() Stantec

Richmond Subdivision Transportation Brief Update

May 11, 2018

Prepared for:
Mattamy Homes

Prepared by:
Stantec Consulting Ltd.

Table of Contents

1.0 INTRODUCTION 1
1.1 STUDY PURPOSE 1
1.2 PROPOSED DEVELOPMENT 1
1.3 SCOPE OF THE ASSESSMENT 3
2.0 EXISTING TRANSPORTATION ENVIRONMENT 4
2.1 ROADS AND TRAFFIC CONTROL 4
2.2 TRANSIT 5
2.3 WALKING AND CYCLING 6
2.4 TRAFFIC VOLUMES 6
3.0 FUTURE TRANSPORTATION ENVIRONMENT 8
3.1 FUTURE NETWORK UPGRADES 8
3.1.1 Road Network Improvements 8
3.1.2 Future Background Developments 9
3.2 2029 FUTURE BACKGROUND CONDITIONS 10
3.3 SITE TRAFFIC GENERATION 12
3.3.1 Land Use and Trip Generation Rates 12
3.3.2 Vehicle Site Trips 13
3.3.3 Traffic Distribution and Assignment 13
$3.4 \quad 2029$ TOTAL FUTURE CONDITIONS 15
3.52034 ULTIMATE CONDITIONS 18
4.0 TRANSPORTATION ASSESSMENT 20
4.1 2018 EXISTING CONDITIONS. 20
4.1.1 Intersection Operational Analysis 20
4.2 2029 FUTURE BACKGROUND CONDITIONS 20
4.2.1 Intersection Operational Analysis 21
$4.3 \quad 2029$ TOTAL FUTURE CONDITIONS 22
4.3.1 Intersection Operational Analysis 22
$4.4 \quad 2034$ ULTIMATE CONDITIONS 25
4.4.1 Intersection Operational Analysis 25
5.0 DRAFT PLAN REVIEW 27
6.0 TRANSPORTATION DEMAND MANAGEMENT 30
7.0 SUMMARY AND CONCLUSIONS 35
LIST OF TABLES
Table 1 Scheduled Upgrades 9
Table 2 Background Developments 9
Table 3 TRANS Trip Generation Rates 13
Table 4 Vehicle Site Trips 13

Richmond Subdivision Transportation Brief Update

Table 52018 Existing Intersection Operations 20
Table 62029 Future Background Intersection Operations 21
Table 72029 Total Future Intersection Operations (prior to Mitigation) 23
Table 82029 Total Future Intersection Operations (Mitigated) 23
Table 92034 Ultimate Intersection Operations. 25
LIST OF FIGURES
Figure 1 Location of Proposed Development 2
Figure 2 Site Plan for the Proposed Development 3
Figure 3 Existing Intersection Control and Lane Configuration 5
Figure 4 Existing Transit Service 6
Figure 52018 Existing Traffic Volumes - AM Peak Hour 7
Figure 62018 Existing Traffic Volumes - PM Peak Hour 8
Figure 72029 Future Background Traffic Volumes - AM Peak Hour 11
Figure 82029 Future Background Traffic Volumes - PM Peak Hour 12
Figure 9 Site Traffic - AM Peak Hour 14
Figure 10 Site Traffic - PM Peak Hour 15
Figure 112029 Total Future Traffic Volumes - AM Peak Hour 16
Figure 122029 Total Future Traffic Volumes - PM Peak Hour 17
Figure 132034 Ultimate Traffic Volumes - AM Peak Hour 18
Figure 142034 Ultimate Traffic Volumes - PM Peak Hour 19
Figure 152029 Assumed Intersection Control and Lane Geometry 24
Figure 162029 Recommended Intersection Control and Lane Geometry Improvements 24
Figure 172034 Intersection Control and Lane Geometry 26
Figure 18 Proposed Transit Route Modification 27
Figure 19 Proposed Transit Routes and Stops, Sidewalks, and Pathways 28
Figure 20 Proposed Meynell Road Cross Section 29
LIST OF APPENDICES
APPENDIX A TRAFFIC DATA A. 1
APPENDIX B BACKGROUND DEVELOPMENTS B. 1
APPENDIX C INTERSECTION PERFORMANCE WORKSHEETS C. 1

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Introduction
May 11, 2018

1.0 INTRODUCTION

1.1 STUDY PURPOSE

Stantec Consulting Ltd. was retained by Mattamy Homes provide an assessment of the transportation needs and impacts related to the future build-out of a residential development known as the "Richmond Subdivision" at 6420 Ottawa Street and 6431 Ottawa Street. These properties are in the south-western portion of the Village of Richmond, within the City of Ottawa.

This transportation brief is an update to the original transportation brief from March 2012. Since the original transportation brief was published, the proposed number of residential units has been reduced in size, the build-out horizon has been extended, and background developments have changed.

1.2 PROPOSED DEVELOPMENT

The proposed development is anticipated to consist of 177 townhome-style dwellings and 848 single family dwellings. The final number of residential units is subject to change as the plan is refined but these changes are not expected to be substantial. Full built-out is anticipated to occur by 2029.

The development site will be accessed at four locations as follows:

- Perth Street at Meynell Road vis-à-vis the extension of a new North-South Collector (i.e. Meynell Road) through the Richmond Village Development Corporation's development to the north;
- The westerly extension of Royal York Street, from Fortune Street to the subject development;
- Ottawa Street at Meynell Road; and,
- Ottawa Street at a new access to the southern portion of the property (i.e. south of Ottawa Street).

Figure 1 illustrates the location of the proposed development.

Figure 2 depicts the site plan for the proposed development.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Introduction
May 11, 2018
Figure 1 Location of Proposed Development

Background image source: geoOttawa, accessed January 2018

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Introduction
May 11, 2018
Figure 2 Site Plan for the Proposed Development

1.3 SCOPE OF THE ASSESSMENT

This study is an update to a previous report from 2012 and therefore follows the City of Ottawa's 2006 Traffic Impact Assessment (TIA) Guidelines. The scope of the analysis was confirmed with City staff and is described below.

- Study area intersections include:
- Perth Street at Queen Charlotte Street / Rochelle Drive;
- Ottawa Street at Queen Charlotte Street;
- Perth Street at Meynell Road (new N-S collector); and,
- Ottawa Street at Meynell Road.
- Study horizons include:
- 2018 (existing conditions);
- 2029 (site build-out); and,
- 2034 (site build-out + 5 years).
- Analysis time periods include the weekday AM and PM peak hours.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment
May 11, 2018

The methodology used in this TIS is as follows:

- The net increase in site traffic from the proposed development will be estimated.
- Background traffic growth will be explicitly accounted for based on known developments in the study area.
- Future background traffic volumes will be combined with the net increase in site traffic volumes to determine total future traffic volumes.
- A 2% per annum growth rate will be used for the through volumes along Perth Street to account for growth outside of the immediate study area. This rate of growth is consistent with previously approved traffic studies in the area.
- Intersection analyses will be performed to determine the operating characteristics of the study area intersections under each study horizon.
- Mitigation measures will be examined where operational deficiencies are identified.

2.0 EXISTING TRANSPORTATION ENVIRONMENT

2.1 ROADS AND TRAFFIC CONTROL

The roadways under consideration in the study area are described below. The road classifications were referenced from Map 8 of the City of Ottawa's 2013 Transportation Master Plan.

Perth Street	Approximately 225 m west of Queen Charlotte Street, Perth Street is a two-lane arterial road with a rural cross-section and paved shoulders are provided along both sides of the road. East of Queen Charlotte Street, Perth Street is a four-lane undivided arterial road with an urban cross-section and sidewalks along both sides of the road. The posted speed limit along Perth street transitions from $80 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ approximately 300 m west of Queen Charlotte Street.
Queen Charlotte StreetQueen Charlotte Street is a two-lane local road with a semi-urban cross-section (i.e. the west side of the road is urbanized). There are no pedestrian or cycling facilities along Queen Charlotte Street. The intersection with Perth Street is currently stop-controlled along the minor approach (i.e. along Queen Charlotte Street). The default speed limit is $50 \mathrm{~km} / \mathrm{h}$.	
Rochelle Drive	Rochelle Drive represents the north leg of the intersection of Perth Street / Queen Charlotte
Street / Rochelle Drive. Rochelle Drive is a two-lane local road with an urban cross-section.	
A sidewalk is provided along the eastern side of the road. The intersection with Perth Street	
is stop-controlled along the minor approach (i.e. along Rochelle Drive). The default speed	
limit is 50 km/h.	

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment
May 11, 2018

Ottawa Street West Ottawa Street West is a two-lane collector road with a rural cross-section. There are no pedestrian facilities, cycling facilities, or paved shoulders along Ottawa Street West. The posted speed limit is $50 \mathrm{~km} / \mathrm{h}$ within the residential area and $70 \mathrm{~km} / \mathrm{h}$ elsewhere. The intersection with Queen Charlotte Street is currently all-way stop-controlled.

Figure 3 illustrates the existing intersection control and lane configuration for the study area intersections.

Figure 3 Existing Intersection Control and Lane Configuration

> Meynell Road

Rochelle Drive / Queen Charlotte Street

2.2 TRANSIT

Transit service is provided along Perth Street via OC Transpo bus routes 283 and 301. Route 283 is a peak hour bus route that runs between Munster and Mackenzie King Station. Route 301 is a Monday only bus route that runs between the Village of Richmond and Carlingwood Shopping Centre.

Figure 4 illustrates the existing study area transit routes.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment
May 11, 2018
Figure 4 Existing Transit Service

Source: OC Transpo System Map, accessed January 2018

2.3 WALKING AND CYCLING

There are sidewalks along Perth Street, east of Queen Charlotte Street, as well as along Rochelle Street. The Village of Richmond Community Design Plan, Schedule C, indicates that Perth Street has shared use lanes, indicating that cyclists travel on the road in mixed use traffic. This is consistent with the City of Ottawa's Cycling Plan which outlines Perth Street as a suggested cycling route with the ultimate cycling network showing Perth Street as a spine route.

2.4 TRAFFIC VOLUMES

Traffic counts at the Perth Street at Queen Charlotte / Rochelle Drive intersection were obtained from the Richmond Oaks Health Centre Transportation Brief (D.J. Halpenny \& Associates Ltd., 2016). The intersection counts were collected prior to 2018, and therefore, the count data was adjusted to the reflect the current existing condition. A 2% per annum growth rate was used to increase the through volumes along Perth Street to 2018 volumes which is consistent with previously prepared and approved traffic studies in the area.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Existing Transportation Environment
May 11, 2018

Stantec conducted traffic counts at the Ottawa Street at Queen Charlotte Street intersection on December 14, 2017.

Figure 5 and Figure 6 illustrate the 2018 existing AM and PM peak hour traffic volumes at the study area intersections.
Appendix A contains the traffic data and is provided for reference.
Figure 52018 Existing Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 62018 Existing Traffic Volumes - PM Peak Hour

3.0 FUTURE TRANSPORTATION ENVIRONMENT

3.1 FUTURE NETWORK UPGRADES

3.1.1 Road Network Improvements

Several significant transportation improvements have been noted in the City of Ottawa's 2013 Transportation Master Plan and the Village of Richmond's 2010 Transportation Master Plan near the proposed site and are outlined in Table 1 below.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018

Table 1 Scheduled Upgrades

Project	Description	Ottawa TMP Phase	Richmond TMP Phase
New North-South Collector	Will ultimately connect Ottawa Street, Perth Street, and the Richmond Village By-Pass.	N/A	$\begin{aligned} & \text { Stage } 1 \\ & (2011-2020) \end{aligned}$
Perth Street Roundabout	Proposed at the intersection between Perth Street at the New North-South collector.	N/A	Stage 1 $(2011-2020)$
Richmond Village By-Pass	New two-lane road between Huntley Road and Eagleson Road.	Network Concept (i.e. beyond 2031)	Stage 2 $(2021-2031)$
Perth Street	Widen to four lanes between Shea Road and Eagleson Road and between Queen Charlotte Street and the village boundary.	Network Concept (i.e. beyond 2031)	(no timeline provided)

- The New North-South Collector road (Meynell Road) will serve as the primary access to the site.
- The roundabout at the Perth Street at New North-South collector (Meynell Road) intersection is identified within Stage 1 of the Village of Richmond's TMP and is DC eligible. The TMP outlines that once this intersection meets traffic signal warrants, a roundabout should be implemented.
- The Richmond Village By-Pass will not directly impact the subject development and is highlighted for information purposes.
- The widening of Perth Street is not scheduled to occur within the timelines of the subject study; however, adequate right-of-way width will be required to protect for the future widening.

3.1.2 Future Background Developments

There are several developments scheduled to occur near the subject site, as outlined in Table 2 below. These background developments were explicitly accounted for and added to the roadway network as background traffic volumes.

Table 2 Background Developments

Development	Location	Size	Assumed Build-Out
Richmond Village Development Corporation Phase 1	Bordered by Perth Street to the north, undeveloped/vacant land to the west and south, and the Jock River Tributary to the east.	214 residential units	2021
Richmond Oaks Health Centre	Northeast quadrant of the Perth Street at Rochelle Drive intersection.	24,000 ft2 GFA retail 31 units of senior residence	2022
Samara Square	Located north of Chestnut Green Private, east of Talos Circle. The site is bordered by outdoor recreational facilities to the east and vacant land to the north.	147 apartment units 124 senior apartments $4,920 \mathrm{ft} 2$ GFA retail	2023
Richmond Village Development Corporation Phase 2	Bounded by Perth Street to the north, Richmond Village Development Corporation Phase 1 to the east, and vacant land to the south and west	205 residential units	2024
Richmond Village Development Corporation Phase 3	Bounded by Perth Street to the south, existing development to the east, and vacant land to the west and north.	308 residential units	2028

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018

3.22029 FUTURE BACKGROUND CONDITIONS

Future background conditions are assessed to differentiate between the transportation improvements that may be required to address background traffic growth and those that may be required to accommodate traffic generated by the subject development. Any improvements identified to address future background conditions are not the responsibility of the developer.

The Richmond Oaks Health Centre, Samara Square Transportation Impact Study, and Richmond Village Development Corporation Phases 1, 2, and 3 are anticipated to be fully built by the 2029 ultimate horizon. Site traffic for these proposed developments was obtained from the respective transportation impact studies and added to the roadway network as background traffic.

In addition to these background developments, a nominal 2\% annual growth rate was applied to the through volumes along Perth Street. This rate of growth is consistent with industry standards and those that were applied in previously prepared / approved studies (i.e. Richmond Oaks Health Centre Transportation Brief and Richmond Village Phase 1 Transportation Impact Study).

Figure 7 and Figure 8 illustrate the 2029 future background traffic volumes at the study area intersections during the AM and PM peak hours, respectively. Appendix B contains the site-generated traffic volumes for the Richmond Oaks Health Centre, Samara Square, and Richmond Village Development Corporation's Phases 1, 2, and 3.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 72029 Future Background Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 82029 Future Background Traffic Volumes - PM Peak Hour

3.3 SITE TRAFFIC GENERATION

3.3.1 Land Use and Trip Generation Rates

The TRANS Trip Generation Study, 2009, was used to estimate traffic generated by the subject site. Land use codes 210 - single detached dwellings and 224 - semi-detached dwellings, townhouses, rowhouses were thought to be most representative of the proposed land uses.

Table 3 lists the trip generation rates obtained from the TRANS Trip Generation Study.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018

Table 3 TRANS Trip Generation Rates

ITE Land Use			Morning Peak Hour			Afternoon Peak Hour		
			In	Out	Total	In	Out	Total
210 Single detached dwellings	Units	848	29\%	71\%	0.62	62\%	39\%	0.92
224 Semi-detached dwellings, townhouses, rowhouses	Units	177	37\%	64\%	0.62	53\%	47\%	0.67

3.3.2 Vehicle Site Trips

Table 4 lists the vehicle trips generated by the site. The site was split north and south of Ottawa Street to facilitate trip assignment to the road network.

Table 4 Vehicle Site Trips

| Location | In | Out | Total | In | Out | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 118 | 259 | 375 | 307 | 209 | 512 |
| Mattamy South | 76 | 185 | 260 | 240 | 151 | 386 |
| Total | $\mathbf{1 9 3}$ | $\mathbf{4 4 4}$ | $\mathbf{6 3 6}$ | $\mathbf{5 4 7}$ | $\mathbf{3 6 0}$ | $\mathbf{8 9 9}$ |

3.3.3 Traffic Distribution and Assignment

The distribution of traffic to / from the study area was determined through examination of the current traffic distribution at the Perth Street at Queen Charlotte Street / Rochelle Drive intersection. The estimated distribution is as follows:

- Perth Street East - 80\%
- Perth Street West - 20\%

Figure 9 and Figure 10 illustrate the assignment of site traffic volumes to the road network for the AM and PM peak hours respectively. The abbreviated term "Neg." indicates that a negligible number of site trips are expected to utilize the turning movement.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 9 Site Traffic - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 10 Site Traffic - PM Peak Hour

3.42029 TOTAL FUTURE CONDITIONS

Total future conditions are examined to determine improvements that may be required as a direct result of the development. It is anticipated that by 2029 the residential development will be fully built and occupied. The 2029 total future traffic volumes were derived by adding site generated trips to future background volumes anticipated for 2029.

Figure 11 and Figure 12 illustrate the 2029 total future traffic volumes at the study area intersections during the AM and PM peak hours, respectively. Section 4.3 contains an assessment of 2029 total future traffic conditions.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 112029 Total Future Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018
Figure 122029 Total Future Traffic Volumes - PM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018

3.52034 ULTIMATE CONDITIONS

Ultimate conditions for the 2034 horizon were examined to determine if other improvements may be required due to additional growth in background traffic volumes 5 years beyond the expected build-out of the subject site.

A nominal 2% annual growth rate was applied to the through volumes along Perth Street. This rate of growth is consistent with industry standards and those that were applied in previously prepared / approved studies (i.e. Richmond Oaks Health Centre Transportation Brief and Richmond Village Phase 1 Transportation Impact Study).

Figure 13 and Figure 14 illustrate the 2034 ultimate traffic volumes at the study area intersections during the AM and PM peak hours, respectively. Section 4.4 contains the assessment of 2034 ultimate traffic conditions.

Figure 132034 Ultimate Traffic Volumes - AM Peak Hour

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Future Transportation Environment
May 11, 2018

Figure 142034 Ultimate Traffic Volumes - PM Peak Hour

4.0 TRANSPORTATION ASSESSMENT

4.1 2018 EXISTING CONDITIONS

Figure 3 (Section 2.1) illustrates the 2018 existing intersection controls and lane configuration at the study area intersections.

4.1.1 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Stop-controlled intersection operations were analyzed using the Synchro 9.2^{TM} software package with the Highway Capacity Manual 2010 edition (HCM 2010) methodology.

Table 5 provides a summary of 2018 existing intersection operations. Appendix Contains detailed intersection performance worksheets.

The study area intersections operate acceptable under 2018 existing conditions.

Table 52018 Existing Intersection Operations

Intersection	Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	B (B)	0.05 (0.05)	13.0 (15.6)	0.1 (0.1)
		EB	Left / Through / Right	A (A)	0.00 (0.01)	7.8 (8.4)	0.0 (0.0)
		WB	Left	A (A)	0.01 (0.01)	8.2 (7.9)	0.0 (0.0)
			Through / Right	A (A)	0.00 (0.00)	0.0 (0.0)	0.0 (0.0)
		SB	Left / Through / Right	B (B)	0.07 (0.06)	13.3 (15.6)	0.2 (0.2)
		Overall Intersection		A (A)	n/a	1.1 (0.8)	n/a
Ottawa Street West at Queen Charlotte Street	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.02 (0.03)	7.1 (7.1)	0.1 (0.1)
		WB	Left / Through / Right	A (A)	0.01 (0.02)	6.7 (6.9)	0.0 (0.1)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	6.8 (6.9)	0.0 (0.0)
			erall Intersection	A (A)	n/a	6.9 (7.0)	n/a

4.22029 FUTURE BACKGROUND CONDITIONS

Future background conditions for the 2029 horizon were assessed to determine transportation improvements that may be required to address growth in traffic exclusive from improvements that may be required to accommodate traffic generated by the proposed development.

The background development assumptions and distributions outlined in Section 3.1 and Section 3.2 were applied to existing traffic volumes to predict 2029 future background traffic volumes.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
May 11, 2018

4.2.1 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Stop-controlled intersection operations were analyzed using the Synchro 9.2^{TM} software package with the Highway Capacity Manual 2010 edition (HCM 2010) methodology. Roundabout operations were analyzing using the Sidra 7.0 software package with the SIDRA Standard capacity model and SIDRA Roundabout level of service (LOS) method.

Table 6 summarizes the operational characteristics of the study area intersections under 2029 future background conditions. Appendix C contains detailed intersection performance worksheets.

The intersection of Perth Street and Meynell Road was assumed to be a single-lane roundabout by the 2026 horizon as per the Village of Richmond Transportation Master Plan and the Richmond Village Phase 1 Transportation Impact Study. The study area intersections are projected to operate acceptably under 2029 future background conditions.

Table 62029 Future Background Intersection Operations

Intersection	Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	C (D)	0.08 (0.10)	20.7 (32.7)	0.3 (0.3)
		EB	Left / Through / Right	A (A)	0.00 (0.01)	8.1 (9.8)	0.0 (0.0)
		WB	Left	A (A)	0.01 (0.01)	9.4 (8.6)	0.0 (0.0)
			Through / Right	A (A)	0.00 (0.00)	0.0 (0.0)	0.0 (0.0)
		SB	Left / Through / Right	C (D)	0.11 (0.12)	19.8 (30.5)	0.4 (0.4)
		Overall Intersection		A (A)	n/a	0.9 (0.8)	n/a
Perth Street at Meynell Road	Single-lane Roundabout	NB	Left / Through / Right	A (A)	0.24 (0.14)	7.5 (6.5)	1.4 (0.7)
		WB	Left / Through / Right	A (A)	0.27 (0.59)	4.3 (4.8)	1.5 (4.5)
		SB	Left / Through / Right	A (B)	0.15 (0.13)	9.3 (11.5)	0.7 (0.7)
		EB	Left / Through / Right	A (A)	0.40 (0.39)	4.1 (4.9)	2.3 (2.1)
		Overall Intersection		A (A	0.40 (0.59)	5.4 (5.4)	2.3 (4.5)
Ottawa Street at Queen Charlotte Street	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.02 (0.02)	7.1 (7.1)	0.1 (0.1)
		WB	Left / Through / Right	A (A)	0.01 (0.02)	6.7 (6.9)	0.0 (0.1)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	6.8 (6.9)	0.0 (0.0)
		Overall Intersection		A (A)	n/a	6.9 (7.0)	n/a

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
May 11, 2018

4.32029 TOTAL FUTURE CONDITIONS

Total future conditions are assessed to determine transportation improvements that may be required to accommodate traffic generated by the proposed development. The site trip generation, distribution, and assignment assumptions outlined in Section 3.3 were added to the 2029 future background traffic volumes to predict total future traffic volumes.

4.3.1 Intersection Operational Analysis

An assessment of the study area intersections was undertaken to determine the operational characteristics of these intersections. Stop-controlled intersection operations were analyzed using the Synchro 9.2^{TM} software package with the Highway Capacity Manual 2010 edition (HCM 2010) methodology. Roundabout operations were analyzing using the Sidra 7.0 software package with the SIDRA Standard capacity model and SIDRA Roundabout level of service (LOS) method.

Table 7 summarizes the operational characteristics of the study area intersections under 2029 total future conditions. Figure 15 illustrates the assumed intersection control and lane geometry.

Perth Street at Queen Charlotte Street / Rochelle Drive: the northbound and southbound approaches of the intersection are anticipated to operate with a poor level of service due to high delay experienced at the minor approaches. Given that these are low-volume approaches that are expected to operate below capacity, further mitigation is not recommended.

Perth Street at Meynell Road: as a single-lane roundabout, the westbound approach is anticipated to operate at a v/c ratio of 0.84 during the PM peak hour and the sum of the entry and conflicting circulatory volumes will exceed 1,000 vehicles per hour for all approaches during either the weekday AM or PM peak hour. The National Cooperative Highway Research Program (NCHRP) Report 672 - Roundabouts: An Informational Guide, Second Edition, suggests that a twolane entry may be needed when volumes exceed 1,000 vehicles per hour, and that the operation of the roundabout may become unstable when the v/c exceeds 0.85 . Furthermore, the mid-block volumes east of Meynell Road exceed 1,000 vehicles per hour in each direction during the weekday peak hours and therefore widening Perth Street to 2lanes in each direction should be considered.

Given that the Village of Richmond is expanding west, it is logical to extend the existing four-lane Perth Street cross section westwards to Meynell Road to support the proposed development, future developments, and facilitate adding a northbound right-turn channel and westbound left-turn lane to the single-lane roundabout. Widening Perth Street to four lanes will require modifications to the Perth Street and Queen Charlotte / Rochelle Drive intersection (i.e. conversion of the westbound left-turn lane to a shared westbound left/thru-turn lane).

With the above mitigation measures in place, all study area intersections are forecasted to operate acceptably.
Table 8 summarizes the operational characteristics of the mitigated intersections. Figure 16 illustrates the recommended intersection controls and lane geometry. Appendix C contains detailed intersection performance worksheets.

Transportation Assessment
May 11, 2018
Table 72029 Total Future Intersection Operations (prior to Mitigation)

Intersection	Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	E (F)	0.16 (0.32)	39.5 (114.1)	0.6 (1.1)
		EB	Left / Through / Right	A (B)	0.01 (0.01)	8.5 (12.0)	0.0 (0.0)
		WB	Left	B (A)	0.01 (0.01)	11.0 (9.6)	0.0 (0.0)
			Through / Right	A (A)	0.00 (0.00)	0.0 (0.0)	0.0 (0.0)
		SB	Left / Through / Right	D (F)	0.20 (0.33)	33.9 (90.5)	0.7 (1.2)
		Overall Intersection		A (A)	n/a	1.1 (1.7)	n/a
Perth Street at Meynell Road	Single-lane Roundabout	NB	Left / Through / Right	B (A)	0.64 (0.45)	10.2 (6.4)	6.1 (3.0)
		WB	Left / Through / Right	A (A)	0.37 (0.86)	5.7 (6.9)	2.4 (15.2)
		SB	Left / Through / Right	B (B)	0.17 (0.25)	10.1 (18.7)	0.8 (1.8)
		EB	Left / Through / Right	A (A)	0.46 (0.57)	5.0 (9.6)	2.7 (5.1)
			erall Intersection	A (A)	0.64 (0.86)	7.3 (7.9)	6.1 (15.2)
Ottawa Street West at Queen Charlotte Street	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.06 (0.06)	7.3 (7.3)	0.2 (0.2)
		WB	Left / Through / Right	A (A)	0.03 (0.08)	7.0 (7.3)	0.1 (0.2)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	6.9 (7.0)	0.0 (0.0)
		Overall Intersection		A (A)	n/a	7.2 (7.3)	n/a
Ottawa Street West at Meynell Road	All-Way Stop Control	NB	Left / Through / Right	A (A)	0.13 (0.11)	7.8 (8.0)	0.4 (0.4)
		EB	Left / Through / Right	A (A)	0.11 (0.11)	8.0 (8.4)	0.4 (0.4)
		WB	Left / Through / Right	A (A)	0.02 (0.08)	7.4 (8.1)	0.1 (0.3)
		SB	Left / Through / Right	A (A)	0.09 (0.24)	7.5 (8.5)	0.3 (0.9)
			verall Intersection	A (A)	n/a	7.8 (8.3)	n/a

Table 82029 Total Future Intersection Operations (Mitigated)

Intersection	Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-Way Stop Control	NB	Left / Through / Right	D (F)	0.14 (0.20)	33.3 (62.7)	0.5 (0.7)
		EB	Left / Through / Right	A (B)	0.01 (0.01)	8.5 (12.0)	0.0 (0.0)
		WB	Left / Through / Right	B (A)	0.01 (0.01)	11.0 (9.6)	0.0 (0.0)
		SB	Left / Through / Right	D (F)	0.20 (0.34)	35.4 (94.6)	0.7 (1.2)
		Overall Intersection		\boldsymbol{A} (A)	n/a	1.1 (1.4)	n/a
Perth Street at Meynell Road	Single-lane Roundabout with NBR and WBL turn lanes	NB	Left / Through	B (A)	0.05 (0.03)	10.5 (9.7)	0.3 (0.2)
			Right	A (A)	0.26 (0.20)	3.2 (3.2)	0.0 (0.0)
		WB	Through / Right	$A(A)$	0.16 (0.43)	9.3 (9.4)	0.7 (2.6)
			Left	A (A)	0.21 (0.42)	3.4 (3.5)	1.0 (2.6)
		SB	Left / Through / Right	$A(B)$	0.17 (0.14)	9.2 (10.3)	0.5 (0.5)
		EB	Left / Through / Right	$A(A)$	0.50 (0.58)	5.0 (9.4)	2.6 (4.2)
		Overall Intersection		\boldsymbol{A} (A)	0.50 (0.58)	5.2 (6.6)	2.6 (4.2)

Transportation Assessment
May 11, 2018
Figure 152029 Assumed Intersection Control and Lane Geometry

Figure 162029 Recommended Intersection Control and Lane Geometry Improvements

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
May 11, 2018

4.4 2034 ULTIMATE CONDITIONS

Ultimate future conditions for the 2034 horizon were examined to determine if other improvements may be required due to growth in background traffic five years beyond the anticipated build-out horizon of the site.

4.4.1 Intersection Operational Analysis

Table 9 summarizes the operational characteristics of the study area intersections under 2034 ultimate conditions. Figure 17 illustrates the intersection control and lane requirements for the 2034 total future horizon.

Consistent with the 2029 total horizon, the northbound and southbound movements at the intersection of Perth Street at Queen Charlotte Street / Rochelle Drive, are expected to experience high delays. However, those movements have very low traffic volumes, the movements are operating below capacity, and therefore mitigation is not recommended. All remaining study area intersections are forecasted to operate acceptably under 2034 conditions.

Appendix C contains detailed intersection operation summaries.
Table 92034 Ultimate Intersection Operations

INTERSECTION	INTERSECTION CONTROL	APPROACH / MOVEMENT		Los	V/C	Delay (s)	Queue 95th (veh)
Perth Street at Queen Charlotte Street / Rochelle Drive	Two-way stop control	NB	Left / Through / Right	E (F)	0.15 (0.22)	36.0 (72.3)	0.5 (0.8)
		EB	Left / Through / Right	A (B)	0.01 (0.01)	8.6 (12.3)	0.0 (0.0)
		WB	Left / Through / Right	B (A)	0.01 (0.01)	11.2 (9.7)	0.0 (0.0)
		SB	Left / Through / Right	E (F)	0.22 (0.51)	38.8 (138.6)	0.8 (1.9)
		Overall Intersection		A (A)	n/a	1.2 (2.1)	n/a
Perth Street at Meynell Road	Single-lane roundabout with WBL and NBR lanes	NB	Left / Through	B (A)	0.05 (0.03)	10.7 (9.8)	0.3 (0.2)
			Right	A (A)	0.26 (0.20)	3.2 (3.2)	0.0 (0.0)
		WB	Through / Right	A (A)	0.16 (0.44)	9.3 (9.4)	0.7 (2.7)
			Left	A (A)	0.22 (0.45)	3.4 (3.5)	1.1 (2.9)
		SB	Left / Through / Right	$A(B)$	0.17 (0.14)	9.3 (10.4)	0.5 (0.5)
		EB	Left / Through / Right	A (A)	0.54 (0.62)	5.2 (9.9)	3.0 (4.8)
		Overall Intersection		A (A)	0.54 (0.62)	5.3 (6.7)	n/a
Ottawa Street West at Queen Charlotte Street	All-way stop control	EB	Left / Through / Right	A (A)	0.06 (0.06)	7.3 (7.3)	0.2 (0.2)
		WB	Left / Through / Right	$A(A)$	0.03 (0.08)	7.0 (7.3)	0.1 (0.2)
		SB	Left / Through / Right	A (A)	0.01 (0.01)	6.9 (7.0)	0.0 (0.0)
		Overall Intersection		$\boldsymbol{A}(\mathrm{A})$	n/a	7.2 (7.3)	n/a
Ottawa Street West at Meynell Road	All-way stop control	NB	Left / Through / Right	A (A)	0.13 (0.11)	7.8 (8.0)	0.4 (0.4)
		EB	Left / Through / Right	$A(A)$	0.11 (0.11)	8.0 (8.4)	0.4 (0.4)
		WB	Left / Through / Right	$A(A)$	0.02 (0.08)	7.4 (8.1)	0.1 (0.3)
		SB	Left / Through / Right	A (A)	0.09 (0.24)	7.5 (8.5)	0.3 (0.9)
			erall Intersection	$A(A)$	n / \mathbf{a}	7.8 (8.3)	n/a

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Assessment
May 11, 2018
Figure 172034 Intersection Control and Lane Geometry

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Draft Plan Review
May 11, 2018

5.0 DRAFT PLAN REVIEW

The objective of the draft plan review is to create an efficient, integrated, well designed transportation network that accommodates all modes of travel.

Figure 18 shows the proposed modifications to existing transit route 283 to service the new development (Figure 4 shows the existing transit routing). To create efficient routing, the existing transit route has been removed from McBean Street and a portion of Perth Street and the proposed transit route has been added to Meynell Road and Ottawa Street. The proposed transit route modifications will provide the proposed residential subdivision with transit service and will improve transit route efficiency (i.e. remove overlap). The removal of the transit route from McBean Street is not anticipated to significantly impact existing transit users.

Figure 19 shows the proposed transit routes and stops, sidewalks, and pathways. Most residents will be located within 400 metres walking distance of the two proposed transit stops on Meynell Road. Sidewalks are recommended on both sides of collector roads and on one side of several local roads to facilitate walking trips to transit stops, the school, parkettes, and the community park. The site plan also includes short blocks with pathways to facilitate walking.

Figure 20 shows the proposed cross-section for Meynell Road which is consistent with the cross-section of Meynell Road through the Richmond Village Development Corporation's proposed development. The 22-m cross-section will feature an 8.5 m asphalt surface and sidewalks on both sides.

Figure 18 Proposed Transit Route Modification

Draft Plan Review
May 11, 2018
Figure 19 Proposed Transit Routes and Stops, Sidewalks, and Pathways

Draft Plan Review
May 11, 2018
Figure 20 Proposed Meynell Road Cross Section

6.0 TRANSPORTATION DEMAND MANAGEMENT

The City of Ottawa Transportation Demand Management (TDM) supportive design \& infrastructure measures checklist was used to identify TDM measures that could be applied to the subject site. The checklist is below.

	TDM-supportive design \& infrastructure measures: Residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
	1.	WALKING \& CYCLING: ROUTES	
	1.1	Building location \& access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\square Not applicable
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\square Not applicable
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	\square Not applicable
	1.2	Facilities for walking \& cycling	
REQUIRED	$1.2 .1$	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	\square Not applicable
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	\square Not applicable

Stantec

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Transportation Demand Management May 11, 2018				
	TDM-supportive design \& infrastructure measures: Residential developments			Check if completed \& descriptions, explanations plan/drawing references
REQUIRED	$1.2 .3$	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)		Sidewalks will be provided and crosswalks marked at intersections.
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)		Gradual grade transition and depressed curbs to be provided at street corners.
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)		Pathways identified on plan.
basic	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops		Walking routes, sidewalks and pathways identified on plan.
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	区	Walking routes will be on streets, sidewalks, or pathways. Lighting will be provided on pathways and may be provided for streets/sidewalks as per City standards.
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than $30 \mathrm{~km} / \mathrm{h}$, or provide a separated cycling facility		Target operating speed for local roads will be $30 \mathrm{~km} / \mathrm{h}$ to the extent possible while respecting standard City cross-sections.
	1.3	Amenities for walking \& cycling		
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	区	Walking and cycling routes will be on streets, sidewalks or pathways. Lighting will be provided on pathways and may be provided for streets/sidewalks as per City standards.
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when		Not applicable

Stantec
$\left.\begin{array}{|ll|l|l|}\hline & \text { TDM-supportive design \& infrastructure measures: } \\ \text { Residential developments }\end{array} \quad \begin{array}{c}\text { Check if completed \& } \\ \text { directions to reach transit stops/stations, trails or other } \\ \text { common destinations are not obvious) } \\ \text { or plan/drawing references }\end{array}\right\}$

Transportation Demand Management
May 11, 2018
$\left.\begin{array}{|lll|l|}\hline & \text { TDM-supportive design \& infrastructure measures: } \\ \text { Residential developments }\end{array} \quad \begin{array}{c}\text { Check if completed \& } \\ \text { add descriptions, explanations } \\ \text { or plan/drawing references }\end{array}\right\}$

Transportation Demand Management
May 11, 2018

	TDM-supportive design \& infrastructure measures: Residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\square Not applicable
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	\square Not applicable
BASIC	$6.1 .3$	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	\square Not applicable
BETTER	$6.1 .4$	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	\square Not applicable
	6.2	Separate long-term \& short-term parking areas	
BETTER	$6.2 .1$	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	\square Not applicable

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Summary and Conclusions
May 11, 2018

7.0 SUMMARY AND CONCLUSIONS

Proposed Development

- Mattamy's proposed residential subdivision in the Village of Richmond (City of Ottawa) is located roughly 600 m south of Perth Street and west of Queen Charlotte Street and extends south of Ottawa Street towards the Jock River. The site is bound by Richmond Village Development Corporation's plan of subdivision to the north, existing residential homes to the east, the Jock River to the south, and vacant agricultural lands to the west. The proposed development is anticipated to consist of 177 townhome-style dwellings and 848 single family dwellings for a total of 1025 residential units.
- The development is anticipated to generate 600 and 843 vehicle trips during the $A M$ and PM peak hours, respectively.

2018 Existing Conditions

- The study area intersections assessed as part of this study currently operate acceptably under 2018 existing conditions.

2029 Future Background Conditions

- By 2029 the intersection of Perth Street and Meynell Road was assumed to be constructed as a single-lane roundabout as per the Village of Richmond Transportation Master Plan and consistent with the Richmond Village Phase 1 Transportation Impact Study (Richmond Village Development Corporation).
- The study area intersections are forecasted to operate acceptably under 2029 future background conditions.

2029 Total Future Conditions

- At the intersection of Perth Street at Queen Charlotte Street / Rochelle Drive, the northbound and southbound movements are expected to experience poor levels of service due to high delays. However, those movements are expected to operate below capacity as they have very low traffic volumes, and therefore, further mitigation is not recommended.
- Without additional mitigation, the single-lane roundabout assumed at the intersection of Perth Street and Meynell Road is forecasted to operate above capacity.
- The mid-block volumes on Perth Street east of the Meynell Road are forecasted to exceed the typical arterial lane capacity of 1,000 vehicles per hour during the AM and PM peak hours.
- It is recommended that Perth Street be widened to four lanes between Queen Charlotte Street / Rochelle Drive and Meynell Road. In conjunction with this, the Perth Street / Meynell Road roundabout should be widened to accommodate two entry lanes on the westbound approach and two departure lanes proceeding eastbound from the roundabout. The roundabout would function with a dedicated westbound left-turn lane and northbound right-turn lane with the remaining movements operating in a shared lane configuration.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Summary and Conclusions

May 11, 2018

- With the above improvements in place all study area intersections are forecasted to operate acceptably under 2029 total future conditions.

2034 Ultimate Conditions

- Similar to the 2029 total future horizon, the northbound and southbound movements at the intersection of Perth Street at Queen Charlotte Street / Rochelle Drive are forecasted to experience poor level of service due to high delays. Given that these movements will have very low volumes and are projected to operate below capacity, further mitigation is not recommended.
- All remaining study area intersections are forecasted to operate acceptably under 2034 ultimate conditions.

Draft Plan Review

- Transit route modifications have been proposed in order to service the proposed residential development adequately and to create more efficient transit routing without significantly impacting existing transit users. Most residents in the proposed residential development will be located within 400 metres walking distance of the proposed transit stops along Meynell Road.
- The draft plan includes sidewalks along both sides of Meynell Road and along one side of several local roads. Additionally, short blocks and pathway connections will help to facilitate walking trips to transit stops, the school, parkettes, and the community park.
- The cross-section of Meynell Road through Mattamy's plan of subdivision is consistent with the cross-section of Meynell Road through Richmond Village Development Corporation's development to the north. The crosssection for Meynell Road features wide travel lanes which will facilitate cyclists and motor vehicles operating in a shared lane.

Transportation Demand Management

With the proposed development being residential in nature, opportunities for Transportation Demand Management (TDM) measures / initiatives are limited. TMD measures / initiatives for the proposed development include:

- Sidewalks along both sides of the proposed north-south collector (Meynell Road) and along several local streets within the plan of subdivision.
- Marked crosswalks at intersections and depressed curbs at street corners.
- Safe (i.e. illuminated), direct and attractive walking routes to transit stops located along Meynell Road.
- Transit shelters with lighting at transit stops; and
- The target operating speed for local roads will be $30 \mathrm{~km} / \mathrm{h}$ to the extent possible while respecting standard cross-sections.

RICHMOND SUBDIVISION TRANSPORTATION BRIEF UPDATE

Summary and Conclusions
May 11, 2018

Based on the transportation evaluation and improvements recommended in this study, Mattamy's proposed Richmond subdivision residential development should be permitted to proceed.

STANTEC CONSULTING LTD.

(original signed)

Robert Vastag, RPP
Project Manager, Senior Transportation Planner

Appendix A TRAFFIC DATA
May 11, 2018

Appendix A TRAFFIC DATA

FIGURE 2.1
EXISTING 2016 WEEKDAY PEAK AM AND PM HOUR TRAFFIC COUNTS

Appendix B BACKGROUND DEVELOPMENTS
May 11, 2018

Appendix B BACKGROUND DEVELOPMENTS

Richmond Village Development Corporation Phases 1, 2, 3 Site Generated Traffic Volumes - Weekday AM Peak Hour

Richmond Village Development Corporation Phases 1, 2, 3
Site Generated Traffic Volumes - Weekday PM Peak Hour

FIGURE 3.2

WEEKDAY PEAK AM AND PM HOUR SITE GENERATED TRIPS

FIGURE 3.2

WEEKDAY PEAK AM AND PM HOUR SITE GENERATED TRIPS

Appendix C INTERSECTION PERFORMANCE WORKSHEETS
May 11, 2018

Appendix C INTERSECTION PERFORMANCE WORKSHEETS

Stantec Consulting Ltd.
Synchro 9 Report

EBLn1	WBLn1	SBLn1	
Lane	33%	0%	50%
Vol Left, \%	67%	50%	0%
Vol Thru, \%	0%	50%	50%
Vol Right, \%	Stop	Stop	Stop
Sign Control	15	10	10
Traffic Vol by Lane	5	0	5
LT Vol	10	5	0
Through Vol	0	5	5
RT Vol	17	11	11
Lane Flow Rate	1	1	1
Geometry r Grp	0.019	0.011	0.012
Degree of Util (X)	4.029	3.666	3.783
Departure Headway (Hd)	Yes	Yes	Yes
Convergence, YN	893	980	950
Cap	2.034	1.673	1.792
Service Time	0.019	0.011	0.012
HCM Lane VIC Ratio	7.1	6.7	6.8
HCM Contro Delay	A	A	A
HCM Lane LOS	0.1	0	0

Stantec Consulting Ltd.

Synchro 9 Report

HCM 2010 AWSC	Western Development Lands
2: Ottawa St. W. \& Queen Charlotte St.	2018 Existing PM

HCM 2010 AWSC	Western Development Lands
2: Ottawa St. W. \& Queen Charlotte St.	2018 Existing PM

Stantec Consulting Ltd.
Synchro 9 Report
1: Queen Charlotte St./Rochelle Dr. \& Perth St.

Lane	EBLn1	WBLn1	SBLn1
Vol Left, \%	33\%	0\%	50\%
Vol Thru, \%	67\%	50\%	0\%
Vol Right, \%	0\%	50\%	50\%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	15	10	10
LT Vol	5	0	5
Through Vol	10	5	0
RT Vol	0	5	5
Lane Flow Rate	15	10	10
Geometry Grp	1	1	1
Degree of Util (X)	0.017	0.01	0.01
Departure Headway (Hd)	4.026	3.663	3.777
Convergence, Y/N	Yes	Yes	Yes
Cap	894	982	951
Service Time	2.029	1.668	1.787
HCM Lane V/C Ratio	0.017	0.01	0.011
HCM Control Delay	7.1	6.7	6.8
HCM Lane LOS	A	A	A
HCM 95th-tile Q	0.1	0	0

Stantec Consulting Ltd.

Synchro 9 Report

HCM 2010 AWSC	Western Development Lands
2: Ottawa St. W. \& Queen Charlotte St.	2029 Background PM

HCM 2010 AWSC	Western Development Lands
2: Ottawa St. W. \& Queen Charlotte St.	2029 Background PM

Intersection													
Int Delay, s/veh 1.1													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4,		*	F			${ }^{4}$			${ }_{4}$		
Traffic Vol, veh/h	5	1145	5	5	535	10	5	5	10	20	5	5	
Future Vol, veh/h	5	1145	5	5	535	10	5	5	10	20	5	5	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	.		None	.	-	None	.	.	None	.		None	
Storage Length	-	-	-	0	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	\cdots	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, \%	2	2	2	2	2	2	2		2	2	2	2	
Mvmt Flow	5	1145	5	5	535	10	5	5	10	20	5	5	

Stantec Consulting Ltd. Synchro 9 Report

HCM 2010 AWSC
3: Meynell Rd. \& Ottawa St. W. 2029 Total AM

Stantec Consulting Ltd.

Intersection													
Int Delay, s/veh	1.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		$4{ }^{4}$		*	F			¢			¢		
Traffic Vol, veh/h	5	845	5	5	1305	20	5	5	5	10	5	5	
Future Vol, veh/h	5	845	5	5	1305	20	5	5	5	10	5	5	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-		None	-	.	None	.	-	None	.	.	None	
Storage Length	-	-	-	0	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, \%	2	2	2	2	2	2	2		2	2	2	2	
Mvmt Flow	5	845	5	5	1305	20	5	5	5	10	5	5	

Stantec Consulting Ltd. Synchro 9 Report

HCM 2010 AWSC
3: Meynell Rd. \& Ottawa St. W. 2029 Total PM

Stantec Consulting Ltd.

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1	
Capacity (veh/h)	147	1020	-	-	603	-	148	
HCM Lane V/C Ratio	0.136	0.005	-		0.008	-	- 0.203	
HCM Control Delay (s)	33.3	8.5	0.1	-	11	0.1	35.4	
HCM Lane LOS	D	A	A	-	B	A	- E	
HCM 95th \%tile Q(veh)	0.5	0			0	-	0.7	

Intersection														
Int Delay, s/veh	1.2													
Movement	EBL		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations			4t			4t			¢			¢		
Traffic Vol, veh/h	5		1185	5	5	560	10	5	5	10	20	5	5	
Future Vol, veh/h	5		1185	5	5	560	10	5	5	10	20	5	5	
Conflicting Peds, \#hr	0		0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free		Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized			.	None	.	.	None	.	.	None	.		None	
Storage Length			-	-	-	-	-	-	-		-		-	
Veh in Median Storage, \#			0	-	-	0	-	.	0		-	0	-	
Grade, \%			0	-	-	0	-	-	0	-	\cdot	0	\cdot	
Peak Hour Factor	100		100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, \%	2		2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	5	1185	5	5	560	10	5	5	10	20	5	5	

Stantec Consulting Ltd.
Synchro 9 Report
3: Meynell Rd. \& Ottawa St. W. $\quad 2034$ Ultimate AM

Stantec Consulting Ltd.

Stantec Consulting Ltd. Synchro 9 Report

HCM 2010 AWSC
3: Meynell Rd. \& Ottawa St. W. 2034 Ultimate PM

LANE SUMMARY
F Site: 101 [2029 FB AM]

Perth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh'h	$\begin{array}{r} \text { Deg. } \\ \text { Sati } \\ \text { Sic } \\ \hline \end{array}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Veh	$\begin{gathered} \text { Queve } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{gathered} \text { Lane } \\ \text { Length } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \\ & \% \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	225	2.0	924	0.243	100	7.5	SA	1.4	9.7	Full	500	0.0	0.0
Approach	225	2.0		0.243		7.5	LOS	1.4	9.7				
East: Perth Street													
Lane $1^{\text {d }}$	395	2.0	1469	0.269	100	4.3	LOSA	1.5	10.4	Full	500	0.0	0.0
Approach	395	2.0		0.269		4.3	LOSA	1.5	10.4				
North: Meynell Road													
Lane $1^{\text {d }}$	165	2.0	1107	0.149	100	9.3	LOSA	0.7	4.9	Full	500	0.0	0.0
Approach	165	2.0		0. 149		9.3	LOSA	0.7	4.9				
West: Perth Street													
Lane $1^{\text {d }}$	520	2.0	1291	0.403	100	4.1	LOSA	2.3	16.5	Full	500	0.0	0.0
Approach	520	2.0		0.403		4.1	LOSA	2.3	16.5				
Intersection	1305	2.0		0.403		5.4	LOSA	2.3	16.5				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
OS F will result if $v / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
IDRA Standard Delay Model is used. Contol
Gap-Acceptance Capacity: SIDRA Standard (Akealik includes Geometric Delay.
IV (\%) values are calculated for All Moverdent Class M3D).
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 I Copyright © 2000 -2017 Akcelik and Associates Pty Ltd I sidrasolutions.com

MOVEMENT SUMMARY

Site: 101 [2029 FB AM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satin } \\ & \text { V/c } \end{aligned}$	$\begin{gathered} \text { Averrage } \\ \text { Delay } \\ \text { Sec } \end{gathered}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Vehicles } \\ & \text { veh } \end{aligned}$ \qquad	$\begin{aligned} & \text { f Queue } \\ & \text { Distance } \\ & \mathrm{m} \end{aligned}$	Prop. Queued	Effective Stop Rate per veh	 Average Speed\qquad
South: Meynell Road											
1	L2	45	2.0	0.243	12.0	Los B	1.4	9.7	0.63	0.73	54.9
2	T1	5	2.0	0.243	6.1	LOSA	1.4	9.7	0.63	0.73	54.7
3	R2	175	2.0	0.243	6.4	LOSA	1.4	9.7	0.63	0.73	53.1
Approach		225	2.0	0.243	7.5	LOSA	1.4	9.7	0.63	0.73	53.5
East: Perth Street											
4	L2	60	2.0	0.269	9.3	LOSA	1.5	10.4	0.20	0.41	57.0
5	T1	295	2.0	0.269	3.3	Losa	1.5	10.4	0.20	0.41	56.7
6	R2	40	2.0	0.269	3.7	LOSA	1.5	10.4	0.20	0.41	55.0
Approach		395	2.0	0.269	4.3	LOSA	1.5	10.4	0.20	0.41	56.6
North: Meynell Road											
7	L2	130	2.0	0.149	10.5	LOS B	0.7	4.9	0.44	0.67	53.3
8	T1	5	2.0	0.149	4.6	LOSA	0.7	4.9	0.44	0.67	53.1
9	R2	30	2.0	0.149	4.9	LOSA	0.7	4.9	0.44	0.67	51.6
Approach		165	2.0	0.149	9.3	LOSA	0.7	4.9	0.44	0.67	53.0
West: Perth Street											
10	L2	10	2.0	0.403	9.9	LOSA	2.3	16.5	0.39	0.44	56.5
11	T1	495	2.0	0.403	4.0	LOSA	2.3	16.5	0.39	0.44	56.3
12	R2	15	2.0	0.403	4.3	LOSA	2.3	16.5	0.39	0.44	54.6
Approach		520	2.0	0.403	4.1	LOSA	2.3	16.5	0.39	0.44	56.3
All Vehicles		1305	2.0	0.403	5.4	Los A	2.3	16.5	0.38	0.51	55.4

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
vendicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Capacitr: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd |

LANE LEVEL OF SERVICE

ane Level of Service
Site: 101 [2029 FB AM]
erth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/C (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/C not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

F Site: 101 [2029 FB PM]

erth Street and Meynell Road

Lane Use and Performance													
	Demand Total vehin	$\begin{aligned} & \text { Flows } \\ & \text { HV } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { veh } / h \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Sat } \\ & \text { van } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Uti. } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \end{aligned}$	Level of Service	95\% Back Veh	$\begin{gathered} \text { Queue } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { ap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	145	2.0	1011	0.143	100	6.5	LOSA	0.7	5.1	Full	500	0.0	0.0
Approach	145	2.0		0.143		6.5	Los A	0.7	5.1				
East: Perth Street													
Lane $1^{\text {d }}$	890	2.0	1515	0.587	100	4.8	Los A	4.5	32.2	Full	500	0.0	0.0
Approach	890	2.0		0.587		4.8	LOSA	4.5	32.2				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	824	0.127	100	11.5	Los B	0.7	5.0	Full	500	0.0	0.0
Approach	105	2.0		0.127		11.5	LOS B	0.7	5.0				
West: Perth Street													
Lane $1^{\text {d }}$	465	2.0	1209	0.385	100	4.9	Losa	2.1	15.0	Full	500	0.0	0.0
Approach	465	2.0		0.385		4.9	LOSA	2.1	15.0				
Intersection	n 1605	2.0		0.587		5.4	LOSA	4.5	32.2				

Ste Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay inclu
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).
IV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.co

MOVEMENT SUMMARY

F Site: 101 [2029 FB PM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	$\begin{aligned} & \text { Deman } \\ & \text { Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { Iows } \\ & \text { H\% } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { San } \\ \text { v/c } \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective per veh	Average Speed km / h
South: Meynell Road men men											
1	L2	30	2.0	0.143	11.0	Los B	0.7	5.1	0.53	0.64	55.5
2	T1	5	2.0	0.143	5.1	Los A	0.7	5.1	0.53	0.64	55.2
3	R2	110	2.0	0.143	5.4	LOSA	0.7	5.1	0.53	0.64	53.6
Appro		145	2.0	0.143	6.5	LOSA	0.7	5.1	0.53	0.64	54.0
East: Perth Street											
4	L2	190	2.0	0.587	9.5	LOSA	4.5	32.2	0.29	0.45	56.3
5	T1	565	2.0	0.587	3.5	LOSA	4.5	32.2	0.29	0.45	56.1
6	R2	135	2.0	0.587	3.8	LOSA	4.5	32.2	0.29	0.45	54.4
Appro		890	2.0	0.587	4.8	LOSA	4.5	32.2	0.29	0.45	55.8
North: Meynell Road											
7	L2	80	2.0	0.127	12.8	Los B	0.7	5.0	0.67	0.77	52.0
8	T1	5	2.0	0.127	6.9	LOSA	0.7	5.0	0.67	0.77	51.8
9	R2	20	2.0	0.127	7.2	LOSA	0.7	5.0	0.67	0.77	50.5
Appro		105	2.0	0.127	11.5	Los B	0.7	5.0	0.67	0.77	51.7
West: Perth Street											
10	L2	35	2.0	0.385	10.3	Los B	2.1	15.0	0.45	0.50	56.1
11	T1	385	2.0	0.385	4.4	Los A	2.1	15.0	0.45	0.50	55.9
12	R2	45	2.0	0.385	4.7	LOSA	2.1	15.0	0.45	0.50	54.2
Approach		465	2.0	0.385	4.9	LOSA	2.1	15.0	0.45	0.50	55.7
All Ve	cles	1605	2.0	0.587	5.4	LOSA	4.5	32.2	0.38	0.50	55.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
Roundabout LOS Method: SIDRA Roundabout LOS.
LOS F will result if v/c >1 irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
ance Capacity: SIDRA Standard (Akcelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasel

LANE LEVEL OF SERVICE

ane Level of Service
Site: 101 [2029 FB PM]
Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

F Site: 101 [2029 TF AM]

erth Street and Meynell Road

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{gathered} \text { Deg. } \\ \text { Sain } \\ \text { v/e } \end{gathered}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Veh	$\begin{gathered} \text { Queve } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{gathered} \text { Lane } \\ \text { Length } \end{gathered}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \\ & \% \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	575	2.0	903	0.637	100	10.2	LOS B	6.1	43.5	Full	500	0.0	0.0
Approach	575	2.0		0.637		10.2	LOS B	6.1	43.5				
East: Perth Street													
Lane $1^{\text {d }}$	545	2.0	1475	0.369	100	5.7	Los A	2.4	17.2	Full	500	0.0	0.0
Approach	545	2.0		0.369		5.7	LOSA	2.4	17.2				
North: Meynell Road													
Lane $1^{\text {d }}$	165	2.0	998	0.165	100	10.1	LOS B	0.8	5.9	Full	500	0.0	0.0
Approach	165	2.0		0.165		10.1	LOS B	0.8	5.9				
West: Perth Street													
Lane $1^{\text {d }}$	525	2.0	1152	0.456	100	5.0	Los A	2.7	19.3	Full	500	0.0	0.0
Approach	525	2.0		0.456		5.0	LOSA	2.7	19.3				
Intersection	- 1810	2.0		0.63			LOSA		43.5				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
ane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010
IDRA Standard Delay Model is used. Conto
Gap-Acceptance Capacity: SIDRA Standard (Akcelik includes Geometric Delay.
HV (\%) values creal (Akcelik M3D).
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ltd I sidrasolutions.co
Project: W:lactivel16360087_RichmondVVillageDraftilan TrafficilmpactIStuyy

MOVEMENT SUMMARY

Site: 101 [2029 TF AM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{gathered} \text { Movov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total veh/h	$\begin{aligned} & \text { Fows } \\ & \text { HV } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satin } \\ & \text { Sic } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	Level of Service	95\% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Meynell Road											
1	L2	50	2.0	0.637	15.3	LOS B	6.1	43.5	0.84	0.96	52.8
2	T1	5	2.0	0.637	9.3	Los A	6.1	43.5	0.84	0.96	52.6
3	R2	520	2.0	0.637	9.7	LOSA	6.1	43.5	0.84	0.96	51.1
Approach		575	2.0	0.637	10.2	LOS B	6.1	43.5	0.84	0.96	51.3
East: Perth Street											
4	L2	210	2.0	0.369	9.3	LOSA	2.4	17.2	0.24	0.49	55.7
5	T1	295	2.0	0.369	3.4	LOSA	2.4	17.2	0.24	0.49	55.5
6	R2	40	2.0	0.369	3.7	LOSA	2.4	17.2	0.24	0.49	53.9
Approach		545	2.0	0.369	5.7	LOSA	2.4	17.2	0.24	0.49	55.5
North: Meynell Road											
7	L2	130	2.0	0.165	11.3	Los B	0.8	5.9	0.54	0.72	53.0
8	T1	5	2.0	0.165	5.4	LOSA	0.8	5.9	0.54	0.72	52.8
9	R2	30	2.0	0.165	5.7	LOSA	0.8	5.9	0.54	0.72	51.3
Approach		165	2.0	0.165	10.1	LOS B	0.8	5.9	0.54	0.72	52.6
West: Perth Street											
	L2	10	2.0	0.456	10.8	Los B	2.7	19.3	0.53	0.53	55.8
11	T1	495	2.0	0.456	4.9	LOSA	2.7	19.3	0.53	0.53	55.6
	R2	20	2.0	0.456	5.2	LOSA	2.7	19.3	0.53	0.53	54.0
Approach		525	2.0	0.456	5.0	LOSA	2.7	19.3	0.53	0.53	55.5
All Veh		1810	2.0	0.637	7.3	LOSA	6.1	43.5	0.54	0.67	53.8

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c >1 irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010) oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay incudes Geometric Delay
Capacity SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRA INTERSECTION 7.0 | Copyright © $2000-2017$ Akcelik and Associates Pty Ltd | sidres

LANE LEVEL OF SERVICE

ane Level of Service
Vite: 101 [2029 TF AM]
erth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
SIDRA INTERSECTION 7.0 | Copyright © 2000 -2017 Akcelik and Associates Pty Ltd | si

LANE SUMMARY

F Site: 101 [2029 TF PM]

erth Street and Meynell Road

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{gathered} \text { Deg. } \\ \text { Sain } \\ \text { v/e } \end{gathered}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Veh	$\begin{gathered} \text { fuueve } \\ \text { Dist } \\ m \end{gathered}$	Lane Config	$\begin{gathered} \text { Lane } \\ \text { Length } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	430	2.0	961	0.447	100	6.4	LOSA	3.0	21.4	Full	500	0.0	0.0
Approach	430	2.0		0.447		6.4	LOSA	3.0	21.4				
East: Perth Street													
Lane $1^{\text {d }}$	1315	2.0	1528	0.861	100	6.9	LosA	15.2	108.5	Full	500	0.0	0.0
Approach	1315	2.0		0.861		6.9	LOSA	15.2	108.5				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	418	0.251	100	18.7	LOS B	1.8	13.1	Full	500	0.0	0.0
Approach	105	2.0		0.251		18.7	LOS B	1.8	13.1				
West: Perth Street													
Lane $1^{\text {d }}$	475	2.0	828	0.573	100	9.6	Los A	5.1	36.0	Full	500	0.0	0.0
Approach	475	2.0		0.573		9.6	LOSA	5.1	36.0				
Intersection	- 2325	2.0		0.8			LOSA	15.2	108.5				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010). apacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).
IV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ltd I sidrasolutions.co

MOVEMENT SUMMARY

Site: 101 [2029 TF PM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
Mov	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/ic } \end{aligned}$	$\begin{gathered} \text { Averrage } \\ \text { Delay } \\ \text { Sec } \end{gathered}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Vehicles } \\ & \text { veh } \end{aligned}$ \qquad	$\begin{aligned} & \text { f Queue } \\ & \text { Distance } \\ & \mathrm{m} \end{aligned}$	Prop. Queued	Effective Stop Rate per veh	 Average Speed\qquad
South: Meynell Road											
1	L2	35	2.0	0.447	11.6	Los B	3.0	21.4	0.70	0.75	55.4
2	T1	5	2.0	0.447	5.7	LOSA	3.0	21.4	0.70	0.75	55.1
3	R2	390	2.0	0.447	6.0	LOSA	3.0	21.4	0.70	0.75	53.5
Approach		430	2.0	0.447	6.4	LOSA	3.0	21.4	0.70	0.75	53.7
East: Perth Street											
4	L2	615	2.0	0.861	10.0	LOS B	15.2	108.5	0.61	0.50	54.1
5	T1	565	2.0	0.861	4.1	LOSA	15.2	108.5	0.61	0.50	53.8
6	R2	135	2.0	0.861	4.4	LOSA	15.2	108.5	0.61	0.50	52.3
Approach		1315	2.0	0.861	6.9	LOSA	15.2	108.5	0.61	0.50	53.8
North: Meynell Road											
7	L2	80	2.0	0.251	20.0	LOS C	1.8	13.1	0.98	0.95	47.4
8	T1	5	2.0	0.251	14.1	LOS B	1.8	13.1	0.98	0.95	47.2
9	R2	20	2.0	0.251	14.4	LOS B	1.8	13.1	0.98	0.95	46.1
Approach		105	2.0	0.251	18.7	LOS B	1.8	13.1	0.98	0.95	47.1
West: Perth Street											
10	L2	35	2.0	0.573	15.1	LOS B	5.1	36.0	0.85	0.94	53.3
11	T1	385	2.0	0.573	9.1	LOSA	5.1	36.0	0.85	0.94	53.1
12	R2	55	2.0	0.573	9.5	LOSA	5.1	36.0	0.85	0.94	51.6
Approach		475	2.0	0.573	9.6	LOSA	5.1	36.0	0.85	0.94	52.9
All Vehicles		2325	2.0	0.861	7.9	LOSA	15.2	108.5	0.69	0.66	53.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). oundabout LOS Method: SIDRA Roundabout LOS.
Roundabout LOS Method: SIDRA Roundabout LOS.
LOS F will result if v/c >1 irrespective of movement delay value (does not apply for approaches and intersection).
Itersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
(Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRAINTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | Sidr

LANE LEVEL OF SERVICE

ane Level of Service
\forall Site: 101 [2029 TF PM]
erth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010)
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
SIDRAINTERSECTION 7.0 I Copyright © $2000-2017$ Akcelik and Associates Pty Ltd I sid

LANE SUMMARY
Site: 101 [2029 TF w/ WBL \& NBR AM] Perth Street and Meynell Road

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { San } \\ & \text { v/c } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Veh } \end{aligned}$	$\begin{gathered} \text { Queve } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	55	2.0	1135	0.048	100	10.5	Los b	0.3	1.9	Full	500	0.0	0.0
Lane 2	520	2.0	1987	0.262	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	575	2.0		0.262		3.9	LOSA	0.3	1.9				
East: Perth Street													
Lane 1	210	2.0	1356	0.155	100	9.3	LOSA	0.7	5.2	Ful	500	0.0	0.0
Lane $2^{\text {d }}$	335	2.0	1637	0.205	100	3.4	losa	1.0	7.4	Full	500	0.0	0.0
Approach	545	2.0		0.205		5.7	LOSA	1.0	7.4				
North: Meynell Road													
Lane $1^{\text {d }}$	165	2.0	981	0.168	100	9.2	LOSA	0.5	3.7	Full	500	0.0	0.0
Approach	165	2.0		0.168		9.2	LOSA	0.5	3.7				
West: Perth Street													
Lane $1^{\text {d }}$	525	2.0	1048	0.501	100	5.0	LOSA	2.6	18.2	Full	500	0.0	0.0
Approach	525	2.0		0.501		5.0	LOSA	2.6	18.2				
Intersection	1810	2.0		0.501		5.2	Los A	2.6	18.2				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
IV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 ICopyright © 2000-2017 Akcelik and Associates Pty Ltd | sid
rganisation: STANTEC CONSULTING LTD I Processed: Tuesday, May 01, 2018 12:22:15 PM \qquad

MOVEMENT SUMMARY

\forall Site: 101 [2029 TF w/ WBL \& NBR AM] Perth Street and Meynell Road

ment Performance - Vehicles											
Mov OD ID Mo	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{gathered} \text { Hows } \\ \text { HV } \\ \% \end{gathered}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back of Vehicles veh	$\begin{aligned} & \text { SQueue } \\ & \text { Distance } \\ & \text { m } \end{aligned}$	Prop.	Effective Stop Rate per veh	$\begin{aligned} & \text { Average } \\ & \text { Speed } \\ & \mathrm{km} / \mathrm{h} \end{aligned}$
South: Meynell Road											
L2	L2	50	2.0	0.048	11.1	LOS B	0.3	1.9	0.58	0.67	52.3
T1	T1	5	2.0	0.048	5.1	LOSA	0.3	1.9	0.58	0.67	52.1
R2	R2	520	2.0	0.262	3.2	LOSA	0.0	0.0	0.00	0.43	56.6
Approach		575	2.0	0.262	3.9	LOSA	0.3	1.9	0.06	0.45	56.2
East: Perth Street											
	L2	210	2.0	0.155	9.3	LOSA	0.7	5.2	0.18	0.61	53.2
T1	T1	295	2.0	0.205	3.3	LOSA	1.0	7.4	0.18	0.36	57.5
R2	R2	40	2.0	0.205	3.9	LOSA	1.0	7.4	0.18	0.36	55.6
Approach		545	2.0	0.205	5.7	LOSA	1.0	7.4	0.18	0.45	55.6
North: Meynell Road											
	L2	130	2.0	0.168	10.4	LOS B	0.5	3.7	0.38	0.72	53.5
T1	T1	5	2.0	0.168	4.5	LOSA	0.5	3.7	0.38	0.72	53.3
R2	R2	30	2.0	0.168	4.8	LOSA	0.5	3.7	0.38	0.72	51.8
Approach		165	2.0	0.168	9.2	LOSA	0.5	3.7	0.38	0.72	53.2
West: Perth Street											
10 L2	L2		2.0	0.501	10.8	LOS B	2.6	18.2	8	54	56.1
T1	T1	5	2.0	0.501	9	LOSA	2.6	18.2	. 48	0.54	55.9
12 R2	R2	20	2.0	0.501	5.2	LOSA	2.6	18.2	0.48	0.54	54.2
Approach		525	2.0	0.501	5.0	LOS A	2.6	18.2	0.48	0.54	55.8
All Vehicles		1810	2.0	0.501	5.2	Los A	2.6	18.2	0.25	0.50	55.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

IDRA INTERSECTION $7.0 \mid$ Copyright © $2000-2017$ Akcelik and Associates Pty Ltd \mid

LANE LEVEL OF SERVICE

ane Level of Service
7 Site: 101 [2029 TF w/ WBL \& NBR AM]
Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& VIC (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and V / c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{V} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
(
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

IDRAINTERSECTION 7.0 | Copyright $2000-2017$ Akelik and Associates Pty Ltd |

LANE SUMMARY
Site: 101 [2029 TF w/ WBL \& NBR PM] Perth Street and Meynell Road

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { San } \\ & \text { v/c } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Veh } \end{aligned}$	$\begin{gathered} \text { Queve } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	40	2.0	1201	0.033	100	9.7	Los A	0.2	1.3	Full	500	0.0	0.0
Lane 2	390	2.0	1987	0.196	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	430	2.0		0.196		3.8	LOSA	0.2	1.3				
East: Perth Street													
Lane 1	15	2.0	1418	0.434	100	9.4	LOSA	2.6	18.9	Ful	500	0.0	0.0
Lane $2^{\text {d }}$	700	2.0	1657	0.422	100	3.5	losa	2.6	18.4	Full	500	0.0	0.0
Approach	1315	2.0		0.434		6.3	LOSA	2.6	18.9				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	774	0.136	100	10.3	LOS B	0.5	3.2	Full	500	0.0	0.0
Approach	105	2.0		0.136		10.3	LOS B	0.5	3.2				
West: Perth Street													
Lane $1^{\text {d }}$	475	2.0	818	0.581	100	9.4	LOSA	4.2	30.2	Full	500	0.0	0.0
Approach	475	2.0		0.581		9.4	LOSA	4.2	30.2				
Intersection	2325	2.0		0.581		6.6	Los A	4.2	30.2				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab) Roundabout LOS Method: SIDRA Roundabout LO
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
OS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection)
intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
V (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ldt I SId
rganisation: STANTEC CONSULTING LTD | Processed: Tuesday, May 01, 2018 12:22:16 P \qquad

MOVEMENT SUMMARY

Site: 101 [2029 TF w/ WBL \& NBR PM] Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Deman Total veh/h	$\begin{gathered} \text { Hows } \\ \text { HV } \\ \% \end{gathered}$	$\begin{gathered} \text { Deg. } \\ \text { Satn } \\ \text { vic } \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back veh	Queue Distance m	Prop. Queued	Effective per veh	$\begin{gathered} \text { Average } \\ \text { Speed } \\ \mathrm{km} / \mathrm{h} \end{gathered}$
South: Meynell Road											
1	L2	35	2.0	0.033	10.4	LOS B	0.2	1.3	0.52	0.63	52.7
2	T1	5	2.0	0.033	4.5	LOSA	0.2	1.3	0.52	0.63	52.5
3	R2	390	2.0	0.196	3.2	LOSA	0.0	0.0	0.00	0.43	56.7
Approach		430	2.0	0.196	3.8	LOSA	0.2	1.3	0.05	0.44	56.2
East: Perth Street											
4	L2	615	2.0	0.434	9.4	LOSA	2.6	18.9	0.25	0.61	53.0
5	T1	565	2.0	0.422	3.4	LOSA	2.6	18.4	0.23	0.38	57.2
6	R2	135	2.0	0.422	4.0	LOSA	2.6	18.4	0.23	0.38	55.3
Approach		1315	2.0	0.434	6.3	LOSA	2.6	18.9	0.24	0.49	54.9
North: Meynell Road											
7	L2	80	2.0	0.136	11.6	Los B	0.5	3.2	0.54	0.82	52.9
8	T1	5	2.0	0.136	5.7	LOSA	0.5	3.2	0.54	0.82	52.7
9	R2	20	2.0	0.136	6.0	LOSA	0.5	3.2	0.54	0.82	51.2
Approach		105	2.0	0.136	10.3	Los B	0.5	3.2	0.54	0.82	52.5
West: Perth Street											
	L2	35	2.0	0.581	14.8	Los B	4.2	30.2	0.73	0.91	53.5
11	T1	385	2.0	0.581	8.9	LOSA	4.2	30.2	0.73	0.91	53.3
	R2	55	2.0	0.581	9.2	losa	4.2	30.2	0.73	0.91	51.8
Approach		475	2.0	0.581	9.4	LOSA	4.2	30.2	0.73	0.91	53.1
All Vehicles		2325	2.0	0.581	6.6	LOSA	4.2	30.2	0.32	0.58	54.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
venicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

IDRA INTERSECTION $7.0 \mid$ Copyright © $2000-2017$ Akcelik and Associate Pty Ltd |sid

LANE LEVEL OF SERVICE

7 Site: 101 [2029 TF w/ WBL \& NBR PM]
Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and V / c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{V} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
(OS values are based on average delay for all lanes (v/c not used as specified in HCM 2010
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

IRRAINTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ltd I sidrasolutions.com
Organisation: STANTEC CONSULTING LTD I Processed. Tuesday, May 01, $20181212: 22: 16 \mathrm{PMM}$ PI

LANE SUMMARY
Site: 101 [2034 TF w/ WBL \& NBR AM] Perth Street and Meynell Road

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { San } \\ & \text { v/c } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Veh } \end{aligned}$	$\begin{gathered} \text { Queve } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
Lane $1^{\text {d }}$	55	2.0	1095	0.050	100	10.7	Los b	0.3	2.1	Full	500	0.0	0.0
Lane 2	520	2.0	1987	0.262	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	575	2.0		0.262		4.0	LOSA	0.3	2.1				
East: Perth Street													
Lane 1	210	2.0	134	0.156	100	9.3	LOSA	0.7	5.2	Full	500	0.0	0.0
Lane $2^{\text {d }}$	360	2.0	1639	0.220	100	3.4	losa	1.1	8.2	Full	500	0.0	0.0
Approach	570	2.0		0.220		5.6	LOSA	1.1	8.2				
North: Meynell Road													
Lane $1^{\text {d }}$	165	2.0	972	0.170	100	9.3	LOSA	0.5	3.8	Full	500	0.0	0.0
Approach	165	2.0		0.170		9.3	LOSA	0.5	3.8				
West: Perth Street													
Lane $1^{\text {d }}$	565	2.0	1053	0.536	100	5.2	LOSA	3.0	21.2	Full	500	0.0	0.0
Approach	565	2.0		0.536		5.2	LOSA	3.0	21.2				
Intersection	1875	2.0		0.536		5.3	LOSA	3.0	21.2				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
(\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
Dominant lane on roundabout approach
IDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sid
rganisation: STANTEC CONSULTING LTD I Processed: Tuesday, May 01, 2018 12:22:16 PM \qquad

MOVEMENT SUMMARY

Site: 101 [2034 TF w/ WBL \& NBR AM]
Perth Street and Meynell Road

Movement Performance - Vehic											
$\begin{aligned} & \text { Mov } \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	$\begin{aligned} & \text { Demal } \\ & \text { Total } \end{aligned}$ veh/h	$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Sath } \\ & \text { V/ic } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { Sec } \end{gathered}$	Level of Service	95\% Back Vehicles veh	I Queue Distance \qquad	Prop. Queued	Effective per veh	Average Speed km / h
South: Meynell Road											
1	L2	50	2.0	0.050	11.3	LOS B	0.3	2.1	0.61	0.68	52.2
2	T1	5	2.0	0.050	5.3	LOSA	0.3	2.1	0.61	0.68	52.0
3	R2	520	2.0	0.262	3.2	LOSA	0.0	0.0	0.00	0.43	56.6
Approach		575	2.0	0.262	4.0	LOSA	0.3	2.1	0.06	0.45	56.2
East: Perth Street											
4	L2	210	2.0	0.156	9.3	LOSA	0.7	5.2	0.19	0.61	53.2
5	T1	320	2.0	0.220	3.3	LOSA	1.1	8.2	0.18	0.36	57.4
6	R2	40	2.0	0.220	3.9	LOSA	1.1	8.2	0.18	0.36	55.6
Approach		570	2.0	0.220	5.6	LOSA	1.1	8.2	0.19	0.45	55.6
North: Meynell Road											
7	L2	130	2.0	0.170	10.5	LOS B	0.5	3.8	0.39	0.73	53.4
8	T1	5	2.0	0.170	4.5	LOSA	0.5	3.8	0.39	0.73	53.2
9	R2	30	2.0	0.170	4.8	LOSA	0.5	3.8	0.39	0.73	51.8
Approach		165	2.0	0.170	9.3	LOSA	0.5	3.8	0.39	0.73	53.1
West: Perth Street											
10	L2	10	2.0	0.536	11.0	Los B	3.0	21.2	0.50	0.57	56.0
11	T1	535	2.0	0.536	5.1	Los A	3.0	21.2	0.50	0.57	55.8
12	R2	20	2.0	0.536	5.4	LOSA	3.0	21.2	0.50	0.57	54.1
Approach		565	2.0	0.536	5.2	LOS A	3.0	21.2	0.50	0.57	55.7
All Vehicles		1875	2.0	0.536	5.3	LOSA	3.0	21.2	0.26	0.51	55.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
venicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

IDRA INTERSECTION 7.0 | Copyright © $2000-2017$ Akcelik and Associates Pty Ltd |sid

LANE LEVEL OF SERVICE

ane Level of Service
S Site: 101 [2034 TF w/ WBL \& NBR AM]
Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and V / c ratio (degree of saturation) per lane.
OS F will result $\mathrm{if} \mathrm{v} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
(
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

IRRAINTERSECTION 7.0 I Copyright © 2000-2017 Akcelik and Associates Pty Ltd I sidrasolutions.com

LANE SUMMARY
Site: 101 [2034 TF w/ WBL \& NBR PM] Perth Street and Meynell Road

Lane Use and Performance													
		$\begin{aligned} & \text { Iows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { San } \\ & \text { v/c } \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	Level of Service	$\begin{aligned} & \text { 95\% Back } \\ & \text { Veh } \end{aligned}$	$\begin{gathered} \text { Queve } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	$\begin{aligned} & \text { Lane } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	$\begin{aligned} & \text { Prob. } \\ & \text { Block. } \end{aligned}$
South: Meynell Road													
Lane $1^{\text {d }}$	40	2.0	1169	0.034	100	9.8	Los A	0.2	1.4	Full	500	0.0	0.0
Lane 2	390	2.0	1987	0.196	100	3.2	LOSA	0.0	0.0	Full	500	0.0	0.0
Approach	430	2.0		0.196		3.8	LOSA	0.2	1.4				
East: Perth Street													
Lane 1	615	2.0	410	0.436	100	9.4	LOSA	2.7	19.1	Full	500	0	0.0
Lane $2^{\text {d }}$	745	2.0	1659	0.449	100	3.5	losa	2.9	20.3	Full	500	0.0	0.0
Approach	1360	2.0		0.449		6.2	LOSA	2.9	20.3				
North: Meynell Road													
Lane $1^{\text {d }}$	105	2.0	758	0.139	100	10.4	LOS B	0.5	3.4	Full	500	0.0	0.0
Approach	105	2.0		0.139		10.4	LOS B	0.5	3.4				
West: Perth Street													
Lane $1^{\text {d }}$	505	2.0	817	0.618	100	9.9	LOSA	4.8	34.4	Full	500	0.0	0.0
Approach	505	2.0		0.618		9.9	LOSA	4.8	34.4				
Intersection	- 2400	2.0		0.618		6.7	Los A	4.8	34.4				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
LOS F will result if $\mathrm{f} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection)
intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
IV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach
SDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Lta | sid
rganisation: STANTEC CONSULTING LTD I Processed. Tuesday, May 01, 2018 12:22:12 PM \qquad

MOVEMENT SUMMARY

B Site: 101 [2034 TF w/ WBL \& NBR PM]
Perth Street and Meynell Road

Movement Performance - Vehicles											
$\begin{gathered} \text { Movov } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Demand Total veh/h	$\begin{aligned} & \text { Hows } \\ & \text { HV } \\ & \% \end{aligned}$	$\begin{gathered} \text { Deg. } \\ \text { Satin } \\ \text { v/c } \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
1	L2	35	2.0	0.034	10.5	Los B	0.2	1.4	0.55	0.64	52.6
2	T1	5	2.0	0.034	4.6	Los A	0.2	1.4	0.55	0.64	52.4
3	R2	390	2.0	0.196	3.2	LOSA	0.0	0.0	0.00	0.43	56.7
Approa		430	2.0	0.196	3.8	LOSA	0.2	1.4	0.05	0.45	56.2
East: Perth Street											
4	L2	615	2.0	0.436	9.4	LOSA	2.7	19.1	0.25	0.61	53.0
5	T1	610	2.0	0.449	3.4	Los A	2.9	20.3	0.24	0.38	57.1
6	R2	135	2.0	0.449	4.0	LOSA	2.9	20.3	0.24	0.38	55.3
Approa		1360	2.0	0.449	6.2	LOSA	2.9	20.3	0.24	0.48	55.0
North: Meynell Road											
7	L2	80	2.0	0.139	11.8	Los B	0.5	3.4	0.56	0.83	52.8
8	T1	5	2.0	0.139	5.9	Los A	0.5	3.4	0.56	0.83	52
9	R2	20	2.0	0.139	6.2	LOSA	0.5	3.4	0.56	0.83	51.1
Approach		105	2.0	0.139	10.4	Los B	0.5	3.4	0.56	0.83	52.4
West: Perth Street											
10	L2	35	2.0	0.618	15.4	LOS B	4.8	34.4	0.76	0.94	53.1
11	T1	415	2.0	0.618	9.4	LOSA	4.8	34.4	0.76	0.94	52.9
12	R2	55	2.0	0.618	9.8	LOSA	4.8	34.4	0.76	0.94	51.4
Approach		505	2.0	0.618	9.9	LOSA	4.8	34.4	0.76	0.94	52.8
All Vehicles		2400	2.0	0.618	6.7	Los A	4.8	34.4	0.33	0.59	54.6

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
Vendicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
OS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). oundabout Capacity Model: SIDRA Standard
IDRA Standard Delay Model is used. Control Delay includes Geometric Delay
nce Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

IDRA INTERSECTION 7.0 | Copyright © $2000-2017$ Akcelik and Associates Pty Ltd |

LANE LEVEL OF SERVICE

ane Level of Service
S Site: 101 [2034 TF w/ WBL \& NBR PM]
Perth Street and Meynell Road
All Movement Classes

Site Level of Service (LOS) Method: Delay \& v/c (HCM 2010). Site LOS Method is specified in the Parameter Setings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS
ane LOS values are based on average delay and V / c ratio (degree of saturation) per lane.
OS F will result if $\mathrm{v} / \mathrm{C}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
tersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

