

5969 Fernbank Road

TIA Strategy Report, Revision 2

5969 Fernbank Road

TIA Strategy Report

prepared for: Thomas Cavanaugh Construction Limited 9094 Cavanaugh Road Ashton, ON KOA 1B0

September 19, 2018

476654 - 01000

Table of Contents

	I	
2. DESCRIPTION O	DF PROPOSED DEVELOPMENT	1
2.1. PROPOSED	D DEVELOPMENT	1
3. EXISTING COND	DITIONS	3
	D NETWORK AN AND CYCLING NETWORK	
	STUDY AREA INTERSECTION INTERSECTION VOLUMES	
	ROAD SAFETY CONDITIONS	
4. PLANNED COND	DITIONS	6
	STUDY AREA TRANSPORTATION NETWORK CHANGES	
	REA DEVELOPMENTS	
5. TIME PERIODS .		6
6. HORIZON YEARS	S	7
	GENERATED TRAVEL DEMAND	
8.1. TRIP GENE	ERATION	7
8.1.1. Mode	e Shares	8
8.2. TRIP DISTR	RIBUTION	9
8.3. TRIP ASSIG	GNMENT	9
9. BACKGROUND	NETWORK TRAVEL DEMANDS	9
9.1. OTHER AR	REA DEVELOPMENT	
9.2. FUTURE BA	ACKGROUND TRAFFIC VOLUMES	11
10. DEMAND RAT	TONALIZATION	11
10.1. DESCRI	IPTION OF CAPACITY ISSUES	11
10.1.1. 2020	0 Future Background Conditions	
	5 Future Background Conditions	
11. DEVELOPMEN	NT DESIGN	
11.1. DESIGN	I FOR SUSTAINABLE MODES	
	IREETS NETWORK	
12. BOUNDARY ST	TREET DESIGN	
	RSECTION DESIGN	
13.1. LOCATIO	ON AND DESIGN OF ACCESS	14
	ECTION CONTROL	
13.3. INTERSE	ECTION DESIGN	

14.	TRANSIT	
	INTERSECTION DESIGN	
15. 15.	1. TOTAL PROJECTED 2020 CONDITIONS 2. TOTAL PROJECTED 2025 CONDITIONS	
	CONCLUSIONS	

List of Figures

Figure 1: Local Context	1
Figure 2: Site Plan	
Figure 3: Area Transit Network	4
Figure 4: Existing Peak Hour Traffic Volumes	
Figure 5: Total 'New' Site-Generated Traffic Volumes	
Figure 6: 5970 Fernbank Projected Turning Movements	
Figure 7: 5897 Fernbank Projected Turning Movements	
Figure 8: 5960 Fernbank Projected Turning Movements	
Figure 9: 6041 Fernbank Projected Turning Movements	
Figure 10: 2020 Background Traffic Volumes	
Figure 11: 2025 Background Traffic Volumes	
Figure 12: 2020 Projected Traffic Volumes	
Figure 13: 2025 Projected Traffic Volumes	

List of Tables

Table 1: Exemptions Review Summary	7
Table 2: 2009 TRANS Trip Generation Rates	7
Table 3: Projected Vehicle Trip Generation – TRANS Model	7
Table 4: TRANS Model Site Trip Generation – Single-detached Dwellings	8
Table 5: TRANS Model Site Trip Generation – Semi-detached/Townhomes	8
Table 6: TRANS Model Site Trip Generation – Total Site Generation	8
Table 7: Fernbank/Stittsville Main Historical Background Growth (2006 – 2011)	9
Table 8: 2020 Background Traffic Operations	11
Table 9: 2025 Background Traffic Operations	12
Table 10: MMLOS – Boundary Street Segments	13
Table 11: Total Projected 2020 Performance at Study Area Intersections	17
Table 12: Total Projected 2025 Performance at Study Area Intersections	18
Table 13: Total Projected 2025 Performance at Study Area Intersections	19
Table 14: Total Projected 2025 Performance at Study Area Intersections	19

List of Appendices

- APPENDIX A Screening Form and Correspondence
- APPENDIX B City of Ottawa Traffic Data
- APPENDIX C City of Ottawa Collision Data
- APPENDIX D Background Traffic Growth
- APPENDIX E SIDRA Background Traffic Analysis
- APPENDIX F MMLOS Analysis
- APPENDIX G Signal and Left-Turn Lane Warrants
- APPENDIX H Synchro and SIDRA Total Projected Traffic Analysis

Strategy Report

1. INTRODUCTION

The screening form was submitted in conjunction with the Scoping Report for review and confirmation of the need for a Transportation Impact Assessment (TIA). The Trip Generation, Location, and Safety triggers were met based on the unit count, proposed new driveway on a "Spine" cycling route, and proximity to the Fernbank/Shea roundabout. The following Strategy Report will provide the demand rationalization, development design, boundary street design and intersection design. The Screening Form and Correspondence are provided in Appendix A.

2. DESCRIPTION OF PROPOSED DEVELOPMENT

2.1. PROPOSED DEVELOPMENT

The proposed development is located in Stittsville. The subdivision is in Ward 6 and the site's local context is illustrated in Figure 1.

The development will include 357 units, consisting of 238 townhomes and 119 single family homes, and the estimated date of occupancy is 2020. The subdivision will have three accesses, two on Shea Road and one on Fernbank Road. for Stages 1 and 2. This development requires a plan of subdivision and zoning amendment as it is currently a Rural Countryside Zone. The site plan is illustrated in Figure 2.

Figure 1: Local Context

	PART /
PART 5 SUBJECT TO EASEMENT PER INST. NO. N391075 NO. N391075	PART 10 AR-27289 PART 9 PART 9 AR-27289 AR-27289
LOT 26 PART 14 AR-27289 PART 14 AR-27289 PART 15 PART 1 PART 12 AR-27289 PART 4 AR-27289 PART 4 AR-27289 PA	PART 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	15.21+ (15.97) 0 14.00+ (15.14) 12.20 12.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 56 56 56 55 85 36 155 84 37 37 7 83 37 7 82 37 37 37 37 37 37 37 37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3. EXISTING CONDITIONS

3.1. AREA ROAD NETWORK

Fernbank Road is an east-west arterial road, under the City of Ottawa's jurisdiction, that runs between Dwyer Hill Road and Eagleson Road. Fernbank Road has a two-lane undivided rural cross-section with paved shoulders. The posted speed limit is 60km/h east of Hartsmere Drive and 40km/h west of Hartsmere Drive.

Shea Road is a two-lane north-south collector road north of Fernbank (OP Schedule E). The posted speed limit is 60km/h. Shea Road has a rural cross-section with paved shoulders north of Fernbank Road and gravel shoulders south of Fernbank Road. Shea Road was realigned east of its former alignment and a roundabout was added for traffic control at the intersection with Fernbank Road.

On Fernbank Road there are six private residential driveways on the south side of the roadway within 200m west of the proposed site access.

On Shea Road there is one existing driveway within 200m of the proposed site access which provides access to the Goulburn Recreation Complex.

3.2. PEDESTRIAN AND CYCLING NETWORK

Sidewalks are not provided within the immediate study area. The closest sidewalks are located near the residential area west of Shea Road, on Fernbank Road at Hartsmere Road. A major pathway connection terminates at the roundabout at the intersection of Fernbank and Shea Roads which originates at the Trans Canada Trail. The Ottawa Pedestrian Plan (2013) does not identify any extension to this pathway.

The City of Ottawa's 2013 Cycling Plan identifies Shea Road as a local route north of Fernbank Road and Fernbank Road is a Spine or City-Wide cycling route. Cycling facilities include paved shoulders provided from the Goulbourn Complex south on Shea Road to the roundabout with Fernbank Road.

3.3. TRANSIT NETWORK

OC Transpo Routes #61 and #262 run along Fernbank Road, Routes #61 and #62 run along Shea Road. No transit stops are located within the immediate study area. The closest transit stop on Fernbank is located at Liard Street and on Shea Road the Goulbourn Complex is the last stop. Figure 3 illustrates the current system map.

3.4. EXISTING STUDY AREA INTERSECTION

Fernbank/Shea

The Fernbank/Shea intersection is a four-legged, single lane roundabout intersection. All approaches consist of a single approach lane. All movements are permitted at this location.

3.5. EXISTING INTERSECTION VOLUMES

The existing peak hour traffic volumes (illustrated in Figure 4 below) were collected by a subconsultant of Parsons in 2016. The resulting peak hour and full traffic volume counts are included as Appendix B.

Figure 4: Existing Peak Hour Traffic Volumes

3.6. EXISTING ROAD SAFETY CONDITIONS

Collision history for the study area intersection (2015 to 2016, inclusive) was obtained from the City of Ottawa. As the roundabout at Fernbank Road and Shea Road was reconstructed in 2015, collisions prior to 2015 are not related to the current intersection design and are therefore irrelevant. Most collisions (81% or 17 collisions) involved only property damage, indicating low impact speeds, and 14% (or three collisions) involved personal injuries. The primary causes of collisions cited by police include: single vehicle (other) (43% or nine collisions), angle (19% or four collisions), and sideswipe (14% or three collisions each) type collisions.

A standard unit of measure for assessing collisions at an intersection is based on the number collisions per million entering vehicles (MEV). At the Fernbank/Shea roundabout intersection, reported collisions have historically take place at a rate of 0.40/MEV.

It is noteworthy that within the five-years of recorded collision data there was one collision that involved a pedestrian (nonfatal injuries), none involving cyclists and five involving wild animals. The source collision data as provided by the City of Ottawa and related analysis is provided as Appendix C.

4. PLANNED CONDITIONS

4.1. PLANNED STUDY AREA TRANSPORTATION NETWORK CHANGES

Fernbank Road is identified as a transit priority corridor with isolated measures (City of Ottawa Transportation Master Plan (TMP) 2013, Ultimate Network) and widening has been proposed in the Network Concept Map 10 (TMP). In addition, three Park-and-Rides are identified along Robert Grant Avenue from Fernbank Road to Abbott Street E in the 2031 Affordable Network and Network Concept plans.

Shea Road has been identified for resurfacing as part of the Planned Construction Program (2017-2021) as outlined on the City's website¹.

4.2. OTHER AREA DEVELOPMENTS

6015-6041 Fernbank Road

Tartan Land Consultants is proposing the construction of a residential subdivision comprised of 285 single-family detached homes and 296 semi-detached units located at the above address, directly west of the subject development. The Transportation Brief (prepared by Delcan) projected approximately 400 veh/h during the peak hours.

5897 Fernbank Road

Farmhouse Investment Inc. is proposing the construction of a retail development comprised of four single-storey buildings located at the above address, directly east of the subject development. The Transportation Impact Study (prepared by Parsons) projected approximately 60 veh/h and 230 veh/h during the AM and PM peak hours, respectively.

5960 Fernbank Road

A commercial development consisting of a 40,000-sq. ft. grocery store, 19,250-sq. ft. retail building, and a 5,900-sq. ft. restaurant is being proposed at the above address, directly south of the subject development. The Transportation Impact Study (prepared by Parsons) projected approximately 160 veh/h and 400 veh/h during the AM and PM peak hours, respectively.

5970 Fernbank Road

Tartan Group of Companies is proposing the construction of a residential subdivision comprised of 329 single-family detached homes, 230 townhomes/semi-detached units and 172 apartments located at the above address, directly south of the subject development. The Transportation Impact Study (prepared by IBI Group) projected approximately 430 veh/h and 540 veh/h during the AM and PM peak hours, respectively.

5786 Fernbank Road

A subdivision development consisting of 126 single dwelling units, 63 private road townhouse units, three street townhouse units, and an elementary school are being proposed at the above address, located east of the subject development. The Transportation Brief (prepared by Novatech) projected approximately 175 veh/h during the peak hours. It is anticipated that this development will primarily be westbound and northbound, and will therefore, not have a significant impact the Study Area intersections.

5. TIME PERIODS

The weekday morning and afternoon peak hours are considered the appropriate time periods for operational analysis for this residential development.

 $^{{}^{1}\,}https://ottawa.ca/en/city-hall/planning-and-development/construction-and-infrastructure-projects/planned-construction$

6. HORIZON YEARS

The expected build-out date for the proposed development is assumed to be 2020. Depending on the growth rate of the study area, the horizon year 2025 will be assessed for 5-years beyond site build out.

7. EXEMPTIONS REVIEW

Based on the foregoing analysis and review of the existing conditions in Step 2, the Scoping Report, it is recommended that, if required, any future work within the context of this TIA excludes the following modules and elements summarized in Table 1.

Table 1	: Exemptions	Review S	ummary	

..

Module	Element	Exemption Consideration
4.1 Development	4.1.2 Circulation	Not required for applications involving plans of site plans
Design	and Access	Not required for applications involving plans of site plans
4.2 Parking	All elements	Not required for applications involving plans of subdivision
4.6 Neighbourhood Traffic Management	All elements	The proposed development has direct access to the arterial road network

8. DEVELOPMENT GENERATED TRAVEL DEMAND

8.1. TRIP GENERATION

Appropriate trip generation rates for the proposed development consisting of 263 townhomes and 138 single family homes was obtained from the City's 2009 TRANS Trip Generation – Residential Trip Rates. These rates are summarized in Table 2.

Table 2: 200	9 TRANS Tric	Generation Rates
10010 2.200	5 110/110 111	ochoradion nates

Land Line	ITE Land Use	Trip Rates				
Land Use	Code	AM Peak	PM Peak			
Single-detached Dwellings	ITE 210	T = 0.70(du)	T = 0.90(du)			
Semi-detached/Townhomes	ITE 224	T = 0.54(du)	T = 0.71(du)			
Notes: T = Average Vehicle Trip Ends du = Dwelling units X = 1000 ft ² Gross Floor Area Specialty Retail AM Peak is assumed to be 50% of the PM Peak						

Using the TRANS Trip Generation rates for the residential component of the site, the total amount of vehicle trips generated by the proposed development was projected. The results are summarized in Table 3.

Land Use	Aree	A	AM Peak (Veh/h)			PM Peak (Veh/h)		
	Area	In	Out	Total	In	Out	Total	
Single-detached Dwellings	138 units	28	69	97	76	48	124	
Semi-detached/Townhomes	263 units	41	101	142	115	72	187	
Total Vehicle Trips		69	170	239	191	120	311	

Table 3: Projected Vehicle Trip Generation - TRANS Model

As shown in Table 3, a total of approximately 240 veh/h and 310 veh/h are projected to travel to/from the proposed development during the weekday morning and afternoon commuter peak hours, respectively. Using the TRANS Auto Trips projected in Table 3 and the mode share percentages outline in Table 3.13 of the TRANS Trip Generation Study, the modal shares for the single-detached and semi-detached/townhomes land uses within the proposed development are summarized in Table 4 and Table 5, respectively. The total site trip generation is summarized in Table 6.

Travel Mode	Mode	AM Peak (Person Trips/h)			Mode	PM Peak (Person Trips/h)			
	Share	In	Out	Total	Share	In	Out	Total	
Auto Driver	55%	28	69	97	64%	76	48	124	
Auto Passenger	11%	5	14	19	11%	13	8	21	
Transit	25%	12	32	44	19%	22	15	37	
Non-motorized	9%	4	12	16	6%	7	5	12	
Total Person Trips	100%	49	127	176	100%	118	76	194	

Table 4: TRANS Model Site Trip Generation - Single-detached Dwellings

Table 5: TRANS Model Site Trip Generation – Semi-detached/Townhomes

Travel Mode	Mode	AM Peak (Person Trips/h)			Mode	PM Peak (Person Trips/h)		
	Share	In	Out	Total	Share	In	Out	Total
Auto Driver	55%	41	101	142	61%	115	72	187
Auto Passenger	10%	7	18	25	11%	20	13	33
Transit	27%	20	50	70	22%	42	26	68
Non-motorized	8%	6	15	21	6%	11	8	19
Total Person Trips	100%	74	184	258	100%	188	119	307

Table 6: TRANS Model Site Trip Generation – Total Site Generation

Travel Mode	AM Peak (Person Trips/h)			PM Peak (Person Trips/h)		
	In	Out	Total	In	Out	Total
Auto Driver	69	170	239	191	120	311
Auto Passenger	12	32	44	33	21	54
Transit	32	82	114	64	41	105
Non-motorized	10	27	37	18	13	31
Total Person Trips	123	311	434	306	195	501
Total 'New' Auto Trips	69	170	239	191	120	311

As shown in Table 6, based on the TRANS Trip Generation method, the proposed site is projected to generate approximately 435 to 500 person-trips per hour during the weekday commuter peak hours. The increase in two-way transit trips is estimated to be 105 to 115 persons per hour, and the increase in bike/walk trips is approximately 30 to 40 persons per hour.

8.1.1. MODE SHARES

Given the planned transportation network within the vicinity of the site does not provide any significant non-auto transportation improvements, there is no rationale that the future modal splits will be different than existing.

8.2. TRIP DISTRIBUTION

Traffic distribution was based on the site's connectivity to the existing road network and our knowledge of the surrounding area. The resultant distribution is outlined as follows:

- 90% to/from the northeast; and
- 10% to/from the west.

8.3. TRIP ASSIGNMENT

Based on these distributions, total 'new' site-generated trips to/from the proposed development are assigned to study area intersections and are illustrated as Figure 5.

9. BACKGROUND NETWORK TRAVEL DEMANDS

The following background traffic growth through the Fernbank/Stittsville Main intersection (summarized in Table 7) was calculated based on historical traffic count data (years 2006, 2008, 2009, and 2011) provided by the City of Ottawa. Detailed background traffic growth analysis is included as Appendix D.

	Percent Annual Change							
Time Period	North Leg	South Leg	West Leg	Overall				
8 hrs	1.12%	0.99%	6.64%	7.76%	2.90%			
AM Peak	1.00%	0.77%	12.07%	7.26%	3.84%			
PM Peak	1.04%	1.59%	21.46%	12.07%	6.65%			

Table 7: Fernbank/Stittsville Main Historical Background Growth (2006 – 2011)

As shown in Table 7, the Fernbank/Stittsville Main intersection has experienced an approximate 3% to 6% annual increase in vehicle traffic within recent years (calculated as a weighted average). A 3% per annum growth factor was applied to existing traffic volumes along Fernbank Road and Shea Road to obtain background traffic volumes for the 2020 built-out horizon year and 2025 (5-years beyond site build-out).

9.1. OTHER AREA DEVELOPMENT

The additional traffic associated with the surrounding developments mentioned above in Section 4.2 is shown below in Figure 6, Figure 7, Figure 8 and Figure 9. These trips will be included in the background traffic analysis (Section 10.1) and total projected traffic analysis (Section 15). The trips associated with the 5786 Fernbank Road development have not been included because it is anticipated that this development will primarily be westbound and northbound, and will therefore, not have a significant impact on the Study Area intersections. As a conservative estimate of the build-out of the area it has been assumed that all of the developments would occur by the 2020 horizon.

Figure 7: 5897 Fernbank Projected Turning Movements

Source: 6041 Fernbank Road Transportation Brief, Delcan

9.2. FUTURE BACKGROUND TRAFFIC VOLUMES

A 3% background growth rate and adding he background development traffic volumes have been added to the existing traffic volumes. The resultant 2020 and 2025 background traffic volumes are depicted as Figure 10 and Figure 11, respectively.

10. DEMAND RATIONALIZATION

10.1. DESCRIPTION OF CAPACITY ISSUES

10.1.1. 2020 FUTURE BACKGROUND CONDITIONS

The 2020 background peak hour traffic volumes (illustrated in Figure 10) have been generated from the existing turning movement counts and the application of the growth rates discussed in Section 9. The background operations are summarized in Table 8 and the detailed SIDRA worksheets are provided in Appendix E.

	Weekday AM Peak (PM Peak)					
Intersection	Critical Movement Intersection 'as					
	LoS max. v/c or avg. delay (s) Movement			Delay (s)	LoS	
Fernbank/Shea (Roundabout)	E(E)	36.3(41.2)	EB(WB)	23.8(28.1)	C(D)	
Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.						

Table 8: 2020 Background Tr	raffic Operations
-----------------------------	-------------------

The roundabout intersection of Fernbank Road and Shea Road, with the addition of the background developments, is projected to operate poorly. The projected background growth accounts for a large amount of development, that would have to be constructed at a rapid pace in order for this level of delay to occur. This intersection should be monitored as developments are constructed to determine when upgrades are required. The Transportation Master Plan 2031 Network Concept shows Fernbank Road as a Widened Arterial; however, this upgrade is not included in the 2031 Affordable Network. This upgrade has not been analyzed as part of this study.

10.1.2. 2025 FUTURE BACKGROUND CONDITIONS

The 2025 background peak hour traffic volumes (illustrated in Figure 11) have been generated from the existing turning movement counts and the application of the growth rates discussed in Section 9. The background operations are summarized in Table 9 and the detailed SIDRA worksheets are provided in Appendix E.

	Weekday AM Peak (PM Peak)					
Intersection		Critical Moveme	nt	Intersection 'as a whole'		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	
Fernbank/Shea (Roundabout)	F(F) 52.8(61.0) EB(WB) 33.0(38.2) D(E)					
Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.						

Table 9: 2025 Background Traffic Operations

Similar to the 2020 future background conditions, the roundabout intersection of Fernbank Road and Shea Road, with the addition of the background developments, is projected to operate poorly. The projected background growth accounts for a large amount of development, that would have to be constructed at a rapid pace in order for this level of delay to occur. This intersection should be monitored as developments are constructed to determine when upgrades are required. The Transportation Master Plan 2031 Network Concept shows Fernbank Road as a Widened Arterial; however, this upgrade is not included in the 2031 Affordable Network. This upgrade has not been analyzed as part of this study.

11. DEVELOPMENT DESIGN

11.1. DESIGN FOR SUSTAINABLE MODES

Vehicle and Bicycle Parking

Off-road driveways are proposed for each residential unit. Bicycle parking will be available in each residential unit.

Transit Amenities

Transit service within the vicinity of the site are OC Transpo Routes #61 and #262 along Fernbank Road and the #61 and #62 along Shea Road. No transit stops are located within the immediate study area. The closest transit stop on Fernbank is located at Liard Street and on Shea Road the Goulbourn Complex is the last stop.

Pedestrian Routes and Facilities

The Fernbank CDP outlines the integration of sidewalks along both sides of arterials and collector roadways within the Fernbank Community. Sidewalks will also be provided along one or both sides of local streets.

11.2. NEW STREETS NETWORK

The proposed new roadways will be designated as a collector roadway (Street 1) and a local roadway (Street 4). Collector and local roadways should have less than 300 veh/h and 100 veh/h during the peak hours, respectively. Given the

distribution of the development traffic, the projected amount of traffic is less than 100 veh/h during peak hours, which is appropriate for a local roadway.

12. BOUNDARY STREET DESIGN

The boundary streets for the development are Fernbank Road, Shea Road and Street 1. At this time, there has not been any complete street concepts prepared for the boundary streets. The existing roadway's geometry consists of the following features:

- Fernbank Road:
 - 1 vehicle travel lane in each direction;
 - Paved shoulders; and,
 - More than 3,000 vehicles per day along Fernbank Road.
- Shea Road:
 - o 1 vehicle travel lane in each direction;
 - Paved shoulders; and,
 - More than 3,000 vehicles per day along Shea Road.
- Street 1 (assumed):
 - o 1 vehicle travel lane in each direction; and,
 - Less than 3,000 vehicles per day along Street 1.

The multi-modal level of service analysis for the subject road segments adjacent to the site is summarized in Table 8 with detail analysis provided in Appendix F.

		Level of Service							
Road Segment	Pedestrian		Bicycle (BLoS)		Transit (TLoS)				
	PLoS Target BLoS Target		Target	TLoS	Target				
Fernbank Road	F	A	F	С	-	-			
Shea Road	F	A	F	В	D	D			
Street 1	-	A	-	В	-	-			

Table 10: MMLOS - Boundary Street Segments

Given the development's location to the Stittsville BRT Station, the target levels of service for pedestrians and cyclists are high ('A' to 'C'). As shown Table 8, the transit level of service is met with regards to the isolated transit measures planned for Shea Road.

With regard to pedestrians, the high traffic volumes and absent facilities result in low level of service for pedestrians. Providing a 2m boulevard between and 2m sidewalk would improve the level of service at most to a PLoS 'D' on both Fernbank Road and Shea Road as both roadways are signed at 60 km/h and experience greater than 3,000 vehicles per day. As this area is developed, pedestrian facilities should be considered along these roadways and future collector roadways.

With regard to cyclists, there are currently no dedicated cycling facilities along boundary street and as such, cyclists share the roadway with vehicles. Providing dedicated bicycle lanes would improve the level of service to BLoS 'C', meeting the target for Fernbank Road. However, as Shea Road is classified as a local route and collector roadway, physically separated bike facilities are required to meet the target BLoS.

With regard to Street 1 proposed through the subdivision, it is recommended that a minimum sidewalk width of 1.8m with minimum boulevard width of 2m be considered to achieve a PLoS 'A'. Providing a 1.8m curbside bike lane on Street 1

would achieve a BLoS 'A', exceeding the target level of service. However, it is understood that the existing multi-use pathway on Cope Drive will continue on Street 1, on the north side of the roadway.

Based on the MMLoS Guidelines, the elements suggested within the guidelines to achieve the targets are identified above. These elements are not a recommendation of elements to be implemented but are only provided as a reference to the extent of modifications required to reach MMLoS targets.

13. ACCESS INTERSECTION DESIGN

13.1. LOCATION AND DESIGN OF ACCESS

Fernbank Road Access

Vehicle access for the development is proposed via Fernbank Road, with a new driveway connection approximately 525m west of the Fernbank/Shea intersection.

Shea Road Access

A total of two vehicle accesses for the development are proposed via Shea Road, with a new driveway connection recommended on Shea Road. The new intersections would be located approximately 515m and 800m north of the Fernbank/Shea intersection.

13.2. INTERSECTION CONTROL

Fernbank/Street 1

The MTO Traffic Signal Warrant procedure has been undertaken using the projected traffic volumes, shown in Figure 13 2025 Projected Traffic Volumes. Using the projected volumes, it was found that traffic control signals were not found to be warranted by 2025. However, it was noted that the warrant was close to being met, all sections were at least 76% met. Additionally, this location has been identified for signalization as part of the Development Charges By-law. To determine if this intersection should be considered for signalization, a sensitivity analysis has been conducted. Two additional scenarios have been considered.

The first scenario involves the north-south volumes across Fernbank Road through the subject intersection. For the purposes of the operational analysis a nominal volume is assigned to these movements, in this case 10 vehicles per hour(vph). This volume was adjusted to 40 vph in each peak hour. With this small adjustment to the traffic assumptions, and the traffic volumes, the traffic signal was found to be warranted.

The second scenario considers a redistribution of the traffic associated with the adjacent development. The Traffic Brief for 6041 Fernbank Road assumes that most of the traffic will use the Shea Road at Street 1 intersection. This scenario examined how much of the traffic would have to be redirected from the Shea Road access to the Fernbank Access, before the traffic control signal would be met. It was found that if 50% of the traffic generated by 6041 Fernbank Road, that was previously using the Shea Road access, instead used the Fernbank Road access, traffic control signals at the Fernbank Road Access would be warranted.

The sensitivity analysis showed that there are several scenarios under which traffic control signals would be warranted. Traffic projections are based on historical data and approximate the future traffic conditions. The Synchro analysis presented in Section 16, show that the northbound and southbound approaches of the Fernbank access will experience high delays in the 2025 horizon. As the intersection is projected to operate poorly during the 2025 horizon, and the sensitivity analysis has shown that small variations in the traffic projections would trigger the signal warrant, the signalized intersection is needed at the Fernbank Road access. Appendix G contains the traffic warrants for the 2025 horizon volumes and the sensitivity tests.

Due to the proximity of the intersection to the adjacent roundabout at Fernbank and Shea, and the fact that a signal has been determined to be needed (based on the sensitivity analysis), the City of Ottawa's Roundabout Screening Tool has been applied to determine if a roundabout may be suitable at the subject intersection. It was found that a roundabout could be suitable at the subject intersection. Additionally, there is an adjacent intersection (Fernbank Road at Shea Road) that is controlled by a roundabout, which would lead to this being a more suitable location for a roundabout.

The signal warrants and the roundabout screening tool have been included in Appendix G.

Shea/Street 1

Based on the projected vehicle volumes, STOP control on the minor approach (site) only is recommended.

Shea/Street 4

Based on the projected vehicle volumes, STOP control on the minor approach (site) only is recommended.

13.3. INTERSECTION DESIGN

Fernbank/Street 1

Fernbank at Street 1 is proposed as an unsignalized intersection with STOP control provided on Street 1. The proposed cross-section of the north and southbound approaches on Street 1 is a single shared lane. The proposed cross section of the east and westbound approaches on Fernbank Road is a single left-turn lane and a shared through-right turn lane.

Based on the projected volumes, the westbound left-turn lane is warranted for the horizon year 2020 however the eastbound left-turn lane is not warranted until five years after site build-out in 2025. To ensure proper sightlines and efficient construction, both the east and westbound left-turn lanes are recommended to be constructed for the horizon year 2020. See Appendix G for the left-turn lane warrant and storage length calculations for this intersection.

Storage length of auxiliary lanes are determined using Geometric Design Guide for Canadian Roads, Chapter 9 - Intersections (TAC 2017).

The minimum storage can be determined using equation 9.14.

$$S = \frac{NL}{30}$$

Where:

S = Storage length (m)

N = Design volume of turning vehicles (v/h)L = Length (m) occupied by each vehicle

Using the largest anticipated projected volumes (PM peak, 2025 Future Total) for the eastbound left-turn at Fernbank Road and Street 1, the calculated minimum storage length is approximately 10m; however, the minimum safety storage requirement for this design is 15m (Section 9.17.2.2). Additionally, this auxiliary left-turn lane will require an appropriate taper length; which, can be calculated using Table 9.17.1

Shea/Street 1

Shea Road at Street 1 is proposed as a stop-controlled t-intersection on the minor leg (Street 1). The proposed crosssection of each approach is a single shared lane.

Shea/Street 4

Shea Road at Street 4 is proposed as a stop-controlled t-intersection on the minor leg (Street 4). The proposed crosssection of each approach is a single shared lane.

14. TRANSIT

Total "new" two-way transit trips are approximately 97 (28 in, 69 out) and 83 (50 in, 33 out) persons/h in the AM and PM peaks, respectively. During the AM peak, this represents approximately 51-125% of a single bus (55 passengers), approximately 37-92% of an articulated bus (75 passengers), and approximately 31-77% of a double decker bus (90 passengers).

Based on the projected new transit trips, articulated and double decker buses would the most appropriate buses to service the proposed residential development. Furthermore, new transit stops should be implemented along Shea Road south of Abbott Street E and on Fernbank Road east of Liard Street as there are no existing stops adjacent to the development.

15. INTERSECTION DESIGN

15.1. TOTAL PROJECTED 2020 CONDITIONS

The total projected 2020 traffic volumes were derived by superimposing the site-generated traffic volumes and 5970 Fernbank generated traffic volumes on background 2020 traffic volumes (as per the Forecasting Report). The resulting total projected 2020 traffic volumes are illustrated in Figure 12. Table 11 provides a summary of the total projected 2020 operations at the study area intersections The Synchro and SIDRA model output of total projected 2020 conditions is provided within Appendix H.

Table 11: Total Projected 2020 Performance at	t Study Area Intersections
---	----------------------------

	Weekday AM Peak (PM Peak)							
Intersection		Critical Movement		Intersection 'as a whole'				
	LoS	max. v/c or avg. delay (s) Movement		Delay (s)	LoS			
Roundabout	Roundabout							
Fernbank/Shea	F(F)	55.0(67.1)	EB(WB)	33.6(41.3)	D(E)			
Stop-Controlled on Minor Str	eet							
Fernbank/Street 1	F(F)	113.8(123.7)	SB(SB)	18.9(12.8)	C(B)			
Shea/Street 1	E(D)	46.6(33.9)	EB(EB)	9.8(4.1)	A(A)			
Shea/Street 4	C(C)	15.2(15.6)	EB(EB)	1.0(0.9)	A(A)			
Note: Analysis of signalized intersec	tions assumes a PHF	of 0.95 and a saturation	n flow rate of 1800 veh	/h/lane.				

With the addition of traffic from the full build-out of the proposed site, the overall intersection LOS for the Roundabout at Fernbank Road and Shea Road, similar to the 2020 future background operational analysis, will continue to operate 'as a whole' with a poor LOS 'E' during the PM peak hour.

The intersection of Fernbank Road at Street 1 is projected to operate with a reasonable LOS during both peak hours. However, the critical southbound movement is projected to operate with very high delays, and LOS 'F'. Mitigation measures for these deficiencies will be further explored in Section 15.2, below.

Both of the proposed Shea Road accesses area projected to operate at an overall LOS 'A'.

15.2. TOTAL PROJECTED 2025 CONDITIONS

The total projected 2025 traffic volumes were derived by superimposing the site-generated traffic volumes and 5970 Fernbank generated traffic volumes on background 2025 traffic volumes (as per the Forecasting Report). The resulting total projected 2025 traffic volumes are illustrated in Figure 13. Table 12 provides a summary of the total projected 2025 operations at the study area intersections. The SYNCHRO model output of total projected 2025 conditions is provided within Appendix H.

Figure 13: 2025 Projected Traffic Volumes

Table 12: Total Projected 2025 Performance at Study Area Intersections

	Weekday AM Peak (PM Peak)							
Intersection		Critical Movement	Intersection	'as a whole'				
	LoS	S max. v/c or avg. delay (s) Movement		Delay (s)	LoS			
Roundabout				· · ·				
Fernbank/Shea	F(F)	79.7(95.9)	WB(EB)	46.4(54.6)	E(F)			
Stop-Controlled on Minor Str	eet			· · ·				
Fernbank/Street 1	F(F)	223.1(195.5)	SB(SB)	30.9(17.3)	D(C)			
Shea/Street 1	F(E)	70.1(41.8)	EB(EB)	13.5(4.7)	B(A)			
Shea/Street 4	C(C)	16.8(16.9)	EB(EB)	1.0(0.9)	A(A)			
Note: Analysis of signalized intersed	tions assumes a PH	F of 0.95 and a saturatio	n flow rate of 1800 ve	h/h/lane.				

The intersection of Shea Road at Fernbank Road is projected to continue to operate poorly with the addition of the site traffic. This is primarily caused by the high levels of background growth in and surrounding the Study Area.

The intersection of Fernbank Road and Street 1 is projected to continue to operate with high delays. As discussed in Section 13.2, an MTO Signal Warrant procedure and sensitivity analysis has been undertaken to examine the need for signals at the subject intersection. Based on the sensitivity analysis, it has been determined that signals could become warranted at the Street 1 intersection with Fernbank Road. Table 13 below summarizes the operational analysis with the inclusion of a traffic control signal and the warranted left turn lanes (eastbound and westbound).

Table 13: Total Projected 2025 Performance at Study Area Intersections	
--	--

	Weekday AM Peak (PM Peak)							
Intersection	Critical Movement Intersection 'as a					whole'		
	LoS	LoS max. v/c or avg. delay (s) Move		Delay (s)	LoS	v/c		
Signalized								
Fernbank/Street 1	D(C)	0.81(0.76)	EBT(WBT)	14.9(11.7)	B(B)	0.67(0.63)		
Note: Analysis of signalized intersec	tions assumes a	a PHF of 0.95 and a s	aturation flow rate	of 1800 veh/h/la	ne.			

As shown Table 13, the performance of the Fernbank/Street 1 improves significantly when the intersection is signalized. The intersection performance increases from a 'F' to 'B' with regard to the intersection 'as a whole' and from a 'F' to a 'D' with regard to critical movements.

As shown in Section 13.2 a roundabout should be considered at the intersection of Fernbank Road and Street 1. Table 14 summarizes the operational analysis with a roundabout control at the intersection of Fernbank Road and Street 1.

	Weekday AM Peak (PM Peak)						
Intersection		Critical Movemen	t	Intersection 'as a whole'			
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS		
Roundabout							
Fernbank/Street 1	C(C)	18.0(21.2)	WBT(EBT)	13.8(16.1)	B(C)		
Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.							

Table 14: Total Projected 2025 Performance at Study Area Intersections

As shown in Table 14, a roundabout controlled intersection at Fernbank Road and Street 1 is projected to operate well, with an overall LOS 'C' during the PM peak hour.

16. CONCLUSIONS

Based on the results summarized herein the following conclusions are offered:

Proposed Site

- The development will include 401 units, consisting of 263 townhomes, and 138 single family homes;
- The proposed development will consist of one phase, with an estimated date of occupancy in 2020;
- The proposed development is projected to generate 'new' two-way vehicle volumes of approximately 240 and 210 trips during the weekday morning and afternoon peak hours, respectively; and,
- The accesses to the development will include a proposed new connection to Fernbank Road and two new connections to Shea Road.

Background Conditions

• Due to the large amount of background development, as well as the conservative 3% background growth rate, the roundabout at the intersection of Fernbank Road and Shea Road is projected to operate with poor LOS and high delays on the eastbound and westbound through movements.

Projected Conditions

• The Fernbank/Shea intersection is projected to operate similarly to the background conditions. No improvements are recommended at this intersection as a result of the site generated traffic.

- The Shea/Street 1 and Shea/Street 4 intersections are projected to operate at a level of service 'B' or better during peak periods.
- The unsignalized Fernbank/Street 1 intersection is projected to experience increasing delays on the southbound approach, with a level of service 'E' during the 2020 horizon and a level of service 'F' during the 2025 horizon. A signal or a roundabout is recommended at this intersection to improve performance and decrease delays to the southbound movement. An RMA will be required for the design and construction of this intersection.
- At the Fernbank/Street 1 intersection, west and eastbound left-turn turn lanes will be warranted in the 2020 horizon year.
- While this study has considered traffic control signals or a roundabout at the intersection of Street 1 and Fernbank Road, the MTO Signal Warrant has not been met by the projected traffic. Therefore, an eastbound left turn lane should be provided for access to 5969 Fernbank Road. The functional design will show the extent and type of roadway modifications required to accommodate the eastbound left turn lane. This study has determined that a 15m storage length, plus appropriate taper length should be provided.

Site Plan

- Cycling facilities will be required along the collector roads within the development, and along the boundary roads of Fernbank Road and Shea Road. These facilities may be on-street facilities but will need separation from on-street parking.
- Pedestrian facilities will include a single sidewalk along local roads, and two sidewalks on collector roads. A minimum boulevard width of 2m is required to reach MMLoS targets.
- To provide appropriate transit service, additional transit stops are required on Fernbank Road and Shea Road adjacent to the development. Adding additional articulated and double-decker buses will ensure that new transit trips can be accommodated.

Based on the foregoing conclusions, the proposed development is recommended to proceed form a transportation perspective.

Prepared By:

a Nol

Rani Nahas, E.I.T Transportation Analyst

Reviewed By:

Mark Baker, P.Eng. Senior Transportation Engineer

7 August 2018

City of Ottawa Development Review Services 110 Laurier Avenue West Ottawa, ON K1P 1J1

Attention: Rosanna Baggs

Dear Rosanna:

Re: 5969 Fernbank Road Transportation Impact Assessment – Addendum #1

This Addendum has been prepared to address the comments received from the City of Ottawa, dated July 6th, 2018, with corresponding responses from Parsons.

1.1. TRAFFIC SIGNALS

Comment 1: Before excavating please call Ont1CALL (1-800-400-2255) for underground locates.

Response 1: Noted, proponent to be informed.

Comment 2: No comments with initial TIS for this circulation. Traffic Signal Design & Specification reserves the right to make future comments based on subsequent submissions.

Response 2: Noted.

Comment 3: Future considerations:

- If there are any future proposed changes in the existing roadway geometry that require signalizing of an intersection or changing an existing signalized intersection, the City of Ottawa Traffic Operations Unit is required to complete a traffic signal plant design.
- If the proposed traffic signals are warranted/approved for installation and RMA approved please forward an approved geometric detail design drawing (dwg digital format in NAD 83 coordinates) including base mapping, existing and new underground utilities, and approved pavement markings drawing for detail traffic plant design lay out. Please send all digital (CADD) design files to Peter.Grajcar@ottawa.ca 613-580-2424 extension 23035.

Response 3: Noted, proponent to be informed.

1.2. STREET LIGHTING

Comment 4: No Comments to this TIA for this circulation. Street Lighting Asset Management Group reserves the right to make comments based on subsequent submissions. Please ensure the Street Lighting group receives the proposed site plan as there is street lighting plant within the ROW

Response 4: Noted, proponent to be informed.

Parsons PLUS envision more

1.3. OC TRANSPO

Comment 5: No comments. Be advised that there is a possibility of implementing transit service through this project in the future.

Response 5: Noted, proponent to be informed.

1.4. TRAFFIC ENGINEERING

Comment 6: Minimum left-turn storage length is traditionally 37.5 m plus appropriate taper.

Response 6: Noted, proponent to be informed.

1.5. TRANSPORTATION ENGINEERING SERVICES

Comment 7: As per the recommendation in the TIA, a separated bicycle facility is required along Shea Road to reach the BLOS target. The cycling facility should connect to the existing bike lanes to the north towards Abbott Street and pathway to the south at the roundabout.

Response 7: Noted, proponent to be informed. In the CDP bike lanes are recommended for Shea Road. Given the planned 24m ROW, a cross-section will need to be developed to balance the road width, cycling facilities, pedestrian facilities, and boulevard requirements such as trees and utilities.

Comment 8: Provide cycling facility on Street 1 as recommended in the TIA to reach the bicycle level of service target. Fernbank Road and Street 1 are identified as a spine route in the ultimate cycling network.

Response 8: Noted, proponent to be informed. As per response 7, a ROW will have to be developed to accommodate the stated ROW elements.

Comment 9: Street 1 is a continuation of Cope Drive and we recommend the approved cross section east of Robert Grant Road.

Response 9: Noted. The approved cross-section is a 26m and Street 1 is a 24m ROW. Therefore, the cross-section will not be continuous west of Shea Road.

Comment 10: Provide pedestrian facilities as recommended in the TIA to improve the pedestrian level of service along the frontage of Shea Road and Street 1.

Response 10: Noted, proponent to be informed. As per response 7, a ROW will have to be developed to accommodate the stated ROW elements.

Comment 11: Confirm proposed pedestrian and cycling facilities recommendations with the City prior to submitting functional design plans (as described in 2017 TIA Guidelines).

Response 11: Noted, proponent to be informed.

Comment 12: There are more than 3,000 vehicles per day along Shea Road currently which exceeds the recommended threshold of 2,500 vehicles a day for a collector road. The development volume will be adding to the existing volumes. Provide measures to mitigate the traffic impact on this collector road.

Response 12: TAC outlines the typical daily traffic volumes for rural collectors and urban collectors as up to 5,000 vehicles and 8,000 vehicles per day, respectively (Tables 2.6.4 and 2.6.5). It is unclear why the TIA Guidelines threshold for collector roadways is 2,500 vehicles per day – half of the typical traffic experienced on a collector roadway. Furthermore, as the existing daily traffic is already above the City's limit outlined in the TIA, it should already be flagged to undergo the area traffic management process.

Within the Fernbank CDP, the progression of the road network has not been addressed, but a relevant statement concerning transit may provide some guidance on this issue. The excerpt from Section 7.6 is as follows:

"During the initial development of Phase 1, when development is limited to along the North/South Arterial and in the southeast section of the community, transit service will be provided along the arterial and collector roadways as they are phased into the development. Until a more continuous collector roadway is developed, an interim route may provide linkages within Kanata that may not be maintained in the ultimate route network."¹

Our interpretation of this statement is that while the Fernbank community is developing, the transit network may need to use alternate routes that are not envisioned in the ultimate plan. While not carried over to the road network, this philosophy is directly applicable to the build-out of the collector road network. At this point in time, Shea Road is being used as the main north-south collector roadway. As the surrounding development is built, traffic will be more evenly distributed and as such, Shea Road may ultimately experience lower average daily traffic volumes.

Comment 13: MMLOS is required for intersections.

Response 13: As stated in the *Multi-Modal Level of Service (MMLoS) Guidelines*, Section 1.3: "Only signalized intersections are considered for the intersection LOS measures." The study area intersections for this TIA include the roundabout Fernbank/Shea intersection and unsignalized Shea/Street 1, Shea/Street 4, and Fernbank/Street 1 intersections (signal warrants not met by build-out year for site accesses). With the RMA for the Fernbank/Street 1 intersection being completed by IBI Group, it is recommended that the City monitor this intersection as the area is built out for further control (e.g. a roundabout) at this location.

Comment 14: Clarify the MTO warrant sheets in Appendix G for Fernbank/Street 1 intersection. The preference is to provide a roundabout rather than a traffic signal. Confirm funding for the new intersection requirements with Ann Selfe.

Response 14: The warrants used in Appendix G for the Fernbank/Street 1 in are based on methodology outlined in the OTM Book 12, Justification 7 – Projected Volumes.

Regarding funding for the new intersection requirements, Tartan Land has agreed to construct the intersection in relation to the 5970 Fernbank Road Development. See attached email for reference.

Comment 15: The proposed road works will require an RMA report to be completed by the development at 5970 Fernbank Road.

Response 15: Noted, proponent to be informed.

Comment 16: Remove the error on the street labelling in Table 7.

Response 16: The corrected table is below.

¹ Section 7.6, <u>https://ottawa.ca/en/city-hall/planning-and-development/community-plans-and-design-guidelines/community-plans-and-studies/community-design-plans/fernbank-community-design-plan#7-6-interim-transit-service; Accessed 11-Jul-2018</u>

	Percent Annual Change											
Time Period	North Leg	South Leg	East Leg	West Leg	Overall							
8 hrs	1.12%	0.99%	6.64%	7.76%	2.90%							
AM Peak	1.00%	0.77%	12.07%	7.26%	3.84%							
PM Peak	1.04%	1.59%	21.46%	12.07%	6.65%							

Table 1: Fernbank/Stittsville Main Historical Background Growth (2006 - 2011)

1.6. TRANSPORTATION ENGINEERING SERVICES

Comment 17: Section 13.3 – the first sentence states that Fernbank at Street 1 is proposed as a fully signalized intersection, this statement should be revised as section 13.2 notes that based on standard conditions they are not warranted.

Response 17: The corrected text is provided below.

Fernbank/Street 1

Fernbank at Street 1 is proposed as an unsignalized intersection with STOP control provided on Street 1. The proposed cross-section of the north and southbound approaches on Street 1 is a single shared lane. The proposed cross section of the east and westbound approaches on Fernbank Road is a single left-turn lane and a shared through-right turn lane.

Sincerely,

a Not

Rani Nahas, EIT Traffic Analyst

Julin Harts

Andrew Harte, P. Eng. Transportation Engineer

City of Ottawa 2017 TIA Guidelines	Date	8/3/2017
TIA Screening Form	Project	5969 Fernbank Road
	Project Number	476654 - 01000
Results of Screening	Yes/No	
Development Satisfies the Trip Generation Trigger	Yes	
Development Satisfies the Location Trigger	Yes	
Development Satisfies the Safety Trigger	Yes	

Module 1.1 - Description of Proposed Development	
Municipal Address	5969 Fernbank Road
Description of location	GOULBOURN CON 10 PT LOT 25; RP 4R7467 PART 2 PT PART 1
Land Use	Residential
Development Size	119 Single Detached Homes / 238 Semi-detached & Townhouse
Number of Accesses and Locations	Three; Two on Shea Road and one on Fernbank Road (Shared with adjacent landowner)
Development Phasing	N/A
Buildout Year	Assumed 2020
Sketch Plan / Site Plan	See attached

Module 1.2 - Trip Generation Trigger		
Land Use Type	Single-Family Homes	Townhomes or Apartments
Development Size	119	238
Trip Generation Trigger Met?	Yes	Yes

Module 1.3 - Location Triggers		
Development Proposes a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit, or Spine Bicycle Networks (See Sheet 3)	Yes	
Development is in a Design Priority Area (DPA) or Transit- oriented Development (TOD) zone. (See Sheet 3)	No	
Location Trigger Met?	Yes	

Module 1.4 - Safety Triggers			
Posted Speed Limit on any boundary road	<80	km/h	
Horizontal / Vertical Curvature on a boundary street limits sight lines at a proposed driveway	No		
A proposed driveway is within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions) or within auxiliary lanes of an intersection;	Yes		
A proposed driveway makes use of an existing median break that serves an existing site	No		
There is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development	No		
The development includes a drive-thru facility	No		
Safety Trigger Met?	Yes		

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{}$ appropriate field(s)] is either transportation engineering $\sqrt{}$ or transportation planning \Box .

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel.: 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél: : 613-580-2424 Télécopieur: 613-560-6006

Dated at	<u>Markham</u>	this	<u>18</u>	_ day of <u>May</u>	<u>, 2018.</u>
	(City)				

Name:

Mark Crockford

(Please Print)

Professional Title:

Professional Engineer

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)	
Address: 625 Cochrane Drive, Suite 500	
City / Postal Code: L3R 9R9	
Telephone / Extension: 1 647.457.5866	
E-Mail Address: Mark.Crockford@Parsons.com	

Appendix B Traffic Data

Turning Movement Count

Summary Report Including AM/PM Peak Hours,

Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

PHF, AADT and Expansion Factors

Fernbank Road and Shea Road (Roundabout)

Stittsville, ON

Survey Date: Tuesday, 22 March 2016 Start Time: **AADT Factor:** 1.0 Weather: Cloudy/Partly Cloudy Survey Duration: 8 Hrs. Survey Hours: 0700-1000, 1130-1330 & 1500-1800 Fernbank Road Fernbank Road Shea Road Shea Road Northbound Southbound Eastbound Westbound Time W/B Grand E/B Street N/B S/B Street LT ST UT LT ST RT UT LT ST RT UT LT ST RT UT RT Tot Tot Total Tot Tot Total Total Period 0700-0800 0800-0900 ſ 0900-1000 1130-1230 1230-1330 1500-1600 1600-1700 1700-1800 Totals Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor

Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard 8-hour turning movement counts

	Ec	quivalen	t 12-hc	our vel	nicle vol	umes.	These v	volume	s are c	alculat	ted by m	ultiplyi	ng the 8	8-hour	totals	by the 8	i ⇒ 12 (expansi	ion fact	tor of 1	.39		
Equ. 12 Hr	676	2057	149	1	2883	279	1826	720	3	2829	5712	120	756	318	0	1194	543	649	635	1	1829	3023	873
	Av	erage d	aily 12-	hour	/ehicle v	volume	es. Thes	e volur	nes ar	e calcu	lated by	multip	lying th	e equiv	/alent	12-hou	· totals	by the	AADT f	actor	of:	1.0	
AADT 12-hr	676	2057	149	1	2883	279	1826	720	3	2829	5712	120	756	318	0	1194	543	649	635	1	1829	3023	873
	24-H	our AAD)T. The	se vol	umes ar	e calc	ulated b	y multi	plying	the av	erage da	aily 12-l	nour ve	hicle v	olumes	s by the	12 Þ	4 expa	nsion f	actor	of 1.31		
AADT 24 Hr	885	2695	195	2	3777	366	2393	943	4	3706	7482	157	991	417	0	1564	712	850	832	2	2396	3960	11443
AM Peak Ho	our Fa	ctor •	• ().81																			
AM Peak Hr	LT	ST	RT	UT	тот	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	тот	LT	ST	RT	UT	тот	S.TOT	G.TO
0715-0815	183	326	32	0	541	25	77	57	1	160	701	5	106	40	0	151	72	82	73	0	227	378	107
PM Peak Ho	our Fa	ctor •	• (0.96																			
PM Peak Hr	LT	ST	RT	UT	тот	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	тот	LT	ST	RT	UT	тот	S.TOT	G.TO
1630-1730	57	151	6	0	214	36	313	92	0	441	655	20	101	26	0	147	39	84	90	0	213	360	1015

Comments

Schools in session. This intersection is a roundabout.

Notes:

- 1. Includes all vehicle types except bicycles and electric scooters.
- 2. Expansion factors are not applied to turning movement counts if they are less than 8-hours in duration.
- 3. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Disclaimer:

The information contained in this data summary is for information purposes only, and may not apply to your situation. Every effort is made to ensure the traffic count information is accurate for the survey date provided on the summary and flow diagram forms. The author, publisher, and distributor provide no warranty about the content or accuracy of either the data summary or flow diagrams. Information provided is subjective. The author, publisher, and distributor shall not be liable for any loss of profit or any other commercial damages resulting from use of this data.

Appendix C City of Ottawa Collision Data

Total Area

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	2	1	2	4	0	6	2	0	17	81%
Non-fatal injury	0	0	0	0	0	3	0	0	3	14%
Non reportable	0	0	1	0	0	0	0	0	1	5%
Total	2	1	3	4	0	9	2	0	21	100%
	#4 or 10%	#6 or 5%	#3 or 14%	#2 or 19%	#7 or 0%	#1 or 43%	#4 or 10%	#7 or 0%		-

FERNBANK RD, LIARD ST to SHEA RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2012-2013	3	n/a	730	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	0	0	0	0	0	3	0	0	3	100%
Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	0	0	0	0	0	3	0	0	3	100%
	0%	0%	0%	0%	0%	100%	0%	0%		-

SHEA RD, ABBOTT ST to FERNBANK RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2012-2013	13	n/a	730	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	1	2	1	0	3	2	0	10	77%
Non-fatal injury	0	0	0	0	0	2	0	0	2	15%
Non reportable	0	0	1	0	0	0	0	0	1	8%
Total	1	1	3	1	0	5	2	0	13	100%
	8%	8%	23%	8%	0%	38%	15%	0%		

FERNBANK RD/SHEA RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2016	5	11,443	1095	0.40

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	0	0	3	0	0	0	0	4	80%
Non-fatal injury	0	0	0	0	0	1	0	0	1	20%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	1	0	0	3	0	1	0	0	5	100%
	20%	0%	0%	60%	0%	20%	0%	0%		-

Appendix D Background Traffic Growth

Fernbank/Stittsville Main <u>8 hrs</u>

Vor	Data	Nort	h Leg	South	Leg	Eas	t Leg	Wes	t Leg	Total	
Year	Date	SB	NB	NB	SB	WB	EB	EB	WB	Total	
2006	Tuesday 2 May	2184	2262	1991	1995	662	543	521	558	10716	
2008	Wednesday 9 July	1651	1850	1524	1614	1146	824	675	808	10092	
2009	Tuesday 12 May	1929	2027	1747	1878	754	658	679	546	10218	
2011	Tuesday 21 June	2316	2278	2012	2067	908	942	852	801	12176	
			ļl								
	Г	Veen		Cou	nts			% CI	nange		
	North Leg	Year	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
	-	2006	2262	2184	4446	10716					
		2008	1850	1651	3501	10092	-18.2%	-24.4%	-21.3%	-5.8%	
		2009	2027	1929	3956	10218	9.6%	16.8%	13.0%	1.2%	
		2011	2278	2316	4594	12176	12.4%	20.1%	16.1%	19.2%	
	L										
	Regression Estimate	2006	2080	1930	4009						
	Regression Estimate	2011	2129	2110	4239						
	Average Annual Change		0.47%	1.80%	1.12%						
	Γ	Year		Cou	nts			% CI	nange		
	West Leg	real	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
		2006	521	558	1079	10716					
		2008	675	808	1483	10092	29.6%	44.8%	37.4%	-5.8%	
		2009	679	546	1225	10218	0.6%	-32.4%	-17.4%	1.2%	
		2011	852	801	1653	12176	25.5%	46.7%	34.9%	19.2%	
			·					Į	ļ		
	Regression Estimate	2006	522	587	1109						
	Regression Estimate	2011	841	770	1611						
	Average Annual Change		10.01%	5.59%	7.76%						
	Γ	Year		Cou			% Change				
	East Leg		EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
		2006	543	662	1205	10716					
		2008	824	1146	1970	10092	51.7%	73.1%	63.5%	-5.8%	
		2009	658	754	1412	10218	-20.1%	-34.2%	-28.3%	1.2%	
		2011	942	908	1850	12176	43.2%	20.4%	31.0%	19.2%	
			I		1055			1			
	Regression Estimate	2006	566	787	1353						
	Regression Estimate	2011	918	948	1866						
	Average Annual Change		10.15%	3.80%	6.64%						
	Γ	Year		Cou					nange		
	South Leg		NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
		2006	1991	1995	3986	10716	1				
		2008	1524	1614	3138	10092	-23.5%	-19.1%	-21.3%	-5.8%	
		2009	1747	1878	3625	10218	14.6%	16.4%	15.5%	1.2%	
		2011	2012	2067	4079	12176	15.2%	10.1%	12.5%	19.2%	
	L										
	Regression Estimate	2006	1787	1829	3615			I	11		

 Regression Estimate
 2006
 1787
 1829
 3615

 Regression Estimate
 2011
 1850
 1949
 3799

 Average Annual Change
 0.70%
 1.28%
 0.99%

Fernbank/Stittsville Main AM Peak

Year Date North Leg South Leg East Leg 2006 Tuesday 2 May 277 307 313 259 60 1 2006 Tuesday 2 May 277 307 313 259 60 1 2008 Wednesday 9 July 166 257 238 149 104 209 2009 Tuesday 12 May 293 295 287 263 66 2011 1uesday 21 June 271 308 316 244 83 1 2011 Tuesday 21 June 271 308 316 244 83 1 2011 Tuesday 21 June 271 308 316 244 83 1 2011 2006 307 277 584 1462 208 209 295 293 588 1572 2009 295 293 588 1572 2011 308 271 579 1652 2006 </th <th>EB 100 124 174 207 NB -16.3% 14.8% 4.4%</th> <th>EB 81 123 140 171</th> <th>tt Leg WB 65 101 54 52 MB+SB -27.6% 39.0% -1.5%</th> <th>Total 1462 1262 1572 1652 INT -13.7% 24.6%</th>	EB 100 124 174 207 NB -16.3% 14.8% 4.4%	EB 81 123 140 171	tt Leg WB 65 101 54 52 MB+SB -27.6% 39.0% -1.5%	Total 1462 1262 1572 1652 INT -13.7% 24.6%
2008 Wednesday 9 July 166 257 238 149 104 2009 Tuesday 12 May 293 295 287 263 66 2011 Tuesday 21 June 271 308 316 244 83 North Leg Year Counts INT 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	124 174 207 NB -16.3% 14.8%	123 140 171 % CI SB -40.1% 76.5%	101 54 52 NB+SB -27.6% 39.0%	1262 1572 1652 <i>INT</i> -13.7%
2009 Tuesday 12 May 293 295 287 263 66 2011 Tuesday 21 June 271 308 316 244 83 North Leg Year NB SB NB+SB INT 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	174 207 NB -16.3% 14.8%	140 171 % CI <i>SB</i> -40.1% 76.5%	54 52 NB+SB -27.6% 39.0%	1572 1652 <i>INT</i> -13.7%
Year Counts North Leg Year NB SB NB+SB INT 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	207 NB -16.3% 14.8%	171 % CI <i>SB</i> -40.1% 76.5%	52 hange NB+SB -27.6% 39.0%	1652 <i>INT</i> -13.7%
Year Counts North Leg Year Counts 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	NB -16.3% 14.8%	% CI SB -40.1% 76.5%	hange NB+SB -27.6% 39.0%	<i>INT</i> -13.7%
North Leg Year NB SB NB+SB INT 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	-16.3% 14.8%	<i>SB</i> -40.1% 76.5%	-27.6% 39.0%	-13.7%
North Leg Year NB SB NB+SB INT 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	-16.3% 14.8%	<i>SB</i> -40.1% 76.5%	-27.6% 39.0%	-13.7%
North Leg NB SB NB+SB INT 2006 307 277 584 1462 2008 257 166 423 1262 2009 295 293 588 1572 2011 308 271 579 1652	-16.3% 14.8%	-40.1% 76.5%	-27.6% 39.0%	-13.7%
200825716642312622009295293588157220113082715791652	14.8%	76.5%	39.0%	
2009295293588157220113082715791652	14.8%	76.5%	39.0%	
2011 308 271 579 1652				24.6%
	4.4%	-7.5%	-1.5%	
Regression Estimate 2006 288 242 530				5.1%
Regression Estimate 2011 296 261 557				
Average Annual Change 0.57% 1.49% 1.00%				
Counts		% CI	hange	
West Leg Year EB WB EB+WB INT	EB	WB	EB+WB	INT
2006 81 65 146 1462				1
2008 123 101 224 1262	51.9%	55.4%	53.4%	-13.7%
2009 140 54 194 1572	13.8%	-46.5%	-13.4%	24.6%
2011 171 52 223 1652	22.1%	-3.7%	14.9%	5.1%
		<u> </u>	<u> </u>	Į
Regression Estimate 2006 84 79 163 Regression Estimate 2011 174 57 231				
5				
Average Annual Change 15.68% -6.19% 7.26%				
Year Counts	% Change			
East Leg EB WB EB+WB INT	EB	WB	EB+WB	INT
2006 100 60 160 1462				
2008 124 104 228 1262	24.0%	73.3%	42.5%	-13.7%
2009 174 66 240 1572	40.3%	-36.5%	5.3%	24.6%
2011 207 83 290 1652	19.0%	25.8%	20.8%	5.1%
Regression Estimate 2006 95 71 166				
Regression Estimate 2000 75 71 100 Regression Estimate 2011 208 86 293				
Average Annual Change 16.91% 3.87% 12.07%				
Year Counts		1	hange	
South Leg NB SB NB+SB INT	NB	SB	NB+SB	INT
2006 313 259 572 1462				
2008 238 149 387 1262	-24.0%	-42.5%	-32.3%	-13.7%
2009 287 263 550 1572	20.6%	76.5%	42.1%	24.6%
2011 316 244 560 1652	10.1%	-7.2%	1.8%	5.1%
Regression Estimate 2006 282 225 507		•	•	<u>.</u>

Regression Estimate Regression Estimate Average Annual Change 2006 2011 282 295 **0.86%** 225 233 **0.66%**

507 527 **0.77%**

Fernbank/Stittsville Main PM Peak

ear	Date	Nort	h Leg	South	n Leg	Eas	t Leg	Wes	t Leg	Total
ear	Date	SB	NB	NB	SB	WB	EB	EB	WB	Total
006	Tuesday 2 May	357	349	304	322	10	72	64	92	1570
800	Wednesday 9 July	378	379	313	343	266	128	74	181	2062
009	Tuesday 12 May	293	304	253	264	155	91	65	107	1532
011	Tuesday 21 June	403	373	311	394	239	128	121	179	2148
	I		۱۱							
		Year		Cou					nange	
	North Leg	i cui	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
		2006	349	357	706	1570				
		2008	379	378	757	2062	8.6%	5.9%	7.2%	31.3%
		2009	304	293	597	1532	-19.8%	-22.5%	-21.1%	-25.7%
		2011	373	403	776	2148	22.7%	37.5%	30.0%	40.2%
					I					
	Regression Estimate	2006	347	344	691					
	Regression Estimate	2011	356	372	727					
	Average Annual Change		0.49%	1.57%	1.04%					
	Γ	Year		Cou	nts			% Cł	nange	
	West Leg	Tear	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2006	64	92	156	1570				
		2008	74	181	255	2062	15.6%	96.7%	63.5%	31.3%
		2009	65	107	172	1532	-12.2%	-40.9%	-32.5%	-25.7%
		2011	121	179	300	2148	86.2%	67.3%	74.4%	40.2%
	E	2024		105	1/0			<u></u>	Į	
	Regression Estimate	2006	54	105	160 282					
	Regression Estimate Average Annual Change	2011	108 14.58%	174 10.68%	282 12.07%					
	Г		T	Cou	nts		T	% ()	nange	
	East Leg	Year	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
	2031 209	2006	72	10	82	1570	20	n e	20/110	
		2008	128	266	394	2062	77.8%	2560.0%	380.5%	31.3%
		2000	91	155	246	1532	-28.9%	-41.7%	-37.6%	-25.7%
		2011	128	239	367	2148	40.7%	54.2%	49.2%	40.2%
	L									
	Regression Estimate	2006	81	68	149					
	Regression Estimate	2011	128	267	395					
	Regression Estimate Average Annual Change	2011	128 9.50%	267 31.42%	395 21.46%					
	Average Annual Change		9.50%	31.42% Cou	21.46%			1	nange	
		Year	9.50%	31.42% Cou <i>SB</i>	21.46% nts <i>NB+SB</i>	INT	NB	% Cł <i>SB</i>	nange NB+SB	INT
	Average Annual Change	Year 2006	9.50%	31.42% Cou <i>SB</i> 322	21.46% nts <i>NB+SB</i> 626	1570		SB	NB+SB	
	Average Annual Change	Year 2006 2008	9.50% NB 304 313	31.42% Cou <i>SB</i> 322 343	21.46% nts <i>NB+SB</i> 626 656	1570 2062	3.0%	SB 6.5%	NB+SB 4.8%	31.3%
	Average Annual Change	Year 2006 2008 2009	9.50% NB 304 313 253	31.42% Cou SB 322 343 264	21.46% nts <u>NB+SB</u> 626 656 517	1570 2062 1532	3.0% -19.2%	SB 6.5% -23.0%	NB+SB 4.8% -21.2%	31.3% -25.7%
	Average Annual Change	Year 2006 2008	9.50% NB 304 313	31.42% Cou <i>SB</i> 322 343	21.46% nts <i>NB+SB</i> 626 656	1570 2062	3.0%	SB 6.5%	NB+SB 4.8%	INT 31.3% -25.7% 40.2%
	Average Annual Change South Leg	Year 2006 2008 2009 2011	9.50% NB 304 313 253 311	31.42% Cou SB 322 343 264 394	21.46% nts <u>NB+SB</u> 626 656 517 705	1570 2062 1532	3.0% -19.2%	SB 6.5% -23.0%	NB+SB 4.8% -21.2%	31.3% -25.7%
	Average Annual Change	Year 2006 2008 2009	9.50% NB 304 313 253	31.42% Cou SB 322 343 264	21.46% nts <u>NB+SB</u> 626 656 517	1570 2062 1532	3.0% -19.2%	SB 6.5% -23.0%	NB+SB 4.8% -21.2%	31.3% -25.7%

Regression Estimate Average Annual Change 2011 293 358 -0.33% 3.33% 1.59%

Appendix E SIDRA Background Traffic Analysis

Site: FB2020AM

AM Peak Period Roundabout

Movement Performance - Vehicles											
Mov	OD	Demand		Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Shea South	veh/h	%	v/c	sec	_	veh	m		per veh	km/h
3	L2	1 Ley 5	3.0	0.511	18.1	LOS C	2.3	18.0	0.73	0.81	45.0
-	T1	5 150		0.511	18.1	LOS C		18.0		0.81	45.0 45.0
8			3.0		-		2.3		0.73		
18	R2	83	3.0	0.511	18.1	LOS C	2.3	18.0	0.73	0.81	44.0
Approa	ach	238	3.0	0.511	18.1	LOS C	2.3	18.0	0.73	0.81	44.6
East: F	Fernbank Ea	ast Leg									
1	L2	60	3.0	0.363	9.6	LOS A	1.5	11.7	0.55	0.54	49.5
6	T1	145	3.0	0.363	9.6	LOS A	1.5	11.7	0.55	0.54	49.4
16	R2	57	3.0	0.363	9.6	LOS A	1.5	11.7	0.55	0.54	48.3
Approa	ach	262	3.0	0.363	9.6	LOS A	1.5	11.7	0.55	0.54	49.2
North:	Shea North	Leg									
7	L2	81	3.0	0.325	7.6	LOS A	1.4	10.9	0.41	0.31	50.6
4	T1	106	3.0	0.325	7.6	LOS A	1.4	10.9	0.41	0.31	50.6
14	R2	100	3.0	0.325	7.6	LOS A	1.4	10.9	0.41	0.31	49.3
Approa	ach	287	3.0	0.325	7.6	LOS A	1.4	10.9	0.41	0.31	50.1
West:	Fernbank W	/est Leg									
5	L2	251	3.0	0.919	36.3	LOS E	17.1	133.3	1.00	1.17	36.5
2	T1	499	3.0	0.919	36.3	LOS E	17.1	133.3	1.00	1.17	36.5
12	R2	32	3.0	0.919	36.3	LOS E	17.1	133.3	1.00	1.17	35.8
Approa	ach	782	3.0	0.919	36.3	LOS E	17.1	133.3	1.00	1.17	36.4
All Veł	nicles	1569	3.0	0.919	23.8	LOS C	17.1	133.3	0.78	0.85	41.4

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Thursday, May 24, 2018 2:51:50 PM SIDRA INTERSECTION 6.0.22.4722 Project: \\XCCAN57FS01\Data\\SO\476654\1000\DATA\SIDRA\FT2020.sip6 8000999, PARSONS TRANSPORTATION GROUP, NETWORK / Enterprise

V Site: FB2020PM

PM Peak Period Roundabout

Move	ment Perfe	ormance - Ve	hicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Shea South	veh/h	%	v/c	sec	_	veh	m	_	per veh	km/h
3	L2	20	3.0	0.406	11.3	LOS B	1.8	13.9	0.61	0.64	48.9
8	T1	154	3.0	0.406	11.3	LOS B	1.8	13.9	0.61	0.64	48.8
18	R2	91	3.0	0.406	11.3	LOS B	1.8	13.9	0.61	0.64	47.7
Approa	ach	265	3.0	0.406	11.3	LOS B	1.8	13.9	0.61	0.64	48.4
East: F	Fernbank Ea	ast Leg									
1	L2	135	3.0	0.941	41.2	LOS E	18.2	142.1	1.00	1.33	35.0
6	T1	533	3.0	0.941	41.2	LOS E	18.2	142.1	1.00	1.33	35.0
16	R2	92	3.0	0.941	41.2	LOS E	18.2	142.1	1.00	1.33	34.4
Approa	ach	760	3.0	0.941	41.2	LOS E	18.2	142.1	1.00	1.33	34.9
North:	Shea North	Leg									
7	L2	93	3.0	0.772	29.6	LOS D	5.7	44.2	0.84	1.04	39.1
4	T1	145	3.0	0.772	29.6	LOS D	5.7	44.2	0.84	1.04	39.1
14	R2	179	3.0	0.772	29.6	LOS D	5.7	44.2	0.84	1.04	38.3
Approa	ach	417	3.0	0.772	29.6	LOS D	5.7	44.2	0.84	1.04	38.8
West:	Fernbank W	/est Leg									
5	L2	123	3.0	0.558	13.5	LOS B	3.3	25.7	0.65	0.69	46.9
2	T1	288	3.0	0.558	13.5	LOS B	3.3	25.7	0.65	0.69	46.9
12	R2	6	3.0	0.558	13.5	LOS B	3.3	25.7	0.65	0.69	45.8
Approa	ach	417	3.0	0.558	13.5	LOS B	3.3	25.7	0.65	0.69	46.9
All Ver	nicles	1859	3.0	0.941	28.1	LOS D	18.2	142.1	0.83	1.02	39.6

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Thursday, May 24, 2018 2:53:44 PM SIDRA INTERSECTION 6.0.22.4722 Project: \\XCCAN57FS01\Data\ISO\476654\1000\DATA\SIDRA\FT2020.sip6 8000999, PARSONS TRANSPORTATION GROUP, NETWORK / Enterprise

Site: FB2025AM

AM Peak Hour Fernbank/Shea Roundabout

Mover	nent Perfo	ormance - Ve	hicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Shea South	veh/h	%	v/c	Sec	_	veh	m	_	per veh	km/h
3	L2	5 5	3.0	0.581	21.8	LOS C	2.8	21.8	0.77	0.88	43.1
8	T1	168	3.0	0.581	21.8	LOS C	2.8	21.8	0.77	0.88	43.0
18	R2	83	3.0	0.581	21.8	LOS C	2.8	21.8	0.77	0.88	42.1
Approa		256	3.0	0.581	21.8	LOS C	2.8	21.8	0.77	0.88	42.7
••			5.0	0.001	21.0	200.0	2.0	21.0	0.77	0.00	42.7
East: F	ernbank Ea	ast Leg									
1	L2	60	3.0	0.388	10.2	LOS B	1.7	13.1	0.57	0.58	49.2
6	T1	158	3.0	0.388	10.2	LOS B	1.7	13.1	0.57	0.58	49.1
16	R2	57	3.0	0.388	10.2	LOS B	1.7	13.1	0.57	0.58	47.9
Approa	ich	275	3.0	0.388	10.2	LOS B	1.7	13.1	0.57	0.58	48.9
North: \$	Shea North	Leg									
7	L2	81	3.0	0.345	8.0	LOS A	1.5	11.8	0.43	0.34	50.4
4	T1	120	3.0	0.345	8.0	LOS A	1.5	11.8	0.43	0.34	50.4
14	R2	100	3.0	0.345	8.0	LOS A	1.5	11.8	0.43	0.34	49.1
Approa	ich	301	3.0	0.345	8.0	LOS A	1.5	11.8	0.43	0.34	50.0
West: F	- ernbank W	/est Leg									
5	L2	251	3.0	0.998	52.8	LOS F	28.2	219.9	1.00	1.49	31.5
2	T1	554	3.0	0.998	52.8	LOS F	28.2	219.9	1.00	1.49	31.5
12	R2	32	3.0	0.998	52.8	LOS F	28.2	219.9	1.00	1.49	31.0
Approa	ich	837	3.0	0.998	52.8	LOS F	28.2	219.9	1.00	1.49	31.4
All Veh	icles	1669	3.0	0.998	33.0	LOS D	28.2	219.9	0.79	1.04	37.7

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Friday, May 25, 2018 8:56:20 AM SIDRA INTERSECTION 6.0.22.4722 Project: H:\ISO\476654\1000\DATA\SIDRA\FT2025.sip6 8000999, PARSONS TRANSPORTATION GROUP, NETWORK / Enterprise

W Site: FB2025PM

PM Peak Hour Fernbank/Shea Roundabout

Move	ment Perf	ormance - Ve	hicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Shea Sout	veh/h	%	v/c	Sec	_	veh	m	_	per veh	km/h
3	L2	20	3.0	0.444	12.3	LOS B	2.1	16.0	0.64	0.67	48.3
8	T1	171	3.0	0.444	12.3	LOS B	2.1	16.0	0.64	0.67	48.2
18	R2	91	3.0	0.444	12.3	LOS B	2.1	16.0	0.64	0.67	47.0
Approa		282	3.0	0.444	12.3	LOS B	2.1	16.0	0.64	0.67	47.8
Appio	acii	202	5.0	0.444	12.5	L03 D	2.1	10.0	0.04	0.07	47.0
East: F	Fernbank Ea	ast Leg									
1	L2	135	3.0	1.024	61.0	LOS F	31.0	241.5	1.00	1.76	29.6
6	T1	586	3.0	1.024	61.0	LOS F	31.0	241.5	1.00	1.76	29.5
16	R2	92	3.0	1.024	61.0	LOS F	31.0	241.5	1.00	1.76	29.1
Approa	ach	813	3.0	1.024	61.0	LOS F	31.0	241.5	1.00	1.76	29.5
North:	Shea North	Leg									
7	L2	93	3.0	0.828	36.2	LOS E	6.8	53.0	0.88	1.14	36.6
4	T1	159	3.0	0.828	36.2	LOS E	6.8	53.0	0.88	1.14	36.5
14	R2	179	3.0	0.828	36.2	LOS E	6.8	53.0	0.88	1.14	35.9
Approa	ach	431	3.0	0.828	36.2	LOS E	6.8	53.0	0.88	1.14	36.3
West:	Fernbank W	/est Leg									
5	L2	123	3.0	0.600	14.9	LOS B	3.8	29.7	0.68	0.74	46.2
2	T1	314	3.0	0.600	14.9	LOS B	3.8	29.7	0.68	0.74	46.1
12	R2	6	3.0	0.600	14.9	LOS B	3.8	29.7	0.68	0.74	45.1
Approa	ach	443	3.0	0.600	14.9	LOS B	3.8	29.7	0.68	0.74	46.1
All Veh	nicles	1969	3.0	1.024	38.2	LOS E	31.0	241.5	0.85	1.24	35.8

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Friday, May 25, 2018 8:55:55 AM SIDRA INTERSECTION 6.0.22.4722 Project: H:\ISO\476654\1000\DATA\SIDRA\FT2025.sip6 8000999, PARSONS TRANSPORTATION GROUP, NETWORK / Enterprise

SIDRA INTERSECTION 6

Multi-Modal Level of Service - Segments Form

Consultant Scenario Comments	PARSONS 5969 Fernbank		Project Date	476654-01	000					
SEGMENTS		Street A	Fernbank (Existing)	Shea (Existing)	Fernbank (Future)	Shea (Future)	Street 1 (Future)	Section	Section	
	Sidewalk Width Boulevard Width		1 no sidewalk n/a	2 no sidewalk n/a	3 ≥ 2 m > 2 m	4 ≥ 2 m > 2 m	5 1.8 m > 2 m	6	7	
rian	Avg Daily Curb Lane Traffic Volume Operating Speed On-Street Parking		> 3000 > 60 km/h no	≤ 3000 > 30 to 50 km/h no						
Pedestrian	Exposure to Traffic PLoS Effective Sidewalk Width Pedestrian Volume	-	F	F	D	D	A	-	-	
	Crowding PLoS Level of Service		-	-	-	-	-	-	-	
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Curbside Bike Lane	Physically Separated	Curbside Bike Lane			
	Number of Travel Lanes		≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 1 each direction	<mark>≤ 1 each-</mark> direction	≤ 1 each direction			
	Operating Speed		≥ 60 km/h	≥ 60 km/h	>50 to 70 km/h		≤ 50 km/h			
	# of Lanes & Operating Speed LoS		F	F	С	-	A	-	-	
Bicycle	Bike Lane (+ Parking Lane) Width				≥1.5 to <1.8 m		≥ 1.8 m			
cČ	Bike Lane Width LoS	F	-	-	В	-	A	-	-	
Bi	Bike Lane Blockages Blockage LoS				Rare A		Rare A	-	-	
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	-	< 1.8 m refuge	-		-
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes	≤ 3 lanes		≤ 3 lanes			
	Sidestreet Operating Speed		>40 to 50 km/h	>40 to 50 km/h	>40 to 50 km/h		≤ 40 km/h			+
	Unsignalized Crossing - Lowest LoS		В	В	В	A	A	-	-	
	Level of Service		F	F	С	Α	A	-	-	
sit	Facility Type			Mixed Traffic						
Transit	Friction or Ratio Transit:Posted Speed	D		Vt/Vp ≥ 0.8						
Ë	Level of Service		-	D	-	-	-	-	-	
	Truck Lane Width									
ick	Travel Lanes per Direction									
Truck	Level of Service		-	-	-	-	-	-	-	

Section	Section
8	9
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-

Appendix G Warrants

				Design Speed		ng Traffic ne (V _A)		ng Traffic ne (V _o)		n Traffic ne (V _L)		t Turning Iffic	Warrant Left Turn
				-1	AM	PM	AM	PM	AM	PM	AM	PM	Lane
Total Projecte	ed 2020 vo	lumes											
Fernbank/St	treet 1			60	618	359	247	746	13	44	2%	12%	Yes
		•	t	▶	L.	ŧ	4	_	-	7	F	←	▲_
	Peak	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
								Warrant?					
	AM	43	10	156	84	10	41	13	593	12	44	175	28
	PM	25	10	90	54	10	26	44	271	44	162	493	91

			Design Speed		ng Traffic ne (V _A)		ng Traffic ne (V _o)		n Traffic ne (V _L)		t Turning affic	Warrant Left Turn
			-1	AM	PM	AM	PM	AM	PM	AM	PM	Lane
Total Projected 2020 v	olumes											
Fernbank/Street 1			60	247	746	618	359	44	162	18%	22%	Yes
Peak	1 NBL	↑ NBT	▶ NBR	SBL	↓ SBT	↓ SBR	_ ▲ EBL	➡ EBT	EBR	W BL	← WBT	▲_ WBR
										Warrant?	1	
AM	43	10	156	84	10	41	13	593	12	44	175	28
PM	25	10	90	54	10	26	44	271	44	162	493	91

-

"FREE FLOW" URBAN AREAS

.

				Design Speed		ng Traffic ne (V _A)		ng Traffic ne (V _o)		n Traffic ne (V _L)		t Turning Iffic	Warrant Left Turn
					AM	PM	AM	PM	AM	PM	AM	PM	Lane
Total Project	ed 2025 vo	lumes											
Fernbank/St	treet 1			60	709	395	274	817	13	44	2%	11%	Yes
		•	t	▶	L.	ŧ	4	_	->	7	F	←	▲_
_	Peak	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
								Warrant?					
	AM	43	10	156	84	10	41	13	684	12	44	202	28
	PM	25	10	90	54	10	26	44	307	44	162	564	91

			Design Speed		ng Traffic ne (V _A)		ng Traffic ne (V _o)		n Traffic ne (V _L)		t Turning Iffic	Warrant Left Turn
			-1	AM	PM	AM	PM	AM	PM	AM	PM	Lane
Total Projected 2025 vo	olumes											
Fernbank/Street 1			60	274	817	709	395	44	162	16%	20%	Yes
Peak	1 NBL	1 NBT	♪ NBR	SBL	↓ SBT	↓ SBR	_ ▲ EBL	→ EBT	T EBR	WBL	← WBT	▲ WBR
	NDL	NDT	NDIX	ODL	001	ODIX	LDL	LDI	LDIX	Warrant?		WBR
AM	43	10	156	84	10	41	13	684	12	44	202	28
PM	25	10	90	54	10	26	44	307	44	162	564	91

"FREE FLOW" URBAN AREAS

.

Fernbank/Street 1 - (peak hour signal warrant, 2025 total projected volumes)

	Signal			Minimum Requirement for Two Lane Roadways	С	Compliance	
	Signal Warrant		Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	96%	83%	
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	170	83%	0370	83%
Inters	2. Delay to	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	76%	76%	No
	Cross Traffic		Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	76%	1070	

Notes

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08

3 The Lowest Sectional Percentage Governs the Entire Warrant

4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50% (Warrant 1B only)

SENSITIVITY ANALYSIS #1

Fernbank/Street 1 - (peak hour signal warrant, 2025 total projected volumes)

	Signal Warrant			Minimum Requirement for Two Lane Roadways	Compliance			
	Warrant		Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant	
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	100%	100%		
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	170	101%	100 %	100%	
Inters	2. Delay to	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	76%	76%	Yes	
	Cross Traffic		Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	96%	7070		

Notes

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

No

2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08

3 The Lowest Sectional Percentage Governs the Entire Warrant

4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50% (Warrant 1B only)

SENSITIVITY ANALYSIS #2

Fernbank/Street 1 - (peak hour signal warrant, 2025 total projected volumes)

	Signal Warrant			Minimum Requirement for Two Lane Roadways	Compliance			
	Warrant		Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant	
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	101%	101%		
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	170	104%	101 %	100%	
Inters	2. Delay to	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	76%	76%	Yes	
	Cross Traffic		Cross (2) B Combined Vehicle and		124%	7070		

Notes

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

No

2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08

3 The Lowest Sectional Percentage Governs the Entire Warrant

4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50% (Warrant 1B only)

Fernbank/Street 1 - 2020 Total Projected Volumes

	AWSC Warrant		Description	Minimum Requirement for a four-leg intersection	С	Compliance	
					Sectional %	Entire %	Warrant
		A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, <u>or</u>	200	279%		
L C	1. Minimum Volume	В	Vehicle Volume, All Approaches for the Heaviest Peak Hour, <u>and</u>	350	211%	48%	
Intersection	Criterion	С	Vehicle and pedestrian Volume, Along Minor Streets for Each of the Same 8 Hours, <u>and</u>	80	144%	4076	No
Inte		D	The volume split between the major and minor streets	65/35	48%		
	2. Minimum Collision Criterion	A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	9	0%	0%	

Note: *O* preventable by AWSC collisions (i.e. right angle and turning movement collisions) were reported during a 3 year time period

Fernbank/Street 1 - 2025 Total Projected Volumes

	AWSC Warrant		Description	Minimum Requirement for a four-leg intersection	Compliance				
					Sectional %	Entire %	Warrant		
		A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, <u>or</u>	200	307%				
c	1. Minimum Volume Criterion	В	Vehicle Volume, All Approaches for the Heaviest Peak Hour, <u>and</u>	350	245%	43%			
Intersection		С	Vehicle and pedestrian Volume, Along Minor Streets for Each of the Same 8 Hours, <u>and</u>	80	144%		No		
Int		D	The volume split between the major and minor streets	65/35	43%				
	2. Minimum Collision Criterion	A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	9	0%	0%			

Note: *O* preventable by AWSC collisions (i.e. right angle and turning movement collisions) were reported during a 3 year time period

City of Ottawa Roundabout Initial Feasibility Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more detail.

1	Project Name:	5969 Fernbank Road Strategy Report
2	Intersection:	Fernbank/Street 1
3	Location and Description of Intersection: Lane configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control.	Located approximately 550m west of the Fernbank/Shea roundabout intersection
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	A traffic signal is also being explored.
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet.	
6	Why is a roundabout being considered?	To reduce projected delays at the Fernbank/Street 1 intersection

7 Are there contra-indications for a roundabout?

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a roundabout is not possible, just that there may be difficulties or high costs.

No.	Contra-Indication	Outcome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes 🗌 No 🗸
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes 🗌 No 🗸
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes 🗌 No 🗸
4	Is the intersection located within a coordinated signal system?	Yes 🗌 No 🗸
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes 🗌 No 🖌
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes 🗌 No 🖌
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes 🗌 No 🗸

8 Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection.

No.	Suitability Factor	Outcome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes 🗌 No 🗸
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes 🗌 No 🗸
3	Are capacity problems currently being experienced, or expected in the future?	Yes 🗸 No 🗌
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes 🗸 No 🗌
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes 🗌 No 🗸
6	Will planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes 🗌 No 🗸
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes 🗸 No 🗌

9 Conclusions/recommendation whether to proceed with an Intersection Control Study: A roundabout should technically be feasible due to the projected traffic issues and signal warrant. SIDRA analysis to be completed.

Appendix H Synchro and SIDRA Total Projected Traffic Analysis

Future 2020 AM 2: Fernbank & Street 1

	≯	+	*	4	+	×	1	1	*	*	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ef 👘		۲.	4			\$			\$	
Traffic Volume (veh/h)	14	593	12	44	175	31	43	10	156	90	10	43
Future Volume (Veh/h)	14	593	12	44	175	31	43	10	156	90	10	43
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	15	624	13	46	184	33	45	11	164	95	11	45
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	217			637			987	970	630	1116	960	200
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	217			637			987	970	630	1116	960	200
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			95			77	95	66	15	95	95
cM capacity (veh/h)	1353			947			198	238	481	112	242	840
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	15	637	46	217	220	151						
Volume Left	15	0	46	0	45	95						
Volume Right	0	13	0	33	164	45						
cSH	1353	1700	947	1700	358	160						
Volume to Capacity	0.01	0.37	0.05	0.13	0.61	0.94						
Queue Length 95th (m)	0.3	0.0	1.2	0.0	29.7	53.2						
Control Delay (s)	7.7	0.0	9.0	0.0	29.8	113.8						
Lane LOS	А		А		D	F						
Approach Delay (s)	0.2		1.6		29.8	113.8						
Approach LOS					D	F						
Intersection Summary												
Average Delay			18.9									
Intersection Capacity Utilization			66.8%	ICI	J Level of S	ervice			С			
Analysis Period (min)			15									

Future 2020 AM 3: Shea & Street 1

S. Shea & Sheet 1							-
	≯	\mathbf{r}	-	1	Ļ	1	
	EDI			-	T CDT		
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	€Î,		
Traffic Volume (veh/h)	225	9	3	502	308	68	
Future Volume (Veh/h)	225	9	3	502	308	68	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	237	9	3	528	324	72	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	894	360	396				
vC1, stage 1 conf vol	071	500	570				
vC2, stage 2 conf vol							
vCu, unblocked vol	894	360	396				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	0.4	0.2	1.1				
tF (s)	3.5	3.3	2.2				
p0 queue free %	24	99	100				
cM capacity (veh/h)	311	684	1163				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	246	531	396				
Volume Left	237	3	0				
Volume Right	9	0	72				
cSH	317	1163	1700				
Volume to Capacity	0.78	0.00	0.23				
Queue Length 95th (m)	46.6	0.1	0.0				
Control Delay (s)	46.6	0.1	0.0				
Lane LOS	E	А					
Approach Delay (s)	46.6	0.1	0.0				
Approach LOS	E						
Intersection Summary							
Average Delay			9.8				
Intersection Capacity Utilization			50.8%	ICI	U Level of Serv	vice	
Analysis Period (min)			15			100	
Analysis Fellou (IIIII)			10				

Future 2020 AM 4: Street 4 & Shea

	٦	\mathbf{r}	1	1	ţ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LBIT		با	<u>}</u>	0011
Traffic Volume (veh/h)	34	17	7	471	303	14
Future Volume (Veh/h)	34	17	7	471	303	14
Sign Control	Stop	17	1	Free	Free	14
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
	0.95			0.95 496		
Hourly flow rate (vph)	30	18	7	490	319	15
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	836	326	334			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	836	326	334			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	89	97	99			
cM capacity (veh/h)	335	715	1225			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	54	503	334			
Volume Left	36	7	0			
Volume Right	18	0	15			
cSH	407	1225	1700			
Volume to Capacity	0.13	0.01	0.20			
Queue Length 95th (m)	0.13 3.5	0.01	0.20			
			0.0			
Control Delay (s)	15.2	0.2	0.0			
Lane LOS	C	A	0.0			
Approach Delay (s)	15.2	0.2	0.0			
Approach LOS	С					
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utilization			42.1%	IC	U Level of Serv	/ice
Analysis Period (min)			15			

Future 2020 PM 2: Fernbank & Street 1

	≯	-	\mathbf{r}	4	-	×.	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	el el		7	ef 🗧			4			\$	
Traffic Volume (veh/h)	46	271	44	162	493	97	25	10	90	58	10	27
Future Volume (Veh/h)	46	271	44	162	493	97	25	10	90	58	10	27
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	48	285	46	171	519	102	26	11	95	61	11	28
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	621			331			1298	1367	308	1394	1339	570
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	621			331			1298	1367	308	1394	1339	570
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	95			86			75	91	87	27	91	95
cM capacity (veh/h)	960			1228			105	120	732	83	125	521
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	48	331	171	621	132	100						
Volume Left	48	0	171	0	26	61						
Volume Right	0	46	0	102	95	28						
cSH	960	1700	1228	1700	282	114						
Volume to Capacity	0.05	0.19	0.14	0.37	0.47	0.88						
Queue Length 95th (m)	1.2	0.0	3.7	0.0	17.8	40.3						
Control Delay (s)	8.9	0.0	8.4	0.0	28.5	123.7						
Lane LOS	А		А		D	F						
Approach Delay (s)	1.1		1.8		28.5	123.7						
Approach LOS					D	F						
Intersection Summary												
Average Delay			12.8									
Intersection Capacity Utilization			59.3%	ICI	J Level of S	ervice			В			
Analysis Period (min)			15									

Future 2020 PM 3: Shea & Street 1

3. Shea & Street 1							-	
	≯	\mathbf{r}	1	t	Ļ	1		
1 A	EDI			-				
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	۲			र्स	₽			
Traffic Volume (veh/h)	135	6	10	402	421	235		
Future Volume (Veh/h)	135	6	10	402	421	235		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	142	6	11	423	443	247		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1012	566	690					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1012	566	690					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	46	99	99					
cM capacity (veh/h)	262	523	905					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	148	434	690					
Volume Left	142	11	0					
Volume Right	6	0	247					
cSH	267	905	1700					
Volume to Capacity	0.55	0.01	0.41					
Queue Length 95th (m)	23.4	0.3	0.0					
Control Delay (s)	33.9	0.4	0.0					
Lane LOS	D	А						
Approach Delay (s)	33.9	0.4	0.0					
Approach LOS	D							
Intersection Summary								
Average Delay			4.1					
Intersection Capacity Utilization			53.5%	ICI	U Level of Ser	vice		
Analysis Period (min)			15	10	0 20101 01 001			
			13					

Future 2020 PM 4: Street 4 & Shea

	٦	\mathbf{r}	1	t	Ţ	1
				-	•	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ę	4Î	
Traffic Volume (veh/h)	24	12	19	388	389	38
Future Volume (Veh/h)	24	12	19	388	389	38
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	25	13	20	408	409	40
Pedestrians	20		20	100		
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NOTE	NULLE	
Upstream signal (m)						
pX, platoon unblocked						
	877	429	449			
vC, conflicting volume vC1, stage 1 conf vol	8//	429	449			
vC2, stage 2 conf vol	077	400	440			
vCu, unblocked vol	877	429	449			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.5					
tF (s)	3.5	3.3	2.2			
p0 queue free %	92	98	98			
cM capacity (veh/h)	313	626	1111			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	38	428	449			
Volume Left	25	20	0			
Volume Right	13	0	40			
cSH	378	1111	1700			
Volume to Capacity	0.10	0.02	0.26			
Queue Length 95th (m)	2.5	0.02	0.20			
Control Delay (s)	15.6	0.4	0.0			
Lane LOS	15.0 C	0.0 A	0.0			
Approach Delay (s)	15.6	0.6	0.0			
Approach LOS	15.0 C	0.0	0.0			
	C					
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utilization			47.9%	IC	U Level of Serv	/ice
Analysis Period (min)			15			
-						

V Site: 1 [FT2020AM]

AM Peak Period Roundabout

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Shea So	uth Leg									
3	L2	5	3.0	0.550	20.8	LOS C	2.5	19.7	0.77	0.86	43.6
8	T1	150	3.0	0.550	20.8	LOS C	2.5	19.7	0.77	0.86	43.5
18	R2	83	3.0	0.550	20.8	LOS C	2.5	19.7	0.77	0.86	42.6
Appro	ach	238	3.0	0.550	20.8	LOS C	2.5	19.7	0.77	0.86	43.2
East:	Fernbank	East Leg									
1	L2	60	3.0	0.405	10.4	LOS B	1.8	14.1	0.57	0.58	49.1
6	T1	166	3.0	0.405	10.4	LOS B	1.8	14.1	0.57	0.58	49.0
16	R2	67	3.0	0.405	10.4	LOS B	1.8	14.1	0.57	0.58	47.9
Appro	ach	293	3.0	0.405	10.4	LOS B	1.8	14.1	0.57	0.58	48.8
North:	Shea No	rth Leg									
7	L2	107	3.0	0.362	8.3	LOS A	1.6	12.6	0.44	0.35	50.0
4	T1	106	3.0	0.362	8.3	LOS A	1.6	12.6	0.44	0.35	49.9
14	R2	100	3.0	0.362	8.3	LOS A	1.6	12.6	0.44	0.35	48.7
Appro	ach	313	3.0	0.362	8.3	LOS A	1.6	12.6	0.44	0.35	49.6
West:	Fernbank	West Leg									
5	L2	251	3.0	1.006	55.0	LOS F	30.0	234.0	1.00	1.56	30.9
2	T1	550	3.0	1.006	55.0	LOS F	30.0	234.0	1.00	1.56	30.9
12	R2	32	3.0	1.006	55.0	LOS F	30.0	234.0	1.00	1.56	30.4
Appro	ach	833	3.0	1.006	55.0	LOS F	30.0	234.0	1.00	1.56	30.9
All Ve	hicles	1677	3.0	1.006	33.6	LOS D	30.0	234.0	0.79	1.07	37.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARSONS TRANSPORTATION GROUP | Processed: Tuesday, September 18, 2018 9:15:11 AM Project: Not Saved

V Site: 1 [FT2020PM]

PM Peak Period Roundabout

Move	ement Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Shea So	uth Leg									
3	L2	20	3.0	0.429	12.3	LOS B	1.9	15.0	0.64	0.67	48.3
8	T1	154	3.0	0.429	12.3	LOS B	1.9	15.0	0.64	0.67	48.2
18	R2	91	3.0	0.429	12.3	LOS B	1.9	15.0	0.64	0.67	47.1
Appro	ach	265	3.0	0.429	12.3	LOS B	1.9	15.0	0.64	0.67	47.8
East:	Fernbank	East Leg									
1	L2	135	3.0	1.047	67.1	LOS F	36.2	281.8	1.00	1.88	28.2
6	T1	590	3.0	1.047	67.1	LOS F	36.2	281.8	1.00	1.88	28.2
16	R2	121	3.0	1.047	67.1	LOS F	36.2	281.8	1.00	1.88	27.8
Appro	ach	846	3.0	1.047	67.1	LOS F	36.2	281.8	1.00	1.88	28.1
North:	Shea No	rth Leg									
7	L2	111	3.0	0.826	35.6	LOS E	6.8	53.0	0.88	1.13	36.7
4	T1	145	3.0	0.826	35.6	LOS E	6.8	53.0	0.88	1.13	36.7
14	R2	179	3.0	0.826	35.6	LOS E	6.8	53.0	0.88	1.13	36.0
Appro	ach	435	3.0	0.826	35.6	LOS E	6.8	53.0	0.88	1.13	36.4
West:	Fernbank	West Leg									
5	L2	123	3.0	0.614	15.4	LOS C	4.0	31.3	0.69	0.76	45.9
2	T1	324	3.0	0.614	15.4	LOS C	4.0	31.3	0.69	0.76	45.9
12	R2	6	3.0	0.614	15.4	LOS C	4.0	31.3	0.69	0.76	44.8
Appro	ach	453	3.0	0.614	15.4	LOS C	4.0	31.3	0.69	0.76	45.9
All Ve	hicles	1999	3.0	1.047	41.3	LOS E	36.2	281.8	0.86	1.30	34.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARSONS TRANSPORTATION GROUP | Processed: Tuesday, September 18, 2018 9:26:45 AM Project: Not Saved

Future 2025 AM - Unsignalized 2: Fernbank & Street 1

	≯	+	*	4	+	*	1	1	*	*	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	f,		۲	4			4			\$	
Traffic Volume (veh/h)	14	684	12	44	202	31	43	10	156	90	10	43
Future Volume (Veh/h)	14	684	12	44	202	31	43	10	156	90	10	43
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	15	720	13	46	213	33	45	11	164	95	11	45
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	246			733			1112	1094	726	1241	1084	230
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	246			733			1112	1094	726	1241	1084	230
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			95			72	95	61	0	95	94
cM capacity (veh/h)	1320			872			160	200	424	85	203	810
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	15	733	46	246	220	151						
Volume Left	15	0	46	0	45	95						
Volume Right	0	13	0	33	164	45						
cSH	1320	1700	872	1700	305	123						
Volume to Capacity	0.01	0.43	0.05	0.14	0.72	1.23						
Queue Length 95th (m)	0.3	0.0	1.3	0.0	39.7	72.1						
Control Delay (s)	7.8	0.0	9.4	0.0	42.3	223.1						
Lane LOS	A		А		E	F						
Approach Delay (s)	0.2		1.5		42.3	223.1						
Approach LOS					E	F						
Intersection Summary												
Average Delay			30.9									
Intersection Capacity Utilization			67.0%	ICI	J Level of S	ervice			С			
Analysis Period (min)			15						-			

Future 2025 AM - Unsignalized 3: Shea & Street 1

	٦	\sim	1	1	Ļ	∢
		•	-	-	•	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			स ी	4î	
Traffic Volume (veh/h)	225	9	3	561	346	68
Future Volume (Veh/h)	225	9	3	561	346	68
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	237	9	3	591	364	72
Pedestrians	207	,	0	071	001	12
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)				Mana	Nega	
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	997	400	436			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	997	400	436			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	12	99	100			
cM capacity (veh/h)	270	650	1124			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	246	594	436			
Volume Left	237	3	0			
Volume Right	9	0	72			
cSH	276	1124	1700			
Volume to Capacity	0.89	0.00	0.26			
Queue Length 95th (m)	60.2	0.1	0.0			
Control Delay (s)	70.1	0.1	0.0			
Lane LOS	F	A	0.0			
Approach Delay (s)	70.1	0.1	0.0			
Approach LOS	70.1 F	0.1	0.0			
Approach LOS	F					
Intersection Summary						
Average Delay			13.5			
Intersection Capacity Utilization			54.1%	IC	U Level of Serv	rice
Analysis Period (min)			15	10		
			10			

Future 2025 AM - Unsignalized 4: Street 4 & Shea

	≯	\mathbf{r}	1	1	Ļ	∢
Movement	EBL		NBL	NBT	SBT	SBR
Movement		EBR	NBL			SBK
Lane Configurations	۲	47	7	4	þ	
Traffic Volume (veh/h)	34	17	7	530	341	14
Future Volume (Veh/h)	34	17	7	530	341	14
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	36	18	7	558	359	15
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	938	366	374			
vC1, stage 1 conf vol	730	300	374			
vC2, stage 2 conf vol						
vCu, unblocked vol	938	366	374			
tC, single (s)	930 6.4	6.2	4.1			
	0.4	0.2	4.1			
tC, 2 stage (s)	2.5	2.2	2.2			
tF (s)	3.5	3.3	2.2			
p0 queue free %	88	97	99			
cM capacity (veh/h)	291	679	1184			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	54	565	374			
Volume Left	36	7	0			
Volume Right	18	0	15			
cSH	360	1184	1700			
Volume to Capacity	0.15	0.01	0.22			
Queue Length 95th (m)	4.0	0.1	0.0			
Control Delay (s)	16.8	0.2	0.0			
Lane LOS	C	0.2 A	0.0			
Approach Delay (s)	16.8	0.2	0.0			
Approach LOS	10.8 C	0.2	0.0			
	C					
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utilization			45.3%	IC	U Level of Serv	ice
Analysis Period (min)			15			

Future 2025 PM - Unsignalized 2: Fernbank & Street 1

	۶	+	•	4	-	×	1	1	*	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	f,		۲.	4			4			\$	
Traffic Volume (veh/h)	46	307	44	162	564	97	25	10	90	58	10	27
Future Volume (Veh/h)	46	307	44	162	564	97	25	10	90	58	10	27
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	48	323	46	171	594	102	26	11	95	61	11	28
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	696			369			1412	1480	346	1506	1452	645
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	696			369			1412	1480	346	1506	1452	645
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	95			86			70	89	86	10	90	94
cM capacity (veh/h)	900			1190			86	102	697	67	106	472
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	48	369	171	696	132	100						
Volume Left	48	0	171	0	26	61						
Volume Right	0	46	0	102	95	28						
cSH	900	1700	1190	1700	241	94						
Volume to Capacity	0.05	0.22	0.14	0.41	0.55	1.07						
Queue Length 95th (m)	1.3	0.0	3.8	0.0	22.6	49.7						
Control Delay (s)	9.2	0.0	8.5	0.0	36.6	195.5						
Lane LOS	А		А		E	F						
Approach Delay (s)	1.1		1.7		36.6	195.5						
Approach LOS					E	F						
Intersection Summary												
Average Delay			17.3									
Intersection Capacity Utilization			63.2%	ICI	J Level of S	ervice			В			
Analysis Period (min)			15									

Future 2025 PM - Unsignalized 3: Shea & Street 1

	_ ا	\mathbf{i}	1	Ť	Ļ	∢
			-	-	•	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Ý			र्भ	۹î	
Traffic Volume (veh/h)	135	6	10	444	457	235
Future Volume (Veh/h)	135	6	10	444	457	235
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	142	6	11	467	481	247
Pedestrians		-				
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONE	NULLE	
Neural Storage vell)						
Upstream signal (m)						
pX, platoon unblocked	1004	(0)	700			
vC, conflicting volume	1094	604	728			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1094	604	728			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	39	99	99			
cM capacity (veh/h)	234	498	876			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	148	478	728			
Volume Left	140	11	0			
Volume Right	6	0	247			
cSH	239	876	1700			
Volume to Capacity	0.62	0.01	0.43			
Queue Length 95th (m)	28.0	0.3	0.0			
Control Delay (s)	41.8	0.4	0.0			
Lane LOS	E	А				
Approach Delay (s)	41.8	0.4	0.0			
Approach LOS	E					
Intersection Summary						
Average Delay			4.7			
Intersection Capacity Utilization			55.5%	ICI	U Level of Serv	rice
Analysis Period (min)			15	10	O LEVEL OF SELV	100
			15			

Future 2025 PM - Unsignalized 4: Street 4 & Shea

	≯	\mathbf{r}	1	1	Ţ	1
	_			-	•	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ę	4Î	
Traffic Volume (veh/h)	24	12	19	430	425	38
Future Volume (Veh/h)	24	12	19	430	425	38
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	25	13	20	453	447	40
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110		
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	960	467	487			
vC1, stage 1 conf vol	700	407	407			
vC2, stage 2 conf vol						
vCu, unblocked vol	960	467	487			
tC, single (s)	6.4	6.2	407			
tC, 2 stage (s)	0.4	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	3.5 91	3.3 98	2.2 98			
cM capacity (veh/h)	279	596	1076			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	38	473	487			
Volume Left	25	20	0			
Volume Right	13	0	40			
cSH	341	1076	1700			
Volume to Capacity	0.11	0.02	0.29			
Queue Length 95th (m)	2.8	0.4	0.0			
Control Delay (s)	16.9	0.6	0.0			
Lane LOS	С	А				
Approach Delay (s)	16.9	0.6	0.0			
Approach LOS	С					
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utilization			50.2%		U Level of Serv	lico
Analysis Period (min)			15		o Level of Selv	NCE
Analysis Penou (IIIII)			10			

V Site: 1 [FT2025AM]

AM Peak Hour Roundabout

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Shea So	uth Leg									
3	L2	5	3.0	0.586	22.2	LOS C	2.8	22.0	0.78	0.88	42.9
8	T1	168	3.0	0.586	22.2	LOS C	2.8	22.0	0.78	0.88	42.8
18	R2	83	3.0	0.586	22.2	LOS C	2.8	22.0	0.78	0.88	41.9
Appro	ach	256	3.0	0.586	22.2	LOS C	2.8	22.0	0.78	0.88	42.6
East:	Fernbank	East Leg									
1	L2	60	3.0	0.423	10.7	LOS B	1.9	15.1	0.58	0.59	48.9
6	T1	179	3.0	0.423	10.7	LOS B	1.9	15.1	0.58	0.59	48.9
16	R2	67	3.0	0.423	10.7	LOS B	1.9	15.1	0.58	0.59	47.7
Appro	ach	306	3.0	0.423	10.7	LOS B	1.9	15.1	0.58	0.59	48.6
North:	Shea No	rth Leg									
7	L2	107	3.0	0.383	8.7	LOS A	1.7	13.5	0.46	0.38	49.8
4	T1	120	3.0	0.383	8.7	LOS A	1.7	13.5	0.46	0.38	49.7
14	R2	100	3.0	0.383	8.7	LOS A	1.7	13.5	0.46	0.38	48.5
Appro	ach	327	3.0	0.383	8.7	LOS A	1.7	13.5	0.46	0.38	49.3
West:	Fernbank	West Leg									
5	L2	251	3.0	1.088	79.7	LOS F	45.3	353.3	1.00	2.15	25.7
2	T1	605	3.0	1.088	79.7	LOS F	45.3	353.3	1.00	2.15	25.7
12	R2	32	3.0	1.088	79.7	LOS F	45.3	353.3	1.00	2.15	25.4
Appro	ach	888	3.0	1.088	79.7	LOS F	45.3	353.3	1.00	2.15	25.7
All Ve	hicles	1777	3.0	1.088	46.4	LOS E	45.3	353.3	0.80	1.37	33.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARSONS TRANSPORTATION GROUP | Processed: Tuesday, September 18, 2018 9:30:54 AM Project: Not Saved

W Site: 1 [FT2025PM]

PM Peak Hour Roundabout

Move	ment Pe	rformance -	Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Shea So	uth Leg									
3	L2	20	3.0	0.469	13.5	LOS B	2.2	17.2	0.66	0.71	47.5
8	T1	171	3.0	0.469	13.5	LOS B	2.2	17.2	0.66	0.71	47.5
18	R2	91	3.0	0.469	13.5	LOS B	2.2	17.2	0.66	0.71	46.4
Appro	ach	282	3.0	0.469	13.5	LOS B	2.2	17.2	0.66	0.71	47.1
East:	Fernbank	East Leg									
1	L2	135	3.0	1.132	95.9	LOS F	53.4	416.3	1.00	2.54	23.2
6	T1	643	3.0	1.132	95.9	LOS F	53.4	416.3	1.00	2.54	23.2
16	R2	121	3.0	1.132	95.9	LOS F	53.4	416.3	1.00	2.54	22.9
Appro	ach	899	3.0	1.132	95.9	LOS F	53.4	416.3	1.00	2.54	23.1
North:	Shea Nor	th Leg									
7	L2	111	3.0	0.848	38.2	LOS E	7.5	58.1	0.89	1.18	35.9
4	T1	159	3.0	0.848	38.2	LOS E	7.5	58.1	0.89	1.18	35.8
14	R2	179	3.0	0.848	38.2	LOS E	7.5	58.1	0.89	1.18	35.2
Appro	ach	449	3.0	0.848	38.2	LOS E	7.5	58.1	0.89	1.18	35.6
West:	Fernbank	West Leg									
5	L2	123	3.0	0.652	16.9	LOS C	4.6	35.8	0.72	0.80	45.2
2	T1	350	3.0	0.652	16.9	LOS C	4.6	35.8	0.72	0.80	45.1
12	R2	6	3.0	0.652	16.9	LOS C	4.6	35.8	0.72	0.80	44.1
Appro	ach	479	3.0	0.652	16.9	LOS C	4.6	35.8	0.72	0.80	45.1
All Ve	hicles	2109	3.0	1.132	54.6	LOS F	53.4	416.3	0.87	1.61	31.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARSONS TRANSPORTATION GROUP | Processed: Tuesday, September 18, 2018 9:32:11 AM Project: Not Saved

Future 2025 AM - Signalized 2: Fernbank & Street 1

	≯	-	1	-	1	1	1	Ļ		
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT		
Lane Configurations	٢	4	۲	4		4		\$		
Traffic Volume (vph)	14	684	44	202	43	10	90	10		
Future Volume (vph)	14	684	44	202	43	10	90	10		
Lane Group Flow (vph)	15	733	46	246	0	220	0	151		
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA		
Protected Phases	1 01111	4	1 0.111	8	1 01111	2	1 01111	6		
Permitted Phases	4		8	-	2	_	6	-		
Detector Phase	4	4	8	8	2	2	6	6		
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0		
Total Split (s)	36.0	36.0	36.0	36.0	24.0	24.0	24.0	24.0		
Total Split (%)	60.0%	60.0%	60.0%	60.0%	40.0%	40.0%	40.0%	40.0%		
Yellow Time (s)	3.7	3.7	3.3	3.3	3.7	3.7	3.3	3.3		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.2	2.2	2.2	2.2		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0		
Total Lost Time (s)	5.7	5.7	5.3	5.3		5.9		5.5		
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	Min	Min	Min	Min		
Act Effct Green (s)	24.1	24.1	24.5	24.5		11.6		12.1		
Actuated g/C Ratio	0.51	0.51	0.51	0.51		0.24		0.25		
v/c Ratio	0.03	0.81	0.22	0.27		0.46		0.44		
Control Delay	6.2	19.1	9.8	6.9		9.6		17.9		
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0		
Total Delay	6.2	19.1	9.8	6.9		9.6		17.9		
LOS	А	В	А	А		А		В		
Approach Delay		18.9		7.3		9.6		17.9		
Approach LOS		В		А		А		В		
Queue Length 50th (m)	0.5	41.0	1.7	8.4		3.9		8.2		
Queue Length 95th (m)	2.9	#116.4	7.8	22.1		18.4		22.8		
Internal Link Dist (m)		109.2		519.5		92.1		83.6		
Turn Bay Length (m)	15.0		15.0							
Base Capacity (vph)	706	1162	265	1163		662		520		
Starvation Cap Reductn	0	0	0	0		0		0		
Spillback Cap Reductn	0	0	0	0		0		0		
Storage Cap Reductn	0	0	0	0		0		0		
Reduced v/c Ratio	0.02	0.63	0.17	0.21		0.33		0.29		
ntersection Summary										
Cycle Length: 60										
Actuated Cycle Length: 47.7										
Natural Cycle: 60										
Control Type: Actuated-Uncoordina	ated									
Maximum v/c Ratio: 0.81										
ersection Signal Delay: 14.9 Intersection LOS: B										
Intersection Capacity Utilization 69.	.7%			IC	U Level of S	Service C				
Analysis Period (min) 15										
95th percentile volume exceeds		eue may be	longer.							
Queue shown is maximum after			_							
	-									
Splits and Phases: 2: Fernbank	& Street 1		,							
A 02			. .	404						

↑ ø 2	ø₄	
24 s	36 s	
	₹Ø8	
24 s	36 s	

Future 2025 AM - Signalized 2: Fernbank & Street 1

2: Fernbank & Street 1	٦	-	4	-	•	t	1	Ţ	
Lane Group	EBL	EBT	▼ WBL	WBT	NBL	NBT	SBL	▼ SBT	
Lane Configurations	1	101 1	<u> </u>	101 1	NDL	4	JDL	4	
Traffic Volume (vph)	46	307	162	564	25	10	58	10	
Future Volume (vph)	46	307	162	564	25	10	58	10	
Lane Group Flow (vph)	48	369	171	696	0	132	0	100	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	T CHI	4	T CITI	8	T CITI	2	T CITI	6	
Permitted Phases	4	-	8	0	2	2	6	0	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	•	•	Ū	ž	-	-	ě	Ū	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
Total Split (s)	46.0	46.0	46.0	46.0	24.0	24.0	24.0	24.0	
Total Split (%)	65.7%	65.7%	65.7%	65.7%	34.3%	34.3%	34.3%	34.3%	
Yellow Time (s)	3.7	3.7	3.3	3.3	3.7	3.7	3.3	3.3	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.2	2.2	2.2	2.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)	5.7	5.7	5.3	5.3		5.9		5.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	24.3	24.3	24.7	24.7		11.0		11.4	
Actuated g/C Ratio	0.51	0.51	0.52	0.52		0.23		0.24	
v/c Ratio	0.20	0.41	0.34	0.76		0.32		0.31	
Control Delay	8.1	7.8	8.2	14.4		10.5		17.2	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	8.1	7.8	8.2	14.4		10.5		17.2	
LOS	А	А	А	В		В		В	
Approach Delay		7.8		13.1		10.5		17.2	
Approach LOS		А		В		В		В	
Queue Length 50th (m)	1.8	14.5	6.7	35.7		2.3		4.7	
Queue Length 95th (m)	6.7	31.4	17.5	75.9		16.2		19.3	
Internal Link Dist (m)		109.2		519.5		92.1		83.6	
Turn Bay Length (m)	15.0		15.0						
Base Capacity (vph)	395	1510	834	1516		645		532	
Starvation Cap Reductn	0	0	0	0		0		0	
Spillback Cap Reductn	0	0	0	0		0		0	
Storage Cap Reductn	0	0	0	0		0		0	
Reduced v/c Ratio	0.12	0.24	0.21	0.46		0.20		0.19	
Intersection Summary									
Cycle Length: 70									
Actuated Cycle Length: 47.4									
Natural Cycle: 60									
Control Type: Actuated-Uncoordinat	ed								
Maximum v/c Ratio: 0.76						00 D			
Intersection Signal Delay: 11.7	20/				tersection L				
Intersection Capacity Utilization 72.0	J%			IC	U Level of S	service C			
Analysis Period (min) 15									

Splits and Phases: 2: Fernbank & Street 1

	<u>_</u> Ø4
24 s	46 s
↓ ø6	✓ Ø8
24 s	46 s

Site: [Fernbank/Street 1 AM]

AM Peak Hour Roundabout

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Street 1											
3	L2	43	3.0	0.429	15.0	LOS B	1.8	14.0	0.69	0.74	46.2
8	T1	10	3.0	0.429	15.0	LOS B	1.8	14.0	0.69	0.74	46.1
18	R2	156	3.0	0.429	15.0	LOS B	1.8	14.0	0.69	0.74	45.1
Approach		209	3.0	0.429	15.0	LOS B	1.8	14.0	0.69	0.74	45.4
East: Fernbank East Leg											
1	L2	44	3.0	0.271	6.2	LOS A	1.2	9.1	0.21	0.10	52.1
6	T1	202	3.0	0.271	6.2	LOS A	1.2	9.1	0.21	0.10	52.1
16	R2	31	3.0	0.271	6.2	LOS A	1.2	9.1	0.21	0.10	50.7
Appro	ach	277	3.0	0.271	6.2	LOS A	1.2	9.1	0.21	0.10	51.9
North:	Street 1										
7	L2	90	3.0	0.176	6.2	LOS A	0.6	5.0	0.41	0.33	50.4
4	T1	10	3.0	0.176	6.2	LOS A	0.6	5.0	0.41	0.33	50.4
14	R2	43	3.0	0.176	6.2	LOS A	0.6	5.0	0.41	0.33	49.1
Appro	ach	143	3.0	0.176	6.2	LOS A	0.6	5.0	0.41	0.33	50.0
West:	Fernbank	West Leg									
5	L2	14	3.0	0.751	18.0	LOS C	7.6	58.9	0.67	0.51	45.1
2	T1	684	3.0	0.751	18.0	LOS C	7.6	58.9	0.67	0.51	45.1
12	R2	12	3.0	0.751	18.0	LOS C	7.6	58.9	0.67	0.51	44.1
Appro	ach	710	3.0	0.751	18.0	LOS C	7.6	58.9	0.67	0.51	45.0
All Vehicles		1339	3.0	0.751	13.8	LOS B	7.6	58.9	0.55	0.44	46.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARSONS TRANSPORTATION GROUP | Processed: Tuesday, September 18, 2018 9:45:17 AM Project: Not Saved

Site: 1 [Fernbank/Street 1 PM]

PM Peak Hour Roundabout

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Street 1											
3	L2	25	3.0	0.174	6.9	LOS A	0.6	4.8	0.48	0.44	51.4
8	T1	10	3.0	0.174	6.9	LOS A	0.6	4.8	0.48	0.44	51.3
18	R2	90	3.0	0.174	6.9	LOS A	0.6	4.8	0.48	0.44	50.0
Approach		125	3.0	0.174	6.9	LOS A	0.6	4.8	0.48	0.44	50.4
East: Fernbank East Leg											
1	L2	162	3.0	0.815	21.2	LOS C	9.8	76.1	0.66	0.39	43.0
6	T1	564	3.0	0.815	21.2	LOS C	9.8	76.1	0.66	0.39	43.0
16	R2	97	3.0	0.815	21.2	LOS C	9.8	76.1	0.66	0.39	42.1
Approach		823	3.0	0.815	21.2	LOS C	9.8	76.1	0.66	0.39	42.9
North: Street 1											
7	L2	58	3.0	0.188	9.7	LOS A	0.6	4.9	0.60	0.60	48.3
4	T1	10	3.0	0.188	9.7	LOS A	0.6	4.9	0.60	0.60	48.2
14	R2	27	3.0	0.188	9.7	LOS A	0.6	4.9	0.60	0.60	47.1
Appro	ach	95	3.0	0.188	9.7	LOS A	0.6	4.9	0.60	0.60	47.9
West: Fernbank West Leg											
5	L2	46	3.0	0.459	9.9	LOS A	2.3	17.7	0.49	0.40	49.7
2	T1	307	3.0	0.459	9.9	LOS A	2.3	17.7	0.49	0.40	49.6
12	R2	44	3.0	0.459	9.9	LOS A	2.3	17.7	0.49	0.40	48.4
Appro	ach	397	3.0	0.459	9.9	LOS A	2.3	17.7	0.49	0.40	49.5
All Vehicles		1440	3.0	0.815	16.1	LOS C	9.8	76.1	0.60	0.41	45.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARSONS TRANSPORTATION GROUP | Processed: Tuesday, September 18, 2018 9:46:57 AM Project: Not Saved