

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

FUNCTIONAL SERVICING REPORT FOR **BARRHAVEN CONSERVANCY EAST** INC. PHASE 1 **CITY OF OTTAWA PROJECT NO.: 17-891** JULY 18, 2018 3RD SUBMISSION © DSEL

FUNCTIONAL SERVICING REPORT FOR BARRHAVEN CONSERVANCY EAST INC. PHASE 1

PROJECT NO: 17-891

TABLE OF CONTENTS

1.0	INTRODUCTION 1
1.1	Existing Conditions1
1.2	Required Permits / Approvals1
1.3	Pre-Consultation21.3.1City of Ottawa1.3.2Ministry of the Environment and Climate Change (MOECC)331.3.3Rideau Valley Conservation Authority (RVCA)
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS4
2.1	Existing Studies, Guidelines, and Reports4
3.0	WATER SUPPLY SERVICING
3.1	Existing Water Supply Services6
3.2	Water Supply Servicing Design7
3.3	Water Supply Conclusion8
4.0	WASTEWATER SERVICING9
4.0 4.1	WASTEWATER SERVICING 9 Existing Wastewater Services 9
4.1	Existing Wastewater Services9
4.1 4.2	Existing Wastewater Services
4.1 4.2 4.3	Existing Wastewater Services
4.1 4.2 4.3 5.0	Existing Wastewater Services 9 Wastewater Design 9 Wastewater Servicing Conclusion 11 STORMWATER CONVEYANCE 12
4.1 4.2 4.3 5.0 5.1	Existing Wastewater Services9Wastewater Design9Wastewater Servicing Conclusion11STORMWATER CONVEYANCE12Existing Stormwater Drainage12
4.1 4.2 4.3 5.0 5.1 5.2	Existing Wastewater Services9Wastewater Design9Wastewater Servicing Conclusion11STORMWATER CONVEYANCE12Existing Stormwater Drainage12Proposed Stormwater Management Strategy12
4.1 4.2 4.3 5.0 5.1 5.2	Existing Wastewater Services9Wastewater Design9Wastewater Servicing Conclusion11STORMWATER CONVEYANCE12Existing Stormwater Drainage12Proposed Stormwater Management Strategy12Post-Development Stormwater Management Targets135.3.1Quality Control14
4.1 4.2 4.3 5.0 5.1 5.2 5.3	Existing Wastewater Services9Wastewater Design9Wastewater Servicing Conclusion11STORMWATER CONVEYANCE12Existing Stormwater Drainage12Proposed Stormwater Management Strategy12Post-Development Stormwater Management Targets135.3.1Quality Control145.3.2Quantity Control14

5.7	Proposed Major System	17
5.8	Proposed Grading and Foundation Drainage 5.8.1 Sump Pumps	
5.9	Infiltration	18
5.10	Stormwater Servicing Conclusions	19
6.0	UTILITIES	19
7.0	EROSION AND SEDIMENT CONTROL	20
8.0	CONCLUSION AND RECOMMENDATIONS	21

FIGURES AND DRAWINGS

Figure 1	Key Plan
----------	----------

- Figure 2 Subdivision Plan
- Figure 3 Watermain Servicing Plan
- Figure 4 Sanitary Servicing Plan
- Figure 5 Storm Servicing Plan
- Figure 6 Composite Servicing Plan
- Figure 7 Preliminary Grading Plan

TABLES

- Table 1Required Permits / Approvals
- Table 2Water Supply Design Criteria
- Table 3Wastewater Design Criteria
- Table 4Storm Sewer Design Criteria

APPENDICES

- Appendix A Proposed Development Concept
- Appendix B Excerpt from the Infrastructure Master Plan (2013) Clarke Lands Drawing CS1 (JL Richards, 28/03/16)
- Appendix C South Nepean Collector: Phase 2 Hydraulic Review / Assessment (Novatech, August 20, 2015)
- Appendix D Sanitary Design Sheet (DSEL, July 2018)
- Appendix E Storm Design Sheet (DSEL, July 2018)

Figure 5-1 excerpt from CH2M's "Kennedy-Burnett Stormwater Management Facility Project File and Functional Design Report" (Feb 17, 2017).

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare a Functional Servicing Report (FSR) in support of the Draft Plan of Subdivision application for the Barrhaven Conservancy Phase 1 development on behalf of Barrhaven Conservancy East Inc. (BCE).

Phase 1 is located within the City of Ottawa urban boundary in the Barrhaven ward and is designated as General Urban. As illustrated in *Figure 1*, the subject property is located north of the Jock River, east of Borrisokane Road, west of Greenbank Road, and south of Strandherd Drive. It is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA). The subject property measures approximately 9.3 ha and is legally described as part of Concession 3, Lot 14.

Phase 1 is currently zoned Development Reserve (DR) Zone. The proposed subdivision plan (*Appendix A*) would allow for the development of a mix of detached singles, rear lane townhomes and park blocks. It also includes a road network featuring 16.5 m right-of-way (ROW) local roads and 8.5 m ROW lanes. The schedule of land use is provided.

The objective of this report is to provide sufficient detail to demonstrate that the development of Phase 1 is supported by municipal services and conforms to applicable standards.

1.1 Existing Conditions

The subject property is relatively flat with the existing elevations ranging from 92 m in the north east to 91 m in the south. The existing topography characterized in the available City of Ottawa base mapping indicates that all flows from the subject property are ultimately conveyed south to the Jock River by way of the Fraser-Clarke Watercourse. The Fraser-Clarke Watercourse runs along the south west of the subject property to the Jock River and the existing Kennedy-Burnett SWM Facility is located to the east of the subject property.

The subject property is within the Jock River watershed and is under the jurisdiction of the RVCA.

A portion of the subject property is currently within the Jock River regulatory flood plain and permits will be required from the RVCA to complete work within this boundary.

1.2 Required Permits / Approvals

The City of Ottawa must approve detailed engineering design drawings and reports prior to construction of the municipal infrastructure identified in this report. This is expected to occur as part of the Plan of Subdivision application process.

The additional approvals and permits listed in **Table 1** are expected to be required prior to construction of the municipal infrastructure detailed herein. Please note that other permits and approvals may be required, as detailed in the other studies submitted as part of the Plan of Subdivision application.

Agency	Permit/Approval Required	Trigger	Remarks
MOECC	Environmental Compliance Approval	Construction of new sanitary and storm sewers throughout the subdivision and new oil and grit separator (OGS).	The MOECC will review the sanitary and storm sewer design through the City of Ottawa transfer of review process.
MOECC	Permit to Take Water	Construction of proposed land uses (e.g. basements for residential homes) and services.	Pumping of groundwater may be required during construction, given groundwater conditions and proposed land uses and on- site/off-site municipal infrastructure.
City of Ottawa	MOE Form 1 – Record of Watermains Authorized as a Future Alteration.	Construction of watermains throughout the subdivision	The City of Ottawa will review the watermains on behalf of the MOECC through the Form 1 – Record of Watermains Authorized as a Future Alteration.
RVCA	Outlets to Jock River, Alteration to Municipal Drains / Watercourse	Connections to the Jock River and/or modifications to the Fraser-Clarke Watercourse	The RVCA will review applications submitted for new outlets to the Jock River from the proposed OGS. The RVCA will review applications submitted for any modifications to the Fraser-Clarke Watercourse.
RVCA	Permit to work in the regulatory floodplain	Construction within the regulatory floodline	The RVCA will review applications submitted for work within the regulatory floodline of the Jock River.

Table 1: Required Permits/Approvals

1.3 Pre-Consultation

The following provides a summary of the pre-consultation meetings:

1.3.1 City of Ottawa

Pre-consultation with the City of Ottawa has been on-going and additional meetings will be forthcoming.

1.3.2 Ministry of the Environment and Climate Change (MOECC)

Pre-consultation with the MOECC will be forthcoming, including confirmation of the required approvals.

1.3.3 Rideau Valley Conservation Authority (RVCA)

Pre-consultation with the RVCA has been on-going and will continue, including confirmation of the required approvals.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (City Standards)
 - Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines
 Sewer
 City of Ottawa, February 5, 2014.
 (ISDTB-2014-01)
 - Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines – Sewer City of Ottawa, September 6, 2016. (PIEDTB-2016-01)
 - Technical Bulletin PIEDTB-2018-01, Revisions to Ottawa Design Guidelines – Sewer City of Ottawa, March 21, 2018. (ISTB Sewer-2018-01)
 - Technical Bulletin ISDTB-2018-04
 City of Ottawa, June 27, 2018.
 (ISDTB-2018-04) re Sump Pumps
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISDTB-2010-2)
 - Technical Bulletin ISDTB-2014-02 City of Ottawa, May 27, 2014. (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02 City of Ottawa, March 21, 2018. (ISDTB-2018-02)

- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOECC Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- City of Ottawa Official Plan, adopted by Council 2003. (Official Plan)
- City of Ottawa Secondary Plan Former Nepean South Nepean Urban Area Areas 9 and 10, Adopted by Council 2003. (Secondary Plan)
- Erosion & Sediment Control Guidelines for Urban Construction, Greater Golden Horseshoe Area Conservation Authorities, December 2006 (E&S Guidelines)
- South Nepean Collector (SNC) Sewer Phase 2 Strandherd Drive to Jockvale Road Drawings City of Ottawa, December 2016
- South Nepean Collector (SNC) Wastewater Servicing Study and Functional Design Report
 Dillon Consulting, October 2003 (Dillon SNC Report)
- South Nepean Collector: Phase 2 Hydraulics Review / Assessment Technical Memorandum Novatech, August 2015 (Novatech SNC Memo)
- Infrastructure Master Plan City of Ottawa, November 2013 (IMP)
- Servicing Brief, Minto Communities Inc Clarke Lands JL Richards, March 2016 (Clarke Lands Report)
- Kennedy-Burnett Stormwater Management Facility Project File and Functional Design Report CH2M Hill, February 2017 (CH2M Hill Kennedy-Burnett SWM Facility Report)
- Kennedy-Burnett Potable Water Master Servicing Study Stantec, April 2014

- Jock River Flood Risk Map No. 2 RVCA, July 2005
- Jock River Reach One Subwatershed Study Stantec, 2007 (Jock River SWS)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property is located adjacent to the City of Ottawa's Pressure Zone (PZ) 3SW (previously known as PZ BARR). Once operational, PZ SUC is planned to service the land found to the east of the subject property, as well as south of the Jock River.

The City of Ottawa has recently started reconfiguring the pressure zones servicing Barrhaven and the South Urban Community (SUC) in order to improve reliability and efficiency and to increase pumping capacity to accommodate for future growth in the area. There are three pumping stations servicing Zone 3SW and Zone SUC: Fallowfield Road Pumping Station (FRPS), Barrhaven Pumping Station (BPS) and the Ottawa South Pumping Station (OSPS).

Future watermains in the vicinity of the Phase 1 property have been identified at the following locations:

- A 400 mm diameter watermain along Strandherd Drive, which was identified in the City of Ottawa's Infrastructure Master Plan (IMP) dated November 2013 to extend from Fallowfield Road to Greenbank Road. This watermain has been constructed from Fallowfield Road to Kennevale Drive; however, the section from Kennevale Drive to Greenbank Road is still to be constructed. Construction is expected to commence in 2019.
- A 300 mm diameter watermain will extend from the Strandherd Drive watermain along the future North-South Chapman Mills Drive extension as shown on Drawing CS1 – Conceptual Site Servicing Drawing for the Minto Clarke Lands by JL Richards. This figure is enclosed in *Appendix B*.
- > 300mm SUC watermain within a future local road to the east of Greenbank Road.

As noted in the **Servicing Brief for the Minto Communities Inc Clarke Lands** by JL Richards in the March 2016 (*Clarke Lands Report*), in advance of the commissioning of the Strandherd 400 mm diameter watermain, it is anticipated that interim water servicing for the Clarke Lands can be provided by connections to existing local watermains (existing 300 mm on Tartan Drive, existing 250 mm diameter watermain stub on Fraser Fields Way and three connections to the existing 200 mm diameter watermain on Waterlily Way.

3.2 Water Supply Servicing Design

It is proposed that the subject property be connected to the future 300 mm diameter watermain on the future North-South Chapman Mills Extension. In the future, a second connection will be made to a 300 mm diameter watermain within a future local road in the subdivision development to the north of the subject property. The proposed water servicing is depicted in *Figure 3*.

It is anticipated that this feed to Phase 1 will satisfy the City's objective minimum pressure of 40 psi during peak hour demand and achieve a typical planning level fire flow value of 10,000 L/min or greater. At the time of detailed design, detailed hydraulic modelling will be undertaken to verify that the proposed on-site and off-site watermains are in conformance with the City's *Water Supply Guidelines*.

As detailed designs progress, timing, alignment, and sizing of local watermains will be confirmed. The local watermain network will be sized to meet maximum hour and maximum day plus fire flow demands, with consideration given to proposed phasing plans. *Table 2* summarizes the Water Supply Design Criteria to be employed in the design of the watermain network. Fire flow requirements are to be confirmed in accordance with Local Guidelines (Fire Underwriters Survey), City of Ottawa Water Supply Guidelines, and the Ontario Building Code, upon development of detailed concepts for the detached singles, townhomes, and parks.

Design Parameter	Value		
Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July 2010)			
Residential – Detached Single	3.4 p/unit		
Residential – Townhome/ Semi	2.7 p/unit		
Residential – Apartment	1.8 p/unit		
Minimum Watermain Size	150 mm diameter		
Minimum Depth of Cover	2.4 m from top of watermain to finished grade		
During normal operating conditions desired operating pressure is within	350 kPa and 480kPa		
During fire flow operating pressure must not drop below	140 kPa		
Stantec Hydraulic Analysis, Stantec, July 20, 2017 for Population Exceeding 3000 Persons			
Residential – Detached Single	180 L/cap/day		
Residential – Rear Lane Town	198 L/cap/day		
Residential – Back-to-Back	198 L/cap/day		
Outdoor Water Demand	1049 L/unit/day (single detached)		
Basic Day	Population x Demand		
Max Day	Basic Day + Outdoor Water Demand		

Table 2: Water Supply Design Criteria

To support the future development of a hydraulic analysis for the subdivision, boundary conditions are expected to be provided by the City of Ottawa for the preliminary water demands.

3.3 Water Supply Conclusion

For Phase 1 servicing, it is proposed that a connection is made to a future 300 mm diameter watermain along the future North-South Chapman Mills Extension, along with a future 300 mm diameter watermain connection through the subdivision development to the north. It is anticipated that these feeds will satisfy the City's objective minimum pressure of 40 psi during peak hour demand and achieve a typical planning level fire flow value of 10,000 L/min or greater. At the time of detailed design, detailed hydraulic modelling will be undertaken to verify that the proposed water servicing is in conformance with all relevant City and MOECC Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

Per the South Nepean Collector (SNC) Wastewater Servicing Study and Functional **Design Report** by Dillon in October 2003 (Dillon SNC Report), the subject lands are tributary to the South Nepean Collector (SNC) sewer as urban development land.

The SNC sewer operates north of the subject property within Strandherd Drive prior to travelling south down a future collector road then travelling east within the future Chapman Mills Drive ROW. The location of the SNC sewer is shown on *Figure 4*.

The SNC was designed to be constructed in three phases. Phase 1 of the SNC was completed in 2005, terminating at a 2400 mm maintenance hole located east of Longfields Drive, north of Bren-Maur Road. Phase 2 was recently extended to Strandherd Drive via the proposed extension of Chapman Mills Drive from its previous termination. Phase 3 will extend the trunk sewer along Strandherd Drive to the intersection of Maravista Drive. A portion of Phase 3 from Kennevale Drive to Maravista Drive has been constructed. The wastewater is ultimately conveyed to the intersection of Jockvale Road and Longfields Drive where it then passes underneath the Jock River.

The South Nepean Collector Phase 2: Hydraulics Review / Assessment memo was prepared by Novatech Engineering Consultants on August 20, 2015 (Novatech SNC Memo) to provide an update to the sanitary design flows for Phase 2 of the South Nepean Collector, as previously documented in the South Nepean Collector (SNC) – Functional Design Report and Update by Dillon in 2012 (Dillon SNC Report and Update).

4.2 Wastewater Design

Phase 1 is planned to be serviced by an internal gravity sanitary sewer system that is to generally follow the local road network. The wastewater servicing plan can be seen in *Figure 4*. As detailed designs progress, alignment and sizing of local sanitary sewers will be confirmed and servicing easements added if required, which may trigger minor amendments to the proposed fabric in the concept plan.

The proposed wastewater servicing design proposes to tie into the adjacent SNC sanitary sewer, located in easements, within the Future Chapman Mills Drive (SANMH 15). The **Novatech SNC Memo** notes that a full flow capacity of 900.5 L/s for a 900 mm diameter sewer at 0.10% exists downstream of the proposed tie-in with the SNC trunk. A peak design flow of 634.2 L/s was anticipated, leaving the SNC with 30% (266.3 L/s) residual capacity. The **Novatech SNC Memo** is contained in **Appendix C**.

A total of 8.4 ha is proposed to drain through the subject property into the SNC trunk sewer from the subject property. The sanitary drainage area plan and design sheet are enclosed in *Appendix D*.

Applying the City of Ottawa's wastewater design criteria to the development concept, the estimated peak sanitary flow from Phase 1 is 13.31 L/s. The sanitary drainage area plan and design sheet are enclosed in *Appendix D*. The addition of Phase 1 peak flows to the peak design flows from the *Novatech SNC Memo* results in an updated peak flow of 647.51 L/s downstream of SANMH 8 in the SNC sanitary sewer. With the inclusion of the subject property, the SNC sanitary sewer would be at 72% capacity, and can adequately handle the entirety of the Barrhaven Conservancy's proposed sanitary flows.

Table 3 summarizes the City design guidelines and criteria applied in the preliminary sanitary design information above and detailed in *Appendix D*.

Design Parameter	Value		
Current Design Guidelines			
Residential - Single Family	3.4 p/unit		
Residential – Townhome/ Semi	2.7 p/unit		
Residential – Apartment	1.8 p/unit		
Average Daily Demand	280 L/d/per		
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0		
Commercial / Institutional Flows	28,000 L/ha/day		
Commercial / Institutional Peak Factor	1.5		
Infiltration and Inflow Allowance	0.32 L/s/ha		
Park Flows	28,000 L/ha/d		
Park Peaking Factor	1.0		
Sanitary sewers are to be sized employing the	$1 - \frac{2}{2} - \frac{1}{2}$		
Manning's Equation	$Q = \frac{1}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$		
	n n		
Minimum Sewer Size	200 mm diameter		
Minimum Manning's 'n'	0.013		
Minimum Depth of Cover	2.5 m from crown of sewer to grade		
Minimum Full Flowing Velocity	0.6 m/s		
Maximum Full Flowing Velocity	3.0 m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Se residential subdivisions in City of Ottawa.	wer Design Guidelines, October 2012, and recent		
	ers on Monitoring Data		
	n Case-by-Case Basis with City of Ottawa)		
Average Daily Demand	300 L/d/per		
Harmon – Correction Factor	0.4 to 0.6		
Institutional / Industrial Flows	10,000 L/ha/day		
Commercial Flows	17,000 L/ha/day		
Commercial / Institutional Peak Factor	1 (non-coincident peak)		
Extracted from Sections 4 and 6 of the City of Ottawa Se			
residential subdivisions in City of Ottawa.			

Table 3: Wastewater Design Criteria

4.3 Wastewater Servicing Conclusion

The subject property will be serviced by local sanitary sewers and the adjacent SNC sanitary sewer as defined in previous reports. This FSR proposes the expansion of the drainage areas from the *Novatech SNC Memo* to include Phase 1. There is significant residual capacity in the downstream SNC, providing sufficient capacity for the peak sanitary flows from Phase 1.

Residual capacity exists downstream in the SNC after the addition of the Phase 1 wastewater flows to the SNC sanitary sewer; therefore, the proposed servicing does not have a negative impact on neighboring landowners.

5.0 STORMWATER CONVEYANCE

5.1 Existing Stormwater Drainage

The subject property is within the Jock River watershed. Per the existing topography characterized in available City of Ottawa base mapping, all flows from Phase 1 are ultimately conveyed to the Jock River by the Fraser-Clarke Watercourse to the Jock River.

A portion of the subject property is currently within the Jock River regulatory flood plain and permits will be required from the RVCA to complete work within this boundary.

5.2 Proposed Stormwater Management Strategy

This FSR proposes to have stormwater flows conveyed through Phase 1 by way of an underground sewer network. The stormwater runoff will be treated to provide an Enhanced Level of Protection (80% TSS removal) before ultimately being released into the Jock River as per the *Jock River Reach One Subwatershed Study* prepared by Stantec in 2007 (*Jock River SWS*). The proposed stormwater management design is shown on *Figure 5*.

The stormwater management design consists of:

- A storm sewer system designed to capture at least the minimum design capture events required under PIETB-2016-01;
- One (1) on-site oil/grit separator (OGS) designed to provide an Enhanced Level of Protection per MOECC guidelines, via treatment of the stormwater captured by the storm sewer network;
- An on-site road network designed to maximize the available storage in the onsite road network for the 100-year design event, where possible, with controlled release of stormwater to the minor storm system; and,
- An overland flow route designed to safely convey stormwater runoff flows in excess of the on-site road storage.

Quantity control is not required for the Jock River; however, the quantity of stormwater runoff exiting from the subject property is to be minimized by optimizing on-site storage in the sags of the proposed road network, which in turn minimizes the size of downstream storm sewer infrastructure.

Erosion control targets for the Fraser-Clarke Watercourse will be provided by the fluvial engineer and adhered to in the design.

5.3 **Post-Development Stormwater Management Targets**

Stormwater management requirements for the proposed alternative Stormwater management scheme have been adopted from the *Jock River SWS*, *City Standards*, and the *MOECC SWMP Manual*.

Given the general criteria mentioned above, the following specific standards are expected to be required for stormwater management within the subject property:

- Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average Total Suspended Solid removal efficiency of 80%, as defined by the MOECC prescribed treatment levels.
- Downstream receiving watercourses will be assessed for responses to planned stormwater management outflows, and stabilization mitigation measures will be planned as required.
- Downstream receiving drainage features, culverts, and sewers will be assessed for responses to planned stormwater management outflows, and infrastructure rehabilitation, re-grading or capacity improvement measures will be planned as required.
- Storm sewers on local roads are to be designed to provide at least a 2-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01.
- Storm sewers on collector roads are to be designed to provide at least a 5-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01.
- For less frequent storms (i.e. larger than 2-year or 5-year), the minor system sewer capture will be restricted with the use of inlet control devices to prevent excessive hydraulic surcharges.
- Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s.
- For the 100-year storm and for all roads, the maximum depth of water (static and/or dynamic) on streets, rearyards, public space and parking areas shall not exceed 0.35 m at the gutter.
- The major system shall be designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public ROW or adjacent to the right-of-way provided that the water level must not touch any part of the building envelope, must remain below all building openings during the stress test event (100-year + 20%), and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope.

- Flow across road intersections shall not be permitted for minor storms (generally 5-year or less).
- When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas. A minimum of 30 cm of vertical clearance is required between the rear yard spill elevation and the ground elevation at the adjacent building envelope.
- The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.

5.3.1 Quality Control

Per the **MOECC SWMP Design Guidelines**, prior to discharge to the Jock River, quality treatment of stormwater runoff from the subject property is to be provided to meet the MOECC Enhanced Protection criteria by:

- Capturing and treating at least 90% of the runoff volume that occurs for the site on a long-term average basis [treatment volume efficiency must be calculated without bypass – e.g. for 100% of the total runoff volume for all the storm events that occur for the site on a long-term average basis]; and
- Capturing a minimum of 80% of the annual total suspended solids (TSS) load on a long-term average basis [suspended solids removal efficiency must be calculated based on 100% of the total runoff volume for all the storm events that occur for the site on a long-term average basis].

5.3.2 Quantity Control

As noted in the *Jock River SWS*, quantity control is not required for the Jock River; however, based on past reports, the limited capacity of the tributaries to the north of the Jock River may require that the stormwater management facilities provide a storage volume for quantity control.

Some quantity control will be provided by erosion storage, as erosion thresholds for the Fraser-Clarke Watercourse will be respected.

5.4 Stormwater Management Design

The stormwater runoff from Phase 1 is proposed to be treated by an oil and grit separator (OGS) unit to meet MOECC Enhanced Level of Protection criteria. The location of the OGS system is shown in *Figure 5*. To ensure that the OGS unit is not submerged, the invert of the unit is set at the normal water level (89.87m) that was previously documented in CH2M's final report for the "Kennedy-Burnett Stormwater Management Facility Project File and Functional Design Report" (Feb 17, 2017). The excerpt of Novatech's "Option 4" for the "Kennedy-Burnett SWMP Servicing Options" is provided in *Appendix E* for reference.

By way of an MOECC Certificate of Technology Assessment and manufacturer's design report, the OGS unit must prove that compliance with Enhanced Level of Protection requirements, given the specific drainage area parameters below:

- Total Drainage Area to be Treated by Oil/Grit Separator east of Fraser-Clarke Watercourse: ~10.1 ha;
- Average Imperviousness of Area to be Treated by on-site OGS east of Fraser-Clarke Watercourse: 64%; and,
- Predicted 100-year peak flows through unit east of Fraser-Clarke Watercourse: 0.968 m³/s (Section 5.5).

5.5 Proposed Minor System

Phase 1 is expected to be serviced by an internal gravity storm sewer system that is to generally follow the local road network and proposed servicing easements. The drainage will be conveyed within the underground piped sewer system to an OGS unit prior to discharge.

Street catchbasins will collect drainage from the streets and front yards, while rear yard catchbasins will capture drainage from backyards. Perforated catch basin leads will be provided in rear yards, except the last segment where it connects to the right-of-way which will be solid pipe, per current City standards.

The preliminary rational method design of the minor system captures drainage for storm events up to and including the 2-year (local) and 5-year (collector) event, assuming the use of inlet control devices (ICD) for all catchbasins within the subject property. **Table 4** summarizes the standards that will be employed in the detailed design of the storm sewer network, meeting the requirements in **Section 5.3**. The drainage areas are found in **Figure 5** and rational method design sheet is provided in **Appendix E**.

The peak design flows are calculated based on an average predicted runoff coefficient (C-value) of 0.67 and 0.75 for the development areas and 0.25 for the grassed areas. As detailed design progresses, the runoff coefficients will be refined to reflect the proposed building envelopes, driveways and other details.

As detailed design progresses, alignment and sizing of local storm sewers will be confirmed and servicing easements would be added as required, which may trigger minor amendments to the proposed lot fabric in the concept plan. Specifically, the sizing of storm sewers is subject to change based on the Hydraulic Grade Line (HGL) analysis (*Section 5.6*) and the major system design (*Section 5.7*).

The proposed trunk through Phase 1 varies in size from 750 mm to 1200 mm diameter, discharging to an OGS, which discharges to the Fraser-Clarke Watercourse and the Jock River. The peak flow from Phase 1 to the OGS is 882 L/s as shown on the rational method design sheet, enclosed in *Appendix E*.

Design Parameter	Value
Minor System Design Return Period	1:2 year (PIEDTB-2016-01) for local roads, without
	ponding
	1:5 year (PIEDTB-2016-01) for collector roads,
	without ponding
Major System Design Return Period	1:100 year
Intensity Duration Frequency Curve (IDF)	$i = \frac{A}{(t_a + B)^C}$
2-year storm event:	$l = \frac{1}{(t + D)^C}$
A=732.951 B=6.199 C=0.810	$(l_c + D)$
5-year storm event:	
A = 998.071 B = 6.053 C = 0.814	40
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Storm sewers are to be sized employing	$Q = \frac{1}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
the Manning's Equation	$Q = -AR^{75}S^{72}$
Dunoff coefficient for poved and reaf grace	<i>n</i>
Runoff coefficient for paved and roof areas Runoff coefficient for landscaped areas	0.9 0.2
Minimum Sewer Size	250 mm diameter
Minimum Manning's 'n' for pipe flow	0.013
Minimum Depth of Cover Minimum Full Flowing Velocity	1.5 m from crown of sewer to grade 0.8 m/s
Maximum Full Flowing Velocity	6.0 m/s
Clearance from 100-Year Hydraulic Grade	0.30 m
Line to Building Opening	0.30 11
Max. Allowable Flow Depth on Municipal	35 cm above gutter (PIEDTB-2016-01)
Roads	
Extent of Major System	To be contained within the municipal right-of-way or
	adjacent to the right-of-way provided that the water
	level must not touch any part of the building envelope
	and must remain below the lowest building opening
	during the stress test event (100-year $+20\%$) and
	15cm vertical clearance is maintained between spill
	elevation on the street and the ground elevation at the
	nearest building envelope (PIEDTB-2016-01)
Stormwater Management Model	DDSWMM (release 2.1), SWMHYMO (v. 5.02) and
	XPSWMM (v. 10)
Model Parameters	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr,
	D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm
Imperviousness	Based on runoff coefficient (C) where
	Percent Imperviousness = (C - 0.2) / 0.7 x 100%.
Design Storms	Chicago 3-hour Design Storms and 24-hour SCS
	Type II Design Storms. Maximum intensity averaged
	over 10 minutes.

Table 4: Storm Sewer Design Criteria

Extracted from City of Ottawa Sewer Design Guidelines, October 2012, and ISSU, and based on recent residential subdivisions in City of Ottawa.

July 1st, 1979, August 4th, 1988 and August 8th, 1996

20% increase in the 100-year, 3-hour Chicago storm

Historical Events

Climate Change Street Test

5.6 Hydraulic Grade Line Analysis

A detailed hydraulic gradeline (HGL) modelling analysis will be completed for the proposed system at the detailed design level, based on the 100-year 3-hour Chicago, 12-hour SCS, and 24-hour SCS design storms, including historical design storms and the climate change stress test, as required. Detailed grading design and storm sewer design will be modified as required to achieve the freeboard requirements set out in **Section 5.3** (per PIEDTB-2016-01).

5.7 Proposed Major System

Major system conveyance, or overland flow (OLF), will be provided to accommodate flows in excess of the minor system capacity. OLF is accommodated by generally storing stormwater up to the 100-year design event in road sags then routing additional surface flow along the road network and service easements towards the proposed drainage features to the Jock River, as shown in *Figure 5*. A composite servicing plan is shown on *Figure 6*.

The grading design described in **Section 5.8** and shown in **Figure 7** will include a sawtoothed-road design with 0.10% minimum grade from highpoint to highpoint, in order to maximize available surface storage for management of flows up to the 100-year design event where possible.

The Fraser-Clarke Watercourse, downstream of the OGS unit, will be designed to prevent erosion and sediment transport.

Given the elements above and the minor storm system described in *Section 5.5*, the proposed drainage systems are expected to safely capture and convey all storms up to and including the 100-year event, in accordance with the requirements of the City standards.

The overland flows from Phase 1 are conveyed along the road to the Fraser-Clarke Watercourse.

5.8 **Proposed Grading and Foundation Drainage**

A site grading scheme has been developed to optimize earthworks and provide major system conveyance to the receiving outlets, which eventually outlet to the existing Jock River drainage network, while tying into existing roads adjacent to the site. The proposed grading plan can be seen in *Figure 7*.

The following additional grading criteria and guidelines will be applied to detailed design, per *City of Ottawa Guidelines*:

Driveway slopes will have a maximum slope of 6%;

- Grading in grassed/landscaped areas to range from 2% to 3:1, with terracing required for slopes larger than 7%;
- Swales are to be 0.15 m deep with 3:1 side slopes unless otherwise indicated on the drawings; and,
- Perforated pipe will be required for drainage swales if they are less than 1.5% in slope.

The geotechnical analysis of the site, published under separate cover in support of the development applications, provides additional information about the suitability of the site for the proposed services and grading scheme. Grade raise restriction of 1.8m in roadways and 1.6m within residential lots have been identified. At the time of detailed design, detailed review and signoff by a licensed Geotechnical Engineer will be required.

5.8.1 Sump Pumps

Due to the grade raise restrictions and the proposed storm and sanitary drainage constraints, the road centerline elevations and depth sewers do not allow for standard basements with gravity foundation drainage connections to the storm sewer system. As such, sump pumps are proposed to be installed for all units within residential blocks and lots.

A memo has been prepared by Golder to confirm the suitability of implementing sump pumps for the proposed development.

5.9 Infiltration

The following Low Impact Development techniques should be considered for implementation, where possible, as part of detailed design:

- Rear-yard swales should be designed with minimum grades where possible, to promote infiltration;
- Rear-yard catchbasin leads should be perforated (except for the last segment connecting to the storm sewer within the right-of-way), to promote infiltration; and,
- Where eavestroughs are provided on residential units, they are to be directed to landscaped surfaces, to promote infiltration.

Furthermore, the following techniques can be examined as part of detailed landscaping design of the park block:

- > Amended topsoil (minimum 300 mm thick) can be considered for use; and,
- Micro-grading can be considered to promote infiltration.

5.10 Stormwater Servicing Conclusions

The stormwater runoff is designed to be captured by an internal gravity sewer system that is to convey flows to an OGS unit for quality control treatment prior to release to the Fraser-Clarke Watercourse. An Enhanced Level of Protection will be provided for stormwater runoff from the subject property before being discharged to the Jock River. Quantity control is not required for the Jock River. Notwithstanding, some quantity control by means of erosion storage will be included.

A detailed Hydraulic Grade Line (HGL) modelling analysis will be completed for the proposed system at the detailed design level.

6.0 UTILITIES

Utility services extending to the site may require connections to multiple existing infrastructure points: consultation with Enbridge gas, Hydro Ottawa, Rogers, and Bell is required as part of the development process to confirm the servicing plan for the subject lands.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

The following specific recommendations to the Contractor will be included in contract documents.

- > Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- > Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from leaving the site and entering existing watercourses, and clean and maintain throughout construction.
- Install catchbasin inserts during construction to protect from silt entering the storm sewer system.
- Install mud mat in order to prevent mud tracking onto adjacent roads.
- > No refueling or cleaning of equipment near existing watercourses.
- No material stockpiles within 30 m of existing watercourses, unless otherwise permitted by RVCA and City of Ottawa.
- Provide sediment traps and basins during dewatering.
- Plan construction at proper time to avoid flooding.
- The Contractor will, at every rainfall, complete inspections and guarantee proper performance.
- Erosion and sediment control will remain in place until the working areas have been stabilized and re-vegetated.

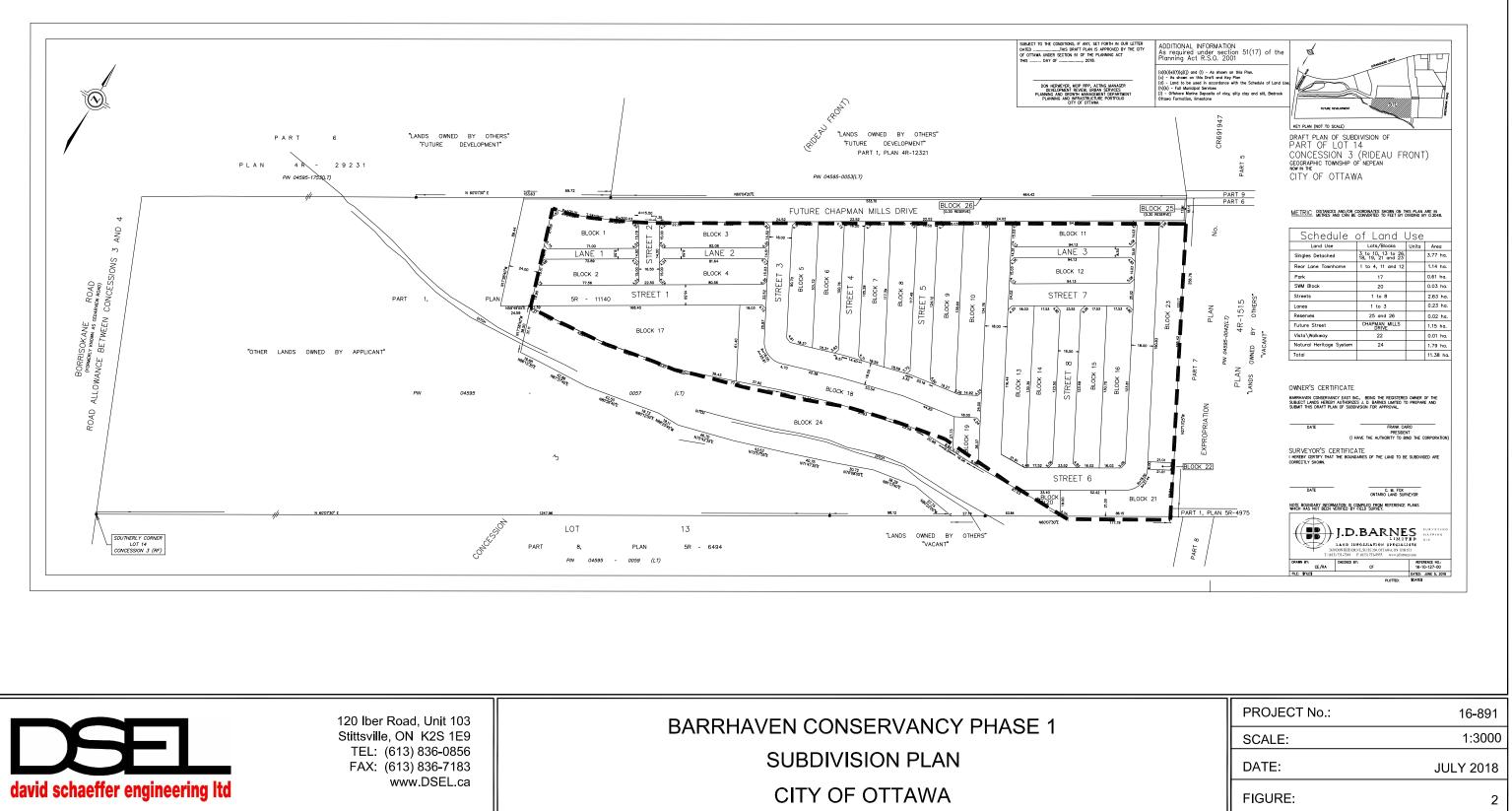
8.0 CONCLUSION AND RECOMMENDATIONS

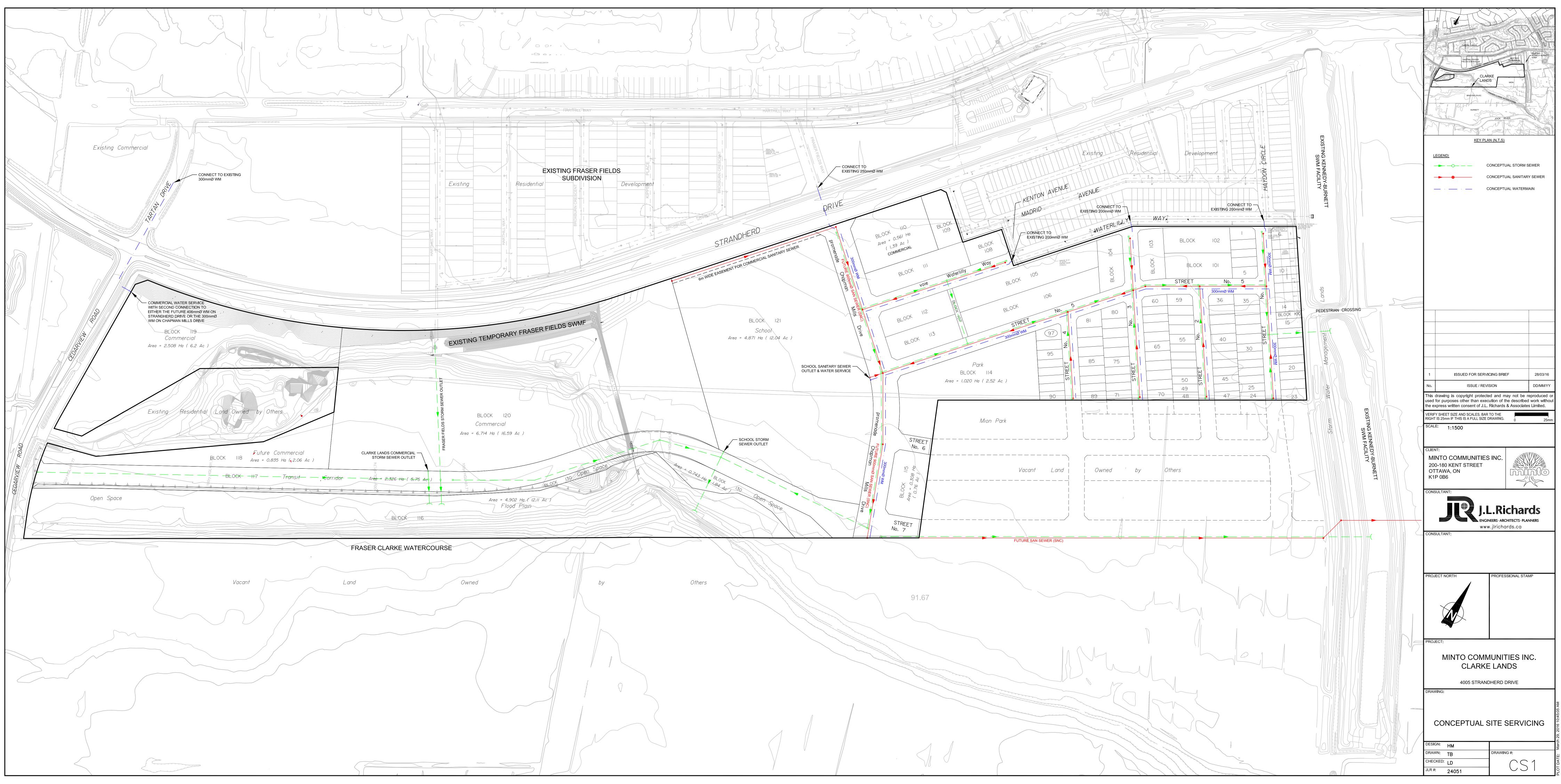
This Functional Servicing Study provides details for the planned on-site municipal services for Phase 1 and demonstrates that adequate municipal infrastructure capacity is expected to be available for the planned development of the subject property.

- Phase 1 water servicing is proposed to be connected to the City's Zone 3SW watermain network to the north, and it is anticipated that this feed will satisfy the City's objective minimum pressure of 40 psi during peak hour demand and achieve a typical planning level fire flow value of 10,000 L/min or greater. At the time of detailed design, detailed hydraulic modelling will be undertaken to verify that the proposed on-site and off-site watermains are in conformance with applicable guidelines;
- Sanitary service is to be provided to the subject property via the adjacent existing South Nepean Collector (SNC) trunk sanitary sewer. There is sufficient residual capacity in the SNC for the Phase 1 flows, external future residential, commercial and community park flows;
- Stormwater service is to be provided by capturing stormwater runoff by an internal gravity sewer system that will convey flows to an OGS unit for quality control treatment. An Enhanced Level of Protection will be provided for stormwater runoff from Phase 1 before being discharged to the Jock River via the Fraser-Clarke Watercourse. Quantity control is not required for the Jock River. Notwithstanding, some quantity control by means of erosion storage will be included;
- A portion of the subject property is currently within the Jock River regulatory flood plain and permits will be required from the RVCA prior to work commencing within this area;
- A detailed Hydraulic Grade Line (HGL) modelling analysis will be completed for the proposed system at the detailed design level;
- Sump pumps are proposed to be installed for all units within residential blocks and lots;
- Low Impact development techniques will be reviewed and implemented, where feasible, to promote infiltration of stormwater;
- Erosion and sediment control measures will be implemented and maintained throughout construction. The Jock River and the Fraser-Clarke Watercourse will be protected from any negative impacts from construction;

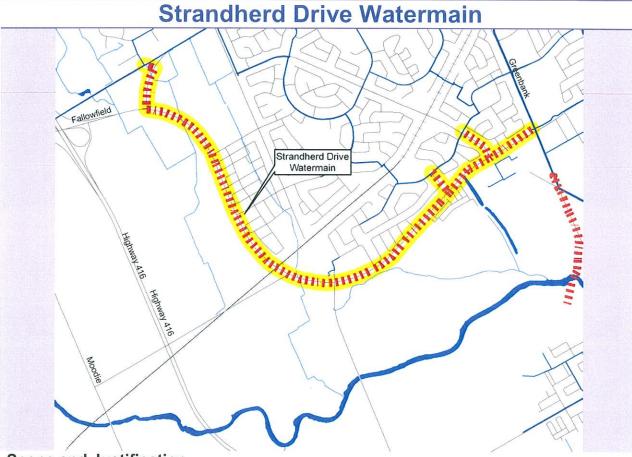
- The proposed servicing and grading plans are expected to meet all City, RVCA, and MOECC requirements as set out in background studies and current standards;
- Prior to detailed design of the infrastructure presented in this report, this FSR will require approval under the Planning Act as supporting information for the Plan of Subdivision application. Project-specific approvals are also expected to be required for the infrastructure presented in this report from the City of Ottawa, Ministry of Environment and Climate Change, and Rideau Valley Conservation Authority, among other agencies.

Prepared by, David Schaeffer Engineering Ltd.


David Schaeffer Engineering Ltd.


Per: Kevin L. Murphy, P.Eng.

Per: Matt Wingate, P.Eng.


© DSEL 2018-07-18_Ph1_FSR_klm_3rd_Submission.doc **APPENDIX A**

APPENDIX B

ile Location: P:\24000\24051 LD Minto Clarke\24051 C CONCEPTUAL CS1.

Scope and Justification

Construct 406 mm watermain along Fallowfield/Strandherd from Fallowfield/O'Keefe to Greenbank, including various connections to existing distribution system. This project is needed to support growth in the Barrhaven area north of the Jock River.

Timing

2013 - 2018: Construct feedermain

Action Item Funding

Construction Cost Estimate = \$4.2M Capital Cost Estimate = \$6.6M (90% Development Charges, 10% Rate) **including construction cost, engineering, city internal costs and contingency allowance.*

EA Requirements and Consultation

This is a Schedule 'A' project - No consultation required prior to implementation.

Follow Up Actions

Coordinate project with development, and South Nepean Collector Sewer where appropriate. Finalize alignment as part of detailed planning and design process.

APPENDIX C

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic/ Transportation

Structural

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal

Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape

Architecture

Urban Design & Streetscapes

Recreation & Parks Planning

Environmental Restoration

Sustainable Design

Prepared for the City of Ottawa

Engineering excellence. Planning precision. Inspired landscapes.

South Nepean Collector: Phase 2

Hydraulics Review / Assessment

Technical Memorandum

MEMORANDUM

DATE: AUGUST 20, 2015

TO: JONATHAN KNOYLE – CITY OF OTTAWA

FROM: CONRAD STANG / MIKE PETEPIECE – NOVATECH

RE: SOUTH NEPEAN COLLECTOR PHASE 2: HYDRAULICS REVIEW / ASSESSMENT

CC: EDSON DONNELLY – NOVATECH

1.0 PURPOSE

This memorandum provides an update to the sanitary design flows for Phase 2 of the South Nepean Collector, as previously documented in the *South Nepean Collector (SNC) – Functional Design Report and Update* (Dillon, 2012).

Sanitary design flows have been estimated for both current-day operational flows and future development peak design flows, based on the latest available planning information for the vacant lands within the SNC sewershed.

2.0 BACKGROUND

In January 1998, the Master Servicing Study for the South Nepean Urban Area provided a conceptual plan for water, wastewater and stormwater infrastructure. The preferred alternative for wastewater servicing was an east/west trunk sewer alignment that was to be completed in several phases. The proposed sanitary trunk sewer was initially called the Jock River Collector, but was renamed the South Nepean Collector during the original functional design study completed in 2003.

Phase 1 of the South Nepean Collector was completed in 2005 and currently terminates at a 2400mm maintenance hole located east of Longfields Drive, north of Bren-Maur Road. Phase 2 will extend the trunk sewer to Strandherd Drive at the intersection of the proposed transitway along the proposed extension to Chapman Mills Drive. Phase 3 will extend the trunk sewer along Strandherd Drive to the intersection of Maravista Drive.

3.0 REVIEW OF FUNCTIONAL DESIGN REPORT HYDRAULIC ASSESSMENT

3.1 Design Parameters

The sanitary design flow were calculated using the parameters from the City of Ottawa Sewer Design Guidelines (October 2012), and are summarized in **Table 1** and **Table 2**. The design parameters are consistent with those used in the Dillon (2012) report.

· · · · · · · · · · · · · · · · · · ·								
Land Use	Average Daily Flow	Peaking Factor	Peak Extraneous Flows					
Residential	350 L/cap/day	Harmon Equation, K=1 (2.0 min – 4.0 max)						
Commercial	50,000 L/ha/day	1.5	0.28 L/s/ha					
Institutional	50,000 L/ha/day	1.5						
Other*	0 L/ha/day	N/A						

Table 1: Peak Design Flow Parameters

*Open Space, Arterial ROW, SWM Blocks, etc. with no sanitary flow contribution (extraneous flow only)

Table 2: Operational Design Flow Parameters

Land Use	Average Daily Flow	Peaking Factor	Peak Extraneous Flows
Residential	300 L/cap/day	Harmon Equation, K=0.6 (1.2 min – 2.4 max)	<u>Dry weather</u> 0.05-0.08 L/s/ha
Commercial	17,000 L/ha/day	1.0 (non-coincident peak)	<u>Wet Weather</u> 0.15 - 0.20 L/s/ha (typical events) 0.28 L/s/ha (large/annual events)
Institutional	10,000 L/ha/day	1.0 (non-coincident peak)	0.30 - 0.50 L/s/ha (extreme events)

*There are no industrial areas identified within the tributary area.

Harmon Equation =
$$1 + \frac{14}{4 + \left(\frac{P}{1000}\right)^{\frac{1}{2}}} \times K$$

Where:

P = Population

K = Correction Factor:

- Peak Flow = 1

- Operational = between 0.4 to 0.6 (0.6 used)

3.2 Land Use Designations & Population Estimates

The 2012 Functional Design Report (Dillon) used information from the Vacant Urban Residential Lands (VURL) database, provided by the City of Ottawa, with guidance on unit counts and population densities provided by a Technical Advisory Committee (TAC) and information from developers and existing construction projects.

For the updated analysis, population densities and unit counts for future residential development are based on the current concept plans for these areas, and are presented in **Table 3**.

Residential Land Use	Units per ha	Persons per Unit	Persons per ha
Low Density (singles and semis)	26 – 28 (28 used)	2.7 – 3.4 (3.4 used)	95.2
Medium Density (row/townhouse)	50 – 60 (60 used)	2.7	162.0
High Density (apartments)	60 – 75 (75 used)	1.8	135.0

The land use designations shown in **Table 4** have been applied for the areas within Phases 2 and 3 of the SNC (Node 70 to 130). The sewershed areas and land use designations were delineated using aerial photos (existing development) and conceptual site plans (future development).

Table 4: Land Use Designations

Land Use D	Designation			
Secondary Plan	SNC Design			
Residential	Residential (Low / Medium / High Density)			
Institutional / Office	Institutional			
Commercial Recreational	Commercial			
Business Park Prestige Business Park	Commercial			
Park/Open Space Area				
Ex. Snow Disposal Facility (future commercial)				
Stormwater Management Facility	Other*			
Conservation Lands				
Arterial Right-of-Ways				

* No sanitary flow contribution - extraneous flows (inflow/infiltration) only.

3.3 Sanitary Flow Allocations & Drainage Area Plans

The updated sanitary flow allocations for Phases 2 and 3 of the SNC are provided in **Table 5**. The corresponding sanitary drainage area plan is provided as **Figure 1**.

The updated Sanitary Drainage Area Plan (Novatech, 2015) includes two areas not included in the Dillon (2012) analysis:

- 1) The area adjacent to the west side of the existing Kennedy-Burnett Stormwater Management Facility (SWMF) north of the Fraser-Clarke Drain. This area is proposed to be developed with low density residential units unless there is a need to expand the existing Kennedy-Burnett SWMF within these lands.
- The golf driving range at the current end of Jockvale Road (south) and area adjacent the golf driving range which are proposed to be developed into medium and high residential units, respectively.

A comparison of the overall residential population estimate and sewershed area for Phases 2 and 3 of the SNC is provided in **Table 6**. For reference, the flow allocations, design sheets, and sanitary drainage area plan from Dillon (2012) are attached.

Existing / Future	Estimated Population / Area	Dillion (2012)	Novatech (2015)
	Estimated Population	3,069 persons	6,944 persons
Eviating	Gross Residential Area	125.7 ha	60.09 ha
Existing	Gross Commercial / Institutional Area	62.4 ha	64.37 ha
	Total Sewershed Area	188.1 ha ⁽¹⁾	124.5 ha
	Estimated Population	27,137 persons	27,312 persons
Future	Gross Residential Area	229.4 ha	248.48 ha
(full service)	Gross Commercial / Institutional Area	225.3 ha	228.82 ha
	Total Sewershed Area	454.7 ha	477.3 ha

Table 6: Comparison of Population Estimates and Areas

⁽¹⁾ The Dillon (2012) report included the snow disposal facility (10C = 16.56 ha), area currently serviced by the Jockvale pumping station (11B = 33.77), and the existing golf driving range (8B = 5.86 ha) as part of the existing SNC sewershed. The Novatech (2015) analysis does not consider these areas to be part of the existing sewershed.

Snow Disposal Facility

In both the Dillon (2012) and Novatech (2015) analysis, it is assumed that the snow dump facility at the Stranderd Drive and McKenna Casey Drive will ultimately be re-zoned for commercial development.

4.0 SANITARY DESIGN FLOWS

The sanitary sewer design sheets from the Dillon (2012) analysis and Novatech (2015) analysis are attached to this technical memorandum. The estimated sanitary design flows from Phases 2 and 3 of the SNC (entering Node 70) are as follows:

Present-Day Operational Design Flows (Theoretical)

- Dillon (2012) = 56.0 L/s
- Novatech (2015) = 72.5 L/s

Future Peak Design Flows

- Dillon (2012) = 603.9 L/s
- Novatech (2015) = 634.2 L/s

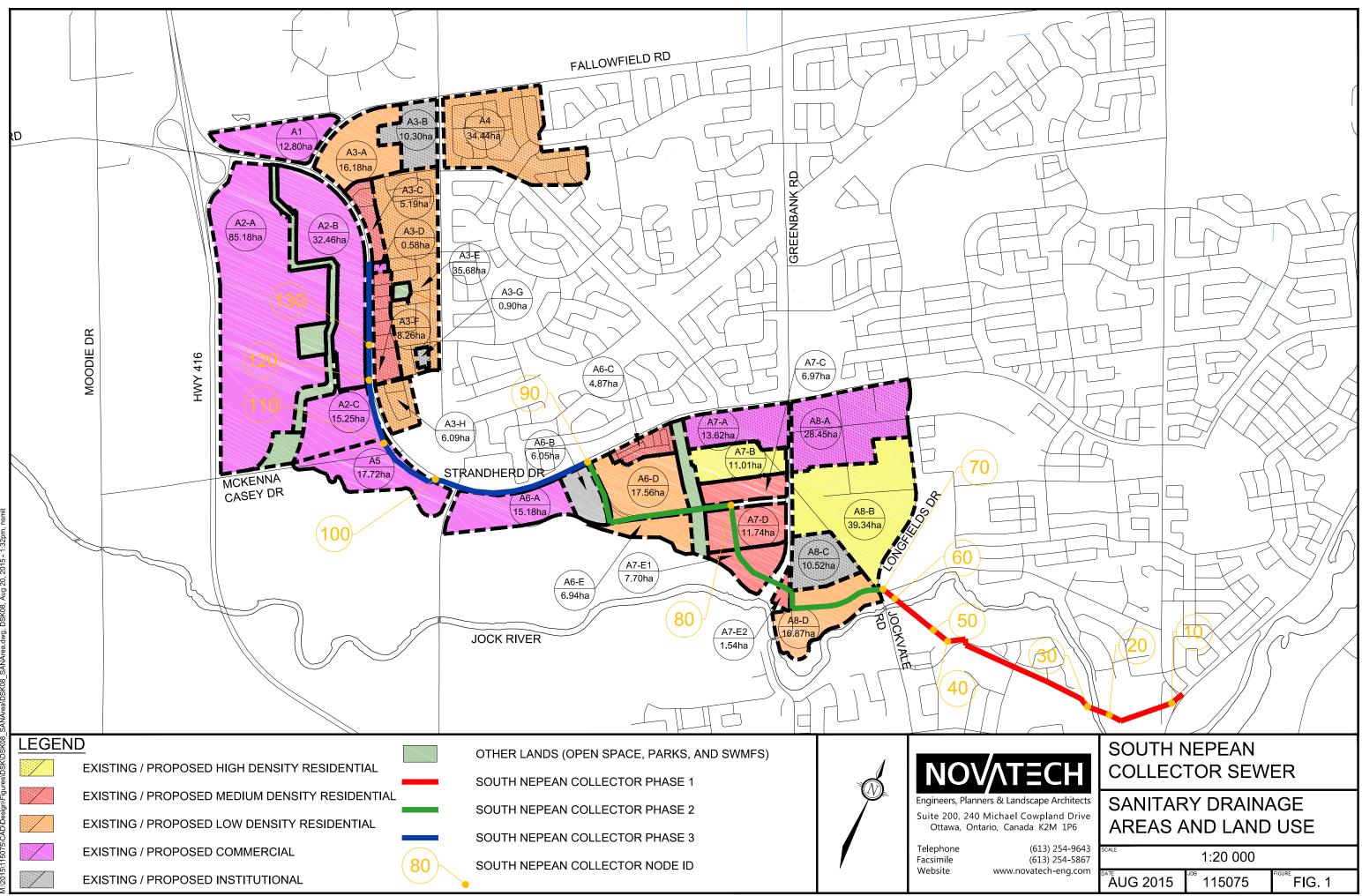
An increase in the serviced area, in addition to changes to the proposed land use and population densities in the sewershed, results in a higher design flow. The updated functional design flows presented in this memorandum are slightly higher than those presented in the Dillon (2012) report. However, they do not exceed the available capacity of the existing downstream sewer (Phase 1).

The outlet for Phase 2 of the SNC is the existing 1050mm outlet pipe at the 2400mm maintenance hole (Node 70) located east of Longfields Drive, north of Bren-Maur Road. Given a minimum design slope of 0.10%, this sanitary trunk sewer would have a full flow capacity of 900.5 L/s.

Based on the attached sanitary sewer design for Phases 1, 2 and 3 (Dillion, 2003), the estimated total peak flow from Phases 2 and 3 is 631.4 L/s. Therefore, based on the updated future peak design flow being 634.2 L/s (Novatech, 2015), the 1050mm sanitary sewer would be at 70% capacity.

ATTACHMENTS:

- Figure 1: Sanitary Drainage Areas and Land Use Novatech (2015)
- Sanitary Sewer Design Sheets (Updated) Novatech (2015)


Excerpts from Dillion (2012)

- Figure 1: Existing Sanitary Network and Collection Areas Dillion (2012)
- Table 5.1: Allocation of Commercial / Institutional and Residential Demands to SNC by Collection Area Dillion (2012)
- Sanitary Sewer Design Sheets Dillon (2012)
- Sanitary Sewer Design Sheets Dillion (2003)

Table 5: Updated Allocation of Commercial, Institutional and Residential Demands to Phases 2 & 3 (Nodes 70 – 130) of the SNC by Collection Area (Novatech, 2015)								
Collection Area	Upstream Node	Existing / Proposed Development	Existing / Proposed Land Use	Area (ha)	Estimated Number of Residential Units	Population Density (persons / ha)	Comment	Reference
A1	130	Proposed	Commercial	12.80	-	-	O'Keefe Court – Conceptual site plan shows proposed commercial.	Conceptual Plans for O'Keefe Court
A2-A	130	Proposed	Commercial	85.18	-	-	CitiGate – Analysis uses same approach as the design for	Detailed Servicing and SWM Report (Phase 1)
A2-B	130	Proposed	Commercial	32.46	-	-	CitiGate.	(Novatech, 2014)
A2-C	120	Proposed	Commercial (ex. Snow dump)	15.25	-	-	Existing snow dump facility assumed to be future commercial.	Functional Design Report and Update – SNC Phase 2 and 3 (Dillon, 2012)
A3-A	130	Proposed	Low Density Residential	16.48	461	95.2	Havencrest – Existing single family units.	Havencrest Design Report (IBI, 2013)
A3-B	130	Existing	Institutional	10.30	-	-	Cedarview Middle School and Cedarview Alliance Church.	
A3-C	130	Existing	Medium Density Residential	5.19	311	162	Existing townhouse units.	
A3-D	130	Existing	Commercial	0.58	-	-	Existing commercial buildings.	
A3-E	130	Existing	Low Density Residential	35.68	999	95.2	Existing single family units.	Aerial Photos / Site Visits
A3-F	130	Existing	Medium Density Residential	8.26	496	162.0	Existing townhouse units.	
A3-G	130	Existing	Institutional	0.90	-	-	Ottawa Torah Centre Chibad.	
A3-H	120	Existing	Low Density Residential	6.09	171	95.2	Existing single family units.	
A4	130	Existing	Low Density Residential	34.44	964	95.2	Existing single family units currently serviced by Jockvale pump station; to be redirected to SNC.	Functional Design Report and Update – SNC Phase 2 and 3 (Dillon, 2012); based on 2011 Census.
A5	110	Proposed	Commercial	17.72	-	-	Proposed commercial south of McKenna Casey Drive.	Site Visits
A6-A	100	Proposed	Institutional	20.70	-	-	Proposed school site on Minto property.	Conceptual Plan for Lands Adjacent the Kennedy-Burnett SWMF provided by Minto (2015)
A6-B	90	Existing	Medium Density Residential	4.87	292	162.0	Existing townhouse units.	Aerial Photos / Site Visits
A6-C	90	Proposed	Low Density Residential	10.11	283	95.2	Proposed single family units on lands owned by Minto.	Conceptual Plans for
A6-D	90	Proposed	Low Density Residential	5.59	157	95.2	Proposed single family units on lands owned by Mion.	Lands Adjacent the
A6-E	90	Proposed	Low Density Residential	7.24	203	95.2	Proposed single family units on lands owned by Pavic / Braovac.	Kennedy-Burnett SWMF provided by land owners.
A7-A	80	Existing	Commercial	13.62	-	-	Existing large retail stores (commercial).	Aerial Photos
A7-B	80	Proposed	High Density Residential	11.01	826	135.0	Proposed high density units on lands owned by Richcraft / Trinity.	Conceptual Plans for
A7-C	80	Proposed	Medium Density Residential	6.97	418	162.0	Proposed Medium density units on lands owned by Mion.	Lands Adjacent the
A7-D	80	Proposed	Medium Density Residential	11.74	704	162.0	Proposed Medium density units on lands owned by Caivan.	Kennedy-Burnett SWMF provided by land owners.
A7-E1/E2	80	Proposed	Medium Density Residential	9.24	554	162.0	Proposed Medium density units on lands owned by Claridge.	
A8-A	80	Existing	Commercial	28.45	-	-	Existing Barrhaven Market Place (commercial).	Aerial Photos / Site Visits
A8-B	80	Proposed	High Density Residential	39.34	2951	135.0	Future development similar to Ampersands development.	Site Visits
A8-C	80	Existing	Institutional	10.52	-	-	Existing St. Joseph High School.	Aerial Photos / Site Visits
A8-D	80	Proposed	Low Density Residential	16.87	1012	162.0	Proposed 600 low density residential units.	Functional Design Report and Update – SNC Phase 2 and 3 (Dillon, 2012)

Table 5: Undated Allocation of Commercial Institutional and Residential Demands to Phases 2 & 3 (Nodes 70 – 130) of the SNC by Collection Area (Novatech, 2015)

CLIT11V17 DIA/C 270mm V122mm

SANITARY SEWER DESIGN SHEET

South Nepean Collector - Phase 2 & 3

Theoretical Current Operational Peak Wastewater Flow

	Location Areas					Рор	ulation		In	dividual Design Flo	ows	Cumulative Design Flows						
Area I.D.	Existing Land Use	Upstream Node	Gross Commercial Area (ha)	Gross Institutional Area (ha)	Gross Residential Area (ha)	Total Gross Area (ha)	Residential Popultation Density (people / ha)	Individual Residential Population	Cumulative Residential Population	Residential Peaking Factor (Harmon Eqn ¹)	Commercial Peak Flow Rate ² (17,000 L/ha/d) (L/s)	Institutional Peak Flow Rate ² (10,000 L/ha/d) (L/s)	Infiltration / Inflow Rate (0.05 L/s/ha) (L/s)	Commercial (L/s)	Institutional (L/s)	Infiltration / Inflow (L/s)	Residential Peak Flow Rate (300 L/cap/d) (L/s)	Cumulative Peak Design Flow (L/s)
A1	Open Space	130				0.00					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A2-A	Open Space	130				0.00					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A2-B	Open Space	130				0.00					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A3-A	Open Space	130				0.00					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A3-B	Institutional	130		10.30		10.30					0.0	1.2	0.5	0.0	1.2	0.5	0.0	1.7
A3-C	Medium Density Residential	130			5.19	5.19	162.0	841	841	2.71	0.0	0.0	0.3	0.0	1.2	0.8	7.9	9.9
A3-D	Commercial	130	0.58			0.58			841	2.71	0.1	0.0	0.0	0.1	1.2	0.8	7.9	10.0
A3-E	Low Density Residential	130			35.68	35.68	95.2	3397	4238	2.39	0.0	0.0	1.8	0.1	1.2	2.6	35.1	39.0
A3-F	Medium Density Residential	130			8.26	8.26	162	1338	5576	2.32	0.0	0.0	0.4	0.1	1.2	3.0	44.9	49.2
A3-G	Institutional	130		0.90		0.90			5576	2.32	0.0	0.1	0.0	0.1	1.3	3.0	44.9	49.4
A4	Low Density Residential*	130				0.00			5576	2.32	0.0	0.0	0.0	0.1	1.3	3.0	44.9	49.4
A2-C	Snow Dump Facility	120				0.00			5576	2.32	0.0	0.0	0.0	0.1	1.3	3.0	44.9	49.4
A3-H	Low Density Residential	120			6.09	6.09	95.2	580	6155	2.30	0.0	0.0	0.3	0.1	1.3	3.4	49.1	53.8
A5	Open Space	110				0.00			6155	2.30	0.0	0.0	0.0	0.1	1.3	3.4	49.1	53.8
A6-A	Open Space	100				0.00			6155	2.30	0.0	0.0	0.0	0.1	1.3	3.4	49.1	53.8
A6-B	Open Space	100				0.00			6155	2.30	0.0	0.0	0.0	0.1	1.3	3.4	49.1	53.8
A6-C	Medium Density Residential	90			4.87	4.87	162.0	789	6944	2.27	0.0	0.0	0.2	0.1	1.3	3.6	54.6	59.6
A6-D	Open Space	90				0.00			6944	2.27	0.0	0.0	0.0	0.1	1.3	3.6	54.6	59.6
A6-E	Open Space	90				0.00			6944	2.27	0.0	0.0	0.0	0.1	1.3	3.6	54.6	59.6
A7-A	Commercial	90	13.62			13.62			6944	2.27	2.7	0.0	0.7	2.8	1.3	4.3	54.6	63.0
А7-В	Open Space	90				0.00			6944	2.27	0.0	0.0	0.0	2.8	1.3	4.3	54.6	63.0
A7-C	Open Space	90				0.00			6944	2.27	0.0	0.0	0.0	2.8	1.3	4.3	54.6	63.0
A7-D	Open Space	90				0.00			6944	2.27	0.0	0.0	0.0	2.8	1.3	4.3	54.6	63.0
A7-E1/E2	Open Space	90				0.00			6944	2.27	0.0	0.0	0.0	2.8	1.3	4.3	54.6	63.0
A8-A	Commercial	80	28.45			28.45			6944	2.27	5.6	0.0	1.4	8.4	1.3	5.7	54.6	70.0
A8-B	Open Space	80				0.00			6944	2.27	0.0	0.0	0.0	8.4	1.3	5.7	54.6	70.0
A8-C	Institutional	80		10.52		10.52			6944	2.27	0.0	1.2	0.5	8.4	2.5	6.2	54.6	71.8
A8-D	Open Space	80				0.00			6944	2.27	0.0	0.0	0.0	8.4	2.5	6.2	54.6	71.8
ROW Along SNC Sewer Alignment	-	80				14.34			6944	2.27	0.0	0.0	0.7	8.4	2.5	6.9	54.6	72.5
т	DTAL	80	42.65	21.72	60.09	138.80	-	6944	6944	2.27	8.4	2.5	6.9	8.4	2.5	6.9	54.6	72.5

Residential Land Use	Population Density (Units / ha)	Persons per Unit	Persons per ha	
Low Density	26 – 28	2.7 – 3.4	95.2	
(singles and semis)	(28 used)	(3.4 used)	95.2	
Medium Density	50 - 60	2.7	162.0	
(row/townhouse)	(60 used)	2.1	102.0	
High Density	60 – 75	1.8	135.0	
(apartments)	(75 used)	1.0	155.0	

Notes:

1. Harmon Equation = 1 + [14 / (4+(P/1000)^{1/2})] x K

Reported Design Flows / Assumptions:

1. Area A4: Existing single family units currently serviced by Jockvale pump station; currently not directed to SNC

Where: P = population; K = correction factor = 0.6

2. Instituional / Commercial Peaking Factor = 1.0

PROJECT #: DESIGNED BY: CHECKED BY: DATE: 115075 CMS MJP August 20, 2015

Engineers, Planners & Landscape Architects

South Nepean Collector - Phase 2 & 3

Theoretical Future Full Service Peak Wastewater Flow

	Location			A	reas			Рор	ulation		In	dividual Design Flo	ws		C	umulative Desigr	n Flows	
Area I.D.	Existing / Proposed Land Use	Upstream Node	Gross Commercial Area (ha)	Gross Institutional Area (ha)	Gross Residential Area (ha)	Total Gross Area (ha)	Residential Popultation Density (people / ha)	Individual Residential Population	Cumulative Residential Population	Residential Peaking Factor (Harmon Eqn ¹)	Commercial Peak Flow Rate ² (50,000 L/ha/d) (L/s)	Institutional Peak Flow Rate ² (50,000 L/ha/d) (L/s)	Infiltration / Inflow Rate (0.28 L/s/ha) (L/s)	Commercial (L/s)	Institutional (L/s)	Infiltration / Inflow (L/s)	Residential Peak Flow Rate (350 L/cap/d) (L/s)	Cumulative Peak Design Flow (L/s)
A1	Commercial	130	12.80			12.80					11.1	0.0	3.6	11.1	0.0	3.6	0.0	14.7
A2-A	Commercial	130	85.18			85.18					73.9	0.0	23.9	85.1	0.0	27.4	0.0	112.5
A2-B	Commercial	130	32.46			32.46					28.2	0.0	9.1	113.2	0.0	36.5	0.0	149.8
A3-A	Low Density Residential	130			16.18	16.18	95.2	1540	1540	3.67	0.0	0.0	4.5	113.2	0.0	41.1	22.9	177.2
A3-B	Institutional	130		10.30		10.30			1540	3.67	0.0	8.9	2.9	113.2	8.9	43.9	22.9	189.0
A3-C	Medium Density Residential	130			5.19	5.19	162.0	841	2381	3.53	0.0	0.0	1.5	113.2	8.9	45.4	34.0	201.6
A3-D	Commercial	130	0.58			0.58			2381	3.53	0.5	0.0	0.2	113.7	8.9	45.6	34.0	202.2
A3-E	Low Density Residential	130			35.68	35.68	95.2	3397	5778	3.19	0.0	0.0	10.0	113.7	8.9	55.5	74.6	252.8
A3-F	Medium Density Residential	130			8.26	8.26	162	1338	7116	3.10	0.0	0.0	2.3	113.7	8.9	57.9	89.4	269.9
A3-G	Institutional	130		0.90		0.90			7116	3.10	0.0	0.8	0.3	113.7	9.7	58.1	89.4	270.9
A4	Low Density Residential	130			34.44	34.44	95.2	3279	10395	2.94	0.0	0.0	9.6	113.7	9.7	67.8	123.7	314.9
A2-C	Commercial (ex. snow dump)	120	15.25			15.25			10395	2.94	13.2	0.0	4.3	127.0	9.7	72.0	123.7	332.4
A3-H	Low Density Residential	120			6.09	6.09	95.2	580	10974	2.91	0.0	0.0	1.7	127.0	9.7	73.7	129.6	340.0
A5	Commercial	110	17.72			17.72			10974	2.91	15.4	0.0	5.0	142.4	9.7	78.7	129.6	360.3
A6-A	Commercial	100	15.18			15.18			10974	2.91	13.2	0.0	4.3	155.5	9.7	82.9	129.6	377.8
A6-B	Institutional	100		6.05		6.05			10974	2.91	0.0	5.3	1.7	155.5	15.0	84.6	129.6	384.7
A6-C	Medium Density Residential	90			4.87	4.87	162.0	789	11763	2.88	0.0	0.0	1.4	155.5	15.0	86.0	137.4	393.9
A6-D	Low Density Residential	90			17.56	17.56	95.2	1672	13435	2.83	0.0	0.0	4.9	155.5	15.0	90.9	153.8	415.2
A6-E	Low Density Residential	90			6.94	6.94	95.2	661	14096	2.81	0.0	0.0	1.9	155.5	15.0	92.9	160.2	423.6
A7-A	Commercial	90	13.62			13.62			14096	2.81	11.8	0.0	3.8	167.4	15.0	96.7	160.2	439.2
А7-В	High Density Residential	90			11.01	11.01	135.0	1486	15582	2.76	0.0	0.0	3.1	167.4	15.0	99.8	174.3	456.4
A7-C	Medium Density Residential	90			6.97	6.97	162.0	1129	16711	2.73	0.0	0.0	2.0	167.4	15.0	101.7	184.9	468.9
A7-D	Medium Density Residential	90			11.74	11.74	162.0	1902	18613	2.68	0.0	0.0	3.3	167.4	15.0	105.0	202.4	489.7
A7-E1/E2	Medium Density Residential	90			9.24	9.24	162.0	1497	20110	2.65	0.0	0.0	2.6	167.4	15.0	107.6	215.9	505.8
A8-A	Commercial	80	28.45			28.45			20110	2.65	24.7	0.0	8.0	192.0	15.0	115.5	215.9	538.5
A8-B	High Density Residential	80			39.34	39.34	135.0	5311	25421	2.55	0.0	0.0	11.0	192.0	15.0	126.6	262.4	596.0
A8-C	Institutional	80		10.52		10.52			25421	2.55	0.0	9.1	2.9	192.0	24.1	129.5	262.4	608.1
A8-D	Low Density Residential	80			16.87	16.87	120.9	2040	27461	2.52	0.0	0.0	4.7	192.0	24.1	134.2	279.8	630.2
ROW Along SNC Sewer Alignment	-	80				14.34			27461	2.52	0.0	0.0	4.0	192.0	24.1	138.2	279.8	634.2
ТС	DTAL	80	221.24	27.77	230.38	493.73	-	27461	27461	2.52	192.0	24.1	134.2	192.0	24.1	138.2	279.8	634.2

Residential Land Use	Population Density (Units / ha)	Persons per Unit	Persons per ha	
Low Density	26 – 28	2.7 – 3.4	95.2	
(singles and semis)	(28 used)	(3.4 used)	95.2	
Medium Density	50 - 60	2.7	162.0	
(row/townhouse)	(60 used)	2.7	102.0	
High Density	60 – 75	1.8	135.0	
(apartments)	(75 used)	1.0	155.0	

Notes:

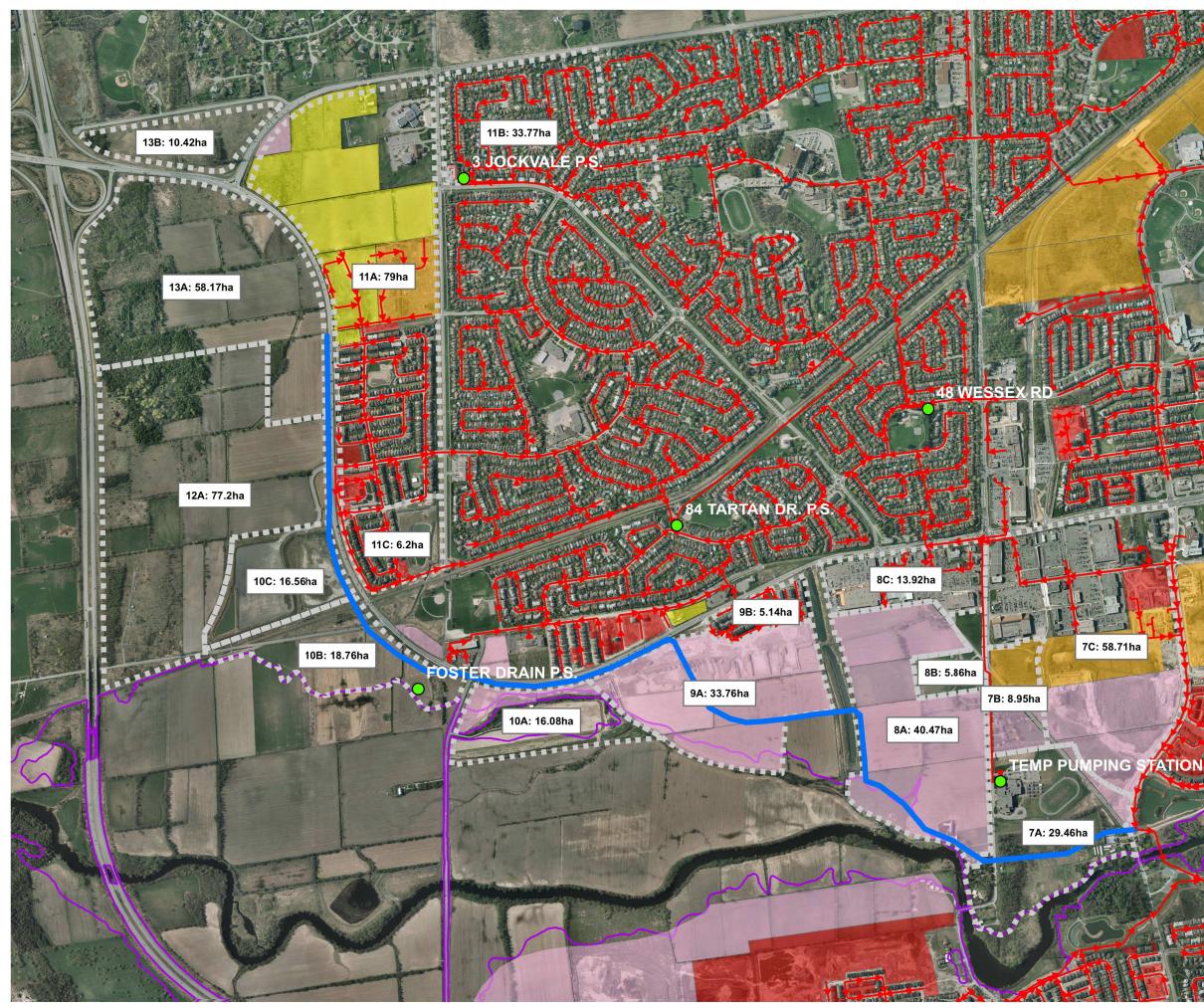
1. Harmon Equation = 1 + [14 / (4+(P/1000)^{1/2})] x K

Where: P = population; K = correction factor = 1.0

2. Instituional / Commercial Peaking Factor = 1.5

Reported Design Flows / Assumptions:

1. Area A4: Existing single family units currently serviced by Jockvale pump station to be redirected to SNC


2. Area A8-D: proposed 600 medium density residential units

M:\2015\115075\DATA\Calculations\Sewer Calcs\SAN\20150820-SAN-Hydraulic Review.xlsx

PROJECT #: DESIGNED BY: CHECKED BY: DATE: 115075 CMS MJP August 20, 2015

Engineers, Planners & Landscape Architects

City of Ottawa South Nepean Collector

Figure 01

Existing Sanitary Network and Collection Areas

O Pump Station

Existing Sanitary Main (With Flow Direction)

- Proposed Alignment for South Nepean Collector
- Collection Area

DEVELOPMENT STATUS

Registered
Draft Approve
Pending
No Plan
Floodplain

NOT TO SCALE

MAP DRAWING INFORMATION: DATA PROVIDED BY THE CITY OF OTTAWA

MAP CREATED BY: BC MAP CHECKED BY: MBM MAP PROJECTION: NO PROJECTION

FILE LOCATION: \\Dillon.ca\dillon_dfs\Ottawa\Ottawa CA\CAD\2011\ 115681\Design_GIS\MXD\Figure01c_ExistingSanitaryNetwork.mxd

PROJECT: 11-5681

STATUS: FINAL DATE: 18/07/12

			Table 5	5.1: Alloca	tion of Comn	nercial/I	nstitutional and	d Residential Demands	to SNC by Col	lection Area		
Collection	Discharging Node	Estimated	from GIS		City of C)ttawa V	URL Data	Other Space ¹	Population	Residential	Comments	Additional
Area	noue	Gross Institutional/Commercial (ha)	Gross Residential (ha)	Gross Area (ha)	Net Residential (ha)	Units (#)	Unit Density (#/ha)	(ha)	(PE)	Density (PE/net ha)		Source(s)
7A		13.5	7.4	29.5	4.0	605	0.3	9.1	1637	4.25	Flow calculations include St Joseph H.S. Pump Station firm capacity of 7.0 L/s Additional 600 units (TAC)	3.4ppu (TAC)
7B		0.0	9.24	9.24	6.23	1474	136.7	3.0	3321	638.8	Population from split VURL allocated by area. VURL parcel id 323 - inconsistency between net and gross reported area.	2.7ppu (TAC)
8A	70	0.0	40.0	40.0	24.1	4462	185.1	15.9	12047.4	499.9		2.7ppu (TAC)
8B		5.9	0.0	5.9	0.0	0	0	0.0			Future Commercial area	
8C		13.9	0.0	13.9	0.0	0	0	0.0			Commercial area includes Home Depot	
9A	80	0.0	33.8	33.8	18.6	635	34.1	15.2	2210	116.2		3.4ppu (TAC)
10A	90	0.0	16.1	16.1	9.7	451	28.0	6.4	1533.4	158.0	Assume net population = 60% gross.	3.4ppu (TAC)
10B	100	18.8	0.0	35.3	0.0	0	0	16.5			Allocated as potential future I/C use as directed by TAC	
10C	110	16.6	0.0	35.3	0.0	0	0	18.7			Area includes current Municipal Snow Dump. Flow allowance is made for potential future I/C use	
11C	110	0.0	6.2	6.2				2.5	306	82.7	This area is south of '11 block' in the existing development	From IBI Apr 2010 Report Figure 1
11A		12.5	66.5	79.0	1			26.6	3923	98.3	Institutional includes 4.38ha church site and 6.89 ha institution at northeast corner, as well and Claridge Commercial (0.56ha) and DCR/Phoenix Commercial (0.64ha)	From IBI Apr2010 Report Figure 1
11B	120	0.0	37.0	37.0		Note 2		14.8	1550	69.8	Presently serviced by Jockvale pump station; to be redirected to SNC.	Estimated from 2011 Census Block data
12A		77.2	0.0	77.2				0.0			Allow sanitary peak flow 79.0 L/s	Novatech, Employment Lands Report,
13A		58.5	0.0	58.5				0.0			Allow sanitary peak flow 62.8 L/s plus Collection Area 13B, total 82.2 L/s	Revised Jan 2012
13B	130	12.5	0.0	12.5				0.0			Allow sanitary peak flow 19.4 L/s; gravity discharge to Collection Area 13A	IBI/Novatech

Notes:

Other space includes other residential space accounting for the difference between gross area (measured with GIS) and net area (provided in VURL data), such as sidewalks, roads, greenspace, etc.
 Collection Area 11A and 11B population and land use as identified under Additional Source(s). Other space reported as 60% of gross residential area, consistent with VURL average.

K:\PR	OJECTS\DF	RAFT\2011\1	15681\Desigr	NSewer Desig	gn Sheets\11	5681 - Sewer D	esign Sheet - F	evised April 20	.xls								OTTAWA	-														2012 Op	erational cu	urrent day
												SA	ITARY S	EWER D		TH NEPEAN C EET - Operatio				v Desian	Parameter	rs)												
																																	She	et 1 of 1
TRIBUTARY AREA		LOCATION					AREA (ha)				INDIVIDU	AL	CUMJLATIV	E	RE	SIDENTIAL	COMMER	L	ITUTION	INFIL. INFLOW	PEAK DESIGN							FI	ROPOSED SEW	ER			OPERATIO	DNAL DESIGN
	Design Factors	FROM	то	Gross ICI	Net ICI	Other ICI space (Green, Sidewalks, roads	Gross RESIDENTIAL	Net Residential Area	Other Res (Green, Sidewalks, roads)	TOTAL AREA (Gross ICI plus Gross Residential)	POP	DENSITY	POP	AREA	PEAKING FACTOR	RESIDENT. FLOW	PEAKING FACTOR	CUM. AREA	I.C.I. FLOW (I/s)		FLOW Q(d)	LENGTH	GROUND ELEVATION	DEPTH OF COVER	PIPE SIZE		INVERT 2	PIPE TYPE	GRADE	CAPACITY	Q(d)/Q(c)	VELOCITY at capacity	DEPTH	VELOCITY
												(po./ha.)		(ha.)		(L/s)				(L/s)	(L/s	(m)	(m)	(m)	(m)	(m)	(m)			(L/s)		(m/s)	(m)	(m/s)
13A	1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0	0.0	4.50	0.00	1.00	0.00	0.00	0.00	0.00					_								
13B 12A	1	Node 130	Node 130	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0	0.0	4.50 4.50	0.00	1.00	0.00	0.00	0.00	0.00		95.14	5.43	0.750		88.96							
12A 11A	1	Node 130		12.5	9.4	3.1	66.5	8.0	58.5	79.0	1196	148.76	1196	79.0	4.50	15.57	1.00	12.50	2.00	3.95	21.52													
118	1		Node 120	0.0	0.0	0.0	37.0	22.2	14.8	37.0	1550	69.82	2746	116.0	3.47	33.13	1.00	12.50	2.00	5.80	40.93	531.89	93.60	4.42	0.750	88.96	88.43	Conc.	0.10%	353.24	0.13	0.80	0.20	0.58
110	1	Node 120	HOUC 120	0.0	0.0	0.0	6.2	3.7	2.5	6.2	306		3052	122.2	3.44	36.41	1.00	12.50	2.00	6.11	44.52	001.00	00.00	7.76	0.700	00.00	00.40	00/10.	0.1070	000.24	0.10	0.00	0.20	0.00
100	1	11000 120	Node 110	16.6	12.5	4.2	0.0	0.0	0.0	16.6	0	02.20	3052	138.8	3.44	36.41	1.00	29.10	4.66	6.94	48.01	497.82	93.44	4,76	0.750	88.43	87.93	Conc.	0.10%	353.24	0.14	0.80	0.20	0.58
10B	1	Node 110	Node 100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		3052	138.8	3.44	36.41	1.00	29.10	4.66	6.94	48.01	603.17	93.03	4.95	0.750	87.93	87.33	Conc.	0.10%	353.24	0.14	0.80	0.20	
10A	1	Node 100	Node 90	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		3052	138.8	3.44	36.41	1.00	29.10	4.66	6.94	48.01	430.49	93.75	6.03	0.825	87.33	86.90	Conc.	0.10%	455.17	0.11	0.85	0.21	0.61
9A	1	Node 90	Node 80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		3052	138.8	3.44	36.41	1.00	29.10	4.66	6.94	48.01	1268.65	92.37	5.84	0.900	86.90	85.63	Conc.	0.10%	573.71	0.08	0.90	0.18	0.56
8A	1	Node 80		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		3052	138.8	3.44	36.41	1.00	29.10	4.66	6.94	48.01													
8B	1			5.9	4.4	1.5	0.0	0.0	0.0	5.9	0		3052	144.7	3.44	36.41	1.00	35.00	5.60	7.24	49.25													
8C	-			13.9	10.4	3.5	0.0	0.0	0.0	13.9	0		3052	158.6	3.44	36.41	1.00	48.90	7.82	7.93	52.17										_			
7A	1			13.5	10.1	3.4	16.0	1.4	14.6	29.5	17	12.14	3069	188.1	3.43	36.59	1.00	62.40	9.98	9.41	55.93													
7B	1		Node 70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		3069	188.1	3.43	36.59	1.00	62.40	9.98	9.41	55.93	1448.98	91.24	6.01	1.050	85.63	84.18	Conc.	0.10%	864.51	0.06	1.00	0.18	0.56
							-		-	188.1											-				-	-	-				-			
						_	-														-		_			-	-				-			
										DEFAULTS																		1	' - -					
									1	RAGE DAILY FLOW		L/CAP.D															11111111		\sim $-$					
									I=UNIT OF	PEAK EXTR.FLOW		L/Ha.s																	_					
									1	Mannings 'n	0.013															+	4				+			
								q=AVERAGE	COMMERCIAL A	ND INSTITUTIONAL	0.16	L/Ha.s																ILLO	V —					
DESIGN		DJG							+		-																COL	SULTIN	ġ —	Project 11-5681				
CHECKED TODAY:		7/18/2012												+							+										+			

K:\PR	DJECTS\DF	RAFT\2011\1	15681\Desigr	NSewer Desi	gn Sheets\11	15681 - Sewer D	esign Sheet -	Revised April 2	0.xls						601	CITY OF TH NEPEAN C			B													2012	2 Full Servi	ce (Peak)
													SANITA	RY SEW		N SHEET - Fu				sion Para	meters)													
																												<u> </u>			<u> </u>	<u> </u>	She	eet 1 of 1
TRIBUTARY AREA		LOCATION					AREA (ha)				INDIVIDUA	L	CUMULATI	VE	RE	SIDENTIAL	COMMER	CIAL & INSTIT	UTION	INFIL. INFLOW	PEAK DESIGN							Pí	ROPOSED SEW	/ER			PEAK DESIGN	N
	Design Factors	FROM	то	Gross ICI	Net ICI	Other ICI space (Green, Sidewalks, roads)	Gross RESIDENTIAL Area	Net Residential Area	Other Res (Sidewalks, roads)	TOTAL AREA (Gross ICI plus Gross Residential)	POP	DENSITY	POP	Total I/C and Res AREA	PEAKING FACTOR	RESIDENT. FLOW	PEAKING FACTOR	I/C CUM. AREA	I/C FLOW (I/s)	Q(p)	FLOW Q(d)	LENGTH	GROUND ELEVATION	DEPTH OF COVER	PIPE SIZE	INVERT 1	INVERT 2	PIPE TYPE	GRADE	CAPACITY	Q(d)/Q(c)	VELOCITY at capacity	DEPTH	VELOCITY
												(pers/net ha.)		(ha.)		(L/s)				(L/s)	(L/s)	(m)	(m)	(m)	(m)	(m)	(m)	'		(L/s)		(m/s)	(m)	(m/s)
13A	1			58.5	43.9	14.6	0.0	0.0	0.0	58.5	0		0	58.5	4.50	0.00	1.50		50.90	16.38	67.28												<u>، </u>	<u> </u>
13B	1		Node 130	12.5	9.4	3.1	0.0	0.0	0.0	12.5	0	_	0	71.0	4.50	0.00	1.50		61.77	19.88	81.65	_	95.14	5.43	0.750	_	88.96	'				/	<u>ا</u>	
12A	1	Node 130		77.2	57.9	19.3	0.0	0.0	0.0	77.2	0		0	148.2	4.50	0.00	1.50	148.20		41.50	170.43	_						'			+	/	↓ '	
11A	1		Node 120	12.5	9.4	3.1	66.5	39.9	26.6	79.0	3923 1550	98.32	3923	227.2 264.2	3.34	53.09	1.50 1.50	160.70 160.70	139.81	63.62 73.98	256.52 284.92	531.89	93.60	4.42	0.750	88.96	88.43	Conc.	0.40%	353.24	0.81	0.80	0.53	0.90
11B 11C	· ·	Node 120	Node 120	0.0	0.0	0.0	6.2	3.7	2.5	6.2	306	69.82 82.26	5473 5779		3.21	71.13	1.50	160.70		75.71	204.92	551.69	93.60	4.42	0.750	00.90	00.43	T Conc.	0.10%	353.24		0.00	0.55	0.90
10C	1	Node 120	Node 110	16.6	12.5	4.2	0.0	0.0	0.0	16.6	0	02.20	5779		3.19	74.59	1.50	177.30		80.36	309.20	497.82	93.44	4.76	0.750	88.43	87.93	Conc.	0.10%	353.24	0.88	0.80	0.55	0.91
10B	1	Node 110		18.8	14.1	4.7	0.0	0.0	0.0	18.8	0		5779		3.19	74.59	1.50		170.61	85.62	330.82	603.17	93.03	4.95	0.750	87.93	87.33	Conc.	0.10%	353.24	0.94	0.80	0.58	
10A	1	Node 100	Node 90	0.0	0.0	0.0	16,1	9.7	6.4	16,1	1533	158.04	7312		3.09	91.48	1.50	196,10	170.61	90.13	352.22	430,49	93,75	6.03	0.825	87.33	86.90	Conc.	0.10%	455,17	0.77	0.85	0.55	
9A	1	Node 90	Node 80	0.0	0.0	0.0	33.8	18.6	15.2	33.8	2161	116.18	9473	355.7	2.98	114.28	1.50	196.10	170.61	99.60	384.48	1268.65	92.37	5.84	0.900	86.90	85.63	Conc.	0.10%	573.71	0.67	0.90	0.55	0.97
8A	1	Node 80		0.0	0.0	0.0	40.0	24.1	15.9	40.0	12047	499.88	21520	395.7	2.62	228.45	1.50	196.10	170.61	110.80	509.85										T	,,	('	
8B	1			5.9	4.4	1.5	0.0	0.0	0.0	5.9	0		21520		2.62	228.45	1.50		175.74	112.45	516.64													
8C	1			13.9	10.4	3.5	0.0	0.0	0.0	13.9	0		21520	415.5	2.62	228.45	1.50	215.90	187.83	116.34	532.62												<u>'</u> '	<u> </u>
7A	1			13.5	10.1	3.4	16.5	5.2	11.3	30.0	1637	314.81	23157		2.59	242.84	1.50	229.40		124.74	567.16												<u>ا</u>	L
7B	1		Node 70	0.0	0.0	0.0	9.2	6.2	3.0	9.2	3980	638.84	27137	454.7	2.52	277.05	1.50	229.40	199.58	127.32	603.94	1448.98	91.24	6.01	1.050	85.63	84.18	Conc.	0.10%	864.51	0.70	1.00	0.64	1.07
							225.3	129.7		454.7	27,137.	0																				/	└─── ′	
														_								4,781.0						'			+	'	└─── ′	I
										DEFAULTS	-			_												_	<u> </u>	1	' - -			/	└─── ′	
										ERAGE DAILY FLOW		L/CAP.D															- '''		\sim $-$			'	└─── ′	
									I=UNIT OF	PEAK EXTR.FLOW		D L/Ha.s															-	.00000	_			'	<u>'</u> '	L
										Mannings 'n																	-				<u> </u>	/	└─── ′	
								q=AVERAGE	COMMERCIAL A	ND INSTITUTIONAL	0.58	L/Ha.s																ILLON	- L			<u> </u>	└── ′	
DESIGN		DJG																										NSULTIN	č —	Project 11-5681		!	└─── ′	
CHECKED														_													+		F		+	!	└──── ′	
TODAY:		7/18/2012																										1		1		1	, '	1

021019-des	sign-v3.xls													CITY OF														Full	Service-I	Manotick
														VER COI																
										S	ANITARY	SEWE	R DESIG	N SHEE	۲ - Full ۹	Service	(Includi	ng Mano	tick)											
														1										T	1			1	She	eet 1 of 1
																								_						1
		LOCATION				AREA (ha)					0104114754	-	RESIDENT		001015	RCIAL & IN		INFIL.	PEAK DESIGN											
DESCRIPTION		LOCATION	<u> </u>			AREA (na)		T	INDIVIDU		CUMULATIV	E 1	RESIDENT		COMME	RCIAL & IN		INAL LOVA	DESIGN	-				PR	OPOSED S	EWER			AK DESIG	N
				COM &		•	GREEN							RESIDENT			I.C.I.													
	Design Factors	FROM	то	INSTITUTIO	N INDUSTRIA	RESIDENTIAL	SPACE	TOTAL AREA	POP	DENSITY	POP	AREA	FACTOR	FLOW	FACTOR	AREA	FLOW (Vs)	Q(p)	FLOW Q(d)	LENGTH		INVERT 1	INVERT	2 PIPE TYPE	GRADE		Q(p)/Q(c)	VELOCITY	DEPTH	VELOCIT
										(po./ha.)		(ha.)		(L/s)				(L/s)	(L/s)	(m)	(m)	(m)	(m)			(L/s)		(m/s)	(m)	(m/s)
Jockvale PS	1		Node 130			36.7		36.7	1530	41.69	1,530.0	36.	7 3.673			0.00		10.276								·				
Area 1	1	Node 130 Node 120				65.57		207.8 32.5	3430 380	52.31 53.52	4,960.0	244.	5 <u>3.248</u> 3.218		1.50	142.20	123.714	68.452 77.552		102.23 246.80			88.898		0.10%	353.24	0.73		•	0
Area 2 Area 3	1	Node 120				1.1	49	18.6	300	33.52	5,340.0		3.218	69.620			145.612	82.760		330,40	0.750	88.898 88.651	88.651 88.321	Conc.	0.10%	353.24 353.24	0.83	0.80	-	. 0
Area 3 Area 4		Node 100				-21.7	1.4	30.8	080	45.16	6.320.0			80.626	1.50	189.00	164.43	91.384		1,022,50	0.750	88.321	87.298		0.10%	353.24	0.88	0.80		. 0
Area 5		Node 90				42.2	9.3	56.0	1800	42.65	8.120.0				1.50	193.50	168.345	107.064	375.534	935.59	0.825	87.298	86,362		0.10%	455 17	0.93	0.85		1 0
Area 6	i	Node 80			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	51	-13.1	110.9	4600	90.20	12,720.0		3 2.850	146.867			209.061	138,116	494.044	1,424.25		86.362	84.938		0.10%	455.17 573.71	0.83	0.90	-	
Area 7	1	Node 70			and the second	123.9	10.1	150.0	8780	70.86	21,500.0	643.3	3 2.621	228.273	1.50	256.30	222.981	180.116	631.370	79,41	1.050	84,938	84.859		0.10%	864.51	0.73			0.
Crossing	1	Node 60			1	and the second	1000 C	0.0	1. · · ·		21,500.0	643.3		228.273	1.50	256.30	222.981	180.116	631.370	79.41			83.321	Conc.	0.10%	864.51	0.73	1.00	-	0
Area 8	1		Node 40			306.0	34	360.0	25000	81.70	46,500.0	1,003.3		432.118	1.50		240.381	280.916	953.415	152.76			83.168		0.10%	1,233.19	0.77	1.09	-	0
Area 9	1	Node 40				192.4	7.7	213.0	12390	64.40	58,890.0			524.650	1.50	289.20			1,116.810	978.95	1.200	83.168	82.189	Conc.	0.10%	1,233.19	0.91	1.09	-	0
Manotick	1	, second s	Node 30			571		606.7	8535	14.95	67,425.0	1,823.0	0 2.146		1.50	324.90	282.663	510.432				÷			2 ¹ 2 1					Í
Syphon	1	Node 30				0	0	0.0	.0		67,425.0				1.50	324.90	282.663	510.432	1,379.371	978.95	1.350		81.300		0.10%	1,686.93	0.82	1.18	-	0.
Area 10	1	Node 20	Node IU	1		52.8	14.7	67.5	600	11.36	68,025.0	1,890.8	5 2.143	590.553	1.50	324.90	282.663	529.332	1,402.548	482.92	1.350	81,300	80.817	Conc.	0.10%	1,686.93	0.83	1.18	-	0.
				╢────							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				╂╂									÷		l
			-						i						1						-		· · - ·				1		-	t
								DEFAULTS			I		-														''''			<u> </u>
	· · · · · · · · · · · · · · · · · · ·							SE DAILY FLOW	250	L/CAP.D			-						∦ -							+		1115		t
				·					11							<u> </u>			ll-	-									4	L
							I=UNIT OF PE	AK EXTR.FLOW		L/Ha.S	i					ļ	· · · · ·			-			·						1	1
				1				Mannings 'n'	0,013	-	-l	· · · · · · · · · · · · · · · · · · ·							╢╢-								DI	LLON	1 1	f
	<u> </u>			·II	9	AVERAGE COM	MERCIAL AND	NSTITUTIONAL	0,58	L/Ha.S		ļ	_	ļ					-					_			CON	SULTING		1
				1							· · · · · · · · · · · · · · · · · · ·			ļ		L			┨─────┨-						1				-	·
DESIGN		CJR					· · · ·	·			·			+	 	<u> </u>			∦∦-									<u> </u>		
CHECKED				1							I							<u> </u>	╏──────────────────────────────────────						0			Pro	ject 02-101	9
TODAY:	· · · · ·	21-JAN. 03 10/28/2003		1					I		╢───····		-#			··			∦∦-								-	J		····

10/28/20032:35 PM

021019-des	ign-v3.xls																ER			· · · · · · · · · · · · · · · · · · ·								op	perational-l	Manotick
					· · · · -	··· · · · · · · · · · · · · · · · · ·		<u> </u>		S	ANITARY							ional Flo	WS										<u> </u>	
	·····								•											·									Shr	eet 1 of 1
DESCRIPTION		LOCATION	1		1	AREA (ha)	1	<u></u>		JAL	CUMULATIV	<u> </u>	RESIDENTI	AL	СОММЕ	RCIAL & IN	STITUTION	INFIL. INFLOW	PEAK DESIGN	1				PR	OPOSED SE			F	PEAK DESIG	<u></u> 3N
DEGORAL HOIT	Design Factors	FROM	то	COM &		RESIDENTIAL	GREEN SPACE	TOTAL AREA	POP	DENSITY	POP	AREA	1	RESIDENT.	PEAKING		I.C.1. FLOW (I/s)	Q(p)	FLOW Q(d)	LENGTH	PIPE SIZE				GRADE	CAPACITY	Q(p)/Q(c)			VELOCIT
	Design Factors							1011210121		(po./ha.)	<u> </u>	(ha.)		(L/s)			1	(Ľ/s)	(L/s)	(m)	(m)	(m)	(m)		1	(L/s)		(m/s)	(m)	(m/s)
Jockvale PS	1	PS	Node 130	0		36.7		36.7	1530	41.69	1,530.0		7 2.604	13.834	1.00	0.00	0	1.835									1			
Area 1	1	Node 130				65.57		207.8	3430	52.31	4,960.0				1.00	142.20		12.224		102.23	0.750				0.10%	353.24	0.21		-	
Area 2	1		Node 110	25.4		7.1		32.5	380	53.52	5,340.0			43.221		167.60		13.849		246.80	0.750		88.65		0.10%	353.24			•	
Area 3	1	Node 110				0	4.9	18.6			5,340.0	295.6		43.221		181.30 189.00	28.32813 29.53125	14.779 16.319		330.40 1.022.50	0.750		88.32 87.298		0.10%	353.24 353.24	0.24	0.80	ļ'	
Area 4		Node 100	Node 90 Node 80			42.2	9.3	· 30.8 56.0	1800	45.16 42.65	6,320.0 8,120.0	326.4		50.243 62.771				19,119		935.59	0.750				0.10%	455.17	0.27	0.80		· · · ·
Area 5		Node 90		46.8		51	13.1	110.9	4600	90.20	12.720.0	493.3				240.30	37,54688	24.664	155,409	1.424.25	0.900				0,10%	573.71	0.23	0.85		h
Area 6 Area 7		Node 70		16	100000000000000000000000000000000000000	123.9	10.1	150.0	8780	70.86	21,500.0	643.3		147.259	1.00			32,164	219.469	79.41	1.050	84,938			0.10%	864.51		5 1.00		
Crossing	1	Node 60			March March 19			0.0			21,500.0	643.3		147.259	1.00	256.30		32.164		79.41	1.050		83.32	t Conc.	0,10%	864.51	0.25	1.00		
Area 8	1	Node 50		20	20.040	306.0	34	360.0	25000	81.70	46,500.0				1.00	276.30	43.17188	50.164		152.76	1.200				0.10%	1,233.19	0.31	1.09	-	
Area 9	1	Node 40			100 S. K. (1990)	192.4	7.7	213.0	12390	64.40	58,890.0				1.00	289.20		60.814		978.95	1.200	83.168	82.18	Conc.	0.10%	1,233.19	0.37	1.09	-	
Manotick	1		Node 30	. 35.7	1922 - 1949	571		606.7	8535	14.95	67,425.0			395.159	1.00			91.149	D D.				1		÷		1		<u> </u>	1
Syphon Area 10	1	Node 30		0	1754-110-11-11-11-1	0	- 0	0.0	• 0		67,425.0			395.159	1.00	324.90		91.149		978.95		82.189			0.10%	1,233.19	0.44		•	
Area 10	1	Node 20	Node 10			52.8	14.7	67.5 1890.5	600	11.36	68,025.0	1,890.5	5 1.686	398.192	1.00	324.90	50.766	94.524	543.481	482.92	1.350	81.300	80.817	7 Conc.	0.10%	1,686.93	0.32	1.18	-	
		·····	 		-	-							-														` <u>`</u>	· · ·		
		ļ				_		DEFAULTS						L					∦∦	-						<u> </u>	, Illumm	41112		ļ
				1			•	GE DAILY FLOW		L/CAP.D					l	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		┨			ļ	ļ						- ا	<u> </u>
							I=UNIT OF PE	AK EXTR.FLOW		L/Ha.S					l				-	_									Ţ	Í
						1		Mannings 'n'	E	<u> </u>	l			· · · ·		<u> </u>			╢────╢					<u>.</u>				LLON		I
					q=	AVERAGE COM	MERCIAL AND	INSTITUTIONAL	0,16	L/Ha.S			-											· · · · ·			CON	SULTIN	G -	
		CJR	-										_									<u> </u>	···						Project 02-1019	L
DESIGN CHECKED		21-JAN. 03		-			<u> </u>				·[<u> </u>	-		l		+		┨			+			0		'	+	0,601.02-101	ř
TODAY:		10/28/2003	+	- I						1	l	<u>├</u> ──	-1				+				· · ·	<u> </u>	1				·	+	+	

10/28/20032:35 PM

APPENDIX D

SANITARY SEWER CALCULATION SHEET

Manning's n=0.013

LOCATION			RE	ESIDENTIA	AREA AN	POPULATI	ON			CO	MM	IN	STIT	PA	ARK	C+I+I		INFILTRATIO	N					PIPE			
STREET	FROM	ТО	AREA	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	EL.
1	M.H.	M.H.			1	AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT
			(ha)			(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s
SANITARY TRUNK																					-						
			1.27		127	1.27	127	1			0.00		0.00	0.62	0.62		1.89	1.89		1	1						1
	110A	111A	0.43		37	1.70	164	3.5	1.88		0.00	1	0.00	0.02	0.62	0.07	0.43	2.32	0.66	2.61	38.5	250	0.25	29.73	0.09	0.61	0.37
	111A	112A	0.13		12	1.83	176	3.5	2.02		0.00		0.00		0.62	0.07	0.13	2.45	0.70	2.78	10.5	250	0.25	29.73	0.09	0.61	0.38
	112A	114A	0.20		17	2.03	193	3.5	2.20		0.00		0.00		0.62	0.07	0.20	2.65	0.76	3.03	53.5	250	0.25	29.73	0.10	0.61	0.39
	114A	117A	0.87		74	2.90	267	3.5	3.01		0.00		0.00		0.62	0.07	0.87	3.52	1.01	4.08	60.5	250	0.25	29.73	0.14	0.61	0.42
	117A	118A	0.90		77	3.80	344	3.4	3.84		0.00		0.00		0.62	0.07	0.90	4.42	1.26	5.17	34.0	250	0.25	29.73	0.17	0.61	0.45
	118A	119A	0.04		4	3.84	348	3.4	3.88		0.00		0.00		0.62	0.07	0.04	4.46	1.28	5.22	27.0	250	0.25	29.73	0.18	0.61	0.45
1	119A	120A	0.74		63 20	4.58 4.80	411 431	3.4	4.55		0.00		0.00		0.62	0.07	0.74	5.20 5.42	1.49	6.10	90.5	250	0.25	29.73	0.21	0.61	0.47
	120A	121A	0.22	-	50	4.80 5.30	431	3.4	5.28		0.00		0.00		0.62	0.07	0.22	5.42	1.69	7.04	59.5	250	0.25	29.73	0.24	0.61	0.50
<u> </u>	120A 121A	130A	0.30		21	5.51	502	3.4	5.50		0.00		0.00		0.62	0.07	0.30	6.13	1.09	7.32	59.5	250	0.25	29.73	0.24	0.61	0.50
	130A	131A	2.29		188	7.80	690	3.3	7.42		0.00		0.00		0.62	0.07	2.29	8.42	2.41	9.90	57.0	250	0.25	29.73	0.33	0.61	0.54
	131A	132A				7.80	690	3.3	7.42		0.00	1	0.00		0.62	0.07	0.00	8.42	2.41	9.90	15.0	250	0.25	29.73	0.33	0.61	0.54
	132A	133A				7.80	690	3.3	7.42		0.00		0.00		0.62	0.07	0.00	8.42	2.41	9.90	12.5	250	0.25	29.73	0.33	0.61	0.54
To Phase 2 Sanitary Trunk By Others						7.80	690								0.62			8.42		9.90							
																					<u> </u>						<u> </u>
NOTE: UNITS FRONTING FUTURE CHA	MILLS I	JRIVE EXTENS		INNECT	IU SANII	AKY IKUN	NK BY OT	HERS. DI T	KAINAGE.	AREAS C	UNSIDE		SANITAR	TIKUNK	SIZING.						+						+
								<u> </u>																			
	+	1	+	-	+			<u> </u>													+						+
			+																		+						
			+		1			1		1										<u> </u>	1		1		1		1
		1			1										1		1				1	1				1	
					1							1									1						
				1	1					1		1			1		1					1				1	1
l																											<u> </u>
								L												ļ							
l			-		1										-						-	-				-	<u> </u>
l			DESIGN P					I					Designe	d.				PROJEC	Г. Т.	L	1			L			<u> </u>
Park Flow =	9300	L/ha/da	0.10764		EKS	Harmon's	Correction	1 Factor	0.800				Designed	u.	R.Y.			FRUJEC	Ι.			Cons	ervancy P	hase 1			
Average Daily Flow =	280	l/p/day	0			Industrial				raph																	
Comm/Inst Flow =	28000	L/ha/da	0.3241	l/s/Ha		Extraneou		F		L/s/ha			Checked	:				LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509			Minimum			0.600						V.C.								City of	Ottawa			
Max Res. Peak Factor =	4.00					Manning's		(Conc)	0.013	(Pvc)	0.013												-				
Commercial/Inst./Park Peak Factor =	1.00					Townhous	se coeff=	. ,		ppHa			Dwg. Re					File Ref:		16-891		Date:				Sheet No	o. 1
Institutional =	0.32	l/s/Ha				Single hou	use coeff=			ррНа			Sanitary [Drainage F	Plan, Fig. N	lo.	4			10-091			17 Jul 2018	3		of	f 1

APPENDIX E

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years Manning 0.013

nning	0.013		Arterial Ro	ads Keturn	Frequency	= 10 years				48-	A (Ha)								1			014/											
	LOC	ATION					r			ARE	A (Ha)	10.5			r	100	VEAD		Tim C	Inter-1		.OW	Inter-16	Deel El	DIA	DIA	TVDE	CLODE	SEWER		VELOCITY	TIME OF	D 4 T
		1	4054	2 Y	EAR		4054	5 Y	EAR		4054	10 Y			4054	100	YEAR		Time of	Intensity	Intensity	Intensity	,	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RAT
		T N 1	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	Conc.	2 Year	5 Year	10 Year	100 Year	0.00	(B	7 1 10		(0.()	()	(11)		FLORIZ	0/0
ation	From Node	lo Node	(Ha)		2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	FLOW (min.)	Q/Q
																		-															
M TRU	NK		0.00	0.40	0.00	0.00	0.40	0.05	0.00	0.00			0.00	0.00			0.00	0.00	44.00														
			0.62	0.40	0.69	0.69	0.12	0.85	0.28	0.28			0.00	0.00			0.00	0.00	14.33														-
	400	404					0.13	0.85											44.00	00.00	05 70	400.40	440.70	0.05	750	750	0010	0.44	00.0	447	0.04	0.04	
	120 121	121	1.26	0.80	2.80	4.33			0.00	0.59			0.00	0.00			0.00	0.00	14.33 14.97	63.39 61.84	85.78 83.66	100.46 97.97	146.72 143.06	325	750	750 750	CONC	0.14	36.0 13.0	417 417	0.94	0.64	0
	121	122 123TEE		0.67	0.17	4.50			0.00	0.59			0.00	0.00			0.00	0.00	14.97	61.84	83.66	97.97	143.06	328 351	750 825	825	CONC CONC	0.14	60.5	556	1.04	0.23	0
	122	1231EE	0.23	0.67	0.43	4.93			0.00	0.59			0.00	0.00			0.00	0.00	15.20	61.30	82.92	97.10	141.79	351	825	825	CONC	0.15	60.5	556	1.04	0.97	
	123TEE	124TEE	0.00	0.00	1.62	6.55			0.00	0.59			0.00	0.00			0.00	0.00	16.17	59.14	79.96	93.62	136.69	434	825	825	CONC	0.15	60.5	556	1.04	0.97	(
	IZJIEE	1241EE	0.87	0.07	0.00	6.55			0.00	0.59			0.00	0.00			0.00	0.00	12.51	59.14	79.90	93.02	130.09	434	820	820	CONC	0.15	60.5	000	1.04	0.97	,
	124TEE	125TEE	0.00	0.67	1.64	8.19			0.00	0.59			0.00	0.00			0.00	0.00	17.14	57.14	77.23	90.41	131.98	513	900	900	CONC	0.15	28.5	701	1.10	0.43	
	124 TEE 125TEE		0.08	0.67	0.07	8.26			0.00	0.59			0.00	0.00			0.00	0.00	17.14	56.30		89.06		513	900	900	CONC	0.15	28.5	701	1.10	0.43	
	IZUIEE	120	0.04	0.80	1.62	9.88			0.00	0.59			0.00	0.00			0.00	0.00	14.91	30.30	70.00	09.00	130.00	510	900	900	CONC	0.15	23.5	701	1.10	0.30	-
	126	127TEE	0.73	0.80	1.02	11.63			0.00	0.59			0.00	0.00			0.00	0.00	17.92	55.63	75.16	87.98	128.41	692	1050	1050	CONC	0.10	35.5	864	1.00	0.59	
	120 127TEE	127 TEE 128TEE	0.94	0.67	0.02	11.65			0.00	0.59			0.00	0.00			0.00	0.00	17.92	54.54	73.68	86.24	125.86	679	1050	1050	CONC	0.10	10.5	864	1.00	0.59	
	127 TEE 128TEE	120TEE		0.67	0.02	11.05			0.00	0.59			0.00	0.00			0.00	0.00	18.69	54.34	73.26	85.74	125.00	680	1050	1050	CONC	0.10	27.0	864	1.00	0.18	
	120TEE	129166	0.05	0.67	0.09	11.84			0.00	0.59			0.00	0.00			0.00	0.00	19.14	53.45	72.19	84.48	123.13	675	1050	1050	CONC	0.10	27.0	864	1.00	0.43	
	IZƏILL	131	0.00	0.07	0.09	11.84			0.00	0.59			0.00	0.00			0.00	0.00	15.14	33.43	72.19	04.40	123.20	075	1030	1050	CONC	0.10	29.0	004	1.00	0.40	+
	131	OGS	2.21	0.67	4.12	15.96			0.00	0.59			0.00	0.00			0.00	0.00	19.63	52.64	71.08	83.18	121.37	882	1200	1200	CONC	0.10	21.5	1233	1.09	0.33	1
OGS	131	000	2.21	0.07	7.12	15.96			0.00	0.59			0.00	0.00			0.00	0.00	19.96	52.04	71.00	00.10	121.07	882	1200	1200	00110	0.10	21.5	1200	1.03	0.55	╈
/00					1	10.00				0.00				0.00				0.00	13.30					002									╈
					1																												+
					1																												╈
																																	+
																																	1
					1																												1
					1																												+
																																	+
																																	1
																																	Ť
																																	t
																																	t
																																	T
																																	Ť
																																	Ť
																																	T
																																	Ť
					1	1								1			1	1			1		1					1	1	1	1		Ť
					1	1								1			1	1			1		1					1	1	1	1		t
					1	1															1									1	1		T
					1	1															1									1	1		T
																																	T
																																	Ι
																																	I
																												L					Γ
itions:	:																							Designed:			PROJECT	`:					
2.78 A	IR, where									Notes:															R.B.					Conserv	ancy Phase 1		
Peak F	low in Litre	es per secon	d (L/s)							1) Ottawa	Rainfall-Inte	nsity Curve												Checked:			LOCATIO	DN:					
	in hectares									2) Min. Vel	ocity = 0.80	m/s													V.C.					City	of Ottawa		
	Intensity (I																							Fig. Refere	ence:		File Ref:			Date:		Sheet No.	
lunoff	Coefficien	t																							5			16-891		17 Ju	I 2018	SHEET 1	1 C

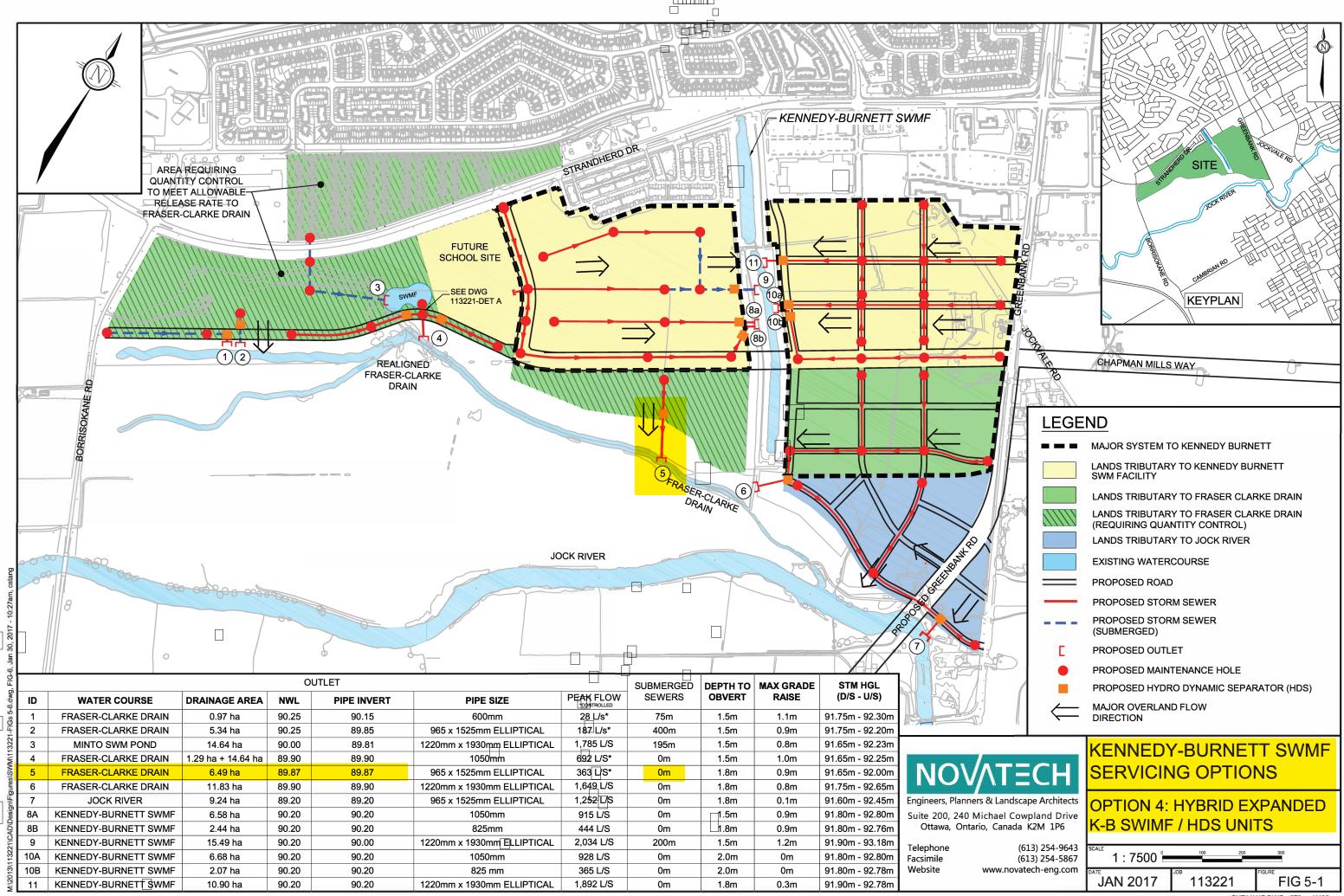
Kennedy-Burnett Stormwater Management Facility Project File and Functional Design Report

Prepared for City of Ottawa

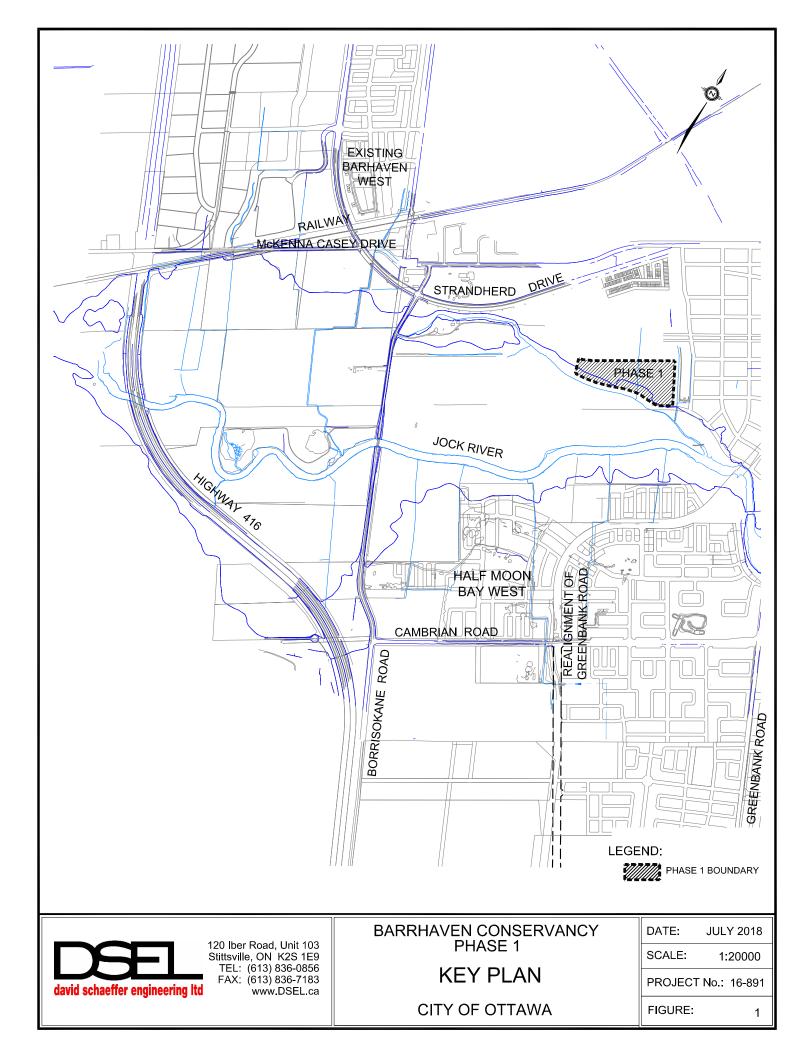
February 17, 2017

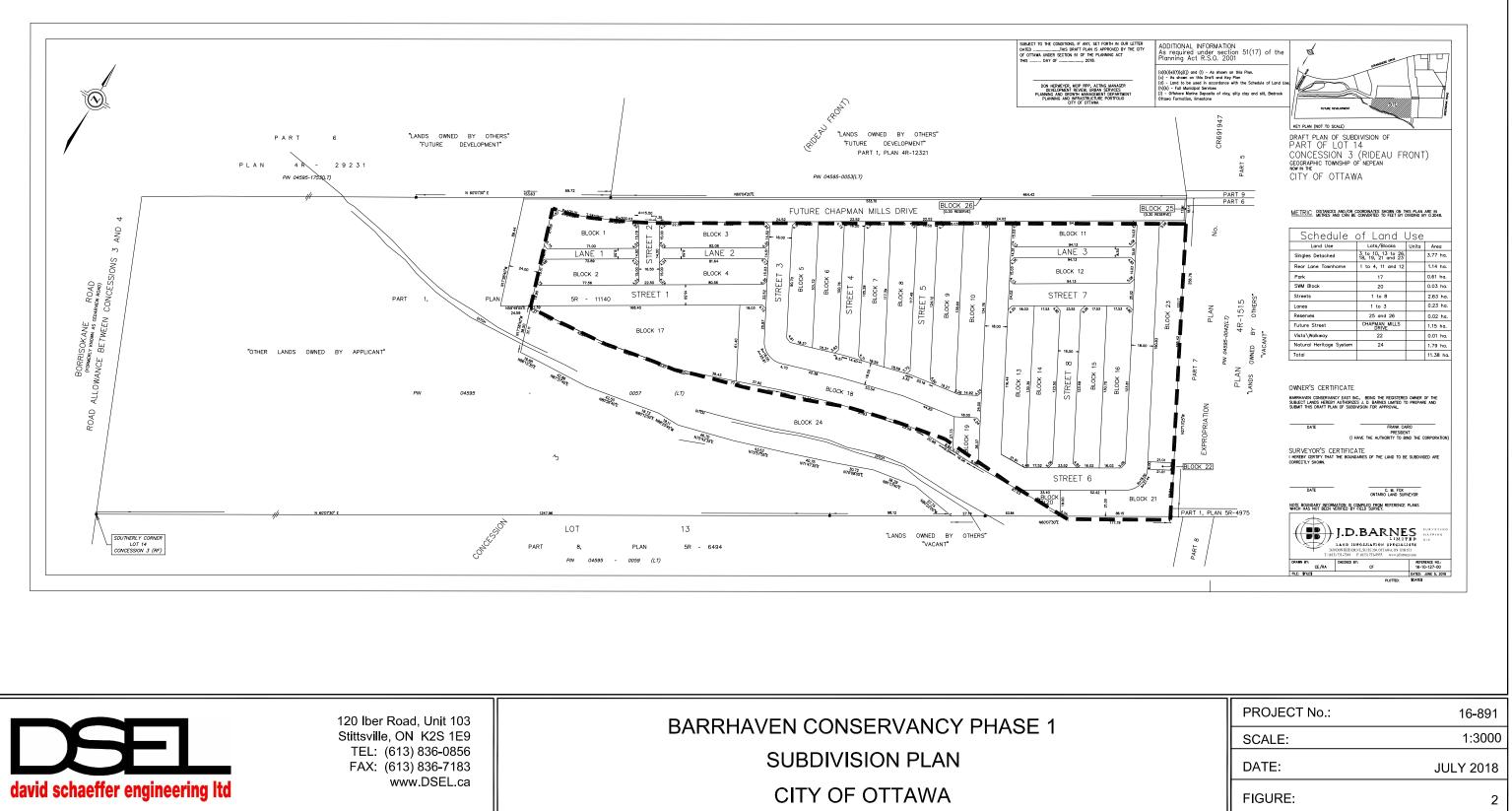
CH2M Hill Canada Ltd. 1101 Prince of Wales Drive Suite 330 Ottawa, ON K2C 3W7

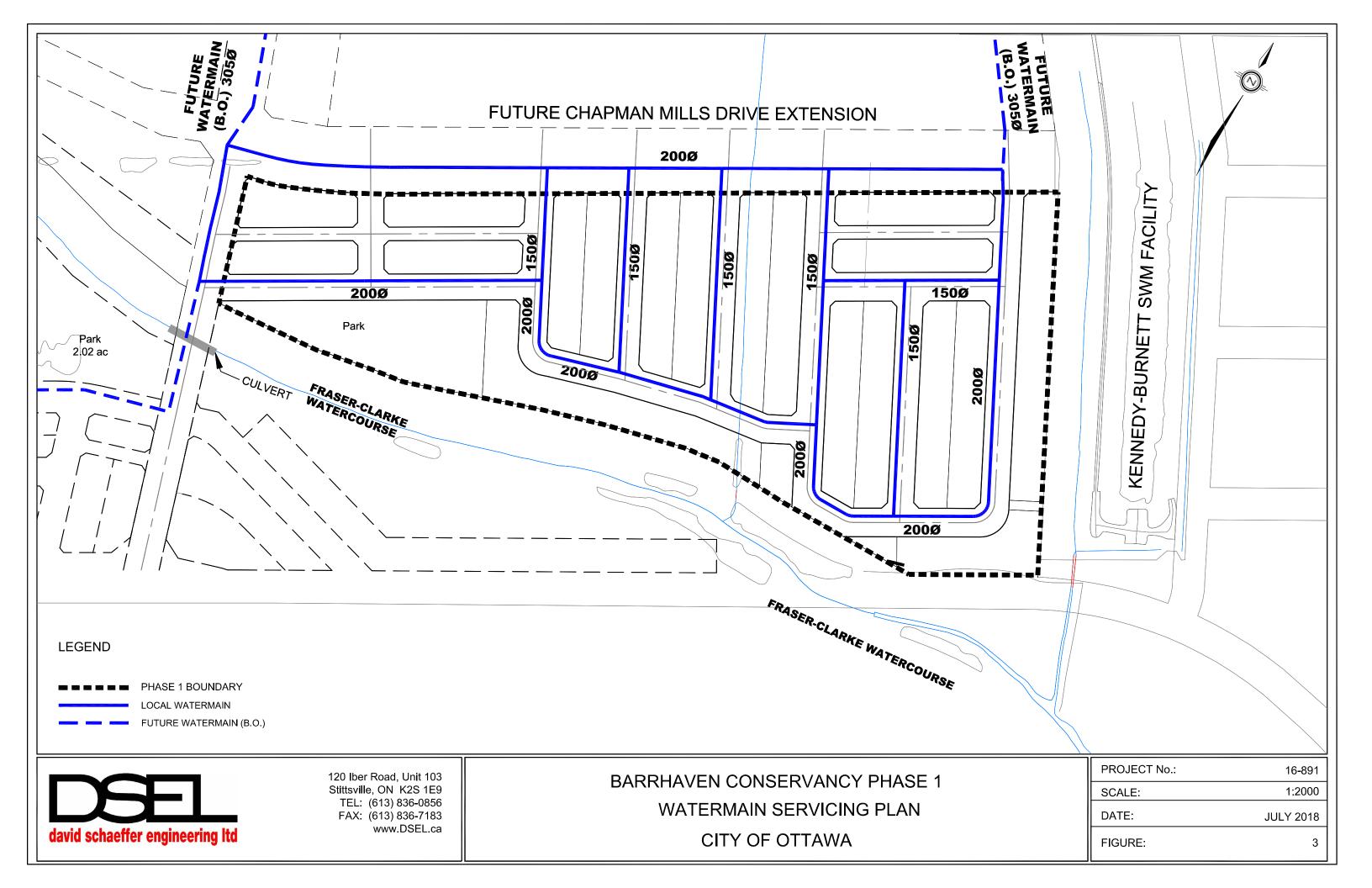
COPYRIGHT 2016 BY CH2M HILL • COMPANY CONFIDENTIAL

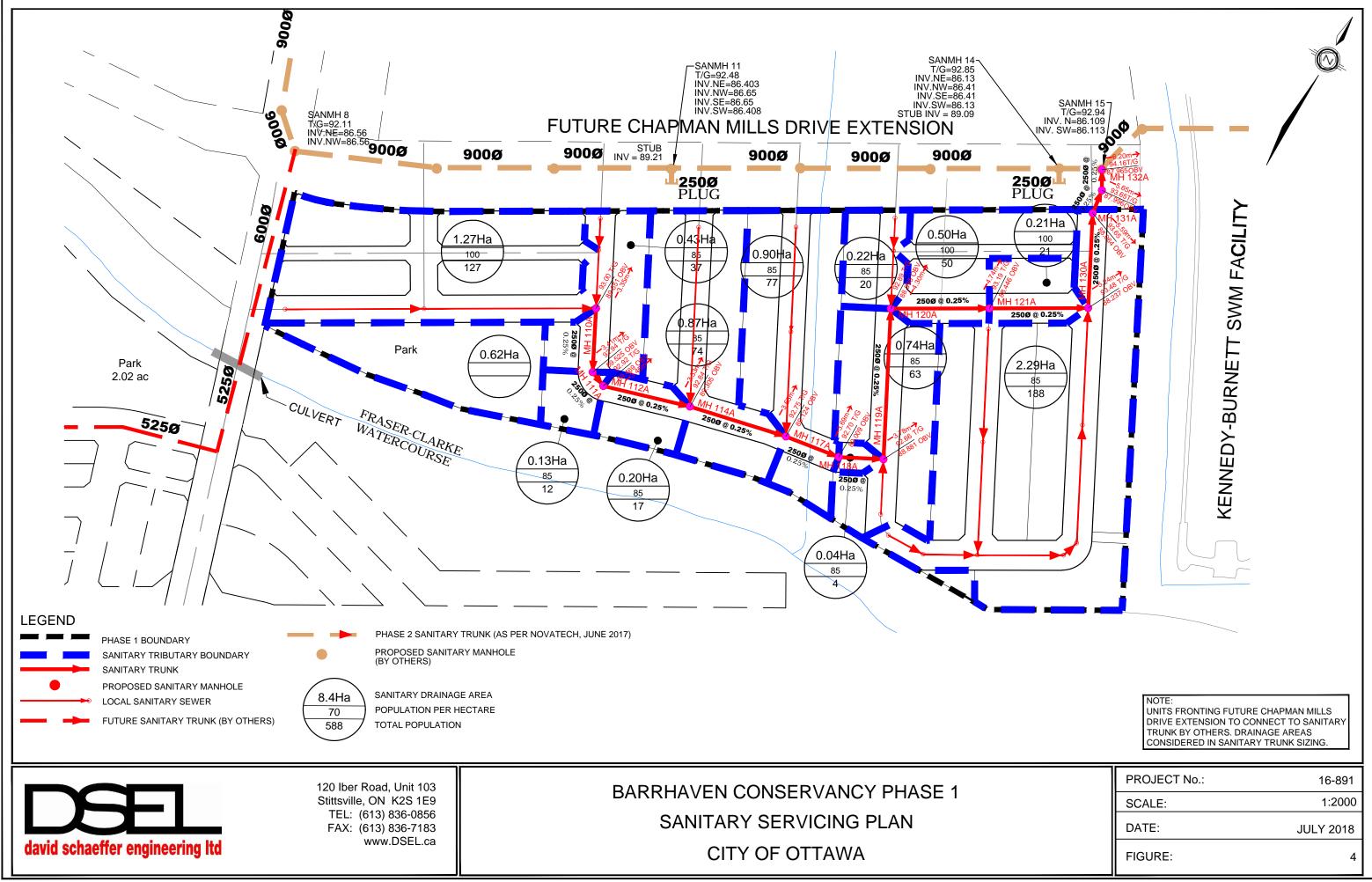

- Construction of a new SWM facility adjacent to the K-B pond;
- Construction of a new SWM facility east of Greenbank Road;
- Expansion of the existing K-B pond;
- Hydrodynamic separators for new development.

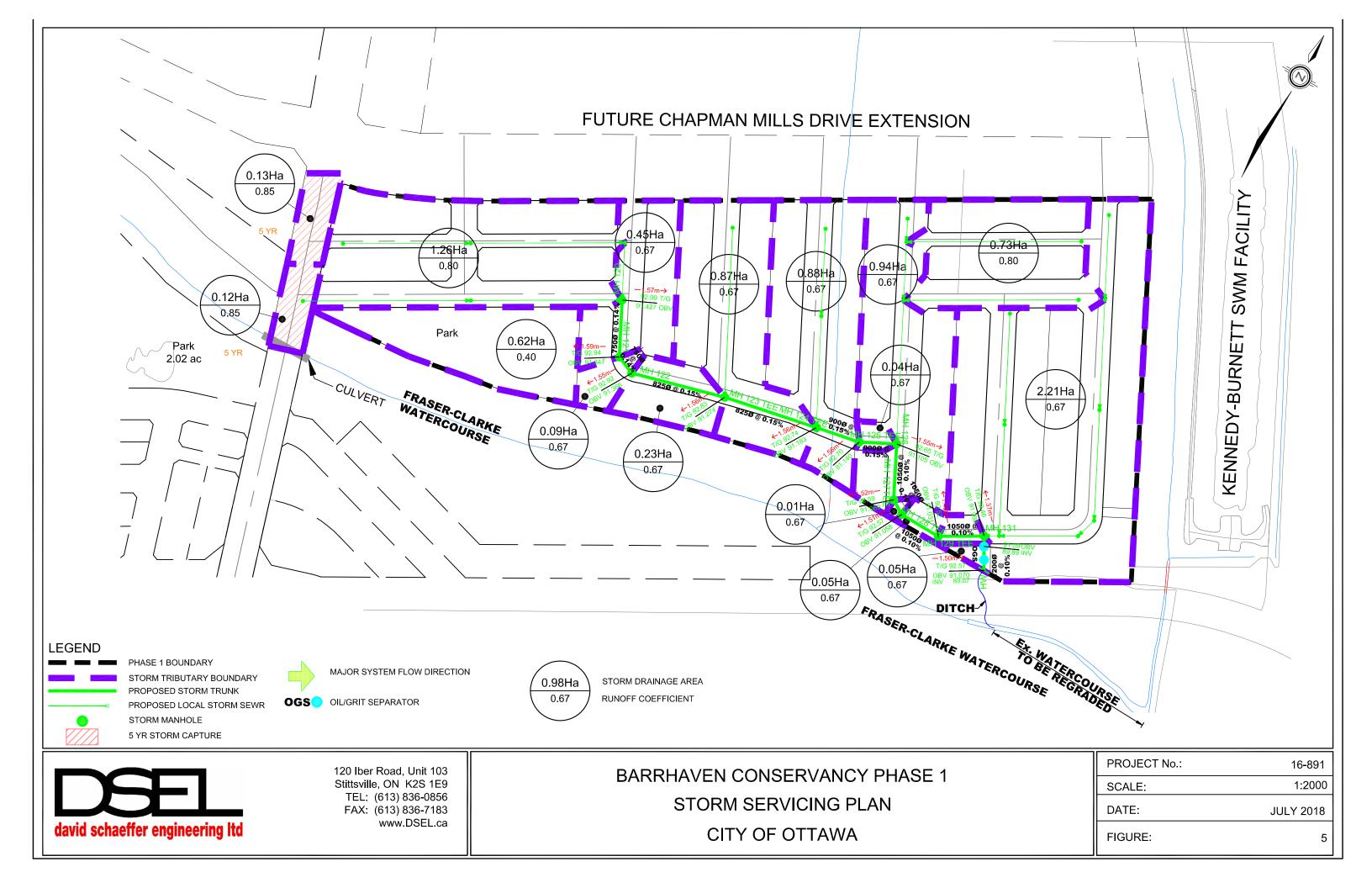
The report recommended the use of hydrodynamic separators (HDS) to provide stormwater quality treatment for all new development south of Strandherd Drive, as this approach provides flexibility for the various developers by providing independent storm outlets, and does not require expansion of the existing Kennedy-Burnett (K-B) SWM Facility to accommodate new development.


Feedback from the City's technical advisory committee included that regardless of whether new developments are directed to the pond, the existing Kennedy-Burnett SWMF requires expansion to improve the existing catchment area level of treatment. In addition, MOECC and City staff expressed concerns relating to HDS performance when servicing large areas while operating under continuously submerged conditions. Based on feedback received, Novatech's final servicing evaluation included the following four servicing options:


- Option 1: Trunk Storm Sewers to Expanded K-B SWM Facility;
- Option 2: Storm Sewer Outfalls to Fraser-Clarke Drain/Jock River;
- Option 3: Adjacent Lands to K-B Pond/New Pond for Fraser Fields and Clarke Residential Lands/ Hydrodynamic Separators for Remaining Areas;
- Option 4: Same as Option 3, Plus Hydrodynamic Separators at Outfalls to K-B Pond.


A technical evaluation of the storm sewer options was completed in collaboration with City stakeholders and land owners/developers, detailed in Appendix A. The primary storm servicing constraint in the servicing area was defined as the relatively low elevation of the site combined with geotechnical grade raise restrictions. Key factors influencing the grade raise requirements are the 100-year hydraulic grade line (for areas with foundation drains) and the required cover over the proposed storm sewers. Other factors weighing into the analysis include the extent of submerged sewers, land requirements for stormwater infrastructure, costs (capital, maintenance, life cycle), and flexibility for development. Based on the evaluation, Option 4 was the recommended alternative. Option 4 provides good flexibility for future development by providing a storm servicing solution that is largely independent of the planned expansion of the Kennedy-Burnett Pond. Details of the technical evaluation, and additional advantages and disadvantages of the recommended option are provided in Appendix A. Figure 5-1 form the Novatech report illustrates the proposed servicing option drainage plan.




DRAWINGS / FIGURES

