

Quinn's Pointe 2 Transportation Impact Assessment

Strategy Report

May 25, 2018

Prepared for:

Minto Communities

Prepared by:

Stantec Consulting Ltd.

Certification

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered¹ professional in good standing, whose field of expertise is either transportation engineering or transportation planning.

Signature of individual certifier that s/he meets the above four criteria.

Robert Vastag, RPP Associate, Senior Transportation Planner Project Manager 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

Phone: (613) 724-4354 Cell: (613) 853-2837 Fax: (613) 722-2799 Robert.Vastag@stantec.com

¹ License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works

Table of Contents

1.0	SCREENING	
1.1	SUMMARY OF DEVELOPMENT	1
1.2	TRIP GENERATION TRIGGER	
1.3	LOCATION TRIGGERS	2
1.4	SAFETY TRIGGERS	2
1.5	SUMMARY	2
2.0	SCOPING	
2.1	EXISTING AND PLANNED CONDITIONS	
	2.1.1 Proposed Development	
	2.1.2 Existing Conditions	
_	2.1.3 Planned Conditions	
2.2	STUDY AREA AND TIME PERIODS	
	2.2.1 Study Area	
	2.2.2 Time Periods	
	2.2.3 Horizon Years	
2.3	EXEMPTIONS REVIEW	14
3.0	FORECASTING	A E
3.0 3.1	DEVELOPMENT-GENERATED TRAVEL DEMAND	
J. I	3.1.1 Trip Generation and Mode Shares	
	3.1.1 Trip Generation and Mode Shares	
	3.1.3 Trip Assignment	
3.2	BACKGROUND NETWORK TRAVEL DEMAND	
ა.∠	3.2.1 Transportation Network Plans	
	3.2.2 Background Growth	
	3.2.3 Other Developments	
3.3	DEMAND RATIONALIZATION	
0.0		
4.0	STRATEGY REPORT	23
4.1	DEVELOPMENT DESIGN	23
	4.1.1 Design for Sustainable Modes	23
	4.1.2 Circulation and Access	23
	4.1.3 New Street Networks	23
4.2	PARKING	23
	4.2.1 Parking Supply	
	4.2.2 Spillover Parking	23
4.3	BOUNDARY STREET DESIGN	
	4.3.1 Design Concept	
4.4	ACCESS INTERSECTIONS DESIGN	
4.5	TRANSPORTATION DEMAND MANAGEMENT	26
4.6	NEIGHBOURHOOD TRAFFIC MANAGEMENT	27
	4.6.1 Adjacent Neighbourhoods	
4.7	TRANSIT	27

May 25, 2018

	4.7.1	Route Capacity	27
	4.7.2	1 7	
4.8	REVIEV	V OF NETWORK CONCEPT	28
4.9	INTERS	ECTION DESIGN	28
	4.9.1	Intersection Control	
	4.9.2	Intersection Design	
	4.9.3	Summary of Required Road Improvements	
5.0	CONCI	USIONS – FUTURE ROADWAY MODIFICATION APPROVAL AT	
0.0		RATION	66
LIST	OF TABL	FS	
			•
		g Traffic Counts	
		ound Developments	
		ses and Auto Trip Generation Rates	
		sion to Person Trips	
		enerated by Mode and Land Use	
		y and Internal Capture Rates	
		y and Internal Capturestribution	
		ound Developments	
		OS Conditions – Segments	
		PM Traffic Volume Forecasts for Collector Roads	
		Intersection Controls at the Study Area Intersections	
		Existing Intersection Operations (Synchro Results)	
		Future Background Operations (Synchro Results)	
Table	15 2025	Total Future Operations (Synchro Results)	38
		Total Future MMLOS - Greenbank Road at Barnsdale Road	
		Future Background Operations (Synchro Results)	
		FBG MMLOS - Greenbank Road at Barnsdale Road	
		FBG MMLOS - Existing Greenbank Road at Kilbirnie Drive	
		FBG MMLOS - Existing Greenbank Road at New E-W Collector	
		Total Future Operations (Synchro Results)	
Table	22 2031	Total Future MMLOS - Existing Greenbank Road at Barnsdale Road	54
Table	23 2031	Total Future MMLOS - Existing Greenbank Road at Kilbirnie Drive	55
		Total Future MMLOS - Existing Greenbank Road at New E-W Collector	
Table	25 2036 1	Ultimate Operations (Synchro Results)	60
Table	26 2036 1	Ultimate MMLOS – Existing Greenbank Road at Barnsdale Road	62
Table	27 2036 1	Ultimate MMLOS – Existing Greenbank Road at Kilbirnie Drive	63
		Ultimate MMLOS – Existing Greenbank Road at New E-W Collector	
Table	29 Summ	nary of Required Road Improvements at The Study Area Intersections	65

May 25, 2018

LIST OF FIGURES

Figure 1 Concept Plan	3
Figure 2 Existing Traffic Control and Lane Configuration	
Figure 3 Existing Pedestrian and Cycling Network	
Figure 4 Study Area Transit Routes	7
Figure 5 2018 Existing Traffic Volumes - AM Peak Hour	Q
Figure 6 2018 Existing Traffic Volumes - PM Peak Hour	9
Figure 7 Collision Frequency	
Figure 8 Background Developments	
Figure 9 Study Area and Study Area Intersections	13
Figure 10 Trip Assignment – 2025 Interim – Weekday AM Peak Hour	
Figure 11 Trip Assignment – 2025 Interim – Weekday PM Peak Hour	
Figure 12 Background Developments	22
Figure 13 2025 Future Background Traffic Volumes - AM Peak Hour	
Figure 14 2025 Future Background Traffic Volumes - PM Peak Hour	
Figure 15 2025 Future Background Required Intersection Control and Lane	
Configuration	35
Figure 16 2025 Total Future Traffic Volumes - AM Peak Hour	
Figure 17 2025 Total Future Traffic Volumes - PM Peak Hour	
Figure 18 2025 Total Future Required Intersection Control and Lane Configuration	
Figure 19 2031 Future Background Traffic Volumes - AM Peak Hour	
Figure 20 2031 Future Background Traffic Volumes - PM Peak Hour	
Figure 21 2031 Future Background Required Intersection Control and Lane	
Configuration	45
Figure 22 2031 Total Future Traffic Volumes - AM Peak Hour	
Figure 23 2031 Total Future Traffic Volumes - PM Peak Hour	51
Figure 24 2031 Total Future Required Intersection Control and Lane Configuration	53
Figure 25 2036 Ultimate Traffic Volumes - AM Peak Hour	59
Figure 26 2036 Ultimate Traffic Volumes - PM Peak Hour	59
Figure 27 2036 Ultimate Required Intersection Control and Lane Configuration	61
LIST OF APPENDICES	
APPENDIX A TRAFFIC DATA	A. 1
APPENDIX B TDM CHECKLISTS	B.1
APPENDIX C INTERSECTION PERFORMANCE WORKSHEETS	C.1
C.1 2018 Existing Conditions	
C.2 2025 Future Background Conditions	
C.3 2025 Total Future Conditions	C.3
C.4 2031 Future Background Conditions	
C.5 2031 Total Future Conditions	C.5
C.6 2036 Ultimate Conditions	
APPENDIX D INTERSECTION CONTROL WARRANTS	D.1
D.1 Multiway Stop-Control Warrant Analysis	
D.2 Traffic Signal Warrant Analysis	

Screening May 25, 2018

1.0 SCREENING

1.1 SUMMARY OF DEVELOPMENT

Quinn's Pointe is 58 hectares in size and is bordered by Borrisokane Road, Kilbirnie Road, Existing Greenbank Road, and Barnsdale Road to the west, north, east and south, respectively.

Land Use Classification	Code	Phase 1 & 2 2025	Phase 3 2031	Total
Single Detached Houses	210	389	159	548
Residential Condo/Townhouse	230	250	217	467
Apartment (Medium Density)	220		100	100
Elementary School	520	59k sq.ft. GFA		59k sq.ft. GFA

Access to the site will be via Future Greenbank Road, Kilbirnie Drive, New E-W Collector, River Mist Road, and Barnsdale Road.

Figure 1 illustrates the concept plan.

1.2 TRIP GENERATION TRIGGER

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size	Triggered
Single-family homes	40 units	Yes
Townhomes or apartments	90 units	Yes
Office	3,500 sq.m.	No
Industrial	5,000 sq.m.	No
Fast-food restaurant or coffee shop	100 sq.m.	No
Destination retail	1,000 sq.m.	No
Gas station or convenience market	75 sq.m	No
Overall		Yes

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual

If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

Screening May 25, 2018

1.3 LOCATION TRIGGERS

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	✓	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		×

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

1.4 SAFETY TRIGGERS

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	✓	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		×
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		×
Is the proposed driveway within auxiliary lanes of an intersection?		×
Does the proposed driveway make use of an existing median break that serves an existing site?		×
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		*
Does the development include a drive-thru facility?		×

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

1.5 SUMMARY

	Yes	No
Does the development satisfy the Trip Generation Trigger?	✓	
Does the development satisfy the Location Trigger?	✓	
Does the development satisfy the Safety Trigger?	✓	

If none of the triggers are satisfied, the TIA Study is complete. If one or more of the triggers is satisfied, the TIA Study must continue into the next stage (Screening and Scoping).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

Screening May 25, 2018

Figure 1 Concept Plan

2.0 SCOPING

2.1 EXISTING AND PLANNED CONDITIONS

2.1.1 Proposed Development

The proposed development is within the Barrhaven South Urban Expansion Study Area and is currently zoned as "General Rural Area" or "Sand and Gravel Resource Area" on Official Plan Schedule A – *Rural Policy Plan*. Following the completion of the Barrhaven South Urban Expansion *Community Design Plan*, all land within the Urban Expansion Study Area will be designated General Urban Area in the Official Plan, which is primarily a residential designation.

The proposed development consists of 548 single-family dwelling units, 467 townhomes, 100 apartment units, and two elementary schools. The development is anticipated to proceed in three phases with full build-out in 2031. Access to the site will be via Future Greenbank Road, Kilbirnie Drive, New E-W Collector, River Mist Road, and Barnsdale Road. No restrictions are proposed at any of the access locations.

2.1.2 Existing Conditions

2.1.2.1 Roads and Traffic Control

The roadways under consideration in the study area are under the jurisdiction of the City of Ottawa and are described as follows:

Existing Greenbank

Road

Existing Greenbank Road is designated as a two-lane arterial north of Barnsdale Road and a two-lane collector south of Barnsdale Road. North of Kilbirnie, Existing Greenbank Road has an urban cross-section with a posted speed of 60km/h and south of Kilbirnie, it has a rural cross-section with a posted speed of 80 km/h.

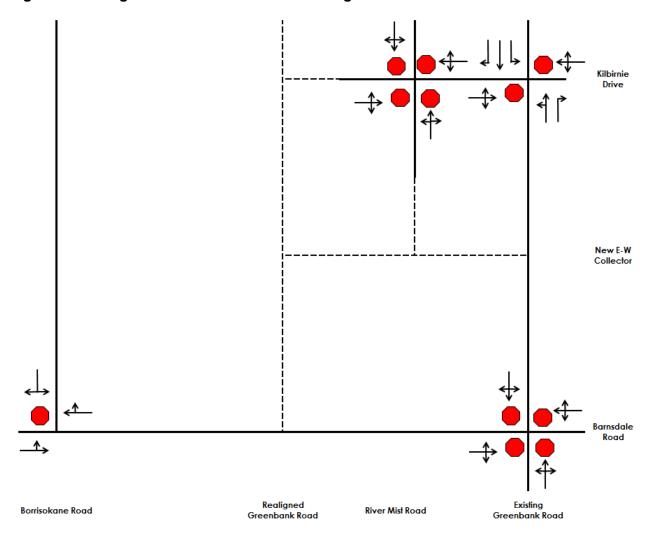
Cambrian Road

Cambrian Road is a two-lane rural arterial road with a posted speed limit of 70km/h between Borrisokane Road and Seeley's Bay Street. East of Seeley's Bay Street, Cambrian Road transitions to a two-lane urban arterial road with sidewalks along both sides and a posted speed limit of 50km/h.

Borrisokane Road

North of Cambrian Road Borrisokane Road is a two-lane rural arterial road and south of Cambrian Road it is a two-lane rural collector road. Borrisokane Road has a posted speed limit of 80km/h and gravel shoulders are provided along both sides. The intersection with Barnsdale Road is stop-controlled along the Borrisokane Road approach.

Barnsdale Road

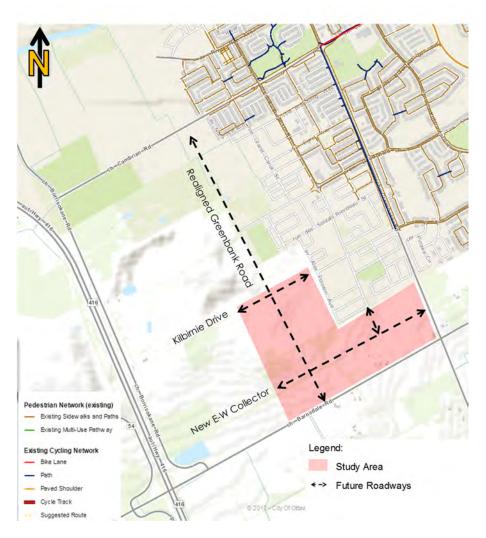

Barnsdale Road is a two-lane arterial with a rural cross-section and a posted speed limit of

80 km/h. Trucks are not permitted on Barnsdale Road.

Figure 2 illustrates the existing traffic control and lane configuration at study area intersections.

Figure 2 Existing Traffic Control and Lane Configuration

2.1.2.2 Walking and Cycling Network


Within the Barrhaven South community there are bicycle paths, paved shoulders, and sidewalks that connect the various communities. There are numerous bicycle paths within the Half Moon Bay community, as well as along Existing Greenbank Road between Cambrian Road and Kilbirnie Drive.

In terms of pedestrian facilities, there are various sidewalks along the majority of the streets within the Half Moon Bay and Stonebridge communities, including Cambrian Road and Existing Greenbank Road.

Figure 3 illustrates the existing pedestrian and cycling facilities within the study area.

Figure 3 Existing Pedestrian and Cycling Network

Source: geoOttawa, January 2018

2.1.2.3 Transit

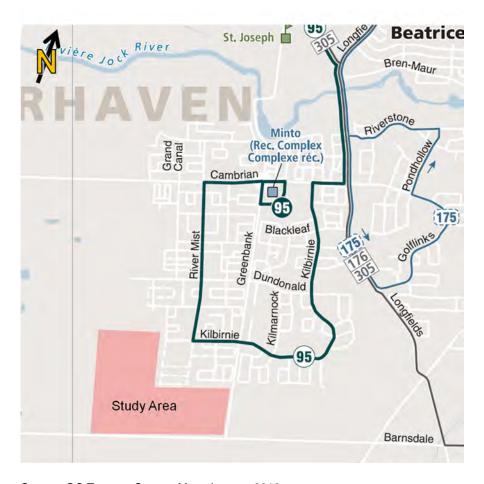

Transit service is provided to the Study Area via route 95. Route 95 is a regular bus route that runs from the Minto Centre Recreation Complex to Trim Road and operates on a 15-minute headway during the morning peak period northbound and during the afternoon peak period southbound.

Figure 4 illustrates existing study area transit routes.

Scoping May 25, 2018

Figure 4 Study Area Transit Routes

Source: OC Transpo System Map, January 2018

The TRANS Committee's 2011 NCR Household Origin-Destination Survey indicates that approximately 27% of residents traveling from the South Nepean district during the AM Peak Hour use transit as their primary mode of transportation. Similarly, approximately 24% of residents traveling to the South Nepean district during the PM Peak Hour use transit. Roughly 4% of residents traveling within the South Nepean district use transit as their primary travel mode.

As outlined in the City of Ottawa's 2013 Transportation Master Plan, Bus Rapid Transit (BRT) is scheduled to be implemented along Existing Greenbank Road north of the Jock River and along Realigned Greenbank Road south of the Jock River, however, this scheduled upgrade is not included in the City's 2031 Affordable Network, therefore it will occur beyond 2031.

2.1.2.4 Traffic Management

There are no traffic management measures near the subject site.

Scoping May 25, 2018

2.1.2.5 Traffic Volumes

Traffic volumes were updated using traffic counts from late 2017 and early 2018. For the intersection of Borrisokane Road and Barnsdale Road, a growth factor² was applied to Stantec's 2015 traffic count and the turning volumes were balanced with the Existing Greenbank Road and Barnsdale Road count (January 2018).

Table 1 lists the traffic counts used for the analysis.

Table 1 Existing Traffic Counts

Location	Source	Date
Borrisokane Road and Barnsdale Road	Stantec	July 23, 2015
Existing Greenbank Road and Kilbirnie Drive	City	November 9, 2017
River Mist Road and Kilbirnie Drive	Stantec	January 9, 2018
Existing Greenbank Road and Barnsdale Road	Stantec	January 10, 2018

Figure 5 and **Figure 6** illustrate 2018 existing AM and PM peak hour traffic volumes at the study area intersections. **Annex 1** contains the traffic data and is provided for reference.

² Growth rates were established in the *Barrhaven South Urban Expansion Study Area Community Design Plan, Draft Transportation Master Study (Stantec, September 2017)*

Scoping May 25, 2018

Figure 5 2018 Existing Traffic Volumes - AM Peak Hour

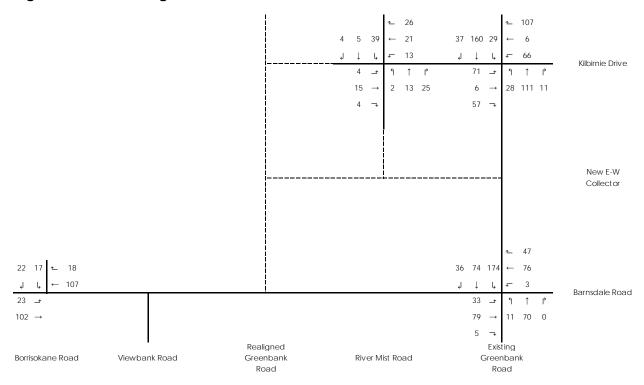
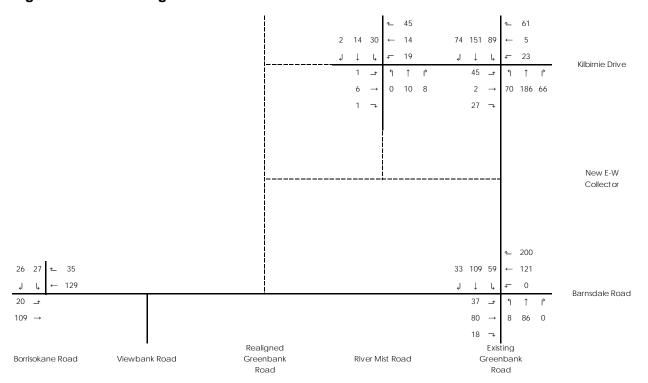



Figure 6 2018 Existing Traffic Volumes - PM Peak Hour

Scoping May 25, 2018

2.1.2.6 Collision History

Three years of collision data from the City of Ottawa's *Open Data* database was reviewed to determine if the streets or intersections surrounding the subject site exhibited a history of collisions. **Figure 7** shows the collision frequency in the study area; circles without a number indicate that there was only one reported collision.

The intersection of Existing Greenbank Road and Barnsdale Road was the only study area intersection or street found to have a history of collisions. There were four reported collisions in 2014, four reported collisions in 2015, and no reported collisions in 2016. The majority of collisions were angle collisions, likely due to the intersection being two-way stop-control. The conversion to an all-way stop-controlled intersection appears to have reduced the number of collisions at the intersection.

A collision pattern has not been observed at study area intersections since the intersection of Existing Greenbank Road and Barnsdale Road was converted to an all-way stop-controlled intersection.

Figure 7 Collision Frequency

Scoping May 25, 2018

2.1.3 Planned Conditions

2.1.3.1 Road Network Improvements

The only significant road network improvement in the study area is the realignment and widening of Greenbank Road.

The Realigned Greenbank Road and Southwest Transitway Extension Planning and Environmental Assessment looked at extending Realigned Greenbank Road and the Southwest Transitway south from the formerly planned terminus at Cambrian Road. The recommended plan includes extending both the arterial road and Transitway, running almost parallel to Borrisokane Road, to Barnsdale Road approximately 300m east of Viewbank Road.

The recommended ultimate cross section for Realigned Greenbank Road includes four lanes for vehicles, two lanes down the centre median for buses and transit platforms, and sidewalks and cycle tracks along both sides of the road for a total right-of-way width of 41.5m. The right-of-way is planned to widen slightly to 42.5m to accommodate station platforms and turning lanes at the Cambrian Road and Dundonald Drive intersections.

The EA identified a preliminary location for a park and ride lot on the west side of Realigned Greenbank Road approximately 450m north of Barnsdale Road, however, the location of the park and ride lot was modified slightly through the Community Design Plan process and is now proposed to be located on the south-west corner of Realigned Greenbank Road and the future Kilbirne Drive extension.

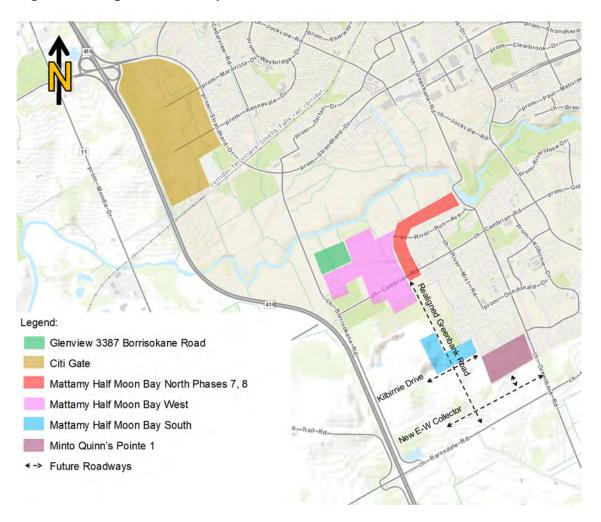
In terms of project timing, the TMP identifies the Realigned Greenbank Road and Southwest Transitway Extension to occur beyond 2031.

2.1.3.2 Future Background Developments

The Barrhaven South community has experienced substantial growth over the past few years and that growth is anticipated to continue well into the future. There are numerous developments scheduled to occur near the subject site, as outlined in **Table 2** and as illustrated in **Figure 8** below.

Table 2 Background Developments

Development	Location	Size	Build-out
Mattamy's Half Moon Bay South Phase 4	South of Half Moon Bay South Phase 3, between Realigned Greenbank Road and Existing Greenbank Road	265 residential units	2018
Mattamy's Half Moon Bay North Phases 7, 8	North of Cambrian Road, west of Greenbank Road	471 residential units	2019
Minto's Quinn's Pointe Phase 1	West of Existing Greenbank Road, South of Half Moon Bay South	475 residential units	2019
Glenview's 3387 Borrisokane Road	North of Half Moon Bay West, east of Borrisokane Road, south of the Jock River	288 residential units	2022
Mattamy's Half Moon Bay West	North of Cambrian Road between Borrisokane Road and Realigned Greenbank Road	945 residential units	2024



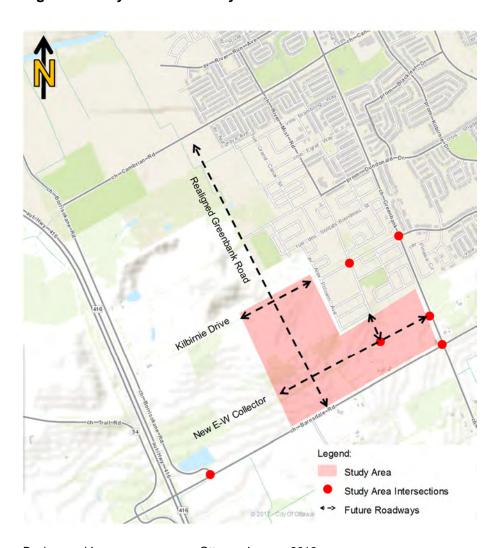
Scoping May 25, 2018

Development	Location	Size	Build-out
Citi Gate Highway 416 Employment Lands	Between Highway 416 and Strandherd Drive, south of Fallowfield, north of the train tracks	350k sq.ft. GFA (95 ha.) business park	Interim: 2019 Ultimate: 2029
Mattamy's Half Moon Bay South	Between Dundonald Drive and Kilbirne Drive, straddling Realigned Greenbank Road	270 residential units and 69k ft2 GFA specialty retail	Interim: 2025 Ultimate: 2031

These background developments will be explicitly accounted for and added to the roadway network as background traffic volumes. By 2025, the majority of the background developments will be built and occupied with the exception of the Ultimate Phase for the Citi Gate development and the balance of the Mattamy Half Moon Bay South lands, which will be built by the 2031 horizon.

Figure 8 Background Developments

Background imagery source: geoOttawa, January 2018


2.2 STUDY AREA AND TIME PERIODS

2.2.1 Study Area

The study area is in the Barrhaven South area of the City of Ottawa at the southern end of the urban boundary. The area is located east of Borrisokane Road, north of Barnsdale Road, west of Existing Greenbank Road, and south of Kilbirnie Drive.

Figure 9 shows the study area and study area intersections.

Figure 9 Study Area and Study Area Intersections

Background Imagery source: geoOttawa, January 2018

Scoping May 25, 2018

2.2.2 Time Periods

The scope of the transportation assessment includes the weekday AM and PM peak hours.

2.2.3 Horizon Years

The scope of the transportation assessment includes the following horizons:

- 2018 existing conditions;
- 2025 future background and total future conditions (Phases 1 and 2);
- 2031 future background and total future condition (build-out of Phases 1, 2 and 3); and,
- 2036 total future conditions (build-out + 5 years).

2.3 EXEMPTIONS REVIEW

Module	Element	Exemption Considerations	Exemption		
Design Review Component					
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Exempt		
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Not exempt		
	4.2.1 Parking Supply	Only required for site plans	Exempt		
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt		
Network Impact Compon	ent				
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Not exempt		
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Not exempt		
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour more than the equivalent volume permitted by established zoning	Not exempt		

Forecasting May 25, 2018

3.0 FORECASTING

3.1 DEVELOPMENT-GENERATED TRAVEL DEMAND

3.1.1 Trip Generation and Mode Shares

Table 3 shows the land uses and the auto trip generation rates for the proposed development. ITE rates were used to remain consistent with the *Transportation Master Study*.

Table 3 Land Uses and Auto Trip Generation Rates

Land Use	Independent			eekday <i>l</i> eak Hou		Weekday PM Peak Hour		
	Variable and S	Size	In	Out	Total	In	Out	Total
210 – Single Detached Houses	Units	548	0.18	0.53	0.71	0.54	0.32	0.85
220 – Apartment	Units	100	0.11	0.42	0.53	0.47	0.25	0.73
230 - Residential Condo / Townhouse	Units	467	0.06	0.3	0.36	0.29	0.14	0.44
520 - Elementary School	GFA (1,000ft ²)	59	2.91	2.29	5.2	0.54	0.67	1.21

The auto trip generation rates were used to forecast the auto trip generation, which was then converted to person trips. The auto trip generation was converted to person trips by assuming that the auto trip generation had an inherent transit mode share of 10% and an auto occupancy of 1.1 persons. By forecasting person trips, the auto mode share for the development can then be used to forecast trip generation for the build-out year for each mode.

Table 4 summarizes the forecasted person trip generation by land use.

Table 4 Conversion to Person Trips

Land Use	Conversion		Weekday AM Peak Hour			Weekday PM Peak Hour		
			ln	Out	Total	In	Out	Total
	Auto Trip Gen		99	290	389	296	175	466
210 Single Detected Houses	Transit Mode Share	10%	10	29	39	30	18	47
210 – Single Detached Houses	Auto Occupancy	1.1	10	29	39	30	18	47
	Total Person Trips	119	348	467	356	211	560	
	Auto Trip Gen	11	42	53	47	25	73	
220 Apartment	Transit Mode Share	10%	1	4	5	5	3	7
220 – Apartment	Auto Occupancy	1.1	1	4	5	5	3	7
	Total Person Trips		13	50	63	57	31	87
	Auto Trip Gen		28	140	168	135	65	205
230 – Residential Condo / Townhouse	Transit Mode Share	10%	3	14	17	14	7	21
	Auto Occupancy	1.1	3	14	17	14	7	21

Forecasting May 25, 2018

Land Use	Conversion		Weekday AM Peak Hour			Weekday PM Peak Hour		
				Out	Total	In	Out	Total
	Total Person Trips	34	168	202	163	79	247	
	Auto Trip Gen		172	135	307	32	40	71
500 Fl (0 l l	Transit Mode Share	10%	17	14	31	3	4	7
520 – Elementary School	Auto Occupancy	1.1	17	14	31	3	4	7
	Total Person Trips		206	163	369	38	48	85
	Auto Trip Gen		310	607	917	510	305	815
Total Davalanment	Transit Mode Share	10%	31	61	92	52	32	82
Total Development	Auto Occupancy	1.1	31	61	92	52	32	82
	Total Person Trips		372	729	1,101	614	369	979

Table 5 lists the trips generated by land use and travel mode. Based on limited existing transit service and active transportation facilities in the immediate study area, it was assumed that the auto mode share will be 90%, passenger mode share will be 5%, transit will be 4% and active modes will be 1%.

Table 5 Trips Generated by Mode and Land Use

Land Use	Travel Mode an			eekday A Peak Hou		Weekday PM Peak Hour			
	Assumed Mode S	hare	In	Out	Total	ln	Out	Total	
	Auto	90%	107	313	420	314	190	504	
210 – Single Detached	Passenger	5%	6	17	23	17	11	28	
Houses	Transit	4%	5	14	19	14	8	22	
	Active	1%	2	3	5	4	2	6	
	Auto	90%	12	45	57	50	28	78	
220 Anartmant	Passenger	5%	0	3	3	2	2	4	
220 – Apartment	Transit	4%	1	2	3	2	1	3	
	Active	1%	0	1	1	1	0	1	
	Auto	90%	31	151	182	151	71	222	
230 – Residential Condo	Passenger	5%	2	8	10	8	4	12	
/ Townhouse	Transit	4%	1	7	8	7	3	10	
	Active	1%	0	2	2	1	1	2	
	Auto	90%	185	147	332	34	43	77	
520 – Elementary	Passenger	5%	10	8	18	2	2	4	
School	Transit	4%	8	7	15	1	2	3	
	Active	1%	2	2	4	1	0	1	
Total Davelenment	Auto	90%	335	656	991	549	332	881	
Total Development	Passenger	5%	18	36	54	29	19	48	

Forecasting May 25, 2018

Land Use		Travel Mode and		Weekday AM Peak Hour			Weekday PM Peak Hour		
	Assumed Mod	de Share	ln	Out	Total	ln	Out	Total	
	Transit	4%	15	30	45	24	14	38	
	Active	1%	4	8	12	7	3	10	

Of the trips generated by the development, some trips will be "pass-by" trips, which are trips made to the site by existing traffic on the roadway as it passes by the site, e.g. on the way to work or on the way home. Pass-by trips only impact the site access; there is no increase in traffic on external roadways.

Some trips generated by a development may also be captured "internally", which means that the trip origin or destination is within the same development. The purpose of an "internal capture" rate is to avoid double-counting trips generated by a development.

Table 6 outlines the pass-by and internal capture rates assumed for each land use. The pass-by and internal capture rates were obtained from the ITE *Trip Generation Manual*.

Table 6 Pass-By and Internal Capture Rates

Landline	Pas	s-By	Internal Capture		
Land Use	AM	PM	AM	PM	
210 - Single Detached Houses	0%	0%	0%	0%	
220 – Apartment	0%	0%	0%	0%	
230 - Residential Condo / Townhouse	0%	0%	0%	0%	
520 - Elementary School	0%	0%	70%	70%	

Table 7 summarizes the forecasted pass-by and internal capture trips by modal share for each land use.

Table 7 Pass-By and Internal Capture

Land Use	Pass-by /		eekday A Peak Hou		Weekday PM Peak Hour			
	Internal Capture	In	Out	Total	ln	Out	Total	
	New Auto Trips	107	313	420	314	190	504	
210 – Single	Pass-By Trips	0	0	0	0	0	0	
Detached Houses	Internal Capture Trips	0	0	0	0	0	0	
	Net New Auto Trips	107	313	420	314	190	504	
	New Auto Trips	12	45	57	50	28	78	
220 Apartmont	Pass-By Trips	0	0	0	0	0	0	
220 – Apartment	Internal Capture Trips	0	0	0	0	0	0	
	Net New Auto Trips	12	45	57	50	28	78	
230 - Residential	New Auto Trips	31	151	182	151	71	222	
Condo / Townhouse	Pass-By Trips	0	0	0	0	0	0	

Forecasting May 25, 2018

Land Use Pass-by /			eekday A Peak Hou		Weekday PM Peak Hour			
	Internal Capture	In	Out	Total	In	Out	Total	
	Internal Capture Trips	0	0	0	0	0	0	
	Net New Auto Trips	31	151	182	151	71	222	
	New Auto Trips	185	147	332	34	43	77	
520 – Elementary	Pass-By Trips	0	0	0	0	0	0	
School	Internal Capture Trips	130	103	233	24	30	54	
	Net New Auto Trips	55	44	99	10	13	23	
	New Auto Trips	335	656	991	549	332	881	
Total Davidenment	Pass-By Trips	0	0	0	0	0	0	
Total Development	Internal Capture Trips	130	103	233	24	30	54	
	Net New Auto Trips	205	553	758	525	302	827	

Following the application of the pass-by and internal capture rates, the development is expected to generate approximately 758 and 827 net new auto trips (two-way) during the weekday AM and PM peak hours, respectively.

3.1.2 Trip Distribution

The distribution of traffic to / from the study area was determined through examination of the TRANS Committee's 2011 Origin-Destination (O-D) Survey for the South Nepean District.

Table 8 summarizes the assumed trip distribution for the proposed development.

Table 8 Trip Distribution

Direction	Percentage
North	25%
East	25%
South	5%
West	5%
Internal within the South Nepean District	40%
Total	100%

3.1.3 Trip Assignment

The trips generated by the proposed development was assigned to the boundary road network using a logical pattern of primary roads (i.e. along arterials and collectors).

For assigning site traffic to the boundary road network, Realigned Greenbank Road was assumed to not be in place prior to the ultimate 2036 horizon, which is consistent with the timelines outlined in the City's 2013 Transportation Master Plan. This enables the subject transportation assessment to determine if Realigned Greenbank Road – or portions of it – will be required to support the development.

Forecasting May 25, 2018

Figure 10 and **Figure 11** summarize the trip assignment to the study area road network during the weekday AM and PM peak hours, respectively.

Figure 10 Trip Assignment - 2025 Interim - Weekday AM Peak Hour

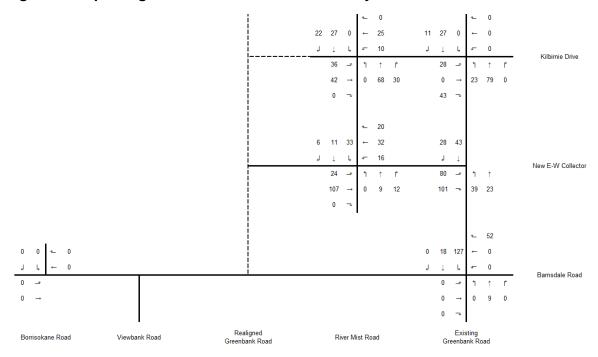
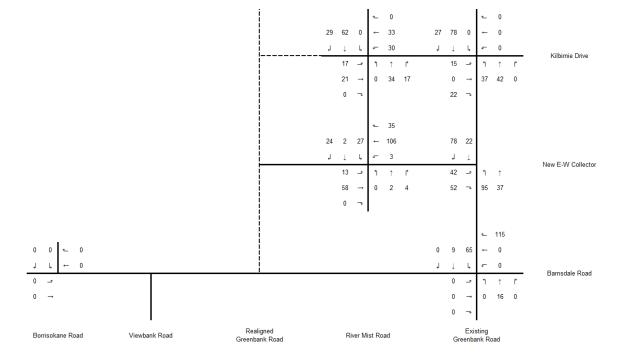



Figure 11 Trip Assignment - 2025 Interim - Weekday PM Peak Hour

Forecasting May 25, 2018

3.2 BACKGROUND NETWORK TRAVEL DEMAND

3.2.1 Transportation Network Plans

The only significant road network improvement near the study area is the realignment and widening of Greenbank Road.

The Realigned Greenbank Road and Southwest Transitway Extension Planning and Environmental Assessment looked at extending Realigned Greenbank Road and the Southwest Transitway south from the formerly planned terminus at Cambrian Road. The recommended plan includes extending both the arterial road and Transitway, running almost parallel to Borrisokane Road, to Barnsdale Road approximately 300m east of Viewbank Road.

The recommended cross section for Realigned Greenbank Road includes four lanes for vehicles, two lanes down the centre median for buses and transit platforms, and sidewalks and cycle tracks along both sides of the road for a total right-of-way width of 41.5m. The right-of-way is planned to widen slightly to 42.5m to accommodate station platforms and turning lanes at the Cambrian Road and Dundonald Drive intersections.

The EA identified a preliminary location for a park and ride lot on the west side of Realigned Greenbank Road approximately 450m north of Barnsdale Road, however, the location is to be confirmed as part of the subject CDP.

In terms of project timing, the TMP identifies the Realigned Greenbank Road and Southwest Transitway Extension to occur beyond 2031.

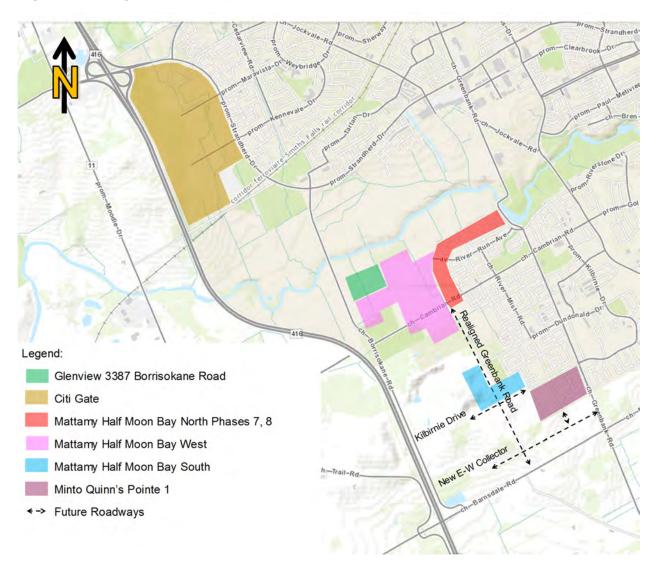
3.2.2 Background Growth

A nominal background growth rate of 2 percent annually was applied to existing traffic volumes to account for traffic growth outside of the study area. This rate of background growth is consistent with the *Barrhaven South Urban Expansion Study Area Community Design Plan, FINAL Transportation Master Study (Stantec, February 2018).* This rate of growth is conservative given most growth within the study area will be explicitly accounted for in **Section 3.2.3**.

3.2.3 Other Developments

The Barrhaven South community has experienced substantial growth over the past few years and that growth is anticipated to continue well into the future. There are numerous developments scheduled to occur near the subject site, as outlined in **Table 9** and as illustrated in **Figure 12**.

Forecasting May 25, 2018


Table 9 Background Developments

Development	Location	Size	Build-out	
Mattamy's Half Moon Bay South Phase 4	South of Half Moon Bay South Phase 3, between Realigned Greenbank Road and Existing Greenbank Road	265 residential units	2018	
Mattamy's Half Moon Bay North Phases 7, 8	North of Cambrian Road, west of Greenbank Road	471 residential units	2019	
Minto's Quinn's Pointe Phase 1	West of Existing Greenbank Road, South of Half Moon Bay South	475 residential units	2019	
Glenview's 3387 Borrisokane Road	North of Half Moon Bay West, east of Borrisokane Road, south of the Jock River	288 residential units	2022	
Mattamy's Half Moon Bay West	North of Cambrian Road between Borrisokane Road and Realigned Greenbank Road	945 residential units	2024	
Citi Gate Highway 416 Employment Lands	Between Highway 416 and Strandherd Drive, south of Fallowfield, north of the train tracks	350k sq.ft. GFA (95 ha.) business park	Interim: 2019 Ultimate: 2029	
Mattamy's Half Moon Bay South	Between Dundonald Drive and Kilbirnie Drive, straddling Realigned Greenbank Road	270 residential units and 69k ft2 GFA specialty retail	Interim: 2025 Ultimate: 2031	

These background developments were explicitly accounted for and added to the roadway network as background traffic volumes. By 2025, the majority of the background developments will be built and occupied with the exception of the Ultimate Phase for the Citi Gate development and the balance of the Mattamy Half Moon Bay South lands, which will be built by the 2031 horizon.

Forecasting May 25, 2018

Figure 12 Background Developments

Background imagery source: geoOttawa, January 2018

3.3 DEMAND RATIONALIZATION

The proposed residential development is not anticipated to encounter any capacity restrictions that can not be resolved through roadway improvements and therefore no demand rationalization is required.

Strategy Report May 25, 2018

4.0 STRATEGY REPORT

4.1 DEVELOPMENT DESIGN

4.1.1 Design for Sustainable Modes

This section was addresses as part of the *Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study*, section 8.0 *Mobility and Circulation*.

4.1.2 Circulation and Access

Not applicable; exempted during screening and scoping.

4.1.3 New Street Networks

This section was addressed as part of the *Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study*, section 8.0 *Mobility and Circulation*.

4.2 PARKING

4.2.1 Parking Supply

Not applicable; exempted during screening and scoping.

4.2.2 Spillover Parking

Not applicable; exempted during screening and scoping.

4.3 BOUNDARY STREET DESIGN

4.3.1 Design Concept

The multi-modal level of service (MMLOS) was evaluated for Existing Greenbank Road, Barnsdale Road, Kilbirnie Drive, River Mist Road and the new E-W Collector to assist with developing a design concept that maximizes the achievement of the MMLOS objectives. The MMLOS targets for a "Developing Community" seemed most suitable for the study area roadways.

As development progress towards the south it is expected that the existing cross-section for Existing Greenbank Road will also be extended south. Therefore, sidewalks, boulevard and MUP was assumed to be extended to Barnsdale Road by the 2025 horizon.

The Ultimate Cycling Network from the City of Ottawa Cycling Plan (2013) designates Existing Greenbank Road as a spine cycling route and Barnsdale Road and River Mist Road as local cycling routes. These roads are therefore

Strategy Report May 25, 2018

subject to a LOS target of C and B, respectively. Kilbirnie Drive and the New E-W Collector do not have a designation and are therefore subject to a target of D.

None of the boundary roads are truck routes and therefore there is no MMLOS target for the roadways.

Table 10 presents the MMLOS conditions for roadway segments.

Barnsdale Road does not currently have sidewalks or a paved shoulder and therefore the existing LOS is F for cycling and pedestrians. It is important to recognize, however, that given its rural nature there is currently very little pedestrian and cycling activity along Barnsdale Road. The 2013 TMP lists the widening of Barnsdale Road, from Highway 416 to Prince of Whales Drive, as a conceptual project with post-2031 implementation. Once the road is widened, it will be designed with pedestrian and cycling facilities that will meet the City's MMLOS targets for that roadway. In the meantime, the ultimate cross-section for the purposes of the MMLOS in Table 10 is based on the cross-section for Barnsdale Road as established in the Realigned Greenbank Road EA.

Transit service on River Mist Road and Kilbirnie Drive currently experiences medium friction and medium incident potential due to the narrow right-of-way and vehicles parked on the roadway. Similarly, transit service on the New E-W Collector is anticipated to experience medium friction and medium incident potential due to the presence of onstreet parking. These three streets, as a result, have a Transit LOS of an E which is lower then the Transit LOS target of D. The only way to resolve the issue would be to prohibit on-street parking which is not likely to be desirable.

Strategy Report May 25, 2018

Table 10 MMLOS Conditions – Segments

	Segment	Existing Greenbank Road Segment (arterial, spine cycling route)		Barnsdale Road (Arterial, local cycling route)		Kilbirnie Drive (Collector, no cycling designation)		New E-W Collector (Collector, no cycling designation)		River Mist Road (Collector, no cycling designation)		Target
		Existing	Build-out	Existing	Build-out	Existing	Build-out	Existing	Build-out	Existing	Build-out	
	Sidewalk width (m)	2 m	**	None	2 m	2 m	**	N/A	2 m	2 m	**	
ے	Boulevard width (m)	5 m	**	None	**	None	**	N/A	5.0 m	2 m	**	
stria	AADT > 3000?	Yes	**	Yes	**	Yes	**	N/A	Yes	Yes	**	•
- Pedestrian	On-Street parking	No	**	No	No	No	**	N/A	Yes	Yes	**	С
مّ	Operating speed	60 kph	**	80 kph	80 kph	50 kph	**	N/A	50 kph	50 kph	**	
	Level of Service	С	**	F	**	С	**	N/A	В	В	**	
	Type of facility	Separated	**	Mixed	**	Mixed	**	N/A	Separated	Mixed	**	
	Number of travel lanes	N/A	**	2	**	2	**	N/A	N/A	2	**	
(I)	Bike lane width (m)	N/A	**	N/A	**	N/A	**	N/A	N/A	N/A	**	
Bicycle	Operating speed (kph)	N/A	**	80 kph	**	50 kph	**	N/A	N/A	50 kph	**	C/B/D/D/B
商	Centreline (yes/no)	N/A	**	Yes	**	No	**	N/A	N/A	No	**	
	Bike lane blockage freq.	N/A	**	N/A	**	N/A	**	N/A	N/A	N/A	**	
	Level of Service	Α	**	F	**	В	**	N/A	Α	В	**	
.=	Type of facility	Mixed	**	N/A	**	Mixed	**	N/A	Mixed	Mixed	**	
Transit	Parking/driveway friction	Low	**	N/A	**	Medium	**	N/A	Medium	Medium	**	D
F	Level of Service	D	**	N/A	**	E	**	N/A	E	E	**	
	Curb lane width (m)	3.5m	**	3.5m	**							
Truck	Number of travel lanes	2	**	2	**	Not a	oplicable	Not applicable		Not applicable		No Target
-	Level of Service	С	**	С	**							

Notes:

Auto LOS is not considered for segments in the MMLOS Guidelines.

"Mixed" means either cyclists or transit operate in a shared lane with general traffic, i.e. they do not have their own dedicated facilities.

The number of travel lanes is two-way, i.e. in both directions.

Bike lane blockage frequency is only applicable when cycling is in mixed traffic and in a commercial area.

The target C/B/D/D/B indicates that the target is C for Existing Greenbank Road, B for Barnsdale Road, D for Kilbirnie Drive, D for the New E-W Collector, and B for River Mist

^{**} means no change between horizons or scenarios.

Strategy Report May 25, 2018

4.4 ACCESS INTERSECTIONS DESIGN

The proposed development will be accessed from municipal roads and intersections not from private driveways and accesses given that it is a plan of subdivision. **Module 0** is, therefore, not applicable and all the study area intersections will be assessed in **Module 4.9**.

4.5 TRANSPORTATION DEMAND MANAGEMENT

The proposed development is not located in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone. The proposed development consists of 548 single-family dwelling units, 467 townhomes, 100 apartment units, and two elementary schools. Given that the application for which this TIA is being prepared is a plan of subdivision that includes different land uses, most of the information required in this module is not currently available. Any future TIAs for site plan applications within this subdivision should address this module if applicable.

The City of Ottawa TDM Checklists were used to determine what TDM measures could be implemented based on the available information.

The TDM checklists are contained in **Appendix B**.

As outlined on the checklist contained in the Appendix, enhanced public transit service is recommended through an early transit services agreement between the developer and OC Transpo.

Strategy Report May 25, 2018

4.6 NEIGHBOURHOOD TRAFFIC MANAGEMENT

4.6.1 Adjacent Neighbourhoods

Until Greenbank Road is realigned, some development traffic is expected to use River Mist Road or Kilbirnie Drive, both of which are classified as collector roadways in the City of Ottawa 2013 TMP.

Table 11 summarizes the AM and PM peak two-way traffic volume forecasts for the collector roads at build-out of the site. Traffic volumes on these roadways are not anticipated to increase following build-out of the site.

Table 11 AM & PM Traffic Volume Forecasts for Collector Roads

	2031 Background Traffic Volume AM Peak (PM Peak)	2031 Total Traffic Volume AM Peak (PM Peak)
River Mist Road	319 veh/hr (400 veh/hr)	438 veh/hr (551 veh/hr)
Kilbirnie Drive	432 veh/hr (544 veh/hr)	470 veh/hr (593 veh/hr)

While the AM and PM peak two-way traffic volume forecasts for both River Mist Road and Kilbirnie Drive are expected to exceed the peak hour two-way traffic volume threshold for collector roads (i.e. 300 veh/hr), the forecasts indicate that future growth and background developments will contribute to this exceedance. The addition of the proposed development generated traffic is, therefore, not expected to change the existing classification of River Mist Road or Kilbirnie Drive and no Neighbourhood Traffic Management (NTM) plan will be required. It is worth noting that when Greenbank is ultimately built and extended, it will help to alleviate some of the current and future traffic on River Mist Road and Kilbirnie Drive.

4.7 TRANSIT

4.7.1 Route Capacity

Until Greenbank Road is realigned, the transit mode share is anticipated to be quite low (5%) and the forecasted transit trips generation for the proposed development is 45 and 38 total transit trips during the AM or PM peak hour. In the future, transit headways are anticipated to remain at 15 minutes during the morning and afternoon peak hours (at least), or four buses every hour. Articulated buses and double-decker buses have seated capacities of 60 and 80 people, respectively, and therefore the hourly transit capacity will be 240 - 320 people per hour. The proposed development is therefore anticipated to occupy between 12% to 19% of transit capacity in the future.

4.7.2 Transit Priority

Transit priority measures were not considered since transit routes do not currently operate on boundary streets, and once Realigned Greenbank Road is constructed, transit measures are already planned for Realigned Greenbank Road which is outside of the scope of this assessment.

Strategy Report May 25, 2018

4.8 REVIEW OF NETWORK CONCEPT

This section was addressed as part of the Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study, section 7.0 Transportation Improvements and Design Elements.

4.9 INTERSECTION DESIGN

4.9.1 Intersection Control

As part of the Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study, intersection improvements and traffic control upgrades were recommended at three of the subject TIA's study area intersections including: Existing Greenbank Road at Barnsdale Road, Existing Greenbank Road at New E-W Collector, and Barnsdale Road at Borrisokane Road.

Table 12 summarizes the intersection control adopted for each of the study area intersections during each horizon. The intersections controls in Table 12 reflect the default controls assumed as the basis for analysis in the subject TIA. Any intersection improvements triggered through the intersection level of service analysis will be highlighted and adopted accordingly.

Table 12 Initial Intersection Controls at the Study Area Intersections

Intersection	Horizon	Initial Intersection Control	Reference		
Barnsdale Road at Borrisokane Road	2018	Minor Stop Control	Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study		
	2025				
	2031				
Existing Greenbank at Barnsdale Road	2018	All-Way Stop-	Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study		
	2025 FBG	Controlled			
	2025 Total Future	Traffic Signals			
	2031				
Existing Greenbank Road at New E-W Collector	2025	Minor Stop	Barrhaven South Urban Expansion Study Area Community Design		
	2031	Control	Plan Transportation Master Study		
Existing Greenbank Road at Kilbirnie Drive	2018	Stop-Controlled along Kilbirnie Drive	Existing Intersection Control		
River Mist Road at Kilbirnie Drive	2018	All-Way Stop- Controlled	Existing Intersection Control		
River Mist Road at New E-W Collector	2018	All-Way Stop- Controlled	 Intersection between collectors High expected desire for pedestrian crossings through the New E-W Collector All-way stop-control recommended 		

The existing intersection control will be maintained as the default control for the Existing Greenbank Road at Kilbirnie Drive and River Mist Road at Kilbirnie Drive intersections.

The River Mist Road at the New E-W Collector intersection does not currently exist and was not specifically assessed within the Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study.

Strategy Report May 25, 2018

Given that the intersection is between two collectors roads and that there is desire for pedestrians to cross the New E-W Collector from the residential areas from the north side to the school or park areas south of the Collector, an all-way stop control is recommended as the default control for this intersection. Any required improvements or intersection control upgrades triggered through the analysis for any horizon will be highlighted and adopted accordingly.

4.9.2 Intersection Design

An assessment of the study area intersections was undertaken to determine the operational characteristics of the study area intersections under the different horizons identified in the Screening and Scoping report. Intersection operational analysis was facilitated by Synchro 9.0TM software package and the MMLOS analysis was completed for all modes and compared against the City of Ottawa's MMLOS targets.

4.9.2.1 2018 Existing Conditions

Figure 5 and Figure 6 illustrate 2018 existing AM and PM peak hour traffic volumes at the study area intersections.

All study area intersections are currently operating satisfactorily.

The MMLOS assessment is only applied to signalized intersections. As there are no signalized intersections under the 2018 existing conditions, intersection MMLOS does not apply.

Strategy Report May 25, 2018

Table 13 summarizes the results of the Synchro analysis for 2018 existing intersection operations.

Figure 2 illustrates the required intersection control and lane configuration to accommodate the 2018 existing conditions.

Appendix C contains detailed intersection performance worksheets.

Strategy Report May 25, 2018

Table 13 2018 Existing Intersection Operations (Synchro Results)

Scenario	Intersection Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95 th (veh)
Barnsdale Road at Borrisokane Road	Minor Stop Control	EB	Left / Through	A (A)	0.02 (0.02)	1.4 (1.3)	0.1 (0)
		WB	Through / Right	A (A)	0 (0)	0 (0)	0 (0)
		SB	Left / Right	A (B)	0.06 (0.09)	9.9 (10.9)	0.2 (0.3)
		Overall Intersection		A (A)	-	1.9 (2.2)	-
Existing Greenbank at Barnsdale Road	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.13 (0.12)	8.9 (9.7)	0.4 (0.7)
		WB	Left / Through / Right	A (B)	0.19 (0.46)	9.0 (11.7)	0.7 (2.5
		NB	Left / Through / Right	A (A)	0.12 (0.16)	8.6 (9.6)	0.4 (0.6)
		SB	Left / Through / Right	B (B)	0.41 (0.33)	10.9 (10.9)	2.0 (1.4)
		Overall Intersection		A (B)	-	9.9 (10.9)	-
Existing Greenbank Road at Kilbirnie Drive	Minor Stop Control	EB	Left	C (C)	0.20 (0.20)	16.3 (22.7)	0.7 (0.7)
			Through / Right	B (B)	0.09 (0.04)	10.0 (10.0)	0.3 (0.1)
		WB	Left	B (C)	0.17 (0.09)	14.8 (19.3)	0.6 (0.3)
			Through / Right	A (B)	0.15 (0.10)	9.9 (10.6)	0.5 (0.3)
		NB	Left/ Through	A (A)	0.02 (0.06)	7.7 (7.7)	0.1(0.2)
			Right	A (A)	0 (0)	0 (0)	0 (0)
		SB	Left	A (A)	0.02 (0.07)	7.5 (7.9)	0.1 (0.2)
			Through	A (A)	0 (0)	0 (0)	0 (0)
			Right	A (A)	0 (0)	0 (0)	0 (0)
		Overall Intersection		A (A)	-	6.3 (4.6)	-
River Mist Road at Kilbirnie Drive	All-Way Stop Control	EB	Left / Through / Right	A (A)	0.03 (0.01)	7.3 (7.2)	0.1 (0)
		WB	Left / Through / Right	A (A)	0.07 (0.09)	7.3 (7.2)	0.2 (0.3)
		NB	Left / Through / Right	A (A)	0.05 (0.02)	7.0 (7.0)	0.1 (0.1)
		SB	Left / Through / Right	A (A)	0.06 (0.06)	7.6 (7.5)	0.2 (0.2)
		Overall Intersection		A (A)	-	7.3 (7.3)	-

Notes:

1.

Table format: AM (PM) v/c – represents the anticipated volume divided by the predicted capacity

Strategy Report May 25, 2018

4.9.2.2 2025 Future Background Conditions

Figure 13 and Figure 14 illustrate 2025 future background AM and PM peak hour traffic volumes at the study area intersections.

Table 14 summarizes the results of the Synchro analysis for 2025 future background intersection operations and **Appendix C** contains detailed intersection performance worksheets.

It was assumed that the existing gore area at the intersection of Existing Greenbank Road at Kilbirnie Drive will be replaced by a northbound left-turning lane that would mirror the southbound left-turning lane currently provided at the intersection. This is consistent with the recommendations contained in the Transportation Impact Assessment prepared for the initial phase of Minto's Quinn's Pointe in 2014 (i.e. *Minto Barrhaven South TIS Update Addendum #2 – 3872 Greenbank Road, Stantec, October 24, 2014*).

All study area intersections are anticipated to operate acceptably.

The MMLOS assessment is only applied to signalized intersections. As there are no signalized intersections under the 2025 future background conditions, intersection MMLOS does not apply.

Figure 15 illustrates the required intersection control and lane configuration to accommodate the 2025 future background conditions.

Figure 13 2025 Future Background Traffic Volumes - AM Peak Hour

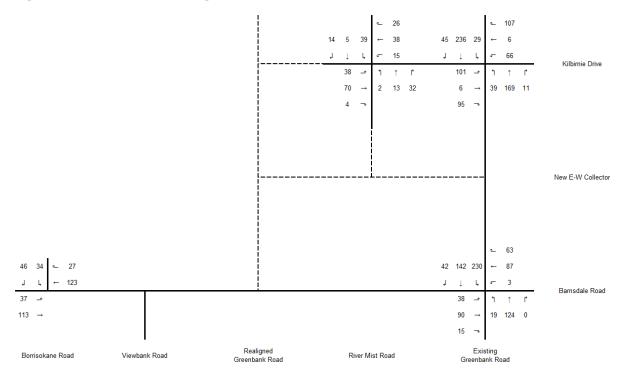
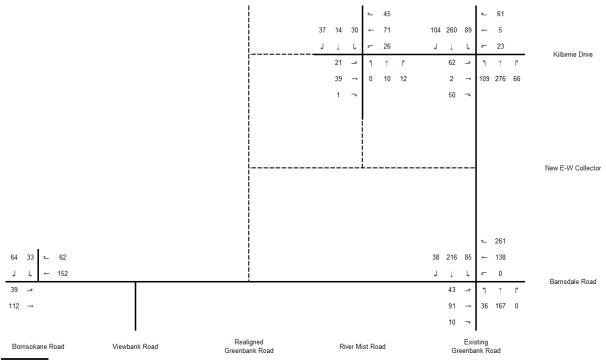
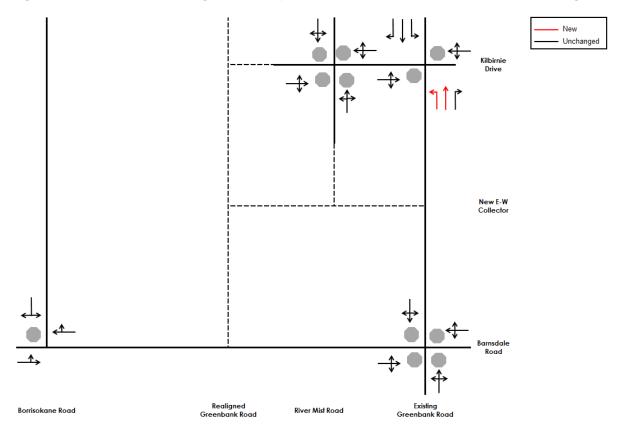



Figure 14 2025 Future Background Traffic Volumes - PM Peak Hour

Strategy Report May 25, 2018


Table 14 2025 Future Background Operations (Synchro Results)

Scenario	Intersection Control	Apı	proach / Movement	Los	V/C	Delay (s)	Queue 95 th (veh)
Barnsdale		EB	Left / Through	A (A)	0.03 (0.03)	7.6 (7.8)	0.1 (0.1)
Road at	Minor Stop	WB	Through / Right	A (A)	0 (0)	0 (0)	0 (0)
Borrisokane	Control	SB	Left / Right	B (B)	0.11 (0.13)	10.3 (10.6)	0.4 (0.5)
Road		Overall Intersection		A (A)	-	2.9 (2.9)	-
		EB	Left / Through / Right	B (B)	0.23 (0.26)	10.4 (11.7)	0.9 (1.0)
Existing	A II	WB	Left / Through / Right	B (C)	0.23 (0.61)	10.1 (17.0)	0.9 (4.2)
Greenbank at Barnsdale	All-Way Stop Control	NB	Left / Through / Right	A (B)	0.22 (0.36)	9.9 (12.8)	0.8 (1.6)
Road	Control	SB	Left / Through / Right	B (C)	0.58 (0.56)	14.9 (16.4)	3.8 (3.5)
		0,	verall Intersection	B (C)	-	12.4 (15.3)	-
		EB	Left	C (D)	0.30 (0.34)	20.2 (34.4)	1.2 (1.4)
		ED	Through / Right	B (B)	0.14 (0.08)	10.6 (10.6)	0.5 (0.2)
		WB	Left	C (C)	0.19 (0.12)	18.1 (26.5)	0.7 (0.4)
Existing		VVD	Through / Right	B (B)	0.14 (0.10)	10.2 (11.3)	0.5 (0.3)
Greenbank		NB	Left	A (A)	0.10 (0.08)	7.8 (8.0)	0.1 (0.3)
Road at	Minor Stop Control		Through	A (A)	0 (0)	0 (0)	0 (0)
Kilbirnie	Control		Right	A (A)	0 (0)	0 (0)	0 (0)
Drive			Left	A (A)	0.02 (0.07)	7.6 (8.0)	0.1 (0.2)
		SB	Through	A (A)	0 (0)	0 (0)	0 (0)
			Right	A (A)	0 (0)	0 (0)	0 (0)
		O,	verall Intersection	A (A)	-	6.6 (5.1)	-
		EB	Left / Through / Right	A (A)	0.13 (0.07)	7.9 (7.7)	0.5 (0.2)
River Mist	A II	WB	Left / Through / Right	A (A)	0.09 (0.16)	7.5 (7.9)	0.3 (0.6)
Road at Kilbirnie	All-Way Stop Control	NB	Left / Through / Right	A (A)	0.05 (0.03)	7.2 (7.4)	0.2 (0.1)
Drive	Control	SB	Left / Through / Right	A (A)	0.07 (0.10)	7.7 (7.6)	0.2 (0.3)
Dille		0	verall Intersection	A (A)	-	7.6 (7.7)	-

Notes:

Table format: AM (PM)
 v/c – represents the anticipated volume divided by the predicted capacity

Figure 15 2025 Future Background Required Intersection Control and Lane Configuration

Strategy Report May 25, 2018

4.9.2.3 2025 Total Future Conditions

Figure 16 and Figure 17 illustrate 2025 total future AM and PM peak hour traffic volumes at the study area intersections.

Table 15 summarizes the results of the Synchro analysis for 2025 total future intersection operations.

Appendix C contains detailed intersection performance worksheets.

By the 2025 total future horizon the New E-W Collector will be in place including its intersections with Existing Greenbank Road and River Mist Road which are now reflected in the intersection operational analysis.

Consistent with the recommendations of the *Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study*, and as shown in **Table 12**, the Existing Greenbank Road at Barnsdale Road intersection will require traffic signals by the 2025 total future horizon including auxiliary left-turning lanes along each approach to the intersection.

Operating under a two-way stop control, the intersection of Existing Greenbank Road at Kilbirnie Drive is anticipated to have significant delays experienced by the eastbound left-turning movement during the PM peak hour. A multi-way stop control warrant analysis was undertaken to assess if an all-way stop control is warranted. Eight-hour traffic volumes collected at this intersection in 2017 by the City of Ottawa were used along with the 2025 total future peak hour projected volumes (i.e. AM and PM peak hours) to obtain the 8-hour 2025 total future traffic volumes required for the warrant. While the warrant also considers the 8-hour pedestrian volumes along the minor roadway, there was no means to obtain these volumes for the 2025 total future horizon. Despite that, the analysis still showed that the intersection meets the volume criterion of the warrant analysis and therefore meets the warrant for the implementation of an all-way stop control. The intersection is anticipated to operate acceptably under an all-way stop control.

All other study area intersections are anticipated to operate acceptably.

Appendix D contains the multi-way stop control warrant analysis provided by the City of Ottawa.

Figure 18 illustrates the required intersection control and lane configuration to accommodate the 2025 total future conditions.

Figure 16 2025 Total Future Traffic Volumes - AM Peak Hour

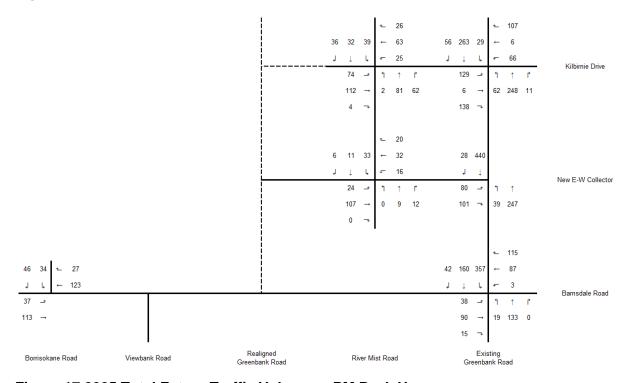
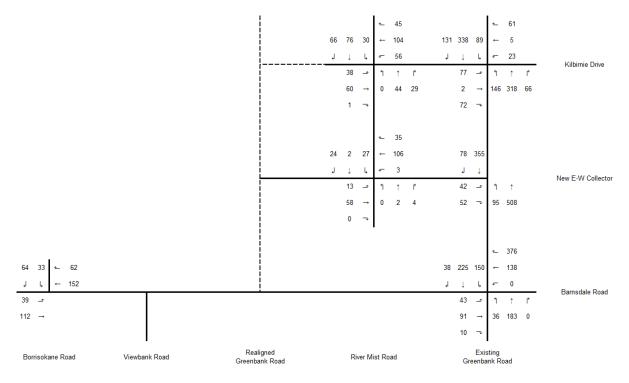
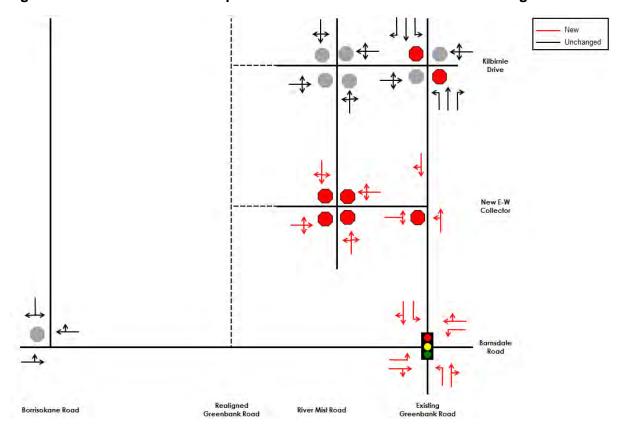



Figure 17 2025 Total Future Traffic Volumes - PM Peak Hour


Table 15 2025 Total Future Operations (Synchro Results)

Scenario	Intersection	An	proach / Movement	LOS	V/C	Delay (s)	Queue 95 th
ocenano	Control						(veh)
Barnsdale		EB	Left / Through	A (A)	0.03 (0.03)	7.6 (7.8)	0.1 (0.1)
Road at Borrisokane	Minor Stop Control	WB	Through / Right	A (A)	0 (0)	0 (0)	0 (0)
Road	Control	SB	Left / Right	B (B)	0.11 (0.13)	10.3 (10.6)	0.4 (0.5)
rtodd		Ü	verall Intersection	A (A)	-	2.9 (2.9)	-
		EB	Left	A (A)	0.28 (0.32)	34.6 (20.0)	13.6* (9.5)*
			Through / Right	A (A)	0.37 (0.19)	31.0 (12.2)	26.7* (13.7)*
Existing		WB	Left	A (A)	0.02 (0)	27.3 (0)	2.5* (0)*
Greenbank at	- " o .		Through / Right	B (C)	0.65 (0.79)	30.3 (16.6)	39.2* (46.1)*
Barnsdale	Traffic Signals	NB	Left	A (A)	0.04 (0.07)	15.7 (10.4)	6.6* (7.3)*
Road			Through / Right	A (A)	0.16 (0.22)	15.5 (10.6)	27.8* (25.8)*
		SB	Left	A (A)	0.45 (0.28)	7.3 (12.1)	37.7* (24.1)*
			Through / Right	A (A)	0.18 (0.32)	4.6 (11.1)	19.1* (36.0)*
		0	verall Intersection	B (C)	0.65 (0.79)	15.6 (13.7)	
		EB	Left	C (F)	0.50 (0.60)	32.1 (67.6)	2.6 (3.0)
			Through / Right	B (B)	0.20 (0.12)	11.2 (11.4)	0.7 (0.4)
		WB	Left	C (E)	0.28 (0.18)	25.7 (39.2)	1.1 (0.6)
			Through / Right	B (B)	0.16 (0.12)	10.9 (12.2)	0.6 (0.4)
	Minor Stop Control		Left	A (A)	0.05 (0.12)	7.9 (8.4)	0.2 (0.4)
		NB	Through	A (A)	0 (0)	0 (0)	0 (0)
			Right	A (A)	0 (0)	0 (0)	0 (0)
			Left	A (A)	0.02 (0.07)	7.8 (8.2)	0.1 (0.2)
		SB	Through	A (A)	0 (0)	0 (0)	0 (0)
Existing							
		_	Right	A (A)	0 (0)	0 (0)	0 (0)
Greenbank		0	verall Intersection	A (A)	-	8.4 (7.3)	0 (0)
Greenbank Road at		0	verall Intersection Improvement:	A (A) Implemen	- nt an All-Way \$	8.4 (7.3) Stop Control	-
Greenbank Road at Kilbirnie			verall Intersection Improvement: Left	A (A) Implement C (B)	- nt an All-Way S 0.28 (0.18)	8.4 (7.3) Stop Control 13.7 (13.2)	1.1 (0.7)
Greenbank Road at		EB	verall Intersection Improvement: Left Through / Right	A (A) Implement C (B) B (B)	- nt an All-Way \$ 0.28 (0.18) 0.27 (0.15)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4)	1.1 (0.7) 1.1 (0.5)
Greenbank Road at Kilbirnie		EB	verall Intersection Improvement: Left Through / Right Left	A (A) Implement C (B) B (B) B (B)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2)
Greenbank Road at Kilbirnie			verall Intersection Improvement: Left Through / Right Left Through / Right	A (A) Implement C (B) B (B) B (B) B (B)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5)
Greenbank Road at Kilbirnie	All-Way Stop	EB WB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through / Right Left	A (A) Implement C (B) B (B) B (B) B (B) B (B)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3)
Greenbank Road at Kilbirnie	All-Way Stop Control	EB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through / Right Left Through	A (A) Implement C (B) B (B) B (B) B (B) B (B) B (B) C (B)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1)
Greenbank Road at Kilbirnie		EB WB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through / Right Left Right	A (A) Implement C (B) B (B) B (B) B (B) B (B) B (C) A (A)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4)
Greenbank Road at Kilbirnie		EB WB NB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through / Right Left Right Left Through Right Left	A (A) Implement C (B) B (B) B (B) B (B) B (B) B (C) A (A) B (B)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7)
Greenbank Road at Kilbirnie		EB WB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C)	0.28 (0.18) 0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6)
Greenbank Road at Kilbirnie		EB WB NB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through Right Left Through	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7)
Greenbank Road at Kilbirnie		EB WB NB SB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through Right Verall Intersection	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C)	0.28 (0.18) 0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9)
Greenbank Road at Kilbirnie Drive		EB WB NB SB O EB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through Right Left Through Right Verall Intersection Left / Through / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C) A (A)	0.28 (0.18) 0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5)
Greenbank Road at Kilbirnie Drive	Control	EB WB NB SB OEB WB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Verall Intersection Left / Through / Right Left / Through / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C) A (A) A (A)	0.28 (0.18) 0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0)
Greenbank Road at Kilbirnie Drive		EB WB NB SB O EB WB NB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Verall Intersection Left / Through / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) C (C) A (A) A (A) A (B) A (A)	0.28 (0.18) 0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26) 0.18 (0.09)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) 1.0 (0.5) 0.5 (1.0) 0.7 (0.3)
Greenbank Road at Kilbirnie Drive River Mist Road at	Control All-Way Stop	EB WB NB SB OEB WB NB SB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through Right Left Through Right Verall Intersection Left / Through / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C) A (A) A (A) A (A) A (B) A (A) A (A)	0.28 (0.18) 0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1) 8.5 (8.8)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0)
Greenbank Road at Kilbirnie Drive River Mist Road at Kilbirnie	Control All-Way Stop	EB WB NB SB OEB WB NB SB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through Right Verall Intersection Left / Through / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) C (C) A (A)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26) 0.18 (0.09) 0.14 (0.22)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1) 8.5 (8.8) 8.8 (8.8)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0) 0.7 (0.3) 0.5 (0.8)
River Mist Road at Kilbirnie Drive River Mist Road at Kilbirnie Drive	Control All-Way Stop	EB WB NB SB OEB WB NB SB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Left Through Right Verall Intersection Left / Through / Right Verall Intersection Left	A (A) Implement C (B) B (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C) A (A) A (A) A (A) A (A) C (C)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26) 0.18 (0.09) 0.14 (0.22) - 0.23 (0.20)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1) 8.5 (8.8) 8.8 (8.8) 18.4 (26.5)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0) 0.7 (0.3) 0.5 (0.8) - 0.9 (0.7)
River Mist Road at Kilbirnie Drive River Mist Road at Kilbirnie Drive Existing	All-Way Stop Control	EB WB NB SB O EB NB SB O EB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Verall Intersection Left / Through / Right Left / Right Verall Intersection Left / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C) A (A) A (A) A (A) C (C) B (C)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26) 0.18 (0.09) 0.14 (0.22) - 0.23 (0.20) 0.17 (0.08)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1) 8.5 (8.8) 8.8 (8.8) 18.4 (26.5) 12.1 (11.0)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0) 0.7 (0.3) 0.5 (0.8) - 0.9 (0.7) 0.6 (0.3)
River Mist Road at Kilbirnie Drive River Mist Road at Kilbirnie Drive	Control All-Way Stop	EB WB NB SB OEB NB SB OEB NB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Verall Intersection Left / Through / Right Verall Intersection Left Right Left / Through	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) A (A) A (A) A (A) A (A) C (C) B (C) A (A)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26) 0.18 (0.09) 0.14 (0.22) - 0.23 (0.20) 0.17 (0.08) 0.04 (0.08)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1) 8.5 (8.8) 8.8 (8.8) 18.4 (26.5) 12.1 (11.0) 8.4 (8.5)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0) 0.7 (0.3) 0.5 (0.8) - 0.9 (0.7) 0.6 (0.3) 0.1 (0.3)
River Mist Road at Kilbirnie Drive River Mist Road at Kilbirnie Drive Existing Greenbank	All-Way Stop Control	EB WB NB SB OEB NB SB OEB NB SB SB SB	verall Intersection Improvement: Left Through / Right Left Through / Right Left Through Right Left Through Right Verall Intersection Left / Through / Right Left / Right Verall Intersection Left / Right	A (A) Implement C (B) B (B) B (B) B (B) B (C) A (A) B (B) C (C) B (B) B (C) A (A) A (A) A (A) C (C) B (C)	0.28 (0.18) 0.27 (0.15) 0.15 (0.06) 0.22 (0.14) 0.13 (0.30) 0.50 (0.61) 0.02 (0.12) 0.06 (0.18) 0.5. (0.65) 0.10 (0.23) - 0.25 (0.13) 0.15 (0.26) 0.18 (0.09) 0.14 (0.22) - 0.23 (0.20) 0.17 (0.08)	8.4 (7.3) Stop Control 13.7 (13.2) 11.9 (11.4) 12.3 (12.0) 11.7 (11.6) 11.7 (13.4) 17.1 (20.2) 9.4 (9.8) 11.0 (11.9) 17.7 (21.7) 10.0 (10.8) 14.5 (16.4) 9.3 (8.6) 8.5 (9.2) 8.6 (8.1) 8.5 (8.8) 8.8 (8.8) 18.4 (26.5) 12.1 (11.0)	1.1 (0.7) 1.1 (0.5) 0.5 (0.2) 0.8 (0.5) 0.5 (1.3) 2.8 (4.1) 0.1 (0.4) 0.2 (0.7) 3.0 (4.6) 0.3 (0.9) - 1.0 (0.5) 0.5 (1.0) 0.7 (0.3) 0.5 (0.8) - 0.9 (0.7) 0.6 (0.3)

Scenario	Scenario Intersection Control		Approach / Movement		V/C	Delay (s)	Queue 95 th (veh)	
		EB	Left / Through / Right	A (A)	0.15 (0.08)	8.0 (7.6)	0.5 (0.3)	
River Mist	A II 147 Or	WB	Left / Through / Right	A (A)	0.08 (0.16)	7.4 (7.7)	0.2 (0.6)	
Road at New	All-Way Stop Control	NB	Left / Through / Right	A (A)	0.02 (0.01)	7.2 (7.1)	0.1 (0)	
E-W Collector		SB	Left / Through / Right	A (A)	0.06 (0.06)	7.7 (7.5)	0.2 (0.2)	
		Overall Intersection		A (A)	-	7.7 (7.6)	-	
Notes: 1. Table format: AM (PM) 2. v/c – represents the anticipated volume divided by the predicted capacity 3. * - Queue lengths for these movements are in meters								

Figure 18 2025 Total Future Required Intersection Control and Lane Configuration

Strategy Report May 25, 2018

A signalized intersection MMLOS assessment was undertaken for the Existing Greenbank Road at Barnsdale Road intersection given that it is expected to operate as a signalized intersection. The anticipated operations during the AM and PM peak hours were both considered in the assessment and the MMLOS targets for a "Developing Community" were deemed most suitable for the study area roadways.

MMLOS - Existing Greenbank Road at Barnsdale Road Intersection:

It is expected that the existing cross section for Existing Greenbank Road – featuring sidewalks, boulevard and MUP on the west side - will be extended south to Barnsdale Road by the 2025 total future horizon. This general cross-section configuration has been carried for in subsequent future horizons.

The Ultimate Cycling Network from the City of Ottawa Cycling Plan (2013) designates Existing Greenbank Road as a spine cycling route and Barnsdale Road as a local cycling route. These roads are therefore subject to a LOS target of C and B, respectively, and the higher of the two targets (i.e. LOS = B) was selected as the target for the intersection.

No transit service is currently provided along Existing Greenbank Road south of Kilbirnie Drive or along Barnsdale Road, and the *Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study* does not propose any new transit services along these two road segments. The Transit LOS (TLOS) assessment, therefore, did not consider this Existing Greenbank Road at Barnsdale Road intersection.

None of these two roads are truck routes and therefore there is no MMLOS target for the them.

Table 16 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Barnsdale Road where it is shown that all modes of transportation meet or exceed the target level of service.

Table 16 2025 Total Future MMLOS - Greenbank Road at Barnsdale Road

	2		2025 Total F	uture Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	3	3	3	
	Median (yes/no)	No	No	No	No	
	Island refuge >=2.4m (yes/no)	No	No	No	No	
	Left turn phasing	Permissive	Permissive	Permissive	Protected/ Permissive	
	Right turn conflict	Yes	Yes	Yes	Yes	
	RTOR (yes/no)	Yes	Yes	Yes	Yes	
	Leading ped interval (yes/no)	No	No	No	No	
တ္ထ	Right turn corner radius (m)	5-10	5-10	5-10	5-10	_
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
	Cycle length (s)	90	90	90	90	
	Effective walk time (s)	18	18	18	18	
	PETSI Points	71	71	71	71	
	PETSI Points LOS	С	С	С	С	
	Average Pedestrian Delay (s)	28.8	28.8	28.8	28.8	
	Ped Delay LOS C	С	С	С	С	
	Level of Service	С	С	С	С	
	Level of Service	С				
	Type of bike lane	Mixed	Mixed	Separated	Separated	
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)	
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25	
တ္ထ	Right-turn - number of turn lanes	0	0	NA	NA	
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	В
	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	NA	NA	MUP	MUP	
	Level of Service	В	В	Α	Α	
	Level of Service		E	3		
(0	Intersection Average Delay (s)		N	A		
TLOS	Level of Service		N	A		D
-	Level of Service		N	A		
	Effective corner radius (m)	<10	<10	<10	<10	
SO	Number of receiving lanes	1	1	1	1	No
TKLOS	Level of Service	F	F	F	F	Target
	Level of Service		F			
(0	Maximum Volume-to-capacity (v/c)	0.37	0.79	0.22	0.45	
VLOS	Level of Service	А	С	А	Α	D
>	Level of Service		(;		

Strategy Report May 25, 2018

4.9.2.4 2031 Future Background Conditions

Figure 19 and **Figure 20** illustrate 2031 future background AM and PM peak hour traffic volumes at the study area intersections.

Table 17 summarizes the results of the Synchro analysis for 2031 future background intersection operations and **Appendix C** contains detailed intersection performance worksheets.

Operating under an all-way stop control, the intersection of Existing Greenbank Road at Kilbirnie Drive is anticipated to experience excessive delays by the southbound through movement during the PM peak hour. A traffic signal warrant analysis was undertaken for this intersection to determine if a traffic control signal is warranted. Eight-hour volumes collected at this intersection in 2017 by the City of Ottawa were used along with the 2031 future background peak hour projected volumes (i.e. AM and PM peak hours) to obtain the 8-hour 2031 future background traffic volumes. Based on the forecasted 2031 future background traffic volumes, this intersection meets justification 1, 3, and 4 (i.e. Minimum Vehicular Volume, Combination, 4-Hr volume, respectively) of the warrant analysis and therefore meets the warrants for the implementation of traffic signals. Signal timing parameters, such as cycle length and minimum green times, were assumed based on the parameters outlined in the City of Ottawa Traffic Impact Assessment (TIA) Guidelines and the Ontario Traffic Manual (OTM) book 12 guidelines for amber and all-red clearance were adopted. It was assumed that auxiliary left-turning lanes will be constructed along the eastbound and westbound approaches when the intersection becomes signalized. With the implementation of traffic signals the intersection is anticipated to operate acceptably.

Operating under a two-way stop control along the minor approach, the intersection of Existing Greenbank Road at the New E-W Collector is also anticipated to operate with excessive delays experienced by the eastbound left-turning movement during the PM peak hours. A traffic signal warrant analysis was undertaken for this intersection to determine if a traffic signal control is warranted. 2031 future background peak hour projected volumes (i.e. AM and PM peak hours) at this intersection were used along with the 8-hour projected volumes at the Existing Greenbank Road at Kilbirnie Drive intersection under the 2031 future background horizon to obtain the 8-hour 2031 future background traffic volumes at the Existing Greenbank Road at the New E-W Collector. Based on the forecasted 2031 future background traffic volumes, this intersection meets justification 4 (4-Hr volume) of the warrant analysis and therefore meets the warrants for the implementation of traffic signals. Signal timing parameters, such as cycle length and minimum green times, were assumed based on the parameters outlined in the City of Ottawa Traffic Impact Assessment (TIA) Guidelines and the Ontario Traffic Manual (OTM) book 12 guidelines for amber and all-red clearance were adopted. It was assumed that the eastbound approach will consist of exclusive left-turning and right-turning lanes and that an auxiliary northbound left-turning lane will be added. The intersection is anticipated to operate acceptably once signalized.

Appendix D contains the traffic signal warrant analysis.

Figure 21 illustrates the required intersection control and lane configuration to accommodate the 2031 future background conditions.

Figure 19 2031 Future Background Traffic Volumes - AM Peak Hour

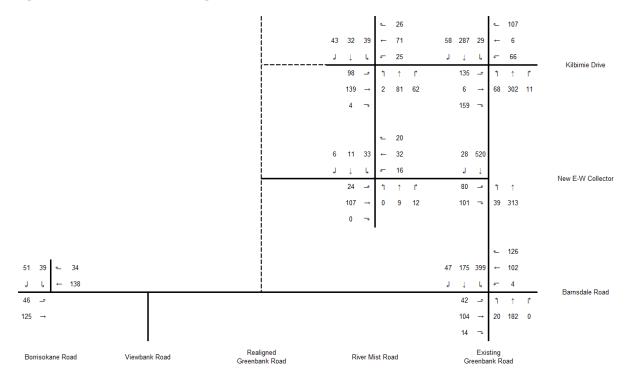
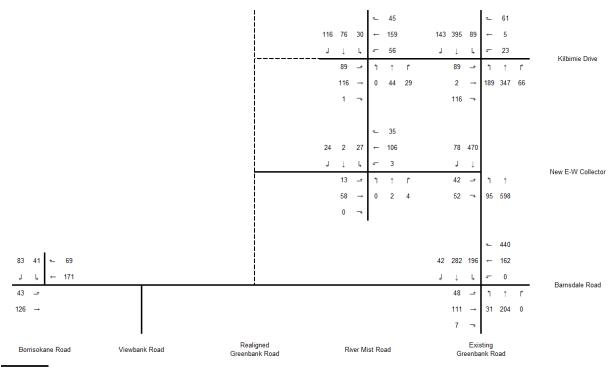
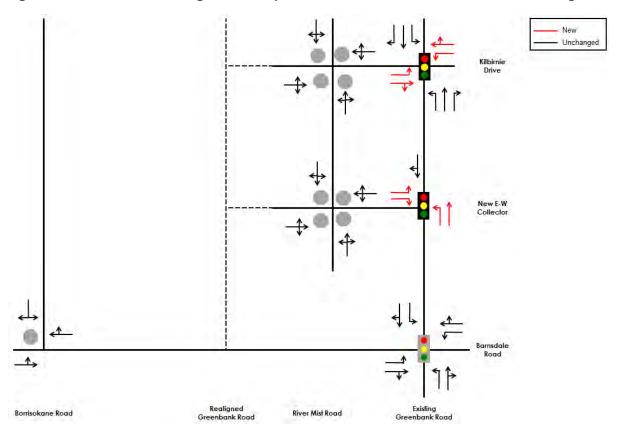



Figure 20 2031 Future Background Traffic Volumes - PM Peak Hour

Table 17 2031 Future Background Operations (Synchro Results)


Scenario	Intersection	Ар	proach / Movement	LOS	V/C	Delay (s)	Queue 95 th
Dannadala	Control	EB	Left / Through	A (A)	0.03 (0.03)	7.7 (7.8)	(veh) 0.1 (0.1)
Barnsdale Road at	Minor Stop	WB	Through / Right	A (A)	0.03 (0.03)	0 (0)	0 (0)
Borrisokane	Control	SB	Left / Right	B (B)	0.12 (0.18)	10.7 (11.2)	0.4 (0.6)
Road	00		verall Intersection	A (A)	-	3.1 (3.2)	o.+ (o.o)
			Left	A (B)	0.35 (0.62)	39.5 (53.4)	14.9* (15.7)*
		EB	Through / Right	A (A)	0.40 (0.19)	33.9 (16.3)	29.9* (16.7)*
Eviatina			Left	A (A)	0.02 (0)	28.0 (0)	3.1* (0)*
Existing Greenbank	Traffic Signals	WB	Through / Right	C (D)	0.71 (0.84)	36.4 (23.6)	46.2* (66.7)*
at			Left	A (A)	0.04 (0.07)	17.6 (17.2)	7.4* (10.1)*
Barnsdale		NB	Through / Right	A (A)	0.22 (0.23)	17.4 (16.4)	40.4* (44.9)*
Road			Left	A (A)	0.50 (0.35)	5.2 (14.7)	22.0* (35.0)*
		SB	Through / Right	A (A)	0.19 (0.37)	2.1 (13.2)	5.4* (51.0)*
		0	verall Intersection	C (D)	0.71 (0.84)	16.6 (19.5)	-
			Left	B (B)	0.31 (0.23)	14.8 (14.5)	1.3 (0.9)
		EB	Through / Right	B (B)	0.33 (0.26)	13.3 (13.5)	1.4 (1.0)
		MD	Left	B (B)	0.16 (0.06)	13.1 (13.0)	0.6 (0.2)
		WB	Through / Right	B (B)	0.23 (0.16)	12.5 (12.7)	0.9 (0.5)
	A II AA/ Ot		Left	B (C)	0.15 (0.42)	12.3 (16.6)	0.5 (2.1)
	All-Way Stop Control	NB	Through	C (D)	0.63 (0.72)	22.6 (27.8)	4.3 (5.8)
	Control	irol	Right	A (B)	0.02 (0.13)	9.7 (10.6)	0.1 (0.4)
			Left	B (B)	0.07 (0.20)	11.4 (12.7)	0.2 (0.7)
		SB	Through	C (E)	0.61 (0.82)	21.4 (36.4)	3.9 (7.9)
Existing			Right	B (B)	0.11 (0.27)	10.5 (12.0)	0.7 (1.1)
Greenbank		0	verall Intersection	C (C)	-	17.3 (22.8)	-
Road at					plement Traffic		
Kilbirnie		EB	Left	A (A)	0.38 (0.51)	23.9 (44.1)	23.2* (25.5)*
Drive			Through / Right	A (A)	0.30 (0.39)	4.5 (10.1)	10.3* (12.9)*
		WB	Left	A (A)	0.44 (0.15)	43.1 (32.7)	20.3* (9.2)*
		WB	Through / Right	A (A)	0.40 (0.25)	11.5 (11.9)	13.3* (10.4)*
	Traffic Signals		Left	A (A)	0.12 (0.28)	5.0 (5.1)	9.9* (20.3)*
	· ·	NB	Through	A (A)	0.29 (0.26)	5.6 (4.2) 0.3 (1.8)	30.9* (32.9)*
			Right	A (A)	0.01 (0.06)	0.3 (1.8)	0.4* (2.9)*
			1 - 0	` '			
		CD	Left	A (A)	0.05 (0.12)	12.5 (4.6)	8.2* (10.9)*
		SB	Through	A (A) A (A)	0.05 (0.12) 0.28 (0.30)	12.5 (4.6) 12.6 (5.0)	8.2* (10.9)* 53.4* (42.1)*
			Through Right	A (A) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2)	8.2* (10.9)*
_		0	Through Right verall Intersection	A (A) A (A) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)*
River Mist		O EB	Through Right verall Intersection Left / Through / Right	A (A) A (A) A (A) A (A) B (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2)
Road at	All-Way Stop	EB WB	Through Right verall Intersection Left / Through / Right Left / Through / Right	A (A) A (A) A (A) A (A) B (A) A (B)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6)
Road at Kilbirnie	All-Way Stop Control	EB WB NB	Through Right verall Intersection Left / Through / Right Left / Through / Right Left / Through / Right	A (A) A (A) A (A) A (A) B (A) A (B) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4)
Road at		O EB WB NB SB	Through Right verall Intersection Left / Through / Right	A (A) A (A) A (A) A (A) B (A) A (B) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6)
Road at Kilbirnie		O EB WB NB SB	Through Right verall Intersection Left / Through / Right Left / Through / Right Left / Through / Right	A (A) A (A) A (A) B (A) A (B) A (A) A (B) A (A) B (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) -
Road at Kilbirnie	Control	O EB WB NB SB	Through Right verall Intersection Left / Through / Right verall Intersection	A (A) A (A) A (A) A (A) B (A) A (B) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3)
Road at Kilbirnie	Control Minor Stop	O EB WB NB SB	Through Right verall Intersection Left / Through / Right verall Intersection Left Right Left / Through	A (A) A (A) A (A) B (A) A (B) A (A) B (A) C (E)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0)
Road at Kilbirnie Drive	Control	O EB WB NB SB O	Through Right verall Intersection Left / Through / Right verall Intersection Left Right	A (A) A (A) A (A) B (A) A (B) A (A) B (A) C (E) B (B)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3)
Road at Kilbirnie Drive Existing	Control Minor Stop	O EB WB NB SB O EB NB SB	Through Right verall Intersection Left / Through / Right verall Intersection Left Right Left / Through Through / Right verall Intersection	A (A) A (A) A (A) B (A) A (B) A (A) B (A) A (B) A (A) A (A) B (A) A (A) B (A) A (A) A (A) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09) 0 (0)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3)
Road at Kilbirnie Drive Existing Greenbank	Control Minor Stop	O EB WB NB SB O EB NB SB	Through Right verall Intersection Left / Through / Right verall Intersection Left Right Left / Through Through / Right verall Intersection	A (A) A (A) A (A) B (A) A (B) A (A) B (A) A (B) A (A) A (A) B (A) A (A) B (A) A (A) A (A) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3) 0 (0)
Road at Kilbirnie Drive Existing Greenbank Road at	Control Minor Stop	O EB WB NB SB O EB NB SB	Through Right verall Intersection Left / Through / Right Left / Through / Right Left / Through / Right verall Intersection Left Right Left / Through Through / Right verall Intersection Left Right Left / Through Through / Right verall Intersection Improve Left	A (A) A (A) A (A) B (A) A (B) A (A) A (A) B (A) A (A) A (A) B (A) A (A) B (A) C (E) B (B) A (A) A (A) A (A) A (A) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09) 0 (0) - colement Traffic 0.41 (0.25)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3) 0 (0) - 24.0* (14.5)
Road at Kilbirnie Drive Existing Greenbank	Minor Stop Control	O EB WB NB SB O EB NB SB	Through Right verall Intersection Left / Through / Right Left / Through / Right Left / Through / Right Verall Intersection Left Right Left / Through Through / Right Verall Intersection Left Right Left / Through Through / Right Verall Intersection Improve Left Right	A (A) A (A) A (A) B (A) A (B) A (A) A (A) B (A) A (A) A (A) B (A) A (A) B (A) A (A) B (A) A (A) B (A) A (A) A (A) A (A) A (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09) 0 (0) - 0lement Traffic 0.41 (0.25) 0.38 (0.26)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2) Signals 41.6 (38.4) 11.4 (13.1)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3) 0 (0) - 24.0* (14.5) 12.4* (9.0)
Road at Kilbirnie Drive Existing Greenbank Road at New E-W	Control Minor Stop	O EB WB NB SB O EB NB SB	Through Right verall Intersection Left / Through / Right Left / Through / Right Left / Through / Right Verall Intersection Left Right Left / Through Through / Right Verall Intersection Left Right Left / Through Through / Right Verall Intersection Improve Left Right Left Right Left Left	A (A) A (A) A (A) B (A) A (B) A (A) A (A) B (A) A (A) A (A) B (A) A (A) B (A) A (A) B (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09) 0 (0) - 0lement Traffic 0.41 (0.25) 0.38 (0.26) 0.06 (0.15)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2) Signals 41.6 (38.4) 11.4 (13.1) 2.6 (2.2)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3) 0 (0) - 24.0* (14.5) 12.4* (9.0) m2.6* (m5.1)
Road at Kilbirnie Drive Existing Greenbank Road at New E-W	Minor Stop Control	O EB WB NB SB O EB NB SB NB	Through Right verall Intersection Left / Through / Right verall Intersection Left Right Left / Through Through / Right verall Intersection Improve Left Right Left Right	A (A) A (A) A (A) B (A) A (B) A (A) A (A) B (A) A (A) A (A) B (A) A (A) B (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09) 0 (0) - colement Traffic 0.41 (0.25) 0.38 (0.26) 0.06 (0.15) 0.22 (0.42)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2) Signals 41.6 (38.4) 11.4 (13.1) 2.6 (2.2) 2.7 (2.8)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3) 0 (0) - 24.0* (14.5) 12.4* (9.0) m2.6* (m5.1) 25.3* (41.2)
Road at Kilbirnie Drive Existing Greenbank Road at New E-W	Minor Stop Control	O EB WB NB SB O EB NB SB SB SB	Through Right verall Intersection Left / Through / Right Left / Through / Right Left / Through / Right Verall Intersection Left Right Left / Through Through / Right Verall Intersection Left Right Left / Through Through / Right Verall Intersection Improve Left Right Left Right Left Left	A (A) A (A) A (A) B (A) A (B) A (A) A (A) B (A) A (A) A (A) B (A) A (A) B (A) A (A) B (A) A (A)	0.05 (0.12) 0.28 (0.30) 0.07 (0.13) 0.44 (0.51) 0.32 (0.29) 0.16 (0.36) 0.19 (0.11) 0.15 (0.30) - 0.28 (0.27) 0.19 (0.09) 0.04 (0.09) 0 (0) - 0lement Traffic 0.41 (0.25) 0.38 (0.26) 0.06 (0.15)	12.5 (4.6) 12.6 (5.0) 2.8 (1.2) 11.6 (7.7) 10.1 (10.3) 8.7 (10.6) 8.9 (8.9) 8.8 (10.1) 9.3 (10.2) 22.5 (36.9) 13.1 (12.0) 8.7 (8.9) 0 (0) 3.2 (2.2) Signals 41.6 (38.4) 11.4 (13.1) 2.6 (2.2)	8.2* (10.9)* 53.4* (42.1)* 4.9* (5.6)* - 1.4 (1.2) 0.6 (1.6) 0.7 (0.4) 0.5 (1.3) - 1.1 (1.0) 0.7 (0.3) 0.1 (0.3) 0 (0) - 24.0* (14.5) 12.4* (9.0) m2.6* (m5.1)

Strategy Report May 25, 2018

Scenario	Intersection Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95 th (veh)			
		EB	Left / Through / Right	A (A)	0.15 (0.08)	8.0 (7.6)	0.5 (0.3)			
River Mist	A II . \A/= Ct==	WB	Left / Through / Right	A (A)	0.08 (0.16)	7.4 (7.7)	0.2 (0.6)			
Road at New E-W	All-Way Stop Control	NB	Left / Through / Right	A (A)	0.02 (0.01)	7.2 (7.1)	0.1 (0)			
Collector		SB	Left / Through / Right	A (A)	0.06 (0.06)	7.7 (7.5)	0.2 (0.2)			
001100101		Overall Intersection		A (A)	-	7.7 (7.6)	-			
2. v/c – re 3. * - Que	Notes: 1. Table format: AM (PM) 2. v/c – represents the anticipated volume divided by the predicted capacity 3. * - Queue lengths for these movements are in meters									

Figure 21 2031 Future Background Required Intersection Control and Lane Configuration

A signalized intersection MMLOS assessment was undertaken at the Existing Greenbank Road at Barnsdale Road intersection, the Existing Greenbank Road at Kilbirnie Drive intersection, and the Existing Greenbank Road at the New E-W Collector given that they are expected to operate as signalized intersections by the 2031 future background horizon. The anticipated operations during the AM and PM peak hours were both considered in the assessment and the MMLOS targets for a "Developing Community" seemed most suitable for the study area roadways.

Strategy Report May 25, 2018

Existing Greenbank Road at Barnsdale Road Intersection:

Table 18 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Barnsdale Road where it is shown that all modes of transportation meet or exceed the target level of service.

Existing Greenbank Road at Kilbirnie Drive Intersection:

The Ultimate Cycling Network from the City of Ottawa Cycling Plan (2013) designates Existing Greenbank Road as a spine cycling route and is therefore subject to a LOS target of C whereas Kilbirnie Drive does not have a designation and is therefore subject to a LOS target of D. the higher of the two targets (i.e. LOS = C) was selected as the target for the intersection.

None of these two roads are truck routes and therefore there is no MMLOS target for the them.

Table 19 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Kilbirnie Drive where it is shown that all modes of transportation meet or exceed the target level of service.

Existing Greenbank Road at New E-W Collector Intersection:

The Ultimate Cycling Network from the City of Ottawa Cycling Plan (2013) designates Existing Greenbank Road as a spine cycling route and is therefore subject to a LOS target of C whereas the New E-W Collector does not have a designation and is therefore subject to a LOS target of D. The higher of the two targets (i.e. LOS = C) was selected as the target for the intersection.

It is expected that the existing cross section for Existing Greenbank Road will be extended south as development proceeds south. Therefore the existing sidewalks, boulevard and MUP were assumed to be extended to Barnsdale Road by the 2031 total future horizon. As the intersection of the Existing Greenbank Road at the New E-W Collector will not have an east leg (i.e. it will be a "T" intersection), cyclists travelling eastbound are anticipated to use the future MUP along the west side of Existing Greenbank Road. That said, cyclists are not expected to interact or conflict with eastbound right-turning vehicles and thus, the future eastbound right-turning lane was not considered when assessing the Bicycle LOS (BLOS) along the eastbound approach.

Consistent with the *Barrhaven South Urban Expansion Study Area Community Design Plan Transportation Master Study,* it was assumed that local transit services will be provided along the New E-W Collector and a TLOS assessment was therefore undertaken on the Existing Greenbank Road at the New E-W Collector intersection.

Neither of these two roads are truck routes and therefore there is no MMLOS target for the them.

Table 20 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at New E-W Collector where it is shown that all modes of transportation meet or exceed the target level of service.

Table 18 2031 FBG MMLOS - Greenbank Road at Barnsdale Road

	Commont		2031 Future Bac	kground Traffic		Tanast	
	Segment	EB	WB	NB	SB	Target	
	Lanes crossed	3	3	3	3		
	Median (yes/no)	No	No	No	No		
	Island refuge >=2.4m (yes/no)	No	No	No	No		
	Left turn phasing	Permissive	Permissive	Permissive	Protected/ Permissive		
	Right turn conflict	Yes	Yes	Yes	Yes		
	RTOR (yes/no)	Yes	Yes	Yes	Yes		
	Leading ped interval (yes/no)	No	No	No	No		
တ္ထ	Right turn corner radius (m)	5-10	5-10	5-10	5-10	_	
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С	
	Cycle length (s)	90	90	90	90		
	Effective walk time (s)	18	18	18	18		
	PETSI Points	71	71	71	71		
	PETSI Points LOS	С	С	С	С		
	Average Pedestrian Delay (s)	28.8	28.8	28.8	28.8		
	Ped Delay LOS	С	С	С	С		
	Level of Service	С	С	С	С		
	Level of Service		(;			
	Type of bike lane	Mixed	Mixed	Separated	Separated		
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)		
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25		
S	Right-turn - number of turn lanes	0	0	NA	NA		
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	В	
_	Right-turn - turning speed (km/hr)	15	15	15	15		
	Right-turn - location of bike lane	NA	NA	MUP	MUP		
	Level of Service	В	В	А	Α		
	Level of Service		E	3			
(0	Maximum Average Delay (s)		N	A			
TLOS	Level of Service		N	A		D	
-	Level of Service		N	A			
	Effective corner radius (m)	<10	<10	<10	<10		
SO	Number of receiving lanes	1	1	1	1	No	
TKLOS	Level of Service	F	F	F	F	Target	
	Level of Service		F				
(0	Maximum Volume-to-capacity (v/c)	0.62	0.84	0.23	0.50		
VLOS	Level of Service	В	D	Α	Α	D	
>	Level of Service)			

Table 19 2031 FBG MMLOS - Existing Greenbank Road at Kilbirnie Drive

	2		2031 Future Bac	kground Traffic			
	Segment	EB	WB	NB	SB	Target	
	Lanes crossed	4	4	3	3		
	Median (yes/no)	No	No	No	No		
	Island refuge >=2.4m (yes/no)	No	No	No	No		
	Left turn phasing	Protected/ Permissive	Permissive	Permissive	Permissive		
	Right turn conflict	Yes	Yes	Yes	Yes		
	RTOR (yes/no)	Yes	Yes	Yes	Yes		
	Leading ped interval (yes/no)	No	No	No	No		
တ္ထ	Right turn corner radius (m)	3-5	3-5	3-5	3-5	_	
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С	
	Cycle length (s)	90	90	90	90		
	Effective walk time (s)	22	22	18	18		
	PETSI Points	61	61	72	72		
	PETSI Points LOS	С	С	С	С		
	Average Pedestrian Delay (s)	25.7	25.7	28.8	28.8		
	Ped Delay LOS	С	С	С	С		
	Level of Service	С	С	С	С		
	Level of Service	С					
	Type of bike lane	Mixed	Mixed	Separated	Separated		
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)		
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25		
တ္ထ	Right-turn - number of turn lanes	0	0	NA	NA		
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	С	
	Right-turn - turning speed (km/hr)	15	15	15	15		
	Right-turn - location of bike lane	NA	NA	MUP	MUP		
	Level of Service	В	В	А	Α		
	Level of Service		E	3			
(0	Maximum Average Delay (s)	26.4	20.1	15.5	13.3		
TLOS	Level of Service	D	D	С	С	D	
-	Level of Service		C)			
	Effective corner radius (m)	<10	<10	<10	<10		
SO	Number of receiving lanes	1	1	1	1	No	
TKLOS	Level of Service	F	F	F	F	Target	
	Level of Service		F				
(0	Maximum Volume-to-capacity (v/c)	0.51	0.44	0.29	0.30		
VLOS	Level of Service	Α	А	Α	Α	D	
>	Level of Service		A	À			

Strategy Report May 25, 2018

Table 20 2031 FBG MMLOS - Existing Greenbank Road at New E-W Collector

	Commont	2031 Total Fu	ture Traffic	Townst		
	Segment	EB	NB / SB	Target		
	Lanes crossed	2	3			
	Median (yes/no)	No	No			
	Island refuge >=2.4m (yes/no)	No	No			
	Left turn phasing	Permissive	Permissive			
	Right turn conflict	Yes	Yes			
	RTOR (yes/no)	Yes	Yes			
	Leading ped interval (yes/no)	No	No			
(0	Right turn corner radius (m)	3-5	3-5			
PLOS	Crosswalk treatment	Standard	Standard	С		
	Cycle length (s)	90	90			
	Effective walk time (s)	18	18			
	PETSI Points	87	72			
	PETSI Points LOS	В	С			
	Average Pedestrian Delay (s)	28.8	28.8			
	Ped Delay LOS	С	С			
	Level of Service	С	С			
	Level of Service	С				
	Type of bike lane	Mixed	Separated			
	Left-turn - lanes crossed	1	NA			
	Left-turn - vehicle operating speed (km/hr)	25	25			
m	Right-turn - number of turn lanes	NA	NA			
BLOS	Right-turn - turn lane length (m)	NA	NA (Shared)	С		
- ш	Right-turn - turning speed (km/hr)	NA	15			
	Right-turn - location of bike lane	NA	MUP			
	Level of Service	В	Α			
	Level of Service	В				
(0	Maximum Average Delay (s)	21.3	13.8			
TLOS	Level of Service	D	С	D		
-	Level of Service	D				
	Effective corner radius (m)	<10	<10			
SO	Number of receiving lanes	1	1	No		
TKLOS	Level of Service	F	F	Target		
	Level of Service	F				
m	Maximum Volume-to-capacity (v/c)	0.41	0.56			
VLOS	Level of Service	А	А	D		
>	Level of Service	Α				

Strategy Report May 25, 2018

4.9.2.5 **2031 Total Future Conditions**

Figure 22 and Figure 23 illustrate 2031 total future AM and PM peak hour traffic volumes at the study area intersections.

Table 21 summarizes the results of the Synchro analysis for 2031 total future intersection operations.

Appendix C contains detailed intersection performance worksheets.

Figure 24 illustrates the required intersection control and lane configuration to accommodate the 2031 total future conditions.

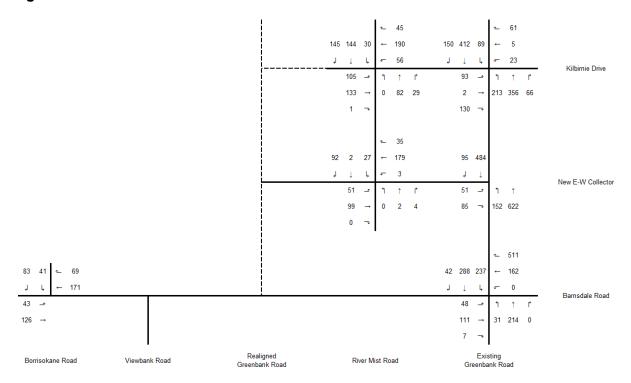

All study area intersections are anticipated to operate acceptably.

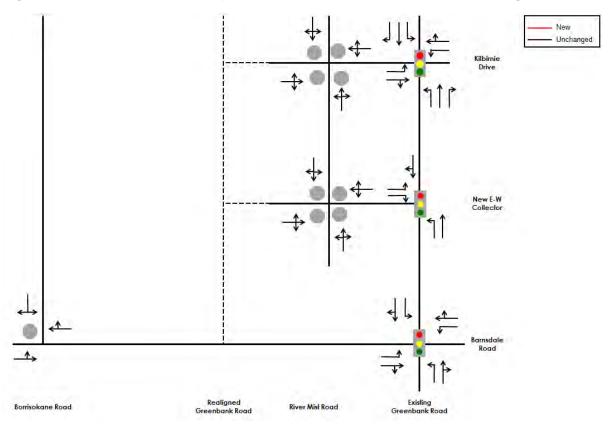
Figure 22 2031 Total Future Traffic Volumes - AM Peak Hour

Figure 23 2031 Total Future Traffic Volumes - PM Peak Hour

Strategy Report May 25, 2018

Table 21 2031 Total Future Operations (Synchro Results)

Scenario	Intersection Control	Ар	proach / Movement	LOS	V/C	Delay (s)	Queue 95 th (veh)
Barnsdale		EB	Left / Through	A (A)	0.03 (0.03)	7.7 (7.8)	0.1 (0.1)
Road at	Minor Stop	WB	Through / Right	A (A)	0 (0)	0 (0)	0 (0)
Borrisokane	Control	SB	Left / Right	B (B)	0.12 (0.18)	10.7 (11.2)	0.4 (0.6)
Road		0	verall Intersection	A (A)	-	3.1 (3.2)	-
		EB	Left	A (B)	0.38 (0.62)	40.8 (51.1)	15.1* (15.7)*
		EB	Through / Right	A (A)	0.39 (0.17)	33.1 (14.0)	29.7* (14.9)*
		WB	Left	A (A)	0.02 (0)	27.5 (0)	3.1* (0)*
Existing		VVD	Through / Right	C (D)	0.73 (0.85)	36.6 (22.2)	48.8* (69.8)*
Greenbank at Barnsdale	Traffic Signals	NB	Left	A (A)	0.04 (0.07)	20.4 (19.9)	8.0* (10.9)*
Road		NR	Through / Right	A (A)	0.24 (0.26)	19.9 (19.2)	44.5* (50.0)*
		CD	Left	A (A)	0.58 (0.47)	7.5 (20.9)	50.0* (#72.8)*
		SB	Through / Right	A (A)	0.20 (0.40)	2.6 (16.3)	9.2* (58.0)*
		0	verall Intersection	C (D)	0.73 (0.85)	17.4 (20.7)	-
		EB	Left	A (A)	0.39 (0.53)	23.8 (44.6)	23.9* (26.5)*
		ED	Through / Right	A (A)	0.33 (0.42)	4.4 (10.0)	10.8* (13.6)*
		WB	Left	A (A)	0.45 (0.16)	43.5 (33.0)	20.3* (9.2)*
Existing	Traffic Signals	VVD	Through / Right	A (A)	0.40 (0.25)	11.4 (11.8)	13.3* (10.4)*
Greenbank		affic Signals NB	Left	A (A)	0.13 (0.32)	5.3 (5.4)	8.4* (23.3)*
Road at			Through	A (A)	0.31 (0.27)	6.0 (4.2)	29.9* (32.6)*
Kilbirnie			Right	A (A)	0.01 (0.06)	0.2 (1.6)	0.2* (2.9)*
Drive		SB	Left	A (A)	0.05 (0.13)	12.9 (4.7)	8.3* (11.0)*
			Through	A (A)	0.28 (0.31)	13.0 (5.2)	55.1* (44.3)*
			Right	A (A)	0.07 (0.13)	3.0 (1.2)	5.3* (5.7)*
		0	verall Intersection	A (A)	0.45 (0.53)	11.6 (7.8)	-
		EB	Left / Through / Right	B (B)	0.42 (0.38)	11.9 (12.3)	2.1 (1.8)
River Mist	A II . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WB	Left / Through / Right	A (B)	0.19 (0.45)	9.5 (12.9)	0.7 (2.3)
Road at Kilbirnie	All-Way Stop Control	NB	Left / Through / Right	B (B)	0.30 (0.18)	10.3 (10.2)	1.3 (0.7)
Drive	Control	SB	Left / Through / Right	A (B)	0.20 (0.48)	9.6 (13.2)	0.8 (2.6)
		0	verall Intersection	B (B)	-	10.7 (12.5)	-
		EB	Left	A (A)	0.47 (0.29)	42.9 (39.2)	28.0* (16.9*)
Existing		LD	Right	A (A)	0.49 (0.36)	11.1 (12.4)	15.1* (11.5*)
Greenbank	Traffic Signals	NB	Left	A (A)	0.10 (0.25)	4.1 (3.0)	m7.6* (m12.3*)
Road at New	Trainic Oignais	IND	Through	A (A)	0.24 (0.44)	4.2 (3.3)	48.5* (55.4*)
E-W Collector		SB	Through / Right	A (A)	0.43 (0.41)	4.0 (4.0)	34.4* (46.3*)
			verall Intersection	A (A)	0.49 (0.44)	8.1 (5.3)	-
		EB	Left / Through / Right	A (A)	0.32 (0.19)	9.3 (8.6)	1.4 (0.7)
River Mist	All-Way Stop	WB	Left / Through / Right	A (A)	0.11 (0.26)	7.8 (8.8)	0.4 (1.0)
Road at New	Control	NB	Left / Through / Right	A (A)	0.03 (0.01)	7.6 (7.6)	0.1 (0)
E-W Collector	22	SB	Left / Through / Right	A (A)	0.09 (0.15)	8.1 (8.1)	0.3 (0.5)
Notes:		0	verall Intersection	A (A)	-	8.7 (8.6)	-


Notes:

- 1. Table format: AM (PM)
 2. v/c represents the anticipated volume divided by the predicted capacity
 3. # 95th percentile volume exceeds capacity, queue may be longer
 4. * Queue lengths for these movements are in meters
 5. m Volume for 95th percentile queue is metered by upstream signal

Strategy Report May 25, 2018

Figure 24 2031 Total Future Required Intersection Control and Lane Configuration

A signalized intersection MMLOS assessment was undertaken on the Existing Greenbank Road at Barnsdale Road intersection, the Existing Greenbank Road at Kilbirnie Drive intersection and the Existing Greenbank Road at the New E-W Collector intersection as they are all expected to be operating as signalized intersections by the 2031 total future horizon. The anticipated operations during the AM and PM peak hours were both considered in the assessment and the MMLOS targets for a "Developing Community" seemed most suitable for the study area roadways.

Existing Greenbank Road at Barnsdale Road Intersection:

Table 22 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Barnsdale Road where it is shown that all modes of transportation meet or exceed the target level of service.

Existing Greenbank Road at Kilbirnie Drive Intersection:

Table 23 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Kilbirnie Drive where it is shown that all modes of transportation meet or exceed the target level of service.

Existing Greenbank Road at New E-W Collector Intersection:

Table 24 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at the New E-W Collector where it is shown that all modes of transportation meet or exceed the target level of service.

Table 22 2031 Total Future MMLOS - Existing Greenbank Road at Barnsdale Road

	Comment		2031 Total F	uture Traffic		Tannat
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	3	3	3	
	Median (yes/no)	No	No	No	No	
	Island refuge >=2.4m (yes/no)	No	No	No	No	
	Left turn phasing	Permissive	Permissive	Permissive	Protected/ Permissive	
	Right turn conflict	Yes	Yes	Yes	Yes	
	RTOR (yes/no)	Yes	Yes	Yes	Yes	
	Leading ped interval (yes/no)	No	No	No	No	
တ္ထ	Right turn corner radius (m)	5-10	5-10	5-10	5-10	
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
	Cycle length (s)	90	90	90	90	
	Effective walk time (s)	18	18	18	18	
	PETSI Points	71	71	71	71	
	PETSI Points LOS	С	С	С	С	
	Average Pedestrian Delay (s)	28.8	28.8	28.8	28.8	
	Ped Delay LOS	С	С	С	С	
	Level of Service	С	С	С	С	
	Level of Service	С				
	Type of bike lane	Mixed	Mixed	Separated	Separated	
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)	
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25	
SC	Right-turn - number of turn lanes	0	0	NA	NA	_
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	В
	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	NA	NA	MUP	MUP	
	Level of Service	В	В	Α	Α	
	Level of Service		E	3		
w	Maximum Average Delay (s)		N	A		
TLOS	Level of Service		N	A		D
-	Level of Service		N	A		
	Effective corner radius (m)	<10	<10	<10	<10	
TKLOS	Number of receiving lanes	1	1	1	1	No
복	Level of Service	F	F	F	F	Target
	Level of Service		F	-		
m	Maximum Volume-to-capacity (v/c)	0.62	0.85	0.26	0.58	
VLOS	Level of Service	В	D	Α	Α	D
7	Level of Service	B D A A				

Table 23 2031 Total Future MMLOS - Existing Greenbank Road at Kilbirnie Drive

	2		2031 Total F	uture Traffic		T
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	4	4	3	3	
	Median (yes/no)	No	No	No	No	
	Island refuge >=2.4m (yes/no)	No	No	No	No	
	Left turn phasing	Protected/ Permissive	Permissive	Permissive	Permissive	
	Right turn conflict	Yes	Yes	Yes	Yes	
	RTOR (yes/no)	Yes	Yes	Yes	Yes	
	Leading ped interval (yes/no)	No	No	No	No	
တ္ထ	Right turn corner radius (m)	3-5	3-5	3-5	3-5	
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
	Cycle length (s)	90	90	90	90	
	Effective walk time (s)	22	22	18	18	
	PETSI Points	61	61	72	72	
	PETSI Points LOS	С	С	С	С	
	Average Pedestrian Delay (s)	25.7	25.7	28.8	28.8	
	Ped Delay LOS	С	С	С	С	
	Level of Service	С	С	С	С	
	Level of Service	С				
	Type of bike lane	Mixed	Mixed	Separated	Separated	
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)	
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25	
တ္ထ	Right-turn - number of turn lanes	0	0	NA	NA	_
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	С
	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	NA	NA	MUP	MUP	
	Level of Service	В	В	Α	Α	
	Level of Service		E	3		
W	Maximum Average Delay (s)	27.2	20.7	15.7	13.2	
TLOS	Level of Service	D	D	С	С	D
-	Level of Service)		
	Effective corner radius (m)	<10	<10	<10	<10	
SO	Number of receiving lanes	1	1	1	1	No
TKLOS	Level of Service	F	F	F	F	Target
·	Level of Service		F	•		
m	Maximum Volume-to-capacity (v/c)	0.53	0.45	0.34	0.31	
VLOS	Level of Service	Α	Α	Α	Α	D
>	Level of Service		P	\		

Table 24 2031 Total Future MMLOS - Existing Greenbank Road at New E-W Collector

Segment		2031 Total Fu	Torret		
		EB	NB / SB	Target	
	Lanes crossed	2	3		
	Median (yes/no)	No	No		
	Island refuge >=2.4m (yes/no)	No	No		
	Left turn phasing	Permissive	Permissive		
	Right turn conflict	Yes	Yes		
	RTOR (yes/no)	Yes	Yes		
	Leading ped interval (yes/no)	No	No]	
m	Right turn corner radius (m)	3-5	3-5		
PLOS	Crosswalk treatment	Standard	Standard	С	
	Cycle length (s)	90	90		
	Effective walk time (s)	18	18		
	PETSI Points	87	72		
	PETSI Points LOS	В	С		
	Average Pedestrian Delay (s)	28.8	28.8	1	
	Ped Delay LOS	С	С		
	Level of Service	С	С		
	Level of Service				
	Type of bike lane	Mixed	Separated		
	Left-turn - lanes crossed	1	NA		
	Left-turn - vehicle operating speed (km/hr)	25	25		
m	Right-turn - number of turn lanes	NA	NA		
BLOS	Right-turn - turn lane length (m)	NA	NA (Shared)	С	
- ш	Right-turn - turning speed (km/hr)	NA	15		
	Right-turn - location of bike lane	NA	MUP		
	Level of Service	В	А		
	Level of Service	В			
(0	Maximum Average Delay (s)	21.3	13.8		
TLOS	Level of Service	D	С	D	
-	Level of Service	D			
	Effective corner radius (m)	<10	<10		
SO	Number of receiving lanes	1	1	No	
TKLOS	Level of Service	F	F	Target	
	Level of Service	F			
(0	Maximum Volume-to-capacity (v/c)	0.4	0.69		
VLOS	Level of Service	А	В	D	
>	Level of Service	В			

Strategy Report May 25, 2018

4.9.2.6 2036 Ultimate Conditions

Strategy Report May 25, 2018

Figure 25 and Figure 26 illustrate 2036 ultimate AM and PM peak hour traffic volumes at the study area intersections.

 Table 25 summarizes the results of the Synchro analysis for 2036 ultimate intersection operations.

All study area intersections are anticipated to operate acceptably.

Appendix C contains detailed intersection performance worksheets.

Figure 27 illustrates the required intersection control and lane configuration to accommodate the 2036 ultimate conditions.

Figure 25 2036 Ultimate Traffic Volumes - AM Peak Hour

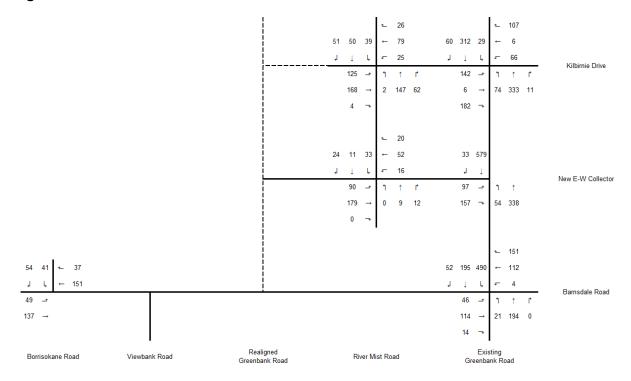
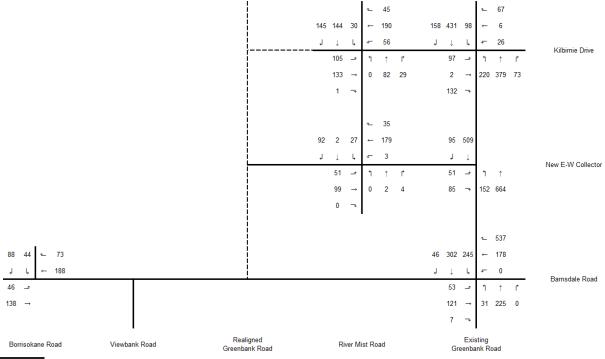



Figure 26 2036 Ultimate Traffic Volumes - PM Peak Hour

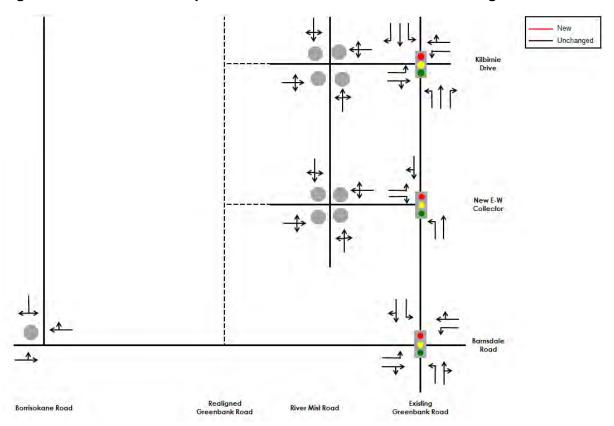
Strategy Report May 25, 2018

Table 25 2036 Ultimate Operations (Synchro Results)

Scenario	Intersection Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95 th (veh)
Barnsdale		EB	Left / Through	A (A)	0.04 (0.04)	7.7 (7.9)	0.1 (0.1)
Road at	Minor Stop	WB	Through / Right	A (A)	0 (0)	0 (0)	0 (0)
Borrisokane	Control	SB	Left / Right	B (B)	0.14 (0.19)	10.9 (11.5)	0.5 (0.7)
Road		0	verall Intersection	A (A)	-	3.0 (3.3)	-
			Left	A (A)	0.42 (0.60)	42.9 (43.7)	16.5* (17.1)*
		EB	Through / Right	A (A)	0.40 (0.17)	33.0 (12.4)	31.9* (15.3)*
		VA/ID	Left	A (A)	0.02 (0)	27.0 (0)	3.1* (0)*
Existing		WB	Through / Right	C (D)	0.76 (0.86)	39.1 (22.4)	53.7* (81.0)*
Greenbank at Barnsdale	Traffic Signals	NID	Left	A (A)	0.05 (0.09)	21.1 (22.2)	8.3* (11.2)*
Road	-	NB	Through / Right	A (A)	0.26 (0.29)	21.0 (21.7)	46.5* (53.7)*
Rodu			Left	B (A)	0.62 (0.55)	8.7 (25.8)	60.6* (#84.3)*
		SB	Through / Right	A (A)	0.21 (0.46)	2.8 (19.6)	9.9* (#92.6)*
		0	verall Intersection	C (D)	0.76 (0.86)	18.7 (22.1)	-
			Left	A (A)	0.39 (0.53)	23.8 (44.6)	23.9* (26.5)*
		EB	Through / Right	A (A)	0.33 (0.42)	4.4 (10.0)	10.8* (13.6)*
		WD	Left	A (A)	0.45 (0.16)	43.5 (33.0)	20.3* (9.2)*
Existing	Traffic Signals	WB	Through / Right	A (A)	0.40 (0.25)	11.4 (11.8)	13.3* (10.4)*
Greenbank		NB	Left	A (A)	0.13 (0.33)	5.1 (5.4)	7.4* (22.6)*
Road at			Through	A (A)	0.32 (0.29)	5.9 (4.2)	34.3* (36.0)*
Kilbirnie			Right	A (A)	0.01 (0.06)	0.1 (1.0)	0.1* (1.8)*
Drive		SB	Left	A (A)	0.05 (0.13)	12.9 (4.7)	8.3* (11.0)*
			Through	A (A)	0.30 (0.33)	13.2 (5.3)	59.3* (46.6)*
			Right	A (A)	0.07 (0.13)	3.0 (1.2)	5.3* (5.7)*
		0	verall Intersection	A (A)	0.45 (0.53)	11.6 (7.7)	-
	All-Way Stop Control	EB	Left / Through / Right	B (B)	0.42 (0.38)	11.9 (12.3)	2.1 (1.8)
River Mist		WB	Left / Through / Right	A (C)	0.19 (0.45)	9.5 (12.9)	0.7 (2.3)
Road at Kilbirnie		NB	Left / Through / Right	B (B)	0.30 (0.18)	10.3 (10.2)	1.3 (0.7)
Drive		SB	Left / Through / Right	A (C)	0.20 (0.48)	9.6 (13.1)	0.8 (2.6)
		0	verall Intersection	B (A)	-	10.7 (12.5)	-
	- FD	EB	Left	A (A)	0.47 (0.29)	42.9 (39.2)	28.0* (16.9*)
Existing		□□□□	Right	A (A)	0.49 (0.36)	11.1 (12.4)	15.1* (11.5*)
Greenbank	Troffic Cianala	NB	Left	A (A)	0.10 (0.26)	4.4 (3.2)	m7.8* (m12.3*)
Road at New	Traffic Signals	NB	Through	A (A)	0.25 (0.47)	4.5 (3.7)	55.3* (65.2*)
E-W Collector		SB	Through / Right	A (A)	0.46 (0.43)	4.3 (4.1)	38.1* (55.0*)
		Overall Intersection		A (A)	0.49 (0.47)	8.2 (5.5)	-
	A II M . O.	EB	Left / Through / Right	A (A)	0.32 (0.19)	9.3 (8.6)	1.4 (0.7)
River Mist		WB	Left / Through / Right	A (A)	0.11 (0.26)	7.8 (8.8)	0.4 (1.0)
Road at New	All-Way Stop Control	NB	Left / Through / Right	A (A)	0.03 (0.01)	7.6 (7.6)	0.1 (0)
E-W Collector	00111101	SB	Left / Through / Right	A (A)	0.09 (0.15)	8.1 (8.1)	0.3 (0.5)
		0	verall Intersection	A (A)	-	8.7 (8.6)	-

Notes:

- 1. Table format: AM (PM)
- v/c represents the anticipated volume divided by the predicted capacity


- 2. v/c represents the anticipated volume divided by the predicted so
 3. # 95th percentile volume exceeds capacity, queue may be longer
 4. * Queue lengths for these movements are in meters

 (**-05th percentile queue is metered by upstream significant to the control of the percentile queue is metered by the control of the con 5. m – Volume for 95th percentile queue is metered by upstream signal

Strategy Report May 25, 2018

Figure 27 2036 Ultimate Required Intersection Control and Lane Configuration

A signalized intersection MMLOS assessment was undertaken on the Existing Greenbank Road at Barnsdale Road intersection, the Existing Greenbank Road at Kilbirnie Drive intersection, And the Existing Greenbank Road at the New E-W Collector intersection as they are all expected to be operating as signalized intersections by the 2036 ultimate horizon. The anticipated operations during the AM and PM peak hours were both considered in the assessment and the MMLOS targets for a "Developing Community" seemed most suitable for the study area roadways.

Existing Greenbank Road at Barnsdale Road Intersection:

Table 26 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Kilbirnie Drive where it is shown that all modes of transportation meet or exceed the target level of service.

Existing Greenbank Road at Kilbirnie Drive Intersection:

Table 27 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Kilbirnie Drive where it is shown that all modes of transportation meet or exceed the target level of service.

Existing Greenbank Road at New E-W Collector Intersection:

Table 28 presents the MMLOS conditions for the signalized intersection of Existing Greenbank Road at Kilbirnie Drive where it is shown that all modes of transportation meet or exceed the target level of service.

Table 26 2036 Ultimate MMLOS – Existing Greenbank Road at Barnsdale Road

Sogment		2031 Total Future Traffic						
	Segment	EB	WB	NB	SB	Target		
	Lanes crossed	3	3	3	3			
	Median (yes/no)	No	No	No	No			
	Island refuge >=2.4m (yes/no)	No	No	No	No			
	Left turn phasing	Permissive	Permissive	Permissive	Protected/ Permissive			
	Right turn conflict	Yes	Yes	Yes	Yes			
	RTOR (yes/no)	Yes	Yes	Yes	Yes			
	Leading ped interval (yes/no)	No	No	No	No			
တ္ထ	Right turn corner radius (m)	5-10	5-10	5-10	5-10			
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С		
	Cycle length (s)	90	90	90	90			
	Effective walk time (s)	18	18	18	18			
	PETSI Points	71	71	71	71			
	PETSI Points LOS	С	С	С	С			
	Average Pedestrian Delay (s)	28.8	28.8	28.8	28.8			
	Ped Delay LOS	С	С	С	С			
	Level of Service	С	С	С	С			
	Level of Service							
	Type of bike lane	Mixed	Mixed	Separated	Separated			
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)			
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25			
S	Right-turn - number of turn lanes	0	0	NA	NA			
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	В		
_	Right-turn - turning speed (km/hr)	15	15	15	15			
	Right-turn - location of bike lane	NA	NA	MUP	MUP			
	Level of Service	В	В	Α	Α			
	Level of Service	evel of Service B						
(0	Maximum Average Delay (s)		N	A				
TLOS	Level of Service		N	A		D		
-	Level of Service	NA						
	Effective corner radius (m)	<10	<10	<10	<10			
SO	Number of receiving lanes	1	1	1	1	No		
TKLOS	Level of Service	F	F	F	F	Target		
	Level of Service	F						
(0	Maximum Volume-to-capacity (v/c)	0.60	0.86	0.29	0.62			
VLOS	Level of Service	Α	D	Α	В	D		
>	Level of Service D							

Table 27 2036 Ultimate MMLOS – Existing Greenbank Road at Kilbirnie Drive

Segment		2031 Total Future Traffic						
		EB	WB	NB	SB	Target		
	Lanes crossed	4	4	3	3			
	Median (yes/no)	No	No	No	No			
	Island refuge >=2.4m (yes/no)	No	No	No	No			
	Left turn phasing	Protected/ Permissive	Permissive	Permissive	Permissive			
	Right turn conflict	Yes	Yes	Yes	Yes			
	RTOR (yes/no)	Yes	Yes	Yes	Yes			
	Leading ped interval (yes/no)	No	No	No	No			
တ္ထ	Right turn corner radius (m)	3-5	3-5	3-5	3-5			
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С		
	Cycle length (s)	90	90	90	90			
	Effective walk time (s)	22	22	18	18			
	PETSI Points	61	61	72	72			
	PETSI Points LOS	С	С	С	С			
	Average Pedestrian Delay (s)	25.7	25.7	28.8	28.8			
	Ped Delay LOS	С	С	С	С			
	Level of Service	С	С	С	С			
	Level of Service	Level of Service C						
	Type of bike lane	Mixed	Mixed	Separated	Separated	-		
	Left-turn - lanes crossed	1	1	NA (Two Stage)	NA (Two Stage)			
	Left-turn - vehicle operating speed (km/hr)	25	25	25	25			
တ္ထ	Right-turn - number of turn lanes	0	0	NA	NA			
BLOS	Right-turn - turn lane length (m)	NA (Shared)	NA (Shared)	NA (Shared)	NA (Shared)	С		
	Right-turn - turning speed (km/hr)	15	15	15	15			
	Right-turn - location of bike lane	NA	NA	MUP	MUP			
	Level of Service	В	В	А	Α			
	Level of Service		E	3				
m	Maximum Average Delay (s)	26.5	20.3	16.4	13.9			
TLOS	Level of Service	D	D	С	С	D		
-	Level of Service	D						
	Effective corner radius (m)	<10	<10	<10	<10			
SO	Number of receiving lanes	1	1	1	1	No		
TKLOS	Level of Service	F	F	F	F	Target		
	Level of Service	F						
	Level of Service							
m	Maximum Volume-to-capacity (v/c)	0.53	0.45	0.33	0.33			
VLOS		0.53 A		0.33 A	0.33 A	D		

Table 28 2036 Ultimate MMLOS – Existing Greenbank Road at New E-W Collector

Segment		2031 Total Fu	Torget			
		EB	NB / SB	Target		
	Lanes crossed	2	3			
	Median (yes/no)	No	No			
	Island refuge >=2.4m (yes/no)	No	No			
	Left turn phasing	Permissive	Permissive			
	Right turn conflict	Yes	Yes			
	RTOR (yes/no)	Yes	Yes			
	Leading ped interval (yes/no)	No	No			
w	Right turn corner radius (m)	3-5	3-5			
PLOS	Crosswalk treatment	Standard	Standard	С		
_ ←	Cycle length (s)	90	90			
	Effective walk time (s)	18	18			
	PETSI Points	87	72			
	PETSI Points LOS	В	С			
	Average Pedestrian Delay (s)	28.8	28.8			
	Ped Delay LOS	С	С			
	Level of Service	С	С			
	Level of Service C					
	Type of bike lane	Mixed	Separated			
	Left-turn - lanes crossed	1	NA			
	Left-turn - vehicle operating speed (km/hr)	25	25			
m	Right-turn - number of turn lanes	NA	NA			
BLOS	Right-turn - turn lane length (m)	NA	NA (Shared)	С		
- ш	Right-turn - turning speed (km/hr)	NA	15			
	Right-turn - location of bike lane	NA	MUP			
	Level of Service	В	Α			
	Level of Service	В				
(0	Maximum Average Delay (s)	21.8	13.1			
TLOS	Level of Service	D	С	D		
-	Level of Service	С				
	Effective corner radius (m)	<10	<10			
SO	Number of receiving lanes	1	1	No		
TKLOS	Level of Service	F	F	Target		
	Level of Service	F				
m	Maximum Volume-to-capacity (v/c)	0.49	0.72			
VLOS	Level of Service	А	С	D		
>	Level of Service	С				

Strategy Report May 25, 2018

4.9.3 Summary of Required Road Improvements

Error! Reference source not found. provides a summary of the road improvements required in each horizon at the study area intersections to accommodate the proposed development.

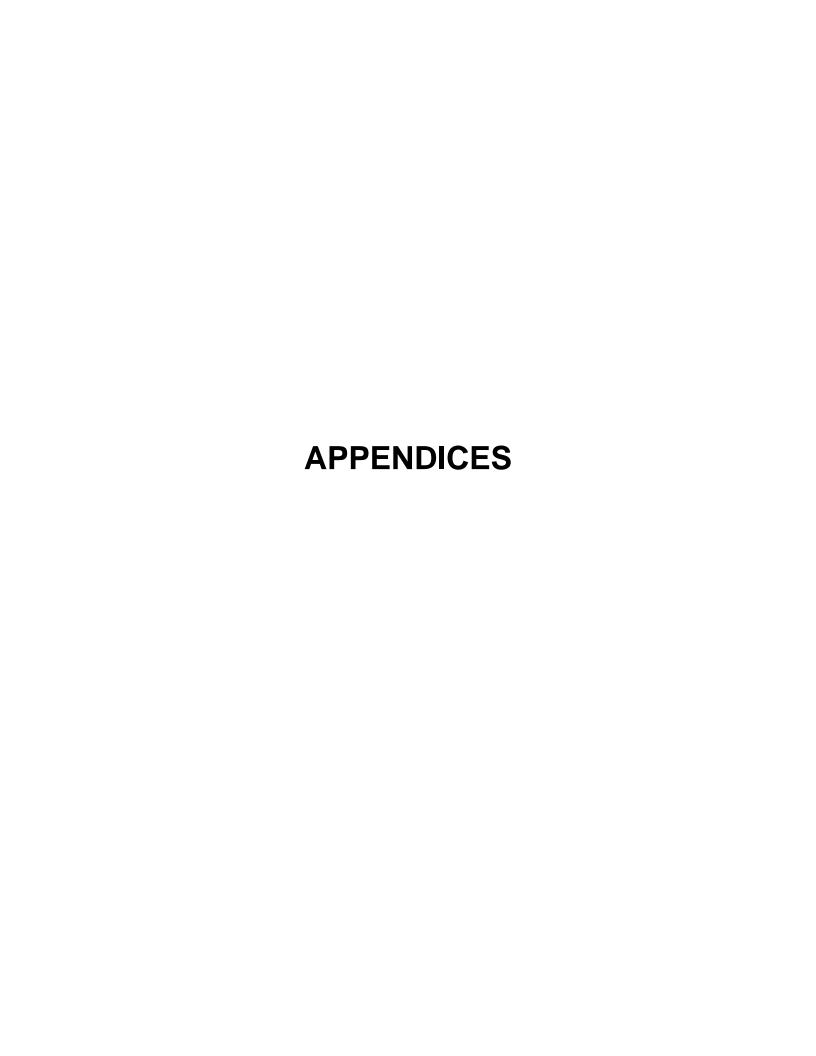
It is recommended that the southbound auxiliary left-turning lane at the Existing Greenbank Road at Barnsdale Road gets designed with a storage that can accommodate the expected queue length under the 2035 ultimate conditions (i.e. 85 meters).

Table 29 Summary of Required Road Improvements at The Study Area Intersections

INTERSECTION	EXISTING TRAFFIC CONTROL	2025 FUTURE BACKGROUND	2025 TOTAL FUTURE	2031 FUTURE BACKGROUND	2031 TOTAL FUTURE	2036 ULTIMATE
Barnsdale Road at Borrisokane Road	Minor Stop Control	N/A	N/A	N/A	N/A	N/A
Existing Greenbank at Barnsdale Road	All-Way Stop Control	N/A	Traffic signals with left turn auxiliary lanes	N/A	N/A	N/A
Existing Greenbank Road at Kilbirnie Drive	Minor Stop Control	Addition of northbound left turn auxiliary lane	All-Way Stop Control	Traffic signals with left turn auxiliary lanes along the minor approach	N/A	N/A
River Mist Road at Kilbirnie Drive	All-Way Stop Control	N/A	N/A	N/A	N/A	N/A
Existing Greenbank Road at New E-W Collector	N/A	N/A	Minor Stop Control	Traffic signals with a left turn auxiliary lane along the minor approach	N/A	N/A
River Mist Road at New E-W Collector	N/A	N/A	All-Way Stop Control	N/A	N/A	N/A

Conclusions – Future Roadway Modification Approval at Registration May 25, 2018

5.0 CONCLUSIONS - FUTURE ROADWAY MODIFICATION APPROVAL AT REGISTRATION


This Transportation Impact Assessment is being submitted to support a planning application for *Draft Plan Approval* of Minto's Quinn's Pointe 2 residential development in Barrhaven South. It is anticipated that development will proceed in three phases with full build-out expected by 2031. Accordingly, and at the time of *Registration*, each phase of development will be supported by a future Transportation Impact Assessment specific to the phase that is being registered.

Currently, and with the application being for *Draft Plan Approval*, it is premature to prepare and submit Road Modification Approval (RMA) for the transportation improvements identified in this report. The purpose of an RMA is to identify property requirements (i.e. impacts to right-of-way), potential utility / infrastructure impacts, and capital cost estimates so that the proponent can dedicate land (i.e. right-of-way) and provide securities to the approval authority. However, land and securities are not dedicated at the *Draft Plan Approval* stage. Furthermore, to properly develop functional designs and cost estimates associated with the RMA, the subdivision design must be developed to a sufficient level of detail. At the Draft Plan stage, the subdivision design has not advanced to the point where it can adequately inform the RMA process.

At the time of *Registration*, the Transportation Impact Assessment will address the RMA requirements of the specific phase of development being registered. This will avoid duplication of efforts and time associated with having to prepare and process two RMAs for the same intersections (i.e. one RMA to support *Draft Plan Approval*, and then another RMA to support *Registration*), it will allow for more detailed and accurate input into the RMA given that the plan of subdivision will have advanced to a detailed stage – including producing more refined capital costs for the purposes of identifying securities - and it will also reduce approval authority review efforts including only having to proceed with Municipal Consent Circulation once.

In consideration of the required road improvements identified in this report, and in consideration of the intent of the City's Transportation Impact Assessment Guidelines as it relates to the Road Modification Approval process, the proposed development should be permitted to proceed with *Draft Plan Approval*.

Appendix A Traffic Data May 25, 2018

APPENDIX A TRAFFIC DATA

Transportation Services - Traffic Services

11 8 * Miovision 37298 1 Turning Movement Count - Full Study Peak Hour Diagram 23 0 ≥ - **J** WO No: Device: ₫ **Ö** Cars **₹**\$ **GREENBANK RD @ KILBIRNIE DR** 152 23 0 0 65 U **4** 569 Ł 65 165 164 <u>د</u> د 263 GREENBANK RD 0 589 16:45 17:45 PM Period Peak Hour: Ł 87 89 69 11 482 Ç **♣** 294 134 132 Survey Date: Thursday, November 09, 2017 ٦ <u>₩</u> 72 ก ٣ 181 2 Cars ***** Heavy Vehicles **₹**0 **%1** -Start Time: 07:00 Total KILBIRNIE DR 56 4 7 2 ***** 219

Transportation Services - Traffic Services Turning Movement Count - Full Study Peak Hour Diagram

GREENBANK RD @ KILBIRNIE DR

Miovision 37298

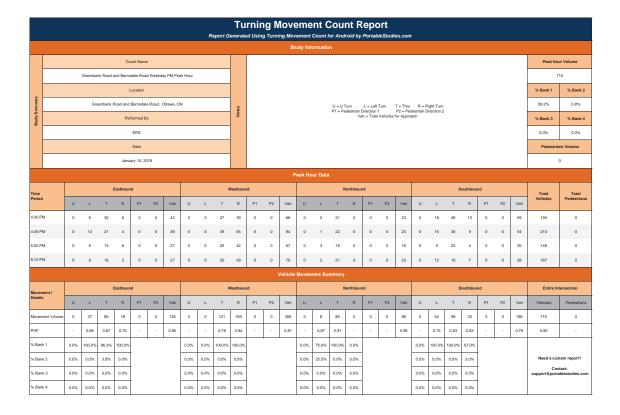
Device: WO No:

Survey Date: Thursday, November 09, 2017

Start Time: 07:00

11 ½ * Z ≫ **♣** 5² 1 105 **#** Cars ≪t ঐ **→** 102 U ٦ L, **4** 522 t 264 100 46 <u>ح</u> د GREENBANK RD **←** 138 07:15 08:15 Peak Hour: AM Period Ł 28 24 56 27 **=** Ç 403 \$08 508 144 142 0 0 7 **₹** 36 263 34 រា ٣ Cars 2 OF ***** Heavy Vehicles **%1** -Total KILBIRNIE DR 99 20 9 * ***** 8 <u>3</u>2 11 201

Comments


Comments

2018-Jan-04

2018-Jan-04 Page 4 of 4

Page 1 of 4

									Re	port G									epo Portab		ies.com									
														St	udy Inf	ormatio	n													
				Co	unt Name	•																							Peak Hor	ur Volume
		Greenba	nk Road a	and Barns	dale Roa	d Weekd	ay AM Pe	ak Hour																					5	69
				ı	Location																								% Bank 1	% Bank 2
Summary		Gre	enbank F	Road and	Barnsdal	e Road,	Ottawa, O	N			8						U = U	Turn	L = Left	t Turn	T = Thru	R = R	ight Turn						97.4%	2.6%
Study Su				Per	formed B	у					Notes						P1 = P		Direction eh = Total		P2 = Per for Appro	destrian D ach	tirection 2						% Bank 3	% Bank 4
os -					ERS																								0.0%	0.0%
					Date																								Pedestria	ins Volume
				Janu	ary 10, 20)18																								0
														F	eak Ho	ur Data	1													
Time				Eastboun	ıd					٧	Vestboun	d					,	orthbou	nd					s	outhbour	nd			Total	Total
Period	U	L	т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	Vehicles	Pedestrians
7:15 AM	0	10	22	0	0	0	32	0	3	19	7	0	0	29	0	2	17	0	0	0	19	0	51	19	9	0	0	79	159	0
7:30 AM	0	13	23	0	0	0	36	0	0	22	4	0	0	26	0	1	22	0	0	0	23	0	43	17	10	0	0	70	155	0
7:45 AM	0	6	21	3	0	0	30	0	0	18	12	0	0	30	0	2	10	0	0	0	12	0	40	15	7	0	0	62	134	0
8:00 AM	0	4	13	2	0	0	19	0	0	15	14	0	0	29	0	6	9	0	0	0	15	0	32	16	10	0	0	58	121	0
														/ehicle	Moven	nent Su			•		•				,					
Movement /				Eastboun	ıd					٧	Vestboun	d					,	orthbou	nd					s	outhbour	nd			Entire In	tersection
Details	U	L	Т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	Vehicles	Pedestrians
Movement Volume	0	33	79	5	0	0	117	0	3	74	37	0	0	114	0	11	58	0	0	0	69	0	166	67	36	0	0	269	569	0
PHF	-	0.63	0.86	0.42	-	-	0.81	-	0.25	0.84	0.66	3 0.95 - 0.46 0.86 0.75 - 0.81 0.88 0.90 0.85								0.85	0.89									
% Bank 1	0.0%	84.8%	100.0%	80.0%		•		0.0%	66.7%	100.0%	94.6%	0% 0.0% 81.8% 94.8% 0.0% 0.0% 99.4% 100.0% 100.0%																		
% Bank 2	0.0%	15.2%	0.0%	20.0%	Ī			0.0%	33.3%	0.0%	5.4%	4% 0.0% 18.2% 5.2% 0.0% 0.0% 0.0% 0.0% 0.0%									Need a cus	stom report?								
% Bank 3	0.0%	0.0%	0.0%	0.0%	İ			0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%					ntact: ablestudies.com
% Bank 4	0.0%	0.0%	0.0%	0.0%	İ			0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%					

									Re	eport <u>G</u>									Repo Portab		ies.com									_
														St	udy Inf	ormatic	n													
				Co	unt Name	•																							Peak Hor	ur Volume
		Rive	Mist and	Kilbimie	Drive - W	eekday A	M Peak H	our																					1	71
				ı	Location																								% Bank 1	% Bank 2
Summary		F	iver Mist	Road and	Kilbirnie	Drive, O	ttawa, ON				80						U = U		L = Left Direction		T = Thru	R = R destrian D	ight Turn						91.2%	8.8%
Study Si				Per	formed B	у					Not						P1 = Pi	Ve	eh = Total	Vehicles	for Appro	ach	irection 2						% Bank 3	% Bank 4
*					ERS																								0.0%	0.0%
					Date																								Pedestria	ns Volume
				Janu	ary 9, 20	18																								5
															eak Ho	ur Data														
Time			- 1	Eastboun	ıd					v	Vestbour	d					•	orthbou	nd					s	outhboun	ıd			Total	Total
Period	U	L	Т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	Vehicles	Pedestrians
7:15 AM	0	0	2	0	0	1	2	0	3	5	7	0	0	15	0	2	2	7	0	0	11	0	14	2	0	1	0	16	44	2
7:30 AM	0	0	7	1	0	2	8	0	5	8	8	0	0	21	0	0	6	6	0	0	12	0	11	1	0	0	0	12	53	2
7:45 AM	0	4	4	1	0	1	9	0	2	7	6	0	0	15	0	0	2	4	0	0	6	0	12	1	3	0	0	16	46	1
8:00 AM	0	0	2	2	0	0	4	0	3	1	5	0	0	9	0	0	3	8	0	0	11	0	2	1	1	0	0	4	28	0
													١	/ehicle	Moven	nent Su	mmary													
Movement / Details			-	Eastboun	ıd					٧	Vestbour	d					,	4orthbou	nd					s	outhboun	ıd			Entire In	tersection
Details	U	L	Т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	Vehicles	Pedestrians
Movement Volume	0	4	15	4	0	4	23	0	13	21	26	0	0	60	0	2	13	25	0	0	40	0	39	5	4	1	0	48	171	5
PHF	-	0.25	0.54	0.50	-	0.50	0.64	-	0.65	0.66	0.81	0.71 - 0.25 0.54 0.78 0.83 - 0.70 0.83 0.33 0.25 - 0.75								0.75	0.81	0.63								
% Bank 1	0.0%	100.0%	100.0%	100.0%				0.0%	100.0%	85.7%	73.1%	% 0.0% 100.0% 92.3% 100.0% 0.0% 89.7% 100.0% 100.0%																		
% Bank 2	0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	14.3%	26.9%				0.0%	0.0%	7.7%	0.0%				0.0%	10.3%	0.0%	0.0%					tom report?
% Bank 3	0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%					itact: iblestudies.com
% Bank 4	0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%					

									Re	eport G					eme						es.com									
															udy Inf															
				Co	ount Name	•																							Peak Ho	ur Volume
		Rive	r Mist and	Kilbimie	Drive - W	eekday P	M Peak H	our																					1	46
					Location																								% Bank 1	% Bank 2
Study Sum mary		-	River Mist	Road and	d Kilbirnie	Drive, O	ttawa, ON				Notes						U = U	Turn edestrian		Turn	T = Thru	R = R	tight Turn Direction 2						95.9%	4.1%
Study S				Pe	rformed B	у					No						P1 = Pi		h = Total				Airection 2						% Bank 3	% Bank 4
					ERS																								0.0%	0.0%
					Date																								Pedestria	ins Volume
				Jan	uary 9, 20	18																								9
															eak Ho	ur Data														
Time				Eastbour	nd					,	Vestboun	d					,	orthbou	nd						outhbou	nd			Total	Total
Period	U	L	т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	Vehicles	Pedestrians
4:45 PM	0	1	3	0	0	0	4	0	1	9	12	0	0	22	0	0	5	1	0	0	6	0	13	1	1	0	0	15	47	0
5:00 PM	0	0	2	0	0	0	2	0	5	1	9	0	0	15	0	0	2	1	0	0	3	0	6	2	0	1	0	8	28	1
5:15 PM	0	0	0	0	0	0	0	0	4	2	10	1	2	16	0	0	1	4	0	0	5	0	5	9	1	1	0	15	36	4
5:30 PM	0	0	1	1	2	0	2	0	8	1	13	0	0	22	0	0	2	2	2	0	4	0	5	2	0	0	0	7	35	4
														Vehicle	Moven	nent Su	mmary													
Movement /				Eastbour	nd					١	Vestboun	d					,	orthbou	nd					8	outhbou	nd			Entire In	tersection
Details	U	L	т	R	P1	P2	Veh	U	L	Т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	U	L	т	R	P1	P2	Veh	Vehicles	Pedestrians
Movement Volu	me 0	1	6	1	2	0	8	0	18	13	44	1	2	75	0	0	10	8	2	0	18	0	29	14	2	2	0	45	146	9
PHF	-	0.25	0.50	0.25	0.25	-	0.50	-	0.56	0.36	0.85	0.25	0.25	0.85	-	-	0.50	0.50	0.25	-	0.75	-	0.56	0.39	0.50	0.50	-	0.75	0.78	0.56
% Bank 1	0.0%	100.0%	83.3%	100.0%				0.0%	100.0%	92.3%	95.5%				0.0%	0.0%	100.0%	100.0%				0.0%	93.1%	100.0%	100.0%					
% Bank 2	0.0%	0.0%	16.7%	0.0%				0.0%	0.0%	7.7%	4.5%				0.0%	0.0%	0.0%	0.0%				0.0%	6.9%	0.0%	0.0%					stom report?
% Bank 3	0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%					ntact: ablestudies.com
% Bank 4	0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%				0.0%	0.0%	0.0%	0.0%					

Intersection:	Borrisokane at Barnsdale	e at Barnsd	ale											
<u>Date:</u>	23-Jul-15													
	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	Total	Hour
7:15 - 7:30	0	0	0	2	0	3	4	56	0	0	27	2	64	
7:30 - 7:45	0	0	0	9	0	9	4	23	0	0	56	4	69	
7:45 - 8:00	0	0	0	3	0	4	4	20	0	0	25	3	29	
8:00 - 8:15	0	0	0	2	0	4	9	25	0	0	23	2	65	257
8:15 - 8:30	0	0	0	2	0	2	2	19	0	0	18	2	48	241
8:30 - 8:45	0	0	0	4	0	3	4	16	0	0	19	1	47	219
Peak Hour	0	0	0	13	0	17	18	94	0	0	101	14		
	NBL	NBT	NBR	SBL	SBT	SBR	EB	EBT	EBR	WBL	WBT	WBR	Total	Hour
3:45 - 4:00	0	0	0	2	0	9	3	29	0	0	19	4	99	
4:00 - 4:15	0	0	0	2	0	7	3	56	0	0	21	4	63	
4:15 - 4:30	0	0	0	4	0	∞	1	59	0	0	31	2	78	
4:30 - 4:45	0	0	0	4	0	3	7	23	0	0	27	4	89	275
4:45 - 5:00	0	0	0	3	0	2	4	20	0	0	28	8	89	277
5:00 - 5:15	0	0	0		0	9	2	17	7	0	26	4	65	279
Peak Hour	0	0	0	11	0	22	17	89	7	0	112	21		

Appendix B TDM Checklists May 25, 2018

APPENDIX B TDM CHECKLISTS

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

	Legend
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	□ _{N/A}
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	□ _{N/A}
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	□ N/A
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	™
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	d
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	Roads inside the plan of subdivision will have an operating speed of 40-50 km/h
	1.3	Amenities for walking & cycling	_
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	☑
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	□ N/A

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILITY	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	□ N/A
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	□ N/A
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	□ _{N/A}
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	□ N/A
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	□ _{N/A}
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	□ N/A
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	□ _{N/A}
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	□ N/A
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	□ _{N/A}
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	$\square_{N/A}$

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	□ N/A
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	□ N/A
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	□ _{N/A}
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	□ _{N/A}
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	□ _{N/A}
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	□ N/A
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	□ N/A
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	□N/A

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	1.1.1	Designate an internal coordinator, or contract with an external coordinator	X
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	X
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	X
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	X

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	X
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	X
	3.2	Transit fare incentives	
BASIC	★ 3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	X
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	X
	3.3	Enhanced public transit service	<i>a</i>
BETTER	★ 3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	X
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	X
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	X
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	X
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	X
	5.	PARKING	
	5.1	Priced parking	
BASIC	★ 5.1.1	Unbundle parking cost from purchase price (condominium)	X
BASIC	★ 5.1.2	Unbundle parking cost from monthly rent (multi-family)	X

TD	M measures: Residential developments	Check if proposed & add descriptions
6.	TDM MARKETING & COMMUNICATIONS	
6.1	Multimodal travel information	
BASIC ★ 6.1.	Provide a multimodal travel option information package to new residents	X
6.2	Personalized trip planning	
BETTER ★ 6.2.	Offer personalized trip planning to new residents	X

Appendix C Intersection Performance Worksheets May 25, 2018

APPENDIX C INTERSECTION PERFORMANCE WORKSHEETS

Appendix C Intersection Performance Worksheets May 25, 2018

C.1 2018 EXISTING CONDITIONS

WB

14% 0% 86% 100%

90 88 140 316 1 1 1 1 0.122 0.124 0.187 0.407 4.898 5.084 4.799 4.648 Yes Yes Yes Yes 727 701 743 770 2.958 3.145 2.853 2.950 0.124 0.126 0.188 0.41 8.6 8.9 9 10.9 A A A B 0.4 0.4 0.7 2

2% 60% 61% 26%

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h

Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes

Approach
Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay
HCM LOS

Vol Thru, %
Vol Right, %
Sigin Control
Traffic Vol by Lane
LT Vol
Through Vol
RT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cap
Service Time
HCM Lane WC Ratio
HCM Control Delay
HCM Lane LOS
HCM 95ih-lile Q

Approach

Lane Vol Left, % Vol Thru, %

193

40

 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 11
 70
 0
 174
 74
 36

 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90
 0.90

12

SB

8.6

1.9					
FRI	FRT	WRT	WRR	SRI	SBR
LUL			TIDIC		ODIC
23	98	107	18	17	22
23	98	107	18	17	22
5	0	0	5	5	5
Free	Free	Free	Free	Stop	Stop
	None		None	-	None
	-			0	
.,# -	0	0		0	
-	0	0	-	0	-
90	90	90	90	90	90
2	2	2	2	2	2
26	109	119	20	19	24
Major1	1	Major2	- 1	Minor2	
144	0	-	0	299	139
	-		-	134	-
-		-		165	-
4.12				6.42	6.22
				5.42	
	-		-	5.42	
2.218		-			
	-	-	-		909
-					
-	-		-	864	
	-	-			901
	-		-		
-	-		-		
-	_		_	844	
EB		WB		SB	
1.4		0		9.9	
				Α	
nt	FRI	FRT	WRT	WRP	SRI n1
		LDI.	7101	WDK	785
					0.055
	7.6	0			9.9
					A
)	A 0.1	A	-		0.2
	EBL 23 23 5 Free 90 2 26 4.12 2.218 1438 - 1.431 - 1.4	EBL EBT 4 23 98 23 98 5 0 0 Free Free - None - None - 0 90 90 2 2 2 26 109 Majort M 144 0 - 1 1431 -	EBL EBT WBT	BBL BBT WBT WBT	EBL EBT WBT WBR SBL 23 98 107 18 17 23 98 107 18 17 5 0 0 5 5 Free Free Free Free SIO . None . . 0 0 . 0 0 0 0 0 . 0 0 0 0 0 90

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 TWSC 3: Existing Greenbank Road & Kilbirnie Drive

2018 Existing Conditions AM Peak Hour

Intersection												
Int Delay, s/veh	6.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		ሻ	ß			4	ř	ሻ	•	7
Traffic Vol, veh/h	71	6	57	66	6	107	28	111	11	29	160	37
Future Vol, veh/h	71	6	57	66	6	107	28	111	11	29	160	37
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-		None	-		None			None	-		None
Storage Length	200		-	200		-			450	450		450
Veh in Median Storage	.,# -	0	-	-	0	-		0	-	-	0	-
Grade, %	-	0	-	-	0	-		0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	79	7	63	73	7	119	31	123	12	32	178	41

Major/Minor	Minor2			Minor1			Major1		Ma	ajor2			
Conflicting Flow All	500	438	188	473	438	133	183	0	0	128	0	0	
Stage 1	247	247	-	191	191		-		-	-	-	-	
Stage 2	253	191	-	282	247		-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		-	4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52		-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52		-		-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	- 2	.218	-	-	
Pot Cap-1 Maneuver	481	512	854	501	512	916	1392		- 1	1458		-	
Stage 1	757	702	-	811	742		-		-	-	-	-	
Stage 2	751	742	-	725	702		-		-	-	-	-	
Platoon blocked, %									-		-	-	
Mov Cap-1 Maneuver	396	484	846	439	484	907	1386		- 1	1451	-	-	
Mov Cap-2 Maneuver	396	484	-	439	484		-		-	-	-	-	
Stage 1	735	683	-	788	721		-		-	-	-	-	
Stage 2	628	721	-	647	683		-		-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	13.3			11.7			1.4			- 1			
HCM LOS	В			В									

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2	NBLn1\	NBLn2	SBL	SBT	SBR
Capacity (veh/h)	1386	-	-	396	790	439	867	1451	-	-
HCM Lane V/C Ratio	0.022	-		0.199	0.089	0.167	0.145	0.022	-	-
HCM Control Delay (s)	7.7	0		16.3	10	14.8	9.9	7.5		
HCM Lane LOS	A	Α	-	С	В	В	Α	Α	-	
HCM 95th %tile O(veh)	0.1			0.7	0.3	0.6	0.5	0.1		

HCM 2010 AWSC 4: River Mist Road & Kilbirnie Drive

2018 Existing Conditions AM Peak Hour

Intersection												
Intersection Delay, s/veh	7.3											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	4	15	4	13	21	26	2	13	25	39	5	4
Future Vol, veh/h	4	15	4	13	21	26	2	13	25	39	5	4
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	17	4	14	23	29	2	14	28	43	6	4
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	C
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.3			7.3			7			7.6		
HCM LOS	Α			Α			Α			Α		
Lane		NBLn1	EBLn1		SBLn1							
Vol Left, %		5%	17%	22%	81%							
Vol Thru, %		33%	65%	35%	10%							
Vol Right, %		62%	17%	43%	8%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		40	23	60	48 39							
LT Vol		13	15	13 21	39 5							
Through Vol RT Vol												
		25	4	26	4							
Lane Flow Rate		44	26	67	53							
Lane Flow Rate Geometry Grp		44	26 1	67	53 1							
Lane Flow Rate Geometry Grp Degree of Util (X)		44 1 0.047	26 1 0.029	67 1 0.072	53 1 0.063							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		44 1 0.047 3.769	26 1 0.029 4.085	67 1 0.072 3.906	53 1 0.063 4.241							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		44 1 0.047 3.769 Yes	26 1 0.029 4.085 Yes	67 1 0.072 3.906 Yes	53 1 0.063 4.241 Yes							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		44 1 0.047 3.769 Yes 943	26 1 0.029 4.085 Yes 870	67 1 0.072 3.906 Yes 911	53 1 0.063 4.241 Yes 841							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		44 1 0.047 3.769 Yes 943 1.82	26 1 0.029 4.085 Yes 870 2.141	67 1 0.072 3.906 Yes 911 1.956	53 1 0.063 4.241 Yes 841 2.285							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		44 1 0.047 3.769 Yes 943 1.82 0.047	26 1 0.029 4.085 Yes 870 2.141 0.03	67 1 0.072 3.906 Yes 911 1.956 0.074	53 1 0.063 4.241 Yes 841 2.285 0.063							
Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		44 1 0.047 3.769 Yes 943 1.82	26 1 0.029 4.085 Yes 870 2.141	67 1 0.072 3.906 Yes 911 1.956	53 1 0.063 4.241 Yes 841 2.285							

| Movement | Lane Configurations | Lane Configurations | Lane Configurations | Lane Configurations | Lane Configurations | Lane Configuration | Lane Configu

4.12

EBL EBT WBT WBR SBL SBR

329 171 - 158 -- 6.42 6.22

5.42 6.22 5.42 -5.42 -3.518 3.318 665 867 859 -871 -

776 0.087 10.1

EBT WBT WBR SBLn1

Intersection Int Delay, s/veh

Movement

Major/Minor
Conflicting Flow All
Stage 1
Stage 2
Critical Hdwy

Platoon blocked. %

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 2.218
Pot Cap-1 Maneuver Stage 1
Stage 2
Plateon blocked %

Mov Cap-1 Maneuver 1381
Mov Cap-2 Maneuver Stage 1 Stage 2 -

Approach EB HCM Control Delay, s 1.3 HCM LOS

Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

Intersection									
Intersection Delay, s/veh	10.9								
Intersection LOS	В								
Movement	EBL EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations	4		WDL	4	WDIC	INDL	4	IVDIC	JDL
Traffic Vol. veh/h	37 80		0	121	200	8	86	0	59
Future Vol. veh/h	37 80	0	0	121	200	8	86	0	59
				0.90	0.90		0.90	0.90	
Peak Hour Factor		0.90	0.90			0.90			0.90
Heavy Vehicles, %	2 2		2	2	2	2	2	2	2
Mvmt Flow	41 89	0	0	134	222	9	96	0	66
Number of Lanes	0 1	0	0	1	0	0	1	0	0
Approach	EB			WB		NB			SB
Opposing Approach	WB			EB		SB			NB
Opposing Lanes	1			1		1			1
Conflicting Approach Left	SB			NB		EB			WB
Conflicting Lanes Left	1			1		1			1
Conflicting Approach Right	NB			SB		WB			EB
Conflicting Lanes Right	1			1		1			- 1
HCM Control Delay	9.7			11.7		9.6			10.9
HCM LOS	A			В		Α			В
Lane	NRI n1	FRI n1	WRI n1	SRI n1					
Lane	NBLn1		WBLn1	SBLn1					
Vol Left, %	9%	32%	0%	29%					
Vol Left, % Vol Thru, %	9% 91%	32% 68%	0% 38%	29% 54%					
Vol Left, % Vol Thru, % Vol Right, %	9% 91% 0%	32% 68% 0%	0% 38% 62%	29% 54% 16%					
Vol Left, % Vol Thru, % Vol Right, % Sign Control	9% 91% 0% Stop	32% 68% 0% Stop	0% 38% 62% Stop	29% 54% 16% Stop					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	9% 91% 0% Stop 94	32% 68% 0% Stop 117	0% 38% 62% Stop 321	29% 54% 16% Stop 201					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	9% 91% 0% Stop 94 8	32% 68% 0% Stop 117 37	0% 38% 62% Stop 321 0	29% 54% 16% Stop 201 59					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Tric Vol by Lane LT Vol Through Vol	9% 91% 0% Stop 94 8	32% 68% 0% Stop 117 37 80	0% 38% 62% Stop 321 0	29% 54% 16% Stop 201 59 109					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	9% 91% 0% Stop 94 8 86	32% 68% 0% Stop 117 37 80	0% 38% 62% Stop 321 0 121 200	29% 54% 16% Stop 201 59 109 33					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate	9% 91% 0% Stop 94 8 86 0	32% 68% 0% Stop 117 37 80 0	0% 38% 62% Stop 321 0 121 200 357	29% 54% 16% Stop 201 59 109 33 223					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp	9% 91% 0% Stop 94 8 86 0	32% 68% 0% Stop 117 37 80 0 130	0% 38% 62% Stop 321 0 121 200 357	29% 54% 16% Stop 201 59 109 33 223					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Csp Degree of Util (X)	9% 91% 0% Stop 94 8 86 0 104	32% 68% 0% Stop 117 37 80 0 130 1	0% 38% 62% Stop 321 0 121 200 357 1 0.465	29% 54% 16% Stop 201 59 109 33 223 1 0.328					
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)	9% 91% 0% Stop 94 8 86 0 104 1 1 0.161	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395	0% 38% 62% Stop 321 0 121 200 357 1 0.465 4.692	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286					
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degrater Headway (Hd) Convergence, Y/N	9% 91% 0% Stopp 94 8 86 0 104 1 1 0.161 5.54	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395 Yes	0% 38% 62% Stop 321 0 121 200 357 1 0.465 4.692 Yes	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286 Yes					
Vol Left, % Vol Ripht, % Vol Ripht, % Sign Control Tradii: Vol by Lane LT Vol RT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap	9% 91% 0% Stop 94 86 0 104 1 0.161 5.54 Yes	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395 Yes 664	0% 38% 62% Stop 321 0 121 200 357 1 0.465 4.692 Yes 774	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286 Yes 679					
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, YN Cap Service Time	9% 91% 0% Stop 94 8 86 0 104 1 1 0.161 5.54 Yes 647 3.579	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395 Yes 664 3.431	0% 38% 62% Stop 321 0 121 200 357 1 0.465 4.692 Yes 774 2.692	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286 Yes 679 3.32					
Vol Left, % Vol Thru, % Vol Thru, % Vol Ripht, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Degree of Util (X) Degree of Util (X) Degree of Util (X) Degree of Util (X) Despatrue Headway (Hd) Convergence, YiN Cap Service Time HOM Lane VIC Ratio	9% 911% 0% Stop 94 86 0 104 1 0.161 5.54 Yes 647 3.579 0.161	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395 Yes 664 3.431 0.196	0% 38% 62% Stop 321 0 121 200 357 1 0.4652 4.6692 Yes 774 2.692 0.461	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286 Yes 679 3.32 0.328					
Vol Left, % Vol Thru, % Vol Ripht, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol RT Vol RT Vol RT Vol Commergence, Vin Convergence, Vin Caper Vol Convergence, Vin Caper Vol Caper Vol Convergence, Vin Caper Vol Caper	9% 91% 0% Stop 94 86 0 104 1 1,0.161 5.54 Yes 647 3.579 0.161	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395 Yes 664 3.431 0.196 9.7	0% 38% 62% Stop 321 0 121 200 357 1 0.465 4.692 Yes 774 2.692 0.461 11.7	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286 Yes 679 3.32 0.328 10.9					
Vol Left, % Vol Thru, % Vol Thru, % Vol Ripht, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Degree of Util (X) Degree of Util (X) Degree of Util (X) Degree of Util (X) Despatrue Headway (Hd) Convergence, YiN Cap Service Time HOM Lane VIC Ratio	9% 911% 0% Stop 94 86 0 104 1 0.161 5.54 Yes 647 3.579 0.161	32% 68% 0% Stop 117 37 80 0 130 1 0.195 5.395 Yes 664 3.431 0.196 9.7	0% 38% 62% Stop 321 0 121 200 357 1 0.4652 4.6692 Yes 774 2.692 0.461	29% 54% 16% Stop 201 59 109 33 223 1 0.328 5.286 Yes 679 3.32 0.328					

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 TWSC 3: Existing Greenbank Road & Kilbirnie Drive

1381 0.016 7.6 A

2018 Existing Conditions PM Peak Hour

Intersection												
Int Delay, s/veh	4.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EDL	LD1	EDK	WDL	1000	NON	IVDL	IND I	NDK	SDL	301	JDK *
Lane Configurations Traffic Vol. veh/h	45	2	27	23	5	61	70	186	66	89	151	74
	45	2	27	23	5	61	70	186	66	89	151	74
Future Vol, veh/h	45	0	5	23 5	0	5	70	186	5	89 5	151	74 5
Conflicting Peds, #/hr	Stop	-	Stop	Stop	Stop	Stop	Free	-	-	Free	-	Free
Sign Control RT Channelized		Stop			Stop	None	Free	Free	Free	Free	Free	None
	200	-	None	200				-		450		450
Storage Length		-		200	-			-	450	450	-	450
Veh in Median Storage	2,# -	0			0	-		0			0	- 1
Grade, % Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
			90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, % Mymt Flow	50	2	30	26	6	68	78	207	73	99	168	82
WIVIIII FIOW	50	2	30	26	6	80	78	207	13	99	108	82
	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	775	738	178	754	738	217	173	0	0	212	0	0
Stage 1	371	371		367	367			-	-	-		-
Stage 2	404	367		387	371			-	-	-		-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12		-
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52				-	-		
Critical Hdwy Stg 2	6.12	5.52		6.12	5.52			-	-	-		-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218		-
Pot Cap-1 Maneuver	315	346	865	326	346	823	1404	-	-	1358		-
Stage 1	649	620		653	622			-	-	-		-
Stage 2	623	622		637	620			-	-	-		-
Platoon blocked, %									-		-	
Mov Cap-1 Maneuver	253	296	857	278	296	815	1397			1352		
Mov Cap-2 Maneuver	253	296		278	296					-		
Stage 1	603	572		606	578							
Stage 2	525	578		565	572					-		
Approach	FB			WB			NB			SB		
HCM Control Delay, s	17.7			12.8			1.7			2.2		
HCM LOS	17.7			12.0 B			1.7			2.2		
I ICIVI EUS	C			D								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR		EBLn2\			SBL	SBT	SBR	
Capacity (veh/h)		1397			253	758	278	719	1352	-	-	
HCM Lane V/C Ratio		0.056	-	-	0.198	0.043	0.092	0.102	0.073	-	-	
HCM Control Delay (s)		7.7	0		22.7	10	19.3	10.6	7.9		-	
HCM Lane LOS		Α	Α	-	С	В	С	В	Α	-	-	
HCM 95th %tile Q(veh)	0.2			0.7	0.1	0.3	0.3	0.2	-	-	

HCM 2010 AWSC 4: River Mist Road & Kilbirnie Drive

2018 Existing Conditions PM Peak Hour

Intersection												
Intersection Delay, s/veh	7.3											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	6	1	19	14	45	0	10	8	30	14	2
Future Vol, veh/h	1	6	- 1	19	14	45	0	10	8	30	14	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	7	- 1	21	16	50	0	11	9	33	16	2
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			- 1				1		1		
HCM Control Delay	7.2			7.2				7		7.5		
HCM LOS	Α			Α				Α		Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		0%	12%	24%	65%							
Vol Left, % Vol Thru, %		0% 56%	12% 75%	24% 18%	65% 30%							
Vol Left, % Vol Thru, % Vol Right, %		0% 56% 44%	12% 75% 12%	24% 18% 58%	65% 30% 4%							
Vol Left, % Vol Thru, % Vol Right, % Sign Control		0% 56% 44% Stop	12% 75% 12% Stop	24% 18% 58% Stop	65% 30% 4% Stop							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		0% 56% 44% Stop 18	12% 75% 12% Stop 8	24% 18% 58% Stop 78	65% 30% 4% Stop 46							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		0% 56% 44% Stop 18	12% 75% 12% Stop 8	24% 18% 58% Stop 78 19	65% 30% 4% Stop 46 30							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		0% 56% 44% Stop 18 0	12% 75% 12% Stop 8 1	24% 18% 58% Stop 78 19	65% 30% 4% Stop 46 30 14							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trhrough Vol RT Vol		0% 56% 44% Stop 18 0 10	12% 75% 12% Stop 8 1 6	24% 18% 58% Stop 78 19 14 45	65% 30% 4% Stop 46 30 14							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		0% 56% 44% Stop 18 0 10 8	12% 75% 12% Stop 8 1 6	24% 18% 58% Stop 78 19 14 45 87	65% 30% 4% Stop 46 30 14 2							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% 56% 44% Stop 18 0 10 8 20	12% 75% 12% Stop 8 1 6 1 9	24% 18% 58% Stop 78 19 14 45 87	65% 30% 4% Stop 46 30 14 2 51							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Vitil (X)		0% 56% 44% Stop 18 0 10 8 20 1	12% 75% 12% Stop 8 1 6 1 9	24% 18% 58% Stop 78 19 14 45 87 1	65% 30% 4% Stop 46 30 14 2 51 1 0.06							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% 56% 44% Stop 18 0 10 8 20 1 0.022 3.872	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766	65% 30% 4% Stop 46 30 14 2 51 1 0.06							
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rale Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		0% 56% 44% Stop 18 0 10 8 20 1 0.022 3.872 Yes	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073 Yes	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766 Yes	65% 30% 4% Stop 46 30 14 2 51 1 0.06 4.22 Yes							
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Trough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, YiN Cap		0% 56% 44% Stop 18 0 10 8 20 1 0.022 3.872 Yes 919	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073 Yes 873	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766 Yes 947	65% 30% 4% Stop 46 30 14 2 51 1 0.06 4.22 Yes 847							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Voi RT Voi Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap Service Time		0% 56% 44% Stop 18 0 10 8 20 1 0.022 3.872 Yes 919 1.917	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073 Yes 873 2.123	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766 Yes 947 1.805	65% 30% 4% Stop 46 30 14 2 51 1 0.06 4.22 Yes 847 2.255							
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ulii (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane ViC Ratio		0% 56% 44% Stop 18 0 10 8 20 1 0.022 3.872 Yes 919 1.917 0.022	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073 Yes 873 2.123 0.01	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766 Yes 947 1.805 0.092	65% 30% 4% Stop 46 30 14 2 51 1 0.06 4.22 Yes 847 2.255 0.06							
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Geometry Grp Despress of Util (X) Convergence, Y/N Service Time HCM Lane ViC Ratio		0% 56% 44% Stop 18 0 10 8 20 1 0.022 7 919 1.917 0.022 7	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073 Yes 873 2.123 0.01 7.2	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766 Yes 947 1.805 0.092 7.2	65% 30% 4% Stop 46 30 14 2 51 1 0.06 4.22 Yes 847 2.255 0.06 7.5							
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ulii (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane ViC Ratio		0% 56% 44% Stop 18 0 10 8 20 1 0.022 3.872 Yes 919 1.917 0.022	12% 75% 12% Stop 8 1 6 1 9 1 0.01 4.073 Yes 873 2.123 0.01	24% 18% 58% Stop 78 19 14 45 87 1 0.091 3.766 Yes 947 1.805 0.092	65% 30% 4% Stop 46 30 14 2 51 1 0.06 4.22 Yes 847 2.255 0.06							

Appendix C Intersection Performance Worksheets May 25, 2018

C.2 2025 FUTURE BACKGROUND CONDITIONS

HCM 2010 AWSC 2: Existing Greenbank Road & Barnsdale Road

Delay, s/veh	2.9			_	_							section Delay, s/veh	12.4									_
iy, siveli												section LOS	12.4 B									
nt	EBL EBT V										IIILEI	SECTION FOR	D									
onfigurations	4	Þ	W.																			
Vol, veh/h		123 27	34 46									ement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBI
Vol, veh/h		123 27	34 46									e Configurations		4			4			4		
licting Peds, #/hr		0 5	5 5									fic Vol, veh/h	38	90	15	3	87	63	19	124	0	23
Control	Free Free F	Free Free S	top Stop								Futu	re Vol, veh/h	38	90	15	3	87	63	19	124	0	23
hannelized	- None	- None	- None								Peal	k Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
age Length			0 -								Hea	vy Vehicles, %	2	2	2	2	2	2	2	2	2	
in Median Storage	e,# - 0	0 -	0 -									nt Flow	38	90	15	3	87	63	19	124	0	23
ide, %	- 0	0 -	0 -								Num	ber of Lanes	0	1	0	0	- 1	0	0	1	0	
k Hour Factor	100 100	100 100	100 100								0		EB			WB			NB			SI
avy Vehicles, %	2 2	2 2	2 2									roach										
nt Flow	37 113	123 27	34 46									osing Approach	WB			EB			SB			N
												osing Lanes	_1			1			1			
(h A)	Mariant MA	10 840	2									flicting Approach Left				NB			EB			WI
			or2		_							flicting Lanes Left	1			- 1			1			
nflicting Flow All	155 0		334 147									flicting Approach Righ	nt NB			SB			WB			E
Stage 1			142 -									flicting Lanes Right	1			- 1			1			
Stage 2			192 -									1 Control Delay	10.4			10.1			9.9			14.
ical Hdwy	4.12 -										HCN	I LOS	В			В			Α			Е
itical Hdwy Stg 1		5																				
itical Hdwy Stg 2		5									Lane	3		NBLn1	EBLn1	WRI n1	SRI n1					
llow-up Hdwy		3.										Left. %		13%	27%	2%	56%					
Cap-1 Maneuver												Thru. %		87%	63%	57%	34%					
Stage 1			885 -									Right. %		0%	10%	41%	10%					
Stage 2			841 -									Control		Stop	Stop	Stop	Stop					
toon blocked, %												fic Vol by Lane		143	143	153	414					
v Cap-1 Maneuver			637 892								LT V			143	38	3	230					
/ Cap-2 Maneuver			637 -									ugh Vol		124	90	87	142					
Stage 1			881 -								RT \			124	15	63	42					
Stage 2			814 -									Flow Rate		143	143	153	414					
												metry Grp		143	143	153	414					
oroach	EB	WB	SB									ree of Util (X)		0.215	0.225	0.23	0.584					
M Control Delay, s			0.3	_	_	_	_	_				arture Headway (Hd)		5.406	5.657	5.414	5.074					
M LOS	1.9	U	0.3 B												Yes		Yes					
M LUS			В									vergence, Y/N		Yes	633	Yes	716					
											Сар			664		661						
nor Lane/Major Myn	mt EBL I	EBT WBT W	BR SBLn1									rice Time		3.449	3.703	3.46	3.074					
pacity (veh/h)	1418											I Lane V/C Ratio		0.215	0.226	0.231	0.578					
M Lane V/C Ratio	0.026											1 Control Delay		9.9	10.4	10.1	14.9					
M Control Delay (si			- 10.3									I Lane LOS		Α	В	В	В					
		Α -	- B								HCN	1 95th-tile Q		0.8	0.9	0.9	3.8					
M Lane LOS	A																					

05252018 Synchro 9 Report 05252018 05252018 Synchro 9 Report

HCM 2010 TWSC 3: Existing Greenbank Road & Kilbirnie Drive 2025 FBG Conditions AM Peak Hour HCM 2010 AWSC 4: River Mist Road & Kilbirnie Drive 2025 FBG Conditions

AM Peak Hour

3: Existing Gree	enbar	IK RC	aa &	KIIDI	mie L	JIIVE							AIVI PEAK HUI
Intersection													
Int Delay, s/veh	6.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	ĥ		*	ß		ሻ	↑	7	ሻ	↑	7	
Traffic Vol, veh/h	101	6	95	66	6	107	39	169	11	29	236	45	
Future Vol, veh/h	101	6	95	66	6	107	39	169	11	29	236	45	
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-		None			None	-		None	-		None	
Storage Length	200		-	200			500		375	500		375	
Veh in Median Storage	e,# -	0	-		0		-	0	-	-	0	-	
Grade, %		0			0			0			0		
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	101	6	95	66	6	107	39	169	11	29	236	45	
Major/Minor	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	608	551	246	602	551	179	241	0	0	174	0	0	
Stage 1	299	299	240	252	252	1/7	241	U	U	174	U	U	
Stage 2	309	252		350	299								
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12	-	-	
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	4.12			4.12			
Critical Hdwy Stg 2	6.12	5.52		6.12	5.52			-			-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218			2.218			
Pot Cap-1 Maneuver	408	442	793	412	442	864	1326			1403			
Stage 1	710	666	175	752	698	004	1320			1403			
Stage 2	701	698		666	666								
Platoon blocked. %	701	070		000	000								
Mov Cap-1 Maneuver	337	416	786	341	416	856	1320			1396			
Mov Cap-2 Maneuver	337	416	700	341	416	030	1320			1370			
Stage 1	686	649		726	674								
Stage 2	587	674		565	649								
Olugo 2	007	0,1		000	017								
Approach	EB			WB			NB			SB			
HCM Control Delay, s	15.4			13.1			1.4			0.7			
HCM LOS	13.4 C			13.1 B			1.4			U.1			
HOW EOS	C			D									
Minor Lane/Major Mvn	nt	NBL	NBT	MDD	CDI n1	EDI n2	WBLn1V	MDI n2	SBL	SBT	SBR		
	п	1320	IVDI	MON	337		341		1396	JDI	JOK		
Capacity (veh/h)						747		810					
HCM Cantrol Doloy (c)		0.03		-	0.3	0.135	0.194	0.14	0.021				
HCM Control Delay (s)		7.8			20.2	10.6	18.1	10.2	7.6				
HCM Lane LOS	١	Α			C	В	C	В	A				
HCM 95th %tile Q(veh)	0.1		-	1.2	0.5	0.7	0.5	0.1				

Intersection Delay, s/veh	7.6											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	38	70	4	15	38	26	2	13	32	39	5	1
Future Vol, veh/h	38	70	4	15	38	26	2	13	32	39	5	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	38	70	4	15	38	26	2	13	32	39	5	1
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.9			7.5			7.2			7.7		
HCM LOS	Α			A			Α			Α		
Lane		NBLn1		WBLn1	SBLn1							
Vol Left, %		4%	34%	19%	67%							
Vol Thru, %		28%	62% 4%	48% 33%	9% 24%							
Vol Right, %		68%										
Class Control		Ci										
		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		47	Stop 112	Stop 79	Stop 58							
Traffic Vol by Lane LT Vol		47 2	Stop 112 38	Stop 79 15	Stop 58 39							
Traffic Vol by Lane LT Vol Through Vol		47 2 13	Stop 112 38 70	Stop 79 15 38	Stop 58 39 5							
Traffic Vol by Lane LT Vol Through Vol RT Vol		47 2 13 32	Stop 112 38 70 4	Stop 79 15 38 26	Stop 58 39 5							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		47 2 13 32 47	Stop 112 38 70 4 112	Stop 79 15 38 26 79	Stop 58 39 5 14 58							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		47 2 13 32 47 1	Stop 112 38 70 4 112	Stop 79 15 38 26 79	Stop 58 39 5 14 58							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		47 2 13 32 47 1 0.052	Stop 112 38 70 4 112 1 0.131	Stop 79 15 38 26 79 1 0.089	Stop 58 39 5 14 58 1 0.071							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		47 2 13 32 47 1 0.052 4.02	Stop 112 38 70 4 112 1 0.131 4.225	Stop 79 15 38 26 79 1 0.089 4.044	Stop 58 39 5 14 58 1 0.071 4.395							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		47 2 13 32 47 1 0.052 4.02 Yes	Stop 112 38 70 4 112 1 0.131 4.225 Yes	Stop 79 15 38 26 79 1 0.089 4.044 Yes	Stop 58 39 5 14 58 1 0.071 4.395 Yes							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		47 2 13 32 47 1 0.052 4.02 Yes 896	Stop 112 38 70 4 112 1 0.131 4.225 Yes 839	Stop 79 15 38 26 79 1 0.089 4.044 Yes 873	Stop 58 39 5 14 58 1 0.071 4.395 Yes 820							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		47 2 13 32 47 1 0.052 4.02 Yes 896 2.022	Stop 112 38 70 4 112 1 0.131 4.225 Yes 839 2.298	Stop 79 15 38 26 79 1 0.089 4.044 Yes 873 2.129	Stop 58 39 5 14 58 1 0.071 4.395 Yes 820 2.396							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		47 2 13 32 47 1 0.052 4.02 Yes 896 2.022 0.052	Stop 112 38 70 4 112 1 0.131 4.225 Yes 839 2.298 0.133	Stop 79 15 38 26 79 1 0.089 4.044 Yes 873 2.129 0.09	Stop 58 39 5 14 58 1 0.071 4.395 Yes 820 2.396 0.071							
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Departure Headway (Hd) Convergence, Y/N Cap Service Time HGM Lane VIC Ratio		47 2 13 32 47 1 0.052 4.02 Yes 896 2.022 0.052 7.2	Stop 112 38 70 4 112 1 0.131 4.225 Yes 839 2.298 0.133 7.9	Stop 79 15 38 26 79 1 0.089 4.044 Yes 873 2.129 0.09 7.5	Stop 58 39 5 14 58 1 0.071 4.395 Yes 820 2.396 0.071 7.7							
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degree of Util (X) Convergence, Y/N Cane Wick Ratio HGM Lane WiC Ratio HGM Lane WiC Ratio HGM Lane WiC Ratio HGM Lane WiC Ratio HGM Lane LOS HGM Sigh-Hie O		47 2 13 32 47 1 0.052 4.02 Yes 896 2.022 0.052	Stop 112 38 70 4 112 1 0.131 4.225 Yes 839 2.298 0.133	Stop 79 15 38 26 79 1 0.089 4.044 Yes 873 2.129 0.09	Stop 58 39 5 14 58 1 0.071 4.395 Yes 820 2.396 0.071							

2.9 EBL 39 39 5	EBT 4	WBT	WBR		
39 39	4		WDD		
39 39	4		WDD		
39 39	4			SBL	SBR
39		Ta	,,,,,,	W/	ODIN
39		152	62	33	64
	112	152	62	33	64
	0	0	5	5	5
Free	Free	Free	Free	Stop	Stop
- 1100	None		None	- Otop	None
			-	0	-
e,# -	0	0		0	
					100
					2
					64
39	112	132	02	33	04
Major1	١	Major2	1	vlinor2	
219	0	-	0	383	193
		-	-	188	
	-		-	195	
4.12	-	-	-	6.42	6.22
-	-	-	-	5.42	-
-	-	-	-	5.42	-
2.218	-		-		3.318
1350	-		-	620	849
	-		-	844	
				838	
			-	000	
1344	-			595	841
1344					041
_		_			_
	_	_	_	000	-
EB		WB		SB	
2		0		10.6	
				В	
nt			WBT		
			-		737
	0.029		-	-	0.132
	7.8	0			10.6
	Α	Α		-	В
)	0.1				0.5
	4.12 - 2.218 1350 - 1344 - EB	100 100 2 2 3 9 112 2 19 0 0	100 100 100 2 2 2 2 3 39 112 152 152 152 152 152 152 152 152 152	100 100 100 100 2 3 2 2 2 2 3 3 9 112 152 62 Major2	100 100 100 100 100 2 2 2 2 2 2 39 112 152 62 33 Major1 Major2 Minor2 219 0 0 0 383 188 188 542 2 2 18 - 3.518 1350 620 844 844 844 844 844 844 844 848

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 TWSC 3: Existing Greenbank Road & Kilbirnie Drive

HCM 2010 TWSC

1: Barnsdale Road & Borrisokane Road

2025 FBG Conditions

PM Peak Hour

Int Delay, s/veh	5.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	12		ሻ	12		ሻ	^	7	ሻ	†	7	
Traffic Vol, veh/h	62	2	50	23	5	61	109	276	66	89	260	104	
Future Vol. veh/h	62	2	50	23	5	61	109	276	66	89	260	104	
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	200	-	-	200	-		450	-	450	450		450	
Veh in Median Storage	e.# -	0	-	-	0		-	0	-	-	0	-	
Grade. %		0	-	-	0		-	0	-	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	62	2	50	23	5	61	109	276	66	89	260	104	
Major/Minor I	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	975	942	270	968	942	286	265	0	0	281	0	0	
Stage 1	443	443	2/0	499	499	200	200		-	201	-	U	
Stage 2	532	499		469	443								
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12			
	6.12	5.52	0.22	6.12	5.52	0.22	4.12			4.12		-	
Critical Hdwy Stg 1 Critical Hdwy Stg 2	6.12	5.52		6.12	5.52								
Follow-up Hdwy			3.318	3.518	4.018	3.318	2.218			2.218		-	
Pot Cap-1 Maneuver	231	263	769	233	263	753	1299		- 1	1282	- :		
Stage 1	594	576	709	554	544	/33	1299		-	1202		-	
	531	544		575	576				-	-			
Stage 2 Platoon blocked. %	331	344		3/3	3/0				-	-		-	
	183	222	762	190	222	746	1293		-	1276			
Mov Cap-1 Maneuver					222	/40	1293	-		12/0		-	
Mov Cap-2 Maneuver	183 541	222 533		190 505	496	-	- 1	-				-	
Stage 1		496			533								
Stage 2	440	496		496	533				-		-		
Approach	EB			WB			NB			SB			
HCM Control Delay, s	23.5			15.2			1.9			1.6			
HCM LOS	С			С									
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR			NBLn1\		SBL	SBT	SBR		
Capacity (veh/h)		1293			183	697	190	633	1276				
HCM Lane V/C Ratio		0.084				0.075		0.104	0.07				
HCM Control Delay (s)		8			34.4	10.6	26.5	11.3	8	-			
HCM Lane LOS		A			D	В	D	В	Α	-			
HCM 95th %tile Q(veh)	0.3			1.4	0.2	0.4	0.3	0.2				

Intersection Delay, s/veh	15.3											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	43	91	10	0	138	261	36	167	0	85	216	
Future Vol, veh/h	43	91	10	0	138	261	36	167	0	85	216	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	43	91	10	0	138	261	36	167	0	85	216	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	- 1	
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	- 1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	- 1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	- 1				1		1			1		
HCM Control Delay	11.7				17		12.8			16.4		
HCM LOS	В				С		В			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		18%	30%	0%	25%							
Vol Thru, %		82%	63%	35%	64%							
Vol Right, %		0%	7%	65%	11%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		203	144	399	339							
LT Vol		36	43	0	85							
Through Vol		167	91	138	216							
RT Vol		0	10	261	38							
Lane Flow Rate		203	144	399	339							
Geometry Grp		- 1	- 1	- 1	1							
Degree of Util (X)		0.355	0.257	0.614	0.563							
Departure Headway (Hd)		6.288	6.433	5.541	5.975							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		570	557	654	603							
Service Time		4.337	4.489	3.562	4							
HCM Lane V/C Ratio		0.356	0.259	0.61	0.562							
110140 1 10 1		12.8	11.7	17	16.4							
HCM Control Delay												
HCM Control Delay HCM Lane LOS		В	В	C 4.2	C 3.5							

HCM 2010 AWSC 2025 FBG Conditions

4: River Mist Road	& Kilbi	rnie D	rive								PM Pea	ak Hou
Intersection												
Intersection Delay, s/veh	7.7											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	LDL	4	LDIC	WDL	4	WDIC	HUL	4	HER	ODL	4	- 05
Traffic Vol. veh/h	21	39	1	26	71	45	5	10	12	30	14	3
Future Vol. veh/h	21	39	1	26	71	45	5	10	12	30	14	3
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	21	39	- 1	26	71	45	5	10	12	30	14	3
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			- 1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			- 1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.7			7.9			7.4			7.6		
HCM LOS	Α			Α			Α			Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		19%	34%	18%	37%							
Vol Thru, %		37%	64%	50%	17%							
Vol Right, %		44%	2%	32%	46%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		27	61	142	81							
I T Vol		5	21	26	30							

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	19%	34%	18%	37%	
Vol Thru, %	37%	64%	50%	17%	
Vol Right, %	44%	2%	32%	46%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	27	61	142	81	
LT Vol	5	21	26	30	
Through Vol	10	39	71	14	
RT Vol	12	- 1	45	37	
Lane Flow Rate	27	61	142	81	
Geometry Grp	1	- 1	1	1	
Degree of Util (X)	0.032	0.073	0.158	0.095	
Departure Headway (Hd)	4.235	4.291	4.014	4.207	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	850	823	882	857	
Service Time	2.238	2.381	2.092	2.208	
HCM Lane V/C Ratio	0.032	0.074	0.161	0.095	
HCM Control Delay	7.4	7.7	7.9	7.6	
HCM Lane LOS	A	A	Α	Α	
HCM 95th-tile Q	0.1	0.2	0.6	0.3	

Appendix C Intersection Performance Worksheets May 25, 2018

C.3 2025 TOTAL FUTURE CONDITIONS

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIT Permitted
Satd Flow (norm)

Seach now (good)
Satd. Flow (RTOR)
Satd. Flow (RTOR)
Lane Group Flow (vph)
Turn Type
Protected Phases
Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Spiti (s)
Total Spiti (s)
Total Spiti (s)
Total Spiti (s)
Stillow Addust (s)
All-Red Time (s)
Lost Time Addust (s)

Lost Time Adjust (s)
Total Lost Time (s)

Lead/Lag Detimize?
Recall Mode
Act Effct Green (s)
Actuated g/C Ratio

v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS

Intersection Summ

↓ Ø6

05/25/2018

Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 80.9
Natural Cycle: 60
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.65

Intersection Signal Delay: 15.6
Intersection Capacity Utilization 75.8%
Analysis Period (min) 15

EBT

38 90 38 90 1658 1701 0.490

848 1701

10.0 10.0 23.6 23.6 28.0 28.0 31.1% 31.1% 4.6 4.6 1.0 1.0

None None 13.2 13.2 0.16 0.16

0.28 0.37 34.6 31.0

0.0 0.0 34.6 31.0

Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road

\$\int_{\text{g}_1}\$

\$\displays{g}_1\$

31.9

0.0 5.6 0.0 5.6

38 Perm

3 87 3 87 1658 1567 0.689

10.0 10.0 23.6 23.6 28.0 28.0 31.1% 31.1% 4.6 4.6 1.0 1.0

None None 13.2 13.2 0.16 0.16

0.02 0.65 27.3 30.3

0.0 0.0 27.3 30.3

Intersection LOS: B
ICU Level of Service D

0.0 5.6 0.0 5.6

202 NA 8

0 1189 1567

3

0 357 0 357 0 1658 169 169 1682

1003 1682

5.0 10.0 11.0 23.6 31.0 62.0 34.4% 68.9% 4.0 4.6 2.0 1.0

0.0 0.0 5.6

None 56.1 0.69 Max 56.5 0.70

0.45 7.3 0.18

Synchro 9 Report

357

211 NA 6

NBR

115 19 133 115 19 133 0 1658 1745 0.626

0 1082 1745

19

10.0 23.6 31.0 34.4% 10.0 23.6 31.0 34.4%

4.6 1.0

0.0 0.0

Lag Yes Lag Yes Max 37.8 0.47

Max 37.8 0.47

0.04 0.16 15.5

0.0 0.0

-204

√ øs

133 NA 2

uture	Conditions	
	AM Peak Hour	

4

SBR

0

0

ntersection						
nt Delay, s/veh	2.9					
Novement	EBL	EBT	WBT	WBR	SBL	SBR
ane Configurations	LDL	4	T _P	WDK	JDL W	JUK
	37	113	123	27	34	46
raffic Vol, veh/h uture Vol. veh/h	37	113	123	27	34	46
			123	5	34 5	40 5
Conflicting Peds, #/hr						
ign Control	Free		Free	Free	Stop	Stop
T Channelized	-	140110	-	None		None
torage Length	-	-		-	0	-
'eh in Median Storag	je,# -		0	-	0	-
Grade, %	-		0	-	0	-
eak Hour Factor	100	100	100	100	100	100
leavy Vehicles, %	2	2	2	2	2	2
Nymt Flow	37	113	123	27	34	46
Major/Minor	Major1	,	Major2		Minor2	
						147
Conflicting Flow All	155			0	334	147
Stage 1	-				142	
Stage 2	-			-	192	
Critical Hdwy	4.12			-	6.42	
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
ollow-up Hdwy	2.218	-	-	-	3.518	3.318
ot Cap-1 Maneuver	1425	-		-	661	900
Stage 1		-		-	885	-
Stage 2					841	
latoon blocked. %					011	
Nov Cap-1 Maneuver	1418				637	892
					637	092
Nov Cap-2 Maneuver						-
Stage 1	-	-		-	881	-
Stage 2	-	-			814	
pproach	EB		WB		SB	
ICM Control Delay, s	1.9		0		10.3	
ICM LOS			-		В	
	_					
linor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR:	
				-	-	762
ICM Lane V/C Ratio		0.026		-	-	0.105
ICM Control Delay (s	(ذ	7.6	0	-	-	10.3
ICM Lane LOS		Α	Α	-	-	В
CM 95th %tile Q(veh	h)	0.1	-		-	0.4
ICM Control Delay (s	,	7.6 A	0 A			0.1

05/25/2018 Synchro 9 Report

2: Existing Greenbank Road & Barnsdale Road

2025 Total Future Conditions AM Peak Hour

AM Peak Hour

	۶	\rightarrow	•	←	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	38	105	3	202	19	133	357	211	
v/c Ratio	0.28	0.37	0.02	0.65	0.04	0.16	0.45	0.18	
Control Delay	34.6	31.0	27.3	30.3	15.7	15.5	7.3	4.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	34.6	31.0	27.3	30.3	15.7	15.5	7.3	4.6	
Queue Length 50th (m)	5.2	13.2	0.4	18.8	1.5	10.8	17.2	7.6	
Queue Length 95th (m)	13.6	26.7	2.5	39.2	6.6	27.8	37.7	19.1	
Internal Link Dist (m)		999.3		579.2		705.1		181.0	
Turn Bay Length (m)	37.5		37.5		37.5		37.5		
Base Capacity (vph)	235	478	329	485	505	814	898	1182	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.22	0.01	0.42	0.04	0.16	0.40	0.18	
Intersection Summary									

HCM 2010 TWSC 2025 Total Future Conditions AM Peak Hour 3: Existing Greenbank Road & Kilbirnie Drive

Intersection												
Int Delay, s/veh	8.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ħ		Ť	7>		Ť	†	ř	ሻ	†	ř
Traffic Vol, veh/h	129	6	138	66	6	107	62	248	- 11	29	263	56
Future Vol, veh/h	129	6	138	66	6	107	62	248	11	29	263	56
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None			None		-	None	-		None
Storage Length	200			200			500		375	500		375
Veh in Median Storage	.# -	0	-		0	-		0		-	0	
Grade. %		0	-		0	-		0		-	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles. %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	129	6	138	66	6	107	62	248	11	29	263	56
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	760	703	273	775	703	258	268	0	0	253	0	0
	326	326	2/3	377	377	230	200	U	U	203	U	U
Stage 1		377	-	377				-				
Stage 2	434				326							
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12		
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52					-		
Critical Hdwy Stg 2	6.12	5.52	- 0.040	6.12	5.52	- 040						
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218			2.218		
Pot Cap-1 Maneuver	323	362	766	315	362	781	1296			1312		
Stage 1	687	648		644	616							
Stage 2	600	616	-	628	648							
Platoon blocked, %	252	22.	750	222	22.	77.	1202			1207	-	
Mov Cap-1 Maneuver	258	334	759	239	334	774	1290			1306		
Mov Cap-2 Maneuver	258	334		239	334						-	
Stage 1	651	631		610	584							
Stage 2	485	584		495	631		-				-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	21.1			16.4			1.5			0.7		
HCM LOS	С			С								
Minor Lane/Major Mvm	d	NBL	NBT	MDD	EDI n1	EBLn2\	MDI nat	MDI no	SBL	SBT	SBR	
	II.	1290	IVDI	NDK	258	721	239	723	1306	OD I	SDK	
Capacity (veh/h)			-		0.5							
HCM Lane V/C Ratio		0.048						0.156	0.022			
HCM Control Delay (s)		7.9			32.1	11.2	25.7	10.9	7.8		-	
HCM Lane LOS		A	-	-	D	В	D	В	Α		-	
HCM 95th %tile Q(veh)		0.2			2.6	0.7	1.1	0.6	0.1			

AM Peak Hour

Intersection												
Intersection Delay, s/veh	14.5											
ntersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	ĥ		ሻ	1		ሻ	†	17	ሻ	†	i
Traffic Vol, veh/h	129	6	138	66	6	107	62	248	11	29	263	5
Future Vol, veh/h	129	6	138	66	6	107	62	248	11	29	263	5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	129	6	138	66	6	107	62	248	11	29	263	5
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			2		
HCM Control Delay	12.8			11.9			15.8			15.9		
HCM LOS	В			В			С			С		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3	
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	100%	0%	0%	
Vol Thru, %		0%	100%	0%	0%	4%	0%	5%	0%	100%	0%	
						4 /0				10070		
Vol Right, %		0%	0%	100%	0%	96%	0%	95%	0%	0%	100%	
		0% Stop	0% Stop	100% Stop	0% Stop		0% Stop	95% Stop	0% Stop		100% Stop	
Sign Control						96%				0%		
Sign Control Traffic Vol by Lane LT Vol		Stop 62 62	Stop 248 0	Stop 11 0	Stop 129 129	96% Stop 144 0	Stop 66 66	Stop 113 0	Stop 29 29	0% Stop 263 0	Stop 56 0	
Sign Control Traffic Vol by Lane LT Vol Through Vol		Stop 62 62 0	Stop 248 0 248	Stop 11 0	Stop 129 129 0	96% Stop 144 0 6	Stop 66 66 0	Stop 113 0 6	Stop 29 29 0	0% Stop 263 0 263	Stop 56 0	
Sign Control Fraffic Vol by Lane LT Vol Through Vol RT Vol		Stop 62 62 0	Stop 248 0 248 0	Stop 11 0 0	Stop 129 129 0 0	96% Stop 144 0 6	Stop 66 66 0	Stop 113 0 6 107	Stop 29 29 0 0	0% Stop 263 0 263	Stop 56 0 0	
Sign Control Fraffic Vol by Lane LT Vol Through Vol RT Vol		Stop 62 62 0 0	Stop 248 0 248 0 248	Stop 11 0 0 11	Stop 129 129 0 0 129	96% Stop 144 0 6 138 144	Stop 66 66 0 0 66	Stop 113 0 6 107 113	Stop 29 29 0 0 29	0% Stop 263 0 263 0 263	Stop 56 0 0 56 56	
Sign Control Fraffic Vol by Lane IT Vol Hrough Vol RT Vol Lane Flow Rate Geometry Grp		Stop 62 62 0 0 62 8	Stop 248 0 248 0 248	Stop 11 0 0 11 11 8	Stop 129 129 0 0 129 8	96% Stop 144 0 6 138 144 8	Stop 66 66 0 0 66 8	Stop 113 0 6 107 113 8	Stop 29 29 0 0 29 8	0% Stop 263 0 263 0 263 8	Stop 56 0 0 56 56 56	
Sign Control Traffic Vol by LaneT Vol Through Vol RT Vol _ane Flow Rate Geometry Grp Degree of Util (X)		Stop 62 62 0 0 62 8 0.134	Stop 248 0 248 0 248 8 0.5	Stop 11 0 0 11 11 8 0.02	Stop 129 129 0 0 129 8 0.282	96% Stop 144 0 6 138 144 8 0.268	Stop 66 66 0 0 66 8 0.149	Stop 113 0 6 107 113 8 0.219	Stop 29 29 0 0 29 8 0.062	0% Stop 263 0 263 0 263 8 0.526	Stop 56 0 0 56 56 56 8 0.101	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rale Seometry Grp Degree of Util (X) Departure Headway (Hd)		Stop 62 62 0 0 62 8 0.134 7.763	Stop 248 0 248 0 248 8 0.5 7.252	Stop 11 0 0 11 11 8 0.02 6.538	Stop 129 129 0 0 129 8 0.282 7.88	96% Stop 144 0 6 138 144 8 0.268 6.701	Stop 66 66 0 0 66 8 0.149 8.147	Stop 113 0 6 107 113 8 0.219 6.974	Stop 29 29 0 0 29 8 0.062 7.713	0% Stop 263 0 263 0 263 8 0.526 7.203	Stop 56 0 0 56 56 8 0.101 6.489	
Sign Control Traffic Vol by LaneT Vol Through Vol RT Vol		Stop 62 62 0 0 62 8 0.134 7.763 Yes	Stop 248 0 248 0 248 8 0.5 7.252 Yes	Stop 11 0 0 11 11 8 0.02 6.538 Yes	Stop 129 129 0 0 129 8 0.282 7.88 Yes	96% Stop 144 0 6 138 144 8 0.268 6.701 Yes	Stop 66 66 0 0 66 8 0.149 8.147 Yes	Stop 113 0 6 107 113 8 0.219 6.974 Yes	Stop 29 29 0 0 29 8 0.062 7.713 Yes	0% Stop 263 0 263 0 263 8 0.526 7.203 Yes	Stop 56 0 0 56 56 56 8 0.101 6.489 Yes	
Sign Control Traffic Vol by LaneT Vol Through Vol RT Volane Flow Rate Seemetry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		Stop 62 62 0 0 62 8 0.134 7.763 Yes 462	Stop 248 0 248 0 248 8 0.5 7.252 Yes 496	Stop 11 0 0 11 11 8 0.02 6.538 Yes 547	Stop 129 129 0 0 129 8 0.282 7.88 Yes 455	96% Stop 144 0 6 138 144 8 0.268 6.701 Yes 536	Stop 66 66 0 0 66 8 0.149 8.147 Yes 440	Stop 113 0 6 107 113 8 0.219 6.974 Yes 514	Stop 29 29 0 0 29 8 0.062 7.713 Yes 464	0% Stop 263 0 263 0 263 8 0.526 7.203 Yes 500	Stop 56 0 0 56 56 56 8 0.101 6.489 Yes 552	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		Stop 62 62 0 0 62 8 0.134 7.763 Yes 462 5.508	Stop 248 0 248 0 248 8 0.5 7.252 Yes 496 4.997	Stop 11 0 0 11 11 8 0.02 6.538 Yes 547 4.282	Stop 129 129 0 0 129 8 0.282 7.88 Yes 455 5.63	96% Stop 144 0 6 138 144 8 0.268 6.701 Yes 536 4.451	Stop 66 66 0 0 66 8 0.149 8.147 Yes 440 5.9	Stop 113 0 6 107 113 8 0.219 6.974 Yes 514 4.726	Stop 29 29 0 0 29 8 0.062 7.713 Yes 464 5.46	0% Stop 263 0 263 0 263 8 0.526 7.203 Yes 500 4.95	Stop 56 0 0 56 56 56 8 0.101 6.489 Yes 552 4.235	
Sign Control Traffic Vol by Lane T Vol Through Vol RT AT Though Vol RT AT Though Vol RT RE RE RE RE RE RE RE RE RE RE RE RE RE		Stop 62 62 0 0 62 8 0.134 7.763 Yes 462 5.508 0.134	Stop 248 0 248 0 248 8 0.5 7.252 Yes 496 4.997	Stop 11 0 0 11 11 11 8 0.02 6.538 Yes 547 4.282 0.02	Stop 129 0 0 129 8 0.282 7.88 Yes 455 5.63 0.284	96% Stop 144 0 6 138 144 8 0.268 6.701 Yes 536 4.451 0.269	Stop 66 66 0 0 66 8 0.149 8.147 Yes 440 5.9 0.15	Stop 113 0 6 107 113 8 0.219 6.974 Yes 514 4.726 0.22	Stop 29 0 0 29 8 0.062 7.713 Yes 464 5.46 0.063	0% Stop 263 0 263 0 263 8 0.526 7.203 Yes 500 4.95	Stop 56 0 0 0 56 56 8 0.101 6.489 Yes 552 4.235 0.101	
Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degree of Util (X) Convergence, Y/N Zap Service Time HGM Lane VIC Ratio HGM Cantol Delay		Stop 62 62 0 0 62 8 0.134 7.763 Yes 462 5.508 0.134 11.7	Stop 248 0 248 0 248 8 0.5 7.252 Yes 496 4.997 0.5 17.1	Stop 11 0 0 11 11 8 0.02 6.538 Yes 547 4.282 0.02 9.4	Stop 129 0 0 129 8 0.282 7.88 Yes 455 5.63 0.284 13.7	96% Stop 144 0 6 138 144 8 0.268 6.701 Yes 536 4.451 0.269 11.9	Stop 66 66 0 0 66 8 0.149 8.147 Yes 440 5.9 0.15 12.3	Stop 113 0 6 107 113 8 0.219 6.974 Yes 514 4.726 0.22 11.7	Stop 29 0 0 0 29 8 0.062 7.713 Yes 464 5.46 0.063 11	0% Stop 263 0 263 0 263 8 0.526 7.203 Yes 500 4.95 0.526 17.7	Stop 56 0 0 56 56 56 8 0.101 6.489 Yes 552 4.235 0.101	
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degrae of Util (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane VIC Ratio HCM Cantrol Delay HCM Lonortol Delay HCM Lonortol Delay HCM Lonortol Delay HCM Lane VIC S		Stop 62 62 0 0 62 8 0.134 7.763 Yes 462 5.508 0.134	Stop 248 0 248 0 248 8 0.5 7.252 Yes 496 4.997	Stop 11 0 0 11 11 11 8 0.02 6.538 Yes 547 4.282 0.02	Stop 129 0 0 129 8 0.282 7.88 Yes 455 5.63 0.284	96% Stop 144 0 6 138 144 8 0.268 6.701 Yes 536 4.451 0.269	Stop 66 66 0 0 66 8 0.149 8.147 Yes 440 5.9 0.15	Stop 113 0 6 107 113 8 0.219 6.974 Yes 514 4.726 0.22	Stop 29 0 0 29 8 0.062 7.713 Yes 464 5.46 0.063	0% Stop 263 0 263 0 263 8 0.526 7.203 Yes 500 4.95	Stop 56 0 0 0 56 56 8 0.101 6.489 Yes 552 4.235 0.101	

05/25/2018 Synchro 9 Report

HCM 2010 TWSC 5: Existing Greenbank Road & New E-W Collector 2025 Total Future Conditions AM Peak Hour

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	ř		ર્ન	ĥ	
Traffic Vol, veh/h	80	101	39	247	440	28
Future Vol, veh/h	80	101	39	247	440	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None		None
Storage Length	200	0		-		-
Veh in Median Storage	,# 0	-		0	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	80	101	39	247	440	28

Major/Minor	Minor2		Major1	M	ajor2	
Conflicting Flow All	779	454	468	0	-	0
Stage 1	454	-	-		-	-
Stage 2	325			-	-	
Critical Hdwy	6.42	6.22	4.12	-		
Critical Hdwy Stg 1	5.42	-	-	-	-	
Critical Hdwy Stg 2	5.42			-	-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	364	606	1094		-	
Stage 1	640			-	-	-
Stage 2	732			-	-	
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	349	606	1094		-	
Mov Cap-2 Maneuver	349			-	-	-
Stage 1	640			-	-	
Stage 2	702	-	-	-	-	-
-						
			ND		on.	
Approach	EB		NB		SB	
HCM Control Delay, s	14.9		1.1		0	
HCM LOS	В					

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	EBLn2	SBT	SBR
Capacity (veh/h)	1094	-	349	606	-	-
HCM Lane V/C Ratio	0.036		0.229	0.167	-	-
HCM Control Delay (s)	8.4	0	18.4	12.1		-
HCM Lane LOS	A	Α	С	В	-	-
HCM 95th %tile O(veh)	0.1		0.9	0.6		

Intersection
Intersection Delay, s/veh
Intersection LOS Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h
 44
 112
 4
 25
 63
 26
 2
 81
 62
 39
 32
 36

 74
 112
 4
 25
 63
 26
 2
 81
 62
 39
 32
 36

 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes Approach Approach
Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay
HCM LOS WB SB

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	39%	22%	36%
Vol Thru, %	56%	59%	55%	30%
Vol Right, %	43%	2%	23%	34%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	145	190	114	107
LT Vol	2	74	25	39
Through Vol	81	112	63	32
RT Vol	62	4	26	36
Lane Flow Rate	145	190	114	107
Geometry Grp	1	- 1	- 1	1
Degree of Util (X)	0.183	0.249	0.148	0.14
Departure Headway (Hd)	4.534	4.72	4.659	4.702
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	789	758	767	760
Service Time	2.577	2.763	2.704	2.747
HCM Lane V/C Ratio	0.184	0.251	0.149	0.141
HCM Control Delay	8.6	9.3	8.5	8.5
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.7	1	0.5	0.5

05/25/2018 Synchro 9 Report

HCM 2010 AWSC 6: New E-W Collector & River Mist Road 2025 Total Future Conditions AM Peak Hour

Intersection Intersection Delay, s/veh	7.7											
Intersection LOS	Α.											
IIICI SCCIIOII EOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	24	107	0	16	32	20	0	9	12	33	11	6
Future Vol, veh/h	24	107	0	16	32	20	0	9	12	33	11	6
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	24	107	0	16	32	20	0	9	12	33	11	6
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			- 1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			- 1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			- 1				1		1		
HCM Control Delay	8			7.4				7.2		7.7		
HCM LOS	Α			Α				Α		Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		0%	18%	24%	66%							
Vol Thru. %		43%	82%	47%	22%							

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left. %	0%	18%	24%	66%
Vol Thru, %	43%	82%	47%	22%
Vol Right, %	57%	0%	29%	12%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	21	131	68	50
LT Vol	0	24	16	33
Through Vol	9	107	32	11
RT Vol	12	0	20	6
Lane Flow Rate	21	131	68	50
Geometry Grp	1	- 1	- 1	1
Degree of Util (X)	0.024	0.151	0.076	0.062
Departure Headway (Hd)	4.083	4.145	4.027	4.453
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	882	858	879	809
Service Time	2.085	2.205	2.103	2.454
HCM Lane V/C Ratio	0.024	0.153	0.077	0.062
HCM Control Delay	7.2	8	7.4	7.7
HCM Lane LOS	A	Α	Α	Α
HCM 95th-tile Q	0.1	0.5	0.2	0.2

EBL EBT WBT WBR SBL SBR

39	112	152	62	33	64
39	112	152	62	33	64
5	0	0	5	5	5
Free	Free	Free	Stop	Stop	
None	None	None	None		

195 -6.42 6.22

5.42 -5.42 -3.518 3.318 620 849 844 -838 -

737 0.132

10.6

EBT WBT WBR SBLn1

1344 0.029

7.8 A

0.1

Major1

4.12

Intersection Int Delay, s/veh

Movement

Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Conflicting Peds, #/hr
Sign Control
RT Channelized

Major/Minor
Conflicting Flow All
Stage 1
Stage 2
Critical Hdwy

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 2.218
Pot Cap-1 Maneuver 35age 1
Stage 2
Plateon blecked %

Stage 2 - Platoon blocked, %
Mov Cap-1 Maneuver 1344
Mov Cap-2 Maneuver - Stage 1 - Stage 2 -

Approach HCM Control Delay, s HCM LOS

Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

	•	\rightarrow	*	1	←	•	4	†	-	1	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	4		7	7+		"	7-		7	1	Ī
Traffic Volume (vph)	43	91	10	0	138	376	36	183	0	150	225	
Future Volume (vph)	43	91	10	0	138	376	36	183	0	150	225	
Satd. Flow (prot)	1658	1713	0	1745	1516	0	1658	1745	0	1658	1699	
Flt Permitted	0.253						0.597			0.642		
Satd. Flow (perm)	439	1713	0	1745	1516	0	1034	1745	0	1110	1699	
Satd. Flow (RTOR)		10			276						9	
Lane Group Flow (vph)	43	101	0	0	514	0	36	183	0	150	263	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2				
Permitted Phases	4			8	U		2	-		6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase				0	U			2		0		
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	1
Minimum Split (s)	23.6	23.6		23.6	23.6		23.6	23.6		23.6	23.6	
Total Split (s)	60.0	60.0		60.0	60.0		30.0	30.0		30.0	30.	
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.39	
Yellow Time (s)	4.6	4.6		4.6	4.6		4.6	4.6		4.6	4.	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0		.0
Total Lost Time (s)	5.6	5.6		5.6	5.6		5.6	5.6		5.6		5.6
	0.0	0.0		0.0	3.0		5.0	0.0		0.0		0.0
Lead/Lag												
Lead-Lag Optimize?	Mana	None		Mana	Mana		Man	Man		Man		A
Recall Mode	None			None	None		Max	Max		Max		Max 24.7
Act Effct Green (s)	15.8	15.8			15.8		24.7	24.7		24.7		
Actuated g/C Ratio	0.31	0.31			0.31		0.48	0.48		0.48		.48
v/c Ratio	0.32	0.19			0.79		0.07	0.22		0.28		32
Control Delay	20.0	12.2			16.6		10.4	10.6		12.1		1.1
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0		0.0
Total Delay	20.0	12.2			16.6		10.4	10.6		12.1	- 11	
LOS	В	В			В		В	В		В		В
Approach Delay		14.5			16.6			10.6			11	
Approach LOS		В			В			В				В
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 5	1.8											
Natural Cycle: 50												
Control Type: Semi Act-L	ncoord											
Maximum v/c Ratio: 0.79												
Intersection Signal Delay					tersection							
Intersection Capacity Util	zation 75.5%	,		10	CU Level o	of Service	e D					
Analysis Period (min) 15												
Splits and Phases: 2: E	victing Cross	nhank Da	ad 8. Dam	edalo De	ad							
	xisting Gree			isuaie RC	ldu							_
↑ Ø2		- 1-	~ Ø4									

↓ Ø6

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

2: Existing Greenbank Road & Barnsdale Road

2025 Total Future Conditions PM Peak Hour

	۶	→	←	4	†	-	↓
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	43	101	514	36	183	150	263
v/c Ratio	0.32	0.19	0.79	0.07	0.22	0.28	0.32
Control Delay	20.0	12.2	16.6	10.4	10.6	12.1	11.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.0	12.2	16.6	10.4	10.6	12.1	11.1
Queue Length 50th (m)	3.0	6.0	17.7	1.6	8.5	7.3	12.4
Queue Length 95th (m)	9.5	13.7	46.1	7.3	25.8	24.1	36.0
Internal Link Dist (m)		999.3	579.2		705.1		181.0
Turn Bay Length (m)	37.5			37.5		37.5	
Base Capacity (vph)	428	1669	1484	492	831	528	814
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.06	0.35	0.07	0.22	0.28	0.32
Intersection Summary							

HCM 2010 AWSC 2025 Total Future Conditions PM Peak Hour 3: Existing Greenbank Road & Kilbirnie Drive

Intersection												
Intersection Delay, s/veh	16.4											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	4		ሻ	†	7*	ሻ	†	ř
Traffic Vol, veh/h	77	2	72	23	5	61	146	318	66	89	338	131
Future Vol, veh/h	77	2	72	23	5	61	146	318	66	89	338	131
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	77	2	72	23	5	61	146	318	66	89	338	131
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			2		
HCM Control Delay	12.3			11.7			17			17.6		
HCM LOS	В			В			С			C		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3	
Vol Left, %		100%	0%	0%	100%	00/	100%	0%				
Vol Thru. %						0%			100%	0%	0%	
Vol Right, %		0%	100%	0%	0%							
		0% 0%	100%	0% 100%	0%	3% 97%	0%	8%	0%	100%	0%	
Sign Control		0%	0%	100%	0%	3% 97%	0% 0%	8% 92%	0% 0%	100% 0%	0% 100%	
Sign Control Traffic Vol by Lane						3%	0%	8%	0%	100%	0%	
Sign Control Traffic Vol by Lane LT Vol		0% Stop	0% Stop	100% Stop	0% Stop	3% 97% Stop	0% 0% Stop	8% 92% Stop	0% 0% Stop	100% 0% Stop	0% 100% Stop	
Traffic Vol by Lane LT Vol		0% Stop 146	0% Stop 318	100% Stop 66	0% Stop 77	3% 97% Stop 74	0% 0% Stop 23	8% 92% Stop 66	0% 0% Stop 89	100% 0% Stop 338	0% 100% Stop 131	
Traffic Vol by Lane		0% Stop 146 146	0% Stop 318 0	100% Stop 66 0	0% Stop 77 77	3% 97% Stop 74	0% 0% Stop 23 23	8% 92% Stop 66	0% 0% Stop 89 89	100% 0% Stop 338 0	0% 100% Stop 131	
Traffic Vol by Lane LT Vol Through Vol		0% Stop 146 146 0	0% Stop 318 0 318	100% Stop 66 0	0% Stop 77 77 0	3% 97% Stop 74 0	0% 0% Stop 23 23	8% 92% Stop 66 0	0% 0% Stop 89 89	100% 0% Stop 338 0 338	0% 100% Stop 131 0	
Traffic Vol by Lane LT Vol Through Vol RT Vol		0% Stop 146 146 0	0% Stop 318 0 318	100% Stop 66 0 0	0% Stop 77 77 0	3% 97% Stop 74 0 2 72	0% 0% Stop 23 23 0	8% 92% Stop 66 0 5	0% 0% Stop 89 89 0	100% 0% Stop 338 0 338	0% 100% Stop 131 0 0	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		0% Stop 146 146 0 0	0% Stop 318 0 318 0 318	100% Stop 66 0 0 66 66	0% Stop 77 77 0 0	3% 97% Stop 74 0 2 72 74	0% 0% Stop 23 23 0 0	8% 92% Stop 66 0 5 61 66	0% 0% Stop 89 89 0 0	100% 0% Stop 338 0 338 0	0% 100% Stop 131 0 0 131 131	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		0% Stop 146 146 0 0 146 8	0% Stop 318 0 318 0 318	100% Stop 66 0 0 66 66 66	0% Stop 77 77 0 0 77	3% 97% Stop 74 0 2 72 74 8	0% 0% Stop 23 23 0 0 23	8% 92% Stop 66 0 5 61 66	0% 0% Stop 89 89 0 0	100% 0% Stop 338 0 338 0 338	0% 100% Stop 131 0 0 131 131	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		0% Stop 146 146 0 0 146 8 0.303	0% Stop 318 0 318 0 318 8 0.615	100% Stop 66 0 0 66 66 66 8 0.115	0% Stop 77 77 0 0 77 8 0.183	3% 97% Stop 74 0 2 72 74 8 0.151	0% 0% Stop 23 23 0 0 23 8 0.056	8% 92% Stop 66 0 5 61 66 8 0.14	0% 0% Stop 89 0 0 89 89	100% 0% Stop 338 0 338 0 338 8 0.651	0% 100% Stop 131 0 0 131 131 8 0.226	
Traffic Vol by Lane LT Vol Through Vol RT Vol LE Vol Geometry Grp Degree of Util (X)		0% Stop 146 146 0 0 146 8 0.303 7.471	0% Stop 318 0 318 0 318 8 0.615	100% Stop 66 0 0 66 66 8 0.115 6.254	0% Stop 77 77 0 0 77 8 0.183 8.538	3% 97% Stop 74 0 2 72 74 8 0.151 7.347	0% 0% Stop 23 23 0 0 23 8 0.056	8% 92% Stop 66 0 5 61 66 8 0.14 7.612	0% 0% Stop 89 89 0 0 89 8 80.184 7.436	100% 0% Stop 338 0 338 0 338 0 6.651 6.929	0% 100% Stop 131 0 0 131 131 8 0.226 6.219	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		0% Stop 146 146 0 0 146 8 0.303 7.471 Yes	0% Stop 318 0 318 0 318 8 0.615 6.964 Yes	100% Stop 66 0 0 66 66 8 0.115 6.254 Yes	0% Stop 77 77 0 0 77 8 0.183 8.538 Yes	3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes	0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes	8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes	0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes	100% 0% Stop 338 0 338 0 338 8 0.651 6.929 Yes	0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482	0% Stop 318 0 318 0 318 8 0.615 6.964 Yes 518	100% Stop 66 0 0 66 66 68 0.115 6.254 Yes 573	0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420	3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488	0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408	8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471	0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes 483	100% 0% Stop 338 0 338 0 338 8 0.651 6.929 Yes 521	0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time HOM Lane VIC Ratio		0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482 5.21	0% Stop 318 0 318 0 318 8 0.615 6.964 Yes 518 4.703	100% Stop 66 0 0 66 66 8 0.115 6.254 Yes 573 3.993	0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420 6.288	3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488 5.096	0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408 6.525	8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471 5.365	0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes 483 5.176	100% 0% Stop 338 0 338 0 338 8 0.651 6.929 Yes 521 4.668	0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578 3.958	
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		0% Stop 146 0 0 146 8 0.303 7.471 Yes 482 5.21 0.303	0% Stop 318 0 318 0 318 8 0.615 6.964 Yes 518 4.703 0.614	100% Stop 66 0 0 66 66 8 0.115 6.254 Yes 573 3.993 0.115	0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420 6.288 0.183	3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488 5.096 0.152	0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408 6.525 0.056	8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471 5.365 0.14	0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes 483 5.176 0.184	100% 0% Stop 338 0 338 8 0.651 6.929 Yes 521 4.668 0.649	0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578 3.958 0.227	

Intersection												
Intersection Delay, s/veh	16.4											
Intersection LOS	С											
moscolor 200	- 0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	Ť.		*5	12		*	4	7	*5		76
Traffic Vol. veh/h	77	2	72	23	5	61	146	318	66	89	338	131
Future Vol. veh/h	77	2	72	23	5	61	146	318	66	89	338	131
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
					1.00			1.00	1.00	1.00		1.00
Heavy Vehicles, %	2	2	2	2	-	2	2	-	-	-	2	
Mvmt Flow	77	2	72	23	5	61	146	318	66	89	338	131
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			2		
HCM Control Delay	12.3			11.7			17			17.6		
							C			17.0		
				R								
	В			В			C			C		
HCM LOS	В	NRI n1	NRI n2	_	FRI n1	FRI n?	_	WRI n2	SRI n1		SRI n?	
HCM LOS Lane	В		NBLn2	NBLn3	EBLn1		WBLn1	WBLn2		SBLn2	SBLn3	
HCM LOS Lane Vol Left, %	В	100%	0%	NBLn3	100%	0%	WBLn1 100%	0%	100%	SBLn2 0%	0%	
HCM LOS Lane Vol Left, % Vol Thru, %	В	100% 0%	0% 100%	NBLn3 0% 0%	100% 0%	0% 3%	WBLn1 100% 0%	0% 8%	100% 0%	SBLn2 0% 100%	0% 0%	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %	В	100% 0% 0%	0% 100% 0%	NBLn3 0% 0% 100%	100% 0% 0%	0% 3% 97%	WBLn1 100% 0% 0%	0% 8% 92%	100% 0% 0%	SBLn2 0% 100% 0%	0% 0% 100%	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control	В	100% 0%	0% 100%	NBLn3 0% 0%	100% 0%	0% 3%	WBLn1 100% 0%	0% 8%	100% 0%	SBLn2 0% 100%	0% 0%	
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control	В	100% 0% 0%	0% 100% 0%	NBLn3 0% 0% 100%	100% 0% 0%	0% 3% 97%	WBLn1 100% 0% 0%	0% 8% 92%	100% 0% 0%	SBLn2 0% 100% 0%	0% 0% 100%	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	В	100% 0% 0% Stop	0% 100% 0% Stop	NBLn3 0% 0% 100% Stop	100% 0% 0% Stop	0% 3% 97% Stop	WBLn1 100% 0% 0% Stop	0% 8% 92% Stop	100% 0% 0% Stop	SBLn2 0% 100% 0% Stop	0% 0% 100% Stop	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	В	100% 0% 0% Stop 146	0% 100% 0% Stop 318 0	NBLn3 0% 0% 100% Stop 66	100% 0% 0% Stop 77	0% 3% 97% Stop 74	WBLn1 100% 0% 0% Stop 23	0% 8% 92% Stop 66	100% 0% 0% Stop 89	SBLn2 0% 100% 0% Stop 338 0	0% 0% 100% Stop 131	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	В	100% 0% 0% Stop 146 146	0% 100% 0% Stop 318	NBLn3 0% 0% 100% Stop 66 0	100% 0% 0% Stop 77 77	0% 3% 97% Stop 74 0	WBLn1 100% 0% 0% Stop 23 23 0	0% 8% 92% Stop 66 0	100% 0% 0% Stop 89 89	SBLn2 0% 100% 0% Stop 338 0	0% 0% 100% Stop 131 0	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	В	100% 0% 0% Stop 146 146 0	0% 100% 0% Stop 318 0 318	NBLn3 0% 0% 100% Stop 66 0	100% 0% 0% Stop 77 77 0	0% 3% 97% Stop 74 0 2	WBLn1 100% 0% 0% Stop 23 23 0	0% 8% 92% Stop 66 0 5	100% 0% 0% Stop 89 89 0	SBLn2 0% 100% 0% Stop 338 0 338 0	0% 0% 100% Stop 131 0 0	
Lane Vol Left, % Vol Trhu, % Vol Right, % Sign Control Traffic Vol by Lane ET Vol Through Vol RT Vol Lane Flow Rate	В	100% 0% 0% Stop 146 146 0 0	0% 100% 0% Stop 318 0 318 0 318	NBLn3 0% 0% 100% Stop 66 0 0 66	100% 0% 0% Stop 77 77 0 0	0% 3% 97% Stop 74 0 2 72	WBLn1 100% 0% 0% Stop 23 23 0	0% 8% 92% Stop 66 0 5 61	100% 0% 0% Stop 89 89 0	SBLn2 0% 100% 0% Stop 338 0 338 0	0% 0% 100% Stop 131 0 0 131	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Thru, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol Lane Flow Rate Geometry Grp	В	100% 0% 0% Stop 146 146 0 0	0% 100% 0% Stop 318 0 318 0 318	NBLn3 0% 0% 100% Stop 66 0 0 66 66	100% 0% 0% Stop 77 77 0 0	0% 3% 97% Stop 74 0 2 72 74	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8	0% 8% 92% Stop 66 0 5 61 66 8	100% 0% 0% Stop 89 0 0	SBLn2 0% 100% 0% Stop 338 0 338 0 338	0% 0% 100% Stop 131 0 0 131 131	
HCM LOS Lane Vol Left, % Vol Tibru, % Vol Ripht, % Sign Control Traffic Vol by Lane LT Vol Trrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Villi (X)	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303	0% 100% 0% Stop 318 0 318 0 318	NBLn3 0% 0% 100% Stop 66 0 0 66 66 8 0.115	100% 0% 0% Stop 77 77 0 0 77 8	0% 3% 97% Stop 74 0 2 72 74 8 0.151	WBLn1 100% 0% 0% Stop 23 23 0 23 0 0 23 8 0.056	0% 8% 92% Stop 66 0 5 61 66 8	100% 0% 0% Stop 89 89 0 0 89 8	SBLn2 0% 100% 0% Stop 338 0 338 0 338 8 0.651	0% 0% 100% Stop 131 0 0 131 131 8	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Thru, % Sign Control Traffic Vol by Lane LT Vol Lane Flow Rate Geometry Grip Degree of Util (X) Departure Headway (Hd)	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471	0% 100% 0% Stop 318 0 318 0 318 0 0.615	NBLn3 0% 0% 100% Stop 66 0 0 66 66 8 0.115 6.254	100% 0% 0% Stop 77 77 0 0 77 8 0.183	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612	100% 0% 0% Stop 89 0 0 89 8 0.184 7.436	SBLn2 0% 100% 0% Stop 338 0 338 0 338 8 0.651 6.929	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219	
HCM LOS Lane Vol Left, % Vol Tifur, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uli (X) Departure Headway (Hd) Convergence, YN	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes	0% 100% 0% Stop 318 0 318 0 318 8 0.615 6.964 Yes	NBLn3 0% 0% 100% Stop 66 0 0 66 66 66 8 0.115 6.254 Yes	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes	100% 0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes	SBLn2 0% 100% 0% Stop 338 0 338 8 0.651 6.929 Yes	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219	
HCM LOS Liane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, Y/N Cap	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482	0% 100% 0% Stop 318 0 318 0 318 8 0.615 6.964 Yes 518	NBLn3 0% 0% 100% Stop 66 0 0 66 66 66 6.254 Yes 573	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471	100% 0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes 483	SBLn2 0% 100% 0% Stop 338 0 338 0 338 0 4 0 5 5 0 5 5 5 5 5 6 6 7 7 8 5 5 6 7 8 6 7 8 6 7 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578	
HCM LOS Lane Vol Left, % Vol Trur, % Vol Trur, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol Lane Flow Rate Geometry Crp Degree of Util (X) Convergence, Y/N Cap Service Time	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482 5.21	0% 100% 0% Stop 318 0 318 0 318 0 4.615 6.964 Yes 518 4.703	NBLn3 0% 0% 100% Stop 66 0 0 66 66 68 0.115 6.254 Yes 573 3.993	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420 6.288	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488 5.096	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408 6.525	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471 5.365	100% 0% 0% Stop 89 0 0 89 0.184 7.436 Yes 483 5.176	SBLn2 0% 100% 0% Stop 338 0 338 0 338 0 438 8 0.651 6,929 Yes 521 4.668	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578 3.958	
HCM LOS Liane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (x) Degrature Headway (Hd) Convergence, YN Cap Service Time HCM Lane ViC Ratio	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482	0% 100% 0% Stop 318 0 318 0 318 8 0.615 6.964 Yes 518	NBLn3 0% 0% 100% Stop 66 0 0 66 66 66 6.254 Yes 573	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471	100% 0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes 483	SBLn2 0% 100% 0% Stop 338 0 338 0 338 0 4 0 5 5 0 5 5 5 5 5 6 6 7 7 8 5 5 6 7 8 6 7 8 6 7 8 8 8 8 8 8 8 8 8 8 8 8	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578	
HCM LOS Lane Vol Left, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rale Geometry Grp Degree of Util (x) Degreture Headway (Hd) Convergence, YiN Cap Service Time HCM Lane ViC Ratio	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482 5.21	0% 100% 0% Stop 318 0 318 0 318 0 4.615 6.964 Yes 518 4.703	NBLn3 0% 0% 100% Stop 66 0 0 66 66 68 0.115 6.254 Yes 573 3.993	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420 6.288	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488 5.096	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408 6.525	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471 5.365	100% 0% 0% Stop 89 0 0 89 0.184 7.436 Yes 483 5.176	SBLn2 0% 100% 0% Stop 338 0 338 0 338 0 438 8 0.651 6,929 Yes 521 4.668	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578 3.958	
HCM LOS Lane Vol Left, %	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482 5.21 0.303	0% 100% 0% Stop 318 0 318 0 318 0.615 6.964 Yes 518 4.703 0.614	NBLn3 0% 0% 100% Stop 66 0 66 66 8 0.115 6.254 Yes 573 3.993 0.115	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420 6.288 0.183	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488 5.096 0.152	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408 6.525 0.056	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471 5.365 0.14	100% 0% 0% Stop 89 0 0 89 0 0 89 0.184 7.436 Yes 483 5.176 0.184	SBLn2 0% 100% 0% Stop 338 0 338 0 338 8 0.651 6.929 Yes 521 4.668 0.649	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578 3.958 0.227	
HCM LOS Lane Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Service Time HCM Lane ViC Ratio	В	100% 0% 0% Stop 146 146 0 0 146 8 0.303 7.471 Yes 482 5.21 0.303 13.4	0% 100% 0% Stop 318 0 318 0 318 0.615 6.964 Yes 518 4.703 0.614	NBLn3 0% 0% 100% Stop 66 0 66 66 8 0.115 6.254 Yes 573 3.993 0.115	100% 0% 0% Stop 77 77 0 0 77 8 0.183 8.538 Yes 420 6.288 0.183 13.2	0% 3% 97% Stop 74 0 2 72 74 8 0.151 7.347 Yes 488 5.096 0.152	WBLn1 100% 0% 0% Stop 23 23 0 0 23 8 0.056 8.772 Yes 408 6.525 0.056 12	0% 8% 92% Stop 66 0 5 61 66 8 0.14 7.612 Yes 471 5.365 0.14 11.6	100% 0% 0% Stop 89 0 0 89 8 0.184 7.436 Yes 483 5.176 0.184 11.9	SBLn2 0% 100% 0% Stop 338 0 338 8 0.651 6.929 Yes 521 4.668 0.649 21.7	0% 0% 100% Stop 131 0 0 131 131 8 0.226 6.219 Yes 578 3.958 0.227 10.8	

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 TWSC 5: Existing Greenbank Road & New E-W Collector

2025 Total Future Conditions
PM Peak Hour

2025 Total Future Conditions with Improvements
PM Peak Hour

HCM 2010 AWSC 6: New E-W Collector & River Mist Road

2025 Total Future Conditions
PM Peak Hour

Intersection	2.0					
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A.			ર્ન	ĥ	
Traffic Vol, veh/h	42	52	95	508	355	78
Future Vol, veh/h	42	52	95	508	355	78
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-		-	-
Veh in Median Storage				0	0	
Grade, %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	42	52	95	508	355	78
Major/Minor N	/linor2		Major1		Major2	
Conflicting Flow All	1092	394	433	0		0
Stage 1	394	-	-			
Stage 2	698					
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	0.22				
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy		3.318	2.218			
Pot Cap-1 Maneuver	237	655	1127			
Stage 1	681					
Stage 2	494					
Platoon blocked, %						
Mov Cap-1 Maneuver	209	655	1127			
Mov Cap-2 Maneuver	209					
Stage 1	681			-		
Stage 2	436					
Approach	EB		NB		SB	
HCM Control Delay, s	19.9		1.3		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1127		335		
HCM Lane V/C Ratio		0.084		0.281		
HCM Control Delay (s)		8.5	0	19.9		
HCM Lane LOS		Α	Α	С		
HCM 95th %tile Q(veh)		0.3		1.1		

Intersection Delay, s/veh	7.6											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	13	58	0	3	106	35	0	2	4	27	2	2
Future Vol, veh/h	13	58	0	3	106	35	0	2	4	27	2	2
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	13	58	0	3	106	35	0	2	4	27	2	2
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	- 1			- 1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			- 1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			- 1				1		1		
HCM Control Delay	7.6			7.7				7.1		7.5		
HCM LOS	Α			A				Α		A		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		0%	18%	2%	51%							
Vol Thru, %		33%	82%	74%	4%							
Vol Right, %		67%	0%	24%	45%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		6	71	144	53							
LT Vol		0	13	3	27							
Through Vol		2	58	106	2							
RT Vol		4	0	35	24							
Lane Flow Rate		6	71	144	53							
Geometry Grp		1	- 1	- 1	1							
Degree of Util (X)		0.007	0.082	0.158	0.061							
Departure Headway (Hd)		4.052	4.182	3.948	4.137							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		889	850	903	852							
Service Time		2.052	2.24	1.996	2.232							
HCM Lane V/C Ratio		0.007	0.084	0.159	0.062							
		7.1	7.6	7.7	7.5							
HCM Control Delay												
		A 0	0.3	0.6	0.2							

Appendix C Intersection Performance Worksheets May 25, 2018

C.4 2031 FUTURE BACKGROUND CONDITIONS

Major1 Major2 177 0 -

1392 0.033

7.7 A

0.1

4.12

0 382 165 - 160 -- 222 -- 6.42 6.22

5.42 -5.42 -5.42 -3.518 3.318 620 879 869 -815 -

723 0.124

10.7

- 0.4

EBL EBT WBT WBR SBLn1

Intersection Int Delay, s/veh

Major/Minor
Conflicting Flow All
Stage 1
Stage 2
Critical Hdwy

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 2.218
Pol Cap-1 Maneuver 399
Stage 1
Stage 2
Platon blocked %

Stage 2 - Platoon blocked, %
Mov Cap-1 Maneuver 1392
Mov Cap-2 Maneuver - Stage 1 - Stage 2 -

Approach EB HCM Control Delay, s 2.1 HCM LOS

Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

05/25/2018

Synchro 9 Report

	٠	-	•	1	←	4	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	ሻ	1>		ሻ	4		ሻ	1		ሻ	7-	
Traffic Volume (vph)	42	104	14	4	102	126	20	182	0	399	175	4
Future Volume (vph)	42	104	14	4	102	126	20	182	0	399	175	4
Satd. Flow (prot)	1658	1707	0	1658	1572	0	1658	1745	0	1658	1678	
Flt Permitted	0.437			0.681			0.620			0.558		
Satd. Flow (perm)	756	1707	0	1176	1572	0	1072	1745	0	966	1678	
Satd. Flow (RTOR)		7			66						29	
Lane Group Flow (vph)	42	118	0	4	228	0	20	182	0	399	222	
Turn Type	Perm	NA	-	Perm	NA	_	Perm	NA	_	pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8	U		2	-		6	Ū	
Detector Phase	4	4		8	8		2	2		1	6	
Switch Phase					U		-	-			Ū	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	23.6	23.6		23.6	23.6		23.6	23.6		10.6	23.6	
Total Split (s)	28.0	28.0		28.0	28.0		30.0	30.0		32.0	62.0	
Total Split (%)	31.1%	31.1%		31.1%	31.1%		33.3%	33.3%		35.6%	68.9%	
Yellow Time (s)	4.6	4.6		4.6	4.6		4.6	4.6		4.6	4.6	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.6	5.6		5.6	5.6		5.6	5.6		5.6	5.6	
Lead/Lag	3.0	5.0		5.0	3.0		Lag	Lag		Lead	3.0	
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)	14.5	14.5		14.5	14.5		36.7	36.7		56.5	56.5	
Actuated g/C Ratio	0.18	0.18		0.18	0.18		0.45	0.45		0.69	0.69	
v/c Ratio	0.32	0.38		0.02	0.69		0.04	0.23		0.51	0.19	
Control Delay	35.6	31.4		26.8	33.3		17.9	18.0		8.5	5.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	35.6	31.4		26.8	33.3		17.9	18.0		8.5	5.1	
LOS	33.0 D	C		20.0	33.3 C		17.7 B	В		0.5 A	Α.	
Approach Delay	D	32.5		C	33.2		ь	18.0		^	7.3	
Approach LOS		32.3 C			33.2 C			В			7.3 A	
**												
Intersection Summary												
Cycle Length: 90	2											
Actuated Cycle Length: 82.	3											
Natural Cycle: 60												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.69	7.0			1.	ntersection	100 D						
Intersection Signal Delay: 1							D.					
Intersection Capacity Utiliza Analysis Period (min) 15	1000 /9.6%)		I	CU Level o	or Service	D					
Splits and Phases: 2: Ex	isting Gree	nbank Roa	ad & Ban	nsdale Re	oad							
ø ₀₁			⊴†ø2					_ 204				
			30 s					28 s				
32 s												

05/25/2018 Synchro 9 Report

2: Existing Greenbank Road & Barnsdale Road

2031 FBG Conditions AM Peak Hour

2031 FBG Conditions

AM Peak Hour

	٠	-	€	←	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	42	118	4	228	20	182	399	222
v/c Ratio	0.32	0.38	0.02	0.69	0.04	0.23	0.51	0.19
Control Delay	35.6	31.4	26.8	33.3	17.9	18.0	8.5	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.6	31.4	26.8	33.3	17.9	18.0	8.5	5.1
Queue Length 50th (m)	5.8	15.5	0.5	23.7	1.6	16.3	21.2	8.8
Queue Length 95th (m)	14.8	29.7	3.1	45.9	7.4	40.4	46.4	21.7
Internal Link Dist (m)		999.3		579.2		705.1		181.0
Turn Bay Length (m)	37.5		37.5		37.5		37.5	
Base Capacity (vph)	206	470	320	476	477	777	885	1161
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.20	0.25	0.01	0.48	0.04	0.23	0.45	0.19
Intersection Summary								

2031 FBG Conditions AM Peak Hour HCM 2010 AWSC 3: Existing Greenbank Road & Kilbirnie Drive

Intersection Delay, s/veh	17.3											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	4		ሻ	†	7*	ሻ	†	۴
Traffic Vol, veh/h	135	6	159	66	6	107	68	302	11	29	287	58
Future Vol, veh/h	135	6	159	66	6	107	68	302	11	29	287	58
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	135	6	159	66	6	107	68	302	11	29	287	58
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			2		
HCM Control Delay	14			12.7			20.4			18.9		
HCM LOS	В			В			С			С		
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3	
Lane Vol Left, %		NBLn1 100%	NBLn2	NBLn3	EBLn1 100%	EBLn2 0%	WBLn1 100%	WBLn2	SBLn1 100%	SBLn2	SBLn3	
Vol Left, %		100%	0%	0%	100%	0%	100%	0%	100%	0%	0%	
Vol Left, % Vol Thru, %		100% 0%	0% 100%	0% 0%	100% 0%	0% 4%	100% 0%	0% 5%	100% 0%	0% 100%	0% 0%	
Vol Left, % Vol Thru, % Vol Right, %		100% 0% 0%	0% 100% 0%	0% 0% 100%	100% 0% 0%	0% 4% 96%	100% 0% 0%	0% 5% 95%	100% 0% 0%	0% 100% 0%	0% 0% 100%	
Vol Left, % Vol Thru, % Vol Right, % Sign Control		100% 0% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	100% 0% 0% Stop	0% 4% 96% Stop	100% 0% 0% Stop	0% 5% 95% Stop	100% 0% 0% Stop	0% 100% 0% Stop	0% 0% 100% Stop	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		100% 0% 0% Stop 68 68	0% 100% 0% Stop 302	0% 0% 100% Stop 11	100% 0% 0% Stop 135	0% 4% 96% Stop 165 0	100% 0% 0% Stop 66	0% 5% 95% Stop 113 0	100% 0% 0% Stop 29	0% 100% 0% Stop 287	0% 0% 100% Stop 58	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		100% 0% 0% Stop 68 68 0	0% 100% 0% Stop 302 0 302	0% 0% 100% Stop 11 0	100% 0% 0% Stop 135 135 0	0% 4% 96% Stop 165 0 6	100% 0% 0% Stop 66 66 0	0% 5% 95% Stop 113 0 6	100% 0% 0% Stop 29 29 0	0% 100% 0% Stop 287 0 287	0% 0% 100% Stop 58 0 0	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		100% 0% 0% Stop 68 68 0 0	0% 100% 0% Stop 302 0 302	0% 0% 100% Stop 11 0 0	100% 0% 0% Stop 135 135 0 0	0% 4% 96% Stop 165 0	100% 0% 0% Stop 66 66 0	0% 5% 95% Stop 113 0 6 107	100% 0% 0% Stop 29 29 0 0	0% 100% 0% Stop 287 0 287 0	0% 0% 100% Stop 58 0 0 58	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trhrough Vol RT Vol		100% 0% 0% Stop 68 68 0 0 68	0% 100% 0% Stop 302 0 302 0 302	0% 0% 100% Stop 11 0 0 11 11	100% 0% 0% Stop 135 135 0 0	0% 4% 96% Stop 165 0 6 159 165	100% 0% 0% Stop 66 66 0	0% 5% 95% Stop 113 0 6 107 113	100% 0% 0% Stop 29 0 0	0% 100% 0% Stop 287 0 287 0 287	0% 0% 100% Stop 58 0 0	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		100% 0% 0% Stop 68 68 0 0	0% 100% 0% Stop 302 0 302 0 302	0% 0% 100% Stop 11 0 0	100% 0% 0% Stop 135 135 0 0 135	0% 4% 96% Stop 165 0 6 159	100% 0% 0% Stop 66 66 0	0% 5% 95% Stop 113 0 6 107	100% 0% 0% Stop 29 29 0 0	0% 100% 0% Stop 287 0 287 0 287 8	0% 0% 100% Stop 58 0 0 58 58 8	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane ET Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		100% 0% 0% Stop 68 68 0 0 68 8 0.152 8.065	0% 100% 0% Stop 302 0 302 0 302	0% 0% 100% Stop 11 0 0 11 11	100% 0% 0% Stop 135 135 0 0 135 8 0.311	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103	0% 100% Stop 287 0 287 0 287 8 0.605 7.591	0% 0% 100% Stop 58 0 0 58 58 8 0.111 6.874	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rale Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YIN		100% 0% 0% Stop 68 68 0 0 68 8 0.152 8.065 Yes	0% 100% 0% Stop 302 0 302 0 302 8 0.634 7.553 Yes	0% 0% 100% Stop 11 0 0 11 11 8 0.021 6.836 Yes	100% 0% 0% Stop 135 135 0 0 135 8 0.311 8.284 Yes	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099 Yes	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645 Yes	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468 Yes	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103 Yes	0% 100% Stop 287 0 287 0 287 8 0.605 7.591 Yes	0% 0% 100% Stop 58 0 0 58 58 8 0.111 6.874 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RTVol RTVol Lane Flow Rate Geometry Grp Degree of Util (X) Degarture Headway (Hd) Convergence, V/N Cap		100% 0% 0% Stop 68 0 0 68 8 0.152 8.065 Yes	0% 100% 0% Stop 302 0 302 0 302 8 0.634 7.553 Yes	0% 0% 100% Stop 11 0 0 11 11 8 0.021 6.836 Yes 522	100% 0% 0% Stop 135 135 0 0 135 8 0.311 8.284 Yes 433	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099 Yes 505	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645 Yes 414	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468 Yes 479	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103 Yes	0% 100% 0% Stop 287 0 287 0 287 8 0.605 7.591 Yes	0% 0% 100% Stop 58 0 0 58 58 8 0.111 6.874 Yes 520	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rale Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YIN		100% 0% 0% Stop 68 68 0 0 68 8 0.152 8.065 Yes	0% 100% 0% Stop 302 0 302 8 0.634 7.553 Yes 477 5.318	0% 0% 100% Stop 11 0 0 11 11 8 0.021 6.836 Yes 522 4.601	100% 0% 0% Stop 135 135 0 0 135 8 0.311 8.284 Yes	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099 Yes	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645 Yes	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468 Yes	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103 Yes	0% 100% Stop 287 0 287 0 287 8 0.605 7.591 Yes	0% 0% 100% Stop 58 0 0 58 58 8 0.111 6.874 Yes	
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RTVol RTVol Lane Flow Rate Geometry Grp Degree of Util (X) Degarture Headway (Hd) Convergence, V/N Cap		100% 0% 0% Stop 68 0 0 68 8 0.152 8.065 Yes	0% 100% 0% Stop 302 0 302 0 302 8 0.634 7.553 Yes	0% 0% 100% Stop 11 0 0 11 11 11 8 0.021 6.836 Yes 522 4.601 0.021	100% 0% 0% Stop 135 135 0 0 135 8 0.311 8.284 Yes 433	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099 Yes 505	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645 Yes 414	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468 Yes 479	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103 Yes	0% 100% 0% Stop 287 0 287 0 287 8 0.605 7.591 Yes	0% 0% 100% Stop 58 0 0 58 58 8 0.111 6.874 Yes 520	
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol RT Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Convergence, Y/N Service Time HCM Lane V/C Ratio		100% 0% 0% Stop 68 68 0 0 68 8 0.152 8.065 Yes 444 5.83	0% 100% 0% Stop 302 0 302 8 0.634 7.553 Yes 477 5.318 0.633 22.6	0% 0% 100% Stop 11 0 0 11 11 8 0.021 6.836 Yes 522 4.601	100% 0% 0% Stop 135 135 0 0 135 8 8 0.311 8.284 Yes 433 6.053	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099 Yes 505 4.867	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645 Yes 414	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468 Yes 479 5.245	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103 Yes 441 5.871	0% 100% 0% Stop 287 0 287 8 0.605 7.591 Yes 474 5.359	0% 0% 100% Stop 58 0 0 0 58 58 8 0.111 6.874 Yes 520 4.642 0.112 10.5	
Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ulii (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane W/C Ratio		100% 0% 0% Stop 68 0 0 68 8 0.152 8.065 Yes 444 5.83 0.153	0% 100% 0% Stop 302 0 302 8 0.634 7.553 Yes 477 5.318 0.633	0% 0% 100% Stop 11 0 0 11 11 11 8 0.021 6.836 Yes 522 4.601 0.021	100% 0% 0% Stop 135 135 0 0 135 8 0.311 8.284 Yes 433 6.053 0.312	0% 4% 96% Stop 165 0 6 159 165 8 0.325 7.099 Yes 505 4.867 0.327	100% 0% 0% Stop 66 66 0 0 66 8 0.158 8.645 Yes 414 6.424 0.159	0% 5% 95% Stop 113 0 6 107 113 8 0.234 7.468 Yes 479 5.245 0.236	100% 0% 0% Stop 29 0 0 29 8 0.065 8.103 Yes 441 5.871	0% 100% 0% Stop 287 0 287 0 287 8 0.605 7.591 Yes 474 5.359 0.605	0% 0% 100% Stop 58 0 0 58 58 8 0.111 6.874 Yes 520 4.642 0.112	

05/25/2018

Synchro 9 Report

										- ,	
		-	•	-	1	T		-	¥	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	135	165	66	113	68	302	11	29	287	58	
v/c Ratio	0.38	0.30	0.44	0.40	0.12	0.29	0.01	0.05	0.28	0.07	
Control Delay	23.9	4.5	43.1	11.5	5.0	5.6	0.3	12.5	12.6	2.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.9	4.5	43.1	11.5	5.0	5.6	0.3	12.5	12.6	2.8	
Queue Length 50th (m)	17.4	0.7	10.9	0.9	3.8	17.6	0.0	2.0	22.7	0.0	
Queue Length 95th (m)	23.2	10.3	20.3	13.3	9.9	30.9	0.4	8.2	53.4	4.9	
Internal Link Dist (m)		360.1		212.9		511.5			369.2		
Turn Bay Length (m)	20.0		20.0		50.0		37.5	50.0		37.5	
Base Capacity (vph)	419	824	306	472	577	1042	887	564	1042	887	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.32	0.20	0.22	0.24	0.12	0.29	0.01	0.05	0.28	0.07	

	۶	→	*	•	+	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħ		٦	4		ሻ	†	77	ሻ	†	7
Traffic Volume (vph)	135	6	159	66	6	107	68	302	11	29	287	58
Future Volume (vph)	135	6	159	66	6	107	68	302	11	29	287	58
Satd. Flow (prot)	1658	1449	0	1658	1455	0	1658	1745	1483	1658	1745	1483
Flt Permitted	0.449			0.653			0.558			0.545		
Satd. Flow (perm)	777	1449	0	1130	1455	0	967	1745	1435	945	1745	1435
Satd. Flow (RTOR)		159			107				75			75
Lane Group Flow (vph)	135	165	0	66	113	0	68	302	11	29	287	58
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	7	4		8	8		2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.6	26.6		26.6	26.6		22.7	22.7	22.7	22.7	22.7	22.7
Total Split (s)	22.0	51.0		29.0	29.0		39.0	39.0	39.0	39.0	39.0	39.0
Total Split (%)	24.4%	56.7%		32.2%	32.2%		43.3%	43.3%	43.3%	43.3%	43.3%	43.3%
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	1.3	1.3		1.3	1.3		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.7	4.7	4.7	4.7	4.7	4.7
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	26.9	26.9		11.9	11.9		53.8	53.8	53.8	53.8	53.8	53.8
Actuated g/C Ratio	0.30	0.30		0.13	0.13		0.60	0.60	0.60	0.60	0.60	0.60
v/c Ratio	0.38	0.30		0.44	0.40		0.12	0.29	0.01	0.05	0.28	0.07
Control Delay	23.9	4.5		43.1	11.5		5.0	5.6	0.3	12.5	12.6	2.8
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.9	4.5		43.1	11.5		5.0	5.6	0.3	12.5	12.6	2.8
LOS	С	Α		D	В		Α	A	Α	В	В	Α
Approach Delay		13.3			23.1			5.3			11.1	
Approach LOS		В			С			Α			В	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 13 (14%), Reference	ed to phase	2:NBTL a	and 6:SB	TL, Start	of Green							
Natural Cycle: 60												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.44												
Intersection Signal Delay:	11.6			Ir	ntersection	LOS: B						
Intersection Capacity Utiliz		,		10	CU Level	of Service	e A					
Analysis Period (min) 15												

Splits and Phases: 3: Existing Greenbank Road & Kilbirnie Drive

05/25/2018 Synchro 9 Report

HCM 2010 AWSC	2031 FBG Conditions
4: River Mist Road & Kilbirnie Drive	AM Peak Hour

intersection belay, siven	9.3											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	98	139	4	25	71	26	2	81	62	39	32	
Future Vol. veh/h	98	139	4	25	71	26	2	81	62	39	32	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	98	139	4	25	71	26	2	81	62	39	32	
Number of Lanes	0	1	0	0	- 1	0	0	1	0	0	1	
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			- 1			1			- 1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			- 1			1			- 1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			- 1			1		
HCM Control Delay	10.1			8.7			8.9			8.8		
HCM LOS	В			Α			Α			Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		1%	41%	20%	34%							
Vol Thru, %		56%	58%	58%	28%							
Vol Right, %		43%	2%	21%	38%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		145	241	122	114							
LT Vol		2	98	25	39							
Through Vol		81	139	71	32							
RT Vol												
		62	4	26	43							
Lane Flow Rate		62 145	4 241	26 122	43 114							
Geometry Grp		145	241	122 1	114							
Lane Flow Rate Geometry Grp Degree of Util (X)		145 1 0.189	241 1 0.319	122 1 0.161	114 1 0.153							
Geometry Grp Degree of Util (X) Departure Headway (Hd)		145	241	122 1	114							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		145 1 0.189 4.696 Yes	241 1 0.319 4.767 Yes	122 1 0.161 4.76 Yes	114 1 0.153 4.829 Yes							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		145 1 0.189 4.696	241 1 0.319 4.767	122 1 0.161 4.76	114 1 0.153 4.829							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		145 1 0.189 4.696 Yes 760 2.75	241 1 0.319 4.767 Yes 750 2.819	122 1 0.161 4.76 Yes 749 2.819	114 1 0.153 4.829 Yes 739 2.886							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		145 1 0.189 4.696 Yes 760	241 1 0.319 4.767 Yes 750	122 1 0.161 4.76 Yes 749	114 1 0.153 4.829 Yes 739							
Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		145 1 0.189 4.696 Yes 760 2.75	241 1 0.319 4.767 Yes 750 2.819	122 1 0.161 4.76 Yes 749 2.819	114 1 0.153 4.829 Yes 739 2.886							
Geometry Grp		145 1 0.189 4.696 Yes 760 2.75 0.191	241 1 0.319 4.767 Yes 750 2.819 0.321	122 1 0.161 4.76 Yes 749 2.819 0.163	114 1 0.153 4.829 Yes 739 2.886 0.154							

HCM 2010 TWS 5: Existing Gree		nk Ro	ad &	New	E-W	Colle	ector	2031 FBG Condition
Intersection								
nt Delay, s/veh	3.2							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	٦	7		ન	4			
Traffic Vol, veh/h	80	101	39	313	520	28		
Future Vol, veh/h	80	101	39	313	520	28		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None		None	-	None		
Storage Length	200	0				-		
Veh in Median Storage				0	0			
Grade. %	0			0	0			
Peak Hour Factor	100	100	100	100	100	100		
Heavy Vehicles, %	2	2	2	2	2	2		
Mymt Flow	80	101	39	313	520	28		
VIVIII I IOW	00	101	37	313	320	20		
Major/Minor I	Minor2		Major1		Maior2			
Conflicting Flow All	925	534	548	0	wajui z	0		
	534		340	U		U		
Stage 1					-	-		
Stage 2	391				-	-		
Critical Hdwy	6.42	6.22	4.12		-	-		
Critical Hdwy Stg 1	5.42							
Critical Hdwy Stg 2	5.42				-	-		
Follow-up Hdwy	3.518		2.218					
Pot Cap-1 Maneuver	299	546	1021	-	-	-		
Stage 1	588		-		-	-		
Stage 2	683	-	-	-	-	-		
Platoon blocked, %					-	-		
Mov Cap-1 Maneuver	285	546	1021		-	-		
Mov Cap-2 Maneuver	285	-	-	-	-	-		
Stage 1	588	-	-	-	-	-		
Stage 2	652	-	-	-		-		
Approach	EB		NB		SB			
HCM Control Delay, s	17.3		1		0			
HCM LOS	С							
Minor Lane/Major Mvm	nt	NBL		EBLn1		SBT	SBR	
Capacity (veh/h)		1021		285	546			
HCM Lane V/C Ratio		0.038		0.281				
HCM Control Delay (s)		8.7	0	22.5	13.1			
HCM Lane LOS		Α	A	С	В			
HCM 95th %tile Q(veh))	0.1		1.1	0.7	-	-	

5: Existing Greenb	ank Roa	d & N	ew E-\	V Colle	ector	AM Peak Hot
	۶	•	1	†	+	
Lane Group	EBL	EBR	NBL	NBT	SBT	
Lane Group Flow (vph)	80	101	39	313	548	
v/c Ratio	0.41	0.38	0.06	0.22	0.39	
Control Delay	41.6	11.4	2.6	2.7	3.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.6	11.4	2.6	2.7	3.3	
Queue Length 50th (m)	13.2	0.0	0.7	6.5	14.3	
Queue Length 95th (m)	24.0	12.4	m2.6	25.3	30.3	
Internal Link Dist (m)	345.6			181.0	28.7	
Turn Bay Length (m)	37.5		37.5			
Base Capacity (vph)	399	434	621	1408	1400	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.20	0.23	0.06	0.22	0.39	
Intersection Summary						
m Volume for 95th percer	ntile queue i	s metere	d by upst	ream sign	al.	

	۶	•	4	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7"	ሻ	†	4	
Traffic Volume (vph)	80	101	39	313	520	28
Future Volume (vph)	80	101	39	313	520	28
Satd. Flow (prot)	1658	1483	1658	1745	1733	0
Flt Permitted	0.950		0.441			
Satd. Flow (perm)	1658	1483	770	1745	1733	0
Satd. Flow (RTOR)		101			6	
Lane Group Flow (vph)	80	101	39	313	548	0
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.3	22.3	23.6	23.6	23.6	
Total Split (s)	26.0	26.0	64.0	64.0	64.0	
Total Split (%)	28.9%	28.9%	71.1%	71.1%	71.1%	
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.3	4.3	5.6	5.6	5.6	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Max	C-Max	C-Max	
Act Effct Green (s)	10.6	10.6	72.7	72.7	72.7	
Actuated g/C Ratio	0.12	0.12	0.81	0.81	0.81	
v/c Ratio	0.41	0.38	0.06	0.22	0.39	
Control Delay	41.6	11.4	2.6	2.7	3.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.6	11.4	2.6	2.7	3.3	
LOS	D	В	Α	Α	Α	
Approach Delay	24.8			2.7	3.3	
Approach LOS	С			Α	Α	
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						

Actuated Cycle Length, 90
Offset 4 (4%), Referenced to phase 2:NBTL and 6:SBT, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated
Maximum v (Earlie: 0.41
Intersection Signal Delay: 6.7
Intersection Capacity Utilization 47.1%
ICU Le
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

Splits and Phases: 5: Existing Greenbank Road & New E-W Collector 2 (R)

05/25/2018 Synchro 9 Report

Synchro 9 Report 05/25/2018

HCM 2010 AWSC

2031 FBG Conditions

HCM 2010 TWSC 1: Barnsdale Road & Borrisokane Road

2031 FBG Conditions PM Peak Hour

Intersection												
Intersection Delay, s/veh	7.7											
Intersection LOS	Α.											
intersection Eos	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol. veh/h	24	107	0	16	32	20	0	9	12	33	11	
Future Vol. veh/h	24	107	0	16	32	20	0	9	12	33	11	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	24	107	0	16	32	20	0	9	12	33	11	-
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	8			7.4				7.2		7.7		
HCM LOS	A			7.4 A				7.2 A		Α.		
HOW EOS										Α.		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left. %		0%	18%	24%	66%							
Vol Thru. %		43%	82%	47%	22%							
Vol Right, %		57%	0%	29%	12%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		21	131	68	50							
LT Vol		0	24	16	33							
Through Vol		9	107	32	11							
RT Vol		12	0	20	6							
Lane Flow Rate		21	131	68	50							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.024	0.151	0.076	0.062							
Departure Headway (Hd)		4.083	4.145	4.027	4.453							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		882	858	879	809							
Service Time		2.085	2.205	2.103	2.454							
HCM Lane V/C Ratio		0.024	0.153	0.077	0.062							
HCM Control Delay		7.2	8	7.4	7.7							
HCM Lane LOS		A	A	A	A							
HCM 95th-tile Q		0.1	0.5	0.2	0.2							

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	1	bit	W	LDIC
Traffic Vol. veh/h	43	126	171	69	41	83
Future Vol. veh/h	43	126	171	69	41	83
Conflicting Peds, #/hr	5	0	0	5	5	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	otop	None
Storage Length				-	0	-
Veh in Median Storage	.# -	0	0		0	
Grade. %	,	0	0		0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	43	126	171	69	41	83
IVIVIIIL I IOW	43	120	171	07	41	03
	Major1		Major2		Vinor2	
Conflicting Flow All	245	0		0	428	216
Stage 1		-		-	211	-
Stage 2	-	-	-	-	217	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1		-		-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1321	-		-	584	824
Stage 1		-		-	824	-
Stage 2		-		-	819	-
Platoon blocked. %		-		-		
Mov Cap-1 Maneuver	1315	-		-	558	816
Mov Cap-2 Maneuver					558	-
Stage 1					820	
Stage 2					787	
Olago L					707	
Approach	EB		WB		SB	
HCM Control Delay, s	2		0		11.2	
HCM LOS					В	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SRI n1
Capacity (veh/h)		1315				708
Capacity (vertili)		0.033				0.175
LICM Lone VIC Datio		7.8	0	- 1		
HCM Control Dolay (s)			U	-		
HCM Control Delay (s)			Λ			
		A 0.1	A			0.6

	۶	→	*	1	-	4	4	†	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħ		7	4		ሻ	4		ሻ	1	
Traffic Volume (vph)	48	111	7	0	162	440	31	204	0	196	282	42
Future Volume (vph)	48	111	7	0	162	440	31	204	0	196	282	42
Satd. Flow (prot)	1658	1726	0	1745	1517	0	1658	1745	0	1658	1705	0
Flt Permitted	0.197						0.535			0.630		
Satd. Flow (perm)	343	1726	0	1745	1517	0	928	1745	0	1090	1705	0
Satd. Flow (RTOR)		6			275						8	
Lane Group Flow (vph)	48	118	0	0	602	0	31	204	0	196	324	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	23.6	23.6		23.6	23.6		23.6	23.6		23.6	23.6	
Total Split (s)	60.0	60.0		60.0	60.0		30.0	30.0		30.0	30.0	
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.3%	
Yellow Time (s)	4.6	4.6		4.6	4.6		4.6	4.6		4.6	4.6	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.6	5.6		5.6	5.6		5.6	5.6		5.6	5.6	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)	20.3	20.3			20.3		25.0	25.0		25.0	25.0	
Actuated g/C Ratio	0.36	0.36			0.36		0.44	0.44		0.44	0.44	

0.41 0.43 17.3 15.5

0.0 0.0 17.3 15.5

Intersection Summa Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 56.7
Natural Cycle: 50
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.84 Intersection Signal Delay: 17.0 Intersection Capacity Utilization 82.9% Analysis Period (min) 15 Intersection LOS: B
ICU Level of Service E

0.84

0.08 0.27

0.0 0.0 13.8 14.0

14.0

Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road

0.39 0.19 22.5 11.5

0.0 0.0 22.5 11.5

v/c Ratio Control Delay

Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS

↑ ø2	→ Ø4	
30 s	60 s	
↓ Ø6	₩ Ø8	
30 s	60 s	

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 AWSC 3: Existing Greenbank Road & Kilbirnie Drive 2031 FBG Conditions PM Peak Hour

Intersection												
Intersection Delay, s/veh	22.8											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħ		ሻ	1		ሻ	†	7"	ሻ	†	ř
Traffic Vol, veh/h	89	2	116	23	5	61	189	347	66	89	395	143
Future Vol, veh/h	89	2	116	23	5	61	189	347	66	89	395	143
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	89	2	116	23	5	61	189	347	66	89	395	143
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			2		
HCM Control Delay	13.9			12.8			22.4			27.5		
HCM LOS	R			R			C			D		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	0%	
Vol Thru, %	0%	100%	0%	0%	2%	0%	8%	0%	100%	0%	
Vol Right, %	0%	0%	100%	0%	98%	0%	92%	0%	0%	100%	
Sign Control	Stop										
Traffic Vol by Lane	189	347	66	89	118	23	66	89	395	143	
LT Vol	189	0	0	89	0	23	0	89	0	0	
Through Vol	0	347	0	0	2	0	5	0	395	0	
RT Vol	0	0	66	0	116	0	61	0	0	143	
Lane Flow Rate	189	347	66	89	118	23	66	89	395	143	
Geometry Grp	8	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.422	0.725	0.125	0.225	0.259	0.061	0.154	0.198	0.821	0.269	
Departure Headway (Hd)	8.034	7.524	6.811	9.118	7.916	9.583	8.417	7.994	7.485	6.772	
Convergence, Y/N	Yes										
Сар	448	479	525	392	452	373	424	449	482	529	
Service Time	5.795	5.286	4.572	6.895	5.692	7.372	6.205	5.755	5.245	4.532	
HCM Lane V/C Ratio	0.422	0.724	0.126	0.227	0.261	0.062	0.156	0.198	0.82	0.27	
HCM Control Delay	16.6	27.8	10.6	14.5	13.5	13	12.7	12.7	36.4	12	
HCM Lane LOS	C	D	В	В	В	В	В	В	Е	В	
HCM 95th-tile Q	2.1	5.8	0.4	0.9	- 1	0.2	0.5	0.7	7.9	1.1	

Lanes, Volumes, Timings 3: Existing Greenbank Road & Kilbirnie Drive 2031 FBG Conditions with Improvements PM Peak Hour

Lane Group Lane Configurations Traffic Volume (vph) **↑** 347 89 116 23 61 189 143 Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
Fit Permitted
Satd. Flow (perm)
Satd. Flow (RTOR)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 01 189 347 66 89 395 143 0 1658 1745 1483 1658 1745 1483 0 517 0548 0 897 1745 1435 950 1745 1435 0 897 1745 1435 950 1745 1435 0 189 347 66 89 395 143 0 189 347 66 89 395 143 89 2 1658 1445 116 23 5 0 1658 1461 1656 0.714 1234 1445 116 118 950 1745 1435 143 89 395 143 Perm NA Perm 1461 89 Perm 23 Perm 347 NA

Protected Phases
Permitted Phases
Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%) 8 5.0 5.0 5.0 5.0 22.7 22.7 22.7 22.7 58.0 58.0 58.0 58.0 5.0 22.7 58.0 5.0 22.7 58.0 5.0 5.0 5.0 26.6 26.6 32.0 32.0 26.6 32.0 26.6 32.0 Total Split (%)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag
Lead-Lag Optimize? 64.4% 64.4% 64.4% 64.4% 64.4% 3.7 3.7 3.7 3.7 3.7 3.7 1.0 1.0 1.0 1.0 1.0 1.0 35.6% 35.6% 3.3 35.6% 3.3 35.6% 64.4% 3.7 3.3 None None 12.8 12.8 0.14 0.14 0.51 0.39 44.1 10.1 0.0 0.0 44.1 10.1 C-Max C-Max C-Max C-Max C-Max C-Max 67.9 67.9 67.9 67.9 67.9 Recall Mode Act Effct Green (s)

Act Litct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS 12.8 12.8 0.14 0.14 0.15 0.25 32.7 11.9 0.0 0.0 32.7 11.9 0.75 0.28 5.1 0.0 5.1 0.75 0.26 4.2 0.0 4.2 67.9 67.9 0.75 0.75 0.06 0.12 1.8 4.6 0.0 0.0 1.8 4.6 5.0 0.0 5.0 1.2 0.0 1.2 Approach Delay Approach LOS 24.8 Intersection Summ Cycle Length: 90 Actuated Cycle Length: 90 Offset: 14 (16%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 55

Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.51
Intersection Signal Delay: 7.7
Intersection Capacity Utilization 57.5%
Analysis Period (min) 15

Splits and Phases: 3: Existing Greenbank Road & Kilbirnie Drive

05/25/2018

Ø2 (R)	4 94
58 s	32 s
\$ Ø6 (R)	▼ Ø8
58 s	32 s

Lane Group
Lane Group Flow (vph)
v/c Ratio
Control Delay
Queue Delay
Total Delay
Queue Length 50th (m)

Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)

Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio

Intersection Summary

2031 FBG Conditions with Improvements

HCM 2010 AWSC 4: River Mist Road & Kilbirnie Drive 2031 FBG Conditions PM Peak Hour

٠ EBL FBT Intersection 89 118 0.51 0.39 44.1 10.1 0.0 0.0 44.1 10.1 23 0.15 32.7 0.0 32.7 0.26 4.2 0.0 0.13 1.2 0.0 1.2 Intersection Delay, s/veh Intersection LOS 0.0 11.9 Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h 14.6 0.3 3.6 0.8 25.5 12.9 9.2 10.4 3.8 6.9 20.3 32.9 0.0 2.9 3.1 10.9 16.3 0.0 5.6 159 159 116 116 360.1 212.9 511.5 37.5 50.0 37.5 520 336 487 676 1316 1099 50.0 717 Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes 1316 1118 56 159 44 116 Approach 0.24 0.23 0.07 0.14 0.28 0.26 0.06 0.12 0.30 0.13 Approach
Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay
HCM LOS WB 10.3 10.1 10.6 В Lane Vol Left, % Vol Thru, % 0% 43% 22% 60% 56% 61% Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Through Vol
RT Vol
Lane Flow Rate 40% 0% 17% 40% 0% 17% Stop Stop Stop 73 206 260 0 89 56 44 116 159 260 56 159 45 222 30 76 116 222 Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Convergence, Y/N
Cap
Service Time
HCM Lane V/C Ratio
HCM Control Delay
HCM Lane LOS
HCM 95th-tile Q
 1
 1
 1

 0.106
 0.29
 0.351
 0.301

 5.243
 5.065
 4.861
 4.873

 Yes
 Yes
 Yes
 Yes

 3.243
 3.16
 2.95
 2.959

 0.106
 0.294
 0.356
 0.304

 8.9
 10.3
 10.6
 10.1

 A
 B
 B
 B

 0.4
 1.2
 1.6
 1.3

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

Lanes Volumes Timings

05/25/2018

HCM 2010 TWSC 5: Existing Greenbank Road & New E-W Collector 2031 FBG Conditions PM Peak Hour

5: Existing Greenb		ad & N	lew E-	ector	2031	FBG Conditions with Improvements PM Peak Hour	
	٠	•	4	†	ļ.	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	ř	Ť	†	4		
Traffic Volume (vph)	42	52	95	598	470	78	
Future Volume (vph)	42	52	95	598	470	78	
Satd. Flow (prot)	1658	1483	1658	1745	1712	0	
Flt Permitted	0.950		0.445				
Satd. Flow (perm)	1658	1483	777	1745	1712	0	
Satd. Flow (RTOR)		52			18		
Lane Group Flow (vph)	42	52	95	598	548	0	
Turn Type	Prot	Perm	Perm	NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	28.0	28.0	28.0	28.0	28.0		
Total Split (s)	28.0	28.0	62.0	62.0	62.0		
Total Split (%)	31.1%	31.1%	68.9%	68.9%	68.9%		
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.3	4.3	5.6	5.6	5.6		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	9.3	9.3	73.9	73.9	73.9		
Actuated g/C Ratio	0.10	0.10	0.82	0.82	0.82		
v/c Ratio	0.25	0.26	0.15	0.42	0.39		
Control Delay	38.4	13.1	2.2	2.8	3.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	38.4	13.1	2.2	2.8	3.7		
LOS	D	В	A	Α	A		
Approach Delay	24.4			2.7	3.7		
Approach LOS	С			Α	Α		
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 0 (0%), Referenced Natural Cycle: 60	to phase 2	:NBTL ar	nd 6:SBT,	Start of (Green		
	ordinated						
Control Type: Actuated-Con	urumated						
Maximum v/c Ratio: 0.42	1.7				ntersection	100.4	
Intersection Signal Delay: 4						of Service A	
Intersection Capacity Utiliza	duuii 53.7%	0		- 1	CO Level (n service P	
Analysis Period (min) 15							

2031 FBG Conditions with Improvements

Synchro 9 Report

IIICISCCIOII						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7		4	1	
Traffic Vol. veh/h	42	52	95	598	470	78
Future Vol. veh/h	42	52	95	598	470	78
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	310p	None	1100	None	1100	None
Storage Length	200	0		None -		NOILE -
Veh in Median Storage				0	0	
Grade, %	0	400		0	0	400
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	42	52	95	598	470	78
Major/Minor	Minor2		Major1	, and	Major2	
	1297	509	548	0		0
Conflicting Flow All				U		
Stage 1	509					-
Stage 2	788			-	-	-
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	-		-		-
Critical Hdwy Stg 2	5.42	-		-		-
Follow-up Hdwy	3.518	3.318		-		-
Pot Cap-1 Maneuver	179	564	1021			
Stage 1	604					
Stage 2	448					
Platoon blocked. %						
Mov Cap-1 Maneuver	154	564	1021			
Mov Cap-2 Maneuver	154					
Stage 1	604					
Stage 2	386					
Stayle 2	300			-	- 1	
Approach	EB		NB		SB	
HCM Control Delay, s	23.1		1.2		0	
HCM LOS	C					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1 B	EBLn2	SBT
Capacity (veh/h)		1021		154	564	
HCM Lane V/C Ratio		0.093		0.273		
HCM Control Delay (s)	8.9	0	36.9	12	
HCM Lane LOS		A	A	E	В	
HCM 95th %tile Q(veh)	0.3		1	0.3	
HOW 75th 78th Q(Ven	,	0.3			0.3	

2031 FBG Conditions with Improvements
PM Peak Hour

HCM 2010 AWSC 6: New E-W Collector & River Mist Road 2031 FBG Conditions PM Peak Hour

 S: Existing Greenbank Road & New E-W Collector
 PM Peak Hour

 Lane Group
 EBL
 EBR
 NBL
 NBT
 SBT

 Lane Group Flow (vph)
 42
 52
 95
 598
 548

 We Ratio
 0.25
 0.26
 0.15
 0.42
 0.39

 Control Delay
 38.4
 13.1
 2.2
 2.8
 3.7

 Oueue Delay
 38.4
 13.1
 2.2
 2.8
 3.7

 Oueue Length 50th (m)
 7.0
 0.0
 1.5
 10.9
 17.8

 Oueue Length 95th (m)
 14.5
 9.0
 m5.1
 41.2
 43.1

 Internal Link Dist (m)
 345.6
 181.0
 28.7

 Turn Bay Length (m)
 37.5
 37.5

 Base Capacity (vpth)
 436
 428
 638
 143.2
 1408

 Starvation Cap Reductn
 0
 0
 0
 0
 0

 Storage Cap Reductn
 0
 0
 0
 0
 0

 Storage Cap Reductn
 0
 0
 0
 0

Intersection												
Intersection Delay, s/veh	7.6											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	13	58	0	3	106	35	0	2	4	27	2	24
Future Vol, veh/h	13	58	0	3	106	35	0	2	4	27	2	24
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	13	58	0	3	106	35	0	2	4	27	2	24
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	C
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	- 1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				- 1		1		
HCM Control Delay	7.6			7.7				7.1		7.5		
HCM LOS	Α			Α				Α		Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		0%	18%	2%	51%							
Vol Thru, %		33%	82%	74%	4%							
Vol Right, %		67%	0%	24%	45%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		6	71	144	53							
LT Vol		0	13	3	27							
Through Vol		2	58	106	2							
RT Vol		4	0	35	24							
Lane Flow Rate		6	71	144	53							
Geometry Grp		1	1	- 1	1							
Degree of Util (X)		0.007	0.082	0.158	0.061							
Departure Headway (Hd)		4.052	4.182	3.948	4.137							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		889	850	903	852							
			2.24	1.996	2.232							
Service Time		2.052										
HCM Lane V/C Ratio		0.007	0.084	0.159	0.062							
HCM Lane V/C Ratio HCM Control Delay		0.007 7.1	0.084 7.6	0.159 7.7	7.5							
HCM Lane V/C Ratio		0.007	0.084	0.159								

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report 05/25/2018

Appendix C Intersection Performance Worksheets May 25, 2018

C.5 2031 TOTAL FUTURE CONDITIONS

222 -6.42 6.22

5.42 6.22 5.42 -5.42 -3.518 3.318 620 879 869 -815 -

592 871 592 -

723 0.124

10.7

- 0.4

EBT WBT WBR SBLn1

EBL EBT WBT WBR SBL SBR

1392 0.033

7.7 A

0.1

4.12

Intersection Int Delay, s/veh

Movement

Major/Minor
Conflicting Flow All
Stage 1
Stage 2
Critical Hdwy

Platoon blocked. % Mov Cap-1 Maneuver 1392
Mov Cap-2 Maneuver Stage 1 Stage 2 -

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Critical Hdwy Stg 2
Follow-up Hdwy 2.218
Pot Cap-1 Maneuver 389
Stage 1
Stage 2
Platen blocked %

Approach EB HCM Control Delay, s 2.1 HCM LOS

Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

Lame Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	Existing Greenb	ank Ro	ad & Ba	arnsda	ale Ro	ad						AM Pea	k Hou
Lane Configurations Tip P Traffic Volume (yph) Traf		•	\rightarrow	•	•	←	•	4	1	1	1	↓	4
Traffic Volume (pyh)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Future Volume (vph)	Lane Configurations	ሻ	4		ሻ	4		ሻ	1		Ť	1	
Sald, Flow (prof)	Traffic Volume (vph)	42	104	14	4	102	145	20	185	0	468	185	4
Fill Permitted	Future Volume (vph)	42	104	14	4	102	145	20	185	0	468	185	4
Salid Flow (perm) 637 1707 0 1176 1561 0 1062 1745 0 973 1882 Salid Flow (PTOR) 7 7 6 22 7	Satd. Flow (prot)	1658	1707	0	1658	1561	0	1658	1745	0	1658	1682	
Sald Flow (RTOR) 7 7 76 Lame Group Flow (wph) 42 118 0 4 247 0 20 185 0 468 232 Turn Type Perm NA Perm NA Perm NA Perm NA profile clied Phases 4 8 2 2 1 6 Permitted Phases 4 8 8 2 2 6 6 Detector Phase 4 8 8 2 2 1 6 Detector Phase 4 8 8 2 2 1 6 Switch Phase 6 1 0 10 0 10 0 10 0 10 0 10 0 10 0 5 0 10 0 Minimum Initial (s) 10 0 10 0 10 0 10 0 10 0 10 0 5 0 10 0 Total Spill (s) 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6	Flt Permitted	0.368			0.681			0.614			0.562		
Lane Grup Flow (pph)	Satd. Flow (perm)	637	1707	0	1176	1561	0	1062	1745	0	973	1682	
Turn Type Perm NA Perm NA Perm NA perm NA perm NA pm-pt NA pm-pt NA Permeted Phases 4 8 2 2 1 6 Permitted Phases 4 8 8 2 2 1 6 Permitted Phases 4 8 8 2 2 1 1 6 Permitted Phases 4 4 8 8 8 2 2 2 1 6 Permitted Phases 4 4 8 8 8 2 2 2 1 6 Permitted Phases 4 4 8 8 8 2 2 2 1 6 Permitted Phases 4 4 8 8 8 2 2 2 1 6 Permitted Phases 4 4 8 8 8 2 2 2 1 6 Permitted Phases 4 4 8 8 8 2 2 2 1 6 Permitted Phases 4 9 Perm	Satd. Flow (RTOR)		7			76						27	
Protected Phases 4 8 2 2 1 6 Permitted Phases 4 8 8 2 2 6 Delector Phase 4 8 8 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 8 8 8 2 2 2 1 6 Delector Phase 4 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	Lane Group Flow (vph)	42	118	0	4	247	0	20	185	0	468	232	
Protected Phases 4 8 2 2 1 6 Permitted Phases 4 4 8 8 2 2 1 6 Delector Phase 4 4 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 2 2 2 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 1 6 Delector Phase 4 4 8 8 8 2 2 2 1 1 6 Delector Phase 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Delector Phases 4			4			8			2			6	
Switch Phase	Permitted Phases	4			8			2			6		
Switch Phase	Detector Phase	4	4		8	8		2	2		- 1	6	
Minimum Initial (s)	Switch Phase												
Minimum Spilt (s)		10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Total Spill (s)													
Total Spill (*Si) 31.196 31.197 31.197 31.197 31.198 31.198 31.198 31.398 33.398 33.398 35.696 86.997 Yellow Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6													
Yellow Time (s)													
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0													
Lost Time Agljust (s)													
Total Lost Time (s)													
Lead Lag Lag Lag Lag Lag Lag Lead Lag Lead Lag Lead Lag Ves													
Lead-Lag Oplimize? Recall Mode None None None None None C-Max Act Effet Green (s) 15.8 15.8 15.8 15.8 40.4 40.4 63.0 63.0 Act Leader (Green (s) 15.8 15.8 15.8 15.8 40.4 40.4 63.0 63.0 Act Leader (Green (s) 16.8 15.8 15.8 15.8 40.4 40.4 63.0 63.0 Act Leader (Green (s) 16.8 15.8 15.8 40.4 40.4 63.0 63.0 Act Leader (Green (s) 16.8 15.8 15.8 40.4 40.4 63.0 63.0 Act Leader (Green (s) 16.8 15.8 15.8 40.4 40.4 63.0 63.0 Act Leader (Green (s) 16.8 15.8 15.8 40.4 40.4 63.0 Act Leader (Green (s) 16.8 15.8 15.8 40.4 40.4 63.0 Act Leader (Green (s) 16.8 15.8 15.8 15.8 40.4 40.4 63.0 Act Leader (Green (s) 16.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15		5.0	5.0		5.0	5.0						5.0	
Recall Mode None None None None None C-Max Art Effict Green (s) 15.8 15.8 15.8 15.8 40.4 40.4 40.4 63.0 63.0 Actuated g/C Ratio 0.18 0.18 0.18 0.18 0.18 0.45 0.45 0.70 0.70 Actuated g/C Ratio 0.38 0.39 0.02 0.73 0.04 0.24 0.58 0.20 Control Delay 40.8 33.1 27.5 36.6 20.4 19.9 7.5 2.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Act Effect Green (s) 15.8 15.8 15.8 15.8 40.4 40.4 6.3.0 63.0 Actualed giC Ratio 0.18 0.18 0.18 0.45 0.45 0.45 0.70 0.70 0.70 vic Ratio 0.38 0.39 0.02 0.73 0.04 0.24 0.58 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Mone	Mone		Mone	None						C-May	
Actuated g/C Ratio 0.18 0.18 0.18 0.18 0.18 0.45 0.45 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7													
\(\text{Nc Ratio} \) 0.38 \ 0.39 \ 0.02 \ 0.73 \ 0.04 \ 0.24 \ 0.58 \ 0.20 \ 0.00 \ 0.00 \ 0.01 \ 0.00 \ 0													
Control Delay													
Dueus Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Total Delay													
LOS D C B A A A Approach Delay 35.1 36.4 19.9 5.9 phproach LOS D D B A A A Paperoach LOS D D B A A A Paperoach LOS D D B A A A Paperoach LOS D D B A A Intersection Summary Cycle Length: 90 OTHER ACT OF A CHARLES O													
Approach Delay 35.1 36.4 19.9 5.9 Approach LOS D D B A A 19.9 5.9 Approach LOS D D B A A 19.9 Approach LOS D D B A A 19.9 B A 19.													
Approach LOS D D B A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Actuated Cycle Length: 90 Offset: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Valural Cycle: 46 Contrior Type: Actuated-Coordinated Maximum vic Ratio: 0.73 Intersection Signal Delay: 17.4 Intersection Capacity Utilization 84.7% Analysis Period (min) 15 Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road Por 1 October 100 Octo		U			C			C			^		
Intersection Summary Cycle Length: 90 Offiset: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Valural Cycle: 65 Control Type: Actuated-Coordinated Maximum Vic Ratio: 0.73 Intersection Signal Delay: 17.4 Intersection Signal Delay: 17.4 Intersection Signal Delay: 17.4 Intersection Capacity Utilization 84.7% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road													
Cycle Length: 90 Actuated Cycle Length: 90 Striket: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Valural Cycle: 65 Control Type: Actuated-Coordinated Maximum Vic Ratio: 0.73 Intersection LOS: B Intersection LOS: B Intersection Logacity (Illization 84.7% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 2: Existing Greenbank Road & Barnstale Road PB1 PG2 (R) PG3 PG3 PG4 PG5 PG5 PG6 PG6 PG7 PG7 PG7 PG7 PG7 PG7	**		D			D			ь			^	
Adrusted Cycle Length: 90 Oldste: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 65 Control Type: Actualed-Coordinated Maximum Vic Ratio: 0.73 Intersection Signal Delay: 17.4 Intersection Signal Delay: 17.4 Intersection LOS: B Intersection Signal Delay: 17.4 Intersection LOS: B Int													
Offiset: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 65 Control Type: Actualed-Coordinated Maximum Vic Ratio: 0.73 Intersection Span Delay: 17.4 Intersection Capacity Utilization 84.7% ICU Level of Service E Inabysis Period (min) 15 Spills and Phases: 2: Existing Greenbank Road & Barnsdale Road													
Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.73 Intersection Signal Delay: 17.4 Intersection Signal Delay: 17.4 Intersection Signal Delay: 17.4 Intersection LOS: B Intersection													
Control Type: Actuated-Coordinated Maximum Vic Ratio: 0.73 Intersection LOS: B Intersection Capacity Utilization 84.7% Analysis Period (min) 15 Spills and Phases: 2: Existing Greenbank Road & Barnsdale Road O1 O2 (5)		ced to phase	e 2:NBTL a	and 6:SB	TL, Start	of Green							
Maximum Vic Ratio. 0.73 Intersection LOS: B Inter													
ntersection Signal Delay: 17.4 Intersection LOS: B ntersection Capacity Utilization 84.7% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 2: Existing Greenbank Road & Barmsdale Road ⊅01 → ⊅04 32.5 → 30.5 → 28.5		ordinated											
ICU Level of Service E Analysis Period (min) 15 Spillis and Phases: 2: Existing Greenbank Road & Barnsdale Road													
Analysis Period (min) 15 Spilts and Phases: 2: Existing Greenbank Road & Barnsdale Road On October 150													
Spills and Phases: 2: Existing Greenbank Road & Barnsdale Road □01 □02 (€) □03 □03 □05 □05 □05 □05 □05 □05 □05 □05 □05 □05		ation 84.7%	5		10	CU Level of	of Service	EΕ					
01	Analysis Period (min) 15												
01	Splits and Phases: 2: Ex	ristina Gree	nbank Roa	nd & Barn	nsdale Re	oad							
32 s 28 s	`								120				
				7 Ø2	(H)				704				
	₽Ø6 (R)			30.8					₹ Ø8				

05/25/2018 Synchro 9 Report

2031 Total Future Conditions AM Peak Hour 2: Existing Greenbank Road & Barnsdale Road

	۶	-	•	←	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	42	118	4	247	20	185	468	232	
v/c Ratio	0.38	0.39	0.02	0.73	0.04	0.24	0.58	0.20	
Control Delay	40.8	33.1	27.5	36.6	20.4	19.9	7.5	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.8	33.1	27.5	36.6	20.4	19.9	7.5	2.6	
Queue Length 50th (m)	6.5	17.2	0.6	28.2	1.8	18.5	8.1	2.6	
Queue Length 95th (m)	15.1	29.7	3.1	48.8	8.0	44.5	50.0	9.2	
Internal Link Dist (m)		999.3		579.2		705.1		181.0	
Turn Bay Length (m)	37.5		37.5		37.5		37.5		
Base Capacity (vph)	158	430	292	445	476	782	881	1185	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.27	0.01	0.56	0.04	0.24	0.53	0.20	
Intersection Summary									

Lanes, Volumes, Timings 3: Existing Greenbank Road & Kilbirnie Drive

05/25/2018

2031 Total Future Conditions AM Peak Hour

Synchro 9 Report

	۶	\rightarrow	•	•	←	*	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1>		٦	4		ሻ	†	7	Ť	†	ř
Traffic Volume (vph)	142	6	182	66	6	107	74	319	11	29	292	60
Future Volume (vph)	142	6	182	66	6	107	74	319	11	29	292	60
Satd. Flow (prot)	1658	1449	0	1658	1455	0	1658	1745	1483	1658	1745	1483
Flt Permitted	0.449			0.639			0.553			0.530		
Satd. Flow (perm)	777	1449	0	1106	1455	0	958	1745	1435	919	1745	1435
Satd. Flow (RTOR)		182			107				75			75
Lane Group Flow (vph)	142	188	0	66	113	0	74	319	11	29	292	60
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	7	4		8	8		2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.6	26.6		26.6	26.6		22.7	22.7	22.7	22.7	22.7	22.7
Total Split (s)	22.0	51.0		29.0	29.0		39.0	39.0	39.0	39.0	39.0	39.0
Total Split (%)	24.4%	56.7%		32.2%	32.2%		43.3%	43.3%	43.3%	43.3%	43.3%	43.3%
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	3.7
All-Red Time (s)	1.3	1.3		1.3	1.3		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.7	4.7	4.7	4.7	4.7	4.7
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	27.4	27.4		11.9	11.9		53.3	53.3	53.3	53.3	53.3	53.3
Actuated g/C Ratio	0.30	0.30		0.13	0.13		0.59	0.59	0.59	0.59	0.59	0.59
v/c Ratio	0.39	0.33		0.45	0.40		0.13	0.31	0.01	0.05	0.28	0.07
Control Delay	23.8	4.4		43.5	11.4		5.3	6.0	0.2	12.9	13.0	3.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.8	4.4		43.5	11.4		5.3	6.0	0.2	12.9	13.0	3.0
LOS	С	A		D	В		Α	Α	Α	В	В	A
Approach Delay		12.8			23.3			5.7			11.4	
Approach LOS		В			С			Α			В	
Intersection Summary												

Cycle Length: 90
Actuated Cycle Length: 90
Offise: 12 (13%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 60 Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.45
Intersection Signal Delay: 11.6
Intersection Capacity Utilization 55.2%
Analysis Period (min) 15 Intersection LOS: B
ICU Level of Service B

Splits and Phases: 3: Existing Greenbank Road & Kilbirnie Drive 51 S → 07 ∳ Ø6 (R)

2031 Total Future Conditions AM Peak Hour HCM 2010 AWSC 4: River Mist Road & Kilbirnie Drive

1 11.9

1% 42% 19% 28% 70% 57% 61% 36%

 70%
 37%
 31%
 31%
 36%

 29%
 1%
 20%
 36%
 36%

 Slop
 Slop
 Slop
 Slop
 Slop
 210
 210
 25
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%
 36%

211 297 130 140
1 1 1 1
03 0.426 0.189 0.204
5.115 5.167 5.237 5.238
Yes Yes Yes Yes
703 701 685 685
3.148 3.167 3.271 3.273
0.3 0.424 0.19 0.204
10.3 11.9 9.5 9.6
B B A A
1.3 2.1 0.7 0.8

Lane Vol Left, % Vol Thru, %

Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Through Vol
RT Vol
Lane Flow Rate

Geometry Grp

Queues

Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Convergence, Y/N
Cap
Service Time
HCM Lane V/C Ratio
HCM Control Delay
HCM Lane LOS
HCM 95th-tile Q

2031 Total Future Conditions AM Peak Hour

NB

2031 Total Future Conditions

51

147

10.3

ⅉ Lane Group
Lane Group Flow (vph)
v/c Ratio
Control Delay
Queue Delay
Total Delay
Queue Length 50th (m) EBL EBT WBI Intersection 142 0.39 23.8 0.0 23.8 188 0.33 4.4 0.0 66 0.45 43.5 113 0.40 11.4 0.0 11.4 60 0.07 3.0 0.0 292 0.28 13.0 Intersection Delay, s/veh Intersection LOS 0.13 0.2 6.0 0.0 0.0 0.0 43.5 Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h 4.2 19.0 8.4 29.9 18.2 0.7 23.9 10.8 10.9 0.9 20.3 13.3 0.0 2.0 8.3 23.5 55.1 0.0 5.3 Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph) 29.9 511.5 360.1 212.9 369.2 20.0 423 20.0 50.0 37.5 835 299 472 567 1033 880 50.0 544 Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes 1033 880 125 Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Approach 0.34 0.23 0.22 0.24 0.13 0.31 0.01 0.05 0.28 0.07 Approach
Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay
HCM LOS WB SB Intersection Summary FB.

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

Lanes, Volumes, Timings 2031 Total Future Conditions 5: Existing Greenbank Road & New E-W Collector AM Peak Hour

	•	*	4	1	ţ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7	ሻ	†	4		
Traffic Volume (vph)	97	157	54	319	543	33	
Future Volume (vph)	97	157	54	319	543	33	
Satd. Flow (prot)	1658	1483	1658	1745	1731	0	
Flt Permitted	0.950		0.419				
Satd. Flow (perm)	1658	1483	731	1745	1731	0	
Satd. Flow (RTOR)		157			7		
Lane Group Flow (vph)	97	157	54	319	576	0	
Turn Type	Prot	Perm	Perm	NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	22.3	22.3	23.6	23.6	23.6		
Total Split (s)	27.0	27.0	63.0	63.0	63.0		
Total Split (%)	30.0%	30.0%	70.0%	70.0%	70.0%		
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.3	4.3	5.6	5.6	5.6		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	11.2	11.2	68.9	68.9	68.9		
Actuated g/C Ratio	0.12	0.12	0.77	0.77	0.77		
v/c Ratio	0.47	0.49	0.10	0.24	0.43		
Control Delay	42.9	11.1	4.1	4.2	4.0		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	42.9	11.1	4.1	4.2	4.0		
LOS	D	В	A	A	A		
Approach Delay	23.3			4.2	4.0		
Approach LOS	С			Α	Α		
Tr					**		

Intersection Summary		
Cycle Length: 90		
Actuated Cycle Length: 90		
Offset: 2 (2%), Referenced to phase 2:NBTL and 6:	SBT, Start of Green	
Natural Cycle: 55		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.49		
Intersection Signal Delay: 8.1	Intersection LOS: A	
Intersection Capacity Utilization 55.0%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 5: Existing Greenbank Road & New E-W Collector

↑ Ø2 (R)	
63 s	27 s
63.6	

Existing Greenb	ank Roa	d & N	ew E-\	V Colle	ector	AM Peak F
	٠	•	4	†	ļ	
Lane Group	EBL	EBR	NBL	NBT	SBT	
Lane Group Flow (vph)	97	157	54	319	576	
//c Ratio	0.47	0.49	0.10	0.24	0.43	
Control Delay	42.9	11.1	4.1	4.2	4.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	42.9	11.1	4.1	4.2	4.0	
Queue Length 50th (m)	16.0	0.0	1.0	6.1	17.3	
Queue Length 95th (m)	28.0	15.1	m7.6	48.5	34.4	
Internal Link Dist (m)	345.6			181.0	28.7	
Turn Bay Length (m)	37.5		37.5			
Base Capacity (vph)	418	491	559	1335	1326	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.32	0.10	0.24	0.43	
Intersection Summary						
m Volume for 95th percer	ntile queue i	s metere	d by upst	ream sign	al.	

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

Intersection												
Intersection Delay, s/yeh	8.7											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	90	179	0	16	52	20	0	9	12	33	11	24
Future Vol, veh/h	90	179	0	16	52	20	0	9	12	33	11	24
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	90	179	0	16	52	20	0	9	12	33	11	24
Number of Lanes	0	1	0	0	1	0	0	1		0	1	0
				-		0				-		
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			- 1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
				1				- 1		1		
Conflicting Lanes Right	1											
Conflicting Lanes Right HCM Control Delay				7.8								
HCM Control Delay	9.3			7.8 A				7.6		8.1 A		
										8.1		
HCM Control Delay HCM LOS	9.3 A			A				7.6		8.1		
HCM Control Delay	9.3 A	NBLn1	EBLn1	A WBLn1	SBLn1			7.6		8.1		
HCM Control Delay HCM LOS	9.3 A	NBLn1 0%	EBLn1 '	A	SBLn1 49%			7.6		8.1		
HCM Control Delay HCM LOS	9.3 A			A WBLn1				7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, %	9.3 A	0%	33% 67%	A WBLn1 18% 59%	49% 16%			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %	9.3 A	0% 43% 57%	33% 67% 0%	A WBLn1 18% 59% 23%	49% 16% 35%			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Triru, % Vol Right, % Sign Control	9.3 A	0% 43% 57% Stop	33% 67% 0% Stop	A WBLn1 18% 59% 23% Stop	49% 16% 35% Stop			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	9.3 A	0% 43% 57% Stop 21	33% 67% 0% Stop 269	MBLn1 18% 59% 23% Stop 88	49% 16% 35% Stop 68			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Trivu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	9.3 A	0% 43% 57% Stop 21 0	33% 67% 0% Stop 269 90	WBLn1 18% 59% 23% Stop 88 16	49% 16% 35% Stop 68 33			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Rhru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	9.3 A	0% 43% 57% Stop 21 0	33% 67% 0% Stop 269 90 179	WBLn1 18% 59% 23% Stop 88 16 52	49% 16% 35% Stop 68 33 11			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RY Vol	9.3 A	0% 43% 57% Stop 21 0 9	33% 67% 0% Stop 269 90 179	MBLn1 18% 59% 23% Stop 88 16 52 20	49% 16% 35% Stop 68 33 11 24			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Riytt, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol LT Vol LT LOS LT Vol LT LOS LT Vol LT LOS LT LO	9.3 A	0% 43% 57% Stop 21 0	33% 67% 0% Stop 269 90 179	WBLn1 18% 59% 23% Stop 88 16 52	49% 16% 35% Stop 68 33 11			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp	9.3 A	0% 43% 57% Stop 21 0 9 12 21	33% 67% 0% Stop 269 90 179 0 269	A WBLn1 18% 59% 23% Stop 88 16 52 20 88 1	49% 16% 35% Stop 68 33 11 24 68			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026	33% 67% 0% Stop 269 90 179 0 269 1	A WBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106	49% 16% 35% Stop 68 33 11 24 68 1 0.088			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Uili (X) Degarture Headway (Hd)	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775			7.6		8.1		
HCM Confrol Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803 2.485	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839 2.317	A WBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832 2.335	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775 2.65			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Riyt, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Degree of Util (X) Degarture Headway (Hd) Convergence, YN Cap Service Time HCM Lane VIC Ratio	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803 2.485 0.026	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839 2.317 0.321	A WBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832 2.335 0.106	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775 2.65 0.088			7.6		8.1		
HCM Control Delay HCM Control Delay HCM LOS Lane Vol Left, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN Cap Service Time HCM Lane V/C Ratio HCM Control Delay	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803 2.485 0.026 7.6	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839 2.317 0.321 9.3	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832 2.335 0.106 7.8	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775 2.65 0.088 8.1			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Lane V/C Ratio HCM Control Delay HCM Lane LOS	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803 2.485 0.026 7.6 A	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839 2.317 0.321 9.3	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832 2.335 0.106 7.8 A	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775 2.65 0.088 8.1			7.6		8.1		
HCM Control Delay HCM Control Delay HCM LOS Lane Vol Left, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN Cap Service Time HCM Lane V/C Ratio HCM Control Delay	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803 2.485 0.026 7.6	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839 2.317 0.321 9.3	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832 2.335 0.106 7.8	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775 2.65 0.088 8.1			7.6		8.1		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Lane V/C Ratio HCM Control Delay HCM Lane LOS	9.3 A	0% 43% 57% Stop 21 0 9 12 21 1 0.026 4.475 Yes 803 2.485 0.026 7.6 A	33% 67% 0% Stop 269 90 179 0 269 1 0.316 4.223 Yes 839 2.317 0.321 9.3	MBLn1 18% 59% 23% Stop 88 16 52 20 88 1 0.106 4.325 Yes 832 2.335 0.106 7.8 A	49% 16% 35% Stop 68 33 11 24 68 1 0.088 4.644 Yes 775 2.65 0.088 8.1			7.6		8.1		

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

Lanes, Volumes, Timings

2031 Total Future

2: Existing Greenb	ank Ro	ad & Ba	arnsda	ale Ro	ad							PM Peak Hour		
	٠	-	*	•	←	*	4	†	~	-	↓	4		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	Ť	ĥ		Ť	î		Ť	₽		ሻ	î,			
Traffic Volume (vph)	48	111	7	0	162	511	31	214	0	237	288	42		
Future Volume (vph)	48	111	7	0	162	511	31	214	0	237	288	42		
Satd. Flow (prot)	1658	1726	0	1745	1508	0	1658	1745	0	1658	1705	0		
Flt Permitted	0.112						0.498			0.614				
Satd. Flow (perm)	195	1726	0	1745	1508	0	864	1745	0	1062	1705	0		
Satd. Flow (RTOR)		6			319						8			
Lane Group Flow (vph)	48	118	0	0	673	0	31	214	0	237	330	0		
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA			
Protected Phases		4			8			2			6			
Permitted Phases	4			8			2			6				
Detector Phase	4	4		8	8		2	2		6	6			
Switch Phase														
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0			
Minimum Split (s)	23.6	23.6		23.6	23.6		23.6	23.6		28.6	28.6			
Total Split (s)	60.0	60.0		60.0	60.0		30.0	30.0		30.0	30.0			
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.3%			
Yellow Time (s)	4.6	4.6		4.6	4.6		4.6	4.6		4.6	4.6			
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0			
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0			
Total Lost Time (s)	5.6	5.6		5.6	5.6		5.6	5.6		5.6	5.6			
Lead/Lag														
Lead-Lag Optimize?														
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max			
Act Effct Green (s)	35.6	35.6			35.6		43.2	43.2		43.2	43.2			
Actuated g/C Ratio	0.40	0.40			0.40		0.48	0.48		0.48	0.48			
v/c Ratio	0.62	0.17			0.85		0.07	0.26		0.47	0.40			
Control Delay	51.1	14.0			22.2		19.9	19.2		20.9	16.3			
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0			
Total Delay	51.1	14.0			22.2		19.9	19.2		20.9	16.3			
LOS	D	В			С		В	В		С	В			
Approach Delay		24.7			22.2			19.3			18.3			
Approach LOS		С			С			В			В			
Intersection Summary														
Cyclo Longth: 00														

Intersection Summary		
Cycle Length: 90		
Actuated Cycle Length: 90		
Offset: 39 (43%), Referenced to phase 2:NBTL and	6:SBTL, Start of Green	
Natural Cycle: 60		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.85		
Intersection Signal Delay: 20.7	Intersection LOS: C	
Intersection Capacity Utilization 85.5%	ICU Level of Service E	
Analysis Period (min) 15		

Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road

Ø2 (R)	→ Ø4
30 s	60 s
₩ Ø6 (R)	₹ ø8
30 s	60 s

2031 Total Future PM Peak Hour Queues 2: Existing Greenbank Road & Barnsdale Road

	•	\rightarrow	←	4	†	-	↓	
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	48	118	673	31	214	237	330	
v/c Ratio	0.62	0.17	0.85	0.07	0.26	0.47	0.40	
Control Delay	51.1	14.0	22.2	19.9	19.2	20.9	16.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	51.1	14.0	22.2	19.9	19.2	20.9	16.3	
Queue Length 50th (m)	6.5	12.1	57.4	2.8	21.3	23.7	31.7	
Queue Length 95th (m)	15.7	14.9	69.8	10.9	50.0	#72.8	58.0	
Internal Link Dist (m)		999.3	579.2		705.1		181.0	
Turn Bay Length (m)	37.5			37.5		37.5		
Base Capacity (vph)	117	1045	1037	414	836	509	821	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.41	0.11	0.65	0.07	0.26	0.47	0.40	
Intersection Summary								
# 05th norcontile volume of	en shoony	nacity or	iolio may	he longe	r			

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Synchro 9 Report 05/25/2018 05/25/2018 Synchro 9 Report

2031 Total Future PM Peak Hour

Queues 3: Existing Greenbank Road & Kilbirnie Drive 2031 Total Future PM Peak Hour

o. Existing Greenbe	Existing Greenbank Road & Ribinne Drive										T INT T GUILTING
	۶	→	•	←	4	†	~	/	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	93	132	23	66	213	356	66	89	412	150	
v/c Ratio	0.53	0.42	0.16	0.25	0.32	0.27	0.06	0.13	0.31	0.13	
Control Delay	44.6	10.0	33.0	11.8	5.4	4.2	1.6	4.7	5.2	1.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	44.6	10.0	33.0	11.8	5.4	4.2	1.6	4.7	5.2	1.2	
Queue Length 50th (m)	15.3	0.3	3.6	0.8	5.1	8.2	0.1	3.2	17.6	0.0	
Queue Length 95th (m)	26.5	13.6	9.2	10.4	23.3	32.6	2.9	11.0	44.3	5.7	
Internal Link Dist (m)		360.1		212.9		511.5			369.2		
Turn Bay Length (m)	37.5		37.5		50.0		37.5	50.0		37.5	
Base Capacity (vph)	375	529	313	487	660	1313	1096	707	1313	1117	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.25	0.07	0.14	0.32	0.27	0.06	0.13	0.31	0.13	
Intersection Summary											

4 Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIT Permitted
State Flow (porm) EBT EBR SBR 93 2 93 2 1658 1443 0.714 61 61 0 356 66 89 412 150 356 66 89 412 150 1745 1483 1658 1745 1483 0.542 130 23 5 0 1658 1461 0.595 0.506 Fit Permitted
Satd. Flow (perm)
Satd. Flow (RTOR)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases
Detector Phase
Switch Phases 0.506 0.542 0 878 1745 1435 940 1745 1435 66 150 1234 1443 0 1030 1461 132 NA 4 412 NA F 93 Perm 0 23 Perm 0 213 Perm 89 Perm 4 Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (s)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Leadli ac 5.0 5.0 26.6 26.6 32.0 32.0 35.6% 35.6% 3.3 3.3 1.3 1.3
 5.0
 5.0
 5.0
 5.0

 22.7
 22.7
 22.7
 22.7

 58.0
 58.0
 58.0
 58.0

 64.4%
 64.4%
 64.4%
 64.4%
 64.4%
 5.0 5.0 26.6 26.6 32.0 32.0 35.6% 35.6% 3.3 3.3 1.3 1.3 3.7 3.7 1.0 1.0 3.7 1.0 3.7 1.0 0.0 4.6 0.0 4.6 0.0 4.6 0.0 4.6 0.0 4.7 0.0 4.7 0.0 4.7 0.0 4.7 0.0 4.7 0.0 4.7 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio
 C-Max
 C-Max
 C-Max
 C-Max
 C-Max
 C-Max

 67.7
 67.7
 67.7
 67.7
 67.7

 0.75
 0.75
 0.75
 0.75
 0.75
 None None 13.0 13.0 0.14 0.14 None None 13.0 13.0 0.14 0.14 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.53 0.42 44.6 10.0 0.16 0.25 33.0 11.8 0.27 4.2 0.06 0.0 0.0 44.6 10.0 D B 0.0 0.0 33.0 11.8 17.2 Intersection Summar

Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 17 (19%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum vic Railcio: 0.53
Intersection Signal Delay 7. 8
Intersection Signal Delay 7. 8
Intersection (Intersection Capacity Utilization 65.6%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service C

Splits and Phases: 3: Existing Greenbank Road & Kilbirnie Drive

Spins and Finases. S. Existing Greenbank Road & Ribinnic Diffe	T A
▼Ø2 (R)	- Ø4
58 s	32 s
\$ ø6 (R)	₹ø8
58 s	32 s

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 AWSC 4: River Mist Road & Kilbirnie Drive

2031 Total Future PM Peak Hour

Intersection												
Intersection Delay, s/veh	12.5											_
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	105	133	1	56	190	45	0	82	29	30	144	145
Future Vol, veh/h	105	133	1	56	190	45	0	82	29	30	144	145
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	105	133	1	56	190	45	0	82	29	30	144	145
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		- 1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	12.3			12.9				10.2		13.2		
HCM LOS	В			В				В		В		
Lane		NBI n1	FBI n1	WBI n1	SBI n1							

HCIVI LUS	D		D		D	D	
Lane	NBLn1	EBLn1	WBLn1	SBLn1			
Vol Left, %	0%	44%	19%	9%			
Vol Thru, %	74%	56%	65%	45%			
Vol Right, %	26%	0%	15%	45%			
Sign Control	Stop	Stop	Stop	Stop			
Traffic Vol by Lane	111	239	291	319			
LT Vol	0	105	56	30			
Through Vol	82	133	190	144			
RT Vol	29	1	45	145			
Lane Flow Rate	111	239	291	319			
Geometry Grp	1	1	1	1			
Degree of Util (X)	0.18	0.38	0.445	0.475			
Departure Headway (Hd)	5.844	5.722	5.504	5.363			
Convergence, Y/N	Yes	Yes	Yes	Yes			
Cap	609	626	652	670			
Service Time	3.919	3.78	3.56	3.421			
HCM Lane V/C Ratio	0.182	0.382	0.446	0.476			
HCM Control Delay	10.2	12.3	12.9	13.2			
HCM Lane LOS	В	В	В	В			
HCM 95th-tile Q	0.7	1.8	2.3	2.6			

Lanes, Volumes, Timings

05/25/2018

2031 Total Future nd & New E-W Collecto

5: Existing Greenb	ank Ro	ad & N	lew E-	PM Peak Ho			
	•	•	4	1	ļ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Ť	7	**	†	fi.		
Traffic Volume (vph)	51	85	152	622	484	95	
Future Volume (vph)	51	85	152	622	484	95	
Satd. Flow (prot)	1658	1483	1658	1745	1707	0	
Flt Permitted	0.950		0.427				
Satd. Flow (perm)	1658	1483	745	1745	1707	0	
Satd. Flow (RTOR)		85			20		
Lane Group Flow (vph)	51	85	152	622	579	0	
Turn Type	Prot	Perm	Perm	NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	28.0	28.0	28.0	28.0	28.0		
Total Split (s)	29.0	29.0	61.0	61.0	61.0		
Total Split (%)	32.2%	32.2%	67.8%	67.8%	67.8%		
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.3	4.3	5.6	5.6	5.6		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	9.6	9.6	73.6	73.6	73.6		
Actuated g/C Ratio	0.11	0.11	0.82	0.82	0.82		
v/c Ratio	0.29	0.36	0.25	0.44	0.41		
Control Delay	39.2	12.4	3.0	3.3	4.0		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	39.2	12.4	3.0	3.3	4.0		
LOS	D	В	Α	A	Α		
Approach Delay	22.5			3.3	4.0		
Approach LOS	С			Α	Α		
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 6 (7%), Referenced	to phase 2	:NBTL ar	nd 6:SBT,	Start of 0	Green		
Natural Cycle: 60							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.44							
Intersection Signal Delay: !	5.3			- I	ntersection	LOS: A	
Intersection Capacity Utiliz						of Service B	
Analysis Period (min) 15							

Splits and Phases: 5: Existing Greenbank Road & New E-W Collector √ Ø6 (R)

2031 Total Future PM Peak Hour HCM 2010 AWSC 6: New E-W Collector & River Mist Road 2031 Total Future PM Peak Hour

	۶	•	4	†	↓		
Lane Group	EBL	EBR	NBL	NBT	SBT		
Lane Group Flow (vph)	51	85	152	622	579		
v/c Ratio	0.29	0.36	0.25	0.44	0.41		
Control Delay	39.2	12.4	3.0	3.3	4.0		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	39.2	12.4	3.0	3.3	4.0		
Queue Length 50th (m)	8.4	0.0	2.4	10.2	19.8		
Queue Length 95th (m)	16.9	11.5	m12.3	55.4	46.3		
Internal Link Dist (m)	345.6			181.0	28.7		
Turn Bay Length (m)	37.5		37.5				
Base Capacity (vph)	455	468	609	1427	1399		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.11	0.18	0.25	0.44	0.41		
Intersection Summary							
m Volume for 95th percen	itile queue i:	s metere	d by upst	eam sign	al.	Ī	

Intersection Delay, s/veh	8.6											
Intersection LOS	A											
Movement	EBL E	BT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	51	99	0	3	179	35	0	2	4	27	2	9
Future Vol, veh/h	51	99	0	3	179	35	0	2	4	27	2	9
Peak Hour Factor	1.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mymt Flow	51	99	0	3	179	35	0	2	4	27	2	(
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				FB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		FB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	8.6			8.8				7.6		8.1		
HCM LOS	A			A				A		A		
Lane	NB	Ln1	EBLn1	WBLn1	SBLn1							
Vol Left, %		0%	34%	1%	22%							
Vol Thru, %	3	33%	66%	82%	2%							
Vol Right, %	6	7%	0%	16%	76%							
Sign Control	5	Stop	Stop	Stop	Stop							
Traffic Vol by Lane		6	150	217	121							
LT Vol		0	51	3	27							
Through Vol		2	99	179	2							
RT Vol		4	0	35	92							
Lane Flow Rate		6	150	217	121							
Geometry Grp		-1	- 1	1	1							
	0	800	0.188	0.259	0.146							
Degree of Util (X)	U.											
	U.	4.5	4.514	4.289	4.348							
Degree of Util (X) Departure Headway (Hd)			4.514 Yes	4.289 Yes	4.348 Yes							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		4.5										
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		4.5 Yes	Yes	Yes	Yes							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time	2	4.5 Yes 795	Yes 795	Yes 838	Yes 825							
Degree of Util (X)	2	4.5 Yes 795 2.53	Yes 795 2.537	Yes 838 2.31	Yes 825 2.371							
Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	2	4.5 Yes 795 2.53 008	Yes 795 2.537 0.189	Yes 838 2.31 0.259	Yes 825 2.371 0.147							

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

Appendix C Intersection Performance Worksheets May 25, 2018

C.6 2036 ULTIMATE CONDITIONS

- None

6.42 6.22

5.42

800

EBT WBT WBR SBLn1

566 855

701 0.136

10.9

EBL EBT WBT WBR SBL SBR

49 137 151 37 41 49 137 151 37 41 5 0 0 5 5 Free Free Free Stop

None - None

100 100 100 100 100 100

2 2 2 2 2 2 49 137 151 37 41 54

| Vicinity | Vicinity

4.12

0.036

7.7

0.1

Intersection Int Delay, s/veh

Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Conflicting Peds, #/hr

RT Channelized

Heavy Vehicles, % Mvmt Flow

Major/Minor
Conflicting Flow All
Stage 1

Platoon blocked, %

Approach HCM Control Delay, s

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)
HCM Lane LOS
HCM 95th %tile Q(veh)

HCM LOS Minor Lane/Major Mvmt

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy 2.218
Pot Cap-1 Maneuver Stage 1
Stage 2
Plateon blocked %

Mov Cap-1 Maneuver 1374
Mov Cap-2 Maneuver Stage 1 Stage 2 -

Stage 2 Critical Hdwy

Movement

2036 Ultimate

AM Peak Hour

Intersection Summ Intersection Summary
Cycle Length, 90
Actuated Cycle Length, 90
Offset: 39 (43%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum wic Ratio: 0.76
Intersection Signal Delay 18.7
Intersection Signal Delay 18.7
Intersection (Intersection Capacity Utilization 87.0%
Analysis Period (min) 15 Intersection LOS: B ICU Level of Service E

Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road A04 Ø6 (R)

05/25/2018 Synchro 9 Report

05/25/2018 Synchro 9 Report

2036 Ultimate 2: Existing Greenbank Road & Barnsdale Road AM Peak Hour

	٠	→	*	—	4	†	/	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	46	128	4	263	21	194	490	247	
v/c Ratio	0.42	0.40	0.02	0.76	0.05	0.26	0.62	0.21	
Control Delay	42.9	33.0	27.0	39.1	21.1	21.0	8.7	2.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	42.9	33.0	27.0	39.1	21.1	21.0	8.7	2.8	
Queue Length 50th (m)	7.1	18.5	0.6	31.5	2.0	20.6	11.9	2.4	
Queue Length 95th (m)	16.5	31.9	3.1	53.7	8.3	46.5	60.6	9.9	
Internal Link Dist (m)		999.3		579.2		705.1		181.0	
Turn Bay Length (m)	37.5		37.5		37.5		37.5		
Base Capacity (vph)	148	431	289	443	453	754	864	1170	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.31	0.30	0.01	0.59	0.05	0.26	0.57	0.21	
Intersection Summary									

Lanes, Volumes, Timings 3: Existing Greenbank Road & Kilbirnie Drive 2036 Ultimate AM Peak Hour

EBL	EBT	EDD									
		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	₽.		ሻ	1		ሻ	†	7	ሻ	†	i
142	6	182	66	6	107	74	333	11	29	312	6
142	6	182	66	6	107	74	333	11	29	312	6
1658	1449	0	1658	1455	0	1658	1745	1483	1658	1745	148
0.449			0.639			0.536			0.519		
777	1449	0	1106	1455	0	929	1745	1435	900	1745	143
	182			107				75			7
142	188	0	66	113	0	74	333	11	29	312	6
pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Pen
7	4			8			2			6	
4			8			2		2	6		
7	4		8	8		2	2	2	6	6	
5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.
9.6	26.6		26.6	26.6		22.7	22.7	22.7	22.7	22.7	22
22.0	51.0		29.0	29.0		39.0	39.0	39.0	39.0	39.0	39
24.4%	56.7%		32.2%	32.2%		43.3%	43.3%	43.3%	43.3%	43.3%	43.39
3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	3.
1.3	1.3		1.3	1.3		1.0	1.0	1.0	1.0	1.0	1.
0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.
4.6	4.6		4.6	4.6		4.7	4.7	4.7	4.7	4.7	4.
Lead			Lag	Lag							
Yes			Yes	Yes							
None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	C-Ma
27.4	27.4		11.9	11.9		53.3	53.3	53.3	53.3	53.3	53
0.30	0.30		0.13	0.13		0.59	0.59	0.59	0.59	0.59	0.5
0.39	0.33		0.45	0.40		0.13	0.32	0.01	0.05	0.30	0.0
23.8	4.4		43.5	11.4		5.1	5.9	0.1	12.9	13.2	3.
0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.
23.8	4.4		43.5	11.4		5.1	5.9	0.1	12.9	13.2	3.
С	A		D	В		Α	Α	Α	В	В	
	12.8			23.3			5.6			11.6	
	В			С			Α			В	
	0.449 7777 142 pm+pt 7 4 7 5.0 9.6 22.0 24.4% 3.3 1.3 0.0 4.6 Lead Yes None 27.4 0.30 0.30 0.39 23.8 0.23	0.449 777 1449 777 1449 182 182 142 188 17 4 4 5.0 5.0 9.6 26.6 22.0 51.0 24.4% 56.7% 3.3 3.3 1.3 1.3 1.3 1.3 0.0 0.0 4.6 4.6 Lead Yes None None 27.4 27.4 0.30 0.30 0.39 0.33 2.38 4.4 0.0 0.0 2.8 4.4 C A	0.449 777 1449 0 182 142 188 0 pm+pt NA 7 4 4 7 4 5.0 5.0 9.6 26.6 22.0 51.0 24.4% 56.7% 3.3 3.3 1.3 1.3 0.0 0.0 4.6 4.6 Lead Ves None None None None None None None None None	0.449 0.639 777 149 0 1106 142 188 0 66 pm+pt NA Perm 4 4 88 7 4 4 88 7 4 88 50 5.0 5.0 5.0 9.6 26.6 26.6 22.0 51.0 29.0 24.4% 56.7% 32.2% 3.3 3.3 3.3 1.3 1.3 1.3 0.0 0.0 0.0 4.6 4.6 4.6 4.6 Lead 1.ag Yes Yes None None 27.4 27.4 11.9 0.30 0.30 0.30 0.31 0.39 0.30 0.01 0.39 0.30 0.01 0.39 0.30 0.01 0.39 0.30 0.01 0.39 0.30 0.45 23.8 4.4 43.5 C A D	0.449 0.639 777 1449 0.1006 1455 182 0.60 113 pm+pt NA Perm NA 4 8 8 7 4 8 8 5.0 5.0 5.0 5.0 9.6 26.6 26.6 26.6 22.0 51.0 29.0 29.0 24.4% 56.7% 32.2% 32.2% 3.3 3.3 3.3 3.3 3.3 1.3 1.3 1.3 1.3 1.3 0.0 0.0 0.0 0.0 0.0 4.6 4.6 4.6 4.6 Lead Lag Lag Lag Ves Yes Yes Ves None None None 27.4 11.9 11.9 0.30 0.30 0.35 0.45 23.8 4.4 43.5 11.4	0.449 0.639 777 1449 0 1106 1455 0 142 188 0 66 113 0 pm-pt NA Perm NA 8 4 8 8 8 7 4 8 8 50 5.0 5.0 5.0 9.6 26.6 26.6 26.6 22.0 51.0 29.0 29.0 24.4% 56.7% 32.2% 32.2% 3.3 3.3 3.3 3.3 1.3 1.3 1.3 1.3 1.0 0.0 0.0 0.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 Lead Lag Lag Ves Yes Yes None None None 27.4 11.9 11.9 0.39 0.33 0.45 0.40	0.449 0.639 0.536 777 1449 0 1106 1455 0 929 142 188 0 66 113 0 74 pm+pt NA Perm NA Perm 4 8 8 2 7 4 8 8 2 5.0 5.0 5.0 5.0 5.0 9.6 26.6 26.6 22.7 9.9 29.0 39.0 24.0 56.7% 32.2% 32.2% 32.2% 43.3% 3.3 3.7 1.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.449 0.639 0.536 777 1449 0 105 1455 0 929 1745 777 142 188 0 6 113 0 74 333 mpt NA Perm NA NA	0.449 0.639 0.536 777 1449 0 1006 1455 0 929 1745 1435 777 142 182 0 66 113 0 74 333 11 mpt pt NA Perm NA Perm NA Perm NA Perm 7 4 8 2 2 2 4 8 8 2 2 2 50 5.0	0.449 0.639 0.536 0.519 777 1449 0.1006 1455 0.929 1745 1435 900 142 188 0.66 1113 0.74 333 11 29 pm+pt NA Perm NA Perm NA Perm NA Perm Perm Perm NA Perm Perm Perm NA Perm Perm NA Perm Perm Perm NA Perm Perm Perm NA Perm Perm	0.449 0.639 0.536 0.519 777 1449 0 1106 1455 0 929 1745 1435 900 1745 142 188 0 66 113 0 74 333 11 29 317 pmpt NA Perm NA Perm NA Perm Perm NA 4 8 2 2 2 6 6 5 5.0

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 12 (13%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 60 Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.45
Intersection Signal Delay: 11.6
Intersection Capacity Utilization 55.9%
Analysis Period (min) 15

Splits and Phases: 3: Existing Greenbank Road & Kilbirnie Drive

05/25/2018

√Îø2 (R)	- Ø4		
39 s	51 s		
₩ Ø6 (R)	≯ Ø7	₹ Ø8	
39 s	22 s	29 s	

125 0

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Peak Hour Factor
Heavy Vehicles, %
Mymt Flow
Number of Lanes

Approach

51

				-					- 1	,	
	•	\rightarrow	•	_	1	T		-	+	*	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	142	188	66	113	74	333	11	29	312	60	
v/c Ratio	0.39	0.33	0.45	0.40	0.13	0.32	0.01	0.05	0.30	0.07	
Control Delay	23.8	4.4	43.5	11.4	5.1	5.9	0.1	12.9	13.2	3.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.8	4.4	43.5	11.4	5.1	5.9	0.1	12.9	13.2	3.0	
Queue Length 50th (m)	18.2	0.7	10.9	0.9	4.2	20.1	0.0	2.0	25.5	0.0	
Queue Length 95th (m)	23.9	10.8	20.3	13.3	7.4	34.3	0.1	8.3	59.3	5.3	
Internal Link Dist (m)		360.1		212.9		511.5			369.2		
Turn Bay Length (m)	20.0		20.0		50.0		37.5	50.0		37.5	
Base Capacity (vph)	423	835	299	472	550	1033	880	533	1033	880	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.34	0.23	0.22	0.24	0.13	0.32	0.01	0.05	0.30	0.07	
Intersection Summary											

Approach	EB		WB		NB	SB
Opposing Approach	WB		EB		SB	NB
Opposing Lanes	1		1		1	1
Conflicting Approach Left	SB		NB		EB	WB
Conflicting Lanes Left	1		1		1	1
Conflicting Approach Right	NB		SB		WB	EB
Conflicting Lanes Right	1		1		1	1
HCM Control Delay	11.9		9.5		10.3	9.6
HCM LOS	В		Α		В	A
Lane	NBLn	1 EBLn1	WBLn1	SBLn1		
Vol Left, %	19	6 42%	19%	28%		
Vol Thru, %	709	6 57%	61%	36%		
Vol Right, %	299	6 1%	20%	36%		
Sign Control	Sto	o Stop	Stop	Stop		
Traffic Vol by Lane	21	1 297	130	140		
LT Vol		2 125	25	39		
Through Vol	14	7 168	79	50		
RT Vol	6.	2 4	26	51		
Lane Flow Rate	21	1 297	130	140		
Geometry Grp		1 1	1	1		
Degree of Util (X)	0.	3 0.426	0.189	0.204		
Departure Headway (Hd)	5.11	5.167	5.237	5.238		
Convergence, Y/N	Ye	s Yes	Yes	Yes		
Cap	70	3 701	685	685		
Service Time	3.14	3.167	3.271	3.273		
HCM Lane V/C Ratio	0.	3 0.424	0.19	0.204		
HCM Control Delay	10.	3 11.9	9.5	9.6		
HCM Lane LOS	1	B B	A	A		
HCM 95th-tile Q	1.	3 2.1	0.7	0.8		

 EBI
 EBT
 EBR
 WBL
 WBR
 WBL
 NBI
 NBI
 NBR
 SBL
 SBI
 SBR

 4
 4
 4
 4
 4
 4
 4
 2
 147
 62
 39
 50
 51

 125
 168
 4
 25
 79
 26
 2
 147
 62
 39
 50
 51

 125
 168
 4
 25
 79
 26
 2
 147
 62
 39
 50
 51

 100
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00

 2
 2
 2
 2
 1.00
 1.00
 1.00
 1.00
 1.00

 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

147

05/25/2018 Synchro 9 Report

Synchro 9 Report 05/25/2018

Lanes, Volumes, T 5: Existing Greenb		ad & N	lew E-	W Coll	ector		2036 Ultimate AM Peak Hour
	٦	•	4	†	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Ť	*	Ť	†	î,		
Traffic Volume (vph)	97	157	54	338	579	33	
Future Volume (vph)	97	157	54	338	579	33	
Satd. Flow (prot)	1658	1483	1658	1745	1733	0	
Flt Permitted	0.950		0.400				
Satd. Flow (perm)	1658	1483	698	1745	1733	0	
Satd. Flow (RTOR)		157			6		
Lane Group Flow (vph)	97	157	54	338	612	0	
Turn Type	Prot	Perm	Perm	NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	22.3	22.3	23.6	23.6	23.6		
Total Split (s)	26.0	26.0	64.0	64.0	64.0		
Total Split (%)	28.9%	28.9%	71.1%	71.1%	71.1%		
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.3	4.3	5.6	5.6	5.6		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	11.2	11.2	68.9	68.9	68.9		
Actuated g/C Ratio	0.12	0.12	0.77	0.77	0.77		
v/c Ratio	0.47	0.49	0.10	0.25	0.46		
Control Delay	42.9	11.1	4.4	4.5	4.3		
Queue Delay	0.0 42.9	0.0	0.0	0.0	0.0 4.3		
Total Delay LOS	42.9 D	11.1 B	4.4 A	4.5 A	4.3 A		
	23.3	В	A	4.5	4.3		
Approach LOS	23.3 C			4.5 A	4.3 A		
Approach LOS	C			A	A		
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 89 (99%), Reference	ed to phase	2:NBTL	and 6:SB	T, Start o	of Green		
Natural Cycle: 60							
Control Type: Actuated-Con	ordinated						
Maximum v/c Ratio: 0.49							
Intersection Signal Delay: 8	3.2			l l	ntersection	LOS: A	
Intersection Capacity Utiliza	ation 57.0%	5		I	CU Level o	of Service I	3
Analysis Period (min) 15							

Splits and Phases: 5: Existing Greenbank Road & New E-W Collector 1 02 (R)

Ø6 (R)

Queues 5: Existing Greenb	ank Roa	ıd & N	ew E-\	V Colle	ector	2036 Ultimate AM Peak Hour
	۶	•	4	†	ţ	
Lane Group	EBL	EBR	NBL	NBT	SBT	
Lane Group Flow (vph)	97	157	54	338	612	
v/c Ratio	0.47	0.49	0.10	0.25	0.46	
Control Delay	42.9	11.1	4.4	4.5	4.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	42.9	11.1	4.4	4.5	4.3	
Queue Length 50th (m)	16.0	0.0	1.1	6.7	19.6	
Queue Length 95th (m)	28.0	15.1	m7.8	55.3	38.1	
Internal Link Dist (m)	345.6			181.0	28.7	
Turn Bay Length (m)	37.5		37.5			
Base Capacity (vph)	399	476	534	1335	1328	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.33	0.10	0.25	0.46	
Intersection Summary						
m Volume for 95th percer	ntile queue i	s meterei	d by upsti	ream sign	ıal.	

Synchro 9 Report 05/25/2018 Synchro 9 Report 05/25/2018

179 179

179

NBLn1 EBLn1 WBLn1 SBLn 0% 33% 43% 67%

4376 076 23% 35% 1076 23% 35% Slop Slop Slop Slop Slop Slop 9 116 33 9 179 52 11 12 0 20 24 21 269 88 68 68 68 68 11 1 1 1 1 1

21 269 88 68 1 1 1 0.026 0.316 0.106 0.088 4.475 4.223 4.325 4.644 Yes Yes Yes Yes 803 839 832 75 2.485 2.317 2.335 2.65 0.026 0.321 0.106 0.088 7.6 9.3 7.8 8.1 A A A A 0.1 1.4 0.4 0.3

18% 59%

WB

Intersection Delay, s/veh Intersection LOS

Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h

Peak Hour Factor Heavy Vehicles, % Mvmt Flow Number of Lanes

Approach
Opposing Approach
Opposing Lanes
Conflicting Approach Left
Conflicting Lanes Left
Conflicting Approach Right
Conflicting Lanes Right
HCM Control Delay
HCM LOS

Vol Thru, %
Vol Right, %
Sign Control
Traffic Vol by Lane
LT Vol
Through Vol
RT Vol
Lane Flow Rate
Geometry Grp
Degree of Util (X)
Departure Headway (Hd)
Cap
Service Time
HCM Lane WC Ratio
HCM Control Delay
HCM Lane LOS
HCM 95in-Ilie Q

05/25/2018

Lane Vol Left, % Vol Thru, %

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>		*y*	
Traffic Vol, veh/h	46	138	188	73	44	88
Future Vol, veh/h	46	138	188	73	44	88
Conflicting Peds, #/hr	5	0	0	5	5	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None		None
Storage Length					0	
Veh in Median Storage	,# -	0	0		0	-
Grade, %	-	0	0	-	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	46	138	188	73	44	88
Major/Minor I	Major1	- 1	Major2		Minor2	
Conflicting Flow All	266	0		0	465	235
Stage 1		-			230	-
Stage 2					235	
Critical Hdwy	4.12	-			6.42	6.22
Critical Hdwy Stg 1		-			5.42	-
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy	2.218	-			3.518	3.318
Pot Cap-1 Maneuver	1298				556	804
Stage 1					808	
Stage 2		-			804	-
Platoon blocked, %		-				
Mov Cap-1 Maneuver	1292				529	797
Mov Cap-2 Maneuver					529	
Stage 1					804	
Stage 2					769	
, i						
Approach	EB		WB		SB	
HCM Control Delay, s	2		0		11.5	
HCM LOS			U		B	
TIOW EOS						
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
		1292	-	-	-	682
Capacity (veh/h)						
Capacity (veh/h) HCM Lane V/C Ratio		0.036	-			
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.036 7.9	0		-	11.5
Capacity (veh/h) HCM Lane V/C Ratio		0.036		-		

05/25/2018 Synchro 9 Report

Lanes, Volumes, Timings roadala Daad 2036 Ultimate

Synchro 9 Report

2036 Ultimate

AM Peak Hour

24

2: Existing Greenb	2: Existing Greenbank Road & Barnsdale Road Pl												
	٠	-	*	•	←	4	4	†	1	/	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	Ť	ĥ		٦	4		٦	4		٦	1		
Traffic Volume (vph)	53	121	7	0	178	537	31	225	0	245	302	46	
Future Volume (vph)	53	121	7	0	178	537	31	225	0	245	302	46	
Satd. Flow (prot)	1658	1728	0	1745	1510	0	1658	1745	0	1658	1703	0	
Flt Permitted	0.116						0.461			0.592			
Satd. Flow (perm)	202	1728	0	1745	1510	0	800	1745	0	1025	1703	0	
Satd. Flow (RTOR)		6			305						8		
Lane Group Flow (vph)	53	128	0	0	715	0	31	225	0	245	348	0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA		
Protected Phases		4			8			2			6		
Permitted Phases	4			8			2			6			
Detector Phase	4	4		8	8		2	2		6	6		
Switch Phase													
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0		
Minimum Split (s)	23.6	23.6		23.6	23.6		23.6	23.6		28.6	28.6		
Total Split (s)	60.0	60.0		60.0	60.0		30.0	30.0		30.0	30.0		
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.3%		
Yellow Time (s)	4.6	4.6		4.6	4.6		4.6	4.6		4.6	4.6		
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		
Total Lost Time (s)	5.6	5.6		5.6	5.6		5.6	5.6		5.6	5.6		
Lead/Lag													
Lead-Lag Optimize?													
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max		
Act Effct Green (s)	39.4	39.4			39.4		39.4	39.4		39.4	39.4		
Actuated g/C Ratio	0.44	0.44			0.44		0.44	0.44		0.44	0.44		
v/c Ratio	0.60	0.17			0.86		0.09	0.29		0.55	0.46		
Control Delay	43.7	12.4			22.4		22.2	21.7		25.8	19.6		
Queue Delay	0.0	0.0			0.0		0.0	0.0		0.0	0.0		
Total Delay	43.7	12.4			22.4		22.2	21.7		25.8	19.6		
LOS	D	В			С		С	С		С	В		
Approach Delay		21.5			22.4			21.8			22.2		
Approach LOS		С			С			С			С		
Intersection Summary													

Intersection Summary
Cycle Length: 90
Olfset: 41 (46%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycles: 0
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.86
Intersection Signal Delay 22.1
Intersection Intersection (annex) University 150
Analysis Perfod (min) 15

Splits and Phases: 2: Existing Greenbank Road & Barnsdale Road

Ø2 (R)	→ Ø4
30 s	60 s
₩ Ø6 (R)	₹ Ø8
30 s	60 s

2: Existing Greenbank Road & Barnsdale Road

2036 Ultimate PM Peak Hour

	_				_		
	•	→	←	4	†	-	ļ
Lane Group	EBL	EBT	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	53	128	715	31	225	245	348
v/c Ratio	0.60	0.17	0.86	0.09	0.29	0.55	0.46
Control Delay	43.7	12.4	22.4	22.2	21.7	25.8	19.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.7	12.4	22.4	22.2	21.7	25.8	19.6
Queue Length 50th (m)	6.6	12.0	64.0	3.1	25.0	24.5	31.3
Queue Length 95th (m)	17.1	15.3	81.0	11.2	53.7	#84.3	#92.6
Internal Link Dist (m)		999.3	579.2		705.1		181.0
Turn Bay Length (m)	37.5			37.5		37.5	
Base Capacity (vph)	122	1046	1033	350	763	448	750
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.12	0.69	0.09	0.29	0.55	0.46
Intersection Summary							

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

2036 Ultimate

o. Existing Circuible	21111 1 100	au a i i	DITTIIC	Dilve							
	۶	→	•	←	4	†	<i>></i>	/	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	93	132	23	66	213	379	66	89	431	150	
v/c Ratio	0.53	0.42	0.16	0.25	0.33	0.29	0.06	0.13	0.33	0.13	
Control Delay	44.6	10.0	33.0	11.8	5.4	4.2	1.0	4.7	5.3	1.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	44.6	10.0	33.0	11.8	5.4	4.2	1.0	4.7	5.3	1.2	
Queue Length 50th (m)	15.3	0.3	3.6	0.8	10.3	18.0	0.3	3.2	18.7	0.0	
Queue Length 95th (m)	26.5	13.6	9.2	10.4	22.6	36.0	1.8	11.0	46.6	5.7	
Internal Link Dist (m)		360.1		212.9		511.5			369.2		
Turn Bay Length (m)	37.5		37.5		50.0		37.5	50.0		37.5	
Base Capacity (vph)	375	529	313	487	645	1313	1096	688	1313	1117	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.25	0.07	0.14	0.33	0.29	0.06	0.13	0.33	0.13	
Intersection Summary											

4 ļ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot) EBT EBR SBR 93 2 93 2 1658 1443 0.714 379 66 89 431 150 379 66 89 431 150 1745 1483 1658 1745 1483 0.527 23 5 1658 1461 0.595 0 0.494 U.527 0 857 1745 1435 914 1745 1435 66 150 Satd. Flow (perm) Satd. Flow (RTOR) 1234 1443 0 1030 1461 Satd. Flow (RTOR)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases
Detector Phase 132 NA 4 431 NA 6 93 Perm 213 Perm 89 Perm 0 23 Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (s)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Leadli ac 5.0 5.0 26.6 26.6 32.0 32.0 35.6% 35.6% 3.3 3.3 1.3 1.3
 5.0
 5.0
 5.0
 5.0

 22.7
 22.7
 22.7
 22.7

 58.0
 58.0
 58.0
 58.0

 64.4%
 64.4%
 64.4%
 64.4%
 64.4%
 5.0 5.0 26.6 26.6 32.0 32.0 35.6% 35.6% 3.3 3.3 1.3 1.3 3.7 3.7 1.0 1.0 3.7 1.0 3.7 1.0 0.0 4.6 0.0 4.6 0.0 4.6 0.0 4.6 0.0 4.7 0.0 4.7 0.0 4.7 0.0 4.7 0.0 4.7 0.0 4.7 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio
 C-Max
 C-Max
 C-Max
 C-Max
 C-Max
 C-Max

 67.7
 67.7
 67.7
 67.7
 67.7

 0.75
 0.75
 0.75
 0.75
 0.75
 None None 13.0 13.0 0.14 0.14 None None 13.0 13.0 0.14 0.14 v/c Ratio Control Delay 0.53 0.42 44.6 10.0 0.16 0.25 33.0 11.8 0.29 0.06 Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.0 0.0 44.6 10.0 D B 0.0 0.0 33.0 11.8 17.2 Intersection Summar

Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 11 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum vic Railcio: 0.53
Intersection Signal Delay 7.7
Intersection Grapacity Utilization 66.6%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service C

Splits and Phases: 3: Existing Greenbank Road & Kilbirnie Drive

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report

HCM 2010 AWSC 2036 Ultimate PM Peak Hour 4: River Mist Road & Kilbirnie Drive

Intersection												
Intersection Delay, s/veh	12.5											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	105	133	1	56	190	45	0	82	29	30	144	145
Future Vol, veh/h	105	133	1	56	190	45	0	82	29	30	144	145
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	105	133	1	56	190	45	0	82	29	30	144	145
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	12.3			12.9				10.2		13.2		
HCM LOS	В			В				В		В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	0%	44%	19%	9%
Vol Thru, %	74%	56%	65%	45%
Vol Right, %	26%	0%	15%	45%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	111	239	291	319
LT Vol	0	105	56	30
Through Vol	82	133	190	144
RT Vol	29	- 1	45	145
Lane Flow Rate	111	239	291	319
Geometry Grp	1	- 1	1	1
Degree of Util (X)	0.18	0.38	0.445	0.475
Departure Headway (Hd)	5.844	5.722	5.504	5.363
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	609	626	652	670
Service Time	3.919	3.78	3.56	3.421
HCM Lane V/C Ratio	0.182	0.382	0.446	0.476
HCM Control Delay	10.2	12.3	12.9	13.2
HCM Lane LOS	В	В	В	В
HCM 95th-tile Q	0.7	1.8	2.3	2.6

Lanes, Volumes, Timings

5: Existing Greenba	<u>≉ (</u>	au ox iv	iew L-				PM Peak Hour
		•	7	†	ţ	•	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	ř	ሻ	↑	4		
Traffic Volume (vph)	51	85	152	664	509	95	
Future Volume (vph)	51	85	152	664	509	95	
Satd. Flow (prot)	1658	1483	1658	1745	1708	0	
Flt Permitted	0.950		0.414				
Satd. Flow (perm)	1658	1483	722	1745	1708	0	
Satd. Flow (RTOR)		85			20		
Lane Group Flow (vph)	51	85	152	664	604	0	
Turn Type	Prot	Perm	Perm	NA	NA		
Protected Phases	4			2	6		
Permitted Phases		4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	28.0	28.0	28.0	28.0	28.0		
Total Split (s)	28.0	28.0	62.0	62.0	62.0		
Total Split (%)	31.1%	31.1%	68.9%	68.9%	68.9%		
Yellow Time (s)	3.3	3.3	4.6	4.6	4.6		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.3	4.3	5.6	5.6	5.6		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	C-Max	C-Max	C-Max		
Act Effct Green (s)	9.6	9.6	73.6	73.6	73.6		
Actuated g/C Ratio	0.11	0.11	0.82	0.82	0.82		
v/c Ratio	0.29	0.36	0.26	0.47	0.43		
Control Delay	39.2	12.4	3.2	3.7	4.1		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	39.2	12.4	3.2	3.7	4.1		
LOS	D	В	Α	A	A		
Approach Delay	22.5			3.6	4.1		
Approach LOS	С			Α	Α		
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							

Actuated Cycle Length: 90 Offset: 8 (9%), Referenced to phase 2:NBTL and 6:SBT, Start of Green Natural Cycle: 60 Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.47
Intersection Signal Delay: 5.5
Intersection Capacity Utilization 60.3%
Analysis Period (min) 15

Splits and Phases: 5: Existing Greenbank Road & New E-W Collector ₹ ø4 √ Ø6 (R)

2036 Ultimate PM Peak Hour

HCM 2010 AWSC 6: New E-W Collector & River Mist Road 2036 Ultimate PM Peak Hour

Intersection Delay, s/veh												
	8.6											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4			4			4			4	
Traffic Vol. veh/h	51	99	0	3	179	35	0	2	4	27	2	9
Future Vol. veh/h	51	99	0	3	179	35	0	2	4	27	2	9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	51	99	0	3	179	35	0	2	4	27	2	9
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		- 1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			- 1				- 1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			- 1				- 1		1		
HCM Control Delay	8.6			8.8				7.6		8.1		
HCM LOS	Α			Α				Α		Α		
Lane		NBLn1	EBLn1		SBLn1							
Vol Left, %		0%	34%	1%	22%							
Vol Thru, %		33%	66%	82%	2%							
Vol Right, %		67%	0%	16%	2% 76%							
Vol Right, % Sign Control			0% Stop	16% Stop	2% 76% Stop							
Vol Right, % Sign Control Traffic Vol by Lane		67% Stop 6	0% Stop 150	16% Stop 217	2% 76% Stop 121							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol		67% Stop 6 0	0% Stop 150 51	16% Stop 217	2% 76% Stop 121 27							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		67% Stop 6 0 2	0% Stop 150 51 99	16% Stop 217 3 179	2% 76% Stop 121 27 2							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		67% Stop 6 0 2	0% Stop 150 51 99	16% Stop 217 3 179 35	2% 76% Stop 121 27 2 92							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		67% Stop 6 0 2 4	0% Stop 150 51 99 0	16% Stop 217 3 179 35 217	2% 76% Stop 121 27 2 92 121							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		67% Stop 6 0 2 4 6	0% Stop 150 51 99 0 150	16% Stop 217 3 179 35 217	2% 76% Stop 121 27 2 92 121							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		67% Stop 6 0 2 4 6 1 0.008	0% Stop 150 51 99 0 150 1	16% Stop 217 3 179 35 217 1 0.259	2% 76% Stop 121 27 2 92 121 1 0.146							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd)		67% Stop 6 0 2 4 6 1 0.008 4.5	0% Stop 150 51 99 0 150 1 0.188 4.514	16% Stop 217 3 179 35 217 1 0.259 4.289	2% 76% Stop 121 27 2 92 121 1 0.146 4.348							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, YN		67% Stop 6 0 2 4 6 1 0.008 4.5 Yes	0% Stop 150 51 99 0 150 1 1 0.188 4.514 Yes	16% Stop 217 3 179 35 217 1 0.259 4.289 Yes	2% 76% Stop 121 27 2 92 121 1 0.146 4.348 Yes							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		67% Stop 6 0 2 4 6 1 0.008 4.5 Yes 795	0% Stop 150 51 99 0 150 1 0.188 4.514 Yes 795	16% Stop 217 3 179 35 217 1 0.259 4.289 Yes 838	2% 76% Stop 121 27 2 92 121 1 0.146 4.348 Yes 825							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Tribrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time		67% Stop 6 0 2 4 6 1 0.008 4.5 Yes 795 2.53	0% Stop 150 51 99 0 150 1 0.188 4.514 Yes 795 2.537	16% Stop 217 3 179 35 217 1 0.259 4.289 Yes 838 2.31	2% 76% Stop 121 27 2 92 121 1 0.146 4.348 Yes 825 2.371							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ufil (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time Holl Lane Vic Ratio		67% Stop 6 0 2 4 6 1 0.008 4.5 Yes 795 2.53 0.008	0% Stop 150 51 99 0 150 1 0.188 4.514 Yes 795 2.537 0.189	16% Stop 217 3 179 35 217 1 0.259 4.289 Yes 838 2.31 0.259	2% 76% Stop 121 27 2 92 121 1 0.146 4.348 Yes 825 2.371 0.147							
Vol Right, % Signer, to control Traffic Vol by Lane LT Vol Traffic Vol by Lane LT Vol Trough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Degrature Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		67% Stop 6 0 2 4 6 1 0.008 4.5 Yes 795 2.53 0.008 7.6	0% Stop 150 51 99 0 150 1 0.188 4.514 Yes 795 2.537 0.189 8.6	16% Stop 217 3 179 35 217 1 0.259 4.289 Yes 838 2.31 0.259 8.8	2% 76% Stop 121 27 2 92 121 1 0.146 4.348 Yes 825 2.371 0.147 8.1							
Vol Right, % Sign Control Traffic Vol by Lane LT Vol Trrough Vol RT Vol Lane Flow Rate Geometry Grp Degree of Ufil (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time Holl Lane Vic Ratio		67% Stop 6 0 2 4 6 1 0.008 4.5 Yes 795 2.53 0.008	0% Stop 150 51 99 0 150 1 0.188 4.514 Yes 795 2.537 0.189	16% Stop 217 3 179 35 217 1 0.259 4.289 Yes 838 2.31 0.259	2% 76% Stop 121 27 2 92 121 1 0.146 4.348 Yes 825 2.371 0.147							

05/25/2018 Synchro 9 Report 05/25/2018 Synchro 9 Report 05/25/2018

Appendix D Intersection Control Warrants May 25, 2018

APPENDIX D INTERSECTION CONTROL WARRANTS

Appendix D Intersection Control Warrants May 25, 2018

D.1 MULTIWAY STOP-CONTROL WARRANT ANALYSIS

Multi-Way Stop Control Warrant Analysis Urban Arterial

INTERSECTION:

Existing Greenbank Road at Kilbirnie Drive - 2025 FBG

DAT	E OF COUNT USED: 9-Nov	-17	LENGTH OF S	STUDY IN hou	rs:	8					
	NUMBER OF LEGS: 4										
Criteria:	<u></u>										
Volume:	Total vehicle volume for all a over heaviest 8-hour period (Total minor street volume (in exceeds 200 each hour over OR	between 7am and 6 cluding pedestrians same 8-hr period	om) crossing the m	ajor)	AND						
Collision:	Where an avg of 3 or more of (I.e. right angle) has occurred OR		preventable by	y all-way stop c	ontrols						
Visibility:	Where the sight distance from 55m to the left 60m from the right	60m from the right									
	Total Vol	Veh Vol	Ped Vol	Total Minor							
all	approaches	from Minor	Xing Major	St Vol							
Hour 1	1192 100%	437		437	100%						
Hour 2	1121 100%	452		452	100%						
Hour 3	866 100%	270		270	100%						
Hour 4	870 100%	225		225	100%]					
Hour 5	786 100%	164		164	100%	ļ					
Hour 6	1218 100%	260		260	100%]					
Hour 7	1285 100%	260		260	100%	ļ					
Hour 8	1328 100%	240		240	100%						
Total Volume	Warrant 100.0%	Minor Approac	ch Warrant:	100.0%							
	Volume Criteria M	let :		YES							
	Percent Volume C			100.0%							
Directional Split:	(Four-Legged 65/35) (Three-Legged 75/25)	Criteria Met: (Y Criteria Met: (Y 1083.25	•	27%	No N/A						
Collision Data:											
Total number	er of preventable collisions in p	oast 3 years		1	No						
Visibility:											
Is visibility re	estricted at this intersection? (yes/no)		I	N	l					
Comments:											

Appendix D Intersection Control Warrants May 25, 2018

D.2 TRAFFIC SIGNAL WARRANT ANALYSIS

Mail Nothbould Approach Millor Lastbould Approach Mail Southbould Approach Millor Westbould Approach	input Dai	ta She	et		Analysis	Sheet	Results S	Sheet	Proposed	d Collision		O Justification	on:	
Justification 1 - 4: Volume Warrants a Number of lanes on the Main Road? b Number of lanes on the Minor Road? c How many approaches? 4 d What is the operating environment? Urban Population >= 10,000 AND Speed < 70 km/hr e What is the eight hour vehicle volume at the intersection? (Please fill in table below) Wain Northbound Approach Minor Eastbound Approach Main Southbound Approach Minor Westbound Approach Crossing Main Northbound Approach Road	Nhat are the in	tersecting r	roadways?	Exi	ating ting for	eenbaok R	aad kandr Kilb	oioniæ Droise 2	PBG FBG					
a Number of lanes on the Main Road? b Number of lanes on the Minor Road? c How many approaches? d What is the operating environment? Urban Population >= 10,000 AND Speed < 70 km/hr e What is the eight hour vehicle volume at the intersection? (Please fill in table below) Main Northbound Approach Minor Westbound Approach Minor Westbound Approach Crossing M Road	What is the dire	ection of the	e Main Road	I street?	Nor	th-South	v	When was t	the data colle	ected?	Predicted	Predicted		
b Number of lanes on the Minor Road? c How many approaches? d What is the operating environment? Urban Population >= 10,000 AND Speed < 70 km/hr e What is the eight hour vehicle volume at the intersection? (Please fill in table below)	Justification	า 1 - 4: V	olume Wa	arrants										
b Number of lanes on the Minor Road? c How many approaches? d What is the operating environment? Ulban Population >= 10,000 AND Speed < 70 km/hr e What is the eight hour vehicle volume at the intersection? (Please fill in table below)				10	2	_								
C How many approaches? 4 d What is the operating environment? Urban Population >= 10,000 AND Speed < 70 km/hr e What is the eight hour vehicle volume at the intersection? (Please fill in table below) Hour Ending Main Northbound Approach Minor Eastbound Approach Main Southbound Approach Minor Westbound Approach Pedestriat Crossing Main Southbound Approach Northbound Approach Northbound Approach Northbound Approach Northbound Approach Pedestriat Crossing Main Southbound Approach Northbound Approach Northbo	a Number of I	lanes on the	e Main Road	d?	2 or more									
d What is the operating environment? Urban Population >= 10,000 AND Speed < 70 km/hr	o Number of	lanes on the	e Minor Roa	ıd?	1	-								
d What is the operating environment? Urban Population >= 10,000 AND Speed < 70 km/hr	c - How many	annroaches	32 4	Ŧ										
e What is the eight hour vehicle volume at the intersection? (Please fill in table below) Hour Ending	J I low many a	арргоаспес	o: '											
e What is the eight hour vehicle volume at the intersection? (Please fill in table below) Hour Ending Main Northbound Approach														
Hour Ending LT TH RT LT TH RT LT TH RT LT TH RT LT TH RT Road Road Road Road Road Road Road Road	d What is the	operating e	environment	t?	Urban		Populat	tion >= 10,000	AND	Speed < 70 k	km/hr			
Hour Ending LT TH RT Road 8:00 60 394 5 120 5 182 30 333 37 66 4 89 0 9:00 68 302 11 135 6 159 29 287 58 66 6 107 0 10:00 63 341 4 101 4 127 26 212 36 21 3 35 0 12:30 43 384 12 91 1 87 32 235 32 21 2 39 0 13:30 61 175 19 65 3 74 38 337 76 12 9 38 0 16:00 153 285 44 89 12 148 <td< th=""><th></th><th></th><th></th><th></th><th>,</th><th></th><th></th><th></th><th>AND</th><th>Speed < 70 H</th><th>km/hr</th><th></th><th></th><th></th></td<>					,				AND	Speed < 70 H	km/hr			
8:00 60 394 5 120 5 182 30 333 37 66 4 89 0 9:00 68 302 11 135 6 159 29 287 58 66 6 107 0 10:00 63 341 4 101 4 127 26 212 36 21 3 35 0 12:30 43 384 12 91 1 87 32 235 32 21 2 39 0 13:30 61 175 19 65 3 74 38 337 76 12 9 38 0 16:00 153 285 44 89 12 148 67 438 102 24 10 45 0 17:00 158 366 73 83 2 167 64 395 100 21		eight hour	vehicle volu	ıme at the i	ntersection?	(Please fi	ill in table be	low)				esthound A	upproach	Pedestrians
9:00 68 302 11 135 6 159 29 287 58 66 6 107 0 10:00 63 341 4 101 4 127 26 212 36 21 3 35 0 12:30 43 384 12 91 1 87 32 235 32 21 2 39 0 13:30 61 175 19 65 3 74 38 337 76 12 9 38 0 16:00 153 285 44 89 12 148 67 438 102 24 10 45 0 17:00 158 366 73 83 2 167 64 395 100 21 7 54 0 18:00 189 347 66 89 2 116 89 395 143 <th< td=""><td>e What is the</td><td>eight hour</td><td>vehicle volu</td><td>me at the i</td><td>ntersection?</td><td>(Please fi</td><td>ill in table be</td><td>low) Main So</td><td>uthbound Ap</td><td>proach</td><td>Minor W</td><td>:</td><td></td><td>Crossing Main</td></th<>	e What is the	eight hour	vehicle volu	me at the i	ntersection?	(Please fi	ill in table be	low) Main So	uthbound Ap	proach	Minor W	:		Crossing Main
10:00 63 341 4 101 4 127 26 212 36 21 3 35 0 12:30 43 384 12 91 1 87 32 235 32 21 2 39 0 13:30 61 175 19 65 3 74 38 337 76 12 9 38 0 16:00 153 285 44 89 12 148 67 438 102 24 10 45 0 17:00 158 366 73 83 2 167 64 395 100 21 7 54 0 18:00 189 347 66 89 2 116 89 395 143 23 5 61 0	e What is the	eight hour Main No LT	vehicle volu orthbound Ap	me at the in	ntersection? Minor Ea	(Please fi astbound A	ill in table be	low) Main So LT	uthbound Ap	proach RT	Minor W	TH	RT	Crossing Main Road
12:30 43 384 12 91 1 87 32 235 32 21 2 39 0 13:30 61 175 19 65 3 74 38 337 76 12 9 38 0 16:00 153 285 44 89 12 148 67 438 102 24 10 45 0 17:00 158 366 73 83 2 167 64 395 100 21 7 54 0 18:00 189 347 66 89 2 116 89 395 143 23 5 61 0	Hour Ending	eight hour Main No LT 60	vehicle volu orthbound Ap TH 394	pproach RT 5	Minor Ea	(Please fi astbound A TH 5	pproach RT 182	Main Sor LT 30	uthbound Ap TH 333	proach RT 37	Minor W LT 66	TH 4	RT 89	Crossing Main Road
13:30 61 175 19 65 3 74 38 337 76 12 9 38 0 16:00 153 285 44 89 12 148 67 438 102 24 10 45 0 17:00 158 366 73 83 2 167 64 395 100 21 7 54 0 18:00 189 347 66 89 2 116 89 395 143 23 5 61 0	Hour Ending 8:00 9:00	eight hour Main No LT 60 68	orthbound Ap TH 394 302	pproach RT 5 11	Minor Ea LT 120 135	(Please find Amount Amo	pproach RT 182 159	Main Sor LT 30 29	uthbound Ap TH 333 287	pproach RT 37 58	Minor W LT 66 66	TH 4 6	RT 89 107	Crossing Main Road 0
16:00 153 285 44 89 12 148 67 438 102 24 10 45 0 17:00 158 366 73 83 2 167 64 395 100 21 7 54 0 18:00 189 347 66 89 2 116 89 395 143 23 5 61 0	8:00 9:00 10:00	eight hour Main No LT 60 68 63	orthbound Ap TH 394 302 341	pproach RT 5 11 4	Minor Ea LT 120 135 101	(Please find A strong	pproach RT 182 159 127	Main Soc LT 30 29 26	uthbound Ap TH 333 287 212	oproach RT 37 58 36	Minor W LT 66 66 21	TH 4 6 3	RT 89 107 35	Crossing Main Road 0 0 0
17:00 158 366 73 83 2 167 64 395 100 21 7 54 0 18:00 189 347 66 89 2 116 89 395 143 23 5 61 0	8:00 9:00 10:00 12:30	eight hour Main No LT 60 68 63 43	orthbound Ap TH 394 302 341 384	pproach RT 5 11 4 12	Minor Ea LT 120 135 101 91	(Please find a stbound A TH 5 6 4 1	pproach RT 182 159 127 87	Main Soi LT 30 29 26 32	uthbound Ap TH 333 287 212 235	pproach RT 37 58 36 32	Minor W LT 66 66 21 21	TH 4 6 3 2	89 107 35 39	Crossing Main Road 0 0 0 0
18:00 189 347 66 89 2 116 89 395 143 23 5 61 0	8:00 9:00 10:00 12:30 13:30	eight hour Main No LT 60 68 63 43 61	orthbound Ap TH 394 302 341 384 175	pproach RT 5 11 4 12 19	Minor Ea LT 120 135 101 91 65	(Please find the street of the	pproach RT 182 159 127 87 74	Main So LT 30 29 26 32 38	uthbound Ap TH 333 287 212 235 337	pproach RT 37 58 36 32 76	Minor W LT 66 66 21 21 12	TH 4 6 3 2 9	RT 89 107 35 39 38	Crossing Main Road 0 0 0 0 0 0
	8:00 9:00 10:00 12:30 13:30 16:00	eight hour Main No LT 60 68 63 43 61 153	vehicle volu orthbound Ap TH 394 302 341 384 175 285	pproach RT 5 11 4 12 19 44	Minor Ea LT 120 135 101 91 65 89	(Please find a stbound A TH 5 6 4 1 3 12	### ##################################	Main Son LT 30 29 26 32 38 67	uthbound Ap TH 333 287 212 235 337 438	proach RT 37 58 36 32 76 102	Minor W LT 66 66 21 21 12 24	TH 4 6 3 2 9	RT 89 107 35 39 38 45	Crossing Main Road 0 0 0 0 0 0 0 0
	8:00 9:00 10:00 12:30 13:30 16:00 17:00	eight hour Main No LT 60 68 63 43 61 153 158	vehicle volue	pproach RT 5 11 4 12 19 44 73	Minor Ea LT 120 135 101 91 65 89 83	(Please final street of the st	hill in table being proach RT 182 159 127 87 74 148 167	Main Sor LT 30 29 26 32 38 67 64	uthbound Ap TH 333 287 212 235 337 438 395	proach RT 37 58 36 32 76 102 100	Minor W LT 66 66 21 21 21 12 24 21	TH 4 6 3 2 9 10 7	RT 89 107 35 39 38 45 54	Crossing Main Road 0 0 0 0 0 0 0 0 0 0
	8:00 9:00 10:00 12:30 13:30 16:00 17:00 18:00	eight hour Main No LT 60 68 63 43 61 153 158 189	vehicle volu orthbound Ap TH 394 302 341 384 175 285 366 347	pproach RT 5 11 4 12 19 44 73 66	Minor Ea LT 120 135 101 91 65 89 83	(Please final street of the st	npproach RT 182 159 127 87 74 148 167 116	Main Soc LT 30 29 26 32 38 67 64 89	uthbound Ap TH 333 287 212 235 337 438 395	pproach RT 37 58 36 32 76 102 100 143	Minor W LT 66 66 21 21 12 24 21 23	TH 4 6 3 2 9 10 7 5	RT 89 107 35 39 38 45 54	Crossing Ma Road 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Justification 5: Collision Experience

Preceding Months	Number of Collisions*
1-12	0
13-24	0
25-36	1

^{*} Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zor	ne 1	Zo	ne 2	Zone 3 (i	f needed)	Zone 4 (i	f needed)	Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	lotai
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Factored 8 hour pedestrian volume	()		0	()		0	
% Assigned to crossing rate	10	0%	50	0%	0	%	0	%	
Net 8 Hour Pedestrian Volume at Cros	sing			-					0
Net 8 Hour Vehicular Volume on Stree	t Being Cros	sed							6,411

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zor	ne 1	Zo	ne 2	Zone 3 (i	f needed)	Zone 4 (if needed)	Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	TOTAL
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Total 8 hour pedestrians delayed greater than 10 seconds	0	0	0	0	0	0	0	0	
Factored volume of total pedestrians	()		0		0		0	
Factored volume of delayed pedestrians	()		0		0		0	
% Assigned to Crossing Rate	100	0%	50	0%	0	%	c)%	
Net 8 Hour Volume of Total Pedestrian	s								0
Net 8 Hour Volume of Delayed Pedestr	ians								0

Justification 1: Minimum Vehicle Volumes

Restricted Flow Urban Conditions

Justification	Gu	ıidance Ap	proach Lane	es				Percentage	Warrant				Total	Section
bustineation	1 La	nes	2 or Mor	e Lanes				Hour En	nding				Across	Percent
Flow Condition	FREE FLOW	RESTR. FLOW	FREE FLOW	RESTR. FLOW	8:00	9:00	10:00	12:30	13:30	16:00	17:00	18:00		
1A	480	720	600	900	1,325	1,234	973	979	907	1,417	1,490	1,525		
IA IA		COMPL	IANCE %		100	100	100	100	100	100	100	100	800	100
1B	120	170	120	170	466	479	291	241	201	328	334	296		
16		COMPL	IANCE %		100	100	100	100	100	100	100	100	800	100
		icted Flo			Both 1A and 1 Lesser of 1A o				urs	Yes Yes				

Justification 2: Delay to Cross Traffic

Restricted Flow Urban Conditions

Justification	Gu	uidance Ap	proach Lan	es				Percentage	Warrant				Total	Section
Justinication	1 la	nes	2 or Mo	re lanes				Hour Er	ding				Across	Percent
Flow Condition	FREE FLOW	RESTR. FLOW	FREE FLOW	RESTR. FLOW	8:00	9:00	10:00	12:30	13:30	16:00	17:00	18:00		
2A	480	720	600	900	859	755	682	738	706	1,089	1,156	1,229		
ZA		COMPL	IANCE %		95	84	76	82	78	100	100	100	716	89
2B	50	75	50	75	191	207	126	114	86	125	111	117		
26		COMPL	IANCE %		100	100	100	100	100	100	100	100	800	100
		ricted Flo			Both 2A and 2 Lesser of 2A o				urs	Yes Yes			▽	

Justification 3: Combination

Combination Justification 1 and 2

	Justification Satisfied 80% or Mo	re			ifications 0% or More
Justification 1	Minimum Vehicle Volume	YES 🔽	NO 🗆	YES 🔽	NO 🗆
Justification 2	Delay Cross Traffic	YES 🗹	NO 🗆	JUSTIFIED	

Justification 4: Four Hour Volume

Justification	Time Period	Total Volume of Both Approaches (Main) X	Heaviest Minor Approach Y (actual)	Required Value Y (warrant threshold)	Average % Compliance	Overall % Compliance
	8:00	859	307	250	100 %	
Justification 4	16:00	1,089	249	166	100 %	100.9/
Justification 4	17:00	1,156	252	148	100 %	100 %
	18:00	1,229	207	131	100 %	

Justification 5: Collision Experience

Justification	Preceding Months	% Fulfillment	Overall % Compliance
	1-12	0 %	
Justification 5		0 %	7 %
	25-36	20 %	

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis

	8 Hour Vehicular		Net 8 h	Hour Pedestrian Volume		
	Volume V ₈	< 200	200 - 275	276 - 475	476 - 1000	>1000
	< 1440					
Justification	1440 - 2600					
6A	2601 - 7000	Not Justified				
	> 7000					

Pedestrian Delay Analysis

	Net Total 8 Hour Volume	Net Total 8 H	our Volume of Delayed Pe	edestrians
	of Total Pedestrians	< 75	75 - 130	> 130
	< 200	Not Justified		
Justification 6B	200 - 300			
	> 300			

Summary Results Justification Compliance Signal Justified? YES NO 1. Minimum Vehicular Volume B Crossing Volume 100 % 2. Delay to Cross Traffic B Crossing Road 100 %
JUSTIFICATION Compliance YES NO 1. Minimum Vehicular Volume B Crossing Volume 100 % 2. Delay to Cross Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
Justification Compliance Signal Justified? YES NO 1. Minimum Vehicular Volume B Crossing Volume 100 % 2. Delay to Cross Traffic B Crossing Road 100 % Total Volume 100 % Delay to Cross Traffic A Justification 1 100 % Total Volume 100 %
JUSTIFICATION Compliance YES NO 1. Minimum Vehicular Volume B Crossing Volume 100 % 2. Delay to Cross Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
1. Minimum Vehicular Volume B Crossing Volume 100 % 2. Delay to Cross Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
Vehicular Volume B Crossing Volume 100 % 2. Delay to Cross Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
Volume B Crossing Volume 100 % 2. Delay to Cross B Crossing Road 89 % Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
Cross Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
Traffic B Crossing Road 100 % 3. Combination A Justification 1 100 %
A Justification 1
B Justification 2 89 %
4. 4-Hr Volume 100 %
5. Collision Experience 7 %

~

Justification not met

6. Pedestrians

A Volume

B Delay

Input Dat	ta She	et		Analysis	Sheet	Results	Sheet	Proposed	d Collision		O Justificati	on:	
What are the in	tersecting i	roadways?	Ex	iatinisting Gr	sembankaR	and mend page	we&oHectorz	o3/V-2103tálı+i	Total Futur	е			-
What is the dire	ection of the	e Main Road	d street?	Nor	th-South	•	When was t	he data colle	ected?	Predicted	Predicted		
Justificatio	า 1 - 4: V	olume W	arrants										
a Number of	lanes on th	e Main Road	d?	1	┖								
b Number of	lanes on th	e Minor Roa	ad?	1	┰								
	approaches	s? 3	¥										
c How many	арр. оаоо.												
c How many d What is the		-	t?	Urban	-	Popula	tion >= 10,000	AND	Speed < 70	km/hr			
d What is the	operating	environment		,				AND	Speed < 70	km/hr			
d What is the	operating eight hour	environment	ıme at the i	ntersection?		ll in table be	elow)	AND uthbound Ap			/estbound A	Approach	Pedestrians
d What is the	operating eight hour	environment	ıme at the i	ntersection?	(Please fi	ll in table be	elow)				/estbound A	Approach	Pedestrians Crossing Main Road
d What is the	operating of eight hour Main No	environment vehicle volu	ume at the i	ntersection? Minor Ea	(Please fil astbound A TH	Il in table be	elow) Main Sou	uthbound Ap	pproach RT	Minor W	<u>.</u>		Crossing Main
d What is the e What is the Hour Ending	operating of eight hour	environment vehicle volu orthbound Ap	ume at the i	ntersection?	(Please fi	ll in table be pproach RT	elow) Main Sou LT	uthbound Ap	pproach	Minor W	TH	RT	Crossing Main Road
d What is the e What is the Hour Ending 8:00	operating of eight hour Main No LT 35	environment vehicle volu orthbound Ap TH 409	pproach	Minor Ea	(Please file astbound A TH 0	Il in table be pproach RT 116	Main Sou LT 0	uthbound Ap TH 603	pproach RT 18	Minor W LT	TH 0	RT 0	Crossing Main Road
d What is the Hour Ending 8:00 9:00	operating of eight hour Main No LT 35 39	environment vehicle volu orthbound A TH 409 313	pproach RT 0	Minor Ea LT 71 80	(Please files) astbound A TH 0 0	pproach RT 116	Main Sou LT 0 0	uthbound Ap TH 603 520	pproach RT 18 28	Minor W LT 0 0	TH 0 0	RT 0 0	Crossing Main Road 0
d What is the Hour Ending 8:00 9:00 10:00	operating of eight hour Main No LT 35 39 36	environment vehicle volu orthbound Ap TH 409 313 354	pproach RT 0 0 0	Minor Ea LT 71 80 60	(Please files) astbound A TH 0 0 0	pproach RT 116 101 81	Main Sou LT 0 0	thbound Ap TH 603 520 384	oproach RT 18 28 17	Minor W LT 0 0 0	TH 0 0 0 0	RT 0 0	Crossing Main Road 0 0
d What is the Hour Ending 8:00 9:00 10:00 12:30	operating of eight hour Main No LT 35 39 36 25	environment vehicle volu orthbound Ap TH 409 313 354 398	pproach RT 0 0 0 0	Minor Ea LT 71 80 60 54	astbound A TH 0 0 0 0	pproach RT 116 101 81 55	Main Sou LT 0 0 0 0	uthbound Ap TH 603 520 384 425	pproach RT 18 28 17 16	Minor W LT 0 0 0 0	TH 0 0 0 0 0 0	RT 0 0 0 0 0	Crossing Main Road 0 0 0 0
d What is the Hour Ending 8:00 9:00 10:00 12:30 13:30	eight hour Main No LT 35 39 36 25 31	environment vehicle volu orthbound Ap TH 409 313 354 398 301	pproach RT 0 0 0 0 0	Minor Ea LT 71 80 60 54 31	astbound A TH 0 0 0 0 0	pproach RT 116 101 81 55 33	Main Sou LT 0 0 0 0 0	uthbound Ap TH 603 520 384 425 401	pproach RT 18 28 17 16 42	Minor W LT 0 0 0 0 0	TH 0 0 0 0 0 0 0	RT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crossing Main Road 0 0 0 0 0 0
d What is the e What is the Hour Ending 8:00 9:00 10:00 12:30 13:30 16:00	operating of eight hour Main No LT 35 39 36 25 31 77	environment vehicle volu orthbound Ap TH 409 313 354 398 301 492	pproach RT 0 0 0 0 0 0 0	Minor Ea LT 71 80 60 54 31 42	astbound A TH 0 0 0 0 0 0	pproach RT 116 101 81 55 33 67	Main Sou LT 0 0 0 0 0 0	Jthbound Ap TH 603 520 384 425 401 521	pproach RT 18 28 17 16 42 56	Minor W LT 0 0 0 0 0 0 0	TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crossing Main Road 0 0 0 0 0 0 0 0

Justification 5: Collision Experience

Preceding Months	Number of Collisions*
1-12	0
13-24	0
25-36	1

^{*} Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zor	ne 1	Zo	ne 2	Zone 3 (i	f needed)	Zone 4 (i	f needed)	Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	lotai
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Factored 8 hour pedestrian volume	()		0	(0		0	
% Assigned to crossing rate	100	0%	50	0%	0	%	C	%	
Net 8 Hour Pedestrian Volume at Cros	sing								0
Net 8 Hour Vehicular Volume on Stree	Being Cros	sed							6,411

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zor	ne 1	Zo	ne 2	Zone 3 (i	f needed)	Zone 4 (i	if needed)	Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	TOLAT
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Total 8 hour pedestrians delayed greater than 10 seconds	0	0	0	0	0	0	0	0	
Factored volume of total pedestrians	()		0		0		0	
Factored volume of delayed pedestrians	()		0		0		0	
% Assigned to Crossing Rate	100	0%	50	0%	0	%	С)%	
Net 8 Hour Volume of Total Pedestrian	s								0
Net 8 Hour Volume of Delayed Pedestr	ians								0

Justification 1: Minimum Vehicle Volumes

Restricted Flow Urban Conditions

Justification	Gu	idance Ap	proach Lane	es				Percentage	Warrant				Total	Section
Justinication	1 La	nes	2 or Mor	e Lanes				Hour Er	nding				Across	Percent
Flow Condition	FREE FLOW	RESTR. FLOW	FREE FLOW	RESTR. FLOW	8:00	9:00	10:00	12:30	13:30	16:00	17:00	18:00		
1A	480	720	600	900	1,252	1,081	932	973	839	1,255	1,350	1,335		
		COMPL	IANCE %		100	100	100	100	100	100	100	100	800	100
1B	180	255	180	255	187	181	141	109	64	109	114	94		
16		COMPL	IANCE %		73	71	55	43	25	43	45	37	392	49
		icted Flo			Both 1A and 1 Lesser of 1A o				urs	Yes Yes			>	

Justification 2: Delay to Cross Traffic

Restricted Flow Urban Conditions

Justification	Gu	ıidance Ap	proach Lan	es				Percentage	Warrant				Total	Section
Justinication	1 la	nes	2 or Mo	re lanes				Hour Er	ding				Across	Percent
Flow Condition	FREE FLOW	RESTR. FLOW	FREE FLOW	RESTR. FLOW	8:00	9:00	10:00	12:30	13:30	16:00	17:00	18:00		
2A	480	720	600	900	1,065	900	791	864	775	1,146	1,236	1,241		
ZA		COMPL	IANCE %		100	100	100	100	100	100	100	100	800	100
2B	50	75	50	75	71	80	60	54	31	42	39	42		
26		COMPL	IANCE %		95	100	80	72	41	56	52	56	552	69
		icted Flo			Both 2A and 2B Lesser of 2A o				urs				ママ	

Justification 3: Combination

Combination Justification 1 and 2

	Justification Satisfied 80% or Mo	re			ifications 0% or More
Justification 1	Minimum Vehicle Volume	YES	NO 🗹	YES 🗆	NO 🔽
Justification 2	Delay Cross Traffic	YES 🗆	NO 🗹		NOT JUSTIFIED

Justification 4: Four Hour Volume

Justification	Time Period	Total Volume of Both Approaches (Main) X	Heaviest Minor Approach Y (actual)	Required Value Y (warrant threshold)	Average % Compliance	Overall % Compliance
	8:00	1,065	187	90	100 %	
Justification 4	16:00	1,146	109	78	100 %	100.9/
Justification 4	17:00	1,236	114	80	100 %	100 %
	18:00	1,241	94	80	100 %	

Intersection: Existing Greenbank Road and New Collector E-W 2031 - Tota Count Date: Predicted

Justification 5: Collision Experience

Justification	Preceding Months	% Fulfillment	Overall % Compliance
	1-12	0 %	
Justification 5		0 %	7 %
	25-36	20 %	

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis

	8 Hour Vehicular		Net 8 h	Hour Pedestrian Volume		
	Volume V ₈	< 200	200 - 275	276 - 475	476 - 1000	>1000
	< 1440					
Justification	1440 - 2600					
6A	2601 - 7000	Not Justified				
	> 7000					

Pedestrian Delay Analysis

	Net Total 8 Hour Volume	Net Total 8 H	our Volume of Delayed Pe	edestrians
	of Total Pedestrians	< 75	75 - 130	> 130
	< 200	Not Justified		
Justification 6B	200 - 300			
	> 300			

Results	Sheet	<u>I</u> nput Sheet Anal	lysis Sheet	Propos
Intersection: E	Existing Greenbank Road	and New Collector E-W 20 Count	Date: Predicted	d
Summary I	Results			
	Justification	Compliance	Signal	Justified?
		Compliance	YES	NO
1. Minimum Vehicular	A Total Volume	100 %		~
Volume	B Crossing Volume	49 %		
2. Delay to Cross	A Main Road	100 %		V
Traffic	B Crossing Road	69 %		
3. Combination	A Justificaton 1	49 %		V
	B Justification 2	69 %		
4. 4-Hr Volume		100 %	~	
5. Collision Expo	erience	7 %		V

~

Justification not met

Justification not met

6. Pedestrians

A Volume

B Delay