Stantec

Richmond Subdivision Transportation Brief Update

January 25, 2019

Prepared for:
Mattamy Homes

Prepared by:
Stantec Consulting Ltd.

Richmond Subdivision Transportation Brief Update

Table of Contents

1.0 INTRODUCTION1
1.1 STUDY PURPOSE
1.2 PROPOSED DEVELOPMENT1
1.3 SCOPE OF THE ASSESSMENT 4
2.0 EXISTING TRANSPORTATION ENVIRONMENT 5
2.1 ROADS AND TRAFFIC CONTROL 5
2.2 TRANSIT6
2.3 WALKING AND CYCLING 7
2.4 TRAFFIC VOLUMES 7
3.0 FUTURE TRANSPORTATION ENVIRONMENT 9
3.1 FUTURE NETWORK UPGRADES 9
3.1.1 Road Network Improvements 9
3.1.2 Future Background Developments 10
3.22029 FUTURE BACKGROUND CONDITIONS 11
3.3 SITE TRAFFIC GENERATION 13
3.3.1 Land Use and Trip Generation Rates 13
3.3.2 Vehicle Site Trips 14
3.3.3 Traffic Distribution and Assignment 14
$3.4 \quad 2029$ TOTAL FUTURE CONDITIONS 16
3.52034 ULTIMATE CONDITIONS 19
4.0 TRANSPORTATION ASSESSMENT 22
$4.1 \quad 2018$ EXISTING CONDITIONS 22
4.1.1 Intersection Operational Analysis 22
$4.2 \quad 2029$ FUTURE BACKGROUND CONDITIONS 22
4.2.1 Intersection Operational Analysis 23
$4.3 \quad 2029$ TOTAL FUTURE CONDITIONS 24
4.3.1 Intersection Operational Analysis 24
$4.4 \quad 2034$ ULTIMATE CONDITIONS. 27
4.4.1 Intersection Operational Analysis 27
5.0 DRAFT PLAN REVIEW 30
6.0 TRANSPORTATION DEMAND MANAGEMENT 34
7.0 SUMMARY AND CONCLUSIONS 38

Richmond Subdivision Transportation Brief Update

List of Tables
Table 1 - Scheduled Upgrades 10
Table 2 - Background Developments 10
Table 3 - TRANS Trip Generation Rates 14
Table 4 - Vehicle Site Trips 14
Table 5 - Traffic Distribution 14
Table 6-2018 Existing Intersection Operations 22
Table 7-2029 Future Background Intersection Operations 23
Table 8-2029 Total Future Intersection Operations 25
Table 9-2034 Ultimate Intersection Operations 28
List of Figures
Figure 1 - Location of Proposed Development 2
Figure 2 - Site Plan for the Proposed Development 3
Figure 3 - Existing Intersection Control and Lane Configuration 6
Figure 4 - Existing Transit Service 7
Figure 5-2018 Existing Traffic Volumes - AM Peak Hour 8
Figure 6-2018 Existing Traffic Volumes - PM Peak Hour9
Figure 7-2029 Future Background Traffic Volumes - AM Peak Hour 12
Figure 8-2029 Future Background Traffic Volumes - PM Peak Hour 13
Figure 9 - Site Traffic - AM Peak Hour 15
Figure 10 - Site Traffic - PM Peak Hour 16
Figure 11-2029 Total Future Traffic Volumes - AM Peak Hour 17
Figure 12-2029 Total Future Traffic Volumes - PM Peak Hour 18
Figure 13-2034 Ultimate Traffic Volumes - AM Peak Hour 20
Figure 14-2034 Ultimate Traffic Volumes - PM Peak Hour 21
Figure 15-2029 Assumed Intersection Control and Lane Geometry 26
Figure 16-2029 Recommended Intersection Control and Lane Geometry Improvements 26
Figure 17-2034 Intersection Control and Lane Geometry 29
Figure 18 - Proposed Transit Route and Transit Stops 31
Figure 19 - Proposed Pedestrian Facilities 32
Figure 20 - Proposed Meynell Road Cross-Section - without Parking 33
List of Appendices
APPENDIX A TRAFFIC DATA A. 1
APPENDIX B BACKGROUND DEVELOPMENTS B. 1
APPENDIX C INTERSECTION PERFORMANCE WORKSHEETS C. 1

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Introduction
January 25, 2019

1.0 INTRODUCTION

1.1 STUDY PURPOSE

Stantec Consulting Ltd. was retained by Mattamy Homes to provide an assessment of the transportation needs and impacts related to the future build-out of a residential development known as the "Richmond Subdivision" at 6420 Ottawa Street and 6431 Ottawa Street. These properties are in the south-western portion of the Village of Richmond, within the City of Ottawa.

This transportation brief is an update to the original transportation brief from March 2012 and has been prepared to support a draft plan application. Since the original transportation brief was published, the proposed number of residential units has been reduced in size, the build-out horizon has been extended, and background developments have changed.

1.2 PROPOSED DEVELOPMENT

The proposed development is anticipated to consist of 296 townhome-style dwellings and 802 single family dwellings for a total of 1098 residential units. The final number of residential units is subject to change as the plan is refined but these changes are not expected to be substantial. It is noted that recent changes to the plan of subdivision resulted in minor modifications to the unit counts. The minor discrepancy between the unit count on Figure 2 below and the analysis contained in this report is acknowledged, however, it does not impact the findings or recommendations of this report. Full built-out is anticipated to occur by 2029.

The development site will be accessed at four locations as follows:

- Perth Street at Meynell Road vis-à-vis the extension of a new North-South Collector (i.e. Meynell Road) through the Richmond Village Development Corporation's development to the north;
- The westerly extension of Royal York Street, from Fortune Street to the subject development;
- Ottawa Street at Meynell Road; and,
- Ottawa Street at a new access to the southern portion of the property (i.e. south of Ottawa Street).

Figure 1 illustrates the location of the proposed development.

Figure 2 depicts the site plan for the proposed development.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Introduction
January 25, 2019

Figure 1 - Location of Proposed Development

Background image source: geoOttawa, accessed January 2018

Introduction
January 25, 2019
Figure 2 - Site Plan for the Proposed Development

Stantec

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Introduction
January 25, 2019

1.3 SCOPE OF THE ASSESSMENT

This study is an update to a previous report from 2012 and therefore follows the City of Ottawa's 2006 Traffic Impact Assessment (TIA) Guidelines. The scope of the analysis was confirmed with City staff and is described below.

- Study area intersections include:
- Perth Street at Queen Charlotte Street / Rochelle Drive;
- Ottawa Street at Queen Charlotte Street;
- Perth Street at Meynell Road (new N-S collector); and
- Ottawa Street at Meynell Road.
- Study horizons include:
- 2018 (existing conditions);
- 2029 (site build-out); and
- 2034 (site build-out +5 years).
- Analysis time periods include the weekday AM and PM peak hours.

The methodology used in this TIS is as follows:

- The net increase in site traffic from the proposed development will be estimated.
- Background traffic growth will be explicitly accounted for based on known developments in the study area.
- Future background traffic volumes will be combined with the net increase in site traffic volumes to determine total future traffic volumes.
- A 2% per annum growth rate will be used for the through volumes along Perth Street to account for growth outside of the immediate study area. This rate of growth is consistent with previously approved traffic studies in the area.
- Intersection analyses will be performed to determine the operating characteristics of the study area intersections under each study horizon.
- Mitigation measures will be examined where operational deficiencies are identified.

2.0 EXISTING TRANSPORTATION ENVIRONMENT

2.1 ROADS AND TRAFFIC CONTROL

The roadways under consideration in the study area are described below. The road classifications were referenced from Map 8 of the City of Ottawa's 2013 Transportation Master Plan.

Perth Street	Approximately 225 m west of Queen Charlotte Street, Perth Street is a two-lane arterial road with a rural cross-section and paved shoulders are provided along both sides of the road. East of Queen Charlotte Street, Perth Street is a four-lane undivided arterial road with an urban cross-section and sidewalks along both sides of the road. The posted speed limit along Perth street transitions from $80 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ approximately 300 m west of Queen Charlotte Street.
Queen Charlotte Street	Queen Charlotte Street is a two-lane local road with a semi-urban cross-section (i.e. the west side of the road is urbanized). There are no pedestrian or cycling facilities along Queen Charlotte Street. The intersection with Perth Street is currently stop-controlled along the minor approach (i.e. along Queen Charlotte Street). The default speed limit is $50 \mathrm{~km} / \mathrm{h}$.
Rochelle Drive	Rochelle Drive represents the north leg of the intersection of Perth Street / Queen Charlotte Street / Rochelle Drive. Rochelle Drive is a two-lane local road with an urban cross-section. A sidewalk is provided along the eastern side of the road. The intersection with Perth Street is stop-controlled along the minor approach (i.e. along Rochelle Drive). The default speed limit is $50 \mathrm{~km} / \mathrm{h}$.
Ottawa Street West	Ottawa Street West is a two-lane collector road with a rural cross-section. There are no pedestrian facilities, cycling facilities, or paved shoulders along Ottawa Street West. The posted speed limit is $50 \mathrm{~km} / \mathrm{h}$ within the residential area and $70 \mathrm{~km} / \mathrm{h}$ to the west of the subject development. The intersection with Queen Charlotte Street is currently all-way stopcontrolled.

Figure 3 illustrates the existing intersection control and lane configuration for the study area intersections.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment
January 25, 2019

Figure 3 - Existing Intersection Control and Lane Configuration

2.2 TRANSIT

Transit service is provided along Perth Street via OC Transpo bus routes 283 and 301. Route 283 is a peak direction bus route that runs between Munster and Mackenzie King Station. Route 301 is a Monday only bus route that runs between the Village of Richmond and Carlingwood Shopping Centre.

Figure 4 illustrates the existing study area transit routes.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment January 25, 2019

Figure 4 - Existing Transit Service

(Source: OC Transpo System Map, accessed January 2019)

2.3 WALKING AND CYCLING

There are sidewalks along Perth Street, east of Queen Charlotte Street, as well as along Rochelle Street. The Village of Richmond Community Design Plan, Schedule C, indicates that Perth Street has shared use lanes, indicating that cyclists travel on the road in mixed use traffic. This is consistent with the City of Ottawa's Cycling Plan which outlines Perth Street as a suggested cycling route. The City of Ottawa's Ultimate Cycling Network designates Perth Street as a spine route east of Queen Charlotte Street.

2.4 TRAFFIC VOLUMES

Traffic counts at the Perth Street at Queen Charlotte / Rochelle Drive intersection were obtained from the Richmond Oaks Health Centre Transportation Brief (D.J. Halpenny \& Associates Ltd., 2016). The intersection counts were collected prior to 2018, and therefore, the count data was adjusted to the reflect the current existing condition. A 2% per annum growth rate was used to increase the through volumes along Perth Street to 2018 volumes which is consistent with previously prepared and approved traffic studies in the area.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment
January 25, 2019

Stantec conducted traffic counts at the Ottawa Street at Queen Charlotte Street intersection on December 14, 2017.

Figure 5 and Figure 6 illustrate the 2018 existing AM and PM peak hour traffic volumes at the study area intersections.
Appendix A contains the traffic data and is provided for reference.
Figure 5-2018 Existing Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 6-2018 Existing Traffic Volumes - PM Peak Hour

3.0 FUTURE TRANSPORTATION ENVIRONMENT

3.1 FUTURE NETWORK UPGRADES

3.1.1 Road Network Improvements

Several significant transportation improvements have been noted in the City of Ottawa's 2013 Transportation Master Plan and the Village of Richmond's 2010 Transportation Master Plan near the proposed site and are outlined in Table 1 below.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Table 1 - Scheduled Upgrades

| Project | Description | Ottawa TMP Phase | Richmond TMP
 Phase |
| :--- | :--- | :--- | :--- | :--- |
| New North-South
 Collector | Will ultimately connect Ottawa Street, Perth Street,
 and the Richmond Village By-Pass. | N/A | Stage 1
 $(2011-2020)$ |
| Perth Street
 Roundabout | Proposed at the intersection between Perth Street at
 the New North-South collector. | N/A | Stage 1
 $(2011-2020)$ |
| Richmond Village By-
 Pass | New two-lane road between Huntley Road and
 Eagleson Road. | Network Concept
 (i.e. beyond 2031) | Stage 2
 $(2021-2031)$ |
| Perth Street | Widen to four lanes between Shea Road and Eagleson
 Road and between Queen Charlotte Street and the
 village boundary. | Network Concept
 (i.e. beyond 2031) | (no timeline
 provided) |

- The New North-South Collector road from the above table is called Meynell Road in the proposed plan of subdivision and this roadway will serve as the primary access to the site.
- The roundabout at the Perth Street at New North-South collector (Meynell Road) intersection is identified within Stage 1 of the Village of Richmond's TMP and is DC eligible. The TMP outlines that once this intersection meets traffic signal warrants, a roundabout should be implemented.
- The Richmond Village By-Pass will not directly impact the subject development and is highlighted for information purposes.
- The widening of Perth Street is not scheduled to occur within the timelines of the subject study; however, adequate right-of-way width will need to be dedicated by adjacent developments to protect for the future widening.

3.1.2 Future Background Developments

There are several developments scheduled to occur in the vicinity of the subject site, as outlined in Table 2 below. These background developments were explicitly accounted for and added to the roadway network as background traffic volumes.

Table 2 - Background Developments

Development	Location	Size	Assumed BuildOut
Richmond Village Development Corporation Phase 1	Bordered by Perth Street to the north, undeveloped/vacant land to the west and south, and the Jock River Tributary to the east.	214 residential units	2021
Richmond Oaks Health Centre	Northeast quadrant of the Perth Street at Rochelle Drive intersection.	24,000 ft2 GFA retail 31 units of senior residence	2022
Samara Square	Located north of Chestnut Green Private, east of Talos Circle. The site is bordered by outdoor recreational facilities to the east and vacant land to the north.	147 apartment units 124 senior apartments 4,920 ft2 GFA retail	2023

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment

January 25, 2019

Richmond Village Development Corporation Phase 2	Bounded by Perth Street to the north, Richmond Village Development Corporation Phase 1 to the east, and vacant land to the south and west	205 residential units	2024
Richmond Village Development Corporation Phase 3	Bounded by Perth Street to the south, existing development to the east, and vacant land to the west and north.	308 residential units	2028
Laffin Lands	Bounded by existing residential to the east, Ottawa Street to the south, and Mattamy's proposed Richmond Village development to the north and west.	In the absence of a development application, the number of residential units was estimated based on the densities in the proposed Mattamy Richmond Village draft plan. This equates to approximately 160 residential units.	In the absence of a development application, the build-out year was assumed to occur sometime between 2029 and 2034

3.22029 FUTURE BACKGROUND CONDITIONS

Future background conditions are assessed to differentiate between the transportation improvements that may be required to address background traffic growth and those that may be required to accommodate traffic generated by the subject development. Any improvements identified to address future background conditions are not the responsibility of the developer.

The Richmond Oaks Health Centre, Samara Square, and Richmond Village Development Corporation's Phases 1, 2, and 3 are anticipated to be fully built by the 2029 ultimate horizon. Site traffic for these proposed developments was obtained from the respective transportation impact studies and added to the roadway network as background traffic.

In addition to these background developments, a nominal 2% annual growth rate was applied to the through volumes along Perth Street. This rate of growth is consistent with industry standards and those that were applied in previously prepared / approved studies (i.e. Richmond Oaks Health Centre Transportation Brief and Richmond Village Phase 1 Transportation Impact Study).

Figure 7 and Figure 8 illustrate the 2029 future background traffic volumes at the study area intersections during the AM and PM peak hours, respectively.

Appendix B contains the site-generated traffic volumes for the Richmond Oaks Health Centre, Samara Square, and Richmond Village Development Corporation's Phases 1, 2, and 3.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 7-2029 Future Background Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 8-2029 Future Background Traffic Volumes - PM Peak Hour

3.3 SITE TRAFFIC GENERATION

3.3.1 Land Use and Trip Generation Rates

The TRANS Trip Generation Study, 2009, was used to estimate traffic generated by the subject site. Land use codes 210 - single detached dwellings and 224 - semi-detached dwellings, townhouses, rowhouses were thought to be most representative of the proposed land uses.

Table 3 lists the trip generation rates obtained from the TRANS Trip Generation Study.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Table 3 - TRANS Trip Generation Rates

ITE Land Use			Morning Peak Hour			Afternoon Peak Hour		
			In	Out	Total	In	Out	Total
210 Single detached dwellings	Units	805	29\%	71\%	0.62	62\%	39\%	0.92
224 Semi-detached dwellings, townhouses, rowhouses	Units	296	37\%	64\%	0.62	53\%	47\%	0.67

3.3.2 Vehicle Site Trips

Table 4 lists the vehicle trips generated by the site. The site was split north and south of Ottawa Street to facilitate trip assignment to the road network.

Table 4 - Vehicle Site Trips

Location	Morning Peak Hour			Afternoon Peak Hour		
	In	Out	Total	In	Out	Total
Mattamy North of Ottawa St.	127	274	401	319	221	540
Mattamy South of Ottawa St.	86	198	284	245	161	406
Total	213	472	685	564	382	946

3.3.3 Traffic Distribution and Assignment

The distribution of traffic to / from the study area was determined through examination of the current traffic distribution at the Perth Street at Queen Charlotte Street / Rochelle Drive intersection in combination with engineering judgement. As Ottawa Street bisects the proposed development, two separate distributions were developed: one for the lands north of Ottawa Street and one for the lands south of Ottawa Street.

Table 5 below outlines the assumed trip distribution for the lands north of Ottawa Street.
Table 5 - Traffic Distribution

	Via (to/from)				
	Perth Street	Perth Street	Ottawa Street	Ottawa Street	Royal York Street (East)
(East)	(West)	(East)	(West)	12%	
Mattamy North of Ottawa St	78%	2%	5%	3%	2%
Mattamy South of Ottawa St	78%	0%	15%	5%	2

Figure 9 and Figure 10 illustrate the assignment of site traffic volumes to the road network for the AM and PM peak hours respectively. The abbreviated term "Neg." indicates that a negligible number of site trips are expected to utilize the turning movement.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 9 - Site Traffic - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 10 - Site Traffic - PM Peak Hour

3.42029 TOTAL FUTURE CONDITIONS

Total future conditions are examined to determine improvements that may be required as a direct result of the development. It is anticipated that by 2029 the residential development will be fully built and occupied. The 2029 total future traffic volumes were derived by adding site generated trips to future background volumes anticipated for 2029.

Figure 11 and Figure 12 illustrate the 2029 total future traffic volumes at the study area intersections during the AM and PM peak hours, respectively. Section 4.3 contains an assessment of 2029 total future traffic conditions.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 11-2029 Total Future Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 12-2029 Total Future Traffic Volumes - PM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

3.52034 ULTIMATE CONDITIONS

Ultimate conditions for the 2034 horizon were examined to determine if other improvements may be required due to additional growth in background traffic volumes 5 years beyond the expected build-out of the subject site.

The Laffin Lands were assumed to be developed by the 2034 ultimate horizon. In the absence of a development application for these lands, the number of residential units was approximated using the same unit densities as the subject development. A trip generation was completed using these residential units and the site trips were added to the roadway network as background traffic. In addition, a nominal 2% annual growth rate was applied to the through volumes along Perth Street. This rate of growth is consistent with industry standards and those that were applied in previously prepared / approved studies (i.e. Richmond Oaks Health Centre Transportation Brief and Richmond Village Phase 1 Transportation Impact Study).

Figure 13 and Figure 14 illustrate the 2034 ultimate traffic volumes at the study area intersections during the AM and PM peak hours, respectively. Section 4.4 contains the assessment of 2034 ultimate traffic conditions.

Appendix B contains the assumed background traffic generated by the Laffin Lands.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 13-2034 Ultimate Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
January 25, 2019

Figure 14-2034 Ultimate Traffic Volumes - PM Peak Hour

4.0 TRANSPORTATION ASSESSMENT

4.1 2018 EXISTING CONDITIONS

Figure 3 (Section 2.1) illustrates the 2018 existing intersection controls and lane configuration at the study area intersections.

4.1.1 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Stop-controlled intersection operations were analyzed using the Synchro 10.0^{TM} software package with the Highway Capacity Manual 2010 edition (HCM 2010) methodology.

Table 6 provides a summary of 2018 existing intersection operations. All study area intersections operate acceptably under 2018 existing conditions, and therefore, no improvements are required to supplement existing conditions.

Appendix C contains detailed intersection performance worksheets.
Table 6-2018 Existing Intersection Operations

Intersection	Control	Approach / Movement		LOS	VIC	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	B (C)	0.05 (0.05)	13.0 (15.7)	0.1 (0.1)
		EB	Left / Through / Right	A (A)	0.00 (0.01)	7.8 (8.4)	0.0 (0.0)
		WB	Left	A (A)	0.01 (0.01)	8.2 (7.9)	0.0 (0.0)
		B	Through / Right	A (A)	0.00 (0.00)	0.0 (0.0)	0.0 (0.0)
		SB	Left / Through / Right	$B(C)$	0.07 (0.06)	13.3 (15.6)	0.2 (0.2)
		Overall Intersection		A (A)	-	1.1 (0.8)	-
Ottawa Street West at Queen Charlotte Street	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.02 (0.03)	7.1 (7.1)	0.1 (0.1)
		WB	Left / Through / Right	A (A)	0.01 (0.02)	6.7 (6.9)	0.0 (0.1)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	6.8 (6.9)	0.0 (0.0)
			erall Intersection	A (A)	-	6.9 (7.0)	-

Notes: Table format AM Peak (PM Peak)

4.2 2029 FUTURE BACKGROUND CONDITIONS

Future background conditions for the 2029 horizon were assessed to determine transportation improvements that may be required to address growth in traffic exclusive from improvements that may be required to accommodate traffic generated by the proposed development.

The background development assumptions and distributions outlined in Section 3.1 and Section 3.2 were applied to existing traffic volumes to predict 2029 future background traffic volumes.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

4.2.1 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Stop-controlled intersection operations were analyzed using the Synchro 10.0^{TM} software package with the Highway Capacity Manual 2010 edition (HCM 2010) methodology. Roundabout operations were analyzed using the Sidra 7.0 software package with the SIDRA Standard capacity model and SIDRA Roundabout level of service (LOS) method.

Table 7 summarizes the operational characteristics of the study area intersections under 2029 future background conditions.

The intersection of Perth Street and Meynell Road was assumed to be a single-lane roundabout by the 2026 horizon as per the Village of Richmond's Transportation Master Plan and Richmond Village Development Corporation's Richmond Village Phase 1 Transportation Impact Study (Stantec, 2017).

The study area intersections are projected to operate acceptably under 2029 future background conditions.
Appendix C contains detailed intersection performance worksheets.
Table 7-2029 Future Background Intersection Operations

Intersection	Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	C (D)	0.08 (0.10)	20.7 (32.7)	0.3 (0.3)
		EB	Left / Through / Right	A (A)	0.00 (0.01)	8.1 (9.8)	0.0 (0.0)
			Left	A (A)	0.01 (0.01)	9.4 (8.6)	0.0 (0.0)
		B	Through / Right	A (A)	0.00 (0.00)	0.0 (0.0)	0.0 (0.0)
		SB	Left / Through / Right	C (D)	0.11 (0.12)	19.8 (30.5)	0.4 (0.4)
		Overall Intersection		A (A)	-	0.9 (0.8)	-
Perth Street at Meynell Road	Single-lane Roundabout	NB	Left / Through / Right	A (A)	0.24 (0.14)	7.5 (6.5)	1.4 (0.7)
		WB	Left / Through / Right	A (A)	0.27 (0.59)	4.3 (4.8)	1.5 (4.5)
		SB	Left / Through / Right	A (B)	0.15 (0.13)	9.3 (11.5)	0.7 (0.7)
		EB	Left / Through / Right	A (A)	0.40 (0.39)	4.1 (4.9)	2.3 (2.1)
		Overall Intersection		A (A)	0.40 (0.59)	5.4 (5.4)	2.3 (4.5)
Ottawa Street at Queen Charlotte Street	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.02 (0.02)	7.1 (7.1)	0.1 (0.1)
		WB	Left / Through / Right	A (A)	0.01 (0.02)	6.7 (6.9)	0.0 (0.1)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	6.8 (6.9)	0.0 (0.0)
		Overall Intersection		A (A)	-	6.9 (7.0)	-
Notes: Table format AM Peak (PM Peak)							

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

4.32029 TOTAL FUTURE CONDITIONS

Total future conditions are assessed to determine transportation improvements that may be required to accommodate traffic generated by the proposed development. The site trip generation, distribution, and assignment assumptions outlined in Section 3.3 were added to the 2029 future background traffic volumes to predict total future traffic volumes.

4.3.1 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Stop-controlled intersection operations were analyzed using the Synchro 10.0^{TM} software package with the Highway Capacity Manual 2010 edition (HCM 2010) methodology. Roundabout operations were analyzed using the Sidra 7.0 software package with the SIDRA Standard capacity model and SIDRA Roundabout level of service (LOS) method.

Table 8 summarizes the operational characteristics of the study area intersections under 2029 total future conditions. Figure 15 illustrates the assumed intersection control and lane geometry.

Perth Street at Queen Charlotte Street / Rochelle Drive: the northbound and southbound approaches of the intersection are anticipated to operate with a poor level of service due to high delay experienced at the minor approaches. Given that these are low-volume approaches that are expected to operate below capacity, further mitigation is not recommended.

Perth Street at Meynell Road: as a single-lane roundabout, the westbound approach is anticipated to operate at a v/c ratio of 0.87 during the PM peak hour and the sum of the entry and conflicting circulatory volumes will exceed 1,000 vehicles per hour for all approaches during either the weekday AM or PM peak hour. The National Cooperative Highway Research Program (NCHRP) Report 672 - Roundabouts: An Informational Guide, Second Edition, suggests that a twolane entry may be required when volumes exceed 1,000 vehicles per hour, and that the operation of the roundabout may become unstable when the v/c exceeds 0.85 . Furthermore, the mid-block volumes on Perth Street east of Meynell Road exceed 1,000 vehicles per hour in each direction during the weekday peak hours and therefore widening Perth Street to 2-lanes in each direction should be considered.

Given that the Village of Richmond is expanding west, it is logical to extend the existing four-lane Perth Street crosssection westwards to Meynell Road to support the proposed and future developments, and to facilitate the addition of a northbound right-turn channel and a westbound left-turn lane to the single-lane roundabout. Widening Perth Street to four lanes will require modifications to the Perth Street and Queen Charlotte / Rochelle Drive intersection (i.e. conversion of the westbound left-turn lane to a shared westbound left / through lane).

With the above mitigation measures in place, all remaining study area intersections are forecasted to operate acceptably, however, the Perth Street intersection with Queen Charlotte Street / Rochelle Drive is forecasted to continue to operate with high delays along the minor approaches.

Figure 16 illustrates the recommended intersection controls and lane geometry.
Appendix C contains detailed intersection performance worksheets.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

Table 8-2029 Total Future Intersection Operations

Intersection	Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	E (F)	0.17 (0.35)	41.6 (128.2)	0.6 (1.2)
		EB	Left / Through / Right	A (B)	0.01 (0.01)	8.6 (12.1)	0.0 (0.0)
		WB	Left	B (A)	0.01 (0.01)	11.1 (9.7)	0.0 (0.0)
			Through / Right	A (A)	0.00 (0.00)	0.0 (0.0)	0.0 (0.0)
		SB	Left / Through / Right	E (F)	0.20 (0.35)	35.7 (96.7)	0.7 (1.2)
		Overall Intersection		A (A)	-	1.2 (1.8)	-
		Recommended Upgrade: Widening Perth Street to Four Lanes					
		NB	Left / Through / Right	E (F)	0.14 (0.21)	35.0 (67.7)	0.5 (0.7)
		EB	Left / Through / Right	A (B)	0.01 (0.01)	8.6 (12.1)	0.0 (0.0)
		WB	Left / Through / Right	B (A)	0.01 (0.01)	11.1 (9.7)	0.0 (0.0)
		SB	Left / Through / Right	$E(F)$	0.21 (0.36)	37.3 (103.9)	0.8 (1.3)
		Overall Intersection		A (A)	-	1.1 (1.5)	-
Perth Street at Meynell Road	Single-lane Roundabout	NB	Left / Through / Right	B (A)	0.67 (0.46)	10.7 (6.6)	6.8 (3.2)
		WB	Left / Through / Right	A (A)	0.38 (0.87)	5.8 (7.0)	2.5 (15.9)
		SB	Left / Through / Right	B (C)	0.17 (0.26)	10.2 (19.0)	0.8 (1.9)
		EB	Left / Through / Right	A (A)	0.46 (0.58)	5.1 (9.9)	2.7 (5.2)
			verall Intersection	A (A)	0.67 (0.87)	7.6 (8.0)	6.8 (15.9)
		Recommended Upgrade: Implementing NBR and WBL Turning Lanes					
		NB	Left / Through	B (A)	0.05 (0.03)	10.5 (9.7)	0.3 (0.2)
			Right	A (A)	0.27 (0.20)	3.2 (3.2)	0.0 (0.0)
		WB	Through / Right	A (A)	0.16 (0.44)	9.3 (9.4)	0.8 (2.7)
			Left	A (A)	0.21 (0.42)	3.4 (3.5)	1.0 (2.6)
		SB	Left / Through / Right	A (B)	0.17 (0.14)	9.2 (10.3)	0.5 (0.5)
		EB	Left / Through / Right	A (A)	0.51 (0.59)	5.1 (9.6)	2.6 (4.3)
		Overall Intersection		A (A)	0.51 (0.59)	5.3 (6.7)	2.6 (4.3)
Ottawa Street West at Queen Charlotte Street	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.07 (0.06)	7.3 (7.3)	0.2 (0.2)
		WB	Left / Through / Right	A (A)	0.03 (0.08)	7.0 (7.3)	0.1 (0.2)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	7.0 (7.0)	0.0 (0.0)
		Overall Intersection		A (A)	-	7.2 (7.3)	-
Ottawa Street West at Meynell Road	All-Way Stop Control	NB	Left / Through / Right	A (A)	0.14 (0.12)	7.9 (8.1)	0.5 (0.4)
		EB	Left / Through / Right	A (A)	0.12 (0.13)	8.1 (8.5)	0.4 (0.4)
		WB	Left / Through / Right	A (A)	0.03 (0.09)	7.6 (8.1)	0.1 (0.3)
		SB	Left / Through / Right	A (A)	0.10 (0.25)	7.6 (8.6)	0.3 (1.0)
		Overall Intersection		A (A)	-	7.9 (8.4)	-

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

Figure 15-2029 Assumed Intersection Control and Lane Geometry

Figure 16-2029 Recommended Intersection Control and Lane Geometry Improvements

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

4.4 2034 ULTIMATE CONDITIONS

Ultimate conditions for the 2034 horizon were examined to determine if other improvements may be required due to growth in background traffic five years beyond the anticipated build-out horizon of the site.

4.4.1 Intersection Operational Analysis

Table 9 summarizes the operational characteristics of the study area intersections under 2034 ultimate conditions. Figure 17 illustrates the intersection control and lane requirements for the 2034 total future horizon.

Consistent with the 2029 total future horizon, the northbound and southbound movements at the intersection of Perth Street at Queen Charlotte Street / Rochelle Drive are expected to experience high delays. However, these movements have very low traffic volumes and the movements are operating below capacity, therefore, further mitigation is not recommended. All remaining study area intersections are forecasted to operate acceptably under 2034 conditions.

Appendix C contains detailed intersection operation summaries.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

Table 9-2034 Ultimate Intersection Operations

INTERSECTION	INTERSECTION CONTROL	APPROACH / MOVEMENT		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-way stop control	NB	Left / Through / Right	E (F)	0.16 (0.24)	38.6 (79.2)	0.5 (0.8)
		EB	Left / Through / Right	A (B)	0.01 (0.01)	8.7 (12.5)	0.0 (0.0)
		WB	Left / Through / Right	B (A)	0.01 (0.01)	11.4 (9.9)	0.0 (0.0)
		SB	Left / Through / Right	$E(F)$	0.24 (0.56)	41.9 (158.2)	0.9 (2.1)
		Overall Intersection		A (A)	-	1.2 (2.4)	-
Perth Street at Meynell Road	Single-lane roundabout with WBL and NBR lanes	NB	Left / Through	$B(A)$	0.05 (0.03)	10.7 (9.8)	0.3 (0.2)
			Right	A (A)	0.28 (0.21)	3.2 (3.2)	0.0 (0.0)
		WB	Through / Right	A (A)	0.17 (0.46)	9.3 (9.4)	0.8 (2.9)
		WB	Left	A (A)	0.22 (0.45)	3.4 (3.5)	1.1 (2.9)
		SB	Left / Through / Right	A (B)	0.17 (0.14)	9.3 (10.5)	0.5 (0.5)
		EB	Left / Through / Right	A (B)	0.54 (0.63)	5.4 (10.5)	3.1 (5.2)
		Overall Intersection		A (A)	0.54 (0.63)	5.4 (6.9)	-
Ottawa Street West at Queen Charlotte Street	All-way stop control	EB	Left / Through / Right	A (A)	0.07 (0.06)	7.3 (7.3)	0.2 (0.2)
		WB	Left / Through / Right	A (A)	0.03 (0.08)	7.0 (7.3)	0.1 (0.2)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	7.0 (7.0)	0.0 (0.0)
		Overall Intersection		A (A)	-	7.2 (7.3)	-
Ottawa Street West at Meynell Road	All-way stop control	NB	Left / Through / Right	A (A)	0.14 (0.12)	7.9 (8.1)	0.5 (0.4)
		EB	Left / Through / Right	A (A)	0.13 (0.13)	8.2 (8.5)	0.4 (0.4)
		WB	Left / Through / Right	A (A)	0.03 (0.09)	7.6 (8.1)	0.1 (0.3)
		SB	Left / Through / Right	A (A)	0.10 (0.25)	7.6 (8.6)	0.3 (1.0)
		Overall Intersection		A (A)	-	7.9 (8.4)	-
Notes: Table format AM Peak (PM Peak)							

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
January 25, 2019

Figure 17-2034 Intersection Control and Lane Geometry

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Draft Plan Review
January 25, 2019

5.0 DRAFT PLAN REVIEW

The objective of the draft plan review is to create an efficient, integrated, and well-designed transportation network that accommodates all modes of travel.

Figure 18 illustrates the proposed transit route through the subject development, including potential transit stop locations. As per Richmond Village Development Corporation's Richmond Village Phase 1 Transportation Impact Study (Stantec 2017), there is a proposed northbound transit stop located along Meynell Road just north of the subject Mattamy development. To complement this, a southbound transit stop is proposed on the west side of Meynell Road, at the northernmost limits of the subject development. Two transit stops are proposed (i.e. one northbound and one southbound) along Meynell Road at the school location. Two more transit stops are proposed (i.e. one northbound and one southbound) along Meynell Road just north of Ottawa Street. With the proposed transit stop locations, 95\% of the residents will be within a 400 m radius of the transit stops.

Figure 19 illustrates the proposed sidewalks, pathway connections, pedestrian crossovers, and locations for curb radii reductions. Sidewalks are recommended on both sides of Meynell Road and Ottawa Street and on one side of several local roads to facilitate walking trips to transit stops, the school, and parks. Two pedestrian crossovers are proposed: one crossing Ottawa Street and one crossing Meynell Street at the park. The curb radii at all intersections along Meynell Road are proposed to be reduced to act as a form of proactive traffic calming and to reduce the crossing distances for pedestrians. The exception to this is at the Meynell Road at Ottawa Street intersection where the curb radii will be dictated by the required turning movements of transit vehicles. The required curb radii will be determined at registration as part of the detailed design of the road.

Figure 20 illustrates the proposed cross-section for Meynell Road which is consistent with the cross-section of Meynell Road through the Richmond Village Development Corporation's development to the north. The 22 m cross-section will feature an 8.5 m asphalt surface and sidewalks will be provided along both sides. It should be noted that the crosssection of Meynell Road across the frontage of the park and school may differ from what is illustrated in Figure 20 below. In front of the school and park, parking lay-bys may potentially be included to facilitate parking for both the park and the school. A similar treatment has been implemented along Kilbirnie Drive in Barrhaven South, where Kilbirnie Drive has a ROW width of 22 m which includes sidewalks along both sides and parking lay-bys along one side. The detailed cross-section of Meynell Road will be further refined in subsequent TIAs as the development proceeds through to registration.

Figure 18 - Proposed Transit Route and Transit Stops

Figure 19 - Proposed Pedestrian Facilities

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Draft Plan Review
January 25, 2019

Figure 20 - Proposed Meynell Road Cross-Section - without Parking

6.0 TRANSPORTATION DEMAND MANAGEMENT

The City of Ottawa Transportation Demand Management (TDM) supportive design \& infrastructure measures checklist was used to identify TDM measures that could be applied to the subject site. The checklist is outlined below.

	TDM-supportive design \& infrastructure measures: Residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
	1.	WALKING \& CYCLING: ROUTES	
	1.1	Building location \& access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\square Not applicable
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\square Not applicable
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	\square Not applicable
	1.2	Facilities for walking \& cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	\square Not applicable
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	\square Not applicable

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Demand Management
January 25, 2019
$\left.\begin{array}{|ll|l|l|}\hline & \text { TDM-supportive design \& infrastructure measures: } \\ \text { Residential developments }\end{array} \quad \begin{array}{c}\text { Check if completed \& } \\ \text { add descriptions, explanations } \\ \text { or plan/drawing references }\end{array}\right]$

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Demand Management
January 25, 2019

TDM-supportive design \& infrastructure measures: Residential developments			Check if completed \& add descriptions, explanations or plan/drawing references
	2.	WALKING \& CYCLING: END-OF-TRIP FACILITIES	
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\square Not applicable
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or wellused areas (see Zoning By-law Section 111)	\square Not applicable
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	\square Not applicable
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	\square Not applicable
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	\square Not applicable
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	\square Not applicable
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	\square Not applicable
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	\square Not applicable
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	\square Not applicable
better	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	\square Not applicable

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Demand Management
January 25, 2019

TDM-supportive design \& infrastructure measures: Residential developments			Check if completed \& add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
		Pick-up \& drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	\square Not applicable
		CARSHARING \& BIKESHARING	
		Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	\square Not applicable
	5.2	Bikeshare station location	
BETTER	$5.2 .1$	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	\square Not applicable
		PARKING	
		Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\square Not applicable
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	\square Not applicable
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	\square Not applicable
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	\square Not applicable
	6.2	Separate long-term \& short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	\square Not applicable

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Summary and Conclusions
January 25, 2019

7.0 SUMMARY AND CONCLUSIONS

Proposed Development

- Mattamy's proposed residential subdivision in the Village of Richmond (City of Ottawa) is located roughly 600 m south of Perth Street and west of Queen Charlotte Street and extends south of Ottawa Street towards the Jock River. The site is bound by Richmond Village Development Corporation's plan of subdivision to the north, existing residential homes to the east, the Jock River to the south, and vacant agricultural lands to the west. The proposed development is anticipated to consist of 296 townhome-style dwellings and 805 single family dwellings for a total of 1101 residential units.
- The development is anticipated to generate 685 and 946 vehicle trips during the $A M$ and $P M$ peak hours, respectively.

2018 Existing Conditions

- The study area intersections assessed as part of this study currently operate acceptably under 2018 existing conditions.

2029 Future Background Conditions

- By 2029 the intersection of Perth Street and Meynell Road was assumed to be constructed as a single-lane roundabout consistent with the Village of Richmond's Transportation Master Plan and Richmond Village Development Corporation's Richmond Village Phase 1 Transportation Impact Study (Stantec, 2017)
- The study area intersections are forecasted to operate acceptably under 2029 future background conditions.

2029 Total Future Conditions

- At the intersection of Perth Street at Queen Charlotte Street / Rochelle Drive, the northbound and southbound movements are expected to experience poor levels of service due to high delays. However, those movements are expected to operate below capacity as they have very low traffic volumes, and therefore, further mitigation is not recommended.
- Without additional mitigation, the single-lane roundabout assumed at the intersection of Perth Street and Meynell Road is forecasted to operate above capacity.
- The mid-block volumes on Perth Street east of the Meynell Road are forecasted to exceed the typical arterial lane capacity of 1,000 vehicles per hour during the AM and PM peak hours.
- It is recommended that Perth Street be widened to four lanes between Queen Charlotte Street / Rochelle Drive and Meynell Road. In conjunction with this, the Perth Street / Meynell Road roundabout should be widened to accommodate two entry lanes on the westbound approach and two departure lanes proceeding eastbound from the roundabout. The roundabout would function with a dedicated westbound left-turn lane and northbound right-turn lane with the remaining movements operating in a shared lane configuration.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Summary and Conclusions
January 25, 2019

- With the above improvements in place all remaining study area intersections are forecasted to operate acceptably under 2029 total future conditions, however, the Perth Street intersection with Queen Charlotte Street / Rochelle Drive is forecasted to continue to operate with high delays along the minor approaches.

2034 Ultimate Conditions

- Similar to the 2029 total future horizon, the northbound and southbound movements at the intersection of Perth Street at Queen Charlotte Street / Rochelle Drive are forecasted to experience poor level of service due to high delays. Given that these movements will have very low volumes and are projected to operate below capacity, further mitigation is not recommended.
- All remaining study area intersections are forecasted to operate acceptably under 2034 ultimate conditions.

Draft Plan Review

- A transit route is proposed through the subject development along Meynell Road and Ottawa Street. Transit stops are proposed to be located along Meynell Road at the northernmost edge of the subject development, at the proposed school, and just north of Ottawa Street. With these transit stops in place, 95% of the subject development will be located within a 400 m radius of the transit stops.
- The draft plan includes sidewalks along both sides of Meynell Road and Ottawa Street and along one side of several local roads. Two pedestrian crossovers are proposed: one crossing Ottawa Street and one crossing Meynell Street at the park. The curb radii at all intersections along Meynell Road are proposed to be reduced to act as a form of traffic calming and to reduce the crossing distances for pedestrians. The exception to this is at the Meynell Road at Ottawa Street intersection where the curb radii will be dictated by the required turning movements of transit vehicles.
- The cross-section of Meynell Road through Mattamy's plan of subdivision is consistent with the cross-section of Meynell Road through Richmond Village Development Corporation's development to the north. The crosssection for Meynell Road features wide travel lanes which will facilitate cyclists and motor vehicles operating in a shared lane. It should be noted that the cross-section of Meynell Road in front of the school and park may differ to accommodate parking via parking lay-bys. The detailed cross-section of Meynell Road will be further refined in subsequent TIAs as the development proceeds through to registration.

Transportation Demand Management

With the proposed development being residential in nature, opportunities for Transportation Demand Management (TDM) measures / initiatives are limited. TMD measures / initiatives for the proposed development include:

- Sidewalks along both sides of the proposed north-south collector (Meynell Road), both sides of Ottawa Street, and along several local streets within the plan of subdivision.
- Marked crosswalks at intersections and depressed curbs at street corners.
- Safe (i.e. illuminated), direct, and attractive walking routes to transit stops located along Meynell Road.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Summary and Conclusions
January 25, 2019

- Curb radii reductions at specified intersections to act as a preventative form of traffic calming as well as to reduce the pedestrian crossing distances.
- Two pedestrian crossovers are proposed within the subject development: one along Meynell Road and one along Ottawa Street.

Based on the transportation evaluation and improvements recommended in this study, Mattamy's proposed Richmond subdivision residential development should be permitted to proceed.

STANTEC CONSULTING LTD.

(Original signed and stamped)

Robert Vastag, RPP Lauren O'Grady, P. Eng.
Project Manager, Senior Transportation Planner
Transportation Engineer

Appendix A TRAFFIC DATA
January 25, 2019

Appendix A TRAFFIC DATA

FIGURE 2.1
EXISTING 2016 WEEKDAY PEAK AM AND PM HOUR TRAFFIC COUNTS

Appendix B BACKGROUND DEVELOPMENTS
January 25, 2019

Appendix B BACKGROUND DEVELOPMENTS

Richmond Village Development Corporation Phases 1, 2, 3 Site Generated Traffic Volumes - Weekday AM Peak Hour

Richmond Village Development Corporation Phases 1, 2, 3
Site Generated Traffic Volumes - Weekday PM Peak Hour

FIGURE 3.2

WEEKDAY PEAK AM AND PM HOUR SITE GENERATED TRIPS

FIGURE 3.2

WEEKDAY PEAK AM AND PM HOUR SITE GENERATED TRIPS

Laffin Lands Site Generated Traffic Volumes - AM Peak Hour

Perth Street

Ottawa Street West

Laffin Lands Site Generated Traffic Volumes - PM Peak Hour

Appendix C INTERSECTION PERFORMANCE WORKSHEETS
January 25, 2019

Appendix C INTERSECTION PERFORMANCE WORKSHEETS

	EB	WB	NB	SB
Approach	0.2	13	13.3	
HCM Control Delay, s	0.1	B	B	
HCM LOS				

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLL1
Capacity (veh//)	40	1309	-	-1119	-	-466	
HCM Lane VCC Ratio	0.047	0.004	-	-0.005	-	-0.072	
HCM Control Delay (s)	13	7.8	0	-8.2	-	-13.3	
HCM Lane LOS	B	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	0.1	0	-	-	0	-	-
H		0.2					

EBLn1	WBLn1	SBLn1	
Lane	33%	0%	50%
Vol Left, \%	67%	50%	0%
Vol Thru, \%	0%	50%	50%
Vol Right, \%	Stop	Stop	Stop
Sign Control	15	10	10
Traffic Vol by Lane	5	0	5
LT Vol	10	5	0
Through Vol	0	5	5
RT Vol	17	11	11
Lane Flow Rate	1	1	1
Geometry r rip	0.019	0.011	0.012
Degree of Util (X)	4.029	3.666	3.783
Departure Headway (Hd)	Yes	Yes	Yes
Convergence, YN	893	980	950
Cap	2.034	1.673	1.792
Service Time	0.019	0.011	0.012
HCM Lane VIC Ratio	7.1	6.7	6.8
HCM Contro Delay	A	A	A
HCM Lane LOS	0.1	0	0

HCM 2010 AWSC
Mattamy Richmond Village
$\underline{\text { 2: Ottawa St. W. \& Queen Charlotte St. }} 2018$ Existing PM

Approach	EB	WB	NB	SB
HCM Control Delay, S	0.1	0.1	20.7	19.8
HCM LOS			C	C

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBRS	BLn1
Capacity (veh/h)	249	1162	-	-	817	-	-	273
HCM Lane V/C Ratio	0.08	0.004	-		0.006	-	-	0.11
HCM Control Delay (s)	20.7	8.1	0	-	9.4	-	.	19.8
HCM Lane LOS	C	A	A	-	A	-	-	C
HCM 95th \%tile Q(veh)	0.3	0	-		0	-	-	0.4

EBLn1	WBLn1	SBLn1	
Lane	33%	0%	50%
Vol Left, \%	67%	50%	0%
Vol Thru, \%	0%	50%	50%
Vol Right, \%	Stop	Stop	Stop
Sign Control	15	10	10
Traffic Vol by Lane	5	0	5
LT Vol	10	5	0
Through Vol	0	5	5
RT Vol	15	10	10
Lane Flow Rate	1	1	1
Geometry r Grp	0.017	0.01	0.01
Degree of Util (X)	4.026	3.663	3.777
Departure Headway (Hd)	Yes	Yes	Yes
Convergence, YN	894	982	951
Cap	2.029	1.668	1.787
Service Time	0.017	0.01	0.011
HCM Lane VIC Ratio	7.1	6.7	6.8
HCM Control Delay	A	A	A
HCM Lane LOS	0.1	0	0

HCM 2010 AWSC
Western Development Lands

2: Ottawa St. W. \& Queen Charlotte St.	2029 Background PM

LANE SUMMARY
F Site: 101 [2029 FB AM] Perth Street and Meynell Road

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS,
ITS LOS values are based on average delay and $v /$ ratio (degree of saturation) per lane.
S F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010
IDRA Standard Delay Model is use
ap-Acceptance Capacity SIDRA Standard Delay includes Geometric Delay.
HV (\%) values are calculated for All Movement Clisses of
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pyty Ltd | sidrasolutions.com

LANE LEVEL OF SERVICE

ane Level of Service
(7) Site: 101 [2029 FB AM]
erth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& VIc (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
ane LOS values are based on average delay and v / c ratio (degree of saturation) per lane
LOS F will result $\mathrm{i} \mathrm{V} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
intersection and Approach LOS values are based on average delay for all lanes (V/C not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

© Site: 101 [2029 FB AM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Sath } \\ & \text { v/c } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { Sec } \end{gathered}$	Level of Service	95\% Back Vehicles veh	Distance m	Prop. Queued	Effective per veh	$\begin{gathered} \text { Average } \\ \text { Speed } \\ \mathrm{km} / \mathrm{h} \end{gathered}$
South: Meynell Road											
1	L2	45	0	0.243	12.	LOS B	1.4	9.7	0.63	0.7	54.9
2	T1	5	2.0	0.243	6.1	LOSA	1.4	9.7	0.63	0.73	54.7
3	R2	175	2.0	0.243	6.4	LOSA	1.4	9.7	0.63	0.73	53.1
Approach		225	2.0	0.243	7.5	LOSA	1.4	9.7	0.63	0.73	53.5
East: Perth Street											
4	L2	60	2.0	0.269	9.3	LOSA	1.5	10.4	0.20	0.41	57.0
5	T1	295	2.0	0.269	3.3	LOSA	1.5	10.4	0.20	0.41	56.7
6	R2	40	2.0	0.269	3.7	LOSA	1.5	10.4	0.20	0.41	55.0
Approach		395	2.0	0.269	4.3	LOSA	1.5	10.4	0.20	0.41	56.6
North: Meynell Road											
7	L2	130	2.0	0.149	10.5	Los b	0.7	4.9	0.44	0.67	53.3
8	T1	5	2.0	0.149	4.6	LOSA	0.7	4.9	0.44	0.67	53.1
9	R2	30	2.0	0.149	4.9	LOSA	0.7	4.9	0.44	0.67	51.6
Approach		165	2.0	0.149	9.3	Los A	0.7	4.9	0.44	0.67	53.0
West: Perth Street											
10	L2	10	2.0	0.403	9.9	LOSA	2.3	16.5	0.39	0.4	. 5
11	T1	495	2.0	0.403	4.0	LOSA	2.3	16.5	0.39	0.44	3
12	R2	15	2.0	0.403	4.3	LOSA	2.3	16.5	0.39	0.44	54.6
Approach		520	2.0	0.403	4.1	LOS A	2.3	16.5	0.39	0.44	56.3
All Vehicles		1305	2.0	0.403	5.4	Los A	2.3	16.5	0.38	0.51	55.4

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
enicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010) oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
(

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.co

LANE SUMMARY
G Site: 101 [2029 FB PM]
Perth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { SStin } \\ & \text { v/c } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Uti. } \\ & \hline \end{aligned}$	Average Delay sec	Level of Service		$\begin{gathered} \text { 2ueue } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Ad. } \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	145	2.0	1011	0.143	100	6.5	Losa	0.7	5.1	Full	500	0.0	0.0
Approach	145	2.0		0.143		6.5	LOSA	0.7	5.1				
East: Perth Street													
Lane $1^{\text {d }}$	890	2.0	1515	0.587	100	4.8	Losa	4.5	32.2	Full	500	0.0	0.0
Approach	890	2.0		0.587		4.8	LOSA	4.5	32.2				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	824	0.127	100	11.5	Los B	0.7	5.0	Full	500	0.0	. 0
Approach	105	2.0		0.127		11.5	Los B	0.7	5.0				
West. Perth Street													
Lane $1^{\text {d }}$	465	2.0	1209	0.3	100	4.9	Losa	2.1	5.0	Full	500	0.0	0.0
Approach	465	2.0		0.385		4.9	Los A	2.1	15.0				
Intersection	1605	2.0		0.587		5.4	LOSA	4.5	32.2				

Site Level of Service (LOS) Method: Delay \& V / C (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LO
Lane LOS values are based on average delay and vic ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/C not used as specified in HCM 2010)
oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Dominant lane on roundabout approach
SIDRA INTERSECTION 7.0 | Copyright © 2000 -2017 Akcelik and Associates Pty Ltd | sidras

MOVEMENT SUMMARY

Site: 101 [2029 FB PM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	OD Mov	Demand Total vehth	$\begin{aligned} & \text { Hows } \\ & \text { HV } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \end{gathered}$	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective per veh	Average Speed km/h
South: Meynell Road											
1	L2	30	2.0	0.143	11.0	LOS B	0.7	5.1	0.53	0.64	55.5
2	T1	5	2.0	0.143	5.1	LOSA	0.7	5.1	0.53	0.64	55.2
3	R2	110	2.0	0.143	5.4	losa	0.7	5.1	0.53	0.64	53.6
Approach		145	2.0	0.143	6.5	LOSA	0.7	5.1	0.53	0.64	54.0
East: Perth Street											
4	L2	190	2.0	0.587	9.5	LOSA	4.5	32.2	0.29	0.45	56.3
5	T1	565	2.0	0.587	3.5	LOSA	4.5	32.2	0.29	0.45	56.1
6	R2	135	2.0	0.587	3.8	LOSA	4.5	32.2	0.29	0.45	54.
Approach		890	2.0	0.587	4.8	Los A	4.5	32.2	0.29	0.45	55.8
North: Meynell Road											
7	L2	80	2.0	0.127	12.8	Los b	0.7	5.0	0.67	0.77	52.0
8	T1	5	2.0	0.127	6.9	LOSA	0.7	5.0	0.67	0.77	51.8
9	R2	20	2.0	0.127	7.2	LOSA	0.7	5.0	0.67	0.77	50.5
Approach		105	2.0	0.127	11.5	Los B	0.7	5.0	0.67	0.77	51.7
West: Perth Street											
10	L2	35	2.0	0.385	10.3	Los B	2.1	15.0	0.45	0.50	56.1
11	T1	385	2.0	0.385	4.4	LOSA	2.1	15.0	0.45	0.50	55.9
12	R2	45	2.0	0.385	4.7	LOSA	2.1	15.0	0.45	0.50	54.2
Approach		465	2.0	0.385	4.9	Los A	2.1	15.0	0.45	0.50	55.7
All Vehicles		1605	2.0	0.587	5.4	LOSA	4.5	32.2	0.38	0.50	55.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010), oundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
NV (\%) valuce Capacity: SIDRA Standard (Akçelik M3D)

SIDRA INTERSECTION 7.0 I Copyright \odot 2000-2017 Akcelik and Associates Py Lt Ltd I sidrasolutions.com
organisation: STANTE CONSLTTNG LTD | Processed: Tuesday, January 16, 20189:52:23 PM
Project: W:Iactivel163600873 RichmondVillageDraetfPlanTrafficimpacalStudy)

LANE LEVEL OF SERVICE
Lane Level of Service
Site: 101 [2029 FB PM]
Perth Street and Meynell Road
Roundabout

\section*{| | South | East | North | West | Intersection |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LOS | A | A | B | A | A |}

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS.
Roundabout LOS Method: SIDRA Roundabout LOS.
-OS F will result if $\mathrm{v} / \mathrm{c}>1$ i irespective of lane delay value (does not apply for approaches and intersection).
Itersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
SIDRAINTERSE

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	8\%	0\%	50\%
Vol Thru, \%	92\%	80\%	0\%
Vol Right, \%	0\%	20\%	50\%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	60	25	10
LT Vol	5	0	5
Through Vol	55	20	0
RT Vol	0	5	5
Lane Flow Rate	60	25	10
Geometry Grp	1	1	1
Degree of Util (X)	0.066	0.027	0.011
Departure Headway (Hd)	3.987	3.876	3.879
Convergence, Y/N	Yes	Yes	Yes
Cap	902	926	920
Service Time	1.995	1.891	1.914
HCM Lane VIC Ratio	0.067	0.027	0.011
HCM Control Delay	7.3	7	A
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.2	0.1	0

1: Queen Charlotte St./Rochelle Dr. \& Perth St. 2029 Total PM

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			¢	
Traffic Vol, veh/h	60	30	5	20	30	15	5	75	15	10	120	85
Future Vol, veh/h	60	30	5	20	30	15	5	75	15	10	120	85
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	60	30	5	20	30	15	5	75	15	10	120	85
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conficting Approach Left	ft SB			NB			EB			WB		
Conficting Lanes Left	1			1			1			1		
Conficting Approach Righ	ghNB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.5			8.1			8.1			8.6		
HCMLOS	A			A			A			A		

LANE SUMMARY
F Site: 101 [2029 TF AM]

Perth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { Hows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{gathered} \text { Deg. } \\ \text { Satin } \\ \text { vir } \end{gathered}$	$\begin{aligned} & \text { Lane } \\ & \text { Uit. } \\ & \% \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	$\begin{aligned} & 95 \% \mathrm{Ba} \\ & \text { Veh } \end{aligned}$	$\begin{gathered} \text { Queue } \\ \text { Dist } \\ m \\ \hline \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	600	2.0	901	0.666	100	10.7	Los B	6.8	48.2	Full	500	0.0	0.0
Approach	600	2.0		0.666		10.7	LOS B	6.8	48.2				
East: Perth Street													
Lane ${ }^{\text {d }}$	560	2.0	1477	0.379	100	5.8	Losa	2.5	17.9	Full	500	0.0	0.0
Approach	560	2.0		0.379		5.8	LOSA	2.5	17.9				
North: Meynell Road													
Lane $1^{\text {d }}$	165	2.0	987	0.167	100	10.2	Los B	0.8	6.0	Full	500	0.0	0.0
Approach	165	2.0		0.167		10.2	Los B	0.8	6.0				
West: Perth Street													
Lane $1^{\text {d }}$	525	2.0	1140	0.461	100	5.1	Los A	2.7	19.6	Full	500	0.0	0.0
Approach	525	2.0		0.461		5.1	LOSA	2.7	19.6				
Intersection	ค 1850	2.0		0.666		7.6	Los A	6.8	48.2				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). oundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
S F will result if $\mathrm{v} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010
IDRA Standard Delay Model is use
ap-Acceptance Capacity SIDRA Standard Delay includes Geometric Delay
HV (\%) values are calculateded for All Movement Classes of
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.co

LANE LEVEL OF SERVICE

ane Level of Service
(7) Site: 101 [2029 TF AM]
erth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& vic (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v/c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
Intersection and Approach LOS values are based on average delay for all lanes (v/C not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

\forall Site: 101 [2029 TF AM]
Perth Street and Meynell Road
Perth Street an

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demar Total veh/h	$\begin{aligned} & \text { Fows } \\ & \text { HV } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satic } \\ & \text { vice } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service		Queue Distance \qquad	Prop. Queued	Effective per veh	Average
South: Meynell Road											
1	L2	50	2.0	0.666	15.8	LOS B	6.8	48.2	0.86	0.99	52.4
2	T1	5	2.0	0.666	9.9	LOSA	6.8	48.2	0.86	0.99	52.2
3	R2	545	2.0	0.666	10.2	LOS B	6.8	48.2	0.86	0.99	50.7
Approach		600	2.0	0.666	10.7	LOS B	6.8	48.2	0.86	0.99	50.9
East: Perth Street											
4	L2	225	2.0	0.379	9.3	Losa	2.5	17.9	0.25	0.49	55.7
5	T1	295	2.0	0.379	3.4	Los A	2.5	17.9	0.25	0.49	55.4
6	R2	40	2.0	0.379	3.7	losa	2.5	17.9	0.25	0.49	53.8
Approach		560	2.0	0.379	5.8	LOSA	2.5	17.9	0.25	0.49	55.4
North: Meynell Road											
7	L2	130	2.0	0.167	11.4	LOS B	0.8	6.0	0.55	0.73	52.9
8	T1	5	2.0	0.167	5.5	LOSA	0.8	6.0	0.55	0.73	52.7
9	R2	30	2.0	0.167	5.8	LOSA	0.8	6.0	0.55	0.73	51.3
Approach		165	2.0	0.167	10.2	LOS B	0.8	6.0	0.55	0.73	52.6
West: Perth Street											
10	L2	10	2.0	0.461	10.9	Los B	2.7	19.6	0.54	0.54	55.8
11	T1	495	2.0	0.461	5.0	LOSA	2.7	19.6	0.54	0.54	55.5
12	R2	20	2.0	0.461	5.3	losa	2.7	19.6	0.54	0.54	53.9
Approach		525	2.0	0.461	5.1	LOS A	2.7	19.6	0.54	0.54	55.5
All Ve		1850	2.0	0.666	7.6	LOSA	6.8	48.2	0.56	0.69	53.7

site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
enicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c >1 irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

LANE SUMMARY
Gite: 101 [2029 TF PM]
erth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { Hows } \\ & \text { H\% } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \hline \text { Deg. } \\ & \text { Satin } \\ & \text { v/c } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Uti. } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sen } \end{aligned}$	Level of Service	$\begin{aligned} & 95 \% \text { Back } \quad \text { Veh } \end{aligned}$	$\begin{aligned} & \text { f Queue } \\ & \text { Dist } \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Config } \end{aligned}$	$\begin{gathered} \text { Lane } \\ \text { Length } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj, } \\ & \text { and } \end{aligned}$	$\begin{aligned} & \text { Prob, } \\ & \text { Blook. } \\ & \% \\ & \hline \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	445	2.0	960	0.464	100	6.6	Los A	3.2	23.0	Full	500	0.0	0.0
Approach	445	2.0		0.464		6.6	Los A	3.2	23.0				
East: Perth Street													
Lane $1^{\text {d }}$	1325	2.0	1528	0.867	100	7.0	LOSA	15.9	113.0	Full	500	0.0	0.0
Approach	1325	2.0		0.867		7.0	LOSA	15.9	113.0				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	407	0.258	100	19.0	LOS B	1.9	13.6	Full	500	0.0	0.0
Approach	105	2.0		0.258		19.0	LOS B	1.9	13.6				
West: Perth Street													
Lane $1^{\text {d }}$	475	2.0	817	0.582	100	9.9	Los A	5.2	37.1	Full	500	0.0	0.0
Approach	475	2.0		0.582		9.9	Los A	5.2	37.1				
Intersection	- 2350	2.0		0.867		8.0	Los A	15.9	113.0				

Site Level of Service (LOS) Method: Delay \& V/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Rou

Lane Los values are based on average delay and vic ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Itersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Dominant lane on roundabout approach

MOVEMENT SUMMARY

Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{array}{\|c} \text { Mov } \\ \text { ID } \end{array}$	OD Mov	Deman veh/h	$\begin{aligned} & \text { Hows } \\ & \text { HV } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \end{gathered}$	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective per veh	Average km/h
South: Meynell Road											
1	L2	35	2.0	0.464	11.7	LOS B	3.2	23.0	0.71	0.76	55.3
2	T1	5	2.0	0.464	5.8	LOSA	3.2	23.0	0.71	0.76	55.1
3	R2	405	2.0	0.464	6.1	Losa	3.2	23.0	0.71	0.76	53.5
Approach		445	2.0	0.464	6.6	LOSA	3.2	23.0	0.71	0.76	53.7
East: Perth Street											
4	L2	625	2.0	0.867	10.1	LOS B	15.9	113.0	0.63	0.50	54.0
5	T1	565	2.0	0.867	4.1	LOSA	15.9	113.0	0.63	0.50	53.
6	R2	135	2.0	0.867	4.4	LOSA	15.9	113.0	0.63	0.50	52.3
Approach		1325	2.0	0.867	7.0	LOSA	15.9	113.0	0.63	0.50	53.7
North: Meynell Road											
7	L2	80	2.0	0.258	20.3	Los C	1.9	13.6	0.98	0.95	47.2
8	T1	5	2.0	0.258	14.4	Los B	1.9	13.6	0.98	0.95	47.0
9	R2	20	2.0	0.258	14.7	LOS B	1.9	13.6	0.98	0.95	45.9
Approach		105	2.0	0.258	19.0	LOS B	1.9	13.6	0.98	0.95	46.9
West: Perth Street											
10	L2	35	2.0	0.582	15.3	Los B	5.2	37.1	0.86	0.96	53.1
11	T1	385	2.0	0.582	9.4	LOSA	5.2	37.1	0.86	0.96	52.9
12	R2	55	2.0	0.582	9.7	LOSA	5.2	37.1	0.86	0.96	51.4
Approach		475	2.0	0.582	9.9	LOS A	5.2	37.1	0.86	0.96	52.7
All Vehicles		2350	2.0	0.867	8.0	LOSA	15.9	113.0	0.71	0.66	53.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
ehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010), oundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
(\%) value Capacity: SIDRA Standard (Akçelik M3D)

SIDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akeelik and Associates Pty Ltd I sidra
Organisation: STANTEC CONSULTING LTD | Processed Thursday, January 24, 2019:9:16:20 AM

LANE LEVEL OF SERVICE
ane Level of Service
Site: 101 [2029 TF PM]
Perth Street and Meynell Road
Roundabout

\section*{| | South | East | North | West | Intersection |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LOS | A | A | B | A | A |}

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout (1)
Roundabout LOS Method: SIDRA Roundabout LOS.
-OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Itersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pry Ltd | sidrasolutions.com
rganisation: STANTEC

LANE SUMMARY

Gite: 101 [2029 TF w/ WBL \& NBR AM] Perth Street and Meynell Road Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/C } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Veh	$\begin{aligned} & \text { Queve } \\ & \text { Dist } \end{aligned}$ $\begin{gathered} \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	Lane Length m	$\begin{gathered} \text { Cap. } \\ \text { Adj. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
Lane ${ }^{\text {d }}$	55	2.0	1132	0.049	100	10.5	Los B	0.3	1.9	Full	500	0.0	0.0
Lane 2	545	2.0	1987	0.274	100	3.2	Los A	0.0	0.0	Full	500	0.0	0.0
Approach	600	2.0		0.274		3.9	LOSA	0.3	1.9				
East: Perth Street													
Lane 1	225	2.0	1369	0.164	100	9.3	Los A	0.8	5.5	Full	500	0.0	0.0
Lane $2^{\text {d }}$	335	2.0	1637	0.205	100	3.4	Los A	1.0	7.4	Full	500	0.0	0.0
Approach	560	2.0		0.205		5.7	LOSA	1.0	7.4				
North: Meynell Road													
Lane ${ }^{\text {d }}$	165	2.0	978	0.169	100	9.2	LOSA	0.5	3.7	Full	500	0.0	0.0
Approach	165	2.0		0.169		9.2	LOSA	0.5	3.7				
West: Perth Street													
Lane $1^{\text {d }}$	525	2.0	1038	0.506	100	5.1	LOSA	2.6	18.8	Full	500	0.0	0.0
Approach	525	2.0		0.506		5.1	LOSA	2.6	18.8				
Intersection	1850	2.0		0.506		5.3	LOSA	2.6	18.8				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
oundabout LOS Method: SID
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
delay value (does not apply for approaches and intersection)
Roundabout Capacity Model SIDRA Standard on average delay for all lanes (v/c not used as specified in HCM 2010).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akgelik M3D)
IV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach
SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd 1 sidrasolutions.com

LANE LEVEL OF SERVICE

ane Level of Service
(7) Site: 101 [2029 TF w/ WBL \& NBR AM]

Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& vIc (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
(tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
RA Standard Delay Model is used. Control Delay includes Geometric Delay
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

G Site: 101 [2029 TF w/ WBL \& NBR AM] Perth Street and Meynell Road Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Sat } \\ & \text { v/ce } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Vehicles veh	Distance m	Prop. Queued	Effective per veh	$\begin{gathered} \text { Average } \\ \text { Speed } \\ \mathrm{km} / \mathrm{h} \end{gathered}$
South: Meynell Road vic en mer											
1	L2	50	2.0	0.049	11.1	Los b	0.3	1.9	0.58	0.67	52.3
2	T1	5	2.0	0.049	5.1	LOSA	0.3	1.9	0.58	0.67	52.1
3	R2	545	2.0	0.274	3.2	losa	0.0	0.0	0.00	0.43	56.6
Appro		600	2.0	0.27	3.9	LOSA	0.3	1.9	0.0	0.45	56.2
ast: Perth Street											
4	L2	225	2.0	0.164	9.3	LOSA	0.8	5.5	0.19	0.61	53.2
5	T1	295	2.0	0.205	3.3	Los A	1.0	7.4	0.18	0.36	57.5
6	R2	40	2.0	0.205	3.9	Losa	1.0	7.4	0.18	0.36	55.6
Appro		560	2.0	0.205	5.7	LOSA	1.0	7.4	0.18	0.46	55.5
North: Meynell Road											
7	L2	130	2.0	0.169	10.4	Los b	0.5	3.7	0.39	0.72	53.5
8	T1	5	2.0	0.169	4.5	LOSA	0.5	3.7	0.39	0.7	53.3
9	R2	30	2.0	0.169	4.8	LOSA	0.5	3.7	0.39	0.72	51.8
Appro		165	2.0	0.169	9.2	LOSA	0.5	3.7	0.39	0.72	53.1
West: Perth Street											
10	L2	10	2.0	0.506	11.0	Los b	2.6	18.8	0.49	0.56	56.0
11	T1	495	2.0	0.506	5.0	LOSA	2.6	18.8	0.49	0.56	55.8
12	R2	20	2.0	0.506	5.3	LOSA	2.6	18.8	0.49	0.56	54.2
Approach		525	2.0	0.506	5.1	LOSA	2.6	18.8	0.49	0.56	55.7
All Vehicles		1850	2.0	0.506	5.3	LOSA	2.6	18.8	0.25	0.51	55.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
.
OSF will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Capacity Model: SIDRA Standard
Roundabout Capacity Model: SIDRA Standard
SIDRA Standard Delay Model
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.con

LANE SUMMARY
Site: 101 [2029 TF w/ WBL \& NBR PM]
Perth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { Hows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { Satin } \\ & \text { vic } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Uti. } \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Back Veh	$\begin{gathered} \text { f Queue } \\ \text { Dist } \\ m \end{gathered}$	Lane Config	$\begin{gathered} \text { Lane } \\ \text { Length } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj, } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \\ & \% \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	40	2.0	1200	0.033	100	9.7	LOSA	0.2	1.3	Full	500	0.0	0.0
Lane 2	405	2.0	1987	0.204	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	445	2.0		0.204		3.8	LOSA	0.2	1.3				
East: Perth Street													
Lane 1	625	2.0	1420	0.440	100	9.4	LOSA	2.7	19.3	Full	500	0.0	0.0
Lane $2^{\text {d }}$	700	2.0	1657	0.423	100	3.5	LOSA	2.6	18.4	Full	500	0.0	0.0
Approach	1325	2.0		0.440		6.3	LOSA	2.7	19.3				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	770	0.136	100	10.3	Los B	0.5	3.3	Full	500	0.0	0.0
Approach	105	2.0		0.136		10.3	LOS B	0.5	3.3				
West: Perth Street													
Lane $1^{\text {d }}$	475	2.0	811	0.586	100	9.6	LOSA	4.3	30.8	Full	500	0.0	0.0
Approach	475	2.0		0.586		9.6	LOSA	4.3	30.8				
Intersection	- 2350	2.0		0.586		6.7	Los A	4.3	30.8				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS:
.
OS will result if $v / c>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
oundabout Capacity Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akcelili
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

- $\operatorname{site:} 101$ [2029 TF w/ WBL \& NBR PM]

Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total vehih	$\begin{aligned} & \text { Hows } \\ & \text { H\% } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { Satn } \\ \text { Sin } \\ \text { v/r } \end{gathered}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Meynell Road											
1	L2	35	2.0	0.033	10.4	LOS B	0.2	1.3	0.52	0.63	52.7
2	T1	5	2.0	0.033	4.5	LOSA	0.2	1.3	0.52	0.63	52.5
3	R2	405	2.0	0.204	3.2	LOSA	0.0	0.0	0.00	0.43	56.7
Approach		445	2.0	0.204	3.8	LOSA	0.2	1.3	0.05	0.44	56.3
East: Perth Street											
4	L2	625	2.0	0.440	9.4	LOSA	2.7	19.3	0.25	0.61	53.0
5	T1	565	2.0	0.423	3.4	Losa	2.6	18.4	0.23	0.38	57.2
6	R2	135	2.0	0.423	4.0	LOSA	2.6	18.4	0.23	0.38	55.3
Approach		1325	2.0	0.440	6.3	LOSA	2.7	19.3	0.24	0.49	54.9
North: Meynell Road											
7	L2	80	2.0	0.136	11.7	LOS B	0.5	3.3	0.55	0.82	52.8
8	T1	5	2.0	0.136	5.8	Los A	0.5	3.3	0.55	0.82	52.6
-	R2	20	2.0	0.136	6.1	LOSA	0.5	3.3	0.55	0.82	51.2
Approach		105	2.0	0.136	10.3	Los B	0.5	3.3	0.55	0.82	52.5
West: Perth Street											
10	L2	35	2.0	0.586	15.0	Los B	4.3	30.8	0.74	0.92	53.3
11	T1	385	2.0	0.586	9.1	Los A	4.3	30.8	0.74	0.92	53.1
12	R2	55	2.0	0.586	9.4	LOSA	4.3	30.8	0.74	0.92	51.7
Approach		475	2.0	0.586	9.6	Los A	4.3	30.8	0.74	0.92	53.0
All ve		2350	2.0	0.586	6.7	LOSA	4.3	30.8	0.32	0.58	54.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS.
vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010), Roundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
ap-Acceptance Capacity: SIDRA Standard (Akgelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE LEVEL OF SERVICE

Gite: 101 [2029 TF w/ WBL \& NBR PM]
erth Street and Meynell Road
Perth Street

All Movement Classes

$$
\begin{array}{c|c|c|c|c|c|}
& \text { South } & \text { East } & \text { North } & \text { West } & \text { Intersection } \\
\hline \text { LOS } & \text { A } & \text { A } & \text { B } & \text { A } & \text { A } \\
\hline
\end{array}
$$

Site Level of Service (LOS) Method: Delay \& v/C (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundaboul (HC
Roundabout LOS Method: SIDRA Roundabout LOS.
OS F will result if v/c >1 irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LoS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)

DRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pry Ltd | sidrasolutions.con
LTD | Processed: Thursday, January 24, 20 $99.39: 07$ AM

Intersection														
Int Delay, s/veh 1.2														
Movement	EBL		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations			14			¢ ${ }^{\text {a }}$			${ }_{4}$			${ }_{4}$		
Traffic Vol, veh/h	5		215	5	5	580	10	5	5	10	20	5	5	
Future Vol, veh/h	5		215	5	5	580	10	5	5	10	20	5	5	
Conflicting Peds, \#hr	0		0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free		ree	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized			.	None	.	.	None	.	.	None	.	.	None	
Storage Length			-	-	-	-	-	-	-	-	-	-	.	
Veh in Median Storage, \#			0	-	-	0	-	-	0	-	-	0	-	
Grade, \%			0	-	-	0		-	0		-	0	-	
Peak Hour Factor	100		100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, \%			2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow			215	5	5	580	10	5	5	10	20	5	5	

Approach	EB	WB	NB	SB
HCM Control Delay, S	0.1	0.2	38.6	41.9
HCM LOS			E	E

3: Meynell Rd. \& Ottawa St. W. 2034 Ultimate AM

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	8\%	0\%	50\%
Vol Thru, \%	92\%	80\%	0\%
Vol Right, \%	0\%	20\%	50\%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	60	25	10
LT Vol	5	0	5
Through Vol	55	20	0
RT Vol	0	5	5
Lane Flow Rate	60	25	10
Geometry Grp	1	1	1
Degree of Util (X)	0.066	0.027	0.011
Departure Headway (Hd)	3.987	3.876	3.879
Convergence, Y/N	Yes	Yes	Yes
Cap	902	926	920
Service Time	1.995	1.891	1.914
HCM Lane VIC Ratio	0.067	0.027	0.011
HCM Control Delay	7.3	7	A
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.2	0.1	0

HCM 2010 TWSC
Mattamy Richmond Village
1: Queen Charlotte St./Rochelle Dr. \& Perth St. 2034 Ultimate PM

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			¢	
Traffic Vol, veh/h	60	30	5	20	30	15	5	75	15	10	120	85
Future Vol, veh/h	60	30	5	20	30	15	5	75	15	10	120	85
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	60	30	5	20	30	15	5	75	15	10	120	85
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conficting Approach Left	ft SB			NB			EB			WB		
Conficting Lanes Left	1			1			1			1		
Conficting Approach Righ	ghNB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.5			8.1			8.1			8.6		
HCMLOS	A			A			A			A		

LANE SUMMARY

F Site: 101 [2034 TF w/ WBL \& NBR AM] Perth Street and Meynell Road Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { Hows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { vehh } \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { Satn } \\ \text { v/c. } \end{gathered}$	$\begin{aligned} & \text { Lane } \\ & \text { Uit. } \\ & \% \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Veh } \end{aligned}$	Queve Dist	Lane Config	$\begin{gathered} \text { Lane } \\ \text { Length } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { ap } \\ \text { Adj. } \\ \% \end{gathered}$	$\begin{gathered} \text { Prob. } \\ \text { Block. } \\ \hline \% \\ \hline \end{gathered}$
South: Meynell Road													
Lane ${ }^{\text {d }}$	55	2.0	1092	0.050	100	10.7	Los B	0.3	2.1	Full	500	0.0	0.0
Lane 2	555	2.0	1987	0.279	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	610	2.0		0.279		3.9	LOSA	0.3	2.1				
East: Perth Street													
Lane 1	230	2.0	1360	0.169	100	9.3	LOSA	0.8	5.8	Full	500	0.0	0.0
Lane ${ }^{\text {d }}$	360	2.0	1639	0.220	100	3.4	Los A	1.1	8.2	Full	500	0.0	0.0
Approach	590	2.0		0.220		5.7	LOSA	1.1	8.2				
North: Meynell Road													
Lane $1^{\text {d }}$	165	2.0	967	0.171	100	9.3	LOSA	0.5	3.8	Full	500	0.0	0.0
Approach	165	2.0		0.171		9.3	Los A	0.5	3.8				
West: Perth Street													
Lane $1^{\text {d }}$	565	2.0	1039	0.544	100	5.4	LOSA	3.1	22.1	Full	500	0.0	0.0
Approach	565	2.0		0.544		5.4	LOSA	3.1	22.1				
Intersection	1930	2.0		0.544		5.4	Los A	3.1	22.1				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
oundabout LOS Method: SIDRA Roundabout LO
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
delay value (does not apply for approaches and intersection)
Roundabout Capacity Model SIDRA Standard on average delay for all lanes (v/c not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akgelik M3D)
(\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach
SIDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ltd I sidrasolutions.con

LANE LEVEL OF SERVICE

ane Level of Service
(7) Site: 101 [2034 TF w/ WBL \& NBR AM]

Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& vic (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
OS F will result i $\mathrm{i} / \mathrm{c} / \mathrm{>}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
(tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

G Site: 101 [2034 TF w/ WBL \& NBR AM]
Perth Street and Meynell Road
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	$\begin{aligned} & \text { Demanc } \\ & \text { Total } \\ & \text { vehh/h } \end{aligned}$	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Sath } \\ & \text { v/c } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { Sec } \end{gathered}$	Level of Service	95\% Back Vehicles veh	Distance m	Prop. Queued	Effective per veh	$\begin{gathered} \text { Average } \\ \text { Speed } \\ \mathrm{km} / \mathrm{h} \end{gathered}$
South: Meynell Road											
1	L2	50	.	0.050	11.	LOS B	0.3	2.1	. 61	0.6	52.2
2	T1	5	2.0	0.050	5.3	LOSA	0.3	2.1	0.61	0.68	52.0
3	R2	555	2.0	0.279	3.2	LOSA	0.0	0.0	0.00	0.43	56.6
Approach		610	2.0	0.279	3.9	LOSA	0.3	2.1	0.06	0.45	56.2
East: Perth Street											
4	L2	230	2.0	0.169	9.3	LOSA	0.8	5.8	0.19	0.61	53.2
5	T1	320	2.0	0.220	3.3	LOSA	1.1	8.2	0.18	0.36	57.4
6	R2	40	2.0	0.220	3.9	LOSA	1.1	8.2	0.18	0.36	55.6
Approach		590	2.0	0.220	5.7	LOSA	1.1	8.2	0.19	0.46	55.6
North: Meynell Road											
7	L2	130	2.0	0.171	10.5	Los b	0.5	3.8	0.40	0.73	53.4
8	T1	5	2.0	0.171	4.5	LOSA	0.5	3.8	0.40	0.73	53.2
9	R2	30	2.0	0.171	4.9	LOSA	0.5	3.8	0.40	0.73	51.8
Approach		165	2.0	0.171	9.3	Los A	0.5	3.8	0.40	0.73	53.1
West: Perth Street											
10	L2	10	2.0	0.544	11.2	LOS B	3.1	22.1	0.52	0.60	55.9
11	T1	535	2.0	0.54	5.3	LOSA	3.1	22.1	0.52	0.60	7
12	R2	20	2.0	0.544	5.6	LOSA	3.1	22.1	0.52	0.60	54.0
Approach		565	2.0	0.544	5.4	LOS A	3.1	22.1	0.52	0.60	55.6
All Vehicles		1930	2.0	0.544	5.4	Los A	3.1	22.1	0.26	0.52	55.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
Venicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OSF will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Capacity Model: SIDRA Standard.
SiDRA Standard Delay Model: SIDRA Standar
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.con

LANE SUMMARY
Site: 101 [2034 TF w/ WBL \& NBR PM]
Perth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { Hows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { Satin } \\ & \text { vic } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Uti. } \\ & \hline \end{aligned}$	Average Delay sec	Level of Service	95\% Back Veh	$\begin{gathered} \text { f Queue } \\ \text { Dist } \\ m \end{gathered}$	Lane Config	$\begin{gathered} \text { Lane } \\ \text { Length } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj, } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \\ & \% \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	40	2.0	1165	0.034	100	9.8	LOSA	0.2	1.4	Full	500	0.0	0.0
Lane 2	420	2.0	1987	0.211	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	460	2.0		0.211		3.8	LOSA	0.2	1.4				
East: Perth Street													
Lane 1	645	2.0	1416	0.455	100	9.4	LOSA	2.9	20.5	Full	500	0.0	0.0
Lane $2^{\text {d }}$	745	2.0	1659	0.449	100	3.5	LOSA	2.9	20.4	Full	500	0.0	0.0
Approach	1390	2.0		0.455		6.3	LOSA	2.9	20.5				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	751	0.140	100	10.5	Los B	0.5	3.4	Full	500	0.0	0.0
Approach	105	2.0		0.140		10.5	LOS B	0.5	3.4				
West: Perth Street													
Lane $1^{\text {d }}$	505	2.0	797	0.633	100	10.5	LOS B	5.2	36.7	Full	500	0.0	0.0
Approach	505	2.0		0.633		10.5	LOS B	5.2	36.7				
Intersection	- 2460	2.0		0.633		6.9	Los A	5.2	36.7				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
Roundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions. com

MOVEMENT SUMMARY

Site: 101 [2034 TF w/ WBL \& NBR PM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total vehih	$\begin{aligned} & \text { Hows } \\ & \text { H\% } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { Satn } \\ \text { Sinc. } \\ \text { vin } \end{gathered}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Meynell Road											
1	L2	35	2.0	0.034	10.5	LOS B	0.2	1.4	0.55	0.64	52.6
2	T1	5	2.0	0.034	4.6	LOSA	0.2	1.4	0.55	0.64	52.4
3	R2	420	2.0	0.211	3.2	LOSA	0.0	0.0	0.00	0.43	56.7
Approach		460	2.0	0.211	3.8	LOSA	0.2	1.4	0.05	0.44	56.3
East: Perth Street											
4	L2	645	2.0	0.455	9.4	LOSA	2.9	20.5	0.26	0.60	53.0
5	T1	610	2.0	0.449	3.4	Losa	2.9	20.4	0.24	0.38	57.1
6	R2	135	2.0	0.449	4.0	LosA	2.9	20.4	0.24	0.38	55.3
Approach		1390	2.0	0.455	6.3	LOSA	2.9	20.5	0.25	0.48	54.9
North: Meynell Road											
7	L2	80	2.0	0.140	11.8	LOS B	0.5	3.4	0.56	0.83	52.7
8	T1	5	2.0	0.140	5.9	Los A	0.5	3.4	0.56	0.83	52.5
-	R2	20	2.0	0.140	6.2	LOSA	0.5	3.4	0.56	0.83	51.1
Approach		105	2.0	0.140	10.5	Los B	0.5	3.4	0.56	0.83	52.4
West: Perth Street											
10	L2	35	2.0	0.633	16.0	Los B	5.2	36.7	0.78	0.97	52.6
11	T1	415	2.0	0.633	10.1	Los B	5.2	36.7	0.78	0.97	52.4
12	R2	55	2.0	0.633	10.4	Los B	5.2	36.7	0.78	0.97	51.0
Approach		505	2.0	0.633	10.5	LOS B	5.2	36.7	0.78	0.97	52.3
All ve		2460	2.0	0.633	6.9	LOSA	5.2	36.7	0.33	0.59	54.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS.
ehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010), Roundabout Capacity Model: SIDRA Standard.
DRA Standard Delay Model is used. Control Delay includes Geometric Delay
ap-Acceptance Capacity: SIDRA Standard (Akgelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akeelik and Associates Pty Ltd I sidras
Organisation: STANTEC CONSULTING LTD | Processed Thursday, January 24, 2019 9:52:57 AM

LANE LEVEL OF SERVICE

Gite: 101 [2034 TF w/ WBL \& NBR PM]
erth Street and Meynell Road
Perth Street

All Movement Classes

$$
\begin{array}{c|c|c|c|c|c|}
& \text { South } & \text { East } & \text { North } & \text { West } & \text { Intersection } \\
\hline \text { LOS } & \text { A } & \text { A } & \text { B } & \text { B } & \text { A } \\
\hline
\end{array}
$$

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundab Vlc (HCM
Roundabout LOS Method: SIDRA Roundabout LOS.
OS F will result if $\mathrm{v} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LoS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)

DRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pry Ltd | sidrasolutions.con
LTD | Processed: Thursday, January 24,20 , $22: 57$

