

TECHNICAL MEMORANDUM

DATE January 8, 2020

Project No. 19129142/3000

- TO Pierre Dufresne Tartan Land Development
- CC Jim Moffatt, IBI Group

FROM Caitlin Cooke

EMAIL ccooke@golder.com

GROUNDWATER IMPACT STUDY RESIDENTIAL DEVELOPMENT, FINDLAY CREEK VILLAGE, STAGE 5 OTTAWA, ONTARIO

This report presents the results of a groundwater impact study carried out for Stage 5 of the Findlay Creek Village residential development site at 3100 Leitrim Road, in Ottawa, Ontario. The groundwater impact study is required by the City of Ottawa (City) prior to draft plan approval.

The purpose of this groundwater impact study was to determine the general soil and groundwater conditions across this site, by means of existing on-site borehole information and subsurface data from nearby sites, and to address possible construction-related impacts to private water supply wells. The on-site information was enhanced with published mapping and publicly available information. The water well records in the Ministry of the Environment, Conservation and Parks (MECP) Water Well Information System (WWIS) for nearby water wells were used to provide further information regarding hydrogeological conditions in the area and identify where nearby water well users are taking their water.

1.0 DESCRIPTION OF PROJECT AND SITE

Stage 5 of the Findlay Creek Village residential development site is planned to be developed between Kelly Farm Drive and Fenton Road and to the south of Leitrim Road in Ottawa, Ontario. The approximate location of the site is shown on the Key Map insert provided on the Site Plan, Figure 1.

The following is known about the site and project (Figure 1):

- The site is somewhat rectangular in shape and measures approximately 550 m by 600 m.
- The overall site topography is relatively flat, but the ground surface elevation slopes down from northwest to southeast.
- The majority of the site is currently undeveloped and is used for agricultural purposes.
- The majority of the site will be developed as a conventional residential development and the balance, toward the west, as future employment uses.
- The development will be serviced with municipal sewer and water.

It is understood that trenches for installation of site services are anticipated to have depths ranging from 3.5 to 5.5 metres below existing ground surface. Trench depths are anticipated to be deepest where connections are made to the existing sewers on Kelly Farm Drive, and at the southwestern corner of the site where a connection will be made to the storm sewer where it outlets to a stormwater pond (Leitrim Pond 2).

2.0 GEOLOGY

The following sections describe the published local geology and hydrogeology in the vicinity of the site.

2.1 Surficial Geology

The surficial geology in the vicinity of the site is shown on Figure 2. The upper overburden material mapped within the development is nearshore deposits of fine- to medium-grained sand (Unit 5b). This generally agrees with the site-specific data gathered by Golder Associates from test pits and boreholes completed within and near the development site (Golder Associates, 2019). These investigations found that the subsurface conditions on the site generally consist of fill material overlying variable deposits of sand and silt, overlying glacial till, with the bedrock surface at about 2 to 7 metres depth.

The locations of the test pits and boreholes is shown on Figure 1 and the test pit and borehole logs are provided in Attachment A.

Based on the data collected by Golder Associates, the bedrock surface typically exists at depths ranging from about 1.9 to 6.5 metres below the existing ground surface. The shallowest depths to bedrock were found in the vicinity of BH 4 and BH11-8 in the southwest of the site, and at BH11-2 and TP17-101 near the intersection of Kelly Farm Drive and Leitrim Road. Published mapping indicates the bedrock surface to be at depths in the range of 3 to 10 metres below the ground surface in the vicinity of the site (Figure 3).

2.2 Bedrock Geology

The Ontario Geological Survey bedrock geology mapping indicates that the Nepean and March Formations are present in the area of the site (Figure 4). The Nepean Formation consists of quartz sandstone and the March Formation consists of interbedded sandstone, sandy dolostone and dolostone (Williams, 1991). Although not shown on Figure 4, the Oxford Formation, consisting of dolostone with subordinate shaley and sandy interbeds, has also been found near the site.

The site-specific bedrock geology in the vicinity of the site has been interpreted based on test pit and borehole information gathered for the site, nearby phases of the Findlay Creek Village Subdivision, and the installation of Leitrim Pond 2 south of the site. All boreholes completed into the bedrock in the vicinity of the site encountered an upper bedrock unit consisting of dolostone or dolomitic limestone. This bedrock unit is interpreted to be the Oxford Formation.

3.0 HYDROGEOLOGY

3.1 Regional Hydrogeology

The clay and glacial till deposits in the area of the development are generally not capable of supplying sufficient quantities of groundwater to be considered an aquifer. As a result, the principal aquifer within the vicinity of the site is considered to be the underlying bedrock formations.

The Nepean, March and Oxford Formations are considered to be highly transmissive aquifers, and generally provide an adequate resource for domestic water supplies. Groundwater flow in these formations is controlled predominately by fractures, as the primary porosity has been reduced by cementation.

3.2 Site Specific Hydrogeology

A number of hydrogeological investigations have been completed on and nearby the site. Monitoring wells were sealed into various boreholes to allow for hydraulic response testing and measurements of the groundwater level. Estimates of hydraulic conductivity in monitoring wells where testing was completed, as well as measured groundwater levels, are provided in the following table and included in Attachment A.

Borehole Number	Geologic Unit	Ground Surface Elevation (masl)	Groundwater Depth (m)	Groundwater Elevation (masl)	Date of Measurement	Estimated Hydraulic Conductivity (m/s)
BH 11-1	Silt	Not measured	2.0	Not calculated	Sept 28, 2011	Not measured
BH 11-8	Bedrock	Not measured	3.5	Not calculated	Sept 28, 2011	Not measured
BH 6	Glacial Till	Not measured	0.3	Not calculated	Oct 28, 1993	Not measured
BH 16-6	Glacial Till/Bedrock	93.8	2.2	91.6	Aug 18, 2016	3x10 ⁻⁴
BH 16-7	Glacial Till	94.1 ¹	2.3	91.8	Aug 18, 2016	2x10 ⁻³
BH 16-8	Bedrock	93.7 ¹	2.3	91.4	Aug 18, 2016	6x10 ⁻⁵
BH 17-05	Silty Sand/ Glacial Till	96.0	1.8	94.2	June 9, 2017	8x10 ⁻⁵
BH 17-08	Sand/Glacial Till	97.8	1.7	96.1	June 9, 2017	5x10 ⁻⁴

Notes: ¹ Ground surface elevations were estimated based on adjacent ground surface elevations from the topographic mapping provided by IBI Group.

Water levels across the area surrounding the site range from 0.3 to 3.5 metres depth. It should be noted that groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring.

4.0 POTENTIAL IMPACTS TO EXISTING GROUNDWATER USERS

The greatest potential impacts to private wells could occur when groundwater control occurs from trenches that extend into the dolomitic limestone bedrock. The maximum depth of the proposed trenches will be approximately 5.5 metres below ground surface in this area of the site. The highest measured water levels near the site were found to be approximately 0.3 metres below ground surface; therefore, dewatering during construction of site services could require up to 5.2 metres of dewatering. The radius of influence of groundwater level drawdown during construction dewatering can be estimated using the modified Sichart and Kryieleis equation (Cashman and Preene, 2013¹, equation 7.15):

$$R_o = 1750(H - h)\sqrt{K}$$

where R_0 represents the radius of influence in metres, H-h represents the amount of groundwater level drawdown in metres and K represents the hydraulic conductivity of the aquifer in metres per second (m/s). Using the highest hydraulic conductivity measured in the bedrock near the site (i.e., 3×10^{-4} m/s) and assuming a maximum drawdown of 5.2 metres, the radius of influence is estimated to be about 160 metres from the service trench.

¹ Groundwater Lowering in Construction: A Practical Guide to Dewatering" By P.M. Cashman, Martin Preene. 2013.

4.1 Groundwater Quantity

It is considered that the only potential for the proposed development to affect the water quantity of any wells that are in use near the site would be in association with temporary pumping from service trenches (potential for short term impact). The maximum radius of influence associated with dewatering was estimated to be 160 metres; however, to provide a conservative assessment of potential impacts to groundwater users, groundwater use within 200 metres of the site has been reviewed.

Municipal water service within 200 metres of the site is provided along Leitrim Road, Fenton Road and Southclark Place. Based on recent available aerial imagery, no well users are located on Leitrim Road within 200 metres of the site. The City of Ottawa was contacted to request the addresses on Fenton Road and Southclark Place that do not have water meters (indicating likely well users). For the three identified addresses that do not have water meters, the MECP Water Well Information System (WWIS) database was reviewed to identify probable wells records for these properties. The following table summarizes the well construction details for those wells. These properties are identified on Figure 1.

Address	Probable Well ID	Depth of Well (m)	Depth to Static Water Level (m)	Depth to Water Found (m)	Available Drawdown (m)	Type of Well
2790 Fenton Road	1515428	11.3	1.2	10.4	10.1	Bedrock
4534 Southclark Place	1514660	21.3	3.0	7.0	18.3	Bedrock
4543 Southclark Place	1513618	14.6	1.8	13.7	12.8	Bedrock

From the available well records, the water supply wells obtain water from the bedrock aquifer. The available drawdown in the wells, calculated as the difference between the static water level and the depth of the well) ranged from about 10 to 18 metres. A temporary drawdown due to construction dewatering from service trenches at the site could temporarily reduce the available drawdown in the well, but not likely to the degree that could negatively impact water supply. It is noted that these addresses are for small industrial properties, and the daily water demands are likely limited to washroom and kitchenette use by employees. It is understood that there are no structures or land uses planned for the site that would permanently lower the groundwater levels in the area surrounding the site (i.e., deep drained foundations).

Based on the comparatively small amount of drawdown that would be required in service trenches compared to the available drawdown in the wells, the installation of site services is not expected to adversely affect performance of any wells in service within 200 metres of the site (or further away), and impacts to existing groundwater users associated with temporary pumping from service trenches are not anticipated.

Prior to construction at the site, it is recommended that a well survey be completed at 2790 Fenton Road, 4534 Southclark Place and 4543 Southclark Place. Information to be collected during the well survey could include the depth of the well, type of pump, and static water level. Water quality samples could be collected and analyzed for a typical suite of parameters (i.e., the 'subdivision package' as per MECP Procedure D-5-5).

4.2 Groundwater Quality

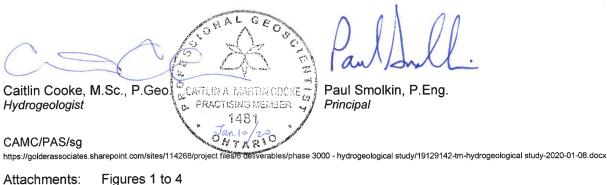
As discussed in the geotechnical report (Golder, 2019), for shallow depths of excavation, bedrock removal in trenches in Stage 5 could be accomplished using mechanical methods (such as hoe ramming). Hoe ramming was used during the installation of sewers along Kelly Farm Drive in 2019; therefore, it is likely that connections to these existing sewers from Stage 5 can also be accomplished using the same methods and blasting will not be required.

Excavations deeper into the bedrock will likely require drill and blast procedures. These areas are likely to be where trench depths are anticipated to be deepest and the depth to bedrock is shallowest (i.e., where connections are made to the existing sewers on Kelly Farm Drive, and at the southwestern corner of the site where a connection will be made to the storm sewer where it outlets to Leitrim Pond 2). It is possible that vibration from blasting might cause well water in nearby wells to become turbid (cloudy) as vibrations re-suspend rock flour or other loose material from the base or sides of the well bore into the water column. If this were to occur, it is a very temporary situation that would rectify itself. It is considered that pre-construction monitoring and pre-construction sampling of any existing wells are matters for the contractor to normally consider as part of their pre-construction surveys. If there are any effects on a well due to the site development, it is typically the responsibility of the developer and/or the contractor to mitigate (as is standard practice).

The temporary nature of the proposed construction dewatering will not result in long-term changes in groundwater flow patterns; as a result, long-term impacts to water quality at active water supply wells are not anticipated.

5.0 LIMITATIONS AND USE OF MEMORANDUM

This technical memorandum was prepared for the exclusive use of Tartan Land Corporation. The technical memorandum, which specifically includes all tables, figures and appendices, is based on data gathered by Golder Associates Ltd., and information provided to Golder Associates Ltd. by others. The information provided by others has not been independently verified or otherwise examined by Golder Associates Ltd. to determine the accuracy or completeness. Golder Associates Ltd. has relied in good faith on this information and does not accept responsibility for any deficiency, misstatements, or inaccuracies contained in the information as a result of omissions, misinterpretation or fraudulent acts.

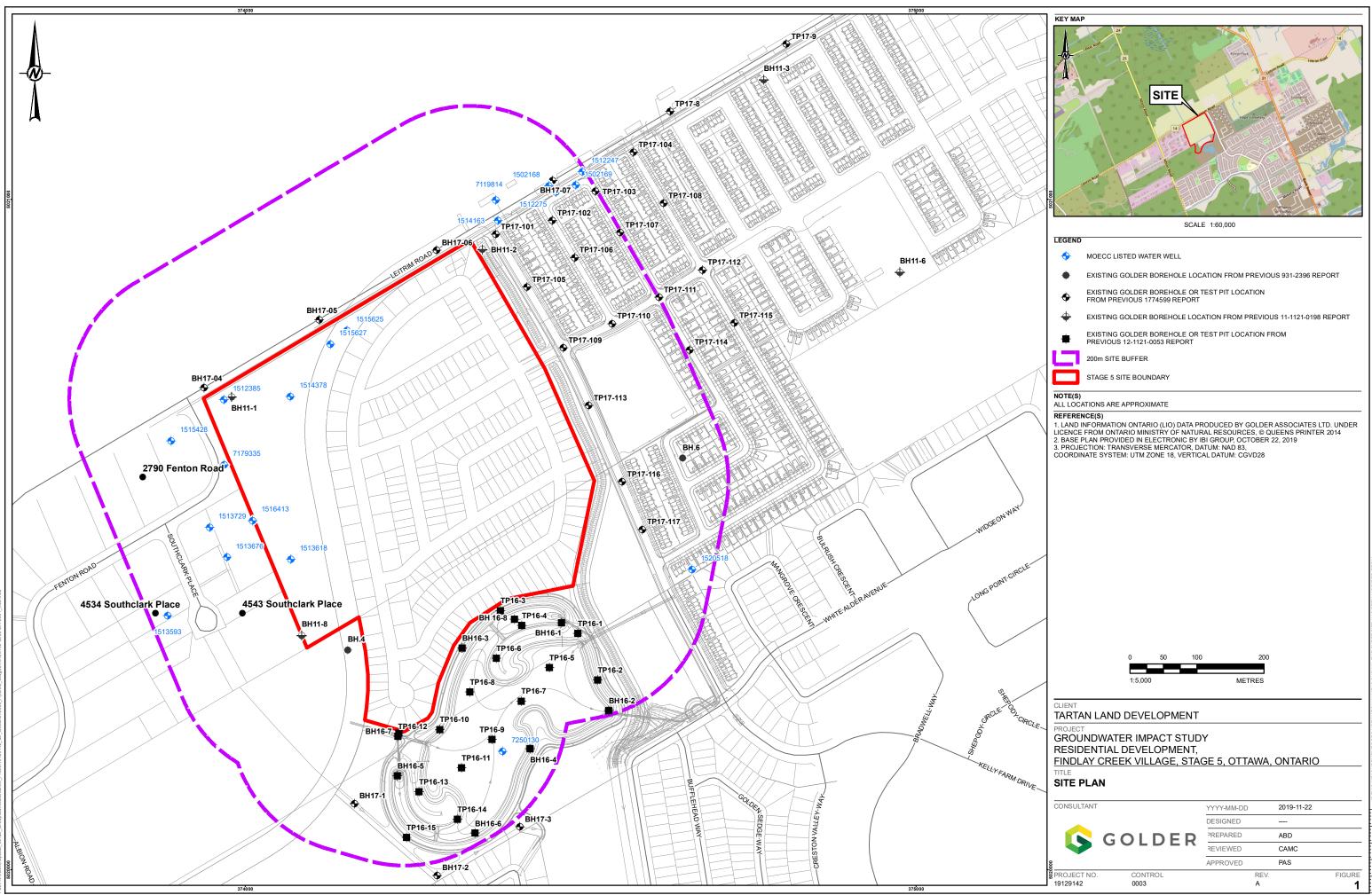

The services performed as described in this technical memorandum were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this technical memorandum, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made, or actions taken based on this technical memorandum.

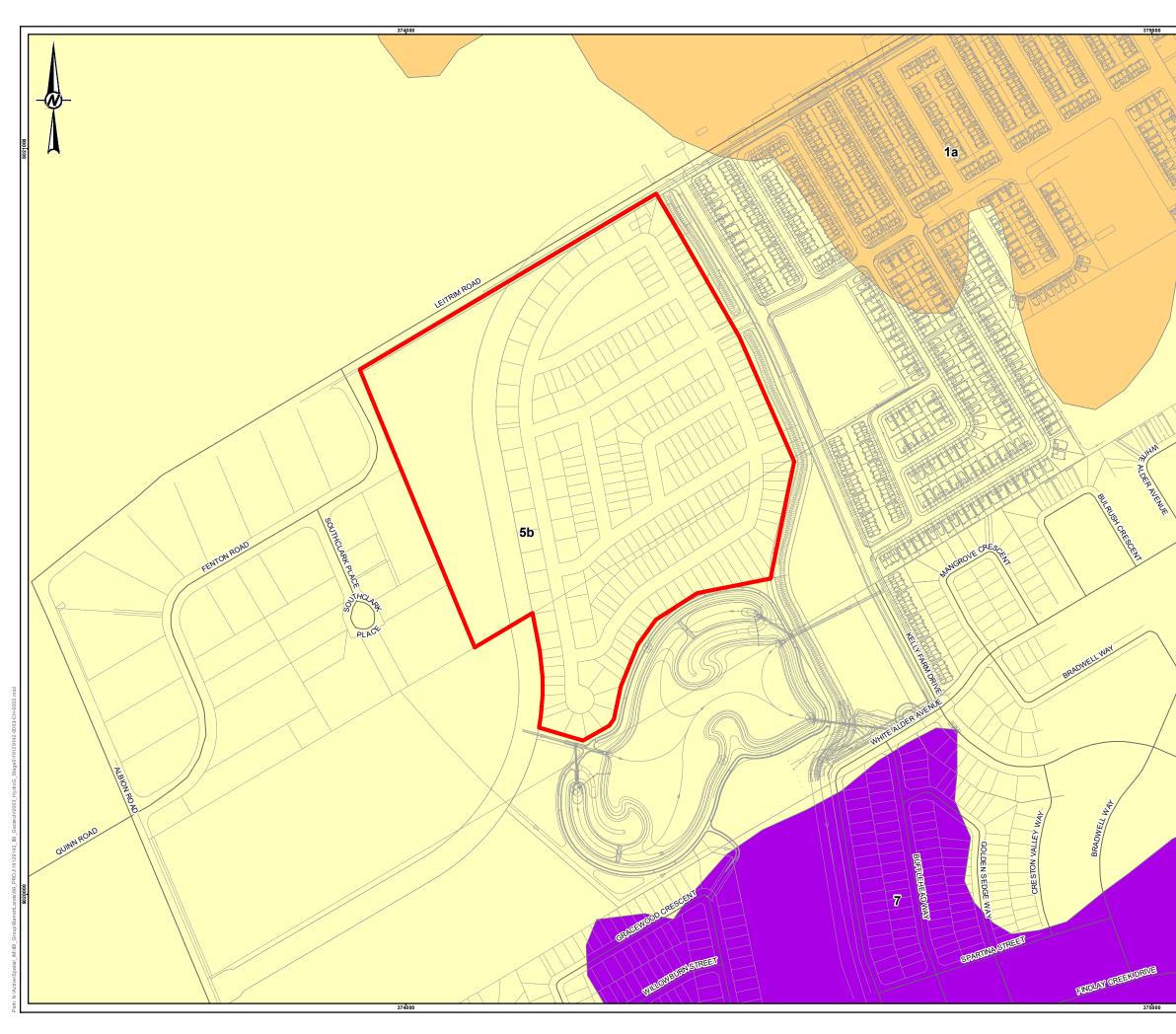
6.0 CLOSURE

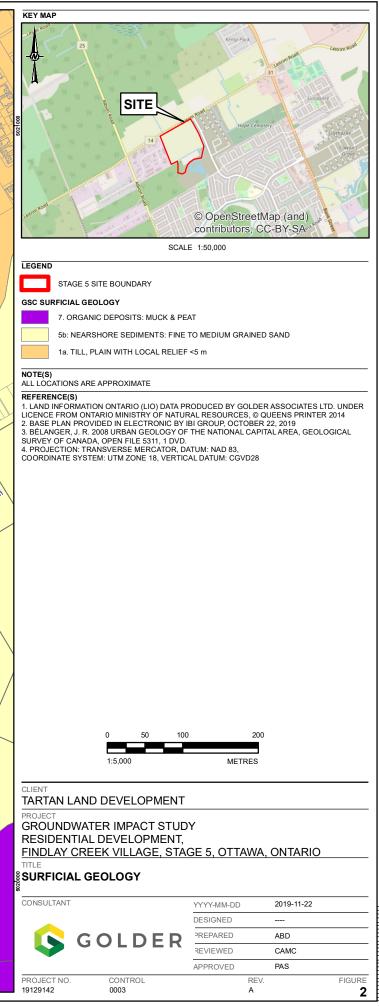
We trust this submission satisfies the requirements for a groundwater impact study of the proposed Stage 5 of the Findlay Creek Village residential development, in Ottawa, Ontario. If you have any questions regarding this report, please contact the undersigned.

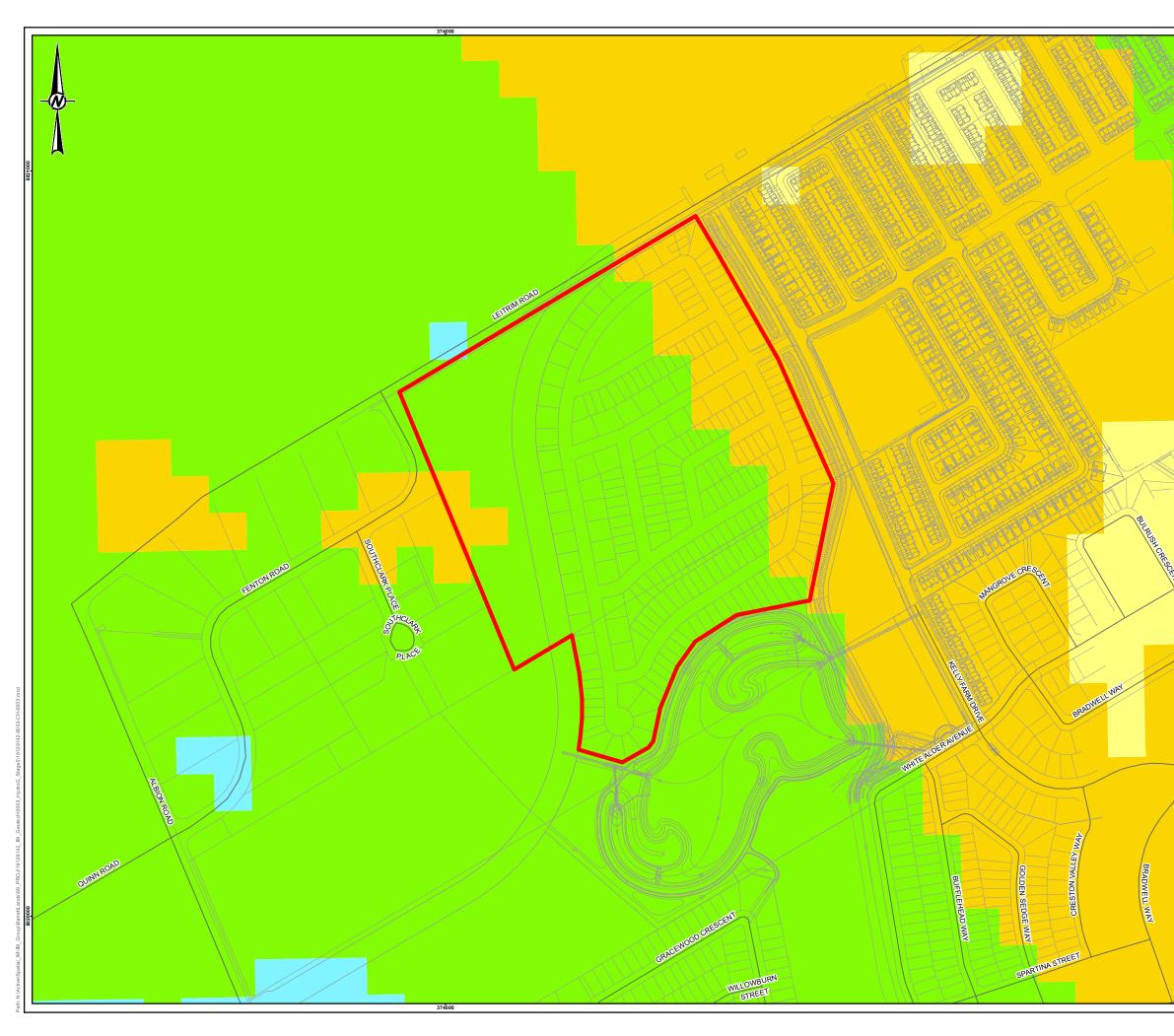
Golder Associates Ltd.

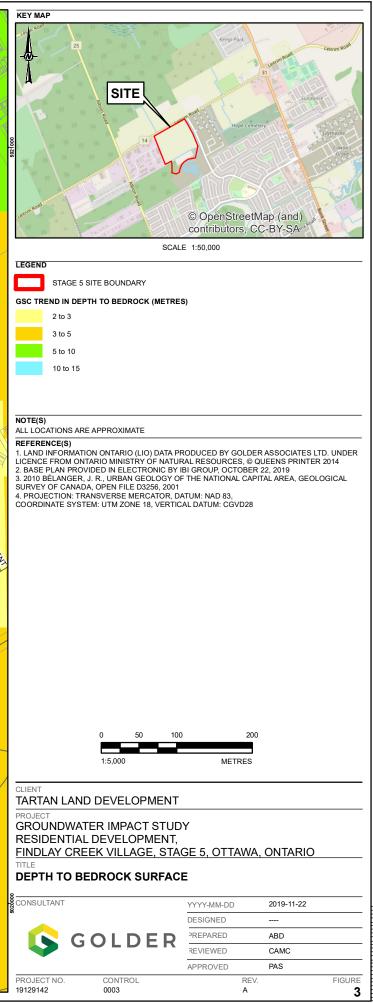


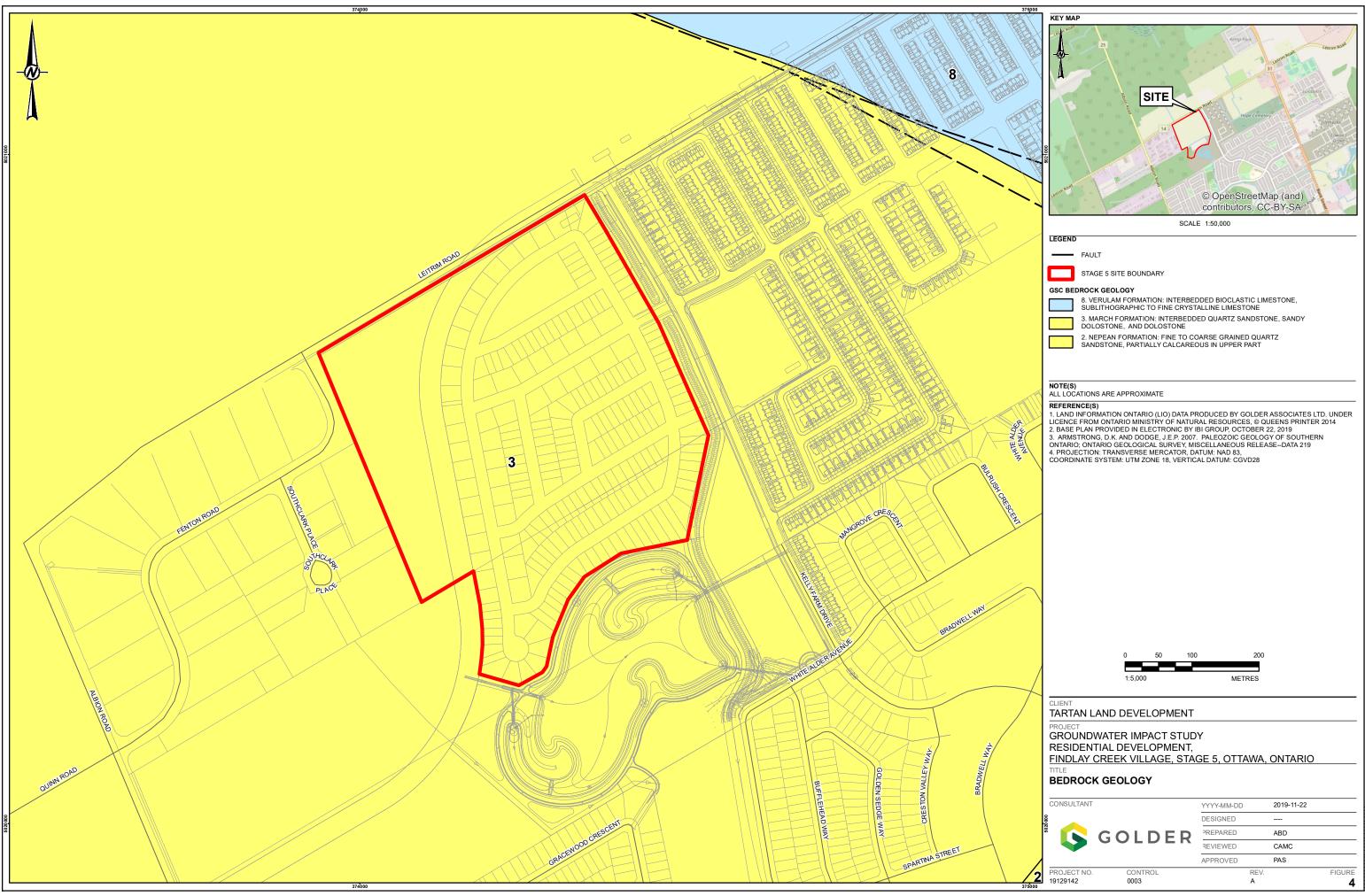
Attachment A – Borehole and Test Pit Logs and Hydraulic Conductivity Testing Results


References


- Golder Associates Ltd., 2019. Geotechnical Investigation, Findlay Creek Village Stage 5, 3100 Leitrim Road, Leitrim Development Area, Ottawa, Ontario. Report No. 19129142-2000, November 2019.
- Williams, D.A., 1991. Paleozoic Geology of the Ottawa-St Lawrence Lowland, Southern Ontario; Ontario Geological Survey, Open File Report 5770, 292p.






25mm IF THIS MEASUREMENT DOE

25mm IF THIS MEASUREMEN

ATTACHMENT A

Borehole and Test Pit Logs and Hydraulic Conductivity Testing Results

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	$Cu = \frac{D_{60}}{D_{10}}$			$Cc = \frac{(D_{30})^2}{D_{10} x D_{60}}$		Organic Content	USCS Group Symbol	Group Name						
		Gravels						Poorly Graded		<4		≤1 or ≩	≥3	GP		GRAVEL		
s)	(Organic Content 530% by mass) COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	5 mm)	ELS mass (action i 4.75 m	≤12% fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL					
by mas		GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with	Below A Line			n/a		GM		GM	SILTY GRAVEL						
ANIC ≤30%	INED ((>5 cot large	>12% fines (by mass)	Above A Line			n/a				GC	CLAYEY GRAVEL						
NORG	E-GRA s is lar	, f	Sands with	Poorly Graded		<6		≤1 or ≩	≥3	≤30%	SP	SAND						
INORGANIC (Organic Content S30% by mass)	OARSI y mas	DS mass c iction is 4.75 m	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND						
(Org	C >50% t	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND						
	÷	(≥5i coa smalle	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND						
Organic	Soil		(by mass)	Laboratory			Field Indica	tors		Organic	USCS Group	Primary						
or Inorganic	Group	Туре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name						
		plot	_	I favoid I facili	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT						
(sc	(vigurus domant active of made) FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm) CLAYS SILTS SILTS SILTS and LL plot e A-Line on below) Chart below) Chart below)	and LI	ine sity ow)	Liquid Limit <50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT						
by ma		IED SOILS aller than 0.07	SILTS	low A-L Plastic art bel		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT					
ANIC ≤30%			LED SC	JED SC	JED SC aller th	-Plasti bel Cha		Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT		
INORGANIC Content ≤30%		(Nor		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT						
ganic C	FINE y mas	y mass lot art	olot e on hart	olot e on nart		LAYS کالAYS ind LL plot A-Line on	LAYS nd LL plot A-Line on icity Chart selow)	LAYS nd LL plot s A-Line on icity Chart below)	olot e on	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY
(O	≥50% I	(250% by ma CLAYS (PI and LL plot above A-Line on Plasticity Chart below)		LAYS Id LL p A-Line icity Ch ielow)					CLAYS Ind LL e A-Lin ticity Cl	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY
	2)			Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY						
<u></u> ,υ,	() ()		mineral soil tures			•				30% to		SILTY PEAT, SANDY PEAT						
HIGHLY ORGANIC SOILS	Content > 30% by mass)	Predomin may con	antly peat, tain some							75% 75% to	PT	PEAT						
40	40 Low Plasticity Medium Plasticity High Plasticity					•		^{100%} symbol is	two symbols s SW-SC and CI	separated by								
SILTY CLAY CL SILTY CLAY CLAY SILTY CLAY SILTY CLAY SIL					as between il material be ive soils, the and plasticity sticity chart (s e Symbol — by a slash, fo be symbol sh identified as between similar ay be used to	5% and etween "c dual symb / index val ee Plastici A borderl or example ould be us s having p ar materia	ymbols must b 12% fines (i.e lean" and "di wol must be us ues plot in the ty Chart at left ine symbol is e, CL/CI, GM/S sed to indicate properties that ls. In addition a range of simi	 a. to identify rty" sand or ed when the CL-ML area b. two symbols SM, CL/ML. that the soil are on the a borderline 										

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²						
Term	SPT 'N' (blows/0.3m) ¹					
Very Loose	0 to 4					
Loose	4 to 10					
Compact	10 to 30					
Dense	30 to 50					
Very Dense	>50					

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description					
Dry	Soil flows freely through fingers.					
Moist	Soils are darker than in the dry condition and may feel cool.					
Wet	As moist, but with free water forming on hands when handled.					
	Dry Moist					

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test1
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

COHESIVE SOILS					
Consistency					
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)			
Very Soft	<12	0 to 2			
Soft	12 to 25	2 to 4			
Firm	25 to 50	4 to 8			
Stiff	50 to 100	8 to 15			
Very Stiff	100 to 200	15 to 30			
Hard	>200	>30			

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

Water Content				
Term	Description			
w < PL	Material is estimated to be drier than the Plastic Limit.			
w ~ PL	Material is estimated to be close to the Plastic Limit.			
w > PL	Material is estimated to be wetter than the Plastic Limit.			

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = $(w_l - w_p)$ non-plastic
g t	time	Ws	shrinkage limit
		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
П.	STRESS AND STRAIN	ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$ (formerly relative density)
	shear strain	(b)	Hydraulic Properties
$\gamma \Delta$	change in, e.g. in stress: $\Delta \sigma$	(b) h	hydraulic head or potential
2 8	linear strain	q	rate of flow
εv	volumetric strain	V	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
		C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G K	shear modulus of deformation bulk modulus of compressibility	mv Cv	coefficient of volume change coefficient of consolidation (vertical
IX .			direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ _P OCR	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles	φ' δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio porosity	p n'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	degree of saturation	p' q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
0		Ч Qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Danai	ty oumbol is a Unit weight symbol is	Notes: 1	
	ty symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes: 1	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERINGS STATE

Fresh: no visible sign of rock material weathering.

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very thickly bedded	Greater than 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	Less than 6 mm

JOINT OR FOLIATION SPACING

Spacing
Greater than 3 m
1 m to 3 m
0.3 m to 1 m
50 mm to 300 mm
Less than 50 mm

GRAIN SIZE

Term	<u>Size*</u>
Very Coarse Grained	Greater than 60 mm
Coarse Grained	2 mm to 60 mm
Medium Grained	60 microns to 2 mm
Fine Grained	2 microns to 60 microns
Very Fine Grained	Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, as measured along the centerline axis of the core, relative to the length of the total core run. RQD varies from 0% for completely broken core to 100% for core in solid segments.

DISCONTINUITY DATA

Fracture Index

A count of the number of naturally occuring discontinuities (physical separations) in the rock core. Mechanically induced breaks caused by drilling are not included.

Dip with Respect to Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations		
JN Joint	PL	Planar
FLT Fault	CU	Curved
SH Shear	UN	Undulating
VN Vein	IR	Irregular
FR Fracture	К	Slickensided
SY Stylolite	PO	Polished
BD Bedding	SM	Smooth
FO Foliation	SR	Slightly Rough
CO Contact	RO	Rough
AXJ Axial Joint	VR	Very Rough
KV Karstic Void		

MB Mechanical Break

Ť	ġ	SOIL PROFILE			SA	MPLE		DYNA RESIS	MIC PEN TANCE,	IETŘATI BLOWS	ON /0.3m	ì	HYDF	AULIC C k, cri		τινιτγ,	T	ي بر	DICTOLICT
METRES	BORING METHOD.	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m		I	1 IGTH	11 nat.V - + rem.V - ⊕			Wp	O ^M		 NT W1 60	ADDITIONAL LAB. TESTING	PIEZOMET OR STANDPII INSTALLAT
。		Ground Surface		0.00															<u> </u>
	Staml	Brown SANDY SILT, scattered trace gravel with depth								- · ·									
2	200mm Diam (Hollow 9	Loose to compact brown to grey sandy silt to silty sand, some gravel and clay occasional boulder (GLACIAL TILL)		0.68	2	5	12 9						0	0			· .		
-		End of Hole Auger Refusal	Kł	2.19								-							W.L in open hole at 0.06m depth on completion of drilling Oct. 26, 1993
5		NOTE : AH 4A - 1.5m East Auger Refusal at 1.98m • AH 4B - 7.0m South Auger Refusal at 2.19m						•											
,																			
												-							

	٢c	CA.	ECT: 931-2396 NON: See Plan LER HAMMER, 63.5kg; DROP, 760m	n	F	RE(00			واليونية المراجع	e e foi de la compañía de la	OLE . 26, 199	3	74TION :	TEST I	ЧАММ	DATU			50mm	70
DEPTH SCALE	METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NBER	U divi	BLOWS/0.3m	RESIST	IC PEN ANCE, I	BLOW	5/0.3m nat.V • ·	- + α-● ⊕ U-O			і мэтис 0	J		ADDITIONAL LAB. TESTING	PIEZON OF STAND INSTALL	a Pipe
ŀ	•		Ground Surface Dark brown silty TOPSOIL	-5-	0.00						•									Bentonite	
	1		Stiff to very stiff grey brown SILTY CLAY, trace to some sand seams (Weathered Crust)		0.24	1	U,	2		-					0					Seal <u> </u>	
3 3	c	200mm Diam (Hollow Stem)	Very loose to loose dark grey to grey SILT, some sand, scattered trace gravel		2.99		50 DO S0 DO	WH 5 WH						-	ο	0			мн		
- 4			Compact grey sandy silt to silty sand, some gravel and clay, occasional boulders (GLACIAL TILL)		2.00			17			-										
			End of Hole		4.57	5	50 1													Standpipe	
- 7 - 9																				W.L in Standpipe at 0.30m depth Oct.28, 1993	
DE 1 to			SALE:						Gold	der A	ssc	ciate	s			- <i></i>		<i>I</i> _	LOGG	ED: R.A.M ED: <i>Ful</i>	

RECORD OF BOREHOLE: 11-1

SHEET 1 OF 1 DATUM:

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: September 12, 2011

4	UQ-		SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRA RESISTANCE, BLOV	/S/0.3m	ζ.	k,	cm/s	CTIVITY,		PIEZOMETER
METRES	BORING METHOD			LOT		Ľ		Зm	20 40		30	10 ⁻⁶	10 ⁻⁵	10-4 1	NT SUDILIONAL	OR
Ę1	ů.		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa			WATE		NT PERCE		STANDPIPE
2				'RAT	DEPTH (m)	NN		NO	Cu, kPa	rem V. €	U- O	Wp 🛏	0	w	wi R	
	ă	<u>۱</u>		ST	(11)			Bl	20 40	60	30	20	40	<u>60 8</u>	0	
0	L .		GROUND SURFACE		<u> </u>											**
-			TOPSOIL		0.00											Native Backfill
			Brown SAND, trace silt		0.21	1	GRAE									Bentonite Seal
								[Dontointo Cour
			Compact brown SILT, trace sand and clay		0.56											
																Native Backfill
1						2	50 DO	12								
		Stem														
	er	N O														Bentonite Seal
	Power Auger	200 mm Diam. (Hollow Stem)														Silica Sand
	ower	Diam.				3	50 DO	16								
2		E E	Loose to compact grey SILT, trace sand		1.95											
		200	and clay													
																51 mm Diam. PVC
						4	50 DO	6							м	H #10 Slot Screen
3																
						5	50 DO	>50								
			Very dense grey SILTY SAND, some gravel, trace clay, with cobbles and boulders (GLACIAL TILL)		3.26		DO									Native Backfill
			boulders (GLACIAL TILL)	1	3.44											
			End of Borehole Auger Refusal													W.L. in Screen at 2.0 m depth on
4			Auger Neiusai													September 28, 2011
5																
3																
_																
6																
7																
8																
9																
10																
DE	PTł	H S	CALE						Gold							LOGGED: PH
									GOID	ΞΓ					(

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: See Site Plan

RECORD OF BOREHOLE: 11-2

SHEET 1 OF 1

DATUM:

BORING DATE: September 12, 2011

L F	ДОН.	SOIL PROFILE	- I -		SAN	IPLES	RESISTANCE, BLUI	TION VS/0.3m		ILIC CONDUCT , cm/s	LIVITY,	NGAL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ●	10 ⁻⁶	I FER CONTENT		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
ב ב	BORII		STRAI	DEPTH (m)	Ŋ		CU, KPa		vvp			LAE	
		GROUND SURFACE	0		+	+	20 40	60 80	20	40 6	60 80		
0		TOPSOIL Brown CLAYEY SILT, trace sand	EEE	0.00									
		BIOWITCLATET SILT, Trace sand		0.15	1 GI	RAB							
	Stem)												
1	ger ollow 5				2	50 7						мн	
	Power Auger			1.37									
	Power Auger 200 mm Diam. (Hollow Stem)	Very dense brown SILTY SAND, trace gravel and clay, with cobbles and boulders (GLACIAL TILL)		1.37	3	50 DO >5							
	2001												
2													
					_	50							
		End of Porobolo		2.59	4	50 DO >5							
		End of Borehole Auger Refusal		2.09									
3													
4													
5													
6													
7													
8													
9													
10													
	рти (SCALE											GGED: PH
	50	JUNEL					Gold	er					CKED: C.K.

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: See Site Plan

MIS-BHS 001 1111210198-1000.GPJ GAL-MIS.GDT 01/27/12 JEM

RECORD OF BOREHOLE: 11-3

SHEET 1 OF 1 DATUM:

BORING DATE: September 12, 2011

		1																
щ	QO	SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN RESISTANCE,	IETRATIC BLOWS/	0N 10.3m	ì	HYDRAUL k,	LIC CO cm/s	ONDUC.	FIVITY,		<u>ں</u>	DIFTONETTO
DEPTH SCALE METRES	BORING METHOD		OT.		~		m			0 8	`\	10 ⁻⁶	1(0-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR
ETR	⊠ ບ	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m								I PERCE		ΞĔ	STANDPIPE
M N	RIN N	DESCRIPTION	RAT/	DEPTH	N N	≿	Ň	SHEAR STREI Cu, kPa	n	em V. 🕀	Ũ-Õ	Wp H					ADC AB.	INSTALLATION
	B		STF	(m)	2		В	20	40 6	0 8	0	20	4			80		
- 0		GROUND SURFACE																
- 0		TOPSOIL	eee Allo	0.00 0.09														-
-		Brown SILTY SAND	ł															-
-																		-
-		Brown SILT, trace gravel, clay, and sand	Ш	0.61														-
-																		-
- 1		Compact to very dense brown SAND, some gravel, trace silt and clay, with cobbles and boulders (GLACIAL TILL)		0.98	1	50 DO	15											
-		cobbles and boulders (GLACIAL TILL)																<u>v</u> 1
-																		-
-		ster																-
-	ger				2	50 DO	37											-
2	Power Auger	E P																
_	Pow	Dia X	钢															-
-		200 mm Diam. (Hollow Slem)																-
-		S 3			3	50 DO	20											-
-																		=
- 3																		
-			Ð			50												-
-					4	50 DO	57											-
-		ġ,																-
-					5	50 DO	>50											-
- 4			K	1														
-		End of Borehole Auger Refusal		4.10														-
-																		W/L in open hole
-																		W.L. in open hole – at 1.3 m depth at – time of drilling –
-																		ume or drilling -
- 5																		_
_																		-
-																		-
-																		-
-																		-
- 6																		-
-																		=
-																		-
-																		-
_																		-
- 7																		_
-																		-
-																		-
_																		-
-																		-
- 8																		_
_																		-
-																		-
_																		-
-																		-
- 9																		
_																		-
_																		-
-																		-
-																		-
10																		
								G										
		HSCALE						(ZA VG	older	•								DGGED: PH
1:	50								ocia	tes							CH	ECKED: C.K.

LOCATION: See Site Plan

RECORD OF BOREHOLE: 11-6

BORING DATE: September 9, 2011

SHEET 1 OF 1

DATUM:

SAMPLER HAMMER, 64kg; DROP, 760mm

Ц Д	DOH		SOIL PROFILE	—		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	Ì,	HYDRAULIC CONDUCTIVITY, k, cm/s	ĘĘ	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 8 → → → → → → → → → → → → → → → → → → →				STANDPIPE INSTALLATION
	ă		SURFACE	ST	("")		- i	mi	20 40 60 8	0	20 40 60 8	30	
0		TOPSOIL	-	EEE	0.00		+	-					
		Loose bro and clay	own SILT, trace to some sand		0.15								
1		Loose gre gravel	ey brown SILT, trace to some		1.14	1	50 DO	5					
2			ey SILT, trace to some sand		1.74	2	50 DO	5					
3	Power Auger	Loose to some gra and bould	very dense grey SILTY SAND, wel, trace clay, with cobbles Jers (GLACIAL TILL)		2.29	3	50 DO	29					
						4	50 DO	14					
4						5	50 DO	25					
5						6	50 DO	9					
		End of Bo	prehole		5.64	7	50 DO >	>50					
6		Auger Re	nusai										
7													
8													
9													
10													
DE	PTH	SCALE		I	•		1		Golder			LC	DGGED: PH

RECORD OF BOREHOLE: 11-8

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: September 27 & 28, 2011

SHEET 1 OF 2

DATUM:

Ļ	BORING METHOD	SOIL PROFILE	1		SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3n		HYDRAULIC CONDUCTIN k, cm/s	/ITY,	
METRES	MET.		STRATA PLOT		н		3m	20 40 60	80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴	10 ⁻³	E OR
MET	ING	DESCRIPTION	TAP	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m	SHEAR STRENGTH nat V Cu, kPa rem V	+ Q- •	WATER CONTENT P		ビロン STANDPIPE Mail INSTALLATION
2	30R		TRA	(m)	l₿		3LO/			wp		
		GROUND SURFACE	S		-		-	20 40 60	80	20 40 60	80	
0			EEE	0.00	-	-						
		Grey brown SILT, trace gravel and sand	111	0.00	1	50 DO	10					
					'	DO	10					
	Stem)					-						
	llow (50 DO	24					
1	Power Auger Diam. (Hollo				2	DO	24					
	Powe					-						Bentonite Seal
	Power Auger 200 mm Diam. (Hollow Stem)					50 DO						
	20				-3	DO						
			Щ	1.88								
2		Highly weathered grey DOLOMITIC LIMESTONE BEDROCK			┝	-						
		Fresh, fine grained, thinly bedded, grey DOLOMITIC LIMESTONE BEDROCK		2.13								
			\vdash	-								
			Í	1		но						Silica Sand
3			É		C1	HQ RC	DD					
0			+	-								
			Ż]								
				1		-						
	_		\vdash	1								
4	Rotary Drill HQ Core											
	Rotal		Ĺ	1								
			f	1	C2	HQ RC	DD					19 mm Diam. PVC
			F	-								#10 Slot Screen
			ļ.	1								
5				1								
			F	-	⊢	1						
			Ţ	1		но						
			É,	1	СЗ	HQ RC	DD					
6			+									
o				6.00								
												W.L. in Screen at 3.5 m depth on September 28,
												September 28, 2011
7												
8												
9												
10												
		1	-	1	-	1					I I	I
		SCALE					(Golder				LOGGED: DK
1:	50							Associate	S			CHECKED: C.K.

PI	20	JEC	Г: 11-1121-0198-1000		RE	C	O	RC) (DF	= [DF	RII	LL	H	0	LI	Ξ:		1	1-8						s	HEET 2 OF 2
			N: See Site Plan 10N: -90° AZIMUTH:							D	RI	LL F	RIG:	CI	ME (55					28, 2011						D	ATUM:
				(7)			۳	비법	FF	R/FX-	FRA	ιстι	JRE	F-FA	ULT	AC	то	SM	-SM	OOT				BROK				
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	NETRATION RA (m/min)	FLUSH COLOUR RETURN		-CLE -SH N-VE REC OTAL		2	, ID	P-PC S-SL	IN I DLISH ICKE Q.D. %	NSI FI	DED RAC NDE ER (PL-	-STE -PLA	PPE		VY RVED Y DATA	B-BE				DIAMETRAL POINT LOAD INDEX (MPa)	NOTES WATER LEVELS INSTRUMENTATION
		DR	BEDROCK SURFACE	S			뷥	E	8	848				80	348		6 5			88		RIPTION	10	K, a	, 1	10	049	
- - 2			Highly weathered grey DOLOMITIC		1.88				Ħ								Ħ	T		T								Pontonito Scol
-			Fresh, fine grained, thinly bedded, grey DOLOMITIC LIMESTONE BEDROCK		2.13																							Bentonite Seal
- - - 3 -					-	C1																						Silica Sand
- - -					-																							 ⊻≈⊤≈
- - 4 - 4	Rotary Drill	HQ Core			-																							
- - -					-	C2																						19 mm Diam. PVC #10 Slot Screen
- 5 - 5 -																												
- - - -																												
- 6 - -																					W.L. in Screen at							
-																						3.5 m depth on September 28, 2011						
- - 7 - -																												
-																												
- 8 - - -																												
- - - - - 9																												
																												-
-																												
- - - - - - - - - - - - - - - - - - -	11																											
																												-
r i	EP1 : 50		CALE						C				30 350	old DC	ler zia	te	s											OGGED: DK IECKED: C.K.

RECORD OF BOREHOLE: 16-1

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 30, 2016

Ц	ЦОН	SOIL PROFILE	1.		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	≓ຶ່∠ PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - Q Cu, kPa rem V. ⊕ U - Q	10 ⁻⁸ 10 ⁻⁶ 10 ⁻⁴ 10 ⁻² WATER CONTENT PERCENT Wp	PIEZOMETEI OR OR STANDPIPE INSTALLATIO
	Ó	GROUND SURFACE	ST			$\left \right $	ВГ	20 40 60 80	20 40 60 80	+ +
• 0		TOPSOIL - (SM) SILTY SAND; brown to		93.63 0.00		$\left \right $				
		dark brown; non-cohesive (SM) sandy SILT; grey brown, contains clayey silt interbeds; non-cohesive;	411	0.15	1	ss	5			
		clayey silt interbeds; non-cohesive; moist to wet, compact								
					<u> </u>					
1					2	SS	11			
	(me									
	er ow St				<u> </u>					
	Power Auger Diam. (Hollor				3	SS	13			
2	Power Auger 200 mm Diam. (Hollow Stem)									
	300 mr									
					4	SS	4			
						33	4			
3				90.58						
		(SM) SILTY SAND, some gravel; grey, contains cobbles (GLACIAL TILL);		3.05	5	SS	11			
		non-cohesive, wet, compact		90.02						
		End of Borehole Auger Refusal		3.61	1					
4										
5										
6										
7										
8										
9										
-										
10										
					•]				
DE	PTH	SCALE					(Golder		LOGGED: JD

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 16-2

BORING DATE: June 29, 2016

SHEET 1 OF 1

DATUM: Geodetic

Ц	ПОН	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	로 일 PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		н.		BLOWS/0.30m	20 40 60 80		PIEZOMETER OR STANDPIPE INSTALLATION
ΞΨ	SNG	DESCRIPTION	VTA F	ELEV. DEPTH	NUMBER	TYPE	NS/0	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	WATER CONTENT PERCENT	
ŗ	BOR		STRA	(m)	l∃	[]	BLOV			
		GROUND SURFACE	0,	93.20			-	20 40 60 80	20 40 60 80	
0			11	0.00						
		(SM) sandy SILT; grey to brown, contains clayey silt interbeds; non-cohesive, moist to wet, loose to very			1	ss	3			
		loose								
1										
					2	SS	7			
					<u> </u>					
					3	ss	2			
2										
				90.92						
		(SM/ML) SILTY SAND to sandy SILT, trace gravel; grey, contains clayey silt interbeds; non-cohesive, wet, very loose		2.28						
		to loose			4	SS	1			
3	1	(m)		S.						
з	e e	200 mm Diam. (Hollow Sterr)		e I		1				
	Power Auger	но) Н			5	SS	wн			
	Powe									
4	ð	20			6	SS	wu			
						33	WI			
5					7	SS	8			
Ū										
		(SM) SILTY SAND, some gravel; grey (GLACIAL TILL); non-cohesive, wet,		87.87 5.33	8	ss	>50			
		(GLACIAL TILL); non-cohesive, wet, very dense								
6		Probable Delectore Redroek		87.10 6.10						
		Probable Dolostone Bedrock		0.10						
					9	SS	50			
					-	$\left \right $				
7		End of Borehole Auger Refusal		6.81						
8										
9										
10										
DE	PTH	SCALE						100 Mar 1		LOGGED: JD
1:	50							Golder		CHECKED: KSL

RECORD OF BOREHOLE: 16-3

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 30, 2016

SHEET 1 OF 1

DATUM: Geodetic

,, F	тнор	SOIL PROFILE	F		SA	MPLE		DYNAMIC RESISTAN			Ì,		, cm/s			NG NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DECODIDITION	STRATA PLOT	ELEV.	BER	歫	BLOWS/0.30m	20 SHEAR ST	40 RENGTH	60 nat V.	80 + Q - ●	10 ⁻⁸ WAT	10 ⁻ L		10 ⁻²	ADDITIONAL LAB. TESTING	OR STANDPIPE
L W	ORIN	DESCRIPTION	'RAT	DEPTH (m)	NUMBER	ТҮРЕ	OWS	SHEAR ST Cu, kPa		rem V.	ėŭ-O				WI	ADD LAB.	INSTALLATION
	ă		ST				В	20	40	60	80	20			80	+	
0		GROUND SURFACE TOPSOIL - (SM) SILTY SAND; brown to		93.96 0.00	-		+		_	_					-		
		dark brown; non-cohesive		93.73 0.23		SS	4										
		(SM) sandy SILT; grey brown, contains clayey silt interbeds; non-cohesive, moist to wet, compact to loose															
		moist to wet, compact to loose															
1																	
					2	SS	10										
				1	<u> </u>												
	2			1													
	v Ster				3	SS	8										
2	Auger (Hollov				<u> </u>												
	ower Diam.																
	200 mm Diam. (Hollow Stem)			1	4	SS	5										
	20(91.06 2.90													
3		(SM) SILTY SAND, trace gravel; grey (GLACIAL TILL); non-cohesive, wet,		2.90													
		loose			5	SS	4										
		Probable Dolostone Bedrock		90.15 3.81													
4					6	SS	53										
		End of Borehole	-4-4	89.46 4.50													
		Auger Refusal															
5																	
6																	
7																	
8																	
9																	
10																	
					•											I	
DEF	PTH	SCALE							Gold <u>ssoc</u>	er							OGGED: JD ECKED: KSL

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 16-4

BORING DATE: June 29, 2016

SHEET 1 OF 1

DATUM: Geodetic

Ц	БЧ	SOIL PROFILE		1	SA	MPL		DYNAMIC PENETRA RESISTANCE, BLOW	S/0.3m		HYDRAULIC k, cm	SONDUCT s	IVITY,	βŕ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT		н		BLOWS/0.30m	20 40	60 80			10 ⁻⁶ 10		ADDITIONAL LAB. TESTING	OR
MET	RING	DESCRIPTION	ATAF	ELEV. DEPTH		TYPE	WS/0	SHEAR STRENGTH Cu, kPa	nat V. + Q - rem V. ⊕ U - (8			PERCENT	ADDIT AB. TI	INSTALLATION
ā	BOI		STR	(m)	Ī		BLO	20 40	60 80		20	40 6		L, ,	
. 0		GROUND SURFACE		93.60											
0		TOPSOIL - (SM) SILTY SAND; brown to dark brown; non-cohesive	<u>/</u>	0.00											
		(SM) sandy SILT; grey to brown, contains clayey silt interbeds; non-cohesive, moist to wet, loose to very			1	SS	6								
		non-cohesive, moist to wet, loose to very loose			<u> </u>										
		loose													
1					2	ss	9								
				-	<u> </u>										
					3	SS	3								
2					ľ		Ū								
	Ê			1	4	SS	2								
- 3	w Ste				-										
0	Power Auger 200 mm Diam. (Hollow Stem)														
	Power Diam.				5	SS	2								
	0 mm														
	50														
• 4		(SM/ML) SILTY SAND to sandy SILT,	82	89.56 4.04	6	SS	3								
		(SM/ML) SILTY SAND to sandy SILT, some gravel; grey (GLACIAL TILL); non-cohesive, wet, very loose													
					7	SS	1								
- 5					ľ		Ċ								
				88.27											
		(SM) SILTY SAND; some gravel; grey (GLACIAL TILL); non-cohesive, wet,		5.33											
		dense to very dense			8	SS	43								
- 6															
					9	ss	>50								
		Ford of Developing		87.10											
		End of Borehole Auger Refusal		6.50											
- 7															
8				1											
- 9															
				1											
				1											
				1											
- 10				1											
DE	PIHS	SCALE						Gold	er						DGGED: JD ECKED: KSL

RECORD OF BOREHOLE: 16-5

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 29, 2016

SHEET 1 OF 1

DATUM: Geodetic

л Р Г Ц	BORING METHOD	SOIL PROFILE	1.	1	SA	AMPL		DYNAMIC PENETRA RESISTANCE, BLOW		Ì,	k	, cm/s	UCTIVITY		AL	PIEZOMETER
METRES	MET		STRATA PLOT	ELEV.	ЕR	,,	BLOWS/0.30m	20 40	60 8	30	10 ⁻⁸		10-4	10-2	ADDITIONAL LAB. TESTING	OR STANDPIPE
UN UN	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE)/S/(SHEAR STRENGTH Cu, kPa	nat V. + rem V. ⊕	Q - ● U - ○			ENT PER		ADDI AB. T	INSTALLATION
כ	BO		STR	(m)	z		BLO	20 40		30	20 vvp r	40	60	- WI 80	[``]	
0		GROUND SURFACE		94.03												
J		TOPSOIL - (SM) SILTY SAND; brown to \dark brown; non-cohesive		0.00	1											
		(SM) sandy SILT; grey brown, with clayey silt interbeds; non-cohesive, moist to wet, loose to compact			1	SS	8									
		moist to wet, loose to compact			<u> </u>	$\left \right $										
					\vdash											
1				1	2	SS	18									
	tem)				3	SS	11									
2	ger Ilow S				່	33										
	Power Auger 200 mm Diam. (Hollow Stem)			1		1										
	Pow m Dial	(SM) SILTY SAND, some gravel: grev	639	91.59 2.44	4	SS	>50									
	200 mi	(SM) SILTY SAND, some gravel; grey (GLACIAL TILL); non-cohesive, wet, compact to very dense		1		$\left \right $										
		computer very dense														
3																
				1	5	SS	12									
					<u> </u>	$\left \right $										
4					6	SS	>50									
				89.61												
		End of Borehole Auger Refusal		4.42	1											
5																
6																
7																
'																
8																
9																
10																
	ртн с	CALE													17)GGED: JD
JE	50							Gold	r							ECKED: KSL

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 16-6

BORING DATE: June 29, 2016

SHEET 1 OF 1

DATUM: Geodetic

» HE	ГНОВ	SOIL PROFILE	Ŀ		SA	MPLES	RESISTANCE, BLO		HYDRAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa	rem V. ⊕ U - O		OR STANDPIPE INSTALLATION
	1	GROUND SURFACE	s	93.80			20 40	60 80	20 40 60 80	
0		(SM) sandy SILT; grey brown; non-cohesive, moist to wet, loose to compact		0.00	1	8				Bentonite Seal
1					2	12				Cuttings
3	Power Auger 200 mm Diam. (Hollow Stem)				4	7				Bentonite Seal
	20((SM) SILTY SAND, trace gravel; grey (GLACIAL TILL); non-cohesive, wet,		90.14 3.66						Silica Sand
4		loose			6	8				
5		Probable Dolostone Bedrock		<u>88.47</u> 5.33	7	7				32 mm Diam. PVC #10 Slot Screen
		End of Borehole		87.93 5.87	0					Native Backfill
6		Auger Refusal								W.L. in Screen at 2.21 m depth on Aug. 18, 2016
7										
8										
9										
10										
DE	PTH S	SCALE				<u> </u>	Gold	er		LOGGED: JD

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 16-7

BORING DATE: August 10, 2016

SHEET 1 OF 2

DATUM: Geodetic

y I	Ъ		SOIL PROFILE			SA	MPL		DYNAMIC PENETRA RESISTANCE, BLOV	/S/0.3m	ζ.	HYDRAULIC CONDUCTIVI k, cm/s		
METRES	BORING METHOD	DES	SCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa	60 € nat V. + rem V. ⊕		vvp — O		PIEZOMETER OR STANDPIPE INSTALLATION
	ш	GROUND SURFA	CE	Ś				ā	20 40	<u>60</u> 8	0	20 40 60	80	
0		TOPSOIL - (ML) non-cohesive (ML) sandy SILT	sandy SILT; brown; , trace clay; brown; pist, loose to compact		94.10 0.00 0.08	1	ss	6						
1					92.58	2	ss	12						
2	iger	(ML) SILT, some cobbles and clay cohesive, moist t	sand; grey, contains ey silt interbeds; o wet, compact	1.81.	1.52	3	ss	10						Bentonite and Cuttings
	Power Auger	(SM) SILTY SAN contains cobbles (GLACIAL TILL); compact to dense	D, some gravel; grey, and boulders non-cohesive, wet, e		91.81 2.29	4	ss	35						$\overline{\Delta}$
3						5	ss	11						Silica Sand
4						6	ss	14						32 mm Diam. PVC #10 Slot Screen
5	Wash Boring	(SP/GP) SAND a non-plastic fines; boulders (GLACI	nd GRAVEL, some contains cobbles and AL TILL); wet, compact		4.57	7	ss							Silica Sand
6		Borehole continu DRILLHOLE 16-7	ed on RECORD OF 7	37.64	88.7 <u>2</u> 5.38	8	SS	>50						
7														
8														
9														
10														
DE	PTH	SCALE		<u> </u>	I				Gold	er	1			LOGGED: KM

PROJECT: 12-1121-0053 RECORD OF DRILLHOLE: 16-7 LOCATION: See Site Plan DRILLING DATE: August 10, 2016 INCLINATION: -90° AZIMUTH: DRILL RIG: CME 55 DRILLING CONTRACTOR: Downing Drilling												HEET 2 OF 2 ATUM: Geodetic																			
IN	ICL	.INAT	TION: -90° AZIMUTH:						DI	RILI		G C(ONT	RA	CT	DR:				-	-										
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SH CJ R TO COF	- Jo T - Fa IR- Sh I - Ve - Co ECOV	near ein onjuç /ER`	Y ID E %		D. 0	Cont	act ogon vage T. X B	Angle		ST - : R - I	Und Ste Irre CON	har ved dulating pped gular NTINUIT YPE AND DESCR	K SI Ro M Y DAT	cken	side n nical	Brea HYE ONE K,	NC	DTE: I brevia abbre mbols LIC VITY c	Diame Point I Inde (MP	ditiona refer to is & etral Load ex Pa)	al o list		
- - - - - - - 6 -			BEDROCK SURFACE Slightly weathered to fresh, medium to thinly bedded, grey, fine grained, crystalline, non-porous DOLOSTONE, with thin shale interbeds		<u>88.72</u> 5.38	1	10		2			004	· Ā 12		0	0-0	4 C		6							1	0.4	. 0			-
- - - - - - - - - - - - - - - - - - -	Rotary Drill	NQ Core				2	ß																							Bentonite Seal	
- - - 8 - -	5		End of Drillhole		85.82	3	2																								-
- 9 - 10 - 11 - 11																W.L. in Screen at 2.30 m depth on Aug. 18, 2016	-														
MIS-RCK 004 1211210053.GPU GAL-MISS.GDT 02/21/17 ZS 1 III IIII IIIIIII IIIIIIIIIIIIIIIIIII	ł																														_
MS-RCK 004 121121(1 II	DEPTH SCALE 1:50 LOGGED: KM CHECKED: KSL																														

RECORD OF BOREHOLE: 16-8

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: August 10, 2016

SHEET 1 OF 2

DATUM: Geodetic

Ц Д	DOH		SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	₽Ę	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C	10 ⁸ 10 ⁶ 10 ⁴ 10 ² WATER CONTENT PERCENT Wp ├────────────────────────────────────	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	B		DEACE	ST				В	20 40 60 80	20 40 60 80	_	
0		GROUND SU	ML) sandy SILT; brown;	222	93.70 0.00 0.08						_	
		(SM) SILTY	e SAND; light brown to brown;	4	0.08	1	SS	6				
		non-cohesive	e, dry, loose		92.94							
		(ML) sandy s	SILT, fine; grey brown to is oxidation staining;		0.76							
1		non-cohesive	e, moist, loose			2	SS	7				
						3	SS	9				
2	Power Auger	(ML) sandy S non-cohesive	SILT; grey, contains cobbles; e, moist, loose		91.62							
	Power	non-cohesive	e, moist, loose									$\overline{\Delta}$
						4	SS	7				
3					90.65							Bentonite and Cuttings
		(SM) SILTY contains cob seams (GLA	SAND, some gravel; grey, bles, boulders, and sand CIAL TILL); non-cohesive,		3.05	5	SS	9				
		moist to wet,	loost to compact									
4						-						
-						6	SS	23				
		Borehole cor DRILLHOLE	ntinued on RECORD OF	<u>N/M</u>	4.39							
5												
6												
7												
8												
9												
10												
-												
DE	PTH	SCALE							Calder		L	OGGED: KM
1:	50								Golder		C⊢	ECKED: KSL

LC	CA	TIO	T: 12-1121-0053 N: See Site Plan TION: -90° AZIMUTH:		RE	EC	ORE	0	D) RIL	.LIN .L RI	g d. IG:	oate CM	E: A E 55	Augi 5	ust 1	10, : Do	2016 owni	6 ing D	Drilling	1								HEET 2 OF 2 ATUM: Geodetic	
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR		N - J LT - F HR- S N - V J - C RECC DTAL IRE %	Shea /ein Conju DVEF SC COF	r Jgate RY DLID RE %		CO- OR- CL -	Bedo Folia Cont Ortho Clear NDE PER 0.25 r	act ogon vage T. X B	al Angle		81 - S R - In		I Iting Id Ar NUITY E AND SU ESCRIPT	DATA	Smoot Rough Mecha	h anical	Breal HYDF ONDU K, c		E: For eviation breviat ools. Dia TYPoi I	addition ns refer ions & ametra nt Loai ndex MPa)	nal to list		
_			BEDROCK SURFACE Slightly weathered to fresh, medium to		89.31 4.39																									
- - - - - 5 -			thinky bedded, grey, fines and a construction of the grained, crystalline, non-porous DOLOSTONE, with thin shale interbeds			1		n I		_																			Bentonite and Cuttings	
	÷					2	Ľ	0																						
- 6 - 6 	Rotary Drill	NQ Core																					000000000000000000000000000000000000000						Silica Sand	
- - - - - - -						3		0												32 mm Diam. PVC #10 Slot Screen										
-					86.08																									
- - - - - - - - -			End of Drillhole		7.62																	W.L. in Screen at 2.30 m depth on Aug. 18, 2016								
- 10																														
- 11																														
- 12																														
- 13																														
- 14 -																														
	EP1		CALE								G	o	ldg	er								•		<u> </u>		_			DGGED: KM IECKED: KSL	

TABLE 1 RECORD OF TEST PITS

<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	<u>Description</u>	
TP 16-1	0.00 – 0.25	TOPSOIL – (ML) Sandy SILT; dark brown	; non-cohesive
(93.49 metres)	0.25 – 0.70	(ML) Sandy SILT, some sand, trace grave non-cohesive, moist	l; brown grey;
	0.70 – 1.20	(ML) SILT, some sand to sandy; grey brow non-cohesive, moist	vn;
	1.20 – 3.10	(ML) SILT to CLAYEY SILT, trace sand; b non-cohesive, moist to wet	rown;
	3.10 – 4.70	(SM) SILTY SAND, some gravel; grey, con and boulders (GLACIAL TILL); non-cohes	
	4.70	END OF TEST PIT – Refusal to excavatio	n
		Note: Water seepage at 2.2 metres	
		Side walls caving in at 3.1 metres	depth
		Sample Depth (m)	
		1 0.25 – 0.70	
		2 0.70 – 1.20	
		3 1.20 – 3.10	
		4 3.10 - 4.10	

TABLE 1 RECORD OF TEST PITS

<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	Description						
TP 16-2	0.00 – 0.21	TOPSOIL - (ML)) Sandy SILT; dark b	rown; non-cohesive				
(93.36 metres)	0.21 – 0.61	(SM) SILTY SAN	ID; brown; non-cohe	sive, moist				
	0.61 – 1.00	(SM) SILTY SAN	ID; non-cohesive, we	et				
	1.00 – 1.40	(ML) SILTY CLA	Y; grey brown; cohe	sive, w>PL				
	1.40 – 3.70	(ML) SILT, some to wet	sand; grey brown; r	non-cohesive, moist				
	3.70 – 5.80	(ML) Sandy SILT, some gravel; grey brown to grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet						
	5.80	End of Test Pit -	- Side walls of test pi	t sloughing				
		Note: Water se	eepage at 2.0 metres	s depth				
		<u>Sample</u>	Depth (m)	Lab Testing				
		1	0.21 - 0.61					
		2	0.61 – 1.00					
		3	1.00 - 1.40	w₀=40%, w∟=43%, wթ=20%				
		4	1.40 - 3.70					
		5	3.70 - 5.80					

TABLE 1 RECORD OF TEST PITS

<u>Test Pit Number</u> <u>Elevation</u> <u>(Metres)</u>	<u>Depth</u> (metres)	<u>Description</u>		
TP 16-3	0.00 - 0.30	TOPSOIL – (ML) sandy SILT; dark brown; non-cohesive		
(93.78 metres)	0.30 – 0.95	(ML) Sandy SILT; brown; non-cohesive, moist		
	0.95 – 1.30	(ML) Sandy SILT; grey brown; non-cohesive, moist		
	1.30 – 2.60	(ML) CLAYEY SILT; grey; cohesive, w>PL		
	2.60 - 3.90	(ML) sandy SILT, some gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet		
	3.90	END OF TEST PIT – Refusal to excavation		
		Note: Water seepage at 2.6 metres depth		
		<u>Sample</u>	Depth (m)	
		1	0.30 - 0.95	
		2	0.95 – 1.30	
		3	1.30 – 2.60	
		4	2.60 - 3.90	
TP 16-4 (93.74 metres)	0.00 - 0.22	TOPSOIL – (ML) Sandy SILT; dark brown; non-cohesive, moist		
	0.22 - 0.80	(ML) SILT, some sand to sandy, trace gravel; brown grey; non-cohesive, moist		
	0.80 - 3.10	(ML) SILT trace sand; grey; non-cohesive, moist		
	3.10 – 4.40	(ML) Sandy SILT, some gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet		
	4.40	END OF TEST PIT – Refusal to excavation		
		Note: Water seepage at 2.3 metres		
		Sample	Depth (m)	Lab Testing
		1	0.22 - 0.80	
		2	0.80 - 1.70	
		3	1.70 – 3.10	Gr (0) Sa (2) Si/Cl (98)
		4	3.10 - 4.40	

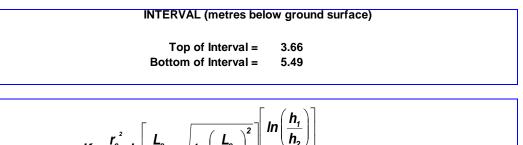
<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	<u>Description</u>	
TP 16-5	0.00 – 0.18	TOPSOIL – (ML) sa	andy SILT; dark brown; non-cohesive
(93.44 metres)	0.18 – 0.85	(ML) SILT, some sa non-cohesive, mois	nd to sandy; grey brown; t
	0.85 – 1.30	(ML) SILT, some sa	nd; grey brown; non-cohesive, moist
	1.30 – 3.10	(ML) SILT to CLAYI non-cohesive, mois	EY SILT, some sand; grey; t to wet
	3.10 - 6.00	(ML) sandy SILT, so non-cohesive, wet	ome gravel; grey (GLACIAL TILL);
	6.00	END OF TEST PIT	
		Note: Water seep	age at 2.7 metres
		<u>Sample</u>	<u>Depth (m)</u>
		1	0.18 – 0.85
		2	0.85 – 1.30
		3	1.30 – 3.10
		4	3.10 – 4.30

<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	Description
TP 16-6 (93.95 metres)	0.00 - 0.26	TOPSOIL – (ML) Sandy SILT, some gravel; dark brown; non-cohesive
х , , , , , , , , , , , , , , , , , , ,	0.26 - 0.60	(SM/ML) SILTY SAND to sandy SILT; brown, contains rootlets; non-cohesive, moist
	0.60 - 1.00	(SM) SILTY SAND, some gravel; grey brown, contains cobbles; non-cohesive, moist
	1.00 – 2.90	(ML) SILT to CLAYEY SILT, some sand; grey brown; non-cohesive, w>PL
	2.90 - 3.40	(ML) SILT, some sand to sandy; grey; non-cohesive, moist to wet
	3.40 - 6.00	(ML) Sandy SILT, some gravel; grey, contains cobbles and boulders up to 750 millimetres in diameter (GLACIAL TILL), non-cohesive, wet
	6.00	END OF TEST PIT
		Note: Water seepage at 3.1 metres
		Side walls sloughing at 3.9 metres depth
		Sample Depth
		1 0.26 – 0.60
		2 0.60 - 1.00
		3 1.00 - 1.50
		4 1.50 – 2.90 5 2.90 – 3.40
		6 3.40 - 6.00

<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	<u>Description</u>					
TP 16-7	0.00 - 0.17	TOPSOIL – (ML) Sandy SILT; brown; non-cohesive					
(93.35 metres)	0.17 – 1.30	(ML) SILT, some sand, trace gravel; brown; non-cohesive, moist					
	1.30 – 2.40	(ML) Sandy SILT; grey; non-cohesive, moist					
	2.40 - 4.30	(ML) SILT, some sand to sandy; grey; non-cohesive, moist					
	4.30 - 6.00	(ML) Sandy SILT, some gravel; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist					
	6.00	END OF TEST PIT					
		Note: Water seepage at 4.4 metres.					
		Sample Depth					
		1 0.17 – 0.70					
		2 0.70 – 1.30					
		3 1.30 – 2.40					
		4 2.40 - 4.30					
		5 4.30 - 6.00					

<u>Test Pit Number</u> <u>Elevation</u> (<u>Metres)</u>	<u>Depth</u> (metres)	<u>Descr</u>	<u>iption</u>		
TP 16-8	0.00 - 0.27	TOPS	OIL – (ML) Sai	ndy SILT; dark br	rown; non-cohesive
(93.98 metres)	0.27 – 1.20		ILT, some sar s; non-cohesiv	nd, trace gravel; b ve, moist	prown, contains
	1.20 – 2.10	· · ·	ILT, some sar hesive, moist	nd to sandy; grey	-brown;
	2.10 - 2.80		ILT to CLAYE hesive, moist	Y SILT, trace sar	nd; grey;
	2.80 - 6.00	and bo			/, contains cobbles diameter (GLACIAL
	6.00	END C	OF TEST PIT		
		Note:	Water seepa	ige at 3.3 metres	
			Side walls sl	oughing at 3.5 m	etres depth
		<u>Sa</u>	mple	<u>Depth</u>	Lab Testing
			1	0.20 - 0.75	
			2	0.75 – 1.20	
			3	1.20 – 2.10	
			4	2.10 - 2.80	Gr (0) Sa (4) Si/Cl (96)
			5	2.80 - 6.00	

<u>Test Pit Number</u> <u>Elevation</u> (<u>Metres)</u>	<u>Depth</u> (metres)	Description		
TP 16-9	0.00 - 0.20	TOPSOIL – (ML)	Sandy SILT; dark br	own; non-cohesive
(93.54 metres)	0.20 - 0.70	(SM) SILTY SAN non-cohesive, m	ID; brown, contains ro oist	ootlets;
	0.70 – 1.50	(ML) Sandy SILT non-cohesive, m	; grey brown, contair oist	ns cobbles;
	1.50 – 3.60	(ML) SILT, trace	sand; grey; non-cohe	esive, moist to wet
	3.60 - 6.00	cobbles and bou	, some gravel to grav lders up to 780 millim non-cohesive, wet	
	6.00	END OF TEST F	ЧТ	
		Note: Water se	epage at 2.7 metres	
		Side wal	Is sloughing at 4.8 m	etres depth
		<u>Sample</u>	Depth (m)	Lab Testing
		1	0.20 - 0.70	
		2	0.70 – 1.50	
		3	1.50 – 3.60	Gr (0) Sa (3) Si/Cl (97) w _n =20%
		4	3.60 - 6.00	


<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	Description								
TP 16-10	0.00 - 0.23	TOPSOIL – (ML) San	dy SILT; dark brown; non-cohesive							
(94.14 metres)	0.23 – 0.37	(ML) Sandy SILT; red	brown; non-cohesive, moist							
	0.37 – 1.45	(ML) CLAYEY SILT to non-cohesive, moist	o sandy SILT; brown grey;							
	1.45 – 3.40	(ML) Sandy SILT; gre	y; non-cohesive, moist							
	3.40 - 6.00		ome gravel; grey, contains cobbles 0 millimetres in diameter (GLACIAL moist to wet							
	6.00	END OF TEST PIT								
		Note: Water seepag	ge at 4.0 metres							
		Walls caving	at 6.0 metres depth							
		<u>Sample</u>	<u>Depth (m)</u>							
		1	0.23 – 0.37							
		2	0.37 – 1.45							
		3	1.45 – 3.40							
		4	3.40 - 4.90							
		5	4.90 - 6.00							

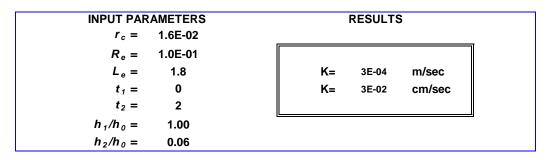
<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	Description							
TP 16-11	0.00 – 0.21	TOPSOIL – (ML)	Sandy SILT; brown;	non-cohesive					
(93.77 metres)	0.21 – 0.38	(SM) SILTY SAN non-cohesive, mo	D; brown, contains ro pist	ootlets;					
	0.38 – 2.30	(ML) SILT to CLA non-cohesive, mo	YEY SILT, some sar	nd; grey brown;					
	2.30 - 4.40	(ML) SILT, trace	sand; grey; non-cohe	esive, wet					
	4.40 - 6.00	(SM) SILTY SAND, some gravel to gravelly; grey, contains cobbles and boulders up to 530 millimetres in diameter (GLACIAL TILL); non-cohesive, wet							
	6.00	END OF TEST P	IT –						
		Note: Water se	epage at 2.0 meters	depth					
		Side wall	s sloughing						
		<u>Sample</u>	Depth (m)	Lab Testing					
		1	0.21 – 3.80						
		2	3.80 - 2.30						
		3	2.30 - 4.40	Gr (0) Sa (2) Si/Cl (98)					
		4	4.40 - 6.00						

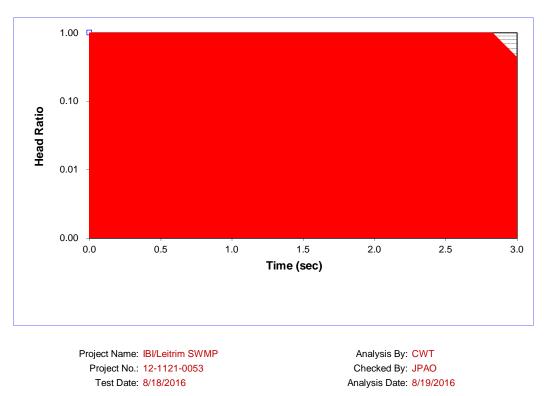
<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	Description
TP 16-12	0.00 - 0.23	TOPSOIL – (ML) sandy SILT; dark brown; non-cohesive
(94.17 metres)	0.23 – 1.80	(ML) Sandy SILT, trace gravel; brown; non-cohesive, moist
	1.80 – 2.40	(ML) SILT to CLAYEY SILT; grey; non-cohesive, moist
	2.40 - 4.60	(ML/SM) Sandy SILT to SILTY SAND, some gravel; grey, contains cobbles and boulders up to 710 millimetres in diameter (GLACIAL TILL); non-cohesive
	4.60	END OF TEST PIT – Refusal to excavation
		Note: Test pit dry upon completion of excavating
		Sample Depth
		1 0.23 – 0.70
		2 0.70 – 1.80
		3 1.80 – 2.40
		4 2.40 – 4.60
TP 16-13	0.00 – 0.18	TOPSOIL – (ML) Sandy SILT; brown; non-cohesive
(94.10 metres)	0.18 – 1.40	(ML) SILT, some sand; brown, contains rootlets; non-cohesive, moist
	1.40 – 2.40	(ML) SILT some sand to sandy; grey; non-cohesive, moist
	2.40 - 6.10	(SM) SILTY SAND, some gravel; grey, contains cobbles and boulders up to 780 millimetres in diameter (GLACIAL TILL); non-cohesive, moist to wet
	6.10	END OF TEST PIT – side walls sloughing at 5.0 metres
		Note: Water seepage at 4.9 metres.
		Side walls sloughing at 5.0 metres depth
		Sample Depth (m)
		1 0.18 – 1.40
		2 1.40 – 2.40
		3 2.40 - 6.10

<u>Test Pit Number</u> <u>Elevation</u> (Metres)	<u>Depth</u> (metres)	Description		
TP 16-14	0.00 - 0.21	TOPSOIL – (ML) Sandy SILT; brown;	non-cohesive
(93.66 metres)	0.21 – 2.10	(ML) SILT; grey	brown; non-cohesive,	moist
	2.10 – 3.50	(ML) SILT, trace	sand; grey; non-cohe	sive, wet
	3.50 - 6.00	. ,	ND, some gravel; grey, LACIAL TILL); non-co	
	6.00	END OF TEST F	PIT	
		Note: Water se	eepage at 1.6 metres	
		Side wa	lls sloughing at 4.6 me	etres depth
		<u>Sample</u>	<u>Depth (m)</u>	Lab Testing
		1	0.21 – 2.10	
		2	2.10 - 3.50	Gr (0) Sa (7) Si/Cl (93)
		3	3.50 - 6.00	
TP 16-15	0.00 – 0.19	TOPSOIL – (ML) Sandy SILT; brown;	non-cohesive
(94.19 metres)	0.19 – 2.10	(SM/ML) SILTY non-cohesive, m	SAND to sandy SILT; oist	brown;
	2.10 - 3.00	(ML) SILT, some non-cohesive, m	e sand to sandy; grey b oist	prown;
	3.00 - 5.60	. ,	ID, some gravel; grey; LACIAL TILL); non-co	
	5.60 - 6.00	(SM) SILTY SAM	ND, trace gravel; grey;	non-cohesive, wet
	6.00	END OF TEST F	PIT	
		Note: Water se	eepage at 2.4 metres	
		Side wa	lls sloughing	
		<u>Sample</u>	<u>Depth</u>	
		1	0.19 – 2.10	
		2	2.10 - 3.00	
		3	3.00 - 5.60	
		4	5.60 - 6.00	

HVORSLEV SLUG TEST ANALYSIS FALLING HEAD TEST 16-6

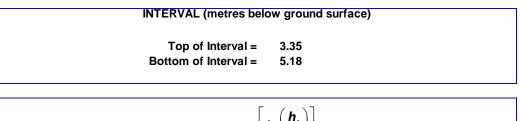
$$\boldsymbol{K} = \frac{\boldsymbol{r_{c}}^{2}}{2\boldsymbol{L_{e}}}\boldsymbol{ln} \left[\frac{\boldsymbol{L_{e}}}{2\boldsymbol{R_{e}}} + \sqrt{1 + \left(\frac{\boldsymbol{L_{e}}}{2\boldsymbol{R_{e}}}\right)^{2}} \right] \left[\frac{\boldsymbol{ln} \left(\frac{\boldsymbol{r}}{\boldsymbol{h_{2}}}\right)}{(\boldsymbol{t_{2}} - \boldsymbol{t_{1}})} \right] \quad \text{where } \boldsymbol{K} = (\text{m/sec})$$


where: r_c = casing radius (metres)


 R_e = filter pack radius (metres)

 L_e = length of screened interval (metres)

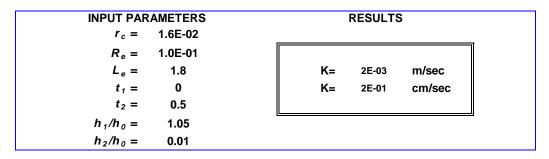
t = time (seconds)

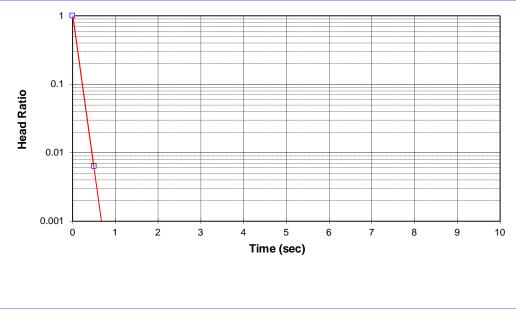

 h_t = head at time t (metres)

Golder Associates Ltd.

HVORSLEV SLUG TEST ANALYSIS FALLING HEAD TEST 16-7

$$K = \frac{r_c^2}{2L_e} \ln \left[\frac{L_e}{2R_e} + \sqrt{1 + \left(\frac{L_e}{2R_e}\right)^2} \right] \frac{\ln \left(\frac{h_1}{h_2}\right)}{(t_2 - t_1)} \quad \text{where } K = (\text{m/sec})$$

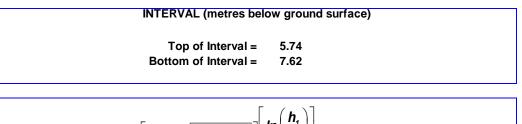

where: r_c = casing radius (metres)


 R_e = filter pack radius (metres)

 L_e = length of screened interval (metres)

t = time (seconds)

 h_t = head at time t (metres)

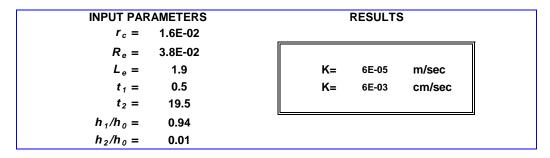


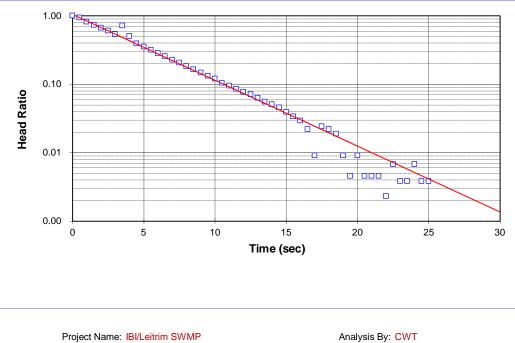
Project Name: IBI/Leitrim SWMP Project No.: 12-1121-0053 Test Date: 8/18/2016 Analysis By: CWT Checked By: JPAO Analysis Date: 8/19/2016

Golder Associates Ltd.

HVORSLEV SLUG TEST ANALYSIS RISING HEAD TEST 16-8

$$K = \frac{r_c^2}{2L_e} \ln \left[\frac{L_e}{2R_e} + \sqrt{1 + \left(\frac{L_e}{2R_e}\right)^2} \right] \frac{\ln \left(\frac{n_1}{h_2}\right)}{(t_2 - t_1)} \text{ where } K = (\text{m/sec})$$


where: r_c = casing radius (metres)


 R_e = filter pack radius (metres)

 L_e = length of screened interval (metres)

t = time (seconds)

 h_t = head at time t (metres)

Project Name: IBI/Leitrim SWMF Project No.: 12-1121-0053 Test Date: 8/18/2016 Analysis By: CWT Checked By: JPAO Analysis Date: 8/19/2016

Golder Associates Ltd.

RECORD OF BOREHOLE: 17-01

BORING DATE: April 25, 2017

SHEET 1 OF 2

DATUM: CGVD28

LOCATION: N 5020094.6 ;E 374165.9 SAMPLER HAMMER, 64kg; DROP, 760mm

ш	탈	SOIL PROFILE	-1		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HY	YDRAULIC CO k, cm/s	NDUCTIVITY,	ĘF	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C 20 40 60 80	-	10 ⁻⁶ 10 ⁻ WATER CO Wp 20 40		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 0	_	GROUND SURFACE		94.14			-	20 40 60 80		20 40	60 80		
-		TOPSOIL (ML) sandy SILT; grey brown to grey, contains clay seams; non-cohesive, wet, compact		0.00		GRAB	-						
• 1	uger Hollow Stem)				2	SS	25			Φ			
2	Power Auger 200 mm Diam. (Hollow Stem)	(ML-SM) sandy SILT to gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet, compact to very dense		92.31 1.83	3	SS	35						
- 3					4	SS	71		0			мн	
3					5	SS	>50						
· 4	Rotary Drill NW Casing				6		DD						
- 5	Rotary Drill NQ Core	Borehole continued on RECORD OF		88.78 5.36	8		16 DD						
6		DRILLHOLE 17-01											
7													
8													
- 9													
- 10													
DE	PTH S	CALE	1	1			(Golder	<u>ـــــ</u>		I	LC	OGGED: PAH

		T: 1774599 DN: N 5020094.6 ;E 374165.9	RECO	RD OF DRILLHOLE: 1 DRILLING DATE: April 25, 2017		SHEET 2 OF 2 DATUM: CGVD28
IN		TION: -90° AZIMUTH:		DRILL RIG: CME 850 DRILLING CONTRACTOR: CCC	2	. 1
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG SYMBOLIC LOG (m) (m) RUN No.	Image: Start of the s	S DESCRIPTION Ucon Jr Ja φ φ τ τ φ (MPa) AV	ist
_		BEDROCK SURFACE	88.78			
- - - - - - 6	Rotary Drill NQ Core	Fresh, medium to thinly bedded, grey, fine grained, non-porous DOLOSTONE with thin shale interbeds	87.97			
		End of Drillhole	6.17			
- 7 - 7 						
- - - 8 - -						
- - - - - - 9						
- 10 - 10 						
- - - - 11 -						
- - - - - - 12						
- 13 - 13 						
- - - - - - - - - - - -						
— 15 - -						
	EPTH S	SCALE		Golder		LOGGED: PAH CHECKED: WAM

RECORD OF BOREHOLE: 17-02

BORING DATE: April 25, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5019993.3 ;E 374282.6 SAMPLER HAMMER, 64kg; DROP, 760mm

			SOIL PROFILE			SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m						HYDRAULIC CONDUCTIVITY, k, cm/s				
METRES	BOPING METHOD			STRATA PLOT		н		BLOWS/0.30m	20 40 60 8			1	10 ⁻⁵ 10		ADDITIONAL LAB. TESTING	OR
MET	UN		DESCRIPTION	TAF	ELEV. DEPTH	NUMBER	TYPE	VS/0.	SHEAR STRENGTH nat V. + Cu, kPa rem V. ⊕	Q - •				PERCENT	B. TE	STANDPIPE INSTALLATION
	100			TRA	(m)	∣₽	-	NOU				р ——			LAI	
		·	GROUND SURFACE	S			$\left \right $	ш	20 40 60 8	J		20	40 6	0 80	+ +	
0		\dashv	TOPSOIL	EEE	94.21 0.00 94.01		$\left \right $	_					+		+ +	
			(SM) SILTY SAND; yellow brown to grey	T	94.01											
			brown; non-cohesive, wet, compact			1	GRAB	-								
				M]		+									
				歴			1									
1						2	ss	17								
					92.84											
			(SP) SAND, some non-plastic fines; grey; non-cohesive, wet, dense		1.37]									
			grey, non-conesive, wet, dense													
						3	SS	35				0				
2			(SM/ML) SILTY SAND to sandy SILT;		92.08 2.13											
			grey, contains fine sand and clay seams; non-cohesive, wet, dense to compact	团	2.13	<u> </u>										
		<u>_</u>	non-conesive, wet, dense to compact	歴		4	ss	46								
		v Ster]									
3	uger	Hollov		围			1									
	Power Auger	200 mm Diam. (Hollow Stem)		围												
	8	nn Di		团	90.70	5	SS	25				0				
		200 г.	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,		3.51											
			(GLACIAL TILL); non-cohesive, wet,													
4			compact to very dense			6	SS	59								
							33	ວອ								
							1									
_						7	SS	27			0					
5																
						8	SS	45								
							33	-+:)								
6																
		Ц	Estat	₽₽₿₿	87.96	9	ss	10								
			End of Borehole Auger Refusal		6.25											
7																
0																
8																
9																
10																
	рті	H SI	CALE					4							1.00	GGED: PAH
	. 11								Golder						CHE	

RECORD OF BOREHOLE: 17-03

BORING DATE: April 25, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5020064.9 ;E 374395.5 SAMPLER HAMMER, 64kg; DROP, 760mm

Ľ.	НОН	SOIL PROFILE	1.		S/			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ਤ ਉ PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	ER	ш	BLOWS/0.30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	マレン OR OS STANDPIPE
Ψ	RING	DESCRIPTION	łATA	DEPTH		TYPE)/S//(SHEAR STRENGTH Cu, kPanat V. + Q - ● rem V. ⊕ U - O	WATER CONTENT PERCENT	
ı	BO		STR	(m)			BLC	20 40 60 80	20 40 60 80	·
0		GROUND SURFACE		93.57	·					
		TOPSOIL (SM) SILTY SAND; grey brown, contains		0.00 93.37 0.20						
		boulders; non-cohesive, wet, compact				GRAE	3 -			
					-	-				
1					2	SS	20			
				92.20						
		(ML, CL & SM) layered SILT, CLAYEY SILT, and SILTY SAND; grey; non-cohesive, wet, very loose to		1.37	<u> </u>	-				
		non-cohesive, wet, very loose to compact			3	SS	2			
2										
	Ê									
	w Ste			1						
	Hollc				4	SS	2		0	МН
3	Power Auger Diam. (Hollo			1	-	-				
5	200 mm Diam. (Hollow Stem)					1				
	20			1	5	SS	2			
				1		4				
				1	\vdash	1				
4				1	6	SS	17		0	
				89.15						
		(ML) sandy SILT, some gravel; grey (GLACIAL TILL); non-cohesive, wet,		4.42		-				
		loose to very dense			7	SS	4			
5					'	33	-+			
						1				
		Fad of Desekala		88.01	8	SS	>50			
		End of Borehole Auger Refusal		5.56						
6										
7										
ŕ										
8										
9										
10										
				,		•				
DEF	PTH S	SCALE					(Golder		LOGGED: PAH

RECORD OF BOREHOLE: 17-04

BORING DATE: May 4, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5020717.6 ;E 373941.1 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц		员	SOIL PROFILE	1.	1	SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3		HYDRAULIC (k, cm/	CONDUCTIVITY, s	일	PIEZOMETER
METRES		BORING METHOD		STRATA PLOT	E EV	R	ы. П.	BLOWS/0.30m	20 40 60			10 ⁻⁵ 10 ⁻⁴ 10		OR
ΞΨ		SNG NG	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	ТҮРЕ	WS/0	SHEAR STRENGTH nat Cu, kPa rem	V. + Q-● n V. ⊕ U- O	WATER C			INSTALLATION
วี		BĢ		STR/	(m)	ĭ		BLO	20 40 60		vvp	40 60 80		
	1		GROUND SURFACE	1	96.32								ř – –	
0		Π	ASPHALTIC CONCRETE	~~~~	0.00 0.00 96:04									
			FILL - (SP) gravelly SAND, angular; grey (PAVEMENT STRUCTURE)	/###	96:04 0.28									
			FILL - (GP) sandy GRAVEL, angular; grey (PAVEMENT STRUCTURE)		95.66									
			FILL - (SM) gravelly SILTY SAND; brown		0.66									
1			to dark brown; non-cohesive, moist TOPSOIL (ML) sandy CLAYEY SILT;		0.86									
			\black; cohesive, w>PL (SM/ML) SILTY SAND to sandy SILT,		1.02	1	SS	13						
			trace gravel; grey brown, contains silty											
		2	clay layers; non-cohesive, moist to wet, compact											
		v Sten				2	SS	18						
2	uger	200 mm Diam. (Hollow Stem)			ł									
	Power Auger	iam. (<u> </u>								
	۲ _۵	D m m		N.		3	SS	15						
		200		团	1		33	10						
3				团]									
]									
						4	SS	12						
			(ML) sandy SILT; grey, contains silty		92.66									
			clay layers; non-cohesive, wet, very											
4			loose]	5	SS	4						
					91.90									
			End of Borehole		4.42		1							
5														
6														
6														
	1													
7	1													
	1													
	1													
	1													
8	1													
o	1													
9														
	1													
40	1													
10														
				1	I	I								
DE	PT	ГНS	CALE					1	Colder				LC	DGGED: RI
1:	50)							Golder	es			СН	ECKED: WAM

RECORD OF BOREHOLE: 17-05

BORING DATE: May 4, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5020818.2 ;E 374110.5 SAMPLER HAMMER, 64kg; DROP, 760mm

y	БЧ	SOIL PROFILE			SA	MPLI		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ξĻ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C	10 ⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- L	BORI		STRA	DEPTH (m)	N		BLOW	20 40 60 80	Wp H OW WI 20 40 60 80	LAE	
0		GROUND SURFACE		95.96							
Ű		ASPHALTIC CONCRETE		0.00 95.71							Flush Mount Casing Cuttings
		FILL - (SM) gravelly SILTY SAND; brown to dark brown (PAVEMENT STRUCTURE)		0.25							Flush Mount Casing Cuttings
1		FILL - (SM/ML) SILTY SAND to sandy SILT, trace gravel; grey, contains organic matter, non-cohesive, moist,		95.17 0.79 94.89 1.07	1	SS	11				Bentonite Seal
	Iger ollow Stem	Compact TOPSOIL - (ML) sandy SILT; black; non-cohesive, moist		1.20							, X
2	Power Auger mm Diam (Hollow Stem)	(SM/ML) SILTY SAND to sandy SILT, trace gravel; grey brown, contains silty clay layers; non-cohesive, moist to wet, compact			2	SS	14				Silica Sand
	200 г	(SM) gravelly SILTY SAND; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist to		93.83 2.13							
		wet, compact to very dense			3	SS	12				32 mm Diam. PVC #10 Slot Screen
3											
╞		End of Borehole		92.61 3.35	4	SS	>50				
		Auger Refusal									WL in Screen at Elev. 94.19 m on June 9, 2017
4											0011C 0, 2011
5											
6											
7											
8											
9											
40											
10											
DEF	этн	SCALE					(Golder		LC	DGGED: RI

LOCATION: N 5020920.5 ;E 374282.2

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 17-06

BORING DATE: May 8, 2017

SHEET 1 OF 1

DATUM: CGVD28

Ц		물	SOIL PROFILE			SA	MPL		DYNAMIC PENETRAT RESISTANCE, BLOW		HYDRAULIC C k, cm/s	CONDUCTIVITY,		Ę,	PIEZOMETER
DEP IN SUALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa	60 80	WATER C			ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
				SI				BL	20 40	60 80	20	40 60	80		
0	L	-	GROUND SURFACE ASPHALTIC CONCRETE		95.86 0.00					<u> </u>			+		
					95.61										
			FILL - (SP) gravelly SAND; grey (PAVEMENT STRUCTURE)		0.25										
			FILL - (SP) gravelly SAND; grey brown;	×	95.25 0.61		GRAE	-						м	
			non-cohesive, moist, compact to loose		0.01										
1						2	SS	10							
		Stem			94.34										
	Auger	Nollo	(ML) CLAYEY SILT, some sand; grey brown; cohesive, w>PL, stiff	HH	1.52										
	er Au	Ë.				3	SS	5							
2	Power	n Dia													
		200 mm Diam. (Hollow Stem)	(ML) SILT some cand to conduct around	HI	93.57 2.29										
		Ñ	(ML) SILT, some sand to sandy; grey brown; non-cohesive, wet, loose		2.20										
					93.12		SS	8							
3			(SM) gravelly SILTY SAND; grey, contains cobbles and boulders		2.74										
3			(GLACIAL TILL); non-cohesive, moist, dense to very dense				1								
						5	SS	36							
					00.45										
	⊢	-	End of Borehole	KARY I	92.15 3.71	6	SS	>50							
4			Auger Refusal	1											
				1											
5															
				1											
				1											
				1											
~				1											
6				1											
				1											
				1											
7				1											
				1											
				1											
8				1											
				1											
				1											
9				1											
				1											
				1											
				1											
10				1											
	L												1		
DE	PT	Ъ	CALE											LC	DGGED: SN
4.	50								Golde	1				~ ~ ~	ECKED: WAM

RECORD OF BOREHOLE: 17-07

BORING DATE: May 8, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5021023.8 ;E 374455.8 SAMPLER HAMMER, 64kg; DROP, 760mm

DEPTH SCALE METRES	ПОН	SOIL PROFILE	1.		SA	MPLI		DYNAMIC PENETRA RESISTANCE, BLO			HYDRAULIC k, cm	/s	livii Y,		ĘF	PIEZOMETER
RES	BORING METHOD		STRATA PLOT		Ř		30m	20 40	60 80		10 ⁻⁶	10 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	OR
ΞΨ	NG.	DESCRIPTION	TA P	ELEV.	NUMBER	түре	/S/0.	SHEAR STRENGTH Cu, kPa	nat V. + Q -			CONTENT	PERCE	NT	3. TE	STANDPIPE INSTALLATION
_ ۲	BORI		TRA	DEPTH (m)	N.	-	BLOWS/0.30m			~					LAE	
		GROUND SURFACE	ò			$\left \right $	ш	20 40	60 80	+	20	40 6	50 E	30		
0	2			97.64 0.00		$\left \right $	\dashv			+				<u> </u>		
	Sterr		XXXX	97.39 0.25												
	er Auger m. (Hollow	FILL - (SP/GP) sandy GRAVEL to gravelly SAND; grey brown (PAVEMENT STRUCTURE)		0.25 96.88	1	GRAB	-									
• 1	Power Auger 200 mm Diam. (Hollow Stem)	FILL - (SM) SILTY SAND, some gravel; grey brown, contains cobbles and boulders; non-cohesive, moist, very		0.76	2	SS	>50									
		dense End of Borehole	Æ	96.42 1.22		1										
		Auger Refusal														
2																
			1													
3																
4																
			1													
			1													
5																
5																
			1													
6																
			1													
			1													
7																
			1													
			1													
8																
			1													
9																
			1													
10			1													
DE	PTH S	CALE													LC	DGGED: SN
	50							Gold	er						СН	

RECORD OF BOREHOLE: 17-08

BORING DATE: May 8, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5021128.4 ;E 374632.6 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц		머머	SOIL PROFILE	1.		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	부승	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C	wp wi	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		-	GROUND SURFACE	S	97.84				20 40 60 80	20 40 60 80		
0			ASPHALTIC CONCRETE		97.84 0.00 97.61							Flush Mount
			FILL - (GP) sandy GRAVEL; brown (PAVEMENT STRUCTURE)		0.23	1	GRAE	} -				Flush Mount Casing Cuttings
1		Stem)	FILL - (ML) gravelly sandy SILT; grey brown; non-cohesive, moist to wet, compact		97.08 0.76	2	ss	30			мн	Bentonite Seal
	ower Auger	200 mm Diam. (Hollow Stem)	(SP) SAND, some gravel; brown; non-cohesive, moist to wet, compact		96.32 1.52		-					Silica Sand
2	<u>а</u>	200 mm [95.55	3	SS	18				32 mm Diam. PVC
			(SM) gravelly SILTY SAND; brown grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist to wet, dense		2.29	4	ss	37				#10 Slot Screen
3			End of Borehole Auger Refusal		94.74 3.10	_5_	SS	>50				WL in Screen at
												Elev. 96.10 m on June 9, 2017
4												
5												
5												
6												
7												
8												
9												
10												
DE	PT	TH S	CALE	<u> </u>	1	1			Golder		L	I DGGED: SN

RECORD OF BOREHOLE: 17-09

BORING DATE: May 9, 2017

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5021231.4 ;E 374806.7 SAMPLER HAMMER, 64kg; DROP, 760mm

ų I	ξ	ΞĹ	SOIL PROFILE			SA	MPL		DYNAMIC PENETRATI RESISTANCE, BLOWS	/0.3m	<u>ر</u>	HYDRAUL k,	cm/s			ا لا ب	PIEZOMETER
METRES	DODING METHOD	- -		LOT		£		BLOWS/0.30m	20 40	60	80	10 ⁻⁶	10-5	10-4	10 ⁻³	ADDITIONAL LAB. TESTING	OR
Ę.	Ċ	2	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	S/0.	SHEAR STRENGTH Cu, kPa	hat V.	Q - •	WAT	ER CONTE		CENT	TE#	STANDPIPE INSTALLATION
				TAT	DEPTH (m)	NUN		NO.	Cu, kPa	rem V. f	9 U- O	Wp H	C	w	- WI	LAB LAB	
	ă	n		ST	(11)			В	20 40	50	80	20	40	60	80		
0			GROUND SURFACE		97.58												
			ASPHALTIC CONCRETE		0.00 97.35												
			FILL - (SP/GP) gravelly SAND to sandy GRAVEL; grey brown (PAVEMENT STRUCTURE)		0.23	1	GRAB	-									
			FILL - (SP) gravelly SAND; grey brown (PAVEMENT STRUCTURE);		96.82 0.76												
1			(PAVEMENT STRUCTURE); non-cohesive, moist, dense			2	SS	38									
		stem)	(ML) SANDY SILT, some gravel; grey		96.06 1.52												
2	Auger	Hollow S	(GLACIAL TILL); non-cohesive, moist, compact			3	SS	13									
2	Power /	200 mm Diam. (Hollow Stem)															
		200 mr	(ML) SILT, some sand and gravel; grey (GLACIAL TILL); non-cohesive, wet,		95.14 2.44	4	SS	8									
3			loose		94.53												
			(SW) gravelly SILTY SAND; grey (GLACIAL TILL); non-cohesive, wet, compact to very dense		3.05	5	ss	20									
4					93.48	6	SS	>50									
Ī			End of Borehole Auger Refusal		4.10]										
			Auger Relusar														
5				1													
5				1													
										1							
										1							
										1							
										1							
6				1													
U				1													
				1													
										1							
				1													
				1													
7				1													
· '				1													
				1						1							
				1						1							
				1						1							
				1						1							
8				1						1							
0				1						1							
				1						1							
				1						1							
				1						1							
				1						1							
				1						1							
9				1						1							
				1						1							
				1						1							
				1						1							
				1						1							
				1						1							
10				1						1							
10										1							
DEI	PT	нs	CALE						Golde							LO	GGED: SN

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description	
17-101 (95.58 metres)	0.00 - 0.40	TOPSOIL – (CL) S dark brown; cohes	ILTY CLAY, trace to some sand, some gravel; ive, w>PL
(00.00 metres)	0.40 - 0.65	(ML) sandy CLAYE w>PL	EY SILT, trace gravel; grey brown; cohesive,
	0.65 – 2.10		Y SAND; grey brown, contains cobbles and L TILL); non-cohesive, moist to wet
	2.10 – 2.55	(ML) gravelly sand (GLACIAL TILL); n	y SILT; grey, contains cobbles and boulders on-cohesive, wet
	2.55	END OF TEST PIT	– Refusal on BEDROCK
		Notes: Water see	page at 0.9 metres depth upon completion.
		<u>Sample</u>	Depth (m)
		1	0.15 – 0.40
		2	0.40 – 0.65
		3	0.85 – 1.00
		4	2.20 - 2.40
17-102	0.00 – 0.15		L) SILTY CLAY to CLAYEY SILT, trace to some
(95.50 metres)			black; cohesive, w>PL
	0.15 – 0.85		TY CLAY, trace to some gravel; grey brown, nd boulders; cohesive, w>PL
	0.85 – 2.15		Y SAND; grey brown to grey, contains cobbles CIAL TILL); non-cohesive, moist to wet
	2.15	END OF TEST PIT	– Refusal on BEDROCK
		Notes: Water see	page at 0.8 metres depth upon completion.
		<u>Sample</u>	Depth (m)
		1	0.00 – 0.15
		2	0.40 – 0.60

0.85 – 1.15

3

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description		
17-103 (95.52 metres)	0.00 - 0.25		SILTY CLAY, trace grave ins cobbles; cohesive, w	
(00.02	0.25 – 0.55		TY CLAY, trace to some and boulders; cohesive, v	
	0.55 – 2.40		TY SAND; grey brown to ACIAL TILL); non-cohesiv	
	2.40	END OF TEST PI	T – Refusal on BEDROC	K
		Notes: Water see	page at 0.8 metres dept	n upon completion.
		<u>Sample</u> 1	<u>Depth (m)</u> 0.15 – 0.25	Lab Testing
		2	0.40 - 0.50	Wn = 18%
		3	0.70 – 0.85	Wn = 9%
		4	2.00 - 2.40	Wn = 8%
17-104 (97.17 metres)	0.00 – 0.15	TOPSOIL – (CL) S dark brown; cohes	SILTY CLAY, trace to sor sive, w>PL	ne sand and gravel;
(0)	0.15 – 0.28		EY SILT, trace to some g obbles; cohesive, w>PL	ravel; brown to grey
	0.28 - 0.65		ly SILT; grey brown, con L TILL); cohesive, w>PL	
	0.65 – 3.10		TY SAND; grey brown, co L TILL); non-cohesive, m	
	3.10	END OF TEST PI	T – Refusal on BEDROC	K
		Notes: Water see	page at 1.8 metres dept	n upon completion.
		<u>Sample</u>	<u>Depth (m)</u>	
		1	0.00 - 0.15	
		2	0.15 – 0.28	
		3	0.40 - 0.55	

4 5 0.75 – 0.90

3.00 - 3.10

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description		
17-105 (94.75 metres)	0.00 - 0.20	TOPSOIL – (CL) S dark brown; cohesi	ILTY CLAY, trace to some ve, w>PL	sand, trace gravel;
(34.73 metres)	0.20 - 0.62		Y CLAY, trace gravel; grey UST); cohesive, w>PL	y brown
	0.62 - 0.90	(ML) sandy SILT, ti boulders; non-cohe	race gravel; grey brown, co sive, moist to wet	ontains cobbles and
	0.90 – 1.70		Y SAND; grey brown, conta _ TILL); non-cohesive, mois	
	1.70 – 3.50	(SM) gravelly SILT (GLACIAL TILL); ne	Y SAND; grey, contains co on-cohesive, wet	bbles and boulders
	3.50	END OF TEST PIT	- Refusal on BEDROCK	
		Notes: Water seep	bage at 0.8 metres depth u	pon completion.
		<u>Sample</u>	<u>Depth (m)</u>	
		1	0.00 - 0.20	
		2	0.40 - 0.55	
		3	0.62 - 0.90	
		4	0.90 – 1.00	
		5	1.90 – 2.10	
17-106 (95.41 metres)	0.00 - 0.20	TOPSOIL – (CL) S cohesive, w>PL	ILTY CLAY, trace to some	sand; black;
(00111 monoc)	0.20 - 1.40		Y SILT, trace to some grand nd boulders; cohesive, w>l	
	1.40 - 2.40	, , , ,	SAND; grey brown to gre CIAL TILL); non-cohesive,	
	2.40	END OF TEST PIT	– Refusal on BEDROCK	
		Notes: Water seep	bage at 0.8 metres depth u	pon completion.
		<u>Sample</u>	<u>Depth (m)</u>	Lab Testing
		1	0.00 - 0.20	
		2	0.40 - 0.50	
		3	0.60 - 0.80	W _n = 33% MH – See Figure 4
		4	1.70 – 1.80	
		5	1.80 – 1.90	Wn = 14%

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-107 (94.93 metres)	0.00 - 0.25	TOPSOIL – (CL) SILTY CLAY, trace to some sand; black to dark brown; cohesive, w>PL
(0 1100 11101 00)	0.25 – 0.85	(CL/CI) sandy SILTY CLAY, trace gravel; grey brown, contains cobbles and boulders; cohesive, w>PL
	0.85 – 1.70	(SM) gravelly SILTY SAND; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist to wet
	1.70 – 2.40	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	2.40	END OF TEST PIT – Refusal on BEDROCK
		Notes Water concerns at 1.0 metrics don'th upon completion

Notes: Water seepage at 1.0 metres depth upon completion.

<u>Sample</u>	Depth (m)
1	0.00 - 0.25
2	0.55 - 0.65
3	1.00 – 1.15
4	2.00 - 2.40

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-108 (95.14 metres)	0.00 - 0.23	TOPSOIL – (CL) SILTY CLAY, trace gravel, trace to some sand; dark brown; cohesive, w>PL
(33.14 metres)	0.23 – 0.85	(CI/CH) sandy SILTY CLAY; grey brown, contains cobbles and boulders; cohesive, w>PL
	0.85 – 1.00	(SM) gravelly SILTY SAND; brown, contains cobbles and boulders; non-cohesive, wet
	1.00 – 1.25	(CI/CH) SILTY CLAY to CLAY, trace to some sand; grey brown, contains cobbles and boulders; cohesive, w>PL
	1.25 – 2.65	(SM) gravelly SILTY SAND; grey brown to grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist to wet
	2.65	END OF TEST PIT – Refusal on BEDROCK

Notes: Water seepage at 1.0 metres depth upon completion.

<u>Sample</u>	Depth (m)
1	0.00 - 0.23
2	0.30 - 0.45
3	0.55 - 0.80
4	0.85 - 1.00
5	1.00 - 1.10
6	1.30 – 1.60
7	1.75 – 2.00

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-109 (94.03 metres)	0.00 - 0.18	TOPSOIL – (CL) SILTY CLAY, trace to some sand; dark brown; cohesive, w>PL
(01.001.00)	0.18 – 1.20	(CI/CH) SILTY CLAY to CLAY, some sand to sandy; grey brown (WEATHERED CRUST); cohesive, w>PL
	1.20 – 1.30	(SM) gravelly SILTY SAND; brown, contains cobbles and boulders; non-cohesive, wet
	1.30 – 4.50	(CL/ML/SM) interbedded SILTY CLAY, SILT, and SILTY SAND; grey with brown layers, contains cobbles and boulders; non-cohesive, wet
	4.50	END OF TEST PIT – Refusal on BEDROCK
		Notes: Water seepage at 0.9 metres depth upon completion.
		Sample Depth (m) Lab Testing

<u>Sample</u>	<u>Depth (m)</u>	Lab Testing
1	0.00 - 0.18	
2	0.30 - 0.50	
3	0.85 - 1.00	
4	1.20 - 1.30	
5	1.50 – 1.60	W _n = 30% MH – See Figure 6
6	3.00 - 3.20	Wn = 43%

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description	
17-110 (94.30 metres)	0.00 - 0.20	TOPSOIL – (CL) dark brown; cohe	SILTY CLAY, trace to some sand, trace gravel; esive, w>PL
(**************************************	0.20 – 1.75	(CL/CI) sandy SI sand layers; cohe	LTY CLAY, trace gravel; grey brown, contains silty esive, w>PL
	1.75 – 4.00		TY SAND; grey, contains cobbles and boulders non-cohesive, wet
	4.00	END OF TEST P	IT – Refusal on BEDROCK
		Notes: Water se	eepage at 0.8 metres depth upon completion.
		<u>Sample</u>	Depth (m)
		1	0.00 - 0.20
		2	0.45 - 0.55
		3	0.95 – 1.10
		4	1.75 – 2.00

5 3.50 - 3.75

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-111 (94.81 metres)	0.00 - 0.23	TOPSOIL – (CL) SILTY CLAY, trace to some sand, trace gravel; dark brown; cohesive, w>PL
(0.101.100.00)	0.23 - 0.48	(CL/CI) sandy SILTY CLAY; grey brown, contains cobbles and boulders; cohesive, w>PL
	0.48 - 1.30	(ML) sandy CLAYEY SILT, some gravel; grey brown, contains cobbles, boulders, and silty sand layers (GLACIAL TILL); non-cohesive, moist to wet
	1.30 – 1.40	(SM) gravelly SILTY SAND; grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist
	1.40 - 3.80	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist to wet
	3.80 - 4.30	(ML) gravelly sandy SILT; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	4.30	END OF TEST PIT – Refusal on BEDROCK

Notes: Water seepage at 0.6 metres depth upon completion.

Sample	Depth (m)	Lab Testing
1	0.00 - 0.23	
2	0.25 - 0.35	$W_n = 28\%$
3	0.45 – 0.75	W _n = 22% MH – See Figure 7
4	1.30 – 1.90	$W_n = 12\%$
5	2.00 - 2.20	
6	4.20 - 4.30	

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-112 (94.68 metres)	0.00 – 0.25	TOPSOIL – (CL) SILTY CLAY, some sand, trace gravel; dark brown; cohesive, w>PL
(0 1100 1101 00)	0.25 – 1.60	(CI/CH) sandy SILTY CLAY to CLAY; grey brown, contains silty sand layers (WEATHERED CRUST); cohesive, w>PL
	1.60 – 1.70	(SM) gravelly SILTY SAND; brown, contains shells and sand layers; non-cohesive, wet
	1.70 – 2.20	(ML) CLAYEY SILT, some sand and gravel; grey brown, contains cobbles and boulders (GLACIAL TILL); cohesive, moist to wet
	2.20 - 3.60	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, moist to wet
	3.60	END OF TEST PIT – Refusal on BEDROCK

Notes: Water seepage at 1.1 metres depth upon completion.

<u>Sample</u>	Depth (m)
1	0.00 - 0.25
2	0.45 – 0.65
3	0.95 – 1.05
4	1.60 – 1.70
5	1.70 – 1.80
6	2.30 - 2.40

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-113 (93.62 metres)	0.00 - 0.40	TOPSOIL – (CL) SILTY CLAY, trace to some sand; dark brown; cohesive, w>PL
(00102	0.40 – 1.45	(CI/CH) SILTY CLAY to CLAY, some sand; grey brown, contains silty sand layers (WEATHERED CRUST); cohesive, w>PL
	1.45 – 1.50	(SM) gravelly SILTY SAND; dark brown; non-cohesive, wet
	1.50 – 3.30	(ML/CL/SM) interbedded SILTY CLAY, SILT, and SILTY SAND; grey with brown layering, contains cobbles and boulders; non-cohesive, wet
	3.30 - 4.70	(SM/ML) gravelly SILTY SAND to sandy SILT; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	4.70	END OF TEST PIT – Refusal on BEDROCK
		Notes: Water seepage at 1.0 metres depth upon completion.

5

 $\begin{tabular}{|c|c|c|c|c|c|} \hline Sample & Depth (m) & Lab Testing \\ \hline 1 & 0.25 - 0.40 & & & \\ 2 & 0.45 - 0.55 & W_n = 25\% & \\ 3 & 1.55 - 1.30 & & \\ 4 & 2.30 - 2.50 & W_n = 27\% & \\ MH - See Figure 6 & & \\ \hline \end{tabular}$

4.50 - 4.70

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-114	0.00 - 0.23	TOPSOIL – (CL) SILTY CLAY, trace to some sand; dark brown; cohesive, w>PL
(94.04 metres)	0.23 – 1.80	(CI/CH) SILTY CLAY to CLAY, some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL
	1.80 - 2.00	(SP) gravelly SAND; black, contains cobbles; non-cohesive, wet
	2.00 - 4.00	(CI/CH-ML) SILTY CLAY to CLAYEY SILT, some sand; grey, contains cobbles and boulders; cohesive, w>PL
	4.00 - 4.65	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	4.65	END OF TEST PIT – Refusal on BEDROCK

Notes: Water seepage at 0.8 metres depth upon completion.

<u>Sample</u>	Depth (m)
1	0.00 - 0.23
2	1.10 – 1.30
3	1.80 - 2.00
4	2.00 - 2.20
5	4.50 - 4.65

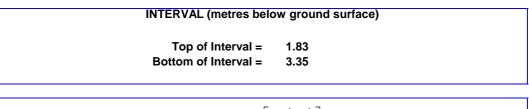
<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-115 (94.27 metres)	0.00 - 0.20	TOPSOIL – (CL) SILTY CLAY, trace sand; dark brown; cohesive, w>PL
	0.20 - 1.60	(CI/CH) SILTY CLAY to CLAY, some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL
	1.60 – 1.80	(SM) gravelly SILTY SAND; grey, contains shells, cobbles and boulders; non-cohesive, wet
	1.80 – 2.00	(CI/CH-ML) SILTY CLAY to CLAYEY SILT, trace sand; grey, contains cobbles and boulders; cohesive, w>PL
	2.00 - 4.55	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	4.55	END OF TEST PIT – Refusal on BEDROCK

Notes: Water seepage at 0.9 metres depth upon completion.

<u>Sample</u>	Depth (m)	Lab Testing
1	0.00 - 0.20	
2	0.35 - 0.45	$W_n = 29\%$
3	0.75 - 0.90	
4	1.60 – 1.80	Wn = 22% MH – See Figure 5
5	1.80 - 2.00	$W_n = 22\%$
6	2.00 - 2.20	
7	4.50 - 4.55	

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-116 (93.76 metres)	0.00 - 0.30	FILL – (CI/CH) sandy SILTY CLAY, trace gravel; grey brown; contains rootlets; cohesive, w>PL
	0.30 - 0.40	TOPSOIL – (CL) sandy SILTY CLAY; black; cohesive, w>PL
	0.40 - 1.25	(CI/CH) SILTY CLAY to CLAY, some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL
	1.25 – 1.50	(SM) SILTY SAND; dark brown, contains cobbles and boulders; non-cohesive, wet
	1.50 – 4.90	(CL/ML/SM) interbedded SILTY CLAY, SILT, and SILTY SAND; grey brown, contains cobbles and boulders; non-cohesive, wet to moist
	4.90 – 5.20	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	5.20	END OF TEST PIT – Refusal on BEDROCK

Notes: Water seepage at 1.0 metres depth upon completion.


Sample	Depth (m)	Lab Testing
1	0.00 - 0.30	
2	0.30 - 0.40	
3	0.90 - 1.10	$W_n = 42\%$
4	1.25 – 1.35	
5	1.60 – 1.80	W _n = 23% MH – See Figure 6
6	2.70 - 3.30	$W_n = 30\%$
7	4.90 - 5.20	$W_n = 10\%$

<u>Test Pit</u> <u>Number</u> (Elevation)	<u>Depth</u> (metres)	Description
17-117 (93.57 metres)	0.00 - 0.40	FILL – (SM) gravelly SILTY SAND; dark brown; contains cobbles; non-cohesive, moist
	0.40 - 0.50	TOPSOIL – (CL) sandy SILTY CLAY; dark brown to black; cohesive, w>PL
	0.50 – 1.30	(CI/CH) SILTY CLAY to CLAY, some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL
	1.30 – 1.40	(SM) SILTY SAND, some gravel to gravelly; dark brown, contains cobbles; non-cohesive, wet
	1.40 - 4.00	(CL/ML/SM) interbedded SILTY CLAY, SILT, and SILTY SAND; grey brown, contains cobbles and boulders; non-cohesive, wet
	4.00 - 4.90	(SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet
	4.90	END OF TEST PIT – Refusal on BEDROCK

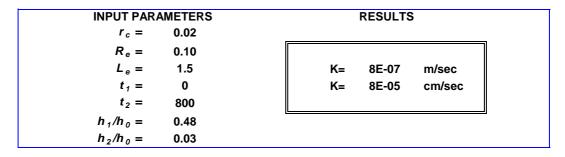
Notes: Water seepage at 1.3 metres depth upon completion.

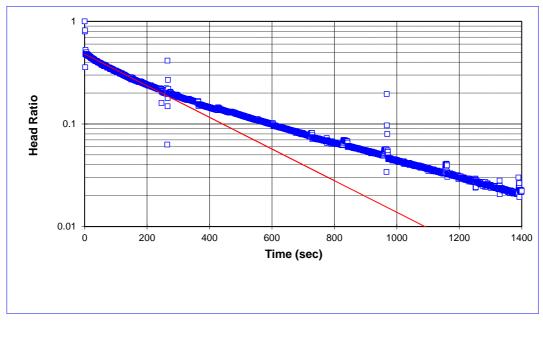
<u>Sample</u>	<u>Depth (m)</u>
1	0.00 - 0.40
2	0.40 - 0.50
3	0.90 - 1.00
4	1.30 – 1.40
5	1.40 – 1.60
6	2.10 - 2.30
7	3.10 - 3.30
8	4.10 - 4.20

HVORSLEV SLUG TEST ANALYSIS FALLING HEAD TEST 17-5

$$K = \frac{r_c^2}{2L_e} \ln \left[\frac{L_e}{2R_e} + \sqrt{1 + \left(\frac{L_e}{2R_e}\right)^2} \right] \left[\frac{\ln \left(\frac{h_1}{h_2}\right)}{(t_2 - t_1)} \right] \text{ where } K = (m/\text{sec})$$

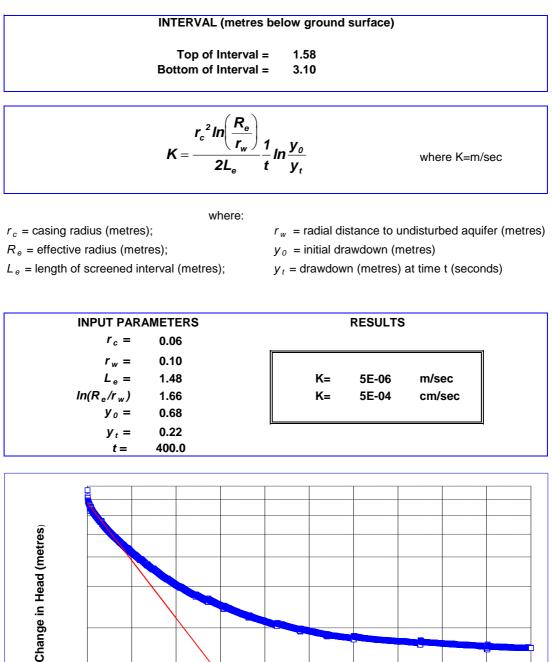
where:


 R_e = filter pack radius (metres)


 r_c = casing radius (metres)

 L_e = length of screened interval (metres)

t = time (seconds)


 h_t = head at time *t* (metres)

Project Name: IBI Barrett Lands Project No.: 1774599 Test Date: 6/9/2017 Analysis By: DH Checked By: SRW Analysis Date: 6/23/2017

BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 17-8

0.10 0 200 400 600 800 1000 1200 1400 Time (seconds)

Project Name: IBI Barrett Lands Project No.: 1774599 Test Date: 06/09/17 Analysis By: DH Checked By: SRW Analysis Date: 6/23/2017

1600

1800

2000