

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape **Architecture**

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential **Developments**

Commercial & **Institutional Sites**

Environmental Restoration

Bridlewood 3 866, 898 Eagleson Road and **1335, 1365 Terry Fox Drive**

Site Serviceability and Stormwater Management Report

BRIDLEWOOD 3

866, 898 EAGLESON ROAD and 1335, 1365 TERRY FOX DRIVE

SITE SERVICEABILITY AND STORMWATER MANAGEMENT REPORT

Prepared for:

Claridge Homes (Bridlewood Trails Phase 3) Inc.

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

January 11, 2019

Novatech File: 117153 Report Ref: R-2019-010

January 11, 2019

City of Ottawa Planning, Infrastructure and Economic Development Department Planning Services Branch 110 Laurier Ave. West, 4th Floor Ottawa, Ontario K1P 1J1

Attention: Mr. Don Herweyer, Manager of Development Review South

Reference: Bridlewood 3 – 866, 898 Eagleson Road and 1335,

1365 Terry Fox Drive

Site Serviceability and Stormwater Management Report

Novatech File No.: 117153

Novatech has prepared this Site Serviceability and Stormwater Management Report on behalf of Claridge Homes (Bridlewood Trails Phase 3) Inc. to support a Draft Plan of Subdivision application and Zoning By-law Amendment for lands municipally known as 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive, Ottawa, Ontario.

Claridge Homes is proposing to develop a residential subdivision with 409 units: 34 semi-detached houses, 255 townhouses and 120 back-to-back townhouses. Two parks are proposed; a 1.03 ha park at the northwest corner which will expand on the existing park, and a 0.4 ha parkette south of the proposed development.

The report will address how Bridlewood 3 will be serviced with sanitary sewer, watermain, storm sewers, and stormwater management.

Should you have any questions or comments, please do not hesitate to contact us.

Sincerely.

NOVATECH

Marc St. Pierre

Senior Project Manager

c.c. Shawn Malhotra, Claridge Homes

TABLE OF CONTENTS

1.0	INTRODUCTION	3
1.1 1.2 1.3	Background Existing / Planned Adjacent Land Uses Additional Reports	4
2.0	EXISTING CONDITIONS	5
2.1 2.2	Topography & DrainageSubsurface Conditions	
3.0	SANITARY SERVICING	6
3.1 3.2 3.3 3.4 3.5 3.6	Previous Studies	6 6 6
4.0	WATERMAIN	9
4.1 4.2 4.3 4.4	Proposed Watermain System Design Criteria Hydraulic Analysis Deviations	9 10
5.0	STORM SEWER SYSTEM AND STORMWATER MANAGEMENT	11
5. 5.4 5.4 5. 5. 5.5 5.5 5.	.4.1 Minor System (Storm Sewers)	11121213131414
6.0	TRAFFIC IMPACT BRIEF	21
7.0	ROADWAYS	21
7.1 7.2	Proposed Road Infrastructure Deviations	
8.0	NOISE CONTROL	21

9.0	UTILITIES	21
10.0	EROSION AND SEDIMENT CONTROL	22
11.0	CONCLUSIONS AND RECOMMENDATIONS	23
12.0	CLOSURE	25

LIST OF TABLES

Table 3.1: Sanitary Flow Summary Outletting to Brigitta Street

Table 4.1: Water Demand Summary

Table 5.1: Storm Sewer Design Parameters

Table 5.2: Model Parameters Table 5.3: Peak Flows (L/s)

Table 5.4: 100-year HGL Elevations (m)

Table 5.5: Major System Storage

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Key Plan
Figure 3	Concept Plan
Figure 4	Existing Conditions Plan
Figure 5	Sanitary Sewer Layout
Figure 6	Watermain Layout
Figure 7	Storm Sewer Layout
Figure 8	14.5m Road Allowance
ROW-18JT	18.0m Road Allowance
Figure-WM	Watermain Layout and Nodes (located in Appendix C)

LIST OF APPENDICIES

Appendix A	Correspondence
Appendix B	Sanitary Design Sheets & Excerpts from Relevant Reports
Appendix C	Watermain Boundary Conditions, FUS Calculations, and Modelling Results
Appendix D	STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info
Appendix E	Erosion and Sediment Control

LIST OF DRAWINGS

117153-GR Preliminary Grading Plan

ENCLOSED CD

- Report (pdf)
- Drawings (pdf)
- PCSWMM Packaged Model Files

Novatech Page ii

1.0 INTRODUCTION

Novatech has been retained by Claridge Homes (Bridlewood Trails Phase 3) Inc. to prepare this Site Serviceability and Stormwater Management Report in support of a Draft Plan of Subdivision and Zoning By-law Amendment (ZBLA) to allow for the development of the lands shown on **Figure 1** – Site Location known as 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive in Ward 23, Kanata South, herein called the 'Subject Site'.

This report outlines the servicing and proposed storm drainage and stormwater management strategy for the site.

1.1 Background

The Subject Site is located at the corner of Eagleson Road and Terry Fox Drive as shown on **Figure 1** – Site Location: 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive.

Figure 1 – Site Location: 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive (Image Source: Google Maps, 2019)

The Subject Site is approximately 13.8 hectares in area and is bounded by Terry Fox Drive to the west and south, Romina Street and Overberg Way to the north, and Eagleson Road to the east. Refer to **Figure 2** – Key Plan.

The Subject Site has approximately 450 metres of frontage along Eagleson Road and approximately 510 metres of frontage along Terry Fox Drive. The topography is generally flat with a gentle slope from the southwest to the northeast towards Eagleson Road.

SHT8X11.DWG - 216mmx279mm

1.2 Existing / Planned Adjacent Land Uses

The Subject Site is undeveloped and consists of former farmland that has recently been overgrown by trees and grasses. The following describes the land uses adjacent to the Subject Site shown in **Figure 2** – Key Plan:

North: Residential lands known as Bridlewood Trails Phase 1 developed by Claridge containing a mix of low to medium-density developments abut the Subject Site.

East: The City of Ottawa owns and operates the Monahan Drain Stormwater Facility on the east side of Eagleson Road. These lands are also used as open space for the enjoyment of residents. Residential development has been constructed by Glenview Homes and Minto Communities immediately opposite of the Subject Site.

South and West: Across Terry Fox Drive, all lands are designated Agriculture Resource Area in the *Official Plan* and are used for such.

The proposed development of the Subject Site is as a residential subdivision, as shown on **Figure 3** – Concept Plan. The proposed residential subdivision will consist of a total of four hundred nine (409) units: thirty-four (34) semi-detached houses, two hundred fifty-five (255) townhouses and one hundred twenty (120) back-to-back townhouses.

1.3 Additional Reports

This report provides information on the considerations and approach by which Novatech has designed and evaluated the proposed servicing for the Bridlewood 3 Subdivision lands at 866 Eagleson Road. This report should be read in conjunction with the following:

- Bridlewood 3, 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive, Ottawa, ON, Planning Rationale and Integrated Environmental Review, completed by Novatech, Ref. No.: R-2018-163, dated January 11, 2019:
- Bridlewood 3, 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive, Noise Impact Feasibility Report, completed by Novatech, Ref. No.: R-2019-011, dated January 11, 2019;
- Bridlewood 3, 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive, Traffic Impact Assessment, completed by Novatech, Ref. No.: R-2018-056, dated January 11, 2019;
- Bridlewood Trails Design Brief, completed by Novatech, Ref. No.: R-2006-134, dated June 16th, 2006;
- Bridlewood Trails Stormwater Management Report, completed by Novatech, Ref. No.: R-2006-037, dated September 13, 2006;
- Bridlewood Trails Phase 2 Design Brief, completed by Novatech, Ref. No.: R-2011-113, dated September 26, 2013;
- Bridlewood Trails Phase 2 Stormwater Management Report, completed by Novatech, Ref. No.: R-2011-118, dated June 7, 2013;
- Block 14 (Bridlewood Trails Phase 2) Servicing Design Brief, completed by Novatech, Ref. No.: R-2015-079, dated September 19, 2018;
- Block 14 (Bridlewood Trails Phase 2) Stormwater Management Report, completed by Novatech, Ref. No.: R-2018-045, dated September 19, 2018;
- Geotechnical Investigation, Proposed Residential Development, Eagleson Road at Terry Fox Drive – Ottawa, dated October 25, 2018 (Report No. PG3411-2).

2.0 EXISTING CONDITIONS

2.1 Topography & Drainage

The Subject Site is undeveloped and consists of former farmland that has recently been overgrown by trees and grasses. Access to the site is currently provided off Romina Street and Terry Fox Drive via private gravel entrances. Refer to **Figure 4** – Existing Conditions Plan.

The site has a gentle slope from southwest to northeast with most overland flow being directed to the ditch along the side of Eagleson Road that outlets to the existing Monahan Drain.

There is an existing drainage ditch which crosses the site from west to east. The existing ditch was formerly known as the Monahan Drain Branch "A", which has been previously abandoned. This ditch previously captured drainage from lands to the west of Terry Fox Drive. The upstream system was supposed to be completely isolated during the widening of Terry Fox Drive in 2005 and currently serves to drain portions of the Subject Site. Refer to **Appendix A** for correspondence.

2.2 Subsurface Conditions

Paterson Group Inc. completed two (2) previous geotechnical investigations in support of development of the Subject Site. The first geotechnical investigation was as follows:

• Preliminary Geotechnical Investigation, Eagleson Road at Terry Fox Drive Extension, Ottawa Ontario, dated September 8, 2006 (Report No. PG0881). The fieldwork for this investigation was carried out in September 2006.

A second geotechnical investigation was conducted for previously proposed commercial lands which comprise part of the current development, and is as follows:

• Geotechnical Investigation, Proposed Commercial Development, Eagleson Road – Ottawa, dated February 5, 2015 (Report No. PG3411-1). The fieldwork for this investigation was carried out on January 15th, 2015.

The latest geotechnical investigation was conducted for the currently proposed residential development and is as follows:

 Geotechnical Investigation, Proposed Residential Development, Eagleson Road at Terry Fox Drive – Ottawa, dated October 25, 2018 (Report No. PG3411-2). The fieldwork for this investigation was carried out on September 7th and September 12th, 2018.

The principal findings of the Geotechnical Investigations are as follows:

- The latest work consisted of advancing three (3) boreholes to a maximum depth of 6.4m below ground surface and seven (7) test pits to a maximum depth of 2.4m below ground surface.
- The existing soil profile consists of having a layer of topsoil overlying a loose to very loose silty sand/sandy silt layer mixed with some clay followed by stiff to firm silty clay crust.
- Bedrock is expected to range from 25m-50m below grade.
- Groundwater is expected to range from 1.5m to 2.5m based on observations.
- There is an estimated permissible grade raise restriction of 1.0m to 1.2m for lot grading at the residential buildings and 1.4m to 1.6m for the proposed roadways. Based on a line bisecting the lands from north to south, the lands to the west have the 1.2m lot / 1.6m roadway restrictions.

The report provides engineering guidelines based on Paterson Group's interpretation of the borehole information and project requirements. Refer to the above-noted reports for complete details.

CUT11 W17 PMC 17/2000 V19700

3.0 SANITARY SERVICING

3.1 Previous Studies

The Subject Site is located upstream of Phase 1 of the Bridlewood Trails Subdivision. The *Bridlewood Trails Design Brief, Prepared by Novatech, dated June 20th, 2006,* calculated the sanitary flows to outlet to Brigitta Street at Romina Street intersection. Sanitary flows in this original report were calculated to be 27.68L/s to outlet to the sanitary sewers on Brigitta Street. Refer to **Appendix B** for excerpts.

3.2 Existing Sanitary Sewer System for the Subject Site

Currently, there is an existing 375mm sanitary sewer along Brigitta Street to the north of the Subject Site. The sanitary sewer along Brigitta Street currently services the existing Bridlewood Trails Phase 1 subdivision and the Bridlewood Trails Retirement Community building. The Brigitta Street sewer ultimately outlets to the Hazeldean Pump Station via the sanitary pipe system in Fernbank Road, Eagleson Road, and Ackerson Road and through the Trailwest Subdivision. As mentioned above, the sanitary flows from the Subject Site have been accounted for within the existing sanitary sewer.

The emergency overflow outlet elevation for the Hazeldean Pump Station has been identified as 95.30m. All underside of footing (USF) elevations will be set at or above the overflow elevation. Please see **Appendix A** for correspondence.

3.3 Proposed Sanitary Sewer Outlet

Sanitary flows from the Subject Site are accounted for and will outlet directly to the 375mm sanitary sewer at Brigitta Street and Romina Street intersection. The proposed outlet is consistent with the approved *Design Brief* (Novatech, June 2006) as part of the subdivision approval for Bridlewood Trails Phase 1.

The proposed development can be serviced with a 375mm, 300mm, 250mm and 200mm sanitary sewer system. The proposed sanitary layout can be seen on **Figure 5** – Sanitary Sewer Layout.

3.4 Design Criteria

Sanitary sewers, for the proposed development, are designed based on criteria established by the City of Ottawa in the following documents:

- Section 4.0 of the City of Ottawa Sewer Design Guidelines (October 2012).
- Technical Bulletin ISTB-2018-01 from the City of Ottawa regarding new sanitary design parameters. Design parameters from this technical bulletin will supersede values within the Sewer Design Guidelines (2012).

The resulting design parameters are summarized as follows:

Commercial/Institutional flows = 28,000 L/ha/day Industrial flows = 35,000 L/ha/day Population Flow = 280 L/capita/day Infiltration = 0.33 L/s/ha Single Family Home = 3.4 persons per unit Townhouse = 2.7 persons per unit Apartment = 1.8 persons per unit

Maximum Residential Peak Factor = 4.0

Harmon Correction Factor = 0.8

Industrial/Commercial/Institutional Peak Factor

- = 1.0, if area is <20% of total contributing area
- = 1.5, if area is >20% of total contributing area

Industrial Peaking Factor: As per Appendix 4-B of the City of Ottawa Sewer Design Guidelines Minimum velocity = 0.6m/s

Manning's n = 0.013

3.5 Proposed Sanitary Sewer System

The calculated peak sanitary design flow for the development is 16.12 L/s. This represents a net reduction of approximately 40% in sanitary flows to the existing Brigitta Street sanitary sewer that was accounted for from the Bridlewood Trails Phase 1 design.

For detailed calculations refer to the Sanitary Sewer Design Sheet located in **Appendix B** and **Figure 5** – Sanitary Sewer Layout for sanitary drainage areas.

The reduced flows are based on 2 primary factors:

- 1) During the design of Bridlewood Trails Phase 2, a portion of the lands which had been accounted for as part of the original enterprise lands outletting to the existing Brigitta Street sanitary sewer system were redirected through the Bridlewood Trails Phase 2 lands. The areas in question are the proposed residential lands south of Tulum Crescent, that also includes the Block 14 residential development. This resulted in a sanitary flow reduction of approximately 2.82 L/s. Refer to excerpts from *Bridlewood Trails Phase 2 Design Brief by Novatech dated September 26, 2013* in **Appendix B**.
- 2) Secondly, the initial calculation in *Bridlewood Trails Design Brief*, were based on commercial, mixed use and light industrial land uses using an average flow per gross hectare (ha) of 35,000 L/gross ha/day for light industrial and 50,000 L/gross ha/day for mix-use and commercial use having a total area of 16.0 ha. A peaking factor (3.9) was applied to the light industrial areas. The change of land use to residential, reduced drainage area of 13.8ha and corresponding reduction in residential design flows based on City of Ottawa Technical Bulletin ISTB-2018-01, results an additional reduction in the design flows of approximately 8.78 L/s.

As mentioned, the proposed sanitary flows directed to the Brigitta Street sanitary sewer will be significantly less than previously calculated.

Outlet to Brigitta Street Trunk Sewer

Proposed sanitary flows outletting to the Brigitta Street sanitary sewer versus the calculated sanitary flows from the previous Bridlewood Trails Phase 1 Design Brief are listed in **Table 3.1**.

Table 3.1: Sanitary Flow Summary Outletting to Brigitta Street

Development	Population	Population Area		Peak Ext. Flow	Peak Design Flow
Condition		(ha)	(L/s)	(L/s)	(L/s)
Bridlewood Trails Pha	se 1 Approved	d Design Cal	culation (Bus	siness Park)	
Mixed Use		1.40	1.22	0.39	1.61
Light Industrial		12.50	19.75	3.50	23.25
Commercial		2.46	2.14	0.69	2.82
2006 Design Totals		16.36	23.11	4.58	27.68
Bridlewood 3 Design (Calculation (R	esidential)			=
Residential	409	13.8	11.57	4.55	16.12
Net Reduction		2.56ha	11.54L/s	0.03L/s	11.56L/s

^{*}Based on Bridlewood Trails Design Brief, Prepared by Novatech, dated June 20th, 2006.

The total proposed sanitary flow directed to the existing 375mm sanitary sewer on Brigitta Street from the Subject Site is 16.12 L/s, which represents an approximate 40% decrease in sanitary flows compared to the calculated flows in the original *Bridlewood Trails Design Brief* of 27.68 L/s. This indicates there will be adequate capacity in the Brigitta Street sanitary sewers to accommodate the proposed development.

For design sheet, drainage plans and design parameters from the *Bridlewood Trails Phase 1* Design Brief and Bridlewood Trails Phase 2 Design Brief, refer to excerpts in **Appendix B**.

The underside of footing elevations are governed by an emergency overflow elevation at the Hazeldean pump station of 95.30m. All USF elevations will have a minimum elevation of 95.30m.

3.6 Deviations

The site is subject to grade raise restrictions. The sanitary sewer outlet elevation is fixed based on the as-built elevations of the sanitary sewer on Brigitta Street.

In order to limit the overall grade raise and avoid crossing conflicts with the proposed storm sewer, it is proposed that the local sewers be oversized where possible to allow a lower pipe slope.

All flow velocities have been calculated to exceed the minimum full flow velocity (0.6 m/s) specified in the City of Ottawa Sewer Design Guidelines. The peak flow depth to diameter has also been calculated for all pipes larger than 200mm diameter. Refer to the Sanitary Sewer Design Sheet located in **Appendix B.** The sanitary sewers have been designed in accordance with the City of Ottawa Sewer Design Guidelines to achieve self cleansing velocities with a peak flow depth to diameter ratio of 0.3 or greater for sewers 250mm diameter and larger.

4.0 WATERMAIN

4.1 Proposed Watermain System

A preliminary hydraulic analysis was performed for the Bridlewood 3 lands. It is proposed to service the Subject Site with 200mm watermain and localized 50mm with two connections to the existing watermains. The first connection will be made to the 300mm watermain on Romina Street at the northern servicing Block 2 at Brigitta Street. The second connection will be made to the 200mm watermain on Overberg Way in the northwest corner of the site. **Figure 6** – Watermain Layout highlights the proposed works and connection points. All existing watermain boundary conditions were provided by the City of Ottawa and are included in **Appendix C**.

4.2 Design Criteria

Fire flow demands have been calculated as per the Fire Underwriter's Survey (FUS) and are included in **Appendix C**. As per the City of Ottawa's technical bulletin ISTB-2014-02 (Revisions to Ottawa Design Guidelines – Water), the majority of the standard townhouse fireflows have been capped at 10,000 L/min (167 L/s), however the back-to-back towns range from 217 L/s to 283 L/s. Watermain analysis was completed based on the following criteria:

Demands:

•	Townhouse Density	2.7 persons/unit
6	Average Daily Demand	350 L/capita/day
0	Max. Daily Demand	2.5 x Average Daily D

Max. Daily Demand
 Peak Hour Demand
 Fire Flow Demand
 2.5 x Average Daily Demand
 2.2 x Maximum Daily Demand
 Fire Underwriters Survey

System Requirements:

Max. Pressure (Unoccupied Areas) 690 kPa (100 psi)
Max. Pressure (Occupied Areas) 552 kPa (80 psi)

Min. Pressure
 Min. Pressure (Fire)
 276 kPa (40 psi) excluding fire flows
 138 kPa (20 psi) including fire flows

Max. Age (Quality)
 192 hours (onsite)

Friction Factors:

•	Watermain Size	C-Factor
•	50mm	100
0	200 mm	110

Hydraulic modelling of the Subject Site was completed using EPANET 2.0. EPANET is public domain software capable of modeling municipal water distribution systems by performing simulations of the water movement within a pressurized system. EPANET utilized the Hazen-Williams equation to predict the performance of the proposed watermain and considered the following input parameters: water demand, pipe length, pipe diameter, pipe roughness, and pipe elevation.

4.3 Hydraulic Analysis

Table 4.1 summarizes the watermain operating conditions during the high pressure, maximum daily demand and fire flow, and peak hour demands. Results of the hydraulic analysis are included in **Appendix C**. Refer to **Figure WM** — Proposed Watermain Node Network, provided in **Appendix C**, for details about the node and pipe network.

Table 4.1: Water Demand Summary

Condition	Demand (L/s)	Fire Flow (L/s)	Allowable Max/Min Pressure (kPa/psi)	Max/Min Pressure (kPa/psi)	Time (hours)
High Pressure	4.47	N/A	552/80 (Max)	634.5/92.0	17.9
Maximum Daily Demand	11.18	283 (Max FF)	138/20 (Min)	209.4/30.4 (FF=250L/s)	N/A
Peak Hour	24.60	N/A	276/40 (Min)	573.6/83.2	N/A

The analysis confirms the proposed watermain can service the Subject Site under all operating conditions. It is noted that pressure in the main is greater than 552 kPa/80psi during the high pressure and peak hour condition for all the lots and blocks, therefore the use of pressure reducing values will be considered during detailed design.

A copy of the boundary conditions provided by the City of Ottawa, fire flow calculations, detailed hydraulic analysis results, and watermain layout figure are included in **Appendix C**.

4.4 Deviations

There are no deviations from the City of Ottawa Design Guidelines – Water Distribution (2010) or technical bulletins.

5.0 STORM SEWER SYSTEM AND STORMWATER MANAGEMENT

The Subject Site is located within the catchment of the Monahan Drain, and will outlet to Cell 2 of the Monahan Drain Constructed Wetlands Stormwater Management (SWM) Facility.

5.1 Existing Conditions

Under existing conditions, storm runoff from the majority of the site flows overland from the southwest corner of the site to the northeast corner. Runoff from the site crosses Eagleson Road (just south of Romina Street) via a culvert, into the Wetland Cell (Cell 4) of the Monahan Drain Constructed Wetlands. Refer to **Figure 4** – Existing Conditions Plan.

A small amount of storm runoff is directed towards the roadside ditch along the east side of Terry Fox Drive, which ultimately outlets to the Wetland Cell (Cell 4). Some of the runoff through this ditch is then being directed through an abandoned branch of the Monahan Drain. Under ultimate conditions, flows through this ditch will be completely blocked at the Bridlewood 3 property line and the City of Ottawa will redirect the roadside drainage as required within the City of Ottawa right-of-way. Refer to **Appendix A** for the related correspondence.

5.2 25 Overberg Way (Block 14) Outlet

Interim Conditions

Located to the west of the site is the proposed 25 Overberg Way (Block 14) residential development. Refer to **Figure 1** – Site Location. Construction of the Block 14 lands will be completed before construction of Bridlewood 3 begins. Under interim conditions, storm runoff from Block 14 will outlet to a temporary outlet ditch which cuts through the subject site. The temporary outlet ditch has been sized to convey the 100-year outflows from the Block 14 development, as well as the small 1.07 ha drainage area of the subject site that is tributary to the ditch. Refer to **Figure 7** – Storm Sewer Layout for the location of the interim ditch, and to the Block 14 (Bridlewood Trails - Phase 2) Stormwater Management Report, by Novatech, dated September 19, 2018 for further details.

Ultimate Conditions

Under ultimate conditions, storm runoff from Block 14 (and a portion of Bridlewood Trails Phase 2) will be directed through storm sewers in Overberg Way, and into the storm sewers of the subject site. The existing storm sewer located on Overberg way south of the Block 14 storm sewer outlet will be removed and reinstalled with the existing right of way drainage (minor system) being directed to the new storm sewer system.

5.3 Stormwater Management Criteria

The subject site is located within the Monahan Drain catchment, which is located within the Jock River subwatershed, which falls under the jurisdiction of the Rideau Valley Conservation Authority. The stormwater management criteria used in the design of Subject Site has been adapted from the *Bridlewood Trails Phase 2 Stormwater Management Report, by Novatech, June 7, 2013* and the City of Ottawa Sewer Design Guidelines (October 2012). Technical Bulletins PIEDTB-2016-01, ISTB-2018-01, ISTB-2018-02, and ISTB-2018-03 were also consulted in the development of the criteria.

5.3.1 Minor System (Storm Sewers)

• Storm sewers are to be designed using the Rational Method for a 1:2-year return period;

- Inlet control devices (ICDs) are to be used to control inflows to the storm sewers:
- The allowable release rate to the downstream storm system at Brigitta Street is 1853 L/s, as determined in the *Bridlewood Trails Phase 1 Stormwater Management Report, by Novatech, September 13, 2006*;
- Ensure that the 100-year hydraulic grade line in the storm sewer is at least 0.3 m below the underside of footing (USF) elevations for both existing and proposed development.

5.3.2 Major System

- Maximum depth of flow (static + dynamic) on local and collector streets shall not exceed 0.35 m during the 100-year event. The depth of flow may extend adjacent to the right-ofway provided that the water level must not touch any part of the building envelope and must remain below the lowest building opening during the stress test event;
- Runoff that exceeds the available storage in the right-of-way will be conveyed overland along defined major system flow routes towards the proposed major system outlet to the SWM Facility. There must be at least 15cm of vertical clearance between the spill elevation on the street and the ground elevation at the building envelope that is in the proximity of the flow route or ponding area;
- Although rear yard storage cannot be accounted for in computer modelling, the effect of flow attenuation can be accounted for by assuming a constant slope ditch/swale draining to the street with the following geometry:
 - o A minimum slope of 1.5%;
 - o A depth ranging between 150mm (min) and 600mm (max); and
 - o Maximum side slopes of 3H:1V.
- The product of the 100-year flow depth (m) on street and flow velocity (m/s) shall not exceed 0.60;

5.3.3 Water Quality / Quantity Control

- Storm runoff will be directed to Cell 2 of the Monahan Drain Constructed Wetlands, which has been designed to provide quantity control for the proposed development.
- Quality control will be provided by the Chamber B Vortechnics Model 1827 CIP unit located at the southern storm outfall to Cell 2 of the Monahan Drain Constructed Wetlands, which has been designed to provide an *Enhanced* (80% long-term TSS removal) level of water quality control.

5.4 Storm Servicing Design

Storm servicing for the subject development will be provided using a dual drainage system: Runoff from frequent events will be conveyed by storm sewers (minor system), while flows from large storm events which exceed the capacity of the minor system will be conveyed overland along defined overland flow routes (major system).

5.4.1 Minor System (Storm Sewers)

The storm sewers comprising the minor system have been designed in accordance with Technical Bulletin PIEDTB-2016-01 (September 2016). Storm sewer design sheets are provided in **Appendix D**.

The design criteria used to size the storm sewers are summarized in Table 5.1.

Table 5.1: Storm Sewer Design Parameters

Parameter	Design Criteria
Local Roads	2 Year Return Period
Storm Sewer Design	Rational Method / PCSWMM
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (T _c)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Allowable Release Rate

The allowable release rate to the Brigittia Street storm sewer (1853 L/s) was determined in the Bridlewood Trails Phase 2 Stormwater Management Report.

In addition to the storm runoff from the subject site, the maximum peak flow at the connection to the sewer at Brigitta Street includes storm runoff from a portion of the Bridlewood Trails Phase 2 development, and the Block 14 development. Refer to the storm sewer design sheets, Storm Drainage Area Plan for Phase 1 (103031-STM), and supporting documentation has been provided in **Appendix D**.

Inlet Control Devices

Inflows to the storm sewers will be controlled using inlet control devices (ICDs) sized to ensure no ponding in the right-of-ways during the 2-year event.

5.4.2 Major System (Overland Flow)

The major system design will conform to the design standards outlined in the Ottawa Sewer Design Guidelines (October 2012) and Technical Bulletin PIEDTB-2016-01 (September 2016). During detailed design, the right-of-way will be graded to provide sufficient storage to contain the major system runoff from storm events exceeding the minor system capacity for all storms up to and including the 100-year design event. The site will be graded to provide an engineered overland flow route for large, infrequent storms, or in the event that the storm sewer system becomes obstructed, with the majority of major system flows routed to the Monahan Drain Cell 2.

Infiltration Best Management Practices

Infiltration of surface runoff will be accomplished using lot level and conveyance controls. The most suitable practices for groundwater infiltration include:

- Infiltration of runoff captured by rear yard catchbasins;
- Direct roof leaders to rear yard areas;

- Infiltration trenches underlying drainage swales in park areas;
- The use of fine sandy loam topsoil in parks and on residential lawns.

By implementing infiltration Best Management Practices as part of the storm drainage design for the subject site, the impacts of development on the hydrologic cycle can be considerably reduced.

5.4.3 SWM Facility - Monahan Drain Constructed Wetlands Cell 2

The existing Chamber B Vortechs Model 1827 CIP immediately upstream the southern outlet to Cell 2 of the Monahan Drain Constructed Wetlands has been designed to provide water quality control for a portion of Bridlewood Trails Phases 1 and 2, all of Block 14, and all of the Subject Site. The proposed development does not exceed the originally allocated drainage area and runoff coefficient for the Subject Site used to size the Vortechs unit.

Surface storage will be provided within the road sags. Stormwater will pond during infrequent (>2-year) storm events, with no surface ponding during the 2-year event. The Monahan Drain Constructed Wetlands has been designed to accommodate post-development runoff from the Subject Site.

5.5 Hydrologic & Hydraulic Modeling (PCSWMM)

The City of Ottawa Sewer Design Guidelines (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the subject site was evaluated using the PCSWMM hydrologic/hydraulic model.

The PCSWMM model is a semi-lumped model that represents both the minor and major system flows from the development. The results of the analysis were used to:

- Simulate major and minor system runoff from the site;
- Determine the storm sewer hydraulic grade line for the 100-year storm event;
- Ensure the allowable release rate to the downstream storm system at Brigitta Street (1853 L/s) is not being exceeded.

5.5.1 Design Storms

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the *Ottawa Design Guidelines – Sewer* (November 2004).

4 Hour Chicago Storms:
2-year 4hr Chicago storm
5-year 4hr Chicago storm
100-year 4hr Chicago storm
100-year 4hr +20% Chicago storm

12 Hour SCS Type II Storms: 2-year 12hr SCS Type II storm 5-year 12hr SCS Type II storm 100-year 12hr SCS Type II storm

The 4-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 4-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

5.5.2 Model Parameters

The catchment areas for the subject site are shown on **Figure 7**. For modeling purposes at this design stage, the subcatchment areas have been discretized as semi-lumped areas and do not represent each individual sewer section. At the detailed design stage, the catchment areas will be refined to reflect the areas tributary to each inlet of the sewer system.

The hydrologic parameters for each lumped subcatchment were developed based on the Concept Plan (**Figure 3**) and the Stormwater Management Plan specified above. An overview of the modeling parameters is provided in **Table 5.2**.

Table 5.2: Model Parameters

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(%)
DIR-01	0.86	0.54	49%	30%	193.5	0.5%
DIR-02	2.16	0.65	64%	50%	486.0	0.5%
DIR-03	1.50	0.65	64%	50%	337.5	0.5%
DIR-04	1.66	0.65	64%	50%	373.5	0.5%
DIR-05	0.68	0.65	64%	50%	153.0	0.5%
DIR-06	1.15	0.65	64%	50%	258.8	0.5%
DIR-07	1.09	0.65	64%	50%	245.3	0.5%
DIR-08	1.86	0.41	30%	50%	418.5	0.5%
DIR-09	1.20	0.65	64%	50%	270.0	0.5%
DIR-10	0.61	0.65	64%	50%	137.3	0.5%
DIR-11	1.18	0.65	64%	50%	265.5	0.5%

TOTAL: 13.95

Runoff Coefficient/Impervious Values

Impervious (%IMP) values for each subcatchment area were calculated based on the Runoff Coefficients noted on **Figure 7** using the equation:

$$\%IMP = \frac{(C - 0.2)}{0.7}$$

Depression Storage

The default values for depression storage in the City of Ottawa were used for all catchments.

Depression Storage (pervious areas): 4.67 mm
Depression Storage (impervious areas): 1.57 mm

Residential rooftops are assumed to provide no depression storage and all rainfall is converted to runoff. The percentage of rooftop area to total impervious area is represented by the 'no depression storage' column in **Table 5.2**.

Equivalent Width

'Equivalent Width' refers to the width of the subcatchment flow path. This parameter is calculated as described in the Sewer Design Guidelines, October 2012, Section 5.4.5.6. Since the smaller subcatchment areas have been lumped into larger areas, a value of 225m per ha has been used.

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the City of Ottawa were used for all catchments.

Horton's Equation: Initial infiltration rate: $f_o = 76.2 \text{ mm/hr}$ $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2 \text{ mm/hr}$ Decay Coefficient: k = 4.14/hr

Depression Storage

The default values for depression storage in the City of Ottawa were used for all catchments.

Depression Storage (pervious areas): 4.67 mm
Depression Storage (impervious areas): 1.57 mm

Residential rooftops are assumed to provide no depression storage and all rainfall is converted to runoff.

Major System Storage

Since the major system has not yet been fully designed, major system storage is represented in the PCSWMM model using storage nodes. The required storage volumes are based on containing the runoff from the 100-year event within road sags (max depth of 0.35m) with no cascading overland flow. Runoff from up to the 2-year storm event flows uncontrolled to the storm sewers, and storage is provided for larger storm events.

The required major system storage volumes are provided in **Section 5.4.3 "Model Results"** – refer to **Table 5.5**.

Outlet Boundary Conditions

A boundary condition water level of 94.55 m has been applied to the model outlet. This is intended to mimic the 100-year water level in Cell 2. Refer to **Appendix A** for relevant correspondence.

5.5.3 Model Results

The results of the PCSWMM model are summarized in the following sections.

The PCSWMM model schematics are provided in **Appendix D**. Digital copies of the modeling files and model output for all storm events are provided on the enclosed CD.

Peak Flows

Surface storage will be provided within the road sags to provide some attenuation of storm runoff. Stormwater will pond during infrequent (>2-year) storm events, with no surface ponding during the 2-year event.

The Monahan Drain Constructed Wetlands and the Phase 1 storm sewers in Brigitta Street have been designed to accommodate post-development runoff from the subject site, up to a maximum release rate of 1853L/s at the connection to the Brigitta Street storm sewer.

Table 5.3: Peak Flows (L/s)

Storm Distribution->	4hr Chicago			12hr SCS			
Return Period->	25mm	2yr	5yr	100yr	2yr	5yr	100yr
MH 122 (Bridlewood Ph1) (Intersection of Romina & Brigitta)	1103	1443	1702	1991	875	1244	1907
Max. Allowable				1853 L/s			

Note that the peak flow during the 100-year storm events is exceeding the maximum peak flow, as determined in the design of Cell 2 and the Bridlewood Trails Phase 1 development.

While the peak flow is higher than what was originally anticipated, the runoff volume from the site has decreased from the 1,071 m³ (from the original Bridlewood Trails Phase 1 SWMHYMO model) to 859 m³ reported by the PCSWMM model. At the detailed design stage, detailed outflow hydrographs will be produced by the PCSWMM model, which can be input into the Monahan Drain model to ensure there will be no negative impact on the Drain.

It should also be noted that proposed development has changed from a commercial/ mixed use development, to a fully residential development. The residential development precludes the use of underground storage units, which could have been used in a commercial development to provide further storage and attenuation of peak flows to the receiving sewer system. Also, the system has been designed to ensure there is no ponding in the right-of-ways, which has dictated the sizing of the ICDs. While the size of the ICDs could be reduced to reduce peak flows, this would result in ponding during the 2-year event. At the detailed design stage, the major system storage available and ICD sizes at individual catchbasins will be determined, which may result in a decrease in peak flows to the receiving sewer system.

Hydraulic Grade Line

The PCSWMM model was used to evaluate the 100-year hydraulic grade line (HGL) elevations within the proposed storm sewers. As the design is only at the draft plan stage, underside of footing (USF) elevations have not yet been finalized. The HGL analysis will be revised at the detailed design stage to reflect the controlled inflows at each inlet to the storm sewers. Pipe sizes and building elevations will be adjusted accordingly to ensure the 100-year HGL will be at least 0.30m below the design USF elevations.

The model indicates that there will be some surcharging of the sewers during the 100-year event.

Table 5.4: 100-year HGL Elevations (m)

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr	Highest Pipe Obvert @ MH	WL Above Obvert (100yr)
	(m)	(m)	(m)	(m)	(m)
MH100	94.53	95.87	95.08	95.13	-0.05
MH102	93.70	96.93	95.08	95.04	0.04
MH104	93.82	97.06	95.36	95.10	0.26
MH106	93.89	97.12	95.49	95.17	0.32
MH108	94.01	97.23	95.57	95.39	0.18
MH110	94.20	97.31	95.60	95.51	0.09
MH112	94.42	97.38	95.61	95.58	0.03
MH114	94.73	97.48	95.62	95.66	-0.04
MH116	95.10	97.49	95.62	95.87	-0.25
MH118	95.16	97.47	95.62	95.93	-0.31
MH120	95.41	97.83	95.81	96.18	-0.37
MH122	95.00	97.48	95.61	95.85	-0.24
MH124	94.94	97.48	95.61	95.82	-0.21
MH126	94.63	97.48	95.61	95.70	-0.09
MH200	95.01	97.60	95.61	95.86	-0.25
MH202	95.28	97.74	95.68	96.06	-0.38
MH300	93.54	97.30	94.72	94.88	-0.16
MH302	94.41	97.52	94.72	95.04	-0.32
MH304	94.48	97.45	94.78	95.08	-0.30
MH306	94.73	97.40	95.49	95.48	0.01
MH308	94.68	97.44	95.49	95.46	0.03
MH400	94.76	97.55	95.36	95.44	-0.08
MH500	94.81	97.37	95.57	95.59	-0.02
MH502	94.87	97.44	95.57	95.62	-0.05
MH504	94.99	97.58	95.60	95.87	-0.27
MH506	94.93	97.53	95.60	95.81	-0.21
MH600	95.26	97.36	95.68	95.81	-0.13
MH602	95.03	97.70	95.59	95.63	-0.04
MH604	94.62	97.50	95.59	95.45	0.14
MH606	94.14	97.61	95.59	95.34	0.25
MH608	94.10	97.28	95.58	95.30	0.28
MH700	94.25	97.70	95.61	-	-
MH800	94.54	97.08	95.60	95.44	0.16
MH802	94.66	97.27	95.61	95.52	0.09
MH804	94.71	97.37	95.62	95.69	-0.07
MH806	95.03	97.54	95.62	95.81	-0.19
MH808	95.10	97.49	95.62	95.84	-0.22
MH810	95.40	97.70	95.70	96.00	-0.30

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr	Highest Pipe Obvert @ MH	WL Above Obvert (100yr)
	(m)	(m)	(m)	(m)	(m)
MH812	95.05	97.83	95.60	96.18	-0.58
MH814	95.36	97.89	95.76	96.06	-0.30
MH816	95.30	97.78	95.70	96.23	-0.53
MH818	95.21	97.77	95.62	95.94	-0.32
MH820	94.91	97.64	95.62	95.84	-0.22
MH822	94.89	97.52	95.62	95.82	-0.20
MH824	94.86	97.55	95.62	95.79	-0.17
MH900	94.99	97.56	95.60	95.84	-0.24
MH902	94.90	97.57	95.60	95.75	-0.15
MH904	94.67	97.39	95.60	95.67	-0.07
MH906	94.64	97.44	95.60	95.64	-0.04

<u>Major System Storage</u>
The storage required in the right-of-way has been evaluated on a per-hectare basis for each subcatchment. Refer to **Table 5.5**.

Table 5.5: Major System Storage

		Storage Required (m3)			
Drainage Area ID	Area (ha)	Total Volume (m³)	Per Hectare Volume (m³/ha)		
DIR-01	0.86	107	124		
DIR-02	2.16	284	132		
DIR-03	1.50	189	126		
DIR-04	1.66	209	126		
DIR-05	0.68	87	128		
DIR-06	1.15	146	127		
DIR-07	1.09	137	126		
DIR-08	1.86	255	137		
DIR-09	1.20	152	126		
DIR-10	0.61	78	127		

The required major system storage volumes are generally larger than the values documented in the *Bridlewood Trails Phase 1 Stormwater Management Report*. However, Technical Bulletin PIEDTB-2016-01 (September 2016) has increased the allowable ponding depths in the right-of-way from 0.30m to 0.35m and ponding during the 5-year storm event is allowed, which represents a significant increase in the maximum storage volumes that can be provided.

The major system storage volumes will be reassessed at the detailed design stage to ensure the appropriate major system storage is provided.

5.6 Deviations

The site is subject to grade raise restrictions. The storm sewer outlet elevation is fixed based on the as-built elevations of the storm sewer on Brigitta Street.

In order to limit the overall grade-raise and reduce the amount of lightweight fill required for the site, two deviations from the City of Ottawa Sewer Design Guidelines are anticipated to be required:

- 1. The oversizing of the local sewers to allow a lower pipe slope;
- 2. Maintain a reduced cover on the storm sewers;
 - The average minimum cover from the proposed centerline elevations to the storm sewer obvert is 1.85m;
 - Localized insulation will be installed as required to meet the 2.0m thermal equivalent recommended by the City of Ottawa Sewer Design Guidelines.

6.0 TRAFFIC IMPACT BRIEF

An analysis of the effect from the proposed Bridlewood 3 development on the existing traffic patterns has been performed and detailed in the report, *Bridlewood 3 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive, Traffic Impact Assessment, completed by Novatech, Ref. No.: R-2018-056, dated January 11, 2018;* and is submitted under a separate cover. Please refer to this report for more details.

7.0 ROADWAYS

7.1 Proposed Road Infrastructure

The proposed development will consist of local roadways with 14.5m right of ways (ROW) for single loaded roadways (window streets) and 18.0m right of ways for dual loaded streets. The proposed cross sections will conform to City of Ottawa Standards. Refer to **Figure 8** – 14.5m Road Allowance and **City of Ottawa Standard Drawing ROW-18JT** for proposed typical cross sections.

7.2 Deviations

Preliminary grading analysis of the site has indicated that the road elevations are anticipated to exceed the grade raise restrictions recommended in the geotechnical report in some areas. Site grading has been set to minimum overland flow requirements and is dictated by the storm sewer elevations. Mitigation measures will be determined with the Geotechnical Engineer during detailed design. These measures are anticipated to include the use of lightweight fill. Areas that are in exceedance of the grade raise restrictions are identified on the Preliminary Grading Plan (Drawing 117153-GR).

8.0 NOISE CONTROL

The analysis of the roadway traffic along Terry Fox Drive, Eagleson Road and Romina Street indicates that the City of Ottawa's criteria for residential noise will be exceeded, primarily for units in close proximity to the noise sources. Attenuation measures are required and they may include the installation of a noise barrier, central air conditioning, forced air ventilation and/or a notice may be placed on title with regards to the noise levels to be expected. The detailed results are included in the Noise Impact Feasibility Study and is submitted under a separate cover. Refer to *Bridlewood 3, 866, 898 Eagleson Road and 1335, 1365 Terry Fox Drive, Noise Impact Feasibility Report, completed by Novatech, Ref. No.: R-2019-011, dated January 11, 2019* for more details.

9.0 UTILITIES

The development will be serviced by hydro, phone, gas and cable, which will be constructed in a four-party trench, as per the City and utility standard right-of-way cross-sections. During detailed design, the works will be coordinated with local utility companies. Canada Post will service the site with community mailboxes. Site lighting will be provided along roadways, sidewalks and walkways as per City standards.

RESIDENTIAL ROAD 14.5m TYPICAL SECTION N.T.S.

Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6

Telephone Facsimile Website (613) 254-9643 (613) 254-5867 www.novatech-eng.com CITY OF OTTAWA 866 EAGLESON ROAD BRIDLEWOOD 3

14.5m ROAD ALLOWANCE

CALE

JAN 2019 117153 FIG8-XS

STREET LIGHTS AND SIDEWALKS ARE TO BE LOCATED ON OPPOSITE SIDES OF THE ROW.

4 PARTY JOINT USE TRENCH 18.0m ROAD ALLOWANCE RESIDENTIAL ROAD

9

DWG. No.: ROW-18JT

10.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). An Erosion and Sediment Control Plan will be prepared as part of the detailed design.

Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site (OPSD 219.110), catch basin inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier (OPSD 219.130), straw bale check dams (OPSD 219.180), rock check dams (219.210 or OPSD 219.211), riprap (OPSS 511), mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent Lands, water bodies or water treatment/conveyance facilities.

It will be the responsibility of the Contractor to submit a detailed construction schedule and appropriate staging, dewatering and erosion and sediment control plans to the Contract Administrator for review and approval prior to the commencement of work. A copy of the City of Ottawa Special Provision F-1005 is included in **Appendix E** which will become part of any contract and which outlines the contractual requirements which includes preparation of a detailed erosion and sediment control plan.

General Erosion and Sediment Control Measures

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector, provided by the owner, should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - o A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control Plan.
 - o Rock check dams and/or straw bales are to be installed in drainage ditches.
 - Catch basin inserts are to be placed under the grates of all proposed and existing catchbasins and structures.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.
- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.

The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

11.0 CONCLUSIONS AND RECOMMENDATIONS

Sanitary Servicing

The analysis of the proposed sanitary servicing confirms the following:

- It is proposed that the Subject Site will outlet directly to the 375mm sanitary sewer along Brigitta Street. The proposed outlet is consistent with the approved *Bridlewood Trails Design Brief dated June 2006 by Novatech*.
- The proposed development can be serviced with 375mm, 300mm, 250mm and 200mm sanitary sewer system.
- The total proposed sanitary flow from the Subject Site is 16.12 L/s, which represents an approximate 40% decrease in sanitary flows compared to the calculated flows in the *Bridlewood Trails Design Brief dated June 2006 by Novatech* (27.68 L/s).
- The proposed sanitary sewers have adequate capacity to accommodate the peak sanitary flow.
- Underside of footing elevations (USFs) shall be a minimum of 95.30m, which is the emergency overflow elevation at the downstream Pump Station.

Watermain

The analysis of the proposed watermain network confirms the following:

- It is proposed to service the Subject Site with 50mm and 200mm pipe with two connections to the existing watermain. The first connection will be made to the 300mm watermain stub at Block 2 and Romina Street. The second connection will be made to the 200mm watermain on Overberg Way in the northwest corner of the site.
- The analysis confirms the proposed watermain can service the Subject Site under all operating conditions.
- It is noted that pressure in the main is greater than 552 kPa/80psi during the high pressure and peak hour condition for all the lots and blocks, therefore the use of pressure reducing values will be considered during detailed design.

Stormwater Management

The following provides a summary of the storm sewer and stormwater management system:

- Allowable release rate for the site is 1,853 L/s, based on the Bridlewood Trails Phase 1 SWM Report.
- Proposed storm sewer system will convey stormwater to existing MH122 on Romina Street.
 - Storm sewers (minor system) have been designed to convey the uncontrolled
 2-year peak flow using the Rational Method.
 - o Inflows to the minor system will be controlled using inlet control devices (ICDs).
 - A minimum clearance of 0.30m will be provided between the 100-year hydraulic grade line (HGL) and the designed underside of footing elevations.

- Roads graded in a saw-toothed pattern to provide surface stormwater storage during infrequent (>2-year) storm events. No surface ponding during a 2-year storm event.
 - o The major overland flow route for the site is Brigitta Street / Monahan Drain.
 - o Ponding depths will not exceed 0.35m for all storms up to and including the 100-year event.

<u>Roadways</u>

• Roadway elevations will exceed grade raise restrictions in some areas and mitigation measures will be considered during detail design, including the use of light weight fill.

Noise

 Noise attenuation measures are required and they may include the installation of a noise barrier, central air conditioning, forced air ventilation and/or a notice may be placed on title with regards to the noise levels to be expected.

Erosion and Sediment control

- Erosion and sediment control measures (i.e. filter fabric, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.
- An Erosion and Sediment Control Plan will be prepared during detailed design to ensure
 erosion and sediment control is controlled in an acceptable manner and there is no
 negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

12.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

100122737

NOVATECH

Prepared by:

Trevor McKay, B.Eng., E.I.T.

Project Coordinator, Engineering

Reviewed by:

Drew Blair, P. Eng.
Project Manager, Engineering

SEP Kalli Hota SEP Kalli Hota 100187063 HOUNDE OF ONTERED

Kallie Auld, P. Eng. Project Coordinator, Water Resources

Michael Petepiece, P. Eng. Senior Project Manager, Water Resources

Appendix A Correspondence

Trevor McKay

From: McCreight, Laurel < Laurel.McCreight@ottawa.ca>

Sent: Tuesday, April 24, 2018 10:50 AM

To: Teresa Thomas
Cc: Greg Winters

Subject: Pre-Consultation Follow-up: 866 Eagleson

Attachments: Plan & Study List.pdf

Hi Teresa,

Please refer to the below regarding the Pre-Consultation Meeting held on Thursday April 19th, 2018 for the property at 866 Eagelson for a townhouse development. I have also attached the Plans & Study List.

General

- Part of the lands were redesignated to General Urban as part of OPA 180
- Two phase townhome development
 - o Area 1: 176 towns
 - o Area 2: 59 towns & 36 flats
- Integrate road pattern into existing road pattern and park
- Plan of Subdivision and Zoning applications

Planning

- Discussion regarding AM designation, its history and what it means for the development
- The City will be looking for more density along the arterial road in Phase 1 (Eagelson)
- Streetscape of Romina will be play an important role
 - o Cross-section will change by introducing driveways fronting Romina
- Diversifying product type based on redesignation

<u>Transportation</u>

- Important intersection is Eagleson and Romina
 - O How will this function if driveways are introduced so close to the intersection?
 - o Signals? Roundabout?
 - Councillor is interested in signals
- Overberg and Terry Fox is on the DC List
- TIA process to be followed
- Avoid noise walls where possible
- Noise Study requires
- For transportation related questions please contact rosanna.baggs@ottawa.ca

Engineering

- Run-off coefficient is 0.6
- TSS removal of 80% required
- Pipes are currently sized for proposed development
- Required to address quality and quantity requirements as set through the RCVA
- For transportation related questions please contact santhosh.kuruvilla@ottawa.ca

Forestry

Permit required for any trees greater than 10 cm in diameter

- Tree and butternut survey required
- Please contact mark.richardson@ottawa.ca and he will meet the consultant on site

Parks

- The location of the proposed park is logical as it integrates with the existing park
- The City will be looking for the full amount of parkland and not cash-in-lieu
- Developer built park; can opt out and provide money instead
- Park shall be built within two years of registration
- Park must be positively surface drained

RVCA

- The site is outletting directly into a SWM pond
- Please demonstrate that water quality protection is being provided to an enhanced level (80%) in the servicing report
- LID are encouraged where possible to maximize on site infiltration where possible

Please do not hesitate to contact me with any questions.

Regards, Laurel

Laurel McCreight MCIP, RPP

Planner
Development Review West
Urbaniste
Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 16587 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

2

Trevor McKay

From: McCreight, Laurel < Laurel.McCreight@ottawa.ca>

Sent: Tuesday, October 09, 2018 8:46 AM **To:** Robert Tran; 'Vincent Denomme'

Subject: FW: 866 Eagleson Road - Claridge Subdivision - Pre Con Eng Notes

Follow Up Flag: Follow up Flag Status: Follow up

Hi Robert and Vincent,

Please see the below regarding engineering.

Regards, Laurel

Laurel McCreight MCIP, RPP

Planner
Development Review West
Urbaniste
Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 16587

ottawa.ca/planning / ottawa.ca/urbanisme

From: Schaeffer, Gabrielle

Sent: Friday, October 05, 2018 4:42 PM

To: McCreight, Laurel <Laurel.McCreight@ottawa.ca>

Subject: 866 Eagleson Road - Claridge Subdivision - Pre Con Eng Notes

Hi Laurel,

Please add these notes to your letter back to the applicant:

- 1. The applicant indicated sump pumps may be required near the SE area of their development. If sump pumps intend to be used, please ensure items identified in Technical Bulletin ISTB-2018-04, dated June 27, 2018, are addressed and included in the SWM/Servicing report.
- 2. The applicant indicated slab-on-grade units may also be pursued. If so, please ensure plans indicate which ones.
- 3. The applicant indicated grade raise is expected to be between 1 2.5m. Lightweight fill is expected for some dwellings. Please ensure plans clearly indicate where light weight fill is expected to be used.
- 4. The Bridlewood Trails SWM/Servicing reports are to be utilized as requirement guides for this area. Please note that drawing 103031-STM indicates the pipe's permissible flow from this development area is 1,853 L/s.

- 5. Since the development at 25 Overberg Drive has been redirected to this outlet since the original documents were prepared, flows from 25 Overberg Dr. are to be included as part of the 1,853 L/s flow.
- 6. Please ensure discussion on how drainage from 25 Overberg will be dealt with through this subdivision. (i.e. servicing block or through the Overberg ROW) Currently, we are in talks with other City departments to determine which type of connection is preferred. A permanent storm system through the proposed park will not be accepted.
- 7. Monahan Branch A Drain is located on-site. Although not discussed at the pre-consultation meeting, requirements relating to this drain may apply. We have reached out to other City departments concerning their requirements regarding this development and this Municipal Drain branch.
- 8. When requesting WAT boundary conditions, please provide the following: (a) Location of WM connections on plan or map, (b) draft subdivision plan (c) brief description of the type of developments proposed, (d) the max fire flow required (as per FUS, 1999) complete with supporting calculations, (e) average daily demand (L/s) complete with supporting calculations, (g) maximum hourly daily demand (L/s) complete with supporting calculations.
- 9. HGL analyses will need to be completed ensuring no impact to the proposed dwellings nor existing downstream dwellings.
- 10. The Monahan Drain Sensitivity Analysis Study is currently being completed by the City of Ottawa. Preliminary results show an increase in Cell 2 water levels from JFSA's 2014 model. SWM requirements for developments may change as a result of this study, including the possibility of limiting development imperviousness to ensure runoff volumes do not increase. However, the exact SWM requirement changes at this time are unknown and being worked on. We will inform you of any changes as soon as possible. Please direct all questions to Development Review and not to the City's modeling consultant.

Gabrielle Schaeffer, P.Eng

Project Manager - Infrastructure Approvals

City of Ottawa
Development Review - West Branch
Planning, Infrastructure and Economic Development Department
110 Laurier Ave., 4th Floor East;
Ottawa ON K1P 1J1
Mail Code 01-14
Tel: 613-580-2424 x 22517

Fax: 613-560-6006

Steve Zorgel

From: McCreight, Laurel < Laurel.McCreight@ottawa.ca>

Sent: Tuesday, February 13, 2018 4:02 PM

To: Greg Winters

Cc: Eric Bays; Marc St.Pierre; jim.burghout@claridgehomes.com; John Riddell

Subject: Pre-Consultation Follow-Up: 1039 Terry Fox & 5331 Fernbank

Attachments: Plan & Study List.pdf

Follow Up Flag: Follow up Flag Status: Follow up

Hi Greg,

Please refer to the below regarding our Pre-Consultation Meeting on Tuesday February 6th, 2018 on 1039 Terry Fox Drive and 5331 Fernbank Road. I have also attached the Plans & Study List.

General

- Subdivision development for 72 walk-up apartment units with a height of 3-storeys, consisting of 4 units on each storey and 182 townhouses
- Right-in / Right-out onto Terry Fox, as per the Councillor's request
- Idea of conveying Monahan Drain corridor as a block to the City, thereby creating a natural severance
 - Create an R-Plan to convey block to the City
- Zoning already in place for subdivision
- Holding can be lifted after draft approval
- Addressing and Signs has confirmed that 1039 Terry Fox and 5331 Fernbank will be used with the application

Planning/Urban Design

- The Official Plan designation is now General Urban
 - An increased product diversity can be attained with the designation change as singles and semi detached units are now permitted
- Please consider increasing the amount of park land with the land allocated to large deep lots in the Northwest corner abutting the Monahan Drain

Engineering

- Please establish the residential underside of footings to carry out a hydraulic grade line analysis of the sanitary sewer system. Please use the emergency overflow elevation for the Hazeldean Pumping Station of 95.30m to establish USF elevations in accordance with the Ottawa Sewer Design Guidelines. Please account for grade raise restrictions when completing the analysis.
- The geotechnical report is to look at grade raise restrictions and all current trees in sensitive clay soils.
 Geotechnical guideline requirements must be implemented. Refer to the Tree Planting in Sensitive Marine Clay Soils 2017 Guidelines.
- The applicant will be required to assess the hydraulic impact on the Monahan Drain against the controlling 100 year elevation of 95.30 metres at the Hazeldean Pump Station overflow outlet location into the Didsbury ditch. Please include all post-development Van Gaal Lands in the hydraulic assessment.
- The applicant is responsible to provide any required stormwater mitigation measures for this specific development. Mitigation measures will need to be handled via on-site stormwater management, which may affect the proposed layout.

Trevor McKay

From: Eric Lalande <eric.lalande@rvca.ca>

Sent: Friday, July 06, 2018 2:34 PM **To:** Greg Winters; Teresa Thomas

Subject: RE: 866 Eagleson and Terry Fox: Drainage Feature

Hi Greg,

I'm a little confused. I believe at our last meeting (at the City), I indicated a HDFA is not required. As we were provided clarification that the system has been completely isolated from the Terry Fox Extension back in 2005 and that the catchment area for lands east of Terry Fox was considered limited to the sites directly adjacent (primarily). At this point, we would be relying on stormwater management plans to demonstrate that drainage isn't being affected for the lots between 866 Eagleson and terry fox that have been using the ditch for drainage purposes, and how the site would be providing appropriate SWM controls for quantity and quality.

Sorry if there was any outstanding confusion on this point. Let me know if there are any discussions required at this point.

Thanks,

Eric Lalande, MCIP, RPP

Planner, Rideau Valley Conservation Authority 613-692-3571 x1137

From: Greg Winters < G. Winters@novatech-eng.com>

Sent: Friday, July 06, 2018 11:45 AM

To: Teresa Thomas <t.thomas@novatech-eng.com>; Eric Lalande <eric.lalande@rvca.ca>

Subject: RE: 866 Eagleson and Terry Fox: Drainage Feature

Hi Eric

Can we schedule a time to discuss Teresa's submission below. We would like to get a better understanding on why a headwater assessment would be required for something that appears to be largely a roadside ditch. It will greatly help our understanding of the process going forward.

Greg Winters, MCIP, RPP, Senior Project Manager | Planning & Development

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 241 | Cell: 613.261.4990 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Teresa Thomas

Sent: Thursday, June 28, 2018 11:42 AM **To:** Eric Lalande <<u>eric.lalande@rvca.ca</u>>

Cc: Greg Winters < <u>G.Winters@novatech-eng.com</u>> **Subject:** 866 Eagleson and Terry Fox: Drainage Feature

Good morning Eric

It was nice to meet you in person at the Committee of Adjustment in May.

I'm working with Greg Winters on the proposed re-zoning and subdivision at 866 Eagleson Road and Terry Fox. A sketch of the Concept Area is attached for quick reference. The City Planner, Laurel McCreight, has asked us to connect with you directly regarding the state of the drainage feature on the property.

Please review the attached letter regarding the location and state of the drainage feature in question, as well as information from City of Ottawa engineering reports on the Monahan Drain. We await your response.

Thank you

Teresa Thomas, MCIP RPP | Project Planner

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

28 June 2018

Eric Lalande, Planner Rideau Valley Conservation Authority PO Box 599, 3889 Rideau Valley Drive, Manotick, Ontario, K4M 1A5

Attention: Eric Lalande

Dear Mr. Lalande:

Reference: 866 Eagleson and Terry Fox

Farm Ditch/Headwater Discussion for Zoning Amendment and Subdivision

Our File No. 117153

A pre-application meeting regarding the above-noted project was held at City Hall on April 19th, 2018. The City Planner, Laurel McCreight, has asked us to connect with you directly regarding the state of the ditch on the property. The Planner questioned if it is a headwater.

Figures 1-5 show this ditch. The ditch was formerly part of the Monahan Municipal Drain that drained water from properties west of Terry Fox Drive.

Figures 6 and 7 show the property west of Terry Fox Drive. Waters from properties west of Terry Fox Drive now drain along the west and south side of Terry Fox Drive to the Monahan Drain. The ditch on the Subject Site is still shown as a watercourse on RVCA mapping yet it flows from the Subject Site (only) to the roadside ditch on Eagleson Road, through a culvert under Eagleson Road and then into the Monahan Drain.

Figures 8 and 9 are taken from the report to the City of Ottawa called *Engineer's Report, Monahan Creek Municipal Drain, Modifications and Improvements*, by Robinson Consultants, dated July 2003. These figures show that waters that once flowed into the Monahan Drain have since been cut off west of Terry Fox Drive. Regarding the portion of Branch A on the Subject Site, the Report states, "The section of Branch A (west) of Terry Fox Drive will be intercepted by the Terry Fox Branch. The portion of Branch A downstream (east) of Terry Fox Drive to Station 1+821 at the Main Drain will continue to drain to the Constructed Wetland downstream of Eagleson Road" (Section 5.6). It should be noted that any redevelopment of the Subject Site will ensure site drainage is contained and directed to the storm facility situated on Briggita Street.

Novatech questions the requirement for a Headwater Assessment for a feature that is not a part of a Natural Feature, conveys only roadside water from one site, and outlets to a City of Ottawa roadside ditch, through a culvert, and ultimately into to a City stormwater facility as seen in Figure 10. We acknowledge that a permit may be required from the RVCA to develop the lands but

question the value of a Headwater Assessment in this case. The cost to complete such a study is not insignificant and may affect the timing of approvals.

Please review this request for clarification on the matter. We do not wish to engage in a Headwater Drainage Feature Assessment if is not logically conceivable, as determined by the RVCA, that the Subject Site contains a headwater.

Greg Winters, Senior Project Manager, Novatech is available should you wish to discuss by phone.

Kind regards,

Teresa Thomas, MCIP RPP

Project Planner NOVATECH

Figure 1: Drainage Patterns on and Around Subject Site

Figure 2: Aerial View of Subject Drainage 2017

Figure 3: Drainage Pattern at Property West of Terry Fox Drive (Looking southwest)

Figures Key

Figure 4: Farm Ditch on Subject Site

Figure 5: Rock Pile at End of Farm Ditch on Subject Site at Terry Fox (Looking West)

Figure 6: End of Drainage Feature on Property West of Terry Fox Drive, at Terry Fox Drive (Looking North)

Figure 7: End of Drainage Feature on Property West of Terry Fox Drive, at Terry Fox Drive (Looking east)

Figure 8: Soils Map Showing Branch 'A' Cutoff, Figure 3.1 from Monahan Creek Municipal Drain Report (2003)

Figure 10: Roadside Ditch West of Eagleson, East of Subject Site (Looking North)

Kallie Auld

From:

Schaeffer, Gabrielle < gabrielle.schaeffer@Ottawa.ca>

Sent:

Tuesday, January 08, 2019 1:32 PM

To:

Kallie Auld Mike Petepiece

Cc: Subject:

RE: Claridge DIR Lands/ Monahan Drain Cell 2 boundary conditions

Hi Kallie,

I was confusing the 1039 Terry Fox Drive Claridge file for this one.

The preliminary results of JFSA's study indicates the HWL at WL3 (US Side of Eagleson, Cell 2) is expected to be 94.55.

Regards, Gabrielle

From: Schaeffer, Gabrielle

Sent: Monday, January 07, 2019 10:52 AM To: 'Kallie Auld' <k.auld@novatech-eng.com>

Cc: Mike Petepiece < m.petepiece@novatech-eng.com >

Subject: RE: Claridge DIR Lands/ Monahan Drain Cell 2 boundary conditions

Hi Kallie,

The report is not finalized, however, I believe I provided a preliminary HWL to use in my comments.

Regards, Gabrielle

From: Kallie Auld <k.auld@novatech-eng.com>

Sent: Friday, January 04, 2019 4:03 PM

To: Schaeffer, Gabrielle <gabrielle.schaeffer@Ottawa.ca> **Cc:** Mike Petepiece <m.petepiece@novatech-eng.com>

Subject: Claridge DIR Lands/ Monahan Drain Cell 2 boundary conditions

Good afternoon Gabrielle,

I am currently working on the PCSWMM model for the Claridge DIR Lands at 866 Eagleson Road and I wanted to touch base with you about the downstream boundary conditions for the Monahan Drain Cell 2 dry pond. My understanding is that JFSA has completed a report with this information, and there may have been some changes to the pond water levels during various storm events. Could you forward me this information/report?

Thanks very much,

Kallie Auld, P.Eng., Project Coordinator | Water Resources **NOVATECH** Engineers, Planners & Landscape Architects

Appendix B

Sanitary Design Sheets & Excerpts from Relevant Reports

SANITARY SEWER DESIGN SHEET BRIDLEWOOD 3

Developer: Claridge Homes

PROJECT#:

DESIGNED BY:

CHECKED BY:

DATE PREPARED: 11-Jan-19

117153

DDB

TJM/SAZ

	LOCATION						RESIDENTIAL	•				PAR	K		INFILTRA	ATION	FLOW				PROP	OSED SEWE	R			
	LOCATION			ll ll	NDIVIDUAL			CUN	MULATIVE		PA	RK			A	PEAK	PEAK									
STREET	FROM AREA	TO AREA	Area	Semi Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	AREA (ha.)	PEAK FACTOR M	POPULATION FLOW Qr(p) (L/s)	AREA (ha.)	Accu. AREA (ha.)	PARK FLOW Qc(p) (L/s)	Total Area (ha.)	Accu. Total AREA (ha.)	EXTRAN. FLOW Q(i) (L/s)	DESIGN FLOW Q(d) (L/s)	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap	d/ D _{full}
Street 1	1	3	1	22	0.059	0.51	0.059	0.51	3.6	0.70		0.00	0.00			0.17	0.87	157.0	200	203.20	DR 35	0.35	20.2	0.62	4.3%	0.12
											entre.															
Street 2	2	3	2	31	0.0837	0.80	0.084	0.80	3.6	0.98		0.00	0.00			0.26	1.24	120.0	200	203.20	DR 35	0.35	20.2	0.62	6.1%	0.16
														Lay Fig.												
Street 1	3	7	3	10	0.0270	0.22	0.170	1.53	3.5	1.95		0.00	0.00		MEN	0.50	2.46	80.0	200	203.20	DR 35	0.35	20.2	0.62	12.1%	0.23
																				1974						
Street 8	4	5	4	2	0.0054	0.08	0.005	0.08	3.7	0.07		0.00	0.00		a and	0.03	0.09	15.0	200	203.20	DR 35	0.65	27.6	0.85	0.3%	0.00
Street 8	5	6	5	12	0.0324	0.50	0.038	0.58	3.7	0.45	0.40	0.40	0.02	N KIE		0.32	0.79	111.0	200	203.20	DR 35	0.35	20.2	0.62	3.9%	0.12
Street 1	6	7	6	18	0.0486	0.67	0.086	1.25	3.6	1.01		0.40	0.02			0.54	1.57	111.0	200	203.20	DR 35	0.35	20.2	0.62	7.8%	0.19
Street 1	7	12	7	5	0.0135	0.18	0.270	2.96	3.5	3.04		0.40	0.02			1.11	4.17	45.0	200	203.20	DR 35	0.35	20.2	0.62	20.6%	0.30
														0.00												
Street 5	8	9	8	2	0.0054	0.04	0.005	0.04	3.7	0.07		0.00	0.00			0.01	0.08	16.0	200	203.20	DR 35	0.65	27.6	0.85	0.3%	0.00
Street 5	9	12	9	26	0.0702	0.56	0.076	0.60	3.6	0.89		0.00	0.00			0.20	1.08	112.0	200	203.20	DR 35	0.35	20.2	0.62	5.4%	0.16
	+ -		<u> </u>		0.0.02	0.00	0.070	0.00	0.0	0.00		0.00	0.00			0.20	1.00	112.0	200	200.20	Dittoo	0.00	20.2	0.02	0.470	0.10
Street 8	10	11	10	9	0.0243	0.34	0.024	0.34	3.7	0.29		0.00	0.00			0.11	0.40	87.0	200	203.20	DR 35	0.65	27.6	0.85	1.46%	0.08
Street 9	11	12	11	33	0.0891	1.04	0.113	1.38	3.6	1.32		0.00	0.00			0.46	1.77	196.0	200	203.20	DR 35	0.35	20.2	0.62	8.75%	0.08
0.10010	1	1.2	1	- 00	0.0001	1.04	0.110	1.00	0.0	1.02		0.00	0.00			0.40	1.77	150.0	200	200.20	DICOS	0.55	20.2	0.02	0.7376	0.19
Street 1	12	17	12	8	0.0216	0.30	0.481	5.24	3.4	5.27		0.40	0.02			1.86	7.15	78.0	250	254.00	DR 35	0.25	31.0	0.61	23.1%	0.30
									3 - 11 - 33						No payer					Till state						
Street 5	13	14	13	8	0.0216	0.27	0.022	0.27	3.7	0.26	A BUTTO	0.00	0.00			0.09	0.35	60.0	200	203.20	DR 35	0.65	27.6	0.85	1.3%	0.08
Street 5	14	17	14	24	0.0648	0.72	0.086	0.99	3.6	1.01		0.00	0.00			0.33	1.34	128.0	200	203.20	DR 35	0.35	20.2	0.62	6.6%	0.16
														EINER												
Street 8	15	16	15	8	0.0216	0.33	0.022	0.33	3.7	0.26		0.00	0.00	2015		0.11	0.37	87.0	200	203.20	DR 35	0.65	27.6	0.85	1.3%	0.08
Street 8	16	17	16	45	0.1215	1.43	0.143	1.76	3.6	1.65		0.00	0.00			0.58	2.23	250.0	200	203.20	DR 35	0.35	20.2	0.62	11.0%	0.23
Street 1	17	23	17	16	0.0432	0.49	0.753	8.48	3.3	8.06		0.40	0.02			2.93	11.01	78.0	250	254.00	DR 35	0.25	31.0	0.61	35.5%	0.41
														M. T. P.S.							2.,00	5.20	9,10	0.01	00.070	J. 11
Street 3	18	19	18	2	0.0054	0.09	0.005	0.09	3.7	0.07		0.00	0.00			0.03	0.10	10.0	200	203.20	DR 35	0.65	27.6	0.85	0.3%	0.00
Street 3	19	23	19	25	0.0675	0.56	0.073	0.65	3.6	0.86		0.00	0.00	Le cont	10000	0.21	1.07	113.0	200	203.20	DR 35	0.50	24.2	0.75	4.4%	0.12
Street 7	20	22	20	6	0.0162	0.31	0.016	0.31	3.7	0.19		0.00	0.00			0.10	0.30	70.0	200	203.20	DR 35	0.65	27.6	0.85	1.1%	0.08
					0.0102	3.01	0.010	0.01	3.,	0.10		0.00	0.00			0.10	0.00	70.0	200	200.20	DICOO	0.00	21.0	0.00	1.170	0.00
Overberg Way	21	22	21	10	0.0270	0.50	0.027	0.50	3.7	0.32	1.00	0.00	0.00			0.17	0.49	123.0	200	203.20	DR 35	0.50	24.2	0.75	2.0%	0.08
Street 6	22	23	22	14	0.0378	0.59	0.081	1.40	3.6	0.95	1.03	1.03	0.04			0.80	1.79	160.0	200	203.20	DR 35	0.35	20.2	0.62	8.9%	0.19

SANITARY SEWER DESIGN SHEET BRIDLEWOOD 3

Developer: Claridge Homes

PROJECT#:

117153

DESIGNED BY:

TJM/SAZ

CHECKED BY:

DATE PREPARED: 11-Jan-19

	LOCATION						RESIDENTIAL	-				PAR	(INFILTRA	TION	FLOW				PROP	OSED SEWE	ER .			
	LOCATION			IN	IDIVIDUAL			CUN	ULATIVE		PA	RK			Accu.	PEAK	PEAK		-			110000000000000000000000000000000000000				
STREET	FROM AREA	TO AREA	Area	Semi Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	AREA (ha.)	PEAK FACTOR M	POPULATION FLOW Qr(p) (L/s)	AREA (ha.)	Accu. AREA (ha.)	PARK FLOW Qc(p) (L/s)	Total Area (ha.)	Total AREA (ha.)	EXTRAN. FLOW Q(i) (L/s)	DESIGN	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap	d/ D _{full}
Street 1	23	25	23	5	0.0135	0.17	0.921	10.70	3.3	9.72		1.43	0.06			4.00	13.79	45.0	300	304.80	DR 35	0.20	45.1	0.62	30.6%	0.38
Street 4	24	25	24	28	0.0756	0.54	0.076	0.54	3.6	0.89		0.00	0.00			0.18	1.07	113.0	200	203.20	DR 35	0.50	24.2	0.75	4.4%	0.12
Street 1	25	27	25	7	0.0189	0.21	1.015	11.45	3.2	10.65		1.43	0.06			4.25	14.96	45.0	300	304.80	DR 35	0.20	45.1	0.62	33.2%	0.38
Street 1	26	27	26	5	0.0135	0.17	0.014	0.17	3.7	0.16		0.00	0.00			0.06	0.22	36.0	200	203.20	DR 35	0.65	27.6	0.85	0.8%	0.00
Street 3	27	29	27	13	0.0351	0.30	1.064	11.92	3.2	11.12		1.43	0.06			4.41	15.59	57.0	300	304.80	DR 35	0.20	45.1	0.62	34.6%	0.41
Street 3	28	29	28	15	0.0405	0.40	0.041	0.40	3.7	0.48		0.00	0.00			0.13	0.61	63.0	200	203.20	DR 35	0.65	27.6	0.85	2.2%	0.08
Easement	29	Ex.	29	0	0.0000	0.03	1.104	12.35	3.2	11.51		1.43	0.06			4.55	16.12	48.0	375	381.00	DR 35	0.15	70.8	0.62	22.8%	0.30

- Notes: 1. Q(d) = Qr(p) + Q(i) + Qc(p)
- 2. Q(i) = 0.33 L/sec/ha
- 3. Qr(p) = (PxqxM/86,400)
- 3. Qc(p) = (A*q*Pf)/86,400

<u>Definitions:</u> Q(d) = Design Flow (L/sec)

Qr(p) = Population Flow (L/sec), Residential

Q(i) = Extraneous Flow (L/sec)

Qc(p) = Population Flow (L/sec), Commercial/Institutional/Park

P = Population (3.4 persons per single unit, 2.7 persons per townhouse unit)

q = Average per capita flow = 280 L/cap/day - Residential

q = Average per gross ha. flow = 3700 L/gross ha/day - Park (20L/day/person, 185 persons/ha - as per Appendix 4-A of the City of Ottawa Sewer Design Guidelines)

M = Harmon Formula (maximum of 4.0)

Min pipe size 200mm @ min. slope 0.32%

Mannings n = 0.013

Pf = Peak factor (Commercial/Institional/Park) = 1.0 (less than 20% of total contributing areas), 1.5 (if area is 20% or greater of total contributing area)

6/15/2006

SANITARY SEWER DESIGN SHEET

PROJECT #: 103031-1 DESIGNED BY : MSP CHECKED BY : RSC

PROJECT: Bridelwood Trails DEVELOPER: Claridge Homes

DATE: 22-Sep-05 REV.: 12-Jun-06

" (%) VELOCITY
(0) 1)
111111 1 111111 TO
(mm)
(US) ()
0.07
0.26 0.07
4.0
0.240
0.016 0.065 0.049 0.065 0.065
0.24
6 0.016 24 0.065 18 0.049 6 0.016
101 103 109 107 901 903
Residential Romina Street 1 Romina Street 1

SANITARY SEWER DESIGN SHEET

PROJECT #: 103031-1 DESIGNED BY: MSP CHECKED BY: RSC

· PROJECT: Bridelwood Trails DEVELOPER: Claridge Homes

DATE: 22-Sep-05 REV.: 12-Jun-06

ı	Γ			_	11	_	π-	77	1		п	_	T	П	11						_								,	,				·
	Opeak/ Ocap	0.04	0.04	0.07	0 60	09.0	0.00	0.02	0.05	0.05	0.08	90.0	0.13	0.01	0.16	0.19	0.20	69.0	0.70	0.03	0.09	60.0	0.09	0.74	0.58	0.58	0.58	0.58	0.28	0.31	0.29	0.29	0.32	0.33
	FULL FLOW VELOCITY	0.60	0.60	09:0	0.60	09:0	0.98	0.98	09'0	09.0	09'0	09:0	09:0	0.98	09.0	09:0	09.0	09:0	09:0	0.98	09:0	09:0	09:0	09:0	09:0	09:0	09.0	09:0	09:0	09:0	09:0	09.0	09'0	0.60
EWER	CAPACITY (Us)	29.6	29.6	29.6	62.8	62.8	48.7	48.7	29.6	29.6	29.6	29.6	29.6	48.7	29.6	29.6	29.6	62.8	62.8	48.7	29.6	29.6	29.6	62.8	93.8	93.8	93.8	93.8	93.8	93.8	93.8	93.8	93.8	93.8
PROPOSED SEWER	GRADE %	0.24	0.24	0.24	0.15	0.15	0.65	0.65	0.24	0.24	0.24	0.24	0.24	0.65	0.24	0.24	0.24	0.15	0.15	0.65	0.24	0.24	0.24	0.15	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
PRO	TYPE OF PIPE	DR 35	DR35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DH 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 35	DR 36	DR 35	DR 36	H 35
	PIPE ID TY (mm)	251.46	0.60		366,42 L	10000	251.46 E	251.46 E	251.46	251.46 C	251.46 L	251.46 E	251.46 D	251.46 D	251,46 D	251.46 D	251.46 D	366.42	386.42 D	251.46 D	251.46 D	251,46 D	251.46 D	366.42 D	447.87 D	447.87 D	447.87 D	447.87 D	447.87 D	447.87 D	447.87 D	447.87 D	447.87 D	447.87 DR 35
	PIPE PI	1	T	9700000	375 30	375 36	250 23	250	250 25	250 2	250 25	250 2 E	250 25	250 25	250 25	250 25	250 25	375 36	375 36	250 25	250 25	250 25	250 25	375 36	450 44	450 44	450 44	450 44	450 44	450 44	450 44	450 44	450 44	450 44
	ENGTH 9	67.6	9.0	89.6	102.4	24.5	37.8	84.0	39.2	44.7	71.5	_		65.0	 -				\dashv			_	\dashv		-				\dashv	\dashv	-	_		\dashv
A NO	<u> </u>	ऻ-		H	<u> </u>	_	<u> </u>					3 7.9	98.2	\vdash	74.0	61.6	61.6	1 59.2	2 60.5	91.5	94.5	6.9	35.8	3 61.4	16.8	80.1	9 98.2	1 98.2	3 115.8	115.8	1 77.0	93.6	65.3	65.3
PEAK DESIGN	FLOW Q (d)	1.09	1.19	2.05	37.75	37.82	0.23	0.99	1.55	1.57	2.27	2.43	3.76	0.48	4.86	5.48	5.82	43.51	43.72	1.33	2.65	2.77	2.78	46.48	54.24	54.26	54.29	54.34	26.66	29.54	26.74	27.40	30.35	30.98
PEAK EXTRAN.	FLOW Q(I) (L/s)	0.17	0.18	0.34	1.13	1.16	0.05	0.15	0.28	0:30	0.43	0.46	0.65	0.08	0.83	0.93	1.01	2.23	2.29	0.19	0.38	0.40	0.41	2.77	4.45	4.47	4.49	4.52	4.55	4.57	4.63	4.69	4.76	4.81
POPULATION FLOW	Q (b) (L/s)	0.92	1.01	1.71	8.94	8.98	0.18	0.83	1.27	1.27	1.84	1.97	3.11	0.39	4.03	4.55	4.81	13.60	13.75	1.14	2.28	2.36	2.36	16.03	22.12	22.12	22.12	22.12	22.12	22.12	22.12	22.12	22.12	22.12
DEAV	FACTOR M	4.0	4.0	4.0	3.9	3.9	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.8	3.8	4.0	4.0	4.0	4.0	3.8	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
TIVE	AREA (ha.)	0.600	0.660	1.210	4.050	4.125	0.180	0.550	0.990	1.060	1.530	1.640	2.330	0.295	2.975	3.335	3.605	7.970	8.170	0.680	1.350	1.440	1.480	9.882	15.878	15.948	16.048	16.138	16.238	16.338	16.528	16.748	16.988	17.178
CUMULATIVE	Population (in 1000's)	0.057	0.062	0.105	0.559	0.562	0.011	0.051	0.078	0.078	0.113	0.122	0.192	0.024	0.248	0.281	0.297	0.875	0.886	0.070	0.140	\dashv	0.146	1,045		-	+	7	+	_	\dashv	\dashv		1.482
	AREA (ha.)	09.0	90.0	0.55	0.43	0.08	0.18	0.55	0.44	20.0	0.29	0.11	69.0	0.30	0.35	0.36	0.27	0.24	0.20	0.68	0.67	60.0	0.04	0.23	0.01	0.07	0.10	60.0	0.10	0.10	0.19	0.22	0.24	0.19
INDIVIDUAL	Population (in 1000's)	0.057	0.005	0.043	0.032	0.003	0.011	0.051	0.027	0.000	0.024	0.008	0.070	0.024	0.032	0.032	0.016	0.016	0.011	0.070	0.070	0.005	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000	\dashv	+	0.000
	Units	21	2	16	12	-	4	19	유		6	6	56	6	12	12	9	9	4	92	56	2	0	5	0	0	0	0	0	0	0	0	0	0
	TO MH	503	505	215	213	211	E	801	Cap	E	603	605	403	403	405	407	211	509	207	303	305	307	207	1001	1003	1005	1007	1009	1011	1013	1015	1017	1019	1021
Z	FROM TO TO	501	503	505	215	213	113	803	801	Cap	=	603	902	401	403	405	407	211	509	301	303	305	307	207	_	_	4	_	4	_	_	4	_	1019
LOCATION	ш			!		1																												
ר	STREET	Amici Terrace	Amici Terrace	Amici Terrace	Brigitta Street	Brigitta Street	Romina Street	Future Street C	Future Street C	Future Street C	Arrita Terrace	Arrita Terrace	Arrita Terrace	Lokoya Street	Lokoya Street	Lokoya Street	Lokoya Street	Brigitta Street	Brigitta Street	Opus Street	Opus Street	Opus Street	Opus Street	Brigilla Street	Easement	Easement	FernBank Road	FernBank Road	FernBank Road	FernBank Road	Easement	Easement	Easement	Easement

SANITARY SEWER DESIGN SHEET

PROJECT #: 103031-1 DESIGNED BY: MSP CHECKED BY: RSC

DEVELOPER: Claridge Homes PROJECT: Bridelwood Trails

DATE: 22-Sep-05 REV.: 12-Jun-06

	Opeak/ Ocap	0.34	0.29
	FULL FLOW VELOCITY (m/s)	0.60	0.60
EWER	CAPACITY (L/s)	93.8	93.8
PROPOSED SEWER	3RADE %	0.11	0.11
PRO	PIPE ID TYPE OF (mm)	447.87 DR 35	447.87 DR 35
	PIPE SIZE (mm)	450	450
	LENGTH (m)	35.2	2.5
PEAK	FLOW O (d) (L/s)	31.56	26.93
PEAK EXTRAN.	FLOW Q(I) (L/s)	4.81	4.81
POPULATION FLOW		22.12	22.12
	FACTOR M	3.7	3.7
ATIVE	AREA (ha.)	17.178	17.178
CUMUL	AREA Population (ha.) (in 1000's)	1.482	1.482
	AREA (ha.)		
INDIVIDUAL	FROM TO MH Units Population (in 1000's)	0.000	0.000
	Units	0	0
	TO MH	Easement 1021 1023	Easement 1023 SG01000 0
NOI	FROM	1021	1023
LOCATION	STREET	Easement	Easement

Notes:

1. Q(d) = Q(p) + Q(i), where $Q(d) = Design\ Flow\ (L/sec)$

Q(p) = Population Flow (L/sec) Q(i) = Extraneous Flow (L/sec)

2. Q(i) = 0.28 L/sec/ha

3. Q(p) = (PxqxM/86,400), where

q = Average per capita flow = 350 L/cap/day - Residential P = Population (2.7 persons per Townhouse unit)

q = Average per gross ha. flow = 35000 L/gross ha/day - Light industrial

q = Average per gross ha. flow = 50000 L/gross ha/day - Commercial/Mixed use

M = Harmon Formula (maximum of 4.0)

Min pipe size 200mm @ min. slope 0.32%

CHECKED BY : DDB

SANITARY SEWER DESIGN SHEET

PROJECT: Bridlewood Trails - Phase 2 DEVELOPER: Claridge Homes

Date: 23-Jan-12 Revised: 29-Feb-12 Revised: 08-May-12 Revised: 30-Nov-12 Revised: 29-Mar-13 Revised: 06-Jun-13 Revised: 15-Jul-13 Revised: 08-Aug-13

LOCATI	NC				INDIVIDU	JAL		CUMULA	TIVE		l l	l .					***************************************	PROPOSED	SEWER			
STREET	FROM MH	то мн	Area	Apartment Units	Townhouse Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	AREA (ha.)	PEAK FACTOR M	POPULATION FLOW Q(p) (L/s)	PEAK EXTRAN. FLOW Q(i) (L/s)	PEAK DESIGN FLOW Q(d) (L/s)	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap	d/ D _{ruit}
BRIDLEWOOD PH. 2																						
RIOJA STREET	101	103	1		31	0.084	0.760	0.084	0.760	4.0	1.36	0.21	1.57	104.8	200	203.20	DR 35	0.32	19.4	0.60	8%	0.19
RIOJA STREET	103	105	2		23	0.062	0.550	0.146	1.310	4.0	2.36	0.37	2.73	71.9	200	203.20	DR 35	0.32	19.4	0.60	14%	0.25
RIOJA STREET	105	107	3		18	0.049	0.470	0.194	1.780	4.0	3.15	0.50	3.65	72.0	200	203.20	DR 35	0.32	19.4	0.60	19%	0.29
OVERBERG WAY	109	107	4		3	0.008	0.220	0.008	0.220	4.0	0.13	0.06	0.19	17.1	200	203.20	DR 35	0.65	27.6	0.85	1%	0.00
OVERBERG WAY	107	117	5		9	0.024	0.280	0.227	2.280	4.0	3.68	0.64	4.31	73.0	200	203.20	DR 35	0.32	19.4	0.60	22%	0.30
																200.00	DD 05		40.4	0.00	25/	0.40
OVERBERG WAY	111	113	6		12	0.032	0.390	0.032	0.390	4.0	0.53	0.11	0.63	82.3	200	203.20	DR 35	0.32	19.4 19.4	0.60	3%	0.12
OVERBERG WAY	113	115	7		1	0.003	0.070	0.035	0.460	4.0	0.57	0.13 .	0.70	11.0	200	203.20		0.32	19.4	0.60	4% 6%	0.12
OVERBERG WAY	115	117	8		10	0.027	0.290	0.062	0.750	4.0	1.01	0.21	1.22	61.2	200	203.20	DR 35	0.32	19.4	0.60	076	0.16
OVERBERG WAY	117	119	9		8	0.022	0.220	0.311	3.250	4.0	5.03	0.91	5.94	37.2	250	254.00	DR 35	0.24	30.4	0.60	20%	0.30
OVERBERG WAY	121	119	10		18	0.049	0.450	0.049	0.450	4.0	0.79	0.13	0.91	66.0	200	203.20	DR 35	0.32	19.4	0.60	5%	0.12
OPUS STREET	119	EX 105	11		0	0.000	0.120	0.359	3.820	4.0	5.82	1.07	6.89	81.4	250	254.00	DR 35	0.24	30.4	0.60	23%	0.30
OVERBERG WAY	CAP	133	13	72		0.151	0.930	0.151	0.930	4.0	2.45	0.26	2.71	9.0	200	203.20	DR 35	0.32	19.4	0.60	14%	0.25
	-				<u> </u>												TO THE PERSON NAMED IN COLUMN					
OVERBERG WAY	133	131	14		0	0.000	0.370	0.151	1.300	4.0	2.45	0.36	2.81	17.6	200	203.20	DR 35	0.32	19.4	0.60	15%	0.25
OVERBERG WAY	131	129	15		0	0.000	0.070	0.151	1.370	4.0	2.45	0.38	2.83	38.0	200	203.20	DR 35	0.32	19.4	0.60	15%	0.25
TULUM CRESCENT	139	137	16		11	0.030	0.510	0.030	0.510	4.0	0.48	0.14	0.62	80.8	200	203.20	DR 35	0.32	19.4	0.60	3%	0,12
TULUM CRESCENT	137	129	17		0	0.000	0.010	0.030	0.520	4.0	0.48	0.15	0.63	7.8	200	203.20	DR 35	0.32	19.4	0.60	3%	0.12
OVERBERG WAY	129	127	19		0	0.000	0.030	0.181	1.920	4.0	2.93	0.54	3.47	19.1	200	203.20	DR 35	0.32	19.4	0.60	18%	0.29
PARKLAND	143	127	18		0		1.030		1.030	1.5	0.13	0.29	0.42	11.0	150	152.40	DR 35	1.00	15.9	0.87	3%	80.0
OVERBERG WAY	127	125	20	 	0	0.000	0.090	0.181	3.040	4.0	2.93	0.85	4.20	53.2	200	203.20	DR 35	0.32	19.4	0.60	22%	0.30
TULUM CRESCENT	141	125	21		11	0.030	0.430	0.030	0.430	4.0	0.48	0.12	0.60	91.0	200	203.20	DR 35	0.32	19.4	0.60	3%	80.0
OVERBERG WAY	125	123	22		9	0.024	0.250	0.235	3.720	4.0	3.81	1.04	5.27	44.4	200	203.20	DR 35	0.32	19.4	0.60	27%	0.34
OVERBERG WAY	121	123	23		32	0.086	0.780	0.086	0.780	4.0	1.40	0.22	1.62	111.7	200	203.20	DR 35	0.32	19.4	0.60	8%	0.19
ADDITA TEDDACE	100	EV 100	24		0	0.000	0.120	0.321	4.620	4.0	5.21	1.29	6.92	79.9	250	254.00	DR 35	0.25	31.0	0.61	22%	0.30
ARRITA TERRACE	123	EX 109	24	 	0	0.000	0.120	0.321	4.020	4.0	3.21	1.23	0.52	19.9	200	204.00	1 011 00	0.25		+	22.79	+ 5.00

1. Q(d) = Q(p) + Q(i), where Q(d) = Design Flow (L/sec)

Q(p) = Population Flow (L/sec) Q(i) = Extraneous Flow (L/sec) 3. Q(p) = (PxqxM/86,400), where

P = Population (2.7 persons per Townhouse unit) P = Population (2.1 persons per 2 Bedroom Apartment unit)

q = Average per capita flow = 350 L/cap/day - Residential

q = Average per gross ha. flow = 35000 L/gross ha/day - Light industrial

q = Average per gross ha. flow = 50000 L/gross ha/day - Commercial/Institutional

M = Harmon Formula (maximum of 4.0) Min pipe size 250mm @ min. slope 0.24%

Appendix C

Watermain Boundary Conditions, FUS Calculations, & Modelling Results

BOUNDARY CONDITIONS

Boundary Conditions For: 866 Eagleson Road

Date of Boundary Conditions: 2018-Dec-18

Provided Information:

Scenario	Der	nand
	L/min	L/s
Average Daily Demand	157	4.5
Maximum Daily Demand	391	11.2
Peak Hour	859	24.6
Fire Flow #1 Demand	10,000	166.7
Fire Flow #2 Demand	13,000	216.7
Fire Flow #3 Demand	17,000	283.0
Fire Flow #4 Demand	19,000	317.0

Number Of Connections: 2

Location:

BOUNDARY CONDITIONS

Results:

Connection #: 2

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.7	91.4
Peak Hour	156.5	83.9
Max Day Plus Fire (10,000) L/min	156.6	85.4
Max Day Plus Fire (13,000) L/min	155.4	83.7
Max Day Plus Fire (17,000) L/min	153.2	80.5
Max Day Plus Fire (19,000) L/min	152.1	78.9

¹Elevation: **96.58 m**

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.8	92.6
Peak Hour	156.7	85.4
Max Day Plus Fire (10,000) L/min	156.6	85.4
Max Day Plus Fire (13,000) L/min	155.4	83.7
Max Day Plus Fire (17,000) L/min	153.2	80.4
Max Day Plus Fire (19,000) L/min	152.1	78.9

¹Elevation: 97.47 m

Notes:

- 1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.

- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.
- 2) Connection 1 and 2 must be looped with a watermain network of minimum 200 mm size pipe as shown on Connection Location Figure

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay
Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Back to Back Towns - Block 4/5

Wood frame

Note - <2.4m separation between adjacent back to back - take as one area - no cap

2 Hr firewalls located in centre of 6 unit building based on area

Step		2 Hr firewalls located in centre of 6 unit buil	Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
	la , ,, ,,	Base Fire Flor	W			
	Construction Ma					
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction	-	1		
	of construction	Non-combustible construction		0.8	1.5	
	C	Fire resistive construction (< 3 hrs)		0.7		
	Floor Area	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	D. 1141 - E - 4 - 4 / 2	044			
		Building Footprint (m²) Number of Floors/Storeys	944			
2	Α		2			
		Area of structure considered (m ²)			1,888	
	F	Base fire flow without reductions				14,000
		$F = 220 C (A)^{0.5}$				14,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge				
		Non-combustible		-25%		
3	(1)	Limited combustible	Yes	-15%		
•	(1)	Combustible		0%	-15%	11,900
		Free burning .		15%		
		Rapid burning		25%		
	Sprinkler Reduct					
		Adequately Designed System (NFPA 13)	No	-30%		
4	(2)	Standard Water Supply	No	-10%		•
	(2)	Fully Supervised System	No	-10%		0
			Cum	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)				
		North Side	20.1 - 30 m		10%	
5		East Side	2Hr Fire Wall		10%	
3	(3)	South Side	20.1 - 30 m		10%	4,760
		West Side	20.1 - 30 m		10%	
			Cum	nulative Total	40%	
		Results			ē	
	70 S 70 S 10 S	Total Required Fire Flow, rounded to nea	arest 1000L/min		L/min	17,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)	low, rounded to nearest 1000L/min	L/s	283	
		(2,000 L/IIIII > FIIG FIOW < 45,000 L/MIN)		or	USGPM	4,491
7	Storogo Values	Required Duration of Fire Flow (hours)			Hours	3.5
1	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	3570

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay
Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Back to Back Towns - Block 13

Wood frame

Note - <2.4m separation between adjacent back to back - take as one area - no cap

2 Hr firewalls located in centre of 5 unit buildings based on area

Construction Material Coefficient Telated to type of construction Coefficient Fire resistive construction Coefficient C	Step		2 Hr firewalls located in centre of 5 unit buil	Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
Coefficient related to type of construction			Base Fire Flo	W			
Coefficient Coefficient Coefficient Coefficient Construction Coefficient Construction Coefficient Construction Coefficient Coefficient		Construction Ma	terial				
Non-combustible construction C Sirror C Sirror Sirror	1			Yes			
File	-	of construction	Fire resistive construction (< 3 hrs)		0.7	1.5	
A			Fire resistive construction (> 3 hrs)		0.6		
A Number of Floors/Storeys 2 Area of structure considered (m²) 1,376		Floor Area	D. 1111 - E. 1 1 1 2	000			Transfer and the
Area of structure considered (m²) 1,376			Number of Floors/Storays				
Pase fire flow without reductions F = 220 C (A) ^{0.5} Reductions or Surcharges	2	A		2		4.070	
Parish P						1,376	
Non-combustible		F					12,000
Non-combustible							
Non-combustible				harges			
Limited combustible Yes -15% 10,200		Occupancy haza					
Combustible							
Free burning 15% Rapid burning 25%	3		Non-combustible -25% Limited combustible Yes -15% Combustible 0% -15%				
Rapid burning 25%		(1)				-15%	10,200
Adequately Designed System (NFPA 13)							
Adequately Designed System (NFPA 13)					25%		
Standard Water Supply		Sprinkler Reduc					
Fully Supervised System				No			
Fully Supervised System No	4	(2)		No	-10%		0
Storage Volume		(-)	Fully Supervised System				U
North Side			,	Cun	nulative Total	0%	
East Side		Exposure Surch					
South Side 2Hr Fire Wall 10% 3,060							
West Side 20.1 - 30 m 10%	5			The state of the s			
Cumulative Total 30%		(3)					3,060
Results Image: Content of the properties of the p			West Side	A STATE OF THE PARTY OF THE PAR			
6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 13,000 (2,000 L/min < Fire Flow < 45,000 L/min) or L/s 217 or USGPM 3,435 7 Storage Volume Required Duration of Fire Flow (hours) Hours 2.5				Cun	nulative Total	30%	
6 (1) + (2) + (3) or L/s 217 or USGPM 3,435 7 Storage Volume Required Duration of Fire Flow (hours) Hours 2.5			Results				
(2,000 L/min < Fire Flow < 45,000 L/min) Or USGPM 3,435 7 Storage Volume Required Duration of Fire Flow (hours) Hours 2.5	c	(4) + (2) + (2)	Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	13,000
7 Storage Volume Required Duration of Fire Flow (hours) Hours 2.5	ь	(1) + (2) + (3)	(2.000 L/min < Fire Flow < 45 000 L/min)		or		217
/ ISTOPAGE VOILING			(2,555 2,555 2,555 2,755)		or	USGPM	3,435
/ ISTOPAGE VOILING	-	04	Required Duration of Fire Flow (hours)			Hours	2.5
	7	Storage Volume					

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay
Reviewed By: Drew Blair

No Information or Input Required

Building Description: Back to Back Towns - Block 12 - 6 units

Wood frame

Note - <2.4m separation between adjacent back to back - take as one area - no cap

Legend

2 Hr firewalls located in centre of 5 and 6 unit buildings based on area

Step	Base Fire Flo	Input	Multiplier Options	Value Used	Total Fire Flow (L/min)	
		Base Fire Flo	w			
	Construction Ma	terial				
1	Coefficient related to type	Wood frame Ordinary construction	Yes	1.5	4.5	
	of construction C	Non-combustible construction Fire resistive construction (< 3 hrs) Fire resistive construction (> 3 hrs)		0.8 0.7 0.6	1.5	
	Floor Area					
2	A	Building Footprint (m²) Number of Floors/Storeys	816			
_	F	Area of structure considered (m²) Base fire flow without reductions			1,632	13,000
		$F = 220 \text{ C } (A)^{0.5}$				10,000
		Reductions or Sur	harges			
	Occupancy haza	rd reduction or surcharge				
3		Non-combustible Limited combustible	Yes	-25% -15%		
3	(1)	Combustible Free burning		0% 15%	-15%	11,050
		Rapid burning		25%		
	Sprinkler Reduct					
		Adequately Designed System (NFPA 13)	No	-30%		
4	(2)	Standard Water Supply	No	-10%		0
	\ <u>\</u>	Fully Supervised System	No	-10%		
			Cum	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)				
		North Side East Side	20.1 - 30 m 2Hr Fire Wall		10%	
5	(2)		A STATE OF THE RESIDENCE OF THE PARTY OF THE		10%	4 400
	(3)	South Side West Side	20.1 - 30 m	1	10%	4,420
		vvest Side	2Hr Fire Wall	nulative Total	10%	
		Results	Cun	iuiative i otal	40%	
•	(4) + (0) + (0)	Total Required Fire Flow, rounded to nea	arest 1000L/min		L/min	15,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	250 3,963
		Required Duration of Fire Flow (hours)		T	Hours	3
7	Storage Volume	required Duration of File Flow (flours)				

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay
Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Back to Back Towns - Block 12 - 5 units

Wood frame

Note - <2.4m separation between adjacent back to back - take as one area - no cap

2 Hr firewalls located in centre of 5 and 6 unit buildings based on area

Step			Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
		Base Fire Flor	W			
	Construction Material					
1	Coefficient related to type of construction	Wood frame	Yes	1.5	1.5	
		Ordinary construction		1		
		Non-combustible construction		0.8		
		Fire resistive construction (< 3 hrs)		0.7		
		Fire resistive construction (> 3 hrs)	The state of the	0.6		
	Floor Area					
2	A	Building Footprint (m²)	688			
		Number of Floors/Storeys	2			
		Area of structure considered (m²)			1,376	
	F	Base fire flow without reductions				12,000
		$F = 220 C (A)^{0.5}$				
		Reductions or Surc	harges			
3	Occupancy hazard reduction or surcharge					
	(1)	Non-combustible		-25%	-15%	10,200
		Limited combustible	Yes	-15%		
		Combustible		0%		
		Free burning		15%		
		Rapid burning		25%		
4	Sprinkler Reduction					
	(2)	Adequately Designed System (NFPA 13)	No	-30%		0
		Standard Water Supply	No	-10%		
		Fully Supervised System	No	-10%		
			Cur	nulative Total	0%	
	Exposure Surcharge (cumulative %)					
5	(3)	North Side	20.1 - 30 m		10%	4,080
		East Side	2Hr Fire Wall		10%	
		South Side	20.1 - 30 m		10%	
		West Side	2Hr Fire Wall	Control Printer of Add Burger and	10%	
Cumulative Total					40%	
		Results				
6	(1) + (2) + (3)	Total Required Fire Flow, rounded to nearest 1000L/min			L/min	14,000
		(2,000 L/min < Fire Flow < 45,000 L/min) or or		or	L/s	233
				or	USGPM	3,699
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	3
		Required Volume of Fire Flow (m³)			m ³	2520

As per 1999 Fire Underwriter's Survey Guidelines

17153 Engineers, Planners & Landscape Architects

Legend

Novatech Project #: 117153
Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay
Reviewed By: Drew Blair

No Information or Input Required

Building Description: Towns 89-92

Wood frame

Note - less then 10m from back to adjacent towns - no cap

Step	Note - less then 10m from back to adjacent towns - no cap Input Multiplie Options				Value Used	Total Fire Flow (L/min)
	lo	Base Fire Flor	W			
	Construction Ma					
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction		1	4.5	
	of construction	Non-combustible construction		0.8	1.5	
	C	Fire resistive construction (< 3 hrs)		0.7		
	Floor Area	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	D 11 2 2	100			
		Building Footprint (m ²) Number of Floors/Storeys	400			
2	A		2			
_		Area of structure considered (m²)			800	
	F	Base fire flow without reductions				9,000
-		$F = 220 C (A)^{0.5}$				9,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge				
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	7,650
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion				
		Adequately Designed System (NFPA 13)	No	-30%		
4	(0)	Standard Water Supply	No	-10%		_
	(2)	Fully Supervised System	No	-10%		0
			Cur	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)			0,0	
		North Side	20.1 - 30 m		10%	
-		East Side	20.1 - 30 m		10%	
5	(3)	South Side	20.1 - 30 m		10%	3,825
		West Side	3.1 - 10 m		20%	,
			Cur	nulative Total	50%	
		Results				
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	1	L/min	11,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min) or or			L/s	183
					USGPM	2,906
		Required Duration of Fire Flow (hours)			Hours	2
7	IStorage Volume	Required Duration of Fire Flow (nours) Required Volume of Fire Flow (m³)				

As per 1999 Fire Underwriter's Survey Guidelines

NOVATECH

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay

Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Towns 161-175 (Entire Area)

Wood frame

Note - less then 3.0m separation in side yards

Step			Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
		Base Fire Flor	W			
	Construction Ma					
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction		0.8	1.5	
	C	Fire resistive construction (< 3 hrs)		0.7		
	Floor Anno	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	D. 11	4540		A STATE OF THE STA	
		Building Footprint (m²) Number of Floors/Storeys	1540			
2	A		Z CATHERON CONTROL AND			
_		Area of structure considered (m ²)			3,080	
	F	Base fire flow without reductions				18,000
	·	$F = 220 C (A)^{0.5}$				10,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge				
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
	(1)	Combustible		0%	-15%	15,300
		Free burning		15%		
		Rapid burning	DECEMBER OF STREET	25%		
	Sprinkler Reduct	tion				
		Adequately Designed System (NFPA 13)	No	-30%		
4	(2)	Standard Water Supply	No	-10%		0
	(2)	Fully Supervised System	No	-10%		U
		у	Cur	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)				
		North Side	20.1 - 30 m		10%	
5		East Side	10.1 - 20 m		15%	
	(3)	South Side	> 45.1m		0%	5,355
		West Side	20.1 - 30 m		10%	
			Cur	nulative Total	35%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mir	1	L/min	21,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	350
		(2,555 (211111) - 110 (1100 (4,5000 (211111))		or	USGPM	5,548
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	4.5
	Clorage volume	Required Volume of Fire Flow (m ³)			m ³	5670

* Fireflow to be capped at 167L/s as per Technical Bulletin ISTB-2014-02

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay

Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Towns 147-150

Wood frame

Note - less then 10m from back to adjacent towns - no cap

Step		Note - less then 10m from back to adjacent	Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
	lo	Base Fire Flov	N			
	Construction Ma					
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction Non-combustible construction		1	4.5	
	of construction	Fire resistive construction (< 3 hrs)		0.8	1.5	
	С	Fire resistive construction (< 3 hrs)		0.7		
	Floor Area	Fire resistive construction (> 3 hrs)		0.6		
	1 1001 Alea	Building Footprint (m ²)	400			
	A	Number of Floors/Storeys	2			
2	^	Area of structure considered (m²)			800	
					600	
	F	Base fire flow without reductions				9,000
		$F = 220 C (A)^{0.5}$				-,
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge				
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		7,650
•	(1)	Combustible		0%	-15%	
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion				
		Adequately Designed System (NFPA 13)	No	-30%		
4	(2)	Standard Water Supply	No	-10%		
	(2)	Fully Supervised System	No	-10%		0
			Cun	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)				
		North Side	3.1 - 10 m		20%	
5		East Side	3.1 - 10 m		20%	
э	(3)	South Side	> 45.1m		0%	3,825
		West Side	20.1 - 30 m		10%	
			Cun	nulative Total	50%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	11,000
6	(1) + (2) + (3)	lor.			L/s	183
		(2,000 L/min < Fire Flow < 45,000 L/min)				2,906
		Required Duration of Fire Flow (hours)			Hours	2
7	Storage Volume	Required Volume of Fire Flow (m³)			m ³	1320
		required volume of the flow (iii)	111	1020		

As per 1999 Fire Underwriter's Survey Guidelines

NOVATECH

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Trevor McKay
Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Towns 151-155

Wood frame

Note - less then 10m from back to adjacent towns - no cap

Step		Multiplier Options	Value Used	Total Fire Flow (L/min)		
	T	Base Fire Flow	N			
	Construction Ma	•				
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction		0.8	1.5	
	С	Fire resistive construction (< 3 hrs)		0.7		
	Florida	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	In	100	The second second second		
		Building Footprint (m ²)	490			
2 A	Number of Floors/Storeys	2				
_		Area of structure considered (m²)			980	
	F	Base fire flow without reductions				10,000
F		$F = 220 C (A)^{0.5}$				10,000
		Reductions or Surc	harges		-	
	Occupancy haza	rd reduction or surcharge				
3		Non-combustible		-25%		
		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	8,500
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion				
		Adequately Designed System (NFPA 13)	No	-30%		
4	(0)	Standard Water Supply	No	-10%		-
	(2)	Fully Supervised System	No	-10%		0
			Cur	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)				
		North Side	10.1 - 20 m		15%	
-		East Side	20.1 - 30 m		10%	
5	(3)	South Side	> 45.1m	Service And	0%	3,825
		West Side	3.1 - 10 m		20%	•
			Cur	nulative Total	45%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mir	1	L/min	12,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min) or or		or	L/s	200
				or	USGPM	3,170
-	Otama wa Mari	Required Duration of Fire Flow (hours)			Hours	2.5
7	Storage Volume	Required Volume of Fire Flow (m³)			m ³	1800

* Fireflow to be capped at 167L/s as per Technical Bulletin ISTB-2014-02

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Steve Zorgel Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Typical 5-Unit Town

Wood frame

Step			Input	Multiplier Options	Value Used	Total Fire Flow (L/min)	
		Base Fire Flow	N				
	Construction Ma	terial					
	Coefficient	Wood frame	Yes	1.5			
1	related to type	Ordinary construction	ates a turing	1			
	of construction	Non-combustible construction		0.8	1.5		
	С	Fire resistive construction (< 3 hrs)		0.7			
	Floor Anno	Fire resistive construction (> 3 hrs)		0.6			
	Floor Area	D 111 - D 1 1 1 2	400	The Control of the Co		and on the orange of	
		Building Footprint (m ²) Number of Floors/Storeys	490	-			
2	Α		2		000		
		Area of structure considered (m²)		5-1-1-1	980		
	F	Base fire flow without reductions				10,000	
		$F = 220 C (A)^{0.5}$,	
		Reductions or Surc	harges				
	Occupancy haza	rd reduction or surcharge					
		Non-combustible	100	-25%			
3		Limited combustible	Yes	-15%		8,500	
	(1)	Combustible		0%	-15%		
		Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduct						
		Adequately Designed System (NFPA 13)	No	-30%			
4	(2)	Standard Water Supply	No	-10%		•	
	(2)	Fully Supervised System	No	-10%		0	
			Cur	mulative Total	0%		
	Exposure Surcha	arge (cumulative %)					
		North Side	30.1- 45 m		5%		
5		East Side	20.1 - 30 m		10%		
•	(3)	South Side	> 45.1m		0%	1,275	
		West Side	> 45.1m		0%		
			Cur	mulative Total	15%		
		Results					
	(4) - (6) - (5)	Total Required Fire Flow, rounded to nea	rest 1000L/mii	n	L/min	10,000	
6	(1) + (2) + (3)	(2 000 L/min < Fire Flow < 45 000 L/min)		or	L/s	167	
		(2,000 L/min < Fire Flow < 45,000 L/min) or			USGPM	2,642	
	04	Required Duration of Fire Flow (hours)			Hours	2	
7	Storage Volume	Required Volume of Fire Flow (m³)			m ³	1200	

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Steve Zorgel

Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Towns 207-210

Wood frame

Note - less then 10m from back to adjacent towns - no cap

Step			Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
		Base Fire Flow	N			
	Construction Ma	terial				
1	Coefficient related to type	Wood frame Ordinary construction	Yes	1.5		
related to typ	of construction	Non-combustible construction Fire resistive construction (< 3 hrs)		0.8 0.7	1.5	
		Fire resistive construction (> 3 hrs)		0.6		
	Floor Area					
_	Α	Building Footprint (m²) Number of Floors/Storeys	400			
2		Area of structure considered (m ²)			800	
	F	Base fire flow without reductions		State Const		
		$F = 220 \text{ C (A)}^{0.5}$				9,000
100		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge				
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
-	(1)	Combustible		0%	-15%	7,650
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct					
		Adequately Designed System (NFPA 13)	No	-30%		
4	(2)	Standard Water Supply	No	-10%		0
	(2)	Fully Supervised System	No	-10%		.0
			Cun	nulative Total	0%	
	Exposure Surcha	arge (cumulative %)				
		North Side	> 45.1m		0%	
5		East Side	3.1 - 10 m		20%	
	(3)	South Side	3.1 - 10 m		20%	3,825
		West Side	20.1 - 30 m		10%	
			Cun	nulative Total	50%	
		Results				
6	(4) + (2) + (2)	Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	11,000
О	(1) + (2) + (3)	+ (3) (2,000 L/min < Fire Flow < 45,000 L/min) or or				183
						2,906
7	Storono Volum	Required Duration of Fire Flow (hours)			Hours	2
7 8	Storage Volume	Required Volume of Fire Flow (nours)				1320

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Planners & Landscape Architects

Novatech Project #: 117153

Project Name: Bridlewood 3

Date: 11/1/2019

Input By: Steve Zorgel

Reviewed By: Drew Blair

Legend

No Information or Input Required

Building Description: Semis (Group of 2) - Blk 35-47

Wood frame

Step			Input	Multiplier Options	Value Used	Total Fire Flow (L/min)
		Base Fire Flow	V			
	Construction Ma					
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Fire resistive construction (< 3 hrs)	Yes	1.5 1 0.8 0.7	1 8 1.5	
	С	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	in the residence series desirent (* ° 7 ms)		0.0		
2	A	Building Footprint (m ²) Number of Floors/Storeys Area of structure considered (m ²)	198		396	
F	Base fire flow without reductions F = 220 C (A) ^{0.5}				7,000	
		Reductions or Surc	harges			
·	Occupancy haza	rd reduction or surcharge			•	
3		Non-combustible Limited combustible	Yes	-25% -15%		
	(1)	Combustible Free burning Rapid burning		0% 15% 25%	-15%	5,950
	Sprinkler Reduct			2070		
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply	No No	-30% -10%		0
		Fully Supervised System	No Cur	-10% nulative Total	0%	U
	Exposure Surcha	arge (cumulative %)				
5	(3)	North Side East Side South Side West Side	20.1 - 30 m 3.1 - 10 m 10.1 - 20 m 3.1 - 10 m		10% 20% 15% 20%	3,868
				nulative Total	65%	
		Results				
6	(1) + (2) + (3)	Total Required Fire Flow, rounded to nea	rest 1000L/mir	1	L/min	10,000
0	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min) or or			L/s USGPM	167 2,642
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	2
•	Clorage volume	Required Volume of Fire Flow (m ³)			m ³	1200

Population and Consumption Rate Calculations

					Consumption Rates (L/s)			
Node	Number of Semi-Detached	Number of Townhouse Units	Number of Back to Back Town Units	Population	Average Daily	Maximum Daily	Maximum Hourly	
R1				0.0	0.00	0.00	0.00	
R2				0.0	0.00	0.00	0.00	
N1	2			5.4	0.02	0.05	0.12	
N2	7			18.9	0.08	0.19	0.42	
N3	1	4		13.5	0.05	0.14	0.30	
N4		10		27.0	0.11	0.27	0.60	
N5	3			8.1	0.03	0.08	0.18	
N6		19		51.3	0.21	0.52	1.14	
N7	3	9		32.4	0.13	0.33	0.72	
N8	7	7		37.8	0.15	0.38	0.84	
N9	9			24.3	0.10	0.25	0.54	
N10	2	2		10.8	0.04	0.11	0.24	
N11		15		40.5	0.16	0.41	0.90	
N12		18		48.6	0.20	0.49	1.08	
N13		7		18.9	0.08	0.19	0.42	
N14		14		37.8	0.15	0.38	0.84	
N15		4		10.8	0.04	0.11	0.24	
N16		11		29.7	0.12	0.30	0.66	
N17				0.0	0.00	0.00	0.00	
N18		4	4	21.6	0.09	0.22	0.48	
N19			7	18.9	0.08	0.19	0.42	
N20			12	32.4	0.13	0.33	0.72	
N21		2	8	27.0	0.11	0.27	0.60	
N22		10	9	51.3	0.21	0.52	1.14	
N23			6	16.2	0.07	0.16	0.36	
N24		6	1	18.9	0.08	0.19	0.42	
N25		. 7	6	35.1	0.14	0.36	0.78	
N26		5		13.5	0.05	0.14	0.30	
N27		10	11	56.7	0.23	0.57	1.26	
N28		23		62.1	0.25	0.63	1.38	
N29		8		21.6	0.09	0.22	0.48	
N30		10		27.0	0.11	0.27	0.60	
N31		. 6	3	24.3	0.10	0.25	0.54	
N32		. 4		10.8	0.04	0.11	0.24	
N33		4	12	43.2	0.18	0.44	0.96	
N34		. 11	11	59.4	0.24	0.60	1.32	
N35		2		5.4	0.02	0.05	0.12	
N36			16	43.2	0.18	0.44	0.96	
N37		4	3	18.9	0.08	0.19	0.42	
N38		. 6	7	35.1	0.14	0.36	0.78	
N39		4	4	21.6	0.09	0.22	0.48	
N40		6		16.2	0.07	0.16	0.36	
N41		3		8.1	0.03	0.08	0.18	
N42				0.0	0.00	0.00	0.00	
N43				0.0	0.00	0.00	0.00	
N44				0.0	0.00	0.00	0.00	
Total	34	255	120	1104.3	4.47	11.18	24.60	

Water Demand Parameters

Towns (traditional, back to back), Semis	2.7	persons/unit
Residential Demand	350	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Town Fire Flow (cap)	167	L/s
Town Fire Flow (no cap)	183	L/s
Back to Back Town - see plan for locations	217, 250, 283	L/s
Semi-Detached	167	L/s

Ni. 1 In	Elevation	Demand	Total Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	hours
Resvr R1	161.80	-11.18	161.80	0.00	0.00	0.00	0.0
Resvr R2	161.70	6.70	161.70	0.00	0.00	0.00	0.0
Junc N1	97.39	0.02	161.79	64.40	0.00	0.00	8.7
Junc N2	97.70	0.08	161.79	64.09	628.72	91.19	7.9
Junc N3	97.71	0.05	161.79	64.08	628.62	91.17	0.1
Junc N4	97.40	0.11	161.77	64.37	631.47	91.59	0.2
Junc N5	97.36	0.03	161.78	64.42	631.96	91.66	0.2
Junc N6	97.25	0.21	161.76	64.51	632.84	91.79	0.4
Junc N7	97.45	0.13	161.76	64.31	630.88	91.50	0.3
Junc N8	97.47	0.15	161.76	64.29	630.68	91.47	0.4
Junc N9	97.60	0.10	161.76	64.16	629.41	91.29	0.8
Junc N10	97.80	0.04	161.75	63.95	627.35	90.99	1.1
Junc N11	97.65	0.16	161.75	64.10	628.82	91.20	1.6
Junc N12	97.55	0.20	161.75	64.20	629.80	91.35	2.1
Junc N13	97.85	0.08	161.75	63.90	626.86	90.92	1.5
Junc N14	97.55	0.15	161.75	64.20	629.80	91.35	2.4
Junc N15	97.50	0.04	161.75	64.25	630.29	91.42	3.3
Junc N16	97.40	0.12	161.75	64.35	631.27	91.56	3.6
Junc N17	97.75	0.00	161.75	64.00	627.84	91.06	6.9
Junc N18	97.80	0.09	161.75	63.95	627.35	90.99	8.1
Junc N19	97.90	0.08	161.75	63.85	626.37	90.85	12.5
Junc N20	97.55	0.13	161.75	64.20	629.80	91.35	17.9
Junc N21	97.55	0.11	161.75	64.20	629.80	91.35	6.4
Junc N22	97.70	0.21	161.75	64.05	628.33	91.13	12.6
Junc N23	97.50	0.07	161.75	64.25	630.29	91.42	5.4
Junc N24	97.45	0.08	161.75	64.30	630.78	91.49	4.5
Junc N25	97.40	0.14	161.75	64.35	631.27	91.56	2.9
Junc N26	97.35	0.05	161.75	64.40	631.76	91.63	3.6
Junc N27	97.60	0.23	161.75	64.15	629.31	91.27	6.8
Junc N28	97.40	0.25	161.75	64.35	631.27	91.56	8.9
Junc N29	97.30	0.09	161.75	64.45	632.25	91.70	1.0
Junc N30	97.20	0.11	161.75	64.55	633.24	91.84	1.1
Junc N31	97.20	0.10	161.75	64.55	633.24	91.84	0.7
Junc N32	97.00	0.04	161.74	64.74	635.10	92.11	0.7
Junc N33	97.15	0.18	161.73	64.58	633.53	91.89	0.8
Junc N34	97.35	0.24	161.74	64.39	631.67	91.62	0.9
Junc N35	97.65	0.02	161.73	64.08	628.62	91.17	1.4
Junc N36	97.60	0.18	161.73	64.13	629.12	91.25	1.7
Junc N37	97.60	0.08	161.73	64.13	629.12	91.25	1.5
Junc N38	97.35	0.14	161.72	64.37	631.47	91.59	1.4
Junc N39	97.05	0.09	161.73	64.68	634.51	92.03	1.0
Junc N40	97.00	0.07	161.73	64.73	635.00	92.10	0.9
Junc N41	96.95	0.03	161.73	64.78	635.49	92.17	1.6

Maximum Pressure
Maximum Age

Link ID	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
	m	mm		LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.02	0.01	0.01	0.088
Pipe P2	89.00	200	110	-0.10	0.00	0.00	0.081
Pipe P3	10.00	200	110	-11.18	0.36	1.09	0.034
Pipe P4	80.00	200	110	5.34	0.17	0.28	0.038
Pipe P5	80.00	200	110	5.23	0.17	0.27	0.038
Pipe P6	15.00	200	110	5.69	0.18	0.31	0.037
Pipe P7	64.00	200	110	5.66	0.18	0.31	0.037
Pipe P8	58.00	200	110	3.16	0.10	0.11	0.041
Pipe P9	75.00	200	110	2.95	0.09	0.09	0.041
Pipe P10	39.00	200	110	2.37	0.08	0.06	0.043
Pipe P11	100.00	200	110	2.22	0.07	0.05	0.043
Pipe P12	62.00	200	110	2.12	0.07	0.05	0.043
Pipe P13	62.00	200	110	1.10	0.04	0.01	0.047
Pipe P14	60.00	200	110	0.94	0.03	0.01	0.049
Pipe P15	69.00	200	110	0.74	0.02	0.01	0.051
Pipe P16	45.00	200	110	0.98	0.03	0.01	0.049
Pipe P17	100.00	200	110	0.90	0.03	0.01	0.048
Pipe P18	70.00	200	110	0.75	0.02	0.01	0.052
Pipe P19	17.00	200	110	0.40	0.01	0.00	0.053
Pipe P20	106.00	200	110	0.28	0.01	0.00	0.060
Pipe P21	39.00	200	110	0.28	0.01	0.00	0.047
Pipe P22	82.00	200	110	0.09	0.00	0.00	0.108
Pipe P23	51.00	200	110	0.10	0.00	0.00	0.139
Pipe P24	106.00	200	110	0.02	0.00	0.00	0.000
Pipe P25	51.00	200	110	-0.11	0.00	0.00	0.118
Pipe P26	50.00	200	110	0.12	0.00	0.00	0.100
Pipe P27	39.00	200	110	-0.34	0.01	0.00	0.048
Pipe P28	41.00	200	110	-0.41	0.01	0.00	0.063
Pipe P29	34.00	. 200	110	-0.31	0.01	0.00	0.045
Pipe P30	44.00	200	110	-0.18	0.01	0.00	0.049
Pipe P31	12.00	200	110	0.17	0.01	0.00	0.000
Pipe P32	110.00	200	110	0.25	0.01	0.00	0.063
Pipe P33	110.00	200	110	0.02	0.00	0.00	0.000
Pipe P34	102.00	200	110	-0.23	0.01	0.00	0.067
Pipe P35	78.00	. 200	110	-0.12	0.00	0.00	0.068
Pipe P36	12.00	200	110	2.75	0.09	0.08	0.042
Pipe P37	66.00	200	110	2.64	0.08	0.08	0.042
Pipe P38	32.00	200	110	4.97	0.16	0.24	0.038
Pipe P39	12.00	200	110	4.93	0.16	0.24	0.038
Pipe P40	67.00	200	110	2.80	0.09	0.08	0.042
Pipe P41	95.00	200	110	2.56	0.08	0.07	0.042
Pipe P42	13.00	200	110	-0.89	0.03	0.01	0.049
Pipe P43	110.00	200	110	-1.07	0.03	0.01	0.048
Pipe P44	43.00	200	110	3.42	0.11	0.12	0.040
Pipe P45	59.00	200	110	3.34	0.11	0.12	0.040
Pipe P46	50.00	200	110	6.70	0.21	0.42	0.036
Pipe P47	48.00	200	110	-3.49	0.11	0.13	0.040
Pipe P48	12.00	200	110	-3.58	0.11	0.13	0.040
Pipe P49	44.00	200	110	-3.68	0.12	0.14	0.040
Pipe P50	36.00	50	100	0.03	0.02	0.02	0.080

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
	m	LPS	m	m	kPa	psi
Resvr R1	156.70	-24.55	156.70	0.00	0.00	0.00
Resvr R2	156.50	0.01	156.50	0.00	0.00	0.00
Junc N1	97.39	0.12	156.64	59.25	581.24	84.30
Junc N2	97.70	0.42	156.65	58.95	578.30	83.88
Junc N3	97.71	0.30	156.65	58.94	578.20	83.86
Junc N4	97.40	0.60	156.58	59.18	580.56	84.20
Junc N5	97.36	0.18	156.63	59.27	581.44	84.33
Junc N6	97.25	1.14	156.52	59.27	581.44	84.33
Junc N7	97.45	0.72	156.54	59.09	579.67	84.07
Junc N8	97.47	0.84	156.52	59.05	579.28	84.02
Junc N9	97.60	0.54	156.50	58.90	577.81	83.80
Junc N10	97.80	0.24	156.48	58.68	575.65	83.49
Junc N11	97.65	0.90	156.48	58.83	577.12	83.70
Junc N12	97.55	1.08	156.48	58.93	578.10	83.85
Junc N13	97.85	0.42	156.48	58.63	575.16	83.42
Junc N14	97.55	0.84	156.48	58.93	578.10	83.85
Junc N15	97.50	0.24	156.47	58.97	578.50	83.90
Junc N16	97.40	0.66	156.47	59.07	579.48	84.05
Junc N17	97.75	0.00	156.47	58.72	576.04	83.55
Junc N18	97.80	0.48	156.47	58.67	575.55	83.48
Junc N19	97.90	0.42	156.47	58.57	574.57	83.33
Junc N20	97.55	0.72	156.47	58.92	578.01	83.83
Junc N21	97.55	0.60	156.47	58.92	578.01	83.83
Junc N22	97.70	1.14	156.47	58.77	576.53	83.62
Junc N23	97.50	0.36	156.47	58.97	578.50	83.90
Junc N24	97.45	0.42	156.47	59.02	578.99	83.97
Junc N25	97.40	0.78	156.48	59.08	579.57	84.06
Junc N26	97.35	0.30	156.48	59.13	580.07	84.13
Junc N27	97.60	1.26	156.48	58.88	577.61	83.78
Junc N28	97.40	1.38	156.49	59.09	579.67	84.07
Junc N29	97.30	0.48	156.50	59.20	580.75	84.23
Junc N30	97.20	0.60	156.50	59.30	581.73	84.37
Junc N31	97.20	0.54	156.51	59.31	581.83	84.39
Junc N32	97.00	0.24	156.50	59.50	583.70	84.66
Junc N33	97.15	0.96	156.50	59.35	582.22	84.44
Junc N34	97.35	1.32	156.50	59.15	580.26	84.16
Junc N35	97.65	0.12	156.50	58.85	577.32	83.73
Junc N36	97.60	0.96	156.50	58.90	577.81	83.80
Junc N37	97.60	0.42	156.50	58.90	577.81	83.80
Junc N38	97.35	0.78	156.50	59.15	580.26	84.16
Junc N39	97.05	0.48	156.50	59.45	583.20	84.59
Junc N40	97.00	0.36	156.50	59.50	583.70	84.66
Junc N41	96.95	0.18	156.48	59.53	583.99	84.70

Minimum Pressure

	Length	Diameter	Roughness	Flow	Velocity	Heedless	Friction
Link ID	m	mm	Rougilless	LPS	m/s	Headloss m/km	Factor
Pipe P1	32.00	50	100	-0.12	0.06	0.25	0.066
Pipe P2	89.00	200	110	-0.54	0.02	0.00	0.056
Pipe P3	10.00	200	110	-24.55	0.78	4.68	0.030
Pipe P4	80.00	200	110	10.48	0.73	0.97	0.030
Pipe P5	80.00	200	110	9.88	0.33	0.87	0.034
Pipe P6	15.00	200	110	13.23	0.42	1.49	0.034
Pipe P7	64.00	200	110	13.25	0.42	1.45	
Pipe P8	58.00	200	110	6.26			0.033
Pipe P9	75.00	200			0.20	0.37	0.037
Pipe P10			110	5.12	0.16	0.26	0.038
	39.00	200	110	6.07	0.19	0.35	0.037
Pipe P11	100.00	200	110	5.23	0.17	0.27	0.038
Pipe P12	62.00	200	110	4.69	0.15	0.22	0.038
Pipe P13	62.00	200	110	1.88	0.06	0.04	0.044
Pipe P14	60.00	200	110	0.98	0.03	0.01	0.049
Pipe P15	69.00	200	110	-0.10	0.00	0.00	0.103
Pipe P16	45.00	200	110	2.57	0.08	0.07	0.042
Pipe P17	100.00	200	110	2.15	0.07	0.05	0.043
Pipe P18	70.00	200	110	1.31	0.04	0.02	0.046
Pipe P19	17.00	200	110	2.03	0.06	0.05	0.043
Pipe P20	106.00	200	110	1.37	0.04	0.02	0.046
Pipe P21	39.00	200	110	1.37	0.04	0.02	0.046
Pipe P22	82.00	200	110	0.42	0.01	0.00	0.056
Pipe P23	51.00	200	110	0.47	0.01	0.00	0.058
Pipe P24	106.00	200	110	0.05	0.00	0.00	0.000
Pipe P25	51.00	200	110	-0.67	0.02	0.01	0.050
Pipe P26	50.00	200	110	0.72	0.02	0.01	0.049
Pipe P27	39.00	200	110	-1.99	0.06	0.04	0.044
Pipe P28	41.00	200	110	-2.35	0.07	0.06	0.043
Pipe P29	34.00	200	110	0.95	0.03	0.01	0.049
Pipe P30	44.00	200	110	-3.73	0.12	0.14	0.040
Pipe P31	12.00	200	110	-3.99	0.13	0.16	0.039
Pipe P32	110.00	200	110	-0.62	0.02	0.01	0.051
Pipe P33	110.00	200	110	-1.88	0.06	0.04	0.044
Pipe P34	102.00	200	110	-3.26	0.10	0.11	0.041
Pipe P35	78.00	200	110	4.29	0.14	0.18	0.039
Pipe P36	12.00	200	110	-2.91	0.09	0.09	0.041
Pipe P37	66.00	200	110	-3.51	0.11	0.13	0.040
Pipe P38	32.00	200	110	3.38	0.11	0.12	0.040
Pipe P39	12.00	200	110	3.14	0.10	0.10	0.041
Pipe P40	67.00	200	110	2.45	0.08	0.07	0.042
Pipe P41	95.00	200	110	1.13	0.04	0.02	0.048
Pipe P42	13.00	200	110	0.20	0.01	0.00	0.000
Pipe P43	110.00	200	110	-0.76	0.02	0.01	0.050
Pipe P44	43.00	200	110	0.81	0.03	0.01	0.049
Pipe P45	59.00	200	110	0.39	0.01	0.00	0.057
Pipe P46	50.00	200	110	0.01	0.00	0.00	0.000
Pipe P47	48.00	200	110	-0.41	0.01	0.00	0.054
Pipe P48	12.00	200	110	-0.89	0.03	0.01	0.053
Pipe P49	44.00	200	110	-1.43	0.05	0.02	0.033
Pipe P50	36.00	50	100	0.18	0.09	0.02	0.040
i ipo i oo	50.00	50	100	0.10	0.09	0.55	0.002

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Popur P1	m 152.20	LPS	m 452.00	m	kPa	psi
Resvr R1	153.20	-148.76	153.20	0.00	0.00	0.00
Resvr R2 Junc N1	153.20	-29.41	153.20		0.00	0.00
June N2	97.39	0.05	147.28	49.89	489.42	70.98
June N3	97.70	95.19	147.28	49.58	486.38	70.54
June N4	97.71	0.14 0.27	152.41	54.70	536.61	77.83
June N5	97.40 97.36	The same of the sa	152.49 152.32	55.09	540.43	78.38
June N6	97.36	36.08 0.52	152.32	54.96	539.16	78.20
June N7	97.45	0.33	152.36	55.13 54.91	540.83 538.67	78.44
June N8	97.43	0.38	152.36	54.89	538.47	78.13
Junc N9	97.60	0.36	152.37	54.69		78.10
June N10	97.80	0.23	152.38	54.77	537.29 535.43	77.93
June N11	97.65	0.11	152.38	54.73	536.90	77.66
June N12	97.55	0.41	152.38	54.73	537.88	77.87 78.01
June N13	97.85	0.49	152.38	54.53	534.94	77.59
June N14	97.55	0.18	152.38	54.83	537.88	78.01
June N15	97.50	0.11	152.38	54.88	538.37	78.08
June N16	97.40	0.30	152.38	54.98	539.35	78.23
June N17	97.75	0.00	152.38	54.63	535.92	77.73
Junc N18	97.80	0.22	152.38	54.58	535.43	77.66
June N19	97.90	0.19	152.38	54.48	534.45	77.52
Junc N20	97.55	0.33	152.38	54.83	537.88	78.01
Junc N21	97.55	0.27	152.38	54.83	537.88	78.01
Junc N22	97.70	0.52	152.38	54.68	536.41	77.80
Junc N23	97.50	0.16	152.38	54.88	538.37	78.08
Junc N24	97.45	0.19	152.38	54.93	538.86	78.16
Junc N25	97.40	0.36	152.39	54.99	539.45	78.24
Junc N26	97.35	0.14	152.39	55.04	539.94	78.31
Junc N27	97.60	0.57	152.40	54.80	537.59	77.97
Junc N28	97.40	0.63	152.40	55.00	539.55	78.26
Junc N29	97.30	0.22	152.41	55.11	540.63	78.41
Junc N30	97.20	0.27	152.44	55.24	541.90	78.60
Junc N31	97.20	0.25	152.57	55.37	543.18	78.78
Junc N32	97.00	0.11	152.65	55.65	545.93	79.18
Junc N33	97.15	0.44	152.68	55.53	544.75	79.01
Junc N34	97.35	0.60	152.62	55.27	542.20	78.64
Junc N35	97.65	0.05	152.70	55.05	540.04	78.33
Junc N36	97.60	0.44	152.70	55.10	540.53	78.40
Junc N37	97.60	0.19	152.77	55.17	541.22	78.50
Junc N38	97.35	0.36	152.87	55.52	544.65	78.99
Junc N39	97.05	0.22	152.78	55.73	546.71	79.29
Junc N40	97.00	0.16	152.76	55.76	547.01	79.34
Junc N41	96.95	0.08	152.76	55.81	547.50	79.41
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	36.00	153.10	55.61	545.53	79.12

	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	Rougilless	LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-95.24	3.03	57.65	0.025
Pipe P3	10.00	200	110	-112.76	3.59	78.82	0.024
Pipe P4	80.00	200	110	-10.56	0.34	0.98	0.034
Pipe P5	80.00	200	110	-10.83	0.34	1.03	0.034
Pipe P6	15.00	200	110	27.94	0.89	5.95	0.030
Pipe P7	64.00	200	110	-8.14	0.26	0.61	0.035
Pipe P8	58.00	200	110	-6.18	0.20	0.36	0.037
Pipe P9	75.00	200	110	-6.70	0.21	0.42	0.036
Pipe P10	39.00	200	110	-2.29	0.07	0.06	0.043
Pipe P11	100.00	200	110	-2.67	0.09	0.08	0.042
Pipe P12	62.00	200	110	-2.92	0.09	0.09	0.041
Pipe P13	62.00	200	110	-2.02	0.06	0.05	0.044
Pipe P14	60.00	200	110	-2.43	0.08	0.06	0.042
Pipe P15	69.00	200	110	-2.92	0.09	0.09	0.041
Pipe P16	45.00	200	110	-1.01	0.03	0.01	0.048
Pipe P17	100.00	200	110	-1.20	0.04	0.02	0.047
Pipe P18	70.00	200	110	-1.58	0.05	0.03	0.045
Pipe P19	17.00	200	110	0.53	0.02	0.00	0.054
Pipe P20	106.00	200	110	0.23	0.01	0.00	0.060
Pipe P21	39.00	200	110	0.23	0.01	0.00	0.054
Pipe P22	82.00	200	110	-0.03	0.00	0.00	0.000
Pipe P23	51.00	200	110	0.04	0.00	0.00	0.000
Pipe P24	106.00	200	110	-0.15	0.00	0.00	0.057
Pipe P25	51.00	200	110	-0.48	0.02	0.00	0.054
Pipe P26	50.00	200	110	0.55	0.02	0.00	0.053
Pipe P27	39.00	200	110	-1.30	0.04	0.02	0.046
Pipe P28	41.00	200	110	-1.46	0.05	0.03	0.046
Pipe P29	34.00	200	110	2.22	0.07	0.05	0.043
Pipe P30	44.00	200	110	-3.87	0.12	0.15	0.040
Pipe P31	12.00	200	. 110	-5.13	0.16	0.26	0.038
Pipe P32	110.00	200	110	-2.02	0.06	0.05	0.044
Pipe P33	110.00	200	110	-2.59	0.08	0.07	0.042
Pipe P34	102.00	200	110	-3.22	0.10	0.11	0.041
Pipe P35	78.00	200	110	5.27	0.17	0.27	0.038
Pipe P36	12.00	200	110	-15.41	0.49	1.98	0.032
Pipe P37	66.00	200	110	-15.68	0.50	2.04	0.032
Pipe P38	32.00	200	110	-17.64	0.56	2.54	0.032
Pipe P39	12.00	200	110	-17.75	0.57	2.57	0.032
Pipe P40	67.00	200	110	-9.12	0.29	0.75	0.035
Pipe P41	95.00	200	110	-9.72	0.31	0.84	0.035
Pipe P42	13.00	200	110	4.18	0.13	0.18	0.039
Pipe P43	110.00	200	110	3.74	0.12	0.14	0.040
Pipe P44	43.00	200	110	-13.95	0.44	1.64	0.033
Pipe P45	59.00	200	110	-14.14	0.45	1.69	0.033
Pipe P46	50.00	200	110	-29.41	0.94	6.54	0.029
Pipe P47	48.00	200	110	14.91	0.47	1.86	0.032
Pipe P48	12.00	200	110	14.69	0.47	1.81	0.032
Pipe P49	44.00	200	110	14.45	0.46	1.75	0.033
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	36.00	1.15	9.51	0.028

Nede ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-123.23	153.20	0.00	0.00	0.00
Resvr R2	153.20	-54.94	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	152.27	54.88	538.37	78.08
Junc N2	97.70	0.19	152.27	54.57	535.33	77.64
Junc N3	97.71	0.14	152.27	54.56	535.23	77.63
Junc N4	97.40	0.27	151.71	54.31	532.78	77.27
Junc N5	97.36	0.08	151.45	54.09	530.62	76.96
Junc N6	97.25	0.52	147.87	50.62	496.58	72.02
Junc N7	97.45	0.33	147.97	50.52	495.60	71.88
Junc N8	97.47	0.38	146.43	48.96	480.30	69.66
Junc N9	97.60	95.25	142.53	44.93	440.76	63.93
Junc N10	97.80	0.11	142.70	44.90	440.47	63.88
Junc N11	97.65	36.41	142.83	45.18	443.22	64.28
Junc N12	97.55	0.49	143.97	46.42	455.38	66.05
Junc N13	97.85	36.19	142.70	44.85	439.98	63.81
Junc N14	97.55	0.38	143.78	46.23	453.52	65.78
Junc N15	97.50	0.11	144.54	47.04	461.46	66.93
Junc N16	97.40	0.30	144.55	47.15	462.54	67.09
Junc N17	97.75	0.00	144.63	46.88	459.89	66.70
Junc N18	97.80	0.22	144.66	46.86	459.70	66.67
Junc N19	97.90	0.19	144.67	46.77	458.81	66.55
Junc N20	97.55	0.33	144.69	47.14	462.44	67.07
Junc N21	97.55	0.27	144.70	47.15	462.54	67.09
Junc N22	97.70	0.52	144.68	46.98	460.87	66.84
Junc N23	97.50	0.16	144.73	47.23	463.33	67.20
Junc N24	97.45	0.19	144.78	47.33	464.31	67.34
Junc N25	97.40	0.36	145.31	47.91	470.00	68.17
Junc N26	97.35	0.14	145.63	48.28	473.63	68.69
Junc N27	97.60	0.57	146.11	48.51	475.88	69.02
Junc N28	97.40	0.63	146.94	49.54	485.99	70.49
Junc N29	97.30	0.22	147.74	50.44	494.82	71.77
Junc N30	97.20	0.27	148.27	51.07	501.00	72.66
Junc N31	97.20	0.25	151.16	53.96	529.35	76.78
Junc N32	97.00	0.11	151.44	54.44	534.06	77.46
Junc N33	97.15	0.44	151.55	54.40	533.66	77.40
Junc N34	97.35	0.60	151.34	53.99	529.64	76.82
Junc N35	97.65	0.05	151.61	53.96	529.35	76.78
Junc N36	97.60	0.44	151.60	54.00	529.74	76.83
Junc N37	97.60	0.19	151.84	54.24	532.09	77.17
Junc N38	97.35	0.36	152.16	54.81	537.69	77.98
Junc N39	97.05	0.22	151.87	54.82	537.78	78.00
Junc N40	97.00	0.16	151.80	54.80	537.59	77.97
Junc N41	96.95	0.08	151.80	54.85	538.08	78.04
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	Rouginiess	LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.063
Pipe P3	10.00	200	110	-123.23	3.92	92.90	0.024
Pipe P4	80.00	200	110	30.44	0.97	6.97	0.029
Pipe P5	80.00	200	110	30.17	0.96	6.86	0.029
Pipe P6	15.00	200	110	92.41	2.94	54.52	0.025
Pipe P7	64.00	200	110	92.33	2.94	54.43	0.025
Pipe P8	58.00	200	110	14.49	0.46	1.76	0.033
Pipe P9	75.00	200	110	13.97	0.44	1.65	0.033
Pipe P10	39.00	200	110	77.51	2.47	39.37	0.025
Pipe P11	100.00	200	110	77.13	2.46	39.01	0.025
Pipe P12	62.00	200	110	-18.12	0.58	2.67	0.031
Pipe P13	62.00	200	110	-15.98	0.51	2.11	0.032
Pipe P14	60.00	200	110	-52.39	1.67	19.06	0.027
Pipe P15	69.00	200	110	-52.88	1.68	19.39	0.027
Pipe P16	45.00	200	110	-2.25	0.07	0.06	0.043
Pipe P17	100.00	200	110	-38.44	1.22	10.74	0.028
Pipe P18	70.00	200	110	-38.82	1.24	10.94	0.028
Pipe P19	17.00	200	110	-8.70	0.28	0.69	0.035
Pipe P20	106.00	200	110	-9.00	0.29	0.73	0.035
Pipe P21	39.00	200	110	-9.00	0.29	0.73	0.035
Pipe P22	82.00	200	110	-5.21	0.17	0.27	0.038
Pipe P23	51.00	200	110	-4.01	0.13	0.16	0.039
Pipe P24	106.00	200	110	-4.20	0.13	0.18	0.039
Pipe P25	51.00	200	110	-4.53	0.14	0.20	0.039
Pipe P26	50.00	200	110	5.73	0.18	0.32	0.037
Pipe P27	39.00	200	110	-10.53	0.34	0.98	0.034
Pipe P28	41.00	200	110	-10.69	0.34	1.00	0.034
Pipe P29	34.00	200	110	30.24	0.96	6.89	0.029
Pipe P30	44.00	200	110	-41.11	1.31	12.17	0.028
Pipe P31	12.00	200	. 110	-63.14	2.01	26.93	0.026
Pipe P32	110.00	200	110	-31.21	0.99	7.30	0.029
Pipe P33	110.00	200	110	-31.78	1.01	7.55	0.029
Pipe P34	102.00	200	. 110	-32.41	1.03	7.83	0.029
Pipe P35	78.00	200	110	63.28	2.01	27.04	0.026
Pipe P36	12.00	200	110	-81.94	2.61	43.64	0.025
Pipe P37	66.00	200	110	-82.21	2.62	43.90	0.025
Pipe P38	32.00	200	110	-34.26	1.09	8.68	0.029
Pipe P39	12.00	200	110	-34.37	1.09	8.73	0.029
Pipe P40	67.00	200	110	-18.03	0.57	2.64	0.032
Pipe P41	95.00	200	110	-18.63	0.59	2.81	0.031
Pipe P42	13.00	200	110	7.72	0.25	0.55	0.036
Pipe P43	110.00	200	110	7.28	0.23	0.49	0.036
Pipe P44	43.00	200	110	-26.40	0.84	5.36	0.030
Pipe P45	59.00	200	110	-26.59	0.85	5.43	0.030
Pipe P46	50.00	200	110	-54.94	1.75	20.82	0.027
Pipe P47	48.00	200	110	27.99	0.89	5.97	0.030
Pipe P48	12.00	200	110	27.77	0.88	5.88	0.030
Pipe P49	44.00	200	110	27.53	0.88	5.79	0.030
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-145.64	153.20	0.00	0.00	0.00
Resvr R2	153.20	-65.53	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	151.93	54.54	535.04	77.60
Junc N2	97.70	0.19	151.93	54.23	532.00	77.16
Junc N3	97.71	0.14	151.93	54.22	531.90	77.15
Junc N4	97.40	0.27	151.15	53.75	527.29	76.48
Junc N5	97.36	0.08	150.83	53.47	524.54	76.08
Junc N6	97.25	0.52	145.87	48.62	476.96	69.18
Junc N7	97.45	0.33	146.13	48.68	477.55	69.26
Junc N8	97.47	0.38	144.35	46.88	459.89	66.70
Junc N9	97.60	35.25	139.83	42.23	414.28	60.09
Junc N10	97.80	0.11	138.81	41.01	402.31	58.35
Junc N11	97.65	35.41	139.00	41.35	405.64	58.83
Junc N12	97.55	0.49	140.24	42.69	418.79	60.74
Junc N13	97.85	95.19	137.43	39.58	388.28	56.32
Junc N14	97.55	35.38	138.01	40.46	396.91	57.57
Junc N15	97.50	0.11	139.88	42.38	415.75	60.30
Junc N16	97.40	0.30	139.91	42.51	417.02	60.48
Junc N17	97.75	0.00	140.11	42.36	415.55	60.27
Junc N18	97.80	0.22	140.18	42.38	415.75	60.30
Junc N19	97.90	0.19	140.20	42.30	414.96	60.19
Junc N20	97.55	0.33	140.24	42.69	418.79	60.74
Junc N21	97.55	0.27	140.27	42.72	419.08	60.78
Junc N22	97.70	0.52	140.23	42.53	417.22	60.51
Junc N23	97.50	0.16	140.35	42.85	420.36	60.97
Junc N24	97.45	0.19	140.44	42.99	421.73	61.17
Junc N25	97.40	0.36	.141.70	44.30	434.58	63.03
Junc N26	97.35	0.14	.142.21	44.86	440.08	63.83
Junc N27	97.60	0.57	142.98	45.38	445.18	64.57
Junc N28	97.40	0.63	144.29	46.89	459.99	66.72
Junc N29	97.30	0.22	145.54	48.24	473.23	68.64
Junc N30	97.20	0.27	146.28	49.08	481.47	69.83
Junc N31	97.20	0.25	150.37	53.17	521.60	75.65
Junc N32	97.00	0.11	150.76	53.76	527.39	76.49
Junc N33	97.15	0.44	150.91	53.76	527.39	76.49
Junc N34	97.35	0.60	150.62	53.27	522.58	75.79
Junc N35	97.65	0.05	150.99	53.34	523.27	75.89
Junc N36	97.60	0.44	150.98	53.38	523.66	75.95
Junc N37	97.60	0.19	151.31	53.71	526.90	76.42
Junc N38	97.35	0.36	151.76	54.41	533.76	77.42
Junc N39	97.05	0.22	151.36	54.31	532.78	77.27
Junc N40	97.00	0.16	151.26	54.26	532.29	77.20
Junc N41	96.95	0.08	151.26	54.31	532.78	77.27
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.063
Pipe P3	10.00	200	110	-145.64	4.64	126.61	0.023
Pipe P4	80.00	200	110	36.67	1.17	9.85	0.028
Pipe P5	80.00	200	110	36.40	1.16	9.71	0.028
Pipe P6	15.00	200	110	108.59	3.46	73.51	0.024
Pipe P7	64.00	200	110	108.51	3.45	73.41	0.024
Pipe P8	58.00	200	110	24.23	0.77	4.57	0.030
Pipe P9	75.00	200	110	23.71	0.75	4.39	0.030
Pipe P10	39.00	200	110	83.96	2.67	45.64	0.025
Pipe P11	100.00	200	110	83.58	2.66	45.26	0.025
Pipe P12	62.00	200	110	48.33	1.54	16.41	0.027
Pipe P13	62.00	200	110	-19.46	0.62	3.04	0.031
Pipe P14	60.00	200	110	-54.87	1.75	20.76	0.027
Pipe P15	69.00	200	110	-55.36	1.76	21.11	0.027
Pipe P16	45.00	200	110	67.67	2.15	30.62	0.026
Pipe P17	100.00	200	110	-27.52	0.88	5.78	0.030
Pipe P18	70.00	200	110	-62.90	2.00	26.74	0.026
Pipe P19	17.00	200	110	-14.48	0.46	1.76	0.033
Pipe P20	106.00	200	110	-14.78	0.47	1.83	0.032
Pipe P21	39.00	200	110	-14.78	0.47	1.83	0.032
Pipe P22	82.00	200	110	-8.46	0.27	0.65	0.035
Pipe P23	51.00	200	110	-6.55	0.21	0.40	0.037
Pipe P24	106.00	200	110	-6.74	0.21	0.43	0.036
Pipe P25	51.00	200	110	-7.07	0.22	0.47	0.036
Pipe P26	50.00	200	110	8.98	0.29	0.73	0.035
Pipe P27	39.00	200	110	-16.31	0.52	2.20	0.032
Pipe P28	41.00	200	110	-16.47	0.52	2.24	0.032
Pipe P29	34.00	200	110	48.52	1.54	16.54	0.027
Pipe P30	44.00	200	110	-65.19	2.07	28.57	0.026
Pipe P31	12.00	200	110	-80.82	2.57	42.54	0.025
Pipe P32	110.00	200	110	-40.09	1.28	11.61	0.028
Pipe P33	110.00	200	110	-40.66	1.29	11.92	0.028
Pipe P34	102.00	200	110	-41.29	1.31	12.26	0.028
Pipe P35	78.00	200	110	80.96	2.58	42.67	0.025
Pipe P36	12.00	200	110	-98.76	3.14	61.66	0.024
Pipe P37	66.00	200	110	-99.03	3.15	61.97	0.024
Pipe P38	32.00	200	110	-41.15	1.31	12.19	0.028
Pipe P39	12.00	200	110	-41.26	1.31	12.25	0.028
Pipe P40	67.00	200	110	-21.72	0.69	3.73	0.031
Pipe P41	95.00	200	110	-22.32	0.71	3.93	0.031
Pipe P42	13.00	200	110	9.19	0.29	0.76	0.035
Pipe P43	110.00	200	110	8.75	0.28	0.69	0.035
Pipe P44	43.00	200	110	-31.56	1.00	7.46	0.029
Pipe P45	59.00	200	110	-31.75	1.01	7.54	0.029
Pipe P46	50.00	200	110	-65.53	2.09	28.84	0.026
Pipe P47	48.00	200	110	33.42	1.06	8.29	0.029
Pipe P48	12.00	200	110	33.20	1.06	8.19	0.029
Pipe P49	44.00	200	110	32.96	1.05	8.08	0.029
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-132.56	153.20	0.00	0.00	0.00
Resvr R2	153.20	-61.61	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	152.13	54.74	537.00	77.89
Junc N2	97.70	0.19	152.14	54.44	534.06	77.46
Junc N3	97.71	0.14	152.14	54.43	533.96	77.44
Junc N4	97.40	0.27	151.40	54.00	529.74	76.83
June N5	97.36	0.08	151.24	53.88	528.56	76.66
Junc N6	97.25	0.52	146.94	49.69	487.46	70.70
Junc N7	97.45	0.33	147.44	49.99	490.40	71.13
Junc N8	97.47	0.38	146.42	48.95	480.20	69.65
Junc N9	97.60	0.25	143.81	46.21	453.32	65.75
Junc N10	97.80	0.11	142.21	44.41	435.66	63.19
Junc N11	97.65	0.41	142.21	44.56	437.13	63.40
Junc N12	97.55	0.49	142.20	44.65	438.02	63.53
Junc N13	97.85	0.19	141.15	43.30	424.77	61.61
Junc N14	97.55	0.38	138.81	41.26	404.76	58.71
Junc N15	97.50	0.11	137.20	39.70	389.46	56.49
Junc N16	97.40	95.30	135.88	38.48	377.49	54.75
Junc N17	97.75	44.00	135.65	37.90	371.80	53.92
Junc N18	97.80	0.22	135.88	38.08	373.56	54.18
Junc N19	97.90	0.19	135.95	38.05	373.27	54.14
Junc N20	97.55	0.33	136.09	38.54	378.08	54.84
Junc N21	97.55	0.27	136.16	38.61	378.76	54.94
Junc N22	97.70	0.52	136.05	38.35	376.21	54.57
Junc N23	97.50	44.16	136.41	38.91	381.71	55.36
Junc N24	97.45	0.19	137.87	40.42	396.52	57.51
Junc N25	97.40	0.36	142.20	44.80	439.49	63.74
Junc N26	97.35	0.14	142.75	45.40	445.37	64.60
Junc N27	97.60	0.57	143.57	45.97	450.97	65.41
Junc N28	97.40	0.63	144.98	47.58	466.76	67.70
Junc N29	97.30	0.22	146.31	49.01	480.79	69.73
Junc N30	97.20	0.27	146.98	49.78	488.34	70.83
Junc N31	97.20	0.25	150.68	53.48	524.64	76.09
Junc N32	97.00	0.11	151.02	54.02	529.94	76.86
Junc N33	97.15	0.44	151.16	54.01	529.84	76.85
Junc N34	97.35	0.60	150.90	53.55	525.33	76.19
Junc N35	97.65	0.05	151.23	53.58	525.62	76.23
Junc N36	97.60	0.44	151.22	53.62	526.01	76.29
Junc N37	97.60	0.19	151.52	53.92	528.96	76.72
Junc N38	97.35	0.36	151.91	54.56	535.23	77.63
Junc N39	97.05	0.22	151.56	54.51	534.74	77.56
Junc N40	97.00	0.16	151.47	54.47	534.35	77.50
Junc N41	96.95	0.08	151.47	54.52	534.84	77.57
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	Rouginiess	LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.056
Pipe P3	10.00	200	110	-132.56	4.22	106.36	0.023
Pipe P4	80.00	200	110	35.31	1.12	9.18	0.029
Pipe P5	80.00	200	110	35.04	1.12	9.05	0.029
Pipe P6	15.00	200	110	96.87	3.08	59.50	0.025
Pipe P7	64.00	200	110	96.79	3.08	59.41	0.025
Pipe P8	58.00	200	110	34.12	1.09	8.61	0.029
Pipe P9	75.00	200	110	33.60	1.07	8.37	0.029
Pipe P10	39.00	200	110	62.35	1.98	26.31	0.026
Pipe P11	100.00	200	110	61.97	1.97	26.01	0.026
Pipe P12	62.00	200	110	61.72	1.96	25.82	0.026
Pipe P13	62.00	200	110	2.89	0.09	0.09	0.041
Pipe P14	60.00	200	110	2.48	0.08	0.07	0.042
Pipe P15	69.00	200	110	1.99	0.06	0.04	0.044
Pipe P16	45.00	200	110	58.72	1.87	23.54	0.026
Pipe P17	100.00	200	110	58.53	1.86	23.40	0.026
Pipe P18	70.00	200	110	58.15	1.85	23.12	0.026
Pipe P19	17.00	200	110	111.56	3.55	77.28	0.024
Pipe P20	106.00	200	110	16.26	0.52	2.18	0.032
Pipe P21	39.00	200	110	-27.74	0.88	5.87	0.030
Pipe P22	82.00	200	110	-15.73	0.50	2.05	0.032
Pipe P23	51.00	200	110	-12.23	0.39	1.29	0.033
Pipe P24	106.00	200	110	-12.42	0.40	1.33	0.033
Pipe P25	51.00	200	110	-12.75	0.41	1.39	0.033
Pipe P26	50.00	200	110	16.25	0.52	2.18	0.032
Pipe P27	39.00	200	110	-29.27	0.93	6.48	0.029
Pipe P28	41.00	200	110	-73.43	2.34	35.62	0.026
Pipe P29	34.00	200	110	53.52	1.70	19.83	0.027
Pipe P30	44.00	200	110	-127.14	4.05	98.44	0.024
Pipe P31	12.00	200	110	-83,88	2.67	45.57	0.025
Pipe P32	110.00	200	110	-41.63	1.33	12.45	0.028
Pipe P33	110.00	200	110	-42.20	1.34	12.77	0.028
Pipe P34	102.00	200	110	-42.83	1.36	13.12	0.028
Pipe P35	78.00 12.00	200	110	84.02	2.67	45.71	0.025
Pipe P36 Pipe P37	66.00	200 200	110 110	-93.48	2.98 2.98	55.69	0.025
1000				-93.75		55.99	0.025
Pipe P38 Pipe P39	32.00 12.00	200 200	110 110	-38.60 -38.71	1.23 1.23	10.82	0.028
Pipe P40	67.00	200	110	-20.35		10.88	0.028
Pipe P41	95.00	200	110		0.65	3.31	0.031
Pipe P42	13.00	200	110	-20.95 8.64	0.67 0.28	3.49 0.68	0.031
Pipe P43	110.00	200	110	8.20	0.26	0.61	0.035 0.035
Pipe P44	43.00	200	110	-29.65	0.26	6.64	0.035
Pipe P45	59.00	200	110	-29.84	0.95	6.72	0.029
Pipe P46	50.00	200	110	-61.61	1.96	25.73	0.029
Pipe P47	48.00	200	110	31.41	1.00	7.39	0.028
Pipe P48	12.00	200	110	31.19	0.99	7.29	0.029
Pipe P49	44.00	200	110	30.95	0.99	7.29	0.029
Pipe P50	36.00	50	100	0.08	0.99	0.12	0.029
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000
1 100	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
FILE	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-121.58	153.20	0.00	0.00	0.00
Resvr R2	153.20	-56.59	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	152.29	54.90	538.57	78.11
Junc N2	97.70	0.19	152.29	54.59	535.53	77.67
Junc N3	97.71	0.14	152.29	54.58	535.43	77.66
Junc N4	97.40	0.27	151.67	54.27	532.39	77.22
Junc N5	97.36	0.08	151.53	54.17	531.41	77.07
Junc N6	97.25	0.52	147.88	50.63	496.68	72.04
Junc N7	97.45	0.33	148.30	50.85	498.84	72.35
Junc N8	97.47	0.38	147.43	49.96	490.11	71.08
Junc N9	97.60	0.25	145.22	47.62	467.15	67.75
Junc N10	97.80	0.11	143.87	46.07	451.95	65.55
Junc N11	97.65	0.41	143.86	46.21	453.32	65.75
Junc N12	97.55	0.49	143.86	46.31	454.30	65.89
Junc N13	97.85	0.19	142.98	45.13	442.73	64.21
Junc N14	97.55	0.38	141.02	43.47	426.44	61.85
Junc N15	97.50	0.11	139.67	42.17	413.69	60.00
Junc N16	97.40	36.30	138.64	41.24	404.56	58.68
Junc N17	97.75	95.00	135.89	38.14	374.15	54.27
Junc N18	97.80	0.22	136.21	38.41	376.80	54.65
Junc N19	97.90	36.19	136.21	38.31	375.82	54.51
Junc N20	97.55	0.33	137.08	39.53	387.79	56.24
Junc N21	97.55	0.27	137.50	39.95	391.91	56.84
Junc N22	97.70	0.52	137.01	39.31	385.63	55.93
Junc N23	97.50	0.16	138.80	41.30	405.15	58.76
Junc N24	97.45	0.19	140.17	42.72	419.08	60.78
Junc N25	97.40	0.36	143.85	46.45	455.67	66.09
Junc N26	97.35	0.14	144.32	46.97	460.78	66.83
Junc N27	97.60	0.57	145.01	47.41	465.09	67.46
Junc N28	97.40	0.63	146.20	48.80	478.73	69.43
Junc N29	97.30	0.22	147.34	50.04	490.89	71.20
Junc N30	97.20	0.27	147.91	50.71	497.47	72.15
Junc N31	97.20	0.25	151.05	53.85	528.27	76.62
Junc N32	97.00	0.11	151.34	54.34	533.08	77.32
Junc N33	97.15	0.44	151.45	54.30	532.68	77.26
Junc N34	97.35	0.60	151.24	53.89	528.66	76.68
Junc N35	97.65	0.05	151.52	53.87	528.46	76.65
Junc N36	97.60	0.44	151.51	53.91	528.86	76.70
Junc N37	97.60	0.19	151.76	54.16	531.31	77.06
Junc N38	97.35	0.36	152.10	54.75	537.10	77.90
Junc N39	97.05	0.22	151.80	54.75	537.10	77.90
Junc N40	97.00	0.16	151.72	54.72	536.80	77.86
Junc N41	96.95	0.08	151.72	54.77	537.29	77.93
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

	Length	Diameter	Roughness	Flow	Valcoite	Hoadless	Friction
Link ID	m	mm	Roughness	LPS	Velocity m/s	Headloss m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.063
Pipe P3	10.00	200	110	-121.58	3.87	90.62	0.024
Pipe P4	80.00	200	110	32.43	1.03	7.84	0.029
Pipe P5	80.00	200	110	32.16	1.02	7.72	0.029
Pipe P6	15.00	200	110	88.77	2.83	50.61	0.025
Pipe P7	64.00	200	110	88.69	2.82	50.53	0.025
Pipe P8	58.00	200	110	31.29	1.00	7.34	0.029
Pipe P9	75.00	200	110	30.77	0.98	7.11	0.029
Pipe P10	39.00	200	110	57.08	1.82	22.34	0.027
Pipe P11	100.00	200	110	56.70	1.80	22.06	0.027
Pipe P12	62.00	200	110	56.45	1.80	21.88	0.027
Pipe P13	62.00	200	110	2.99	0.10	0.09	0.041
Pipe P14	60.00	200	110	2.58	0.08	0.07	0.042
Pipe P15	69.00	200	110	2.09	0.07	0.05	0.043
Pipe P16	45.00	200	110	53.34	1.70	19.71	0.027
Pipe P17	100.00	200	110	53.15	1.69	19.58	0.027
Pipe P18	70.00	200	110	52.77	1.68	19.32	0.027
Pipe P19	17.00	200	110	98.10	3.12	60.90	0.025
Pipe P20	106.00	200	110	61.80	1.97	25.88	0.026
Pipe P21	39.00	200	110	-33.20	1.06	8.19	0.029
Pipe P22	82.00	200	110	-36.36	1.16	9.69	0.028
Pipe P23	51.00	200	110	2.94	0.09	0.09	0.041
Pipe P24	106.00	200	110	-33.25	1.06	8.21	0.029
Pipe P25	51.00	200	110	-33.58	1.07	8.36	0.029
Pipe P26	50.00	200	110	36.88	1.17	9.95	0.028
Pipe P27	39.00	200	110	-70.73	2.25	33.23	0.026
Pipe P28	41.00	200	110	-70.89	2.26	33.37	0.026
Pipe P29	34.00	200	110	45.43	1.45	14.64	0.027
Pipe P30	44.00	200	110	-116.52	3.71	83.76	0.024
Pipe P31	12.00	200	110	-76.74	. 2.44	38.65	0.025
Pipe P32	110.00	200	110	-38.04	1.21	10.54	0.028
Pipe P33	110.00	200	110	-38.61	1.23	10.83	0.028
Pipe P34	102.00	200	110	-39.24	1.25	11.16	0.028
Pipe P35	78.00	200	110	76.88	2.45	38.78	0.025
Pipe P36	12.00	200	110	-85.58	2.72	47.29	0.025
Pipe P37	66.00	200	110	-85.85	2.73	47.57	0.025
Pipe P38	32.00	200	110	-35.33	1.12	9.19	0.029
Pipe P39	12.00	200	110	-35.44	1.13	9.24	0.029
Pipe P40	67.00	200	110	-18.60	0.59	2.80	0.031
Pipe P41	95.00	200	110	-19.20	0.61	2.97	0.031
Pipe P42	13.00	200	110	7.95	0.25	0.58	0.036
Pipe P43	110.00	200	110	7.51	0.24	0.52	0.036
Pipe P44	43.00	200	110	-27.20	0.87	5.66	0.030
Pipe P45	59.00	200	110	-27.39	0.87	5.74	0.030
Pipe P46	50.00	200	110	-56.59	1.80	21.98	0.027
Pipe P47	48.00	200	110	28.84	0.92	6.31	0.029
Pipe P48	12.00	200	110	28.62	0.91	6.22	0.029
Pipe P49	44.00	200	110	28.38	0.90	6.12	0.029
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Name and the second	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-155.89	153.20	0.00	0.00	0.00
Resvr R2	153.20	-72.28	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	151.76	54.37	533.37	77.36
Junc N2	97.70	0.19	151.76	54.06	530.33	76.92
Junc N3	97.71	0.14	151.76	54.05	530.23	76.90
Junc N4	97.40	0.27	150.78	53.38	523.66	75.95
Junc N5	97.36	0.08	150.56	53.20	521.89	75.69
Junc N6	97.25	0.52	144.73	47.48	465.78	67.56
Junc N7	97.45	0.33	145.41	47.96	470.49	68.24
Junc N8	97.47	0.38	144.02	46.55	456.66	66.23
Junc N9	97.60	0.25	140.50	42.90	420.85	61.04
Junc N10	97.80	0.11	138.33	40.53	397.60	57.67
Junc N11	97.65	0.41	138.31	40.66	398.87	57.85
Junc N12	97.55	0.49	138.29	40.74	399.66	57.97
Junc N13	97.85	0.19	136.99	39.14	383.96	55.69
Junc N14	97.55	0.38	134.03	36.48	357.87	51.90
Junc N15	97.50	0.11	131.98	34.48	338.25	49.06
Junc N16	97.40	0.30	131.07	33.67	330.30	47.91
Junc N17	97.75	0.00	125.42	27.67	271.44	39.37
Junc N18	97.80	0.22	123.35	25.55	250.65	36.35
Junc N19	97.90	95.19	122.05	24.15	236.91	34.36
Junc N20	97.55	27.33	122.95	25.40	249.17	36.14
Junc N21	97.55	0.27	124.25	26.70	261.93	37.99
Junc N22	97.70	95.52	122.80	25.10	246.23	35.71
Junc N23	97.50	0.16	128.10	30.60	300.19	43.54
Junc N24	97.45	0.19	132.15	34.70	340.41	49.37
Junc N25	97.40	0.36	138.27	40.87.	400.93	58.15
Junc N26	97.35	0.14	139.02	41.67	408.78	59.29
Junc N27	97.60	0.57	140.14	42.54	417.32	60.53
Junc N28	97.40	0.63	142.06	44.66	438.11	63.54
Junc N29	97.30	0.22	143.88	46.58	456.95	66.27
Junc N30	97.20	0.27	144.78	47.58	466.76	67.70
Junc N31	97.20	0.25	149.80	52.60	516.01	74.84
Junc N32	97.00	0.11	150.27	53.27	522.58	75.79
Junc N33	97.15	0.44	150.45	53.30	522.87	75.84
Junc N34	97.35	0.60	150.10	52.75	517.48	75.05
Junc N35	97.65	0.05	150.55	52.90	518.95	75.27
Junc N36	97.60	0.44	150.54	52.94	519.34	75.32
Junc N37	97.60	0.19	150.94	53.34	523.27	75.89
Junc N38	97.35	0.36	151.47	54.12	530.92	77.00
Junc N39	97.05	0.22	150.99	53.94	529.15	76.75
Junc N40	97.00	0.16	150.87	53.87	528.46	76.65
Junc N41	96.95	0.08	150.87	53.92	528.96	76.72
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

	Longth	Diameter	Poughness	Eleve	Valente	Headless	Eriotion
Link ID	Length m	Diameter mm	Roughness	Flow	Velocity m/s	Headloss m/km	Friction Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.063
Pipe P3	10.00	200	110	-155.89	4.96	143.60	0.023
Pipe P4	80.00	200	110	41.45	1.32	12.35	0.028
Pipe P5	80.00	200	110	41.18	1.31	12.20	0.028
Pipe P6	15.00	200	110	114.06	3.63	80.51	0.024
Pipe P7	64.00	200	110	113.98	3.63	80.40	0.024
Pipe P8	58.00	200	110	40.26	1.28	11.70	0.028
Pipe P9	75.00	200	110	39.74	1.26	11.42	0.028
Pipe P10	39.00	200	110	73.39	2.34	35.58	0.026
Pipe P11	100.00	200	110	73.01	2.32	35.24	0.026
Pipe P12	62.00	200	110	72.76	2.32	35.02	0.026
Pipe P13	62.00	200	110	6.01	0.19	0.35	0.037
Pipe P14	60.00	200	110	5.60	0.18	0.30	0.037
Pipe P15	69.00	200	110	5.11	0.16	0.26	0.038
Pipe P16	45.00	200	110	66.64	2.12	29.76	0.026
Pipe P17	100.00	200	110	66.45	2.12	29.60	0.026
Pipe P18	70.00	200	110	66.07	2.10	29.29	0.026
Pipe P19	17.00	200	110	91.55	2.91	53.58	0.025
Pipe P20	106.00	200	110	91.25	2.90	53.26	0.025
Pipe P21	39.00	200	110	91.25	2.90	53.26	0.025
Pipe P22	82.00	200	110	29.76	0.95	6.69	0.029
Pipe P23	51.00	200	110	61.26	1.95	25.47	0.026
Pipe P24	106.00	200	110	-33.93	1.08	8.52	0.029
Pipe P25	51.00	200	110	-61.26	1.95	25.46	0.026
Pipe P26	50.00	200	110	65.76	2.09	29.03	0.026
Pipe P27	39.00	200	110	-127.28	4.05	98.65	0.024
Pipe P28	41.00	200	110	-127.44	4.06	98.88	0.024
Pipe P29	34.00	200	110	25.59	0.81	5.06	0.030
Pipe P30	44.00	200	110	-153.22	4.88	139.08	0.023
Pipe P31	12.00	200	110	-99.16	3.16	62.13	0.023
Pipe P32	110.00	200	110	-49.31	1.57	17.03	0.027
Pipe P33	110.00	200	110	-49.88	1.59	17.40	0.027
Pipe P34	102.00	200	110	-50.51	1.61	17.81	0.027
Pipe P35	78.00	200	110	99.30	3.16	62.29	0.024
Pipe P36	12.00	200	110	-110.29	3.51	75.66	0.024
Pipe P37	66.00	200	110	-110.56	3.52	76.00	0.024
Pipe P38	32.00	200	110	-45.55	1.45	14.71	0.024
Pipe P39	12.00	200	110	-45.66	1.45	14.78	0.027
Pipe P40	67.00	200	110	-24.08	0.77	4.52	0.027
Pipe P41	95.00	200	110	-24.68	0.77	4.73	0.030
Pipe P42	13.00	200	110	10.12	0.79	0.91	0.034
Pipe P43	110.00	200	110	9.68	0.32	0.84	0.034
Pipe P44	43.00	200	110	-34.85	1.11		
Pipe P45	59.00	200	110	-35.04	1.12	8.96	0.029
Pipe P46	50.00	200				9.05	0.029
Pipe P47	48.00	200	110	-72.28	2.30	34.59	0.026
Pipe P48	12.00	200	110	36.88	1.17	9.95	0.028
			110	36.66	1.17	9.84	0.028
Pipe P49	44.00	200	110	36.42	1.16	9.72	0.028
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-178.39	153.20	0.00	0.00	0.00
Resvr R2	153.20	-82.78	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	151.36	53.97	529.45	76.79
Junc N2	97.70	0.19	151.36	53.66	526.40	76.35
Junc N3	97.71	0.14	151.36	53.65	526.31	76.33
Junc N4	97.40	0.27	150.08	52.68	516.79	74.95
Junc N5	97.36	0.08	149.81	52.45	514.53	74.63
Junc N6	97.25	0.52	142.30	45.05	441.94	64.10
Junc N7	97.45	0.33	143.21	45.76	448.91	65.11
Junc N8	97.47	0.38	141.48	44.01	431.74	62.62
Junc N9	97.60	0.25	137.07	39.47	387.20	56.16
Junc N10	97.80	0.11	134.36	36.56	358.65	52.02
Junc N11	97.65	0.41	134.25	36.60	359.05	52.08
Junc N12	97.55	0.49	134.16	36.61	359.14	52.09
Junc N13	97.85	0.19	132.96	35.11	344.43	49.96
Junc N14	97.55	0.38	129.89	32.34	317.26	46.01
Junc N15	97.50	0.11	127.75	30.25	296.75	43.04
Junc N16	97.40	0.30	126.99	29.59	290.28	42.10
Junc N17	97.75	0.00	122.28	24.53	240.64	34.90
Junc N18	97.80	0.22	120.54	22.74	223.08	32.35
Junc N19	97.90	0.19	120.04	22.14	217.19	31.50
Junc N20	97.55	95.33	118.99	21.44	210.33	30.51
Junc N21	97.55	0.27	120.19	22.64	222.10	32.21
Junc N22	97.70	95.52	119.33	21.63	212.19	30.78
Junc N23	97.50	30.16	123.07	25.57	250.84	36.38
Junc N24	97.45	0.19	127.82	30.37	297.93	43.21
Junc N25	97.40	0.36	134.06	36.66	359.63	52.16
Junc N26	97.35	30.14	134.63	37.28	365.72	53.04
Junc N27	97.60	0.57	136.43	38.83	380.92	55.25
Junc N28	97.40	0.63	138.85	41.45	406.62	58.98
Junc N29	97.30	0.22	141.14	43.84	430.07	62.38
Junc N30	97.20	0.27	142.32	45.12	442.63	64.20
Junc N31	97.20	0.25	148.82	51.62	506.39	73.45
Junc N32	97.00	0.11	149.43	52.43	514.34	74.60
Junc N33	97.15	0.44	149.66	52.51	515.12	74.71
Junc N34	97.35	0.60	149.21	51.86	508.75	73.79
Junc N35	97.65	0.05	149.79	52.14	511.49	74.19
Junc N36	97.60	0.44	149.78	52.18	511.89	74.24
Junc N37	97.60	0.19	150.29	52.69	516.89	74.97
Junc N38	97.35	0.36	150.98	53.63	526.11	76.31
Junc N39	97.05	0.22	150.36	53.31	522.97	75.85
Junc N40	97.00	0.16	150.21	53.21	521.99	75.71
Junc N41	96.95	0.08	150.21	53.26	522.48	75.78
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

12.1.5	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	10 29.111000	LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.056
Pipe P3	10.00	200	110	-178.39	5.68	184.33	0.022
Pipe P4	80.00	200	110	47.58	1.51	15.95	0.027
Pipe P5	80.00	200	110	47.31	1.51	15.78	0.027
Pipe P6	15.00	200	110	130.43	4.15	103.21	0.024
Pipe P7	64.00	200	110	130.35	4.15	103.09	0.024
Pipe P8	58.00	200	110	47.27	1.50	15.76	0.027
Pipe P9	75.00	200	110	46.75	1.49	15.44	0.027
Pipe P10	39.00	200	110	82.74	2.63	44.43	0.025
Pipe P11	100.00	200	110	82.36	2.62	44.06	0.025
Pipe P12	62.00	200	110	82.11	2.61	43.81	0.025
Pipe P13	62.00	200	110	13.95	0.44	1.64	0.033
Pipe P14	60.00	200	110	13.54	0.43	1.56	0.033
Pipe P15	69.00	200	110	13.05	0.42	1.45	0.033
Pipe P16	45.00	200	110	68.05	2.17	30.94	0.026
Pipe P17	100.00	200	110	67.86	2.16	30.78	0.026
Pipe P18	70.00	200	110	67.48	2.15	30.46	0.026
Pipe P19	17.00	200	110	83.09	2.64	44.78	0.025
Pipe P20	106.00	200	110	82.79	2.64	44.48	0.025
Pipe P21	39.00	200	110	82.79	2.64	44.48	0.025
Pipe P22	82.00	200	110	45.74	1.46	14.82	0.027
Pipe P23	51.00	200	110	36.83	1.17	9.92	0.028
Pipe P24	106.00	200	110	36.64	1.17	9.83	0.028
Pipe P25	51.00	200	110	-58.69	1.87	23.52	0.026
Pipe P26	50.00	200	110	49.78	1.58	17.34	0.027
Pipe P27	39.00	200	110	-108.74	3.46	73.70	0.024
Pipe P28	41.00	200	110	-138.90	4.42	115.97	0.023
Pipe P29	34.00	200	110	15.72	0.50	2.05	0.032
Pipe P30	44.00	200	110	-154.81	4.93	141.76	0.023
Pipe P31	12.00	200	110	-86.10	2.74	.47.83	0.025
Pipe P32	110.00	200	110	-56.01	1.78	21.57	0.027
Pipe P33	110.00	200	110	-56.58	1.80	21.98	0.027
Pipe P34	102.00	200	110	-57.21	1.82	22.43	0.027
Pipe P35	78.00	200	110	116.24	3.70	83.39	0.024
Pipe P36	12.00	200	110	-126.92	4.04	98.13	0.024
Pipe P37	66.00	200	110	-127.19	4.05	98.52	0.024
Pipe P38	32.00	200	110	-52.39	1.67	19.06	0.027
Pipe P39	12.00	200	110	-52.50	1.67	19.13	0.027
Pipe P40	67.00	200	110	-27.74	0.88	5.87	0.030
Pipe P41	95.00	200	110	-28.34	0.90	6.11	0.029
Pipe P42	13.00	200	110	11.58	0.37	1.16	0.034
Pipe P43	110.00	200	110	11.14	0.35	1.08	0.034
Pipe P44	43.00	200	110	-39.97	1.27	11.55	0.028
Pipe P45	59.00	200	110	-40.16	1.28	11.65	0.028
Pipe P46 Pipe P47	50.00	200	110	-82.78	2.63	44.47	0.025
	48.00	200	110	42.26	1.35	12.80	0.028
Pipe P48	12.00	200	110	42.04	1.34	12.68	0.028
Pipe P49	44.00	200	110	41.80	1.33	12.54	0.028
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-130.43	153.20	0.00	0.00	0.00
Resvr R2	153.20	-63.74	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	152.17	54.78	537.39	77.94
Junc N2	97.70	0.19	152.17	54.47	534.35	77.50
Junc N3	97.71	0.14	152.17	54.46	534.25	77.49
Junc N4	97.40	0.27	151.33	53.93	529.05	76.73
Junc N5	97.36	0.08	151.35	53.99	529.64	76.82
Junc N6	97.25	0.52	146.94	49.69	487.46	70.70
Junc N7	97.45	0.33	147.88	50.43	494.72	71.75
Junc N8	97.47	0.38	147.35	49.88	489.32	70.97
Junc N9	97.60	0.25	146.01	48.41	474.90	68.88
Junc N10	97.80	0.11	145.18	47.38	464.80	67.41
Junc N11	97.65	0.41	144.92	47.27	463.72	67.26
Junc N12	97.55	0.49	144.66	47.11	462.15	67.03
Junc N13	97.85	0.19	145.05	47.20	463.03	67.16
Junc N14	97.55	0.38	144.75	47.20	463.03	67.16
Junc N15	97.50	0.11	144.54	47.04	461.46	66.93
Junc N16	97.40	0.30	144.54	47.14	462.44	67.07
Junc N17	97.75	0.00	144.51	46.76	458.72	66.53
Junc N18	97.80	0.22	144.51	46.71	458.23	66.46
Junc N19	97.90	0.19	144.50	46.60	457.15	66.30
Junc N20	97.55	0.33	144.50	46.95	460.58	66.80
Junc N21	97.55	0.27	144.50	46.95	460.58	66.80
Junc N22	97.70	0.52	144.50	46.80	459.11	66.59
Junc N23	97.50	0.16	144.49	46.99	460.97	66.86
Junc N24	97.45	0.19	144.49	47.04	461.46	66.93
Junc N25	97.40	0.36	144.39	46.99	460.97	. 66.86
Junc N26	97.35	0.14	144.57	47.22	463.23	67.19
Junc N27	97.60	95.57	139.27	41.67	408.78	59.29
Junc N28	97.40	88.63	139.38	41.98	411.82	59.73
Junc N29	97.30	0.22	145.74	48.44	475.20	68.92
Junc N30	97.20	0.27	146.47	49.27	483.34	70.10
Junc N31	97.20	0.25	150.51	53.31	522.97	75.85
Junc N32	97.00	0.11	150.88	53.88	528.56	76.66
Junc N33	97.15	0.44	151.02	53.87	528.46	76.65
Junc N34	97.35	0.60	150.75	53.40	523.85	75.98
Junc N35	97.65	0.05	151.10	53.45	524.34	76.05
Junc N36	97.60	0.44	151.09	53.49	524.74	76.11
Junc N37	97.60	0.19	151.41	53.81	527.88	76.56
Junc N38	97.35	0.36	151.83	54.48	534.45	77.52
Junc N39	97.05	0.22	151.45	54.40	533.66	77.40
Junc N40	97.00	0.16	151.36	54.36	533.27	77.34
Junc N41	96.95	0.08	151.35	54.40	533.66	77.40
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

Link ID	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	3	LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.063
Pipe P3	10.00	200	110	-130.43	4.15	103.22	0.024
Pipe P4	80.00	200	110	37.81	1.20	10.42	0.028
Pipe P5	80.00	200	110	37.54	1.19	10.28	0.028
Pipe P6	15.00	200	110	92.24	2.94	54.34	0.025
Pipe P7	64.00	200	110	92.16	2.93	54.25	0.025
Pipe P8	58.00	200	110	48.10	1.53	16.27	0.027
Pipe P9	75.00	200	110	47.58	1.51	15.95	0.027
Pipe P10	39.00	200	110	43.73	1.39	13.64	0.028
Pipe P11	100.00	200	110	43.35	1.38	13.42	0.028
Pipe P12	62.00	200	110	43.10	1.37	13.28	0.028
Pipe P13	62.00	200	110	23.49	0.75	4.31	0.030
Pipe P14	60.00	200	110	23.08	0.73	4.18	0.030
Pipe P15	69.00	200	110	22.59	0.72	4.01	0.030
Pipe P16	45.00	200	110	19.50	0.62	3.06	0.031
Pipe P17	100.00	200	110	19.31	0.61	3.00	0.031
Pipe P18	70.00	200	110	18.93	0.60	2.89	0.031
Pipe P19	17.00	200	110	5.11	0.16	0.26	0.038
Pipe P20	106.00	200	110	4.81	0.15	0.23	0.038
Pipe P21	39.00	200	110	4.81	0.15	0.23	0.038
Pipe P22	82.00	200	110	2.54	0.08	0.07	0.042
Pipe P23	51.00	200	110	2.05	0.07	0.05	0.044
Pipe P24	106.00	200	110	1.86	0.06	0.04	0.044
Pipe P25	51.00	200	110	1.53	0.05	0.03	0.045
Pipe P26	50.00	200	110	-2.02	0.06	0.05	0.044
Pipe P27	39.00	200	110	3.28	0.10	0.11	0.041
Pipe P28	41.00	200	110	3.12	0.10	0.10	0.041
Pipe P29	34.00	200	110	-13.71	0.44	1.59	0.033
Pipe P30	44.00	200	110	16.64	0.53	2.28	0.032
Pipe P31	12.00	200	110	-45.96	1.46	14.96	0.027
Pipe P32	110.00	200	110	84.84	2.70	46.54	0.025
Pipe P33	110.00	200	110	-10.73	0.34	1.01	0.034
Pipe P34	102.00	200	110	-99.36	3.16	62.36	0.024
Pipe P35	78.00	200	110	46.10	1.47	15.04	0.027
Pipe P36	12.00	200	110	-98.11	3.12	60.91	0.025
Pipe P37	66.00	200	110	-98.38	3.13	61.22	0.025
Pipe P38	32.00	200	110	-39.99	1.27	11.56	0.028
Pipe P39	12.00	200	110	-40.10	1.28	11.62	0.028
Pipe P40	67.00	200	110	-21.10	0.67	3.54	0.031
Pipe P41	95.00	200	110	-21.70	0.69	3.73	0.031
Pipe P42	13.00	200	110	8.94	0.28	0.72	0.035
Pipe P43	110.00	200	110	8.50	0.27	0.66	0.035
Pipe P44	43.00	200	110	-30.69	0.98	7.08	0.029
Pipe P45	59.00	200	110	-30.88	0.98	7.16	0.029
Pipe P46	50.00	200	110	-63.74	2.03	27.40	0.026
Pipe P47	48.00	200	110	32.50	1.03	7.87	0.029
Pipe P48	12.00	200	110	32.28	1.03	7.77	0.029
Pipe P49	44.00	200	110	32.04	1.02	7.67	0.029
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-129.94	153.20	0.00	0.00	0.00
Resvr R2	153.20	-64.23	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	152.17	54.78		77.94
Junc N2	97.70	0.19	152.17	54.47	534.35	77.50
Junc N3	97.71	0.14	152.18	54.47	534.35	77.50
Junc N4	97.40	0.27	151.32	53.92	528.96	76.72
Junc N5	97.36	0.08	151.38	54.02		76.86
Junc N6	97.25	44.52	146.52	49.27	483.34	70.10
Junc N7	97.45	0.33	147.98	50.53		71.90
Junc N8	97.47	0.38	147.72	50.25		71.50
Junc N9	97.60	0.25	147.06	49.46	485.20	70.37
Junc N10	97.80	0.11	146.66	48.86	479.32	69.52
Junc N11	97.65	0.41	146.53	48.88	479.51	69.55
Junc N12	97.55	0.49	146.41	48.86	479.32	69.52
Junc N13	97.85	0.19	146.59	48.74	478.14	69.35
Junc N14	97.55	0.38	146.44	48.89	479.61	69.56
Junc N15	97.50	0.11	146.35	48.85	479.22	69.50
Junc N16	97.40	0.30	146.34	48.94	480.10	69.63
Junc N17	97.75	0.00	146.33	48.58	476.57	69.12
Junc N18	97.80	0.22	146.33	48.53	476.08	69.05
Junc N19	97.90	0.19	146.33	48.43	475.10	68.91
Junc N20	97.55	0.33	146.33	48.78	478.53	69.41
Junc N21	97.55	0.27	146.32	48.77	478.43	69.39
Junc N22	97.70	0.52	146.33	48.63	477.06	69.19
Junc N23	97.50	0.16	146.32	48.82	478.92	69.46
Junc N24	97.45	0.19	146.32	48.87	479.41	69.53
Junc. N25	97.40	0.36	146.28	48.88	479.51	69.55
Junc N26	97.35	44.14	146.20	48.85	479.22	69.50
Junc N27	97.60	0.57	146.30	48.70	477.75	69.29
Junc N28	97.40	0.63	146.32	48.92	479.91	69.60
Junc N29	97.30	0.22	146.35	49.05	481.18	69.79
Junc N30	97.20	95.27	146.35	49.15	482.16	69.93
Junc-N31	97.20	0.25	150.47	53.27	522.58	75.79
Junc N32	97.00	0.11	150.85	53.85	528.27	76.62
Junc N33	97.15	0.44	150.99	53.84	528.17	76.60
Junc N34	97.35	0.60	150.71	53.36	523.46	75.92
Junc N35	97.65	0.05	151.07	53.42	524.05	76.01
Junc N36	97.60	0.44	151.06	53.46	524.44	76.06
Junc N37	97.60	0.19	151.38	53.78	527.58	76.52
Junc N38	97.35	0.36	151.81	54.46	534.25	77.49
Junc N39	97.05	0.22	151.43	54.38	533.47	77.37
Junc N40	97.00	0.16	151.33	54.33	532.98	77.30
Junc N41	96.95	0.08	151.33	54.38	533.47	77.37
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

Link ID	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
	m	mm		LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.056
Pipe P3	10.00	200	110	-129.94	4.14	102.50	0.024
Pipe P4	80.00	200	110	38.37	1.22	10.71	0.028
Pipe P5	80.00	200	110	38.10	1.21	10.57	0.028
Pipe P6	15.00	200	110	91.19	2.90	53.20	0.025
Pipe P7	64.00	200	110	91.11	2.90	53.11	0.025
Pipe P8	58.00	200	110	60.92	1.94	25.20	0.026
Pipe P9	75.00	200	110	16.40	0.52	2.22	0.032
Pipe P10	39.00	200	110	29.87	0.95	6.73	0.029
Pipe P11	100.00	200	110	29.49	0.94	6.57	0.029
Pipe P12	62.00	200	110	29.24	0.93	6.47	0.029
Pipe P13	62.00	200	110	15.85	0.50	2.08	0.032
Pipe P14	60.00	200	110	15.44	0.49	1.98	0.032
Pipe P15	69.00	200	110	14.95	0.48	1.87	0.032
Pipe P16	45.00	200	110	13.27	0.42	1.50	0.033
Pipe P17	100.00	200	110	13.08	0.42	1.46	0.033
Pipe P18	70.00	200	110	12.70	0.40	1.38	0.033
Pipe P19	17.00	200	110	3.59	0.11	0.13	0.040
Pipe P20	106.00	200	110	3.29	0.10	0.11	0.041
Pipe P21	39.00	200	110	3.29	0.10	0.11	0.041
Pipe P22	82.00	200	110	1.68	0.05	0.03	0.045
Pipe P23	51.00	200	110	1.39	0.04	0.02	0.046
Pipe P24	106.00	200	110	1.20	0.04	0.02	0.047
Pipe P25	51.00	200	110	0.87	0.03	0.01	0.050
Pipe P26	50.00	200	110	-1.16	0.04	0.02	0.047
Pipe P27	39.00	200	110	1.76	0.06	0.04	0.044
Pipe P28	41.00	200	110	1.60	0.05	0.03	0.045
Pipe P29	34.00	200	110	-9.00	0.29	0.73	0.035
Pipe P30	44.00	200	110	10.41	0.33	0.96	0.034
Pipe P31	12.00	200	110	29.10	0.93	6.42	0.029
Pipe P32	110.00	200	110	-4.10	0.13	0.17	0.039
Pipe P33	110.00	200	110	-4.67	0.15	0.22	0.038
Pipe P34	102.00	200	110	-5.30	0.17	0.27	0.038
Pipe P35	78.00	200	110	15.04	0.48	1.89	0.032
Pipe P36	12.00	200	110	-4.16	0.13	0.18	0.039
Pipe P37	66.00	200	110	-99.43	3.16	62.44	0.024
Pipe P38	32.00	200	110	-40.31	1.28	11.73	0.028
Pipe P39	12.00	200	110	-40.42	1.29	11.79	0.028
Pipe P40	67.00	200	110	-21.27	0.68	3.59	0.031
Pipe P41	95.00	200	110	-21.87	0.70	3.78	0.031
Pipe P42	13.00	200	110	9.01	0.29	0.73	0.035
Pipe P43	110.00	200	110	8.57	0.27	0.67	0.035
Pipe P44	43.00	200	110	-30.93	0.98	7.18	0.029
Pipe P45	59.00	200	110	-31.12	0.99	7.26	0.029
Pipe P46	50.00	200	110	-64.23	2.04	27.80	0.026
Pipe P47	48.00	200	110	32.75	1.04	7.98	0.029
Pipe P48	12.00	200	110	32.53	1.04	7.89	0.029
Pipe P49	44.00	200	110	32.29	1.03	7.78	0.029
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

N. I. ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-147.69	153.20	0.00	0.00	0.00
Resvr R2	153.20	-146.48	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	151.90	54.51	534.74	77.56
Junc N2	97.70	0.19	151.90	54.20	531.70	77.12
Junc N3	97.71	0.14	151.90	54.19	531.60	77.10
Junc N4	97.40	0.27	148.76	51.36	503.84	73.08
Junc N5	97.36	0.08	151.41	54.05	530.23	76.90
Junc N6	97.25	0.52	148.61	51.36	503.84	73.08
Junc N7	97.45	0.33	149.34	51.89	509.04	73.83
Junc N8	97.47	0.38	149.11	51.64	506.59	73.47
Junc N9	97.60	0.25	148.53	50.93	499.62	72.46
Junc N10	97.80	0.11	148.18	50.38	494.23	71.68
Junc N11	97.65	0.41	148.07	50.42	494.62	71.74
Junc N12	97.55	0.49	147.97	50.42	494.62	71.74
Junc N13	97.85	0.19	148.12	50.27	493.15	71.53
Junc N14	97.55	0.38	148.00	50.45	494.91	71.78
Junc N15	97.50	0.11	147.91	50.41	494.52	71.72
Junc N16	97.40	0.30	147.91	50.51	495.50	71.87
Junc N17	97.75	0.00	147.90	50.15	491.97	71.35
Junc N18	97.80	0.22	147.90	50.10	491.48	71.28
Junc N19	97.90	0.19	147.90	50.00	490.50	71.14
Junc N20	97.55	0.33	147.89	50.34	493.84	71.62
Junc N21	97.55	0.27	147.89	50.34	493.84	71.62
Junc N22	97.70	0.52	147.90	50.20	492.46	71.43
Junc N23	97.50	0.16	147.89	50.39	494.33	71.70
Junc N24	97.45	0.19	147.89	50.44	494.82	71.77
Junc N25	97.40	0.36	147.86	50.46	495.01	71.80
Junc N26	97.35	0.14	147.83	50.48	495.21	71.82
Junc N27	97.60	0.57	147.79	50.19	492.36	71.41
Junc N28	97.40	0.63	147.74	50.34	493.84	71.62
Junc N29	97.30	0.22	147.69	50.39	494.33	71.70
Junc N30	97.20	0.27	147.37	50.17	492.17	71.38
Junc N31	97.20	0.25	145.64	48.44	475.20	68.92
Junc N32	97.00	46.61	144.98	47.98	470.68	68.27
Junc N33	97.15	0.44	144.98	47.83	469.21	68.05
Junc N34	97.35	95.60	142.54	45.19	443.31	64.30
Junc N35	97.65	0.05	142.64	44.99	441.35	64.01
Junc N36	97.60	95.44	142.50	44.90	440.47	63.88
Junc N37	97.60	46.69	143.36	45.76	448.91	65.11
Junc N38	97.35	0.36	146.80	49.45	485.10	70.36
Junc N39	97.05	0.22	145.95	48.90	479.71	69.58
Junc N40	97.00	0.16	145.74	48.74	478.14	69.35
Junc N41	96.95	0.08	145.74	48.79	478.63	69.42
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
Junc N44	97.49	0.00	153.20	55.71	546.52	79.27

	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	Rougilless	LPS	m/s	m/km	Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.056
Pipe P3	10.00	200	110	-147.69	4.70	129.92	0.023
Pipe P4	80.00	200	110	77.39	2.46	39.25	0.025
Pipe P5	80.00	200	110	77.12	2.45	39.00	0.025
Pipe P6	15.00	200	110	69.92	2.23	32.53	0.026
Pipe P7	64.00	200	110	69.84	2.22	32.46	0.026
Pipe P8	58.00	200	110	41.75	1.33	12.52	0.028
Pipe P9	75.00	200	110	41.23	1.31	12.23	0.028
Pipe P10	39.00	200	110	27.76	0.88	5.88	0.028
Pipe P11	100.00	200	110	27.38	0.87	5.73	0.030
Pipe P12	62.00	200	110	27.13	0.86	5.64	0.030
Pipe P13	62.00	200	110	14.69	0.80	1.81	0.030
Pipe P14	60.00	200	110	14.03	0.47	1.72	0.032
Pipe P15	69.00	200	110	13.79	0.43	1.61	0.033
Pipe P16	45.00	200	110	12.33	0.39	1.31	0.033
Pipe P17	100.00	200	110	12.33	0.39	1.27	0.033
Pipe P18	70.00	200	110	11.76	0.39	1.20	0.033
Pipe P19	17.00	200	110	3.36	0.37	0.12	0.034
Pipe P20	106.00	200	110	3.06	0.10	0.12	
Pipe P21	39.00	200	110	3.06	0.10	0.10	0.041 0.041
Pipe P22	82.00	200	110	1.55	0.10	0.10	0.041
Pipe P23	51.00	200	110	1.29	0.03	0.03	
Pipe P24	106.00	200	110	1.10	0.04	0.02	0.047 0.047
Pipe P25	51.00	200	110	0.77	0.03	0.01	
Pipe P26	50.00	200	110	-1.03	0.02	0.01	0.050
Pipe P27	39.00	200	110	1.53	0.05	0.01	0.048 0.045
Pipe P28	41.00	200	110	1.37	0.03	0.03	0.045
Pipe P29	34.00	200	110	-8.29	0.04	0.63	0.046
Pipe P30	44.00	200	110	9.47	0.20	0.80	0.035
Pipe P31	. 12.00	200	110	14.91	0.30	1.86	0.035
Pipe P32	110.00	200	110	7.99	0.47	0.59	
Pipe P33	110.00	200	110	7.42	0.23	0.59	0.036
Pipe P34	102.00	200	110	6.79	0.24	0.43	0.036
Pipe P35	78.00	200	110	-14.77	0.22	1.83	0.036
Pipe P36	12.00	200	110	62.57	1.99	26.48	0.032
Pipe P37	66.00	200	110	62.30	1.98	26.27	0.026
Pipe P38	32.00	200	110	54.53	1.74	20.53	0.026
Pipe P39	12.00	200	110	7.92	0.25		0.027
Pipe P40	67.00	200	110	84.64	2.69	0.58	0.036
Pipe P41	95.00	200	110	-10.96		46.34	0.025
Pipe P42	13.00	200	110	38.10	0.35 1.21	1.05	0.034
Pipe P43	110.00	200	110	-57.34		10.57	0.028
Pipe P44	43.00	200	110	-49.11	1.83	22.53	0.027
Pipe P45	59.00	200			1.56	16.91	0.027
Pipe P46	50.00	200	110	-95.80	3.05	58.28	0.025
Pipe P47	48.00	200	110	-146.48	4.66	127.96	0.023
Pipe P48	12.00	200	110	50.32	1.60	17.69	0.027
Pipe P48	44.00		110	50.10	1.59	17.55	0.027
	36.00	200	110	49.86	1.59	17.39	0.027
Pipe P50		50	100	0.08	0.04	0.12	0.070
Pipe P51	9.00	300	120	0.00	0.00	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00	0.00	0.00	0.000

Node ID	Elevation	Demand	Total Head	Pressure	Pressure	Pressure
	m	LPS	m	m	kPa	psi
Resvr R1	153.20	-140.99	153.20	0.00	0.00	0.00
Resvr R2	153.20	-153.18	153.20	0.00	0.00	0.00
Junc N1	97.39	0.05	152.01	54.62	535.82	77.71
Junc N2	97.70	0.19	152.01	54.31	532.78	77.27
Junc N3	97.71	0.14	152.01	54.30	532.68	77.26
Junc N4	97.40	0.27	149.13	51.73	507.47	73.60
Junc N5	97.36	0.08	151.56	54.20	531.70	77.12
Junc N6	97.25	0.52	148.98	51.73	507.47	73.60
Junc N7	97.45	0.33	149.65	52.20	512.08	74.27
Junc N8	97.47	0.38	149.44	51.97	509.83	73.94
Junc N9	97.60	0.25	148.91	51.31	503.35	73.00
Junc N10	97.80	0.11	148.59	50.79	498.25	72.27
Junc N11	97.65	0.41	148.49	50.84	498.74	72.34
Junc N12	97.55	0.49	148.39	50.84	498.74	72.34
Junc N13	97.85	0.19	148.54	50.69	497.27	72.12
Junc N14	97.55	0.38	148.42	50.87	499.03	72.38
Junc N15	97.50	0.11	148.34	50.84	498.74	72.34
Junc N16	97.40	0.30	148.34	50.94	499.72	72.48
Junc N17	97.75	0.00	148.33	50.58	496.19	71.97
Junc N18	97.80	0.22	148.33	50.53	495.70	71.90
Junc N19	97.90	0.19	148.33	50.43	494.72	71.75
Junc N20	97.55	0.33	148.33	50.78	498.15	72.25
Junc N21	97.55	0.27	148.32	50.77	498.05	72.24
Junc N22	97.70	0.52	148.33	50.63	496.68	72.04
Junc N23	97.50	0.16	148.32	50.82	498.54	72.31
Junc N24	97.45	0.19	148.32	50.87	499.03	72.38
Junc N25	97.40	0.36	148.29	50.89	499.23	72.41
Junc N26	97.35	0.14	148.27	50.92	499.53	72.45
Junc N27	97.60	0.57	148.23	50.63	496.68	72.04
Junc N28	97.40	0.63	148.18	50.78	498.15	72.25
Junc N29	97.30	0.22	148.14	50.84	498.74	72.34
Junc N30	97.20	0.27	147.85	50.65	496.88	72.07
Junc N31	97.20	0.25	146.28	49.08	481.47	69.83
Junc N32	97.00	46.61	144.94	47.94	470.29	68.21
Junc N33	97.15	0.44	144.85	47.70	467.94	67.87
Junc N34	97.35	0.60	144.99	47.64	467.35	67.78
Junc N35	97.65	0.05	143.21	45.56	446.94	64.82
Junc N36	97.60	95.44	143.01	45.41	445.47	64.61
Junc N37	97.60	95.19	143.19	45.59	447.24	64.87
Junc N38	97.35	0.36	146.25	48.90	479.71	69.58
Junc N39	97.05	46.72	144.96	47.91	470.00	68.17
Junc N40	97.00	0.16	144.94	47.94	470.29	68.21
Junc N41	96.95	0.08	144.93	47.98	470.68	68.27
Junc N42	96.66	0.00	153.20	56.54	554.66	80.45
Junc N43	96.94	0.00	153.20	56.26	551.91	80.05
June N44	97.49	0.00	153.20	55.71	546.52	79.27
	J110	0.00	100.20	55.71	0-10.02	13.21

	Longth	Diameter	Daughnasa	Flour	Malas!4.	Handless	Faladian
Link ID	Length m	Diameter mm	Roughness	Flow LPS	Velocity m/s	Headloss m/km	Friction Factor
Pipe P1	32.00	50	100	-0.05	0.03	0.05	0.075
Pipe P2	89.00	200	110	-0.24	0.01	0.00	0.056
Pipe P3	10.00	200	110	-140.99	4.49	119.22	0.023
Pipe P4	80.00	200	110	73.79	2.35	35.94	0.026
Pipe P5	80.00	200	110	73.52	2.34	35.70	0.026
Pipe P6	15.00	200	110	66.82	2.13	29.91	0.026
Pipe P7	64.00	200	110	66.74	2.12	29.84	0.026
Pipe P8	58.00	200	110	39.85	1.27	11.48	0.028
Pipe P9	75.00	200	110	39.33	1.25	11.21	0.028
Pipe P10	39.00	200	110	26.55	0.85	5.41	0.030
Pipe P11	100.00	200	110	26.17	0.83	5.27	0.030
Pipe P12	62.00	200	110	25.92	0.83	5.18	0.030
Pipe P13	62.00	200	110	14.03	0.45	1.66	0.033
Pipe P14	60.00	200	110	13.62	0.43	1.57	0.033
Pipe P15	69.00	200	110	13.13	0.42	1.47	0.033
Pipe P16	45.00	200	110	11.79	0.38	1.20	0.034
Pipe P17	100.00	200	110	11.60	0.37	1.17	0.034
Pipe P18	70.00	200	110	11.22	0.36	1.10	0.034
Pipe P19	17.00	200	110	3.23	0.10	0.11	0.041
Pipe P20	106.00	200	110	2.93	0.09	0.09	0.041
Pipe P21	39.00	200	110	2.93	0.09	0.09	0.041
Pipe P22	82.00	200	110	1.48	0.05	0.03	0.046
Pipe P23	51.00	200	110	1.23	0.04	0.02	0.047
Pipe P24	106.00	200	110	1.04	0.03	0.01	0.048
Pipe P25	51.00	200	110	0.71	0.02	0.01	0.051
Pipe P26	50.00	200	110	-0.96	0.03	0.01	0.049
Pipe P27	39.00	200	110	1.40	0.04	0.02	0.046
Pipe P28	41.00	200	110	1.24	0.04	0.02	0.047
Pipe P29	34.00	200	110	-7.88	0.25	0.57	0.036
Pipe P30	44.00	200	110	8.93	0.28	0.72	0.035
Pipe P31	12.00	200	110	14.11	0.45	1.68	0.033
Pipe P32	110.00	200	110	7.59	0.24	0.53	0.036
Pipe P33	110.00	200	110	7.02	0.22	0.46	0.036
Pipe P34	102.00	200	110	6.39	0.20	0.39	0.037
Pipe P35	78.00	200	110	-13.97	0.44	1.65	0.033
Pipe P36	12.00	200	110	59.47	1.89	24.10	0.026
Pipe P37	66.00	200	110	59.20	1.88	23.90	0.026
Pipe P38	32.00	200	110	79.89	2.54	41.63	0.025
Pipe P39	12.00	200	110	33.28	1.06	8.22	0.029
Pipe P40	67.00	200	110	52.58	1.67	19.19	0.027
Pipe P41	95.00	200	110	51.98	1.65	18.79	0.027
Pipe P42	13.00	200	110	46.62	1.48	15.36	0.027
Pipe P43	110.00	200	110	-48.82	1.55	16.72	0.027
Pipe P44	43.00	200	110	5.31	0.17	0.27	0.027
Pipe P45	59.00	200	110	-89.88	2.86	51.79	0.025
Pipe P46	50.00	200	110	-153.18	4.88	139.01	0.023
Pipe P47	48.00	200	110	62.94	2.00	26.77	0.025
Pipe P48	12.00	200	110	16.22	0.52	2.17	0.028
Pipe P49	44.00	200	110	15.98	0.52	2.17	0.032
Pipe P50	36.00	50	100	0.08	0.04	0.12	0.032
Pipe P51	9.00	300	120	0.00	0.04	0.00	0.000
Pipe P52	99.00	300	120	0.00	0.00	0.00	0.000
Pipe P53	10.00	200	110	0.00			
i ipe i oo	10.00	200	110	0.00	0.00	0.00	0.000

Appendix D

STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

														-	WCE OF	The state of the s		Er	ngineers	, Planners	& Lands	cape Are	cnitects
	LOCATION			ARE	A (ha)					FLO	W			TOTAL FLOW				SE	WER DA	ATA			
		From	То	Area	C	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity	Velocity	Flow	Ratio
Street	Catchment ID													Flow, Q (L/s)								Time	
		AREA	AREA	(ha)					Concentration		5 Year (mm/nr)	10 Year (mm/hr)	(L/s)	(= 0)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q fu
04	4.4		AAD	0.22	0.65		0.398	0.398	10.00	76.81			31	24	0.201	375	DVC	0.20	1157	00.4	0.06	2 22	240/
Street 1	1A	A1A	A1B	-		0.00	0.000	0.000	10.00					31	0.381	3/5	PVC	0.29	115.7	98.4	0.86	2.23	31%
				0.24	0.65		0.434	0.831	12.23	69.17			57					+					+
Street 1	1B	A1B	A3	0.24	0.00	0.00	0.000	0.000	12.23	00.17			01	57	0.457	450	Conc	0.25	46.4	148.6	0.91	0.85	39%
						0.00	0.000	0.000	12.23														
					1 1				13.09											1			100
				0.29	0.65	0.19	0.524	0.524	10.00	76.81			40										
Street 1 / 2	2A	A2A	A2B			0.00	0.000	0.000	10.00					40	0.381	375	PVC	0.28	69.1	96.7	0.85	1.36	42%
					4 - 4	0.00	0.000	0.000	10.00														
	27	400		0.39	0.65		0.705	1.229	11.36	71.96			88	00	0.457	450	0	0.00	00.4	440.5	0.07	4.07	000/
Street 2	2B	A2B	. A3		-	0.00	0.000	0.000	11.36 11.36		.=			88	0.457	450	Conc	0.23	66.1	142.5	0.87	1.27	62%
						0.00	0.000	0.000	12.63	-		G-1			-			+					+
				0.50	0.65	0.20	1.048	3.108	13.09	66.68			207		Parameter Care								
Street 1	3	A3	A6	0.58		0.00	0.000	0.000	13.09	00.00			207	207	0.686	675	Conc	0.15	83.8	339.4	0.92	1.52	61%
Street	, and a	AU	7.0			0.00	0.000	0.000	13.09					207	0.000	0,0	00110	0.10	00.0	000.1	0.02	1.02	0170
						0.00	0.000	0.000	14.61														
				0.37	0.65	0.24	0.669	0.669	10.00	76.81			51										
Street 8	4A	A4A	A4B	0.01		0.00	0.000	0.000	10.00					51	0.305	300	PVC	0.38	34.2	62.1	0.85	0.67	83%
						0.00	0.000	0.000	10.00														
				0.49	0.45		0.613	1.282	10.67	74.33			95	0.5	0.500								100/
Street 8	4B	A4B	A5B			0.00	0.000	0.000	10.67					95	0.533	525	Conc	0.20	93.8	200.5	0.90	1.74	48%
		ļ		-		0.00	0.000	0.000	10.67 12.41									+					+
				0.00	0.05	0.04	0.500	0.500		70.04			40										
Street 1	5A	A5A	A5B	0.33	0.65	0.21	0.596	0.596 0.000	10.00 10.00	76.81			46	46	0.381	375	PVC	0.28	88.6	96.7	0.85	1.74	47%
Street	JA	AOA	ASB			0.00	0.000	0.000	10.00						0.001	0,0	' ' '	0.20	00.0	00.7	0.00	1.2-1	1770
						0.00	0.000	0.000	11.74					4.50									
				0.11	0.65	0.07	0.199	2.077	12.41	68.64			143										
Street 1	5B	A5B	A6	J.11	0.00	0.00	0.000	0.000	12.41	55.01			. ,,,	143	0.610	600	Conc	0.21	38.0	293.4	1.01	0.63	49%
100-300-300-00-700						0.00	0.000	0.000	12.41														
									13.04														
				0.13	0.65	0.08	0.235	5.420	14.61	62.71			340										1
Street 1	6	A6	A10			0.00	0.000	0.000	14.61					340	1.219	1200	Conc	0.15	40.0	1,574.6	1.35	0.49	22%
						0.00	0.000	0.000	14.61														
									15.10														
				0.49	0.65		0.885		10.00	76.81			68	60	0.455	450		0.00	100 1	440 =	0.07	0 =0	4001
Street 5	7	A7	A10		+-	0.00	0.000	0.000	10.00					68	0.457	450	Conc	0.23	130.4	142.5	0.87	2.50	48%
					+-	0.00	0.000	0.000	10.00 12.50					-	-		-	+					+
									12.50												0		

	LOCATION			I ADE	- A (I - \					FLO	VAZ			TOTAL FLOW				4.1	WER DA	, Platifiers			
	LOCATION				A (ha)					FLO				TOTAL FLOW								Flour	
Chroat	Cotob mont ID	From	То	Area	C	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity	Velocity	Flow	Ratio
Street	Catchment ID	AREA	AREA	(ha)		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q full
				0.22	0.65	0.14	0.398	0.398	10.00	76.81			31										
Street 8	8A	A8A	A8B			0.00	0.000	0.000	10.00					31	0.305	300	PVC	0.38	85.2	62.1	0.85	1.67	49%
						0.00	0.000	0.000	10.00														
				0.49	0.65	0.32		1.283	11.67	70.95			91		0.455	450		0.00	040	440.5	0.07	4.00	0.407
Street 9	8B	A8B	A9			0.00	0.000	0.000	11.67					91	0.457	450	Conc	0.23	94.9	142.5	0.87	1.82	64%
			-	0.66	0.05	0.00	0.000 1.193	0.000 2.476	11.67 13.49	65.58			162			-		-					-
Street 9	9	A9	A10	0.00	0.05	0.43	0.000	0.000	13.49	05.56			102	162	0.610	600	Conc	0.16	99.1	256.1	0.88	1.88	63%
Stieets	9		710			0.00	0.000	0.000	13.49					102	0.010	000	00110	0.10	00.1	200.1	0.00	1.00	0070
						0.00	0.000	0.000	15.37														
E III				0.55	0.65	0.36	0.994	9.774	15.37	60.90			595										
Street 1	10	A10	A14	0.55	0.05	0.00	0.994	0.000	15.37	00.90			393	595	1.219	1200	Conc	0.13	82.0	1,465.9	1.26	1.09	41%
Street	10	Aio	017			0.00	0.000	0.000	15.37					1 333	1.2.10	1200		00	02.0	1,100.0		1100	
						0.00	0.000	0.000	16.46														100
				0.14	0.65	0.09	0.253	0.253	10.00	76.81			19										
Street 5	11A	A11A	A11B	0.14	0.03	0.00	0.000	0.000	10.00	70.01			10	19	0.305	300	PVC	0.38	65.9	62.1	0.85	1.29	31%
Oli CCT O		//////	/ ////		21	0.00	0.000	0.000	10.00			14											
				0.48	0.65	0.31	0.867	1.120	11.29	72.18			81										
Street 5	11B	A11B	A14			0.00	0.000	0.000	11.29					81	0.457	450	Conc	0.23	130.3	142.5	0.87	2.50	57%
						0.00	0.000	0.000	11.29										 '				
									13.79														
				0.30	0.65	0.20		0.542	10.00	76.81			42							2002	100 to 100		
Street 8	12A	A12A	A12B			0.00	0.000	0.000	10.00					42	0.305	300	PVC	0.38	89.6	62.1	0.85	1.75	67%
						0.00	0.000	0.000	10.00				07						<u> </u>				
	400	A40D	4404	0.38	0.65	0.25		1.229	11.75	70.67			87	87	0.457	450	Conc	0.22	121.2	142.5	0.87	2.33	61%
Street 8	12B	A12B	A13A			0.00	0.000	0.000	11.75 11.75					- 07	0.457	450	Conc	0.23	121.2	142.5	0.67	2.33	01%
				0.32	0.65		0.578	1.807	14.08	64.03			116						 				
Street 8	13A	A13A	A13B	0.52	0.03	0.00	0.000	0.000	14.08	04.00			110	116	0.533	525	Conc	0.20	34.3	200.5	0.90	0.64	58%
ou ou o	1071	/ / / /	/			0.00	0.000	0.000	14.08								1993024, 000			0	19900000	735 0000 000	
				0.83	0.65	0.54	1.500	3.307	14.72	62.44			206										
Street 8	13B	A13B	A14			0.00	0.000	0.000	14.72					206	0.610	600	Conc	0.16	95.3	256.1	0.88	1.81	81%
						0.00	0.000	0.000	14.72														
								7,11	16.53	/													
				0.28	0.65	0.18	0.506	14.708	16.53	58.38			859										
Street 1	14	A14	A21			0.00	0.000	0.000	16.53					859	1.219	1200	Conc	0.15	78.0	1,574.6	1.35	0.96	55%
						0.00	0.000	0.000	16.53								_				-		
									17.49														
				0.92	0.65	0.60	1.662		10.00	76.81			128										
Street 3	15	A15	A21			0.00	0.000	0.000	10.00					128	0.457	450	Conc	0.23	124.2	142.5	0.87	2.38	90%
						0.00	0.000	0.000	10.00			-		-	-		-	+					+
									12.38														

														[=====================================						, ridiffiers			
	LOCATION			ARE	A (ha)					FLO				TOTAL FLOW					WER DA			Flores	
	0 / 1 / 1/0	From	То	Area	C	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity	Velocity	Flow	Ratio
Street	Catchment ID	AREA	AREA	(ha)		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q ful
				0.15	0.65	0.10		0.271	10.00	76.81			21						7				
Overberg Way	U1	U1	A16	0.13	0.00	0.00	0.000	0.000	10.00	70.01				21	0.254	250	PVC	0.45	39.6	41.6	0.82	0.80	50%
o to Long . Lay						0.00	0.000	0.000	10.00										120 11				
				0.19	0.65	0.12		0.614	10.80	73.85			45										
Overberg Way	16	A16	A17			0.00	0.000	0.000	10.80					45	0.305	300	PVC	0.40	45.2	63.7	0.87	0.86	71%
				0.40	0.05	0.00	0.000	0.000	10.80	70.05			99				-	-					-
Overberg Wey	17	A17	A20	0.43	0.65	0.28	0.777	1.391 0.000	11.67 11.67	70.95			99	99	0.533	525	Conc	0.25	40.2	224.2	1.00	0.67	44%
Overberg Way	17	A17	A20			0.00	0.000	0.000	11.67						0.000	020		0.20	10.2		1.00	0.01	1.70
				-		0.00	0.000	0.000	12.33														
						0.00	0.000	0.000	13.69														
PRIVATE BLOCK	BLK 14	BLK 14	A18	0.63	0.83	0.52	1.454	1.454	13.69		88.04		128	128	0.533	525	Conc	0.19	11.4	195.4	0.87	0.22	65%
14*			1,0.0	0.00	0.00	0.00	0.000	0.000	13.69														
	,			0.10	0.65	0.07	0.181	0.181	13.91	64.47			12										
Overberg Way	18	A18	A20			0.00	0.000	1.454	13.91		87.26		127	139	0.610	600	Conc	0.15	43.9	247.9	0.85	0.86	56%
						0.00	0.000	0.000	13.91									\vdash		$\vdash \vdash \vdash$			-
									14.77														-
				0.22	0.65		0.398	0.398	10.00	76.81			31	04	0.054	050	DVC	0.45	70.0	44.6	0.82	1.60	73%
Street 7	19	A19	A20			0.00	0.000	0.000	10.00					31	0.254	250	PVC	0.45	79.0	41.6	0.82	1.60	13%
				-		0.00	0.000	0.000	10.00 11.60								-	\vdash					_
				4.00	0.44	0.70	0.400	4.000	THE RESIDENCE OF THE PARTY OF T	00.00			255										
Street 6	20	A20	A21	1.86	0.41	0.76	2.120 0.000	4.090 1.454	14.77 14.77	62.32	84.31		123	377	0.914	900	Conc	0.10	156.9	596.9	0.91	2.88	63%
Street 6	20	A20	721			0.00	0.000	0.000	14.77		04.01		120	1	0.011		001.10	"	100.0				
						0.00	0.000	0.000	17.65														
				0.12	0.65	0.08	0.217	20.677	17.65	56.16			1,161										
Street 1	21	A21	A23		10.00	0.00	0.000	1.454	17.65		75.88		110	1,271	1.219	1200	Conc	0.15	44.0	1,574.6	1.35	0.54	81%
						0.00	0.000	0.000	17.65														
									18.19														
				0.49	0.65	0.32		0.885	10.00	76.81			68				-1.15				0.05	0.00	
Street 4	22	A22	A23			0.00	0.000	0.000	10.00					68	0.381	375	PVC	0.28	120.0	96.7	0.85	2.36	70%
			-		-	0.00	0.000	0.000	10.00 12.36								-						-
													4.000										
24	00	400	405	0.14	0.65	0.09		21.815		55.14	74.40		1,203	1,311	1 210	1200	Conc	0.15	400	1,574.6	1.35	0.49	83%
Street 1	23	A23	A25			0.00	0.000	1.454 0.000	18.19 18.19		74.49		108	1,311	1.219	1200	COLIC	0.15	40.0	1,074.0	1.55	0.49	00%
 						0.00	0.000	0.000	18.68														1
				0.32	0.65	0.21	0.578	0.578		76.81			44										
Street 1	24	A24	A25	0.32	0.05		0.000	0.000	10.00	70.01			-1-1	44	0.305	300	PVC	0.38	41.1	62.1	0.85	0.80	71%
Olloot 1		''					0.000	0.000						1					'				
, .																							

	LOCATION			ARE	A (ha)					FLC	OW			TOTAL FLOW				SEV	WER DA	IA			
Street	Catchment ID	From	То	Area	С	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity	Velocity	Flow Time	Ratio
		AREA	AREA	(ha)		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q full
	1 = -	1 1		0.26	0.65	0.17		22.863		54.25			1,240										
Street 3	25	A25	A27			0.00	0.000	1.454 0.000	18.68 18.68		73.28		107	1,347	1.219	1200	Conc	0.15	63.6	1,574.6	1.35	0.79	86%
			-			0.00	0.000	0.000	19.47														
		A26	A27	0.26	0.17	0.470	0.470	10.00	76.81			36											
Street 3	26	10.00					36	0.305	300	PVC	0.38	60.5	62.1	0.85	1.18	58%							
					0.00	0.000	0.000	10.00 11.18															
				0.361	23.694	19.47	52.90			1,253													
Block 2	19.47		71.44		104	1,357	1.219	1200	Conc	0.25	38.3	2,032.8	1.74	0.37	67%								
	Block 2 A27 A27 EX Stub 0.00 0.000 1.454 19.47 0.00 0.000 0.000 0.000 19.47 19.84 19.84																		\longrightarrow	\vdash			-
	19.84																						
				0 1	Language Control		1																
Q = 2.78 AIC, where						Consul	tant:		-					Novatecl	n			-					
Q = Peak Flow in Litre	s per Second (L/s)					Date);		1				Janu	uary 11, 2	2019								
A = Area in hectares (I	ha)						Design	Ву:						Tre	evor McK	(ay							
I = Rainfall Intensity (m	nm/hr), 5 year storm						Clier	nt:				Dwg	. Referenc	ce:			Checke	d By:					
C = Runoff Coefficient											Claridge I	Homes				11	7153-STM	1			DD	В	

Legend:

* Areas/Runoff Coefficients/Time of Concentration based on detailed storm design sheet and drawing (114013-STM)

10.00 Storm sewers designed to the 2 year event (without ponding) for local roads
10.00 Storm sewers designed to the 5 year event (without ponding) for collector roads
10.00 Storm sewers designed to the 10 year event (without ponding) for arterial roads

FIGURE 1

BRIDLEWOOD TRAILS SITE PLAN

103031 N.T.S. JUNE 2006

STORM SEWER DESIGN SHEET

DATE: 26-Sep-05

REV.: 27-Feb-06

PROJECT #: 103031-1 DESIGNED BY: CAH CHECKED BY: MSP PROJECT: BRIDLEWOOD TRAILS
DEVELOPER: CLAIRIDGE HOMES

	LOCATION		ARE	A (ha)	INDIV	ACCUM	TIME OF	RAINFALL	PEAK FLOW				PROPOSI	ED SEWER				
STREET	FROM	то	R=	R=	2.78 AR	2.78 AR	CONC	INTENSITY	Q	TYPE OF	PIPE SIZE	PIPE ID	GRADE	LENGTH	CAPACITY	FULL FLOW	TIME OF FLOW	
	M.H.	M.H.	0.60	0.65			(min)	(mm/hr)	(I/s)	PIPE	(mm)	(mm)	%	(m)	(L/s)	VELOCITY	(min)	
Romina St.	114	112	0.210		0.35	0.35	10.00	104	36.5	DR 35	300	299	0.34	27.7	56.1	0.80	0.58	65.10%
Romina St.	112	110				0.35	10.58	101	35.5	DR 35	300	299	0.34	34.8	56.1	0.80	0.73	63.24%
Street C	Future Development	110	0.340		0.57	2.27	17.44	76	173.4	CONC	525	533	0.20	45.6	200.2	0.90	0.85	86.57%
							18.29								<u> </u>			
Arrita Terr.	110	602	0.390		0.65	2.35	18.29	74	174.6	CONC	600	610	0.20	71.3	287.0	0.98	1.21	60.85%
Arrita Terr.	602	604				2.35	19.50	71	167.9	CONC	600	610	0.20	8.1	287.0	0.98	0.14	58.49%
Arrita Terr.	604	402	0.950		1.58	3.94	19.64	71	279.7	CONC	675	685	0.20	101.1	391.0	1.06	1.59	71.55%
Lokoya St.	400	402	0.280		0.47	0.47	10.00	104	48.7	DR 35	375	366	0.25	65.0	82.4	0.78	1.39	59.04%
Lokoya St.	402	404	0.300		0.50	4.90	19.64	71	348.5	CONC	900	914	0.15	74.0	730.6	1.11	1.11	47.70%
							20.74											
Amici Terr.	404	502	0.310	1	0.52	5.42	20.74	69	372.2	CONC	900	914	0.15	81.6	730.6	1.11	1.22	50.95%
Amici Terr.	502	504				5.42	21.97	66	358.9	CONC	975	991	0.15	9.4	906.5	1.18	0.13	39.60%
Amici Terr.	504	218	1.020		1.70	7.12	22.10 23.37	66	469.8	CONC	975	991	0.15	89.8	906.5	1.18	1.27	51.83%
Brigitta St.	216	218	0.530		0.88	0.88	15.00	84	73.9	CONC	525	533	0.20	101.1	200.2	0.90	1.88	36.89%
							16.88											***************************************
Commercial	Future Development	210				30.85	16.62	79	2426.5	CONC	1500	1524	0.25	13.7	3687.3	2.02	0.11	65.81%
							16.74											
Romina St.	118	120	0.250	:	0.42	0.42	10.00	104	43.4	DR 35	300	299	0.35	75.0	56.9	0.81	1.55	76.38%
Romina St.	120	122	0.320		0.53	0.95	11.55	97	91.9	DR 35	375	366	0.35	74.8	97.5	0.92	1.35	94.26%
							12.90											
Romina St.	124	122	0,209		0.35	0.35	10.00	104	36.3	DR 35	375	366	0.43	53.5	108.1	1.03	0.87	33.60%
							10.87											
																		·
Brigitta St(EP)	122	220				32.15	16.74 17.14	78	2518.4	CONC	1500	1524	0.30	53.4	4039.2	2.21	0.40	62.35%
Artesa Prv.	700	702	0.090		0.15	0.15	10.00	104	15.6	DR 35	300	299	0.43	38.1	63.1	0.90	0.71	24.81%
Artesa Prv.	702	704	0.210		0.35	0.50	10.71	101	50.3	DR 35	375	366	0.25	37.0	82.4	0.78	0.79	61.07%
Artesa Prv.	704	706	0.300	-	0.50	1.00	11.50 12.47	97	97.0 129.9	DR 35 CONC	450 525	448 533	0.20 0.16	46.8 23.8	125.9 179.1	0.80	0.98 0.49	77.02% 72.53%
Artesa Prv.	706 708	708 220	0.240		0.40	1.40 1.80	12.47	93	163.5	CONC	600	610	0.16	33.1	231.4	0.80	0.49	72.53%
Artesa Prv.	700	220	0.240		1 0.40	1.00	13.66	1 31	100.0	CONC		1 010	0.13	33.1	1 201.7	0.13	0.70	70.0078
						1	1							t				

103031/Eagleson-Fembank/STM-OS/06Feb27-STM.xls

STORM SEWER DESIGN SHEET

PROJECT #: 103031-1 DESIGNED BY : CAH CHECKED BY : MSP PROJECT: BRIDLEWOOD TRAILS DEVELOPER: CLAIRIDGE HOMES

DATE: 26-Sep-05 REV.: 27-Feb-06

	LOCATION		AREA	A (ha)	INDIV	ACCUM	TIME OF	RAINFALL	PEAK FLOW				PROPOSI	ED SEWER				
STREET	FROM	то	R=	R=	2.78 AR	2.78 AR	CONC	INTENSITY	Q	TYPE OF	PIPE SIZE	PIPE ID	GRADE	LENGTH	CAPACITY	FULL FLOW	TIME OF FLOW	
	M.H.	M.H.	0.60	0.65			(min)	(mm/hr)	(l/s)	PIPE	(mm)	(mm)	%	(m)	(L/s)	VELOCITY	(min)	
Residential	Future Development	220	0.240		0.40	0.40	10.00	104	41.7	DR 35	450	448	0.20	7.5	125.9	0.80	0.16	33.13%
							10.16											
Brigitta St(EP)	220	218	0.742		1.24	35.59	17.14 18.01	77	2748.5	CONC	1500	1524	0.20	94.9	3298.0	1.81	0.87	83.34%
Outlet-(EP)	218	FOREBAY 2				35.59	18.01	75	2666.9	CONC	1500	1524	0.20	20.0	3298.0	1.81	0.18	80.86%
							18.20					1						
Romina St.	108	106	0.370		0.62	0.62	15.00 16.76	84	51.6	DR 35	375	366	0.30	90.2	90.3	0.86	1.76	57.12%
Street B	900	902	0.650		1.08	1.08	15.00	84	90.6	DR 35	450	448	0.20	64.3	125.9	0.80	1.34	71.96%
Street B	902	CAP	0.300		0.50	1.58	16.34	79	125.9	CONC	525	533	0.20	29.2	200.2	0.90	0.54	62.88%
Street B	Future Development	106	0.260		0.43	2.02	16.88 17.73	78	157.3	CONC	525	533	0.20	45.6	200.2	0.90	0.85	78.54%
Romina St.	106	104	0.330		0.55	2.75	17.73	76	208.2	CONC	600	610	0.15	74.0	248.5	0.85	1.45	83.79%
							19.18											
Street A	Future Development	104	0.150		0.25	3.45	20.64 21.41	69	237.8	CONC	600	610	0.20	45.6	287.0	0.98	0.77	82.87%
Romina St.	104	102	0.600		1.00	7.21	21.41	67	484.9	CONC	750	762	0.25	74.0	580.7	1.27	0.97	83.50%
							22.38											
Romina St.	100	102	0.161		0.27	0.27	10.00 10.59	104	28.0	DR 35	300	299	0.43	31.8	63.1	0.90	0.59	44.38%
5: :: 6:	100	000	0.000		0.07	7.04		<u></u>	542.0	CONO	005	000	0.05	00.4	740.0	4.00	1.01	00.540/
Brigitta St. Brigitta St.	102 202	202	0.220 0.760		0.37	7.84 9.11	22.38 23.40	65 64	513.0 579.2	CONC	825 825	838 838	0.25 0.30	82.4 96.1	748.8 820.2	1.36 1.49	1.01	68.51% 70.61%
Brigitta St.	204	206				9.11	24.47	62	562.5	CONC	825	838	0.30	5.0	820.2	1.49	0.06	68.58%
Brigitta St.	206	208	0.310		0.52	9.63	24.53 25.22	62	593.5	CONC	825	838	0.30	61.5	820.2	1.49	0.69	72.36%
Opus St.	300	302	0.830		1.38	1.38	15.00	84	115.7	CONC	525	533	0.20	91.5	200.2	0.90	1.70	57.77%
Opus St.	302 304	304 306	0.550		0.92	2.30 2.60	16.70 18.40	78 74	180.6 192.5	CONC	525 600	533 610	0.20 0.20	91.5 8.7	200.2	0.90	1.70 0.15	90.17% 67.08%
Opus St. Opus St.	306	208	0.180 0.250		0.42	3.02	18.55 19.15	74	222.2	CONC	600	610	0.20	35.7	287.0	0.98	0.13	77.44%
Brigitta St.	208	210				12.65	25.22 25.49	61	765.6	CONC	1050	1067	0.20	23.3	1274.7	1.43	0.27	60.07%
Lokoya St.	404	406	0.300		0.50	0.50	15.00	84	41.8	DR 35	450	448	0.30	61.6	154.2	0.98	1.05	27.12%
Lokoya St.	406	214	0.210		0.35	0.85	16.05 17.07	80	68.3	CONC	525	533	0.25	61.6	223.9	1.00	1.02	30.52%
Brigitta St.	214	212	0.130		0.22	1.07	17.07	77	82.6	CONC	600	610	0.25	58.3	320.8	1.10	0.89	25.76%
Brigitta St.	212	210	0.230		0.38	1.45	17.96 18.56	75	108.9	CONC	600	610	0.25	39.4	320.8	1.10	0.60	33.96%
Outlet	210	FOREBAY 1				14.10	25.49 25.60	60	847.5	CONC	1050	1067	0.25	10.0	1425.1	1.59	0.10	59.47%

[103031]	***	_	S.	C=[95		PLC=[95.25],	-		PLC=[95.25],			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	PLC=[95.25],		
китеккинакинакинакинакина 48] Project Number: [10303 NNTS LTD	re (Area B-11) ***********************************	[design of Artesa Private ed area is primarily gras	min, AREA=[0.26](ha), wF=[0](cms), LOSS=[3],		l]min, AREA=[0.81](ha), bWF=[0](cms), LOSS=[3],	s), NINLET=[2], "], "],		unin, AREA=[0.51](ha), bwF=[0](cms), LOSS=[3],	IDs to add=[3,5]	ms), NINLET=[2],], IDs to add=[1,4,8]		50](ha), LOSS=[3],	IDs to add=[1,7]	ms), NINLET=[1],
48-AP.dat	<pre>**# modified to include design of Artesa Private (Area B-11) **#******************************** ******</pre>	STORM_FILENAME=["storm.001	ed .10 ha bas 0.45 to 0	ID=[1], NHYD=["BI"], DT=[1]min, AREA=[0.26](ha) XIMP=[0.02], TIMP=[0.35], DWF=[0](cms), LOSS=[SLOPE=[2.0](%), END=-1	1	ID=[2], NHYD=["B2F"], DT=[1]min, AREA=[0.81](ha), XIMP=[0.46], IIMP=[0.57], DMF=[0](cms), LOSS=[3] SLOPE=[2.0](%), END=-1	IDin=[2], CINLET=[0.032](Cms) MAJID=[3], MAJNHYD=["B2Fm3j"] MINID=[4], MINNHYD=["B2Fmin"] TMJSTO=[38.9](Cu-m)		ID=[5], NHYD=["B2"], DT=[1]min, AREA=[0.51](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3], SLOPE=[2.5](%), END=-1	IDSum=[6], NHYD=["B2in"],	IDin=[6], CINLET=[0.0198](cms), MAJIDE=[7], MAJINTD=["8L-Zma]"], MINID=[8], MINHYD=["8Zmin"], TMJSTO=[35.9](cu-m)	IDsum=[10], NHYD=["B1-2min"]		ID=[1], NHYD=["B3"], DT=[1]min, AREA=[0.3XIMP=[0.46], TIMP=[0.57], DWF=[0](cms), SLOPE=[3.0](%), END=-1	IDSum=[2], NHYD=["B31n"],	<pre>IDin=[2], CINLET=[0.0518](cms),</pre>
2 ************************************	"# Modified to incl ##***********************************	EAD STORM	£gg≞	NS I	* 8-2 (Future) * 2 x Type B ICD	DESIGN STANDHYD	COMPUTE DUALHYD	* 8-2 * 2 x Type A ICD	DESIGN STANDHYD	ADD HYD	UTE DUALHYD	ADD HYD	* 8-3 * 1 x Type A ICD * 1 x Type B ICD	DESIGN STANDHYD	* ADD HYD *	COMPUTE DUALHYD

÷	48-AP.dat МАЈІD=[3], МајNHYD=["11-3maj"], MINID=[4], МіNNHYD=["ВЭМіП"], ТМЈSTO=[7.6](си-m)
ADD HYD	.Ds to add=[4,10]
/pe A I	
DESIGN STANDHYD	ID=[1], NHYD=["B4"], DT=[1]min, AREA=[0.61](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](CMS), LOSS=[3], PLC=[95.25], SLOPE=[4.0](%), END=-1
ADD HYD	IDSum=[2], NHYD=["B4in"], IDs to add=[1,3]
COMPUTE DUALHYD	IDin=[2], CINLET=[0.0518](Cms), NINLET=[1], MAJID=[3], MJNHYD=["B1-4ma]"], MINID=[4], MINHYO=["B4Min"], TMJSTO=[11.4](Cu-m)
¥	m=[10], NHYD=["B1-4min"], IDS to add=[4,9]
B-5 Uncontrolled	Rearyard
DESIGN STANDHYD	ID=[1], NHYD=["B5"], DT=[1]min, AREA=[0.31](ha), XIMP=[0.02], TIMP=[0.45], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[3.0](%), END=-1
* ADD HYD	D=["B1-5min"], IDs to add=[1,10]
* B-6 * 2 x Type A ICD	
ESI	ID=[1], NHYD=["B6"], DT=[1]min, AREA=[0.47](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[4.0](%), END=-1
ÅDD HYD	IDSum=[2], NHYD=["B6in"], IDS to add=[1,3]
COMPUTE DUALHYD	<pre>IDin=[2], CINLET=[0.0198](cms), NINLET=[2], MAJD=[3], MajNHYD=["BL-6maj"], MINID=[4], MiNHYD=["B6min"], TMDSTD=[20.6](cum)</pre>
	Dsum=[10], NHYD=["B1-6min"], IDs to add=[4,9]

DESIGN STANDHYD	ID=[1], NHYD=["B7"], DT=[1]min, AREA=[0.38](ha), XIMP=[0.46], TIMP=[0.57], DMF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[4.0](%), END=-1
ADD HYD	IDSum=[2], NHYD=["B7in"], IDS to add=[1,3]
COMPUTE DUALHYD	IDin=[2], CINLET=[0.032](Cms), NINLET=[1], MAJID=[3], MAJHHYD=["BL-7ma]"], IMNID=[4], MINHYD=["B7Min"], IMNSTO=[17.6](Cu-m)
ADD HYD	IDSum=[9], NHYD=["B1-7min"], IDs to add=[4,10] Page 2

	48-AP.dat
B-8 Rearyard Uncontrolled	led
DESIGN STANDHYD	ID=[1], NHYD=["B8"], DT=[1]min, AREA=[0.16](ha), XIMP=[0.02], TIMM=[0.45], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[2.5](%), END=-1
ADD HYD	IDSum=[10], NHYD=["81-8min"], IDs to add=[1,9]
/pe A I	
N STANDH	ID=[1], NHYD=["89"], DT=[1]min, AREA=[0.24](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[1.0](%), END=-1
COMPUTE DUALHYD	IDin=[1], CINLET=[0.0198](cms), NINLET=[3], MAJID=[5], MajNHYD=["B9maj", MINID=[7], MiNNHYD=["B9min"], TMJSTO=[11.4](cu-m)
B-10 3 x Type A ICD	
DESIGN STANDHYD	ID=[1], NHYD=["B10"], DT=[1]min, AREA=[0.31](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](CMS), LOSS=[3], PLC=[95.25], SLOPE=[0.8](%), END=-1
ADD HYD	IDSum=[2], NHYD=["B10in"], IDS to add=[1,5]
COMPUTE DUALHYD	IDin=[2], CINLET=[0.0198](cms), NINLET=[3], MAXID=[5], MAINHYD=["89-10ma]"], MINID=[6], MINHYD=["810min"], TMJSTO=[6.8](cu-m)
ADD HYD	IDSum=[8], NHYD=["B9-10min"], IDs to add=[6,7]
11 (Artesa Pri ubdivide area ontrol Parking	te) sed on detailed design ot to 160 L/s
11.1	
DESIGN STANDHYD	ID=[1], NHYD=["111"], DT=[1]min, AREA=[0.26](ha), XIMP=[0.91], TIMP=[0.91], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[1.0](%), END=-1
COMPUTE DUALHYD	<pre>IDin=[1], CINLET=[0.040](cms), NINLET=[1], MAID=[6], MajMHYD=["111ma"], MNIND=[7], MiNHYD=["111mi"], TMNSTO=[45.0](cm.)</pre>
11.2	
DESIGN STANDHYD	
ADD HYD	IDsum=[9], NHYD=["112in"], IDs to add=[1,6]
COMPUTE DUALHYD	IDin=[9], CINLET=[0.021](cms), NINLET=[1], MAJID=[2], MajNHYD=["112ma"], Page 3
	1

ID=[1], NHYD=["114"], DT=[1]min, AREA=[0.09](ha), XIMP=[0.96], TIMP=[0.96], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[1.0](%), END=-1 ID=[1], NHYD=["113"], DT=[1]min, AREA=[0.07](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[1.0](%), END=-1 ... ID=[1], NHYD=["11-5"], DT=[1]min, AREA=[0.13](ha), XIMN=[0.97], TINN=[0.97], DWF=[0](CmS), LOSS=[3], PLC=[95.25], SLOPE=[1.0](%), END=-1 ID=[1], NHYD=["812"], DT=[1]min, AREA=[0.77](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[1.5](%), END=-1 IDsum=[2], NHYD=["B12in"], IDs to add=[1,5,6] IDsum=[4], NHYD=["11-5in"], IDs to add=[1,2] IDSum=[7], NHYD=["11-5mi"], IDs to add=[1,9] IDsum=[9], NHYD=["112mi"], IDs to add=[4,7] IDsum=[9], NHYD=["113in"], IDs to add=[1,2] IDin=[2], CINLET=[0.0518](CmS), NINLET=[1], MAJID=[5], MajNHYD=["810-12maj"], Page 4 IDSum=[7], NHYD=["114mi"], IDS to add=[4,9] IDSUm=[9], NHYD=["113mi"], IDS to add=[4,7] IDin=[9], CINLET=[0.032](cms), NINLET=[1], MAID=[2], MAIDHVD=["113ma"], MAINTD=[4], MINHYD=["113mi"], MINSTO=[1.8](cu-m) IDin=[4], CINLET=[0.060](cms), NINLET=[1], MAJD=[6], MJINYD=[71]-Sna"], MINUTD=[1], MINNHYO=[71,1-Smi"], TMJSTO=[2.2](cu-m) IDIn=[1], CINLET=[0.008](cms), NINLET=[1], MAIDD=[2], MAINYD=["114ma"], MINLD=[4], MINHYD=["114mi"], TMJSTO=[23.9](cu-m) ID=[2], # OF PCYCLES=[1], ICASESh=[1] HYD_COMMENT=["112 major to Romina"] 48-AP.dat MINID=[4], MinNHYD=["112mi"], TMJSTO=[92.0](CU-m) * DESIGN STANDHYD * 1 x Type A ICD * 1 x Type B ICD * COMPUTE DUALHYD DESIGN STANDHYD DESIGN STANDHYD DESIGN STANDHYD COMPUTE DUALHYD COMPUTE DUALHYD COMPUTE DUALHYD ADD HYD SAVE HYD ADD HYD ADD HYD ADD HYD ADD HYD ADD HYD ADD HYD * 11.4 * 11.3 * 11.5 %-----B-12

### ### ##############################	* ADD HYD	4B-AP.dat MINID=[6], MinNHYD=["812min"], TMJSTO=[27.1](cu-m) IDSUm=[9], NHYD=["89-12min"], IDs to add=[6,7,8]	* COMPUTE DUALHYD	1 IDin=[1], CINLET=[: MAJID=[5], MAJNHYD MINID=[6], MINNHYD
Topic Control Contro	*%		*%	TMJSTO=[1500](cu- [ID=[3], # OF PO
### ### ##############################	DESIGN STANDHYD	[6], NHYD=["B13"], DT=[1]min, AREA=[0.17](ha), P=[0.02], TIMP=[0.30], DWF=[0](cms), LOSS=[3], PE=[2.0](%), END=-1		HYD_COMMENT=["Phase ID=[10], # OF PC HYD_COMMENT=["Phase
De [7] NHYDE ["814"] DF [1]min AREA [0 40] (ha)	** B-14 * Rearyard Uncontro		ADD HYD	IDsum=[9], NHYD=[".
DELIJ, NHYDE["815"], DESUME[8], NHYDE["82-14min"], IDS to adde[6,7,9] START TTEROO_15.5tm	DESIGN STANDHYD		SAVE HYD "%	1D=[9], # OF PY HYD_COMMENT=["U]
"D=[1], NHYO=["B15"], DT=[1]min, AREA=[0.71](ha); "START STOPE=[3.5](%), END=[1], NHYO=["B15"], OWF=[0](cms), LOSS=[3], PLC=[95.25], START STOPE=[3.5](%), END=[3]; OWF=[0](cms), LOSS=[3], PLC=[95.25], START STOPE=[3.5](%), END=[3]; OWF=[0](cms), NHXET=[1], MAJID=[3]; MAJINO=["B15]; MAJINO=[ADD HYD	, IDs to add=[6,7,9]	* START	
IDE[1], NHYDE["B15"], DT=[1]min, AREA=[0.71](ha), START A STOPE=[3.5](%), END=1 Ima=[0.57], DWF=[0](cms), LOSS=[3], PLC=[95.25], START A STOPE=[3.5](%), END=-1 Ima=[0.57], DWF=[0](cms), LOSS=[3], PLC=[95.25], EINISH Ima=[2], NHYDE["B15in"], IDS to add=[1,3,5] EINISH Ima=[2], CINNET=[0.0518](cms), NINLET=[1], MANIDE["B1-15mai"], TM3STO=[51.4](cu-m) IDSUm=[9], NHYDE["B16"], DWF=[0](cms), LOSS=[3], PLC=[95.25], STOPE=[4.5](winnHYDE["B16"], IDS to add=[1,3] IDSUm=[0], NHYDE["B16"], IDS to add=[1,3] IDSUm=[2], NHYDE["B16"], IDS to add=[1,3] IDSUm=[2], NHYDE["B16min"], IDS to add=[4,9] IDSUm=[2], NHYDE["B16min"], IDS to add=[4,9] IDSUm=[10], NHYDE["B16min"], IMPIDE["B16min"],	<pre>* B-15 * 1 x Type A ICD * 1 x Type B ICD</pre>		* *START	AT 0.0 HRS METO
IDSUM=[2], NHYD=["B15in"], IDS to add=[1,3,5] IDin=[2], CINLET=[0.0518](cms), NINLET=[1], MAJID=[3], MajNHYD=["B1-15ma]"], MINID=[4], MajNHYD=["B1-15ma]"], IDSUM=[9], NHYD=["B1-15min"], IDS to add=[4,8,10]	» DESIGN STANDHYD		* * START	bK3-4.STM AT 0.0 HRS METOU 6S2.STM
TDS.Um=[2], CINLET=[0.0518](CmS), NINLET=[1], MAJJOH=[3], MAJJOH=[3], MAJJOH=[3], MAJJOH=[4], MAJJOH=[4], MAJJOHYD=["BL-1.5man"], MINLET=[1], MINNHYD=["BL-1.5min"], MAJOHND=["BL-1.5min"], MAJOH=["BL-1.5min"], MAJOH=["BL-1.5min"], MAJOH=["BL-1.5min"], DDS.UDF=[0.28](ha), COSS=[3], PLC=[95.25], COSS=[4.5](%), END=-1.5min"], DDS.UDF=[0.57], DNF=[0.57],	* ADD HYD	ţ	: G F F F F F F	
IDSUM=[9], NHYD=["BL-15min"], IDS to add=[4,8,10] IDSUM=[9], NHYD=["BL6"], DT=[1]min, AREA=[0.28](ha); XIMM=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3] IDSUM=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3] IDSUM=[2], NHYD=["B16in"], IDS to add=[1,3] IDSUM=[2], MINHYD=["B1-16maj"], MINHYD=["B1-16maj"], MINHYD=["B1-16maj"], IDS to add=[4,9] IDSUM=[10], NHYD=["B1-16min"], IDS to add=[4,0] IDSUM=[10], NHYD=["B-PH2"], DT=[1]min, AREA=[17,00](harmana	COMPUTE DUALHYD	<pre>IDin=[2], CINLET=[0.0518](cms), NINLET=[1], MAJID=[3], M3]NHYD="B1-15maj"], MNID=[4], MinNYD=["B15min"], TM3STO=[51.4](cu-m)</pre>	C077N1	
IDE[1], NHYDE["B16"], DT=[1]min, AREA=[0.28](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0] (cms), LOSS=[3] XIMP=[0.46], TIMP=[0.57], DWF=[0] (cms), LOSS=[3] IDSUM=[1.3], NHYDE["B16in"], IDS to add=[1,3] IDIN=[2], CINLET=[0.032](cms), NINLET=[1], MAJDE[3], MajNHYD=["B1-16m3]"], MINLD=[3], MajNHYD=["B1-16m3]"], MINLD=[1], NHYD=["B1-16m3"], IDS to add=[4,9] IDSUM=[10], NHYD=["B1-16min"], IDS to add=[4,9] IDSUM=[10], NHYD=["B1-16min"], IDS to add=[4,9] ID=[1], NHYD=["B-PH2"], DT=[1]min, AREA=[17,00](h XIMP=[0.60], TIMP=[0.65], DWF=[0](cms), LOSS=[3] SLOPE=[1.5](%), ENDE=[3]	ADD HYD			
ID=[1], NHYD=["B16"], DT=[1]min, AREA=[0.28](ha), XIMN=[0.46], TIMP=[0.55], DWF=[0](cms), LOSS=[3] SLOPE=[4.5](%), END=.1 IDSUM=[2], NHYD=["B16in"], IDS to add=[1,3] IDSIM=[2], NHYD=["B16in"], IDS to add=[1,3] MAJID=[3], MAJNHYD=["B1-6maj"], MINLET=[1], MAJID=[3], MAJNHYD=["B1-6maj"], TIDSID=[16.0](cu-m) [IDSUM=[10], NHYD=["B1-16min"], IDS to add=[4,9] [IDSUM=[10], NHYD=["B1-16min"], IDS to add=[4,9] [IDSUM=[10], NHYD=["B1-16min"], IDS to add=[4,9] [ID=[1], NHYD=["B-PHZ"], DT=[1]min, AREA=[17.00](hold) NINP=[0.65], DWF=[0](cms), LOSS=[3] SLOPE=[1.5](%), INMP=[0.65], DWF=[0](cms), LOSS=[3] SLOPE=[1.5](%), END=[0.65], DWF=[0](cms), LOSS=[3]	* B-16 * 1 x Type B ICD			
DUALHYD DUALHYD	DESIGN STANDHYD	ID=[1], NHYD=["816"], DT=[1]min, AREA=[0.28](ha), XIMP=[0.46], TIMP=[0.57], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[4.5](%), END=-1		
DUALHYD	ADD HYD	IDsum=[2], NHYD=["B16in"], IDs to add=[1,3]		
1 3 7 7	COMPUTE DUALHYD	<pre>IDin=[2], CINLET=[0.032](cms), NINLET=[1], MAJID=[3], MajNHYD="B1-16maj"], MANID=[4], MiNHYD="B1-16maj"], TMJSTO=[16.0](cu-m)</pre>		
1 3 2 5	ADD HYD	, IDs to add=[4,9]		
3° 1	* Area B - Phase 2			
	* Control minor s: * Control on-site * (Approx 88 m3,	/stem to 1.853 L/s up to 1:100 year /ha req'd)		
	DESIGN STANDHYD	ID=[1], NHYO=["B-PH2"], DT=[1]min, AREA=[17.00](ha), XIMP=[0.60], TIMP=[0.65], DWF=[0](cms), LOSS=[3], PLC=[95.25], SLOPE=[1.5](%), END=-1 Page 5		

4B-AP.sum

MM H H Y Y MM MM OOO 999 888 Sept 1996 M H H H Y W MM MM OO 999 888 Sept 1996 M H H Y W M M M OO 9999 888 Sept 1998 M H H Y W M M M OO 999 888 Sept 1998 M H H Y M M M OO 999 888 SEPT 1998 M H H Y M M M OO 999 888 SEPT 1998 SERVERSEL SER	SSSSS W W W M M H H Y Y M M M O O O 999 888 =========================	8 Wer. 4.0 8 Sept 1998 8 Sept 1998 8 Sept 1398 8 Sept 1308		+ + + + + + + + + + + + + + + + + + +	START) **** **** **** *** *** *** ***	**************************************
M H H Y Y NM M OOO M H H H Y Y NM M O O M H H H Y N NM M O O M H H Y N M M OOO anagement HYdrologic Model ***********************************	W W W M M H H H Y Y M M M O O W W W W M M H H H Y Y M M M O O O W W W M M M H H H Y M M M O O O W W W M M M H H H Y M M M O O O W W W M M M H H H Y M M M O O O O COMMUNITY OF THE WASHINGTON OF	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	**************************************	#:5320763 #:5320763 #:11+++++++++++++++++++++++++++++++++++	on METOUT ii Or charactee or (Asc.) or (MA), k flow. k flow. aph, (ratio). end of run. ***********************************	**************************************
M H H Y Y NM NM NM H H H Y Y NM NM NM H H H Y N NM N N H H Y N NM N N H H Y N N N N N N N N N N N N N N N	W W W M M H H H Y Y NM MM W W M M H H H H Y Y NM MM W W M M H H H Y Y NM M W W M M H H H H Y W NM M W W M M H H H H Y W M M W W M M H H H H Y M M W W M M H H H H Y M M W W M M H H H H Y M W W M M H H H H Y M W W M M H H H H Y M W W M M H H H H Y M W W M M H H H H Y M W W M M H H H H Y M W W M M H H H H Y M SINGLA A SINGLA E-WALL LICENSED ON THE DITION OF THE LICENSED OF THE MAX. NUMBER OF THE MAX. NUMBER OF THO W SIMULATED H AND THOMBER OF SIMULATED CRIPTION SUMMARY TABLE HEADERS (L DD. HYDOGRAPH TO SIMULATED H AND THOMBER OF SIMULATED H	000	Ver/4.0 *** ydrologic s ydrologic s Ymw and its YTTHYMO-89. ***********************************	ING CONSULT SERIAL SERIAL STAN SERIAL SERIAL STAN STAN STAN STAN STAN STAN STAN STAN	units depend	::::::::::::::::::::::::::::::::::::::
M H H H H H H H H H H H H H H H H H H H	W W W M H H H W W W M M H H H W W W M M H H H W W W M M H H H W W W M M H H H W W W M M H H H W W W M M H H H W W W M M H H H W W W M M H H H WARRING WERE CALL LICENSED ON THE THILL LICENSED ON THILL LICENSED ON THILL WAX. NUMBE CRIPTION SUMMARY TABL LICENSED ON THILL DD. HYDTOGTAPH TEPTO CRIPTION SUMMARY TABL LICENSED ON THILL MAX. NUMBE AND HYDTOGTAPH TEPTO CRIPTION SUMMARY TABL LICENSED ON THILL MAX. NUMBE AND HYDTOGTAPH TEPTO CRIPTION SUMMARY TABL LICENSED ON THILL WAX. NUMBE AND HYDTOGTAPH TEPTO CRIPTION SUMMARY TABL LICENSED ON THILL WAX. NUMBE AND HYDTOGTAPH TEPTO CRIPTION SUMMARY TABL LICENSED ON THILL WAX. NUMBE AND HYDTOGTAPH TEPTO CRIPTION SUMMARY TABL LICENSED ON THILL WAX. NUMBE AND HYDTOGTAPH TEPTO HYDTOGTAPH TEPTO HYDTOGTAPH TEPTO HYDTOGTAPH TEPTO HYDTOGTAPH TEPTO WAX. NUMBE AND HYDTOGTAPH TEPTO HYDTOGTAPH TEPT	Y Y M MAY Y M M M N Y Y M M N Y Y M M N Y	SWMHYMO-98 Continuous Fortibles of FYMO-83 and Careers	ECH ENGINEER **********************************	E HEADERS (C infraction in ence number in sociated wit ulated hydrough at and time simulated hy to for simulated ore message age printed age printed age printed	**************************************
	W W W M M W W W W M M W W W M M M W W M M M M M M M M SINDIA SIND	M H H H H M H H H H H H H H H H H H H H	********* event and on the pri ever***** OTTH ed by: 0.tt Gat E-M	++++++++++ Nobal	UMMARY TABL Graph IDent graph refer age area as filow of sim filow of sim filow of sim for sim	****

age 2

	Œ.	79 n/a . n/a	1	ァブァ	7R.C	12.56 n/a	70 1/4 /- R.C			-	00 n/a 79 n/a	ų.	.00 n/a .00 n/a .79 n/a	0.hrs}	79 n/a	12.86 n/a 13.07 n/a	/R.C	. 7		æ	38 n/a 37 n/a 38 n/a	æ	.5		÷ 5	00 n/a 79 n/a	/R.C 79 n/a	00 00 00 00 00 00	0.hrs}	/:-k:C:- 79 n/a	38 n/a 57 n/a	· ·		
	_hh:m 1:10	1:10	te 1:10 13.79	1:00 Totburov	hh:mm	100	h. m.	07:7		1:10	0:00	e_hh:mm	00:0	TotDurovf=	nn:mm 1:10	1:10	hi:mi	1:19		e_hh:mm	ite 1:19 6.38 ite 1:10 13.07	mi	(:	mm:mn	ite 0:00 .00	CDate_hh:mmR.	ite 0:00	rotDurov	te 1:10 13.	tte 1:10 12.38			
4B-AP.sum	QPEAK-1	.50 .040 No_date	20 A	00+	REAQPEAK-TpeakDat	1.58 .106 No_date	į	.or .049 NO_da		. 045	.00 .000 No_date .61 .049 No_date	-	.00 .000 No_date	E+00	«EAQPEAK-IPeak .61 .049 No_da	2.08 .146 No_date	1			QPEAK-	2.69 .196 No_date	.207 OPEAK	.47 .038 No_date		REAQPEAK-TpeaKDat	.00 .000 No_date .47 .038 No_date	į		<u>.</u>	.038	3.47 .239 No_date	keAQPEAK-IpeakDat 38 .031 No_date		Page 3
48	A	•	-ID:NHYDA 02:B3in	US:BI-SMA O4:B3Min O0, Totovfvol	-ID:NHYD		D	01:84 57]	25]	: NHYD		1	03:81-4ma	[o	i		1		10] 25]	- !		. !		10.J 25.J	-ID:NHYDA		-ID:NHYD		==	į	.ee	NHYDB B7	0] 25]	
	нур	0] sum	DUALHYD	Major system / Minor System \ {MiSyssto=.0000E+	0013	į	ΕΙ	DESIGN STANDHYD UL [XIMP=.46:TIMP=.57] [S.B-4 OO:DT- 1 OO]	[PLC: i= .95:p= .	ADD HYD	MUS [00.	0016	Major System	Minor system ([MjSysSto=.0000E+	001/ADD HYD	+ [DT= 1.00] SUM=	001:0018	DESIGN STANDHYD [XIMP=,4	[SLP=3.00:DT= 1.00] [PLC: i= .95:p= .25]	001:0019	4DD HYD +	=D02 [001 = T0]	DESIGN STANDHYD 01:86 [XIMP=.46:TIMP=.57]	[SLP=4.00:DT= 1.0 [PLC: i= .95:p= .	001:0021	+ [DT= 1.00] SUM=	001:0022	Major System /	Minor System \ {MjSysSto=.0000E+	0023ADD HYD	+ -00] suM=	001:00241D: DESIGN STANDHYD 01:: [XIMP=.46:TIMP=.57]	[SLP=4.00:DT= 1.([PLC: i= .95:p= .	
	001:0011 ADD		:T00		001:(001:():T00		001:(-		7:100		001:(-		001:(001:(_		001:(•	001:(•):T00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Page 4

	, a &	ر ه ر	; ~ S	2 / 2 2 / 2	ַ טַּ	'a 'a	۾' 'ع	i/a	,	-:- 892		ن	, 'a	ָאָק בַּיל	S	, a	a 'a	668		ڹ	, a	n/a //a	ي' ٰٰ	, a	rs}	ڇٰٺ	'a 'a	6	}	يٰنٰ	/a/	n/a n/a	
	~						_ ~		,	¥.		œ			_• ∝			∝ •		2			¥ ~		0	# <u>~</u>		**		٣.	~~		
	-R.V. 22.13	22.13	22.13	22.19 n/a f 0 hrel	>	2.4	% > ×	ĕ	:	-K.V.		>	.; ;;	22.28	>	. 5	21.90	R.V. 22.48		>	22.48	34.	>.4	8	ž.	> 4	21.90 n/a 21.96 n/a	> 4	:	> 4	943	22.48	
	72	7	72	74	: []	77	7			12		Ī	7		τ:					1	2	27	7	,	77 ∧ŧ=	22	22	10	i		23	27	
	E98	32	88	1:02 2: Totourovf-	E	1:02	2	8				i	1:10	55	و ا	덩	22	hh:mm 1:10		i	25	333	<u> </u> 2	185	r o	E 21	1:10	E 2) i	<u> </u> 2	22	28	
		÷::	125	::: £	- H: H	;;	: 년	0:0	-	1:10		hh:mm	ii ċ	;;	pto h	H		듣		hh: mm	H	1:10	E	0	Totburo	hh:m 1:10		h: H	i	바:매 1:10	9:4	01:0	
	te L	+	2	+ 	ţ,		4	5	5 .	14e		ω,			⊢ ₽			•			i					ţ.		e					
	peakDat o_date	ate	ate	ate	, kba	late Iate	late	ate	9	QPEAK-TPEAKDATE. .014 No_date		-TpeakDat	No_date	.008 No_date	0, N-Ovt= 0, -OPEAK-TheakDate	ate	No_date	-TpeakDat		-TpeakDate	No_date	.011 No_date	ate	ate	0	-QPEAK-TpeakDat .011 No_date	No_date	(-TpeakDat		QPEAK-TpeakDat .020 No_date	ate	.020 No_date	
	Peach	100	10	5 5 T	Грез	99	0	5.		o o		Греа	9 9	١٥	ا ا ا	9	٥٥	pead		L P P P	9	99	o o	9	9 9 1 1	Tpea to	99	pea	1	o ea	226	500	
	¥450	25.5	140	225	4	38.7	59 P	0		74 7		AK-1	42	80	O Y	80	57	EAK-1 011 1		ZK-	1	31	11. 11.	8:	įĘ	L-X-1	067 7	EAK-1		20 AK	227	200	
_	P. GO	0.0	9	0.02	OPE.	00	0 4	iō c		9. 9.0		-QPEAK	0.014	Ö	PP.	, 0	.067	QPEAK .011		OPFAK	100	50	OPE O	ō	įż.	OPE.	.067	OPE	•	OPE.	00	900	
∮B∽AP.sum	-	1		0	2		1	וישית		!					=.0000E+00			1		1			-		+	1		-		1			Ŋ
-AP	988	38	Šes	ဒ္ဓင္တ	EA P	30	56	185	1	. 09		AREA-	66	36	DOE	65	.65	AREA-		FA	568	36	64 07	85	200	AREA-	.65	4 E	}	4REA-	825	£1.8	Page
48	Ā.			ح	Y A		. 4	•	1	Ą.		AB	•	•	00	•	• •	Α		A		•	AR		.00.	AB	•	AR	•	AR			ш.
		į		5	<u> </u>		į		ξ			į		•	ë					į			į		ڙه/			1					
		ا ا ج. ا	٠ <u>-</u> :	g ⊒. 6	į.	E.E	<u>ا</u> ۾.	, a c	מי	į		-	5	ā.Ē.	Totov†vol	E.	E.E	į		į	. :	ᆵ	ا مبر	۾ ا	LL3M1 TotOvfVol	į. <u>.</u> .	.E.E	-	,	ļ	Sin	Sin	
	112 112 112 112	112	112	112	呈	77	112 NHV	112	O E	114 114		NHY	114	114	NOT N	114	114	113		Ž	3	113	13 ₹	Ē	100	113	114	NET L	1	H	113		
5.	500	96	185	245	io.	94:	66	025	90	01:114	[XIMP=.96:TIMP=.96] [SLP=1.00:DT= 1.00] [PIC: i= 95:n= 251	12	55	25	<u>.</u> ;	46	22.	ID:NHYD 01:113	1.00]	7.5	125	360	200	555	20	10 04:		95		100	02:	96:	
SLP=1.00:DT= 1.00] PLC: i= .95:p= .25	1	+ 11	_	_ !! !!	+ 1	+	<u> </u>	103	r t		96.	:	_		E 1		+ 11	!	.00	7 !		+ 11	i	_)E+0	1	+ 11		97	1	+ 11	_	
T::	1	Š	2 5	E E E	;		Ś	/200	lajć.	2	# T #		2 5	, E	925		+ SUM≞	1 02	# L &	<u>.</u>		sur	2	e a	E 00		Š	٤	. E. E. E.	. [SUN	오등	
٦. .99	İ	5	JAL.	Sys			~ i	,	12,4	DESIGN STANDHYD	F E 6	: [A	Sys	= =			QN	F.E.	. !			Ī	yst	, ys.	i	_	0050	F [6			COMPUTE DUALHYD	
1.0 .∺		7.0	ш,	100	. i	۵	7.0	٩	H	ST	 	ij	۵, E	5 6	SSt	۵	7.00	ST	9.1	<u>" i</u>	۵	1.00	Ī	10	SSto	i.		Ü	1.00		1.00	E 01	
_ .:	-1-6 ΗΥ	# d	PU	Min	15	Ŧ	T= 2	E E	mar	L SE	ă di c	14	PUT.	ğΨ.	Sy	ADD HYD	11	9 1 1 1 1	F T	֡֝֝֝֝֝֝֝֝֝֝֝֝֝֝֡֝֝֝֝֡֝֝֝֝֡֝֝֡֝֝֡֝֝֡֝֝֡֝	Ŧ	<u>,11</u>	2 E	Maj.	JSy.	<u> </u>	<u>,II</u>	0-0	E E E	0051 ADD HYD	11 0	PUT.	•
ട്ട	003 ADD	200	80	ž	004	ADD	₽ 2	SAS	- r 5	004 DES	×ΥΩ	9	S S		₹2	ADD	2	004 DES	ZSS	700	ADD	۵	9 S	3	Ξ	004 ADD	٥	005	[XIMP=.97] [XIMP=.97] [SLP=1.00:DT= 1.00] [PLC: 1= .95:D= .25]	005 ADD		SO T	
[SLP=] [PLC:	01:	. [2			01:		. 101	*	9	001:0043 DESIGN		001:0044		Minor System \ 04:114mi	5		[DT= 1.00]	001:	[XIMP=.97:TIMP=.97] [SLP=1.00:DT= 1.00] [SLP=1.05:DT= 2.75]	. 10		;	01:			001:	+ 07:114mi fpr= 1.00 SUM= 09:113mi	001:0050		1500:000 ADD HYD	[DT= 1.00]	7	
	001:0039TD:NHYDAREAQFBAK-TpeakDate_hh ADD HYD 01:112 .30 .045 No_date 1 01:112 .00 No_date 1		,		٠		٠	,	,	J		ب			_	,		0		٠	,		_			0		0		0		,	

	13.79	6.30 6.30 7.02 7.02 3.79	13.79 - 7.5. 13.79 - 7.5. 13.79 - 7.5. 13.79 - 7.5. 13.80 - 7.5. 13.80 - 7.5. 13.80 - 7.5. 13.80 - 7.5. 13.80 - 7.5. 13.80 - 7.5. 13.81 - 7.5. 13.81 - 7.5. 13.82 - 7.5. 13.83 - 7.5. 13.83 - 7.5. 13.84 - 7.5. 13.85 - 7.5. 13.87 - 7.5. 13.79 - 5.55
	e_hh.mm	e_hh:m 1.2 1.2 1.12 1.12 1.13 1.13 1.13 1.13	ate_n:m
to_dat peakb to_dat to_dat to_dat peakb	PEAK-Tpeakbar PEAK-Tpeakbar 000 No_date 0059 No_date 0059 No_date 000 No_date 000 No_date 007 No_date 008 No_date 008 No_date 008 No_date 008 No_date 003 No_date		0578 - Deakton 0578 - Deakton 060
.sum .:+00, QF	AREAOPE 777 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		AREAQPE 0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.0
5mi 5mi 5mi 1mi 1mi 5mi	D		815 815 812/70 810-12 810-12 815in 815in 815in 7000/fv01=,0 7000/fv01=,0 815min 815min 71600-12 815min 815min 815min 815min 816min 818min
\ 01: 05+00, 01: 01: 04: 07: 07: 07: 07: 07: 07: 07: 07: 07: 07		1.00] 1.00] 1.00] 1.00] 1.00] 1.00] 1.00]	
. Sys tto=] S ALHY ALHY Syste yste =:17 1 S	TTANDH 00:DT:00:DT	00]
(Mj (Mj (Mj (DT (DT (ST (ST (ST (ST (ST (ST (ST (S	001:0055 ADD HYD 001:0056 COMPUTE DU Major S MINOR S		001:0062 001:0663 001:0663 001:0663 Anj Min

4B-AP.sum

48-AP. sum	
[XIMP=.46:TIMP=.57] [SLP=4.50:DT= 1.00]	
[PLC: i= .95:p= .25]	
D:NHYDAKEAQPEAK- 1:816 .023	13.79
+ 03:81-15m .00 .000	00:0
.28	1:10 13.79
QPEAK-	1.10 13 79
000	0:00
.28 .023	1:10 13.79
'o1=,0000E+00	Totburovf= 0.
AREAQPEAK-	e_hh:mmR.VR
27.5	1:10 13./9
00] SIM= 10.81-15m 7.74 547	No date 1:10 13:45 n/a
ID:NHYDAREAOPEAK	te_hh:mmR.VR
STANDHYD 01:8-PH2 17.00 1.339	1:12 16.16 .
[XIMP=.60:TIMP=.65]	
[SLP=1.5U:DT= 1.0U] [DIC: i= 95:n= 25]	
D:NHYDAREA	hh:mm
E DUALHYD 01:8-PH2	1:12 16.16
/ 05:8-PHZm .00	0:0
Minor System \ 06:B-PH2m 17.00 1.339 No_date	1:12 16.16
{MJSysSto=.0000E+00, TotOvTVo!=.0000E+00, N-OVT=	otburovr= bb.mmP v
03.81-16m 00	00.0
	/11 00.
remark: Phase 1 Major System from Area B	
001:0072QPEAK-TpeakD	-QPEAK-TpeakDate_hh:mmR.VR.C
SAVE HYD 10:81-16m 7.74 547 No_date	1:10 13.45
fname :M:\2003\103031\DATA\CALCUL~1\SWMHYMO\H-B1-16m	B1-16m.001
remark:Phase I Minor System to Forebay 48	- mm - yq
001.00/ 0==================================	1.12 16 16
+ 10:R1-16m 7.74	1:10 13.45
1.832	1:10 15.31
AREA	hh:mm
SAVE HYD 09:ULT-Bm 24.74 I.832 No_date	1:10 15.31
Thame :M:\Z003\103031\DATA\CALCUL~1\SWMHYMO\H-UL!~BM	UL!BM.OUL
4 · 102 LO 021	
,我们,我们也是我们的人,我们们们的人们的人,我们们们的人,我们们们们的人,我们们们们们的人,我们们们们的人,我们们们们的人,我们们们的人,我们们们们们们们们们的人,	化放射性放射性抗性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺性 医乳腺
RUN:COMMAND# 002:0001	
START	
על ממק טט ייי סטורדי	

Project Name: [Bridlewood Trails - Forebay 4B]
Date : 06-08-2006
Modeller : [M.Petepiece]
Company : NOVATECH ENGINEERING CONSULTANTS LTD
License # : 5320763

Page 7

48-AP.sum

modified to include design of Artesa Private (Area B-11)

---AREA----OPEAK-TpeakDate_hh:mm----R.V.-R.C.50 000 No_date 1:10 23.80 n/a
000 No_date 1:10 23.80 n/a
50 072 No_date 1:10 23.80 n/a
0072 No_date 1:10 23.80 n/a
000 004 No_date 1:11 23.80 n/a
01=.2173E+00, No_date 1:11 23.80 n/a
01=.2173E+00, No_date 1:12 23.81 n/a
01=.2173E+00, No_date 1:12 23.81 n/a
01=.2173E+00, No_date 1:10 23.81 n/a
01=.2173E+00, No_date 1:10 23.81 n/a
01=.2173E+00, No_date 1:13 21.69 n/a
01=.58 0.144 No_date 1:18 21.69 n/a
01=.58 0.145 No_date 1:17 22.20 n/a
01=.88 0.20 n/a 04:83min 04:83min 002:0014-... 02:0014-... 05:10014-... 05:10014-... 05:10014-... 06:10014-... 07:10014-... 07:10014-... 07:10014-... 08:10014-... 09:10014-...

E	
3	
S	
٠	
1	
⋖	
ũ	
ά	
t	

4B-AP.sum

, ra.07	==2.50;01= 1.00] :: 1= 95;p== 2.25] 	147D 01:18 1.00 1.16 1.00 1.00 1.00 1.00 1.00 1.00	T= 1.00] SUM= 10:B1-8mi 4.01 .311 No_date 1:16 21.49	<pre>Sign STANDHYDLIB: NHYDAREAQPEAK-TpeakDate_hh:mm Sign STANDHYD01:89</pre>	XIMP=.46: IIMP=.5/ SP=1.00:DT= 1.00] SI C: :1 06:m 251	.33.p= .23.j TD:NHYDAREAQPEAK-TpeakDate_hh:mmR.VR	ALHYD 01:89 .24 .033 No_date 1:10 23.80	ystem / 05:89maj .00 .000 No_date 0:00 .00	=.0000E+00, Totovfvol=.0000E+00, N-ovf= 0, Totourovf= 0	ID:NHYDAREAQPEAK-TpeakDate_hh:mmR.VR	NDHYD VI:BIV .31 .042 NO_date I:10 23.8V . :TIMP=.57]	=TG:	.93:p= .23] 	01:810 .31 .042 No_date 1:10 23:80	+ 05:89maj .00 .000 No_date 0:00 .00	01= 1.00j 50M= 02:B101n .31 .042 No_date 1:10 23.80 34ID:NHYDAREAOPEAK-TDeakDate hh:mmR.VF	APUTE DUALHYD 02:B10in .31 .042 No_date 1:10 23.80	(05:89-10m .00 .000 No_date 0:00 .00	sysSto=.0000E+00, Totovfvol=.0000E+00, N-0vf= 0, TotDurovf= 0	QPEAK-TpeakDate_h;mmR,V,-F	HYD 05:BJUMIN .3042 NO_date 1:10 23.80 + 07:B9min .24 .033 No date 1:10 23.80	SUM= 08:89-10m .55 .074 No_date 1:10 23.80		IMP=.91]	: T.UU] :p= .25]	ID:NHYDAREAQPEAK-TpeakDate_hh:mmR.VR VD 01:111 36.98	em / 06:111ma .00 .000 No_date 0:00 .00	em \ 07:111m1 .26 .040 No_date 1:02 37.03	zo4e+oz, lotovivoi≕.gonoe+oo, n-ovi≕ o, lotourovi≕ o. ID:NHYDAREAOPEAK-TheakDate hh:mmR.VR	vp 01:112 .30 .079 No_date 1:10 38.15 .		:p= .25]	01:112 .30 .079 No_date 1:10 38.15 n/	.00 .000 No_date 0:00 .00 No_date 0:00 1.00] SUM= 09:112in .30 .079 No_date 1:10 3	ID:NHYOREAQPEAK-TpeakDate_hh:mmR.VR.	UALHYD 09:112in .30 .079 No_date 1:10 38.15 n Svstem / 02:112ma .00 .000 No_date 0:00 .00 n	System (04:112mi .30 .021 No_date 1:01 38.19 n	.ysSto=.3521E+02, TotOv†Vol=.0000E+00, N-Ovf= 0, TotDurovf= 0.h	ivp 04:112mi 33 0.021 No.date 1:01 38.19	= 1.00] SUM= 09:112mi .56 .061 No_date 1:02 37.65 n	QPEAK-TpeaKDate_hh:mm Page 10	
,	7	ADD HY	[DT= 1.	SIGN	SLP.	002:0031	COMPUTE	Major	Ξ	002:0032	[XIMP=.46	S. = SLP= . 8	=L :JPLC:)	ADD HYD	ţ	; ;	COMPUTE	Major	(Mjsyss	002:0035	ADD HYD	[pT= 1.0	DESIGN ST	XIMP= 9	PLC: J=	002:0037	Major	Minor		DESIGN	[XIMP=.9 [SLP=1.0	_[PLC: 1=	ADD HYI	[DT= 1.	002:0040	COMPUTE D	Minor	ss!	ADD	[DT= 1.	!	

											~																				~~~~~
	æ	.4		s, s	; G	w w	٠.		i - 65	i ra ra	١.,	5 RS 1	s, s	١.	ਲ ਹ ਹ	g !			١.	ed e	ਰ ਨਾਂ	. K	៧ ៧	;;	· ແ :		١.٥		i . rd	ed ed e	ď
	n/a	.90.		n/a 0.hrs}	×.	n/a n/a	-R.C.		ī	n/a n/a	-R.C.	N	o.hrs}	٦. د.	47. 17. 18.	, Y	. 91		٦.		- a	, <u></u>	0 1 1 2 4 0 4	يام،	n/a	22,	.560 .560		œ.	n/a n/a	
	00.	-R.VR.C. 38.45 .904	.e_hh:mmR.V 1:10 38.45 0:00 .00	38.51	38.51		38.74		38.74	38.74	-R.V.	0:00	58./4	-R.V.	38.74	, Y	38.74 .911		-R.V.	38.74	38.74	38.74		>	38.74 n	38.00	23.80		23.80	888	20.00
			10 10 00	01 urovf	i		į		1		- E	185	urovf		955	i			- !				89	∑ :			i		1		
	00:00		100	Toto	e_hh:mm 1:01	ÄÄ.	a_hh:mm- 1:10		e_hh:mm 1:10	1:10	=	00.	Totb	e_hh:mm-	ää÷	, H	H		-hh:mm-	1:10	100		1:10	TotDurc	: : :		1:10		5	889	į
	AVE HYD 02:112ma 00:112ma 00:112ma 00 No.date fname:N:\2003\103031\DATA\CALCUL~1\SWMHYMO\H-112ma.002 remark:112 major to Romina	QPEAK-TpeakDate_hh:mm .024 No_date	QPEAK-TpeakDate_hh:mm .024 No_date	date 0,	akDate Jate	No_date	akDate Jate		akDat(Jate	late late	akbate	ate) are	ikDate		akbate	late		akbate	No_date	date	jate	late late			No_date	ikbat Iate		QPEAK-TpeakDate .106 No_date	No_date	מ
	NO_0	No.	-1 N N N	.008 No_date N-Ovf= 0	No	22	No.c		-TpeakDa	22	-Tpe	22	15 1	-Tpe	222	Tpe:	No.		-Tpe	2 2	225	No.	2 2 2	/f= Tpg;	2	22	EAK-IpeaKUA 106 No_date		-TpeakDa No_date	200	į
	.000 MO\H	PEAK. .024	QPEAK-TpeakDat .024 No_date .000 No_date	80°	QPEAK-TpeakDat .008 No_date	.061	QPEAK-TpeakDat .019 No_date		QPEAK-TpeakDat .019 No date	.000 No_date	QPEAK-TpeakDat	.000 No_date	N-Ovf=	-QPEAK-TpeakDat	.069 No_date	PEAK-	.035 No_date		QPEAK-TpeakDat	.035	.035 No_date	.035 No_date	.000 No_date .035 No_date	N-0-N	.035	.123	QPEAK-IPEAKDAT .106 No_date		PEAK- .106	865	. 100
100	SWMH)	-	! ! !	E+00,	Ì		1		Ī		Ī		E+00,	1		1	,		1					E+00,					!		11
AB-AD CIII	1	AREA- .09	AREA .09	.00 =.0000E+00	AREA 09	.56	AREA 07		AREA.	686	AREA	386	=.0000E+00	-AREA	.65	AREA	.13		AREA.	.13	32.5	13	95.	l=.0000E+00,	13,	. 85	AKEA 77		AREA.	188	.// Page
	CALCL	t ! !	1	Vo]=,							-			-								(Vo]=,			1				
	12ma DATA mina	14 14	HYD 14 14ma	114mi Totovfvol	HYD 14mi	12mi 14mi	HYD 13		HYD	14ma 13in	HYD	13ma	otovf	HYD	13m1 14m1	HAD-	1-5		HYD	1-5	04:11-5in	1-5in	1–5ma 1–5mi	otovf	1-5mi	07:11-5mi	HYD 12		HYD 12	05:89-10m 06:11-5ma	77
	02:1 3031\ to Ro	-ID:NHYD- 01:114 6] 0] 25]	ID:NHYD 01:114 02:114ma	04:1	-ID:NHYD- 04:114mj	09:112mi 07:114mi	-ID:NHYD- 01:113	25] 25]	-ID:N	02:114ma 09:113in	N: GI-	02:1	04:⊥ 00, ⊤	-ID:N	04:113mi 07:114mi	-101.	01:11-5	-[0.5	-ID:NHYD	01:1	04:1	95.1	06:11-5ma 01:11-5mi	700, 7	01:11-5mi	07:1	-1D:NHYD 01:812	57] 00] .25]	-ID:NHYD 01:812	05:B 06:1	0.20
	03\10 ajor	43015 SIGN STANDHYD 01 XIMP=-96:TIMP=-96] SLP=1.00:DT= 1.00] PLC: i= .95:p= .25]	\	<u>_</u>	!	+ SUM≕	70	[XIMP=.97:TIMP=.97] [SLP=1.00:DT= 1.00] [PLC: i= .95:D= .25]	. !	SUM=	i	$\overline{}$	~ ₩	-		SOME.	6.5	1 d	. !	-	÷ SUW=		E E	0E+		+ SUM=		XIMP=.46:TIMP=.57] SLP=1.50:DT= 1.00] PLC: i= .95:p= .25	1	++	NO.
	1:\20(12 m	0043 DESIGN STANDHYD [XIMP=.96:TIMP [SLP=1.00:DT= [PLC: i= .95:p	0044comPUTE DUALHYD Major System	Minor Sýstem jsyssto=,916	i !		ANDH,	7:TI 00:DT			0048	Major System	syst(:0=.0(i	DESIGN STANDHYD	TO:00	5			COMPUTE DUALHYD	System System	0=.0			UUS4DESIGN STANDHYD	0:DT= 0:DT= 95:	1		
	HYD ne :N ark:1	SN SI MP=.9	UTE D	iñor Sysst	I A	DT= 1.00]	IS NO	#P=.5	Q.A.	[bT= 1.00]	1 1	ajor	inor Sysst	-	Q -	7 1	LS S	F 1.	;	τ¥Β	[pr= 1.00]		Major Minor	sysst	₽ 2	[pr= 1.00]	TS NE	4P=.4 2=1.5 :: i=	Q.A.		7.00
	SAVE HYD fname : remark:	002:0043 DESIGN EXIMP SLP= [PLC:	:0044 COMPUT Maj	× E	0045	[و	002:0046 DESIGN S	ZZZ	:0047		002:0048	Σ×:	Ξ̈́	002:0049-	ADD HYD	0500:200	DESI		0051	ADD HYD	[DT	COMPUTE	žΈ	(E)	ADD HYD	ية وت	DESIGN S	SLP= [SLP= [PLC:	:0055 ADD HYD	į	<u> </u>
	4	005:	005:		007		005		005:		005:			005:		005:		[XIMP=.97.:IMP=.97] [SLP=1.00:DT= 1.00] [DLC: i- 95:D- 751	005:		5	700		. 200	700	6	007:		005:		

- Stat States of States States States States States	1:10 23.22
Date_hh:mm tree 11:02 2 tree 11:10 2	1:10 2
tee	
teditted to the first ted to the first t	Ð
Tipeakba No_date No_da	o_dat
1024 1024	.657 N
	17
4. ARE 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7.74 Pag
DE SHYPP	31-16m
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11
	SUM=
UTE DUALHYD System E 1.00] Sum MP= 02:TIMP= MP	1.00]
CONFOLOR MAIN AND MAI	EDT=
002: 002: 003: 004: 005: 005: 005:	

48-AP.Sum DE3IGN STANDHYD 01:B-PHZ 17:00 2.510 No_date 1:11 27.89 .656 [SLP-1.50:DT = 1.00] [SLP-1.50:DT = 1.00] [SLP-1.50:DT = 1.00] [SLP-1.50:DT = 1.00] 10:STEP = 0.00
--

RUNISCOMMAND# 003:0001 FTERO	7]
----------------------------------	----

Page 13

4B-AP.sum	0005	0006	000/	0000 0000PUTE DUALHYD 06:82in .63 .265 No_date 1:10 001001F DUALHYD 07:81-2ma .17 .224 No_date 1:10 40.47 001001F System (07:81-2ma .17 .224 No_date 1:10 40.47 001001F System (08:EZnin .46 .040 No_date 1:01 40.48 (MjSysste=.3590E+02, TotovfVol=.6893E+02, N-Ovf= 1, Totourovf= 0.	0009	OGIO 1183 C. 127 NO. date 11.10 40.47 NO. date 12.10 N	0011	OOM_TE DUALHYD	ADD HVD + 04183min .42 .052 No.date .1101 40.43 n/3. ADD HVD + 10181-2mi 1.41 .125 No.date .115 36.44 n/a [DT= 1.00] SUM= 09181-3mi 1.83 .177 No.date .115 37.36 n/a DESIGN STANDHYDAREAOPEAK-TPREKDATE_hi:mmR.VR.C. [XIMM=.46:TIMM=.57] [XIMM=.46:TIMM=.57] [SLP4.001P=.100]	ID:NHYDAREAOPEAK-TpeakDate_hh:mmR.V.F 01:84 . 61 . 157 No_date 1:10 40.47 + 03:81-3ma . 25 . 295 No_date 1:10 40.47 SUM= 02:84in . 86 . 453 No_date 1:10 40.47 	COMPUTE DUALHYD 02:84in .86 .453 NO_date 1:10 40.47 NO_date 1:10 40.47 NO_date 1:11 40.47 NO_date 1:01 40.47 NO_date 1:01 40.47 NO_date 1:01 40.40 NO_date 1:01 ADD HYD .48 NO_date 1:01 ADD HYD .49 NO_date 1:01 ADD HYD .40 NO_date 1:01 ADD	UU18QPEAK-TPGAKDATGR.V Page 14
[SLP=2 [PLC:	3:0005 COMPUTE Major Minor (Mjsyss	3:0006 DESIGN S [XIMP= SLP=Z	.000/ ADD HYD [DT= 1.	COMPUTE Major Minor (Mjsyss	ADD HYD [DT= 1.	DESIGN S [XIMP=. [SLP=3.		COMPUTE Major Minor (Mjsys	ADD HYD [DT= 1.3:0014 [XIMP=, [SLP=4, [PLC:]	003:0015 ADD HYD [DT= 1.	COMPUTE Major Minor (Mj Sys: 3:0017 ADD HYD	3:00T8

.2	R.C n/a n/a R.C .565	R.C n/a n/a n/a n/a /a /a /a	n/a n/a R.C .565	1,4 a		n/a n/a n/a n/a .hrs}
18.69	18.69 37.99 35.71 40.47	40.47 40.47 40.47 40.47 40.47 40.47 40.47 40.51 vf= 0.	35.31 36.34 40.47 - 8 40.47 - 8	40.47 40.47 40.47 40.47 40.56 70.66 70.66 36.34 36.34 36.35 18.69 18.69	18.69 36.75 37.75 40.47	40.47 40.47 40.47 f= 0
1:13	1:13 1:13 1:15 1:14 1:14 1:10			1:11 1:10 1:11 1:11 1:01 1:01 1:01 1:14 1:14		e_nn:mm 1:10 4 0:00 1:10 4 Totburovf=
027 No_date	OPEAK-TpeakDate, 228 No_date .228 No_date .256 No_date .0PEAK-TpeakDate .121 No_date	AREAQPEAK-TPGAKDATE. 47 .121 No_date .38 .354 No_date .85 .474 No_dateAREAQPEAK-TPGAKDATE. 45 .412 No_date .45 .412 No_date .40 .404 No_date .1817E+03, N-OVF I.	. 256 No_date . 295 No_date . 295 No_date . 098 No_date . 098 No_date . 098 No_date		QPEAK-TpeakDate .014 No_date .327 No_date .341 No_date QPEAK-TpeakDate	date date date 0,
.sum .027	QPEAK- .027 .228 .256 QPEAK-	QPEAK- 121 354 474 QPEAK- -474 .412 .040 03, N-OV		. 479 . 479 . 479 . 6479 . 032 . 032 . 032 . 295 . 295 . 295		QPEAK-IPE . 058 No. . 058 No. . 058 No. +00, N-OVF= 15
	AREA .31 2.31 2.62 AREA	! !!	2.62 3.02 3.02 AREA	. 43 . 83 . 83 . 83 	3.35 3.35 3.51 3.51 AREA	AKEA 24 .00 .24 =.0000E
YD 01:85 WP= 45] = 1.00] :p= .25]	DD: NHYD (1.85 (1.81-4mi) SUM= 09:81-5mi	11.86 + 03.81 - 4ms 12.86 + 03.81 - 4ms 20.86 in 10.84	+ 09:81-5m1 SUM= 10:81-5m1 SUM= 01:81-6m1 HYD 01:87 TIMP= 57 Sip= 253 HYD O1:87	SUM= 02: SL-004	STAMP=.02:ITMP=.45 SAMP=.02:ITMP=.45 SAMP=.03:0029=.1.00 PLC: i = .95:p= .25 ADD HYD	7010:NHYD 01:89 em (05:89maj em (07:89min 300E+00, Totovfvol
DESIGN STANDHYD 01:B [XIMP=,02:TIMP=,45] [SLP=3,00:DT= 1.00] [PLC: 1= .95:P= .25]	33.0019	m m	DT= 1.00] (001= 1.00] (0025= 1.00] (001= 1.00] (001= 1.00] (001= 1.00] (001= 1.00] (002= 1.00]	[DT= 1.00] SUM= COMPUTE DUALHYD COMPUTE DUALHYD Major System / Major S	[XIMP=.02:TIMP=.45] [SLP=2.50:0T= 1.00] [PLC=2.50:0T= 1.00] [ADD HYD + 09: 003:0029	3:0031
;	003:	00 00	003	:00 :00	0 0 0	000

40.47 .565		62.82 n/a 62.82 n/a 62.90 n/a 62.94 n/a ovf= 0.4 nrs} 		R.VR.C 65.31 .912 65.31 .0 n/a 00 n/a 65.35 n/a 0vf= 0.hrs} 0vf= 0.hrs} R.V. R.C 65.35 n/a 64.02 n/a
te_bh:mm [.] 1:10	te_hh:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm- te_hi:mm-	te_hh:mm- 1:10 0:00 1:01 , Totbur te_hh:mm-	te_hh:mm- 1:10 1:10 1:10 1:10 0:00 0:00 0:51 te_hh:mm- te_hh:mm- te_hh:mm- te_hh:mm- 1:01 te_hh:mm-	te_hh:mm- te_hh:mm- 1:10 0:00 0:51 , TotDurc te_hh:mm- 1:01
-TpeakDa	-TpeakDat No_date	-TpeakDai No_date No_date No_date -TpeakDai	-Tpeakbat No_date No_date No_date -Tpeakbat No_date	-Tpeakbate No_date No_date No_date No_date Vf= 0, -Tpeakbate No_date No_date No_date No_date
mns)	QPEAK-TP QPEAK-TP QPEAK-TP 	QPEAK- 113 000 000 :+00, N-0v		QPEAK-TPe .041 No. .041 No. .001 No. .008 No. .008 No. E+00, No.VF .008 No. .008 No.
			AREA 	AREA .09 .00 .00 .00 .00 .00 .00 .00 .00 .00
-ID:NHYD- 01:B10 7] 03] 25]	March Marc	25]ID:NHYD- 01:111 06:111ma 07:111mi 07:111mi 02: TotovID:NHYD- 01:112	-10; NHYD10; NHYD 01; 112 01; 112 09; 112; NHYD10; NHYD 06; 112; NHYD10; NHYD10; NHYD 07; 112; NHYD 09; 112; NHYD	HYD HYD HYD 11.114 T= 1.00] 5:p= .25] HYD HYD 01.114 HYD 01.114mi 2316E+02, TOtOM 04:114mi + 09:112mi
STANDHYD .46:TIMP=.5	S	.95: JALHY JALHY System	. 95:11 1. 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAND 30:D 30:D 30:D 30:D 50:E
3:0032 DESIGN [XIMP= [SLP= [PLC:	E E E	m m	3:009PLC: 3:0040	3:0043
:00	00 00	000	00 00 00*	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

919	. C. – n/a n/a n/a	 n/a n/a hrs}	. C n/a n/a n/a . C 919	.C n/a n/a n/a	n/a n/a n/a hrs}	n/a n/a n/a s65 s65		
œ •	~ (.VR .81 .00 .77		65.81 n 65.81 n 65.81 n	65.81 65.81 65.81	٠ ٪ .	40.47 n 40.47 n .00 n .00 n 40.47 n 40.47 n 40.47 n 40.47 n 40.47 n 40.47 n	3. 4. 58 3. 64
'투디 :	e_hh:mm_ 1:10 0:00 1:10	2_hh:mm 1:10 0:00 1:05 TotDurov	e_hh:mmR 1:05 65 1:01 64 1:05 64 e_hh:mmR	1:10 0:00 1:10 1:10	1:10 0:00 1:10 TotDurovf	1:10 1:05 1:10 1:10	hh:mm 1:10 0:00 0:00 1:10 1:10 1:01	
C-TpeakDate	-TpeakDate No_date No_date No_date	-QPEAK-TpeakDate .032 No_date .000 No_date .032 No_date 0. N-Ovf= 0.	(-Tpeakbate No_date No_date No_date (-Tpeakbate	-TpeakDate No_date No_date No_date	. 060 No_date . 060 No_date . 060 No_date . 060 No_date . 00, N-Ovf= 0,	ت ،	-QPEAK-Tpeakbate, 187 No_date .100 No_date .000 No_date .187 No_date .187 No_date .187 No_date .187 No_date .137 No_date	-QPEAK-TpeakDate_hh:mm- -QPZ No_date 1:01 -161 No_date 1:10 -117 No_date 1:10 -318 No_date 1:10 -QPEAK-TpeakDate_hh:mm- -QPEAK-TpeakDate_hh:mm-
QPEAK-	.032 .032 .032	QPEAK- .032 .000 .032 +00. N-OV	.032 .032 .069 .101 QPEAK-	.060 .060 .060	.000 .000 .000 +00, N-0v	.060 .101 .161 QPEAK	QPEAK- 187 .000 .000 .187 .187 .134 .052	. 161 . 161 . 117 . 330 . 014
1		<u>, ii</u>	AREA . 07 . 05 . 72 AREA	AREA .13 .00 .13	.13 .00 .13]=.0000E		AREAC 77 .00 .00 .77 AREAC .16 .11	
-ID:NHYD 01:113 7] 0] 25]	-ID:NHYD 01:113 02:114ma 09:113in	-ID:NHYD 09:113in 02:113ma 04:113mi 01. TotovfVo	10 SUM= 00 1.113mi 11 SUM= 00 1.113mi 12 SUM= 00 1.113mi 13 SUM= 00 1.113mi 14 SUMDHYD 01.11-5 17 SUMDHYD 01.11-5 17 SUMDHYD 01.11-5 17 SUMDHYD 01.11-5	-1D:NHYD 01:11-5 02:113ma 04:11-5in	04:11-5in 06:11-5ma 01:11-5mi 00, Totovfvo	01.11-5mi + 09:113mi 07:11-5mi 1D:NHYD 01:812 57] 57]		- 1D: NHYO
STANDHYD .97:TIMP=.9 .00:DT= 1.0	1.00] SUM=	DUALHYD System / System / System /	70 + + 1.00] SUM= N STANDHYD S=.97:TIMP=.9 =1.00:DT= 1.0	+ + 000] SUM=	DUALHYD . System / . System \ .to=.0000E+	00] SUM TANDHYD 46:TIMP= 50:DT= 1	30] SUM DUALHYD System System System	SUM SUM SUM STANDER TO SUM SUM STANDER TO SUM STANDER TO SUM STANDER TO SUM STANDER TO SUM SUM SUM STANDER TO SUM
:0046 DESIGN [XIMP= [SLP=1	3:0047 ADD HYD [DT= 1.	J3:0048	3:0049-7 ADD HYD [DT= 1. 3:0050 ESIGN S [XIMP=.	3:0051	COMPUTE DUA COMPUTE DUA Major S) Minor S) {MjSyssto	ADD HY S:0054 DESIGN [SILP [PLC:	3:0055 ADD HYD [DT= 1.00 3:0056 COMPUTE DU MAJOF S [Minor S	003:0057 ADD HYD [DT= 1. 003:0058 [XIMP=. [XIMP=. [S1P=2. [S1P=2. [O03:0059 003:0059

			1 • অ অ a	۳ ^۱ . «	/a rs}		, a a	.10	١			- m '		l 	سم مرسسسا	1	ı • ra
		. · ·	,	202		;==	2,2	·LC	-R. C.	22	;==:	0.hr.	n/a n/a n/a	-R. 0.66.	-R.C. n/a n/a n/a		-R.C. n/i
.62	4222	. 4	444	4 > 4	47	48	31		> 4	44	44.	į >	35	>4	7.41 7.51 7.51	0.47 	9.35
ä	188 188 188 188 188	4	4444	1	4	!	35		1		444	또!	4 8 8 6 8 8	14	14441	4	339
	1000	· · ·		01:1 1:10 1:10	· · · · · · · · · · · · · · · · · · ·	123	40 E	:10	- 10	H 21	197	Durc	1:00	E 7	h:mm- 1:10 1:17 1:03	_hh:mm- 1:11	h:mm- 1:10
9		֡֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		e h		ų'	q.	;							Totor	te_h 003	Ę
_date	No_date No_date No_date	ate	AR- peakbate_n 81	late Ikbat Iate	late late	late	No_date No_date	late	kbat	ate	ate	kDat	ate	ikDat late	kpat late late late	date	akbate date
02 1	2222	20	288	No	584 1	28	N S F	ON ON	Tpez	22	222	or Tee3	222	Hpea No_c	P N N T	B1.	g S
.031	330314		181 No_da .181 No_da .443 No_da .134 No_da			370	.341 .760	072	ZAK-072	701	201	N-022	.032 No_date .760 No_date .792 No_date	633 633	PEAK-Tpe 1.633 NO. 863 NO. 1.853 NO. N-OVF=	AREAQPEAK- .75 .660 .LCUL~1\SWMHYMO\H-	PEAK-
mus.	7		 !	90	+03,	· ·	0	, .	9		· ·	+03,	,	Q.4.) "8	MHYN.	18
	. 58 . 58	, , ,	. 71 . 50 . 16	37 37 37		583	51 72 EA	. 28	ZEA	22	225	til i	.28 6.72 6.99	.00 .00	17.00 17.00 16.56 16.2109E+	ZEA	AREA 6.99 Page
4B	777	ξ -	¥	HĀH	ıi.	7	9		A	, ⊢ ₹	₹ - 1]=.3(99	17 17	17 17 16 16	LCUL,	49 P
	2m 4m		ma 12		5m in vfvol	:- E	i E E		1	E L	_ E.	0 1	i E E	2	2 2 2 2 7 VfVol		
814	2~**~~	B15	815 81-7ma 810-12	B151 NHYD B151	81-1 815m Toto	815min 89-14m	81-8 81-1	B16	NHYD 816	81-1 816i	816i	Toto	04:B16min 09:B1-15m 10:B1-16m	R-PHYD	ID:NHYD 01:B-PH2 05:B-PH2m 06:B-PH2m +04. TotovfV	03:81-16m 03:31\DATA\C	NHYD 81-1
07: 03] 03]	06:81 09:89	25] 25]	03::5	02: 02: 02:	22,	488	189	57] 00] 1251	95	525	3355	22,	995	10 10 	-1D:: 01:: 05:: +04:	03:1 3031	H21
1 - 1	+ + #	и 1 и	. , ,	Ξi	~ ~	+	SUM=		!	+ SUM=	\ \ \ !	600E+0	+ SUM=	1 3.7	· \/ @	! ન¤	- 1
TANDHYD 02:TIMP= 00:DT= = .95:p=		TANDHYD 46:TIMP= 50:DT= 1		ıΞ	244		_ !	3TANDHYD .46:TIMP= .50:DT= 1			납분분	34.1		STANDHYD =.60:TIMP= 1.50:DT= i= .95:D=	DUALHYD F System F System F System Sto=.1500	1 8 8	
٠, ١,٠,٠	D 1.00]	0,		1.00] E DUA	or Sys or Sys sSto=.		1.00	01		1.00]	DO L	SSto=	1.00]	STAI = .60 1.50	E DUAL	HYD Ime : M:	: 1
ESIGN [XIMP= [SLP=2 [PLC:	<u>}</u>		D HYD	[DT= 1. 0063 COMPUTE	SrrS	l ≩	DT= 65	DESIGN [XIMP= [SLP=4 [PLC:	066		MA jor	Mjsyss1 068	D HYD	DESIGN S [XIMP=.	MPUTE D Major Minor	O71 AVE HY fname	:0072 SAVE HYD
٠ ٠			ń		₩. ₩. ₩. ₩.	÷	m		m			3:00		 	m	3:0071 SAVE fnat	~
000		3 8	3	003	S	3	00		00	5	3	00		00	00	00	00

----R.V.-R.C.-47.51 n/a 39.35 n/a 45.09 n/a ----R.V.-R.C.-45.09 n/a

							1	. 1	1
	# #	31]	4 4 4	! !	.261	53.20 .567	-R.C n/a n/a n/a 0.hrs}	-R.C.	-R.C. n/a n/a n/a
	不 · · · · · · · · · · · · · · · · · · ·	[103031]	***	step)	24.53.26	3.20	53.20 53.20 53.30	•0	53.20 53.20 53.20
	**************************************	<u>:</u>	**	i o	i	1	1 SSSS 3	: 1	
	**************************************	Numbe	**	ı ti	00:9	h:mm- 6:00	hh:mm 6:00 5 6:00 5 5:34 5	h: mm. 6:00	
	* * *	Project Number:	* * *	(30 min time	<u> </u>	te_h	te_hi	te L	te_h
	**************************************	Proj	-11)	I 3	date date	EAK-TpeakDa 099 No_date	date date date date	EAK-TpeakDa 063 No_date	akba date date date
	[(F	rea E	(be I	No.	No.	T S S S T	No.	N N N N
	ov iis on 1] (Laimperial, 2=metric output)] 5] 5 S	4B]	5320763 Clude design of Artesa Private (Area	SCS Type II	-QPEAK-ipeakDate_nn:mm- .013 No_date 6:00	QPEAK-TpeakDate_hh:mm- .099 No_date 6:00	-QPEAK-TpeakDate .099 No_date .035 No_date .064 No_date	.063 No_date 6:00	QPEAK-TpeakDate_hh:mm. .035 No_date 6:00 .063 No_date 6:00 .098 No_date 6:00
	c ou	bay	ivat	hr s	1	1	F 61		;
_	netri	Forebay	Sa Pr	100yr-12hr r= 93.90]	-AKEA- .26	-AREA- .81	NHYDAREA B2F B2Fmaj .01 B2Fmin .80 TotOvfVol=.5457F+01	-AREA	-AREA- .01 .51
5	, 2 et	Is -	Arte	1000 T=					
	(l=imperial,	[Bridlewood Trails 06-08-2006 [M.Petepiece]	o.f.	storm.001 City of Ottawa: 1 SDUR= 12.00:PTOT=	10:NHYD 01:81 35] 00]	7D-1		, , , , , , , , , , , , , , , , , , ,	-ID:NHYD 03:B2Fmaj 05:B2 06:B2in
	impe	[Bridlewood T 36-08-2006 [M.Petepiece]	sign ***	01 01 01 02 00 01	10.01 18:10.01	.25] ID:NHYD 02:B2F 57] 00]		05:82 05:82	3:82 3:82 5:82 6:82
1		idlev 38-20 Peter	20763 de de	storm.001 City of O SDUR= 12	1.00	25.] <u>15</u> 02 57] [.00]	\\.		7 + #
1	, 5 – 6 , 7 – 8	[B]	53. ****	sto Cit	DHYD TIMP	95:p	.33.p= ALHYD AStem ystem ystem	DHYD TIMP	sum=
*		lame:	, to ;;	ORM Ime = It =	STAN .02:	STAN STAN 00:	S PUTE DUALHYD Major System Minor System	STAN . 46:	
COMMAND	METOUT= NSTORM= NRUN =:	Project Name: Date Modeller	Fied #	KEAD STORM Filename = storm Comment = City [SDT=30.00:SDUR=	U003 DESIGN STANDHYD 0 [XIMP=.02:TIMP=.35] [SLP=2:00:DT= 1.00]	PLC: 1= .95:p= .25 0004 DESIGN STANDHYD [XIMP=.46:TIMP=.57] [SIP=2.00:DT= 1.00] ELC: 1-05	1005	0006	:0007 ADD HYD [DT= 1.00]
RUN: COMMAND# 005:0001	[METOUT= [NSTORM= [NSTORM= [NSTORM=	Project Date Modeller	# License # : 3320763 # Modified to include design of Artesa Private (Area B-11)	25.50-0-0	3 8	PLC: 1= .95: 005:0004 DESIGN STANDHY (XIMP=.46:TIM SLP=2:00:DT=	005:005 COMPUTE D Major Anior	005:0006	-0.4 -0.4
50	*	****	****	90	500	90	00	00	900

			R.C n/a n/a R.C .567 .767 n/a
		2000 2000 2000 2000 2000 2000 2000 200	
0vf= 53 0vf= 53 53 53 53 53	S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		524 504 504 504 504 504 504 504 504 504 50
hh:mm- 6:00 0:00 0:00 0:33 0:00 6:00 6:00	E000 E00 m 2 Em00 E0		##: 000:9
TpeakDate_ No_date No_date No_date 0, T TpeakDate_ No_date No_date No_date No_date No_date No_date No_date No_date No_date No_date No_date No_date No_date No_date	kbate- late late late late late late late late	date eate eate eate eate eate eate eate	Tpeakbate_ No_date No_date No_date No_date No_date No_date No_date
QPEAK . 098 . 090 . 040 . 040 . 013 . 013 . 013 . 062	00000000000000000000000000000000000000	QPEAK- 0006 0006 0033 0033 0033 0052 0052 0052 0052	QPEAK- . 017 . 230 . 237 QPEAK- . 059 . 033
48-AP.Sum 			AREA 2.65 2.65 2.96 2.96 AREA
HYD 2-im 2-im 2-im 2-im 0-tov fv 1-1 2-im 1-2-im 1-2-im 1-2-im 1-2-im 1-2-im 1-2-im	-115: 001: 002: 003: 003: 001: 001: 003: 003: 003: 003	2011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01.85 0.0.81-4mi 00.81-5mi 10.81-5mi 01.86 01.86 01.86 01.86 01.86 01.86 01.86 03.81-4ma
System System System System Co=.3578 Co=.3578 Co=.3578 Co=.758	00] SUM00] SUM00] SUMSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystemSystem	00] SUM= UNALHYD System System System Co=.1140E+ 00] SUM= CO=.1140E+ 100] SUM= 100]	00] SUM= STANDHYD 46:TIMP=.5 16:TIMP=.5 16:TIMP=.7
005:0008 COMPJOT MAJOT MA	5:0017 5:0017 5:0017 5:0017 6:014		005:0019 ADD HYD ADD HYD 005:0020 EXIMP- [XIMP- [SLEP-4] [SLEP-4] [PLC: 005:0021 ADD HYD

n, a n, a n, a n, a n, a n, a n, a n, a	-R.C		-K.C - N.a - R.C - N.a - N.a 0. hrs - R.C - N.a
53.20 53.20 53.20 53.20 53.20 1.8.2 R 44.53 53.20 53.20 53.20	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	. V 6 . 0 . 0 . 0	53.20 53.20 53.20 53.20 53.20 53.20 53.20 53.20
6:00 53 6:00 53 6:00 53 7:33 53 7:01Durovf= 7:33 53 6:00 47 6:00 48 6:00 48	te_hh:mmR.VR 6:00 53.20 6:00 53.20 6:00 53.20 6:00 53.20 6:00 53.20 7. Totburrovf= 0. 1 Totburrovf= 0.		6:00 6:00 6:00 6:00 6:00 6:00 6:00 6:00
No_date TpeakDate. No_date No_date No_date TpeakDate. TpeakDate No_date No_date No_date No_date No_date	PEAK-Tpeakbate. 050 No_date 050 No_date 057 No_date 097 No_date 097 No_date 097 No_date 032 No_date 032 No_date 032 No_date 1, no_date 032 No_date 030 No_date 207 No_date 208 No_date 009 No_date	UPAK-TPEAKDATE, 310 NO_date 310 NO_date 310 NO_date 029 NO_date	eakbate
0.092 0.092 0.092 0.050 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	PEAK . 0507 . 097 . 097 . 097 . 0032 . 309 . 309 . 609	OPER TPERKORT. 100 No_date 130 No_date 130 No_date OPEAK-TPERKDAT. OPEAK-TPERCORT. OPEAK-TPERCORT. OPEAK-TPERCORT. OPEAK-TPERCORT. OPEAK-TPERCORT.	Olykar-peakkare 000 No_date 000 No_date 000 No_date 007 No_date 000 No_date 007 No_date 0 No_date 0 No_date
B-AP.SI 51 51 51 64 62349E+0 746 746 746 746 746 746 746 746 746 746	AREA 38 .04 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	EA 24 24 24 31 31	231 00 31 31 31 00 00 64-0 18 18 19 19
86fin NHYD 86fin Bell-ima Romin 10ctovFvol= KHYD 66min Bl-5mi Bl-5mi Bl-5mi Bl-5mi Bl-6mi RHYD 86Min 18-6min Bl-6min RHYD		7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	10035AK ADD HYD ADD HYD 101810 1034
02.86in 02.86in 02.86in 02.86in 02.86in 03.86in 04.86min 04.86min 04.86min 04.86min 04.86min 04.86min 04.86min 04.86min 05.87 04.86min 05.87 04.87 04.87 04.87 04.87 0.00]		10:188 09:81-7m 09:81-7m 09:81-7m 09:81-8m 00:89 00:89 05:89maj 07:89maj 07:89maj 07:89maj 07:89maj 07:89maj 07:89maj 07:89maj 07:89maj	1018170 0018170 0018170 0018170 0018170 1-1018170 0618170 0618170
T= 1.00] SUM= 2	+ 00] SUM= DUALHYD System T Sy	ANDHYD 6:TIMP=. 0:95:p= 0:95:p= 0:05:p= 0:0000000000000000000000000000000000	0] SUM= UALHYD System / System / O=.0000E
[DT= 1.00] SUM= 02:86 005:0022	005:002-0	OUS: OUZ-2	005:0035 MAD HYD [DT 1.00] 005:0034 COMPUTE DUA MAJOR SY MINOR S
005:0022- COMPL M	005:0025-CC 005:0025-CC 005:0026-CC 005:0026-CC 005:0028-CC 005:0028-CC 005:0028-CC 005:0028-CC 005:0028-CC 005:0028-CC 005:0028-CC 005:0028-CC 005:0028-CC	0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	005:0035

44. *	k.C. 7 n/a 0 n/a 7 n/a 0.hrs -R.C. 8 .907	7. 7. 7. 7. 7.		-8.C -8.C	-R.C n/a n/a 0.hrs} -R.C n/a n/a n/a -R.C	4, E E E E E
56.52	82.5 82.5 82.5 82.6 85.1	85.18 85.18 85.18 85.18	85.1. 85.1. 84.0.	> 0 > %	85.84 85.84 85.88 85.88 85.88 84.02 84.28 86.49	86.49 86.49 86.49 86.49
000	334 000 000 000 000	E000E0	32 urrovf 332 34 34	00	31 31 31 31 34 34	
- 14.65. 14.65.	145 500 E	E000E0	125.55.44 15.55.55	E	= 0000 B= 0000 E= 00000 E= 0000 E= 0000 E= 00	
	kvate late 0, kbate late	CDate ate ate ate cDate	of the street of	kDate la.005 kDate late	akbate date date 0, date date date date	Date tte tte Oate Ite
No d	No. de la	No de	.000 No_date .021 No_date .021 No_date 0, QPEAK-TpeakDate .021 No_date .061 No_date	Tpeak TTpeak No_d	2PEAK-TPeak 0118 No_da 000 No_da 008 No_da 008 No_da 2PEAK-TPeak 008 No_da 001 No_da 2PEAK-TPeak 011 No_da	TpeakDat No_date No_date No_date TpeakDat No_date No_date
.029 .066 PEAK .051	PEAK- 0001 0001 0011 0011	PEAK- .061 .061 PEAK-	000 021 021 040 061	PEAK- .000 do/H- PEAK- .018	PEAK- 018 000 008 008 061 061	2004 4 2004 4 2004 4 2004 4
mns.	0	0	00	HW I		40
~ ~ ~ .	r	AREA- .30 .30 .30	.00 00000E AREA- .30 .26	AKEA- .00 .00 L~1\si AREA- .09	AREA- .09 .00 .09 .09 .09 .56 .65	AREA- .07 .07 .07 AREA- .07
	0]=.		<u>-</u> -	FICO I	0]=.(
T T T T T T T T T T T T T T T T T T T	Column	YD 2 1ma 2in YD 2in	Zma Zmi Zmi Zmi	Zma Zma ina ina YD	NHYD 1114 1114ma 1114mi 1014mi 112mi 112mi 114mi 114mi 113mi	NHYD 1114ma 1114ma 113in NHYD 113ma 113ma
7:89 8:89 1:11 1:11	7 111 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1 H H H H H H H	111 - 12 - 12 - 12 - 12 - 12 - 12 - 12	D:NHY 2:112 31/DA: ROM1 D:NHY 1:114	0424 -040704	
100. 001 001 001 001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100010	+ + + + 00	1030 1030 1030 1030 100]	! 9! !	1.283
S I Q W L d	ALHYD Stem Stem 1.1670 TIMP TIMP 95:p=	SUM	System / System / System / Solone.6909E-	MAD HYD	LHYD Stem / stem / i.1806e	IMP=.9
0 540 "	3000 500	00] DUAL		X11588	120001 218	97:TIMP= 00:DT= 1 = .95:P= 00] SUN DUALHYD System System
T 1. CGN S CGN S CRP≡.	COMPUTE D Major Major Major Major (MjSysst 0038 DESIGN ST [XIMP=.9	HYD #YD,	Major Minor (Mjsyss 0041 ADD HYD	AVE HYD fname: I remark: 0043 ESIGN S' [SLP=1;	Major Major Minor Minor (Mjsyss) (Afs (DD HYD (DT= 1,0046	[XIMP=.9 [SLP=1.0 [PLC: j= .0047 ADD HYD [DT= 1.0 .0048 COMPUTE D Major Minor
••	CONT.	ADD 10035	(M):	SAVE fna :0043 DESI [SL	:0044 COMPUT Maj Min {Misy :0045 ADD HY [DT= :0046 DESIGN	COMP
9005	n 10	500	0005:		300	005:

	<u>م</u> مخ	0.173 0.173 0.173 10,43	ن څوووو	0.hrs}	_ h/a R.C 261	^x x ₂	-R.C n/a
86.49 84.28 84.49 84.49 86.49	86.49 86.49 86.49 86.49		2002	2005	65.90 		R.V. 53.20
6:00 5:34 6:00 hh:mm		Totburovf= hh:mm	60000000000000000000000000000000000000	6:00 53 6:00 53 5:33 53 Toturovf= 6:00 843 6:00 843	00:90 6:00 mh:mm 6:00	-hh:mm 6:00 6:00 6:00 6:00 1-hh:mm	hh:mm 6:00
No_date No_date No_date TpeakDate No_date	-TpeakDate No_date No_date No_date -TpeakDate No_date	No_date No_date No_date No_date No_date Tpeakbate	No_date No_date No_date No_date No_date	<u> </u>	Z8 No_date .PEAK-Tpeakbate .009 No_date .QPEAK-Tpeakbate .020 No_date	-QPEAK-TpeakDate_ .009 No_date .020 No_date .228 No_date .256 No_date .256 No_date .088 No_date	QPEAK-TpeakDate_ .088 No_date
.014 .069 .083 .083	QPEAK- . 027 . 027 . 027 . 027 . 027	.027 QPEAK QPEAK .027 .027 .083	. 093 . 000 . 000 . 000	9 !		.009 .009 .020 .228 .256 QPEAK-	QPEAK- .088 23
3 N S N S N S	. AREA . 13 . 13 . 13 . 13	<u> </u>	AREA	AKEA- .77 .71 .71 =.2982E AREA- .85	2.11 .17 .17 AREA		AREA 71 Page
	-ID:NHYD 01:11-5 02:113ma 04:11-5in -ID:NHYD 04:11-5in	(01:11-5m; 01:11-5m; 01:11-5m; 01:11-5m; 01:11-5m; 01:11-5m; + 09:113m; M= 07:11-5m; M= 07:11-5m;	01:812 57] 57] .25] .25] .1812 01:812 06:11-5ma 06:11-5ma		## 09189-17# ID 9189-17# 30] 30] 25] 1D 1140 25] 25] 25]	-ID:NHYD 06:813 07:814 09:89-12m 08:89-14m -ID:NHYD 01:815	-ID:NHYD 01:B15
ADD HYD + 07 FDT = 1.00] SUM = 05 005:0050	[,00] SU	or system or system ssto=.000	DESTGN STANDHYD EXTROHYD EXTROHYD EXTRAPL 57 [SLP=1, 50:DT= 1,00] [SLP=1, 50:DT= 1,00] SUM=	HYD tem (2710E	DT= 1.00 SUM= 0 10058	1.00] SUI N STANDHYD P = 46:TIMP E = 3.50:DTE : i = .95:p:	:0062
A 005:0	005:00 A 005:00	005:00 A 0:300	005:00 A	005:00 005:00 A	005:00 005:00	005:0060- ADD H ADD H 005:0061- DESIG EXIM	005:0

05:815-12 06 041 No-date 6:00 53:20 n/ 02:81511 81 0.38 0.04ate 6:00 53:20 n/ 02:81511 81 0.138 No-date 6:00 53:20 n/ 02:81511 81 0.138 No-date 6:00 53:20 n/ 04:815nn 81 0.138 No-date 6:00 53:20 n/ 04:815nn 7.36 0.05 No-date 6:00 53:20 n/ 04:815nn 7.36 0.05 No-date 6:00 53:20 n/ 04:815nn 7.36 0.05 No-date 6:00 57.11 n/ 09:91-14m 7.36 0.05 No-date 6:00 77.11 n/ 09:91-14m 7.36 0.05 No-date 6:00 77.11 n/ 09:91-14m 7.36 0.05 No-date 6:00 77.11 n/ 09:11-15m 7.36 0.05 No-date 6:00 77.12 n/ 09:11-15m 7.36 0.05 No-date 6:00 77.13 n/ 09:11-15m 7.36 0.03 No-date 6:00 73.20 n/ 00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		4		R1-7m	4B-AP.S	mu:	o teb	9.00	,	ì
COMPOUTE DUALHYO	[DT= 1.	S S	02:	B10-12 B15in	8.08	.041	No_date	000	100	
Windows Cape State Other S	COMPUTE DUA	HYD tem /	355	NHYD B15in B1-15m	AREA .81 .10	QPEAK- .192 .138	-TpeakDate No_date No_date		× 6.6	~
The control of the	Minor Sy {MjSysSto= .0064	tem \ 5140E+0	2,7	B15min TotovfV NHYD	.71 280 8FA	.052 02, N-0\ 0PFAK-	No_date /f= 1, . -Tneakhate	:: B ::	3.2	
DT=1.00 SUM= 0181-8m	ADD HYD	+	94		71.	.052	No_date	5.00	2	22
10055	[DT= 1.	+ SUM=	96:		96.	. 625	No_date No_date	00:9	0,∞	25
STANDARY	:0065 DESIGN ST	-	85		REA . 28	QPEAK- .035	·TpeakDate. No_date	_hh:mm 6:00	>~	.56
100 100	50 =	1.0								
The column The	.0066		96	NHYD	AREA	QPEAK- 035	akbat	_hh:mm	>.~	٠ <u>٠</u>
1067	[DT= 1.	+ SUM=	03:	B1-15m B16in	.38	173	date	00:9	222	n/a n/a
Major System (03:81-15m	: 0067	Q.A.F	ID:	NHYD B16in	AREA	QPEAK- 173	akbat	hh:mm 6:00	>.2	2.5
March Marc	Major	rem /	03:	B1-16m	.07	139	date	00:9	2.2	n/a
10068———————————————————————————————————	(Mjsyss	<u>,</u> ‡	2,7	Blemin TotovfV	=.3612E+	2, .03, P-0	gate 1,	5:44 rotDurov	53.2	ᅸ
Designation + 09:01-15m 7.36 625 No.date 6:00 51.83 No.date 6:00 62.33 No.date 6:00 62.20 No.date 6:00 6:0	:0068		101	NHYD R16min	AREA	QPEAK- 032	akbat	_hh:mm 5:44	> ~	~ 'c
10.069	[DT= 1.00]	+ SUM=	100	81-15m 81-16m	7.36	.625	o_date	000:00:00:00:00:00:00:00:00:00:00:00:00	8.6	n/a /a
Extract STANDHY DITB-PHZ L7.00 C.411 NO_date DitB. Extract STANDHY DITB-PHZ L7.00 C.411 NO_date DitB. Extract S.017 = 1.00] PLC: i = .05:p = .25 DOYO	6900:		100	NHYD	AREA	QPEAK-	peakDat	hh:mm-	2.	.00
COMPUTE DUALHY COMP	XIMP=.60:TJ		- - -	7H4-9	77.00	7.4TL	o_date	00:00	, y	Ò
UVO.0————————————————————————————————————	FIC	5: p= .2	2]				-			
Major system (05:8-PH2m . 00 . 000 No.date 0:00 . 00 Minor System (05:8-PH2m . 17.00 . 1.853 No.date 0:00 . 00 Misosstoe5ystem (05:8-PH2m . 17.00 . 1.853 No.date 0:07 . 00 . 00 Totourovf	COMPUTE		25.	NHYD B-PH2	AREA 17.00	QPEAK- 2.411	peakDat(o_date	WE:UU-	> ო	×
Marical System 1,000 1,0	r Sys		05:	B-PH2m	99.	.000	0 (0:00	0.4	n/a
10071——————————————————————————————————	MjSysSto=.	5440E+0	3.6	Totovfvo	I=.0000E+	00, N-0v	= 0,	>	24.43	
fname: M: 2003/103031\DATA\CALCUL-1\SWMHYWO\H-B1-16m.005 remark: Phase 1 Major System from Area 0072	5:0071 SAVE HYD		03:1	NHYD B1-16m	AREA	QPEAK- .139	peakDate o_date		8.V. 3.20	~
0072———————————————————————————————————	rname :M: remark:Ph		031 or (\DATA\CAU System fi	_CUL~1\SWI _om Area	«НҮМО\Н- з	1-16m.00	_ :		
Thame: The state of the state o	5:0072 SAVE HYD		1000	NHYD B1-16m	7.67	QPEAK- .657	peakDate o_date		R.V. 1.88	7.Z
10073	remark:Ph	ΞĘ	00.	ΨĐ	-CUL~1\SWI	48 48	.nomarra	. :		
[DT= 1.00] SUM= 09:UT-Em	:0073	i	196	NHYD	17.00	1.853	TpeakDat No_date		> 4 (-R.C.
0.074	[DT= 1.	+ H	1100	BI-lom ULT-Bm	7.67	2.510	No_date No_date		×Η	n/a n/a
remark:Ultimate Minor System to Fore S:0002	5:0074 SAVE HYD fname :M:\2	3/103	1201 031 031	1 = 9	ARE/ 24.67 CUL~1	QPEAK- 2.510 MHYMO\H-	TpeakDate No_date .ULT-Bm.00	 9:	> -1	٠ <u>></u>
FINIS	remark:Ulti 5:0002	8 :	nor	System	o Fore	y 4B				!
1	FINIS									
	T CONTINUE	/ CHONN	:)						

Bridlewood 3 Post-Development Model Parameters

Area ID	Catchment		Percent	No	Flow Path	Equivalent	Average
	Area	Coefficient	Impervious	Depression	Length	Width	Slope
	(ha)	(c)	(%)	(%)	(m)	(m)	(%)
DIR-01	0.86	0.54	46%	30%	44.4	193.5	0.5%
DIR-02	2.16	0.65	64%	20%	44.4	486.0	0.5%
DIR-03	1.50	0.65	64%	%09	44.4	337.5	0.5%
DIR-04	1.66	0.65	64%	%09	44.4	373.5	0.5%
DIR-05	0.68	0.65	64%	%09	44.4	153.0	0.5%
DIR-06	1.15	0.65	64%	%09	44.4	258.8	0.5%
DIR-07	1.09	0.65	64%	%09	44.4	245.3	0.5%
DIR-08	1.86	0.41	30%	%09	44.4	418.5	0.5%
DIR-09	1.20	0.65	64%	%09	44.4	270.0	0.5%
DIR-10	0.61	0.65	64%	%09	44.4	137.3	0.5%
DIR-11	1.18	0.65	64%	%09	44.4	265.5	0.5%
TOTAL	42.05						

Bridlewood 3 HGL Elevations

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr	Highest Pipe Obvert @ MH	WL Above Obvert (100yr
	(m)	(m)	(m)		(m)
MH100	94.53	95.87	95.08	95.13	-0.05
MH102	93.70	96.93	95.08	95.04	0.04
MH104	93.82	97.06	95.36	95.10	0.26
MH106	93.89	97.12	95.49	95.17	0.32
MH108	94.01	97.23	95.57	95.39	0.18
MH110	94.20	97.31	95.60	95.51	0.09
MH112	94.42	97.38	95.61	95.58	0.03
MH114	94.73	97.48	95.62	95.66	-0.04
MH116	95.10	97.49	95.62	95.87	-0.25
MH118	95.16	97.47	95.62	95.93	-0.31
MH120	95.41	97.83	95.81	96.18	-0.37
MH122	95.00	97.48	95.61	95.85	-0.24
MH124	94.94	97.48	95.61	95.82	-0.21
MH126	94.63	97.48	95.61	95.70	-0.09
MH200	95.01	97.60	95.61	95.86	-0.25
MH202	95.28	97.74	95.68	96.06	-0.38
MH300	93.54	97.30	94.72	94.88	-0.16
MH302	94.41	97.52	94.72	95.04	-0.32
MH304	94.48	97.45	94.78	95.08	-0.32
MH306	94.73	97.40	95.49		
MH308	94.68	97.44	95.49	95.48 95.46	0.01
	94.66				
MH400 MH500		97.55 97.37	95.36	95.44	-0.08
	94.81		95.57	95.59	-0.02
MH502	94.87	97.44	95.57	95.62	-0.05
MH504	94.99	97.58	95.60	95.87	-0.27
MH506	94.93	97.53	95.60	95.81	-0.21
MH600	95.26	97.36	95.68	95.81	-0.13
MH602	95.03	97.70	95.59	95.63	-0.04
MH604	94.62	97.50	95.59	95.45	0.14
MH606	94.14	97.61	95.59	95.34	0.25
MH608	94.10	97.28	95.58	95.30	0.28
MH700	94.25	97.70	95.61		11.41
MH800	94.54	97.08	95.60	95.44	0.16
MH802	94.66	97.27	95.61	95.52	0.09
MH804	94.71	97.37	95.62	95.69	-0.07
MH806	95.03	97.54	95.62	95.81	-0.19
MH808	95.10	97.49	95.62	95.84	-0.22
MH810	95.40	97.70	95.70	96.00	-0.30
MH812	95.05	97.83	95.60	96.18	-0.58
MH814	95.36	97.89	95.76	96.06	-0.30
MH816	95.30	97.78	95.70	96.23	-0.53
MH818	95.21	97.77	95.62	95.94	-0.32
MH820	94.91	97.64	95.62	95.84	-0.22
MH822	94.89	97.52	95.62	95.82	-0.20
MH824	94.86	97.55	95.62	95.79	-0.17
MH900	94.99	97.56	95.60	95.84	-0.24
MH902	94.90	97.57	95.60	95.75	-0.15
MH904	94.67	97.39	95.60	95.67	-0.07
MH906	94.64	97.44	95.60	95.64	-0.04

Bridlewood 3Design Storm Time Series Data 4-hour Chicago Design Storms

C25mm-4.stm		C2-	C2-4.stm		C5-4.stm	
Duration	Intensity	Duration	Intensity	Duration	Intensity	
min	mm/hr	min	mm/hr	min	mm/hr	
0:00	0	0:00	0	0:00	0	
0:10	1.34	0:10	1.98	0:10	2.49	
0:20	1.49	0:20	2.23	0:20	2.77	
0:30	1.69	0:30	2.58	0:30	3.14	
0:40	1.96	0:40	3.06	0:40	3.62	
0:50	2.33	0:50	3.81	0:50	4.31	
1:00	2.91	1:00	5.1	1:00	5.37	
1:10	3.91	1:10	7.91	1:10	7.19	
1:20	6.1	1:20	19.04	1:20	11.14	
1:30	14.53	1:30	76.81	1:30	26.25	
1:40	58.72	1:40	23.64	1:40	104.19	
1:50	17.11	1:50	11.91	1:50	30.86	
2:00	8.32	2:00	7.98	2:00	15.15	
2:10	5.5	2:10	6.03	2:10	10.07	
2:20	4.13	2:20	4.87	2:20	7.58	
2:30	3.32	2:30	4.1	2:30	6.11	
2:40	2.79	2:40	3.55	2:40	5.14	
2:50	2.41	2:50	3.14	2:50	4.45	
3:00	2.12	3:00	2.82	3:00	3.93	
3:10	1.9	3:10	2.57	3:10	3.53	
3:20	1.73	3:20	2.35	3:20	3.21	
3:30	1.58	3:30	2.18	3:30	2.94	
3:40	1.46	3:40	2.03	3:40	2.72	
3:50	1.36	3:50	1.9	3:50	2.53	
4:00	1.27	4:00	1.79	4:00	2.37	

Bridlewood 3Design Storm Time Series Data 4-hour Chicago Design Storms

C100	1 otro	C100 4	200/ atms
C100-4.stm			·20%.stm
Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr
0:00	0	0:00	0
0:10	4.07	0:10	4.88
0:20	4.54	0:20	5.45
0:30	5.14	0:40	7.14
0:40	5.95	0:50	8.51
0:50	7.09	1:00	10.62
1:00	8.85	1:10	14.28
1:10	11.9	1:20	22.25
1:20	18.54	1:30	53.03
1:30	44.19	1:40	214.27
1:40	178.56	1:50	62.45
1:50	52.04	2:00	30.37
2:00	25.31	2:10	20.08
2:10	16.73	2:20	15.07
2:20	12.56	2:30	12.11
2:30	10.09	2:40	10.16
2:40	8.47	2:50	8.78
2:50	7.32	3:00	7.75
3:00	6.46	3:10	6.95
3:10	5.79	3:20	6.3
3:20	5.25	3:30	5.78
3:30	4.82	3:40	5.34
3:40	4.45	3:50	4.97
3:50	4.14	4:00	4.66
4:00	3.88		

Bridlewood 3Design Storm Time Series Data SCS Design Storms

S2-12.stm		S5-1	S5-12.stm		S100-12.stm	
Duration	Intensity	Duration	Intensity		Duration	Intensity
min	mm/hr	min	mm/hr		min	mm/hr
0:00	0.00	0:00	0		0:00	0
0:30	1.27	0:30	1.69		0:30	2.82
1:00	0.59	1:00	0.79		1:00	1.31
1:30	1.10	1:30	1.46		1:30	2.44
2:00	1.10	2:00	1.46		2:00	2.44
2:30	1.44	2:30	1.91		2:30	3.19
3:00	1.27	3:00	1.69		3:00	2.82
3:30	1.69	3:30	2.25		3:30	3.76
4:00	1.69	4:00	2.25		4:00	3.76
4:30	2.29	4:30	3.03		4:30	5.07
5:00	2.88	5:00	3.82		5:00	6.39
5:30	4.57	5:30	6.07		5:30	10.14
6:00	36.24	6:00	48.08		6:00	80.38
6:30	9.23	6:30	12.25		6:30	20.47
7:00	4.06	7:00	5.39		7:00	9.01
7:30	2.71	7:30	3.59		7:30	6.01
8:00	2.37	8:00	3.15		8:00	5.26
8:30	1.86	8:30	2.47		8:30	4.13
9:00	1.95	9:00	2.58		9:00	4.32
9:30	1.27	9:30	1.69		9:30	2.82
10:00	1.02	10:00	1.35		10:00	2.25
10:30	1.44	10:30	1.91		10:30	3.19
11:00	0.93	11:00	1.24		11:00	2.07
11:30	0.85	11:30	1.12		11:30	1.88
12:00	0.85	12:00	1.12		12:00	1.88

Bridlewood 3Design Storm Time Series Data SCS Design Storms

S2-24.stm		S5-2	S5-24.stm		S100-24.stm	
Duration	Intensity	Duration	Intensity	Duration	Intensity	
min	mm/hr	min	mm/hr	min	mm/hr	
0:00	0	0:00	0	0:00	0	
1:00	0.72	1:00	0.44	1:00	0.6	
2:00	0.34	2:00	0.44	2:00	0.75	
3:00	0.63	3:00	0.81	3:00	1.39	
4:00	0.63	4:00	0.81	4:00	1.39	
5:00	0.81	5:00	1.06	5:00	1.81	
6:00	0.72	6:00	0.94	6:00	1.6	
7:00	0.96	7:00	1.25	7:00	2.13	
8:00	0.96	8:00	1.25	8:00	2.13	
9:00	1.3	9:00	1.68	9:00	2.88	
10:00	1.63	10:00	2.12	10:00	3.63	
11:00	2.59	11:00	3.37	11:00	5.76	
12:00	20.55	12:00	26.71	12:00	45.69	
13:00	5.23	13:00	6.8	13:00	11.64	
14:00	2.3	14:00	2.99	14:00	5.12	
15:00	1.54	15:00	2	15:00	3.42	
16:00	1.34	16:00	1.75	16:00	2.99	
17:00	1.06	17:00	1.37	17:00	2.35	
18:00	1.11	18:00	1.44	18:00	2.46	
19:00	0.72	19:00	0.94	19:00	1.6	
20:00	0.58	20:00	0.75	20:00	1.28	
21:00	0.81	21:00	1.06	21:00	1.81	
22:00	0.53	22:00	0.68	22:00	1.17	
23:00	0.48	23:00	0.63	23:00	1.07	
0:00	0.48	0:00	0.63	0:00	1.07	

Appendix E

Erosion and Sediment Control, F-1005

S.P. No: F-1005

Date: March 2016

Page 1 of 2

EROSION AND SEDIMENT CONTROL

General

The Contractor acknowledges that surface erosion and sediment runoff resulting from his construction operations has potential to cause a detrimental impact to any downstream watercourse or sewer, and that all construction operations that may impact upon water quality shall be carried out in a manner that strictly meets the requirements of all applicable legislation and regulations.

As such, the Contractor shall be responsible for carrying out his operations, and supplying and installing any appropriate control measures, so as to prevent sediment laden runoff from entering any sewer or watercourse within or downstream of the Working Area.

The Contractor acknowledges that no one measure is likely to be 100% effective for erosion protection and controlling sediment runoff and discharges from the site. Therefore, where necessary the Contractor shall implement sequential measures arranged in such a manner as to mitigate sediment release from the construction operations and achieve specific maximum permitted criteria where applicable. Suggested on-site measures may include, but shall not be limited to, the following methods: sediment ponds, filter bags, pump filters, settling tanks, silt fences, straw bales, filter cloths, catch basin filters, check dams and/or berms, or other recognized technologies and methods available at the time of construction. Specific measures shall be installed in accordance with the requirements of OPSS 805 where appropriate, or in accordance with manufacturer's recommendations.

Where, in the opinion of the Contract Administrator or Regulatory Agency, the installed control measures fail to perform adequately, the Contractor shall supply and install additional or alternative measures as directed by the Contract Administrator or Regulatory Agency. As such, the Contractor shall have additional control materials on site at all times which are easily accessible and may be implemented by him at a moment's notice.

Before commencing the Work, the Contractor shall submit to the Contract Administrator six copies of a detailed Erosion and Sediment Control Plan (ESCP). The ESCP will consist of a written description and detailed drawings indicating the on-site activities and measures to be used to control erosion and sediment movement for each step of the Work.

Contractor's Responsibilities

The Contractor shall ensure that all workers, including sub-contractors, in the Working Area are aware of the importance of the erosion and sediment control measures and informed of the consequences of the failure to comply with the requirements of all Regulatory Agencies and the specifications detailed herein.

The Contractor shall periodically, and when requested by the Contract Administrator, clean out accumulated sediment deposits as required at the sediment control devices, including those deposits that may originate from outside the construction area. Accumulated sediment shall be removed in such a manner that prevents the deposition of this material into any sewer or watercourse and avoids damage to the control measure. The sediment shall be removed from the site at the Contractor's expense and managed in compliance with the requirements for excess earth material, as specified elsewhere in the Contract.

The Contractor shall immediately report to the Contract Administrator any accidental discharges of sediment material into either the watercourse or the storm sewer system. Failure to report will be constitute a breach of this specification and the Contractor may also be subject to the penalties imposed

S.P. No: F-1005

Date: March 2016

Page 2 of 2

EROSION AND SEDIMENT CONTROL

by any applicable Regulatory Agency. Appropriate response measures, including any repairs to existing control measures or the implementation of additional control measures, shall be carried out by the Contractor without delay.

The sediment control measures shall only be removed when, in the opinion of the Contract Administrator, the measure or measures, is no longer required. No control measure may be permanently removed without prior authorization from the Contract Administrator. All sediment and erosion control measures shall be removed in a manner that avoids the entry of any equipment, other than hand-held equipment, into any watercourse, and prevents the release of any sediment or debris into any sewer or watercourse within or downstream of the Working Area. All accumulated sediment shall be removed from the Working Area at the Contractor's expense and managed in compliance with the requirements for excess earth material, as specified elsewhere in the Contract.

Where, in the opinion of either the Contract Administrator or a Regulatory Agency, any of the terms specified herein have not been complied with or performed in a suitable manner, or at all, the Contract Administrator or Regulatory Agency has the right to immediately withdraw its permission to continue the work but may renew its permission upon being satisfied that the defaults or deficiencies in the performance of this specification by the Contractor have been remedied. No compensation will be owed or paid to the Contractor for the withdrawal of permission to do the work resulting from non-compliance with the requirements of this specification or the Regulatory Agencies.

In addition to any other remedy and/or penalty provided by law, where there has been default or non-compliance with any of the terms specified herein and the Contractor refuses to perform or rectify same within forty-eight (48) hours of the receipt of the written demand of the Contract Administrator to do so, the Owner is hereby entitled to enter upon the Working Area and either complete the work in conformity with the Contract or have the work done that it considers necessary to complete the Work to its intended condition, whichever, in the Owner's sole opinion, is the most reasonable course of action. The Contractor and the Owner further agree that the costs incurred for any such work shall be retained by the Owner from monies otherwise due to the Contractor, should any such monies be available.

Basis of Payment

Payment at the contract Lump Sum price for the item "Erosion and Sediment Control" shall be full compensation for the plan preparation and implementation of the erosion and sediment control requirements for the site, and shall include all labour, equipment and materials to supply, construct, monitor and maintain all erosion and sediment control measures.

Payment shall be based upon the following schedule:

- a) 25% upon satisfactory submission of the ESC Plan and installation of the control measures;
- b) 50% pro-rated into equal payments over the term of the contract; and,
- c) 25% upon successful completion and removal of the ESC Plan protection measures.

This payment schedule may only be modified as agreed upon in writing between the Contractor and the Contract Administrator.

Warrant: For work which is not in close proximity to watercourses or environmentally sensitive areas