

Hydrogeological Assessment & Terrain Analysis Proposed Commercial/Industrial Subdivision 3119 Carp Road, Township of Huntley Ottawa, Ontario

Submitted to:

Mr. Greg LeBlanc 1963 Old Carp Road Ottawa, Ontario K0A 1L0

Hydrogeological Assessment & Terrain Analysis Proposed Commercial/Industrial Subdivision 3119 Carp Road, Township of Huntley Ottawa, Ontario

> January 29, 2020 Project: 62471.01

TABLE OF CONTENTS

1.0 II	NTRODUCTION	1
1.1	Proposed Development Details	1
1.2	Objectives	1
2.0 R	REVIEW OF BACKGROUND INFORMATION	C
2.1	5	
	1.1 Mineral Aggregate Assessment Report	
	1.2 EIS and Tree Conservation Report1.3 Storm Water Management Report	
	1.4 Community Design Plan Report	
	1.5 Groundwater Study Report	
	1.6 Mississippi Valley Source Protection Region Report	
2.	1.7 ARIP 191 Report	8
2.	1.8 Carp Road Corridor Nitrate Impact Assessment Recommendations	9
2.2	Land Use	9
2.3	Topography	10
2.4	Drainage	10
2.5	Geology Mapping	10
2.6	Ontario Ministry of Environment Water Well Records	11
3.0 T	ERRAIN EVALUATION	12
3.1	Field Procedure	
3.2	Soil and Groundwater Conditions	
-	2.1 General	
-	2.2 Topsoil	
	2.3 Silty Clay to Silt2.4 Silty Sand to Sand	
	2.5 Bedrock	
	2.6 Groundwater Conditions	
3.2	2.7 Grainsize and Hydrometer Testing	
4.0 H	IYDROGEOLOGICAL CONCEPTUAL MODEL	15
4.1	Background Information	15
4.2	Site Specific Geology	
4.3	Hydrogeological Conceptual Model	
5.0 G	GROUNDWATER IMPACT ASSESSMENT	17
5.1	Sewage Disposal Systems	
5.2	Background Nitrate Concentrations	
5.3	Groundwater Impacts	
0.0		

6.0 GRC	DUNDWATER QUALITY ASSESSMENT	24
6.1 T	Fest Well Construction	24
6.2 F	Pumping Tests Field Procedure	25
6.2.1	Water Level Measurements	26
6.2.2		
6.2.3	- 1 5	
6.2.4	Chlorination and Retesting	30
6.3 T	Fest Well Water Quality	31
6.3.1	Maximum Acceptable Concentration Exceedances	
6.3.2	Operational Guideline Exceedances	
6.3.3	Aesthetic Objective Exceedances	33
6.4 C	Offsite Wells Water Quality	35
6.4.1	Comparison between Onsite Test Wells and Offsite Private Wells	37
7.0 GRC	OUNDWATER QUANTITY ANALYSIS	
7.1 F	Pump Test Analysis Overview	
7.2 T	Fransmissivity Analysis	41
7.3 H	Hydraulic Interference Effects	42
7.4 C	Computer Model Simulations	42
7.5 L	ong Term Well Yields	43
8.0 CON	ICLUSIONS	44
9.0 REC	COMMENDATIONS	45
9.1 C	General Recommendations	45
	Vell Construction Recommendations	
9.3 5	Septic System Recommendations	47
9.4 C	Drinking Water Supply Recommendations	48
10.0 LIMI	TATIONS OF REPORT	49

LIST OF TABLES

Table 2.1 - Summary of Land Use in Study Area	9
Table 2.2 - Summary of Water Well Records Search Results	11
Table 3.1 - Summary of Grain Size and Hydrometer Testing	15
Table 4.1 Framework of Hydrogeological Conceptual Model	17
Table 4.2 – Background Nitrate (Overburden)	19
Table 4.3 - Background Nitrate (Bedrock)	19
Table 5.1 - Allowable Sewage Flow per Commercial Lot (Conventional Septic Systems)	22
Table 5.2 - Allowable Sewage Flow per Commercial Lot (Septic Systems with Advanced	
Treatment Technologies)	23
Table 6.1 - Summary of Test Well Construction Details	25
Table 6.2 - Pump Test Flow Rates - June 2013	26
Table 6.3 - Field Equipment Overview	27
Table 6.4 - Summary of Laboratory Analysis Samples	29
Table 6.5 - Summary of Well Owner Interview Comments	37
Table 6.6 - Comparison of Test Well and Private Well Exceedances	38
Table 7.1 - Initial Pumping Tests Details - June 2013	38
Table 7.2 - Supplemental Pumping Tests Details - June 2015	40
Table 7.3 - Summary of Transmissivity and Specific Capacity Estimates	41
Table 8.1 – Septic flow recommendations	48

LIST OF FIGURES (FOLLOWING TEXT OF THIS REPORT)

- Figure 1 Key Plan
- Figure 2 Site Plan
- Figure 3 Interpreted Overburden Thickness Map
- Figure 4 Groundwater Flow Direction Plan
- Figure 5 Interpreted Subsurface Cross Section

LIST OF APPENDICES

Appendix A	Private Servicing Plan
Appendix B	External References (Figures, Maps and Soil Profile Sheets)
Appendix C	Water Well Records Search
Appendix D	Record of Test Pit Sheets
Appendix E	Carp Road Corridor - Nitrate Impact Assessment Recommendations
Appendix F	Nitrate Dilution Calculations and Water Surplus Data Sheets
Appendix G	Onsite Test Well Water Well Records and Certificates of Well Compliance
Appendix H	Pumping Test Drawdown and Recovery Data
Appendix I	Observation Well Water Level Measurements
Appendix J	Water Quality Summary Tables
Appendix K	Test Well Sampling – Laboratory Certificates of Analysis
Appendix L	Test Well Supplemental Sampling – Laboratory Certificates of Analysis
Appendix M	Private Well Sampling – Laboratory Certificates of Analysis
Appendix N	Transmissivity Analysis Estimates and Interference Analysis

1.0 INTRODUCTION

Gemtec Consulting Engineers and Scientists Limited (GEMTEC), formerly Houle Chevrier Engineering Ltd. (HCEL), was retained by Mr. Greg LeBlanc to conduct a hydrogeological investigation and terrain evaluation at the site of a proposed commercial/industrial subdivision located at 3119 Carp Road in Ottawa, Ontario.

1.1 Proposed Development Details

The proposed development (hereafter referred to as 'the subject site') will be comprised of a 14.20 hectare (35.09 acre) commercial/industrial subdivision located on Concession 3 in the Township of Huntley, at 3119 Carp Road (refer to Site Location Plan, Figure 1). The subject site is currently vacant and portions of it have been previously used for agricultural purposes.

The proposed commercial/industrial development will consist of a maximum of twelve (12) lots serviced with on-site septic disposal systems and water supply wells. The proposed lots will be serviced by an internal roadway system and are to have a minimum lot size of approximately 0.7 hectares (1.7 acres) with an average lot size of 1.0 hectares (2.5 acres). It is understood that if a prospective buyer has large space requirements, then they could purchase two (2) lots as a single large lot. The proposed lot layout, showing the maximum of twelve (12) lots, is shown on the Site Plan, Figure 2 and on the Private Servicing Plan prepared by Novatech Engineering Consultants Ltd. (see Appendix A).

1.2 Objectives

The objectives of this investigation are to demonstrate that:

- The terrain at the site is suitable to attenuate the effluent from on-site wastewater treatment systems such that down gradient land is not impacted in excess of provincial standards;
- The onsite groundwater available from test wells of specified construction will meet the Ontario Drinking Water Standards (ODWS) Standards, Objectives and Guidelines and/or provincial treatability limits for aesthetic/operational parameters;
- The quantity of onsite groundwater available from test wells of specified construction will be able to provide enough water for the proposed development use on an ongoing basis and not interfere with the use of well water on adjacent properties; and,
- Demonstrate that the policies of the Carp Road Corridor Community Design Plan, the City of Ottawa Carp Road Corridor-Nitrate Impact Assessment Recommendations and the City of Ottawa zoning provisions are met.

Following a review of available background information and analysis of the results of the field investigation, conclusions and recommendations for the proposed development of the subject site are provided.

2.0 REVIEW OF BACKGROUND INFORMATION

2.1 Available Background Reports

A number of available background reports were reviewed as part of the revised investigation:

- "Mineral Aggregate Assessment, 3119 Carp Road, Ottawa, Ontario" prepared by Paterson Group Inc. and dated March 7, 2014 (Report: PH2450-REP.01). This report is referred to herein as the 'MAA Report'.
- "3119 Carp Road, West Carleton, Environmental Impact Statement and Tree Conservation Report" prepared by Muncaster Environmental Planning Inc. and dated July 18, 2013. This report is referred to herein as the "EIS Report".
- "3119 Carp Road Plan of Subdivision, Ottawa, Ontario, Servicing Options and Stormwater Management Report" prepared by Robinson Land Development and dated September 2014 (Project No: 13084). This report is referred to herein as the "SWM Report".
- "Carp Road Corridor, Community Design Plan" prepared by the City of Ottawa and dated June 2004 (Publication No. 3-08). This report is referred to herein as the "CDP Report".
- "Carp Road Corridor, Groundwater Study" prepared by Dillon Consulting Limited and dated November 30, 2004 (ref: 04-3219). This report will herein be referred to as the "Groundwater Study Report".
- "Mississippi-Rideau Source Protection Region, Assessment Report, Mississippi Valley Source Protection Area" prepared by Mississippi Valley Conservation and Rideau Valley Conservation Authority and dated August 4, 2011. This report will herein be referred to as the "MVSPR Report".
- "Aggregate Resources Inventory of the City of Ottawa, Southern Ontario" prepared by the Ontario Geological Survey Aggregate Resources Inventory (Paper 191) and dated 2013. This report will herein be referred to as the "ARIP 191 Report".
- "Carp Road Corridor Nitrate Impact Assessment Recommendations" dated September 27, 2016.

2.1.1 Mineral Aggregate Assessment Report

The Mineral Aggregate Assessment (MAA) Report prepared by Paterson Group Inc. was reviewed for relevant information to the development of the subject site:

- The purpose of the MAA Study was to ascertain the quantity and quality of the aggregate materials present beneath the site.
- A review of Ontario Geologic Survey (OGS) mapping indicates that the site is underlain by coarse textured glaciofluvial deposits consisting of sand and silt. Surficial bedrock was noted in the mapping. The subject site is reported to overlay

the Verulam Formation of the Ottawa Group, a Middle Ordovician bedrock. The Verulam Formation is one of the youngest of the Ottawa Group of limestones and overlays the Bobcaygeon Formation. The Verulam Formation consists of interbedded bioclastic to very fine grained limestone and grey-green calcareous shale.

- Seven (7) test pits were advanced across the subject site on February 7, 2014 to supplement the existing subsurface information available from eighteen (18) test pits previously completed by Houle Chevrier Engineering Ltd. It is understood that draft test pit location maps, draft soil profile and data sheets, and draft overburden thickness interpretation maps by Houle Chevrier Engineering Ltd. were made available to Paterson Group by the property owner.
- The MAA report provides a discussion on the subsurface soil profile across the subject site:
- Topsoil was encountered at ground surface at all test hole locations generally ranging from between 0.05 to 0.3 metres;
- A transitional layer consisting of sand with varying amounts of silt is present beneath the topsoil layer across most of the subject site. This silty sand to sandy silt layer is underlain directly by shallow bedrock or by a fine to medium grained sand. The thickness of the transitional layer generally ranges from 0.6 to 1.3 metres in thickness. Grain size distribution testing carried out on this stratum did not meet OPSS Granular 'B' Type I aggregate gradation envelope.
- Below the transition layer of silty sand, resides a fine sand to medium grained sand. The stratum has a thickness of 1.0 to 2.7 metres. The fine to medium grained sand met OPSS Granular 'B' Type I aggregate gradation envelope requirements but was noted to be below the overburden groundwater table.
- Groundwater was encountered in four (4) of the seven (7) test pits and the remaining three (3) test pits encountered bedrock within 1.5 metres of ground surface.
- Bedrock surface observations noted that the visual characteristics of the bedrock surface were consistent with the Verulam Formation and published bedrock mapping. Where encountered, the bedrock was noted to be smooth and competent with no obvious signs of weathering.
- Sea shells were noted within the silty sand deposit in test pit 2.
 - The conclusions of the MAA report state that:
- the portion of the subject site licensed for aggregate extraction was characterized by shallow bedrock and that the existing soil overlying the bedrock did not meet OPSS Granular 'B' Type I gradation requirements;
- the remaining aggregate outside the existing licensed area met OPSS Granular 'B' Type I gradation requirements but exists in extremely limited quantity. In addition, the overburden groundwater table was elevated throughout the central portion of the site and the usable material was noted to be below the water table; and,

• the maximum thickness of the potential aggregate deposit in this area is less than 3 metres.

It is noted that the MAA Report states that, based on a review of available Ontario Geological Survey (OGS) mapping, the subject site is underlain by coarse textured glaciofluvial deposits. However, based on an email from Paterson Group Inc. dated August 13, 2015, it was clarified that OGS surficial geology mapping indicates that the subject site is underlain by coarse textured glaciomarine deposits.

Copies of the seven (7) test pit logs advanced on the subject site by Paterson Group Inc. are provided in Appendix B. A site plan from the MAA Report indicating the locations of the test pits is also provided in Appendix B.

2.1.2 EIS and Tree Conservation Report

The EIS report prepared by Muncaster Environmental Planning Inc. was reviewed for relevant information pertaining to the development of the subject site:

- The site is a combination of cultural meadows and woodlands and young and intermediate-aged forests, with deciduous hedgerows adjacent to some of the fields.
- The topography of the site is generally level and well drained sandy soils dominate the area (Schut and Wilson, 1987).
- An existing access road connects Carp Road to the site and continues west through the site to the former extraction areas west of the site.
- No channels with potential aquatic habitat or wetland habitat were observed on or adjacent to the site outside of the former excavation areas to the west of the site.
- Based on available aerial photography mapping provided in the report, the predevelopment site condition is approximately 50 percent tree covered.
- A recommended tree preservation plan is provided which identifies areas of the site where retention of existing trees is recommended, particularly on the western boundary of the subject site.

2.1.3 Storm Water Management Report

The SWM report prepared by Robinson Land Development was reviewed for relevant information pertaining to the development of the subject site. The SWM Report recommends the following measures for mitigating the post development storm water runoff from the roadways:

- Maintain pre-development drainage area boundaries as much as possible.
- Control post-development flow to meet pre-development levels.
- The excess stormwater for the 5-year and 100-year storm events for proposed roadways to be stored in the proposed road side ditches.

- Quality control measures for the roadway drainage to be provided by vegetation within the proposed roadside ditches.
- These recommendations would need to be addressed (with supporting calculations) as part of the detailed design work at the detailed design stage.

The SWM report indicates that the post development runoff is restricted to the pre-development design event for up to and including the 100 year design event. The SWM report provides a statement of opinion that that the increase in flows from the proposed roadways will contribute negligibly to the overall flow and therefore would not require any on-site quantity mitigating measures. However, if necessary (at the detailed design stage), the proposed roadway ditches can be designed with the following additions in order to achieve on-site runoff storage in the post development scenario:

- increased bottom width; and/or,
- reduced side slopes; and/or,
- rock check dams within the ditch itself.

The SWM report indicates that individual lots will need to provide on-site quantity control storage of stormwater up to and including the 100 year design event as per the current City of Ottawa Sewer Design Guidelines. The site plan process would ensure that each lot development follows this recommendation for their design.

The SWM report provides a statement of opinion that the stormwater generated by the proposed roadway achieves a sufficient quality by incorporating the following measures:

- vegetation within the ditches themselves; and,
- shallow slopes within the ditches (due to outlet and tributary drainage constraints) to promote infiltration through the soil.

2.1.4 Community Design Plan Report

The CDP report prepared by the City of Ottawa was reviewed for relevant information pertaining to the development of the subject site:

- Development of the site should preserve and add as many trees as possible and the use of landscaping, decorative fences, trees and/or shrubs in front of fencing to screen unsightly uses.
- The environmental features of the subject site (Schedule 2 CDP Report) shall be protected by implementing the polices in Section 4.7 of the Official Plan. In areas identified as groundwater recharge areas shown on Schedule 2, a groundwater

impact assessment may be required to support development applications to determine the potential for impact on groundwater resources.

- A groundwater impact assessment may be required for development applications to support land uses that may pose a high risk to the groundwater resource, or uses that use large volumes of water or dispose of large volumes of liquid or solid waste, as per Section 4.7.5 of the Official Plan.
- Schedule 2 of the CDP Report indicates that the subject site is located in a moderate recharge area.
- When reviewing development applications in areas identified as groundwater recharge areas, the City will consider the potential for impact on groundwater resources. A groundwater impact assessment may be required where the City has identified that the lands play a role in the management of the groundwater resource or the need is indicated in other available information such as subwatershed plans or local knowledge as per Section 4.7.5 of the Official Plan.

2.1.5 Groundwater Study Report

The Groundwater Study Report prepared by the Dillon Consulting Ltd. was reviewed for relevant information pertaining to the development of the subject site. The following recommendations were presented:

- Applicants of future high risk commercial and industrial development should demonstrate that the proposed development will not impact groundwater prior to receiving approval. Elements of the proponent's proposal may include: assessment of the hydrogeological characteristics, the design of protection engineering systems to reduce risk of chemical discharges, identification and abandonment of unused wells, the design of a groundwater monitoring system, establishment of a spill response plan, plans to encourage natural infiltration and possible posting of bonds to cover future environmental clean-up efforts.
- For existing land uses, it is recommended that mitigation actions be enacted primarily through voluntary mechanisms including: promotion of best management practices, education of the public on the aquifer sensitivities, development of incentive programs to reduce contamination risk, and the review of road salting practices to reduce salt loading.
- For development of new subdivisions, a hydrogeological assessment following City
 of Ottawa protocols should be performed as a condition of approval. For development
 by consent, neighbouring wells should be sampled and favourable chemistry results
 obtained prior to approval being granted.
- The Carp Road Corridor Groundwater Study should be updated every 5 years to ensure that development on private services has not impacted the environment, and to reassess whether future development on private services remains feasible.

The following information from the report is considered relevant to this investigation:

- The Groundwater Study Report was completed using information from the following resources:
- 1:50,000 scale overburden and bedrock geology maps by Geological Survey of Canada and 1:10,000 scale Ontario Base Maps from the Ministry of Natural Resources;
- MECP Water Well Records;
- Other previous studies (please refer to the Groundwater Study Report for specific sources); and,
- Geographic Information System (GIS) Database sources from: City of Ottawa, Renfrew County, Ministry of Northern Development. In addition, GIS data from a Regional Groundwater Study (Golder et al, 2003) was modified to a scale suitable for analysis (1:25,000).
 - The Surficial Geology & Aquifer Location (Figure 3) map of the Groundwater Study Report indicates that:
- The subject site has nearshore sediments of the Champlain Sea consisting of fine to medium sand.
- The lands immediately adjacent to the eastern boundary of the subject site have nearshore sediments of the Champlain Sea consisting of gravel and sand.
- The closest glaciofluvial deposits of sand and gravel to the subject site are mapped to the south of Richardson Side Road (which is greater than 3.5 kilometres from the closest boundary of the subject site).
- The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
 - The Bedrock Geology & Aquifer Location (Figure 4) map of the Groundwater Study Report indicates that:
- The subject site is mapped as Paleozoic bedrock consisting of limestone and shale of the Verulam Formation.
- The closest MOE Recorded Well Location and Aquifer Pumped symbols indicate an unconfined limestone aquifer.
- The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
 - The Groundwater Flow (Figure 5) map of the Groundwater Study Report indicates that groundwater flow in the region of the site is expected to flow to the north (or to the northeast from the subject's site frame of reference). The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.

- The Groundwater Infiltration (Figure 6) map of the Groundwater Study Report indicates that groundwater infiltration is high for the sand and gravel deposits of the subject site. The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Recharge/Discharge Areas (Figure 7) map of the Groundwater Study Report indicates that the vertical groundwater gradient is subject site as being a recharge zone with the majority of the site identified as having a strong downward vertical groundwater gradient. The southeastern corner of the subject site is mapped as having a weak downward vertical groundwater gradient. The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Aquifer Vulnerability (Figure 8) map of the Groundwater Study Report indicates that the subject site (as is much of the Carp Road Development Corridor) is located in a high vulnerability aquifer area. The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.

2.1.6 Mississippi Valley Source Protection Region Report

The MVSPR Report prepared by Mississippi Valley Conservation and Rideau Valley Conservation Authority was reviewed for relevant information pertaining to the development of the subject site:

- Figure 5-1d (Mississippi-Rideau Source Protection Region Highly Vulnerable Aquifers (HVA's) map indicates that the subject site is located in a highly vulnerable aquifer zone. However, it should be noted that much of the Carp Road Development Corridor, the Waste Management West Carleton Environmental Centre and the Karson Quarry are also all located in the highly vulnerable aquifer zone.
- Figure 5-6c indicates that the closest corner of the subject site is located about 750 metres to the south of the outermost boundary of the Carp Wellhead Protection Area (Zone D: 25 year travel time). In addition, the closest corner of the subject site to the Carp Communal well is approximately 3 kilometres.

2.1.7 ARIP 191 Report

The ARIP 191 Report prepared by Ontario Geological Survey was reviewed for relevant information to the development of the subject site:

- The subject site is shown on Map 1 (Appendix B) as being located in a sand and gravel deposit of tertiary significance;
- The adjacent land to the southwest of the subject site contains two abandoned sand pits previously developed within a buried geological and aggregate thickness boundary of sand and gravel. The former northern pit appears to have been closed down for a number of years and is filled with water. Limited resources may still be available in the southern pit, which is also filled with water;

- The existing sand pit located about 900 metres southwest of the closest boundary of the subject site on the west side of William Mooney Road is completed in a glaciomarine plain deposit and is predominately a source of sand;
- The aggregate available from the existing and former sand pits to the southwest of the subject site is reported to have less than 5 percent gravel.

2.1.8 Carp Road Corridor Nitrate Impact Assessment Recommendations

The City of Ottawa memorandum entitled "Carp Road Corridor – Nitrate Impact Assessment Recommendations" dated September 27, 2016 provides additional guidance for the application of the MECP D-5-4 guidelines within the Carp Road Corridor. The memo allows proponents to undertake a modified nitrate attenuation predictive assessment using nitrogen reduction treatment systems. Available systems are able to achieve a minimum of 50% reduction in nitrogen and as a result, the modified minimum concentration of nitrate used in the nitrate attenuation assessment can be reduced to 20 mg/L.

2.2 Land Use

The subject site is currently vacant undeveloped land and portions of the site are/were previously used for agricultural purposes. There are currently three (3) bedrock test wells located on the subject site.

Land use in the vicinity of the site consists of vacant undeveloped land, agricultural land, rural residential land use, and commercial / light industrial (Carp Airport and gravel pits). Specific land uses near the subject site boundaries are documented in Table 2.1.

Subject Site Boundary	Existing Land Use		
Southwest	 Combination of former gravel pits (now open water ponds) and undeveloped rural land along with some heavily treed areas; followed by, An existing sand pit is located approximately 900 metres to the southwest of the site on the far side of William Mooney Road. 		
Northwest	 Access road to McGee Pit followed by Carp Airfields. 		
Northeast	 Cemetery, private residence and church followed by Carp Road. Mixed land use, including rural residential, agricultural and commercial (e.g. general contractor, landscape supply company) along Carp Road. 		

Table 2.1 - Summary of Land Use in Study Area

Subject Site Boundary	Existing Land Use		
Southeast	 Mixed land use, including: rural residential, commercial and agriculture land along Carp Road. 		

The impact on groundwater quality from existing and/or historical land use of the subject site and adjacent properties was addressed by conducting additional groundwater samples for laboratory analysis. Specific land uses addressed include the Carp Airport, the adjacent cemetery, general light industrial use along Carp Road, and historical and nearby aggregate extraction operations.

No land use was identified on and/or in the vicinity of the subject site which is expected to adversely impact the available quantity of groundwater for the proposed development.

2.3 Topography

Topographic mapping data which was provided to us indicates that elevations range from about 110 to 117 metres above sea level. Overall, the property is relatively flat with a regional slope downwards in a northeasterly direction towards the Carp River. The topographic high point of the property is the southwest corner of the property.

2.4 Drainage

There are no surface water features on the subject site, however, two ponds (former gravel pits) are located just west of the site. There is a possible swale (observed to be dry) centrally located on the western portion of the subject site.

Overall, the drainage of the subject site is assumed to be influenced by the natural topography of the site and is anticipated to be generally to the north towards the Carp River (or northeast from the subject site perspective). Roadside drainage ditches have been constructed along the northwest boundary of the site.

Ontario Base Mapping indicates that there are no wetland features on the subject site. This is consistent with field observations of the subject site.

2.5 Geology Mapping

Surficial, bedrock and karst geology maps available from OGSEarth geoscience program (Ontario Ministry of Northern Development and Mines) were reviewed for geological information to support the hydrogeological conceptual model.

The OGSEarth surficial geology map indicates that the overburden on the subject site is indicated to be coarse textured glaciomarine deposits composed of sand, gravel and minor amounts of silt and clay. The surficial geology of the northwest corner of the subject site is indicated to be

Paleozoic bedrock suggesting possible shallow bedrock conditions. It is noted that the Carp Road Development Corridor is primarily located within zones of coarse textured glaciomarine deposits and glacial till.

The OGSEarth surficial geology map indicates that the closest glaciofluvial deposit is located approximately 4.2 kilometres to the southeast of the subject site near the intersection of Carp Road and Highway 417. It is noted that the Carp Road Landfill and an existing limestone bedrock quarry are prominently situated within the mapped area of the glaciofluvial deposits.

The OGSEarth bedrock geology map is indicated to be Paleozoic bedrock consisting of limestone and shale from the Verulam Formation of the Simcoe Group.

The OGSEarth karst geology map indicates that the closest boundary of the subject site to any potential or inferred karst bedrock features is greater than 1.6 kilometres. The closest known karst bedrock feature is approximately 11 kilometres to the north of the subject site.

2.6 Ontario Ministry of Environment Water Well Records

The MECP Water Well Records for a 1.0 kilometre radius surrounding the centre of the subject site were obtained to determine the characteristics of existing private wells in the vicinity of the subject site. A total of sixty seven (67) well records were obtained and these records are provided in Appendix C along with a map showing the locations of well records in the vicinity of the subject site. Six (6) well records were for wells completed in the overburden; all of the remaining well records were for drilled wells completed in the bedrock.

Table 2.2 provides a summary of the well characteristics for the remaining sixty seven (67) water well records for depth to water found, static water levels, depth to bedrock and total well depth.

Parameter	10 th Percentile	90 th Percentile	Average / Geometric Mean
Depth Water Found (m)	18.3	68.6	39.8 / 32.8
Static Water Level (m)	1.9	7.9	5.4 / 4.6
Depth to Bedrock (m)	1.2	35.3	10.8 / 5.5
Total Well Depth (m)	24.3	74.4	48.6 / 43.8

Table 2.2 - Summary of Water Well Records Search Results

The MECP Water Well Records for a 1.0 kilometre radius around the subject site indicate that water in existing private wells was encountered at shallower depths compared to that of the onsite

test wells (i.e. geometric average of 32.8 metres below ground surface for the offsite private well records and geometric average of 53.5 metres below ground surface for the onsite test wells). This indicates that the majority of nearby private wells likely utilize more a shallow water bearing zone than the onsite test wells.

The MECP Water Well Records indicate that the existing private wells have shallower well completion depths than the onsite test wells (i.e. geometric average of 43.8 metres below ground surface for the offsite private well records and geometric average of 57.1 metres below ground surface for the onsite test wells). Again, this supports the assumption that nearby shallow wells utilize a shallower water bearing zone than the onsite test wells. This could be due to the longer well casing length (10 metres minimum) selected for the test wells at this site. Somewhat longer casings would cut off shallow aquifer zones.

The depth to bedrock in existing private wells is slightly less that the depth to bedrock of the onsite test wells (i.e. geometric average of 5.5 metres below ground surface for the offsite well records and geometric average of 7.2 metres below ground surface for the onsite test wells).

A review of the overburden material noted on the well logs was carried out to provide additional information on regional subsurface geology. The overburden material noted in the well logs ranges from sand and gravel deposits to deposits of grey silty clay and varies significantly from well log to well log. Well records were classified as having insufficient information to characterize overburden deposits, overburden deposits with some or all soils listed as low permeability (clays, silts, tills, and hardpan) and overburden deposits characterized as having relatively high permeability soils (sand and gravel) and/or shallow bedrock. The results of the enumeration indicates that 9 percent (6 of 67) well records reference one or more formations characterized as low permeability and 31 percent (21 of 67) well records were characterized as being completed in formations of relatively high permeability soils and/or shallow rock.

3.0 TERRAIN EVALUATION

3.1 Field Procedure

Test pits were advanced by HCEL from June 17 to 20, 2011. Eighteen (18) test pits, numbered 11-1 to 11-18, were advanced at the site. The field work was supervised throughout by a member of our engineering staff, who directed the excavating operations and logged the test pits. The locations of the test pits are shown on the Site Plan, Figure 2.

The test pits were advanced using an excavator to depths ranging from about 0.3 to 3.2 metres below ground surface. The subsurface conditions encountered in the test pits were identified by visual and tactile examination of the materials exposed on the sides and bottom of the test pits and from the excavated materials. Groundwater levels were measured in five (5) temporary piezometers installed in the test pits. The test pits were backfilled with the excavated materials

and tamped with the bucket of the excavator during backfilling. Soil and groundwater conditions encountered during test pitting are described in the Record of Test Pit sheets provided in Appendix D.

Selected samples of the overburden deposits were returned to our office for further testing. Grain size distribution testing was carried out on six (6) soil samples. The results of the grain size distribution testing are presented in Appendix D following the Records of Test Pit sheets.

A plan showing the interpreted overburden thickness is provided in the Interpreted Overburden Thickness Plan, Figure 3. Please note that the areas identified are approximate only and are based on the information collected from the test pits. Therefore, areas outside the locations of the test pits may differ in overburden thickness than indicated on Figure 3.

3.2 Soil and Groundwater Conditions

3.2.1 General

Soil and groundwater conditions encountered during test pitting are described in the Record of Test Pit sheets provided in Appendix D. The test pit logs indicate the subsurface conditions at the specific test pit locations only. Boundaries between zones on the logs are often not distinct, but rather are transitional and may have been interpreted. Subsurface conditions at other than the test pit locations may vary from the conditions encountered in the test pits. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site.

The soil descriptions in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil involves judgment and HCEL does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.

An overview of the subsurface conditions, interpreted from the Records of Test Pits, is presented below.

3.2.2 Topsoil

Topsoil was encountered at ground surface in all of the eighteen (18) test pits. The topsoil consists of dark brown silty clay to silty sand with organic material. The topsoil ranges from about 0.1 to 0.2 metres in thickness and has an average thickness of about 0.1 metres.

3.2.3 Silty Clay to Silt

Deposits of silty clay to clayey silt with trace sand were encountered in test pits 11-1, 11-2, 11-4, 14, 11-15, 11-16, 11-17 and 11-18. The silty clay deposit was encountered underlying the topsoil in test pit 11-1 but was encountered overlain by a sand or silty sand deposit at the other test pit locations. Trace to some small gravel was encountered throughout the site

3.2.4 Silty Sand to Sand

Deposits of brown and grey sand (fine to coarse) and silty sand with some to trace clay and gravel were encountered in all of test pits except for test pits 11-1 and 11-7. The silty sand / sand deposits were encountered directly beneath the topsoil. The silty sand / sand deposits at test pit 4 was noted to contain clay seams and cobbles with increasing depth. At some test pit locations, the silty sand / sand deposits occur above and below the silty clay deposits. Trace sea shells were encountered within the silty sand deposits in seven (7) test pits across the subject site.

3.2.5 Bedrock

Six (6) the test pits were terminated either on inferred smooth surface bedrock (as determined by practical refusal of the excavator) and/or practical refusal on boulders. Observed bedrock conditions in the shallower test pits indicate that the surface of the bedrock was smooth and no obvious fractures were observed.

An interpreted overburden thickness plan (refer to Figure 3), was created based on the depth to bedrock/refusal encountered in the HCEL test pits, MAA Report test pits and the MECP Water Well Records for the onsite test wells. The interpreted overburden thickness map indicates that some localized areas of thin overburden (less than 0.5 metres to bedrock) are present across Lots 8 and 9 along the western boundary of the subject site. The overburden thickness increases to depths of more than 3 metres towards the central and eastern portions of the subject site.

Based on the MECP Water Well Records for test wells TW1 and TW2, the depth to bedrock across the eastern portion of the subject site ranges from about 11 to 14 metres below ground surface.

3.2.6 Groundwater Conditions

Groundwater was observed to enter all of the test pits at depths generally ranging from 1 to 2 metres below ground surface. Water levels were measured in five (5) shallow piezometers using an electronic water level meter on June 30, 2011. Water levels ranged from 0.37 to 2.05 metres below the ground surface, averaging 1.1 metres below the ground surface.

Since no significant overburden aquifer was encountered on the western portion of the subject site in the vicinity of Lots 8 and 9, it is our opinion that the bedrock surface is the receiving aquifer for septic system effluent on Lots 8 and 9. For the remainder of the subject site, the receiving aquifer for septic system effluent is the overburden aquifer. No significant amounts of groundwater were noted in the overburden during the test well drilling.

The flow of groundwater in the overburden is expected to be heavily influenced by the shallow bedrock topography on the western portion of the subject site. Groundwater flow direction estimates indicate that the groundwater flow is to the north refer to Groundwater Flow Direction Plan, Figure 4.

It should be noted that the groundwater levels could vary during wet periods of the year, after periods of heavy precipitation and snow melt or during the dry summer months. Groundwater flow directions may also change due to changing groundwater levels and/or development activities on and off the subject site.

Background nitrate concentrations in the overburden were measured in water samples collected from test pits 11-4, 11-12 and 11-5. The nitrate concentrations were 0.86, 0.28 and <0.10 mg/L respectively. The highest overburden nitrate concentration of 0.86 mg/L was measured in test pit 11-4, which is located in the easternmost corner of the subject site. Adjacent land use surrounding the easternmost corner of the subject site is all agricultural land. It is expected that the low nitrate concentration detected at this location is due to adjacent land use impacts. The source of the trace nitrate concentration measured in test pit 11-12 is possibly a result of historical use of the site as a cow pasture.

3.2.7 Grainsize and Hydrometer Testing

Soil samples from the terrain analysis were selected for grain size and hydrometer testing. The results of the grain size and hydrometer testing are presented following the Record of Test Pit sheets in Appendix E. The soil sample ID's, along with accompanying classification based on the results of the grain size and hydrometer testing, are summarized in Table 3.1:

Test Pit	Sample No.	Description
11-3	1	Sand, trace silt and some gravel
11-4	4	Silty sand, some clay
11-6	2	Sand, some silt
11-13	2	Sand, some silt, trace gravel
11-14	2	Sandy silt with clay
11-15	3	Silty clay and fine sand

Table 3.1 - Summary of Grain Size and Hydrometer Testing

4.0 HYDROGEOLOGICAL CONCEPTUAL MODEL

4.1 Background Information

Based on the results of the review of available background reports, MECP Water Well Records, land use observations and selected geology maps, the overburden geology on and around the subject site is characterized by glaciomarine sediments consisting of sand and gravel with minor amounts of silt and clay. The sediments are expected to range in thickness from less than 1 to more than 15 metres in depth, with the overburden thickness generally increasing from west to

east across the subject site. The bedrock geology is characterized by limestone and shale bedrock of the Verulam formation.

The technical hydrogeological review memorandum by the MVCA states that the background information for this area indicates that the subject site is underlain by a regionally extensive sand aquifer and that an esker is located very close to or on the site. The MVCA considers the gravel core and other coarser sandy material associated with an esker to be hydrogeologically sensitive material that should be protected from contamination and in which clean groundwater recharge should be maintained/enhanced. Based on a review of available background information, HCEL is unable to identify any information source indicating the presence of a gravel core and/or coarser sandy material associated with an esker.

4.2 Site Specific Geology

The western portion of the subject site is characterized by limestone and shale bedrock of the Verulam formation at depths from about 0.3 to 2.3 metres below ground surface. The shallow overburden soils on the western portion of the site are generally characterized by deposits of sand and silty sand with varying amounts of clay and gravel.

The central and eastern portions of the subject site are characterized by limestone and shale bedrock of the Verulam formation at depths from about 2 to more than 15 metres below ground surface. The overburden soils on the western portion of the site are generally characterized by deposits of sand and gravel, fine to medium sand and silty sand to sandy silt; all of which may contain varying amounts of clay and gravel.

Sea shells were noted to be present in six (6) of the test pits advanced on the central and eastern portions of the subject site as part of this investigation. One (1) of the test pits reported in the MAA Report by Paterson Group Inc. indicated the presence of sea shells. The presence of sea shells within the overburden soils is consistent with available background information which indicates that the site is characterized by glaciomarine deposits.

It is noted that the site-specific investigations encountered fine grained material such as silty sand and silty clay across portions of the subject site. The presence of finer grained materials on the subject site is somewhat consistent with available background information, which indicates minor amounts of silt and clay can be expected within coarse textured deposits. Some localized areas of fine and/or coarser grained materials may be encountered across portions of the subject site; however, based on the observed variability of the test pits and test wells completed on the subject site, these areas are not continuous and are not representative of the overall hydrogeological setting.

4.3 Hydrogeological Conceptual Model

The framework for the hydrogeological conceptual model was developed based on our analysis and interpretation of the available background information and the site-specific subsurface investigations carried out at the subject site. Due to the regional nature of the information available in background information sources, the site-specific subsurface investigation information was given a higher weight in characterizing the site geology.

The framework for the hydrogeological conceptual model for the subject site is summarized in Table 4.1.

Stratigraphic Unit	Generalized Composition	Thickness (m)
Western Overburden	Topsoil;Sand, silty sand and silt.	0.3 to 2.3
Central and Eastern Overburden	 Topsoil; Sand, Sand and gravel, silty sand, sandy silt, all with varying amounts of clay, gravel and/or cobbles. 	2 to 15
Bedrock	 Limestone and shale of the Verulam formation. 	Unknown

It is our assessment that the hydrogeological conceptual model is consistent with available background information and the results of the field investigation on the subject site. A Hydrogeological Cross Section (refer to Figure 5) was prepared based on our interpretation of the above noted hydrogeological conceptual model. The alignment of the cross section (Section A-A') line is provided on the Site Plan in Figure 2.

Based on the reported depths to water found in the onsite test wells, the proposed water supply aquifer is between 25 and 75 metres below the surface of the bedrock.

5.0 GROUNDWATER IMPACT ASSESSMENT

The impact on groundwater and surface water resources due to wastewater treatment and disposal by individual onsite sewage disposal systems on the subject site are assessed in the following sections.

5.1 Sewage Disposal Systems

It is understood that the use of advanced treatment technologies, capable of producing Level IV treatment, as provided in Section 8.6.2.2.(1) of the Ontario Building Code, as well as reducing the concentration of nitrate within the treated septic effluent, are being proposed for the development. Treated effluent meeting the above noted criteria may be dispersed to a number of types of Class IV leaching beds including conventional trench beds, filter media beds, Type A and B beds, and shallow buried trench beds. The selection of the type Class IV leaching bed will likely be determined based on available area, as some of the bed options require a smaller area than others and some have a lessened required vertical separation distance between the disposal bed and low permeability soils, bedrock, or the seasonally high groundwater table.

The City of Ottawa memorandum entitled "Carp Road Corridor – Nitrate Impact Assessment Recommendations" dated September 27, 2016 provides additional guidance for the application of the MECP D-5-4 guidelines within the Carp Road Corridor. The memo allows proponents to undertake a modified nitrate attenuation predictive assessment assuming the use of advanced treatment technologies that are capable of achieving a 50% or greater reduction in nitrogen concentration in the treated effluent prior to disposal to the ground surface. In this case, the modified minimum concentration of nitrate used in the nitrate attenuation assessment can therefore be reduced to 20 mg/L.

It should be noted that the following information is provided for general guidance purposes only. All septic systems installed on the subject site should be designed on a lot by lot basis. Test holes should be advanced during the lot development to identify the subsurface conditions at the location of the proposed septic system. In all cases, the septic system design must conform to the OBC requirements.

5.2 Background Nitrate Concentrations

The majority of the subject site is underlain by coarse grained soils, consisting of sand, silty sand, and sandy silt. Based on the test well logs, the maximum overburden thickness on the northeastern portion of the site is approximately 15 metres. The southern portion of the site is underlain by thin soils, 0.3 to 2.3 metres in thickness, underlain by limestone bedrock. The receiving aquifer is considered to be a combination of the overburden sands and limestone bedrock. The background nitrate concentrations in the overburden, based on water samples collected from shallow test pits and the limestone bedrock, are compiled in Tables 4.2 and 4.3 below.

	Nitrate Concentrations (mg/L)		
	TP11-4	TP11-12	TP11-15
June 2011	0.86 mg/L	0.28 mg/L	<0.10 mg/L
Average Background	0.41		

Table 4.3 - Background Nitrate (Bedrock)

	Nitrate Concentrations (mg/L)				
	TW1	TW2	TW3	PW1	PW2
June 2013 (P- Tests)	3hr: <0.1 6hr: <0.1	3hr: 2.78 6hr: <0.1	3hr: 0.67 6hr: 0.46	-	-
June 2013 (private well sampling)	-	-	-	<0.1	9.57
June 2015 (Supplemental Pumping)	-	1.7	-	-	-
Average Background	0.75 ¹				

Notes: 1. Average background nitrate concentration does not include PW2. The private well is not considered to be technically representative.

It is noted that the level of nitrate in private well PW2 was elevated at a concentration of about 9.6 mg/L and close to the maximum acceptable concentration for nitrates provided in the ODWS. A water well record was not available for PW2 and the completion details (well casing, completion depth, overburden or bedrock well) are unknown. It is noted that the building serviced by this well was likely an old farmhouse and the well may have been installed without proper well construction and grouting methods. The well may be exhibiting impacts from the onsite septic system or adjacent agricultural land use due to its construction.

The shallow groundwater flow direction, based on test well and background mapping data, is generally to the north, which suggests that PW2 is cross gradient of the subject site. None of the

test wells on the subject site, the other private well, or overburden groundwater samples showed nitrate concentrations in this range and it is our opinion that the nitrate level in this private well is not representative of the receiving aquifer proposed for the subject site.

The nitrate concentrations in test wells TW2 and TW3 decreased throughout the pumping tests conducted in June 2013. Variable nitrate concentrations were observed in TW2, which decreased from 2.78 mg/L to <0.1 mg/L throughout the June 2013 pumping test and following supplemental pumping and sampling of TW2 in June 2015, the nitrate concentring was measured to be 1.7 mg/L. The variability in background nitrates may be related to past agricultural activities, current agricultural lands located adjacent to the site, septic system effluent from adjacent residential and commercial properties and/or due to seasonal variability.

Given the receiving aquifer is anticipated to be a combination of the overburden and bedrock aquifer, an estimate of the background nitrate concentrations on-site are calculated to be 0.75 mg/L (refer to Table 4.3).

5.3 Groundwater Impacts

The potential risk to groundwater resources on and off the subject site was assessed in accordance with Ministry of Environment Procedure D-5-4: Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. To evaluate the groundwater impacts, the Three-Step Assessment Process outlining in MECP D-5-4 was followed.

Based on the minimum lot size of 0.81 hectares and the hydrogeologically sensitive terrain, the subject site does not meet Step 1 – lot size consideration or Step 2 – isolation of MECP D-5-4. Where it cannot be demonstrated that the effluent is hydrogeologically isolated from the water supply aquifer and the proposed lot sizes are less than 1.0 hectares, the risk of individual on-site septic systems will be assessed using nitrate-nitrogen contaminant loading. The predictive assessment for industrial/commercial developments (section 5.6.3 of D-5-4) only applies to developments which have an average daily flow of less than 4,500 litres per day. The maximum allowable concentration of nitrate in the groundwater at the boundaries of the subject property is 10 milligrams per litre as per the Ministry of the Environment and Climate Change's guideline D-5-4, dated August 1996.

The septic flow for the commercial lots is based on information provided in Guideline D-5-4, Section 5.6.3 and the Carp Road Corridor Nitrate Impact Assessment Recommendations memo dated September 27, 2016.

The nitrate concentration at the site boundaries was calculated using the following information:

- Commercial Lots 1-12 (refer to Private Servicing Plan in Appendix A).
- Ministry of the Environment, Conservation and Parks guideline D-5-4, dated August 1996. Section 5.6.3 of D-5-4 was implemented into our assessment;

- An allowance for 40 percent hard surface area on the commercial lots;
- An average background nitrate concentration of 0.75 mg/L;
- The hydrologic factors used to estimate infiltration, such as topography, soil and cover are based on the Ministry of Environment (MOE) Stormwater Management Planning and Design Manual Section 3.0 (MOE, 2003) and the Ministry of the Environment and Energy (MOEE) Hydrogeological Technical Information Requirements for Land Development Applications (MOEE, 1995);
 - Topography: 0.2 (rolling land, average slope 2.8m to 3.8m/km).
 - Cover Factor: 0.1 (cultivated lands) and 0.2 (woodland).
 - Soil Factor: 0.1 (tight impervious clay), 0.2 (medium combo clay and loam), and 0.4 (open sandy loam).
- The water holding capacity (WHC) for soils is based on the Ministry of Environment (MOE) Stormwater Management Planning and Design Manual Section 3.0 (MOE, 2003);
 - Urban lawns/shallow rooted crops: fine sands (WHC 50mm), fine sandy loam (WHC 75mm), silt loam (WHC 125mm).
 - Pasture and shrubs: fine sandy loam (WHC 150 mm).
- An annual water surplus obtained from Environment Canada, Ottawa International Airport (1939-2013).
 - WHC 50 mm is 0.402 m/year, WHC 75 mm is 0.378 m/year, WHC 125mm is 0.341 m/year,
 WHC 150 mm is 0.328 mm/year and WHC of 300 mm is 0.328 mm/year.
 - Environment Canada datasheets provided in Appendix F.
- The use of advanced treatment technologies in the construction of the septic systems at each commercial lot, capable of reducing the concentration of nitrate in the treated effluent to 20 mg/L or less.

The maximum allowable flows are based on the nitrate concentration, available infiltration and background nitrate concentrations. The maximum allowable flows are calculated using the following formula provided in MECP D-5-4:

$$\frac{40 \frac{mg}{L} x Flow}{Flow + Infiltration} = 10 \frac{mg}{L} - Background Nitrate$$

where, *40 mg/L* represents the value for nitrate-nitrogen in the discharge from a Class 4 or Class 6 system (with no advanced treatment technologies), *flow* is the maximum allowable septic flows, *infiltration* is the available water for dilution and *background nitrates* are based on the background nitrate concentrations in the receiving aquifer. For septic systems with advanced treatment technologies, the value for nitrate-nitrogen is reduced to 20 mg/L.

The lot-specific hydrologic factors, soil water holding capacities and water surplus is compiled in Table F1 in Appendix F. Based on the site-specific terrain units and a maximum 40% hard surface area, the maximum septic flow for each commercial lot, using conventional septic systems (no

advanced treatment technologies) is provided in Table 5.1 below. The maximum septic flow, utilizing septic systems with advanced treatment technologies is provided in Table 5.2.

Block	Area (m²)	Infiltration Factor	Precipitation Surplus (m³/year)	Available Infiltration ¹ (litres per day)	Maximum Septic Flow ² (litres per day)
1	8089.6	0.70	3252	3742	1123
2	8090.9	0.50	2759	2268	680
3	8090.9	0.50	2759	2268	680
4	8165.4	0.60	3087	3044	913
5	8153.0	0.70	3277	3771	1131
6	8158.0	0.70	3280	3774	1132
7	8279.3	0.80	2716	3571	1071
8	8639.3	0.80	2834	3727	1118
9	8206.6	0.80	2692	3540	1062
10	21815.7	0.70	7156	8234	2470
11	15487.1	0.60	5854	5774	1732
12	13535.4	0.70	5441	6261	1878

 Table 5.1 - Allowable Sewage Flow per Commercial Lot (Conventional Septic Systems)

1. Available infiltration based on 40% hard surface areas.

2. Maximum septic flow incorporates the average background nitrate concentration calculated to be 0.75 mg/L (refer to section 5.2).

Table 5.2 - Allowable Sewage Flow per Commercial Lot (Septic Systems with Advanced)
Treatment Technologies)

Block	Area (m²)	Infiltration Factor	Precipitation Surplus (m³/year)	Available Infiltration ¹ (litres per day)	Maximum Septic Flow ² (litres per day)
1	8089.6	0.70	3252	3742	3218
2	8090.9	0.50	2759	2268	1950
3	8090.9	0.50	2759	2268	1950
4	8165.4	0.60	3087	3044	2618
5	8153.0	0.70	3277	3771	3243
6	8158.0	0.70	3280	3774	3245
7	8279.3	0.80	2716	3571	3071
8	8639.3	0.80	2834	3727	3205
9	8206.6	0.80	2692	3540	3044
10	21815.7	0.70	7156	8234	7081
11	15487.1	0.60	5854	5774	4966
12	13535.4	0.70	5441	6261	5385

1. Available infiltration based on 40% hard surface areas.

2. Maximum septic flow incorporates the average background nitrate concentration calculated to be 0.75 mg/L (refer to section 5.2).

As part of the predictive assessment, the maximum number of users was calculated, based on the calculated maximum allowable septic flow. It is noted that the maximum septic flow is limited to 4,500 litres per day, as outlined in Procedure D-5-4 section 5.6.3. As per the Carp Road Corridor memorandum, the maximum number of users is calculated assuming 75 litres per person per day. The calculations and assumptions are provided in Table F1, Appendix F.

The findings presented in this report are based on the assumption that the proposed Daily Design Sanitary Sewage Flow (DDSSF) will be produced 7 days a week. Dependant on the nature of the business that may occupy the lots, it may be possible to increase the allowable DDSSF if, for example, if a business was to operate on 5 days of a typical week and a balancing of the dispersal of effluent were to be applied over 7 days.

If, during the site plan approval process, the proposed septic system design flow exceeds the preliminary septic flow recommendation for a specific lot, then it is recommended that a detailed groundwater impact assessment be conducted based on the development proposal. If the proposed septic system design flow exceeds 4,500 litres per day, supplemental investigation will be required in accordance with MOEE Guideline B-7 guidelines for large subsurface sewage disposal systems. The impact assessment should take into account the soil conditions, topography, vegetation cover, impermeable areas, stormwater management design and best management practices, etc. This may include additional subsurface investigation activities, site specific infiltration tests, additional grain size distribution testing, etc. If the site-specific lot conditions and site plan design demonstrate that additional septic flow can be accommodated on a lot by way of a detailed groundwater impact assessment, then the preliminary septic flow recommendation for that lot should be amended accordingly.

6.0 GROUNDWATER QUALITY ASSESSMENT

A groundwater supply investigation was carried out in accordance with the MECP August 1996 document "Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment", to determine the quantity and quality of groundwater available for water supply. The results of the groundwater supply investigation are summarized in the following sections.

6.1 Test Well Construction

The MECP Procedure D-5-5 document indicates that a minimum of three (3) test wells are required for sites up to 15 hectares. Three (3) new test wells (Test Wells TW1 to TW3) were drilled by Saunders Well Drilling under Well Contractor License No. 4879. The wells were completed between June 5 and 13, 2013. Copies of the MECP Water Well Records and the Certificates of Well Compliance (Well Grouting Inspections) are provided in Appendix G.

The locations of the test wells are shown on Figure 2. The locations of the new test wells were chosen to provide maximum coverage of the site. The geographical references for the test wells are provided in the respective MECP Water Well Records.

Well grouting inspections were carried out by HCEL staff during the sealing of the well casings in the test wells. HCEL staff were not present for the remainder of the drilling of test wells. The test wells were constructed using a nominal 159 millimetre inside diameter steel casing. Based on the well records provided by the well driller, all of the test wells were completed with steel well

casings installed a minimum of 10.7 metres (34 feet) below the ground surface. The construction details of the test wells are summarized in Table 6.1.

Test Well	Depth to Bedrock (m BGS)	Depth of Well Casing (m BGS)	Depth Water Found (m BGS)	Total Well Depth (m BGS)
TW1	14.8	16.3	42.7	48.8
TW2	11.0	12.5	44.8	48.5
TW3	2.3	10.7	48.8 / 70.1	78.6

Table 6.1 - Summary of Test Well Construction Deta	ils
--	-----

It should be noted that efforts were made to limit the total well depth to less than 61 metres (200 feet) due to concerns with highly mineralized water at deep depths in the area. Test well TW1 was hydrofractured by the well driller to increase the well yield for the purposes of the hydrogeological investigation. Test well TW2 did not require any activity to increase the flow rate of the well. Test well TW3 was initially completed to a depth of approximately 50 metres and hydrofractured; however, the well driller determined that the well yield was insufficient for inclusion in the hydrogeological investigation. The test well was subsequently deepened to 78.6 metres below ground surface and the lower portion (newly drilled/deepened section) was also hydrofractured to obtain the necessary well yield for the hydrogeological investigation.

6.2 Pumping Tests Field Procedure

The pumping tests for the onsite test wells were conducted between June 18 and 20, 2013. A six (6) hour duration constant discharge rate pumping test was conducted in each test well. The pump discharge was directed to the ground surface at a distance ranging from 5 to 10 metres from the test wells and in a manner such that the flow of water on the ground surface was directed away from the test wells. Due to the test well casings being sealed a minimum of 1.5 metres into bedrock, this is considered to be sufficient to ensure that artificial recharge of the test well does not occur.

Additional pumping was carried out on test wells TW1 and TW2 on August 19, 2013 and July 22, 2013, respectively, to collect additional water samples due to bacteriological exceedances of the ODWS.

Test wells TW1 and TW2 were subjected to further testing and pumping on June 1 and 2, 2015, respectively. Both test wells were pumped for greater than six (6) hours at a flow rate of approximately 20 litres per minute and water samples were collected at the end of the pumping.

6.2.1 Water Level Measurements

During the pumping tests, water level measurements were taken at regular intervals in the well being pumped using an electric water level tape. After the pump was shut off, water level data were collected until a minimum of 90 percent of the drawdown in water level had recovered in the test wells TW1 and TW2. During the recovery of well TW3 the water level tape got stuck around the pump TW3 and only 61 percent of the recovered was captured for that well; however, the well was later confirmed to have recovered to 99 percent by 8:00 am the following day (when the pump was removed and the water level meter retrieved). For the supplemental pumping of test wells TW1 and TW2 in June of 2015, recovery of the test wells ranged from 98 to 100 percent by 1 hour after pumping was completed.

The water level measurements for the drawdown and recovery data for the pumping tests are provided in Appendix H. The drawdown data contained in Appendix H were measured with reference to the top of the well casings.

Water level measurements were also taken from other onsite test wells (observation wells) during the pumping of each test well to determine potential interference effects between the test wells. Water level measurements taken in the observation wells are provided in Appendix I.

6.2.2 Flow Rate Measurements

The flow rate of the pump discharge hose was measured at regular intervals throughout the pumping test to ensure that the flow rate of the pumping test was maintained at a constant flow rate. The discharge nozzle of the pump hose was outfitted with a critical flow nozzle which ensures that the flow rate of the pump is restricted to the critical flow nozzle calibration rate. A summary of the flow rates from the initial pumping tests conducted in 2013 is provided in Table 6.2:

Time (min)	Flo	Flow Rate (Litres per Minute)			
Time (min)	TW1	TW2	TW3		
5	19	30	23		
30	19	30	23		
60	19	30	23		
120	-	30	-		

Table 6.2 - Pump Test Flow Rates - June 2013

Time (min)	Flo	w Rate (Litres per Min	ute)
Time (min)	TW1	TW2	TW3
180	19	30	-
240	19	30	-
300	19	30	23
360	19	30	-

Additional pumping was carried out in June of 2015 for test wells TW1 and TW2. The flow rates were determined by the licensed well driller contracted to carry out the additional pumping. The well driller reported to us that a constant flow rate of about 19 litres per minute was maintained throughout the pumping.

Please note that the discharge rate on the drawdown data and graph sheets for the pumping tests are listed as variable because the recovery period, where the discharge rate is zero, is included in the same data set as the drawdown data. However, the actual discharge rate during the pumping of the test wells was at a constant rate.

6.2.3 Groundwater Sampling

Total chlorine tests were conducted in the field to ensure that chlorine levels were at 0.0 mg/L prior to sampling for bacteriological testing. The temperature, conductivity, total dissolved solids, pH, turbidity and total chlorine levels of the groundwater were measured at periodic intervals during the pumping tests and are summarized in Table 1 in Appendix J. The field equipment used during the pumping test is calibrated monthly by HCEL and the details of field equipment are provided in Table 6.3:

Field Parameters	Manufacturer	Model No.
Total Chlorine	Hach	CN-60
pH, temperature, TDS and Conductivity	Hanna	HI 98129

Table 6.3 - Field Equipment Overview

Field Parameters	Manufacturer	Model No.
Turbidity	Hanna	HI 98703

Groundwater samples were collected in laboratory supplied bottles and prepared/preserved in the field in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory. The groundwater samples were subsequently submitted to Exova Canada Inc. (Exova) in Ottawa, Ontario for chemical, physical and bacteriological analyses as listed in the MECP guideline titled "Technical Guideline for Private Wells: Water Supply Assessment", dated August 1996 and other supplemental parameters, as required.

Laboratory samples collected in 2015 were submitted to Paracel Laboratories Ltd. Groundwater samples were collected in laboratory supplied bottles and prepared/preserved in the field using in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory.

The analytical laboratory analysis carried out on the groundwater samples is summarized in Table 6.4:

Test Well	Date	Laboratory Analysis Parameters
	June 18, 2013	Subdivision Package (3 hour)Subdivision Package (6 hour)
TW1	July 22, 2013	Bacti-5 Retest 1Bacti-5 Retest 2
1 vv 1	June 1, 2015	 General Inorganics Petroleum Hydrocarbons F1 to F4 Glycol Volatile Organic Compounds Metals including mercury
TW2	June 19, 2013	Subdivision Package (3 hour)Subdivision Package (6 hour)
	August 19, 2013	Bacti-5 Retest 1Bacti-5 Retest 2Turbidity
	June 2, 2015	 General Inorganics Petroleum Hydrocarbons F1 to F4 Glycol Volatile Organic Compounds Metals including mercury
TW3	June 20, 2013	 Subdivision Package (3 hour) Subdivision Package (6 hour) Herbicides and Pesticides (6 hour) Petroleum Hydrocarbons F1 to F4 (6 hour) Volatile Organic Compounds (6 hour)

Table 6.4 - Summary of Laboratory Analysis Samples

The results of the laboratory analyses are summarized in Table 2 in Appendix J. The laboratory Certificates of Analysis for the test well sample results are provided in Appendix K. The results the supplemental testing carried out on test wells are provided in Tables 3A to 3C in Appendix J. The laboratory Certificate of Analysis for the supplementary sampling is provided in Appendix L.

6.2.4 Chlorination and Retesting

Chlorination and retesting of test wells TW1 and TW2 was carried out between August 19, 2013 and June 19, 2013, to address low levels of total coliform bacteria encountered in samples obtained during the initial pumping tests.

The water wells were chlorinated and pumped by licensed well technicians from Saunders Well Drilling (Well Contractor License No. 4879) for approximately six (6) hours. Upon confirmation from Saunders Drilling that the well had been chlorinated and had been continuously pumped throughout the day, HCEL staff sampled the pump discharge water.

Field testing of total chlorine at the time of retesting was carried out prior to water sample collection to confirm the absence of chlorine at the time of bacteriological sampling (refer to Tables 4A and 4B). The total chlorine sampling procedure to document the absence of chlorine in the discharge water is:

- Upon arrival, the discharge water from the pump is observed and the absence of chlorine odour is confirmed;
- The discharge water is tested for total chlorine. If chlorine is detected, then Air Rock is informed to continue pumping and HCEL staff leaves the site.
- If no total chlorine is detected, then the test well is allowed to pump for another fifteen (15) minutes.
- The discharge water is tested a second time for total chlorine. If chlorine is detected, then Air Rock is informed to continue pumping and HCEL staff leaves the site.
- If no total chlorine is detected, then the first bacteriological retest sample is collected and the test well is allowed to pump for another fifteen minutes.
- The discharge water is tested for a third time for total chlorine. If chlorine is detected, then Air Rock is informed to continue pumping, HCEL staff leaves the site and the first bacteriological retest sample is discarded.
- If no total chlorine is detected, then the second bacteriological retest sample is collected and the pump is shut off.

The groundwater retest samples were collected in laboratory supplied bottles and prepared/preserved in the field in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory. The groundwater samples were subsequently submitted to Exova laboratory in Ottawa, Ontario. The results of the retesting laboratory analysis are summarized in Tables 4A and 4B in Appendix J for test wells TW1 and TW2, respectively. The laboratory Certificates of Analysis for the resting test well samples are provided Appendix L.

The results of the re-sampling of test well TW1 indicated that total coliform bacteria concentrations had been reduced to 0 ct/100 mL in both of the retest samples. In addition, the concentrations of E. coli., faecal streptococcus and faecal coliform bacteria were non-detectable.

Low concentrations of Heterotrophic Plate Count (HPC) bacteria and a single isolated faecal streptococcus bacteria were detected in the first retest sample of test well TW3; however, both types of bacteria were determined to be non-detectable in the second retest sample for TW3. The occurrence of the single isolated faecal streptococcus bacteria in one sample is not considered to be representative of the water supply aquifer and does not exceed any health related limits of the ODWS.

6.3 Test Well Water Quality

The results of the chemical, physical and bacteriological analyses on the water samples from the test wells is provided in Appendices K and L and summarized in Tables 2, 3A, 3B, 3C, 4A and 4B in Appendix J.

6.3.1 Maximum Acceptable Concentration Exceedances

The proposed water supply aquifer, based on water samples collected from the onsite test wells, does not contain any maximum acceptable concentration exceedances of the Ontario Drinking Water Standards (ODWS). It is noted that initial bacteriological sampling conducted in test wells TW1 and TW2 indicated an exceedance of the ODWS for total coliform bacteria; however, this was addressed with remedial chlorination and retesting of groundwater samples. Based on the absence of health-related exceedances for chemical parameters and the results of the bacteriological retesting of test wells TW1 and TW2, the water from the proposed water supply aquifer is safe for consumption.

6.3.1.1 Bacteriological Parameters

Elevated levels (10 to 60 counts per 100 mL) of total coliform bacteria were detected in both the three (3) and six (6) hour water samples for test well TW1. Low levels (3 counts per 100 mL) of total coliform bacteria were detected in the three (3) and six (6) hour water samples for test well TW2.

The results of the re-sampling of test well TW1 indicated that total coliform bacteria concentrations had been reduced to 0 ct/100 mL in both of the retest samples. In addition, the concentrations of E. coli., faecal streptococcus and faecal coliform bacteria were non-detectable.

Low concentrations of Heterotrophic Plate Count (HPC) bacteria and a single isolated faecal streptococcus bacteria were detected in the first retest sample of test well TW3; however, both types of bacteria were determined to be non-detectable in the second retest sample for TW3. The occurrence of the single isolated faecal streptococcus bacteria in the one sample is not

considered to be representative of the water supply aquifer and does not exceed any healthrelated limits of the ODWS.

Based on discussions with the well driller, it is understood that the test wells were not chlorinated following construction of the test wells. As the test wells were not chlorinated following construction, it is our opinion that the resulting concentrations of total coliform bacteria were a result of the well construction activities and are not representative of groundwater quality available at the subject site. Well construction recommendations have been updated to recommend well chlorination following construction for future wells to eliminate bacteria within newly constructed wells.

The results of the bacteriological analysis of the test well water samples indicate that the water samples met all the standards of the ODWS for bacteriological parameters (based on three (3) and six (6) hour water samples from test well TW3 and subsequent retesting of test wells TW1 and TW2 following chlorination and pumping).

6.3.1.2 Other Health Related Parameters

Other than total coliform bacteria (discussed in Section 6.3.1.1), no maximum acceptable concentration limits of the ODWS were exceeded in the three (3) and six (6) hour water samples and/or supplemental water samples collected from the onsite test wells.

No maximum acceptable concentration limits of the ODWS were exceeded in the heavy metal samples from the test wells TW1 and TW2. No detectable concentrations of herbicide and pesticide parameters were detected in the samples from test well TW3. No detectable concentrations of petroleum hydrocarbons and/or volatile organic compounds were detected in the water samples from the onsite test wells. No semi-volatile glycol parameters were detected in the supplemental water samples collected from test wells TW1 and TW2.

The level of sodium in the three (3) and six (6) hour water samples from test well TW1 exceeded the ODWS warning level of 20 mg/L for persons on sodium restricted diets; however, the sodium concentration was below the aesthetic objective of the ODWS. The sodium concentration was below the ODWS warning level for all samples collected from test wells TW2 and TW3.

It should be noted that the Exova Laboratory Certificates of Analysis indicates that turbidity has a health-related maximum acceptable concentration of 1 NTU; however, this value is only applicable for water undergoing disinfection processes. Based on the absence of bacteria in the water supply aquifer, disinfection is not required for future drinking water wells on the subject site. Therefore, for the purposes of this investigation, the aesthetic objective of 5 NTU for turbidity will be used.

6.3.2 Operational Guideline Exceedances

Operational related exceedances of the Ontario Drinking Water Standards (ODWS) were detected for hardness (all test well samples) and organic nitrogen (test well TW3 six (6) hour sample). These exceedances are discussed in the following sections:

6.3.2.1 Hardness

The concentrations of hardness in water samples obtained from all three (3) test wells ranged from 184 to 263 mg/L as CaCO₃, which exceed the operational guideline of 80 to 100 mg/L of CaCO₃ as specified in the ODWS.

Water having a hardness level above 80 to 100 mg/L as CaCO3 is often softened for domestic use. The MECP Procedure D-5-5 document states that water having a hardness value more than 300 mg/L is considered "very hard". The Ontario Ministry of the Environment publication entitled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", states that water with hardness in excess of 500 mg/L is considered to be unacceptable for most domestic purposes. There is no upper treatable limit for hardness specified in MECP Procedure D-5-5.

The concentrations of hardness in all the test wells are below the reported threshold of 500 mg/L as CaCO3 as specified in the Technical Support Document for the ODWS. The concentration of hardness observed in the test wells is considered to be reasonably treatable using a conventional water softener. Most water supply wells within rural eastern Ontario are equipped with water softeners.

6.3.2.2 Organic Nitrogen

The operational guideline (OG) for organic nitrogen was exceeded in the six (6) hour water sample collected from TW3. The concentration was 0.18 mg/L, compared to an operational guideline value of 0.15 mg/L. Organic nitrogen is calculated as the difference between the total kjeldahl nitrogen and the ammonia nitrogen. Organic nitrogen compounds may react with chlorine and severely reduce its disinfectant power. Taste and odour problems are common with organic nitrogen levels greater than 0.15 mg/L.

6.3.3 Aesthetic Objective Exceedances

Aesthetic objective exceedances of the Ontario Drinking Water Standards (ODWS) were iron (TW1 supplemental sample and TW2 3 hour sample), turbidity (TW1 and TW2 3 hour sample only) and hydrogen sulphide (TW1 and TW2. These exceedances are discussed in the following sections:

6.3.3.1 Iron

The iron concentration was 0.58 mg/L in water sample (3 hour sample only) collected from test well TW2 and was 0.36 mg/L in the supplemental sample from TW1. The iron concentration in these samples was above the aesthetic objective of 0.30 mg/L listed by the ODWS.

The MECP Procedure D-5-5 document indicates that iron concentrations up to 5.0 mg/L are considered treatable by conventional water softeners. The iron concentrations in the test wells are well below the treatable limit for water softeners provided by MECP Procedure D-5-5 and are not of concern.

6.3.3.2 Turbidity

The laboratory Certificates of Analysis indicate that the levels of turbidity in samples from test well TW1 (both the 3 and 6 hour samples) and the three (3) hour sample from TW2 exceeded the ODWS aesthetic objective. The six (6) hour water sample from test well TW2 was equal to the aesthetic objective of the ODWS and is considered to be acceptable.

Following corrective actions carried out on test well TW1 (to address bacteriological exceedances), a supplemental water sample was collected from test well TW1 on August 19, 2013 and submitted to Exova laboratory for turbidity analysis. The result of the turbidity analysis on the supplemental water sample collected from TW1 was 0.7 NTU (refer to the laboratory Certificate of Analysis is presented in Appendix L). In addition, supplemental water sampling conducted on test well TW1 in June 2015 met the ODWS aesthetic objective for turbidity (refer to laboratory Certificate of Analysis in Appendix L). Based on the August 19, 2013 and June 1, 2015 supplemental water samples from TW1, the turbidity is considered to be acceptable.

The levels of turbidity measured in the field during the pumping tests (refer to Table 1) for these test wells was noted to decrease significantly during the six (6) pump test and levels will likely further decline with well use. It is noted that the field testing of turbidity for test well TW2 at six (6) hours showed an increase in turbidity after six (6) hours of pumping (refer to Table 1). However, this was not correlated with an increase in turbidity in the laboratory results for the six (6) hour water sample. The discrepancy between the field reading and the laboratory level for turbidity is unknown; however, it is our opinion that the turbidity measured by the laboratory is representative of the groundwater quality from the test well (based on the decreasing trend in turbidity concentrations in the field and laboratory results). In addition, supplemental water sampling conducted on test well TW2 in June 2015 met the ODWS aesthetic objective for turbidity (refer to laboratory Certificate of Analysis in Appendix L). Based on the June 2, 2015 supplemental water sample from TW2, the turbidity is considered to be acceptable

Based on the laboratory certificates of analysis for initial samples from test well TW3 and the results of supplemental samples collected from test wells TW1 and TW2, the level of turbidity in all of the test wells meets the ODWS aesthetic objective.

6.3.3.3 Hydrogen Sulphide

The concentration of hydrogen sulphide in test wells TW1 and TW2 exceeded the Ontario Drinking Water Standards (ODWS) aesthetic objective of 0.05 mg/L. The concentration of hydrogen sulphide in test well TW1 ranged from 0.23 to 0.75 mg/L and both samples from TW2 contained a hydrogen sulphide concentration of 0.11 mg/L.

Elevated concentrations of hydrogen sulphide are typically characterized by an unpleasant odour (rotten egg smell) and, when in present in association with iron, can produce black stains on laundered items and black deposits on pipes and fixtures. The Ministry of Environment, Conservation and Parks (MECP) document entitled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines" indicates that low levels of hydrogen sulphide can be removed effectively from most well water by aeration. Hydrogen sulphide can also be effectively treated through the use of activated charcoal filters, chlorination, manganese greensand filters and other forms of oxidizing treatment. An unofficial addendum to Procedure D-5-5 (July 6, 1995) indicates that sulphide concentrations of up to 2.5 mg/L can be reasonably treated with manganese greensand filters. Based on the observed levels of hydrogen sulphide in TW1 and TW2, it is our opinion that the measured concentrations on the subject site are reasonably treatable.

6.4 Offsite Wells Water Quality

Water samples were collected from two (2) nearby private wells located on private lots to characterize groundwater quality at established wells in the vicinity of the subject site. The water samples were collected September 11, 2013. The locations of the private wells are not provided in this report to respect participant's privacy; however, the all of the offsite private properties sampled in the study were located within 200 metres of the boundary of the subject site. The addresses of the private lots are maintained on file at HCEL's office. The results of the private well sampling were provided to each of the well owners separately by means of a letter.

The private well samples were collected in laboratory supplied bottles and prepared/preserved in the field in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory. The private well samples were subsequently submitted to Exova laboratory in Ottawa, Ontario for analysis chemical, physical and bacteriological analyses as listed in the MECP guideline titled "Technical Guideline for Private Wells: Water Supply Assessment", dated August 1996.

Water samples were collected directly from the pressure tank or an untreated sample point (as determined by the well owner) after purging the water system at full flow for a period of about 10 to 15 minutes. When contacting well owners for collection of a water sample, it was requested that we be provided access to an untreated sample point.

The total chlorine levels of the groundwater were measured in the field and are summarized in Table 5A in Appendix J. The results of the private well laboratory analyses are summarized in Table 5B in Appendix J and the laboratory Certificates of Analysis are provided in Appendix M.

Interviews were conducted with well owners at the time of sampling for the private wells to obtain information regarding the well construction and the well owner's perception of water quality and water quantity.

None of the private well samples contained any health-related exceedances of the ODWS. Operational guideline exceedances for hardness were noted for both of the private wells. The aesthetic objective for total dissolved solids was exceeded in private well PW2. No other exceedances of the ODWS were noted for the private wells.

It is noted that the level of nitrate in private well PW2 was elevated at a concentration of about 9.6 mg/L and close to the maximum acceptable concentration for nitrates provided in the ODWS. A water well record was not available for PW2 and the completion details (well casing, completion depth, overburden or bedrock well) are unknown. It is noted that the building serviced by this well was likely an old farmhouse and the well may have been installed without proper well construction and grouting methods. The well may be exhibiting impacts from the onsite septic system or adjacent agricultural land use due to its construction. None of the test wells on the subject site or the other private well showed nitrate concentrations in this range and it is our opinion that the nitrate level in this private well is not representative of the water supply aquifer proposed for the subject site.

Interviews regarding well construction details and the well owner's perception of the quality and quantity of well water were carried out during collection of the water samples. The results of the interviews are summarized in Table 6.5.

Private Well ID	Well Owner Comments
PW1	 Well was drilled on May 22, 1985 by Valley Drilling Ltd. and is 38.1 metres in depth; Occasional sulphur smell; No water treatment; No water quantity issues reported; No septic system problems were reported.
PW2	 No information about the well; Water is not used for drinking (bottled water is provided by building owner); Brown color when tap hasn't been used in a while; No water treatment; No water quantity issues were reported; No septic system problems were reported.

Table 6.5 - Summary of Well Owner Interview Comments

Based on the results of the interviews carried out with the building occupants (private well users), the wells were reported to have no issues with respect to water quantity. Reported water quality issues were limited to occasional sulphur smell (one private well) and brown water colour when not used for an extended period (one private well). Based on the results of the water sampling for offsite private wells, the water quality in the vicinity of the subject site is considered to be good and no significant exceedances of the ODWS were identified.

6.4.1 Comparison between Onsite Test Wells and Offsite Private Wells

Table 6.6 provides a list of all aesthetic objective (AO) and operational guideline (OG) exceedances for both the onsite test wells and the offsite private wells sampled during the course of this investigation.

Onsite Test Wells	Offsite Private Wells
Hardness	Hardness
Turbidity	-
Hydrogen Sulphide	-
Iron	-
Organic Nitrogen	-
-	Total Dissolved Solids

Table 6.6 - Comparison of Test Well and Private Well Exceedances

Both the onsite test wells and the offsite private wells had exceedances for hardness. The onsite test wells encountered exceedances for turbidity, hydrogen sulphide (test wells), iron (one test well only) and organic nitrogen (one test well only). The offsite private wells encountered exceedances of total dissolved solids (one private well only).

Based on the onsite and offsite water sample results and interviews with adjacent homeowners, water quality on the site appears to be from a different water bearing zone than offsite private well PW2, as evidenced by the elevated TDS and nitrate levels in the well. However, the occurrences of aesthetic objective and operational guideline exceedances may vary from well to well.

7.0 GROUNDWATER QUANTITY ANALYSIS

7.1 Pump Test Analysis Overview

The drawdown and recovery water level data from the three (3) initial pumping tests conducted in June 2013 on the onsite test wells TW1, TW2 and TW3 are provided in Appendix H. The details of the pumping tests carried out on the test wells are provided in Table 7.1. All depths provided are in metres below ground surface (m BGS).

Parameter	TW1	TW2	TW3
Duration (minutes)	360	360	360
Flow Rate (litres per minute)	18.9	30.3	22.7

Table 7.1 - Initial Pumping Tests Details - June 2013

Parameter	TW1	TW2	TW3
Static Water Level (m BGS)	3.77	1.66	2.03
Well Depth (m BGS)	48.8	48.5	78.6
Available Drawdown (m)	42.0	43.8	73.6
Observed Drawdown at End of Pumping (m)	38.4	6.5	14.8
Percent Drawdown Utilized (%)	91 %	15 %	20 %
Percent Recovery (18 hour)	100 %	> 98 %	100 %

As per MECP Procedure D-5-5, each of the test wells was pumped at a flow rate equal to or greater than the anticipated flow rate for 6 hours. The daily design sanitary sewage flow (DDSSF) is anticipated to be the same as the water demand and based on the maximum septic flows calculated for each of the 12 lots (refer to Table F1 in Appendix F). The average septic flow, assuming tertiary treatment septic systems, is calculated to be 3,581 litres per day. It is noted that where the maximum DDSSF was greater than 4,500 litres per day, the impact assessment was completed assuming a maximum DDSSF of 4,500 litres per day (MECP D-5-4, section 5.6.3).

The minimum pumping rate for the test wells was 18.9 litres per minute for a period of six hours. The minimum total volume of groundwater pumped was approximately 6,804 litres, which is 1.5 times the maximum septic flow of 4,500 litres per day. A typical commercial or industrial property is not anticipated to have a peak demand period, as compared to residential properties, and would be expected to be relatively uniform over an eight-hour work day. Therefore, the minimum flow rate of 18.9 litres per minute is considered to be equal to or greater than the anticipated flow rate.

The maximum drawdown observed at the end of pumping was 38.4 metres in test well TW1 which is equivalent to approximately 91 percent of the available drawdown in the test well. The drawdown utilized in the remaining test wells ranged from 15 to 20 percent. Based on these results, all of the onsite test wells are capable of supplying water at a rate greater than 18.9 litres per minute for a period greater than six (6) hours.

Additional pumping was conducted on test wells TW1 and TW2 in 2015 for the collection of additional groundwater samples. The wells were pumped for approximately six (6) hours at a reported flow rate of about 20 litres per minute by the well driller retained to carry out the pumping.

Water level measurements were taken by an electronic data logger during the pumping test. The drawdown and recovery water level data from the two (2) supplemental pumping tests conducted in June 2015 on the onsite test wells TW1 and TW2 is provided in Appendix H. The details of the 2015 supplemental pumping tests are provided in Table 7.2. All depths provided are in metres below ground surface (m BGS).

Parameter	TW1	TW2
Duration (minutes)	379	386
Flow Rate (litres per minute)	20	20
Static Water Level (m BGS)	1.94	2.49
Well Depth (m BGS)	48.8	78.6
Available Drawdown (m)	43.9	73.1
Observed Drawdown at End of Pumping (m)	3.47	3.30
Percent Drawdown Utilized (%)	8 %	5 %
Percent Recovery (1 hour)	98 %	100 %

Table 7.2 - Supplemental Pumping Tests Details - June 2015

The maximum drawdown observed in TW1 at the end of pumping in 2015 was significantly less than observed in the well at the end of pumping in 2013. The flow rates of the pumping tests for TW1 in 2013 and 2015 were similar and ranged from about 19 to 20 litres per minute. The apparent increase in well yield for test well TW1 is attributed to additional well development activities in the hydrofractured wells as a result of chlorination and additional pumping due to bacteriological exceedances in 2013. The additional pumping resulted in further development of the test well, which increased well yields.

Similarly, the maximum drawdown observed in TW2 at the end of pumping in 2015 was less than observed in the well at the end of pumping in 2013; although it is noted that TW2 was pumped at about 2/3 of the 2013 test rate in 2015.

The revised percent drawdown utilized for the onsite test wells ranges from 5 to 20 percent (based on 2015 pumping test for test well TW1, the 2013 and 2015 pumping tests for TW2 and the 2013 pumping test for TW3).

Based on these results, all of the onsite test wells are capable of supplying water at a rate greater than 19.2 litres per minute for a period greater than six (6) hours. All of the onsite test wells have been demonstrated to provide more than 6,700 litres over the course of a six-hour period during the pumping tests. It is noted that this flow is significantly larger than the average maximum septic flow recommendations for the 12 lots, which is 3,581 litres per day and the maximum septic flows of 4,500 litres per day.

7.2 Transmissivity Analysis

The drawdown and recovery data were interpreted and analyzed using the Aquifer Test software program from Waterloo Hydrogeologic Inc. The results of the analysis are provided in Appendix N.

Based on a review of the drawdown and recovery datasets, the Hantush-Jacob (1955) method of analysis for leaky or recharge aquifers was applied to the drawdown data of the pumping tests. The Theis & Jacob Recovery (1935) method was applied to the recovery data of the pumping tests. It is our opinion that the application of these analysis methods is appropriate based on the hydrogeological conceptual model.

The transmissivity and specific capacity of the test wells were determined from the aforementioned pumping tests conducted in the onsite test wells in 2013 and 2015. The results of the analysis are summarized in Table 7.3:

Test Well and Date of Pump Test	Drawdown Data Transmissivity ¹ (m²/day)	Leakage Factor (m) ¹	Recovery Data Transmissivity² (m²/day)	Specific Capacity (Litres per minute per metre)
TW1 (June 18, 2013)	0.17	0.39	0.24	0.5
TW2 (June 19, 2013)	1.7	0.31	2.6	4.7
TW3 (June 20, 2013)	0.49	0.27	0.83	1.5
TW1 (June 1, 2015)	3.9	1.54	2.4	5.8
TW2 (June 2, 2015)	2.1	0.82	1.5	6.1
Geometric Mean	1.03	0.53	1.13	2.6

Table 7.3 - Summary of Transmissivity and Specific Capacity Estimates

Notes: 1. Hantush-Jacob (1955) method of analysis

2. Theis Recovery (1935) method of analysis

The unified parameter values were calculated from the geometric mean of the specific capacity and transmissivity values of the above noted pumping tests. Based on the unified parameter calculations, the specific capacity of the bedrock water supply aquifer at the subject site is 2.6 litres per minute per metre and the transmissivity is about $1.1 \text{ m}^2/\text{day}$.

7.3 Hydraulic Interference Effects

During the pumping of the onsite test wells, water level measurements were generally taken at one (1) hour intervals in the two (2) test wells that were not being pumped (observation wells). The water level measurements in observation wells, the radial distances between the pumping and observation wells and the pumping rates are provided in Appendix I.

The results of the water level measurements made at the bedrock observation wells during the pumping tests indicate that the drawdown in the observation wells was zero or levels slightly increased; the maximum increase was -0.02 metres (rise in water level). The radial distances between the observation wells and the pumping wells ranged from about 218 metres to 430 metres.

Based on the absence of any hydraulic interference effects during the pumping of the test wells on the other onsite test wells, any potential interference with on-site or off-site water wells is expected to be acceptable.

7.4 Computer Model Simulations

A well interference simulation was developed using Aqtesolv version 4.5. The well simulation output is provided on Figure N1 in Appendix N for discussion purposes. A discussion of the simulation and the parameters used in its development are provided in the following sections.

No estimates of the storativity are available, however typical values for confined aquifers range from 5 x 10^{-5} to 5 x 10^{-3} (Todd, 1980).

7.4.1.1 Scenario 1 (Figure N1 - Appendix N)

Scenario 1 is provided to illustrate the maximum drawdown using the unified aquifer parameters identified in Table 7.3. The following parameter values were utilized in the model:

- Number of pumping wells =12 wells;
- Individual well pumping rate = 19.2 litres per minute;
- Duration of pumping = 480 minutes;
 - Pumping at a rate of 19.2 L/min for 480 minutes equals 9,216 litres per day.
- Analysis model = Theis (1935)
 - Both the Hantush-Jacob (1955) and Theis Recovery (1935) models were used to estimate aquifer transmissivity. The Theis (1935) model was selected for the simulation

as it provides a simpler solution which is less dependant upon calibrated variables such as the leakage factor within the Hantush-Jacob (1955) model.

- Aquifer thickness = 41 metres;
 - Based on TW1 in 2015 minus a 3 metre sump; provides a conservative aquifer thickness.
- Aquifer transmissivity = 1.1 m²/day (geometric mean); and,
 - Considered to be a conservative estimate as it includes the lower transmissivity estimates from the 2013 pumping tests, which when re-analyzed in the 2015 pumping tests found higher transmissivity estimates.
- Storativity coefficient = 5 x 10⁻⁴ (average storativity estimate for confined aquifers; Todd, 1980).

The results of Scenario 1 simulation indicate that the maximum drawdown is approximately 25 metres and is localized to the pumping wells. The drawdown at the individual lot boundaries (assumes the test well is located in the centre of the individual lot) and the subject site boundary are less than 4.0 and 2.0 metres respectively. Furthermore, it is noted that the drawdown decreases to less than 1.0 metre at a distance of approximately 80 metres from the pumping wells.

Based on the minimum available drawdown of 42.0 metres, the drawdown of approximately 25.0 metres in the pumping wells is considered to be acceptable. Furthermore, the geometric mean total well depth of wells within 500 metres is 43.8 metres and potential interference effects of up to 2.0 metres is not considered to be significant. Based on the results of the well interference simulation, the interference between on-site drinking water wells and off-site water wells is considered to be negligible.

During the actual on-site pumping tests, no drawdown was observed in the observation test wells, which is consistent with the computer model simulations. Furthermore, it is noted that the test wells were pumped at rates of 18.9 to 30 litres per minute and withdrew between 6,800 to 10,800 litres during the respective 6-hour pumping tests, which is significantly greater than the anticipated 4,500 litres per day water demand.

7.5 Long Term Well Yields

The British Columbia Ministry of the Environment (2012) estimates the long-term well yield by first determining the well's specific capacity after 100 days of pumping (theoretical drawdown without recharge). The assessment was carried out using the following data:

- Time (t) 100 days;
- Pumping Rate (Q) 27.65 m³/day (based on average flow of 19.2 litres per minute);
- Transmissivity (T) 1.1 m²/day (based on Table 7.3 Unified Parameter);
- Distance (r) 0.076 metres (based on radius of open hole test well);
- Storativity $(S) 5 \times 10^{-4}$ (based on an estimate of storativity from Todd, 1980); and,

• Available Drawdown (D) - 41 metres (based on TW1 minus a 3 metre sump for the pump).

First, the drawdown in the aquifer after 100 days of pumping is calculated using the Modified Nonequilibrium Equation (Groundwater and Wells 2nd Ed., Discoll, 1986):

$$s = \frac{0.183 \cdot Q}{T} \cdot Log \quad \frac{2.25 \cdot T \cdot t}{r^2 \cdot S}$$

The specific capacity after 100 days (SC) is calculated using the pumping flow rate (Q) and estimated drawdown after 100 days (S):

$$SC = \frac{Q}{s}$$

The safe well yield (Q_{safe}) can then be estimated by multiplying the specific capacity after 100 days of pumping (SC) by the maximum available drawdown (D) by a safety factor of 0.7:

$$Q_{\rm \ safe} \ = \ 0.7 \ \times \ SC_{\rm \ 100} \ \times \ D_{\rm \ available}$$

Using this approach, the safe well yield was calculated for the average scenario based on unified transmissivity values. The safe well yield was calculated to be approximately 21.7 litres per minute of continuous pumping for 100 days and is greater than the average flow rate anticipated for the proposed industrial/commercial properties.

Based on these results, it is our opinion that the long-term safe well yield of the onsite test wells and future wells constructed in accordance with the well construction recommendations is greater than the demand of the proposed development. That is, no concerns with long term sustainability of the proposed water supply aquifer were identified.

8.0 CONCLUSIONS

Based on the results of the hydrogeological investigation, the following conclusions and professional opinions are provided:

- The site geology consists of coarse grained glaciomarine deposits overlying the proposed bedrock water supply aquifer.
- The overburden of the subject site is characterized by shallow bedrock conditions on the western portion of the subject site (Lots 8 and 9) with the overburden depth increasing in an easterly direction. The surficial soils are characterized by sand, sand and gravel and silty sand with varying amounts of clay, gravel and cobbles;
- The nitrate dilution predictive assessment for industrial/commercial developments meets MECP Procedure D-5-4 guidelines.
 - With the use of best management practices and the recommended protective measures, the impact to the receiving aquifer is considered to be acceptable.
- The test well construction is typical of future water supply wells in the development.

- The water quality determined in the course of this investigation is representative of the longterm water quality which future lot owners are likely to obtain from their wells constructed in accordance with the well construction recommendations.
- The water quality available from drilled wells on the subject site is safe for consumption based on the absence of health-related exceedances of the ODWS.
- The quality of the groundwater meets the Ministry of the Environment, Conservation and Parks Regulations, Standards, Guidelines and Objectives with the exception of hardness, organic nitrogen, iron and hydrogen sulphide.
 - The levels of hardness and iron are considered to be reasonably treatable using a conventional water softener.
 - The level of organic nitrogen is an operational parameter intended for use in waters requiring chlorination for disinfection purposes. As there are no disinfection requirements for the subject site, this operational exceedance is not of concern.
 - An unofficial addendum to Procedure D-5-5 (July 6, 1995) indicates that sulphide concentrations of up to 2.5 mg/L can be reasonably treated with manganese greensand filters.
- The quantity of groundwater available from the proposed water supply aquifer is more than sufficient for the proposed development and will sustain repeated pumping at the test rate and duration at 24-hour intervals over the long term. The well yields determined in the course of this investigation are representative of the long-term yields which future lot owners are likely to obtain from their wells constructed in accordance with the well construction recommendations.

9.0 **RECOMMENDATIONS**

The following provides recommendations regarding well construction specifications, water quality and septic system design:

9.1 General Recommendations

- The accepted hydrogeological report entitled "Hydrogeological Assessment and Terrain Analysis, Proposed Commercial/Industrial Subdivision, 3119 Carp Road, Township of Huntley, Ottawa, Ontario", GEMTEC, (January 29, 2020) shall be made available to lot purchasers as a guide to development;
- The recommended maximum number of lots for the subject site is 12 privately serviced lots, as identified in the Private Servicing Plan (Appendix A);
- The subdivision agreement should include the following statement: "The Owner acknowledges and agrees to provide a dedicated monitoring well, at no cost to the City, and to which the City will have unlimited access by way of a permanent easement or dedication, to monitor groundwater conditions. The required easement shall be provided to the satisfaction of the City Solicitor and the General Manager, Planning, Infrastructure and Economic Development."

- A water budget should be completed as part of the Site Plan Application. Groundwater recharge should be maintained following development of the subdivision.
 - Disclaimer: Groundwater infiltration estimates for pre-development conditions should be obtained using in-situ methods (e.g. grain size analyses, Guelph Permeameter, Ring Infiltrometer testing, etc.). Infiltration rates used in the nitrate dilution estimates should not solely be relied upon to assess terrain unit infiltration rates.
- Measures should be put in place to protect the groundwater aquifer, including:
 - It is recommended that the best management practices for the application of road salts should follow the City of Ottawa's "Material Application Policy, Revision 3.2, October 31, 2011" Salt Management Plan.
 - It is recommended that the best management practices for fuel storage follow the Liquid Fuels Handling Code and the Ontario Water Resources Act.
 - It is recommended that low impact development measures be utilized to maintain groundwater recharge post-development.

9.2 Well Construction Recommendations

- Any original test wells which are not located in suitable locations for future development use and any other existing wells located on the property should be abandoned by a licensed well driller in accordance with MECP regulations following draft plan approval of the subdivision;
- Wells should be located so that they meet the minimum setback distances from septic systems, property lines and any other sources of contamination, as required in the Ontario Building Code and/or Ontario Reg. 903. If possible, the setback distance for the location of drinking water wells should be maximized;
- All wells shall remain accessible for future inspection and testing and to large equipment for future maintenance, repair, and replacement;
- All wells that are drilled in the subdivision should be constructed in accordance with MECP regulations (Ontario Reg. 903);
- All wells that are drilled in the subdivision should be maintained in accordance with the document entitled 'Water Supply Wells – Requirements and Best Management Practices' (MECP December 2009);
- Well casings should be extended at least 10.7 metres below ground surface. The entire annular space between the steel casing and the overburden/bedrock should be filled with a suitable cement or bentonite grout.
 - In addition to the minimum recommended well casing lengths specified in the preceding recommendation, all well casings should be completed a minimum of 1.5 metres into sound, competent bedrock;
- A well grouting certification inspection should be conducted during the installation and grouting of the well casing for all future wells installed on the subject site. The well grouting certification inspection should be conducted under the supervision of a professional engineer or professional geoscientist;

- Hydrofracturing of two (2) onsite test wells was required to demonstrate the minimum pumping requirements of MECP Procedure D-5-5. Future lot owners should be aware that additional well development such as hydrofracturing, surging and/or additional pumping may be required to reach the well yields demonstrated in this report; and,
- The test wells completed for this study were completed at depths ranging from 49 to 79 metres below ground surface. Future drinking water wells completed on the subject site at depths outside of this range may encounter different hydrogeological conditions and the quality and quantity of water available from drilled wells may differ than that presented in this study.

9.3 Septic System Recommendations

- The proposed lots are recommended to be serviced by septic sewage disposal systems that incorporate advanced treatment technologies, capable of achieving a minimum of 50% reduction in nitrogen, and that are approved under the Ontario Building Code. A site-specific investigation should be conducted on each lot for the design of the septic system;
 - It is required that the property owners enter a maintenance agreement with the authorized agents of the manufacturer of the advanced treatment systems for the service life of the system;
- In areas where shallow soils (i.e. less than 2.0 metres) or exposed bedrock are present, it is
 recommended that a minimum of 150 millimetre thick clay seal be placed between the bedrock
 and base of the proposed leaching bed;
 - For example, lots 6, 7, 8, 9 and 10 (refer to Private Servicing Plan, Appendix A).
- In view of the percolation time of the native soils and the depth to bedrock, a sand mantle and partially to fully raised leaching beds should be allowed for on some the proposed lots. The suitability of the native soils should be assessed on a lot by lot basis by a qualified septic designer; and,
- Preliminary septic flow recommendations have been assigned to each proposed lot for both systems not using and using advanced treatment system, and are provided in Table 8.1 below (refer to Lot Development Plan in Appendix A for lot locations and Table F1 in Appendix F for additional septic flow information).

Lot # ⁽¹⁾	NO ADVANCED TREATMENT ⁽²⁾ Maximum Septic Flow (L/day)	Maximum Number of Users ⁽³⁾	ADVANCDED TREATMENT Maximum Septic Flow ⁽⁴⁾ (L/day)	Maximum Number of Users
1	1,123	15	3,218	43
2	680	9	1,950	26
3	680	9	1,950	26
4	913	12	2,618	35
5	1,131	15	3,243	43
6	1,132	15	3,245	43
7	1,071	14	3,071	41
8	1,118	15	3,205	43
9	1,062	14	3,044	41
10	2,470	33	4,500	60
11	1,732	23	4,500	60
12	1,878	25	4,500	60

Table 8.1 – Septic flow recommendations

Notes.

1. Lot numbers and location based on Private Servicing Plan provided in Appendix A.

2. Maximum allowable flows based on the use of septic systems without advanced treatment, 40% hard surface areas and incorporating background nitrate concentration of 0.75 mg/L.

- 3. Maximum number of users based on Carp Road Corridor memo, dated September 27, 2016 indicating 75 litres per day per user.
- 4. Maximum allowable flows based on the use of advanced treatment septic systems and 40% hard surface area. It is noted that the maximum septic flow is limited to 4,500 litres per day based on the MECP Procedure D-5-4 predicative assessment.
- If during the site plan approval process, the proposed septic system design flow exceeds the preliminary septic flow recommendation for a specific lot, then it is recommended that a detailed groundwater impact assessment be conducted. If the detailed groundwater impact assessment demonstrates that additional septic flow can be accommodated on the lot, then the preliminary septic flow recommendation for that lot should be amended accordingly.
 - Additional analysis for septic flows exceeding 4,500 litres per day are recommended to conform with MECP Guideline B-7 for large subsurface sewage disposal systems.
- If the proposed septic flow for a site development application is less than the preliminary septic flow recommendation, then no additional groundwater impact assessment work is required for that lot.

9.4 Drinking Water Supply Recommendations

- It is recommended that the following information be registered on title for the created lots:
 - Background sodium levels in the drinking water wells at the site may exceed the warning level for persons on sodium restricted diets;

- The following water quality parameters may not meet the ODWS operational guidelines in drinking water wells completed at the subject site:
 - Hardness Hardness levels in the onsite test wells were greater than the operational guideline for hardness and can be expected in future wells drilled at the property.
 - Organic nitrogen Organic nitrogen levels in onsite test wells encountered a single exceedance of the operational guideline for organic nitrogen and may be possible in future wells drilled at the property. Taste and odour problems are common with organic nitrogen levels greater than the operational guideline. In addition, organic nitrogen levels in exceedance of the operational guideline can react with chlorine disinfection systems and severely reduce its disinfection power.
- The following water quality parameters may not meet the ODWS aesthetic objectives in drinking water wells completed at the subject site:
 - Iron Iron concentrations in some of the water samples from onsite test wells exceeded the ODWS aesthetic objective for iron and may be encountered in future wells drilled at the property. Excessive levels of iron may impart a brownish colour to laundered goods, plumbing fixtures and the water itself; it may also produce a bitter, astringent taste in water and beverages; and the precipitation of iron can promote the growth of iron bacteria in water distribution systems. Any iron exceedances can be effectively treated with the use of conventional water softener (up to 5 mg/L), oxidation with filtration through proprietary media (up to 10 mg/L) or chlorination followed by sand or multimedia filtration (up to 10 mg/L).
 - Sulphide Sulphide levels in two (2) of the onsite test wells exceeded the ODWS aesthetic objective for sulphide and may be encountered in future wells drilled on the subject site. Although ingestion of large quantities of sulphide can produce toxic effects on humans, it is unlikely that an individual would consume a harmful dose in drinking water because of the associated unpleasant taste and odour. Sulfide, in association with iron, produces black stains on laundered items and black deposits on pipes and fixtures. Hydrogen sulphide can be effectively treated through the use of activated charcoal filters, chlorination, manganese greensand filters and other forms of oxidizing treatment.
- The maximum proposed water demand should not exceed 6,800 litres per day, which is approximately 50% greater than maximum DDSSF, unless additional pumping tests and well interference modelling is carried out.

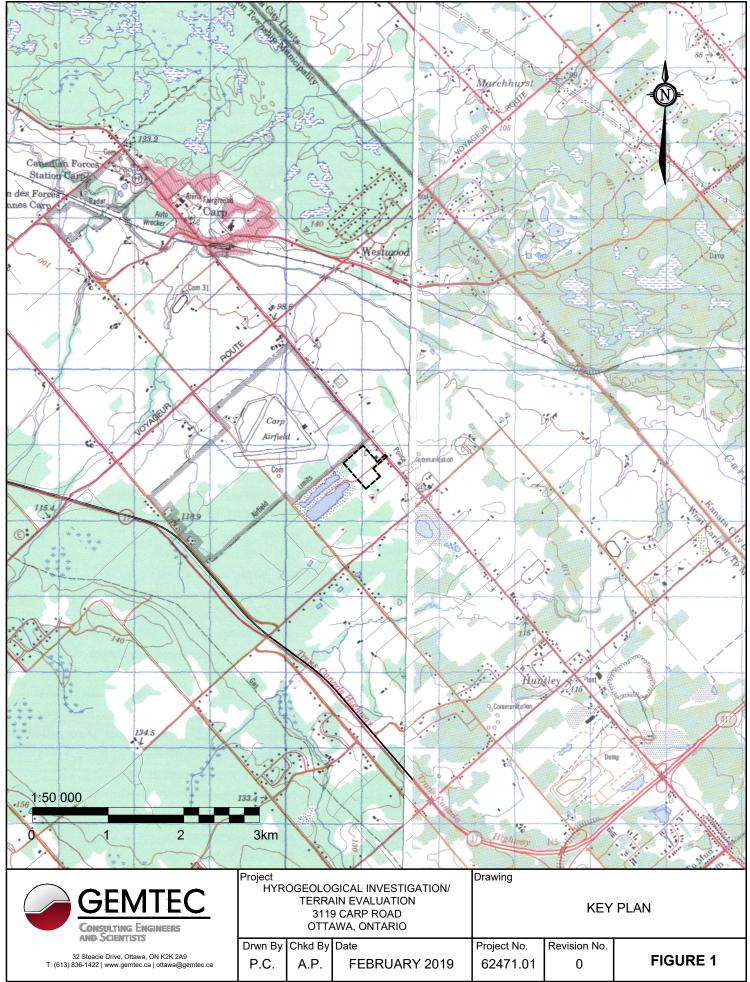
10.0 LIMITATIONS OF REPORT

This report was prepared for Mr. Greg LeBlanc and is intended for the exclusive use of Mr. Greg LeBlanc. This report may not be relied upon by any other person or entity without the express written consent of GEMTEC and Mr. Greg LeBlanc Nothing in this report is intended to provide a legal opinion.

The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgments of GEMTEC based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed.

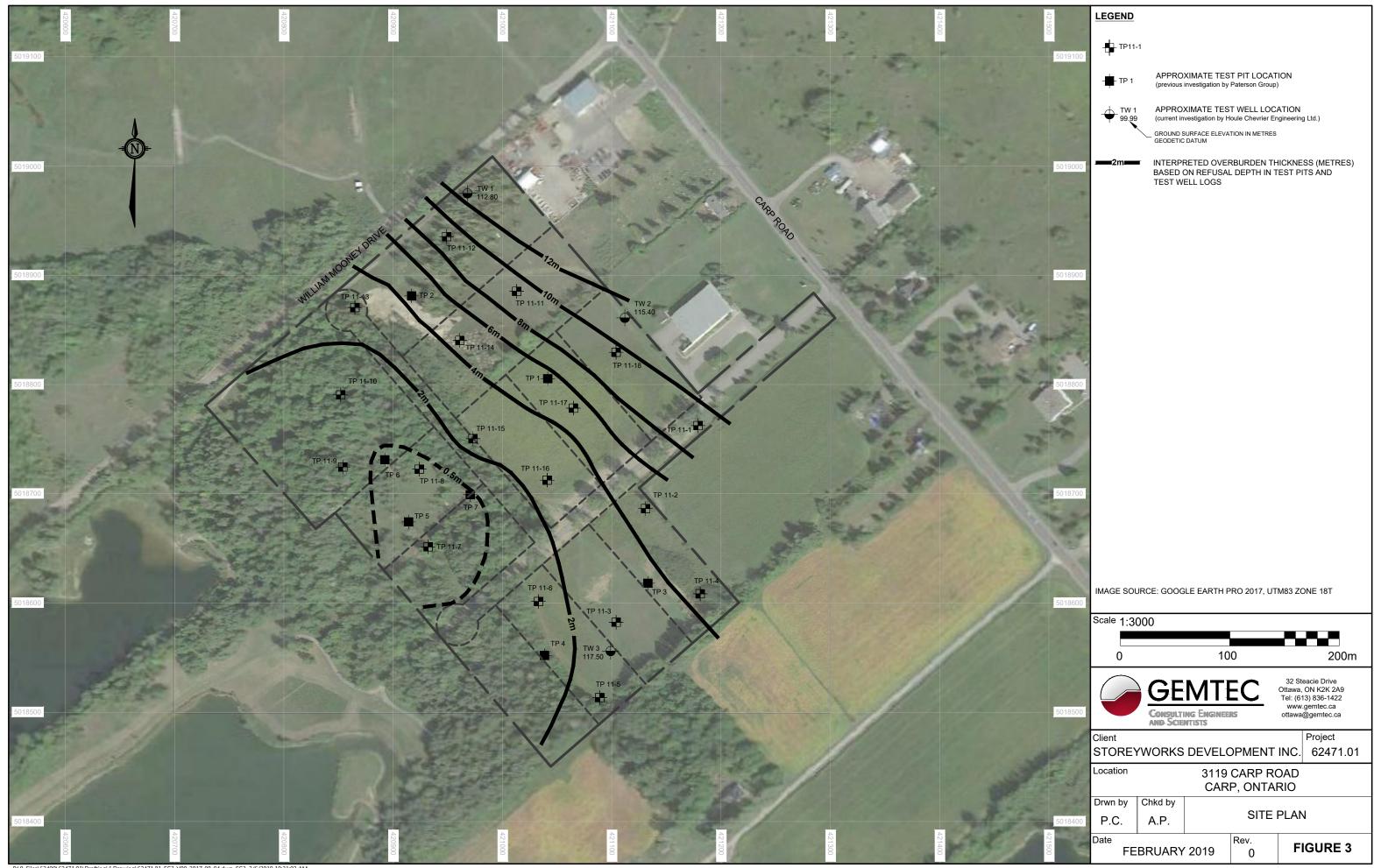
Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

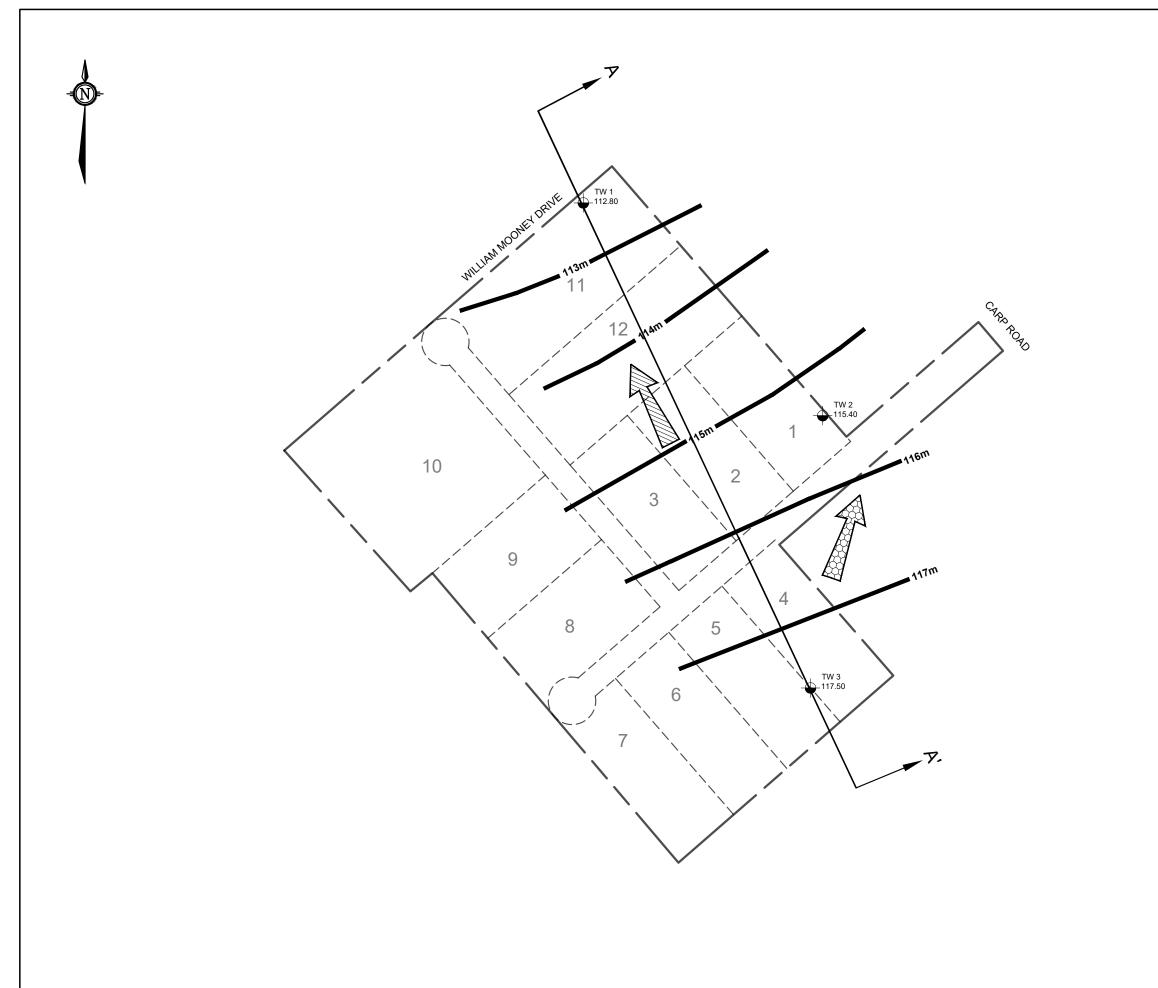
We trust that this report is sufficient for your requirements. If you have any questions concerning this information or if we can be of further assistance to you on this project, please call.


1. Varuetas

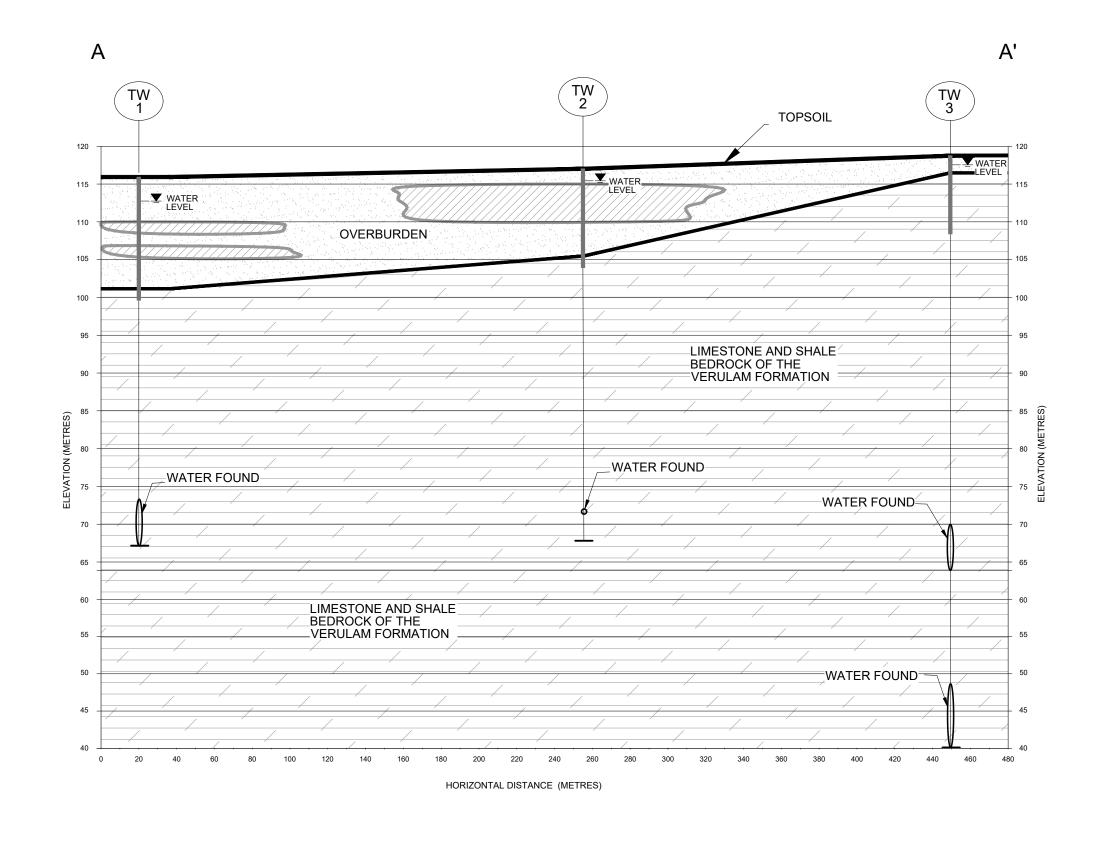
Andrius Paznekas, M.Sc., P.Geo. Hydrogeologist

Shaun Pelkey, M.Sc.E., P.Eng. Principal, Environmental Engineer



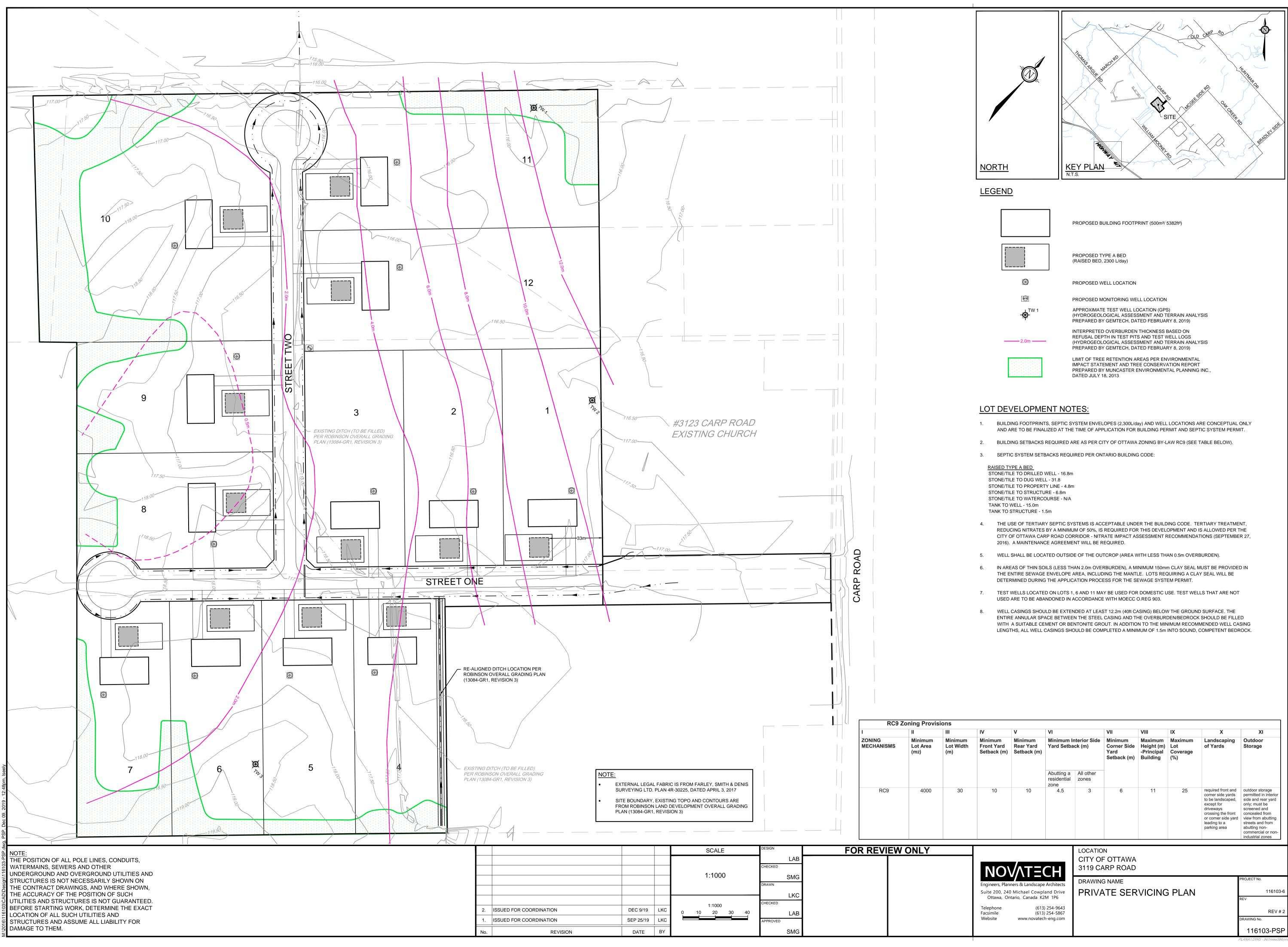


P:\0. Files\62400\62471.01\Drafting\1.Drawing\62471.01_FG1_V00_2017-08-04.dwg, KEY PLAN, 2/6/2019 9:20:09 AM



*	LEGEND					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(IMATE TEST PI vestigation by GEN		IN PLAN		
		IMATE TEST PI		IN PLAN		
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ELL LOCATION				
		D SURFACE ELEVAT TIC DATUM	ION IN METRES			
		(IMATE PRIVAT) nvestigation by G		ATION IN PLAN		
and the second second	A A'	CROSS SEC	TION LOCAT	ION		
Kater .						
a a a						
1						
9	^{Scale} 1:3000			╺╸╸╸│		
8	0	10	0	200m		
	Con	EMT SULTING ENGINE SCIENTISTS		32 Steacie Drive Ottawa, ON K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca		
	Drawing	SITE	PLAN			
A	Client	STORE	YWORKS MENTS I			
-	Project 62471.01		HYDROGE	OLOGICAL		
		Chkd by EVALUATION 3119 CARP ROAD				
	P.C. A.P. Date		OTTAWA, Rev.			
13	JANUAR	Y 2020	0	FIGURE 2		

LEGEND TW 1 + 99.99 APPROXIM	ATE TEST W					
99.99 APPROXIMATE TEST WELL LOCATION IN PLAN (previous investigation by Houle Chevrier Engineering Ltd., 2011)						
	SURFACE ELEVAT	ION IN METRES				
1 19	PROXIMATE B		OUNDWATER			
1 M	PROXIMATE C W DIRECTION		I GROUNDWATER			
	PROXIMATE G	ROUNDWAT	ER FLOW CONTOURS			
^{Scale} 1:3000						
0	10	0	200m			
Const	EMT ILTING ENGINE CIENTISTS		32 Steacie Drive Ottawa, ON K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca			
Drawing	ROUNDW	אדבס בי	0.01/			
		ION PLA				
Client	STORE DEVELOP	YWORKS MENTS I				
Project 62471.01		HYDROGE	OLOGICAL			
Drwn by Chkd by Chkd by Chkd by						
P.C. A.P.	3119 CARP ROAD					
Date		Rev.				
FEBRUAR	Y 2019	0	FIGURE 4			



LEGEND						
The second second second	GENERALIZED OVERBURDEN COMPOSITION CONSISTING:					
SA	SAND, SAND AND GRAVEL, SILTY SAND, SANDY SILT ALL WITH VARYING AMOUNTS OF CLAY AND GRAVEL AND/OR COBBLES					
CL	ΑY					
	IESTONE BEI	DROCK				
TW1 TE	ST WELL LOC	CATION				
¥ GF	OUNDWATE	R LEVEL (JI	JNE 18-30, 2013)			
Horizontal Scale		Vertical So	cale			
1 : 200	0		1 : 500			
Cons	EMT BLTING ENGINEE		32 Steacie Drive Ottawa, ON Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca			
Drawing INTERPRETED SUBSURFACE CROSS SECTION						
Client STOREYWORKS DEVELOPMENT INC.						
Project 62471.01			L INVESTIGATION/			
Drwn by Chkd	by	TERRAIN EVALUATION 3119 CARP ROAD OTTAWA, ONTARIO				
P.C. A.F	2.		UNTARIU			
Date FEBRUA	RY 2019	Rev. 0	FIGURE 5			

APPENDIX A

Private Servicing Plan

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)

	IV	V	VI		VII	VIII	IX	X	XI
num Minimum Vidth Front Yard Setback (m)	Minimum Rear Yard) Setback (m)	Minimum Interior Side Yard Setback (m)		Corner Side Yard	Maximum Height (m) -Principal Building	Maximum Lot Coverage (%)	Landscaping of Yards	Outdoor Storage	
			Abutting a residential zone	All other zones	-				
30	10	10	4.5	3	6	11	25	required front and corner side yards to be landscaped, except for driveways crossing the front or corner side yard leading to a parking area	outdoor storage permitted in interior side and rear yard only; must be screened and concealed from view from abutting streets and from abutting non- commercial or non- industrial zones
					N F OTTAWA ARP ROAD				

NOVATECH	3119 CARP ROAD	
Engineers, Planners & Landscape Architects	DRAWING NAME	PROJECT No.
Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6	PRIVATE SERVICING PLAN	116103-6 REV
Telephone(613) 254-9643Facsimile(613) 254-5867Websitewww.novatech-eng.com		REV # 2 DRAWING No.
		116103-PSP
		PLANA1.DWG - 841mmx594mm

APPENDIX B

External References (Figures, Maps and Soil Profile Sheets)

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)

102-2		
1000	LEGEND:	
	APPROXIMATE TEST PIT LOCA (CURRENT STUDY)	ATION BY PATERSON
and the		ATION BY OTHERS
	G6 LOCATION OF NUMBERED GR	AB SAMPLE
and the second		
and the second		
State of the second	$\langle \cdot \rangle$	
A - Color		
STATIST	$\langle \cdot \rangle$	
The state	BASE PLAN AND TEST HOLE LOCATIONS BY CHEVRIER ENGINEERING LTD. PROJECT №.	
the state		
	Date Descriptio	on Rev.
	Client:	
and the state	MR. GREG LEB	
and the second states		LANC
The second s		
Station of the	Consultant:	
-	 paterson	group
	consulting engineer	S L
	Project:	
1	MINERAL AGGR	EGATE
	ASSESSME	
1 1 9 4 4	3119 CARP RO	$\langle \cdot \rangle$
And a second sec	OTTAWA(CARP), ON	
3	Drawing:	
	Drawing:	
	TEST HOL	.E
		.E
	TEST HOL	.E
	TEST HOL LOCATION P Scale: 1:2000	.E
	TEST HOL LOCATION P	.E
	TEST HOLLOCATION PScale:1:2000Date:Seal:	.E
	TEST HOL LOCATION PScale:1:2000Date:02/2014	.E
	Scale: 1:2000 Date: 02/2014 Drawn by: BA Checked by: Environmentation	.E
	Scale: 1:2000 Date: 02/2014 Drawn by: BA Checked by: RAP	.E
	Scale: 1:2000 Date: 02/2014 Drawn by: BA Checked by: Environmentation	.E
	TEST HOL LOCATION PScale:1:2000Date:02/2014Drawn by:BAChecked by:RAPFile:PH2450Drawing No.;	.E LAN
	Scale: 1:2000 Date: 02/2014 Drawn by: BA Checked by: RAP File: PH2450	.E LAN

SOIL PROFILE AND TEST DATA

 \blacktriangle Undisturbed \triangle Remoulded

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM									FILE NO.	PH2450)
REMARKS									HOLE NO). TD 4	··· ,
BORINGS BY Backhoe			DATE February 7, 201					T		[″] TP 1	
SOIL DESCRIPTION	TOIT		SAN	NPLE		DEPTH (m)	ELEV. (m)		esist. Ble 0 mm Dia	ows/0.3m a. Cone	eter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(111)	• Water Content %			Piezometer Construction
BASEMENT FLOOR	2		E	REC	Z O			20	40 6	50 80	<u>ш</u> о
TOPSOU	.30					0-	-				
Brown SANDY SILT	.91	G	1								
						1-					
Light grey-brown medium FINE SAND		G	2			2-	-				
Grey CLAYEY SILT	.90	G	3			3-					
4 End of Test Pit	.27					4-					
(GWL @ 2.4m depth)								20	40	60 80	100
								She	ar Streng	yth (kPa)	

SOIL PROFILE AND TEST DATA

△ Remoulded

Undisturbed

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

DATUM									FILE NO.	PH2450	
REMARKS									HOLE NO.	TP 2	
BORINGS BY Backhoe				D	ATE	February	7, 2014	T		182	Γ
SOIL DESCRIPTION	A PLOT	. <u>.</u>		MPLE	Ä٥	DEPTH (m)	ELEV. (m)		esist. Blo [.] 0 mm Dia.		Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE of RQD				ater Cont		Piezo Const
BASEMENT FLOOR TOPSOIL				щ		0-	-	20	40 60	80	
0.23											-
Brown SAND , some silt		G	4								-
Light brown SILTY SAND, with some shells		G	5			1-	-				
Light brown to grey-brown SAND		G	6			2- 3-					∑
4.27 End of Test Pit (GWL @ 1.7m depth)						4-					
,								20 She	40 60 ar Strengt) 80 1 :h (kPa)	00

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

DATUM		-								FILE N	D. PH2	450	
REMARKS										HOLE			
BORINGS BY Backhoe					D	ATE	-ebruary	7, 2014			18	<u>э</u>	
SOIL DESCRIPTION		A PLOT		SAN		Ë۵	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone				Piezometer Construction
		STRATA	TYPE	NUMBER	8 RECOVERY	N VALUE of RQD					ontent %		Piezo Const
BASEMENT FLOOR					×	4	0-	-	20	40	60 80) 	
Brown SAND , some silt	<u>15</u> 91		G	7			1-						
Light brown medium to coarse SAND, some gravel	68		G	8									
							2-	-					⊻
Light brown SAND			G	9			3-						
4	27		_				4-						
End of Test Pit													
(GWL @ 2.1m depth)		-							20 Shea	40 ar Strei	60 80	D 10 a)	00

SOIL PROFILE AND TEST DATA

FILE NO.

PH2450

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

REMARKS

REMARKS					-				HOLEN	^{ю.} ТР 4	
BORINGS BY Backhoe				D	ATE	-ebruary	7, 2014			LI T	
SOIL DESCRIPTION	PLOT		SAM			DEPTH (m)	ELEV. (m)		esist. E 0 mm D	neter uction	
	STRATA	TYPE	NUMBER	8 RECOVERY	N VALUE of RQD			• v	/ater Co	ontent %	Piezometer Construction
BASEMENT FLOOR	ຶ່		N	RE	z ^o	0-	-	20	40	60 80	
TOPSOIL0.30											
Brown SILTY SAND to FINE SAND		G	10			1-	-				-
End of Test Pit	· . · · .										₽
Practical refusal to excavation on inferred bedrock at 1.52m depth											
(GWL @ 1.4m depth)								20	10		
								20 She ▲ Undis		60 80 1 n gth (kPa) △ Remouided	100

SOIL PROFILE AND TEST DATA

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

DATUM									F	ILE NO.	PH2	450	
REMARKS					_				н	OLE NO	^{).} TP	5	
BORINGS BY Backhoe				D	ATE	February	7, 2014						
SOIL DESCRIPTION	PLOT		SAN	IPLE	-	DEPTH (m)	ELEV. (m)	Pen. ●			ows/0.3r a. Cone	n ate	ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0	Wat	er Cor	ntent %		Construction
BASEMENT FLOOR	Σ.	51	E E	RE	z ⁶			20	4	0 6	io 80		0
TOPSOIL 0.05 SILTY SAND with gravel and 0.20 cobbles 0.105 End of Test Pit Practical refusal to excavation on inferred bedrock at 0.20m depth								20		60	50 80	100	
								SI ▲ Un	h ear : disturb	Streng ed ∆	50 80 jth (kPa A Remould) ied	

SOIL PROFILE AND TEST DATA

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

DATUM					•				FILE N	^{o.} PH2450	
REMARKS									HOLEI		
BORINGS BY Backhoe	,			D	ATE I	February	7, 2014			тр 6	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/0.3m Dia. Cone	stion
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m) (m)			ontent %	Piezometer Construction	
BASEMENT FLOOR	LS.	н	L R	REC	N O			20	40	60 80	щΟ
TOPSOIL 0.10 SILTY SAND with gravel and 0.25 cobbles 0.10 End of Test Pit 0.10 Practical refusal to excavation on inferred bedrock at 0.25m depth 0.10						. 0-					

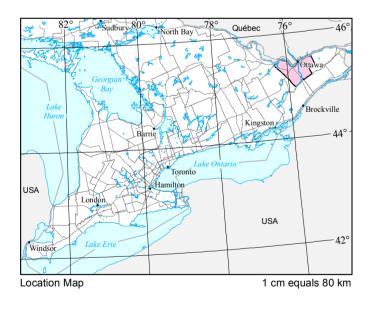
20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded													

SOIL PROFILE AND TEST DATA

Mineral Aggregate Assessment 3119 Carp Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM


DATUM									FILE NO.	PH2450	
REMARKS				_		- - 1	7 0044		HOLE NO	^{).} TP 7	
BORINGS BY Backhoe				D	ATE	February	7,2014				
SOIL DESCRIPTION	PLOT		SAM		El o	DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	8 RECOVERY	N VALUE or RQD				later Co		Piezor Constr
BASEMENT FLOOR				8	Z *	0-	-	20	40 0	50 80	
TOPSOIL0.20						Ū					
SILTY SAND, some clay		G	11								
End of Test Pit	-1-1										
Practical refusal to excavation on inferred bedrock at 0.45m depth											
								20 She ▲ Undis	ar Stren	60 80 ∕ gth (kPa) ∆ Remoulded	100

Aggregate Resources Inventory Paper 191 MAP 1

Sand and Gravel Resources for the City of Ottawa Scale 1:100 000

2000 m 0 2 4 km

NTS References: 31 B/13; F/1, 8, 9; G/3, 4, 5, 6, 11, 12

 SAND AND GRAVEL RESOURCES

 Selected Sand and Gravel Resource Area, primary significance; deposit number (see Table 3)

 Sand and gravel deposits that have been substantially extracted in the past, but where limited resources may still be available

still be available
Selected sand and gravel resource area, secondary significance
Sand and gravel deposit, tertiary significance
Other surficial deposits or exposed bedrock

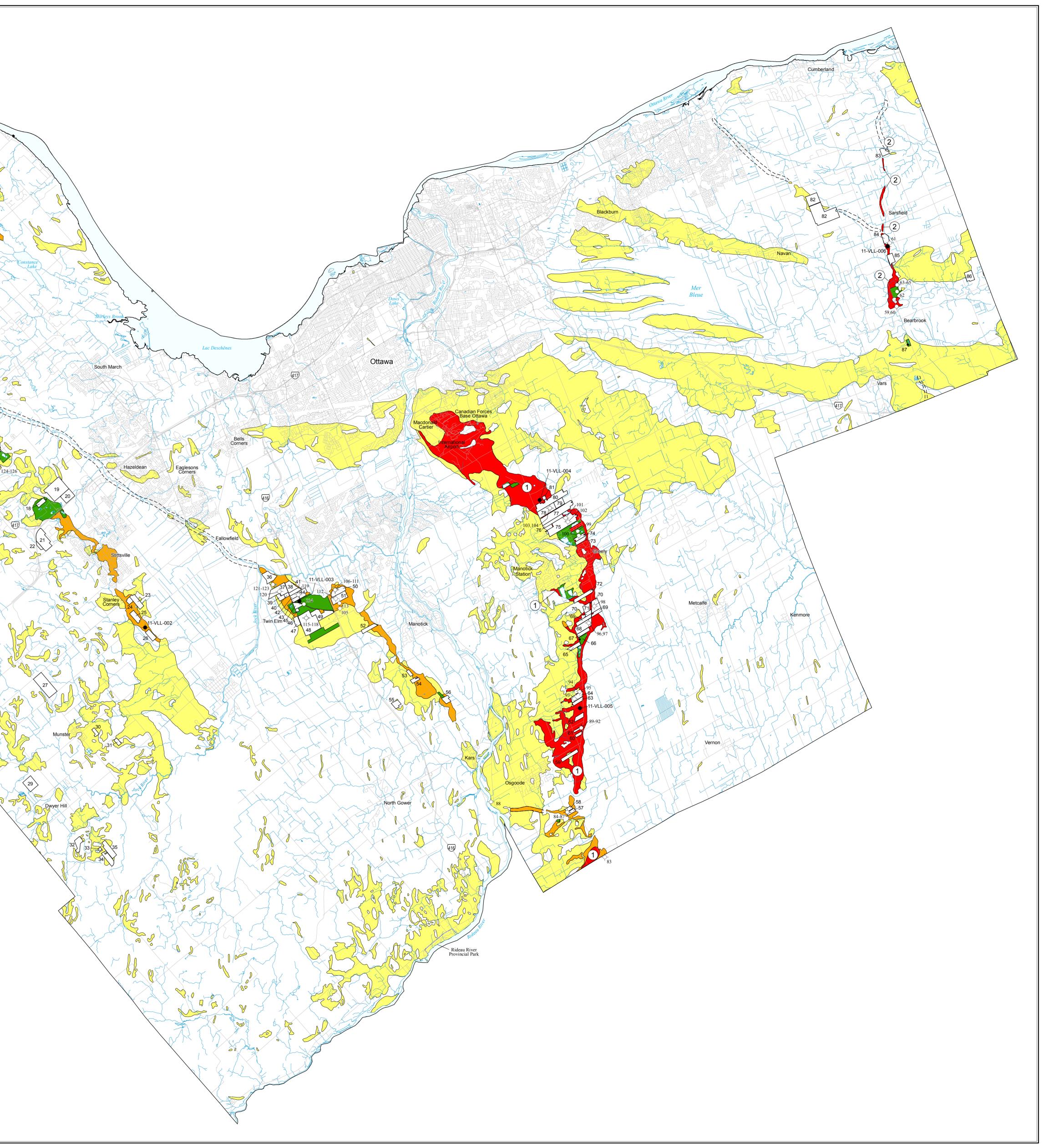
SYMBOLS

	Licenced property boundary; property number (see Table 2)
• ¹⁸	Unlicenced sand or gravel pit (i.e., abandoned pit or wayside pit operating on demand under authority of a permit); property number (see Table 2)
-\$-	Borehole location; identification number (see Table 7)
11-VLL-004	Sample site; identification number (<i>see</i> Table 9)
	Geological and aggregate thickness boundary of sand and gravel deposits
	Buried geological and aggregate thickness boundary of sand and gravel deposits

SOURCES OF INFORMATION

Burnt Lands Provincial Park <

Base map information derived from National Topographic System (NTS) maps, Natural Resources Canada, scale 1:50 000, and from the Ontario Land Information Warehouse, Land Information Ontario, Ministry of Natural Resources, Ontario, scale 1:50 000, with modifications by staff of the Ministry of Northern Development and Mines. Projection: North American Datum 1983 (NAD83), Zone 18.


Aggregate suitability data from the Ministry of Transportation, Ontario. Selected drilled water well data from the Ministry of the Environment, Ontario. Additional borehold date from the Ontario Geological Survey, Ministry of Northern Development and Mines.

Geology based on Bélanger, J.R., Moore, A. and Prégent, A. 1997a, 1997b, 1997c Bélanger, J.R., Moore, A., Prégent, A. and Richard, H. 1995a, 1995b, 1995c, 1995d Ontario Geological Survey 2010 St. Onge, D.A. 1997

Additional geology by V.L. Lee, 2012. Compilation by V.L. Lee. Drafting by S.A. Evers. This map is published with the permission of the Director, Ontario Geological Survey.

Information from this publication may be quoted if credit is given. It is recommended that reference to this map be made in the following form:

Lee, V.L. 2013. Aggregate resources inventory for the City of Ottawa, southern Ontario; Ontario Geological Survey, Aggregate Resources Inventory Paper 191, Map 1–Sand and Gravel Resources, scale 1:100 000.

Cemeteries: Environmental Pollution and Groundwater Contamination

By Ian Langtree

Agriculture, industry and landfills are commonly believed to be the major anthropogenic sources of environmental contamination, however, little attention has been given to cemeteries as possible sources of pollution and groundwater contamination.

There are about 109,000 cemeteries in the United States that are recognized by the U.S. Geological Survey. Regardless of how many people are interred at each of these cemeteries - anywhere from one at the smallest private cemeteries to more than 260,000 at Arlington National Cemetery in Virginia.

Every year, 22,500 cemeteries across the United States bury approximately:

- 14,000 tons of steel vaults.
- 90,272 tons of steel caskets.
- 2,700 tons of copper and bronze caskets.
- 1,636,000 tons of reinforced concrete vaults.
- 30 million board feet (70,000 m3) of hardwood caskets.
- 827,060 US gallons (3,130 m3) of embalming fluid, which usually includes formaldehyde.

Coffins

Toxic chemicals from coffins that may be released into groundwater include varnishes, sealers and preservatives and metal handles and ornaments used on wooden coffins. The burial of coffins can pose an environmental and health hazard since the metals that are used in coffin-making can corrode or degrade into harmful toxins. These can leach into the surrounding soils and groundwater. Casket manufacturers are listed on the EPA's top 50 hazardous waste generators list due to chemicals such as methyl and xylene used in the protective finish sprayed on the caskets exterior (a casket that will be buried or burned).

Black and white picture of headstones in a cemetery

Wood preservatives and paints used in coffin construction contain minerals include copper naphthalene and ammoniac or chromated copper arsenate (CCA), as well as ammonium copper quaternary (ACQ) and copper boron azole (CBA). Prior to the 1940s, lead compounds were commonly used as coloring agents in paints. These toxic metals such as manganese, nickel, copper and vanadium were also identified in old paint samples. Currently, many paints still contain <u>lead [/artman/publish</u> /lead.shtml], mercury, cadmium, and chromium. <u>Arsenic</u> [/fitness/nutrition/foodsecurity/well-arsenic.php] is used as a pigment, a wood preservative and as an anti-fouling ingredient while barium is used as a pigment and a corrosion inhibitor.

Metals are also used for the handles and other ornaments that are attached to the outside of a coffin. The fasteners and coffin ornaments also contain minerals such as zinc

and zinc or copper-alloys, silver or bronze. Often these items are spray painted, vacmetalized, electroplated or a combination of these processes to enhance their aesthetic value.

Formaldehyde

The primary purpose of embalming is to delay decomposition long enough to allow the body to be viewed. Today, the main ingredient in embalming fluid is formaldehyde. The World Health Organization, and The U.S. Environmental Protection Agency, classify formaldehyde as a hazardous waste being a human carcinogen [/health/cancer/carcinogen-list.php].

The funeral industry legally buries over three gallons of formaldehyde-based formalin embalming solution every time it inters an embalmed body. As the vast majority of casketed burials involve embalmed bodies, funeral directors oversee the burial of some three to five million gallons of formaldehyde into cemetery grounds every year - (www.utne.com/environment/arsenic-contamination-ze0z1306zpit.aspx?PageId=3)

When formaldehyde is used for embalming, it breaks down, and the chemicals released into the ground after burial and ensuing decomposition are inert. The problems with the use of formaldehyde and its constituent components in natural burial are the exposure of mortuary workers to it and the destruction of the decomposer microbes necessary for breakdown of the body in the soil. However, formaldehyde is only moderately persistent, its half-life is just two to 20 days in water, unlike arsenic, which, as a basic element, pretty much lasts forever.

Mercury

Another element of concern is <u>mercury from dental fillings [/artman/publish/mercury-toxicity.shtml]</u> (which, in some cases, can be composed of as much as 50 percent mercury), pacemakers, esophageal tubes, and a host of other medical products, which can leach into groundwater once the body has decayed.

Other Chemicals

Numerous toxic pesticides, fertilizers, and weed killers used to keep graveyards green and neat.

Green Burials

Billy Campbell, a rural doctor and a pioneer of the green burial movement in the USA, is reported to have opened the first modern green cemetery in North America at the Ramsey Creek Preserve in South Carolina in 1998. A green burial is a cremation alternative, and a viable alternative to "traditional" burial practices in the United States. A green burial, or natural burial, ensures the burial site remains as natural as possible in all respects. Interment of bodies is done in a bio-degradable casket, shroud, or blanket. No embalming fluid, no concrete vaults. Natural burials were long the default, and many Americans continue to rely on natural burial practices. Conservation burial uses an old practice to promote rural conservation and urban open space. More than returning nutrients to the land, the great potential for conservation burial is to conserve land, create open space, and restore natural habitats.

Embalming, expensive sealed caskets and burial vaults are not required by law. Though traditional memorial parks may require them, a green cemetery or memorial nature preserve does not. The simplicity of a green burial is in tune with nature and need not be expensive.

Resources and Citations

- Arsenic and Old Graves
 https://eponline.com/articles/2006/09/01/arsenic-and-old-graves.aspx
- Til Death Do We Pollute, and Beyond: The Potential Pollution of Cemeteries and Crematoriums https://archive.org/stream/tilDeathDoWePolluteAndBeyondThePotentialPollutionOfCemeteriesAnd /TillDeathDoWePollute_djvu.txt
- Mineral Contamination from Cemetery Soils www.ncbi.nlm.nih.gov/pmc/articles/PMC3315260/
- Cemeteries, Burials & amp; The Water Environment www.doeni.gov.uk/niea/cemeteryguidance.pdf
- Landscapes of the Dead: An Argument for Conservation Burial ced.berkeley.edu/bpj/2012/09/landscapes-of-the-dead-an-argument-for-conservation-burial/
- Concerns: Embalming and Cemetery Pollution villagememorial.blogspot.ca/2015/05/pollution-from-embalming-and-cemeteries.html
- Groundwater near cemeteries
 www.wspgroup.com/en/WSP-UK/Who-we-are/Newsroom/features/Groundwater-near-cemeteries/
- Arsenic Contamination in Graveyards: How the Dead Are Hurting the Environment www.utne.com/environment/arsenic-contamination-ze0z1306zpit.aspx
- Issues to Consider in Preparing for Disposition of Decedents www.mass.gov/eohhs/gov/departments/dph/programs/environmental-health/comm-sanitation/burial-and-cremation.html
- Natural burial https://en.wikipedia.org/wiki/Natural_burial

See original article at Cemeteries: Environmental Pollution and Groundwater Contamination [https://www.disabled-world.com /health/cemetery.php]

https://www.disabled-world.com/health/cemetery.php

APPENDIX C

Water Well Records Search

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020) Well Computer Print Out Data as of March 2 2011

© Queen's Printer, 2009

Page: 1 / 6

TOWNSHIP CONCESSION (LOT)	\mathtt{UTM}^1	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
HUNTLEY TOWNSHIP CON 01(011)	18 421530 5018621 [₩]	1982/06 3504	06	FR 0125	026 / 120 020 / 0:30	DO		1517897 () BLUE CLAY 0008 BLCK GRNT 0128
HUNTLEY TOWNSHIP CON 02(010)	18 421930 5018421 [₩]	1980/10 3644	06	FR 0080	025 / 080 004 / 1:0	DO		1517377 () GREY CLAY STNS 0012 GREY LMSN SHLY 0084
HUNTLEY TOWNSHIP CON 02(010)	18 421951 5018122 ^W	1960/03 4832	04 04	FR 0178	020 / 021 005 / 0:30	DO		1503064 () CLAY LOAM 0004 GREY LMSN 0180
HUNTLEY TOWNSHIP CON 02(010)	18 421891 5018222 ^W	1962/04 4825	04 04	FR 0120	016 / 018 006 / 1:0	DO		1503065 () Clay 0002 lmsn 0120
HUNTLEY TOWNSHIP CON 02(011)	18 421781 5018487 ^w	1964/06 4806	06 06	FR 0105 FR 0071	020 / 090 008 / 1:0	DO		1503070 () LOAM 0004 GREY LMSN 0105
HUNTLEY TOWNSHIP CON 02(011)	18 421766 5018362 [₩]	1962/05 4825	04 04	FR 0125	020 / 055 006 / 1:30	DO		1503069 () PRDR 0070 LMSN 0130
HUNTLEY TOWNSHIP CON 02(011)	18 421721 5018422 ^w	1961/05 4833	04 04	FR 0098	010 / 020 005 / 0:30	DO		1503068 () CLAY LOAM 0014 GREY LMSN 0100
HUNTLEY TOWNSHIP CON 02(011)	18 421921 5018437 [₩]	2007/08 1119	00	0340 0485	019 / 115 006 / 1:0	DO		7050820 (Z60149) A049703 SAND GRVL 0014 GREY LMSN 0500
HUNTLEY TOWNSHIP CON 02(011)	18 421830 5018321 [₩]	1977/08 1365	06 06	FR 0041	007 / 030 020 / 2:0	DO		1516282 () BRWN CSND BLDR 0021 WHIT SNDS CGRD 0050
HUNTLEY TOWNSHIP CON 02(011)	18 421726 5018881 ^W	1988/11 3142	06 06	UK 0158 FR 0090	015 / 140 007 / 1:30	DO		1523034 (44875) BRWN SAND BLDR PCKD 0019 GREY LMSN HARD 0090 GREY LMSN SHLE PORS 0160
HUNTLEY TOWNSHIP CON 02(011)	18 421630 5018521 [₩]	1984/06 1558	06 06	SU 0155 SU 0250	020 / 060 015 / 1:0	ST		1519074 () BRWN SAND PCKD 0004 GREY SAND GRVL PCKD 0008 GREY LMSN SOFT 0012 GREY LMSN MGRD 0260
HUNTLEY TOWNSHIP CON 02(011)	18 421930 5018521 [₩]	1981/09 1558	06 06	SU 0290 FR 0030	020 / 125 005 / 1:0	DO		1517781 () BRWN SAND BLDR 0015 GREY LMSN 0250 BLCK LMSN 0298
HUNTLEY TOWNSHIP CON 02(011)	18 421630 5018521 [₩]	1980/10 1558	06 06	UK 0048 UK 0145	020 / 040 010 / 1:0	DO		1517526 () BRWN SAND STNS FILL 0004 BRWN CLAY BLDR SNDY 0013 GREY LMSN SOFT 0150
HUNTLEY TOWNSHIP CON 02(011)	18 421731 5018522 [₩]	1978/06 3644	06	FR 0060	020 / 050 006 / 1:0			1516579 () GREY HPAN GRVL 0010 GREY SHLE GRVL 0042 GREY LMSN 0064
HUNTLEY TOWNSHIP CON 02(011)	18 421943 5018748 [₩]	1974/07 1558	06 06	FR 0044 FR 0060	025 / 040 030 / 1:0	DO		1514247 () BRWN CLAY SAND PCKD 0006 GREY HPAN BLDR HPAN 0030 GREY LMSN FCRD 0033 GREY LMSN 0062
HUNTLEY TOWNSHIP CON 02(011)	18 421671 5018532 ^w	1968/09 4806	06 06	FR 0063 FR 0129	010 / 129 006 / 1:0	DO		1512382 () SHLE 0010 GREY LMSN 0129

Well Computer Print Out Data as of March 2 2011

© Queen's Printer, 2009

Page: 2 / 6

TOWNSHIP CONCESSION (LOT)	UTM^1	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
HUNTLEY TOWNSHIP CON 02(011)	18 421631 5018548 ^w	1972/05 1558	06 06	FR 0090 FR 0138	020 / 075 007 / 1:0	DO		1511921 () BRWN SAND FILL 0003 BRWN SAND STNS 0009 GREY LMSN 0141
HUNTLEY TOWNSHIP CON 02(011)	18 421631 5018542 ^w	1972/05 3644	05	FR 0139	022 / 070 005 / 1:0	DO		1511759 () GREY CLAY GRVL 0011 GREY LMSN 0139
HUNTLEY TOWNSHIP CON 02(011)	18 421851 5018392 ^W	1969/07 4806	06	FR 0073 FR 0121	021 / 080 010 / 1:0	DO		1510511 () GREY SHLE 0009 GREY LMSN 0121
HUNTLEY TOWNSHIP CON 02(012)	18 421096 5018982 ^W	2005/11 6574	40 35	FR 0026	021 / 021 022 / 1:0	CO	26 2	1536029 (Z28740) A035191 BRWN SAND 0016 GREY CLAY 0026 GREY GRVL 0029 GREY LMSN 0029
HUNTLEY TOWNSHIP CON 02(012)	18 421715 5019458 ^L	1988/08 5222	06	FR 0163	/ 075 025 / 2:0	DO		1523175 (39009) BRWN CLAY SNDY PCKD 0018 GREY CLAY PCKD 0050 GREY CLAY SILT 0115 GREY SILT CLAY LYRD 0155 BRWN SAND GRVL CGVL 0165
HUNTLEY TOWNSHIP CON 02(012)	18 421715 5019458 ^L	5222	06 06	SU 0190 FR 0145	/ 006 / 2:0	DO		1524583 (84304) BRWN SAND SLTY PCKD 0005 BRWN SAND PCKD 0015 GREY HPAN BLDR PCKD 0027 GREY SILT 0030 GREY LMSN HARD 0200
HUNTLEY TOWNSHIP CON 02(013)	18 420631 5019702 ^w	1967/09 1503	05 05	SU 0198	050 / 058 010 / 1:0	DO		1503071 () CLAY 0110 MSND 0135 LMSN 0200
HUNTLEY TOWNSHIP CON 02(014)	18 420601 5019762 [₩]	1969/06 1802	06	SU 0165	032 / 165 025 / 1:0	IN IR		1510130 () BRWN MSND 0006 GREY MSND CLAY 0035 GREY CLAY 0100 GREY MSND 0112 GREY MSND GRVL 0131 GREY LMSN 0200
HUNTLEY TOWNSHIP CON 03(010)	18 421900 5017952 [₩]	2010/02 1119	06 06	0152 0186	012 / 056 020 / 1:0	DO		7141758 (Z108236) A093679 SAND GRVL BLDR 0017 GREY LMSN 0135 GREY LMSN SNDS 0160 GREY LMSN 0200
HUNTLEY TOWNSHIP CON 03(010)	18 421567 5017859 ^w	2009/10 1119	06 06	0231	016 / 099 015 / 1:0	DO		7132598 (Z102713) A089342 SAND GRVL BLDR 0052 GREY LMSN 0240
HUNTLEY TOWNSHIP CON 03(010)	18 421530 5018021 [₩]	1984/09 3142	06 06	FR 0069	004 / 015 040 / 4:0	DO		1519233 () RED SAND PCKD 0006 BRWN SAND PCKD 0018 GREY SAND CLAY LOOS 0052 GREY SAND GRVL STNS 0063 GREY LMSN 0070
HUNTLEY TOWNSHIP CON 03(010)	18 421807 5018216 ^w	1972/10 1558	06 06	FR 0124	025 / 075 010 / 1:0	DO		1512118 () GREY GRVL SAND 0015 GREY LMSN 0125
HUNTLEY TOWNSHIP CON 03(010)	18 421624 5018051 [₩]	2006/02 1558		0118 0060		DO		1536296 (Z39257) A035418 BRWN LOAM STNS PCKD 0004 BRWN SNDS 0023 GREY SNDS STNS 0044 GREY LMSN 0123
HUNTLEY TOWNSHIP CON 03(010)	18 421668 5017988 [₩]	2009/03 1558	06	0140	015 / 015 012 / 2:0	DO		7123248 (Z095326) A076799 BRWN LOAM ROCK FCRD 0004 BRWN CLAY PCKD 0014 BRWN SAND WBRG 0022 GREY TILL PCKD 0032 GREY LMSN MGRD 0140
HUNTLEY TOWNSHIP CON 03(010)	18 421755 5018048 [₩]	2009/10 1558	06	0110 0161	016 / 020 012 / 2:0	DO		7139851 (Z101735) A076883 BRWN HPAN BLDR 0008 GREY LMSN LYRD SOFT 0020 GREY LMSN MGRD 0162

Well Computer Print Out Data as of March 2 2011

© Queen's Printer, 2009

Page: 3 / 6

TOWNSHIP CONCESSION (LOT)	UTM ¹	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
HUNTLEY TOWNSHIP CON 03(011)	18 421371 5018322 [₩]	1959/12 4833	04 04	FR 0122	016 / 030 007 / 0:30	ST DO		1503123 () CLAY LOAM 0012 GREY LMSN 0124
HUNTLEY TOWNSHIP CON 03(011)	18 421419 5018710 ^W	1972/10 3503	06 06	UK 0071	010 / 016 020 / 0:30	DO		1514608 () GREY SAND STNS 0029 GREY SHLE SAND 0080
HUNTLEY TOWNSHIP CON 03(011)	18 421431 5018662 [₩]	1962/05 4825	04 04	FR 0125	016 / 035 006 / 1:0	DO		1503125 () CLAY 0006 LMSN 0127
HUNTLEY TOWNSHIP CON 03(011)	18 421741 5018272 [₩]	1961/09 4833	04 04	FR 0100	020 / 025 005 / 0:30	ST DO		1503124 () CLAY LOAM 0007 GREY LMSN 0101
HUNTLEY TOWNSHIP CON 03(011)	18 421631 5018442 ^W	1964/09 4806	06 06	FR 0108 FR 0071	023 / 090 006 / 1:0	DO		1503126 () SHLE 0012 GREY LMSN 0108
HUNTLEY TOWNSHIP CON 03(011)	18 421691 5018272 ^w	1966/03 4824	04 04	FR 0080	015 / 050 003 / 1:0	DO		1503127 () GRVL 0010 LMSN 0081
HUNTLEY TOWNSHIP CON 03(011)	18 421581 5018292 [₩]	1969/05 4847	04 04	FR 0060	016 / 028 005 / 0:30	DO		1510221 () LOAM MSND 0008 GREY LMSN 0111
HUNTLEY TOWNSHIP CON 03(011)	18 420854 5018003 ^w	5222	06 06	FR 0085 FR 0190	013 / 190 003 / 6:0	DO CO		1524588 (84306) BRWN LOAM PCKD 0001 BRWN CLAY SNDY PCKD 0003 GREY LMSN HARD 0200
HUNTLEY TOWNSHIP CON 03(011)	18 421532 5018171 [₩]	5222	06 06	FR 0030	010 / 030 006 / 6:0	CO	30 3	1524587 (84307) BRWN LOAM PCKD 0001 BRWN CLAY PCKD 0005 BRWN CLAY SNDY FSND 0012 BRWN MSND 0023 BRWN SAND SILT MGRD 0028 BRWN MSND 0037
HUNTLEY TOWNSHIP CON 03(011)	18 421089 5018090 ^L	1983/09 3644	06 06	FR 0075	025 / 060 020 / 1:0	DO		1518611 () GREY CLAY 0006 GREY SNDS 0080
HUNTLEY TOWNSHIP CON 03(012)	18 421151 5018922 ^W	1960/09 4833	04 04	FR 0094	012 / 014 003 / 0:30	PS		1503128 () CLAY LOAM 0036 GREY LMSN 0096
HUNTLEY TOWNSHIP CON 03(012)	18 420234 5018316 ^W	1975/04 2801	05	FR 0003	003 / 008 010 / 4:0	PS	10 5	1514738 () RED SAND DRTY LOOS 0003 CSND FSND GRVL 0015 GREY CLAY SOFT 0022
HUNTLEY TOWNSHIP CON 03(012)	18 420185 5018212 [₩]	1975/04 2801						1514737 () RED SAND DRTY LOOS 0003 GREY CSND FSND LOOS 0011 GREY SAND SILT CLAY 0024 GREY CLAY SOFT 0061
HUNTLEY TOWNSHIP CON 03(012)	18 420686 5018556 ^L	1985/05 1558	06 05	SU 0220	030 / 125 005 / 1:0	DO		1519713 () BRWN SAND 0005 GREY SAND GRVL WBRG 0023 GREY CLAY 0089 GREY LMSN 0225
HUNTLEY TOWNSHIP CON 03(012)	18 420152 5018314 [₩]	2005/06 6574	06	0148	019 / 051 001 / 1:0			1536026 (Z28727) A029175 BRWN SAND SILT PCKD 0027 BLUE CLAY WBRG 0086 GREY SAND GRVL DNSE 0090 GREY LMSN 0325

© Queen's Printer, 2009

Page: 4 / 6

TOWNSHIP CONCESSION (LOT)	UTM ¹	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
HUNTLEY TOWNSHIP CON 03(012)	18 421126 5018996 ^w	1972/12 1558	06 06	SU 0080 SU 0187	010 / 050 015 / 2:0	IN		1512197 () BRWN GRVL SAND PCKD 0003 BRWN SAND PCKD 0018 GREY SAND PCKD 0032 GREY CLAY LOOS 0042 GREY SAND GRVL STNS 0047 BLCK LMSN 0188
HUNTLEY TOWNSHIP CON 03(012)	18 420686 5018556 ^L	1986/10 5222	06 06	FR 0023	007 / 023 006 / 3:0	DO	23 3	1521050 (02025) BRWN FSND LOOS 0017 BRWN SAND CGVL 0026 GREY CLAY PCKD 0026
HUNTLEY TOWNSHIP CON 03(012)	18 421227 5018949 ^w	1973/04 1836	06	SU 0256	015 / 100 008 / 1:0	DO		1513273 () YLLW SAND 0020 HPAN 0032 GREY LMSN 0260
HUNTLEY TOWNSHIP CON 03(012)	18 420489 5018547 ^w	1975/04 2801	05	FR 0003	003 / 011 060 / 1:0			1514739 () RED SAND DRTY LOOS 0002 BRWN SAND LOOS 0018 SAND FGVL LOOS 0023 GREY FSND SILT CLAY 0025 GREY CLAY SOFT 0038
HUNTLEY TOWNSHIP CON 03(013)	18 420831 5019422 [₩]	1978/11 1558	06 06	FR 0145	040 / 055 025 / 1:0	DO		1516828 () BRWN CLAY BLDR 0021 GREY HPAN BLDR PCKD 0035 GREY LMSN SOFT 0145
HUNTLEY TOWNSHIP CON 03(013)	18 420813 5019053 ^W	2005/09 6574	06 06	0090	019 / 035 / :0	MN PS	86 4	1535787 (Z28731) A029180 BLCK LOAM 0001 BRWN SAND 0015 BRWN SAND 0022 GREY GRVL 0027 GREY SILT 0035 GREY CLAY HARD 0048 BLUE CLAY WBRG 0072 GREY CLAY HARD 0082 GREY GRVL PCKD 0090
HUNTLEY TOWNSHIP CON 03(013)	18 420701 5019542 ^w	1958/06 4832	05 04 03 03	SU 0183	028 / 045 003 / 3:0	DO		1503129 () PRDR 0140 HPAN 0152 LMSN 0187
HUNTLEY TOWNSHIP CON 03(013)	18 420436 5019162 [₩]	1975/02 1558	06 06	SU 0167	018 / 030 020 / 2:0	DO		1514573 () BRWN SAND SILT PCKD 0030 BLUE CLAY LOOS 0115 GREY SAND CLAY PCKD 0123 BLCK LMSN 0175
HUNTLEY TOWNSHIP CON 03(013)	18 420291 5019026 ^L	1985/09 3142	06	FR 0024	006 / 015 020 / 1:0	DO		1520137 () GREY CLAY SAND PCKD 0020 GREY GRVL LOOS 0025
HUNTLEY TOWNSHIP CON 03(013)	18 420424 5019205 ^w	2004/09 1119	02 06 02			NU	133 10 2 11	1535240 (Z19014) A018872 CLAY 0127 GREY LMSN 0144
HUNTLEY TOWNSHIP CON 03(013)	18 420930 5019321 [₩]	1981/11 4006	06 06	FR 0083 FR 0185	008 / 200 004 / 1:0	DO		1517689 () GREY CLAY PCKD 0015 GREY SILT STNS PCKD 0057 GREY SAND CMTD 0061 GREY TILL STNS PCKD 0079 GREY GRNT MGRD 0215
HUNTLEY TOWNSHIP CON 03(014)	18 420155 5019475 ^w	2004/09 1119	06 02 02			NU	119 10 2 9	1535239 (Z19016) A018880 CLAY 0114 GREY LMSN 0129
HUNTLEY TOWNSHIP CON 03(015)	18 419327 5019365 [₩]	2009/06 1844						7127229 (M04486) A074638 BRWN LOAM 0000 GREY CSND GRVL 0006 GREY ROCK SAND GRVL 0008 GREY SAND GRVL ROCK 0009 GREY SILT CLAY SAND 0012

	Well Cor	nputer Prir	nt Out Da	ta as of Ma	arch 2 2011 © 0	Queen's P	rinter, 200	09 Page: 5 / 6
TOWNSHIP CONCESSION (LOT)	UTM ¹	DATE ² CNTR ³	CASING DIA ⁴	WATER ^{5,6} DETAIL	STAT LVL/PUMP LVL ⁷ RATE ⁸ /TIME HR:MIN	WATER USE ⁹	SCREEN INFO ¹⁰	WELL # (AUDIT#) WELL TAG # DEPTHS TO WHICH FORMATIONS EXTEND ^{5,11}
HUNTLEY TOWNSHIP 02(012)	18 421372 5018928 ^W	2007/05 6907						7049976 (Z50987) A017504
HUNTLEY TOWNSHIP 03(010)	18 421718 5018158 ^W	2010/07 1558	06	0230	021 / 024 010 / 2:0	DO		7151500 (Z115581) A102298 BRWN LOAM 0002 BRWN SHLE SOFT 0018 GREY LMSN LYRD SOFT 0231
HUNTLEY TOWNSHIP ()	18 420944 5019366 [₩]	2006/07 7241	02				58	7035379 (Z51855) A046053 BRWN LOAM LOOS 0004 BRWN SAND SILT 0012 GREY CLAY SILT WBRG 0013
HUNTLEY TOWNSHIP ()	18 421630 5018027 [₩]	2010/10 1558						7156095 (Z115626) A102342
HUNTLEY TOWNSHIP ()	18 420326 5019172 [₩]	2006/07 1844	02				0 12	1536752 (Z50484) A045182 BRWN SAND FILL FGRD 0003 GREY SAND WBRG 0008 GREY SAND SLTY WBRG 0012
HUNTLEY TOWNSHIP ()	18 420301 5019145 ^w	2008/07 1844						7120701 (M04547) A045182
OTTAWA CITY ()	18 420263 5019179 ^w	2009/06 1844						7127228 (M04487)
RUSSELL TOWNSHIP CON 04(022)	18 420609 5018335 [₩]	2005/08 1414	06	FR 0072	025 / 034 004 / 1:0	DO		5606152 (Z27954) A021433 RED SHLE 0078

Notes:

- 1. UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid
- 2. Date Work Completed
- 3. Well Contractor Licence Number
- 4. Casing diameter in inches
- 5. Unit of Depth in Feet
- 6. See Table 4 for Meaning of Code

- 7. STAT LVL: Static Water Level in Feet ; PUMP LVL: Water Level After Pumping in Feet
- 8. Pump Test Rate in GPM, Pump Test Duration in Hour : Minutes
- 9. See Table 3 for Meaning of Code
- 10. Screen Depth and Length in feet

11. See Table 1 and 2 for Meaning of Code

	1. Core Material and Descriptive terms													
Code	Description		Code	Description		Code	Description		Code	Description		Code	Description	
BLDR	BOULDERS		FCRD	FRACTURED		IRFM	IRON FORMATION		PORS	POROUS		SOFT	SOFT	
BSLT	BASALT		FGRD	FINE-GRAINED		LIMY	LIMY		PRDG	PREVIOUSLY DUG		SPST	SOAPSTONE	
CGRD	COARSE- GRAINED		FGVL	FINE GRAVEL		LMSN	LIMESTONE		PRDR	PREV. DRILLED		STKY	STICKY	
CGVL	COARSE GRAVEL		FILL	FILL		LOAM	TOPSOIL		QRTZ	QUARTZITE		STNS	STONES	
CHRT	CHERT		FLDS	FELDSPAR		LOOS	LOOSE		QSND	QUICKSAND		STNY	STONEY	
CLAY	CLAY		FLNT	FLINT		LTCL	LIGHT- COLOURED		QTZ	QUARTZ		THIK	THICK	
CLN	CLEAN		FOSS	FOSILIFEROUS		LYRD	LAYERED		ROCK	ROCK		THIN	THIN	
CLYY	CLAYEY		FSND	FINE SAND		MARL	MARL		SAND	SAND		TILL	TILL	
CMTD	CEMENTED		GNIS	GNEISS		MGRD	MEDIUM- GRAINED		SHLE	SHALE		UNKN	UNKNOWN TYPE	
CONG	CONGLOMERATE		GRNT	GRANITE		MGVL	MEDIUM GRAVEL		SHLY	SHALY		VERY	VERY	
CRYS	CRYSTALLINE		GRSN	GREENSTONE		MRBL	MARBLE		SHRP	SHARP		WBRG	WATER- BEARING	
CSND	COARSE SAND		GRVL	GRAVEL		MSND	MEDIUM SAND		SHST	SCHIST		WDFR	WOOD FRAGMENTS	
DKCL	DARK- COLOURED		GRWK	GREYWACKE		MUCK	MUCK		SILT	SILT		WTHD	WEATHERED	
DLMT	DOLOMITE		GVLY	GRAVELLY		OBDN	OVERBURDEN		SLTE	SLATE				
DNSE	DENSE		GYPS	GYPSUM		PCKD	PACKED		SLTY	SILTY				
DRTY	DIRTY		HARD	HARD		PEAT	PEAT		SNDS	SANDSTONE				
DRY	DRY		HPAN	HARDPAN		PGVL	PEA GRAVEL		SNDY	SANDY				

2.	Core Color			3. Wat	er Us	e
Code	Description		Code	Description	Code	Description
WHIT	WHITE	Ī	DO	Domestic	OT	Other
GREY	GREY		ST	Livestock	тн	Test Hole
BLUE	BLUE		IR	Irrigation	DE	Dewatering
GREN	GREEN		IN	Industrial	МО	Monitoring
YLLW	YELLOW		CO	Commercial		
BRWN	BROWN		MN	Municipal		
RED	RED		PS	Public		
BLCK	BLACK		AC	Cooling And A/C		
BLGY	BLUE-GREY		NU	Not Used		

	4. Water	r Deta	ail
Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
UK	Unknown		

APPENDIX D

Record of Test Pit Sheets

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)

RECORD OF TEST PIT 11-1

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

CALE ES	SOIL PROFILE	DT DT		UMBER	SHEAR STRENGTH, Cu (kPa)	WATER CONTENT (PERCENT)	
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT)) Wp → 0 W WI 20 40 60 80	WATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION
0	Ground Surface	1.4 Le · .					Backfilled
	TOPSOIL, trace roots	<u>x⁴ 1₇</u> 1 ₇ x ¹ 1					with excavated
	Grey SILTY CLAY, occasional sand pocket (weathered crust)		0.15	1			Backfilled with excavated material
- 1							20 mm
	Grey SILTY CLAY, trace gravel		1.52				0.61 metres long slotted well screen
- 2	End of test pit		1.96				Groundwater conditions observed at 0.37 metres below ground surface on June 30, 2011.
3							
- 4 DEP 1 to	PTH SCALE		Hou	le (Chevrier Engineering		LOGGED: M.L. CHECKED:

RECORD OF TEST PIT 11-2

SHEET 1 OF 1

LOCATION: See Test Pit Location Plan, Figure 2

DATE OF EXCAVATION: June 17, 2011

DATUM:

Щ	SOIL PROFILE			BER		WATER CONTENT	μŪ	
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	WATER CONTENT (PERCENT) Wp → W W 20 40 60 80	∢ ≤	WATER LEVEL OPEN TEST PI OR STANDPIPE INSTALLATION
0	Ground Surface TOPSOIL	<u>x 1/</u> .	<u>,</u>					
		1 <u>7 5</u> 11						
	Brown fine to medium SILTY SAND		0.25					
	Brown SILTY CLAY (weathered crust)		0.55					
1								
	End of toot pit		1.68					
	End of test pit							
2								
3								
4								
	PTH SCALE		Hou	le	Chevrier Engineering		LOGO	GED: M.L.

RECORD OF TEST PIT 11-3

SHEET 1 OF 1

LOCATION: See Test Pit Location Plan, Figure 2

DATE OF EXCAVATION: June 20, 2011

DATUM:

DEPTH SCALE METRES	SOIL PROFILE	гот		NUMBE	SHEAR STR Cu (kPa)		WATER CONTENT (PERCENT)	IONAL	WATER LEVE OPEN TEST I OR STANDPIPI INSTALLATIO
DEPTH MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Natural. V - Remoulded 20 40	+ . V - ⊕ 60 80	Wp - W WI 20 40 60 80	ADDITIONAL LAB. TESTING	STANDPIP
0	Ground Surface								1
	TOPSOIL	<u>7, 1</u>	0.08						
	Dark brown fine to coarse SAND, trace silt, some gravel, trace boulders								
	becoming lighter by 0.56 metres depth								
				1					
1									
2									
2									
			· · ·						
			2.59						
	End of test pit		2.00						
3									
4									
				L					D: MI
	PTH SCALE		Hou	le	Chevrier Eng	gineering)		ED: M.L.

RECORD OF TEST PIT 11-4

SHEET 1 OF 1

LOCATION: See Test Pit Location Plan, Figure 2

DATE OF EXCAVATION: June 17, 2011

DATUM:

CALE ES	SOIL PROFILE	0T		UMBER	SHEAR STRENGTH, Cu (kPa)	WATER CONTENT (PERCENT)	
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp ├────────────────────────────────────	WATER LEVEL OPEN TEST OR ILIC B INSTALLATIO
- 0	Ground Surface TOPSOIL	<u>117</u>					
		1 <u>/ s</u> 11,	•				
	Brown fine SILTY SAND, trace organic material		0.18				
				1			
			0.51				
	Grey brown SANDY SILT with clay			2			
	Grey SANDY SILT and CLAY	Ŵ	0.66	_			
- 1		X					
		\mathcal{U}		3			
		X					
		\mathcal{A}					
		6	1.68				
	Grey, fine SILTY SAND, some clay with intervals of 0.15 metres silty clay seams, cobbles and trace boulders with depth	° O° Pa o					
	cobbies and trace boulders with depth	0 0 1 0 0 0					
2		00					
		° 0 °					
		0 0					
		0 (0 (
		° 0 °		4			
		0 0					
- 3		• O°					
		0 T 0 0 T					
	End of test pit	1 . 14 . 1.	3.20				
4							
		<u> </u>					
DEF	PTH SCALE		Hou		Chevrier Engineering		LOGGED: M.L.

RECORD OF TEST PIT 11-5

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 20, 2011

LOCATION: See Test Pit Location Plan, Figure 2

Operation A A Second Surface a. a. Provide surface and tax organic metabolic b. a. Down fire to metabolic SAND, some grower and Dockles D.22 D.23 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Provide surface D.24 D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Provide surface D.24 D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Dockles D.24 D.24 Down fire to metabolic SAND, some grower and Down fire to metabolic SAND, some grower and Down fire to metabolic SAND, some grower and Down fire to metabolic SAND,	DEPTH SCALE METRES	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - Remoulded. V - ⊕ 20 40 60 80	WATER CONTENT (PERCENT) Wp → WI 20 40 60 80	WATER LEV OPEN TEST OR STANDPII GRY INSTALLAT	/el In T Pit Ipe Tion
- 2 End of test pit Refusal on inferred smooth surfaced bedrock 2.44 Conductation 2.44 Conductation 2.44 Conductation Conditions Conductation Condu	- 0	Brown silty sand, trace organic material	$\frac{\underline{x}^{1} \cdot \underline{h}_{2}}{\underline{h}_{1}} \cdot \underline{x}^{1} \cdot \underline{h}_{2}$					Backfilled with excavated material	NON C
- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	- 1			0.20					
observed at 2.05 metres below ground surface on June 30, 2011.	- 2							20 mm diameter, 0.61 metres long slotted	
	- 3	End of test pit Refusal on inferred smooth surfaced bedrock		2.44				observed at 2.05 metres below ground surface on June 30,	
- 4	- 4								

RECORD OF TEST PIT 11-6

SHEET 1 OF 1

LOCATION: See Test Pit Location Plan, Figure 2

DATE OF EXCAVATION: June 20, 2011

DATUM:

S	SOIL PROFILE	⊢		MBE	SHEAR STRENGTH, Cu (kPa)	WATER CONTENT	₹ ^Ω WATER LE\
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp - <u>W</u> WI 20 40 60 80	WATER LEV OPEN TES OPEN TES OR STANDPI INSTALLAT
0	Ground Surface						
U	TOPSOIL		0.05				
	Dark brown SILTY SAND, trace organic material		0.23				
	Reddish brown fine SAND, trace organic material and silt						
				1			
			0.69				
	Grey fine SAND, some silt						
1				2			
	Test pit terminated on smooth surfaced bedrock		1.75				
2							
3							
v							
4							
DEF	PTH SCALE		Hou	ا ما	Chevrier Engineering		LOGGED: M.L.

RECORD OF TEST PIT 11-7 LOCATION: See Test Pit Location Plan, Figure 2

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 20, 2011

Ц	SOIL PROFILE			BER		WATER C		٩Ļ	
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (KPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERC	ENT) <u>W</u> WI 60 80	ADDITIONAL LAB. TESTING	WATER LEVEL OPEN TEST P OR STANDPIPE INSTALLATIO
0	Ground Surface Brown silty sand, TOPSOIL	<u>7, 1</u> 7, 7, 1 7, 7, 1	· · · · · · · · · · · · · · · · · · ·						
	Test pit terminated on smooth surfaced bedrock	<u></u>	0.25						
1									
2									
3									
4									
DEP 1 to	PTH SCALE	_	Hou	le	Chevrier Engineer	ing			ED: M.L. KED:

RECORD OF TEST PIT 11-8

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 20, 2011

LOCATION: See Test Pit Location Plan, Figure 2

μ	SOIL PROFILE			BER		SHEA	RSTP	NGTH			\٨/٨٣	ER CON	TENT		و ب	
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	21	Natu Rem	ıral. V - noulded.		80	WI 2	۴) صا م	PERCEN PERCEN W 0 6	T)	WI 80	ADDITIONAL LAB. TESTING	WATER LEVEL OPEN TEST P OR STANDPIPE INSTALLATIO
0	Ground Surface	- A 1	-													i
	Dark brown TOPSOIL	1/ 1/ 1														
		<u>17 71</u>	0.20													
	Brown fine SAND		0.20													
	Test pit terminated on smooth surfaced bedrock		. 0.36													
	bedrock															
1																
_																
2																
3																
4																
			I	I		[1	1	1		I		1	I		50 MI
	PTH SCALE		Hou	le (Chev	/rier	Eng	jinee	ering	J						ED: M.L.
1 to	o 20														CHEC	KED:

RECORD OF TEST PIT 11-9

SHEET 1 OF 1

DATUM:

TYPE OF EXCAVATOR: Backhoe

DATE OF EXCAVATION: June 20, 2011

LOCATION: See Test Pit Location Plan, Figure 2

ALE	SOIL PROFILE			MBER	SHEAR STRENGTH, Cu (kPa)	WATER CONTENT	국일 WATER LEVEL IN	 N
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp	WATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION	
TESTPIT LOG PRE 2015 GINT 11-037 TP 1-18.GPJ HOULE CHEVRIER FEB 9 2011.GPT 23/7/15	Ground Surface TOPSOIL Brown SILTY SAND, trace organic material, small rootlets Brown SILTY SAND, some gravel, cobbles and boulders		DEPTH	SAMPL	Remoulded. V - @ 20 40 60 80			
4 DEP 1 to	TH SCALE 20		Hou	le	Chevrier Engineering		LOGGED: M.L. CHECKED:	

RECORD OF TEST PIT 11-10

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 20, 2011

LOCATION: See Test Pit Location Plan, Figure 2

ATUM:

ALE	SOIL PROFILE		<u> </u>	ABEF	SHEAR STR	ENGTH,	WATER CONTENT	L L	WATER LEVEL II
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STR Cu (kPa Natural. V Remoulded 20 40		(PERCENT)	ADDITIONAL ADDITIONAL ADDITIONAL	OPEN TEST PIT OR STANDPIPE INSTALLATION
- 0	Ground Surface	-,,							Backfilled
-	TOPSOIL	<u>\ 17</u>	0.08						with
	Brown SILTY SAND, trace organic material		0.00						excavated material
- 1	Grey brown SILTY SAND, some gravel, cobbles and boulders								20 mm diameter, 0.61 metres long slotted well screen
	End of test pit Refusal on inferred bedrock or boulder		1.47						Groundwater conditions observed at 1.33 metres below ground surface on June 30, 2011.
- 2									
- 3									
- 4									
	I PTH SCALE							· · · · ·	GED: M.L.
						gineering			

RECORD OF TEST PIT 11-11

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

Щ.	SOIL PROFILE			BER	SHEAR STRENGTH	WATER CONTENT	μĥ	WATER LEVEL IN
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp ├ <u>─────</u> W WI 20 40 60 80	ADDITIONAL LAB. TESTING	WATER LEVEL I OPEN TEST PIT OR STANDPIPE INSTALLATION
0	Ground Surface TOPSOIL	<u>×1 1/</u> .	·					
	Dark brown SILTY SAND, trace small rootlets		0.08					
	Reddish brown fine to medium SAND		0.30					
	Brown grey fine to medium SAND		0.77					
1	Grey SILTY SAND, trace gravel and shells		1.00					
2	Grey SILTY SAND, some clay, some gravel and shells		1.70					
	Grey SAND		2.30					
. 3	End of test pit		2.70					
4								
	TH SCALE 20		Hou	le	Chevrier Engineering	l	LOGG	ED: M.L.

RECORD OF TEST PIT 11-12

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

DEPTH SCALE METRES	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	WATER CONTENT (PERCENT) Wp - W WI 20 40 60 80	ADDITIONAL LAB. TESTING	WATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION
0	Ground Surface TOPSOIL	<u>x, 1</u> x .v	-					Backfilled W
	Reddish brown fine SILTY SAND with trace organic material		0.09	1				excavated material
	turning brown grey by 0.3 metres depth							Backfilled with excavated material
-	Grey fine SILTY SAND to SANDY SILT, trace	0 0 0	0.75					
1	shells and gravel			2				
-	Brown grey fine to medium SAND	<u>, O (</u>	1.40					20 mm [···
				3				diameter, 0.61 metres long well screen
2								diameter, 0.61 metres long well screen
-	End of test pit		2.20					Groundwater conditions observed at 1.38 metres
								below ground surface on June 30, 2011.
3								
4								
DEP	TH SCALE	1	Hou	le	Chevrier Engineering		LOGG	ED: M.L.

RECORD OF TEST PIT 11-13

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

CALE	SOIL PROFILE	F		JMBE	SHEAR STRENGTH, Cu (kPa)		
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Cu (kra) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp ├────────── W WI 20 40 60 80	TRADET CONTRACTOR OF CONTRACTO
0	Ground Surface TOPSOIL	<u>x' 1</u> / v					
	Reddish brown fine to medium SAND, trace silt and organic material		0.10	1			
	Brown fine to medium SAND, some silt, trace gravel		0.40	2			
1							
	Brown fine to medium SAND, trace silt		1.00	3			
2	Grey SAND, occasional shells with depth		1.20				
	End of test pit		2.59				
3							
- 4							
DEF	PTH SCALE	1	Ноч	le	Chevrier Engineering		LOGGED: M.L.
	0 20		nou		Chevner Lugineening		CHECKED:

RECORD OF TEST PIT 11-14

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

ALE 2	SOIL PROFILE	<u> </u>	-	1 BER	SHEAR STRENGTH.	WATER CONTENT	ຟີ ສີ2 WATER LEVE
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp → W WI 20 40 60 80	VATER LEVE OPEN TEST OPEN TEST OR ILII OR INSTALLATI
0	Ground Surface TOPSOIL	<u>x1 17</u> .x	-				
	Reddish brown fine to medium SAND, trace silt		0.08				
	Reduish blown line to medium SAND, trace sit			1			
			0.48				
	Grey brown fine to medium SAND						
	Grey brown SILTY SAND with some clay		0.82				
1							
				2			
			1.43				
	Grey SILTY SAND, some shells		1.43				
			1.77				
	Grey brown fine to coarse SAND, trace silt						
2							
				3			
	End of test pit		2.80				
_							
3							
4							
DEP	PTH SCALE		Hou	le	Chevrier Engineering		LOGGED: M.L.

RECORD OF TEST PIT 11-15

SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

DEPTH SCALE METRES	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV.	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - +	WATER CONTENT (PERCENT)	ADDITIONAL LAB. TESTING	VATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION
DEP. M		STRAT	DEPTH (m)	SAMPL	Remoulded. V - ⊕ 20 40 60 80	Wp → W WI 20 40 60 80	ADI	INSTALLATION
• 0	Ground Surface TOPSOIL	<u>x, 1</u> x. x					Ba	ckfilled
	Brown grey fine SAND		0.15				exc ma	skilled havated terial
	Brown SILTY SAND, trace clay		0.53					
1				1				
	Grey SILTY SAND		1.09	2				KON ON ON
	Grey SILTY SAND, trace shells		1.35					ckfilled Maxavled Lerial ACA CA
2	Grey SILTY CLAY and fine sand		1.91	3			dia	mm 🖺
	Grey fine SAND, some silt		2.44	4			lon	meter,
3	End of test pit		2.74				cor obs 0.4 bel grc sur	und face on ne 30,
4								
	PTH SCALE		Hou	le (Chevrier Engineering		LOGGED:	M.L.

LOCATION: See Test Pit Location Plan, Figure 2

DATE OF EXCAVATION: June 17, 2011

RECORD OF TEST PIT 11-16

SHEET 1 OF 1

DATUM:

alle	SOIL PROFILE	⊢		ИВЕ	SHEAR STRENGTH, Cu (kPa)	WATER CONTENT	de 2 VATER LE	EVE
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp	WATER LE OPEN TE OPEN TE OR INSTALL/	ST PIPI ATIO
0	Ground Surface TOPSOIL	<u>x1 17</u>						
	Dark brown to brown fine to medium SAND		0.10					
	Grey brown fine to medium SAND		0.81	1				
1	Brown grey SILTY CLAY (weathered crust)		1.04					
2			- 1.93	2				
	Grey SILTY CLAY, trace rounded gravel, trace shells End of test pit		2.44					
3								
4								
DEF	TH SCALE	1	Llevi				LOGGED: M.L.	
) 20		Hou	le (Chevrier Engineering		2000CD. WILL.	

LOCATION: See Test Pit Location Plan, Figure 2

DATE OF EXCAVATION: June 17, 2011

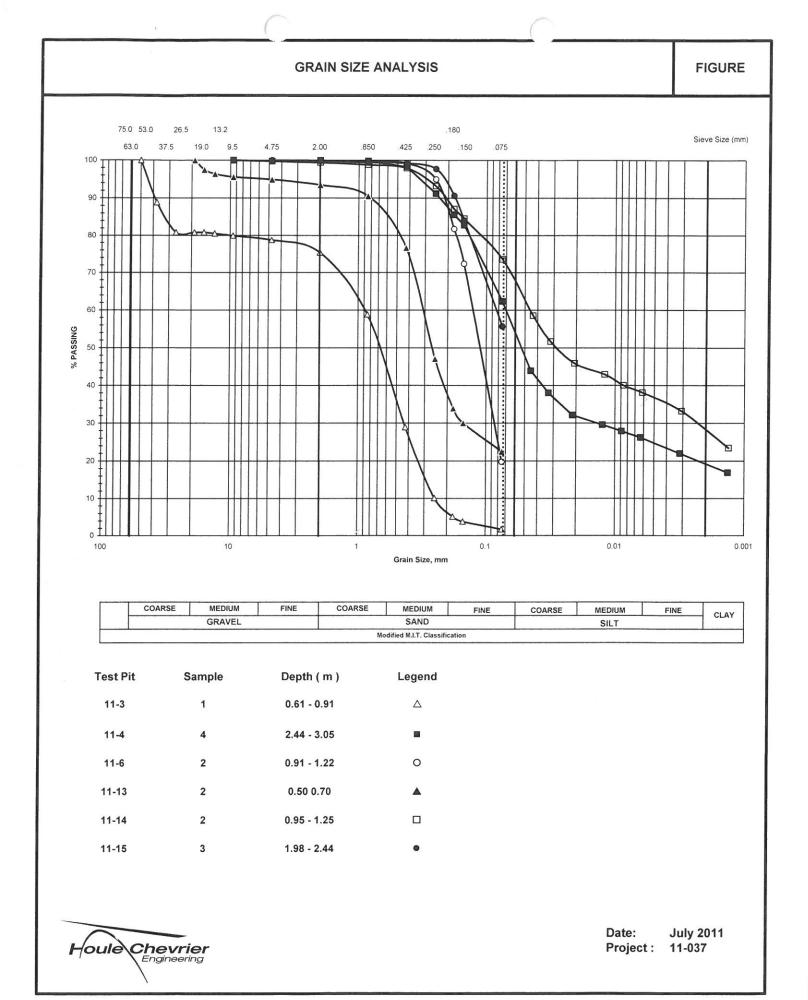
RECORD OF TEST PIT 11-17

SHEET 1 OF 1

DATUM:

» ALE	SOIL PROFILE		I	ABE	SHEAR STRENGTH,	WATER CONTENT	Z WATER LE	VE
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - + Remoulded. V - ⊕ 20 40 60 80	(PERCENT) Wp → W WI 20 40 60 80	VATER LE OPEN TES OR STANDF INSTALLA	ST PIPI ATI(
0	Ground Surface TOPSOIL	1 1. N						I
	Dark brown SILTY SAND, trace organic	<u>st 17. s</u>	0.10					
	Reddish brown fine to medium SAND	1	0.24					
	becoming grey brown by 0.48 metres depth							
1	Brown grey SILTY SAND, some clay seams grey with shells by 1.83 metres depth		0.86					
2	Grey medium SAND		1.83					
	Grey SILTY CLAY		2.44					
3	End of test pit		2.97					
4 DEF	PTH SCALE		Llev				LOGGED: M.L.	
1 to			поu	ie (Chevrier Engineering			

RECORD OF TEST PIT 11-18


SHEET 1 OF 1

DATUM:

DATE OF EXCAVATION: June 17, 2011

LOCATION: See Test Pit Location Plan, Figure 2

DEPTH SCALE METRES	SOIL PROFILE	STRATA PLOT	ELEV.	SAMPLE NUMBER	SHEAR STRENGTH, Cu (kPa) Natural. V - → Remoulded. V - ⊕	WATER CONTENT (PERCENT) WD - W W	ADDITIONAL LAB. TESTING	WATER LEVEL II OPEN TEST PIT OR STANDPIPE
		STRAI	DEPTH (m)	SAMP	Remoulded. V - ⊕ 20 40 60 80	Wp	AD	INSTALLATIO
0	Ground Surface TOPSOIL	<u>st 1</u> x	1					
	Dark brown SILTY SAND, trace rootlets		0.09					
	Brown fine to medium SAND, trace silt		0.23					
				1				
		_						
1	Brown fine to medium SAND		0.91	2				
	becoming grey by 1.09 metres depth							
2								
			2.29					
	Grey SILTY CLAY							
			0.50					
	End of test pit		2.59					
3								
4								
	PTH SCALE						1.066	ED: M.L.
	20		Hou	ie (Chevrier Engineering		CHEC	

APPENDIX E

Carp Road Corridor - Nitrate Impact Assessment Recommendations

MEMO / NOTE DE SERVICE

To / Destinataire	Adam Brown, Manager DRS Rural	File/N° de fichier:		
From / Expéditeur	Jeff McEwen, Program Manager DRS			
	Rural			
Subject / Objet	Carp Road Corridor – Nitrate Impact Assessment Recommendations	Date: 27 September 2016		

This memo is intended to provide developers and their consultants with guidance in the application of the MOECC D-5-4 guidelines within the Carp Road Corridor. Many of the undeveloped sections of the Carp Road Corridor are currently zoned: Rural General Industrial Zone – RG5 Subzone; and Rural Commercial Zone – RC9 Subzone (Highway Commercial Restricted). These zones allow for 50% and 25% lot coverage (building area) with a minimum lot size of 0.4 ha.

The above zoning stipulates that "It should be noted that lots serviced by private services may require lot sizes larger than that necessary to meet zone provisions in order to accommodate the servicing systems capable of handling the increased levels of water consumption and sewage generation that may be associated with these uses."

Typically the minimum lot size is determined at the draft plan of subdivision stage, and then the zoning is applied that matches the draft plan approval. In the Carp Road Corridor the zoning reflects the land uses proposed in the Carp Road Corridor Community Design Plan (CDP). As such, the Plan of Subdivision applications are implementing the CDP, with the zoning already in place.

The evaluation of Hydrogeological and Terrain Analysis for official plan amendments, zoning bylaw amendments and subdivision applications is currently reviewed, as per a memorandum of understanding with the City of Ottawa, by the local conservation authorities. Recently, during the course of a technical review for a subdivision application and in respect to several pre-consultations for development along the Carp Road Corridor, it has become apparent that there are significant challenges for proposed development along the corridor to meet both the intended zoning and the provincial D-series guidance.

The Mississippi Conservation Authority has provided the below advice to clarify the acceptable scope for nitrate attenuation assessments undertaken in support of Carp Road Corridor subdivision and severance applications. This advice only applies to the development under the 2004 Carp Road Corridor Community Design Plan.

Procedure D-5-4 Considerations

It is understood that the City of Ottawa maintains that Section 5.6.3 of MOECC Procedure D-5-4 should be addressed for all privately serviced industrial / commercial development along the Carp Road Corridor, to determine the available infiltration; maximum allowable flow; and maximum number of users. This is found to be in keeping with the zoning provision cited above.

Available Infiltration

The available infiltration, as per the MOECC's advice is estimated from amongst several other factors, impermeable areas. MVCA recommends that the proponent use the zoning provisions as a starting point for determination of lot size and impervious areas in their calculations.

MVCA further recommends that the City also allow accommodation of the advice in the following sections of the D-5-4 guidelines:

 "Storm water management facilities may also contribute to infiltration. However, they may also detract from infiltration by directing water away from the tile bed areas. These facilities should be considered as part of determination of available infiltration" (Annotation to Section 5.6.2 b iv in 'Hydrogeological Technical Information Requirements for Land Development Applications')

Clean storm water infiltration measures should therefore be accounted for in the estimation of 'available infiltration', in consideration of the following points.

- a) Most of the terrain along the Carp Road corridor is sandy and therefore suitable for clean storm water infiltration.
 - Measured representative infiltration rates would need to be obtained to characterize the local variability in infiltration rates. Infiltration rates would need to be determined at the soil horizon on which the effluent disposal bed would lie.
 - ii) It is understood that the City prefers the use of a Double-Ring Infiltrometer (DRI) or the Guelph Permeameter to assess infiltrative capacity.
- b) Clean storm water infiltrate volumes should be determined by the applicant's storm water engineer, to the satisfaction of the City of Ottawa's storm water engineer.
 - Where natural features (i.e. streams and wetlands) are further than 120 meters down gradient of the subdivision property, clean storm water infiltration should be accounted as monthly or annual average amounts for the subdivision as a whole.

- ii) Where natural features are within 120 meters down gradient of the subdivision boundary or severed lot boundary, clean storm water infiltration should be accounted as monthly or seasonal average amounts for specific natural feature catchments.
- c) The proponent should demonstrate that the additional infiltrate will dilute septic system effluent by the time it reaches the down gradient property boundary.
 - i) The property boundary should be considered to be the subdivision boundary or lot boundary for severances.
 - ii) For subdivision applications, the down gradient property boundary should be determined from hydraulic gradients in the receiving groundwater that are measured on-site.
 - iii) For severance applications, the down gradient property boundary can be estimated from the groundwater study that was completed in support of the CDP. (Dillon 2004)
- d) However, the proponent will have to demonstrate that the proposed infiltration will occur indefinitely.

Maximum Allowable Flow and Number of Users

In addition, MVCA recommends that the City also consider allowing proponents to undertake the nitrate attenuation assessment as a modified predictive assessment for residential development (Section 5.6.2) in which the following points would be accounted for. This would also meet the overall intentions of Procedure D-5-4.

- 4) The maximum allowable flow for each lot /block would be determined by the proponent as that which corresponds to a maximum number of users (rather than 1000 L/day, as per Section 5.6.2 and rather than a calculated number based on Section 5.6.3).
 - a) The Ottawa Septic System Office (OSSO) has indicated that the use of 75 L/day per employee is suitable.
- 5) Section 3.0 in Procedure D-5-4 says that "This guideline may not apply to non-standard individual on-site systems which are specifically designed to reduce nitrate loadings. It should be emphasized that MOEE encourages the development of new technologies for the treatment of domestic sewage waste."

There are now available on the market nitrogen reduction treatment systems, certified by third body organizations (such as CAN/BQN 3680-600 or NSF 245), that achieve a minimum of 50% reduction in nitrogen. As a result, they could be incorporated into the private servicing plan for the corridor. Since they disperse better quality effluent, these effluent treatment levels could be used to estimate a

(modified) minimum concentration of nitrate (as nitrogen) that could be used in the nitrate attenuation assessment, in consideration of the following points.

- a) In the opinion of the OSSO, the above nitrate reduction systems designed, installed and inspected according to the OBC are safer for ground water protection than conventional systems.
- b) Nitrate loading should be calculated in consultation with the OSSO.
- c) In addition, the OSSO requires ground elevation surveys to confirm the existing high groundwater table elevation, so that the proper vertical separation distances can be established during septic system installation even after grade changes occur on-site.
- d) Further, the proponent should provide for mechanisms to reasonably ensure that the intended nitrate loading will be maintained indefinitely. Towards this end, it is understood that:
 - Certified nitrate reduction treatment units require a maintenance agreement between the owner and maintenance provider. The Ottawa Septic Office currently maintains enforcement of these agreements.
 - ii) The owner/consultants should contact the OSSO regarding additional fees for the monitoring and reporting requirements of the above treatment systems
 - iii) In addition, the City should include draft plan conditions that require the commendations of the nitrate attenuation assessment in the subdivision agreement such that future site plan control applications would also require nitrate reduction systems.

Other Considerations

- 6) All privately serviced subdivisions in the City of Ottawa require provision of a monitoring well. For development within the Carp Road Corridor, these monitoring wells could be purpose-built to monitor both the receiving groundwater quality and the groundwater supply levels and quality.
- 7) High Recharge Areas identified as an Environmental Feature in Schedule 2 of the Carp Road Corridor CDP require the below consideration.
 - a) Hydrogeological assessments in support of development applications, where private septic systems are
 proposed, require an assessment of nitrate impact. Consideration should also be given to the designation
 of a High Recharge Area in the CDP; this may include an additional assessment of pre- and post- water
 budget to determine the change in recharge and potential impact to the regional hydrogeological system.
 Additional infiltration measures to maintain recharge within the high recharge areas may be recommended
 to maintain recharge.

APPENDIX F

Nitrate Dilution Calculations and Water Surplus Data Sheets

TABLE F1: Daily Design Sanitary Sewer Flow (DDSSF) Calculations

											Scenario No. 1 (40% hard surface and use of conventional setpci systems) ¹				
Lot	Width	Depth	Area m ²	Soil Cover ⁽²⁾	Surplus ⁽³⁾	Topo Factor	Soil Factor	Cover Factor	Infiltration Factor ⁽⁴⁾	Precipitation Surplus (m ³ /year)	Available infiltration (litres per day)	Maximum septic flow (litres per day)	Maximum septic flow (litres per day) - Incorporating Background Nitrate ⁽⁵⁾	Maximum number of users ⁽⁶⁾	
1	60.76	133.14	8089.6	Sand	402	0.20	0.40	0.10	0.70	3252	3742	1247	1123	15	
2	60.77	133.14	8090.9	Silty Sand to Silty Clay	341	0.20	0.20	0.10	0.50	2759	2268	756	680	9	
3	60.77	133.14	8090.9	Sand to Silty Clay	341	0.20	0.20	0.10	0.50	2759	2268	756	680	9	
4	56.50	144.52	8165.4	Silty Sand	378	0.20	0.30	0.10	0.60	3087	3044	1015	913	12	
5	56.50	144.30	8153.0	Sand	402	0.20	0.40	0.10	0.70	3277	3771	1257	1131	15	
6	56.50	144.39	8158.0	Sand	402	0.20	0.40	0.10	0.70	3280	3774	1258	1132	15	
7	57.30	144.49	8279.3	Sand	328	0.20	0.40	0.20	0.80	2716	3571	1190	1071	14	
8	71.50	120.83	8639.3	Sand overlying bedrock	328	0.20	0.40	0.20	0.80	2834	3727	1242	1118	15	
9	68.32	120.12	8206.6	Sand overlying bedrock	328	0.20	0.40	0.20	0.80	2692	3540	1180	1062	14	
10	152.44	143.11	21815.7	Silty Sand	328	0.20	0.30	0.20	0.70	7156	8234	2745	2470	33	
11	84.94	182.33	15487.1	Silty Sand	378	0.20	0.30	0.10	0.60	5854	5774	1925	1732	23	
12	74.24	182.32	13535.4	Sand	402	0.20	0.40	0.10	0.70	5441	6261	2087	1878	25	

Notes:

Scenario No. 1 values are calculated under the following:

a) A total of 40% hard surface from which runoff is not available for infiltration

b) Incorporates a value of 40 mg/L nitrate in the discharged effluent from a conventional septic system

2 Soil cover information obtained from on-site test pits

3 Water surplus obtained from Environment Canada Water Surplus Datasets (Ottawa International Airport (1939-2013)

4 Infiltration factor obtained from "MOEE Hydrogeological Technical Requirements for Land Development Applications" dated April 1995

5 Maximum septic flow calculated incorporating the average background nitrate concentration of 0.75 mg/L, based on MECP D-5-4 equation (40mg/L x Flow) / (Flow + Infiltration) = 10mg/L - Background

6 Maximum number of users based on Carp Road Corridor Memo, dated Setpemebr 27, 2016 of 75 litres per employee per day

											Scenario No. 2 (40% hard surface and use of tertiary treatment) ¹				
Lot	Width	Depth	Area m ²	Soil Cover ⁽²⁾	Surplus ⁽³⁾	Topo Factor	Soil Factor	Cover Factor	Infiltration Factor ⁽⁴⁾	Precipitation Surplus (m³/year)	Available infiltration (litres per day)	Maximum septic flow (litres per day)	Maximum septic flow (litres per day) - Incorporating Background Nitrate ⁽⁵⁾	Maximum number of users ⁽⁶⁾	
1	60.76	133.14	8089.6	Sand	402	0.20	0.40	0.10	0.70	3252	3742	3742	3218	43	
2	60.77	133.14	8090.9	Silty Sand to Silty Clay	341	0.20	0.20	0.10	0.50	2759	2268	2268	1950	26	
3	60.77	133.14	8090.9	Sand to Silty Clay	341	0.20	0.20	0.10	0.50	2759	2268	2268	1950	26	
4	56.50	144.52	8165.4	Silty Sand	378	0.20	0.30	0.10	0.60	3087	3044	3044	2618	35	
5	56.50	144.30	8153.0	Sand	402	0.20	0.40	0.10	0.70	3277	3771	3771	3243	43	
6	56.50	144.39	8158.0	Sand	402	0.20	0.40	0.10	0.70	3280	3774	3774	3245	43	
7	57.30	144.49	8279.3	Sand	328	0.20	0.40	0.20	0.80	2716	3571	3571	3071	41	
8	71.50	120.83	8639.3	Sand overlying bedrock	328	0.20	0.40	0.20	0.80	2834	3727	3727	3205	43	
9	68.32	120.12	8206.6	Sand overlying bedrock	328	0.20	0.40	0.20	0.80	2692	3540	3540	3044	41	
10	152.44	143.11	21815.7	Silty Sand	328	0.20	0.30	0.20	0.70	7156	8234	8234	7081	94	
11	84.94	182.33	15487.1	Silty Sand	378	0.20	0.30	0.10	0.60	5854	5774	5774	4966	66	
12	74.24	182.32	13535.4	Sand	402	0.20	0.40	0.10	0.70	5441	6261	6261	5385	72	

Notes: 1

Scenario No. 2 values are calculated under the following:

a) Carried out in accordance with Section 5.6.3 of the MOECC Procedure D-5-4 & the "Carp Road Corridor - Nitrate Impact Assessment Recommendations" dated September 27, 2016

b) Incorporates a value of 20 mg/L nitrate in the discharged effluent from the tertiary treatment system

c) The calculated maximum allowable flow is based on a simplification of the formula provided in Section 5.6.3, utilizing 20 mg/L of Nitrate in the effluent discharging from tertiary treatment

d) A total of 40% hard surface from which runoff is not available for infiltration

2 Soil cover information obtained from on-site test pits

3 Water surplus obtained from Environment Canada Water Surplus Datasets (Ottawa International Airport (1939-2013)

4 Infiltration factor obtained from "MOEE Hydrogeological Technical Requirements for Land Development Applications" dated April 1995

5 Maximum septic flow calculated incorporating the average background nitrate concentration of 0.75 mg/L, based on MECP D-5-4 equation (20mg/L x Flow) / (Flow + Infiltration) = 10mg/L - Background

6 Maximum number of users based on Carp Road Corridor Memo, dated Setpemebr 27, 2016 of 75 litres per employee per day

Ottawa	Intl A		WATE	R BUDG	ET MEA	ANS FO	R THE F	PERIOD	1939-2	013	DC20492
LAT 45.32WATER HOLDING CAPACITY 50 MMHEAT INDEX.LONG 75.67LOWER ZONE											
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	25	85	50	296
28- 2	-9.0	55	10	16	1	1	0	25	115	50	352
31- 3	-2.7	66	31	79	6	6	0	104	71	50	418
30-4	5.7	71	67	76	32	32	0	111	0	50	489
31- 5	13.0	76	76	0	80	79	-1	14	0	33	566
30- 6	18.3	84	84	0	116	98	-19	5	0	15	649
31- 7	20.9	86	86	0	136	93	-42	2	0	5	735
31- 8	19.6	83	83	0	117	80	- 37	1	0	7	818
30- 9	14.7	84	84	0	75	65	-10	7	0	19	902
31-10	8.2	75	75	0	37	36	-1	22	0	37	76
30-11	1.3	78	60	8	10	10	0	47	10	48	154
31-12	-7.1	81	27	15	1	1	0	39	49	50	234
AVE	6.0 TTL	901	694	208	611	501	-110	402			

Ottawa	Intl A		STAN	DARD [DEVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	0	59
28- 2	2.5	27	14	25	1	1	0	35	60	0	63
31- 3	2.6	28	22	50	5	5	0	57	90	0	70
30- 4	1.8	31	32	91	9	9	0	91	3	2	78
31- 5	1.9	32	32	3	12	11	5	23	0	19	90
30- 6	1.2	39	39	0	8	25	26	17	0	19	101
31- 7	1.1	40	40	0	8	31	32	11	0	14	104
31- 8	1.3	38	38	0	8	29	32	5	0	15	117
30- 9	1.4	40	40	0	8	16	16	19	0	21	124
31-10	1.5	36	36	1	7	7	2	26	0	19	36
30-11	1.7	27	27	8	4	4	0	29	13	6	45
31-12	2.9	30	23	14	1	1	0	30	35	0	56

Ottawa	Intl A		WATE	R BUDG	ET MEA	ANS FO	R THE P	ERIOD	1939-2	013	DC20492
LAT 45.32WATER HOLDING CAPACITY 75 MMHEAT INDEXLONG 75.67LOWER ZONE											
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	24	85	74	296
28- 2	-9.0	55	10	16	1	1	0	25	115	74	352
31- 3	-2.7	66	31	79	6	6	0	104	71	75	418
30-4	5.7	71	67	76	32	32	0	111	0	75	489
31- 5	13.0	76	76	0	80	80	0	14	0	57	566
30- 6	18.3	84	84	0	116	107	-9	5	0	29	649
31- 7	20.9	86	86	0	136	103	-33	2	0	10	735
31- 8	19.6	83	83	0	117	82	-35	1	0	10	818
30- 9	14.7	84	84	0	75	65	-10	4	0	25	902
31-10	8.2	75	75	0	37	36	-1	14	0	51	76
30-11	1.3	78	60	8	10	10	0	38	10	70	154
31-12	-7.1	81	27	15	1	1	0	36	49	74	234
AVE	6.0 TTL	901	694	208	611	523	-88	378			

Ottawa	Intl A		STAN	DARD [DEVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	3	59
28- 2	2.5	27	14	25	1	1	0	35	60	3	63
31- 3	2.6	28	22	50	5	5	0	56	90	0	70
30- 4	1.8	31	32	91	9	9	0	91	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	18	18	17	0	29	101
31- 7	1.1	40	40	0	8	31	32	10	0	21	104
31- 8	1.3	38	38	0	8	29	31	4	0	21	117
30- 9	1.4	40	40	0	8	16	16	15	0	29	124
31-10	1.5	36	36	1	7	7	2	22	0	28	36
30-11	1.7	27	27	8	4	4	0	33	13	12	45
31-12	2.9	30	23	14	1	1	0	31	35	4	56

Ottawa	Intl A		WATE	R BUDG	ET MEA	ANS FO	R THE P	ERIOD	1939-2	013	DC20492
LAT 45.32WATER HOLDING CAPACITY125 MMLONG 75.67LOWER ZONE								AT IND			
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	22	85	120	296
28- 2	-9.0	55	10	16	1	1	0	24	115	121	352
31- 3	-2.7	66	31	79	6	6	0	101	71	125	418
30-4	5.7	71	67	76	32	32	0	110	0	125	489
31- 5	13.0	76	76	0	80	80	0	14	0	107	566
30- 6	18.3	84	84	0	116	115	-1	5	0	71	649
31- 7	20.9	86	86	0	136	121	-15	2	0	33	735
31- 8	19.6	83	83	0	117	91	-26	1	0	25	818
30- 9	14.7	84	84	0	75	66	-9	3	0	40	902
31-10	8.2	75	75	0	37	36	-1	7	0	72	76
30-11	1.3	78	60	8	10	10	0	24	10	106	154
31-12	-7.1	81	27	15	1	1	0	28	49	118	234
AVE	6.0 TTL	901	694	208	611	559	-52	341			

Ottawa	Intl A		STAN	DARD [DEVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	14	59
28- 2	2.5	27	14	25	1	1	0	35	60	13	63
31- 3	2.6	28	22	50	5	5	0	55	90	3	70
30- 4	1.8	31	32	91	9	9	0	90	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	9	4	17	0	39	101
31- 7	1.1	40	40	0	8	23	25	10	0	36	104
31- 8	1.3	38	38	0	8	26	28	4	0	35	117
30- 9	1.4	40	40	0	8	15	14	13	0	42	124
31-10	1.5	36	36	1	7	6	2	18	0	42	36
30-11	1.7	27	27	8	4	4	0	31	13	27	45
31-12	2.9	30	23	14	1	1	0	29	35	16	56

Ottawa	Intl Airpo	ort	WATE	R BUDG	ET MEA	ANS FOR	R THE P	ERIOD	1939-2	013	DC20492
	45.32 G 75.67					ITY1			AT IND		
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	21	85	142	296
28- 2	-9.0	55	10	16	1	1	0	23	115	144	352
31- 3	-2.7	66	31	79	6	6	0	99	71	149	418
30-4	5.7	71	67	76	32	32	0	110	0	150	489
31- 5	13.0	76	76	0	80	80	0	14	0	132	566
30- 6	18.3	84	84	0	116	116	0	5	0	95	649
31- 7	20.9	86	86	0	136	126	-9	2	0	52	735
31- 8	19.6	83	83	0	117	97	-21	1	0	38	818
30- 9	14.7	84	84	0	75	67	-8	2	0	52	902
31-10	8.2	75	75	0	37	36	-1	7	0	85	76
30-11	1.3	78	60	8	10	10	0	20	10	123	154
31-12	-7.1	81	27	15	1	1	0	24	49	139	234
AVE	6.0 TTL	901	694	208	611	572	- 39	328			

Ottawa	Intl Airpo	rt	STAN	DARD	DEVIATIO	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	19	59
28- 2	2.5	27	14	25	1	1	0	34	60	17	63
31- 3	2.6	28	22	50	5	5	0	55	90	5	70
30- 4	1.8	31	32	91	9	9	0	90	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	8	1	17	0	41	101
31- 7	1.1	40	40	0	8	19	20	10	0	42	104
31- 8	1.3	38	38	0	8	23	24	4	0	42	117
30- 9	1.4	40	40	0	8	13	13	13	0	48	124
31-10	1.5	36	36	1	7	7	2	18	0	47	36
30-11	1.7	27	27	8	4	4	0	29	13	34	45
31-12	2.9	30	23	14	1	1	0	29	35	22	56

REPORT OF ANALYSIS

Client: Houle Chevrier Engineering

180 Wescar Lane, R.R. #2

Carp, ON K0A 1L0

Attention: Mr. James McEwen

 Report Number:
 1113436

 Date:
 2011-06-24

 Date Submitted:
 2011-06-22

11-037

P.O. Number:

Project:

hain of Custody Number: 142176						Matrix:		Water	
		LAB ID:	890055	890056	890057			GUIDELINE	
	Samp	ole Date:	2011-06-04	2011-06-15	2011-06-15				
	Sa	mple ID:	TP11-4 GW-1	TP11-12 GW-	TP11-15 GW-				
				1	1				
PARAMETER	UNITS	MRL					TYPE	LIMIT	UNITS
-NO3 (Nitrate)	mg/L	0.1	0.86	0.28	<0.10				
				1					

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Ewan McRobbie Inorganic Lab Supervisor

Methods references and/or additional QA/QC information available on request.

APPENDIX G

Onsite Test Well Water Well Records and Certificates of Well Compliance

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)

CERTIFICATE OF WELL COMPLIANCE

I, <u>TROY SAUNDERS</u> DO HEREBY CERTIFY that I am licensed to drill water wells in the Province of Ontario, and that I have supervised the drilling of a well on the property of <u>GREGORY LEBLANC</u> (Name of Landowner), located at <u>3/19 CARP RD.</u> (Legal Description, Lot / Plan No.) in the City of Ottawa. TEST WELL # 3 WELL TAG# A 138239

I CERTIFY FURTHER that, I am aware of well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and Township Standards:

AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) and constructed in strict conformity with the standards required.

SIGNED this 22 nd day of JULY , 2013.

NOY Land / SAUNDERS WELL DRILLING

The Engineer on behalf of the landowner set out above **CERTIFIES** that he/she has inspected the well and it was constructed in accordance with the specifications in 0.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

SIGNED this <u>24</u> day of <u>July</u>, <u>2013</u>. A.C. Houle, P.Eng. Engineer Houle Chevrier Engineering Ltd.

Ontario	Ministry of the Environment	A	ag No. (Place Sticker a)	1000	Regulation	n 903 Ontario V		ecord
Measurements recorder	4	" L	1202001			Pag		
First Name	Last Name / Organi	ELAN		E-mail Address		<u>n 20</u> 08980-8008	U Well C	Constructed II Owner
Mailing Address (Street M	and the second sec		Municipality OTTAWA	Province	Postal Code	LO 613	e No, (<i>Inc.</i> a	
Address of Well Location	(Street Number/Name)	a na manangan sa na na sa na sa	Township FORMERLY	HUNTLEY	Lot /:		n N	Sentia -
County/District/Municipal			City/Town/VIIIage	11.01.4		Province Ontario	Postal	Code
	Easting Northing	PISKI	Municipal Plan and Suble	ot Number		Other	MY	TIC
Overbulk in the Beer	ock.Materials/Atlandonmen	Serlingian				1		and the second se
RED	Most Common Material	0	ther Materials	Gener	al Description	1	From	
GREY	LIMESTONE			FRA	ETUR	ED	75	9
GREY L	IMESTONE			~			9.	258
							<i></i>	•
Depth Set at (<i>m/ft</i>)	AN ANTE Annalar Space	Bally and the Cart Start in a start		Service States		The fam of the family of the family	and the second s	And a second
From To	Type of Sealant Us (Material and Type		Volume Placed (m³/ft³)	After test of well yield, y Clear and sand fr Other, specify	ee	Draw Down Time Water Le (min) (m/t)	vel Time \	ecovery . Waler Level (m/it)
24 24	GENTOWITE	SLUGR	150	If pumping discontinued		Static Level 10.5	(min)	(//v/y
al 31	CEMENTOR		\$100			1 14.3	0 1 6	57.34
				Pump Intake set at (m 230	0/ft))	2 7.8	0 2 (54,40
	Diamond Public	Well U	se ercial 🗌 Not used	Pumping rate (I/min / 0	SPM)	321.1	7 3	51.81
Pack d	Jetting Domestic	Munici	pal 🗌 Dewatering	Duration of pumping hrs + Om	lin	5 27.0	1 5	56-10
	Digging Irrigation		g & Air Conditioning	Final water level end of	pumping (m/ft)	10 36.4	8 10	48.30
Other, specify	Other, spe			If flowing give rate (I/m	nin / GPM)	15 42.3	4 15	41.61
Inside Opan Hole O Diameter (Galvanized, I	R Material Wall [Fibreglass, Thickness	Depth (<i>m/it</i>)	Water Supply	Recommended pump	depth (m/ft)	20 -1 1.	20	35,84
(cm/ln) Concrete, Pla	100 .	24 24	Test Hole	Recommended pump (Vmin / GPM)	rate	25 51.6	9 30 C	5/11
6 OPEN		4 258	Dewatering Well Observation and/or	Well production (Vmin	5	4061.6	2 40	20.53
- O OF HE			Monitoring Hole	Disinfected?	5	50 66.4	2 50/	6.58
			Abandoned, Insufficient Supply	Yes 🗍 No		60 71.4	8 60 /	3.65
Outaide Mater	Clash blan	Depth (<i>m/ft</i>)	Water Quality	Please provide a map t				<u>an an a</u>
(cm/in) (Plastic, Galvar	From From From From From From From From	To	Abandoned, other, specify				1W	Π
	1.		Other, specify			1		
	WIREADOBIIS		HoleiDlämeter			i I		
Water found at Depth Kir	nd of Water: Fresh XUnte	C From	oth (<i>m/ft</i>) Diameter To (<i>cm/in</i>)			1		- 9
	nd of Water: Fresh Unte Other, specify		258 6		188	1		R
	nd of Water: 🗍 Fresh 🗌 Unte			Ĩ Â		21		12
I I WAR	Contractor and Well Techn			V'	20	ļ		0
	WELLORIUN		Vell Contractor's Licence No.			-		
Business Address (Street	Number/Name)	M	RRNES/DE	Comments:				1
DAT KC	al Code Business E-mail	Address			ickage Delivere	d Min	istry Use	Only Marin
Bus. Telephone No. (inc. area	a code) Name of Well Technici	an (Last Name	, First Name)	Information package delivered	13 1061	Audit No.	158	241-
NIL I COLLET	Signature of Technician and	r Contractor D		Ves Date W		13	T O O	
0506E (2007/12) © Queen's I	Printer for Ontario, 2007	×	Ministry's Copy	per per	THE PACE	C Received	Poplar in 199	

CERTIFICATE OF WELL COMPLIANCE

I CERTIFY FURTHER that, I am aware of well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and Township Standards:

AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) and constructed in strict conformity with the standards required.

SIGNED this 22 nd ay of JULY , 2013. May Saul / SAUNDERS WELL ORILLING Well Driller / Company

The Engineer on behalf of the landowner set out above **CERTIFIES** that he/she has inspected the well and it was constructed in accordance with the specifications in 0.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

SIGNED this <u>24</u> day of <u>July</u>, <u>2013</u>. A.C. Houle, P.Eng. Engineer Houle Chevrier Engineering Ltd.

Ponta		try of	Well T	ag No. (Place Sticker		Regulation 903			ecord
Measurements	recorded in: 🛛	Matric 🕅 Impe	rial	A138240) 		Page		of
	elnio metione			e ja jähe gen tudi erikke restaar	THE CONSTRUCTION OF ANY ADDRESS OF THE	and the second	an a		and the second
First Name	RY	Lest Name / Orga			E-mail Address				onstructed
	(Street Number/Na	ame)		Municipality	Province	Postal Code	Telephone I		
	oud cari	P RD		OTTAWA	ONI	K OAHLO	6157	201	1863
	Location (Street Ni	umber/Name)		Township	Brief sitter	Lot	Concession	<u></u> 1	
3/19	9 CARF	P RD		FORMERLY	HUNTLEY	- 12		3	
County/District/M		TAN		City/Town/Village			vince I tario	Postal	Code
UTM Coordinates		Northli		Municipal Plan and Sut	plot Number	Oth		BOL	Η14-Φ
NAD 8 3	18 420	16450	18977	and the second	Laboration and the second second second second	and a state of the			
General Colour		non Material		cord (see instructions on L Other Materials		eral Description		Section 1.	·····································
RED	SAN							From	To
BROWN	SAN	\sim	5-						3
CORV	CAALO	0	() or Ar				E	111	1101
GREY	JIMAES	STONE	OUF	STONAL LAYE	tes of Gr	EY CLAY		17	501-
Orac	LINCE	NUNE				·····		10 2	100
			-		~~~				
						~~~~			
		- <del>19 - 1</del> - 19 - 19							
		Annular Spa	CO CO	and the state of the		Results of Well Y	eldaTesting	多 <b>月</b> 期時間8月1	
Depth Set at (n	The second second second second second	Type of Sealant (Material and Ty	Used	Volume Placed (m ³ /ft ³ )	After test of well yield	, water was:	Draw Down	Re	covery
A 2	P= BEA		SLURK		Clear and sand		Ne Water Leve	(min)	/Vater_Level (m/ft)
201 11	PL CEM	ENFT COL	Shurren	-150	If pumping discontinu	ied, give reason: Sta		>	9
202 70	2 Ceru	Chri Cha		\$700		1	11.60	<u>e</u> 1	32.48
					Pump intake set at (		15.60	P 2	26.41
	CHARLES CHICK CONTRACTOR	ningen alasia minanya manakara		and the statement of the second statement of the	Pumping rate (//min/		18.93	3	21.75
	Diamon	A REAL PROPERTY AND A REAL		nerciel 🗌 Not used	12		21.69	4	7.77
Rotary (Conver		Domest	Sec. 6	sipal 📋 Dewatering	Duration of pumping		24.0	7 5 /	4.59
Boring	Digging	Imigation		Hole Donitoring	Final water level end	of pumping (m/tt)	21.60	10	7 74
Air percussion		_ Industria			H2.	98 -	8/ 3/	15	1 AT
	a don telletori:	lecord Schring		Status of Well		20	and	20	100
Diameter (Gal	en Hole OR Material Ivanized, Fibreglass,	Wall Thickness	Depth (m/it)	Replacement Well	Recommended pur	p depth (mft)	700	1	71/
(cm/in) Con	icrete, Plastic, Steel)	(Gairin)		Test Hole	Recommended pum	ip rate	1.11 0	25	107
67 5	TEEL	.188 0	537	Recharge Well	(Umin / GPM)	$\lambda$	10112	30	7.30
6 00	ENHOLE		32 160	Observation and/or Monitoring Hole	Well production (//m/	In / GPM) 40	41.88	40	4.57
				Alteration (Construction)	Disinfected?	50	42.3	50	4.22
				Abandoned, Insufficient Supply	Yes 🗆 No	60	11 .	60	4.09
Outside	CONTRACTOR OF A LOCAL AND AN A LOCAL	tecord -Screenk	Depth (m/ft)	Abandoned, Poor Water Quality		below following instru			
Diamptor	Material tic, Galvanized, Steel)	Slot No. F	rom To	Abandoned, other,					1
				specify	1	رما `	Fre	1	
				Other, specify		~	A	7	
		enile series and		HöleDiameter		20	12	ł	
Water found at D	enth Kind of Wate	Fresh Dil	toctod De	pth (m/ft) Dlameter	*  N		3	1	8
	Gas Other, sp		HETUHLOOM	5 110 1				1	
	]Gas Other, sp			2/00 6				·	
	epth Kind of Wate		tested		-[]	-	ł		5
	]Ges Other, sp			AREASTAN AND TRANSPORT OF A DECEMBER					
Business Name of		HINNERM CC		ation Vell Contractor's Licence No.	8		l		
	FRS WEI			4879			1		1
RRH	s (Street Number/Na	ame)	N	RRAFSIOF	Comments:				
Province	Postal Code	Business E-m	ail Address	Drucered	<u>†</u>				
Bus. Telephone No.	KIOA-16-	O ame of Well Techr	ician /Last Name	a First Name)	information	Package Delivered	Audit No.	kry,Use	Ohfy
	35 FILLA	SALMIN	RS T	POU	delivered	Work Completed	-  Z	158	243
Well Technician's Li	cence No. Signature	e of Technician an	d/or Contractor			1.2 MAME	- Aller Sugar Ashie and	w}, v Sriewictie	
0506E (2007/12)	Queen's Printer for Qri	11910, 2007	0	Ministry's Copy			Received	ang gang ang	

### **CERTIFICATE OF WELL COMPLIANCE**

I, TROY SAUNDERS DO HEREBY CERTIFY that I am licensed to drill water wells in the Province of Ontario, and that I have supervised the drilling of a well on the property of GREGORY LEBLANC (Name of Landowner), located at 3/19 CARP RO (Legal Description, Lot / Plan No.) in the City of TEST WELL #2 Ottawa. WELL TAG# A138241

I CERTIFY FURTHER that, I am aware of well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and Township Standards:

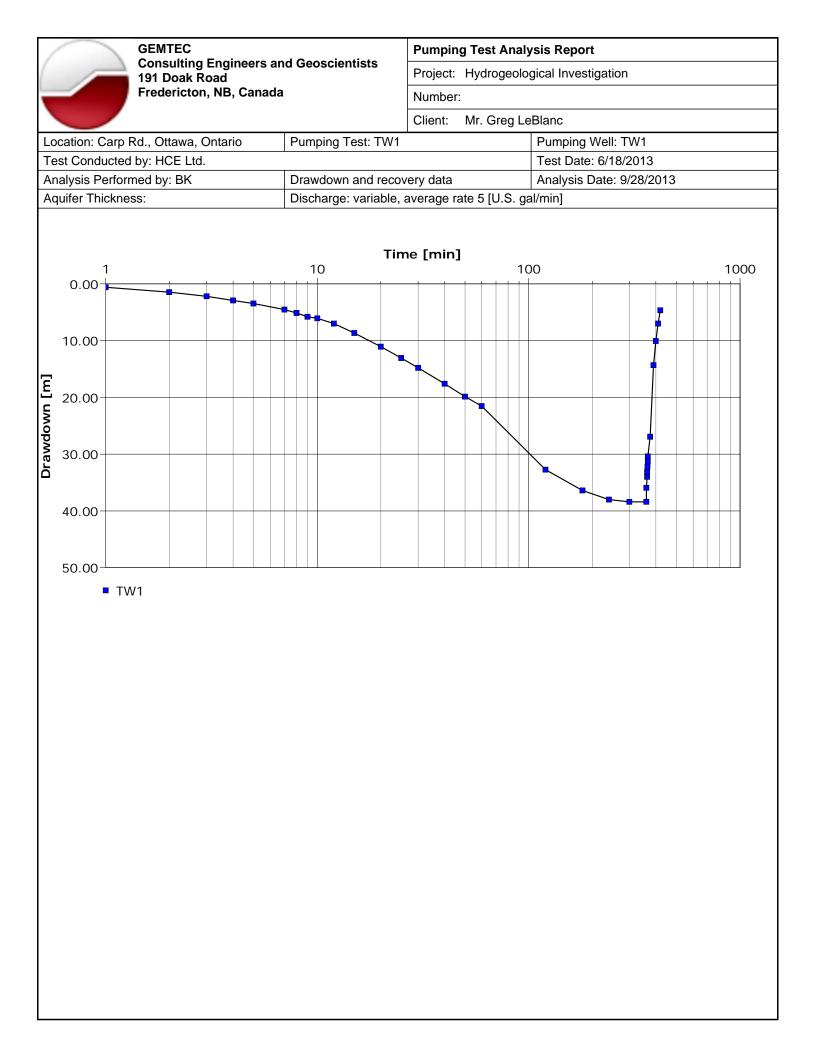
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) and constructed in strict conformity with the standards required.

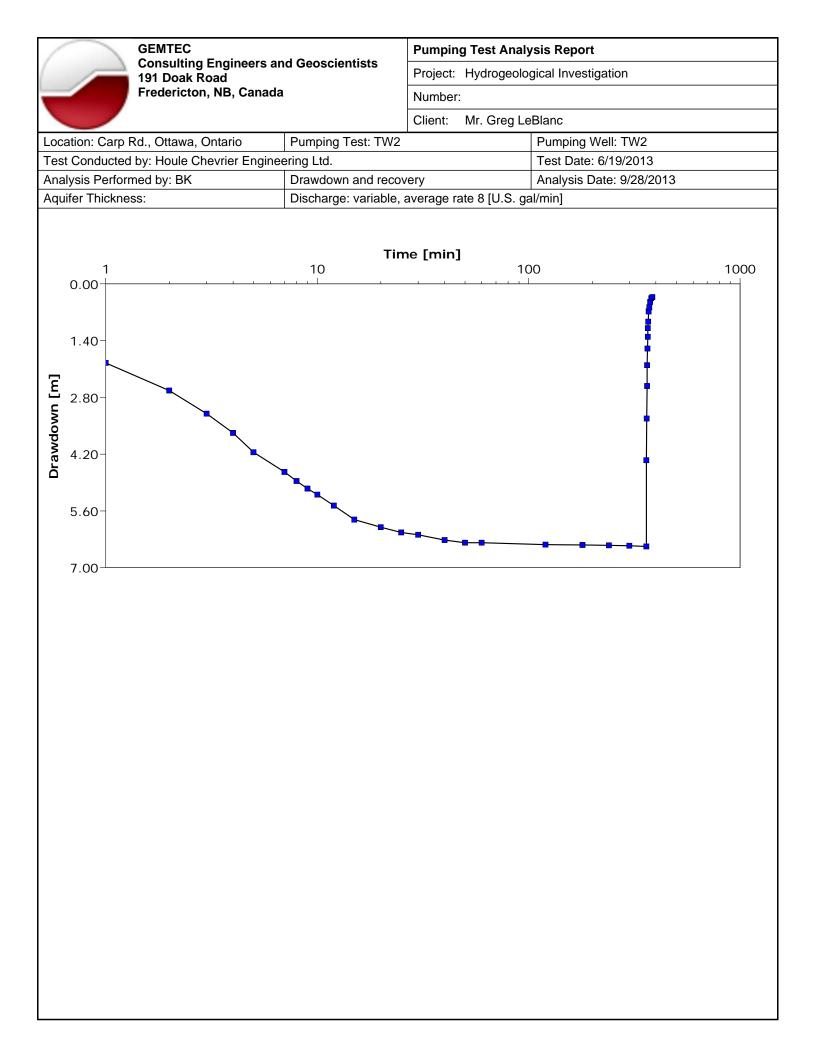
SIGNED this and day of JULY , 2013.

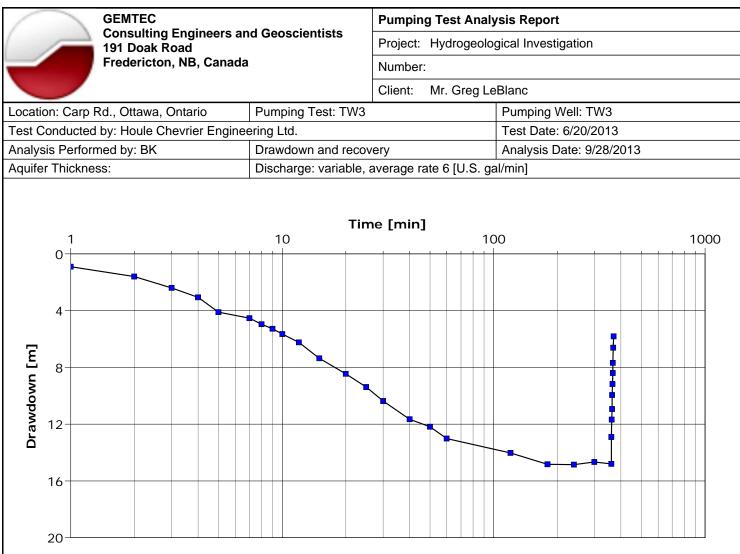
Juoy Lauh / SAUNDERS WELL DRILLING LTD. I Driller / Company

The Engineer on behalf of the landowner set out above CERTIFIES that he/she has inspected the well and it was constructed in accordance with the specifications in 0.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

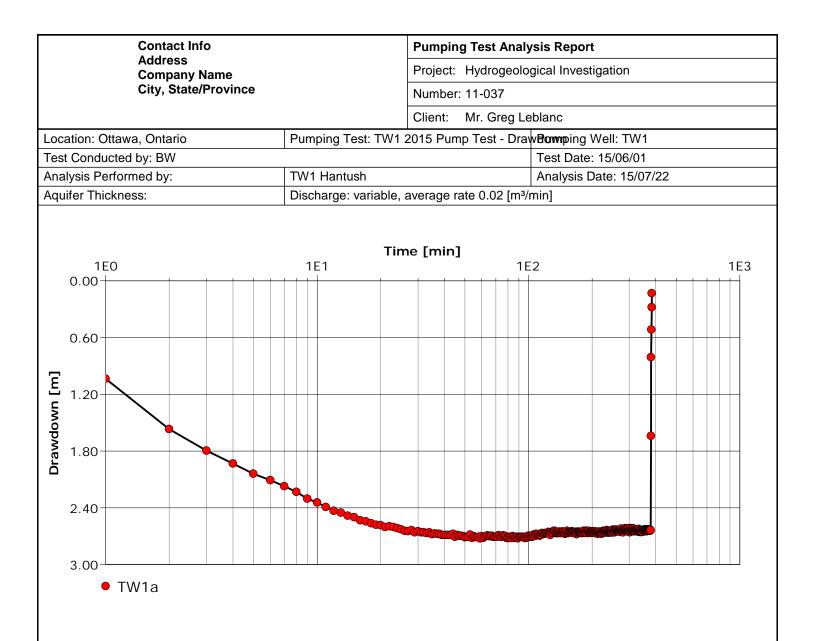
SIGNED this 24 day of ______, 2013. <u>A. C. Houle, P. Eng.</u> Engineer Houle Chevrier Engineering Ltd.

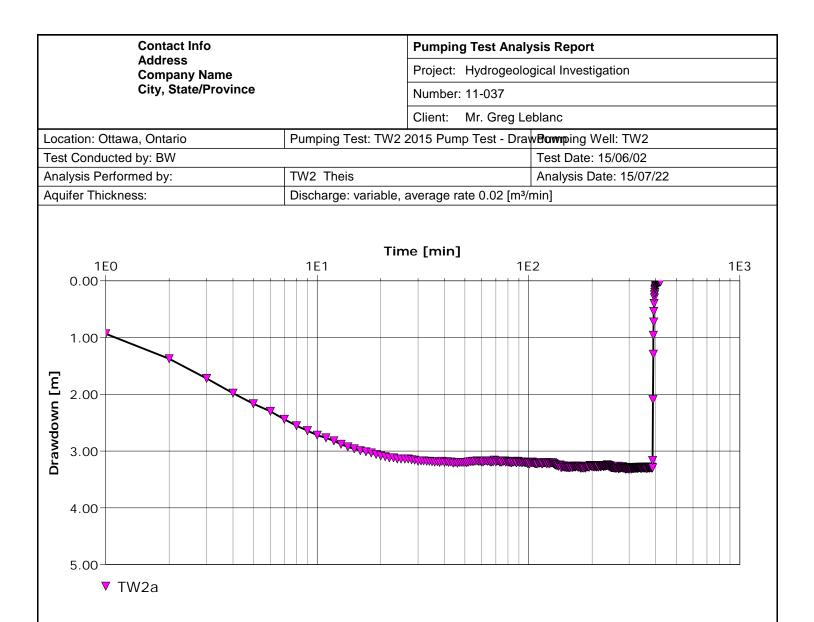




Ontar	the Environment	~	A 13824		Regulation	903 Ontario	Nell R	
Measurements rec	corded in: 🗌 Metric 🕅 Ir Attornation	nperlal	*		A STREET AND AND AND AND AND	Pa		of
First Name	Last Name / O	rganization		E-mail Address	C. Manual C.			Constructed
	traet Number/Name)	BLANC	Municipality	Province	Postal Code	Telepho	by We ne No. (inc. (	li Owner
196	3 OLD CAR		OTTAWA	ONT.	KOAL	4613	720	1963
Address of Well Lo	cation (Street Number/Name)		Township		Lot	Сопсез	ion	n an the alternation States
County/District/Mu	9 CARP RI	0	FORMERLY	P HUNTL	y /2	<u>ل</u>	3	
OTT	AWA CARELTO		City/Town/Village	qs		Province Ontario	Fostal KIOI	Code
UTM Coordinates	IN H21/108 50	thing	Municipal Plan and Suble	ot Number		Other		
NAD 8 3 Overburgen and	Bedrocic Materials/Abericon		ord (see Instructions on the	back of this form)				and a strength
General Colour	Most Common Material		her Materials		eral Description	even of a starting of the Albert of the	s units first	h ( <i>m/it</i> ) To
RED	SAND						0	6世
CREYLO	CLAY		10-1 1 0 000 000		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- 1	62	253
GREYHR			HELY STONE	S	•		252	36
GREI	LIMESTONE						36	137
				-				
					· · · · · ·			
					*******			·
Depth Set at (m/h		pace	Volume Placed	After test of well yield,		Il Yield Teati Draw Dowr	a a technique	The second se
From To	(Material and	Туре)	(m³/ff³)	Clear and sand f	ree	Time Water L	evel Time V	
0 3/	BENTONI	TESLUBE	0256	Other, specific		Statin A		(m/ft)
5/ 41	CEMENT	GROUT	0/20			1 8.4		\$0.39
				Pump intake set at (n	n/ft)	2 10.8		4/6.67
			· · ·	Pumping rate (I/m/n/	GPM)	3 12.9		112.6
Cable Tool	Construction	c 🗌 Comme		6		4 15.	77 4 4	11.02
Rotary (Conventio	Jetting Dom			Duration of pumping hrs + O r	min	5 17.6	9 5 -	28,30
Boring	Digging Integr	ntion 🗍 Cooling	& Air Conditioning	Final water level end o		10 25	53 10	2.6,78
Other, specify	Othe	r, specify		If flowing give rate (Vr	nin / GPM)	15 31.0	P5 15	18.13
	Construction Record Seas Hole OR Material Well	Tg: Depth ( <i>m/tt</i> )	Status of Well	Recommended pump	dopth (m/#)	20 36-	87 20	11.94
Diameter (Galva	nized, Fibreglass, Thickness ate, Plastic, Steel) (cm/n)	From To	Replacement Well	150		25 41.1	3 25	8.15
67 5	TEEL . 188	072 41	Recharge Well	Recommended pump (I/min / GPM)	o rate	30 44.	30 G	5.43
6 OP	ENHOLE	41 159	Dewatering Well     Observation and/or	Well production(//ml/n	/ GPM)	40 50.	18 40	5-18
			Monitoring Hole	Disinfected?		50 54	19 50	5.0
			Construction)	Yes No		60 57,	18 60	5.0
Outside	Construction Record - Schee	ACOUNTED DATE HAVE AND AND	Abandoned, Poor	Please provide a map	Map of We	II Location		
D' I	Material Galvanized, Steel) Slot No.	Depth ( <i>m/ft)</i> From To	Water Quality Abandoned, other, spec/fy				е раск.	, 11
						1	//	V
			Other, specify			12	÷	
	Water Details				······································	-11		
-30E - 7	oth Kind of Water: Fresh A as Other, specify	Untested Dept From	th (m/ft) Diameter To (cm/ln)			PD A 1		
Water found at Dep	oth Kind of Water: Fresh	Untested 4/	159 6	3	1			
	as Other, specify	Untested				Y		
	as Other, specify					1		
Business Name of W		We	lion		-			
SAUNDE	ers well di	RILLING	4879					
RR#	Street Number/Name)	Mu	RAESIDE	Comments:				
Province	Postal Cade Business E	-mall Address		Mall and The second				Margare Contractor
Bus Telephone No. (Ir	nc. area code). Name of Well Ted			Well owner's Data Parision package Qi	ackage Delivered	Audit No	a set and the set	
Well Technician's Licen	5049 SAUNE		CO9	delivered	ork Completed	2d Z	:158	245
1511	/ (NOY A	and of contractor Dat	al BOROR	No 20	13066	Received		665 (APR)
0506E (2007/12) © Qu	usen's Printer for Ontario, 2007		Ministry's Copy				1.2	- indiana tanàna


## **APPENDIX H**

Pumping Test Drawdown and Recovery Data


Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)








TW3





## **APPENDIX I**

**Observation Well Water Level Measurements** 

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)

### Radial Distances Between Wells

Pumping Well	Approximate Distance to Observation Well (m)						
	TW1	TW2	TW3				
TW1	-	255	430				
TW2	255	-	218				
TW3	430	218	-				

### **Pumping Interference Effects**

### Pumping of TW1 @ 18.9 L/min

Time (hours)	me (hours) Water Level in Observation W				
	TW2	TW3			
0 (Static Water Level)	1.66	2.00			
1	1.66	2.00			
2	1.66	2.00			
3	1.66	1.99			
4	1.65	1.99			
5	1.65	1.99			
6	1.65	1.99			
Maximum Observed Drawdown	<ul> <li>- 0.01 (rise in water level)</li> </ul>	- 0.01 (rise in water level)			

### Pumping of TW2 @ 18.9 L/min

Time (hours)	Water Level in Observation Wells (m TOC)			
	TW1	TW3		
0 (Static Water Level)	3.75	2.00		
1	3.74	1.98		
2	3.74	1.98		
3	3.74	1.97		
4	3.74	1.97		
5	3.74	1.98		
6	3.74	1.98		
Maximum Observed Drawdown	- 0.01 (rise in water level)	- 0.02 (rise in water level)		

### Pumping of TW3 @ 18.9 L/min

Time (hours)	Water Level in Observation Wells (m TOC)				
	TW1	TW2			
0 (Static Water Level)	3.75	1.65			
1	3.75	1.64			
2	3.75	1.64			
3	3.75	1.64			
4	3.75	1.64			
5	3.75	1.63			
6	3.75	1.63			
Maximum Observed Drawdown	0.00	- 0.02 (rise in water level)			

## **APPENDIX J**

Water Quality Summary Tables

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020) TABLE 1 SUMMARY OF FIELD PARAMETER MEASUREMENTS ONSITE TEST WELLS PUMPING TESTS

Test Well	Date	Time Since Start of Pumping (hrs:min)	Temperature (℃)	Conductivity (μS/cm)	Total Dissolved Solids (ppm)	рН	Turbidity (NTU)	Total Chlorine (mg/L)
		1:00	12.8	615	302	7.88	41.63	0.0
		2:00	11.5	586	307	8.03	108.00	0.0
TW1	10 Jun 10	3:00	11.0	615	298	8.05	27.31	0.0
1 VV 1	18-Jun-13	4:00	10.3	586	290	7.97	12.39	0.0
		5:00	10.4	588	307	7.88	11.49	0.0
		6:00	11.1	589	302	7.87	8.91	0.0
		1:00	10.7	502	247	7.50	46.37	0.0
		2:00	10.5	477	236	7.77	26.61	0.0
TW2	19-Jun-13	3:00	11.7	482	240	7.54	17.77	0.0
I VVZ	19-Jun-13	4:00	11.9	485	250	7.80	10.88	0.0
		5:00	11.8	493	241	7.79	5.87	0.0
		6:00	11.1	472	234	7.81	14.41	0.0
		1:00	10.4	508	256	7.46	14.1	0.0
		2:00	11.9	517	257	7.63	3.5	0.0
TW3 20-Ju	00 lun 10	3:00	12.5	517	257	7.70	3.5	0.0
	∠u-jun-13	4:00	12.1	510	255	7.85	3.6	0.0
		5:00	12.1	520	251	7.80	3.6	0.0
		6:00	12.3	507	261	7.84	2.8	0.0

## TABLE 2SUMMARY OF ANALYTICAL RESULTSONSITE TEST WELLS PUMPING TESTS

Parameter	Units	TW1 - 3Hr	TW1 - 6Hr	TW2 - 3Hr	TW2 - 6Hr	Ontario Drinking Water Standard	Type of Standard
Total Coliforms	ct/100mL	<u>60</u>	<u>10</u> 0	<u>3</u> 0	<u>3</u>	0	MAC ⁽¹⁾
Escherichia Coli	ct/100mL	0	0	0	0	0	MAC
Heterotrophic Plate Count	ct/1mL	216	193	15	23	-	-
Faecal Coliforms	ct/100mL	0	0	0	0	-	-
Faecal Streptococcus	ct/100mL	0	0	0	0	-	-
Alkalinity as CaCO3	mg/L	250	247	191	189	30-500	OG ⁽²⁾
Calcium (Ca)	mg/L	39	41	65	63	-	-
Chloride (Cl)	mg/L	34	35	32	32	250	AO ⁽³⁾
Colour	TČU	2	<2	2	<2	5	AO
Conductivity	uS/cm	678	686	554	553	-	-
Dissolved Organic Carbon (DOC)	mg/L	1.5	1.5	1.1	1.2	5	AO
Fluoride (F)	mg/L	1.05	0.99	0.23	0.24	1.5	MAC
Iron (Fe)	mg/L	0.19	0.08	0.58	0.24	0.3	AO
Hardness as CaCO3	mg/L	<u>184</u>	<u>193</u>	261	<u>256</u>	80-100	OG
Ion Balance		1.04	1.03	0.95	0.97	-	-
Potassium (K)	mg/L	5	5	3	3	-	-
Magnesium (Mg)	mg/L	21	22	24	24	-	-
Manganese (Mn)	mg/L	<0.01	< 0.01	0.01	<0.01	0.05	AO
Sodium (Na)	mg/L	85	80	13	13	200 (4)	AO
Ammonia (N-NH3)	mg/L	0.3	0.32	0.08	0.09	-	-
Nitrite (N-NO2)	mg/L	<0.10	<0.10	<0.10	<0.10	0.1 (5)	MAC
Nitrate (N-NO3)	mg/L	<0.10	<0.10	2.78	<0.10	10 (5)	MAC
рН		8.19	8.16	8.09	8.06	6.5-8.5	OG
Phenols	mg/L	<0.001	<0.001	<0.001	< 0.001	-	-
Sulphide (S2-)	mg/L	<u>0.23</u>	<u>0.75</u>	<u>0.11</u>	<u>0.11</u>	0.05	AO
Sulphate (SO4)	mg/L	60	61	60	60	500	AO
Tannin & Lignin	mg/L	<0.1	0.3	0.2	0.2	-	-
Total Dissolved Solids (TDS)	mg/L	441	446	360	359	500	AO
Total Kjeldahl Nitrogen (TKN)	mg/L	0.40	0.42	0.17	<0.10	-	-
Turbidity	NTU	<u>12.2</u>	<u>5.9</u>	<u>15.5</u>	5	5	AO
Organic Nitrogen ⁽⁶⁾	mg/L	0.10	0.1	0.09	0.01	0.15	OG

### NOTES:

1. MAC = Maximum Acceptable Concentration

2. OG = Operational Guideline

3. AO = Aesthetic Objective

4. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.

5. The total of Nitrate and Nitrite should not exceed 10 mg/litre

6. Organic Nitrogen = Total Kjeldahl Nitrogen - N-NH3 and should not exceed 0.15 mg/litre.

7. '-' signifies no value provided in the ODWS guideline.

## TABLE 2SUMMARY OF ANALYTICAL RESULTSONSITE TEST WELLS PUMPING TESTS

Parameter	Units	TW3-3Hr	TW3-6Hr	-	-	Ontario Drinking Water Standard	Type of Standard
Total Coliforms	ct/100mL	0	0	-	-	0	MAC ⁽¹⁾
Escherichia Coli	ct/100mL	0	0	-	-	0	MAC
Heterotrophic Plate Count	ct/1mL	2	6	-	-	-	-
Faecal Coliforms	ct/100mL	0	0	-	-	-	-
Faecal Streptococcus	ct/100mL	0	0	-	-	-	-
Alkalinity as CaCO3	mg/L	184	183	-	-	30-500	OG ⁽²⁾
Calcium (Ca)	mg/L	74	73	-	-	-	-
Chloride (Cl)	mg/L	46	48	-	-	250	AO ⁽³⁾
Colour	TCU	2	<2	-	-	5	AO
Conductivity	uS/cm	591	589	-	-	-	-
Dissolved Organic Carbon (DOC)	mg/L	1.2	1.2	-	-	5	AO
Fluoride (F)	mg/L	0.1	0.1	-	-	1.5	MAC
Iron (Fe)	mg/L	0.18	0.26	-	-	0.3	AO
Hardness as CaCO3	mg/L	<u>263</u>	<u>261</u>	-	-	80-100	OG
Ion Balance		0.91	0.91	-	-	-	-
Potassium (K)	mg/L	2	2	-	-	-	-
Magnesium (Mg)	mg/L	19	19	-	-	-	-
Manganese (Mn)	mg/L	<0.01	<0.01	-	-	0.05	AO
Sodium (Na)	mg/L	10	11	-	-	200 (4)	AO
Ammonia (N-NH3)	mg/L	< 0.02	0.06	-	-	-	-
Nitrite (N-NO2)	mg/L	<0.10	<0.10	-	-	0.1 (5)	MAC
Nitrate (N-NO3)	mg/L	0.67	0.46	-	-	10 (5)	MAC
pH		7.94	7.95	-	-	6.5-8.5	OG
Phenols	mg/L	<0.001	<0.001	-	-	-	-
Sulphide (S2-)	mg/L	<0.01	<0.01	-	-	0.05	AO
Sulphate (SO4)	mg/L	61	59	-	-	500	AO
Tannin & Lignin	mg/L	0.2	0.1	-	-	-	-
Total Dissolved Solids (TDS)	mg/L	384	383	-	-	500	AO
Total Kjeldahl Nitrogen (TKN)	mg/L	0.17	0.24	-	-	-	-
Turbidity	NTU	2.8	2.7	-	-	5	AO
Organic Nitrogen (6)	mg/L	0.15	<u>0.18</u>	-	-	0.15	OG

### NOTES:

1. MAC = Maximum Acceptable Concentration

2. OG = Operational Guideline

3. AO = Aesthetic Objective

4. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.

5. The total of Nitrate and Nitrite should not exceed 10 mg/litre

6. Organic Nitrogen = Total Kjeldahl Nitrogen - N-NH3 and should not exceed 0.15 mg/litre.

7. '-' signifies no value provided in the ODWS guideline.

### TABLE 3A SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING ONSITE TEST WELL TW1 - JUNE 1, 2015

ikalinity, total         mg/L         5         500 mg/L         201           bolour         TCU         2         5 TCU         ND (2)           ardness         mg/L         1.0         288           H         pH Units         0.1         8.0           otal Dissolved Solids         mg/L         10         500 mg/L         332           urbidity         NTU         0.1         5 NTU         4.9           noms	Parameter	Units	MDL	Ontario Drinking Water Standards, Objecives and Guidelines	Test Well TW1
rču         rču         2         5 TCÚ         ND (2)           ardness         mg/L         1.0         288           H         pH Units         0.1         8.0           otal Dissolved Solids         mg/L         10         500 mg/L         332           urbidity         NTU         0.1         5 NTU         4.9           inons	General Inorganics				
lardness         mg/L         1.0         288           H         pH Units         0.1         8.0           otal Dissolved Solids         mg/L         10         500 mg/L         332           urbidity         NTU         0.1         5NTU         4.9           intons         mg/L         1         250 mg/L         32           luoride         mg/L         0.1         1.5 mg/L         0.1           litrate as N         mg/L         0.1         1.0 mg/L         ND (0.1)           litrate as N         mg/L         0.05         1 mg/L         ND (0.05)           ulphate         mg/L         0.1         0.001 mg/L         ND (0.05)           luminum         ug/L         0.1         0.001 mg/L (1 ug/L)         ND (0.1)           luminum         ug/L         0.5         0.006 mg/L (6 ug/L)         ND (0.1)           luminum         ug/L         1         0.1 mg/L (100 ug/L)         10           ardimum         ug/L         1         1 mg/L (100 ug/L)         ND (0.1)           ardimum         ug/L         1         0.05 mg/L (50 ug/L)         37           ardimum         ug/L         1         0.05 mg/L (50 ug/L)         36<	Alkalinity, total				
H         pH Ünits         0.1         8.0           otal Dissolved Solids         mg/L         10         500 mg/L         332           ubidity         NTU         0.1         5NTU         4.9           inoms	Colour			5 TCU	
otal Dissolved Solids         mg/L         10         500 mg/L         332           urbidity         NTU         0.1         5 NTU         4.9           inlons	Hardness				
urbidity         NŤU         0.1         5 NTÚ         4.9           nions	рН				
nions         mg/L         1         250 mg/L         32           Ihoride         mg/L         0.1         1.5 mg/L         0.1           libride         mg/L         0.1         1.5 mg/L         0.1           litrate as N         mg/L         0.1         10 mg/L         ND (0.1)           litrate as N         mg/L         0.05         1 mg/L         ND (0.5)           ulphate         mg/L         1         500 mg/L         64           letals          64         1         1.0 mg/L (100 ug/L)         13           ntimony         ug/L         0.5         0.006 mg/L (6 ug/L)         ND (0.5)           rseenic         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         0.1         0.05 mg/L (50 ug/L)         37           iadmim         ug/L         0.1         0.05 mg/L (50 ug/L)         35           opper         ug/L         0.1         0.05 mg/L (50 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (100 ug/L)         ND (0.1)           langanese         ug/L         <	Total Dissolved Solids				
ichloride         mg/L         1         250 mg/L         32           luoride         mg/L         0.1         1.5 mg/L         0.1           litrate as N         mg/L         0.1         10 mg/L         ND (0.1)           litrate as N         mg/L         0.05         1 mg/L         ND (0.05)           ulphate         mg/L         1         500 mg/L         ND (0.05)           letals           64            letals           0.01 mg/L (100 ug/L)         ND (0.1)           luminum         ug/L         1         0.01 mg/L (100 ug/L)         13           ntimony         ug/L         1         0.025 mg/L (25 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (50 ug/L)         37           arium         ug/L         0.1         0.005 mg/L (50 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (50 ug/L)         33           oron         ug/L         100         0.3 mg/L (300 ug/L)         358           opper         ug/L         0.01         0.3 mg/L (300 ug/L)         3560           on         ug/L         0.1	Turbidity	NTU	0.1	5 NTU	4.9
luoride $mg/L$ 0.1         1.5 mg/L         0.1           litrate as N $mg/L$ 0.1         10 mg/L         ND (0.1)           litrate as N $mg/L$ 0.05         1 mg/L         ND (0.05)           ulphate $mg/L$ 1         500 mg/L         64           letais	<u>Anions</u>				
Image         0.1         10 mg/L         ND (0.1)           litrite as N         mg/L         0.05         1 mg/L         ND (0.05)           litrite as N         mg/L         1         500 mg/L         64           letais          0.01         0.001 mg/L (1 ug/L)         ND (0.1)           letais          0.001 mg/L (1 ug/L)         ND (0.1)         13           letais          0.5         0.006 mg/L (6 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (25 ug/L)         ND (1)           arium         ug/L         1         0.025 mg/L (25 ug/L)         ND (1)           arium         ug/L         1         0.025 mg/L (50 ug/L)         37           oron         ug/L         10         5 mg/L (500 ug/L)         37           iadmium         ug/L         0.1         0.05 mg/L (50 ug/L)         30           oopper         ug/L         10         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (100 ug/L)         ND (0.5)           on         ug/L         0.01         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1 <td>Chloride</td> <td></td> <td>-</td> <td></td> <td></td>	Chloride		-		
Itirite as N         mg/L         0.05         1 mg/L         ND (0.05)           ulphate         mg/L         1         500 mg/L         64           letals         itig         itig         ND (0.1)           leruny         ug/L         0.1         0.001 mg/L (1 ug/L)         ND (0.1)           luminum         ug/L         1         0.1 mg/L (100 ug/L)         13           ntimony         ug/L         0.5         0.006 mg/L (6 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (25 ug/L)         ND (0.5)           arium         ug/L         1         1 mg/L (5000 ug/L)         37           oron         ug/L         10         5 mg/L (5000 ug/L)         37           iadmium         ug/L         100         5 mg/L (50 ug/L)         3           iadmium         ug/L         100         3 300         1           ihromium         ug/L         0.5         1 mg/L (100 ug/L)         ND (0.1)           admium         ug/L         0.6         3 300         358           opper         ug/L         0.1         0.01 mg/L (100 ug/L)         ND (0.1)           lagnesium         ug/L         200         2	Fluoride				
ulphate         mg/L         1         500 mg/L         64           letais	Nitrate as N				· · ·
Iterais         ND         ND         ND         (0.1)           luminum         ug/L         1         0.101 mg/L (100 ug/L)         13           ntimony         ug/L         1         0.105 mg/L (60 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (25 ug/L)         ND (1)           arium         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         10         5 mg/L (5000 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           adcium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           adcium         ug/L         100         73300         73300           thromium         ug/L         100         .05 mg/L (50 ug/L)         3           topper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.5)           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           tagnesium         ug/L         200         200 mg/L (200000 ug/L)         1900           tranium	Nitrite as N		0.05		
tercury         ug/L         0.1         0.001 mg/L (1 ug/L)         ND (0.1)           luminum         ug/L         1         0.1 mg/L (100 ug/L)         13           ntimony         ug/L         0.5         0.006 mg/L (6 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (25 ug/L)         ND (0.5)           arium         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         10         5 mg/L (5000 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         30           iadmium         ug/L         1.0         0.05 mg/L (50 ug/L)         35           opper         ug/L         0.5         1 mg/L (100 ug/L)         ND (0.1)           langanese         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)	Sulphate	mg/L	1	500 mg/L	64
luminum         ug/L         1         0.1 mg/L (100 ug/L)         13           ntimony         ug/L         0.5         0.006 mg/L (6 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (25 ug/L)         ND (1)           arium         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         10         5 mg/L (5000 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           addium         ug/L         10         5 mg/L (500 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           addium         ug/L         100         73300         3           opper         ug/L         0.5         1 mg/L (100 ug/L)         ND (0.5)           on         ug/L         0.1         0.01 mg/L (100 ug/L)         ND (0.5)           on         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnese         ug/L         200         25600         25600           leenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         u	<u>Metals</u>				
ntimony         ug/L         0.5         0.006 mg/L (6 ug/L)         ND (0.5)           rsenic         ug/L         1         0.025 mg/L (25 ug/L)         ND (1)           arium         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         10         5 mg/L (5000 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           adcium         ug/L         100         73300         3           opper         ug/L         1         0.05 mg/L (50 ug/L)         3           opper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           opper         ug/L         0.5         1 mg/L (300 ug/L)         358           opper         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           laganese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         5         0.05 mg/L (20 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (20000 ug/L)         11900           ranganese	Mercury	ug/L	0.1		
ug/L         1         0.025 mg/L (25 ug/L)         ND (1)           arium         ug/L         1         1 mg/L (1000 ug/L)         104           oron         ug/L         10         5 mg/L (5000 ug/L)         37           admium         ug/L         0.1         0.005 mg/L (50 ug/L)         ND (0.1)           admium         ug/L         100         73300           chromium         ug/L         1         0.05 mg/L (50 ug/L)         3           copper         ug/L         1         0.05 mg/L (50 ug/L)         3           copper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         0.1         0.01 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           agaesium         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           langanese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (200000 ug/L)         1900           ranium         ug/L         0.1	Aluminum		-		
arium       ug/L       1       1 mg/L (1000 ug/L)       104         oron       ug/L       10       5 mg/L (5000 ug/L)       37         admium       ug/L       0.1       0.005 mg/L (5 ug/L)       ND (0.1)         admium       ug/L       10       5 mg/L (50 ug/L)       ND (0.1)         salcium       ug/L       1       0.05 mg/L (50 ug/L)       3         opper       ug/L       1       0.05 mg/L (300 ug/L)       358         oopper       ug/L       100       0.3 mg/L (300 ug/L)       ND (0.1)         oopper       ug/L       0.1       0.01 mg/L (100 ug/L)       ND (0.5)         on       ug/L       0.1       0.01 mg/L (10 ug/L)       ND (0.1)         lagnesium       ug/L       200       25600       25600         langanese       ug/L       200       25600       8         elenium       ug/L       1       0.01 mg/L (10 ug/L)       ND (1)         odium       ug/L       0.1       0.02 mg/L (20 ug/L)       3.0         ranium       ug/L       0.1       0.02 mg/L (20 ug/L)       3.0         inc       ug/L       5       5 mg/L (5000 ug/L)       ND (5)         olatiles       /	Antimony		0.5		
oron         ug/L         10         5 mg/L (5000 ug/L)         37           cadmium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           calcium         ug/L         100         73300           chromium         ug/L         1         0.05 mg/L (50 ug/L)         3           copper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         0.1         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnese         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnese         ug/L         200         25600         358           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (200000 ug/L)         11900           irac         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles         ug/L	Arsenic	ug/L	1	0.025 mg/L (25 ug/L)	ND (1)
badmium         ug/L         0.1         0.005 mg/L (5 ug/L)         ND (0.1)           balcium         ug/L         100         73300           bromium         ug/L         1         0.05 mg/L (50 ug/L)         3           bopper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         100         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         200         25600         25600           langanese         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         1         0.01 mg/L (200000 ug/L)         11900           iranium         ug/L         200         200 mg/L (200000 ug/L)         11900           iranium         ug/L         0.1         0.02 mg/L (200000 ug/L)         11900           iranium         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles           5.0         0.005 mg/L (5 ug/L)         ND (0.5)	Barium	ug/L	•		
talcium         ug/L         100         73300           thromium         ug/L         1         0.05 mg/L (50 ug/L)         3           topper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         100         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           tagnesium         ug/L         200         25600         25600           tanganese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (200000 ug/L)         11900           ranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles           5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Boron				
bromium         ug/L         1         0.05 mg/L (50 ug/L)         3           copper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         100         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         200         25600           langanese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (20000 ug/L)         11900           iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           iran         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5.0)           olatiles           5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Cadmium			0.005 mg/L (5 ug/L)	
kopper         ug/L         0.5         1 mg/L (1000 ug/L)         ND (0.5)           on         ug/L         100         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         200         25600           langanese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (200000 ug/L)         11900           iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           irac         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           irac         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles	Calcium		100		
on         ug/L         100         0.3 mg/L (300 ug/L)         358           ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         200         25600           langanese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (20000 ug/L)         11900           iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles	Chromium		-		
ead         ug/L         0.1         0.01 mg/L (10 ug/L)         ND (0.1)           lagnesium         ug/L         200         25600           langanese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (20000 ug/L)         11900           ranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles	Copper				
lagnesium         ug/L         200         25600           langanese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (200000 ug/L)         11900           Iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles	ron				
Manganese         ug/L         5         0.05 mg/L (50 ug/L)         8           elenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (20000 ug/L)         11900           Iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles         V         V         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	_ead	ug/L		0.01 mg/L (10 ug/L)	
lelenium         ug/L         1         0.01 mg/L (10 ug/L)         ND (1)           odium         ug/L         200         200 mg/L (20000 ug/L)         11900           Iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles	Magnesium				
vg/L         200         200 mg/L (20000 ug/L)         11900           Iranium         ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           cetone         ug/L         5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Vanganese		5		
ug/L         0.1         0.02 mg/L (20 ug/L)         3.0           inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles         vg/L         5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Selenium		•		( )
inc         ug/L         5         5 mg/L (5000 ug/L)         ND (5)           olatiles         vg/L         5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Sodium				
olatiles         ug/L         5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Uranium				
cetone         ug/L         5.0         ND (5.0)           enzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)	Zinc	ug/L	5	5 mg/L (5000 ug/L)	ND (5)
enzene ug/L 0.5 0.005 mg/L (5 ug/L) ND (0.5)	<u>Volatiles</u>				
	Acetone	ug/L	5.0		ND (5.0)
	Benzene	ug/L	0.5	0.005 mg/L (5 ug/L)	ND (0.5)
	Bromodichloromethane	ug/L	0.5		ND (0.5)

### TABLE 3A SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING ONSITE TEST WELL TW1 - JUNE 1, 2015

Bromoform         ug/L         0.5         ND (0.5)           Bromomethane         ug/L         0.5         ND (0.5)           Carbon Tetachloride         ug/L         0.2         0.005 mg/L (5 ug/L)         ND (0.5)           Chlorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           Chloroform         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           Chloroform         ug/L         0.5         ND (0.5)           Chloromethane         ug/L         0.5         ND (0.5)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dichlorodifluoromethane         ug/L         0.5         ND (0.5)           1,2-Dibromoethane         ug/L         0.2         ND (0.5)           1,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,2-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,2-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L <t< th=""><th>Parameter</th><th>Units</th><th>MDL</th><th>Ontario Drinking Water Standards, Objecives and Guidelines</th><th>Test Well TW1</th></t<>	Parameter	Units	MDL	Ontario Drinking Water Standards, Objecives and Guidelines	Test Well TW1
Carbon Tetrachloride         ug/L         0.2         0.005 mg/L (5 ug/L)         ND (0.2)           Chlorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           Chlorobtane         ug/L         0.5         ND (0.5)         ND (0.5)           Chloroothane         ug/L         0.5         ND (0.5)         ND (0.5)           Chloroothane         ug/L         0.5         ND (0.5)         ND (0.5)           Dibromochloromethane         ug/L         0.5         ND (0.5)         ND (0.5)           Dichlorodifluoromethane         ug/L         0.2         ND (0.5)         ND (0.2)           1,2-Dibromoethane         ug/L         0.2         ND (0.5)         ND (0.5)           1,3-Dichlorobenzene         ug/L         0.5         0.22 mg/L (200 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.05 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethane         ug/L         0.5         0.005 mg/L (14 ug/L)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2	Bromoform	ug/L	0.5		ND (0.5)
Chlorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           Chloroethane         ug/L         1.0         ND (1.0)           Chlorootram         ug/L         0.5         ND (0.5)           Chloromethane         ug/L         3.0         ND (0.5)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dichlorodifluoromethane         ug/L         0.2         ND (0.5)           J.2-Dibromoethane         ug/L         0.2         ND (0.5)           1,2-Dibromoethane         ug/L         0.2         ND (0.5)           1,2-Dibromoethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,2-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichlorobenzene         ug/L         0.5         0.005 mg/L (14 ug/L)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           1,2-Dichloroethylene         ug/L <td< td=""><td>Bromomethane</td><td>ug/L</td><td>0.5</td><td></td><td>ND (0.5)</td></td<>	Bromomethane	ug/L	0.5		ND (0.5)
Chloroethane         ug/L         1.0         ND (1.0)           Chloroform         ug/L         0.5         ND (0.5)           Chloromethane         ug/L         3.0         ND (3.0)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dichorochloromethane         ug/L         0.5         ND (0.5)           Dichorodifluoromethane         ug/L         0.2         ND (0.2)           1,2-Dibromoethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         1,2-Dichloroethylene         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         1,2-Dichloroethylene         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)	Carbon Tetrachloride	ug/L	0.2	0.005 mg/L (5 ug/L)	ND (0.2)
Chloroform         ug/L         0.5         ND (0.5)           Chloromethane         ug/L         3.0         ND (3.0)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dichlorodifluoromethane         ug/L         1.0         ND (0.5)           1,2-Dibromoethane         ug/L         0.2         ND (0.2)           1,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.20 mg/L (5 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,4-Dichloroethane         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         1.2-Dichloroethylene, total         ug/L         0.5           1,2-Dichloroethylene, total         ug/L	Chlorobenzene	ug/L	0.5	0.08 mg/L (80 ug/L)	ND (0.5)
Chloromethane         ug/L         3.0         ND (3.0)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dichlorodifluoromethane         ug/L         1.0         ND (0.2)           1,2-Dibromoethane         ug/L         0.2         ND (0.5)           1,2-Dibromoethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,2-Dibromoethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         1.2-Dichloroethylene         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)         1.2-Dichloroethylene         ug/L         0.5	Chloroethane	ug/L	1.0		ND (1.0)
Dibromochloromethane         ug/L         0.5         ND (0.5)           Dichlorodifluoromethane         ug/L         1.0         ND (1.0)           1,2-Dichlorobenzene         ug/L         0.2         ND (0.2)           1,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,3-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,4-Dichloroethane         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           cis-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         1,2-Dichloroethylene         ug/L         0.5           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)         1,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)           1,2-Dichloropropylene         ug/L         0.5         ND (0.5)         ND (0.5)         1,3-Dichloropropylene         ug/L <t< td=""><td>Chloroform</td><td>ug/L</td><td>0.5</td><td></td><td>ND (0.5)</td></t<>	Chloroform	ug/L	0.5		ND (0.5)
Dichlorodifluoromethane         ug/L         1.0         ND (1.0)           1,2-Dibromoethane         ug/L         0.2         ND (0.2)           1,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           1,3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         1.2-Dichloroethylene         ug/L         0.5         ND (0.5)           1,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)         1.2-Dichloropropylene         ug/L         0.5         ND (0.5)           1,3-Dichloropropylene         ug/L         0.5         ND (0.5)         ND (0.5)         ND (0.5)	Chloromethane	ug/L	3.0		ND (3.0)
1,2-Dibromoethane       ug/L       0.2       ND (0.2)         1,2-Dichlorobenzene       ug/L       0.5       0.2 mg/L (200 ug/L)       ND (0.5)         1,3-Dichlorobenzene       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,4-Dichlorobenzene       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,1-Dichloroethane       ug/L       0.5       0.005 mg/L (14 ug/L)       ND (0.5)         1,2-Dichloroethane       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         1,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         1,1-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,2-Dichloropropane       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)       ND	Dibromochloromethane	ug/L	0.5		ND (0.5)
1,2-Dichlorobenzene       ug/L       0.5       0.2 mg/L (200 ug/L)       ND (0.5)         1,3-Dichlorobenzene       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,4-Dichlorobenzene       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,1-Dichloroethane       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,2-Dichloroethane       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         cis-1,2-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)	Dichlorodifluoromethane	ug/L	1.0		ND (1.0)
1,3-Dichlorobenzene       ug/L       0.5       ND (0.5)         1,4-Dichlorobenzene       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,1-Dichloroethane       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,2-Dichloroethane       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)       ND (0.5)         1,2-Dichloropropylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         1,3-Dichloropropene, total       ug/L       0.5       0.0024 mg/L (2.4 ug/L) <td< td=""><td>1,2-Dibromoethane</td><td>ug/L</td><td></td><td></td><td>ND (0.2)</td></td<>	1,2-Dibromoethane	ug/L			ND (0.2)
1,4-Dichlorobenzene       ug/L       0.5       0.005 mg/L (5 ug/L)       ND (0.5)         1,1-Dichloroethane       ug/L       0.5       ND (0.5)         1,2-Dichloroethane       ug/L       0.5       ND (0.5)         1,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         1,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropopane       ug/L       0.5       ND (0.5)         cis-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         Hexane       ug/L       1.0       ND (1.0)	1,2-Dichlorobenzene	ug/L		0.2 mg/L (200 ug/L)	
1,1-Dichloroethane       ug/L       0.5       ND (0.5)         1,2-Dichloroethane       ug/L       0.5       ND (0.5)         1,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         cis-1,2-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         cis-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         1,2-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)	1,3-Dichlorobenzene	ug/L			
1,2-Dichloroethane       ug/L       0.5       ND (0.5)         1,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         cis-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         1,2-Dichloropropylene       ug/L       0.5       ND (0.5)         1,2-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         Ethylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         Hexane       ug/L       1.0       ND (1.0)       ND (5.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Meth	1,4-Dichlorobenzene	ug/L	0.5	0.005 mg/L (5 ug/L)	
1,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         cis-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         cis-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         tethylbenzene       ug/L       0.5       ND (0.5)       ND (0.5)         Hexane       ug/L       1.0       ND (5.0)       ND (5.0)       ND (5.	1,1-Dichloroethane	ug/L	0.5		ND (0.5)
cis-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)           trans-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)           1,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)           1,2-Dichloropthylene, total         ug/L         0.5         ND (0.5)           1,2-Dichloropthylene, total         ug/L         0.5         ND (0.5)           1,2-Dichloropropane         ug/L         0.5         ND (0.5)           cis-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           trans-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           1,3-Dichloropropene, total         ug/L         0.5         ND (0.5)           1,3-Dichloropropene, total         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           Ethylbenzene         ug/L         1.0         ND (0.5)         ND (1.0)         ND (5.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)         ND (5.0)         ND (5.0)           Methyl tert-butyl ether	· ·	ug/L			
trans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         cis-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropene, total       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         Ethylbenzene       ug/L       1.0       ND (1.0)       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (10.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl tert-butyl ether       ug/L       2.0       ND (2.0)	1,1-Dichloroethylene	ug/L	0.5	0.014 mg/L (14 ug/L)	ND (0.5)
1,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         1,2-Dichloropropane       ug/L       0.5       ND (0.5)         cis-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene, total       ug/L       0.5       ND (0.5)         1,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         Ethylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         Hexane       ug/L       1.0       ND (1.0)       ND (5.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl tert-butyl ether       ug/L       2.0       ND (2.0)		ug/L			
1,2-Dichloropropane       ug/L       0.5       ND (0.5)         cis-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropylene, total       ug/L       0.5       ND (0.5)         1,3-Dichloropropene, total       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         Ethylbenzene       ug/L       1.0       ND (0.5)       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (5.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       10.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl tert-butyl ether       ug/L       2.0       ND (2.0)	trans-1,2-Dichloroethylene	ug/L			ND (0.5)
cis-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           trans-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           1,3-Dichloropropene, total         ug/L         0.5         ND (0.5)           Ethylbenzene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           Hexane         ug/L         1.0         ND (1.0)         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (10.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl ether         ug/L         2.0         ND (2.0)	1,2-Dichloroethylene, total	ug/L	0.5		ND (0.5)
trans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         1,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         Ethylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         Hexane       ug/L       1.0       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (5.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       10.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl tert-butyl ether       ug/L       2.0       ND (2.0)	· · · ·	ug/L			ND (0.5)
1,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         Ethylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         Hexane       ug/L       1.0       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (5.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       10.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl tert-butyl ether       ug/L       2.0       ND (2.0)	· · · · · ·	ug/L	0.5		ND (0.5)
Ethylbenzene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           Hexane         ug/L         1.0         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)		ug/L			
Hexane         ug/L         1.0         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)		ug/L			
Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)	,			0.0024 mg/L (2.4 ug/L)	
Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)					
Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)					
Methyl tert-butyl ether ug/L 2.0 ND (2.0)		-			
Methylene Chloride ug/l 5.0 0.05 mg/l (50 ug/l) ND (5.0)		-			
	Methylene Chloride	ug/L	5.0	0.05 mg/L (50 ug/L)	ND (5.0)
Styrene ug/L 0.5 ND (0.5)					
1,1,1,2-Tetrachloroethane ug/L 0.5 ND (0.5)					
1,1,2,2-Tetrachloroethane ug/L 0.5 ND (0.5)		-			
Tetrachloroethylene         ug/L         0.5         0.03 mg/L (30 ug/L)         ND (0.5)	Tetrachloroethylene	ug/L	0.5	0.03 mg/L (30 ug/L)	ND (0.5)

### TABLE 3A SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING ONSITE TEST WELL TW1 - JUNE 1, 2015

Parameter	Units	MDL	Ontario Drinking Water Standards, Objecives and Guidelines	Test Well TW1
Toluene	ug/L	0.5	0.024 mg/L (24 ug/L)	ND (0.5)
1,1,1-Trichloroethane	ug/L	0.5		ND (0.5)
1,1,2-Trichloroethane	ug/L	0.5		ND (0.5)
Trichloroethylene	ug/L	0.5	0.005 mg/L (5 ug/L)	ND (0.5)
Trichlorofluoromethane	ug/L	1.0		ND (1.0)
1,3,5-Trimethylbenzene	ug/L	0.5		ND (0.5)
Vinyl Chloride	ug/L	0.5	0.002 mg/L (2 ug/L)	ND (0.5)
m/p-Xylene	ug/L	0.5		ND (0.5)
o-Xylene	ug/L	0.5		ND (0.5)
Xylenes, total	ug/L	0.5	0.3 mg/L (300 ug/L)	ND (0.5)
<u>Hydrocarbons</u>				
F1 PHCs (C6-C10)	ug/L	25		ND (25)
F2 PHCs (C10-C16)	ug/L	100		ND (100)
F3 PHCs (C16-C34)	ug/L	100		ND (100)
F4 PHCs (C34-C50)	ug/L	100		ND (100)
TPH (diesel)	mg/L	0.1		ND (0.1)
Semi-Volatiles				
Ethylene glycol	mg/L	2		ND (2)
Diethylene glycol	mg/L	2		ND (2)
Propylene glycol	mg/L	2		ND (2)
Triethylene glycol	mg/L	2		ND (2)
Trimethylene glycol	mg/L	2		ND (2)

### TABLE 3B SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING TEST WELL TW2 - JUNE 2, 2015

Parameter	Units	MDL	Ontario Drinking Water Standards, Objecives and Guidelines	Test Well TW2
General Inorganics				
Alkalinity, total	mg/L	5	500 mg/L	199
Colour	TČU	2	5 TCŬ	2
Hardness	mg/L	1.0		316
рН	pH Units	0.1		7.6
Total Dissolved Solids	mg/L	10	500 mg/L	384
Turbidity	NTU	0.1	5 NTŪ	2.4
Anions				
Chloride	mg/L	1	250 mg/L	40
Fluoride	mg/L	0.1	1.5 mg/L	ND (0.1)
Nitrate as N	mg/L	0.1	10 mg/L	1.7
Nitrite as N	mg/L	0.05	1 mg/L	0.17
Sulphate	mg/L	1	500 mg/L	67
Metals				
Mercury	ug/L	0.1	0.001 mg/L (1 ug/L)	ND (0.1)
Aluminum	ug/L	1	0.1 mg/L (100 ug/L)	ND (1)
Antimony	ug/L	0.5	0.006 mg/L (6 ug/L)	ND (0.5)
Arsenic	ug/L	1	0.025 mg/L (25 ug/L)	ND (1)
Barium	ug/L	1	1 mg/L (1000 ug/L)	179
Boron	ug/L	10	5 mg/L (5000 ug/L)	18
Cadmium	ug/L	0.1	0.005 mg/L (5 ug/L)	ND (0.1)
Calcium	ug/L	100		95500
Chromium	ug/L	1	0.05 mg/L (50 ug/L)	ND (1)
Copper	ug/L	0.5	1 mg/L (1000 ug/L)	ND (0.5)
Iron	ug/L	100	0.3 mg/L (300 ug/L)	150
Lead	ug/L	0.1	0.01 mg/L (10 ug/L)	ND (0.1)
Magnesium	ug/L	200		18800
Manganese	ug/L	5	0.05 mg/L (50 ug/L)	7
Selenium	ug/L	1	0.01 mg/L (10 ug/L)	ND (1)
Sodium	ug/L	200	200 mg/L (200000 ug/L)	9950
Uranium	ug/L	0.1	0.02 mg/L (20 ug/L)	5.3
Zinc	ug/L	5	5 mg/L (5000 ug/L)	ND (5)
<u>Volatiles</u>				
Acetone	ug/L	5.0		ND (5.0)
Benzene	ug/L	0.5	0.005 mg/L (5 ug/L)	ND (0.5)
Bromodichloromethane	ug/L	0.5		ND (0.5)
	- 3			()

### TABLE 3B SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING TEST WELL TW2 - JUNE 2, 2015

Irronomethane         ug/L         0.5         ND         0.5           iarbon Tetrachloride         ug/L         0.2         0.005 mg/L (5 ug/L)         ND         0.2           ihlorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND         0.5           ihlorobethane         ug/L         0.5         0.08 mg/L (80 ug/L)         ND         0.5           ihloromethane         ug/L         0.5         ND         0.5         ND         0.5           ihloromethane         ug/L         0.5         ND         0.5         ND         0.5           ibloromethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND         0.5           2-Dibromethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND         0.5           2-Dibromethane         ug/L         0.5         0.005 mg/L (5 ug/L)         ND         0.5           2-Dibrohorbenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND         0.5           1-Dichlorobethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND         0.5           1-Dichlorobethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND         0.5 </th <th>Parameter</th> <th>Units</th> <th>MDL</th> <th>Ontario Drinking Water Standards, Objecives and Guidelines</th> <th>Test Well TW2</th>	Parameter	Units	MDL	Ontario Drinking Water Standards, Objecives and Guidelines	Test Well TW2
Intermediation         ug/L         0.5         ND (0.5)           Sarbon Tetrachloride         ug/L         0.2         0.005 mg/L (5 ug/L)         ND (0.5)           Shlorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           Shloroform         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           Shloromethane         ug/L         0.5         ND (0.5)         ND (0.5)           Shloromethane         ug/L         0.5         ND (0.5)         ND (0.5)           Shloromethane         ug/L         0.5         ND (0.5)         ND (0.5)           Shloromethane         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           Jolichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           J-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           J-Dichlorobenzene         ug/L         0.5         0.005 mg/L (14 ug/L)         ND (0.5)           J-Dichlorobenzene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           J-Dichlorobenzene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           J-Dichlorobenylene         u	Bromoform	ug/L	0.5		ND (0.5)
arbon Tetrachloride         ug/L         0.2         0.005 mg/L (8 ug/L)         ND (0.2)           bhorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (1.0)           bhorobenzene         ug/L         0.5         ND (0.5)           bhorobenzene         ug/L         0.5         ND (0.5)           bhorobenzene         ug/L         0.5         ND (0.5)           bhorobenzene         ug/L         0.5         ND (1.0)           bhorobenzene         ug/L         0.2         ND (1.0)           2-Dibhorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           3-Dichlorobenzene         ug/L         0.5         0.20 smg/L (5 ug/L)         ND (0.5)           2-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           2-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           2-Dichlorobethane         ug/L         0.5         0.005 mg/L (14 ug/L)         ND (0.5)           2-Dichlorobethane         ug/L         0.5         ND (0.5)         ND (0.5)           2-Dichlorobethane         ug/L         0.5         ND (0.5)         ND (0.5)           2-Dichloropethylen	Bromomethane		0.5		
bhorobenzene         ug/L         0.5         0.08 mg/L (80 ug/L)         ND (0.5)           hhorothane         ug/L         1.0         ND (1.0)           hhorothane         ug/L         3.0         ND (0.5)           hhorothane         ug/L         3.0         ND (0.5)           hhorothane         ug/L         0.5         ND (0.5)           hhorothane         ug/L         0.5         ND (0.5)           horotomethane         ug/L         0.5         ND (0.5)           jchlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           ,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (50 ug/L)         ND (0.5)           ,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,2-Dichloroethylene         ug/L         0.5         ND (0.5)         .2           ,2-Dichloroethylene         ug/L	Carbon Tetrachloride		0.2	0.005 mg/L (5 ug/L)	( )
Chloroethane         ug/L         1.0         ND (1.0)           Chloroethane         ug/L         0.5         ND (0.5)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Dibromochloromethane         ug/L         0.5         ND (0.5)           Jchlorobetnzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.2)           2-Dibromobetnzene         ug/L         0.5         0.2 mg/L (5 ug/L)         ND (0.5)           3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           3-Dichlorobetnzene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           3-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           3-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           3-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           2-Dichloroethylene, total         ug/L         0.5         ND (0.5)         ND (0.5)	Chlorobenzene	-	0.5		
Chloromethane         ug/L         3.0         ND (3.0)           Nbromochloromethane         ug/L         0.5         ND (0.5)           Dichorodifluoromethane         ug/L         1.0         ND (0.2)           2-Dibromoethane         ug/L         0.2         ND (0.2)           2-Dichorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           3-Dichorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           3-Dichorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1-Dichoroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1-Dichoroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1-Dichloroethylene         ug/L         0.5         ND (0.5)         0.5           1-Dichloroethylene         ug/L         0.5         ND (0.5)         0.5           1-Dichloroethylene         ug/L         0.5         ND (0.5)         0.5           1-Dichloropropylene         ug/L         0.5         ND (0.5)         0.5           1-Dichloropropylene         ug/L         0.5         ND (0.5)         0.5           1-Dich	Chloroethane	ug/L	1.0		
bibromochloromethane         ug/L         0.5         ND (0.5)           bichlorodflluoromethane         ug/L         1.0         ND (0.2)           2-Dibrodenzene         ug/L         0.2         ND (0.2)           2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           2-Dichloroethane         ug/L         0.5         0.005 mg/L (14 ug/L)         ND (0.5)           2-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           3-Dichloroethylene         ug/L         0.5         ND (0.5)         0.5         ND (0.5)           3-Dichloroethylene         ug/L         0.5         ND (0.5)         0.5         ND (0.5)           3-Dichloropropane         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)         0.5           3-Dichloropropulene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)         0.5     <	Chloroform	ug/L	0.5		ND (0.5)
bichlorodifluoromethane         ug/L         1.0         ND (1.0)           ,2-Dibromoethane         ug/L         0.2         ND (0.2)           ,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           ,3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ;2-Dichloroethylene         ug/L         0.5         ND (1.0)         ND (0.5)           ;2-Dichloroethylene         ug/L         0.5         ND (0.5)         ::           ;2-Dichloropthylene, total         ug/L         0.5         ND (0.5)         :           ;2-Dichloropthylene, total         ug/L         0.5         ND (0.5)         :           ;2-Dichloropropale         ug/L         0.5         ND (0.5)         :         :           ;2-Dichloropropylene         ug/L	Chloromethane	ug/L	3.0		ND (3.0)
2-Dibromoethane         ug/L         0.2         ND (0.2)           ,2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           ,3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,1-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,1-Dichloroethylene         ug/L         0.5         ND (0.5)         mas.1,2-Dichloroethylene         ug/L         0.5           ,2-Dichloroethylene         ug/L         0.5         ND (0.5)         mas.1,2-Dichloroptroplene         ug/L         0.5         ND (0.5)           ,2-Dichloropropane         ug/L         0.5         ND (0.5)         mas.1,3-Dichloropropylene         ug/L         0.5           ,3-Dichloropropylene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)	Dibromochloromethane	ug/L	0.5		ND (0.5)
2-Dichlorobenzene         ug/L         0.5         0.2 mg/L (200 ug/L)         ND (0.5)           3-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1-Dichloroethane         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           2-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           2-Dichloroethylene         ug/L         0.5         ND (0.5)         0.5           2-Dichloroethylene, total         ug/L         0.5         ND (0.5)         0.5           2-Dichloropropane         ug/L         0.5         ND (0.5)         0.5         0.5         ND (0.5)           3-Dichloropropylene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)         0.5           3-Dichloropropylene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)         0.5           3-Dichloropropopene, total	Dichlorodifluoromethane	ug/L	1.0		ND (1.0)
3-Dichlorobenzene         ug/L         0.5         ND (0.5)           ,4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,1-Dichloroethane         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           ,2-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           is-1,2-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           ans-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           ,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)         ND (0.5)           ,2-Dichloropropane         ug/L         0.5         ND (0.5)         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         ND (0.5)         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (5.0)           kethyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (2.0)         ND (5.0) <td>1,2-Dibromoethane</td> <td></td> <td>0.2</td> <td></td> <td>ND (0.2)</td>	1,2-Dibromoethane		0.2		ND (0.2)
3-Dichlorobenzene         ug/L         0.5         ND (0.5)           4-Dichlorobenzene         ug/L         0.5         0.005 mg/L (5 ug/L)         ND (0.5)           1-Dichloroethane         ug/L         0.5         0.001 mg/L (14 ug/L)         ND (0.5)           2-Dichloroethane         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           is-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           ans-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           2-Dichloroethylene, total         ug/L         0.5         ND (0.5)         ND (0.5)           2-Dichloropropane         ug/L         0.5         ND (0.5)         ND (0.5)           3-Dichloropropylene         ug/L         0.5         ND (0.5)         ND (0.5)           4exane         ug/L	1,2-Dichlorobenzene	-	0.5	0.2 mg/L (200 ug/L)	ND (0.5)
1-Dichloroethane       ug/L       0.5       ND (0.5)         ,2-Dichloroethane       ug/L       0.5       ND (0.5)         ,1-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         is-1,2-Dichloroethylene       ug/L       0.5       0.014 mg/L (14 ug/L)       ND (0.5)         is-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)          ,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         ,2-Dichloroptopape       ug/L       0.5       ND (0.5)         ,2-Dichloroptopape       ug/L       0.5       ND (0.5)         ,2-Dichloroptopape       ug/L       0.5       ND (0.5)         ,2-Dichloropropylene       ug/L       0.5       ND (0.5)         ;ans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ;ans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ;thylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         iexane       ug/L       1.0       ND (1.0)       ND (1.0)         Methyl Ethyl Ketone (2-Hexanone)       ug/L       5.0       ND (1.0)       ND (1.0)         Methyl Isobutyl Ketone       ug/L       5.0	1,3-Dichlorobenzene	ug/L	0.5		ND (0.5)
2-Dichloroethane         ug/L         0.5         ND (0.5)           ,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           is-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)         ND (0.5)           ans-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)           ans-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)           ,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)           ,2-Dichloropropane         ug/L         0.5         ND (0.5)           is-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         ND (0.5)           isthylbenzene         ug/L         1.0         ND (0.5)           lexane         ug/L         1.0         ND (1.0)           Alethyl Butyl Ketone (2-Butanone)         ug/L         5.0         ND (1.0.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         <	1,4-Dichlorobenzene	ug/L	0.5	0.005 mg/L (5 ug/L)	ND (0.5)
,2-Dichloroethane         ug/L         0.5         ND (0.5)           ,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           is-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)           ;2-Dichloroethylene         ug/L         0.5         ND (0.5)           ;2-Dichloroethylene, total         ug/L         0.5         ND (0.5)           ;2-Dichloropropane         ug/L         0.5         ND (0.5)           ;s-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           is-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ;ans-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ;astone         ug/L	1,1-Dichloroethane	ug/L	0.5		ND (0.5)
,1-Dichloroethylene         ug/L         0.5         0.014 mg/L (14 ug/L)         ND (0.5)           is-1,2-Dichloroethylene         ug/L         0.5         ND (0.5)           ans-1,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)           ,2-Dichloroethylene, total         ug/L         0.5         ND (0.5)           ,2-Dichloroptopane         ug/L         0.5         ND (0.5)           ,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ,3-Dichloropropene, total         ug/L         0.5         ND (0.5)           ,3-Dichloropropene, total         ug/L         0.5         ND (0.5)           ietane         ug/L         1.0         ND (0.5)           ietane         ug/L         5.0         ND (1.0)         ND (5.0)           iethyl Butyl Ketone (2-Hexanone)         ug/L         5.0         ND (5.0)         ND (5.0)           iethyl Isobutyl Ketone         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)	I,2-Dichloroethane		0.5		ND (0.5)
rans-1,2-Dichloroethylene       ug/L       0.5       ND (0.5)         ,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         ,2-Dichloropropane       ug/L       0.5       ND (0.5)         ,2-Dichloropropane       ug/L       0.5       ND (0.5)         is-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         rans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         rans-1,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         rease       ug/L       1.0       ND (1.0)       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (5.0)       ND (5.0)	I,1-Dichloroethylene		0.5	0.014 mg/L (14 ug/L)	
,2-Dichloroethylene, total       ug/L       0.5       ND (0.5)         ,2-Dichloropropane       ug/L       0.5       ND (0.5)         ,2-Dichloropropylene       ug/L       0.5       ND (0.5)         is-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         rans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         ,3-Dichloropropene, total       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         itylbenzene       ug/L       1.0       ND (0.5)       ND (0.5)         itexane       ug/L       1.0       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       2.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Methyl Isobutyl Ketone       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Kethyl Isobutyl Ketone       ug/L       0.5       ND (0.5)	sis-1,2-Dichloroethylene	ug/L	0.5		ND (0.5)
2-Dichloropropane       ug/L       0.5       ND (0.5)         is-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         rans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ,3-Dichloropropylene, total       ug/L       0.5       ND (0.5)         ,3-Dichloropropene, total       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         itylbenzene       ug/L       1.0       ND (1.0)       ND (1.0)         Aethyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (10.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl tert-butyl ether       ug/L       2.0       ND (2.0)         Methylene Chloride       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Styrene       ug/L       0.5       ND (0.5)       ND (0.5)         ,1,1,2-Tetrachloroethane       ug/L       0.5       ND (0.5)         ,1,2,2-Tetrachloroethane       ug/L       0.5       ND (0.5)	rans-1,2-Dichloroethylene	ug/L	0.5		ND (0.5)
is-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         rans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ,3-Dichloropropylene, total       ug/L       0.5       ND (0.5)         ,3-Dichloropropene, total       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         ithylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         lexane       ug/L       1.0       ND (1.0)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (10.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       10.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       5.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       2.0       ND (2.0)         Methyl Ietr-butyl ether       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Methylene Chloride       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Methylene Chloride       ug/L       0.5       ND (0.5)       ND (0.5)         ityrene       ug/L       0.5       ND (0.5)       ND (0.5)         ityrene       ug/L       0.5       ND (0.5)       ND (0.5)         ityrene       u	1,2-Dichloroethylene, total	ug/L	0.5		ND (0.5)
nans-1,3-Dichloropropylene       ug/L       0.5       ND (0.5)         ,3-Dichloropropene, total       ug/L       0.5       ND (0.5)         ithylbenzene       ug/L       0.5       0.0024 mg/L (2.4 ug/L)       ND (0.5)         ithylbenzene       ug/L       1.0       ND (0.5)         Methyl Ethyl Ketone (2-Butanone)       ug/L       5.0       ND (1.0)         Methyl Butyl Ketone (2-Hexanone)       ug/L       5.0       ND (10.0)         Methyl Isobutyl Ketone (2-Hexanone)       ug/L       5.0       ND (5.0)         Methyl Isobutyl Ketone       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Methylene Chloride       ug/L       5.0       0.05 mg/L (50 ug/L)       ND (5.0)         Methylene Chloride       ug/L       0.5       ND (0.5)       ND (0.5)         ,1,1,2-Tetrachloroethane       ug/L       0.5       ND (0.5)         ,1,2,2-Tetrachloroethane       ug/L       0.5	1,2-Dichloropropane	ug/L	0.5		ND (0.5)
rans-1,3-Dichloropropylene         ug/L         0.5         ND (0.5)           ,3-Dichloropropene, total         ug/L         0.5         ND (0.5)           ithylbenzene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           lexane         ug/L         1.0         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone (2-Hexanone)         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl lene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Methylene Chloride         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	cis-1,3-Dichloropropylene	ug/L	0.5		ND (0.5)
Ethylbenzene         ug/L         0.5         0.0024 mg/L (2.4 ug/L)         ND (0.5)           Jexane         ug/L         1.0         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone (2-Hexanone)         ug/L         5.0         ND (10.0)           Methyl Isobutyl Ketone (2-Hexanone)         ug/L         5.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (2.0)           Methyl tert-butyl ether         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Methylene Chloride         ug/L         0.5         0.05 mg/L (50 ug/L)         ND (0.5)           Methylene         Ug/L         0.5         ND (0.5)         ND (0.5)         ND (0.5)           Methylene         Ug/L         0.5         ND (0.5)         ND (0.5)         ND (0.5)	rans-1,3-Dichloropropylene		0.5		ND (0.5)
Hexane         ug/L         1.0         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone (2-Hexanone)         ug/L         5.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	I,3-Dichloropropene, total	ug/L	0.5		ND (0.5)
Hexane         ug/L         1.0         ND (1.0)           Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone (2-Hexanone)         ug/L         5.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Ethylbenzene	ug/L	0.5	0.0024 mg/L (2.4 ug/L)	ND (0.5)
Methyl Ethyl Ketone (2-Butanone)         ug/L         5.0         ND (5.0)           Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl Isobutyl Ketone         ug/L         2.0         ND (2.0)           Methyl tert-butyl ether         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Hexane	-	1.0	/	ND (1.0)
Methyl Butyl Ketone (2-Hexanone)         ug/L         10.0         ND (10.0)           Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Methyl Ethyl Ketone (2-Butanone)		5.0		
Methyl Isobutyl Ketone         ug/L         5.0         ND (5.0)           Methyl tert-butyl ether         ug/L         2.0         ND (2.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Methylene Chloride         ug/L         0.5         ND (0.5)         ND (0.5)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Vethyl Butyl Ketone (2-Hexanone)		10.0		· /
Methyl tert-butyl ether         ug/L         2.0         ND (2.0)           Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Authylene Chloride         ug/L         0.5         ND (0.5)         ND (0.5)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Vethyl Isobutyl Ketone		5.0		
Methylene Chloride         ug/L         5.0         0.05 mg/L (50 ug/L)         ND (5.0)           Styrene         ug/L         0.5         ND (0.5)         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Methyl tert-butyl ether	-	2.0		ND (2.0)
byrene         ug/L         0.5         ND (0.5)           ,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Methylene Chloride	-	5.0	0.05 mg/L (50 ug/L)	. ,
,1,1,2-Tetrachloroethane         ug/L         0.5         ND (0.5)           ,1,2,2-Tetrachloroethane         ug/L         0.5         ND (0.5)	Styrene		0.5		
,1,2,2-Tetrachloroethane ug/L 0.5 ND (0.5)	1,1,1,2-Tetrachloroethane		0.5		
	1,1,2,2-Tetrachloroethane	-	0.5		
	Fetrachloroethylene	-		0.03 mg/L (30 ug/L)	

### TABLE 3B SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING TEST WELL TW2 - JUNE 2, 2015

Parameter	Units	MDL	Ontario Drinking Water Standards, Objecives and Guidelines	Test Well TW2
Toluene	ug/L	0.5	0.024 mg/L (24 ug/L)	ND (0.5)
1,1,1-Trichloroethane	ug/L	0.5		ND (0.5)
1,1,2-Trichloroethane	ug/L	0.5		ND (0.5)
Trichloroethylene	ug/L	0.5	0.005 mg/L (5 ug/L)	ND (0.5)
Trichlorofluoromethane	ug/L	1.0		ND (1.0)
1,3,5-Trimethylbenzene	ug/L	0.5		ND (0.5)
Vinyl Chloride	ug/L	0.5	0.002 mg/L (2 ug/L)	ND (0.5)
m/p-Xylene	ug/L	0.5		ND (0.5)
o-Xylene	ug/L	0.5		ND (0.5)
Xylenes, total	ug/L	0.5	0.3 mg/L (300 ug/L)	ND (0.5)
<u>Hydrocarbons</u>				
F1 PHCs (C6-C10)	ug/L	25		ND (25)
F2 PHCs (C10-C16)	ug/L	100		ND (100)
F3 PHCs (C16-C34)	ug/L	100		ND (100)
F4 PHCs (C34-C50)	ug/L	100		ND (100)
TPH (diesel)	mg/L	0.1		ND (0.1)
Semi-Volatiles				
Ethylene glycol	mg/L	2		ND (2)
Diethylene glycol	mg/L	2		ND (2)
Propylene glycol	mg/L	2		ND (2)
Triethylene glycol	mg/L	2		ND (2)
Trimethylene glycol	mg/L	2		ND (2)

### TABLE 3C SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING TEST WELL TW3 - JUJE 20, 2013

Parameter	Units	MDL	TW3-6HR
1,1,1,2-tetrachloroethane	ug/L	0.5	<0.5
1,1,1-trichloroethane	ug/L	0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L	0.5	<0.5
1,1,2-trichloroethane	ug/L	0.4	<0.4
1,1-dichloroethane	ug/L	0.4	<0.4
1,1-dichloroethylene	ug/L	0.5	<0.5
1,2-dibromoethane	ug/L	0.2	<0.2
1,2-dichlorobenzene	ug/L	0.4	<0.4
1,2-dichloroethane	ug/L	0.2	<0.2
1,2-dichloropropane	ug/L	0.5	<0.5
1,3,5-trimethylbenzene	ug/L	0.3	<0.3
1,3-dichlorobenzene	ug/L	0.4	<0.4
1,4-dichlorobenzene	ug/L	0.4	<0.4
Alachlor	ug/L	1	<1.0
Atrazine	ug/L	1	<1.0
Azinphos-methyl	ug/L	2	<2
Bendiocarb	ug/L	2	<2
Benzene	ug/L	0.5	<0.5
Bromodichloromethane	ug/L	0.3	<0.3
Bromoform	ug/L	0.4	<0.4
Bromomethane	ug/L	0.5	<0.5
c-1,2-Dichloroethylene	ug/L	0.4	<0.4
c-1,3-Dichloropropylene	ug/L	0.2	<0.2
Carbaryl	ug/L	5	<5
Carbofuran	ug/L	5	<5
Carbon Tetrachloride	ug/L	0.2	<0.2
Chloroethane	ug/L	0.2	<0.2
Chloroform	ug/L	0.5	<0.5
Chloromethane	ug/L	0.2	<0.2
Chlorpyrifos	ug/L	1	<1
Cyanazine	ug/L	1	<1
De-ethylated atrazine	ug/L	1	<1.0
Diazinon	ug/L	1	<1
Dibromochloromethane	ug/L	0.3	<0.3
Dichlorodifluoromethane	ug/L	0.5	<0.5
Dichloromethane	ug/L	4	<4.0
Diclofop-methyl	ug/L	1	<1.0

### TABLE 3C SUMMARY OF HISTORICAL AND ADJACENT LAND USE TESTING TEST WELL TW3 - JUJE 20, 2013

Parameter	Units	MDL	TW3-6HR
Dimethoate	ug/L	2.5	<2.5
Ethylbenzene	ug/L	0.5	<0.5
F1 (C6-C10)	mg/L	0.1	<0.1
F2 (C10-C16)	mg/L	0.1	<0.1
F3 (C16-C34)	mg/L	0.2	<0.2
F4 (C34-C50)	mg/L	0.2	<0.2
m/p-xylene	ug/L	0.5	<0.5
Malathion	ug/L	5	<5
Metolachlor	ug/L	1	<1.0
Metribuzin	ug/L	5	<5
Monochlorobenzene	ug/L	0.2	<0.2
o-xylene	ug/L	0.5	<0.5
Parathion	ug/L	1	<1
Phorate	ug/L	1	<1.0
Prometryne	ug/L	1	<1.0
Simazine	ug/L	1	<1
Styrene	ug/L	0.5	<0.5
t-1,2-Dichloroethylene	ug/L	0.4	<0.4
t-1,3-Dichloropropylene	ug/L	0.2	<0.2
Temephos	ug/L	10	<10
Terbufos	ug/L	1	<1.0
Tetrachloroethylene	ug/L	0.3	<0.3
Toluene	ug/L	0.5	<0.5
Triallate	ug/L	1	<1
Trichloroethylene	ug/L	0.3	<0.3
Trichlorofluoromethane	ug/L	0.5	<0.5
Trifluralin	ug/L	1	<1.0
Vinyl Chloride	ug/L	0.2	<0.2
Xylene; total	ug/L	1	<1.0

# TABLE 4ASUMMARY OF RETESTING RESULTSTEST WELL TW1 - AUGUST 19, 2013

Parameter	Units	TW1-R1	TW1-R2	Ontario Drinking Water Standard	Type of Standard
Total Chlorine (field test)	mg/L	0.0	0.0	-	-
Turbidity (field test)	NTU	-	0.70	-	-
Total Coliforms	ct/100mL	0	0	0	MAC ⁽¹⁾
Escherichia Coli	ct/100mL	0	0	0	MAC
Heterotrophic Plate Count	ct/1mL	4	7	-	-
Faecal Coliforms	ct/100mL	0	0	-	-
Faecal Streptococcus	ct/100mL	0	0	-	-

### NOTES:

1. MAC = Maximum Acceptable Concentration

2. '-' signifies no value provided in the ODWS guideline.

### TABLE 4B SUMMARY OF RETESTING RESULTS TEST WELL TW2 - JULY 22, 2013

Parameter	Units	TW2-R1	TW2-R2	Ontario Drinking Water Standard	Type of Standard
Total Chlorine (field test)	mg/L	0.0	0.0	-	-
Total Coliforms	ct/100mL	0	0	0	MAC (1)
Escherichia Coli	ct/100mL	0	0	0	MAC
Heterotrophic Plate Count	ct/1mL	2	0	-	-
Faecal Coliforms	ct/100mL	0	0	-	-
Faecal Streptococcus	ct/100mL	1	0	-	-

### NOTES:

1. MAC = Maximum Acceptable Concentration

2. '-' signifies no value provided in the ODWS guideline.

### TABLE 5A SUMMARY OF FIELD PARAMETER MEASUREMENTS OFFSITE PRIVATE WELLS

Private Well	Total Chlorine (mg/L)
PW1	0.0
PW2	0.0

#### TABLE 5B SUMMARY OF ANALYTICAL RESULTS PRIVATE WELLS

Parameter	Units	PW1	PW2	Ontario Drinking Water Standard	Type of Standard
Total Coliforms	ct/100mL	0	0	0	MAC ⁽¹⁾
Escherichia Coli	ct/100mL	0	0	0	MAC
Heterotrophic Plate Count	ct/1mL	0	0	-	-
Faecal Coliforms	ct/100mL	0	0	-	-
Faecal Streptococcus	ct/100mL	0	0	-	-
Alkalinity as CaCO3	mg/L	156	227	30-500	OG ⁽²⁾
Calcium (Ca)	mg/L	73	75	-	-
Chloride (Cl)	mg/L	44	127	250	AO ⁽³⁾
Colour	TCU	2	2	5	AO
Conductivity	uS/cm	521	996	-	-
Dissolved Organic Carbon (DOC)	mg/L	1.1	1.9	5	AO
Fluoride (F)	mg/L	<0.10	<0.10	1.5	MAC
Iron (Fe)	mg/L	0.21	0.03	0.3	AO
Hardness as CaCO3	mg/L	<u>252</u>	<u>220</u>	80-100	OG
Ion Balance		1.08	1.05	-	-
Potassium (K)	mg/L	2	1	-	-
Magnesium (Mg)	mg/L	17	8	-	-
Manganese (Mn)	mg/L	0.02	<0.01	0.05	AO
Sodium (Na)	mg/L	16	131	200 (4)	AO
Ammonia (N-NH3)	mg/L	0.05	0.05	-	-
Nitrite (N-NO2)	mg/L	<0.10	<0.10	0.1 (5)	MAC
Nitrate (N-NO3)	mg/L	<0.10	9.57	10 ⁽⁵⁾	MAC
рН		7.82	7.75	6.5-8.5	OG
Phenols	mg/L	<0.001	<0.001	-	-
Sulphide (S2-)	mg/L	<0.01	<0.01	0.05	AO
Sulphate (SO4)	mg/L	48	39	500	AO
Tannin & Lignin	mg/L	<0.1	<0.1	-	-
Total Dissolved Solids (TDS)	mg/L	339	<u>647</u>	500	AO
Total Kjeldahl Nitrogen (TKN)	mg/L	<0.10	<0.10	-	-
Turbidity	NTU	2.7	0.2	5	AO
Organic Nitrogen (6)	mg/L	0.05	0.05	0.15	OG

NOTES:

1. MAC = Maximum Acceptable Concentration

2. OG = Operational Guideline

3. AO = Aesthetic Objective

4. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.

5. The total of Nitrate and Nitrite should not exceed 10 mg/litre

6. Organic Nitrogen = Total Kjeldahl Nitrogen - N-NH3 and should not exceed 0.15 mg/litre.

7. '-' signifies no value provided in the ODWS guideline.

## APPENDIX K

Test Well Sampling – Laboratory Certificates of Analysis



Client:	Houle Chevrier Engineering			
	180 Wescar Lane, R.R. #2		Report Number:	1311934
	Carp, ON		Date Submitted:	2013-06-18
	KOA 1LO		Date Reported:	2013-06-21
Attention:	Mr. James McEwen		Project:	11-037
PO#:			COC #:	152382
Invoice to:	Houle Chevrier Engineering	Page 1 of 2		

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

**Report Comments:** 

APPROVAL:

Jennifer Mitchell Laboratory Supervisor, Microbiology

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1311934
Date Submitted:	2013-06-18
Date Reported:	2013-06-21
Project:	11-037
COC #:	152382

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1034388 Water 2013-06-18 TW1 - 3Hr	1034389 Water 2013-06-18 TW1 - 6Hr
Group	Analyte	MRL	Units	Guideline		
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Faecal Coliforms	0	ct/100mL		0	0
	Faecal Streptococcus	0	ct/100mL		0	0
	Heterotrophic Plate Count	0	ct/1mL		216	193
	Total Coliforms	0	ct/100mL	MAC-0	60*	10*

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## **EXOVA** OTTAWA

**Certificate of Analysis** 



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen		Report Number: Date Submitted: Date Reported: Project: COC #:	1311933 2013-06-18 2013-06-24 11-037 152382	
Invoice to:	Houle Chevrier Engineering	Page 1 of 5			

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Lorna Wilson Laboratory Supervisor, Inorganics

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Attention: Mr. James McEwen PO#: Invoice to: Houle Chevrier Engineering

Report Number:	1311933
Date Submitted:	2013-06-18
Date Reported:	2013-06-24
Project:	11-037
COC #:	152382

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1034386 Water 2013-06-18 TW1 - 3Hr	1034387 Water 2013-06-18 TW1 - 6Hr
Calculations	Hardness as CaCO3	1	mg/L	OG-100	184*	193*
	Ion Balance	0.01			1.04	1.03
	TDS (COND - CALC)	1	mg/L	AO-500	441	446
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	250	247
	CI	1	mg/L	AO-250	34	35
	Colour	2	TCU	AO-5	2	<2
	Conductivity	5	uS/cm		678	686
	DOC	0.5	mg/L	AO-5	1.5	1.5
	F	0.10	mg/L	MAC-1.5	1.05	0.99
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	<0.10	<0.10
	рН	1.00		6.5-8.5	8.19	8.16
	S2-	0.01	mg/L	AO-0.05	0.23*	0.75*
	SO4	3	mg/L	AO-500	60	61
	Turbidity	0.1	NTU	MAC-1.0	12.2*	5.9*
Metals	Са	1	mg/L		39	41
	Fe	0.03	mg/L	AO-0.3	0.19	0.08
	K	1	mg/L		5	5
	Mg	1	mg/L		21	22
	Mn	0.01	mg/L	AO-0.05	<0.01	<0.01
	Na	2	mg/L	AO-200	85	80
Nutrients	N-NH3	0.02	mg/L		0.30	0.32
	Phenols	0.001	mg/L		<0.001	<0.001
	Tannin & Lignin	0.1	mg/L		<0.1	0.3
	Total Kjeldahl Nitrogen	0.10	mg/L		0.40	0.42

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1311933
Date Submitted:	2013-06-18
Date Reported:	2013-06-24
Project:	11-037
COC #:	152382

	Analyte			Blank		QC % Rec	QC Limits	
Run No	0	Analysis Date	2013-	06-21	Method	С	SM2340B	
Hardness	s as CaCO3							
Ion Balar	nce							
TDS (CC	ND - CALC)							
Run No	252705	Analysis Date	2013-	06-19	Method	С	SM4500-NH3D	
N-NH3					<0.02 mg/L		98	85-115
Run No	252709	Analysis Date	2013-	06-19	Method	С	SM2120C	
Colour					<2 TCU		95	90-110
Run No	252719	Analysis Date	2013-	06-19	Method	С	SM2130B	
Turbidity					<0.1 NTU		107	73-127
Run No	252755	Analysis Date	2013-	06-19	Method	С	SM4500-NO3-F	
N-NO2					<0.10 mg/L		120	80-120
N-NO3					<0.10 mg/L		83	80-120
Run No	252768	Analysis Date	2013-	06-19	Method	M	SM3120B-3500C	
Ca					<1 mg/L		108	80-120

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering			
	180 Wescar Lane, R.R. #2			
	Carp, ON			
	K0A 1L0			
Attention:	Mr. James McEwen			
PO#:				
Invoice to:	Houle Chevrier Engineering			

Report Number:	1311933
Date Submitted:	2013-06-18
Date Reported:	2013-06-24
Project:	11-037
COC #:	152382

Analyte		Blank	QC % Rec	QC Limits
К		<1 mg/L	108	80-120
Mg		<1 mg/L	102	80-120
Na		<2 mg/L	107	80-120
Run No 252769	Analysis Date 2013-	06-19 <b>Method</b> C	SM4500-S2-D	
S2-		<0.01 mg/L	104	
Run No 252780	Analysis Date 2013-	06-20 Method C	SM5550B	
Tannin & Lignin		<0.1 mg/L	100	80-120
Run No 252784	Analysis Date 2013-	06-20 Method S	M 4110C	
CI		<1 mg/L	99	90-110
SO4		<3 mg/L	105	90-110
Run No 252789	Analysis Date 2013-	06-19 <b>Method</b> S	M 2320B	
Alkalinity as CaCO3		<5 mg/L	97	95-105
Conductivity		<5 uS/cm	100	95-105
F		<0.10 mg/L	101	90-110
рН		5.77	100	90-110
Run No 252870	Analysis Date 2013-	06-21 <b>Method</b> C	SM4500-Norg-C	
Total Kjeldahl Nitrogen		<0.10 mg/L	105	77-123

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering			
	180 Wescar Lane, R.R. #2			
	Carp, ON			
	K0A 1L0			
Attention:	Mr. James McEwen			
PO#:				
Invoice to:	Houle Chevrier Engineering			

Report Number:	1311933
Date Submitted:	2013-06-18
Date Reported:	2013-06-24
Project:	11-037
COC #:	152382

	Analyte				Blank		QC % Rec	QC Limits
Run No	252878	Analysis Date	2013-	06-21	Method	С	SM5530D	
Phenols				<0	).001 mg/L		106	73-127
Run No	252923	Analysis Date	2013-	06-21	Method	EP	A 200.8	
Fe				<	0.03 mg/L		111	88-112
Mn				<	0.01 mg/L		102	91-109
Run No	252933	Analysis Date	2013-	06-21	Method	С	SM5310C	
DOC				<	<0.5 mg/L		98	84-116

Guideline = ODWSOG * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering			
	180 Wescar Lane, R.R. #2		Report Number:	1312115
	Carp, ON		Date Submitted:	2013-06-19
	KOA 1L0		Date Reported:	2013-06-21
Attention:	Mr. James McEwen		Project:	11-037
PO#:			COC #:	37670
Invoice to:	Houle Chevrier Engineering	Page 1 of 2		

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

**Report Comments:** 

APPROVAL:

Jennifer Mitchell Laboratory Supervisor, Microbiology

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



EXOVA	οτταψα
-------	--------

Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1312115
Date Submitted:	2013-06-19
Date Reported:	2013-06-21
Project:	11-037
COC #:	37670

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1034818 Water 2013-06-19 TW2 - 3Hr	1034819 Water 2013-06-19 TW2 - 6Hr
Group	Analyte	MRL	Units	Guideline		
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Faecal Coliforms	0	ct/100mL		0	0
	Faecal Streptococcus	0	ct/100mL		0	0
	Heterotrophic Plate Count	0	ct/1mL		15	23
	Total Coliforms	0	ct/100mL	MAC-0	3*	3*

Guideline = ODWSOG

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## **EXOVA** OTTAWA

**Certificate of Analysis** 



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen		Report Number: Date Submitted: Date Reported: Project: COC #:	1312144 2013-06-19 2013-06-26 11-037 37670	
Invoice to:	Houle Chevrier Engineering	Page 1 of 5			

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Lorna Wilson Laboratory Supervisor, Inorganics

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1312144
Date Submitted:	2013-06-19
Date Reported:	2013-06-26
Project:	11-037
COC #:	37670

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1034957 Water 2013-06-19 TW2-3hr	1034958 Water 2013-06-19 TW2-6hr
Calculations	Hardness as CaCO3	1	mg/L	OG-100	261*	256*
	Ion Balance	0.01	0		0.95	0.97
	TDS (COND - CALC)	1	mg/L	AO-500	360	359
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	191	189
	CI	1	mg/L	AO-250	32	32
	Colour	2	TCU	AO-5	2	<2
	Conductivity	5	uS/cm		554	553
	DOC	0.5	mg/L	AO-5	1.1	1.2
	F	0.10	mg/L	MAC-1.5	0.23	0.24
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	2.78	<0.10
	рН	1.00		6.5-8.5	8.09	8.06
	S2-	0.01	mg/L	AO-0.05	0.11*	0.11*
	SO4	3	mg/L	AO-500	60	60
	Turbidity	0.1	NTU	MAC-1.0	15.5*	5.0*
Metals	Са	1	mg/L		65	63
	Fe	0.03	mg/L	AO-0.3	0.58*	0.24
	K	1	mg/L		3	3
	Mg	1	mg/L		24	24
	Mn	0.01	mg/L	AO-0.05	0.01	<0.01
	Na	2	mg/L	AO-200	13	13
Nutrients	N-NH3	0.02	mg/L		0.08	0.09
	Phenols	0.001	mg/L		<0.001	<0.001
	Tannin & Lignin	0.1	mg/L		0.2	0.2
	Total Kjeldahl Nitrogen	0.10	mg/L		0.17	<0.10

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1312144
Date Submitted:	2013-06-19
Date Reported:	2013-06-26
Project:	11-037
COC #:	37670

	Analyte				Blank		QC % Rec	QC Limits
Run No	0	Analysis Date	2013-	06-26	Method	C	SM2340B	
Hardness	s as CaCO3							
Ion Balar	nce							
TDS (CC	ND - CALC)							
Run No	252780	Analysis Date	2013-	06-20	Method	С	SM5550B	
Tannin &	Lignin				<0.1 mg/L		100	80-120
Run No	252830	Analysis Date	2013-	06-20	Method	C	SM2130B	
Turbidity					<0.1 NTU		107	73-127
Run No	252873	Analysis Date	2013-	06-21	Method	C	SM2120C	
Colour					<2 TCU		100	90-110
Run No	252874	Analysis Date	2013-	06-21	Method	C	SM4500-NH3D	
N-NH3					<0.02 mg/L		101	85-115
Run No	252915	Analysis Date	2013-	06-21	Method	С	SM4500-NO3-F	
N-NO2					<0.10 mg/L		110	80-120
N-NO3					<0.10 mg/L		92	80-120

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering			
	180 Wescar Lane, R.R. #2			
	Carp, ON			
	K0A 1L0			
Attention:	Mr. James McEwen			
PO#:				
Invoice to:	Houle Chevrier Engineering			

1312144
2013-06-19
2013-06-26
11-037
37670

	Analyte				Blank		QC % Rec	QC Limits
Run No 2	252923	Analysis Date	2013-0	06-21	Method	EP	PA 200.8	
Fe				<	<0.03 mg/L		111	88-112
Mn				<	<0.01 mg/L		102	91-109
Run No 2	252966	Analysis Date	2013-0	06-21	Method	SN	1 4110C	
CI					<1 mg/L		100	90-110
SO4					<3 mg/L		108	90-110
Run No 2	252976	Analysis Date	2013-0	06-21	Method	SN	1 2320B	
Alkalinity as	s CaCO3				<5 mg/L		99	95-105
Conductivit	ty				<5 uS/cm		101	95-105
F				۷	<0.10 mg/L		100	90-110
рН					5.92		100	90-110
Run No 2	253037	Analysis Date	2013-0	06-25	Method	С	SM4500-Norg-C	
Total Kjelda	ahl Nitrogen			<	<0.10 mg/L		98	77-123
Run No 2	253111	Analysis Date	2013-	06-25	Method	M	SM3120B-3500C	
Ca					<1 mg/L		100	80-120
К					<1 mg/L		111	80-120
Mg					<1 mg/L		96	80-120

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering				
	180 Wescar Lane, R.R. #2				
	Carp, ON				
	K0A 1L0				
Attention:	Mr. James McEwen				
PO#:					
Invoice to:	Houle Chevrier Engineering				

1312144
2013-06-19
2013-06-26
11-037
37670

	Analyte				Blank		QC % Rec	QC Limits
Na					<2 mg/L		106	80-120
Run No	253133	Analysis Date	2013-	06-25	Method	C	SM5310C	
DOC				<	<0.5 mg/L		97	84-116
Run No	253151	Analysis Date	2013-	06-26	Method	C	SM5530D	
Phenols				<(	).001 mg/L		125	73-127
Run No	253199	Analysis Date	2013-	06-26	Method	С	SM4500-S2-D	
S2-				<	0.01 mg/L		104	

Guideline = ODWSOG * = Guide

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.

## **EXOVA** OTTAWA



Client:	Houle Chevrier Engineering			
	180 Wescar Lane, R.R. #2		Report Number:	1312314
	Carp, ON		Date Submitted:	2013-06-21
	K0A 1L0		Date Reported:	2013-06-24
Attention:	Mr. James McEwen		Project:	11-037
PO#:			COC #:	37746
Invoice to:	Houle Chevrier Engineering	Page 1 of 2		

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

**Report Comments:** 

APPROVAL:

Dragana Dzeletovic Microbiology Laboratory Team Lead

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAF, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

## **Certificate of Analysis**



<b>EXOVA</b>	OTTAWA
--------------	--------

Client:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2
	,
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1312314
Date Submitted:	2013-06-21
Date Reported:	2013-06-24
Project:	11-037
COC #:	37746

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1035339 Water 2013-06-20 TW3-3hr	1035340 Water 2013-06-20 TW3-6hr
Group	Analyte	MRL	Units	Guideline		
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Faecal Coliforms	0	ct/100mL		0	0
	Faecal Streptococcus	0	ct/100mL		0	0
	Heterotrophic Plate Count	0	ct/1mL		2	6
	Total Coliforms	0	ct/100mL	MAC-0	0	0

Guideline = ODWSOG

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering				
	180 Wescar Lane, R.R. #2		Report Number:	1312344	
	Carp, ON		Date Submitted:	2013-06-21	
	KOA 1LO		Date Reported:	2013-06-28	
Attention:	Mr. James McEwen		Project:	11-037	
PO#:			COC #:	37746	
Invoice to:	Houle Chevrier Engineering	Page 1 of 5			

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Diana Cameron Team Leader, Inorganics APPROVAL:

Charlie (Long) Qu Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Attention: Mr. James McEwen PO#: Invoice to: Houle Chevrier Engineering

Report Number:	1312344
Date Submitted:	2013-06-21
Date Reported:	2013-06-28
Project:	11-037
COC #:	37746

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. <b>Guideline</b>	1035414 Water 2013-06-20 TW3-3Hr	1035415 Water 2013-06-20 TW3-6Hr
Calculations	Hardness as CaCO3	1	mg/L	OG-100	263*	261*
	Ion Balance	0.01			0.91	0.91
	TDS (COND - CALC)	1	mg/L	AO-500	384	383
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	184	183
	CI	1	mg/L	AO-250	46	48
	Colour	2	TCU	AO-5	2	<2
	Conductivity	5	uS/cm		591	589
	DOC	0.5	mg/L	AO-5	1.2	1.2
	F	0.10	mg/L	MAC-1.5	0.10	0.10
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	0.67	0.46
	рН	1.00		6.5-8.5	7.94	7.95
	S2-	0.01	mg/L	AO-0.05	<0.01	<0.01
	SO4	3	mg/L	AO-500	61	59
	Turbidity	0.1	NTU	MAC-1.0	2.8*	2.7*
Herbicide/Pesticide	Alachlor	1.0	ug/L	IMAC-5		<1.0
	Atrazine	1.0	ug/L			<1.0
	Azinphos-methyl	2	ug/L	MAC-20		<2
	Bendiocarb	2	ug/L	MAC-40		<2
	Carbaryl	5	ug/L	MAC-90		<5
	Carbofuran	5	ug/L	MAC-90		<5
	Chlorpyrifos	1	ug/L	MAC-90		<1
	Cyanazine	1	ug/L	IMAC-10		<1
	De-ethylated atrazine	1.0	ug/L			<1.0
	Diazinon	1	ug/L	MAC-20		<1
	Diclofop-methyl	1.0	ug/L	MAC-9		<1.0

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON
	K0A 1L0
Attention: PO#:	Mr. James McEwen
Invoice to:	Houle Chevrier Engineering

Report Number:	1312344
Date Submitted:	2013-06-21
Date Reported:	2013-06-28
Project:	11-037
COC #:	37746

				Lab I.D. Sample Matrix Sample Type	1035414 Water	1035415 Water
				Sampling Date Sample I.D.	2013-06-20 TW3-3Hr	2013-06-20 TW3-6Hr
Group	Analyte	MRL	Units	Guideline		
Herbicide/Pesticide	Dimethoate	2.5	ug/L	IMAC-20		<2.5
	Malathion	5	ug/L	MAC-190		<5
	Metolachlor	1.0	ug/L	IMAC-50		<1.0
	Metribuzin	5	ug/L	MAC-80		<5
	Parathion	1	ug/L	MAC-50		<1
	Phorate	1.0	ug/L	IMAC-2		<1.0
	Prometryne	1.0	ug/L	IMAC-1		<1.0
	Simazine	1	ug/L	IMAC-10		<1
	Temephos	10	ug/L	IMAC-280		<10
	Terbufos	1.0	ug/L	IMAC-1		<1.0
	Triallate	1	ug/L	MAC-230		<1
	Trifluralin	1.0	ug/L	IMAC-45		<1.0
Hydrocarbons	F1 (C6-C10)	0.1	mg/L			<0.1
	F2 (C10-C16)	0.1	mg/L			<0.1
	F3 (C16-C34)	0.2	mg/L			<0.2
	F4 (C34-C50)	0.2	mg/L			<0.2
Metals	Ca	1	mg/L		74	73
	Fe	0.03	mg/L	AO-0.3	0.18	0.26
	К	1	mg/L		2	2
	Mg	1	mg/L		19	19
	Mn	0.01	mg/L	AO-0.05	<0.01	<0.01
	Na	2	mg/L	AO-200	10	11
Nutrients	N-NH3	0.02	mg/L		<0.02	0.06
	Phenols	0.001	mg/L		<0.001	<0.001
	Tannin & Lignin	0.1	mg/L		0.2	0.1
	Total Kjeldahl Nitrogen	0.10	mg/L		0.17	0.24

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.



Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Attention: Mr. James McEwen PO#: Invoice to: Houle Chevrier Engineering

Report Number:	1312344
Date Submitted:	2013-06-21
Date Reported:	2013-06-28
Project:	11-037
COC #:	37746

Crown	Angluta	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. <b>Guideline</b>	1035414 Water 2013-06-20 TW3-3Hr	1035415 Water 2013-06-20 TW3-6Hr
Group VOCs	Analyte			Guidenne		.0.5
VOUS	1,1,1,2-tetrachloroethane	0.5	ug/L			
	1,1,1-trichloroethane	0.4	ug/L			
	1,1,2,2-tetrachloroethane	0.5	ug/L			Water Water 2013-06-20 2013-06-20
	1,1,2-trichloroethane	0.4	ug/L			-
	1,1-dichloroethane	0.4	ug/L			-
	1,1-dichloroethylene	0.5	ug/L	MAC-14		
	1,2-dibromoethane	0.2	ug/L			
	1,2-dichlorobenzene	0.4	ug/L	MAC-200		
	1,2-dichloroethane	0.2	ug/L	IMAC-5		
	1,2-dichloroethane-d4	1	%			
	1,2-dichloropropane	0.5	ug/L			
	1,3,5-trimethylbenzene	0.3	ug/L			
	1,3-dichlorobenzene	0.4	ug/L			
	1,4-dichlorobenzene	0.4	ug/L	MAC-5		<0.4
	4-bromofluorobenzene	1	%			100
	Benzene	0.5	ug/L	MAC-5		<0.5
	Bromodichloromethane	0.3	ug/L			<0.3
	Bromoform	0.4	ug/L			<0.4
	Bromomethane	0.5	ug/L			<0.5
	c-1,2-Dichloroethylene	0.4	ug/L			<0.4
	c-1,3-Dichloropropylene	0.2	ug/L			<0.2
	Carbon Tetrachloride	0.2	ug/L	MAC-5		<0.2
	Chloroethane	0.2	ug/L			<0.2
	Chloroform	0.5	ug/L			<0.5
	Chloromethane	0.2	ug/L			<0.2
	Dibromochloromethane	0.3	ug/L			<0.3

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1312344
Date Submitted:	2013-06-21
Date Reported:	2013-06-28
Project:	11-037
COC #:	37746

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1035414 Water 2013-06-20 TW3-3Hr	1035415 Water 2013-06-20 TW3-6Hr
Group	Analyte	MRL	Units	Guideline		
VOCs	Dichlorodifluoromethane	0.5	ug/L			<0.5
	Dichloromethane	4.0	ug/L	MAC-50		<4.0
	Ethylbenzene	0.5	ug/L	AO-2.4	C-50     <4.0	
	m/p-xylene	0.5	ug/L			<0.5
	Monochlorobenzene	0.2	ug/L	MAC-80		<0.2
	o-xylene	0.5	ug/L			<0.5
	Styrene	0.5	ug/L			<0.5
	t-1,2-Dichloroethylene	0.4	ug/L			<0.4
	t-1,3-Dichloropropylene	0.2	ug/L			<0.2
	Tetrachloroethylene	0.3	ug/L	MAC-30		<4.0 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.4 <0.2 <0.4 <0.2 <0.4 <0.2
	Toluene	0.5	ug/L	AO-24		<0.5
	Toluene-d8	1	%			103
	Trichloroethylene	0.3	ug/L	MAC-5		<0.3
	Trichlorofluoromethane	0.5	ug/L			<0.5
	Vinyl Chloride	0.2	ug/L	MAC-2		<0.2
	Xylene; total	1.0	ug/L	AO-300		<1.0

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## APPENDIX L

Test Well Supplemental Sampling – Laboratory Certificates of Analysis



RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

# **Certificate of Analysis**

## **Houle Chevrier**

32 Steacie Drive Kanata, ON K2K 2A9 Attn: James McEwen

Phone: (613) 836-1422 Fax: (613) 836-9731

Client PO:	Report Date: 8-Jun-2015
Project: 11-037	Order Date: 2-Jun-2015
Custody: 23631	Order #: 1523122

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** TW-1 1523122-01

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work



## Certificate of Analysis

Client: Houle Chevrier Client PO:

### Project Description: 11-037

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

## **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date Analys	s Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	2-Jun-15 3	-Jun-15
Anions	EPA 300.1 - IC	2-Jun-15 3	-Jun-15
Colour	SM2120 - Spectrophotometric	2-Jun-15 2	-Jun-15
Glycols	EPA 8015C - GC-FID	3-Jun-15 3	-Jun-15
Hardness	Hardness as CaCO3	2-Jun-15 4	-Jun-15
Mercury by CVAA	EPA 245.1 - Cold Vapour AA	5-Jun-15 5	-Jun-15
Metals, ICP-MS	EPA 200.8 - ICP-MS	2-Jun-15 2	-Jun-15
рН	EPA 150.1 - pH probe @25 °C	2-Jun-15 3	-Jun-15
PHC F1	CWS Tier 1 - P&T GC-FID	2-Jun-15 3	-Jun-15
PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	3-Jun-15 3	-Jun-15
Total Dissolved Solids	SM 2540C - gravimetric, filtration	2-Jun-15 4	-Jun-15
TPH (diesel)	E3420 - GC-FID, extraction	3-Jun-15 3	-Jun-15
Turbidity	SM 2130B - Turbidity meter	2-Jun-15 2	-Jun-15
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	2-Jun-15 3	-Jun-15

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA - EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-WEST

104-195 Stafford Rd. W. Nepean, ON K2H 9C1 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4 N I A G A R A 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

K I N G S T O N 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 2 of 12

WWW.PARACELLABS.COM

Order #: 1523122

# **OPARACEL** Certificate of Analysis

Order #: 1523122

#### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Client: Houle Chevrier Client PO:		Project Descriptio	n: 11-037		Date:2-Jun-20
	Client ID:	TW-1	-	-	-
	Sample Date:	01-Jun-15	-	-	-
	Sample ID:	1523122-01	-	-	-
General Inorganics	MDL/Units	Water	-	-	-
Alkalinity, total	5 mg/L	201	-	-	-
Colour	2 TCU			-	
	1.0 mg/L	<2	-		-
Hardness	0.1 pH Units	288	-	-	-
pH	-	8.0	-	-	-
Total Dissolved Solids	10 mg/L	332	-	-	-
Turbidity	0.1 NTU	4.9	-	-	-
Anions					
Chloride	1 mg/L	32	-	-	-
Fluoride	0.1 mg/L	0.1	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-
Sulphate	1 mg/L	64	-	-	-
Metals					
Mercury	0.1 ug/L	<0.1	-	-	-
Aluminum	1 ug/L	13	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	<1	-	-	-
Barium	1 ug/L	104	-	-	-
Boron	10 ug/L	37	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Calcium	100 ug/L	73300	-	-	-
Chromium	1 ug/L	3	-	-	-
Copper	0.5 ug/L	<0.5	-	-	-
Iron	100 ug/L	358	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Magnesium	200 ug/L	25600	-	-	-
Manganese	5 ug/L	8	-	-	-
Selenium	1 ug/L	<1	-	-	-
Sodium	200 ug/L	11900	-	-	-
Uranium	0.1 ug/L				
	5 ug/L	3.0	-	-	-
Zinc /olatiles	∪ dy/L	<5	-	-	-
Acetone	5.0 ug/L	<5.0	_	-	

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0 KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

NIAGARA

218-704 Mara St. Point Edward, ON N7V 1X4

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

Page 3 of 12

## PARACEL Certificate of Analysis

Order #: 1523122

#### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Client: Houle Chevrier Client PO:

#### Project Description: 11-037 **Client ID:** TW-1 -01-Jun-15 Sample Date: ---1523122-01 Sample ID: **MDL/Units** Water 0.5 ug/L Benzene < 0.5 ---0.5 ug/L Bromodichloromethane <0.5 ---0.5 ug/L Bromoform <0.5 ---0.5 ug/L Bromomethane <0.5 ---0.2 ug/L Carbon Tetrachloride <0.2 ---0.5 ug/L Chlorobenzene < 0.5 ---1.0 ug/L Chloroethane <1.0 --0.5 ug/L Chloroform <0.5 _ _ -3.0 ug/L Chloromethane <3.0 _ -0.5 ug/L Dibromochloromethane < 0.5 _ -_ 1.0 ug/L Dichlorodifluoromethane <1.0 _ --0.2 ug/L 1,2-Dibromoethane < 0.2 ---0.5 ug/L 1,2-Dichlorobenzene < 0.5 ---0.5 ug/L 1.3-Dichlorobenzene < 0.5 _ _ -0.5 ug/L 1,4-Dichlorobenzene <0.5 _ --0.5 ug/L 1,1-Dichloroethane < 0.5 _ 0.5 ug/L 1,2-Dichloroethane < 0.5 ---0.5 ug/L 1,1-Dichloroethylene < 0.5 ---0.5 ug/L cis-1,2-Dichloroethylene <0.5 --trans-1,2-Dichloroethylene 0.5 ug/L <0.5 ---0.5 ug/L 1,2-Dichloroethylene, total < 0.5 ---0.5 ug/L 1,2-Dichloropropane < 0.5 ---0.5 ug/L cis-1,3-Dichloropropylene < 0.5 --0.5 ug/L trans-1,3-Dichloropropylene <0.5 _ 0.5 ug/L 1,3-Dichloropropene, total <0.5 _ _ _ 0.5 ug/L Ethylbenzene <0.5 -1.0 ug/L Hexane <1.0 ---5.0 ug/L Methyl Ethyl Ketone (2-Butanone) <5.0 ---10.0 ug/L Methyl Butyl Ketone (2-Hexanone <10.0 ---5.0 ug/L Methyl Isobutyl Ketone < 5.0 ---2.0 ug/L Methyl tert-butyl ether <2.0 _ 5.0 ua/L Methylene Chloride <5.0 --_ 0.5 ug/L Styrene < 0.5 ---0.5 ug/L 1,1,1,2-Tetrachloroethane < 0.5 ---

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-WEST

104-195 Stafford Rd. W. Nepean, ON K2H 9C1

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

> SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

NIAGARA 360 York Rd, Unit 16B Niagara-on-the-Lake, ON LOS 1J0

KINGSTON

1058 Gardiners Rd. Kingston, ON K7P 1R7

WWW.PARACELLABS.COM

Page 4 of 12

## Certificate of Analysis

Client: Houle Chevrier

Trimethylene glycol

**OPARACEL** 

Client PO:

Order #: 1523122

#### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

-

-

. -_

---------------

-----

---

-

-

	Sample Date: Sample ID:	01-Jun-15 1523122-01	-		
	MDL/Units	Water	-	-	
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	Ι
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	
Toluene	0.5 ug/L	<0.5	-	-	
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	
Trichloroethylene	0.5 ug/L	<0.5	-	-	
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	
Vinyl chloride	0.5 ug/L	<0.5	-	-	
m,p-Xylenes	0.5 ug/L	<0.5	-	-	
o-Xylene	0.5 ug/L	<0.5	-	-	
Xylenes, total	0.5 ug/L	<0.5	-	-	
4-Bromofluorobenzene	Surrogate	109%	-	-	
Dibromofluoromethane	Surrogate	117%	-	-	
Toluene-d8	Surrogate	109%	-	-	
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	
TPH (diesel)	0.1 mg/L	<0.1	-	-	
Semi-Volatiles			-		
Ethylene glycol	2 mg/L	<2	-	-	
Diethylene glycol	2 mg/L	<2	-	-	Γ
Propylene glycol	2 mg/L	<2	-	-	
Triethylene glycol	2 mg/L	<2	-	-	

Project Description: 11-037

TW-1

Client ID:

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

-

SARNIA

218-704 Mara St. Point Edward, ON N7V 1X4

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

-

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 5 of 12

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

2 mg/L

<2



Analyte

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon Tetrachloride

Dibromochloromethane

Dichlorodifluoromethane

## Certificate of Analysis

Method Quality Control: Blank

Client: Houle Chevrier Client PO:

### Order #: 1523122

#### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

RPD

Limit

Notes

RPD

%REC

Limit

Project Description: 11-037

Units

Source

Result

%REC

Reporting

Limit

Result

, indigite	Result	Limit	Units	Result	%REC	LIMI	KFD	Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics			5						
Alkalinity, total	ND	5	mg/L						
Colour	ND	2	TCU						
Total Dissolved Solids	ND	10	mg/L						
Turbidity	ND	0.1	NTU						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
TPH (diesel)	ND	0.1	mg/L						
Metals	nb	0.1	iiig/ E						
Mercury	ND	0.1	ug/L						
Aluminum	ND	1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Calcium	ND	100	ug/L						
Chromium	ND	1	ug/L						
Copper	ND	0.5	ug/L						
Iron	ND	100	ug/L						
Lead	ND	0.1	ug/L						
Magnesium	ND	200	ug/L						
Manganese	ND	5	ug/L						
Selenium	ND	1	ug/L						
Sodium	ND	200	ug/L						
Uranium	ND	0.1	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles			č						
Ethylene glycol	ND	2	mg/L						
Diethylene glycol	ND	2	mg/L						
Propylene glycol	ND	2	mg/L						
Triethylene glycol	ND	2	mg/L						
Trimethylene glycol	ND	2	mg/L						
Volatiles			-						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/l						

WWW.PARACELLABS.COM

E: PARACEL@PARACELLABS.COM

P: 1-800-749-1947

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-WEST

104-195 Stafford Rd. W. Nepean, ON K2H 9C1

0.2

0.5

1.0

0.5

3.0

0.5

1.0

ND

ND

ND

ND

ND

ND

ND

MISSISSAUGA

SARNIA

uğ/L

ug/L

ug/L ug/L

ug/L

uğ/L

ug/L

6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

218-704 Mara St. Point Edward, ON N7V 1X4

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 6 of 12



1,2-Dibromoethane

1,2-Dichlorobenzene 1,3-Dichlorobenzene

1,4-Dichlorobenzene

Analyte

## Certificate of Analysis

Method Quality Control: Blank

Client: Houle Chevrier Client PO:

### Order #: 1523122

#### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Project Description: 11-037

Result ND

ND

ND

ND

Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
0.2	ug/L						
0.5	uğ/L						
0.5	ug/L						
0.5	ug/L						
0.5	ug/L						
0.5	ua/L						

1,4-Dicitioroberizerie	ND	0.5	uy/L			
1,1-Dichloroethane	ND	0.5	ug/L			
1,2-Dichloroethane	ND	0.5	ug/L			
1,1-Dichloroethylene	ND	0.5	ug/L			
cis-1,2-Dichloroethylene	ND	0.5	ug/L			
trans-1,2-Dichloroethylene	ND	0.5	ug/L			
1,2-Dichloroethylene, total	ND	0.5	ug/L			
1,2-Dichloropropane	ND	0.5	ug/L			
cis-1,3-Dichloropropylene	ND	0.5	ug/L			
trans-1,3-Dichloropropylene	ND	0.5	ug/L			
1,3-Dichloropropene, total	ND	0.5	ug/L			
Ethylbenzene	ND	0.5	ug/L			
Hexane	ND	1.0	ug/L			
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L			
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L			
Methyl Isobutyl Ketone	ND	5.0	ug/L			
Methyl tert-butyl ether	ND	2.0	ug/L			
Methylene Chloride	ND	5.0	ug/L			
Styrene	ND	0.5	ug/L			
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L			
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L			
Tetrachloroethylene	ND	0.5	ug/L			
Toluene	ND	0.5	ug/L			
1,1,1-Trichloroethane	ND	0.5	ug/L			
1,1,2-Trichloroethane	ND	0.5	ug/L			
Trichloroethylene	ND	0.5	ug/L			
Trichlorofluoromethane	ND	1.0	ug/L			
1,3,5-Trimethylbenzene	ND	0.5	ug/L			
Vinyl chloride	ND	0.5	ug/L			
m,p-Xylenes	ND	0.5	ug/L			
o-Xylene	ND	0.5	ug/L			
Xylenes, total	ND	0.5	ug/L			
Surrogate: 4-Bromofluorobenzene	34.7		ug/L	108	50-140	
Surrogate: Dibromofluoromethane	32.5		ug/L	102	50-140	
Surrogate: Toluene-d8	35.6		ug/L	111	50-140	
	00.0					

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

NIAGARA

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 7 of 12

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1



## Certificate of Analysis

Client: Houle Chevrier Client PO:

Report Date: 08-Jun-2015

Order #: 1523122

### Project Description: 11-037

Order Date:2-Jun-2015

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	%REC Limit	RPD	Limit	Notes
Anions									
Chloride	110	1	mg/L	110			0.2	10	
Fluoride	1.18	0.1	mg/L	1.17			0.4	10	
Nitrate as N	5.81	0.1	mg/L	5.84			0.6	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	153	1	mg/L	154			0.6	10	
General Inorganics			0						
Alkalinity, total	353	5	mg/L	354			0.2	14	
Colour	ND	2	TČU	ND				12	
ρΗ	8.0	0.1	pH Units	8.0			0.1	10	
Total Dissolved Solids	316	10	mg/L	332			4.9	10	
Turbidity	4.8	0.1	NŤU	4.9			1.2	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Aluminum	66.5	1	ug/L	68.6			3.1	20	
Antimony	2.93	0.5	ug/L	3.01			2.6	20	
Arsenic	5.5	1	ug/L	5.5			0.3	20	
Barium	13.6	1	ug/L	13.7			0.5	20	
Boron	491	10	ug/L	527			7.0	20	
Cadmium	0.21	0.1	ug/L	ND			0.0	20	
Calcium	75600	1000	ug/L	71700			5.3	20	
Chromium	7.1	1	ug/L	2.9			84.1	20	QR-01
Copper	4.21	0.5	ug/L	4.41			4.6	20	
Iron	ND	100	ug/L	101			0.0	20	
Lead	0.11	0.1	ug/L	0.10			9.5	20	
Magnesium	25500	200	ug/L	25600			0.4	20	
Manganese	115	5	ug/L	117			1.8	20	
Selenium	4.6	1	ug/L	4.5			4.0	20	
Sodium	12900	200	ug/L	12800			0.9	20	
Uranium	10.7	0.1	ug/L	10.9			1.4	20	
Zinc	9	5	ug/L	9			2.1	20	
Semi-Volatiles	-		3	-					
Ethylene glycol	ND	2	mg/L	ND				50	
Diethylene glycol	ND	2	mg/L	ND				50	
Propylene glycol	ND	2	mg/L	ND				50	
Triethylene glycol	ND	2	mg/L	ND				50	
Trimethylene glycol	ND	2	mg/L	ND				50	
Volatiles			0						
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	

P: 1-800-749-1947

E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA

NIAGARA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0 KINGSTON

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

1058 Gardiners Rd. Kingston, ON K7P 1R7



Trichloroethylene

Vinyl chloride

m,p-Xylenes

o-Xylene

Trichlorofluoromethane

1,3,5-Trimethylbenzene

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

## **Certificate of Analysis**

Method Quality Control: Duplicate

Client: Houle Chevrier Client PO:

### Report Date: 08-Jun-2015

%REC

Order Date:2-Jun-2015

RPD

30

30

30

30

30

30

Order #: 1523122

### Project Description: 11-037

Source

Reporting

ND

ND

ND

ND

ND

ND

36.1

33.3

37.1

0.5

1.0

0.5

0.5

0.5

0.5

Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

ND

ND

ND

113

104

116

50-140

50-140

50-140

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-WEST

104-195 Stafford Rd. W. Nepean, ON K2H 9C1

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 9 of 12



## Certificate of Analysis

Client: Houle Chevrier Client PO:

## Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	9.64	1	mg/L	ND	96.4	78-112			
Fluoride	1.92	0.1	mg/L	1.17	74.6	73-113			
Nitrate as N	6.66	0.1	mg/L	5.84	82.1	81-112			
Nitrite as N	1.06	0.05	mg/L	ND	106	76-117			
Sulphate	10.6	1	mg/L	ND	106	75-111			
General Inorganics Total Dissolved Solids	80.0	10	mg/L	ND	80.0	75-125			
Hydrocarbons			-						
F1 PHCs (C6-C10)	1840	25	ug/L	ND	92.0	68-117			
F2 PHCs (C10-C16)	1780	100	ug/L	ND	99.0	60-140			
F3 PHCs (C16-C34)	4230	100	ug/L	ND	114	60-140			
F4 PHCs (C34-C50)	2680	100	ug/L	ND	108	60-140			
TPH (diesel)	4.36	0.1	mg/L	ND	109	46-135			
Metals									
Mercury	3.71	0.1	ug/L	ND	124	78-137			
Aluminum	45.9		ug/L	2.5	86.9	80-120			
Antimony	49.8		ug/L	3.01	93.7	80-120			
Arsenic	59.2		ug/L	5.5	107	80-120			
Barium	63.4		ug/L	13.7	99.4	80-120			
Boron	69		ug/L	29	79.0	80-120		C	QS-02
Cadmium	43.9		ug/L	ND	87.8	80-120			
Calcium	987		ug/L	ND	98.7	80-120			
Chromium	52.3		ug/L	2.9	98.8	80-120			
Copper	47.7		ug/L	4.41	86.7	80-120			
Iron	816		ug/L	101	71.5	80-120		C	QS-02
Lead	45.9 1140		ug/L	0.10 ND	91.7 114	80-120 80-120			
Magnesium Mangapasa	54.6		ug/L ug/L	ND	109	80-120 80-120			
Manganese Selenium	60.8		ug/∟ ug/L	4.5	109	80-120 80-120			
Sodium	1130		ug/L	ND	113	80-120			
Uranium	50.2		ug/L	10.9	78.6	80-120			
Zinc	49		ug/L	9	80.7	80-120			
Semi-Volatiles	10		ug/L	0	00.1	00 120			
Ethylene glycol	21	2	mg/L	ND	104	50-150			
Diethylene glycol	15	2	mg/L	ND	74.2	50-150			
Propylene glycol	23	2	mg/L	ND	115	50-150			
Triethylene glycol	7	2	mg/L	ND	33.7	50-150		C	QS-02
Trimethylene glycol	24	2	mg/L	ND	120	50-150			
Volatiles			-						
Acetone	88.7	5.0	ug/L	ND	88.7	50-140			
Benzene	27.4	0.5	ug/L	ND	68.6	50-140			
Bromodichloromethane	30.4	0.5	ug/L	ND	76.0	50-140			
Bromoform	39.0	0.5	ug/L	ND	97.5	50-140			
Bromomethane	16.3	0.5	ug/L	ND	40.8	50-140			
Carbon Tetrachloride	24.7	0.2	ug/L	ND	61.7	50-140			
Chlorobenzene	41.7	0.5	ug/L	ND	104	50-140			
Chloroethane	31.8	1.0	ug/L	ND	79.5	50-140			
A Hard Market Statements Internation	1	OTTAWA-EAST		MISSISSA	JGA	NIAGARA			
P: 1-800-749-1947		300-2319 St. Laure		6645 Kitimat R		360 York Rd.	Unit 16B	05 1 10	
E: PARACEL@PARACELLABS.COM		Ottawa, ON K1G 4.		Mississauga, O	IN LOIN 6J3	Niagara-on-th		105 100	
WWW.PARACELLABS.COM		OTTAWA - WEST 104-195 Stafford Ro		SARNIA 218-704 Mara S		KINGSTO 1058 Gardine			
		Nepean, ON K2H 9		Point Edward, (		Kingston, ON			Page 10 of 1

Project Description: 11-037

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Page 10 of 12



Vinyl chloride

m,p-Xylenes

Surrogate: 4-Bromofluorobenzene

o-Xylene

## Certificate of Analysis

Client: Houle Chevrier Client PO:

## Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	31.9	0.5	ug/L	ND	79.8	50-140			
Chloromethane	27.8	3.0	ug/L	ND	69.5	50-140			
Dibromochloromethane	42.0	0.5	ug/L	ND	105	50-140			
Dichlorodifluoromethane	32.2	1.0	ug/L	ND	80.6	50-140			
1,2-Dibromoethane	44.4	0.2	ug/L	ND	111	50-140			
1,2-Dichlorobenzene	38.6	0.5	ug/L	ND	96.4	50-140			
1,3-Dichlorobenzene	40.2	0.5	ug/L	ND	101	50-140			
1,4-Dichlorobenzene	38.9	0.5	ug/L	ND	97.4	50-140			
1,1-Dichloroethane	30.7	0.5	ug/L	ND	76.8	50-140			
1,2-Dichloroethane	31.5	0.5	ug/L	ND	78.7	50-140			
1,1-Dichloroethylene	37.5	0.5	ug/L	ND	93.7	50-140			
cis-1,2-Dichloroethylene	28.7	0.5	ug/L	ND	71.7	50-140			
trans-1,2-Dichloroethylene	29.7	0.5	ug/L	ND	74.2	50-140			
1,2-Dichloropropane	28.9	0.5	ug/L	ND	72.3	50-140			
cis-1,3-Dichloropropylene	33.2	0.5	ug/L	ND	83.1	50-140			
trans-1,3-Dichloropropylene	33.8	0.5	ug/L	ND	84.5	50-140			
Ethylbenzene	36.2	0.5	ug/L	ND	90.4	50-140			
Hexane	22.4	1.0	ug/L	ND	55.9	50-140			
Methyl Ethyl Ketone (2-Butanone)	91.0	5.0	ug/L	ND	91.0	50-140			
Methyl Butyl Ketone (2-Hexanone)	112	10.0	ug/L	ND	112	50-140			
Methyl Isobutyl Ketone	77.6	5.0	ug/L	ND	77.6	50-140			
Methyl tert-butyl ether	81.2	2.0	ug/L	ND	81.2	50-140			
Methylene Chloride	26.8	5.0	ug/L	ND	67.1	50-140			
Styrene	36.9	0.5	ug/L	ND	92.4	50-140			
1,1,1,2-Tetrachloroethane	40.7	0.5	ug/L	ND	102	50-140			
1,1,2,2-Tetrachloroethane	51.8	0.5	ug/L	ND	130	50-140			
Tetrachloroethylene	47.5	0.5	ug/L	ND	119	50-140			
Toluene	41.4	0.5	ug/L	ND	104	50-140			
1,1,1-Trichloroethane	30.8	0.5	ug/L	ND	77.0	50-140			
1,1,2-Trichloroethane	31.5	0.5	ug/L	ND	78.7	50-140			
Trichloroethylene	25.8	0.5	ug/L	ND	64.6	50-140			
Trichlorofluoromethane	26.2	1.0	ug/L	ND	65.5	50-140			
1,3,5-Trimethylbenzene	32.0	0.5	ug/L	ND	80.1	50-140			

Project Description: 11-037

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 11 of 12

### Order #: 1523122

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

29.8

80.8

39.3

22.1

0.5

0.5

0.5

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

74.6

101

98.2

69.1

50-140

50-140

50-140

50-140



### Certificate of Analysis

### Client: Houle Chevrier Client PO:

Project Description: 11-037

#### **Qualifier Notes:**

#### QC Qualifiers :

QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

#### **Sample Data Revisions**

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA - EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 N I A G A R A 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

KINGSTON 1058 Gardiners Rd. 7V 1X4 Kingston, ON K7P 1R7

Page 12 of 12

WWW.PARACELLABS.COM 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

GPARACEL LABORATORIES LTD.			ED . NSIV BLE .	Ε.		300 Otta p: 1 e: p	awa, Or -800-74 paracel@	e St. Laurer Itario K1 19-1947 2 paracell ellabs.co	G 4J8 abs.com				(Lab U)	Custo se Only) _23 _of	631	
Client Name: House Chevrier Engineering Lini	ted		Project	Reference:	-037						TAT: [					-
Contact Name. James Mc Eulen			Quote #											[] 3 Day		
Address: 32 Steacie Drive, Ottaura, or KRK 2A9	V,		PO #									] 2 Day		[]1 Day		
Kik 249	_		Email A	iddress: jmcewen	Pheen	9.69					Date Rec	quired:				
(e15)036-17av			1											00		
Criteria: [] O. Reg. 153/04 (As Amended) Table [] R	SC Filing	[]0.	Reg. 558/	00 []PWQO [	]CCME []S	UB (Storm	n) []S	UB (Sanit	ary) Mu	nicipalit	Y:		Athe	r ()V	200	>
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) St	6 (Storm/Sa	anitary Se	ewer) P (F	Paint) A (Air) O (C	Other)					Requ	ired An	alyses	/			
Paracel Order Number:			ers			(F)		EX		7						
1523122		ume	Containers	Sample	Taken	EP-1	-	ESBI ESBI	SW	In	hetals			0		
1000		Air Volume	Cor			JA	ACO	87	50	ercur	(et-					
Sample ID/Location Name	Matrix	Air	fo #	Date	Time	44	B	Þ\$	Ge	Ž	2					
1 TW-1	H20		7	June 1/15		V	V		V	V	V					
2																
3	1															
4																
5																
6	-															
7 Julian	5				1											
8 Sen chem = fli	Didd	Le,	N	Hat	, 101	tat	ō,	Alk	ul	iNI	ty	I C	hli	Hil	Le.	
· color, hardn	so	1 6	h,	5010	nate	17.	05	A,T	N	Bil	It	1			)	
10		1.1				/				Des	àc	A	S	Q	B	
Comments: Client will cent	KIM	ar	al	isis a	nd qu	jau	lin	٩.			1		Method	of Delive	у	
Distantion of A		~	4	and the second second							9		$\overline{)}$	was	Juij	J
Relinquished By (Sign):	Rective	8H	ve/Depot	-	Receiv	ed at Lab:	trp	ON	Orth	MAI	Verified	By:	tohe	S.r.		
Relinquished By (Print): Brith Webster	Date Ni	Ingen I	111	= 35	Date/T	ime: JU	NOR	3015	09		Date/Tin	A D	160	21	00	
Date/Time: June 1/2015 3:50	Temper	Contraction and Association	0	c	CONTRACTOR DESCRIPTION OF THE PARTY OF THE P	rature: 4	and straight straight straight		01		pH Verif	1 12	ميكليب <del>الأمك</del>		20	

Chain of Custody (Blank) - Rev 0.3 Oct. 2014



RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

# **Certificate of Analysis**

### **Houle Chevrier**

32 Steacie Drive Kanata, ON K2K 2A9 Attn: James McEwen

Phone: (613) 836-1422 Fax: (613) 836-9731

Client PO:	Report Date: 8-Jun-2015
Project: 11-037	Order Date: 2-Jun-2015
Custody: 23632	Order #: 1523158

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1523158-01 TW-2

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work



### Certificate of Analysis

Client: Houle Chevrier Client PO:

### Project Description: 11-037

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

### **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date Analysis	s Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	2-Jun-15 3-	Jun-15
Anions	EPA 300.1 - IC	4-Jun-15 4-	Jun-15
Colour	SM2120 - Spectrophotometric	3-Jun-15 3-	Jun-15
Glycols	EPA 8015C - GC-FID	3-Jun-15 3-	Jun-15
Hardness	Hardness as CaCO3	2-Jun-15 4-	Jun-15
Mercury by CVAA	EPA 245.1 - Cold Vapour AA	5-Jun-15 5-	Jun-15
Metals, ICP-MS	EPA 200.8 - ICP-MS	2-Jun-15 3-	Jun-15
pH	EPA 150.1 - pH probe @25 °C	2-Jun-15 3-	Jun-15
PHC F1	CWS Tier 1 - P&T GC-FID	2-Jun-15 3-	Jun-15
PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	3-Jun-15 3-	Jun-15
Total Dissolved Solids	SM 2540C - gravimetric, filtration	2-Jun-15 4-	Jun-15
TPH (diesel)	E3420 - GC-FID, extraction	3-Jun-15 3-	Jun-15
Turbidity	SM 2130B - Turbidity meter	3-Jun-15 3-	Jun-15
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	2-Jun-15 3-	Jun-15

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA - EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-WEST

104-195 Stafford Rd. W. Nepean, ON K2H 9C1 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4 N I A G A R A 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

K I NGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 2 of 12

## **OPARACEL** Certificate of Analysis

Order #: 1523158

### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Client: Houle Chevrier 

Client: Houle Chevrier		Project Description	on: 11-037	Orde	er Date:2-Jun-2018
	Client ID:	TW-2	-	-	-
	Sample Date:	02-Jun-15	-	-	-
	Sample ID:	1523158-01	-	-	-
0	MDL/Units	Water	-	-	-
General Inorganics	5 m a //				
Alkalinity, total	5 mg/L	199	-	-	-
Colour	2 TCU	2	-	-	-
Hardness	1.0 mg/L	316	-	-	-
рН	0.1 pH Units	7.6	-	-	-
Total Dissolved Solids	10 mg/L	384	-	-	-
Turbidity	0.1 NTU	2.4	-	-	-
Anions					
Chloride	1 mg/L	40	-	-	-
Fluoride	0.1 mg/L	<0.1	-	-	-
Nitrate as N	0.1 mg/L	1.7	-	-	-
Nitrite as N	0.05 mg/L	0.17	-	-	-
Sulphate	1 mg/L	67	-	-	-
Metals					
Mercury	0.1 ug/L	<0.1	-	-	-
Aluminum	1 ug/L	<1	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	<1	-	-	-
Barium	1 ug/L	179	-	-	-
Boron	10 ug/L	18	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Calcium	100 ug/L	95500	-	-	-
Chromium	1 ug/L	<1	-	-	-
Copper	0.5 ug/L	<0.5	-	-	-
Iron	100 ug/L	150	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Magnesium	200 ug/L	18800	-	-	-
Manganese	5 ug/L	7	-	-	-
Selenium	1 ug/L	<1	-	-	-
Sodium	200 ug/L	9950	-	-	-
Uranium	0.1 ug/L	5.3	-	-	-
Zinc	5 ug/L	<5	-	-	-
Volatiles					
Acetone	5.0 ug/L	<5.0	-	-	-

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

218-704 Mara St. Point Edward, ON N7V 1X4

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

Page 3 of 12

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1 SARNIA

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

### PARACEL Certificate of Analysis

Order #: 1523158

### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Certificate of Analysis	
Client: Houle Chevrier Client PO:	
	Client ID: Sample Date:

Client: Houle Chevrier				Orde	er Date:2-Ju
Client PO:		Project Descript	tion: 11-037		
	Client ID:	TW-2 02-Jun-15	-	-	-
	Sample Date: Sample ID:	1523158-01	-	-	-
	MDL/Units	Water	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
	10.0				

104-195 Stafford Rd. W. Nepean, ON K2H 9C1 218-704 Mara St. Point Edward, ON N7V 1X4

<10.0

<5.0

<2.0

<5.0

<0.5

< 0.5

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-EAST

OTTAWA-WEST

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

-

-

-

-

-

-

SARNIA

360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

-

-

-

-

-

-

NIAGARA

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 4 of 12

-

-

-

-

-

-

WWW.PARACELLABS.COM

E: PARACEL@PARACELLABS.COM

P: 1-800-749-1947

Methyl Butyl Ketone (2-Hexanone

Methyl Isobutyl Ketone

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

Methylene Chloride

Styrene

10.0 ug/L

5.0 ug/L

2.0 ug/L

5.0 ug/L

0.5 ug/L

0.5 ug/L

## **OPARACEL** Certificate of Analysis

Order #: 1523158

### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Client: Houle Chevrier Client PO:

Client PO:		Project Descripti	on: 11-037		
	Client ID: Sample Date: Sample ID: MDL/Units	TW-2 02-Jun-15 1523158-01 Water	- - -	- - - -	- - - -
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	110%	-	-	-
Dibromofluoromethane	Surrogate	117%	-	-	-
Toluene-d8	Surrogate	108%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
TPH (diesel)	0.1 mg/L	<0.1	-	-	-
Semi-Volatiles					
Ethylene glycol	2 mg/L	<2	-	-	-
Diethylene glycol	2 mg/L	<2	-	-	-
Propylene glycol	2 mg/L	<2	-	-	-
Triethylene glycol	2 mg/L	<2	-	-	-
Trimethylene glycol	2 mg/L	<2	-	-	-

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

KINGSTON 218-704 Mara St. Point Edward, ON N7V 1X4 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 5 of 12



Analyte

### **Certificate of Analysis**

Method Quality Control: Blank

Client: Houle Chevrier Client PO:

### Order #: 1523158

### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

RPD

Limit

Notes

RPD

%REC

Limit

Project Description: 11-037

Units

Source

Result

%REC

Reporting

Limit

Result

Anions				
Chloride	ND	1	mg/L	
Fluoride	ND	0.1	mg/L	
Nitrate as N	ND	0.1	mg/L	
Nitrite as N	ND	0.05	mg/L	
Sulphate	ND	1	mg/L	
General Inorganics				
Alkalinity, total	ND	5	mg/L	
Colour	ND	2	TCU	
Total Dissolved Solids	ND	10	mg/L	
Turbidity	ND	0.1	NTU	
Hydrocarbons		0.1	NIC	
F1 PHCs (C6-C10)		05		
	ND ND	25 100	ug/L	
F2 PHCs (C10-C16)	ND		ug/L	
F3 PHCs (C16-C34)	ND	100 100	ug/L	
F4 PHCs (C34-C50)			ug/L	
TPH (diesel)	ND	0.1	mg/L	
Metals		0.4		
Mercury	ND	0.1	ug/L	
Aluminum	ND	1	ug/L	
Antimony	ND	0.5	ug/L	
Arsenic	ND	1	ug/L	
Barium	ND	1	ug/L	
Boron	ND ND	10	ug/L	
Cadmium Calcium	ND	0.1 100	ug/L	
			ug/L	
Chromium	ND ND	1 0.5	ug/L	
Copper	ND		ug/L	
Iron	ND	100	ug/L	
Lead	ND	0.1 200	ug/L	
Magnesium	ND		ug/L	
Manganese Selenium	ND	5 1	ug/L	
Sodium	ND	200	ug/L	
Uranium	ND	0.1	ug/L ug/L	
Zinc	ND	5	ug/L	
Semi-Volatiles	ND	5	ug/L	
	ND	2	~~~~/l	
Ethylene glycol		2	mg/L	
Diethylene glycol	ND	2	mg/L	
Propylene glycol	ND	2	mg/L	
Triethylene glycol	ND	2	mg/L	
Trimethylene glycol	ND	2	mg/L	
Volatiles		5.0		
Acetone	ND	5.0	ug/L	
Benzene	ND	0.5	ug/L	
Bromodichloromethane	ND	0.5	ug/L	

P: 1-800-749-1947

E: PARACEL@PARACELLABS.COM

```
OTTAWA-EAST
300-2319 St. Laurent Blvd.
Ottawa, ON K1G 4J8
```

0.5

0.5

0.2

0.5

1.0

0.5

3.0

0.5

1.0

ug/L ug/L

ug/L ug/L

ug/L ug/L

ug/L

uğ/L ug/L

ND

ND

ND

ND

ND

ND

ND

ND

ND

```
MISSISSAUGA
6645 Kitimat Rd. Unit #27
Mississauga, ON L5N 6J3
```

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

WWW.PARACELLABS.COM

Carbon Tetrachloride

Dibromochloromethane

Dichlorodifluoromethane

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 6 of 12



### Certificate of Analysis

Client: Houle Chevrier Client PO: Method Quality Control: Blank

### Order #: 1523158

### Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Project Description: 11-037

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	uğ/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	uğ/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	uğ/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	34.7		ug/L		108	50-140			
Surrogate: Dibromofluoromethane	32.5		ug/L		102	50-140			
Surrogate: Toluene-d8	35.6		ug/L		111	50-140			
Sunoyale. Ioluene-uo	55.0		uy/L		111	50-140			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 7 of 12



### Certificate of Analysis

Method Quality Control: Duplicate

Client: Houle Chevrier Client PO:

### Order #: 1523158

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

### Project Description: 11-037

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	39.7	1	mg/L	39.5			0.5	10	
Fluoride	ND	0.1	mg/L	ND			0.0	10	
Nitrate as N	1.70	0.1	mg/L	1.70			0.4	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	67.4	1	mg/L	67.3			0.2	10	
General Inorganics			-						
Alkalinity, total	353	5	mg/L	354			0.2	14	
Colour	2	2	TCU	2			0.2	12	
pH	8.0	0.1	pH Units	8.0			0.0	10	
Total Dissolved Solids	316	10	mg/L	332			4.9	10	
Turbidity	2.3	0.1	NTU	2.4			1.7	10	
	2.0	0.1	NTO	2.4			1.7	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals									
Mercury	ND	0.1	ug/L	ND			0.0	20	
Aluminum	ND	1	ug/L	ND				20	
Antimony	ND	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	172	1	ug/L	179			3.8	20	
Boron	15	10	ug/L	18			17.4	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Calcium	75600	100	ug/L	95500			23.2	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Copper	ND	0.5	ug/L	ND				20	
Iron	140	100	ug/L	150			6.8	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Magnesium	19000	200	ug/L	18800			0.8	20	
Manganese	7.4	5	ug/L	7.4			0.5	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Sodium	9940	200	ug/L	9950			0.1	20	
Uranium	5.3	0.1	ug/L	5.3			1.3	20	
Zinc	ND	5	ug/L	ND			0.0	20	
Semi-Volatiles									
Ethylene glycol	ND	2	mg/L	ND				50	
Diethylene glycol	ND	2	mg/L	ND				50	
Propylene glycol	ND	2	mg/L	ND				50	
Triethylene glycol	ND	2	mg/L	ND				50	
Trimethylene glycol	ND	2	mg/L	ND				50	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Oble vefe wee		~ -						30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane		0.5 3.0	ug/L	ND				30 30	
	ND ND ND	3.0 0.5	ug/L ug/L	ND ND				30 30	
Chloromethane	ND ND	3.0	ug/L	ND				30	

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA - EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 N I A G A R A 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

WWW.PARACELLABS.COM

OTTAWA - WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1 SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4 K I N G S T O N 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 8 of 12



Vinyl chloride

m,p-Xylenes

o-Xylene

Trichlorofluoromethane

1,3,5-Trimethylbenzene

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

### **Certificate of Analysis**

Method Quality Control: Duplicate

Client: Houle Chevrier Client PO:

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

30

30

30

30

30

Order #: 1523158

### Project Description: 11-037

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
· · · · · · · · · · · · · · · · ·									

ND

ND

ND

ND

ND

ND

ND

ND

113

104

116

50-140

50-140

50-140

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

ND

ND

ND

ND

ND

36.1

33.3

37.1

1.0

0.5

0.5

0.5

0.5

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

KINGSTON

WWW.PARACELLABS.COM

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1 218-704 Mara St. Point Edward, ON N7V 1X4 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 9 of 12



### Certificate of Analysis

Client: Houle Chevrier Client PO:

### Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	48.7	1	mg/L	39.5	91.3	78-112			
Fluoride	0.92	0.1	mg/L	ND	92.5	73-113			
Nitrate as N	2.62	0.1	mg/L	1.70	91.0	81-112			
Nitrite as N	1.18	0.05	mg/L	0.166	101	76-117			
Sulphate	75.3	1	mg/L	67.3	80.0	75-111			
General Inorganics			0						
Total Dissolved Solids	80.0	10	mg/L	ND	80.0	75-125			
Hydrocarbons									
F1 PHCs (C6-C10)	1840	25	ug/L	ND	92.0	68-117			
F2 PHCs (C10-C16)	1780	100	ug/L	ND	99.0	60-140			
F3 PHCs (C16-C34)	4230	100	ug/L	ND	114	60-140			
F4 PHCs (C34-C50)	2680	100	ug/L	ND	108	60-140			
TPH (diesel)	4.36	0.1	mg/L	ND	109	46-135			
Metals									
Mercury	3.71	0.1	ug/L	ND	124	78-137			
Aluminum	48.2		ug/L	ND	96.3	80-120			
Antimony	46.8		ug/L	0.08	93.4	80-120			
Arsenic	48.1		ug/L	0.07	96.0	80-120			
Barium	214		ug/L	179	70.6	80-120		C	QM-4X
Boron	59		ug/L	18	80.8	80-120			
Cadmium	45.6		ug/L	0.002	91.1	80-120			
Calcium	880		ug/L	ND	88.0	80-120			
Chromium	46.0		ug/L	0.08	91.7	80-120			
Copper	39.5		ug/L	ND	79.0	80-120		C	QM-07
Iron	1040		ug/L	150	89.0	80-120			
Lead	46.5		ug/L	0.03	93.0	80-120			
Magnesium	884		ug/L	ND	88.4	80-120			
Manganese	52.3		ug/L	7.4	89.9	80-120			
Selenium	45.8		ug/L	0.1	91.4	80-120			
Sodium	931		ug/L	ND	93.1	80-120			
Uranium	55.7		ug/L	5.3	101	80-120			
Zinc Somi Volotiloc	46		ug/L	2	88.9	80-120			
Semi-Volatiles Ethylene glycol	21	2	mg/L	ND	104	50-150			
Diethylene glycol	21 15	2	mg/L	ND	74.2	50-150 50-150			
Propylene glycol	23	2	mg/L	ND	115	50-150 50-150			
Triethylene glycol	23 7	2	mg/L	ND	33.7	50-150 50-150		Ċ	QS-02
Trimethylene glycol	24	2	mg/L	ND	120	50-150 50-150			
Volatiles									
Acetone	88.7	5.0	ug/L	ND	88.7	50-140			
Benzene	27.4	0.5	ug/L	ND	68.6	50-140			
Bromodichloromethane	30.4	0.5	ug/L	ND	76.0	50-140			
Bromoform	39.0	0.5	ug/L	ND	97.5	50-140			
Bromomethane	16.3	0.5	ug/L	ND	40.8	50-140			
Carbon Tetrachloride	24.7	0.2	ug/L	ND	61.7	50-140			
Chlorobenzene	41.7	0.5	ug/L	ND	104	50-140			
Chloroethane	31.8	1.0	ug/L	ND	79.5	50-140			
		OTTAWA-EAS		MISSISSA		NIAGARA			
P: 1-800-749-1947 E: paracel@paracellabs.com		300-2319 St. Laure Ottawa, ON K1G 4		6645 Kitimat R Mississauga, C		360 York Rd. Niagara-on-tl		LOS 1JO	
		OTTAWA-WES	r	SARNIA		KINGSTO	N		
WWW PAPACELLARS COM									



OTTAWA - WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4 KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 10 of 12

Order #: 1523158

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Project Description: 11-037



Vinyl chloride

m,p-Xylenes

Surrogate: 4-Bromofluorobenzene

o-Xylene

### Certificate of Analysis

Client: Houle Chevrier Client PO:

### Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	31.9	0.5	ug/L	ND	79.8	50-140			
Chloromethane	27.8	3.0	ug/L	ND	69.5	50-140			
Dibromochloromethane	42.0	0.5	ug/L	ND	105	50-140			
Dichlorodifluoromethane	32.2	1.0	ug/L	ND	80.6	50-140			
1,2-Dibromoethane	44.4	0.2	ug/L	ND	111	50-140			
1,2-Dichlorobenzene	38.6	0.5	ug/L	ND	96.4	50-140			
1,3-Dichlorobenzene	40.2	0.5	ug/L	ND	101	50-140			
1,4-Dichlorobenzene	38.9	0.5	ug/L	ND	97.4	50-140			
1,1-Dichloroethane	30.7	0.5	ug/L	ND	76.8	50-140			
1,2-Dichloroethane	31.5	0.5	ug/L	ND	78.7	50-140			
1,1-Dichloroethylene	37.5	0.5	ug/L	ND	93.7	50-140			
cis-1,2-Dichloroethylene	28.7	0.5	ug/L	ND	71.7	50-140			
trans-1,2-Dichloroethylene	29.7	0.5	ug/L	ND	74.2	50-140			
1,2-Dichloropropane	28.9	0.5	ug/L	ND	72.3	50-140			
cis-1,3-Dichloropropylene	33.2	0.5	ug/L	ND	83.1	50-140			
trans-1,3-Dichloropropylene	33.8	0.5	ug/L	ND	84.5	50-140			
Ethylbenzene	36.2	0.5	ug/L	ND	90.4	50-140			
Hexane	22.4	1.0	ug/L	ND	55.9	50-140			
Methyl Ethyl Ketone (2-Butanone)	91.0	5.0	ug/L	ND	91.0	50-140			
Methyl Butyl Ketone (2-Hexanone)	112	10.0	ug/L	ND	112	50-140			
Methyl Isobutyl Ketone	77.6	5.0	ug/L	ND	77.6	50-140			
Methyl tert-butyl ether	81.2	2.0	ug/L	ND	81.2	50-140			
Methylene Chloride	26.8	5.0	ug/L	ND	67.1	50-140			
Styrene	36.9	0.5	ug/L	ND	92.4	50-140			
1,1,1,2-Tetrachloroethane	40.7	0.5	ug/L	ND	102	50-140			
1,1,2,2-Tetrachloroethane	51.8	0.5	ug/L	ND	130	50-140			
Tetrachloroethylene	47.5	0.5	ug/L	ND	119	50-140			
Toluene	41.4	0.5	ug/L	ND	104	50-140			
1,1,1-Trichloroethane	30.8	0.5	ug/L	ND	77.0	50-140			
1,1,2-Trichloroethane	31.5	0.5	ug/L	ND	78.7	50-140			
Trichloroethylene	25.8	0.5	ug/L	ND	64.6	50-140			
Trichlorofluoromethane	26.2	1.0	ug/L	ND	65.5	50-140			
1,3,5-Trimethylbenzene	32.0	0.5	ug/L	ND	80.1	50-140			

Project Description: 11-037

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA-EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

29.8

80.8

39.3

22.1

0.5

0.5

0.5

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

74.6

101

98.2

69.1

50-140

50-140

50-140

50-140

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4

KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Report Date: 08-Jun-2015 Order Date:2-Jun-2015

Page 11 of 12

OTTAWA-WEST 104-195 Stafford Rd. W. Nepean, ON K2H 9C1



## Certificate of Analysis

### Client: Houle Chevrier Client PO:

Project Description: 11-037

#### **Qualifier Notes:**

#### QC Qualifiers :

- QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QM-4X : The spike recovery was outside of QC acceptance limits due to elevated analyte concentration.
- QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

#### Sample Data Revisions

None

### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA - EAST 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA-WEST

104-195 Stafford Rd. W. Nepean, ON K2H 9C1 MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 N I A G A R A 360 York Rd. Unit 16B Niagara-on-the-Lake, ON LOS 1J0

SARNIA 218-704 Mara St. Point Edward, ON N7V 1X4 KINGSTON 1058 Gardiners Rd. Kingston, ON K7P 1R7

Page 12 of 12

WWW.PARACELLABS.COM

GPARACEL LABORATORIES LTD						Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com			Chain of Custody (Lab Use Only) NO 23632					
Client Name:			In .	D. C.							Page	of	_	
Client Name: HOULE CHEVRIER ENGINE	ERING	UD	Project		037		-			TAT: ()	Regular	[] 3 Day	/	
Address Pares McEwen			Quote #					_			] 2 Day	[] 1 Day	,	
Address: 32 Ofeacie Dr. Ottawa	, ON,		PO #									[] [ ] [ ] [ ]		
Contact Name: James McEwen Address: 32 Steacie Dr. Ottawa K2K 2A9 Telephone: (613)836-1422			Email A	Address:	wen C	Leev	10	~ ~		Date Req	uired:			
Criteria: [] O. Reg. 153/04 (As Amended) Table ]	IRSC Filing	[10	Reg 558				<u> </u>		(and) Manising	itur	VI	them A D	Th IS	
						3013 (310/16	1 1 2	an (neur				Julei. OL	VV -	5
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wate	r) SS (Storm/Sa	nitary Se	ewer) P (	Paint) A (Air) O (O	ther)		FC		Req	uired Ana	alyses			
Paracel Order Number:	Xi	Air Volume	of Containers	Sample	Taken	lycol	DCs/BieXP	Hdr (122-144	n Cherriston Rel	Herary		/		
Sample ID/Location Name	Matrix	Air	# of	Date	Time	J	$\geq$	AA	X EG	Y			2	
1 TW-2	H20		7	June 2/15		X	Ň	$\times$	XX					1
2														
3			1											
4		2												
5											-			
6														
7					à.									
8														
9														
10														
Comments: Same as pra	rviou	S	or	der.		-			I		Met	hod of Deliv	ery: In	,
Relinquished By (Sign):	SU	MEET	yer/Depo	DOKM	F.	ved at Lab:	W.	1	$\dot{\gamma}$	Verified		Jui	L	
Relinquished By (Print): Brett Webster Date/Time: June 2/ 1075 3:50			N02		5.25 Date/ Temp	and the second	2.6		1.5	Date/Tint	e) Jun ed JBy:	2/15 IN/C	5	35
												J		

Chain of Custody (Blank) - Rev 0.3 Oct. 2014

### **EXOVA** OTTAWA

**Certificate of Analysis** 



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen		Report Number: Date Submitted: Date Reported: Project: COC #:	1317890 2013-08-19 2013-08-22 11-037 160506	
Invoice to:	Houle Chevrier Engineering	Page 1 of 2			

### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revised Report - Sample ID changed as per client request.

APPROVAL:

Craig Thompson Project Manager

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Attention: Mr. James McEwen PO#: Invoice to: Houle Chevrier Engineering

 Report Number:
 1317890

 Date Submitted:
 2013-08-19

 Date Reported:
 2013-08-22

 Project:
 11-037

 COC #:
 160506

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1051186 Water 2013-08-19 TW1-R1	1051187 Water 2013-08-19 TW1-R2
Group	Analyte	MRL	Units	Guideline		
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Faecal Coliforms	0	ct/100mL		0	0
	Faecal Streptococcus	0	ct/100mL		0	0
	Heterotrophic Plate Count	0	ct/1mL		4	7
	Total Coliforms	0	ct/100mL	MAC-0	0	0

Guideline = ODWSOG *=

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.

### **EXOVA** OTTAWA

**Certificate of Analysis** 



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen		Report Number: Date Submitted: Date Reported: Project: COC #:	1317896 2013-08-19 2013-08-22 11-037 160506	
Invoice to:	Houle Chevrier Engineering	Page 1 of 3			

Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revised Report - Sample ID changed as per client request.

APPROVAL:

Craig Thompson Project Manager

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen	Report Number: Date Submitted: Date Reported: Project: COC #:	1317896 2013-08-19 2013-08-22 11-037 160506
Invoice to:	Houle Chevrier Engineering		

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. <b>Guideline</b>	1051196 Water 2013-08-19 TW1 - R2
General Chemistry	Turbidity	0.1	NTU	MAC-1.0	0.7

Guideline = ODWSOG ** = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

146 Colonnade Rd. Unit 8, Ottawa, ON K2E 7Y1

* = Guideline Exceedence

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Page 2 of 3



Client:	Houle Chevrier Engineering					
	180 Wescar Lane, R.R. #2					
	Carp, ON					
	K0A 1L0					
Attention:	Mr. James McEwen					
PO#:						
Invoice to:	Houle Chevrier Engineering					

Report Number:	1317896
Date Submitted:	2013-08-19
Date Reported:	2013-08-22
Project:	11-037
COC #:	160506

Analyte		Blank	QC % Rec	QC Limits
Run No 256307 Analysis Date 2000-00-13 Method C SM2130B				
Turbidity		<0.1 NTU	107	73-127

**Guideline = ODWSOG** * **= Guideline Exceedence** ** = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

### **EXOVA** OTTAWA

**Certificate of Analysis** 



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen		Report Number: Date Submitted: Date Reported: Project: COC #:	1315482 2013-07-22 2013-07-25 11-037 160501
Invoice to:	Houle Chevrier Engineering	Page 1 of 2		

Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revised Report - Sample ID changed as per client request.

APPROVAL:

Craig Thompson Project Manager

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Attention: Mr. James McEwen PO#: Invoice to: Houle Chevrier Engineering

 Report Number:
 1315482

 Date Submitted:
 2013-07-22

 Date Reported:
 2013-07-25

 Project:
 11-037

 COC #:
 160501

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1044356 Water 2013-07-22 TW2-R1	1044357 Water 2013-07-22 TW2-R2
Group	Analyte	MRL	Units	Guideline		
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Faecal Coliforms	0	ct/100mL		0	0
	Faecal Streptococcus	0	ct/100mL		1	0
	Heterotrophic Plate Count	0	ct/1mL		2	0
	Total Coliforms	0	ct/100mL	MAC-0	0	0

Guideline = ODWSOG * = G

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## APPENDIX M

Private Well Sampling – Laboratory Certificates of Analysis



Client:	Houle Chevrier Engineering				
	180 Wescar Lane, R.R. #2		Report Number:	1319998	
	Carp, ON		Date Submitted:	2013-09-11	
	K0A 1L0		Date Reported:	2013-09-16	
Attention:	Mr. James McEwen		Project:	11-037	
PO#:			COC #:	160507	
Invoice to:	Houle Chevrier Engineering	Page 1 of 2			

### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Krista Quantrill Laboratory Supervisor, Microbiology

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.





Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Attention: Mr. James McEwen PO#: Invoice to: Houle Chevrier Engineering

Report Number:	1319998
Date Submitted:	2013-09-11
Date Reported:	2013-09-16
Project:	11-037
COC #:	160507

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1057265 Water 2013-09-11 PW 1	1057266 Water 2013-09-11 PW 2
Group	Analyte	MRL	Units	Guideline		
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Faecal Coliforms	0	ct/100mL		0	0
	Faecal Streptococcus	0	ct/100mL		0	0
	Heterotrophic Plate Count	0	ct/1mL		0	0
	Total Coliforms	0	ct/100mL	MAC-0	0	0

Guideline = ODWSOG

* = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.

### **EXOVA** OTTAWA

**Certificate of Analysis** 



Client: Attention: PO#:	Houle Chevrier Engineering 180 Wescar Lane, R.R. #2 Carp, ON K0A 1L0 Mr. James McEwen		Report Number: Date Submitted: Date Reported: Project: COC #:	1320010 2013-09-11 2013-09-17 11-037 160507	
Invoice to:	Houle Chevrier Engineering	Page 1 of 5			

#### Dear James McEwen:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Lorna Wilson Laboratory Supervisor, Inorganics

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.



Client:	Houle Chevrier Engineering
	180 Wescar Lane, R.R. #2
	Carp, ON
	K0A 1L0
Attention:	Mr. James McEwen
PO#:	
Invoice to:	Houle Chevrier Engineering

Report Number:	1320010
Date Submitted:	2013-09-11
Date Reported:	2013-09-17
Project:	11-037
COC #:	160507

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1057281 Water 2013-09-11 PW 1	1057282 Water 2013-09-11 PW 2
Calculations	Hardness as CaCO3	1	mg/L	OG-100	252*	220*
	Ion Balance	0.01			1.08	1.05
	TDS (COND - CALC)	1	mg/L	AO-500	339	647*
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	156	227
	CI	1	mg/L	AO-250	44	127
	Colour	2	TCU	AO-5	2	2
	Conductivity	5	uS/cm		521	996
	DOC	0.5	mg/L	AO-5	1.1	1.9
	F	0.10	mg/L	MAC-1.5	<0.10	<0.10
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	<0.10	9.57
	рН	1.00		6.5-8.5	7.82	7.75
	S2-	0.01	mg/L	AO-0.05	<0.01	<0.01
	SO4	3	mg/L	AO-500	48	39
	Turbidity	0.1	NTU	MAC-1.0	2.7*	0.2
Metals	Са	1	mg/L		73	75
	Fe	0.03	mg/L	AO-0.3	0.21	0.03
	K	1	mg/L		2	1
	Mg	1	mg/L		17	8
	Mn	0.01	mg/L	AO-0.05	0.02	<0.01
	Na	2	mg/L	AO-200	16	131
Nutrients	N-NH3	0.02	mg/L		0.05	0.05
	Phenols	0.001	mg/L		<0.001	<0.001
	Tannin & Lignin	0.1	mg/L		<0.1	<0.1
	Total Kjeldahl Nitrogen	0.10	mg/L		<0.10	<0.10

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.
 Results relate only to the parameters tested on the samples submitted.
 Methods references and/or additional QA/QC information available on request.



Client:	: Houle Chevrier Engineering				
	180 Wescar Lane, R.R. #2				
	Carp, ON				
	K0A 1L0				
Attention:	Mr. James McEwen				
PO#:					
Invoice to:	Houle Chevrier Engineering				

Report Number:	1320010
Date Submitted:	2013-09-11
Date Reported:	2013-09-17
Project:	11-037
COC #:	160507

Analyte		Blank	QC % Rec	QC Limits
<b>Run No</b> 0	Analysis Date 2013-	09-16 Method	C SM2340B	
Hardness as CaCO3				
Ion Balance				
TDS (COND - CALC)				
Run No 257516	Analysis Date 2013-	09-12 Method	C SM4500-NH3D	
N-NH3		<0.02 mg/L	95	85-115
Run No 257596	Analysis Date 2013-	09-13 Method	C SM2120C	-
Colour		<2 TCU	105	90-110
Run No 257598	Analysis Date 2013-	09-13 Method	C SM5530D	
Phenols		<0.001 mg/L	92	73-127
Run No 257599	Analysis Date 2013-	09-13 Method	C SM4500-Norg-C	
Total Kjeldahl Nitrogen		<0.10 mg/L	102	77-123
Run No 257603	Analysis Date 2013-	09-13 <b>Method</b>	C SM2130B	
Turbidity		<0.1 NTU	100	73-127
Run No 257604	Analysis Date 2013-	09-13 <b>Method</b>	C SM5550B	

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Client:	Houle Chevrier Engineering		
	180 Wescar Lane, R.R. #2		
	Carp, ON		
	K0A 1L0		
Attention:	Mr. James McEwen		
PO#:			
Invoice to:	Houle Chevrier Engineering		

Report Number:	1320010
Date Submitted:	2013-09-11
Date Reported:	2013-09-17
Project:	11-037
COC #:	160507

	Analyte		Blank	QC % Rec	QC Limits
Tannin &	Lignin		<0.1 mg/L	96	80-120
Run No	257629	Analysis Date 2013	-09-13 Method	EPA 200.8	
Fe			<0.03 mg/L	110	88-112
Mn			<0.01 mg/L	103	91-109
Run No	257638	Analysis Date 2013	-09-13 Method	M SM3120B-3500C	
Са			<1 mg/L	100	80-120
к			<1 mg/L	105	80-120
Mg			<1 mg/L	100	80-120
Na			<2 mg/L	110	80-120
Run No	257656	Analysis Date 2013	-09-13 Method	C SM4500-NO3-F	
N-NO2			<0.10 mg/L	103	80-120
N-NO3			<0.10 mg/L	95	80-120
Run No	257670	Analysis Date 2013	-09-13 Method	SM 2320B	
Alkalinity	as CaCO3		<5 mg/L	101	95-105
Conducti	vity		<5 uS/cm	99	95-105
F			<0.10 mg/L	103	90-110
рН			5.82	100	90-110

#### Guideline = ODWSOG

#### * = Guideline Exceedence

** = Analysis completed at Mississauga, Ontario.

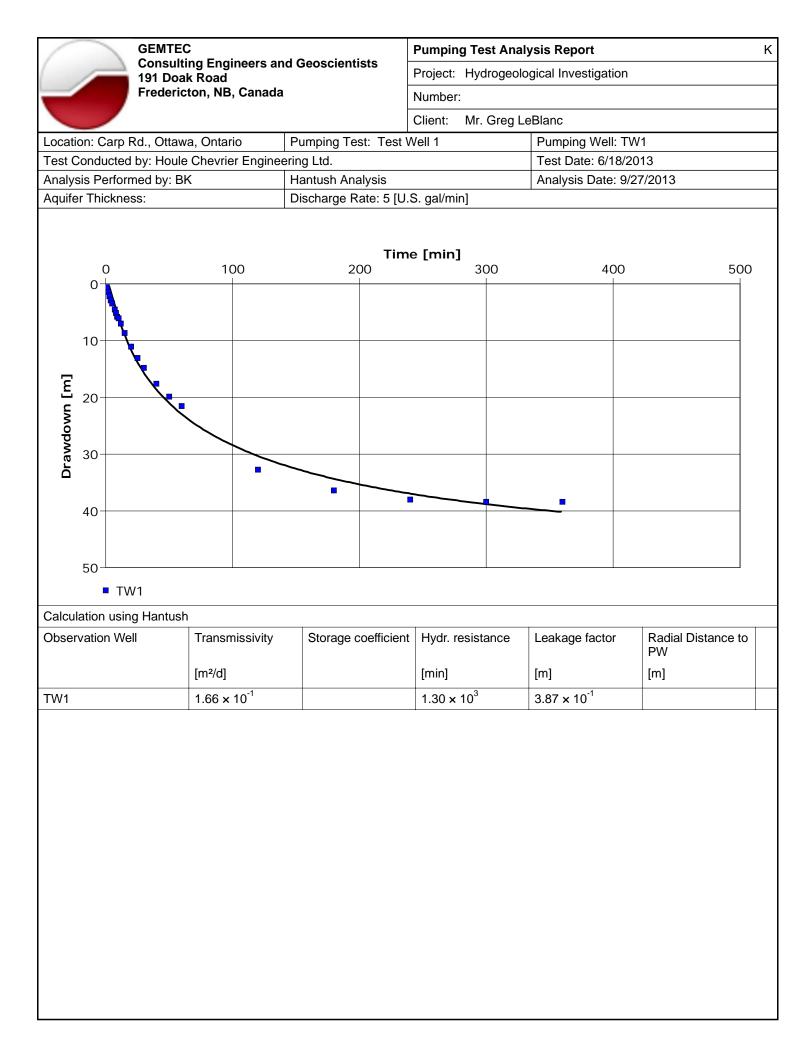
Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

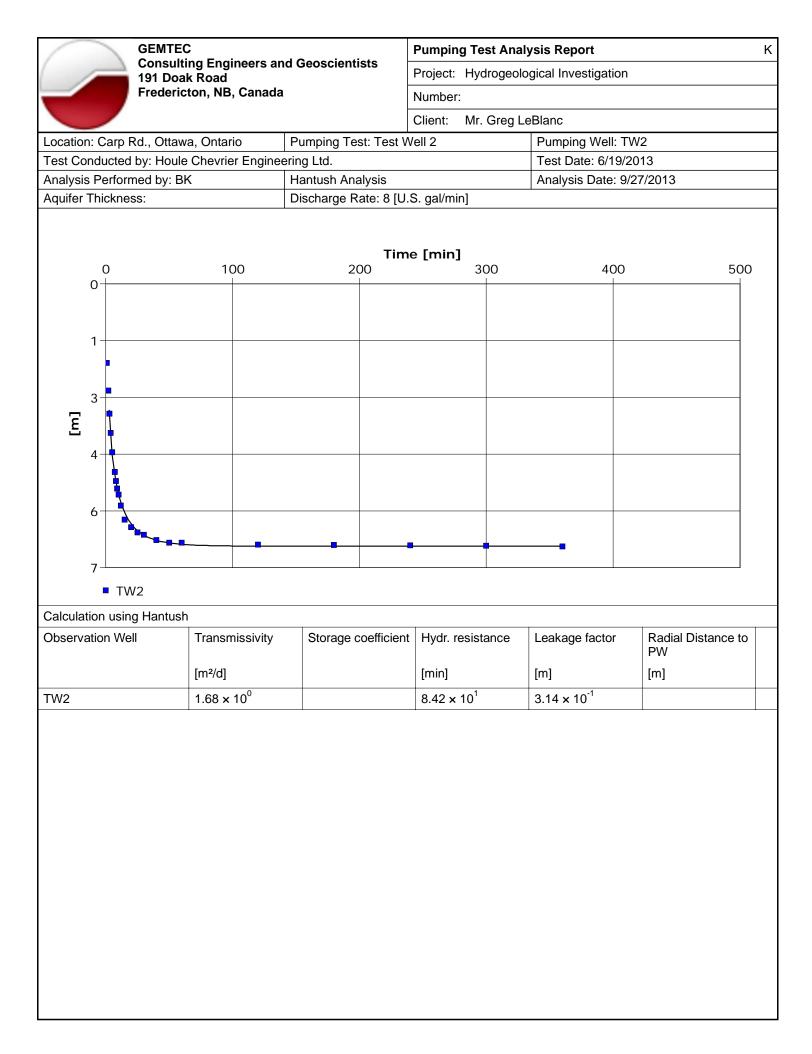


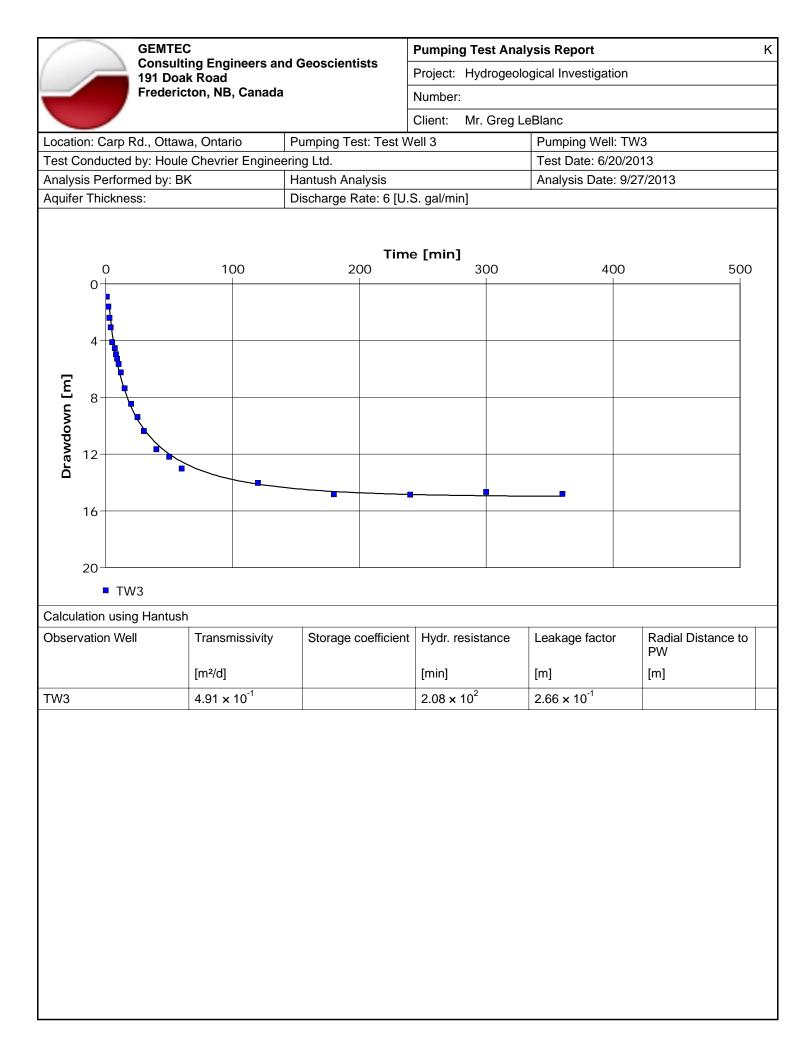
Client:	Houle Chevrier Engineering		
	180 Wescar Lane, R.R. #2		
	Carp, ON		
	K0A 1L0		
Attention:	Mr. James McEwen		
PO#:			
Invoice to:	Houle Chevrier Engineering		

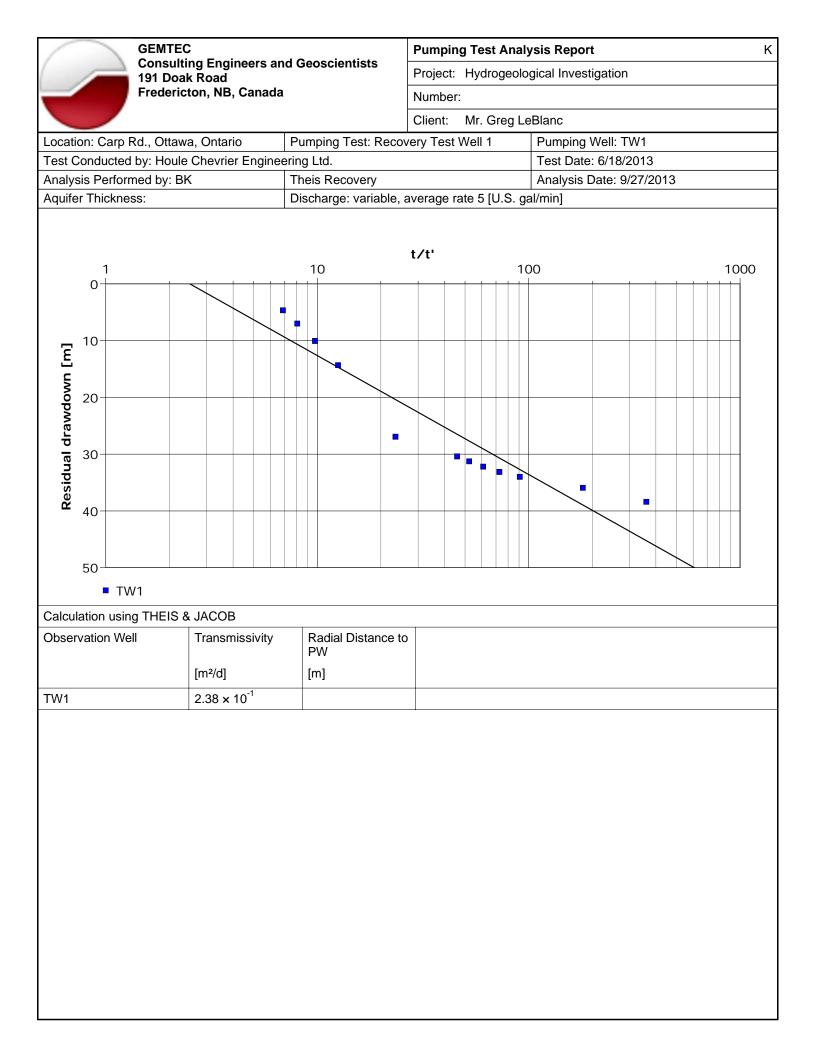
Report Number:	1320010
Date Submitted:	2013-09-11
Date Reported:	2013-09-17
Project:	11-037
COC #:	160507

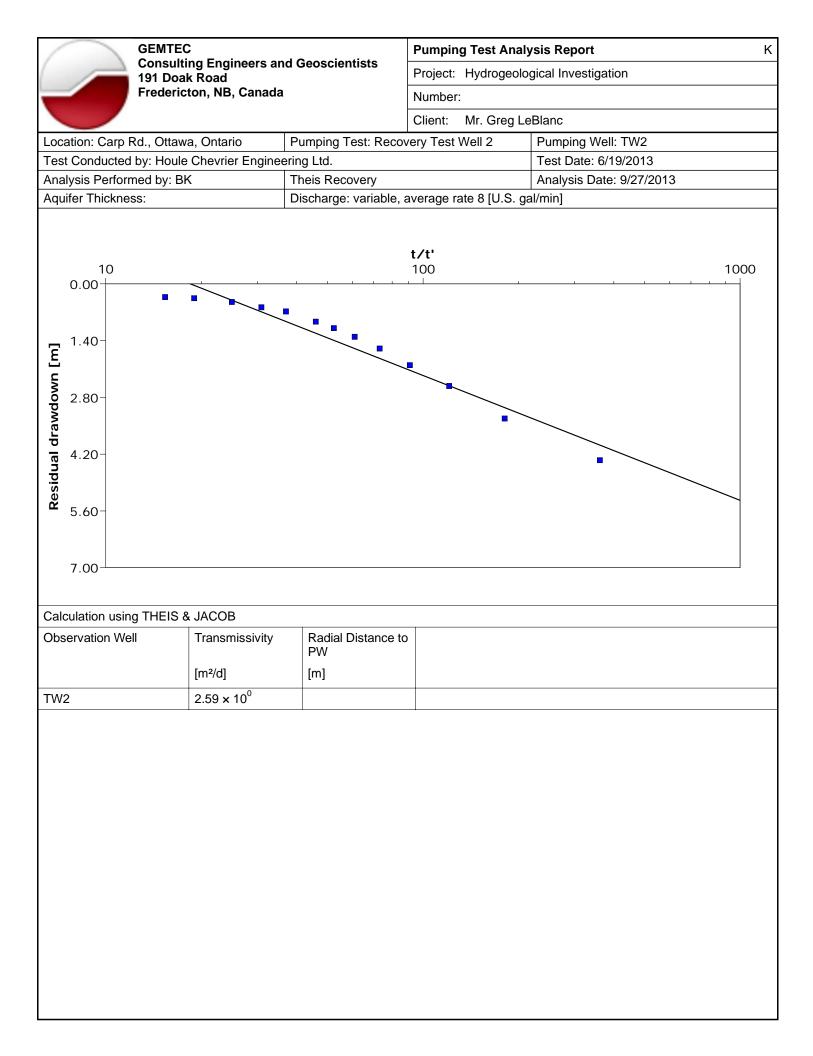
	Analyte		Blank	QC % Rec	QC Limits
Run No	257676	Analysis Date 2013	3-09-13 <b>Method</b>	SM 4110C	
CI			<1 mg/L	101	90-110
SO4			<3 mg/L	105	90-110
Run No	257683	Analysis Date 2013	3-09-16 <b>Method</b>	C SM4500-S2-D	_
S2-			<0.01 mg/L	107	
Run No	257685	Analysis Date 2013	3-09-16 <b>Method</b>	C SM4500-NO3-F	
N-NO2			<0.10 mg/L	107	80-120
N-NO3			<0.10 mg/L	97	80-120
Run No	257702	Analysis Date 2013	3-09-16 <b>Method</b>	C SM5310C	
DOC			<0.5 mg/L	102	84-116

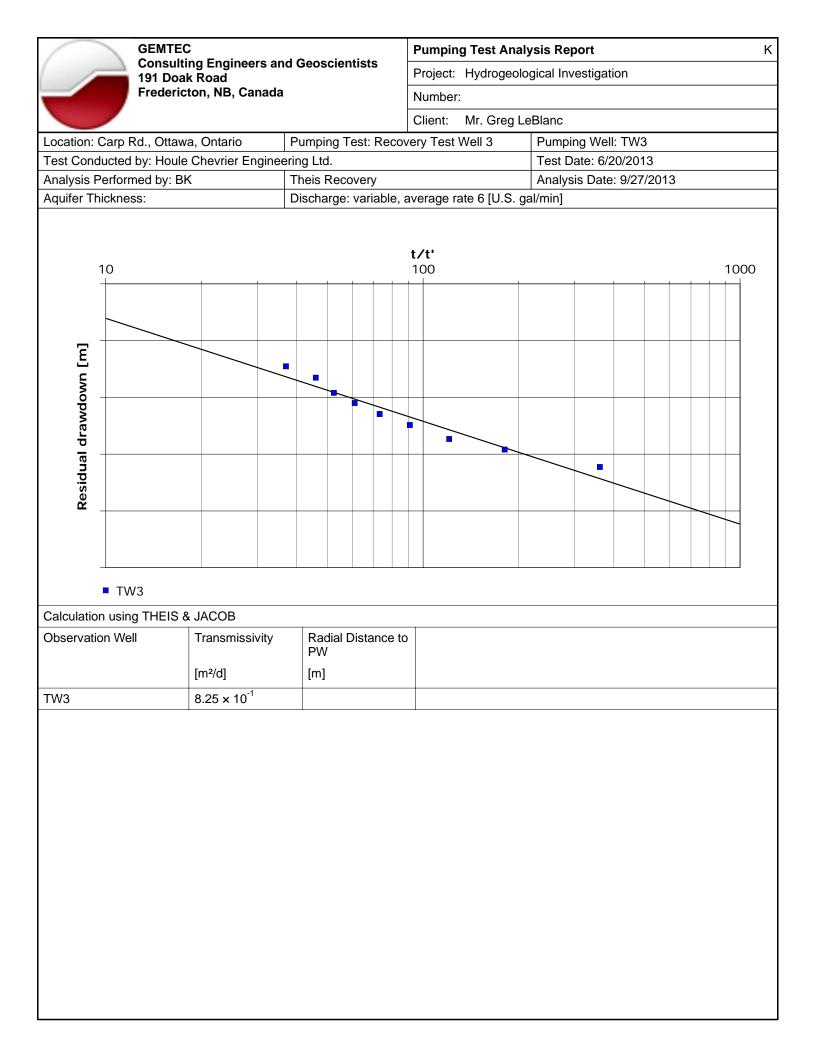

Guideline = ODWSOG

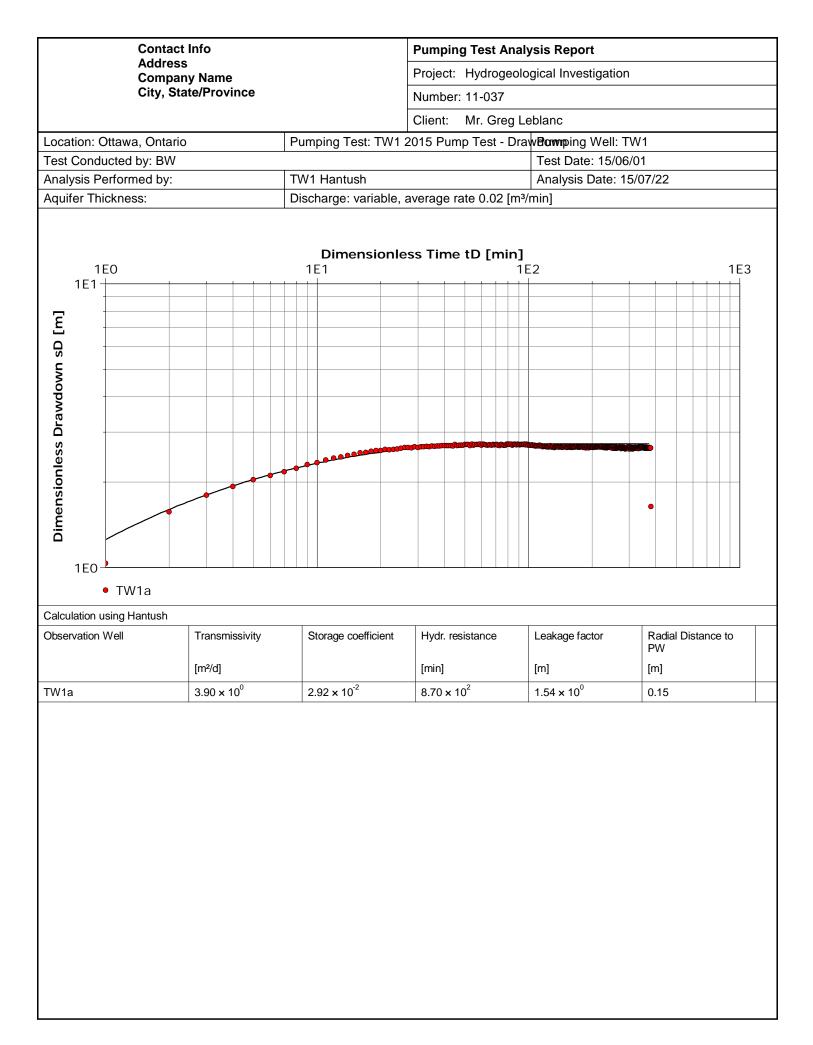

** = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

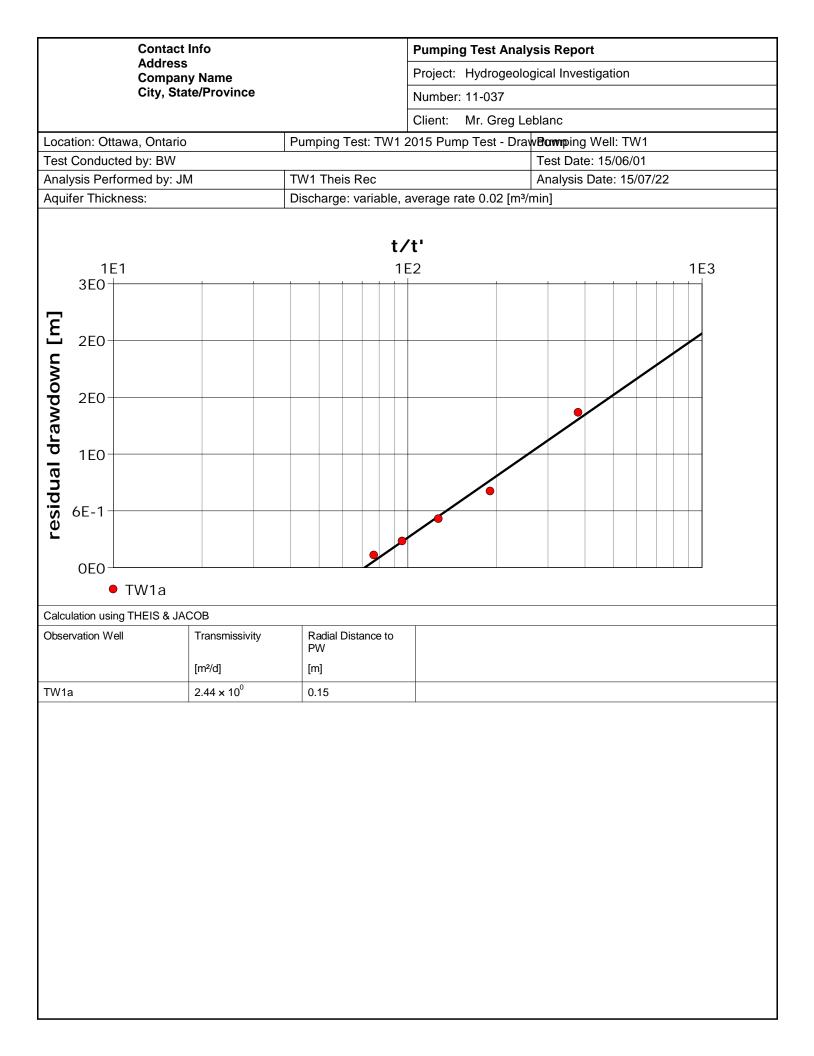

### **APPENDIX N**

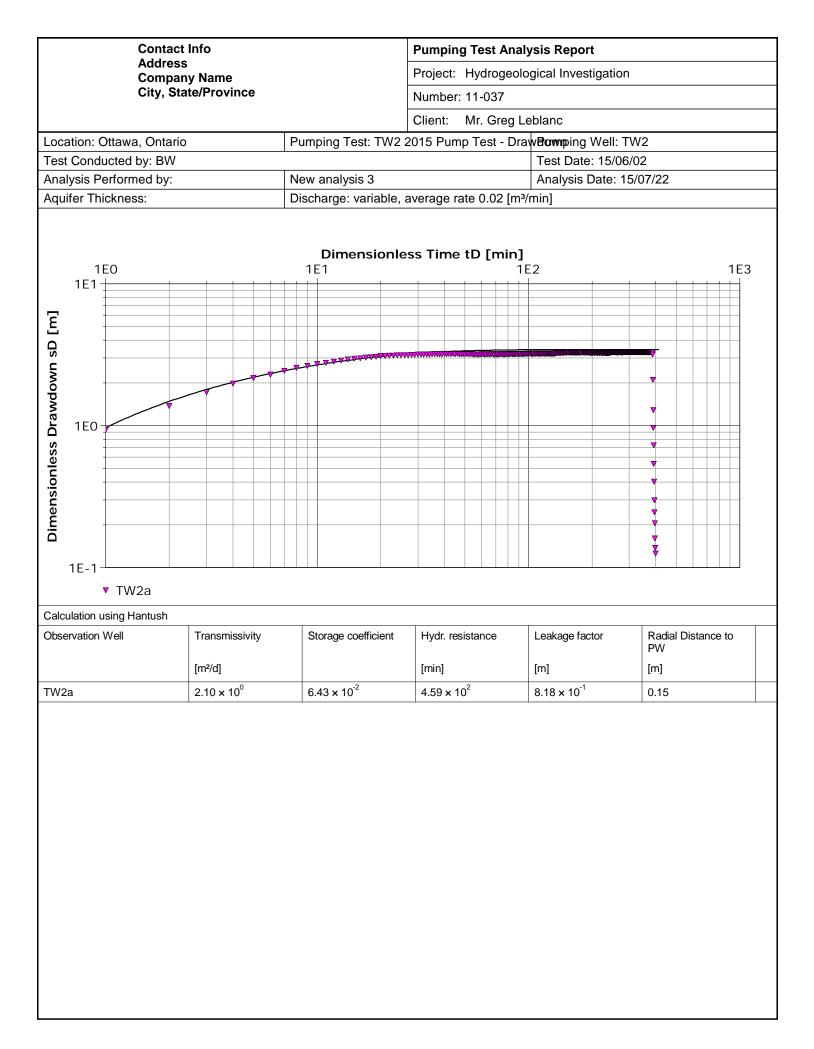

Transmissivity Analysis Estimates and Interference Analysis

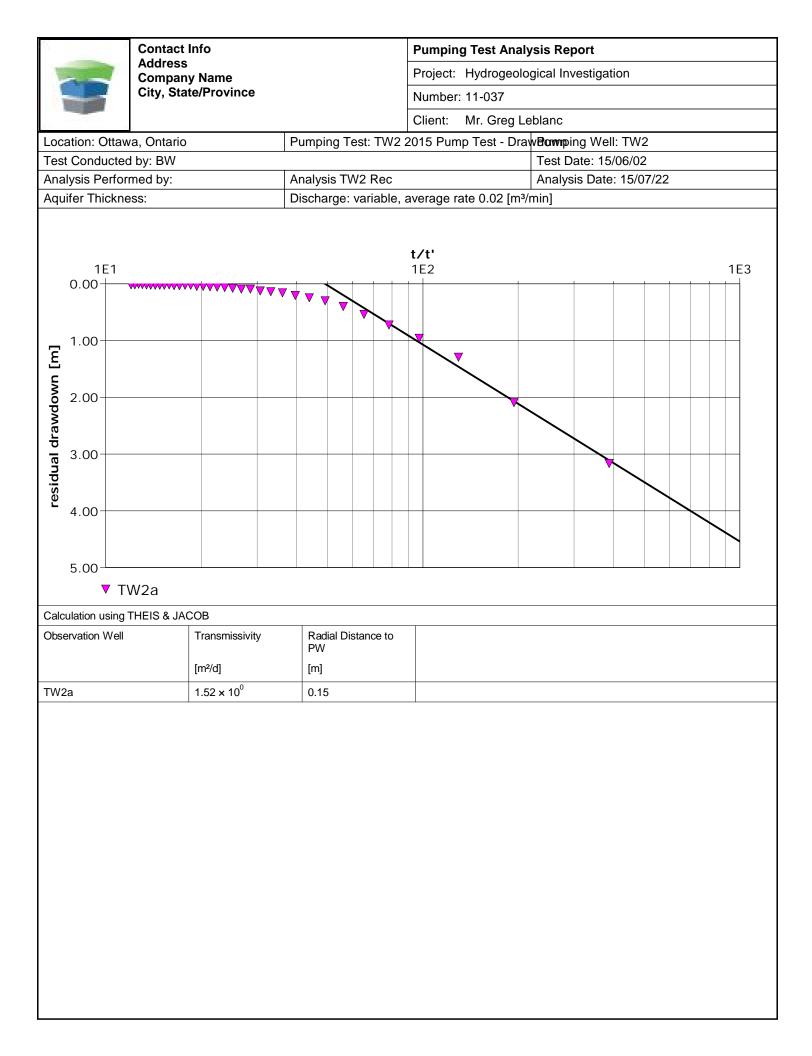

Report to: Mr. Greg LeBlanc Project: 62471.01 (January 29, 2020)

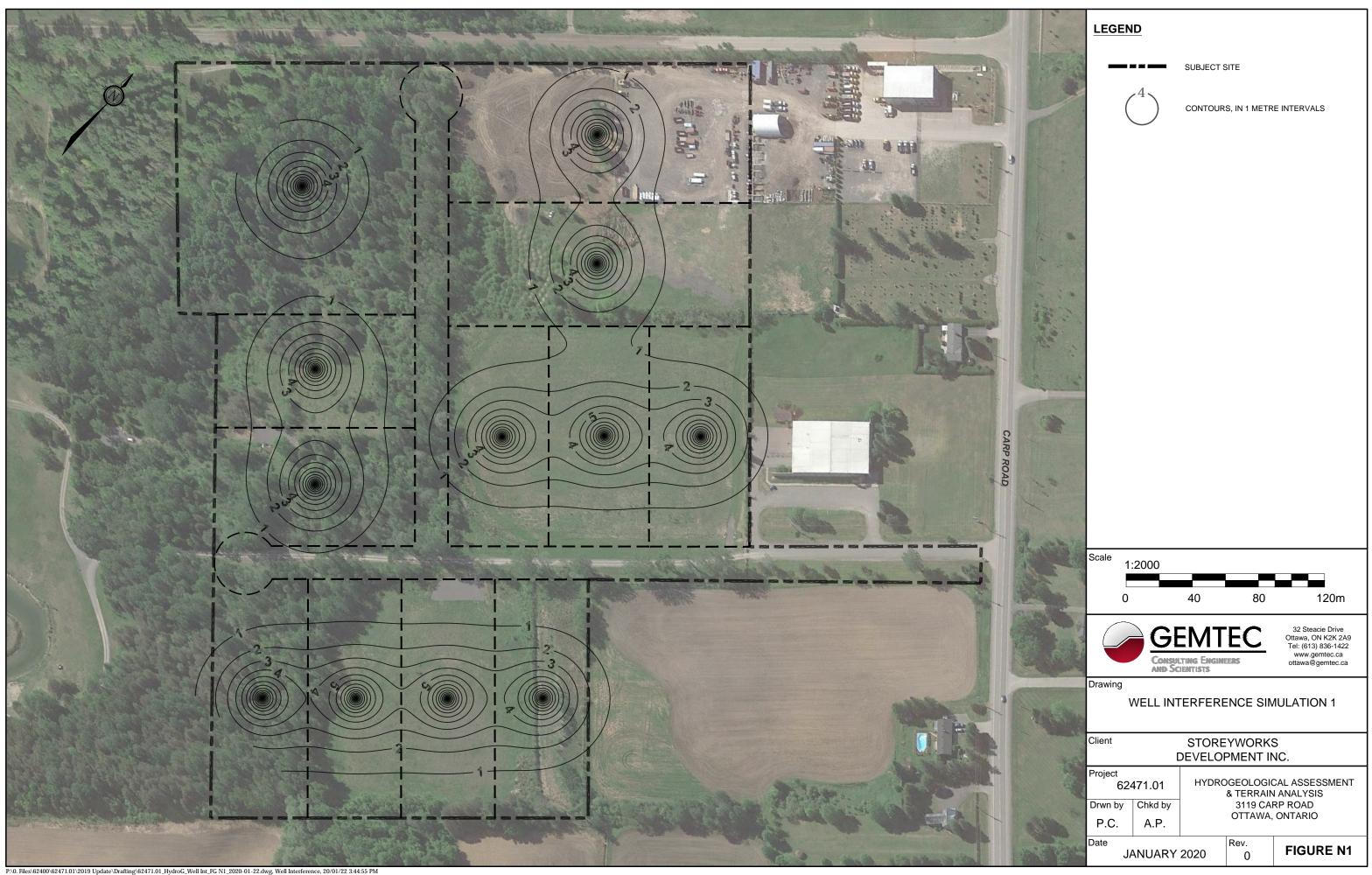















civil geotechnical environmental field services materials testing

civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux

