	n Test N Value	kPa	Combustible Vapour Reading 250 500 750 Natural Moisture Content Atterberg Limits (% Dry We	%	ĮΫĮ	Natu Unit \

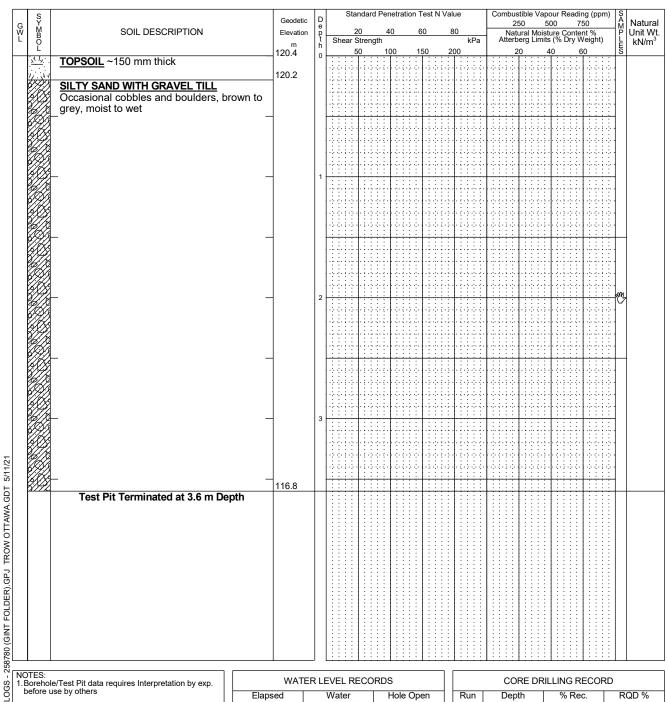

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
'n	November 25, 202	0 Dry											

	CORE DRILLING RECORD											
Run No.	Depth	% Rec.	RQD %									
INO.	(111)											

Project No:	OTT-00258780-B0		<u>-</u>	CV
1 10,000 110.	<u> </u>		Figure No. 49	
Project:	Geotechnical Investigation - Proposed Residentia	al Development		_
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	X ⊕
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	⊕
_ogged by:	A.N. Checked by: M.L.	Shear Strength by +	Shear Strength by Penetrometer Test	A



- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS												
	Elapsed	Water	Hole Open										
	Time	Level (m)	To (m)										
'n	lovember 25, 202	0 Dry											

	CORE DRILLING RECORD											
Run No.	Depth	% Rec.	RQD %									
INO.	(111)											

	Log	of Te	9	st Pit <u>T</u>	P-32		_	۱X۲
Project No:	OTT-00258780-B0					Figure No. FO		//\
Project:	Geotechnical Investigation - Proposed I	Residentia	al	Development		Figure No. 50	_	'
Location:	6171 Hazeldean Road, Ottawa, Ontario)				Page. <u>1</u> of <u>1</u>	-	
Date Drilled:	November 25, 2020			Split Spoon Sample		Combustible Vapour Reading		
Orill Type:	CAT 320D Excavator			Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	_	X —⊖
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	-	Φ
_ogged by:	A.N. Checked by: M.L.	_		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test		A
S Y M B	SOIL DESCRIPTION	Geodetic Elevation	D e p	Standard Penetratio	on Test N Value	Combustible Vapour Reading (p 250 500 750 Natural Moisture Content %	om) S	

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS											
	Elapsed	Water	Hole Open									
	Time	Level (m)	To (m)									
1"	lovember 25, 202	0 2.7										

	CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %									
	····/											

Log of Tast Dit TD-33

Project No:	OTT-00258780-B0	of T	е	st P	it	TF) _3	<u>33</u>					ϵ	XK	
Project:	Geotechnical Investigation - Proposed	Resident	ial	Developm	ent			ſ	Figure N	_	51			ı	
_ocation:	6171 Hazeldean Road, Ottawa, Ontario								Pag	ge	of	_1_			
Date Drilled:	'November 25, 2020			Split Spoon S	amnle	<u>,</u>	×	 1	Combus	tible Va	pour Read	ina			
Orill Type:	CAT 320D Excavator		-	Auger Sample	•	•]	Natural M	∕loisture	Content	"'g	_	×	
Datum:	Geodetic Elevation		-	SPT (N) Value Dynamic Con-		t			Atterbero Undraine				-	—⊖ —	
ogged by:	A.N. Checked by: M.L.		-	Shelby Tube Shear Strengt	h hv				% Strain Shear St				⊕		
oggod by.	7 Onlooked by			Vane Test	пру		+ s		Penetror	neter To	est				
S Y		Geodetic	D			etration T			2	50		50	n) S	Natural	
W M B O L	SOIL DESCRIPTION	Elevation	p t h	Shear Streng	-			kPa	1	ural Moi erg Lim 0	sture Conte its (% Dry \ 40		L	Unit Wt.	
	COIL ~150 mm thick	120.5 120.4	0	50	10		50 2	200	 	.;.;.;.	40	60			
	NULAR FILL) mm of crusher-run limestone														
SILT	Y SAND WITH GRAVEL TILL	119.9													
Occa	isional cobbles and boulders, brown to moist to wet							1000							
9.0,			1					1					-		
														2	
	-	-													
														1	
	-		2	 											
	_	1						1							
Re	efusal to Excavator Bucket at 2.7 m Depth on Inferred Bedrock	117.8													
Note	: Depth of bedrock varies between 1.8														
m to	2.7 m within the excavated test pit														
OTES: .Borehole/Test P before use by ot	t data requires Interpretation by exp.		- R L	EVEL RECO							RILLING F			200.0/	
•	d with excavated material and Tim	ne	L	Water evel (m)	F	lole Ope To (m)		Run No.	Dep (m		% Re	C.	F	RQD %	
	cted using excavator bucket. 'November vised by an EXP representative.	20, 2020		Dry											
See Notes on Sa	ample Descriptions														
This Figure is to OTT-00258780-	read with exp. Services Inc. report														

LOG OF TEST PIT TP LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

Log of Tost Dit TD-3/

	Log of	1 16	;51	<u> </u>		-	żΧ
Project No:	OTT-00258780-B0				Figure No. 52		// \
Project:	Geotechnical Investigation - Proposed Re			_			
Location:	6171 Hazeldean Road, Ottawa, Ontario				Page. <u>1</u> of <u>1</u>	_	
Date Drilled:	'November 25, 2020		Split Spoon Sample	3	Combustible Vapour Reading		
Drill Type:	CAT 320D Excavator		Auger Sample		Natural Moisture Content	i	×
Datum:	Geodetic Elevation		SPT (N) Value Dynamic Cone Test Shelby Tube) - ■	Atterberg Limits Undrained Triaxial at % Strain at Failure		—⊖ ⊕
Logged by:	A.N. Checked by: M.L.	-	Shear Strength by Vane Test	- 3	Shear Strength by Penetrometer Test		A
S Y	COUL DECORPORTION	Geodetic	Standard Penetration Test N V	alue	Combustible Vapour Reading (j 250 500 750	ppm) S	Natu

	S		Geodetic	D		Sta	anda	ard	Pen	etrat	ion ⁻	Tes	ΝV	/alue	е		omb	oust 25			our R 00	eadir 75		om)	S A	Natu
Š	S M B O L	SOIL DESCRIPTION	Elevation	e p t	Sh	ear	20 Stre	enat	40 h)	(60		80	kPa	╀	Atte	Vatu erbe	ral N erg L	/loist	ure C s (% [onter Ory W	nt % /eigh	t)	SAMPLES	Unit kN/
		T000011 175 11:1	120.3	h 0	-: :		50		10	0	1	50		200		1.		20			10	. 6			S S	KIN/
	<u> </u>	TOPSOIL ~175 mm thick	120.1			- [-]	+ :	÷ :	- -		÷	1	÷÷	: -		- :	;.;	\cdot	· ; .;	: : : ·	1	÷ ; .	÷÷	: : ·		ì
		SILTY SAND WITH GRAVEL TILL					1			:::						1:						* :	:::			ì
		Occasional cobbles and boulders, be grey, moist	rown to				Ţ.;																			ì
		_grey, moist	-		+ + +	÷	+:	::	\exists	::	: :	+:	: :	\vdots	:::::	╁	! :	+	: :	: :	 	: : :	:::	: :		ì
						· [·] · [·]									113 11 11		(.)					***				ì
					-33	- [-]	+:	-}-	- -		÷	1	÷	: -	1-1-1-1	-	:-;	\cdot	-	: ; ·	1	÷ ;-	: : :	<u> </u>	m	1
		_		1	**					: :	:::	13	: :				:::		: :	:::		: :		:::		ì
			119.1	ľ		-	1:	: :		- : :		1:	<u>.</u>			- :	-	$\frac{1}{2}$		<u>:</u> : :				<u>.</u>		ı
	KXXXX	Refusal to Excavator Bucket at 1	.2 m					::			: :	Ħ		$^{+}$		†				: :		::				
		Depth on Inferred Bedrock														:										ì
																										ì
																:										ì
																										i
					: :											:										ì
																										ì
					::	: :	1:	: :		: :	: :	1	: :			:	: :		: :	: :	: :		::	: :		ì
																										ì
					::	::	1	: :		: :	: :	1	: :			:	: :		: :	: :	: :		::	::		ì
																										ì
					::					: :						:	: :		: :	\vdots		: :				ì
																										ì
					::					: :						:	: :		: :	: :		: :	::			ì
																:										ì
																										ì
					::		1	: :		: :	: :	1				:	: :		: :	: :		: :				1
																										1
					::	::	1	: :		: :	: :	1	: :			:	\vdots		: :	: :			: :			ì
																										ì
					::	: :	1	: :		: :	: :	1:	: :		$\vdots \vdots \vdots \vdots$:	\vdots		: :	: :	: :	: :	::	: :		ì
																										ì
																				: :						ì
																										i l
																										ı
											: :															ı
						::]			::																
							_	_																		
IC	TES:		\A/A TE	יים	=\ /⊏	םו	-	\cap	אחמ	•			- 1	- 1			\sim		0 -	יוםר	LINI	CD		DD		
١.	3orehole	e/Test Pit data requires Interpretation by exp. se by others	WATE		EVE Wat		EC	OF			Ор	en	_	ŀ	Run			OF ept		DRIL		G RI		RD T	R	QD %

LOG OF TEST PIT

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WATER LEVEL RECORDS											
	Elapsed	Water	Hole Open									
	Time	Level (m)	To (m)									
'n	lovember 25, 202	0 Dry										
		•										

CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	. RQD %								
	• •										

Project No: Project:	OTT-00258780-B0 Geotechnical Investigation - Proposed	Residenti		st Pit TP		Figure No Page.	53 1 of 1	E	exp
Location: Date Drilled: Drill Type: Datum: Logged by:	6171 Hazeldean Road, Ottawa, Ontario 'November 25, 2020 CAT 320D Excavator Geodetic Elevation A.N. Checked by: M.L.		-	Split Spoon Sample Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Shear Strength by Vane Test	□□□+s	Combustible Val Natural Moisture Atterberg Limits Undrained Triaxi % Strain at Failu Shear Strength I Penetrometer Te	Content al at re		□ × ⊕
~ 100 SAN Occa SILT Occa	NULAR FILL O mm of crusher-run limestone D AND GRAVEL FILL usional boulders, brown, moist Y SAND WITH GRAVEL TILL usional cobbles and boulders, brown to moist to wet	Geodetic Elevation m 120.4 120.3	Deppth n 0	Standard Penetration Test 20	80 kPa 200	250	pour Reading (pp 500 750 sture Content % ts (% Dry Weight) 40 60	· IA	

Note: Depth of bedrock varies between 1.8 m to 2.4 m within the excavated test pit

Refusal to Excavator Bucket at 2.4 m Depth on Inferred Bedrock

TP LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions

_	nominally compacted using excavator bucket.
T PIT	3. Field work supervised by an EXP representative.
TEST	4. See Notes on Sample Descriptions
LOG OF	5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

	WAT	ER LEVEL RECO	RDS
	Elapsed	Water	Hole Open
	Time	Level (m)	To (m)
1"	lovember 25, 202	0 Dry	
		-	
•			

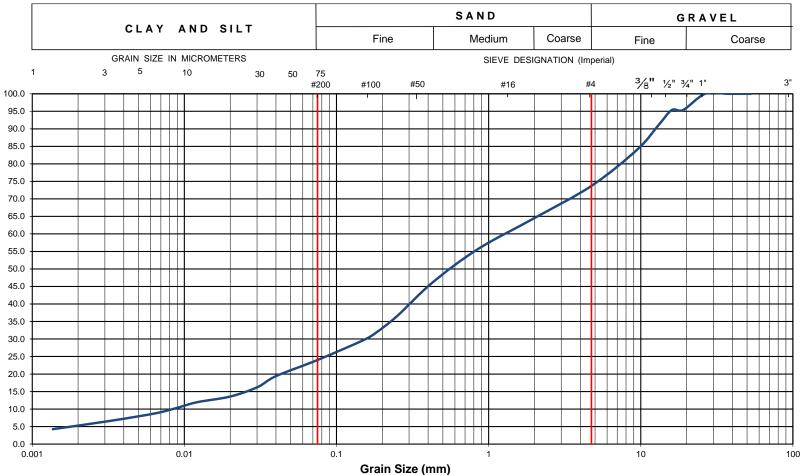
	CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %								
	····/										

	Log of Te	est Pit TP-36		2YD
Project No:	OTT-00258780-B0			<i>-</i> /\\
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 54 Page. 1 of 1	ı
Location:	6171 Hazeldean Road, Ottawa, Ontario		1 ugo1_ or _1_	
Date Drilled:	'November 25, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	× —⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	A.N. Checked by: M.L.	Shear Strength by + S	Shear Strength by Penetrometer Test	A

					Vane T	est				S		reneu						
	S		Geodetic	Ь	S	tand	ard Pe	enetra	tion T	est N Va	lue	Comb	ustible	Vapou	r Readi	ng (ppm)	S	NI-4I
G W L	SYMBOL	SOIL DESCRIPTION	Elevation	D e p		20		40	6	0	80	N	250 atural N	500 Noisture	Conte	750 ent % Veight)	SAMPLES	Natural Unit Wt. kN/m ³
L	P		m	h		r Stre 50	-	100	15		kPa 200	Atte	rberg L 20	imits (9. 40		Veight) 60	Ę	kN/m³
	71 1/2.	TOPSOIL ~175 mm thick	122.6	0		5U		T	:::	00 2	1	 	-20 : T : :	111	· · · · · ·	1 : : : :	3	
	1/ . 1.1						::::		:::							12010	1	
			122.3															
		SILTY SAND WITH GRAVEL TILL Occasional cobbles and boulders, brown to					: : :	4:::			1::::::::::::::::::::::::::::::::::::::	ļ. <u>.</u> . <u></u> .		Į.į.			.	
		grey, moist to wet	1			: :	: : :	+::		-:::::	+	 : : : :			- 	 	+	
		grey, moist to wet					441	10			11111			111			+	
					1 2 2 1			1::	***	*****	1:::::						1	
								H									1	
			1	1	1111		<u> </u>		: :	<u> </u>		1 1 1]	
								4	.; ;		₽	; . ; . ; . ; .		₽.			.	
					1444	H	444	100			1000	1:4:4:		<u> </u>		14414	+	
							÷÷i				1000					1000	1	
									***		111111						1	
		_	1								I : : : : :							
									.; :.		1:::::::			<u>:</u>			.	
								4			∤	<u> </u>					+	
							441	1			1000						+	
		_	1	2			:::	1::	**	****	1:::::	 				 	1	
																	1	
												<u> </u>					.	
							- : : :	4			↓		.	Į.į.,			.	
		_	-				: : :	+::	++		+ : : : : :	 	 	+++		1:::::	\vdash	
											11111						1	
							****	1::	****		1:::::						1	
]	
		_	1	3	1 : : :	: :	: : :	1::	::	: : : :	1:::::	: : :		<u>:: </u>	: : : :	1 : : : :		
							- : : :	4			ļ. į. į į.							
							444	+::			1000						+	
;							201	12	***		1::::::						1	
		_]				: : :		:::					111		13333]	
	<i>[][]</i>	T 1017	119.0				111		::		1:::::			111				
		Test Pit Terminated at 3.6 m Depth																
:					1 : : :		: : :	1::	:::			; ; ;						
[
<u>:</u>						: [:												
												; ; ;						
2																		
<u> </u>				╛		: [:	:::	1::	:::	::::	1::::	Liii	: 1 : :	\vdots		<u> </u>		

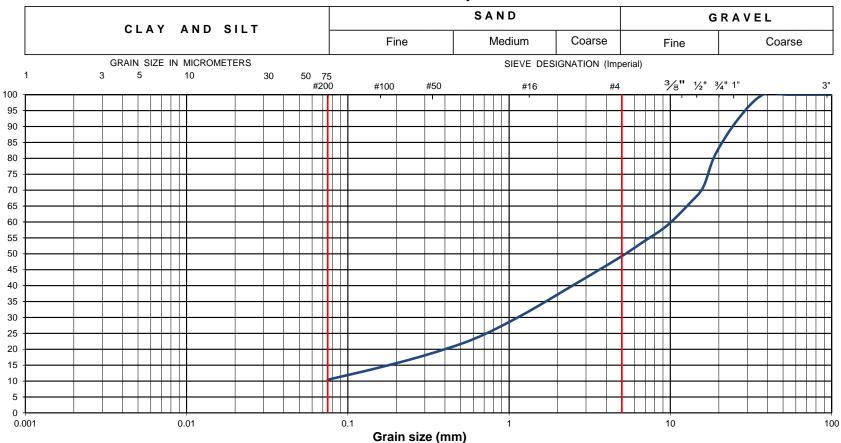
TP LOGS - 258780 (GINT FOLDER).GPJ TROW OTTAWA.GDT 5/11/21

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0


	WAT	ER LEVEL RECC	RDS
	Elapsed	Water	Hole Open
	Time	Level (m)	To (m)
'I	lovember 25, 202	0 3.0	

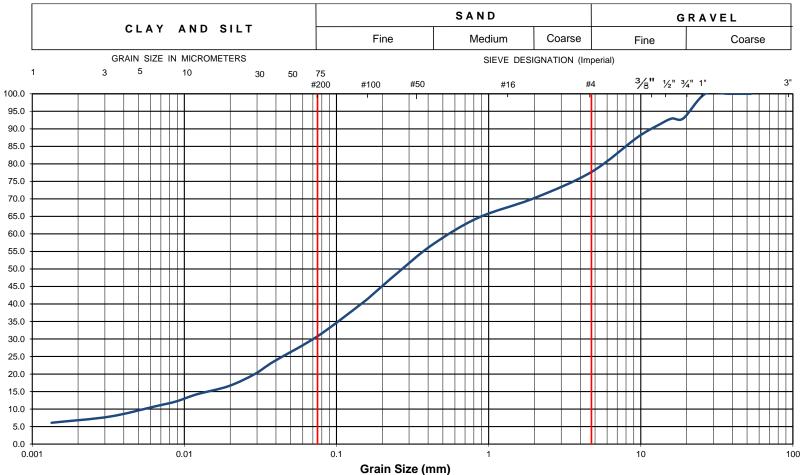
	CORE DRILLING RECORD										
Run No.	Depth (m)	% Rec.	RQD %								
	, ,										

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422


100-2650 Queensview Drive Ottawa, ON K2B 8H6

EXP Project No.:	OTT-00258780-B0	Project Name :	ject Name : Geotechnical Investigation - Proposed Residential Development									
Client :	11654128 Canada Inc.	Project Location	١:	6171 Hazeldean	Rd, Ott	awa, ON						
Date Sampled :	March 20, 2020	Borehole No:		BH2	BH2 Sample No.: SS2 Depth (i							
Sample Description :		% Silt and Clay	24	% Sand	50	% Gravel		26	Figure :	55		
Sample Description :									rigure .	55		

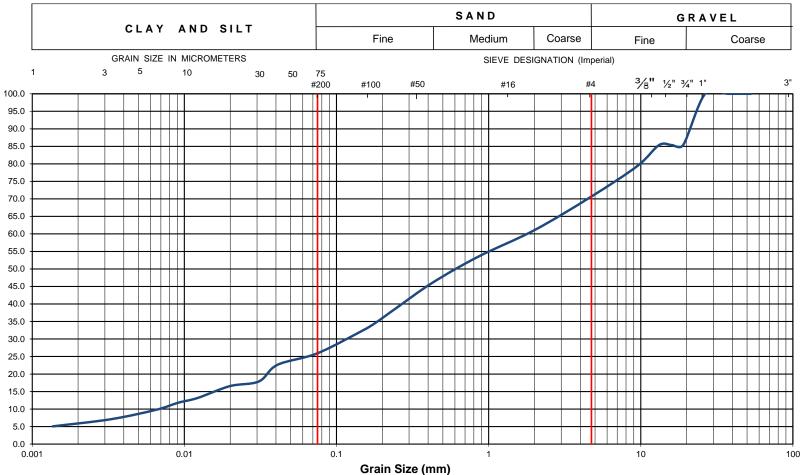
Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate ASTM C-136



EXP Project No.:	OTT-00258780-B0	Project Name :	ct Name : Geotechnical Investigation - Proposed Residential Development							
Client :	11654128 Canada Inc.	Project Location	ject Location : 6171 Hazeldean Rd, Ottawa, ON							
Date Sampled :	March 24, 2020	Borehole No:		ВН3	Sample	Depth (m):	0.8-1.4			
Sample Composition :		Gravel (%)	51	Sand (%)	39	Silt & Clay (%)	10	Figure :	56	
Sample Description :									50	

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

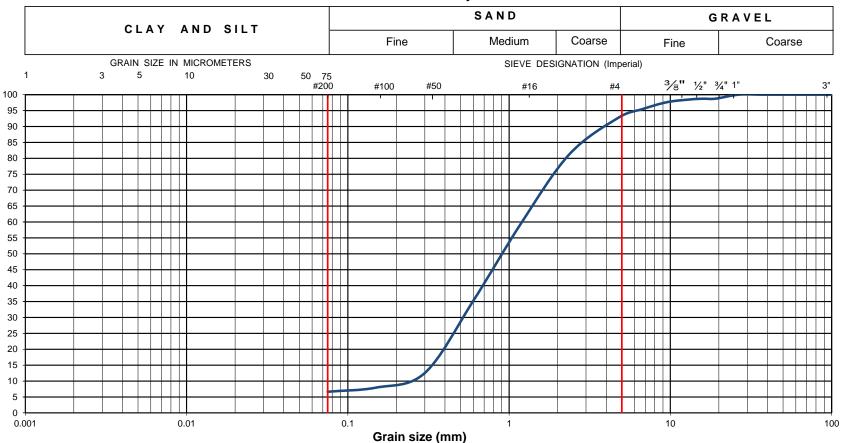
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-00258780-B0	Project Name :	ject Name : Geotechnical Investigation - Proposed Residential Development									
Client :	11654128 Canada Inc.	Project Location	ı:	6171 Hazeldean	Rd, Ott	awa, ON						
Date Sampled :	March 24, 2020	Borehole No:		BH4	Sam	ple No.:	Depth (m) :	0-0.6				
Sample Description :		% Silt and Clay	31	% Sand	47	% Gravel		22	Figure :	57		
Sample Description :									rigule .	31		

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

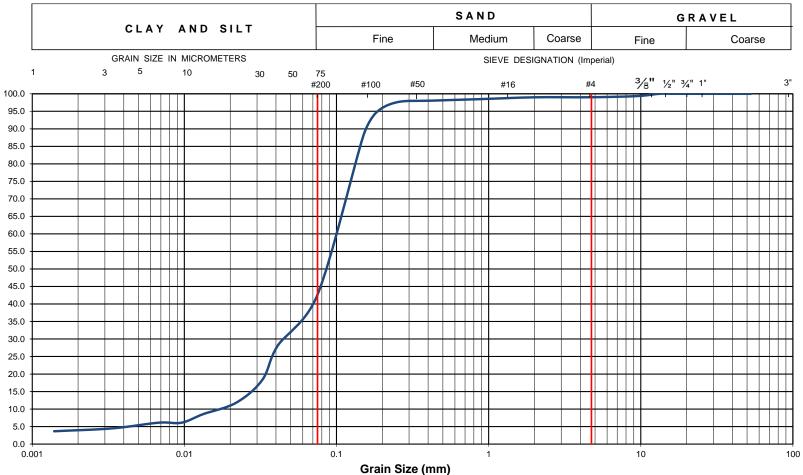
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-00258780-B0	Project Name :		Geotechnical In	vestigat	ion - Prop	osed F	Resident	ial Development	
Client :	11654128 Canada Inc.	Project Location) :	6171 Hazeldean	Rd, Ott	awa, ON				
Date Sampled :	December 9, 2020	Borehole No:		BH9 Sample No.: SS2 & SS3 Depth (m):						0.8-2.1
Sample Description :		% Silt and Clay	26	% Sand	45	% Gravel		29	Figure :	58
Sample Description :									rigure .	36

Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate ASTM C-136

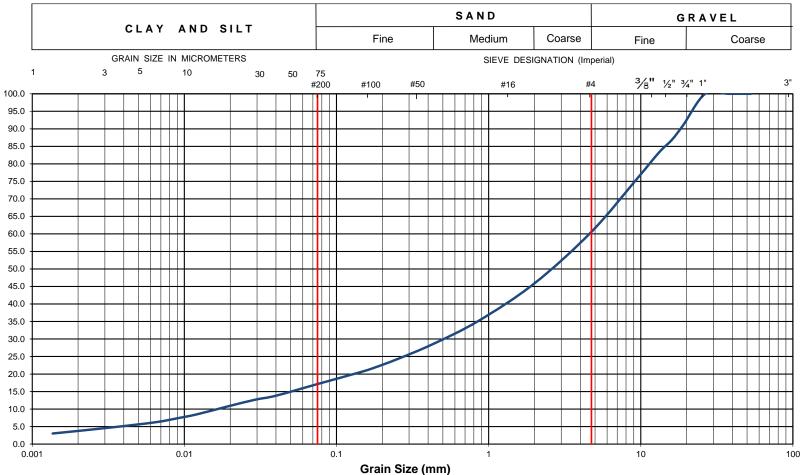
Ottawa, ON K2B 8H6



EXP Project No.:	OTT-00258780-B0	Project Name : Geotechnical Investigation - Proposed Residential Development							
Client :	11654128 Canada Inc.	Project Location	n :	6171 Hazeldean Rd, Ottawa, ON					
Date Sampled :	March 17, 2020	Borehole No:		TP14 Sample:		Fill		Depth (m):	0-0.7
Sample Composition :		Gravel (%)	7	Sand (%) 86 Silt & Clay (%)		7	Figure :	59	
Sample Description :		Fill: Well Grade	ed San	rigule .	Ja				

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-00258780-B0	Project Name :		Geotechnical Investigation - Proposed Residential Development						
Client :	11654128 Canada Inc.	Project Location	:	6171 Hazeldean Rd, Ottawa, ON						
Date Sampled :	March 24, 2020	Borehole No:		ВН5	Sample No.: SS6			Depth (m) :	3.8-4.4	
Sample Description :		% Silt and Clay	43	% Sand	56 % Gravel 1			Figure : 60	60	
Sample Description : Silty Sand (SM)								Trigule:	00	

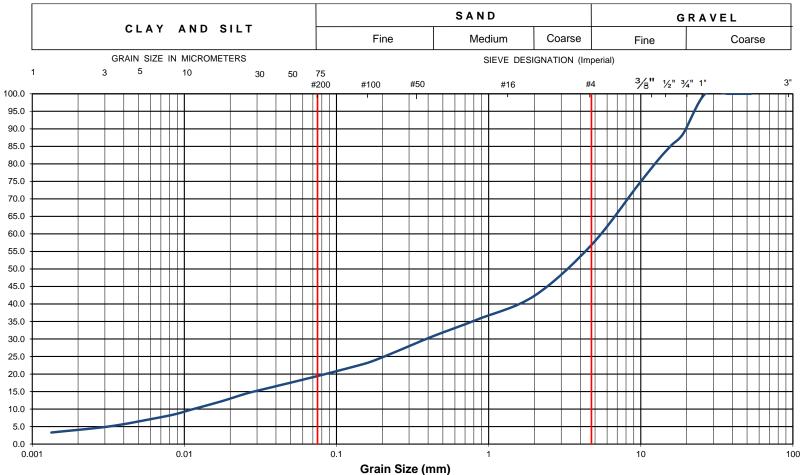
Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

100-2650 Queensview Drive Ottawa, ON K2B 8H6

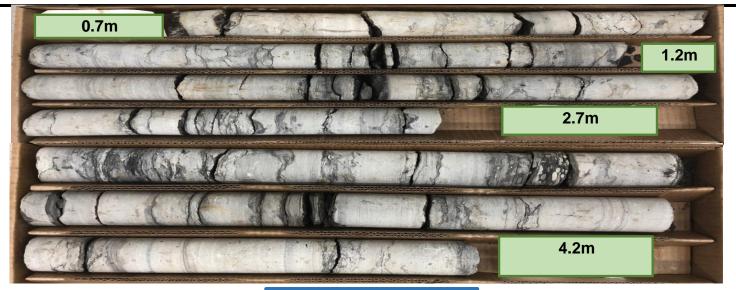
EXP Project No.:	OTT-00258780-B0	Project Name :		Geotechnical Investigation - Proposed Residential Development						
Client :	11654128 Canada Inc.	Project Location	n :	6171 Hazeldean Rd, Ottawa, ON						
Date Sampled :	March 24, 2020	Borehole No:		ВН6	Sample No.:			S5	Depth (m) :	3.0-3.6
Sample Description :		% Silt and Clay	17	% Sand	44 % Gravel			39	Figure :	61
Sample Description : Glacial Till: Silty Sand with Gravel (SM)							rigure .	01		

Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate ASTM C-136

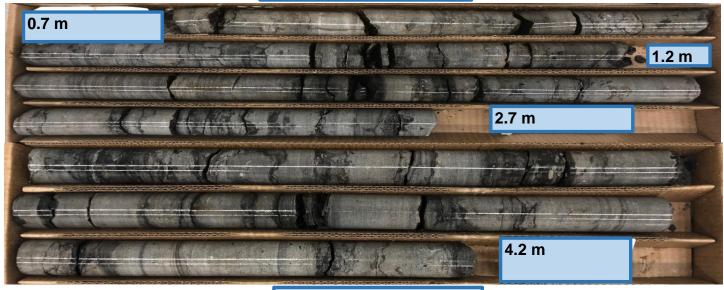
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-00258780-B0	Project Name : Geotechnical Investigation - Proposed Residential Development							
Client :	Mr. Carmine Zayoun	Project Location	n :	6171 Hazeldean Rd, Ottawa, ON					
Date Sampled :	December 9, 2020	Borehole No:		BH7 Sample:		:	SS3	Depth (m):	1.5-2.1
Sample Composition :		Gravel (%)	39	Sand (%) 50 Silt & Clay (%)		11	Figure :	62	
Sample Description :	e Description : Glacial Till: Poorly Graded Sand with Silt and Gravel (SP-SM)								02



Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422


100-2650 Queensview Drive Ottawa, ON K2B 8H6

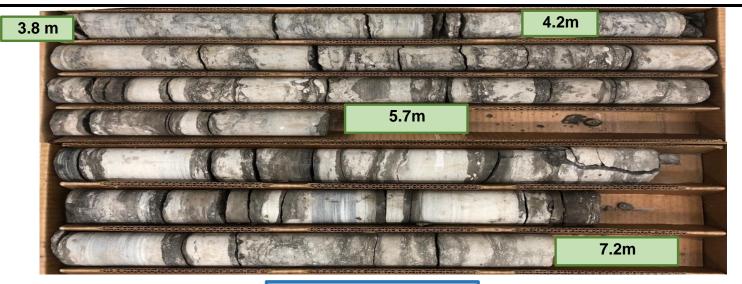
EXP Project No.:	OTT-00258780-B0	Project Name :	ect Name : Geotechnical Investigation - Proposed Residential Development							
Client :	11654128 Canada Inc.	Project Location	ı:	6171 Hazeldean Rd, Ottawa, ON						
Date Sampled :	December 9, 2020	Borehole No:		ВН8	Sample No.: S			S5	Depth (m) :	3.0-3.6
Sample Description :		% Silt and Clay	19	% Sand	38 % Gravel		43	Figure :	63	
Sample Description : Glacial Till: Silty Gravel with Sand (GM)								rigule .	03	

DRY BEDROCK CORES

WET BEDROCK CORES

Borehole No. **BH-1**

Core Runs Run 1 : 0.7 - 1.2 m Run 2 : 1.2 - 2.7 m Run 3> 2.7 - 4.2 m


Propsoed Residential Development 6171 Hazeldean Road, Ottawa, ON

Project No: **OTT-000258780-B0**

ROCK CORE PHOTOGRAPHS

Figure No:

Fig 64

DRY BEDROCK CORES

WET BEDROCK CORES

Borehole No. BH-2

Core Runs Run 1 : 3.8 - 4.2 m Run 2 : 4.2 - 5.7 m Run 3: 5.7 - 7.2 m

Propsoed Residential Development 6171 Hazeldean Road, Ottawa, ON

Project No:

OTT-000258780-B0

ROCK CORE PHOTOGRAPHS

Figure No:

Fig 65

DRY BEDROCK CORES

WET BEDROCK CORES

Borehole No. BH-3	Core Runs Run 3: 3.5 - 4.6 m Run 4: 4.6 - 6.2 m	Propsoed Residential Development. 6171 Hazeldean Road, Ottawa, ON	Project No:	OTT-000258780-B0
		ROCK CORE PHOTOGRAPHS	Figure No:	Fig 66

Start of Bedrock at 5.8 m Depth

exp Services Inc.

t +1.613.688.1899 | f. +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6 Canada

www.exp.com

• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •

• INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •

	Run 1: 4.5m - 4.8m Run 2: 4.8m - 6.2m Run 3: 6.2m - 7.7m	Proposed Residential Development	project no. OTT-00258780-A0
Dec 09, 2020	Run 4: 7.7m - 9.3m Run 5: 9.3m - 10.8m	Rock Core Photographs	FIG 67

EXP Services Inc.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Appendix A: Test holes by Others

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

REMARKS

FILE NO.

PG4917

HOLE NO. **TD 7-19**

BORINGS BY Backhoe				С	ATE 2	2019 Apri	l 29	1		L 110.	TP 7	7-19	
SOIL DESCRIPTION	PLOT		SAN	/IPLE	ı	DEPTH	ELEV.	Pen. F	lesist. 50 mm				
	STRATA B	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		Vater				Piezometer
GROUND SURFACE	Ñ		ž	Æ	zö	0-	118.03	20	40	60	8	0	Pie
FILL: Brown silty sand, some gravel, cobbles and boulders, trace clay		_ _ G	1				110.00						
	5												-
Practical refusal to excavation on nferred bedrock surface @ 0.45m depth													
TP dry upon completion)													
								20 Sho	40 ar Stre	60 anatk) 80 2 (kB2	0 1	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. PG4917

REMARKS

DATUM

HOLE NO.

TP 8-19 BORINGS BY Backhoe **DATE** 2019 April 29 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+116.07G 1 **FILL:** Brown silty sand, trace clay, 1 + 115.07gravel, cobbles and boulders G 2 ∇ 2+114.07End of Test Pit Practical refusal to excavation at 2.20m depth (Groundwater infiltration at 2.0m depth) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

 TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

DATUM

REMARKS

HOLE NO.

BORINGS BY Backhoe				D	ATE 2	2019 Apri	l 29			HOLE N	TP 9-19	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)				lows/0.3m ia. Cone	<u></u>
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	C			entent %	Piezometer
GROUND SURFACE				α.	-	0-	-117.13	L.,			60 80	┸
rnd of Test Pit		_ G	1									-
TP dry upon completion)												
								5	o Shear ndisturb	Streng	60 80 1 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

REMARKS

DATUM

HOLE NO. TD10-19

BORINGS BY Backhoe				D	ATE :	2019 Apri	l 29		L.	IOLL		TI	P1()-19	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Re ● 5						m	je.
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	()	(111)	○ V		er C	ont		: % 80		Piezometer
		– G –	1			- 0-	-116.63								
FILL: Brown silty sand, some gravel, cobbles and boulders, trace clay and organics						1-	-115.63								
		– G –	2			2-	-114.63								
3. <u>00</u> End of Test Pit		-				3-	-113.63								
(TP dry upon completion)															
								20 Shea	ar S)	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 DATUM TBM - Top spinde of fire hydrant locate

 TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. PG4917

REMARKS HO

HOLE NO. **TP11-19**

BORINGS BY Backhoe				C	ATE	2019 Apri	I 29		HOLI	T	P11-19	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.			Blows Dia. Co		_
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater (Conten	t %	Piezometer
GROUND SURFACE	0,		4	8	z º	0-	118.29	20	40	60	80	ä
		G	1									
FILL: Brown silty sand, some and gravel, occasional cobbles and boulders						1.	-117.29					
							117.29					
		G	2									
	2.10					2-	116.29					
End of Test Pit Practical refusal to excavation at 2.10m depth (Groundwater infiltration at 1.8m depth)												
								20 Shea	40 ar Stre	60 ength (k △ Ren	80 1 (Pa) moulded	100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

REMARKS

FILE NO. **PG4917**

HOLE NO

BORINGS BY Backhoe				D	ATE 2	2019 Apri	il 29		HOL	LE NO.	TP1	2-19	
SOIL DESCRIPTION	PLOT		SAN	/IPLE	1	DEPTH (m)	ELEV. (m)	Pen. R ● 5		. Blown Dia.			er
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	()	(,			Cont			Piezometer
GROUND SURFACE				<u> </u>		0-	116.20	20	40	60	8	8 0	
FILL: Brown silty sand, trace gravel		_ G _	1										
1.10_ FOPSOIL 1.30		G	2			1 -	-115.20						
GLACIAL TILL: Compact, brown silty sand, some gravel and cobbles, trace clay		G	3										
End of Test Pit Practical refusal to excavation on inferred bedrock surface at 2.10m		_				2-	-114.20						
depth (TP dry upon completion)													
								20 Shea ▲ Undist	40 ar Str	60 ength	8 n (kP a Remou	a)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

REMARKS

FILE NO. **PG4917**

HOLE NO. TD13-19

BORINGS BY Backhoe				D	ATE	2019 Apr	il 29		IIOL	TP13-19	1
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH				Blows/0.3m Dia. Cone	<u> </u>
	STRATA 1	TYPE	NUMBER	RECOVERY	N VALUE or RQD	(m)	(m)			Content %	Piezometer
GROUND SURFACE	0,			2	z º	0-	117.84	20	40	60 80	تة ز
FILL: Brown silty sand, some gravel, trace organics, cobbles and boulders		– G –	1			v					
1.20		_				1-	-116.84				
PEAT 1.40	7 <u>. I.</u> F	G	2								Ţ
GLACIAL TILL: Compact, brown silty sand, some gravel, trace clay		– – G	3								\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
End of Test Pit	1.^.^.^	-				2-	115.84				
Practical refusal to excavation on inferred bedrock surface at 2.00m depth (Groundwater infiltration at 1.4m depth)											
								20 She ▲ Undis		60 80 1 ength (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. PG4917

REMARKS

BORINGS BY Backhoe

DATE 2019 April 29

TP14-19

BORINGS BY Backhoe				D	ATE :	2019 Apri	1 29			117	14-19	
SOIL DESCRIPTION	PLOT		SAN	IPLE	Γ	DEPTH	ELEV.	1		t. Blows/0 n Dia. Cor		_
	STRATA 1	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)			Content		Piezometer
GROUND SURFACE	ST	H	DN DN	REC	NON		440.07	20	40	60	80	Pie
		G	1			0-	-119.27					
FILL: Brown silty sand, some gravel, race cobbles, boulders and organics						1-	-118.27					
		G	2									
						2-	-117.27					
2.2 End of Test Pit	0	_					117.27					
Practical refusal to excavation at 2.20m depth												
(TP dry upon completion)												
								20 She	40 ar Stı	rength (kF	80 10 Pa)	00
								▲ Undis	turbed	I △ Remo	oulded	

Geotechnical Investigation

6171 Hazeldean Road Ottawa, Ontario

DATUM

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

REMARKS

SOIL PROFILE AND TEST DATA

POPINGE BY Backhoo

HOLE NO. TP15-19

BORINGS BY Backhoe				D	ATE 2	2019 Apri	l 29			TP15-19	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	1		Blows/0.3m Dia. Cone	 \
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	0 1	Water C	ontent %	Piezometer
GROUND SURFACE	03		Z	푒	zö	0-	-119 09	20	40	60 80	ig (
FILL: Brown silty sand, some gravel, cobbles and boulders, trace asphalt and wood		_ _ G	1				-119.09				
End of Test Pit Practical refusal to excavation at 1.70m depth (Groundwater infiltration at 1.6m depth)								20 She ▲ Undis		60 80 1 ngth (kPa) △ Remoulded	. ↓

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

REMARKS

BORINGS BY Backhoe				D	ATE 2	2019 Apri	il 29		HOLE NO	D. TP16-19	
SOIL DESCRIPTION	PLOT			MPLE 거	ы	DEPTH (m)	ELEV. (m)		esist. Bl	ows/0.3m a. Cone	ter
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0 V	Vater Cor	ntent %	Piezometer
GROUND SURFACE	, v		z	E.S.	z °	0-	118.52	20	40 6	60 80	ig (
FILL: Brown silty sand, some gravel, trace cobbles, boulders, concrete and organics		_ G _	1			·					
						1-	117.52				Ā
1.10 End of Test Pit		-									
Practical refusal to excavation at 1.10m depth											
(Groundwater infiltration at 1.0m depth)											
								20 Shea	ar Streng	th (kPa)	00
								▲ Undis	urbed △	Remoulded	

6171 Hazeldean Road

Geotechnical Investigation Ottawa, Ontario

DATUM

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

REMARKS

SOIL PROFILE AND TEST DATA

HOLE NO.

SOIL DESCRIPTION ROUND SURFACE L: Crushed stone, some silty nd 0.20 L: Brown silty sand, some gravel, ce clay	STRATA PLOT	E G G	SAN NUMBER	* BECOVERY	N VALUE or ROD	DEPTH (m)	ELEV. (m)	(mm	Blov Dia. Conte	Cone	•	Piezometer
L: Crushed stone, some silty nd 0.20 L: Brown silty sand, some gravel,		_ _ G _	1	% RECOVER!	N VALUE or RQD									Piezomet
L: Crushed stone, some silty nd 0.20 L: Brown silty sand, some gravel,	0	_	1	<u>x</u>	2	0-	-118.40		20	40	60	8	0	Δ.
nd 0.20	0	_												
_L: Brown silty sand, some gravel, ce clay		_ G _	2					1 : : :	1 1 1					-
L: Brown silty sand, some gravel, ce clay		_ _	~	1										
•														
1.d	KXXXI					1-	-117.40							
1.50	0	_												4
actical refusal to excavation at 50m depth														
P dry upon completion)														
									20 Shear	40	60	8	60	100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

REMARKS

HOLE NO.

BORINGS BY Backhoe				D	ATE 2	2019 Apri	il 29	I		TP1	8-19
SOIL DESCRIPTION	PLOT		SAN	//PLE		DEPTH	ELEV.			. Blows/0.3 n Dia. Cone	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater	Content %	Piezometer
GROUND SURFACE				2	z °	0-	117.78	20	40	60 80)
		_ _ G	1								
ILL: Brown silty sand, some gravel nd cobbles											
						1-	116.78				
PEAT1.60	~ <u></u>	– G –	2								
//ARL	7.11.F	G	3								
Stiff, grey CLAYEY SILT 2.05		_ _ G -	4			2-	-115.78			A	
GLACIAL TILL: Compact, grey silty cand, some gravel and cobbles		_ G _	5								
End of Test plt	\^,^,^, \^,^,^,	_				3-	-114.78				
TP dry upon completion)											
								20 Shea ▲ Undis		60 80 ength (kPa △ Remoul)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO.

PG4917 REMARKS HOLE NO. TD10_10

BORINGS BY Backhoe				D	ATE 2	2019 Apri	I 29				TF	P19-	19
SOIL DESCRIPTION	PLOT		SAN	IPLE	Π	DEPTH	ELEV.	Pen. F			lows/ a. Co		
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				ntent		
GROUND SURFACE	ัด	-	Ż	RE	zö	0-	-118.20	20	40	0	60	80	
Ell I I Drawn eiltreand, some gravel		– G	1				110.20						
FILL: Brown silty sand, some gravel, cobbles and boulders						1-	-117.20						
<u>1</u> . <u>30</u>	7.1.F	_ G	2			'	117.20						
PEAT 1.70 MARL	7.E.F	- - - G	3										
GLACIAL TILL: Compact, grey silty sand, some gravel, trace clay	==== \^^^^^ \^^^^ \^^^^ \^^^^ \^^^^ \^^^^	- - G	4			2-	-116.20						
sand, some graver, trace day													
End of Test Pit	1^^^^	-				3-	-115.20						
(Groundwater infiltration at 0.5m depth)													
								20 She ▲ Undis		trenç	60 jth (k l		100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top spinde of fire hydrant located on the south side of Neil Avenue, near 1 Neil Avenue. Geodetic elevation = 114.69m.

FILE NO. **PG4917**

DATUM

HOLE NO.

REMARKS

BORINGS BY Backhoe				D	ATE 2	2019 Apri	l 29		HOI	LE NO. TP2	0-19
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	1		. Blows/0.3 n Dia. Cone	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0 V	Vater	Content %	o o o
GROUND SURFACE				2	z °	0-	-118.16	20	40	60 80	0 0
FILL: Brown silty sand, some gravel and cobbles		– G –	1								
						1 -	-117.16				
<u>1.5</u> 0		-									
PEAT		_ _ G _	2								
MARL 2.00	= <u>=</u> ==) = = = \^^^^	-				2-	-116.16				
GLACIAL TILL: Compact, grey silty sand, trace clay and gravel		_ G _	3								
3.00		_				3-	-115.16				
End of Test Pit (TP dry upon completion)						3	110.10				
								20 She	40 ar Str turbed	60 80 rength (kPa △ Remoul)

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

Ground surface elevations provided by Stantec Geomatics Ltd. **DATUM** FILE NO. **REMARKS**

PG4706

HOLE NO.

BORINGS BY CME 55 Power Auger				DATE	October 1	11, 2018		HOL	BH 1-1	8	
SOIL DESCRIPTION	PLOT		SAN	/IPLE	T	DEPTH	ELEV. (m)			Blows/0.3m Dia. Cone	<u> </u>
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD	(m)	(111)	0 V	Vater	Content %	Piezometer
GROUND SURFACE	•		Z	EZ.	z °	0-	120.27	20	40	60 80	i <u>s</u> c
FILL: Topsoil with organics, trace 0.10 gravel and cobbles		SS	1	29	20		120.27				
FILL: Brown silty sand with gravel, some cobbles, trace clay		ss	2	38	17	1-	-119.27				
GLACIAL TILL: Very dense, brown silty sand with gravel, cobbles, boulders, some clay	^^^^^	SS	3	47	50+	2-	118.27				
End of Borehole	^^^^	× SS	4	0	50+						
Practical refusal to augering at 2.34m depth											
(BH dry upon completion based on field observations)											
								20 She		60 80 ength (kPa) △ Remoulded	100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **BH 2-18 BORINGS BY** CME 55 Power Auger DATE October 11, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+119.85**TOPSOIL** 0.13 1 1 + 118.85SS 2 54 20 GLACIAL TILL: Compact, brown silty sand with gravel, cobbles and boulders, some organics SS 3 30 46 2 + 117.85SS 4 40 26 2.80 End of Borehole Practical refusal to augering at 2.80m (BH dry upon completion based on field observations) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **BH 3-18 BORINGS BY** CME 55 Power Auger DATE October 11, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+118.03**TOPSOIL** 0.10 PEAT 0.20 1 **GLACIAL TILL:** Compact to very dense, brown silty sand with gravel, 1 + 117.03cobbles and boulders SS 2 75 19 SS 3 50 50 +2+116.03 End of Borehole Practical refusal to augering at 2.01m depth (BH dry upon completion based on field observations) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

2 + 116.50

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **BH 3A-18 BORINGS BY** CME 55 Power Auger DATE October 11, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+118.50FILL: Silty sand with gravel, some organics, wood 1 FILL: Brown to black silty sand with gravel 1.00 1 + 117.502 SS 54 17 GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles and boulders, trace clay SS 3 25 48

End of Borehole

Practical refusal to augering at 2.23m depth

(BH dry upon completion based on field observations)

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **BH 3B-18** BORINGS BY CME 55 Power Auger DATE October 11, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+118.70FILL: Topsoil with organics, some 0.13 gravel 1 FILL: Brown silty sand, some organics and gravel, trace wood 1 + 117.702 SS 54 11 1.37 **MARL** SS 3 W 17 2 + 116.702.13 SS 4 21 4 GLACIAL TILL: Brown silty sand with gravel, some cobbles, trace clay and peat 3 + 115.70SS 5 29 28 3.66 End of Borehole Practical refusal to augering at 3.66m depth (GWL @ 2.3m depth based on field observations) 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Ground surface elevations	prov	ided b	y Sta	ntec C	Geom	atics Ltd.			FILE NO.	PG4706	
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger				D	ATE	October 1	1, 2018			DI1 1- 10	
SOIL DESCRIPTION	PLOT			/PLE	м .	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia.		ter
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD				/ater Cont		Piezometer Construction
GROUND SURFACE		~		24	4	0-	117.02	20	40 60	80	<u> </u>
FILL: Brown silty sand with blast rock, gravel, boulders and cobbles 0.61		AU	1								
End of Borehole	× × ×										
Practical refusal to augering at 0.61m depth											
(BH dry upon completion based on field observations)											
								20 Shea ▲ Undist	40 60 ar Strength	80 10 (kPa) Remoulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Ground surface elevations	FILE NO.	4706								
BORINGS BY CME 55 Power Auger				Г	ATE (October 1	1 2018		HOLE NO. BH	4 A -18
SOIL DESCRIPTION	PLOT		SAM	IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3) mm Dia. Cone	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD		` ,		ater Content %	<u>6</u>
GROUND SURFACE	XXX	×		2	2	0-	-117.00	20	40 60 8) 🗖
		AU	1							
FILL: Brown silty sand with gravel, cobbles and boulders										
1.42		SS	2	46	30	1 -	-116.00			
End of Borehole										
Practical refusal to augering at 1.42m depth										
(BH dry upon completion based on field observations)										
								20	40 60 8	0 100
								Shea	r Strength (kPa	1)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

DATUM Ground surface elevations REMARKS	prov	ided b	y Sia	intec c	aeoma	alics Lia.		FILE NO.	PG4706	
BORINGS BY CME 55 Power Auger				D	ATE (October 11, 2018		HOLE NO	D. BH 4B-18	8
	PLOT		SAN	/IPLE		DEPTH ELEV.	Pen. R		ows/0.3m	
SOIL DESCRIPTION	1	ы	H.	ERY	OD COE	(m) (m)	• 5	0 mm Dia	a. Cone	Piezometer
GROUND SURFACE	STRATA	TYPE	NUMBER	**************************************	N VALUE or RQD		O V	Vater Cor	ntent % 60 80	Piezor
GROUND SURFACE				"		0 + 117.00	20	40 (1	-
FILL: Brown silty sand with gravel, cobbles and boulders		AU SS	1	100	50+					
0.94 End of Borehole		_ 33	2	100	30+					
Practical refusal to augering at 0.94m depth										
(BH dry upon completion based on field observations)							20 Shea	40 (50 80 10 th (kPa)	000

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

Ground surface elevations provided by Stantec Geomatics Ltd. **DATUM** FILE NO. **PG4706** REMARKS HOLE NO.

BORINGS BY Hydraulic Shovel				D	ATE (October 1	5, 2018		HOLE	TP 1-18	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.			Blows/0.3m Dia. Cone	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater Co	ontent %	Piezometer
GROUND SURFACE	ß		Z	H.	z º	0	110.70	20	40	60 80	ä E
ILL: Topsoil, some sand and ravel 0.3		G	1			0-	-119.79				
ILL: Brown silty sand with gravel, obbles, boulders and organics											
some ash and topsoil by 1.2m epth		G	2			1-	-118.79				
tire encountered at 1.2m depth											
1.8 GLACIAL TILL: Brown silty sand 1.9 with gravel, cobbles and boulders		G	3								
End of Test Pit											
ractical refusal to excavation on ferred bedrock at 1.90m depth											
ΓP dry upon completion)											
								20 Shea		60 80 1 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **TP 2-18 BORINGS BY** Hydraulic Shovel DATE October 15, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+120.36**TOPSOIL** 1 + 119.36GLACIAL TILL: Compact to dense, G 1 brown silty sand with gravel, cobbles and boulders 2+118.36 3+117.363.10 End of Test Pit Practical refusal to excavation on inferred bedrock at 3.10m depth (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **TP 3-18 BORINGS BY** Hydraulic Shovel DATE October 15, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+117.60G 1 FILL: Brown silty sand with gravel, cobbles, boulders, topsoil and organics G 2 1 + 116.60TOPSOIL, some peat and roots 3 G GLACIAL TILL: Compact to dense, grey silty sand with gravel, cobbles and boulders G 4 1.90 End of Test Pit Practical refusal to excavation on inferred bedrock at 1.90m depth (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by Stantec Geomatics Ltd.

FILE NO.

PG4706

REMARKS

DATUM

HOLE NO. **TP 4-18**

BORINGS BY Hydraulic Shovel		Г		D	ATE	October 1	5, 2018		HOL	TP 4-18	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)			. Blows/0.3m n Dia. Cone	ē
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0 \	Vater	Content %	Piezometer
GROUND SURFACE	02		2	R	z °	0-	118.91	20	40	60 80	Ë
FILL: Topsoil with gravel and cobbles 0.20		- - -					110.91				
FILL: Brown silty sand with gravel, cobbles and boulders, some organics		G _	1								
1.00		_				1 -	117.91				
FILL: Grey sandy silt with organics		G	2								
PEAT		G	3				11001				
2.10		G	4			2-	116.91				
2.70			7								
Grey SANDY SILT/SILTY SAND 3.10		G	5			3-	115.91				
GLACIAL TILL: Grey silty sand with gravel, cobbles and boulders) \^^^^	_									
Practical refusal to excavation on inferred bedrock at 3.40m depth											
(Groundwater infiltration at 3.1m depth)											
								20 She		ength (kPa)	1 00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Onta	ario k	(2E 7J	J5			tawa, Or		101						
DATUM Ground surface elevations	prov	ided k	oy Sta	ntec C	Geoma	atics Ltd.				F	LE NO	Р(G4706	6
REMARKS										Н	OLE N	0		
BORINGS BY Hydraulic Shovel		1		D	ATE	October 1	5, 2018					TP	5-18	_
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	P				lows/0 a. Cor		7 5
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)		0	Wat	er Co	ntent	%	Piezometer Construction
GROUND SURFACE	S.		N	REC	N O N				20	4	0	60	80	Pie.
TOPSOIL with gravel, cobbles						0-	117.12			: :			1111	
											1 1 1			-
Practical refusal to excavation on inferred bedrock at 0.20m depth (TP dry upon completion)														
									20 Sho	4 ear S	Streng	60 jth (kF	Pa)	100

SOIL PROFILE AND TEST DATA

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

Geotechnical Investigation 6171 Hazeldean Road 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **TP 5A-18 BORINGS BY** Hydraulic Shovel DATE October 15, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+117.10TOPSOIL with gravel, cobbles 0.20 GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders 1 + 116.101.10 End of Test Pit Practical refusal to excavation on inferred bedrock at 1.10m depth (TP dry upon completion)

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. TP 6-18 **BORINGS BY** Hydraulic Shovel DATE October 15, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 60 0+116.70G FILL: Blast rock with gravel 1 0.60 G 2 FILL: Brown silty sand/sandy silt, some organics 1.00 1 + 115.70G 3 Asphalt 1.30 **TOPSOIL** G 4 1.60 Fractured **BEDROCK** 1.70 End of Test Pit Practical refusal to excavation on inferred bedrock at 1.70m depth (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 6171 Hazeldean Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

DATUM Ground surface elevations provided by Stantec Geomatics Ltd. FILE NO. **PG4706 REMARKS** HOLE NO. **TP 7-18 BORINGS BY** Hydraulic Shovel DATE October 15, 2018 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+117.07FILL: Blast rock with sand, gravel and cobbles 0.50 G 1 FILL: Brown silty sand with gravel, cobbles, trace topsoil, organics 1 + 116.071.20 GLACIAL TILL: Brown silty sand with gravel, cobbles, boulders G 2 1.60 Fractured **BEDROCK** 1.70 End of Test Pit Practical refusal to excavation on inferred bedrock at 1.70m depth (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongroup

Consultin Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM FILE NO. **PE2548 REMARKS** HOLE NO. TP 1 **BORINGS BY** Backhoe **DATE** March 28, 2012 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. Volatile Organic Rdg. (ppm) **SOIL DESCRIPTION** (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Lower Explosive Limit % 80 **GROUND SURFACE** 0 FILL: Brown silty sand with cobbles G 1 0.70 GLACIAL TILL: Brown silty sand 2 G with gravel, cobbles and boulders 2 End of Test Pit Practical refusal at 2.40m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM									FILE NO.	PE2548	3
REMARKS									HOLE NO.		
BORINGS BY Backhoe					ATE	March 28,	2012	1		TP 2	1
SOIL DESCRIPTION	PLOT		SAN	/IPLE	ı	DEPTH	ELEV.		onization D		Well
	STRATA E	TYPE	NUMBER	% RECOVERY	VALUE or RQD	(m)	(m)				Monitoring Well Construction
GROUND SURFACE	STR	Ţ	NON	RECC	N N			C Lowe	r Explosive	80 80	<u>₹</u>
FILL: Crushed stone 0.05		_				0-	=				
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders		G	1			2-	-	A			in a construction of the c
	1\^^^^	_									
Practical refusal at 2.50m depth									200 300 Eagle Rdg. (is Resp. △ M	(ppm)	000

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM									FILE NO.	PE2548	}
REMARKS									HOLE NO.	TP 3	<u></u>
BORINGS BY Backhoe				D	ATE	March 28,	2012	1		IFS	
SOIL DESCRIPTION	A PLOT		SAM		3 8	DEPTH (m)	ELEV. (m)		onization De		Monitoring Well Construction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD				r Explosive		Monito Cons
GROUND SURFACE Brown SILTY SAND, trace cobbles	. 1 1 1			щ		0-	_	20	40 60	80	
GLACIAL TILL: Grey-brown silty sand with gravel, cobbles and boulders		G G	2			1-	-				
<u>2.45</u> End of Test Pit	^^^^	_									
(Groundwater infiltration at 2.3m depth)									200 300 Eagle Rdg. (γ s Resp. △ Me		00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM									FILE NO.	PE2548	3
REMARKS				_		Mauria 00	0010		HOLE NO.	TP 4	
BORINGS BY Backhoe			0.11		ATE	March 28,	2012		5		
SOIL DESCRIPTION	A PLOT			IPLE	E C	DEPTH (m)	ELEV. (m)		onization De		Monitoring Well Construction
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD			O Lowe	r Explosive	Limit %	Monito Cons
GROUND SURFACE				—		0-		20	40 80		
FILL: Brown silty sand, trace gravel 0.40		G	1					A			
FILL: Brown silty sand with organics	\bowtie	– G –	2					A			
FILL: Blast rock						1-					
		G	3					A			
2.20		_				2-	-				
End of Test Pit Test pit terminated on suspected bedrock surface @ 2.20m depth											
(Groundwater infiltration at 0.9m depth)											
									200 300 Eagle Rdg. (as Resp. △ Me	ppm)	00

patersongroup

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM FILE NO. **PE2548 REMARKS** HOLE NO. TP₅ **BORINGS BY** Backhoe **DATE** March 28, 2012 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE **Lower Explosive Limit %** 80 60 **GROUND SURFACE** 0 FILL: Crushed stone, trace sand 0.50 FILL: Organics with silty sand G 1 GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders G 2 2 2.30 End of Test Pit Test pit terminated on suspected bedrock @ 2.30m depth (Groundwater infiltration at 1.1m depth) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongroup

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Consultin Engineers

Liigiiice

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM FILE NO. **PE2548 REMARKS** HOLE NO. TP₆ **BORINGS BY** Backhoe **DATE** March 28, 2012 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. Volatile Organic Rdg. (ppm) **SOIL DESCRIPTION** (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Lower Explosive Limit % 80 60 **GROUND SURFACE** 0 FILL: Brown silty sand with gravel G 1 2 PEAT: Dark brown/black organic matter G 2 **ORGANIC SILT/MARL** G 3 3 Grey SILTY CLAY with sand G 4 3.60 End of Test Pit (Groundwater infiltration at 3.0m depth) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongroup Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM									FILE NO.	PE2548	
REMARKS									HOLE NO.		
BORINGS BY Backhoe				D	ATE	March 28,	2012	1		TP 7	
SOIL DESCRIPTION	PLOT		SAM			DEPTH (m)	ELEV. (m)		Onization De ile Organic Rdo		Monitoring Well Construction
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD	(111)	(111)	○ Lowe	r Explosive	Limit %	nitorin
GROUND SURFACE	STI TI NUU NUU NUU NU N N OIL							20	40 60	ēŏ	
Brown SANDY SILT with gravel 0.65		G	1			- 0-				80	
End of Test Pit									200 300 agle Rdg. (I s Resp. △ Me		00

patersongroup Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

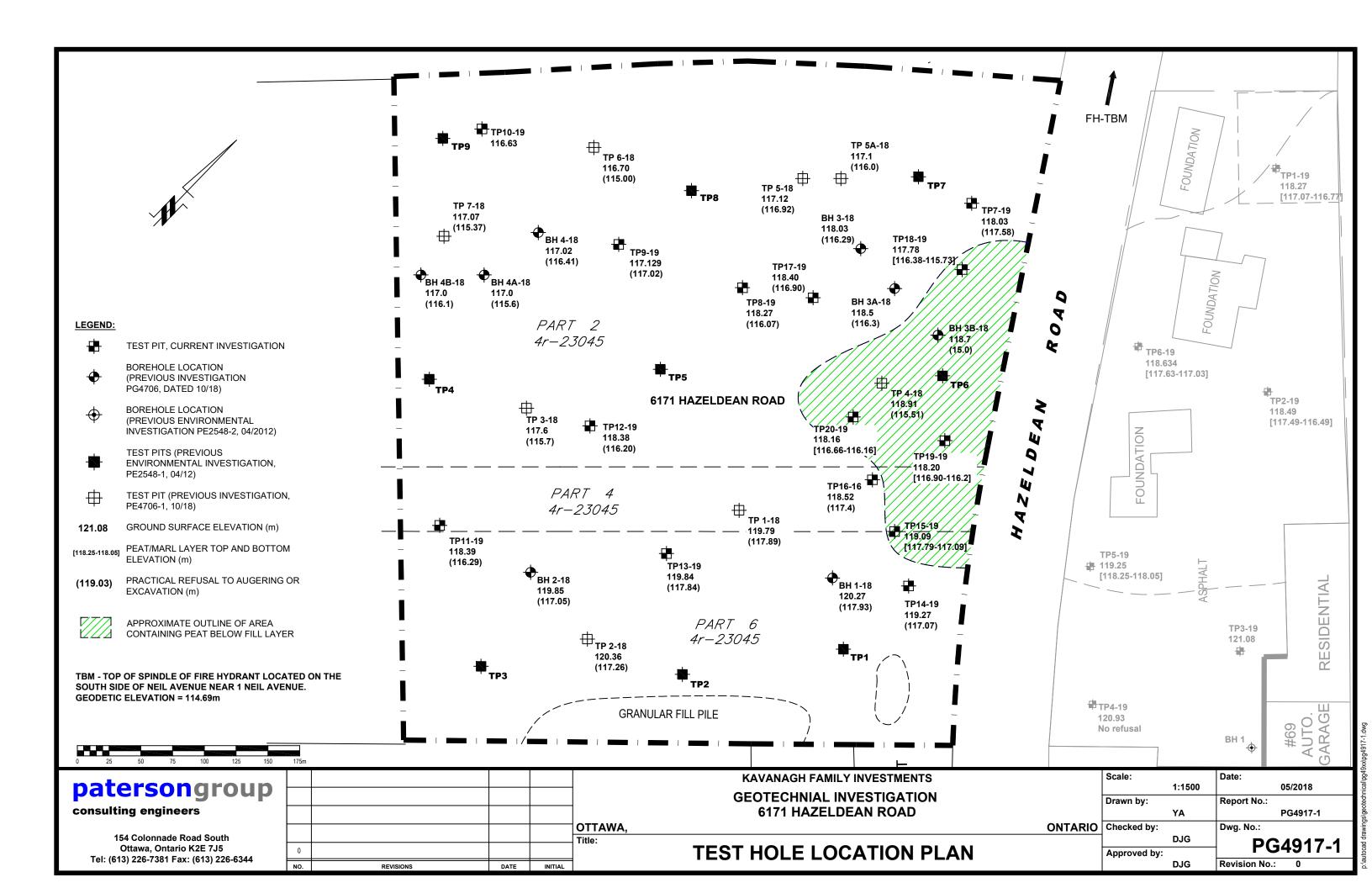
SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM						•			FILE NO.	PE2548	3
REMARKS									HOLE NO.	TP8	
BORINGS BY Backhoe					ATE	March 28,	2012				
SOIL DESCRIPTION	A PLOT			IPLE	H 0	DEPTH (m)	ELEV. (m)		onization [tile Organic R		Monitoring Well Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				er Explosiv	Monitori Constr	
GROUND SURFACE				μ.		0-		20	40 60	80	_
Brown SANDY SILT with gravel		G	1					Δ			
End of Test Pit	11111	_									
								100 RKI I	200 300 Eagle Rdg.	400 5 (ppm)	1 00
										Methane Elim.	

patersongroup

154 Colonnade Road South, Ottawa, Ontario K2E 7J5


Consulting Engineers

Enginee

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 6171 Hazeldean Road Ottawa, Ontario

DATUM FILE NO. **PE2548 REMARKS** HOLE NO. TP9 **BORINGS BY** Backhoe **DATE** March 28, 2012 **SAMPLE Photo Ionization Detector** Monitoring Well Construction STRATA PLOT DEPTH ELEV. Volatile Organic Rdg. (ppm) **SOIL DESCRIPTION** (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Lower Explosive Limit % 80 60 **GROUND SURFACE** 0 G 1 FILL: Brown to grey silty sand with gravel, cobbles and boulders G 2 2.00 2 G 3 **PEAT** 2.30 Grey SANDY SILT, trace gravel G 4 3.00 3 End of Test Pit (Groundwater infiltration at 2.5m depth) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

EXP Services Inc.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Appendix B: Results of MASW Survey

100 – 2545 Delorimier Street Tel.: (450) 679-2400 Longueuil (Québec) Fax: (514) 521-4128 Canada J4K 3P7 info@geophysicsgpr.com

info@geophysicsgpr.com www.geophysicsgpr.com

April 20th, 2021

Transmitted by email: ismail.taki@exp.com

Our Ref.: GPR-21-02866-b

Mr. Ismail Taki, M.Eng., P.Eng. Manager, Geotechnical **exp** Services inc. 100 – 2650 Queensview Drive Ottawa ON K2B 8H6

Subject: Shear Wave Velocity Sounding for the Site Class Determination 75-81 Montreal Road, Ottawa (ON)

[Project: OTT-21001117-A0]

Dear Sir,

Geophysics GPR International inc. has been mandated by **exp** Services inc. to carry out seismic shear wave surveys on a property located at 75-81 Montreal Road, in Vanier, Ottawa (ON). The geophysical investigation used the Multi-channel Analysis of Surface Waves (MASW), the Spatial AutoCorrelation (SPAC), and the seismic refraction methods. From the subsequent results, the seismic shear wave velocity values were calculated for the soil and the rock, to determine the Site Class.

The surveys were carried out on April 9th, 2021, by Mrs. Karyne Faguy, B.Sc. geoph. and Mr. Timothy Ward, tech. Figure 1 shows the regional location of the site and Figure 2 illustrates the location of the seismic spreads. Both figures are presented in the Appendix.

The following paragraphs briefly describe the survey design, the principles of the testing methods, and the results presented in tables and graphs.

MASW PRINCIPLE

The Multi-channel Analysis of Surface Waves (MASW) and the SPatial AutoCorrelation (SPAC or MAM for Microtremors Array Method) are seismic methods used to evaluate the shear wave velocities of subsurface materials through the analysis of the dispersion properties of the Rayleigh surface waves ("ground roll"). The MASW is considered an "active" method, as the seismic signal is induced at known location and time in the geophones' spread axis. Conversely, the SPAC is considered a "passive" method, using the low frequency "signals" produced far away. The method can also be used with "active" seismic source records. The dispersion properties are expressed as a change of phase velocities with respect to frequencies. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. The inversion of the Rayleigh wave dispersion curve yields a shear wave (V_S) velocity depth profile (sounding). Figure 3 schematically outlines the basic operating procedure for the MASW method.

Figure 4 illustrates an example of one of the MASW/SPAC records, the corresponding spectrogram analysis and resulting 1D $V_{\rm S}$ model. The SPAC method allows deeper $V_{\rm S}$ soundings, but generally with a lower resolution for the surface portion. Its dispersion curve can then be merged with the one of higher frequency from the MASW to calculate a more complete inversion.

INTERPRETATION

The main processing sequence involved data inspection and edition when required; spectral analysis ("phase shift" for MASW, and "cross-correlation" for SPAC); picking the fundamental mode; and 1D inversion of the MASW and SPAC shot records using the SeislmagerSW™ software. The data inversions used a nonlinear least squares algorithm.

In theory, all the shot records for a given seismic spread should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation, local surface seismic velocities variations, and/or dipping of overburden layers or rock. In general, the precision of the calculated seismic shear wave velocities (V_s) is of the order of 15% or better.

More detailed descriptions of these methods are presented in *Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock*, Hunter, J.A., Crow, H.L., et al., Geological Surveys of Canada, General Information Product 110, 2015.

SURVEY DESIGN

The seismic acquisition spreads were laid out along the parking spaces behind the building, with geophone spacing of 3 metres for the main spread, using 24 geophones (Figure 2). Two shorter seismic spreads, with geophone spacing of 0.5 and 1.0 metre, were dedicated to the near surface materials. The seismic records were produced with a seismograph Terraloc Pro 2 (from ABEM Instrument), and the geophones were 4.5 Hz. An 8 kg sledgehammer was used as the energy source with impacts being recorded off both ends of the seismic spreads.

The seismic records counted 4096 data, sampled at 1000 μ s for the MASW surveys, and 50 μ s for the seismic refraction. The records included a pre-trigged portion of 10 ms. A stacking procedure was also used to improve the Signal / Noise ratio for the seismic records.

The shear wave depth sounding can be considered as the average of the bulk area within the geophone spread, especially for its central half-length.

RESULTS

From seismic refraction (V_P), the rock depth was calculated between 6.2 and 7.2 metres (\pm 1 metre). The V_S for the upper portion of the rock was calculated at 2100 m/s. These results were used as initial parameters for the basic geophysical model, prior to the MASW dispersion curves modeling and inversions.

The MASW calculated V_S results are illustrated at Figure 5. Some very low to low seismic values were calculated from close to the surface to approximately 2.5 metres deep. A geotechnical assessment of the corresponding material should be produced for the potential of liquefaction, the degree of sensitivity of the clay, and other critical parameters.

The \overline{V}_{830} value results from the harmonic mean of the shear wave velocities, from the surface to 30 metres deep. It is calculated by dividing the total depth of interest (30 metres) by the sum of the time spent in each velocity layer from the surface down to 30 metres, as:

$$\bar{V}_{S30} = \frac{\sum_{i=1}^{N} H_i}{\sum_{i=1}^{N} H_i / V_i} \mid \sum_{i=1}^{N} H_i = 30 \text{ m}$$

(N: number of layers; H_i : thickness of layer "i"; V_i : V_s of layer "i")

Thus, the \overline{V}_{S30} value represents the seismic shear wave velocity of an equivalent homogeneous single layer response, between the surface and 30 metres deep.

The calculated \overline{V}_{S30} value of the actual site is 804.1 m/s (cf. Table 1), corresponding to the Site Class "B". However, the Site Classes A and B are not to be used if there is 3 metres or more of unconsolidated materials between the rock surface and the bottom of the foundation. In the case there would be less than 3 metres of soil between the rock surface and the bottom of the foundation, the \overline{V}_{S30} * value would be 1621.9 m/s, allowing to use the Site Class "A" (cf. Table 2).

CONCLUSION

Geophysical surveys were carried out at 75-81 Montreal Road, in Vanier, Ottawa (ON), to identify the Site Class. The seismic surveys used the MASW and the SPAC analysis, and the seismic refraction method to calculate the \overline{V}_{S30} value. Its calculation is presented at Table 1.

The \overline{V}_{830} value of the actual site is 804 m/s, corresponding to the Site Class "B" (760 < $\overline{V}_{830} \le 1500$ m/s), as determined through the MASW and SPAC methods, Table 4.1.8.4.A of the NBC, and the Building Code, O. Reg. 332/12. It must be noted that Site Classes A and B are not to be used if there is 3 metres or more of unconsolidated materials between the rock surface and the bottom of the spread footing or mat foundation. In the case there would be less than 3 metres of soil between the rock surface and the bottom of the foundation, the \overline{V}_{830} * value would be 1622 m/s, allowing to use the Site Class "A" (cf. Table 2).

Some very low to low seismic values were calculated from approximately 0.5 to 2.5 metres deep. A geotechnical assessment of the corresponding materials could have to be produced for the potential of liquefaction and other critical parameters.

It must also be noted that other geotechnical information gleaned on site; including the presence of liquefiable soils, very soft clays, high moisture content etc. (cf. Table 4.1.8.4.A of the NBC) can supersede the Site classification provided in this report based on the \overline{V}_{S30} value.

The V_S values calculated are representative of the in-situ materials and are not corrected for the total and effective stresses.

Hoping the whole to your satisfaction, we remain yours truly.

Karyne Faguy, B.Sc.

Junior Project Manager

Jean-Luc Arsenault, M.A.Sc., P.Eng.

Senior Project Manager

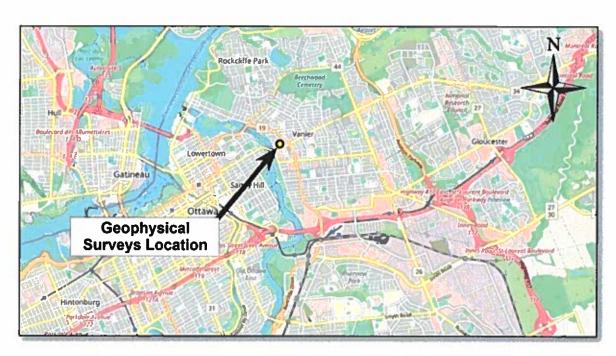


Figure 1: Regional location of the Site (source: OpenStreetMap®)

Figure 2: Location of the seismic spreads (source: Google Earth™)

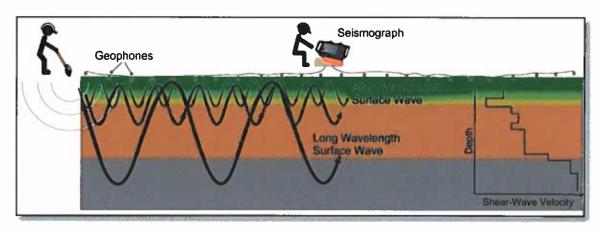


Figure 3: MASW Operating Principle

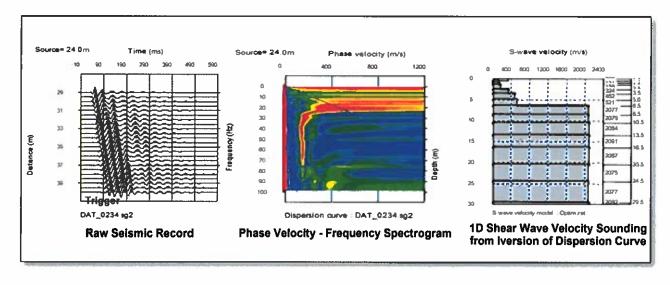


Figure 4: Example of a MASW/SPAC record, Phase Velocity - Frequency curve of the Rayleigh wave and resulting 1D Shear Wave Velocity Model

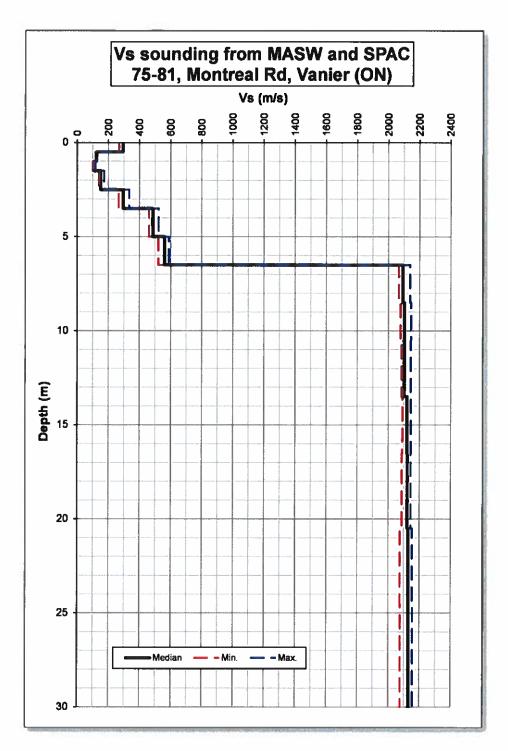


Figure 5: MASW Shear-Wave Velocity Sounding

 $\frac{\text{TABLE 1}}{V_{S30} \text{ Calculation for the Site Class (actual site)}}$

Depth		Vs		Thickness	Cumulative	Delay for	Cumulative	Vs at given
Deptii	Min.	Median	Max.	inickness	Thickness	Med. Vs	Delay	Depth
(m)	(m/s)	(m/s)	(m/s)	(m)	(m) (m)		(s)	(m/s)
0	270.4	293.2	297.8		Grade I	Level (April	9th, 2021)	
0.50	116.4	123.8	126.9	0.50	0.50	0.001705	0.001705	293.2
1.00	100.2	106.3	117.8	0.50	1.00	0.004039	0.005744	174.1
1.50	140.1	151.4	172.2	0.50	1.50	0.004704	0.010448	143.6
2.50	266.9	295.2	333.7	1.00	2.50	0.006605	0.017053	146.6
3.50	462.2	485.1	522.8	1.00	3.50	0.003387	0.020440	171.2
5.00	521.9	560.0	587.4	1.50	5.00	0.003092	0.023532	212.5
6.50	2068.0	2092.3	2139.6	1.50	6.50	0.002679	0.026211	248.0
8.50	2078.9	2101.2	2145.4	2.00	8.50	0.000956	0.027167	312.9
10.50	2085.0	2101.2	2143.5	2.00	10.50	0.000952	0.028119	373.4
13.50	2091.0	2119.2	2144.9	3.00	13.50	0.001428	0.029546	456.9
16.50	2087.6	2122.6	2143.7	3.00	16.50	0.001416	0.030962	532.9
20.50	2075.6	2127.6	2152.6	4.00	20.50	0.001884	0.032846	624.1
24.50	2077.6	2129.6	2154.9	4.00			0.034726	705.5
30				5.50	30.00	0.002583	0.037309	804.1

Vs30 (m/s)	804.1
Class	B (1)

(1) The Site Classes A and B are not to be used if there is 3 metres or more of unconsolidated materials between the rock surface and the bottom of the spread footing or mat foundation.

 $\frac{\text{TABLE 2}}{V_{S30}\text{* Calculation for the Site Class (Less than 3 metres of unconsolidated material)}}$

Donth	رو دیا	Vs		Thickness	Cumulative	Delay for	Cumulative	Vs at given						
Depth	Min.	Median	Max.	Inickness	Thickness	Med. Vs	Delay	Depth						
(m)	(m/s)	(m/s)	(m/s)	(m)	(m) (m)		(s)	(m/s)						
(m)	(m/s)	(m/s)	(m/s)											
0.00	270.4	293.2	297.8											
0.50	116.4	123.8	126.9	1										
1.00	100.2	106.3	117.8	Le	Less than 3 metres of unconsolidated material									
1.50	140.1	151.4	172.2											
2.50	266.9	295.2	333.7											
3.50	462.2	485.1	522.8											
3.51	462.2	485.1	522.8											
5.00	521.9	560.0	587.4	1.49	1.49	0.003071	0.003071	485.1						
6.50	2068.0	2092.3	2139.6	1.50	2.99	0.002679	0.005750	520.0						
8.50	2078.9	2101.2	2145.4	2.00	4.99	0.000956	0.006706	744.1						
10.50	2085.0	2101.2	2143.5	2.00	6.99	0.000952	0.007658	912.8						
13.50	2091.0	2119.2	2144.9	3.00	9.99	0.001428	0.009085	1099.6						
16.50	2087.6	2122.6	2143.7	3.00	12.99	0.001416	0.010501	1237.0						
20.50	2075.6	2127.6	2152.6			0.001884	0.012385	1371.8						
24.50	2077.6	2129.6	2154.9	4.00 20.99		0.001880	0.014265	1471.4						
33.51				9.01	30.00	0.004231	0.018496	1621.9						

V _{\$30} * (m/s)	1621.9
Class	A

EXP Services Inc.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Appendix C: Laboratory Certificate of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Ismail M. Taki

PROJECT: OTT-258780-B

AGAT WORK ORDER: 21Z699807

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jan 22, 2021

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21Z699807

PROJECT: OTT-258780-B

ATTENTION TO: Ismail M. Taki

SAMPLED BY:EXP

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Inorganic Chemistry (Soil)

					J	7 (7	
DATE RECEIVED: 2021-01-14							DATE REPORTED: 2021-01-22
					BH8 SS4 7.	BH9 SS2+3 2.	
		SAMPLE DES	CRIPTION:	BH7 SS3 5'-7'	5'-9.5'	5'-7'	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATE	SAMPLED:	2020-12-09	2020-12-09	2020-12-09	
Parameter	Unit	G/S	RDL	1961104	1961105	1961106	
Sulphate (2:1)	μg/g		2	38	47	103	
Electrical Conductivity (2:1)	mS/cm		0.005	0.183	0.188	0.331	
pH, 2:1 CaCl2 Extraction	pH Units		NA	8.11	8.03	7.71	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1961104-1961106 EC & Sulphate were determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:6171 Hazeldean

CHEMICAL POR CHARTERED BY NVINE BASILY OHEMIST OF

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-258780-B

AGAT WORK ORDER: 21Z699807 **ATTENTION TO: Ismail M. Taki**

SAMPLING SITE:6171 Haze	AMPLING SITE:6171 Hazeldean				SAMPLED BY:EXP											
				Soi	l Ana	alysis	8									
RPT Date: Jan 22, 2021			UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE				
PARAMETER	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured			ptable nits	Recovery	Acceptable Limits		Recovery	1 1 1	eptable mits						
TATO IMETER	ld ld	ld					Value	Lower	Upper	1		Upper	7		Upper	
Inorganic Chemistry (Soil)																
Sulphate (2:1)	1960540		41	41	0.9%	< 2	104%	70%	130%	106%	80%	120%	111%	70%	130%	
Electrical Conductivity (2:1)	1960538		0.583	0.606	3.8%	< 0.005	103%	80%	120%							
pH, 2:1 CaCl2 Extraction	1961106 1	1961106	7.71	7.56	2.0%	NA	100%	80%	120%							

Comments: NA signifies Not Applicable.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:6171 Hazeldean

PROJECT: OTT-258780-B

AGAT WORK ORDER: 21Z699807 ATTENTION TO: Ismail M. Taki

SAMPLED BY:EXP

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1	
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

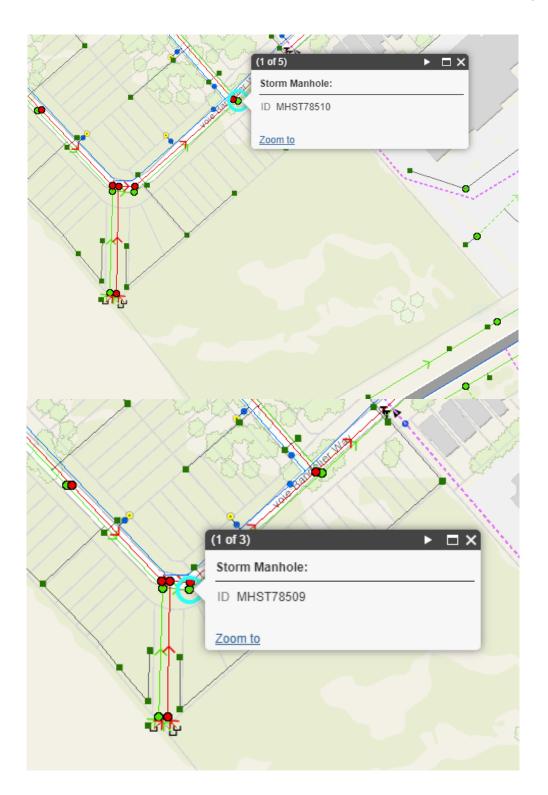
Carretories Laboratories

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122 webearth agatlabs.com **Laboratory Use Only**

Chain of Custody Reco	ì	"(d
-----------------------	---	----	---

Chain of Custody Record	ample, plea	se use Drinking Water Chain of Custody Form (potable water consumed by humans)							Arrival Temperatures: 19.6 19.5												
Report Information: Company:	Service	5		(Please (ulatory Requ		-					Custody Seal Intact: Yes No Notes:									
Contact: Address: Contact: Contac			100	Tab	gulation 153/04 ole	Table Indicate Of	Sanitary Storm					Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days									
Phone: 613 688-1859 Reports to be sent to: 1. Email: 15 64 1 1 16	Fax:			- =/	Res/Park Agriculture exture (Check One)	Regulation 55		Prov. Water Quality Objectives (PWQO) Other					Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Business								
2. Email:					Coarse Fine	ССМЕ		Oth	Other Indicate One				Days Days Days Days OR Date Required (Rush Surcharges May Apply):								
Site Location: 6171 Haze	258780 (dean	~ 3		Rec	Is this submission for a Record of Site Condition? Yes No				Report Guideline on Certificate of Analysis Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM							
Sampled By: AGAT Quote #: Please note: If quotation number is n	PO:	e billed full price for	analysis.	Sam	ple Matrix Le	gend	Field Filtered - Metals, Hg, CrVI, DOC	0.	Reg 153	e e		O. Re 558	g	eg 406 eg eg eg 406				, 6			ration (Y/N)
Invoice Information: Company: Contact: Address: Email:			O P S SD	O Oil P Paint S Soil SD Sediment			Metals & Inorganics	□ crVI, □ Hg, □ HWSB -F4 PHCs	BTEX, F1-F4 PHCs Analyze F4G if required □ Yes PAHs		Disposal Characterization To	Soils SPLP Rainwater Lea 3 Metals □ VOCs □ SVOCs	naracteri als, BTE	Salt - EC/SAR		Dhule	Convection of			ally Hazardous or High Concent	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ Instructions	Y/N	Metals	Metals - BTEX, F1	Analyz	PCBs	Landfill	Excess SPLP: [Excess pH, IC	Salt -		3	Kie			Potent
BH 7 SS 3 5'-7' RII & SS 4 7.5'-9.5' BH 9 SS 2+3 7.5'-7'	Dec 9/20 Dec 9/20 Dec 4/20	AM PM AN PM AN PN AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM AM PM AM AM AM PM AM AM AM AM AM AM AM AM AM AM AM AM AM														\(\tau_1 \)					
		AN PN AN					(1000)	0.000	1000	000		Поло		Jacon Jacon		(00)))	2000		
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	21	Date Date	1 STITUTE	30 pm	Samples Received By (I	Print Name and Sign): Print Name and Sign): This Name and Oign):	3	4	0	21	That's	114	time	h3	3	1	Prof	1 4	_of		


EXP Services Inc.

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Appendix D: Outflow from SWP and Observation in Storm Sewer along Bandelier Way

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

Client: 11654128 Canada Inc. Geotechnical Investigation, Proposed Residential Development 6171 Hazeldean Road, City of Ottawa, Ontario OTT-00258780-B0 May 14, 2021

List of Distribution

Report Distributed To:

Heafy Group- Carmine Zayoun; czayoun@groupeheafey.com Heafy Group.- Raad Akrawi <rakrawi@groupeheafey.com> EXP Infrastructure Division - Bruce Thomas. Bruce.thomas@exp.com Foten Jaime Posen, MCIP RPP- posen@fotenn.com

