Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Geotechnical Investigation

Proposed Barrhaven South
Urban Expansion Area
Community Design Plan
Barnsdale Road
Ottawa, Ontario

Prepared For

Minto Communities Inc.

February 7, 2017

Report: PG3607-1 Revision 3

TABLE OF CONTENTS

		PAGE
1.0	Introduction	1
2.0	Method of Investigation 2.1 Field Investigation 2.2 Field Survey 2.3 Laboratory Testing	3
3.0	Existing Conditions 3.1 Surface Conditions 3.2 Subsurface Profile 3.3 Groundwater	6
4.0	Discussion 4.1 Geotechnical Assessment 4.2 Future Closure of Aggregate Extraction Pits 4.3 Foundation Design 4.4 Design for Earthquakes 4.5 Groundwater Control 4.6 Stormwater Management Facility 4.7 Slope Stability Review	14 16 17 18
5.0	Constraints and Opportunities	20
6.0	Statement of Limitations	21

APPENDICES

Appendix 1 Soil Profile and Test Data Sheets

Symbols and Terms

Grain Size Distribution Sheets

Appendix 2 Figure 1 - Key Plan

Figures 2 to 7 - Slope Stability Sections Photographs from Field Investigation

Drawing PG3607-1 - Test Hole Location Plan

Drawing PG3607-2 - Surficial Geology

Drawing PG3607-3 - Regional Bedrock Mapping

Drawing PG3607-4 - Drift Thickness

Drawing PG3607-5 - Aggregate Resources Inventory of the City of

Ottawa

Drawing PG3607-6 - Seismic Site Class

Page ii

1.0 Introduction

Paterson Group Inc. (Paterson) was commissioned by Minto Communities Inc. (Minto) to conduct a geotechnical investigation for the proposed Barrhaven South Urban Expansion Area - Community Design Plan located over portions of several existing properties at 3713 and 3872 Greenbank Road, 3713 and 3809 Borrisokane Road (Formally Cedarview Road) and 3882 Barnsdale Road, in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2). The findings of our hydrogeological investigation, which was completed in conjunction with our geotechnical investigation, are presented under a separate cover (Paterson Report PG3757-1).

The objectives of the current investigation were to:

Determine the subsoil and groundwater conditions at this site by means of a subsurface investigation consisting of boreholes and test pits.
Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. Investigating the presence or potential presence of contamination on the proposed development was not part of the scope of work. Therefore, the present report does not address environmental issues.

2.0 Method of Investigation

2.1 Field Investigation

Field Program

The field program for the current investigation was carried out between November 17 and December 10, 2016. At that time, a total of 30 boreholes and 125 test pits, were advanced to depths ranging from 2.6 to 9.8 m below existing ground surface. The test hole locations for the current investigation were distributed in a manner to provide general coverage of the proposed urban expansion area and adjacent properties along Barnsdale Road between Borrisokane Road (Formally Cedarview Road) and Greenbank Road. Previous investigations were carried out in October 2003 and December 2011 where 27 test pits were advanced to depths ranging from 2.7 to 7 m between the two previous investigations. The locations of all the test holes are illustrated on Drawing PG3607-1 - Test Hole Location Plan, included in Appendix 2.

The boreholes were advanced using a track-mounted auger drill rig operated by a twoperson crew. The drilling procedure consisted of augering to the required depths at the selected locations, while sampling and testing the overburden. The test pits were advanced using a rubber tire backhoe.

A supplemental field investigation was carried on July 14 and 15, 2016 and July 19 to July 21, 2016 for the supplemental hydrogeological study completed as per city review comments. A 83 mm diameter auger hole was excavated using a Riverside/Bucket auger to a depth of 0.3 m and a second auger hole was excavated to a depth of 0.6 m at 18 locations for the recommended permeameter testing and five (5) monitoring wells were installed to a maximum depth of 16.7 m. During the permeameter testing, all soil from the auger flights were visually inspected and initially classified on site. A composite soil sample was collected from the two separate auger hole locations and submitted for a sieve analysis. The fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. Results of the sieve analysis are presented in Table 1.

Sampling and In Situ Testing

Soil samples were recovered from the test pit sidewalls and within the boreholes from the auger flights or using a 50 mm diameter split-spoon sampler. The depths at which the grab, auger and split spoon samples were recovered from the test holes are shown as G, AU and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

All soil samples were classified on site, placed in sealed plastic bags and were transported to our laboratory for further review and testing.

Subsurface conditions observed in the test holes were recorded in detail in the field. Reference should be made to the Soil Profile and Test Data sheets presented in Appendix 1 for specific details of the soil profile encountered at the test hole locations.

Groundwater

Flexible polyethylene standpipes were installed in selected boreholes to permit the monitoring of groundwater levels subsequent to the completion of the field program. Monitoring wells, using 50 mm diameter PVC screen and risers were installed at BH 1-15, 5-15, 8-15, 9-15, 10-15, 11-15, 14-15, 17-15, 18-15, 19-15, 21-15, 23-15, 26-15, 29-15 and BH 31-16 to 36-16 across the site to provide the means to conduct in situ permeability testing for our hydrogeological investigation and long term groundwater level monitoring. The in-situ permeability testing results will be reported under separate cover.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

2.2 Field Survey

The test hole locations were selected by Paterson personnel in a manner to provide general coverage of the proposed urban expansion area and adjacent areas with future development potential while taking into consideration underground utilities and site features. The borehole locations and ground surface elevations at the borehole locations were provided by Stantec Geomatics and are referenced to geodetic datum. The test pit locations were located through the use of a handheld GPS device and elevation data inferred from City of Ottawa basemap ground surface contours (+/-0.5 m). The locations and ground surface elevations of the test holes are presented on Drawing PG3607-1 - Test Hole Location Plan, in Appendix 2.

Barnsdale Road - Ottawa

2.3 Laboratory Testing

The soil samples recovered from the subject site were visually examined in our laboratory to review the results of the field logging. Fifteen (15) split spoon and five (5) test pit grab samples were submitted for grain size analyses. The testing was performed in general accordance with ASTM C117 Test Method for Materials Finer Than 75-m (No. 200) Sieve in Mineral Aggregates by Washing and ASTM C136 - Test Method for Sieve Analysis of Fine and Coarse Aggregates. The results of the grain size analysis testing are presented in Subsection 3.2 and in the Grain Size Distribution sheets in Appendix 1.

Soil samples from selected borehole locations were subjected to water content testing, in general accordance with ASTM D2216-05 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. The results of the moisture content testing are presented in the Soil Profile Test Data sheets in Appendix 1.

Page 4

3.0 Existing Conditions

3.1 Surface Conditions

The subject site is a mix of undeveloped, former agricultural land, forested areas and the location of an on-going aggregate extraction operation. The south portion of the CDP consists of former agricultural fields that are separated by mature trees. Fill piles of varying material have been placed at several locations across the subject site. Two aggregate extraction operations are underway within the north portion of the CDP area (Brazeau - Todd Pit and Drummond - Costello Pit). The boundary of the area licensed under the Aggregate Resources Act is presented in Drawing PG3607-1 - Test Hole Location Plan. The timeline estimation for the future closure of the aggregate extraction operations is presented in Subsection 4.1. Residential developments currently under construction followed by Greenbank Road are located to the east of the CDP area. Barnsdale Road is located to the south and Borrisokane Road (Formally Cedarview Road) is located to the west of the subject site. Photographs of the surface conditions taken during our field investigation are presented in Appendix 2.

The subject parcels have significant topographical relief. The ground surface elevation within the central portion of the CDP lands is approximately ± 110 m at its highest, along the west side is at 107 to ± 109 m, and drops to 101 to ± 104 m in the southeast portion of the parcel. Multiple fill piles and large areas currently excavated to several meters below original grade were observed within the east portion of the CDP lands. The aggregate extraction operations are anticipated to be several meters below the grade of the surrounding parcels based on our cursory observations.

The areas investigated that lie outside of the CDP lands consists of former agricultural fields that are divided by mature trees within the land parcel to the west of the CDP lands. A forested area and shallow pond were observed within the southwest corner of the west parcel. Topographical relief extends in a south and west direction with elevations reaching 99.7 to ±102 m, respectively. The land parcel to the east consists of former agricultural fields with the majority of the mature trees removed. Several existing residences were observed within the east parcel along Barnsdale Road.

3.2 Subsurface Profile

Inside CDP Area

Generally, the sub-surface profile encountered at the test hole locations was noted to consist of a sandy topsoil, or fine grained soil with significant root matting at ground surface followed by a predominantly coarse-grained deposit of till, glacial fluvial and silty fine sand and/or sandy silt. A silty sand overlying a silty clay was encountered within a small portion of the eastern CDP area. Silty sand deposits were encountered intermittently across the CDP lands.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole.

Silty Fine Sand

The predominantly coarse grained soils within the subject development parcel consist of silty fine sand, sandy silt. The coarse grained soils were noted to be mixed with gravel, cobbles and boulders at several locations.

A total of Eighteen (18) grab samples were collected from test pits completed as part of the supplemental hydrogeological study and submitted for grain size analysis. During 2015, a total of ten (10) split spoon samples and three (3) test pit grab samples were submitted for grain size analyses. Previous investigations included twelve (12) grab samples from test pit locations. The results are presented in Table 1 and on the Grain Size Distribution sheets in Appendix 1. The textural descriptions of the samples are indicated under the Classification heading, along with the Unified Soil Classification. Tested samples varied from SP to SM to ML.

The results of the SPTs indicate that the state of compaction of these coarse-grained soils is predominantly within the compact to very dense ranges.

Table 1 - Grain	Table 1 - Grain Size Distribution - Inside CDP Area										
Sample	Gravel (%)	Sand (%)	Silt and Clay (%)	Classification							
BH 5-15 SS10	13.6	47.3	39.1	SM - Silty sand with gravel							
BH9-15 SS8	0	89.9	10.1	SP-SM - Poorly graded sand with silt							
BH11 SS8 & 9	11.2	49.4	39.4	SM - Silty sand, some gravel							
BH17-15 SS9	23.9	68.3	7.8	SW-SM - Well graded sand with silt and gravel							
BH1-15 SS9	0	93	7	SP-SM - Poorly graded sand with silt							
BH21-15 SS10 & 11	11.8	56.3	31.9	SM - silty sand, some gravel							
BH27-15 SS7	0	48	52	ML - Sandy silt							
TP7-15 G2	16.3	79.5	4.2	SP - Poorly graded sand with gravel							
TP20-15 G3	26.3	43	30.7	SM - Silty sand with gravel							
TP31A-15 G2	47.8	50.1	2.1	SW - Well graded sand with gravel							
TP6-11 G14	0	89.9	10.1	Fine sand, some silt							
TP7-11 G18	0	43.9	56.1	Sandy silt/silty sand							
TP8-11 G20	0	98.2	1.8	Fine sand							
TP9-11 G21	19.2	65	15.8	Sand-gravel, some silt							
TP10-11 G26	5.2	60.3	34.5	Silty sand							
TP5-03 G1	49.8	45.4	4.8	Granular B Type I							
TP5-03 G2	0	97.7	2.3	Sand							
TP10-03 G1	44.3	48.1	7.6	Granular B Type I							
TP10-03 G2	0	97.2	2.8	Sand							
TP13-03 G2	2.3	96.3	1.4	Granular B Type I							
TP14-03 G1	54.2	42.4	3.4	Granular B Type I							
BH24-15 SS5	14.4	47.1	38.5	SM - Silty sand, some gravel							

Table 1 (Contin	Table 1 (Continued) - Grain Size Distribution - Inside CDP Area											
Sample	Gravel (%)	Sand (%)	Silt and Clay (%)	Classification								
BH29-15 SS12	23.7	45.6	30.7	SM - Silty sand with gravel								
TP11-11 G28	68.3	30	1.7	Sand-gravel								
SA 1	0.4	93.5	6.1	SP-SM - Poorly Graded Sand with Silt								
SA 2	13.2	75	11.8	SP-SM - Poorly Graded Sand with Silt								
SA 3	0.4	90.3	9.3	SW-SM - Well Graded Sand with Silt								
SA 4	39.4	56	4.6	SP - Poorly Graded Sand with Gravel								
SA 5	2	90	8	SP-SM - Poorly Graded Sand with Silt								
SA 6	0.2	93.6	6.2	SP-SM - Poorly Graded Sand with Silt								
SA 7	21.4	69.8	8.8	SW-SM - Well Graded Sand with Silt and Gravel								
SA 8	5.6	75.7	18.7	SM - Silty Sand								
SA 9	20	74.9	5.1	SP-SM - Poorly Graded Sand with Silt and Gravel								
SA 10	18.8	70.7	10.5	SW-SM - Well Graded Sand with Silt and Gravel								
SA 11	4.2	73.1	22.7	SM - Silty Sand								
SA 12	3.2	78.4	18.4	SM - Silty Sand								
SA 13	8	58.7	33.3	SM - Silty Sand								
SA 14	18.1	75.9	6	SP-SM - Poorly Graded Sand with Silt and Gravel								
SA 15	26.4	65.3	8.3	SW-SM - Well Graded Sand with Silt and Gravel								
SA16	1.7	91.3	7	SP-SM - Poorly Graded Sand with Silt								
SA17	0.9	68.8	7.3	SM - Silty Sand								
SA18	11.2	66.9	21.9	SM - Silty Sand								

Fill

An area of loose fill was encountered at BH5-15 that extends the depth of the borehole and consists of silty sand with clay and gravel. Very dense brown silty sand with cobbles and boulder fill was encountered within the area around BH36-16, extending to a depth of 2.9 m below existing ground surface.

Proposed Barrhaven South - Urban Expansion Area - Community Design Plan Barnsdale Road - Ottawa

Bedrock

Based on digital geological mapping produced by Natural Resources Canada, sourced from the Geological Survey of Canada, the bedrock in this area consists of dolomite of the Oxford formation with an overburden drift thickness of 15 to 25 m depth. Relevant mapping for surficial soils and bedrock geology and drift thickness within the subject site are presented in Appendix 2.

Outside CDP Area

The areas investigated outside of the CDP area was considered to provide a better characterization of the area subsurface conditions and groundwater elevation and direction within the CDP lands. Therefore, the test hole findings from our study completed outside of the CDP area are detailed below and in Appendix 1. The ground surface outside the CDP zone is covered by a sandy topsoil and/or agricultural soils. Below the abovenoted soils, the soil profile encountered at the test hole locations consists predominantly of coarse-grained deposits of till, silty fine sand and/or sandy silt with occurrences of silty clay to the west of the CDP within the upper 3 m of the test pits and within boreholes encountering glacial till with a silty clay matrix. A glacial till with silty sand to sandy silt matrix was encountered within the northern portion of the west parcel and transitions to a silty sand to sandy silt heading south.

Within the east parcel, a glacial till with silty sand matrix was encountered with some areas overlying a silty sand deposit

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole.

Silty Clay

Within the south area of the west parcel, localized silty clay layers were noted in the areas of TP79-15 to TP82-15. The silty clay is typically overlain by a silty sand layer. The thickness of the silty clay at the borehole locations within this part of the site ranged from 1.5 to 3.0 m from ground surface.

Silty Fine Sand

The predominantly coarse grained soils within the subject development parcel consist of silty fine sand, sandy silt. The silty sand, sandy silt deposits were noted to contain gravel, cobbles and boulders at several locations.

Six (6) split spoon samples and two (2) test pit grab samples were submitted for grain size analyses. Previous investigations included five (5) test pit grab sample. The results are presented in Table 1 and on the Grain Size Distribution sheets in Appendix 1. The textural descriptions of the samples are indicated under the Classification heading, along with the Unified Classification. Tested samples varied from SP to SM to ML.

The results of the SPTs indicate that the state of compaction of these coarse-grained soils is predominantly within the compact to very dense ranges.

Table 2 - Grain	Table 2 - Grain Size Distribution - Outside CDP Area										
Sample	Gravel (%)	Sand (%)	Silt and Clay (%)	Classification							
BH2-15 SS7	0	86.1	13.9	SM - Silty sand							
BH14-15 SS11	0	90.7	9.3	SP-SM - Poorly graded sand with silt							
BH18-15 SS11 &SS13	0	24.9	75.1	ML - Silt with sand							
BH19-15 SS12	0	19.6	80.4	ML - Silt with sand							
BH25-15 SS6	0	46	54	ML - Sandy silt							
BH26-15 SS7&SS8	0	25.6	74.4	ML - Silt with sand							
TP35-15 G2	0	90.5	9.5	SP-SM - Poorly graded sand with silt							
TP55-15 G2	0	88.4	11.6	SP-SM - Poorly graded sand with silt							
TP5-11 G11	0	98.3	1.7	Fine sand							
TP3-11 G6	0	41	59	Sandy silt							
TP3-11 G6	0	41	59	Sandy silt							
TP1-11 G2	0	47.7	52.3	Silty sand							
TP7 G1	50.8	48.6	0.6	Granular B Type I							

Report: PG3607-1 Revision 3 February 7, 2017

There were a few localized zones within the deposits that appeared, based on their SPT "N" values to be within the loose range. These loose zones were generally confined within compact to dense deposits, but were located below the groundwater level. These zones were often associated with "running sands", where a "quick" condition is created at the base of the auger casing due to the auger casing diameter associated with typical soil drilling operations, and the actual state of compaction of the soil can be underestimated by the SPT. The adjacent parcel to the east of the CDP zone previously underwent a modified field program to investigate similar localized zones with low SPT "N" values and assess whether or not the low values were due to the drilling methods. In several instances "sister" boreholes were put down to further investigate the "running sand" conditions and/or the low SPT "N" values, which can occur due to the relatively large auger casing size of hollow stem augers. The modified drilling procedure in these instances generally consisted of advancing the sister borehole using wash boring methods, so the casing was full of water to prevent the occurrence of "quick" conditions. In each case, this method yielded significantly higher N values and indicated that the low N values were due to the sampling conditions, rather than indicative of loose soil.

The regional aggregate mapping has been provided within Drawing PG3607-5 - Aggregate Resources Inventory of the City of Ottawa from the Ontario Geological Survey ARIP 191.

Bedrock

Based on digital geological mapping produced by Natural Resources Canada, sourced from the Geological Survey of Canada, the bedrock in this area consists of dolomite of the Oxford formation with an overburden drift thickness of 15 to 25 m depth.

3.3 Groundwater

The measured groundwater levels in the boreholes from the current and previous investigations are presented in Table 3 on the following page.

Table 3: Summary of Groundwater Level Readings

Borehole	Ground	Groundwat	er Levels, m	December Data
Number	Elevation, m	Depth	Elevation	Recording Date
BH 1-15	105.75	Dry to 9.14	-	May 3, 2016
BH 2-15	104.86	6.58	98.28	May 3, 2016
BH 3-15	109.77	Dry to 5.27	-	May 3, 2016
BH 4-15	111.09	Dry to 9.75	-	May 3, 2016
BH 5-15	108.75	Dry to 9.14	-	May 3, 2016
BH 6-15	102.59	Dry to 4.40	-	May 3, 2016
BH 7-15	102.30	Damaged	-	May 3, 2016
BH 8-15	106.93	7.49	99.44	May 3, 2016
BH 9-15	106.70	Dry to 2.30	-	May 3, 2016
BH 10-15	110.71	Dry to 9.38	-	May 3, 2016
BH 11-15	105.82	1.83	103.99	May 3, 2016
BH 12-15	105.26	Dry to 7.79	-	May 3, 2016
BH 13-15	102.74	3.64	99.10	May 3, 2016
BH 14-15	103.47	3.62	99.85	May 3, 2016
BH 15-15	103.56	7.11	96.45	May 3, 2016
BH 16-15	107.24	Dry to 7.34	-	May 3, 2016
BH 17-15	107.97	Dry to 9.05	-	May 3, 2016
BH 18-15	101.08	0.99	100.09	May 3, 2016
BH 19-15	103.99	6.25	97.74	May 3, 2016
BH 20-15	107.88	Dry to 7.60	-	May 3, 2016
BH 21-15	102.47	6.03	96.44	May 3, 2016
BH 22-15	101.71	5.40	96.31	May 3, 2016
BH 23-15	98.90	3.28	95.62	May 3, 2016
BH 24-15	98.36	3.60	94.76	May 3, 2016
BH 25-15	99.56	1.80	97.76	May 3, 2016
BH 26-15	100.07	1.84	98.23	May 3, 2016
BH 27-15	101.30	4.20	97.10	May 3, 2016
BH 28-15	104.64	Damaged	-	May 3, 2016
BH 28A-15	104.65	Damaged	-	May 3, 2016
BH 29-15	102.14	5.59	96.55	May 3, 2016
BH 30-15	99.45	3.74	95.71	May 3, 2016

Table 3: Summary of Groundwater Level Readings (Continued)										
Borehole	Ground	Groundwat	er Levels, m	Recording Date						
Number	Elevation, m	Depth	Elevation							
BH 31-16	108.99	13.02	95.97	42578						
BH 32-16	103.48	7.37	96.11	42578						
BH 33-16	110.04	9.46	100.58	42578						
BH 34-16	107.46	11.4	96.06	42578						
BH 35-16	105.41	9.36	96.05	42578						
BH 36-16	109.08	12.95	96.13	42578						

Page 13

4.0 Discussion

4.1 Geotechnical Assessment

Based on the results of the geotechnical investigation, the subject site is suitable, from a geotechnical perspective, for the proposed development. It is anticipated that conventional shallow foundations would be suitable for low rise, wood framed housing and commercial buildings constructed within the CDP area. No permissible grade raise restriction is required from a geotechnical perspective due to the absence of a silty clay deposit within the current CDP area based on the existing test hole coverage. It is further understood that park areas, school and a park and ride area are also anticipated within the CDP area, which are all suitable to be constructed within the subject CDP area.

Municipal services are anticipated within the subject site and will be completed mostly through OHSA Type 2 and 3 soils. Where excavations extend below the groundwater level, high groundwater infiltration rates should be anticipated. To further address the groundwater issues on site, Paterson is completing a series of groundwater level readings at the monitoring wells installed at the borehole locations and has completed hydraulic conductivity testing at selected well locations. The results of our groundwater review along with historical area groundwater information will be issued under separate cover (Paterson Report PG3757-1).

As part of our current study, a slope stability analysis was completed for the slopes observed along the existing aggregate extraction operations. The results of our analysis are presented in Subsection 4.6.

The above and other considerations are further discussed in the following sections.

4.2 Future Closure of Aggregate Extraction Pits

The aggregate extraction areas known as the Drummond Costello Pit and Brazeau Todd Pit are utilized for the excavation and supply of sand and gravel. Both aggregate extraction areas have been in operation well before 1990 and continue to operate to supply pit sand and gravel for the Ottawa area. Based on what is currently known of the existing aggregate extraction pits and the remaining operations, the following closure summary is provided:

Since the current aggregate extraction pits are in close proximity to existing residential and commercial developed lands, the aggregate extraction operations are expected to continue for at least another 10 years based on the

availability of the resource materials remaining in the pits.

- Once the aggregate extraction operation is completed, consideration will be given to the closure of the pits. In doing so, it is expected that the sites will accept clean fill to backfill most of the area. The source of fill material will be generated based on construction activities in the immediate area and throughout the western portion of the Ottawa area due to the proximity of Highway 416. The time required to fill these pits will be at least 10 to 15 years due to the massive areas.
- The disposal of clean fill material to backfill the pits is another source of revenue for the pit operators over the long term. Furthermore, the land value also increases when the pits are closed and level with the surrounding grades.
- Once the pits are in-filled, it is expected that a moratorium on development will be applied to these areas to permit the soil placed as backfill in these areas to consolidate. Furthermore, the moratorium will most likely be a condition applied by MNR for the closure of an aggregate extraction license. In the best case scenario, a 5 year moratorium would be applied to these site.

Therefore, for the closure plan to be completed and the land becoming available for redevelopment, it is expected that 25 to 30 years will be required.

Future Redevelopment of the Pit Areas

Following the closure of the existing pits, consideration for the redevelopment of the pit areas will have to consider the following issues:

- It is expected that the backfill of the pits will be using secondary quality materials from excess soil being transported to the subject site from off-site developments. The material will most likely be end dumped and spread using a bulldozer. The backfilled areas are expected to have loose to slightly compact material. Therefore, the material would not be considered suitable as an engineered fill capable of supporting conventional residential or commercial development.
- Due to the depth of the backfill within the pits (8 to 10 m below the existing surrounding grades), ground improvement techniques will be required to enable development. Techniques such as dynamic compaction, surcharging and/or rapid impact compaction will be required to prepare the subsoil to support light development. Ground improvement techniques are expensive.

Report: PG3607-1 Revision 3 February 7, 2017

The re-development of the subject site would be more suitable as parkland, stormwater management facilities and/or commercial development when fronting close to Highway 416. Ground improvement techniques would be required for building structures while more conventional compaction methods would be possible for parks and SWMF.

Although the closure of the pits will provide land that can be developed, the aforementioned constraints will result in expensive re-development land for residential land use. Therefore, commercial development would most likely be considered if structures were contemplated. The use of the site as parkland or a storm water management facility would be a more logical use.

4.3 Foundation Design

Bearing Resistance for Shallow Foundations

Conventional shallow footings should be founded on undisturbed, soil bearing surface or engineered granular fill materials placed over undisturbed soil subgrade surface.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Footings placed on undisturbed, compact silty sand or glacial till bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **250 kPa**. A geotechnical resistance factor of 0.5 has been applied to the above noted bearing resistance at ULS value. These values should be confirmed by field review by geotechnical personnel at the time of construction.

Note that the allowable soil pressure for working stress design can be taken to be equal to the bearing resistance at SLS value, as noted above, for the appropriate bearing medium.

Where the placing of engineered granular fill is required, to establish the bearing medium, the bearing resistance values can be taken to be equivalent to the bearing resistance values of the parent subgrade soil, as detailed above, provided OPSS Granular B Type II or Granular A materials, compacted to a minimum of 98% of their SPMDD values are used and approved by the geotechnical consultant at the time of construction.

Barnsdale Road - Ottawa

Settlement

Footings designed using the above-noted bearing resistance value at SLS will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively. These are the generally accepted tolerable settlement values for wood-frame residential construction.

4.4 Design for Earthquakes

The site class for seismic site response can be taken as Class D for the foundations considered at this site. Reference should be made to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements. The seismic site classification mapping from the Geological Survey of Canada (Open File 6273) has been included within Drawing PG3607-6 - Seismic Site Classification mapping.

Based on the current information, including the level of the existing groundwater table, grain size distribution and compactness of the underlying sand layer, the soil underlying the subject site is not susceptible to liquefaction.

4.5 Groundwater Control

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium. It is anticipated that pumping from open sumps will be sufficient to control the groundwater influx through the sides of shallow excavations.

A temporary Ministry of the Environment and Climate Change (MOECC) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MOECC.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MOECC review of the PTTW application.

Barnsdale Road - Ottawa

4.6 Stormwater Management Facility

The stormwater management facility (SWMF) may consist of a wet pond with inlet and outlet control structures. Dependent upon the hydraulic conductivity of the underlying material, consideration may be given to providing a clay liner, HDPL geomembrane liner or other impermeable membrane for construction of a wet cell facility.

It is recommended for the preliminary pond design that side slopes be graded at 2.5H:1V, or shallower, above the permanent pond water level and at 3H:1V, or shallower, below the permanent pond water level.

4.7 Slope Stability Review

The slope conditions were reviewed by Paterson personnel during our field investigation. Based on our review, the subject slopes within the east end of the existing aggregate extraction operation were noted vary between 8 to 10 m. The slopes were grass and lightly brush covered, minor surficial erosion was noted, however, no signs of slope instability were observed. Three (3) slope cross-sections were studied as the worst case scenario for the subject slopes. The section locations are presented in Drawing PG3607-1 - Test Hole Location Plan, in Appendix 2.

Slope Stability Analysis

The analysis of the stability of the slopes was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable. A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would endanger permanent structures. A horizontal acceleration of 0.16G was considered for the sections for the seismic loading condition. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

Subsoil conditions at the cross-sections were inferred based on the nearby test holes and general knowledge of the area's geology. The strength parameters used for the analysis are provided in Figures 2 to 7 presented in Appendix 2.

Proposed Barrhaven South - Urban Expansion Area - Community Design Plan Barnsdale Road - Ottawa

Static Analysis

The static analysis results for Sections A, B and C are presented in Figures 2, 4 and 6 in Appendix 2. The factor of safety for the slopes was greater than 1.5 for all three (3) sections analysed for global stability. Shallow slip circles with slope stability factors of safety of less than 1.5 were noted along the surface of Section C. However, it should be noted that the overall global stability of Section C has a factor of safety of greater than 1.5.

Seismic Loading Analysis

The results of the analyses including seismic loading are shown in Figures 3, 5 and 7 for the slope sections. The results indicate that the overall factor of safety for the sections are greater than 1.1 with the exception of the minor surficial slip failures observed at Section C.

Based on the results of the slope stability analysis, the existing slopes are considered stable from a geotechnical perspective. No development setbacks are required from top of existing slope from a slope stability perspective for the proposed residential, commercial and parkland blocks.

Barnsdale Road - Ottawa

5.0 Constraints and Opportunities

Overall, the subject site provides significant opportunities for development across the subject site from a geotechnical perspective. The soils profile encountered at the test hole locations allows for conventional building construction, road and service construction without soil improvement requirements or grade raise restrictions. Also, the soils provide potential for significant groundwater recharge, as discussed in our Hydrogeological - Existing Conditions Report PG3757-1 - Revision 1 dated September 12, 2016.

No constraints are present from a geotechnical perspective for the majority of the subject site. However, the development of the existing aggregate extraction operations will be postponed until the extraction operations are no longer feasible and significant in-filling of the area has been completed and approved from a geotechnical perspective for development as detailed in Subsection 4.1.

Report: PG3607-1 Revision 3 February 7, 2017

6.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project.

A geotechnical investigation of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. The extent of the limited area depends on the soil, bedrock and groundwater conditions, as well the history of the site reflecting natural, construction, and other activities.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Minto Communities Inc. or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

David J. Gilbert, P.Eng.

Carlos P. Da Silva, P.Eng.

Report Distribution:

- ☐ Minto Communities Inc. (3 copies)
- ☐ Paterson Group Inc. (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

GRAIN SIZE DISTRIBUTION SHEETS

SOIL PROFILE AND TEST DATA

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH 1-15 BORINGS BY CME 75 Power Auger DATE December 10, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+108.501+107.50SS 1 50 83 SS 2 50 +55 2 + 106.50Ö SS 3 17 50 +Very dense to dense, brown SILTY SAND with gravel, cobbles and 3+105.50boulders SS 4 83 87 4 + 104.50SS 5 75 48 ٥ SS 6 27 58 5 + 103.50SS 7 42 83 6.10 6 + 102.50SS 8 83 31 7+101.50SS 9 50 23 Compact to dense, brown SILTY SAND SS 10 67 38 8 + 100.50SS 42 11 83 9 + 99.509.14 End of Borehole (BH dry to 9.14m depth - July 28, 2016)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

REMARKS

BORINGS BY CME 75 Power Auger

DATE November 30, 2015

FILE NO. PG3607

HOLE NO. BH 2-15

BORINGS BY CME 75 Power Auger	_		DATE Novem			lovember 30, 2015		5 ВП 2-15
SOIL DESCRIPTION	SAMPLE I			DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone		
		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SURFACE	ļ.,,,			ĸ	4	0-	-104.86	20 40 60 80 🗅
Compact, brown SILTY SAND with		AU	1				101.00	
gravel and cobbles - rootlets in upper 100mm		ss	2	79	10	1 -	-103.86	
2.29		ss	3	63	16	2-	-102.86	
		ss	4	100	3	3-	-101.86	
Soft to firm, grey SILTY CLAY with sand and gravel		ss	5	100	2			
						4-	-100.86	Δ
Very dense, grey SILTY SAND with						5-	-99.86	
gravel, cobbles, boulders and clay		ss	6	50	56	6-	-98.86	
6. <u>30</u>		ss	7	67	50			
- OU TV 0 4 N D		ss	8	67	48	7-	-97.86	
Dense, grey SILTY SAND		ss	9	58	39	8-	-96.86	
		ss	10	83	36	9-	-95.86	
		ss	11		35			
(GWL @ 7.03m-July 28, 2016)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

FILE NO. PG3607

REMARKS

BORINGS BY CME 75 Power Auger

DATE November 30, 2015

BH 3-15

BORINGS BY CME 75 Power Auger			DATE November 30				r 30, 201	5 BH 3-13	BH 3-15			
SOIL DESCRIPTION	PLOT	SAMPLE				(m) (m)	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone				
		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %	Piezometer			
GROUND SURFACE				i i	4	0-	-109.77	20 40 60 80	Ф.			
FILL: Brown silty sand with gravel, cobbles and boulders, trace clay		AU	1			, o	100.77					
cobbles and boulders, trace clay - rootlets in upper 200mm		ss	2	75	25	1-	-108.77					
2.39		ss	3	67	45	2-	-107.77					
		ss	4	100	11	3-	-106.77					
		ss	5	100	7							
Loose to very dense, brown SILTY		ss	6	100	38	4-	-105.77					
SAND with gravel and cobbles		ss	7	100	33	5-	-104.77					
		ss	8	75	53	6-	-103.77					
		ss	9	79	42							
7.60		ss	10	100	57	7-	-102.77					
		ss	11	100	57	8-	-101.77					
Very dense, grey SILTY SAND		ss	12	92	51	9-	-100.77					
9.75		ss	13	96	57							
End of Borehole (BH dry to 5.27m depth - July 28, 2016)												
								20 40 60 80 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	100			

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. DATUM

FILE NO.

PG3607

REMARKS

HOLE NO.

POPINGS BY CME 75 Power Auger

BH 4-15

BORINGS BY CME 75 Power Auger				D	ATE	Decembe	BH 4-15					
SOIL DESCRIPTION	PLOT	SAMPLE			Т	DEPTH	ELEV.			Blows/0 Dia. Co		
GROUND SURFACE	STRATA I	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			Content 60		Piezometer
			1			0-	-111.09					
		AU SS	2	63	59	1-	-110.09					
		ss	3	4	28	2-	-109.09					
Very dense to compact, brown SILTY SAND with gravel, cobbles		ss	4	4	32	3-	-108.09					
and boulders - rootlets in upper 100mm		ss	5	54	17							
grey by 4.5m depth		ss - -	6	63	24	4-	-107.09					
		ss ss	7 8	58 79	21	5-	-106.09					
		ss	9	79	18	6-	-105.09					
		ss	10	75	21	7-	-104.09					
		ss	11	100	24	8-	-103.09					
		ss	12	63	23	9-	-102.09					
9.7 End of Borehole	75	ss	13	58	19							
(BH dry to 9.75m depth - July 28, 2016)												
								20 She ▲ Undis		60 ength (kl	Pa)	00

SOIL PROFILE AND TEST DATA eotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH 5-15 BORINGS BY CME 75 Power Auger DATE December 10, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+108.751+107.75SS 1 42 13 SS 2 25 21 2 + 106.75Ċ SS 3 5 33 3+105.75SS 4 42 4 4 + 104.75FILL: Grey silty sand with clay, SS 5 3 42 gravel and wood ن. SS 6 3 42 5 + 103.75Ò. SS 7 17 5 6 + 102.750 SS 8 25 37 SS 9 0 50 +7 + 101.75Ó SS 10 58 9 8 + 100.75

SS

11

0

1

9+99.75

End of Borehole

(BH dry to 9.14m depth - July 28, 2016)

20 40 60 80 100
Shear Strength (kPa)

▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

REMARKS

BORINGS BY CME 75 Power Auger

DATE December 3, 2015

FILE NO.

PG3607

HOLE NO.

BH 6-15

BORINGS BY CME 75 Power Auger				D	ATE	Decembe		BH 6-15			
SOIL DESCRIPTION	PLOT		SAN	SAMPLE		i I	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			
GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		er Content %	mete	
anoone com not			1			0-	-102.59				
Dense to very dense, arev-brown		·.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_			1_	-101.59				
Dense to very dense, grey-brown SILTY SAND with gravel, cobbles and boulders		SS SS	2	75	31	l	101.59				
2.2		\(\) ss	3	100	50+	2-	-100.59				
£	-9	ss	4	83	27						
		ss	5	58	27	3-	-99.59				
		ss	6	67	26	4-	-98.59				
Compact to dense, grey-brown		:∐ SS	7	71	31	_					
ILIT SAND		·. <u>\</u> ·. ₇				5-	-97.59				
		SS SS	8	67	30	6-96.59					
		ss	9	63	30						
		ss	10	75	25	7-	-95.59				
		ss	11	100	19	8-	-94.59				
		ss	12	100	15						
		ss	13	100	15	9-	-93.59				
9.7 End of Borehole	75	<u> </u>									
BH dry to4.40m depth - July 28, 2016)											
								20 40	0 60 8	30 100	
									trength (kPa	a)	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interp	oolate	d from	City	of Otta	awa b	asemap.			FILE NO	PG3607	
REMARKS ROBINGS BY CME 75 Power Auger				-	ATE	Decembe	vr 10 201	E	HOLE NO	o. BH 7-15	
BORINGS BY CME 75 Power Auger	PLOT		SAN	/IPLE	ATE	DEPTH	ELEV.	Pen. Re		lows/0.3m	
SOIL DESCRIPTION		F.3	K.	ERY	田島	(m)	(m)	• 50	0 mm Dia	a. Cone	eter
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD			0 W	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE				22	2 0	0-	102.30	20	40 (60 80 +	<u>a</u> 0
Compact to very dense, brown	2	ss.	1	58	29		-101.30				
SILTY SAND with gravel, cobbles and boulders		ss	2	25	53	2-	-100.30				
	4	≅ SS	3	0	50+			-0-1-0-1-0-1	· · · · · · · · · · · · · · · · · · ·		
Practical auger refusal at 2.44m depth (Piezometer damaged - July 28, 2016)								20	40	60 80 1	
									ar Streng		

SOIL PROFILE AND TEST DATA

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **BH 8-15 BORINGS BY** CME 75 Power Auger DATE December 7, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+106.931 Compact to loose, brown SILTY 1 + 105.93SS 2 12 SAND with gravel and cobbles 58 - rootlets in upp-er 100mm SS 3 46 16 - with boulders by 1.5m depth 2 + 104.93SS 4 58 8 3+103.933.28 SS 5 92 7 4+102.93SS 6 2 100 Grey SILTY CLAY with sand, gravel and cobbles SS 7 100 6 5 ± 101.93 SS 8 100 5 6 + 100.936.35 SS 9 92 18 7+99.93SS 10 75 46 Compact to dense, grey SILTY SAND with gravel, cobbles and boulders **Y** SS 11 75 41 8 + 98.93SS 12 49 83 9+97.939.14 End of Borehole (GWL @ 7.95m-July 28, 2016)

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH 9-15 **BORINGS BY** CME 75 Power Auger DATE December 7, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 0+106.701 1+105.70SS 2 9 58 SS 3 46 5 2 + 104.70SS 4 58 5 3+103.70Loose to compact, brown SILTY SAND SS 5 54 23 - rootlets in upper 100mm 4+102.70SS 6 24 71 Ö SS 7 29 63 5+101.70SS 8 71 31 6 + 100.70SS 9 27 71 - running sand encountered at 6.7m 7 + 99.70depth SS 10 92 27 SS 11 75 13 8 + 98.70SS 12 100 11 9+97.70SS 7 13 100 9.75 End of Borehole (BH dry to 2.30m depth - July 28, 2016) 20 40 60 80 100 Shear Strength (kPa)

Geodetic elevations interpolated from City of Ottawa basemap.

SOIL PROFILE AND TEST DATA

FILE NO.

Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

DATUM REMARKS

PG3607

BORINGS BY CME 75 Power Auger	1		ח	ATE [December 4, 2	015	BH10-15		
				AIE L		010	D1110-13		
SOIL DESCRIPTION		SAMPL			DEPTH ELE	V.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone		
	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(m) (n		Resist. Blows/0.3m 50 mm Dia. Cone Nater Content % 40 60 80		
GROUND SURFACE	I Y	NON	SECO.	N V		20	40 60 80 P		
GROUND SUNI ACE	×				0+110		40 00 00 E S		
	AU	1							
FILL: Brown silty sand with gravel, cobbles and boulders	ss	2	79	11	1-109	71			
- rootlets in upper 200mm									
- some clay by 1.5m depth	ss	3	42	4	2-108	71			
	ss	4	50	7					
3.05				,	3+107	71			
	∬ ss	5	75	8					
Loose to dense, grey-brown SILTY	· []								
SAND, some gravel, cobbles and boulders	∬ ss	6	79	72	4+106	71			
boulders	·.[]								
	∵∦ ss	7	67	41	5+105	71			
F C4									
5.64	-∦ ss	8	71	28					
					6+104	71			
	∬ SS	9	75	26					
Compact, grey SILTY SAND		10	7.	47	7-103	71			
Compact, grey SILTT SAND	.∬ SS	10	75	17					
	ss	11	79	26	0 400				
		''	/ 0		8+102	/1			
	∬ ss	12	71	25					
9.14	. []				9-101	71			
Very dense, grey SILTY SAND with gravel, cobbles and boulders	∬ ss	13	67	50					
End of Borehole	<u>· </u>								
(BH dry to 9.38m depth - July 28,									
2016)									
						20 She	40 60 80 100 ar Strength (kPa)		
						▲ Undis			

SOIL PROFILE AND TEST DATA

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical investigation
Barrhaven South Urban Expansion
Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

FILE NO.

PG3607

REMARKS

HOLE NO.

BORINGS BY CME 75 Power Auger

BH11-15

BORINGS BY CME 75 Power Auger			DATE Decemb				ember 3, 2015		BH11-15		
SOIL DESCRIPTION			SAMPLE			DEPTH	ELEV.		Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone		
	STRATA PLOT	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		ater Content %	Monitoring Well	
GROUND SURFACE	1	ı. IX		μ.		0-	-105.82	20	40 60 80	≥ ∵ ∞	
		AU	1								
		X ss	2	76	50+	1-	-104.82				
		∑ SS	3	57	50+	2-	-103.82				
Very dense, brown SILTY SAND with gravel, cobbles and boulders, trace clay		ss	4	58	50+	_					
- rootlets in upper 200mm		ss	5	100	50+	3-	102.82				
- grey by 3.8m depth		ss	6	71	63	4-	-101.82			<u> </u>	
		⊠ SS	7	33	50+	_	100.00				
		∑ ss	8	11	50+	5-	-100.82				
		∬ SS		75	0.4	6-	-99.82				
			9	75	34	7-	-98.82				
		SS N	10	100	42						
		SS ⊠ SS	11	75 50	29	8-	-97.82				
		. A 33	12	50	50+	9-	-96.82				
9.79	<u> </u>	ss	13	50	102						
End of Borehole (GWL @ 4.00m-July 28, 2016)											
								20 Shear ▲ Undistu	40 60 80 Strength (kPa) rbed △ Remoulded	100	

Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. DATUM

FILE NO. **PG3607**

REMARKS

HOLE NO. BH12-15 BORINGS BY CMF 75 Power Auger DATE December 2 2015

BORINGS BY CME 75 Power Auger				D	ATE	Decembe	r 2, 2015	5			ВΠ	12-15	
SOIL DESCRIPTION	-			/IPLE	ı	DEPTH	ELEV.	Pen. F	Resist. 50 mm				؛ _ ا
	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 \	Nater	Cont	ent %	%	Piezometer
GROUND SURFACE		I. bx		A		0-	-105.26	20	40	60	8	0	<u> </u>
		AU	1										
Dense to very dense, brown SILTY SAND with gravel, cobbles and		ss	2	88	42	1-	-104.26						
boulders - rootlets in upper 100mm		:¤ SS	3	33	50+	2-	-103.26						
- rootiets in apper roomin		∑ ss	4	67	50+	2	103.20						
3.35		ss	5	83	58	3-	-102.26						
		<u> </u>				<u>Λ</u> -	-101.26						
		ss I	6	100	31	7	101.20						
		ss	7	75	47	5-	-100.26						
Dense, brown SILTY SAND		ss	8	92	30	6	-99.26						
		ss	9	79	31	0-	-99.20						
		ss	10	75	35	7-	-98.26						
- grey by 7.6m depth		ss	11	92	34	8-	-97.26						
		∆ √ ss	12	100	32		07.20						
		· <u> </u>				9-	-96.26						
		ss	13	88	37								
(BH dry to 7.79m depth - July 28, 2016)													
								20 She	40 ar Stro			a)	00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

PG3607

REMARKS

PORTOR DV CME 75 Power Augus

BH13-15

BORINGS BY CME 75 Power Auger DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.74ΑU 1 Compact, brown SILTY SAND with gravel, cobbles and boulders 0 1+101.74- rootlets in upper 100mm SS 2 38 15 1.52 SS 3 100 9 2 + 100.74Ö SS 4 67 1 Loose to compact, brown SILTY 3+99.74SAND with gravel SS 5 58 23 - grey by 3.3m depth 4 + 98.74SS 6 20 71 SS 7 71 18 5+97.74SS 8 83 15 6 + 96.74SS 9 100 12 Ø 7+95.74SS 10 100 16 SS 11 100 7 8 + 94.74O SS 12 100 21 9 + 93.74Ö SS 13 100 25 9.75 End of Borehole (GWL @ 4.10m-July 28, 2016) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geodetic elevations interpolated from City of Ottawa basemap.

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM **REMARKS** FILE NO. **PG3607**

HOLE NO.

SOIL PROFILE AND TEST DATA

POPINGS BY CME 75 Power Auger

BH14-15

BORINGS BY CME 75 Power Auger	75 Power Auger					Decembe	r 7, 2015	5	BH14-15	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		lesist. Blows/0.3m = 00 mm Dia. Cone	L
GROUND SURFACE	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		Resist. Blows/0.3m 60 mm Dia. Cone Water Content % 40 60 80	Constructio
		₩ AU	1			0-	-103.47			
Compact, brown SILTY SAND with		ss	2	75	10	1-	-102.47			
gravel and cobbles in upper 0.8m depth rootlets in upper 100mm		ss	3	75	11	2-	-101.47			
		ss	4	71	21		100.47			
- grey by 3m depth		ss	5	71	16	3-	-100.47			
		ss	6	67	22	4-	-99.47			
		ss	7	75	21	5-	-98.47		P-101-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
		ss	8	100	12	6-	-97.47			
		ss	9	100	12					
		ss	10	100	6	7-	-96.47			
		ss	11	100	16	8-	-95.47			
		ss	12	71	10	9-	-94.47			
		ss	13	63	11					
(GWL @ 4.20m-July 28, 2016)										
								20 Shea Undist	40 60 80 100 ar Strength (kPa) turbed △ Remoulded	

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic elevations interpolated from City of Ottawa basemap.

STRATA PLOT

SAMPLE

NUMBER

1

2

3

4

5

6

7

8

9

10

11

12

13

ΑU

SS

9.75

RECOVERY

100

92

100

75

79

67

100

100

100

100

100

100

N VALUE or RQD

5

10

8

11

21

14

18

19

18

16

8

6

FILE NO. **PG3607**

BH15-15

REMARKS

DATUM

SAND

depth

HOLE NO.

BORINGS BY CME 75 Power Auger

SOIL DESCRIPTION

GROUND SURFACE

Loose to compact, brown SILTY

- rootlets in upper 100mm

- grey by 5.3m depth

- loose by 8.4m depth

End of Borehole

(GWL @ 4.99m-July 28, 2016)

- running sand encountered at 6.8m

DATE December 2, 2015

DEPTH

(m)

Pen. Resist. Blows/0.3m ELEV. Piezometer Construction 50 mm Dia. Cone (m) Water Content % 80 20 0+103.561+102.562+101.563+100.564 + 99.565+98.566 + 97.567+96.568 + 95.569 + 94.56

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

9 + 98.24

40

▲ Undisturbed

Shear Strength (kPa)

60

△ Remoulded

100

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH16-15 **BORINGS BY** CME 75 Power Auger DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+107.241 1+106.24SS 2 5 50 Loose to dense, brown SILTY SAND with gravel, cobbles and SS 3 79 17 2 + 105.24boulders - rootlets in upper 100mm SS 4 67 18 3+104.24SS 5 79 28 4 + 103.24SS 6 32 67 4.58 SS 7 30 63 5 + 102.24SS 8 96 36 6 + 101.24Compact, brown SILTY SAND SS 9 100 34 - trace gravel and cobbles from 6.9 to 8.8m depth 7 ± 100.24 SS 10 79 17 - grey by 7.6m depth SS 11 100 13 8 + 99.2412 SS 88 19

SS

9.75

End of Borehole

2016)

(BH dry to 7.34m depth - July 28,

13

79

31

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. DATUM FILE NO. **PG3607** REMARKS HOLE NO. BH17-15 BORINGS BY CMF 75 Power Auger DATE December 4 2015

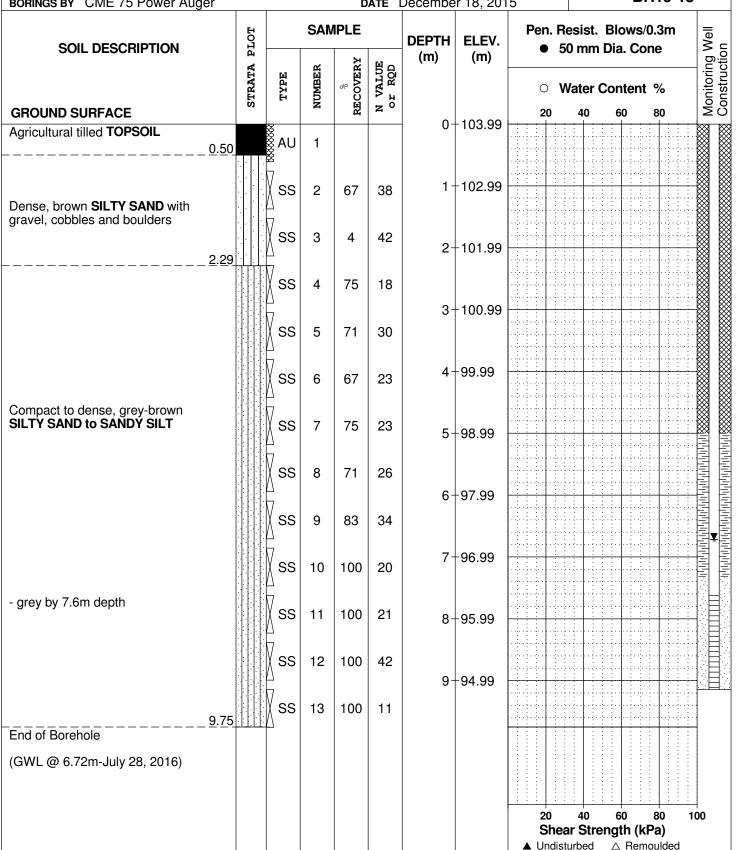
BORINGS BY CME 75 Power Auger		_		D	ATE	Decembe	r 4, 2015	БП17-15
SOIL DESCRIPTION	PLOT		SAN	IPLE	Т	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SUNFACE	. [.] [×				0-	107.97	20 40 60 80 2
Loose to dense, dark brown SILTY SAND with gravel, cobbles and		AU	1	42	9	1-	-106.97	0
boulders - rootlets in upper 200mm		ss	3	2	6	2-	105.97	O
		ss	4	67	36	3-	-104.97	0
<u>3.3</u> 5		ss	5	79	23	3	104.37	0
Compact, brown SILTY SAND		ss	6	71	27	4-	103.97	Ω
- trace gravel from 3.35 to 4.9m depth		ss	7	63	37	5-	102.97	O ===
- with gravel and cobbles from 4.9 to 6.1m depth		ss	8	79	37	6-	101.97	0 III
		ss	9	71	50+	_	100.07	O
Very dense to dense, brown SAND		ss 7	10	75	50+	/-	-100.97	0
with gravel, silt and cobbles		SS 7	11	79	50+	8-	-99.97	•
		ss 7	12	88	43	9-	-98.97	0
End of Borehole		ss	13	79	28			
(BH dry to 9.05m depth - July 28, 2016)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **BH18-15** DATE December 8, 2015 **BORINGS BY** CME 75 Power Auger **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE Water Content % **GROUND SURFACE** 80 20 0+101.08Agricultural tilled TOPSOIL 1 Brown**SILTY SAND** with gravel and 0.76 cobbles 1+100.08SS 2 10 79 SS 3 92 8 2 + 99.08Ö SS 4 83 3 3+98.08Loose to compact, brown SILTY SAND to SANDY SILT SS 5 67 11 4 + 97.08SS 6 18 71 Ö - grey by 4.5m depth SS 7 28 96 5+96.08- dense to very dense by 5.2m depth O SS 8 83 35 6 + 95.08SS 9 79 30 D 7 + 94.08SS 10 100 53 - compact to loose by 7.6m depth SS 11 100 15 8 + 93.08SS 9 12 100 9 + 92.08SS 13 100 9 9.75 End of Borehole (GWL @ 2.35m-July 28, 2016) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH19-15 BORINGS BY CME 75 Power Auger DATE December 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH20-15 **BORINGS BY** CME 75 Power Auger DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+107.88TOPSOIL 0.10 1 Compact, brown SILTY SAND with gravel, cobbles and boulders, trace 1.02 1+106.88SS 2 88 12 SS 3 71 14 2 + 105.88SS 4 83 15 3+104.88SS 5 75 19 4 + 103.88SS 6 19 Compact to dense, brown SILTY 67 SAND with gravel and cobbles Ö SS 7 71 28 5 ± 102.88 - with boulders by 5.3m depth SS 8 49 75 6+101.88SS 9 71 39 7+100.88SS 10 34 SS 11 75 37 8 + 99.88SS 12 75 34 9 + 98.88SS 13 88 46 9.75 End of Borehole (BH dry to 7.60m depth - July 28, 2016) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic elevations interpolated from City of Ottawa basemap.

PG3607

FILE NO.

SOIL PROFILE AND TEST DATA

REMARKS

DATUM

PORINGO BY CME 75 Dower Auger					_		Dagamba	×0.001E	-	HOL	E NO.	вн	21-15	1
BORINGS BY CME 75 Power Auger		.		CAL	MPLE	ATE	Decembe	9, 2015	Pen. Re	o i o t	Play			
SOIL DESCRIPTION		PLOT		SAN			DEPTH (m)	ELEV. (m)			n Dia.			Monitoring Well
		STRATA	五日	BER	» RECOVERY	VALUE r RQD	(111)	(111)						oring
CDOUND CUDEACE		STR	TYPE	NUMBER	₩ ECOV	N VP					Cont			Jone
GROUND SURFACE		ΙΠ			-		0-	102.47	20	40	60		30	Z C
	-		AU	1										
	-						1-	101.47						
Very loose, brown SILTY SAND with gravel, cobbles and boulders	-		ss	2	54	3	'	101.47						
-			ss	3	50	3								
- compact to dense by 2.3m depth							2-	100.47				<u> </u>		₩
			ss	4	67	14								
			.[3-	-99.47					<u> </u>	
			ss	5	13	28								
gray brown by 2.0m donth	-		.[]											
- grey-brown by 3.8m depth			∬ ss	6	79	12	4-	-98.47						
			ss	7	79	25	5-	97.47						#
				_										
			ss.	8	92	21		00.47						
	-		ss		60	10	6-	96.47						
			N 22	9	63	19								
			ss	10	29	33	7-	-95.47						
	-													
			∬ ss	11	58	12	8-	-94.47						
			.[7					0						
			ss	12	79	31								
							9-	-93.47						囯
9.	.75		∬ SS	13	75	13								
End of Borehole														1
(GWL @ 6.73m-July 28, 2016)														
									20 Shoo	40 r Str	60			00
									Snea ▲ Undist		ength △ F	i (KPa Remoi		
			1	I	1	1	1	l	I					

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

PORINGS BY CME 75 Power August PATE Nevember 27, 2015

FILE NO. PG3607

HOLE NO. BH22-15

BORINGS BY CME 75 Power Aug	er			D	ATE	Novembe	r 27, 201	15	BH22-15	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		sist. Blows/0.3m mm Dia. Cone	, ⊑
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		ater Content % 40 60 80	Piezometer Construction
FILL: Brown clayey silt with sand and gravel	0.70	AU	1			0-	101.71			
- rootlets in upper 200mm		ss	2	100	25	1-	100.71			
Compact to loose, brown SILTY SAND with gravel and cobbles		ss	3	100	7	2-	-99.71			
	2.44	ss	4	100	15	3-	-98.71			
		ss	5	88	28					
		ss 7	6	100	29	4-	-97.71			
		SS T	7	100	39	5-	-96.71			
Compact to dense, brown SILTY SAND		ss 7	8	79	40	6-	-95.71			- <u>-</u>
		ss 7	9	96	40	7-	-94.71			
		ss 	10	100	38		94.71			
		SS N	11	100	18	8-	-93.71			
		SS S	12	100	26	9-	-92.71			
End of Borehole	9.75	ss S	13	100	10					
(BH dry to 6.15m depth - July 28, 2016)										
								20 Shear ▲ Undistu	r Strength (kPa)	□ 00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

REMARKS
BORINGS BY CME 75 Power Auger

DATE December 9, 2015

FILE NO. PG3607

HOLE NO. BH23-15

BORINGS BY CME 75 Power Aug	jer				D	ATE	Decembe	r 9, 2015	БП23-13
SOIL DESCRIPTION	SCRIPTION				IPLE	Π	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone
GROUND SURFACE		STRATA PLOT	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m
FILL: Brown clayey sand with silt			× 11	1			0-	-98.90	
	<u>0.60</u>		AU SS	2	100	15	1 -	-97.90	
			ss	3	75	20	2-	-96.90	
			ss	4	75	21		05.00	
Compact, brown SILTY SAND			ss	5	75	25	3-	-95.90	.
			ss	6	75	20	4-	94.90	
			ss	7	75	12	5-	-93.90	
			ss	8	75	30	6-	-92.90	
	<u>6.70</u>		ss	9	100	25			
			ss	10	50	30	7-	91.90	
Compact, grey SILTY SAND with gravel, cobbles and boulders			ss	11	75	23	8-	-90.90	
			ss	12	50	30	9-	-89.90	
End of Borobolo	<u>9</u> .75		ss	13	75	23			
End of Borehole (GWL @ 3.56m-July 28, 2016)									
									20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. DATUM

FILE NO.

PG3607

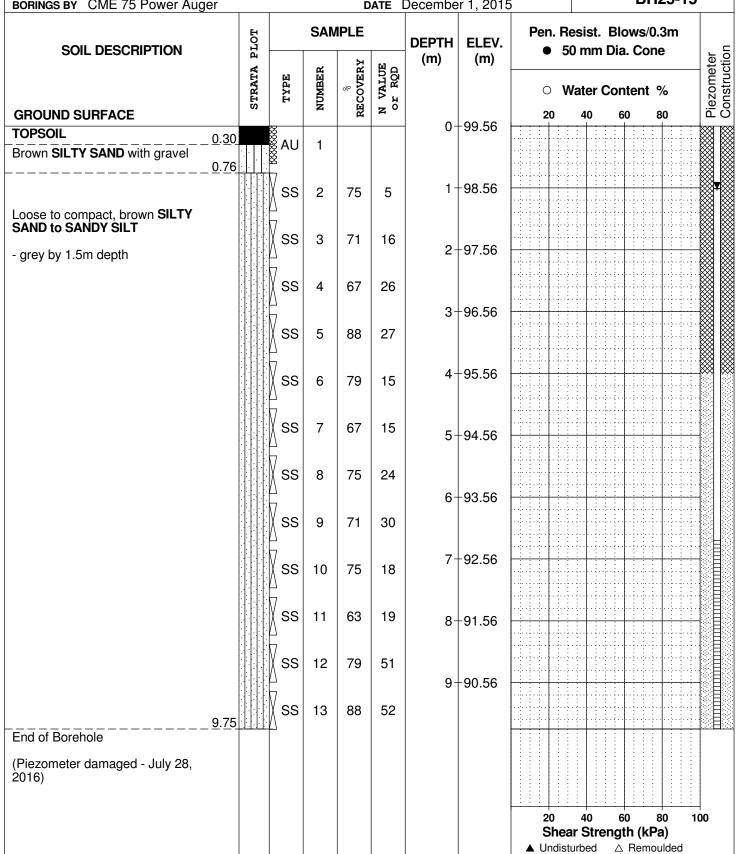
REMARKS

HOLE NO.

POPINGS BY CME 75 Power Auger

BH24-15

BORINGS BY CME 75 Power Auger				D	ATE	Novembe	r 27, 201	15	BH24-1	5
SOIL DESCRIPTION	PLOT		SAN	/IPLE	ı	DEPTH	ELEV.		esist. Blows/0.3m) mm Dia. Cone	
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		/ater Content %	Piezometer Construction
GROUND SURFACE		X				0-	-98.36		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FILL: Brown silty sand with gravel, cobbles, boulders and clay		AU	1 2	92	3	1-	-97.36			
1.1	52		_	32	3					
Dense to compact, brown SILTY SAND with gravel, cobbles and	<u> </u>	ss	3	100	41	2-	-96.36	0		
boulders		∭ ss	4	75	20					
<u>3</u> .()5	.∐ .∭ss	5	63	7	3-	-95.36	0:		
Loose to compact, grey SILTY SAND with gravel 4.	50	ss	6	58	15	4-	-94.36	0		_
Lagge grov CII TV CAND with		ss	7	50	8	5-	-93.36	0		
Loose, grey SILTY SAND with gravel, cobbles and boulders		ss 7	8	75	10	6-	-92.36	0		
		√ SS	9	83	9					
6.8	36	ss ss	10	92	15	7-	-91.36	0		
Compact to very loose, grey SILTY SAND		ss	11	100	15	8-	-90.36	0		
		ss	12	100	1	9-	-89.36	φ		
9.7 End of Borehole	75	ss	13	100	1					
(GWL @ 3.90m-July 28, 2016)										
								20 Shear ▲ Undistu	40 60 80 r Strength (kPa) urbed △ Remoulded	100


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. BH25-15 BORINGS BY CME 75 Power Auger DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m

Geodetic elevations interpolated from City of Ottawa basemap.

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

FILE NO.

PG3607

REMARKS

DATUM

BORINGS BY CME 75 Power Auge	r				n	ΔTF Í	Decembe	r 8 2015	;	HOI	LE NO). BH	126-15	5	
SOIL DESCRIPTION		PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. R			ows/0		Mell .	uc
		STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				ntent		Monitoring Well	กรเกนตเเ
GROUND SURFACE		Ø		Z	퓚	z °		100.07	20	40	6	60	80	∫ĕ¢	3
Dark brown SILTY SAND with	0.30 0.76	-1-1-1-	AU	1			0-	-100.07	0						$\overset{\otimes}{\otimes}$
			ss	2	88	11	1-	-99.07	0						
			ss s	3	88	7	2-	-98.07	0						
			ss N	4	83	3	3-	-97.07	О						$\overset{\otimes}{\otimes}$
			ss N	5	71	7	4	-96.07		0					$\overset{\otimes}{\otimes}$
Loose to compact, brown SANDY			ss ss	6	79	9	4-	30.07		D					
SILT to SILTY SAND			ss ss	7	83	15	5-	-95.07	0						ՄՈՒՄՈՒՄԱ
			ss Ss	8	100	6	6-	-94.07		q					
			ss s	9	100	6	7-	-93.07	О						
			SS	10 11	79	9			О						
- grey by 8.4m depth			ss ss	12	79	20	8-	-92.07	О						
			ss ss	13	71	24	9-	-91.07	0						
End of Borehole	9.75			10	' '	24									
(GWL @ 3.09m-July 28, 2016)															
									20 Shea ▲ Undist		reng	th (kF	a)	⊣ 1 00	

SOIL PROFILE AND TEST DATA

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **BH27-15** BORINGS BY CME 75 Power Auger DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+101.30**TOPSOIL** 0.30 1 Loose, brown SILTY SAND with gravel, cobbles and boulders 1+100.30SS 2 100 4 <u>1</u>.50 SS 3 100 5 2 + 99.30Loose to compact, brown SILTY SAND to SANDY SILT SS 4 83 9 3+98.30SS 5 71 16 4 + 97.30SS 6 20 67 SS 7 71 19 5+96.30- dense to very dense and grey by 5.2m depth SS 8 75 55 6 + 95.30SS 9 40 100 7 + 94.30SS 10 88 32 SS 11 100 50 8 + 93.30SS 12 83 53 9 + 92.30SS 13 100 51 9.75 End of Borehole (GWL @ 4.96m-Juy 28, 2016)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **BH28-15** BORINGS BY CME 75 Power Auger DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.64**TOPSOIL** <u>0.3</u>0 1 1 + 103.64SS 2 92 11 SS 3 100 24 2 + 102.64SS 4 58 33 Compact, brown SILTY SAND with gravel, cobbles and boulders 3+101.64SS 5 71 25 4 + 100.64SS 6 27 58 SS 7 23 63 5+99.645.49 8 25 50+ End of Borehole Practical refusal to augering at 5.49m depth (Based on field observations, the long term GWL was not encountered) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic elevations interpolated from City of Ottawa basemap. DATUM

FILE NO. **PG3607**

oct of BU 29 15

SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/ Dia. Co		
GOIL BLOOM HOW	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0		ontent		0:030
GROUND SURFACE	S	L	NC	REC	NO	0-	-104.65	20	 40	60	80	<u>.</u>
						o	104.00					
						1 -	-103.65					
VERBURDEN						2-	-102.65					
						3∹	-101.65 -					
						4-	-100.65					
						5-	-99.65					
		=										
ractical refusal to augering at 5.79m epth												
								20	40	60	80 1	100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM**

FILE NO. **PG3607**

REMARKS

HOLE NO.

SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.	Pen. Re ● 50		Blows/0 Dia. Co		Well
GROUND SURFACE	STRATA E	1	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			Content 60		Monitoring Well
TO DO OU	30	※				0-	-102.14	20				<u>~</u>
<u>o</u> .	30	AU SS		92	9	1 -	-101.14					
		ss		75	17	2-	-100.14					
oose to dense, brown SILTY SAND with gravel, cobbles and poulders		ss ss		71	35	3-	-99.14					
		ss	6	75	33	4-	-98.14					
		ss ss		83	36 50+	5-	-97.14					
		ss	9	58	26	6-	-96.14					
		ss	10	67	64	7-	-95.14					
compact to loose by 8.3m depth		ss	11	63	30	8-	-94.14					
		ss ss		54 83	19	9-	-93.14					
9. End of Borehole	75											
(GWL @ 6.37m-July 28, 2016)												
								20 Shea ▲ Undisti		60 ngth (kl △ Rem	Pa)	⊣ 00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.

FILE NO. PG3607

REMARKS

BORINGS BY CME 75 Power Auger

DATE November 27, 2015

BH30-15

BORINGS BY CME 75 Power Aug	er				D	ATE	Novembe	r 27, 201	5 БПЗО-15
SOIL DESCRIPTION		PLOT		SAN	IPLE	ı	DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone
		STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SURFACE		.		ı	2	z °	0-	-99.45	20 40 60 80 🙃
Brown SILTY SAND , trace gravel and organics	0.76		AU	1				99.45	
			ss	2	58	81	1-	-98.45	
			ss	3	63	55	2-	-97.45	
Very dense to compact, brown SILTY SAND with gravel, cobbles and boulders			ss	4	79	27	3-	-96.45	
a.i.a 200.iao.io			ss	5	67	25	3	90.43	
			ss	6	67	29	4-	-95.45	<u> </u>
	5.33		ss	7	71	25	5-	-94.45	
	<u> </u>		ss	8	75	28	6-	-93.45	
Compact, grey SILTY SAND to			ss	9	63	10		30.43	
Compact, grey SILTY SAND to SANDY SILT			ss	10	75	21	7-	-92.45	
			ss	11	71	16	8-	-91.45	
- trace gravel to 8.4m depth			ss	12	100	28	g_	-90.45	
	<u>9</u> .75		ss	13	100	21		50.75	
End of Borehole									
(GWL @ 4.41m-July 28, 2016)									
									20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geodetic elevations interpolated from City of Ottawa basemap.

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

DATUM REMARKS FILE NO. **PG3607**

HOLE NO.

SOIL PROFILE AND TEST DATA

BH31-16 BORINGS BY CME 55 Power Auger **DATE** July 20, 2016

BORINGS BY CME 55 Power Auger				D	ATE .	July 20, 2	2016				וטוטו		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			. Blov n Dia.	vs/0.3n Cone	n	_ Well
GROUND SURFACE	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O 20	Water	Conte	ent % 80		Monitoring Well
Compact, brown SANDY SILT,		X ss	1	79	17	0-	108.99						VI V
some gravel, trace cobbles, rootlets1.12		∑ ss	2	75	11	1 -	107.99					×	
						'	107.55				[()) [()) [())	×	
Compact, brown SILTY SAND ,		X ss	3	79	13	2-	106.99					*	
some gravel		X ss	4	71	11	2-	105.99					*	
3.80		ss	5	92	21	3	105.55					· · · · · · · · · · · · · · · · · · ·	
						4-	104.99					×	
Compact to dense, brown SAND		ss	6	58	34	_	100.00					· · · · · · · · · · · · · · · · · · ·	
with gravel, some silt and cobbles			ŭ			5-	103.99					×	
		V 00	7	47		6-	102.99					************	
- some boulders by 6.4m depth		∑ ss	7	47	50+	_						· · · · · · · · · · · · · · · · · · ·	
						/-	101.99					8	
		ss	8	83	82	8-	100.99					*	
												×	
		ss	9	50	41	9-	99.99					×	
			Ü			10-	-98.99					×	
												×	
		∑ ss	10	62	57	11-	97.99						
						12-	-96.99						
		∑ss	11	83	46								
						13-	95.99						. ▼
		ss	12	50	22	14-	-94.99						
			12			, , ,	04.00	-0-1-0-1-0-1	-3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		[[]]] [[]]] [[]]]		
						15-	-93.99						
						16-	-92.99						
16.76						10-	32.33						1
End of Borehole		†											-1-1-
(GWL @ 13.02m-July 28, 2016)													
								20 She ▲ Undi			80 (kPa) Remoulde	100)

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic elevations interpolated from City of Ottawa basemap.

FILE NO.

SOIL PROFILE AND TEST DATA

PG3607

REMARKS

DATUM

HOLE NO. RH32-16

BORINGS BY CME 55 Power Auger	ME 55 Power Auger						DATE July 20, 2016								
SOIL DESCRIPTION	PLOT		SAN	IPLE	I	DEPTH (m)	ELEV. (m)			Blows/0.3m ia. Cone	Well				
CROUND CUREAGE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)			ontent %	Monitoring Well				
GROUND SURFACE Compact, brown SILTY SAND,		∵ xs	1	25	11	0-	103.48	20	40	60 80	<u> </u>				
race gravel, rootlets		:∐ ∐X ss	2	67	15	1-	102.48								
Compact to dense, brown SILTY SAND, some gravel, cobbles and		SS SS	3	50	50+		101.48								
oulders2.44	1	ss	4	50	31										
ense to very dense, grey SILTY AND, some gravel		ss	5	71	17	3-	100.48								
, •						4-	99.48								
some boulders by 4.1m depth		ss	6	79	51	5-	98.48								
		∑ SS	7	92	50+	6-	97.48								
						7-	96.48								
		ss	8	75	35	8-	95.48								
						9-	94.48								
		SS SS	9	79	70	10-	93.48								
		·. ∵⊠ss	10	100	50+		92.48								
		1													
12.19 nd of Borehole	9	<u>: </u>				12-	91.48				1. E				
GWL @ 7.37m-July 28, 2016)															
								20	40	60 80 1	00				
									ar Stren	gth (kPa) △ Remoulded					

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Geotechnical Investigation

Barrhaven South Urban Expansion 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **BH33-16 BORINGS BY** CME 55 Power Auger **DATE** July 19, 2016 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY VALUE NUMBER Water Content % N VZ **GROUND SURFACE** 80 20 0+110.04SS 1 46 27 Compact to very dense, brown SS 2 1+109.04SILTY SAND with gravel, cobbles 58 18 and boulders SS 3 67 60 2+108.04- grey by 0.8m depth 4 75 41 3+107.043.35 5 79 35 Dense, brown SANDY SILT 4.11 4 + 106.04SS 6 71 29 5+105.04

6+104.04SS 7 34 71 Dense, brown SAND, trace to some 7+103.04SS 8 62 32 8+102.049+101.04SS 9 71 30 10 + 100.0410.21 Compact, brown to grey SILT with SS 10 83 15 11 + 99.04sand 12 + 98.0412.19 End of Borehole (GWL @ 9.46m-July 28, 2016) 40 60 80 100 Shear Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM**

FILE NO.

PG3607

REMARKS

BORINGS BY CME 55 Power Auger				D	ATE .	July 19, 2	016		HOL	E NO.	ВН3	4-16		
SOIL DESCRIPTION	PLOT		SAMPLE			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3r • 50 mm Dia. Cone					m =	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	0 V	/ater	Cont	ent %)	Monitoring Well	
GROUND SURFACE	1111			22	z °	0-	107.46	20	40	60	80)	Σ	
Compact, brown SANDY SILT with gravel, some cobbles, rootlets 0.71		∑ ss∣	1	50	27		107.40							
Dense, brown SILTY SAND , some gravel and cobbles 1.52		ss	2	71	31	1 -	106.46					-3 - 3 - 3		
		\\ ss	3	58	36	2-	105.46							
		∑ ss	4	58	30	2-	104.46					-1-6-1-		
		ss	5	67	70	3-	104.46							
Dense to very dense, brown SAND ,						4-	103.46							
trace silt and gravel		ss	6	58	56	5-	102.46							
- trace cobbles by 4.9m depth		Δ					102.10							
, ,		xs x	7	67	67	6-	101.46							
		\mathbb{V}	,	0,	0,	7-	100.46							
		V 00										-3 - 4 - 3 - 3 - 4 -3 - 4 - 3 - 3 - 4 -3 - 4 - 3 - 4		
		∑ ss	8	62	36	8-	99.46	-0-1-0-1-0-1						
						9-	-98.46					· · · · · · · · · · · · · · · · · · ·		
		∑ ss	9	58	41									
						10-	97.46							
		ss	10	67	33	11-	96.46							
11.73		-				10	05.46						Į Į	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ss	11	83	23	12-	95.46							
						13-	94.46							
		∑ ss	12	100	23	14-	93.46					-		
End of Borehole		∑ 33 	14	100	23		55.70					<u> </u>		
(GWL @ 11.40m-July 28, 2016)														
• • •														
											h (kPa))	00	
								▲ Undist	urbed	Δ	Remoul	ded		

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **BH35-16 DATE** July 21, 2016 **BORINGS BY** CME 55 Power Auger **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0+105.41Brown **SILTY SAND**, trace gravel, 0.76 organics and rootlets 1+104.412+103.41Very dense to compact, brown SILTY SAND with gravel, cobbles 3+102.41and boulders 4+101.41 5+100.415.33 6 + 99.41Compact, grey SILTY SAND to SANDY SILT 7+98.41- trace gravel to 8.4m depth 8+97.419.14 9+96.41SS 1 71 46 10+95.41 Dense to compact, brown SILT, SS 2 62 35 11 + 94.41some sand 12+93.41 SS 3 46 26 12.80 End of Borehole (GWL @ 9.36m-July 28, 2016) 40 60 80 100 Shear Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM**

FILE NO.

HOLE NO.

PG3607

REMARKS

RH36-16

BORINGS BY CME 55 Power Auger		1			ВН36-16									
SOIL DESCRIPTION	PLOT		SAMPLE			DEPTH (m)	ELEV. (m)		Pen. Resist. Blows/0.3m • 50 mm Dia. Cone					
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	0 V	Vater (ater Content %				
GROUND SURFACE FILL: Brown silty sand with gravel, 0.30	1 XX		1	2 40	≥ °	0-	109.08	20	40	60	80	Monitoring Well		
some cobbles and boulders						_	400.00							
FILL: Brown silt with sand and		X SS	2	50	63	-	108.08							
gravel, some cobbles and boulders		8	3	64	50+	2-	107.08					▩		
2.90) <u> </u>	SS	4	79	50+		100.00							
		∑ ss	5	79	37	3-	106.08							
						4-	105.08					▩		
		∦ ss	6	83	34	_								
		\mathbb{V}			54	5-	104.08							
		V 00 -		_	61	6-	103.08					▓		
		\(\ss	7	67	61	_					. ;			
Dense to very dense, brown SILT with sand, trace gravel						7-	102.08					▓		
		∑ ss	8	50	64	8-	101.08					▓		
		∑ ss	9	62	44	9-	100.08							
		∇				10-	99.08					▓		
		7												
		∑ ss	10	75	50	11-	-98.08					▓		
						12-	97.08					▩		
		ss	11	58	52									
40.77						13-	96.08							
13.70)	ss	12	50	10	14-	95.08							
Compact, brown fine to medium		. M	. –											
SAND						15-	94.08					1		
						16-	93.08							
16.76	3						55.00							
End of Borehole														
(GWL @ 12.95m-July 28, 2016)														
								20 Shea ▲ Undis		60 ength (k △ Rem		00		

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

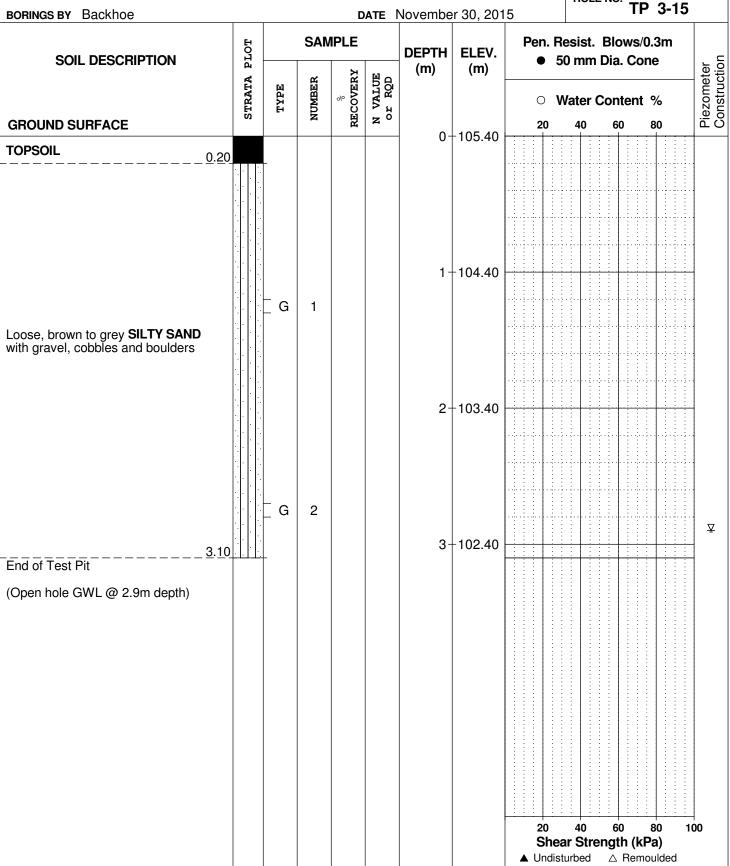
DATUM Geodetic elevations in	nterpolate	ed from	City	of Otta	awa b	asemap.			FILE NO. PG3607	
REMARKS BORINGS BY Backhoe					ATE	Dagamba	vr 0 2015	-	HOLE NO. TP 1-15	
SOIL DESCRIPTION	PLOT	G DEPTH ELEV.							esist. Blows/0.3m 0 mm Dia. Cone	on On
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		Vater Content %	Piezometer Construction
GROUND SURFACE	0.10	G	1	- ж	_	0-	105.10	20	40 60 80	F 0
TOPSOIL	0.10	G	'							
Compact, brown SILTY SAND , trace boulders and cobbles		G	2			1-	-104.10			
						2-	-103.10			
End of Test Pit	3.00					3-	102.10			
(TP dry upon completion)										
								20 Shea ▲ Undist	40 60 80 10 ar Strength (kPa) urbed △ Remoulded) 00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations	interpolate	d from	City	of Otta	awa b	asemap.			FILE	E NO. PG360 7	7
REMARKS POPINGS BY Pagichage					ATE	Decembe	× 2 2015	-	HOL	LE NO. TP 2-15	5
BORINGS BY Backhoe			041				<u> </u>				
SOIL DESCRIPTION	A PLOT		SAMPLE			DEPTH (m)	ELEV. (m)			. Blows/0.3m n Dia. Cone	eter
CDOLIND SUDEACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				Water	Content %	Piezometer
GROUND SURFACE TOPSOIL	0.10			-		0-	106.80	20	40	60 80	
Compact, brown SILTY SAND		_ G	1				-105.80 -104.80				
 End of Test Pit	_ 3.00	_ G	2				-103.80				
(TP dry upon completion)										60 80 rength (kPa) △ Remoulded	100


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **TP 3-15 BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM**

FILE NO. **PG3607**

REMARKS

HOLE NO.

SOIL PROFILE AND TEST DATA

SAMPLE PER Pen. Resist. Blows/0.3m	SOIL DESCRIPTION THE RESIST Blows/0.3m FROUND SURFACE SAMPLE DEPTH (m) Pen. Resist. Blows/0.3m Water Content % 20 40 60 80 11-106.00 OOSe, brown to grey SILTY SAND with gravel, cobbles and boulders rootlets in upper 150mm Gardinary Sample	BORINGS BY Backhoe			D	ATE	Novembe	er 30, 201	15	HOL	E NO. TP	4-15				
Loose, brown to grey SILTY SAND with gravel, cobbles and boulders - rootlets in upper 150mm 2-105.00 End of Test Pit - G 1 1-106.00 3-104.00	oose, brown to grey SILTY SAND with gravel, cobbles and boulders rootlets in upper 150mm 2 - 105.00 and of Test Pit 3.00	SOIL DESCRIPTION	SAMPLE DEPTH ELEV.													
Loose, brown to grey SILTY SAND with gravel, cobbles and boulders - rootlets in upper 150mm 2-105.00 End of Test Pit - G 1 1-106.00 3-104.00	oose, brown to grey SILTY SAND with gravel, cobbles and boulders rootlets in upper 150mm 2 - 105.00 ind of Test Pit 3.00 1 - 106.00 3 - 104.00	GROLIND SLIBEACE	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	()	(,				% 80				
Loose, brown to grey SILTY SAND with gravel, cobbles and boulders rootlets in upper 150mm 2-105.00 End of Test Pit	coose, brown to grey SILTY SAND with gravel, cobbles and boulders rootlets in upper 150mm 2 - 105.00 End of Test Pit G 2 3 - 104.00	GROUND SONI ACL					0-	107.00	20							
rootlets in upper 150mm 2-105.00 3.00	rootlets in upper 150mm 2-105.00 3-104.00	oose, brown to gray SILTV SAND	G	1			1-	-106.00								
End of Test Pit	end of Test Pit						2-	-105.00								
		End of Test Pit	G	2			3-	-104.00								

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 5-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 107.70 1 + 106.70G 1 Loose to compact, brown to grey SILTY SAND with gravel, cobbles and boulders - rootlets in upper 200mm 2 + 105.70G 2 3.00 3 + 104.70End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 6-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+111.30**FILL:** Grey silty clay with sand, gravel, cobbles and boulders G 1 - rootlets in upper 100mm 0.80 1 + 110.30G 2 Compact, grey SILTY SAND 2 + 109.303.00 3+108.30End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 7-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+111.90FILL: Grey-brown silty sand with G gravel, cobbles and boulders 1 1 + 110.90- rootlets in upper 100mm 2 + 109.902.20 Very dense, brown SILTY SAND, G 2 trace gravel 3.00 3+108.90End of Test Pit (TP dry upon completion)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations i	interpolated	d from	City	of Otta	awa b	asemap.					FILE	NO.	PG	360 ⁻	7	
BORINGS BY Backhoe					ATE	Decembe	ar 1 2015	;			HOL	E NO.	TP	8-1	5	
BORINGS BY DACKING			CAL		AIE	Decembe	1, 2013		D			- Dia			\top	
SOIL DESCRIPTION	A PLOT			SAMPLE		DEPTH (m)	ELEV. (m)		Pen			6				
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				0		Water Content %				iezome	
GROUND SURFACE				Z	2	0-	109.30	-	20) 	40	60	·	30 		
		_ G	1													
						1-	108.30				+					
Dense, brown SILTY SAND																
						2-	-107.30									
	3.00	G	2				100.00									
End of Test Pit (TP dry upon completion)						3-	106.30									
									20		40 Str	60			100	
								١.,					h (kPa			

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

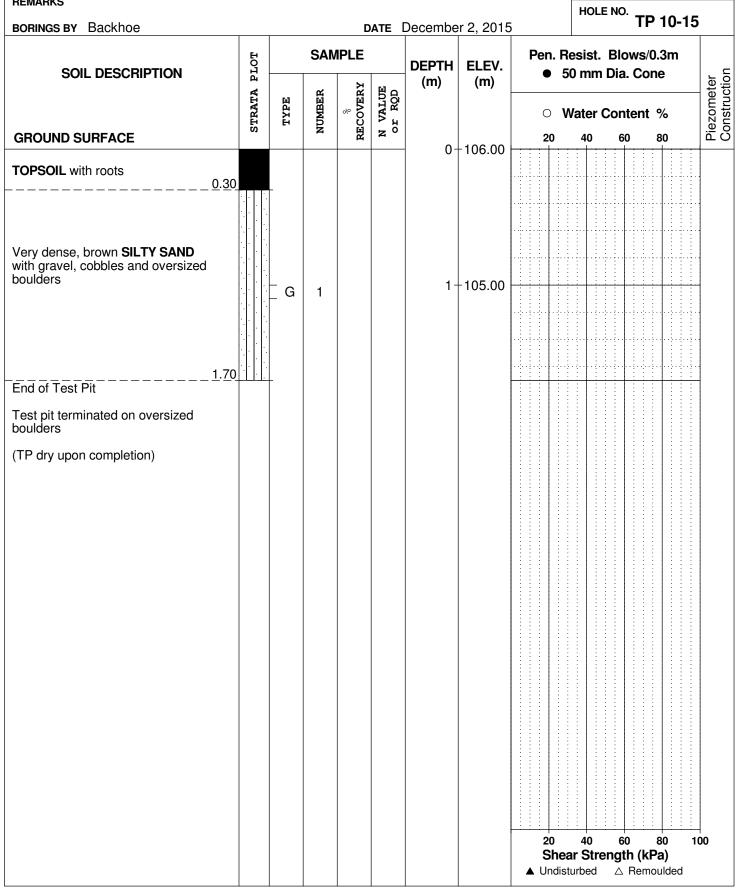
Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpo	olated	d from	City	of Otta	awa b	asemap.			FILE	PG3607	7			
REMARKS BORINGS BY Backhoe					ATE	Decembe	or 2 2015	;	HOLE					
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. R	esist. 0 mm l	Piezometer Construction				
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	0 V	Water Content %					
GROUND SURFACE	ο		Z	RE	z °	0-	108.40	20	40	60 80	i Š			
TOPSOIL 0.20		=												
Brown SILTY SAND , trace cobbles		_ G	1			1-	-107.40							
						2-	-106.40							
End of Test Pit (TP dry upon completion)		_ G	2			3-	-105.40							
										60 80 ngth (kPa) △ Remoulded	100			

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic elevations interpolated from City of Ottawa basemap.


FILE NO.

SOIL PROFILE AND TEST DATA

PG3607

REMARKS

DATUM

SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

1 + 102.00

2 + 101.00

3+100.00

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 11-15 **BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.00Dark brown SANDY SILT with roots 0.30 G 1

G

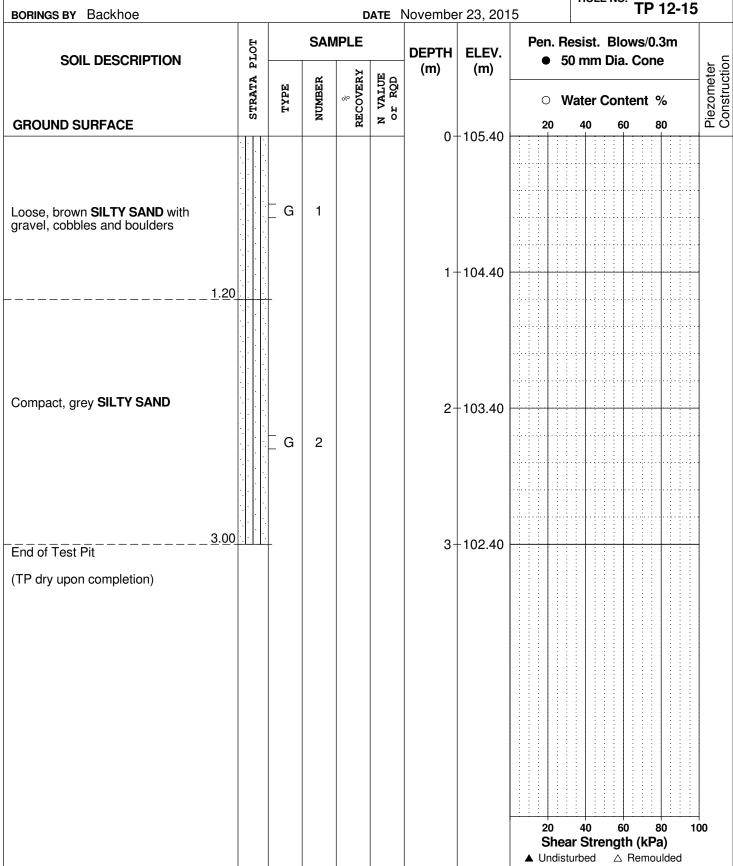
3.00

2

Compact to very dense, brown SILTY SAND, some gravel and cobbles

End of Test Pit

(TP dry upon completion)


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 12-15 **BORINGS BY** Backhoe DATE November 23, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 13-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+106.60Compact, brown SILTY SAND with gravel, cobbles and boulders - grey by 0.4m depth G 1 1 + 105.602 + 104.60G 2 3.00 3 + 103.60End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 14-15 BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 107.00 Loose, brown SILTY SAND with gravel, cobbles and boulders - grey by 0.5m depth G 1 1 + 106.002 + 105.00G 2 3 + 104.003.10 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

40

▲ Undisturbed

Shear Strength (kPa)

60

80

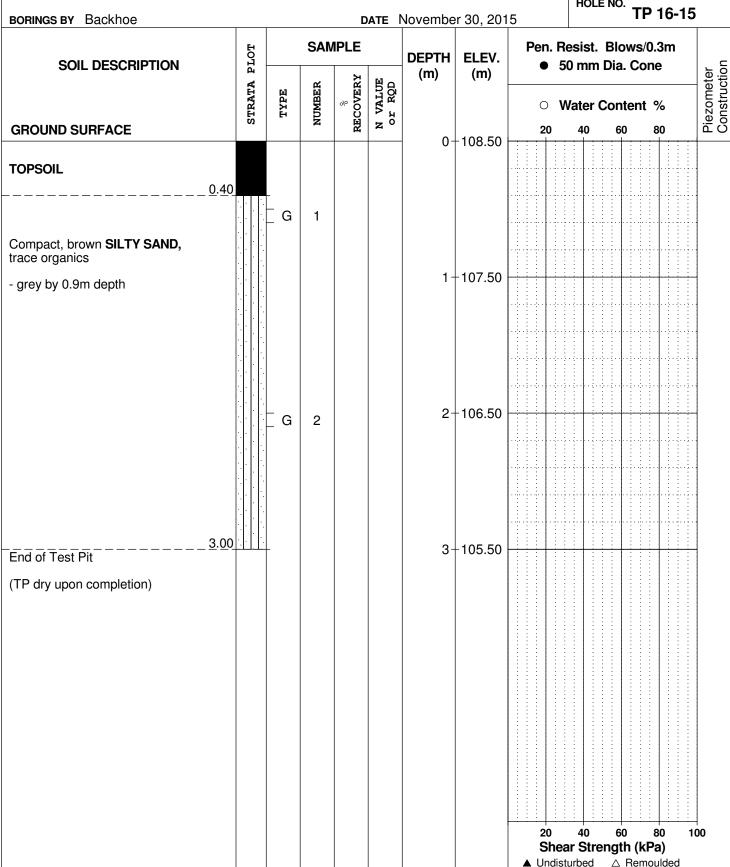
△ Remoulded

100

Geotechnical Investigation Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 15-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+109.401 + 108.40**FILL:** Grey-brown silty clay with sand, gravel, cobbles, boulders and G 1 debris - rootlets in upper 200mm 2 + 107.40G 2 3 + 106.40End of Test Pit (TP dry upon completion)

Geotechnical Investigation


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 16-15 DATE November 30, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 17-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+110.50G 1 1 + 109.50**FILL:** Brown silty sand with gravel and cobbles, some boulders - rootlets in upper 150mm 2 + 108.50G 2 3+107.50End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

STRATA PLOT	TYPE	NUMBER	% BLCOVERY BLCOVERY		Decembe DEPTH	r 1, 2015 ELEV.	Pen. R		E NO. TP	18-15	;
	TYPE		/IPLE		DEPTH		Pen. R	esist.	Blows/0	3m	T
	TYPE	NUMBER	ERY			FIFV				.0111	
STRAT	TYPE	NUMBE	E	田口	(m)	(m)	• 5	е	Piezometer Construction		
			°% oo	N VALUE or RQD			0 V	Vater	Content	%	ezom(
			푒	z ^o	0-	-107.40	20	40	60	80	اچ د
					1-	-106.40					
	G G	1									
					2-	-105.40					
00	G	2			2-	-104.40					
					3	104.40					
	00	_ G	G 2	_ G 2	G 2	G 1	2-105.40	G 1 2-105.40 3-104.40 20 She	2-105.40 3-104.40 20 40 Shear Str	2-105.40 3-104.40 20 40 60 Shear Strength (kP	2-105.40 2-104.40 3-104.40

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 19-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.40G 1 1 + 103.40Compact to very dense, brown SILTY SAND with gravel, some cobbles and boulders 2 + 102.40G 2 3.00 3+101.40End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

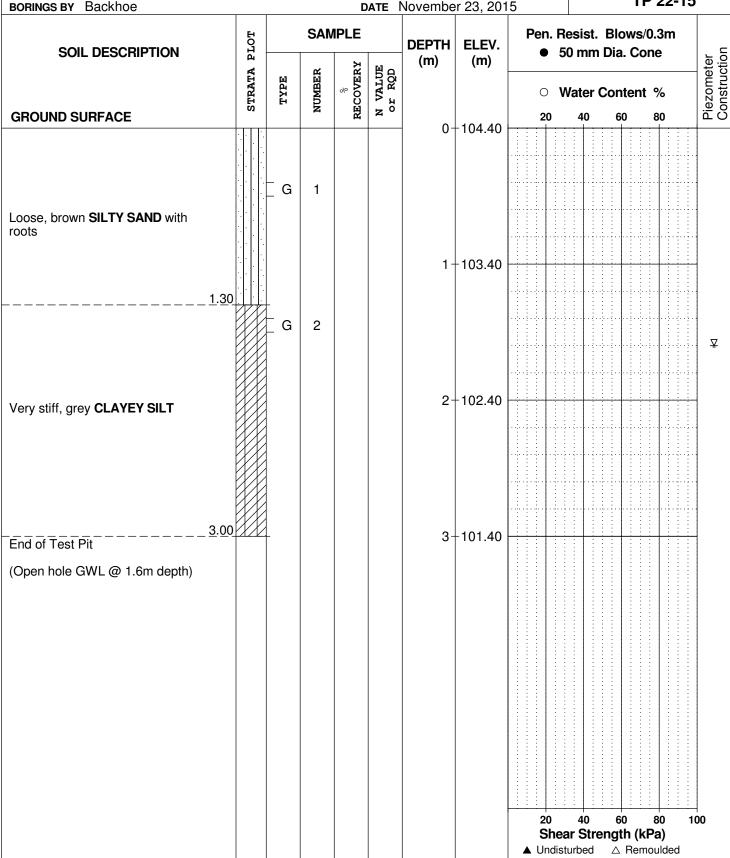
DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 20-15 **BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+101.90**TOPSOIL** 0.20 G 1 Loose, dark brown SILTY SAND, some gravel 0.70 G 2 1 + 100.90Stiff, light grey **SILTY CLAY**, some cobbles and boulders 1.50 2 + 99.90Very dense, light grey SILTY SAND with gravel, cobbles and boulders G 3 3.00 3+98.90End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 21-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.50**TOPSOIL** <u>0.15</u> G 1 Very stiff, brown **CLAYEY SILT** 1 + 103.501.80 2 + 102.502 G Dense to compact, brown SILTY **SAND** with clay 3+101.503.10 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 22-15 BORINGS BY** Backhoe DATE November 23, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 23-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 ± 107.00 G 1 Compact, brown SILTY SAND - grey by 0.8m depth 1 + 106.00G 2 2 + 105.003.00 3+104.00End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 24-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+107.40FILL: Grey silty clay with sand, gravel, cobbles and boulders G 1 0.80 1 + 106.40G 2 Compact, brown SILTY SAND - grey by 2.0m depth 2 + 105.40G 3 3.00 3+104.40End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 25-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 ± 106.80 G 1 Compact, brown SILTY SAND - grey by 0.8m depth 1 + 105.802 + 104.80G 2 3.00 3 + 103.80End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Barrhaven South Urban Expansion

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 26-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 ± 107.70 G 1 Compact, brown SILTY SAND 1 + 106.70- grey by 1.1m depth 2 + 105.70G 2 3.00 3+104.70 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 27-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+109.90G 1 Compact, brown SILTY SAND with gravel, cobbles and boulders - grey by 0.8m depth 1 + 108.902 + 107.90G 2 3.00 3 + 106.90End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 28-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 110.70 **FILL:** Brown silty sand with gravel, some cobbles and boulders G 1 - rootlets in upper 150mm 1.05 1 + 109.70Compact, brown SILTY SAND, some gravel 2 + 108.70G 2 3.00 3+107.70End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa)

Barrhaven South Urban Expansion

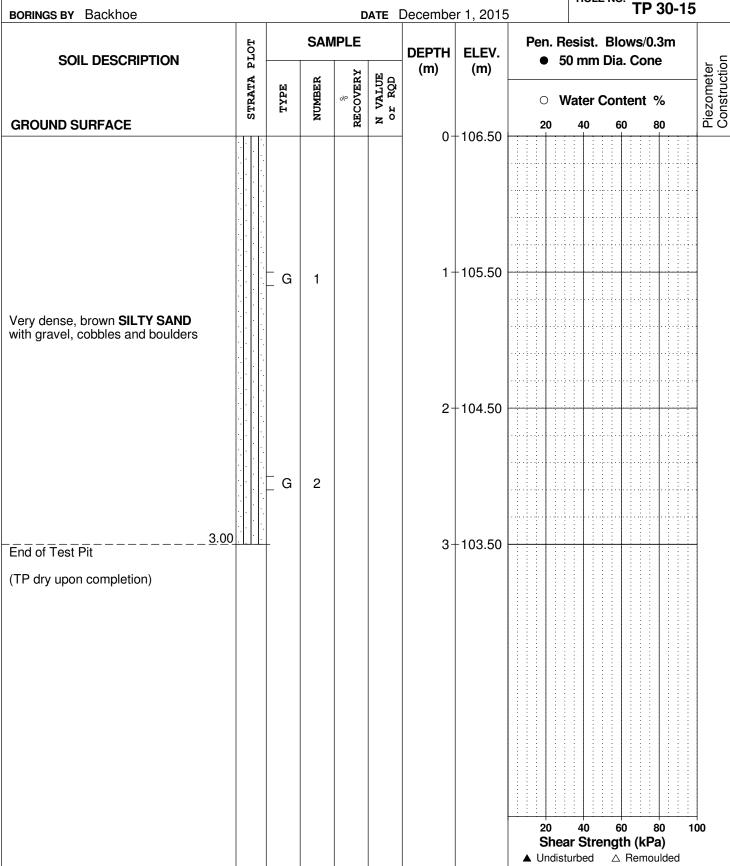
154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded


DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 29-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+106.20FILL: Dark brown silty sand with gravel and cobbles, trace boulders G 1 - rootlets in upper 100mm <u>0.7</u>0 1 + 105.20Dense, brown SILTY SAND, some gravel 2 G 2.00 2 + 104.20Dense, brown SILTY SAND with gravel, cobbles and boulders 3.00 3+103.20End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 30-15 DATE December 1, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 31-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0 + 105.50G 1 1 + 104.50Very dense, brown **SILTY SAND** with gravel, cobbles and oversized boulders - rootlets in upper 100mm 2 + 103.50G 2 3.00 3+102.50End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 32-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.50G 1 ⊻ 1 + 102.50Dense to very dense, brown SILTY SAND with gravel, cobbles and boulders 2 + 101.50G 2 3.00 3+100.50End of Test Pit (Open hole GWL @ 0.8m depth) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations inter	rpolated	d from	i City	of Otta	awa b	asemap.				FILE	NO.	PG360)7
REMARKS BORINGS BY Backhoe					ATE	Decembe	r 2 201E		I	HOLE	NO.	TP 33-	15
BORINGS BY DACKNOE			CAR		AIE	Decembe	2, 2013	Da.:	Doo	:_4			
SOIL DESCRIPTION	A PLOT			/IPLE	阻口	DEPTH (m)	ELEV. (m)	Pen		lesist. Blows/0.3m 60 mm Dia. Cone			
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0		ter (Conte		Piezometer
GROUND SURFACE				щ		0-	103.00	20		40	60	80	
Very dense, light brown SILTY SAND , some gravel, cobbles and boulders		_ G	1			1-	102.00						
- rootlets in upper 200mm						2-	-101.00						
Compact, brown SILTY SAND, trace gravel 3.0 End of Test Pit (TP dry upon completion)		_ G	2			3-	-100.00						
									hear		60 ength	80 (kPa)	100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 34-15 BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 103.70 G 1 Loose, brownSILTY SAND with roots - grey by 0.5m depth 1 + 102.702 + 101.70G 2 3+100.703.10 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FII F NO

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations int	erpolate	d from	City	of Otta	awa b	asemap.			FIL	E NO.	G3607	ı
REMARKS							00 55	. –	но	LE NO.	9 35-15	 5
BORINGS BY Backhoe				D	ATE	Novembe	er 23, 201	15		•••	00-10	, T
SOIL DESCRIPTION	A PLOT			MPLE	Ħ O	DEPTH (m)	ELEV. (m)	Per •	0.3m ne	eter eter		
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			C		r Content		Piezometer
GROUND SURFACE	.1.11			K	-	0-	103.90	2	0 40	60	80	П. С
Loose to compact, brown SILTY SAND, trace gravel and rootlets - grey by 0.8m depth		_ G	1			1-	-102.90					
						'	102.30					
		_ G	2			2-	-101.90					-
End of Test Pit (TP dry upon completion)	3.00					3-	-100.90					
									hear St	60 rength (kl	Pa)	000

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 36-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.00G 1 1 + 103.00Loose to compact, brown SILTY SAND, trace gravel and roots - grey by 0.7m depth G 2 2 + 102.003.00 3+101.00End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 37-15 BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0+104.10G 1 1 + 103.10Loose to compact, brown SILTY SAND with trace to some gravel, cobbles and roots - dense and grey by 1.5m depth 2 + 102.10G 2 2.30 **Grey SILTY SAND** G 3 3.00 3+101.10End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations inte	erpolate	d from	ı City	of Otta	awa b	asemap.					FI	LEN	10.	PG	360	7
REMARKS BORINGS BY Backhoe				-	ATE	Novembe	or 22 201	15			Н	OLE	NO.	TP	38- 1	15
Dacking by Dacking			CAB		AIE	Novembe	25, 20		Dav	. D			Die	/0	2	
SOIL DESCRIPTION	A PLOT			MPLE	田口	DEPTH (m)	ELEV. (m)		Per					vs/0. Con		iter
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				C					ent '		Piezometer
GROUND SURFACE				2	Z	0-	104.40	-	2	0	40	0	60	: : :	B0	
Loose to compact, brown SILTY SAND , trace to some gravel,		_ G	1													
cobbles and roots																
- grey by 0.9m depth						1-	103.40						\dagger			\exists
											- ; -					
						2-	102.40									
		G	2				102.40									
3.	00						101.40									
End of Test Pit (TP dry upon completion)	90 - 1, 11					3-	-101.40									
								Ė		0	40		60		B0	100
														(kP		

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

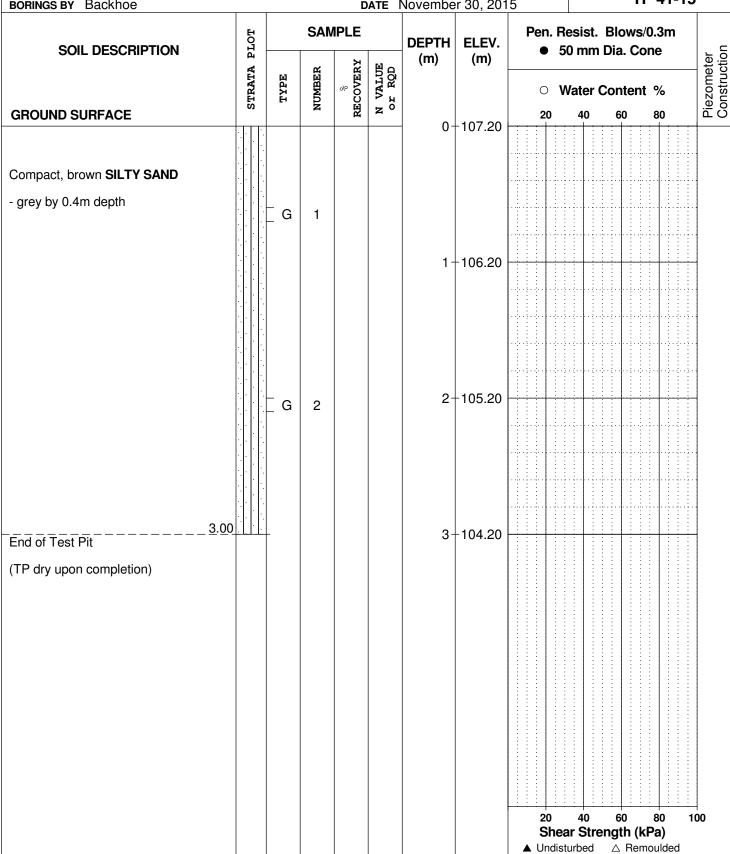
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 39-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 + 105.20G 1 Loose to compact, brown SILTY **SAND** - grey by 0.8m depth 1 + 104.20G 2 2 + 103.203.00 3+102.20End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM Geodetic elevations inte	rpolate	d from	1 City	of Otta	awa b	asemap.			FILE	E NO.	PG	3607			
BORINGS BY Backhoe				D	ATE	Novembe	er 23, 201	5	HOL	LE NO	TP 4	40-15	j		
	T.C		SAI	MPLE				Pen. F	 lesist	. Blo	ows/0.	3m			
SOIL DESCRIPTION	TA PLOT		, K	ïRY	E C	DEPTH (m)					n Dia. Cone				
	STRATA	TYPE	NUMBER	* RECOVERY	N VALUE or RQD				Water Content %				Piezometer		
GROUND SURFACE				<u> </u>	_	0-	106.30	20	40	60	0 8	60 	<u> </u>		
		G	1												
Loose to compact, brown SILTY SAND															
- grey by 0.9m depth															
groy by o.om dopan						1-	105.30								
						2-	104.30								
		G	2												
			_												
						3-	103.30						-		
3. End of Test Pit	20	†											-		
(TP dry upon completion)															
								20 Sho	40	60 Congt			00		
								■ Undis			h (kPa Remou				


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 41-15 **BORINGS BY** Backhoe DATE November 30, 2015

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO.

BORINGS BY Backhoe					/AIL	Novembe	7 00, 201			["] TP 42-15	
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				Vater Con		Piezometer
GROUND SURFACE	1.1.1			α		0-	107.90	20	40 6	80 80	
Compact, brown SILTY SAND with ravel, cobbles and boulders grey by 0.7m depth		_ G	1								
						1 -	106.90				
		_ G	2			2-	-105.90				
						3-	-104.90				
TP dry upon completion)											
								20 Shea	ar Strengt		00

Geodetic elevations interpolated from City of Ottawa basemap.

SOIL PROFILE AND TEST DATA

FILE NO.

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

Geotechnical Investigation Ottawa, Ontario

PG3607 REMARKS HOLE NO. TP 43-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+110.20FILL: Compact, brown silty sand with gravel, cobbles and boulders - rootlets in upper 150mm G 1 0.80 1 + 109.20Compact, brown SILTY SAND 2 + 108.20G 2 3.00 3+107.20End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 44-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+107.80G FILL: Dark brown, silty sand with 1 gravel, cobbles and boulders - rootlets in upper 100mm 0.60 1 + 106.80Very dense, brown SILTY SAND with gravel, cobbles and boulders 2 + 105.80G 2 3.00 3 + 104.80End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 45-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 60 0+104.60FILL: Brown silty sand with gravel, G 1 cobbles and boulders - rootlets in upper 100mm <u>0.70</u> 1 + 103.60Dense to very dense, brown SILTY SAND with gravel, cobbles and 2 + 102.60boulders G 2 3.00 3+101.60End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 46-15 **BORINGS BY** Backhoe DATE December 1, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 105.40 1 + 104.40Very dense, brown SILTY SAND with gravel, cobbles and boulders G 1 2 + 103.40G 2 3.00 3+102.40End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations inter	polate	d from	City	of Otta	awa b	asemap.			FILE	ENO. PG36	607
REMARKS								_	ноі	-E NO. TP 47	7 ₋ 15
BORINGS BY Backhoe				D	ATE	Decembe	er 1, 2015 	5		11 7/	-15
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. ●		. Blows/0.3n n Dia. Cone	
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD			0	Water	Content %	Piezometer Construction
GROUND SURFACE	02			2	Z	0-	106.00	20	40	60 80	<u>i</u> C
Dense to very dense, brown SILTY SAND with gravel, cobbles and occasional large boulders - rootlets in upper 100mm		_ G	1			1-	-105.00				
		_ G	2			2-	-104.00				
3.0											
End of Test Pit (TP dry upon completion)						3-	-103.00				
									40 ear Str	60 80 rength (kPa) △ Remoulde	100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 48-15 **BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.80G 1 Very dense, light brown SILTY SAND with gravel, cobbles and boulders 1 + 103.80- rootlets in upper 150mm 2.00 2 + 102.80G 2 Compact, brown SILTY SAND, trace gravel 3.00 3+101.80End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

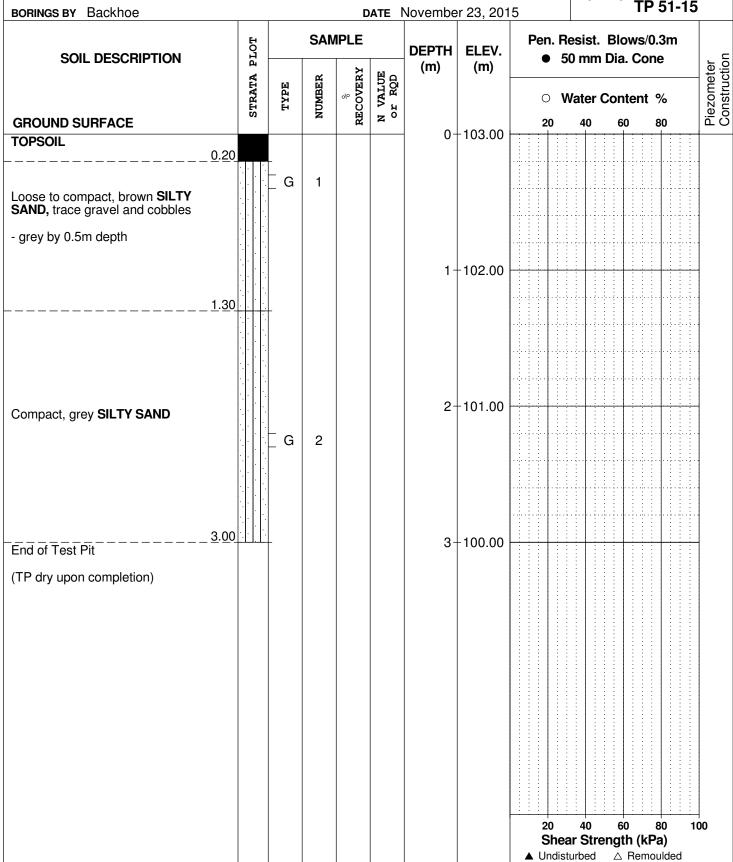
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 49-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.00G 1 1 + 102.00Loose compact, brown SILTY SAND with roots in upper 300mm - grey by 1.3m depth 2 + 101.00G 2 3.00 3+100.00End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 50-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.40**TOPSOIL** <u>0</u>.<u>1</u>5 G 1 Loose to compact, brown SILTY **SAND** 1 + 101.40- grey by 1.1m depth 2 + 100.40G 2 ⊻ 3.00 3 3 + 99.40End of Test Pit (Open hole GWL @ 2.9m depth) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded


Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 51-15 **BORINGS BY** Backhoe DATE November 23, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 52-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.10G 1 Loose to compact, brown SILTY SAND, some roots in upper 100mm - grey by 0.5m depth 1 + 102.102 + 101.10G 2 3.00 3+100.10End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 53-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.20G 1 1+102.20Loose, brown SILTY SAND, trace G 2 gravel and cobbles. Roots in upper 400mm 2 + 101.203.00 3+100.20End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 54-15 **BORINGS BY** Backhoe DATE November 23, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 105.00 G 1 Loose to compact, brown SILTY **SAND** with trace to some gravel, cobbles and roots 1 + 104.00- grey by 0.9m depth 2 + 103.00G 2 3+102.003.10 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

Shear Strength (kPa)

△ Remoulded

▲ Undisturbed

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 55-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 + 105.30G 1 Compact, brown SILTY SAND - rootlets in upper 100mm 1 + 104.30- grey by 0.9m depth 2 + 103.30G 2 3.00 3+102.30End of Test Pit (TP dry upon completion) 20 40 60 80 100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 56-15 **BORINGS BY** Backhoe DATE November 30, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 + 106.50G 1 Compact, brown SILTY SAND 1 + 105.50- rootlets in upper 200mm - grey by 1.1m depth 2 + 104.50G 2 3.00 3 + 103.50End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolation	olated	d from	City	of Otta	awa b	asemap.			FILE	NO. PG360	7
REMARKS				_		م طعم در دار	O.4. O.0.4	E	HOLI	E NO. TP 57- 1	15
BORINGS BY Backhoe					ATE	Novembe	r 24, 20 i				
SOIL DESCRIPTION	A PLOT			#PLE	ы	DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	ter
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD					Content %	Piezometer Construction
GROUND SURFACE				<u> </u>	4	0-	-109.00	20	40	60 80	C
TOPSOIL 0.15		G	1								
Brown SILTY SAND		_ _ G	2								
- with gravel, cobbles and boulders from 1.0 to 1.3m depth						1 -	-108.00				
- grey by 1.3m depth		_ G	3			1	100.00				
						2-	-107.00				
End of Test Pit (TP dry upon completion)						3-	-106.00				
										60 80 ength (kPa) △ Remoulded	100

Geodetic elevations interpolated from City of Ottawa basemap.

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

FILE NO. **PG3607**

REMARKS

DATUM

BORINGS BY Backhoe					ATE	Novembe	or 24 201	15	HOI	LE NO.	TP 58-15	;
SOIL DESCRIPTION	PLOT		SAN	IPLE	AIE I	DEPTH	ELEV.	Pen. R		. Blows	s/0.3m	
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			Conter		Piezometer Construction
GROUND SURFACE	0,		4	뙶	z °	0-	107.60	20	40	60	80	يقي
Red-brown to grey SILTY SAND with gravel, cobbles and boulders		_ _ G _ G	1 2				107.00					-
with gravel, cobbles and boulders 1.20		_ G _ G	3			1-	106.60					
Grey SILTY SAND		G	5			2-	-105.60					
Grey SILTY SAND with gravel, cobbles and boulders 3.20 End of Test Pit (TP dry upon completion)						3-	-104.60					
								20 Shea ▲ Undist		60 r ength (△ Re		00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations in	nterpola	ted f	rom	City	of Otta	awa b	asemap.			F	ILE	NO.	PG	3607	
REMARKS BORINGS BY Backhoe						ATE	Novombo	vr 04 001	15	ŀ	HOLE	NO.	TP :	59-15	5
BORINGS BY Backhoe SOIL DESCRIPTION	E			SAM	IPLE	AIE	Novembe DEPTH	ELEV.	Pen.				vs/0.:	3m	
GOIL BLOOTHI TION	0 4 E 4 0 E 5		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0			Conte			Piezometer Construction
GROUND SURFACE	ָ בּ	מ	Ħ	N	REC	N N			20		40	60		80	Piez
TOPSOIL	0.05	1:/					0-	106.20					: :		
			G G	1											
Brown SILTY SAND with gravel, cobbles and boulders - grey by 0.5m depth							1-	-105.20							
							2-	-104.20							
End of Test Pit (TP dry upon completion)	3.00		G	3			3-	-103.20							
									20 Sh	ear (60 ngth	(kPa	a)	00

SOIL PROFILE AND TEST DATA

20

▲ Undisturbed

40

Shear Strength (kPa)

60

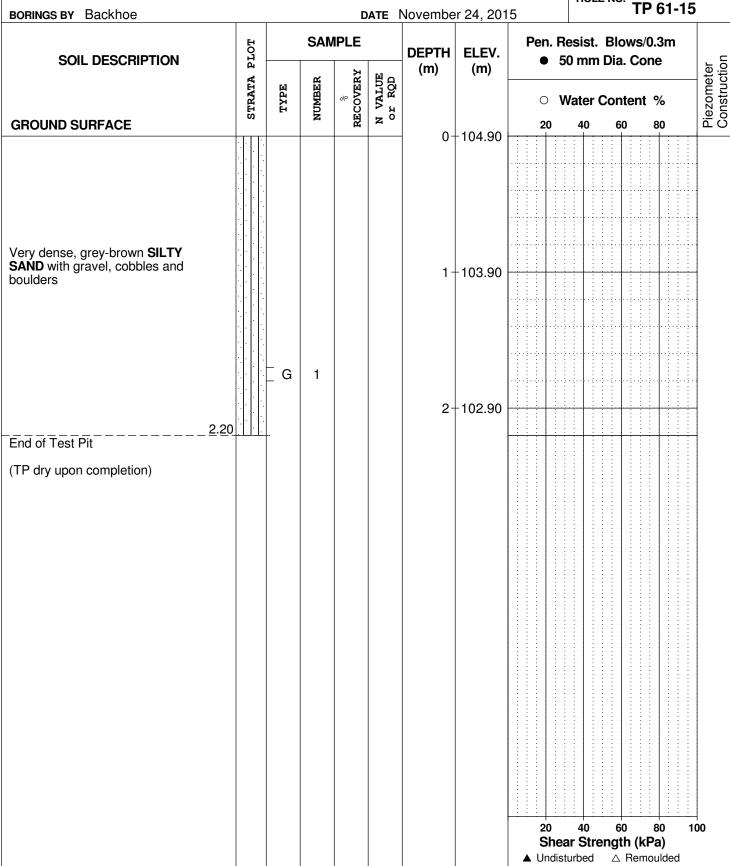
80

△ Remoulded

100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario


DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 60-15 **BORINGS BY** Backhoe DATE November 24, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.10Red-brown SILTY SAND with gravel, cobbles and boulders, trace organics G 1 0.56 G 2 1 + 103.10Loose, grey-brown SILTY SAND 2 + 102.102.10 G 3 Grey SILTY SAND with gravel, cobbles and boulders 3.00 3+101.10End of Test Pit (TP dry upon completion)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 61-15 DATE November 24, 2015

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 62-15 **BORINGS BY** Backhoe DATE November 20, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0+101.40**TOPSOIL** 0.30 G 1 Brown SILTY SAND - grey by 0.9m depth 1 + 100.40G 2 2 + 99.40 ∇ G 3 3.00 3 + 98.40End of Test Pit (Open hole GWL @ 2.5m depth) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

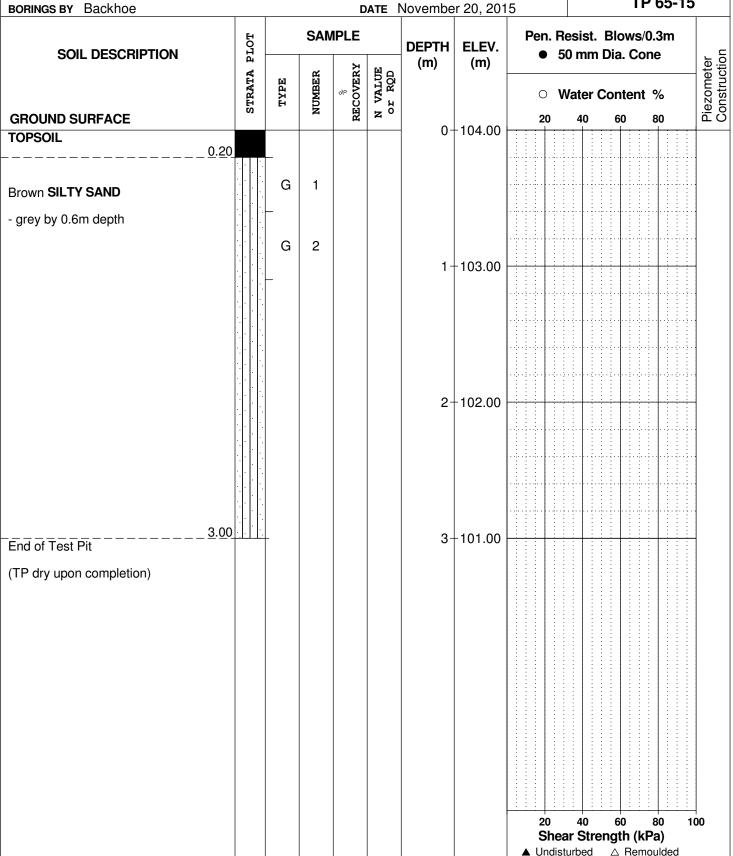
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 63-15 **BORINGS BY** Backhoe DATE November 20, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+101.60**TOPSOIL** <u>0</u>.<u>1</u>5 G 1 G 2 1 + 100.60Brown SILTY SAND, some clay 2 + 99.603.00 3 + 98.60End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario


Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 64-15 **BORINGS BY** Backhoe DATE November 20, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 103.00 **TOPSOIL** 0.30 G 1 1 + 102.00G 2 **Brown SILTY SAND** 2 + 101.00G 3 3.00 3+100.00End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 65-15 **BORINGS BY** Backhoe DATE November 20, 2015

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 66-15 **BORINGS BY** Backhoe DATE December 2, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 105.00 **TOPSOIL** 0.25 G 1 1 + 104.00Compact, brown SILTY SAND 2 + 103.00G 2 3.00 3+102.00End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM**

FILE NO.

PG3607

								HOLE	NO	
_				ATE	Novembe	r 20, 201	5		TP 67-15	5
PLOT		SAI	T		DEPTH (m)	ELEV.				\tau_{i}
	YPE	MBER	% OVERY	VALUE RQD	(111)	(111)	0 V	/ater C	ontent %	Piezometer
S.	-	NG.	REC	Z O		440.00	20	40	60 80	Pie
					0-	110.60				
	G	1								
	u	'								
					1-	109.60				
										-
										-
					2-	108.60				
	G	2								
		_								
o	_				3-	107.60				-
							20	40	60 80 1	⊣ 1 00
							Snea ▲ Undist	urbed	igtn (KPa) △ Remoulded	
	STRATA PLOT	STRATA O TYPE	STRATA PLO G TYPE 1 OUMBER	STRATA PLOT C TYPE C C C C C C C C C C C C C C C C C C C	STRATA PLOT C TYPE C NUMBER RECOVERY N VALUE OF ROD	SAMPLE SAMPLE SAMPLE SALVATA PLOT A VALUE OF ROD OF ROD OF ROD OF SO O	SAMPLE SAMPLE SAMPLE GOVERY A NUMBER OF 110.60 G 1 G 2 G 2	G 1 G 2 3-107.60 DEPTH ELEV. (m) 0 - 110.60 20 20 Shear	SAMPLE DEPTH ELEV. (m) Follow Somm I Somm I	SAMPLE DEPTH (m) Compare Compar

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 68-15 **BORINGS BY** Backhoe DATE November 20, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 + 107.30**TOPSOIL** 0.10 Loose SANDY SILT G 1 0.30 G 2 1 + 106.30Compact, brown SILTY SAND 2 + 105.30G 3 3.00 3 + 104.30End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 69-15 **BORINGS BY** Backhoe DATE November 24, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 105.00 G 1 2 G Brown SILTY SAND with gravel, cobbles and boulders. 1 + 104.00- grey by 1.1m depth 2 + 103.003+102.003.30 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO.

BORINGS BY Backhoe				С	ATE	Novembe	er 24, 201	5	TP 70-15	;
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.		esist. Blows/0.3m mm Dia. Cone	<u>ا</u> _ ز
	STRATA 1	TYPE	NUMBER	» RECOVERY	N VALUE or RQD	(m)	(m)		ater Content %	Piezometer
GROUND SURFACE		_ G	1	н		0-	103.60	20	40 60 80	
Dense, grey-brown SILTY SAND with gravel, cobbles and boulders		G	2			1-	-102.60			
		G	3			2-	-101.60			
End of Test Pit (TP dry upon completion)	<u>) </u>	· -								
								20 Shea ▲ Undistu	r Strength (kPa)	00

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 71-15 **BORINGS BY** Backhoe DATE November 24, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 60 0+103.10G 1 Dense, grey-brown SILTY SAND G 2 with gravel, cobbles and boulders 1 + 102.101.70 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 72-15 **BORINGS BY** Backhoe DATE November 24, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 101.70 Brown SILTY SAND with gravel, G 1 cobbles and boulders, trace clay 1 + 100.70G 2 2 + 99.702.10 G 3 Brown SILTY SAND 3 + 98.703.30 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interp	olated	d from	City	of Otta	awa b	asemap.			FILE	NO. PG360	7
REMARKS								_	HOLI	E NO. TP 73-1	5
BORINGS BY Backhoe				D	ATE	Novembe	er 24, 201	15 		117 73-1	<u> </u>
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	er
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	, ,	, ,	0 V	Vater (Content %	Piezometer Construction
GROUND SURFACE	0,		4	R	Z	0-	102.10	20	40	60 80	تة ك
		_ _ G	1				102.10				
		_ _ G	2				101 10				
Dark brown to grey-brown SILTY] -	-101.10				
Dark brown to grey-brown SILTY SAND with gravel, cobbles and boulders, trace clay		_ G	3			2-	-100.10				
3.00 End of Test Pit						3-	-99.10				
(TP dry upon completion)											
								20 She	40 ar Stre	60 80 ength (kPa)	100

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM REMARKS**

FILE NO. **PG3607**

BORINGS BY Backhoe				D	ATE	Novembe	er 24, 201	15	НОІ	LE NO.	ГР 74-15	5
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)		Pen. R		. Blow n Dia. C		er Jon
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0 V	Vater	Conte	nt %	Piezometer Construction
GROUND SURFACE	0,		2	푒	z °	0-	101.00	20	40	60	80	بع ج
		G	1									
Compact, dark brown SILTY SAND with gravel, cobbles and boulders		G	2			1-	100.00					
- grey by 1.2m depth		G	3									
						2-	99.00					
3. <u>10</u> End of Test Pit		_ G	4			3-	98.00					
(TP dry upon completion)												
								20 Shea ▲ Undist	40 ar Sti turbed	60 rength (△ Re	80 1 (kPa) emoulded	00

SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607** REMARKS HOLE NO.

BORINGS BY Backhoe		1			ATE	Novembe	er 24, 20 ⁻	5 TP 75-	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone	٦
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD			O Water Content %	Piezometer
ROUND SURFACE	111			æ		0-	98.00	20 40 60 80	_ ^
		- G	1						
ark brown SILTY SAND with avel and cobbles, trace clay		G	2			1 -	97.00		
grey by 1.1m depth									
						2-	96.00		
2 nd of Test Pit	2.90	G	3						
P dry upon completion)									
								20 40 60 80	100
								Shear Strength (kPa) ▲ Undisturbed △ Remoulded	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations inter	polated	d fron	n City	of Otta	awa b	asemap.			FILE	NO. PG3607	,
REMARKS				_		Novembe	w 0.4 00:	15	HOLE	E NO. TP 76-1 5	 5
BORINGS BY Backhoe					AIE	Novembe	24, 20				<u> </u>
SOIL DESCRIPTION	A PLOT			MPLE	担っ	DEPTH (m)	ELEV. (m)	1		Blows/0.3m Dia. Cone	eter
CDOLIND SLIDEACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD					Content %	Piezometer
Dense, brown SILTY SAND with gravel, cobbles and boulders End of Test Pit (TP dry upon completion)	0			X	4		97.90	20	40	60 80	
								20 She		60 80 1 ength (kPa) △ Remoulded	100

Geodetic elevations interpolated from City of Ottawa basemap.

SOIL PROFILE AND TEST DATA

FILE NO.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

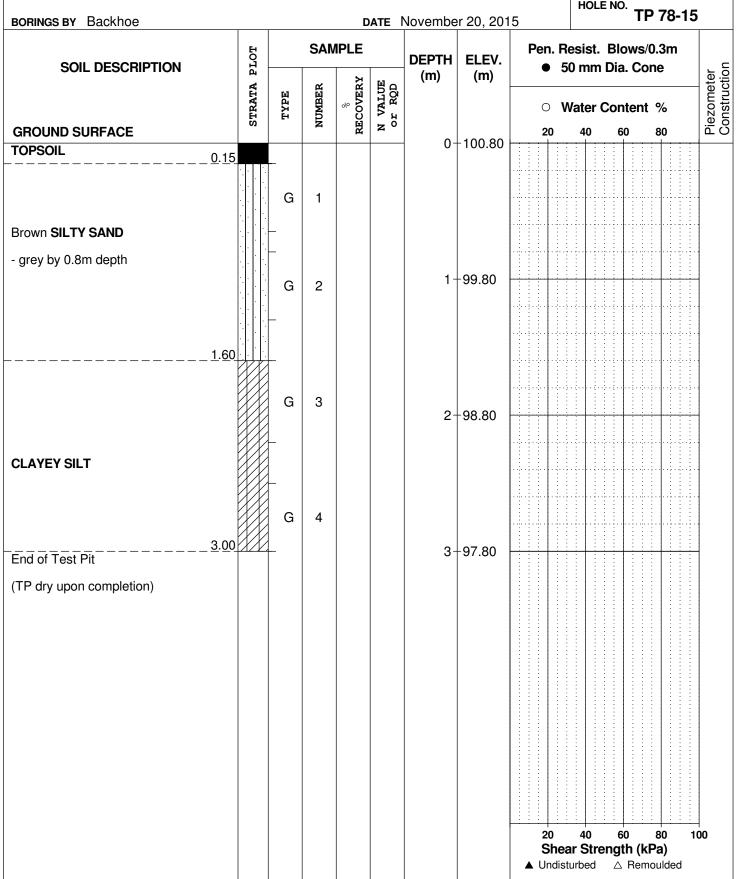
PG3607 REMARKS HOLE NO. TP 77-15 **BORINGS BY** Backhoe DATE November 24, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 60 0+98.40G 1 1 + 97.40G 2 Grey SILTY SAND with gravel, cobbles and boulders 2 + 96.40G 3 3.00 3+95.40End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario


Geodetic elevations interpolated from City of Ottawa basemap. **DATUM**

PG3607

REMARKS

HOLE NO.

FILE NO.

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 79-15 **BORINGS BY** Backhoe DATE November 20, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 100.80 **TOPSOIL** 0.35 G 1 1+99.80

Very stiff, brown **SILTY CLAY**

G 2

End of Borehole
(TP dry upon completion)

3-97.80

40

▲ Undisturbed

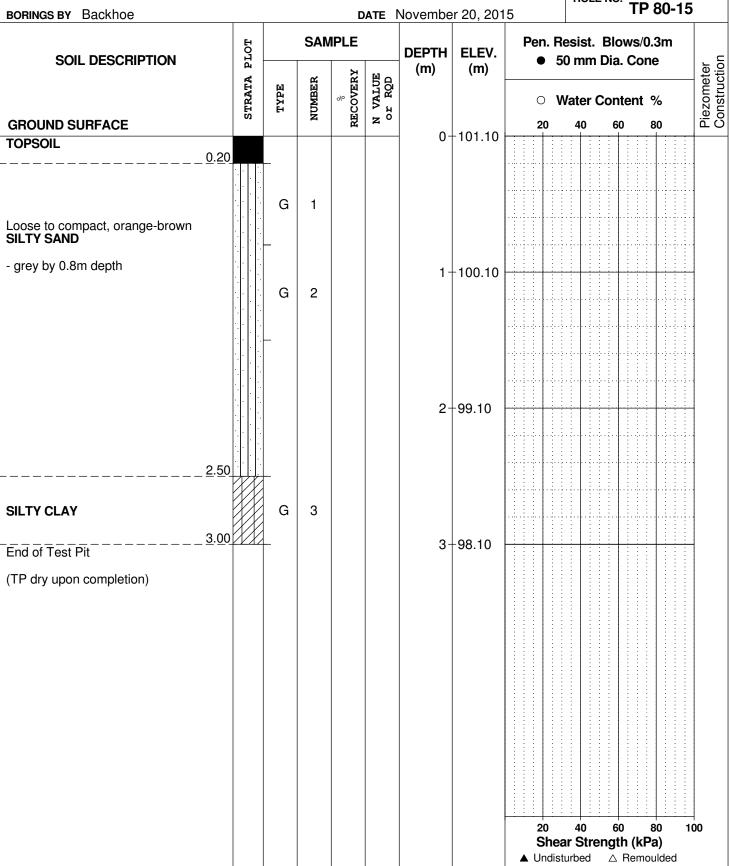
Shear Strength (kPa)

60

80

△ Remoulded

100


2 + 98.80

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 80-15 **BORINGS BY** Backhoe DATE November 20, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpo	olated	d from	n City	of Otta	awa b	asemap.			FIL	E NO.	PG	3607	
REMARKS BORINGS BY Backhoe				Б	ATE	Novembe	ar 20 201	15	НС	DLE NO). TP (81-15	;
BORINGS BT DACKTOE	ы		SAN	/IPLE	AIL	Novembe	20, 20		 Rosis	t RI	ows/0.		
SOIL DESCRIPTION	PLOT				_	DEPTH (m)	ELEV. (m)	1			a. Cone		er
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD			0	Wate	r Cor	ntent 9	<u> </u>	omet
GROUND SURFACE	STI	H	NON	REC	N N	_		20	40			80	Piezometer Construction
TOPSOIL						0-	101.80						
0.30		_											
Brown SILTY SAND		G	1										
1.05						1-	100.80						
<u></u>		_					100.00						
Very stiff, brown SILTY CLAY						2-	99.80		+++				-
very still, brown SILTY CLAY													
		<u>-</u>				3-	98.80						
(TP dry upon completion)													
								20	40) (60 8	30 10	00
								Sn. ▲ Und		ເ reng d △	th (kPa . Remou	1) Ilded	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 82-15 **BORINGS BY** Backhoe DATE November 20, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 + 102.50G 1 **Brown SILTY SAND** - rootlets in upper 100mm G 2 - grey by 0.5m depth 1 + 101.501.55 G 3 2 + 100.50Stiff to very stiff, brown SILTY CLAY 3+99.50End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO.

BORINGS BY Backhoe					ATE	Novembe	15 TP 83-1				
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.			. Blows/0.3m n Dia. Cone	
	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 \	Vater	Content %	Piezometer
GROUND SURFACE				X	_	0-	104.90	20	40	60 80	
		G	1								
Orange SILTY SAND											
grey by 0.7m depth		_				1-	103.90				
		G	2								
		_									
						2-	102.90				
3 End of Test Pit	.00	+				3-	101.90				
(TP dry upon completion)											
								20 She ▲ Undis	40 ar Stre turbed	60 80 ength (kPa) △ Remoulded	100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations in	terpolat	ed from	City	of Otta	awa b	asemap.			FILE NO	PG3607				
REMARKS BORINGS BY Backhoe					ATE	Novembe	vr 20 201	15	HOLE N	o. TP 84-15	;			
Dacking by Dacking			SVI		AIE	Novembe	20, 201		lecist R	lows/0.3m				
SOIL DESCRIPTION	PLOT	1				DEPTH (m)	ELEV. (m)		60 mm Di		ter			
	STRATA	TYPE	SAMPLE SAMPLE & SAMPL	N VALUE or RQD			0 1	Water Content %						
GROUND SURFACE	ST	H	DN	REC	N	0-	108.00	20		60 80	Piez			
TOPSOIL	0.30						100.00							
SILTY SAND with gravel	0.60	G	1											
		G	2											
SILTY SAND						1-	107.00							
- trace clay by 1.2m depth		G -	3											
		G	4								-			
						2-	106.00							
	3.00						105.00							
End of Test Pit						3-	105.00							
(TP dry upon completion)														
								20 She ▲ Undis	ar Streng	60 80 1 I th (kPa) Remoulded				

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 85-15 BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 + 106.20**TOPSOIL** <u>0</u>.<u>1</u>5 1 G 2 1 + 105.20Grey-brown SILTY SAND with gravel, cobbles and boulders 2 + 104.20G 3 2.90 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 86-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.00**TOPSOIL** <u>0</u>.<u>1</u>5 Brown SILTY SAND, some gravel G and cobbles 1 0.90 1 + 102.00G 2 **Grey SILTY SAND** 2 + 101.00G 3 3+100.003.10 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

SOIL PROFILE AND TEST DATA

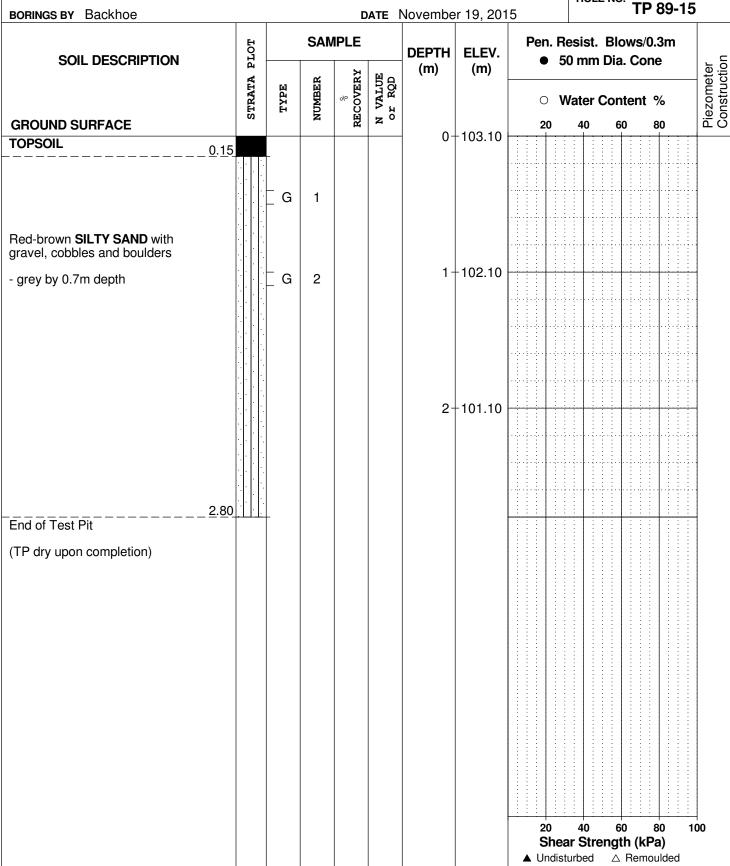
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 87-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0+102.50**TOPSOIL** 0.20 Brown SILTY SAND with gravel, G cobbles and boulders, trace clay 0.50 2 1 + 101.50**Grey SILTY SAND** 2 + 100.50G 3 3.00 3 + 99.50End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 88-15 BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.10**TOPSOIL** <u>0</u>.<u>1</u>2 G 1 Grey-brown to grey SILTY SAND with gravel, cobbles and boulders G 2 1 + 101.101.30 G 3 2 + 100.10**Grey SILTY SAND** G 4 3.00 3 + 99.10End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded


Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. **TP 89-15 BORINGS BY** Backhoe DATE November 19, 2015

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 90-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.50G 1 2 G 1 + 103.50Red-brown to grey SILTY SAND with gravel, cobbles and boulders, trace clay 2 + 102.50G 3 2.70 **Grey SILTY SAND** 3+101.503.10 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

FII F NO

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations	interpolated	d from	n City	of Otta	awa b	asemap.			FIL	E NO. P(33607	
REMARKS				_	'	Novembe	10 004	15	НО	LE NO. TP	91-15	 i
BORINGS BY Backhoe					ATE					, T		
SOIL DESCRIPTION	A PLOT			MPLE	阻口	DEPTH (m)	ELEV. (m)	Pen		n Dia. Cor		eter
ODOLIND CUREAGE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0		Content		Piezometer
GROUND SURFACE				<u> </u>		0-	100.60	20	0 40	60	80	-
Brown to grey SILTY SAND with gravel, cobbles and boulders							-99.60					
End of Test Pit	3.00	-				3-	97.60					1
(TP dry upon completion)									hear St	60 rength (kF	a)	00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

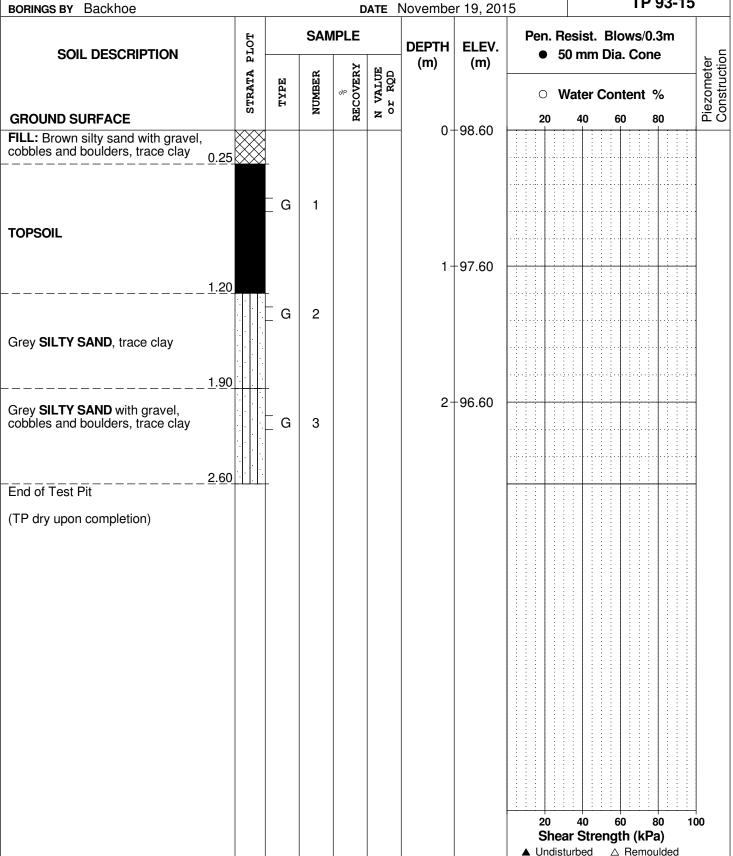
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 92-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+98.20G 1 G 2 1 + 97.20Brown SILTY SAND with gravel, cobbles and boulders - grey by 1.0m depth 2 + 96.20G 3 3.00 3 + 95.20End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap.


REMARKS

BORINGS BY Backhoe

DATE November 19, 2015

FILE NO. PG3607

HOLE NO. TP 93-15

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Geotechnical Investigation Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 94-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+99.90**TOPSOIL** <u>0</u>.<u>1</u>5 Loose, brown SILTY SAND 1 + 98.90- grey by 1.1m depth G 1 ⊻ 2 G 2 + 97.90G 3 End of Test Pit (Open hole GWL @ 1.55m depth) 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 95-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+99.90**TOPSOIL** 0.25 G 1 Loose, brown SILTY SAND 1 + 98.90G 2 - grey by 0.8m depth ⊻ G 3 2 + 97.90G 4 End of Test Pit (Open hole GWL @ 1.6m depth) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 96-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 60 0 ± 100.00 **TOPSOIL** 0.12 G Loose, brown SILTY SAND 1 -grey by 0.8m depth 1 + 99.00G 2 2 + 98.00G 3 2.95 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. **TP 97-15 BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+100.20**TOPSOIL** 0.23 G 1 Loose to compact, brown SILTY SAND, trace clay and gravel 1+99.20- grey by 1.1m depth G 2 2 + 98.20G 3 3.00 3 + 97.20End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP 98-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+100.60**TOPSOIL** 0.25 G 1 1 + 99.602 G Compact, brown to grey-brown SILTY SAND, trace clay and gravel 2 + 98.60G 3 2.90 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP 99-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+101.50**TOPSOIL** 0.20 Loose to compact, brown SILTY G 1 SAND, trace clay and gravel - grey by 0.8m depth 2 G 1 + 100.502 + 99.50G 3 3.00 3 + 98.50End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP100-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.00**TOPSOIL** 0.23 Loose, brown SILTY SAND, trace gravel and cobbles 0.70 1 + 101.00G 1 Loose, grey SILTY SAND 2 + 100.00G 2 2.80 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP101-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.10**TOPSOIL** <u>0.18</u> Brow SILTY SAND, trace gravel and cobbles 0.50 G 1 1 + 101.10Loose to compact, grey SILTY **SAND** G 2 2 + 100.10G 3 2.90 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP102-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.00**TOPSOIL** <u>0</u>.<u>1</u>5 Brown SILTY SAND, trace gravel G 1 and cobbles 0.65 G 2 1 + 102.00Loose to compact, grey SILTY SAND, trace clay 2 + 101.00G 3 3+100.003.20 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP103-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 + 105.50**TOPSOIL** 0.20 G 1 Compact, dark brown to grey SILTY SAND with gravel, cobbles and boulders 1 + 104.50G 2 1.50 2 + 103.50G 3 Loose, grey SILTY SAND 3.00 3+102.50End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP104-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.60**TOPSOIL** 0.20 Brown SILTY SAND, trace gravel, cobbles and boulders G 1 0.65 G 2 1 + 101.60**Grey SILTY SAND** 2 + 100.603.00 3 3 + 99.60End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP105-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+103.60**TOPSOIL** 0.23 G 1 Loose, brown SILTY SAND, some gravel, cobbles and boulders 1 + 102.601.20 **Grey SILTY SAND** 2 + 101.602.20 G 2 Loose grey SILTY SAND, some gravel, cobbles and boulders End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP106-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+104.50**TOPSOIL** 0.20 G 1 2 G 1 + 103.50Dark brown to grey **SILTY SAND** with gravel, cobbles and boulders 2 + 102.50G 3 2.50 **Grey SILTY SAND** 3+101.503.10 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

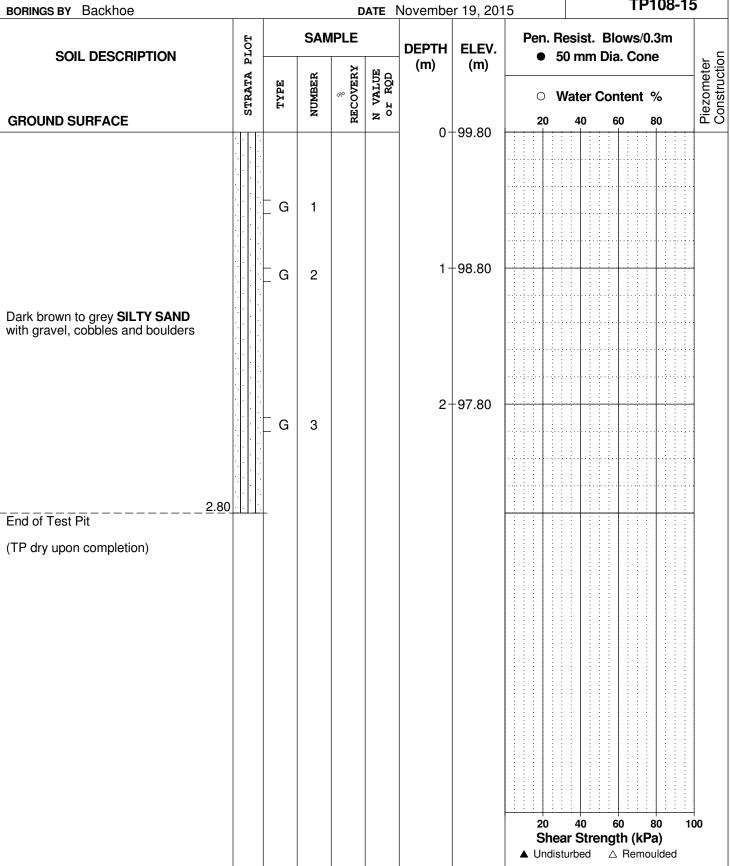
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO.

BORINGS BY Backhoe					DATE	Novembe	er 19, 201		TP107-1	5
SOIL DESCRIPTION			SAN	/IPLE	T	DEPTH	ELEV.		st. Blows/0.3m nm Dia. Cone	_ ;
GROUND SURFACE	STRATA PLOT TYPE NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		er Content %	Piezometer		
		G G	1 2			0-	103.20			
		_ G	3			1 -	-102.20			
Brown to grey SILTY SAND with gravel, cobbles and boulders						2-	-101.20			
End of Test Pit (TP dry upon completion)	00					3-	-100.20			
								20 4 Shear S ▲ Undisturbe	Strength (kPa)	100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario


DATUM Geodetic elevations interpolated from City of Ottawa basemap.

FILE NO. PG3607

REMARKS
BORINGS BY Backhoe

DATE November 19, 2015

TP108-15

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interp	olate	d from	City	of Otta	awa b	asemap.			FIL	E NO.	3607	
REMARKS				_		N	10 00:	4.5	НО	LE NO. TP1	09-15	 5
BORINGS BY Backhoe					AIL	Novembe	er 19, 20					
SOIL DESCRIPTION	PLOT			/IPLE		DEPTH (m)	ELEV. (m)	Pen.		t. Blows/0. n Dia. Cone		ter
	STRATA	TYPE	NUMBER	» RECOVERY	N VALUE or RQD	(,	(,	0	Wate	r Content 9	%	Piezometer Construction
GROUND SURFACE			Z	푒	z o	0-	99.00	20	40	60 8	30	iξζ
TOPSOIL 0.10							00.00					
		_ _ G	1									
Brown to grey SILTY SAND with		G	2									
gravel, cobbles and boulders, trace clay		_	-			1-	98.00					
0.00												
2.00 End of Test Pit		†				2-	97.00					
(TP dry upon completion)												
									40 ear St listurbed	rength (kPa)0

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP110-15 **BORINGS BY** Backhoe DATE November 19, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+98.50TOPSOIL 0.05 G 1 G 2 1 + 97.50Red-brown to grey **SILTY SAND** with gravel, cobbles and boulders, trace clay 2 + 96.50G 3 3.00 3 + 95.50End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP111-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+99.50**TOPSOIL** <u>0</u>.20 G 1 Compact, brown SILTY SAND 1 + 98.50G 2 - grey by 1.2m depth ∇ 2 + 97.50G 3 2.60 End of Test Pit (Open hole GWL @ 1.5m depth) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP112-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+99.60**TOPSOIL** <u>0</u>.<u>2</u>3 G 1 1 + 98.60Loose to compact, brown SILTY **SAND** - grey by 1.4m depth ∇ G 2 2 + 97.60G 3 2.90 End of Test Pit (Open hole GWL @ 1.5m depth) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP113-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+100.00**TOPSOIL** <u>0</u>.20 G 1 1 + 99.00Compact, brown SILTY SAND with - grey by 1.4m depth ∇ 2 + 98.00G 2 G 3 3 + 97.003.10 End of Test Pit (Open hole GWL @ 1.5m depth) 20 40 60 80 100 Shear Strength (kPa)

Geotechnical Investigation

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion Ottawa, Ontario

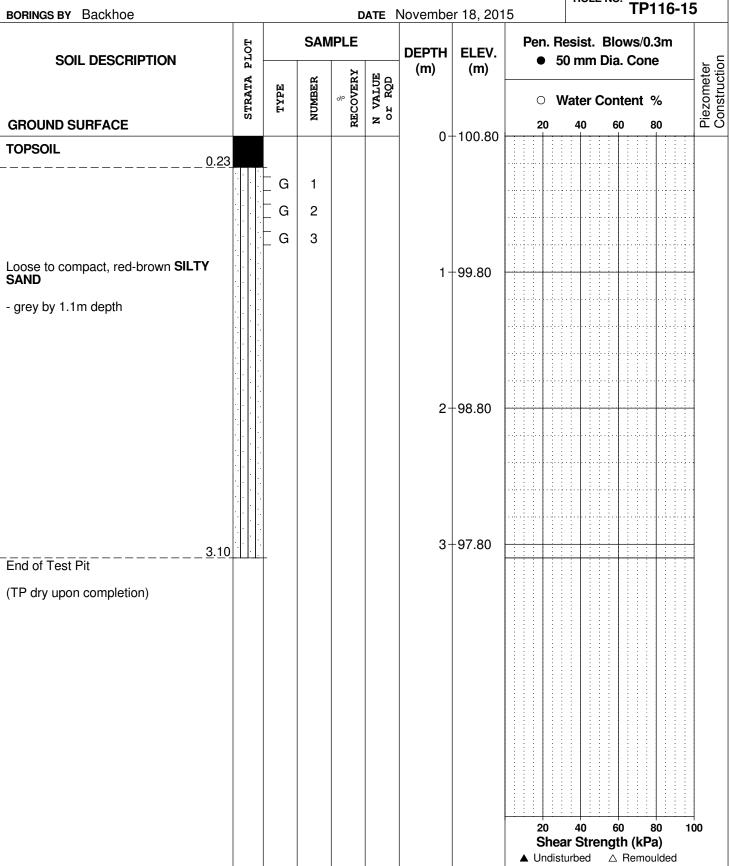
Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP114-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+100.00**TOPSOIL** 0.25 G 1 1 + 99.00Loose to compact, grey-brown SILTY SAND G 2 - grey by 1.2m depth ∇ 2 + 98.003.00 3 3 + 97.00End of Test Pit (Open hole GWL @ 1.5m depth) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP115-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 60 0 + 100.20**TOPSOIL** G 1 <u>0.2</u>8 G 2 Compact, grey-brown SILTY SAND 1+99.20- grey by 1.0m depth G 3 2 + 98.202.95 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded


SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP116-15 **BORINGS BY** Backhoe DATE November 18, 2015

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Barrhaven South Urban Expansion 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario

FILE NO.

DATUM

Geodetic elevations interpolated from City of Ottawa basemap.

PG3607

REMARKS BORINGS BY Backhoe				D	ATE Î	Novembe	er 17, 201	15	HOLE	NO.	P117-1	5
SOIL DESCRIPTION			SAMPLE			DEPTH	ELEV.	Pen. Resist. Blows/0.				<u>ا آ</u>
	STRATA PLOT	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater (Conten	ıt %	Piezometer
GROUND SURFACE	מ	_	Z	Ä	zö	0-	101.30	20	40	60	80	Pie C
TOPSOIL 0.17							101.30					
		G	1									
		4	100.00									
		_ G	2			-	100.30					
Brown SILTY SAND , trace clay - grey by 1.4m depth		G	3									
groy by 1. IIII dopui		_										
						2-	-99.30					
3.00		_ _ G	4									
End of Test Pit		_				3-	-98.30					
(TP dry upon completion)												
								20 Shea	40 ar Stre	60 ength (l		100

SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP118-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 ± 101.70 **TOPSOIL** <u>0</u>.<u>1</u>5 G 1 **Brown SILTY SAND** 1 + 100.70- with trace clay and grey by 1.3m depth G 2 2 + 99.70G 3 3.00 3 + 98.70End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP119-15 **BORINGS BY** Backhoe DATE November 17, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.80**TOPSOIL** 1 0.20 G 2 Brown SILTY SAND, trace gravel 1 + 101.80- grey by 1.0m depth G 3 2 + 100.80- boulder noted at 2.5m depth G 4 3 + 99.803.10 End of Test Pit (BH dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations i	interpolate	d from	n City	of Otta	awa b	asemap.			FILE	E NO. PG360	7
REMARKS ROPINGS BY Rockhoo				_	\A-T-	Novomb-	or 10 004	15	HOL	E NO. TP120-	15
BORINGS BY Backhoe			CAL		DAIE	Novembe	er 18, 201				
SOIL DESCRIPTION	A PLOT			MPLE	担口	DEPTH (m)	ELEV. (m)			. Blows/0.3m n Dia. Cone	eter
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			20	Water	Content % 60 80	Piezometer
TOPSOIL	0.20					0-	104.60				:
Loose to compact, brown SILTY SAND, some gravel, cobbles and boulders		G	1 2			2-	-103.60 -102.60				
End of Test Pit (TP dry upon completion)	3.00	. G	3			3-	-101.60	20	10	60 90	100
										60 80 rength (kPa) △ Remoulded	100

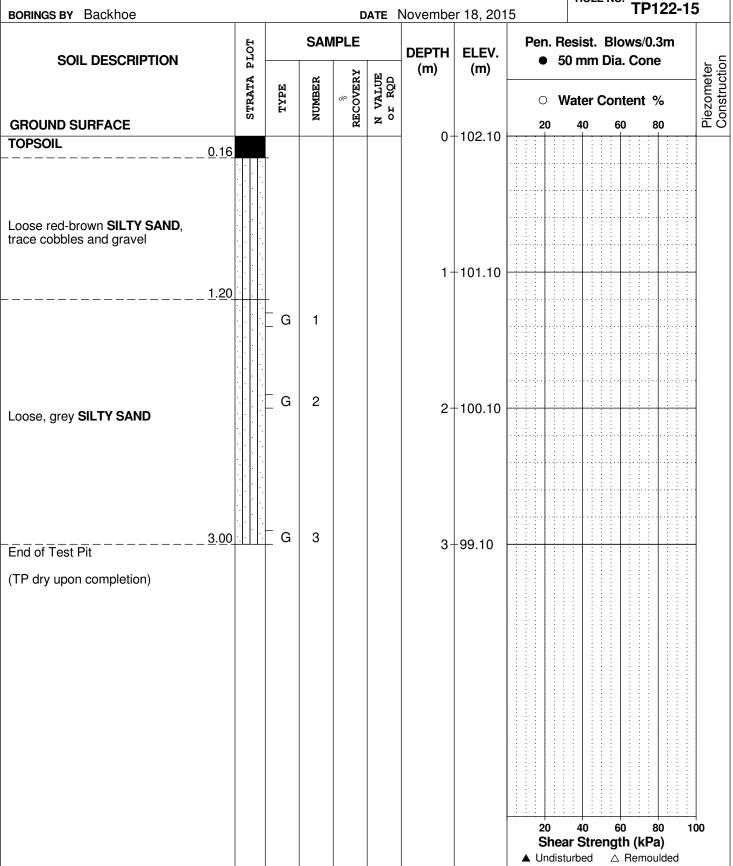
SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP121-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+102.40**TOPSOIL** 0.23 G 1 Loose to compact, brown SILTY SAND with gravel, cobbles and boulders 1 + 101.40G 2 - grey by 0.7m depth 2 + 100.403.00 3 3 + 99.40End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Geotechnical Investigation


SOIL PROFILE AND TEST DATA

Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Barrhaven South Urban Expansion

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TP122-15 **BORINGS BY** Backhoe DATE November 18, 2015

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Barrhaven South Urban Expansion Ottawa, Ontario

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP123-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0+100.50G 1 Loose, red to grey-brown SILTY SAND, some gravel, cobbles and 1 + 99.50G 2 boulders - grye by 1.0m depth 1.80 ∇ 2 + 98.50Loose, grey SILTY SAND 3 End of Test Pit (Open hole GWL @ 1.8m depth) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

Geodetic elevations interpolated from City of Ottawa basemap. **DATUM** FILE NO. **PG3607 REMARKS** HOLE NO. TD124-15

SOIL DESCRIPTION GROUND SURFACE Compact, brown SILTY SAND with ravel, cobbles and boulders	STRATA PLOT	TYPE	NUMBER	» BLCOVERY	N VALUE or RQD	DEPTH (m)	ELEV. (m)			n Dia	. Con	е	Piezometer
GROUND SURFACE		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)						neter
								20	40	6		% 30	Piezon
compact, brown SILTY SAND with ravel, cobbles and boulders						0-	-99.50	20	40		,		+-
		G G	1			1-	-98.50						
grey by 2.2m depth		_ G	2			2-	-97.50						<u>\</u>
2 60		G	3										
nd of Test Pit		<u> </u>	3										1
Open hole GWL @ 1.4m depth)													
								20 She: ▲ Undis	40 ar Stı	6 engt	h (kPa Remo	a)	100

Barrhaven South Urban Expansion

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM Geodetic elevations interpolated from City of Ottawa basemap. FILE NO. **PG3607 REMARKS** HOLE NO. TP125-15 **BORINGS BY** Backhoe DATE November 18, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 40 0+98.10**TOPSOIL** 0.10 G 1 Compact, brown SILTY SAND, 0.30 trace clay and gravel 2 G 1 + 97.10Compact, grey SILTY SAND with gravel, cobbles, boulders and clay 2 + 96.10G 3 ⊻ 3.00 3 + 95.10End of Test Pit (Open hole GWL @ 2.6m depth) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by J.D. Barnes Limited.

Ottawa, Ontario

DATUM **REMARKS** FILE NO.

HOLE NO.

PG3450

RH 1-15

BORINGS BY CME 55 Power Auger				С	ATE	March 6, 2	2015	BH 1-15	
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH		Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	Ne
GROUND SURFACE	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %	Monitoring Well
CHOSKE GOTH AGE	^^^^^					0-	97.13		8
GLACIAL TILL: Dense to compact, brown silty fine sand with gravel, trace		ss	1	100	35	1-	96.13		
clay - grey by 1.7m depth		ss	2	100	27	2-	95.13	0	
		ss	3	58	17	3-	-94.13	-O	
		ss	4	58	11	3	J4.10	0	
		ss	5	21	8	4-	93.13	0	
25mm thick coarse sand seam at 5.0m depth 5.18 End of Borehole		ss	6	58	15	5-	92.13	0:	
GWL @ 2.7m-March 23, 2015)									
GWL @ 2.37m-April 21, 2015)									
GWL @ 3.43m-May 12, 2015)									
Moderate groundwater infiltration rate									
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. **PG3450 REMARKS** HOLE NO. BH 2-15 **BORINGS BY** CME 55 Power Auger **DATE** March 6, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 80 20 +98.62 Dense, brown SILTY fine to medium SAND - brown by 0.8m depth 1 + 97.62SS 1 100 31 1.20 SS 2 92 23 2+96.62 Compact, brown SILTY FINE SAND SS 3 75 19 3 + 95.62SS 4 0 100 24 3.66 - running sand by 3.7m depth 4 + 94.62SS 5 Compact, brown SILTY fine to 100 10 medium SAND End of Borehole (GWL @ 2.64m-March 23, 2015) (GWL @ 2.36m-April 21, 2015) (GWL @ 2.30m-May 12, 2015) High groundwater infiltration rate 20 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. RH 3-15

BORINGS BY CME 55 Power Auger				D	ATE	March 6, 2	2015	BH 3-15	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	Well
GROUND SURFACE	STRATA P	TYPE	NUMBER	» RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %	Monitoring Well
FILL: Brown silty sand with clay						0-	-95.64		× Z
<u>0.9</u> 0		ss	1	100	10	1-	-94.64	9	
/ery stiff to stiff, brown SILTY CLAY		ss	2	100	4	2-	-93.64	0	
grey by 2.1m depth		ss	3	100	3	3-	-92.64	0	
		ss	4	100	1		02.01	٥	
		ss	5	100	1	4-	-91.64	0	
trace sand and gravel by 4.7m depth5.18 End of Borehole		ss	6	100	4	5-	-90.64	О	
GWL @ 0.8m-March 23, 2015)									
GWL @ 0.3m-April 21, 2015)									
GWL @ 1.70m-May 12, 2015)									
Moderate groundwater infiltration rate									
								20 40 60 80 10 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	0

SOIL PROFILE AND TEST DATA

Residential Development - Half Moon Bay South

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Hydrogeological Investigation Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. RH 4-15

BORINGS BY CME 55 Power Auger					DATE	March 6, 2	2015	BH 4-1	5
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	Well
SOIL BLOOTIN TION	STRATA P	TYPE	NUMBER	* RECOVERY	VALUE r RQD	(m)	(m)	Water Content %	Monitoring Well Construction
GROUND SURFACE	SI	F	N N	REC	N O C		00.05	20 40 60 80	ŏO ¥
FILL: Brown silty clay with sand and gravel, trace topsoil						0-	-98.05		
graver, trace topson1.22		ss	1	50	5	1 -	-97.05		<u>-</u> = = = = = = = = = = = = = = = = = = =
Very stiff, brown SILTY CLAY		ss	2	67	6	2-	-96.05	Ö	
GLACIAL TILL: Brown silty clay with		∑ ss	3	100	50+	2.	-95.05	Φ	
GLACIAL TILL: Brown silty clay with sand and gravel, trace cobbles - grey by 3.0m depth		ss	4	100	8	3-	-95.05	0	
4. <u>0</u> 0		ss	5	50	26	4-	-94.05	0	
GLACIAL TILL: Compact, grey silty fine sand with clay and gravel		ss	6	17	16	5-	-93.05	Φ.	
6.10 End of Borehole		ss	7	17	21	6-	-92.05	··O··	
(GWL @ 2.24m-March 23, 2015)									
(GWL @ 1.14m-April 21, 2015)									
(GWL @ 1.69m-May 12, 2015)									
Moderate groundwater infiltration rate									
								20 40 60 80 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	100

Consulting Engineers SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. PG3450 **REMARKS** HOLE NO. BH 5-15 **BORINGS BY** CME 55 Power Auger **DATE** March 6, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 80 20 0 + 103.021 + 102.02SS 1 100 61 FILL: Dark brown silty fine sand with topsoil and gravel 2 SS 42 5 Ó 2+101.02 SS 3 3 0 67 3 + 100.02SS 4 <u>3.50</u> 67 6 Ó Dense, brown SILTY FINE SAND, 4 + 99.025 with gravel, trace clay SS 100 49 0 4.42 SS 6 92 46 5 + 98.02Dense to compact, light brown SILTY FINE SAND 7 SS 83 38 6 + 97.02- trace to some medium sand by 6.1m depth 8 SS 67 40 Ø 7 + 96.02- running sand by 7.0m depth SS 9 83 26 7.62 End of Borehole (GWL @ 7.15m-March 23, 2015) (GWL @ 6.80m-April 21, 2015) (GWL @ 6.76m-May 12, 2015) High groundwater infiltration rate 20 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. **RH 6-15**

BORINGS BY CME 55 Power Auger				D	ATE	March 5, 2	2015		BH 6-15	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blows/0.3m 0 mm Dia. Cone	Well
GROUND SURFACE	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		/ater Content %	Monitoring Well
FILL: Brown silty clay with sand, crace gravel and topsoil						0-	-101.42			
/		ss	1	42	14	1 -	-100.42			Į į
ery stiff, brown SILTY CLAY		ss	2	67	12	2-	-99.42	0		
75mm thick sand seams at 2.1 and 2.7m depths		ss	3	67	7				x	
3.20 Compact to dense, brown SILTY FINE SAND, trace gravel		ss	4	92	17	3-	-98.42	φ		
running sand at 3.2 to 4.1m depth		ss	5	92	50	4-	-97.42	0		
GLACIAL TILL: Very dense, brown o grey silty sand with clay, gravel, race cobbles	3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ss	6	92	52	5-	-96.42	0		
End of Borehole	1.4.4.									1
GWL @ 2.93m-March 23, 2015)										
GWL @ 0.99m-April 21, 2015)										
(GWL @ 1.45m-May 12, 2015)										
High groundwater infiltration rate										
								20 Shea ▲ Undistu	r Strength (kPa)	00

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by J.D. Barnes Limited.

Ottawa, Ontario

DATUM **REMARKS** FILE NO.

PG3450

BORINGS BY CME 55 Power Auger				<u> </u>	ATE	March 5, 2	015	HOLE NO. BH 7-15
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m ◆ 50 mm Dia. Cone
	STRATA I	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m ◆ 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SURFACE	07		-	88	Z	0-	-100.16	20 40 60 80 ≥
FILL: Brown silty sand with gravel, race clay and topsoil 0.6	0	× × ×						
		ss	1	50	14	1 -	-99.16	0
Compact to dense, light brown		ss	2	96	25	2-	-98.16	O
Compact to dense, light brown SILTY FINE SAND brown by 2.9m depth		ss	3	92	37	3-	-97.16	0
blowings 2.9iii depui		ss	4	100	33			o
		ss	5	92	20	4-	-96.16	o
5.4		ss	6	88	38	5-	-95.16	Φ
End of Borehole		†						
GWL @ 4.43m-March 23, 2015) GWL @ 3.67m-April 21, 2015)								
GWL @ 3.71m-May 12, 2015)								
High groundwater infiltration rate								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. BH 8-15 BORINGS BY CMF 75 Power Auger DATE May 7 2015

BORINGS BY CME 75 Power Auger					DATE	May 7, 20	15			BH 8-15	
SOIL DESCRIPTION	PLOT		SAN	/IPLE	1	DEPTH	ELEV.		Resist. B 50 mm Di	lows/0.3m a. Cone	₩. Well
	STRATA 1	TYPE	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)	0 '	Water Co	ntent %	Monitoring Well
GROUND SURFACE	้ง	-	2	N. N	N O N			20	40	60 80	∑
FILL: Dark brown sandy clay, some silt and gravel, trace cobbles		& AU	1			0-	-96.46				
FILL: Grey silty clay, trace sand and gravel 1.00		ss	2	58	7	1-	-95.46				
2.08	3	ss	3	42	11	2-	-94.46				
		ss	4	46	21						<u> </u>
GLACIAL TILL: Compact to dense, grey silty sand with gravel, cobbles and boulders		ss	5	64	50+	3-	-93.46				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	6	67	32	4-	-92.46				
<u>4.5</u> 7 End of Borehole	7 [^``,^``,^`,	f									
(GWL 2.28m-May 12, 2015) Moderate groundwater infiltration rate											
								20 She	ar Strenç	60 80 1 yth (kPa) \(\text{Remoulded} \)	⊣ 1 00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO.

BORINGS BY CME 75 Power Auger					DATE	May 7, 20	15	BH 9-15
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone
	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %
GROUND SURFACE	XXX	9 5		р.	-	0-	96.87	20 40 60 80
FILL: Brown clayey silt, some sand nd gravel		& AU ₩	1					
<u>1.22</u>		ss	2	75	60	1-	95.87	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	3	67	39	2-	94.87	
LACIAL TILL: Dense to compact, ey silty sand, some gravel gravel, obbles and boulders	\^,^,^ \^,^,^	ss	4	79	13			
obbles and boulders		ss	5	25	6	3-	93.87	
4.57		ss	6	62	15	4-	92.87	
4.57 nd of Borehole	1,^,^,	_						
GWL 2.87m-May 12, 2015)								
loderate groundwater infiltration rate								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. **PG3450 REMARKS** HOLE NO. BH10-15 **BORINGS BY** CME 75 Power Auger **DATE** May 7, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 20 80 0 + 96.911 Compact, brown SILTY SAND, trace gravel and cobbles 1 + 95.91SS 2 75 16 1.52 3 SS 67 14 2+94.91 Compact to loose, brown SAND, trace silt SS 4 92 8 3 + 93.91SS 5 34 3.45 83 GLACIAL TILL: Dense, grey silty 3.81 sand, some gravel and cobbles End of Borehole (GWL 0.99m-May 12, 2015) High groundwater infiltration rate 20 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. PH11-15

BORINGS BY CME 75 Power Auger				D	ATE	May 8, 20	15	BH11-15
SOIL DESCRIPTION	PLOT		SAN	IPLE	T	DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone
	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %
GROUND SURFACE	XXX	1954 1954		24	4	0-	98.24	20 40 60 80
FILL: Brown silty sand, some gravel, cobbles and boulders		À AU	1					
1.42		ss	2	62	13	1-	97.24	
OAND		ss	3	75	20	2-	96.24	S
ompact, brown SAND, trace silt		ss	4	79	22	3-	- 95.24	[2] [3] [4] [5] [6] [7] [7] [7] [8]
		ss	5	92	22		00.24	
compact to loose, brown SILTY SAND		ss	6	100	6	4-	94.24	
4.57 End of Borehole		_						
GWL 2.19m-May 12, 2015)								
ligh groundwater infiltration rate								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Shear Strength (kPa)

△ Remoulded

▲ Undisturbed

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. **PG3450 REMARKS** HOLE NO. BH12-15 **BORINGS BY** CME 75 Power Auger **DATE** May 8, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 20 80 0 + 98.76FILL: Brown silty clay, some sand 1 <u>0.4</u>6 1 + 97.76SS 2 75 15 SS 3 79 37 2 + 96.76GLACIAL TILL: Compact to dense, brown silty sand, some gravel, cobbles and boulders SS 4 75 60 3 + 95.76SS 5 42 32 3.96 End of Borehole (GWL 2.51m-May 12, 2015) Moderate groundwater infiltration rate 20 40 60 100

DATUM

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ground surface elevations provided by J.D. Barnes Limited.

SOIL PROFILE AND TEST DATA

FILE NO.

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

PG3450 REMARKS HOLE NO. BH13-15 BORINGS BY CME 75 Power Auger **DATE** May 8, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 80 20 0 + 98.05FILL: Brown silty sand, trace gravel, 1 cobbles, boulders and concrete 1.00 1 + 97.05SS 2 13 62 TOPSOIL 3 SS 100 9 2 + 96.05Very stiff, grey-brown SILTY CLAY, some sand seams ٠A 3 + 95.05SS 4 58 11 GLACIAL TILL: Grey silty sand with gravel, trace clay and cobbles 3.81 End of Borehole (GWL 1.20m-May 12, 2015) High groundwater infiltration rate 20 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Consulting Engineers

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. **PG3450 REMARKS** HOLE NO. BH14-15 **BORINGS BY** CME 75 Power Auger **DATE** May 8, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 20 80 0 + 99.62**TOPSOIL** 0.20 1 1 + 98.62SS 2 100 11 Very stiff to stiff, brown SILTY CLÁY, some sand 3 SS 100 10 2+97.62 - grey-brown by 1.5m depth SS 4 100 9 3+96.62 5 SS 7 100 End of Borehole (GWL 0.93m-May 12, 2015) High groundwater infiltration rate 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. RH15-15

PLOT		CAN											
ΙŽ		SAIV	IPLE		DEPTH	ELEV.	Pe				ows/0. a. Con		Mell
STRATA F	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)							Monitoring Well
02		4	푒	z °	0-	- 07 00	2	20	40	6	0	30	Σ
	AU	1				37.33							
1	ss	2	100	52	1-	-96.99							
8	∐ ∑ss	3	58	44		05.00							
3 - 1 - 1					2-	-90.99							
							2	20	40	6	60	30 1	00
1								Shea	r Stı	reng	th (kP	a)	
	STRAIL	AU 1 SS 8 SS	AU 1 SS 2 SS 3	SS 2 100 SS 3 58	SS 2 100 52 8 SS 3 58 44	AU 1 0-	AU 1 0-97.99 SS 2 100 52 1-96.99 SS 3 58 44	AU 1	AU 1	AU 1	AU 1	AU 1 SS 2 100 52 1-96.99 SS 3 58 44 2-95.99	AU 1 SS 2 100 52 1-96.99 SS 3 58 44 2-95.99

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG3450 REMARKS** HOLE NO. PH16-15

			0	ATE	May 8, 20	15	BH16-15	
LOT		SAN	IPLE	ı	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ◆ 50 mm Dia. Cone	Well
STRATA P	TYPE	NUMBER	% ECOVERY	1 VALUE or RQD	(m)	(m)	O Water Content %	Monitoring Well
/////	8 5		24	4	0-	-96.84	20 40 60 80	2
	& AU	1						
\^^^^ \^^^^	ss	2	100	24	1-	-95.84		
	ss	3	67	25	2-	-94.84		
	ss	4	33	4		00.04		
	ss	5	67	10	3-	-93.84		
\^^^^ \^^^^ \^^^^	ss	6	58	20	4-	-92.84		
							Shear Strength (kPa)	00
		STRATA STRATA STRATA STRATA	SS 2 AU 1 SS 2 AU 1 SS 3 SS 3 SS 5 SS 6	SAMPLE Sample	SAMPLE **STRATTA PLOT **STRA	SAMPLE DEPTH (m) SLEWIL SIGNATURE STANDARD SS 2 100 24 1-	SAMPLE DEPTH (m) SAMPLE DEPTH (m) O 96.84 AU 1 SS 2 100 24 1-95.84 SS 3 67 25 SS 4 33 4 SS 5 67 10 SS 5 67 10 A 92.84	SAMPLE SAMPLE DEPTH (m) ELEV. (m)

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa. Ontario

20

▲ Undisturbed

40

Shear Strength (kPa)

60

△ Remoulded

100

Ottawa, Ontario Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. **PG3450 REMARKS** HOLE NO. BH17-15 **BORINGS BY** CME 75 Power Auger **DATE** May 8, 2015 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) NUMBER TYPEWater Content %

Monitoring Well Construction RECOVERY N VALUE or RQD **GROUND SURFACE** 20 80 0+96.921 Brown SILTY SAND, some gravel and cobbles 0.76 Brown SILTY CLAY, some sand 1.07 1 + 95.92SS 2 100 9 3 SS 83 30 2+94.92 GLACIAL TILL: Dense to compact, grey silty sand, some gravel and SS 4 13 42 cobbles Ţ 3 + 93.925 SS 26 33 3.96 End of Borehole (GWL 2.89m-May 12, 2015)

Moderate groundwater infiltration rate

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Hydrogeological Investigation Residential Development - Half Moon Bay South Ottawa, Ontario

Ground surface elevations provided by J.D. Barnes Limited. **DATUM** FILE NO. **PG3450 REMARKS** HOLE NO. BH18-15 **BORINGS BY** CME 75 Power Auger **DATE** May 8, 2015 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPEWater Content % **GROUND SURFACE** 20 80 0 + 98.021 Very dense, brown SILTY SAND, SS 2 72 50+ 1 + 97.02trace gravel and cobbles SS 3 80 50+ 2+96.02 2.18 SS 4 75 25 3 + 95.02Dense to compact, grey SILTY SAND, some gravel 5 SS 62 47 4 + 94.026 SS 75 20 End of Borehole (GWL 3.23m-May 12, 2015) High groundwater infiltration rate 20 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

3882 Barnsdale Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Mineral Resource Aggregate Assessment Ottawa, Ontario

SOIL PROFILE AND TEST DATA

DATUM FILE NO. PH1893 **REMARKS** HOLE NO. TP 1-11 **BORINGS BY** Hydraulic Shovel DATE December 16, 2011 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 **TOPSOIL** 0.30 Loose, grey-brown CLAYEY **SANDY SILT** G 1 1 1.40 2 3 Dense, grey-brown **SANDY SILT/SILTY SAND** G 2 4 5 6 6.30 End of Test Pit (TP dry upon completion) 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO. PH1893
REMARKS									HOLE NO. TP 2-11
BORINGS BY Hydraulic Shovel					ATE	Decembe	er 16, 20 ⁻	11 	17 2-11
SOIL DESCRIPTION			SAMPLE			DEPTH (m)	ELEV. (m)	1	esist. Blows/0.3m
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or RQD	(,	(,	0 V	esist. Blows/0.3m 0 mm Dia. Cone
GROUND SURFACE	S	F	N N	RE	Z O			20	40 60 80
TOPSOIL 0.30						0-	_		
Loose, red-brown SAND , trace silt 0.70		G	3						
						1-	_		
		G	4						
		-				2-	_		
Compact to dense, brown to grey SANDY SILT/SILTY SAND									
SANDY SILI/SILIY SAND						3-	_		
		G	5			4-	-		
						5-	_		
6.20						6-	_		
6.20 End of Test Pit		+							
(TP dry upon completion)									
(11 dry aport completion)									
								20	40 60 80 100
								Shea ▲ Undist	ar Strength (kPa) turbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM					•				FILE NO. PH1893
REMARKS									UOLE NO
BORINGS BY Hydraulic Shovel				D	ATE	Decembe	r 16, 20	11	TP 3-11
SOIL DESCRIPTION						DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD		(***)	0 W	esist. Blows/0.3m 0 mm Dia. Cone Vater Content %
GROUND SURFACE TOPSOIL	02		-	2	Z	0-	_	20	40 60 80
0.25		G	6			1-	-		
						2-	_		
Loose to compact, brown to grey SANDY SILT			_			3-	-		
		G	7			4-	_		
							5-	_	
6.00 End of Test Pit	<u>14.134.</u>					6-	_		
(TP dry upon completion)									
									40 60 80 100 ar Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM					•				FILE NO. PH1893
REMARKS									HOLENO
BORINGS BY Hydraulic Shovel				D	ATE	Decembe	r 16, 20	11	TP 4-11
SOIL DESCRIPTION			SAMPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone Vater Content %	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0 W	Vater Content %
GROUND SURFACE	0,		4	뙶	z °	0-	_	20	40 60 80
TOPSOIL 0.30		G	8			1-	-		
Loose to dense, red-brown to grey SANDY SILT/SILTY SAND		G	9			3-	-		
						4-	-		
						5-	-		
End of Test Pit		_				6-	_		
(TP dry upon completion)									
									40 60 80 100 ar Strength (kPa)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM						·			FILE NO. PH1893	
REMARKS									HOLE NO. TP 5-11	
BORINGS BY Hydraulic Shovel					ATE	Decembe				
SOIL DESCRIPTION	PLOT	S		SAMPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	eter
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	()	0 W	Vater Content %	Piezometer Construction
GROUND SURFACE	ST	H	N	REC	NO			20	40 60 80	<u>a</u> ∪
TOPSOIL 0.20						0-	_			
Compact, red-brown SILTY SAND-GRAVEL with cobbles 0.90		G	10							
						1-				
						2-				
Loose to compact, light brown FINE SAND		G	11			3-	_			
						4	_			
						5-	_			4
End of Test Pit (TP dry upon completion)						6-	-			
									40 60 80 1 ar Strength (kPa) urbed △ Remoulded	00

End of Test Pit

(TP dry upon completion)

SOIL PROFILE AND TEST DATA

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

Mineral Resource Aggregate Assessment 3882 Barnsdale Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario **DATUM** FILE NO. PH1893 **REMARKS** HOLE NO. **TP 6-11 BORINGS BY** Hydraulic Shovel DATE December 16, 2011 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % **GROUND SURFACE** 80 20 0 **TOPSOIL** <u>0.30</u> Loose, red-brown SILTY SAND-GRAVEL with cobbles G 12 0.90 Loose, grey-brown SAND with 1 G 13 gravel and shells 1.20 2 Loose, grey-brown FINE SAND, some silt 14 G 3 3.90 4 Compact to dense, grey-brown G 15 5 SANDY SILT/SILTY SAND 6.00 6

3882 Barnsdale Road

Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Mineral Resource Aggregate Assessment

SOIL PROFILE AND TEST DATA

DATUM FILE NO. PH1893 **REMARKS** HOLE NO. TP 7-11 **BORINGS BY** Hydraulic Shovel DATE December 16, 2011 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 **TOPSOIL** 0.31 Compact, red-brown FINE SAND G 16 1.10 Very stiff, grey-brown CLAYEY SILT G 17 2 2.50 3 4 Compact to dense, grey-brown **SANDY SILT/SILTY SAND** G 18 5 6.00 6 End of Test Pit (TP dry upon completion) 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO.	H1893	
REMARKS				_		D h -	10. 00:	4.4	HOLE NO. TP	8-11	
BORINGS BY Hydraulic Shovel			CAN		AIE	Decembe	16, 20		I		
SOIL DESCRIPTION	PLOT			MPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0 0 mm Dia. Cor		Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			0 V	Vater Content	%	ezon Sonstr
GROUND SURFACE	ß		ğ	REC	z ö	0-		20	40 60	80	
TOPSOIL 0.40											
Loose, dark brown SILTY SAND with gravel and cobbles 0.80		G	19								
Loose, grey-brown FINE SAND End of Test Pit (TP dry upon completion)		G	20			1- 2- 3- 5-	-				
								20 Shea	40 60 ar Strength (kF urbed △ Remo		00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Mineral Resource Aggregate Assessment 3882 Barnsdale Road Ottawa. Ontario

Ottawa, Ontario **DATUM** FILE NO. PH1893 **REMARKS** HOLE NO. TP 9-11 **BORINGS BY** Hydraulic Shovel DATE December 16, 2011 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 **TOPSOIL** 0.30 Dense, dark brown to brown SAND-GRAVEL, some silt, cobbles and boulders 2 G 21 3 3.70 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

· · ·					0	ilawa, Or	itario				
DATUM									FILE NO.	PH1893	
REMARKS									HOLE NO.	TP10-11	
BORINGS BY Hydraulic Shovel					11		1710-11				
SOIL DESCRIPTION	PLOT		SAMPLE			DEPTH (m)	ELEV. (m)		Pen. Resist. Blows/0.3m • 50 mm Dia. Cone		
	STRATA	TYPE	NUMBER	% RECOVERY	VALUE r RQD		(***)	0 W	ater Conte	ent %	Piezometer Construction
GROUND SURFACE	δ		E	REC	N VZ or	0-		20	40 60	80	
TOPSOIL 0.4	.0										
Loose, red-brown SILTY SAND-GRAVEL with cobbles		G	22								
Compact, light brown SILTY SAND 1.3	0	G	23			1 -	_				
Dense, grey-brown SANDY SILT		G	24								
Compact, light brown FINE SAND 2.2	0	G	25			2-	_				
Dense, grey-brown SILTY SAND , some gravel, cobbles and boulders		G	26			3-					
3.8 End of Test Pit	0 111	_									1
(TP dry upon completion)											
											1
								20 Shea	40 60 r Strength		00

SOIL PROFILE AND TEST DATA

Mineral Resource Aggregate Assessment 3882 Barnsdale Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 **DATUM** FILE NO. PH1893 **REMARKS** HOLE NO. TP11-11 **BORINGS BY** Hydraulic Shovel DATE December 16, 2011 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % **GROUND SURFACE** 80 20 0 **TOPSOIL** 0.30 Compact, red-brown SILTY SAND-GRAVEL with cobbles G 27 0.90 2 Dense, brown SAND-GRAVEL with 3 cobbles G 28 4 5 5.50 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO.	G9114	
REMARKS									HOLE NO)	
BORINGS BY Backhoe	1			D	ATE (Oct 23, 00	3	I		TP 1	1
SOIL DESCRIPTION	PLOT			/IPLE	ы	DEPTH (m)	ELEV. (m)	1	esist. Blo 0 mm Dia	ows/0.3m a. Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				/ater Cor		Piezol
GROUND SURFACE TOPSOIL	0.20			Н.		0-	-	20	40 6	80	
Stiff, grey SILTY CLAY	20	G	1			1-	-				
GLACIAL TILL: Grey silty sand with gravel	2.29					2- 3-	-				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	G	2			4-	-				
End of Test Pit	1.07										
(Open hole GWL @ 2.1m depth)								20 Shoo	40 6	i0 80 1	000
								Shea ▲ Undist	r Streng urbed △	th (kPa) Remoulded	

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO. G9114	
REMARKS									HOLE NO	
BORINGS BY Backhoe				D	ATE	Oct 23, 00	3		TP 2	
SOIL DESCRIPTION	A PLOT			/IPLE	ы о	DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			○ W	Vater Content %	Constr
GROUND SURFACE TOPSOIL 0.1	0			-		0-	-	20	40 60 60	
GLACIAL TILL: Dense, grey silty sand and gravel with cobbles		G	1			1-	-			
2.9 End of Test Pit	0 \^^^^									
(TP dry upon completion)								20 Shea ▲ Undist	40 60 80 100 ar Strength (kPa) urbed △ Remoulded	

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM					·				FILE NO.	G9114	
REMARKS									HOLE NO.		
BORINGS BY Backhoe				D	ATE (Oct 23, 00	3	1		TP 3	
SOIL DESCRIPTION	PLOT			/IPLE	ы	DEPTH (m)	ELEV. (m)		esist. Blows 0 mm Dia. C		neter uction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				/ater Conte		Piezometer Construction
GROUND SURFACE				2	2 0	0-	_	20	40 60	80	
TOPSOIL 0.15 Brown SILTY SAND, some gravel 0.46						, o					
						1 -	-				
		_ _ G _	1								
						2-	-				
Light brown fine SAND						3-	_				
						4-	-				
						5-	-				
<u>5</u> .94		_ G _	2								
End of Test Pit											
(TP dry upon completion)											
								20	40 60	80 10	00
								Shea	r Strength ((kPa) emoulded	

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO.	G9114	
REMARKS									HOLE NO		
BORINGS BY Backhoe				D	ATE (Oct 23, 03	3			TP 4	
SOIL DESCRIPTION	A PLOT			IPLE	ы о	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		Piezometer Construction
ODOLIND CUREACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD			○ W	/ater Con		Piezo Constr
GROUND SURFACE TOPSOIL 0.15	5					0-	-				
Brown SILTY SAND , some gravel 0.60		_									
Light brown fine SAND		_ G G	2			1- 2- 3-	-				
End of Test Pit (TP dry upon completion)						5-	_	20 Shea	40 60 ir Strengt	0 80 10 h (kPa)	000

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO.	G9114	
REMARKS									HOLE NO	1	
BORINGS BY Backhoe				D	ATE (Oct 23, 03	3	1		TP 5	1
SOIL DESCRIPTION	A PLOT			IPLE	ы	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia	ows/0.3m . Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				/ater Con		Piezol Constr
GROUND SURFACE TOPSOIL	0.15			-		0-	_	20	40 6	0 80	
SAND-GRAVEL		_ _ G _	1			1-	_				
Brown fine to medium SAND	<u>2.13 </u>	_ _ G	2			2- 3- 4- 5-	-				
End of Test Pit (TP dry upon completion)								20 Shea	40 6 ar Strengt	0 80 10 h (kPa)	000

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE N	o. G 9	9114	
REMARKS									HOLE	NΟ		
BORINGS BY Backhoe				D	ATE	Oct 23, 00	3	1		- 11	P 6	
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)			Blows/0. ia. Cone		neter Iction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0 W	/ater Co	ontent 9	%	Piezometer Construction
GROUND SURFACE			4	푒	z	0-		20	40	60 8	30	
TOPSOIL	0.15	·.										
Red SAND , occasional gravel	0.76	G	1									
		G				1- 2-	-					
Brown fine SAND						3- 4-	-					
- <u>-</u>	5.79	_ _ G _	2			5-	-					
End of Test Pit												
(TP dry upon completion)										60 € gth (kP a △ Remou	a)	000

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM							, , ,	intario	FILE NO.	G9114	
REMARKS									HOLE NO.		
BORINGS BY Backhoe				D	ATE (Oct 29, 00	3			TP 7	
SOIL DESCRIPTION	A PLOT			IPLE z	ш .	DEPTH (m)	ELEV. (m)		esist. Blo) mm Dia.		Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				ater Cont		Piezo Constr
GROUND SURFACE TOPSOIL 0.15				K	-	0-	_	20	40 60	80	
Red SAND , some gravel						1-	-				
1.22						2-					
SAND-GRAVEL		_ G	1			2-	_				
3.35		_	l			3-	_				
Fine SAND						4-	_				
5.18 Grey SILTY CLAY 5.49 End of Test Pit	VXXX	_ _ G _	2			5-	_				
(TP dry upon completion)											
								20 Shea ▲ Undistu	40 60 r StrengtI urbed △		00

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE N	o.	9114	
REMARKS									HOLE I	NO		
BORINGS BY Backhoe		1		D	ATE (Oct 29, 03	3			11	8	
SOIL DESCRIPTION	A PLOT			IPLE 건	ы	DEPTH (m)	ELEV. (m)			Blows/0. ia. Cone		Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD					ontent 9		Piezo Constr
GROUND SURFACE				2	2	0-	_	20	40	60 8	80	
TOPSOIL 0.2	0											
Red SAND with gravel		_ _ G	1			1 -	-					
1.8	3											
						2-	-					
						3-	-					
Light brown fine SAND						4-	-					
						5-	-					
						6-	-					
	1	G	2			7-	-					
(TP dry upon completion)												
								20 Shea ▲ Undistr	40 Ir Stren	60 8 gth (kPa △ Remou	30 10 3) ulded	00

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Aggregate Resource Investigation Greenbank Road/Cedarview Road Ottawa (Nepean), Ontario

DATUM FILE NO. G9114 **REMARKS** HOLE NO. TP9 **BORINGS BY** Backhoe **DATE** Oct 29, 03 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % 80 20 **GROUND SURFACE** 0 **TOPSOIL** 0.15 Reddish brown SAND-GRAVEL G 1 1 2 Light brown fine SAND 3 5 G 2 5.49 Grey SILT G 3 6.10 6 End of Test Pit (TP dry upon completion) 40 60 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Aggregate Resource Investigation Greenbank Road/Cedarview Road Ottawa (Nepean), Ontario

DATUM FILE NO. G9114 **REMARKS** HOLE NO. **TP10 BORINGS BY** Backhoe **DATE** Oct 29, 03 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % 80 20 **GROUND SURFACE** 0 **TOPSOIL** 0.20 Reddish brown 1 **SAND-GRAVEL** G 1 2 Fine to medium SAND 3 G 2 3.96 End of Test Pit (Open hole GWL @ 2.1m depth) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM						tarra (110 ₁	, , ,		FILE NO.	G9114	
REMARKS									HOLE NO)	
BORINGS BY Backhoe				D	ATE (Oct 29, 03	3			* TP11	
SOIL DESCRIPTION	A PLOT			IPLE ≿	M 0	DEPTH (m)	ELEV. (m)		esist. Blo) mm Dia	ows/0.3m n. Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				ater Con		Piezo Consti
GROUND SURFACE TOPSOIL 0.15				щ		0-	_	20	40 6	0 80	
Red SILTY SAND-GRAVEL						1-	-				
124						2-					
GLACIAL TILL: Silty sand and gravel, some clay						3-					
3.96		_ 	1			3-					
End of Test Pit		_									1
(TP dry upon completion)								20	40 6	0 80 1	00
								20 Shea ▲ Undistu	r Strengt	0 80 19 t h (kPa) Remoulded	00

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Aggregate Resource Investigation Greenbank Road/Cedarview Road Ottawa (Nepean), Ontario

DATUM FILE NO. G9114 **REMARKS** HOLE NO. **TP12 BORINGS BY** Backhoe **DATE** Oct 29, 03 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % 80 20 **GROUND SURFACE** 0 TOPSOIL 0.15 SILTY SAND-GRAVEL 1 2 GLACIAL TILL: Dense, grey silty sand-gravel, some clay, cobbles and boulders 3 G 1 4.88 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Aggregate Resource Investigation Greenbank Road/Cedarview Road Ottawa (Nepean), Ontario

DATUM FILE NO. G9114 **REMARKS** HOLE NO. **TP13 BORINGS BY** Backhoe **DATE** Oct 29, 03 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % 80 20 **GROUND SURFACE** 0 TOPSOIL 0.15 Red SILTY SAND-GRAVEL G 1 1 2 3 Light brown fine to medium SĂND G 2 5 6 6.70 End of Test Pit (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Aggregate Resource Investigation Greenbank Road/Cedarview Road Ottawa (Nepean), Ontario

DATUM FILE NO. G9114 **REMARKS** HOLE NO. **TP14 BORINGS BY** Backhoe **DATE** Oct 29, 03 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER Water Content % 80 20 **GROUND SURFACE** 0 **TOPSOIL** 0.15 1 **SAND-GRAVEL** 2 G 3 3.35 = End of Test Pit Refusal to excavation @ 3.35m depth (TP dry upon completion) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM									FILE NO.	G9114	
REMARKS									HOLE NO		
BORINGS BY Backhoe				D	ATE (Oct 29, 00	3			TP15	
SOIL DESCRIPTION	PLOT			MPLE	ы	DEPTH (m)	ELEV. (m)		esist. Blo) mm Dia	ows/0.3m . Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				ater Con		Piezo Constr
GROUND SURFACE 0.1	5			щ		0-	_	20	40 6	0 80	
GLACIAL TILL: Very dense silty sand-gravel, some clay		G	1			1-					
2.7	4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
End of Test Pit											
Refusal to excavation @ 2.74m depth											
(TP dry upon completion)								20 Shea ▲ Undisti	40 60 r Strengt	0 80 10 h (kPa) Remoulded	00

154 Colonnade Road, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

DATUM						`	,,		FILE NO.	G9114	
REMARKS									HOLE NO	\	
BORINGS BY Backhoe				D	ATE (Oct 29, 00	3			TP16	
SOIL DESCRIPTION	A PLOT			IPLE	出口	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia	ows/0.3m . Cone	Piezometer Construction
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD				/ater Con		Piezo Const
GROUND SURFACE TOPSOIL 0.15				<u> </u>	4	0-	_	20	40 6	0 80	
·											1
SILTY CLAY0.60						1 -	-				
GLACIAL TILL: Very dense silty sand-gravel with clay	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_ G	1			2-					
2.74		_									
End of Test Pit											
(TP dry upon completion)								20	40 6	0 80 11	000
								Shea	r Strengt	0 80 10 th (kPa) Remoulded	000

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %	
Very Loose	<4	<15	
Loose	4-10	15-35	
Compact	10-30	35-65	
Dense	30-50	65-85	
Very Dense	>50	>85	

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value	
Very Soft	<12	<2	
Soft	12-25	2-4	
Firm	25-50	4-8	
Stiff	50-100	8-15	
Very Stiff	100-200	15-30	
Hard	>200	>30	

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube
PS	-	Piston sample
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% - Natural moisture content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic limit, % (water content above which soil behaves plastically)

PI - Plasticity index, % (difference between LL and PL)

Dxx - Grain size which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

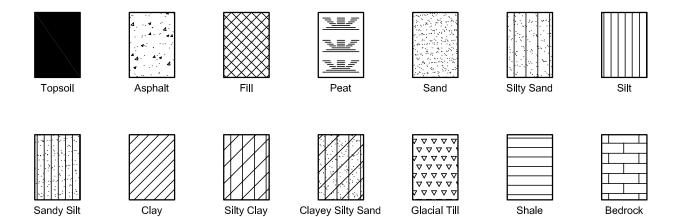
p'₀ - Present effective overburden pressure at sample depth

p'_c - Preconsolidation pressure of (maximum past pressure on) sample

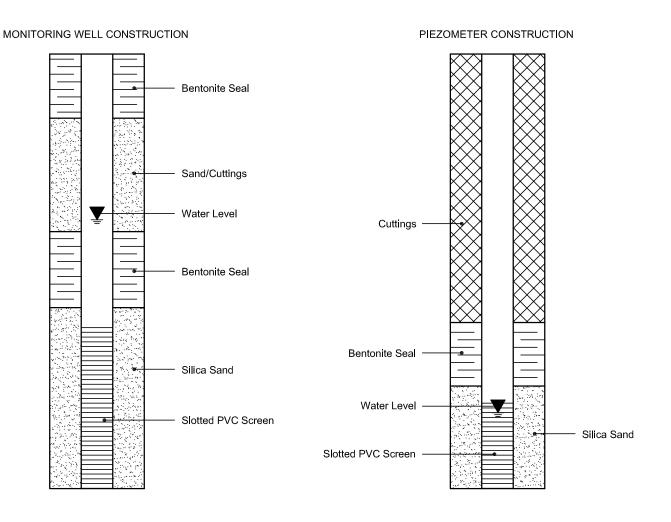
Ccr - Recompression index (in effect at pressures below p'c)
Cc - Compression index (in effect at pressures above p'c)

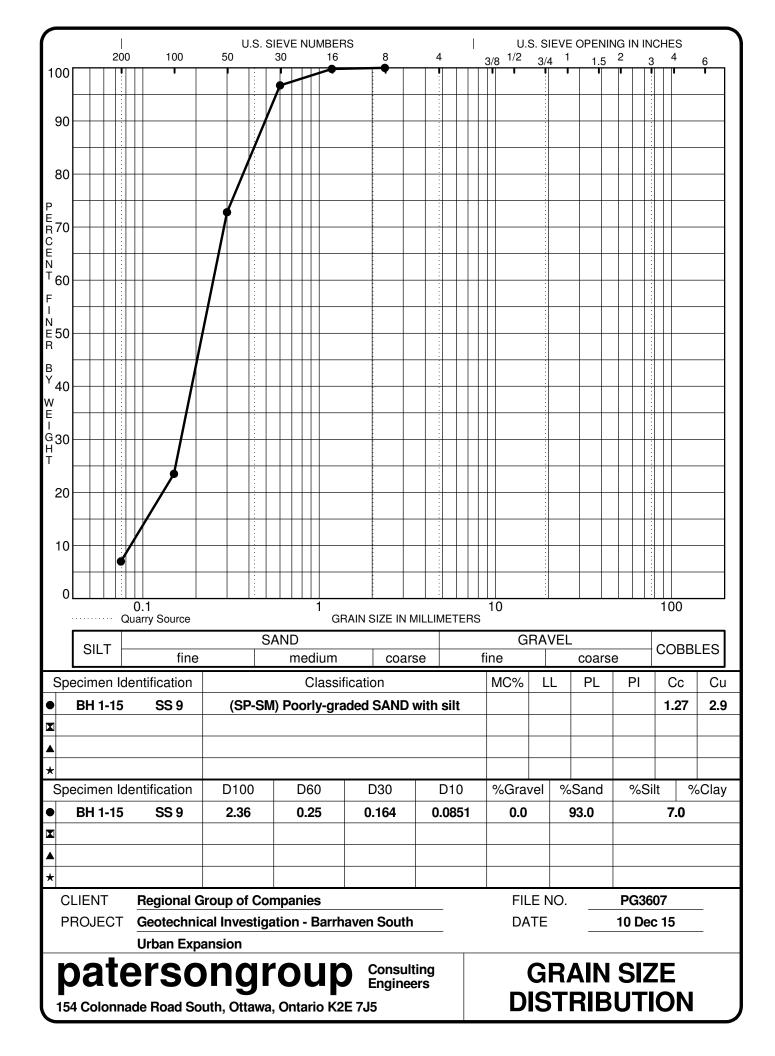
OC Ratio Overconsolidaton ratio = p'_c/p'_o

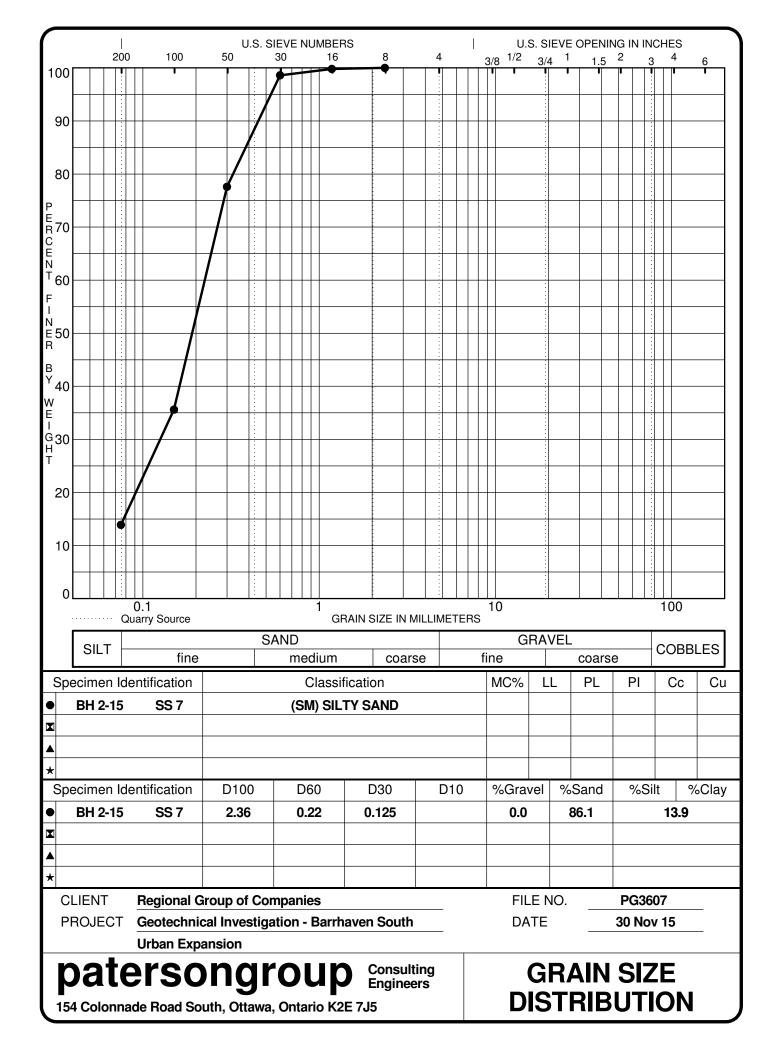
Void Ratio Initial sample void ratio = volume of voids / volume of solids

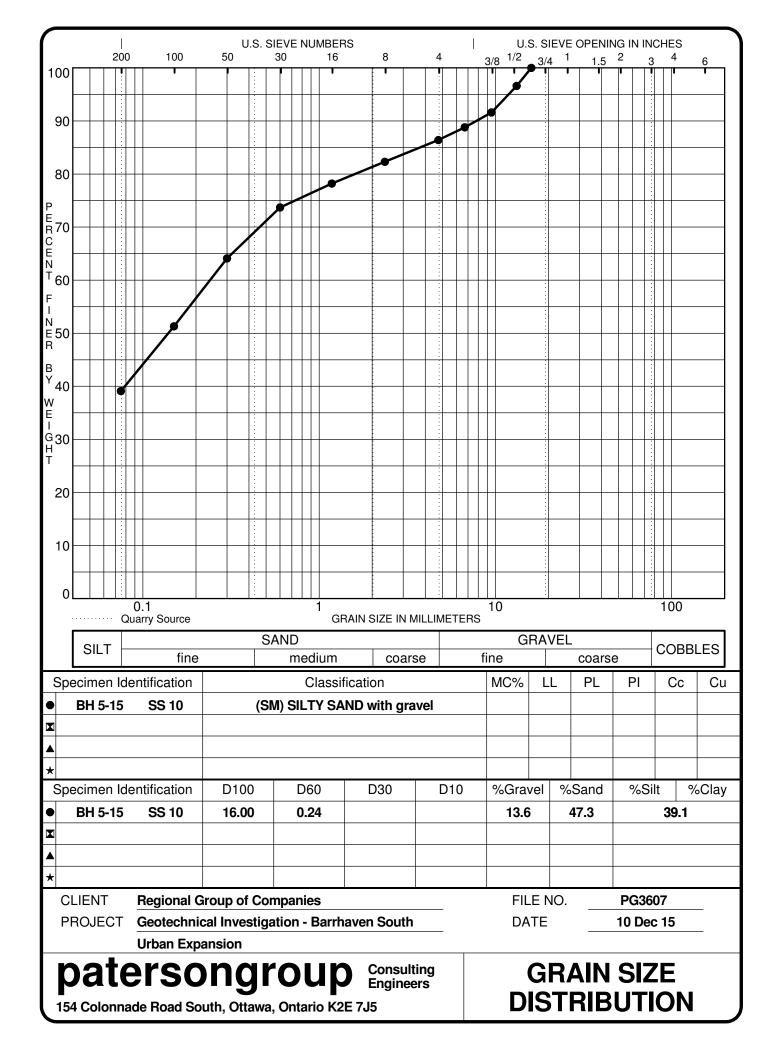

Wo - Initial water content (at start of consolidation test)

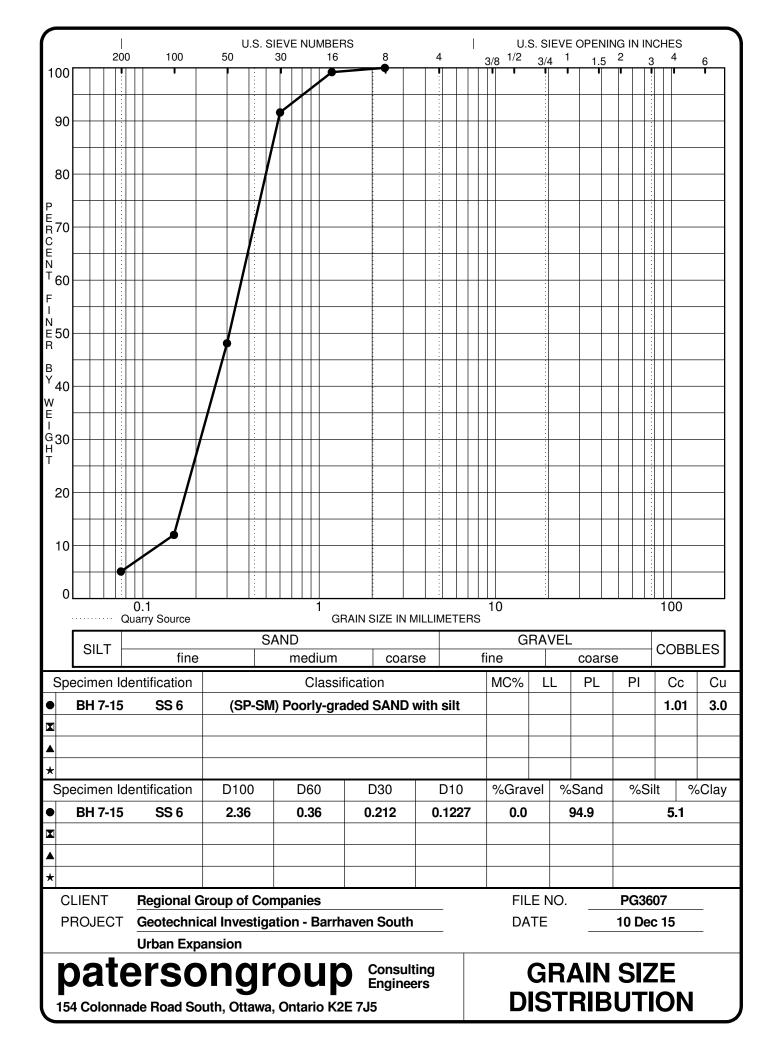
PERMEABILITY TEST

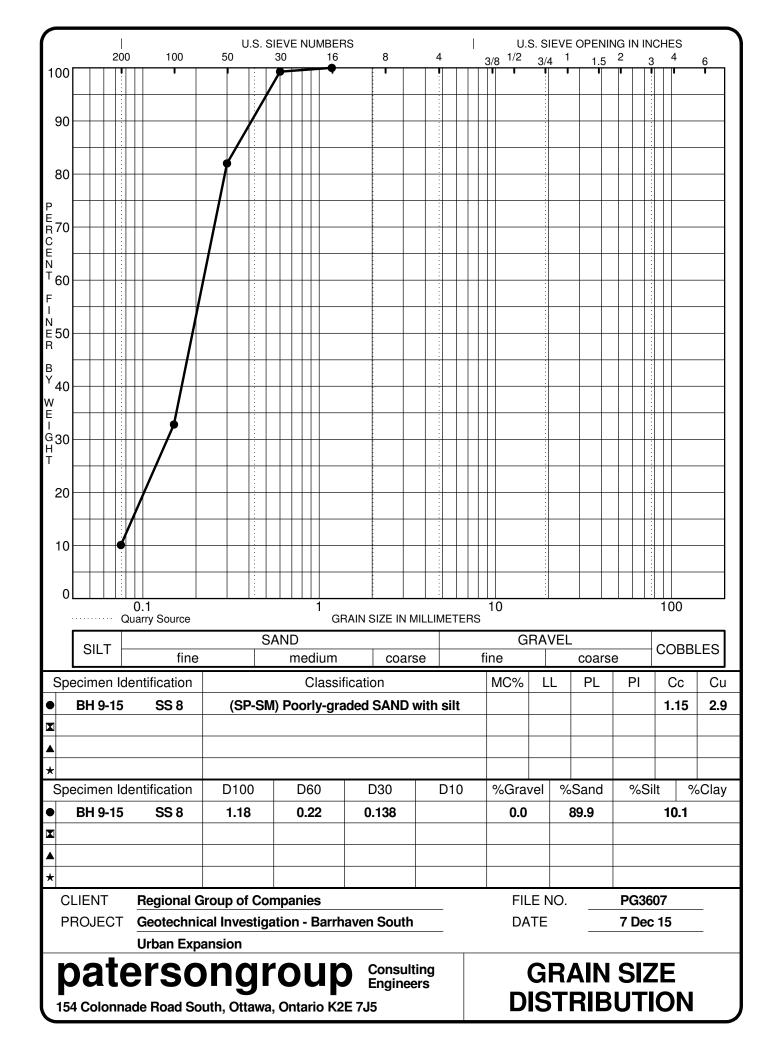

Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

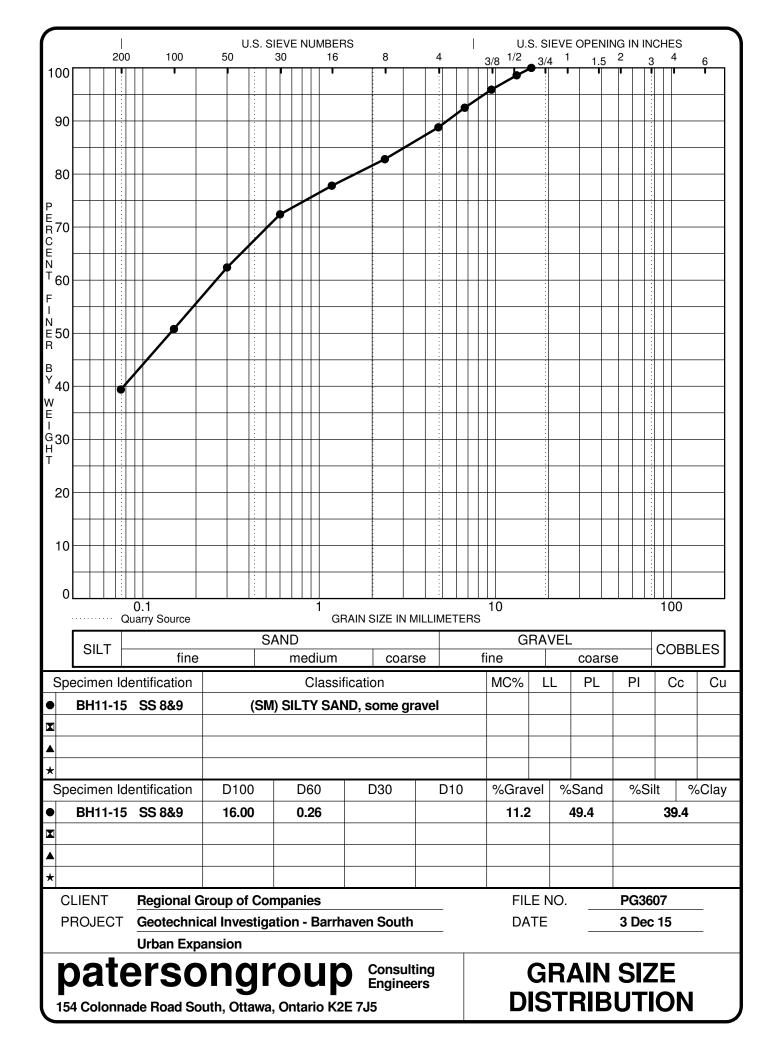

SYMBOLS AND TERMS (continued)

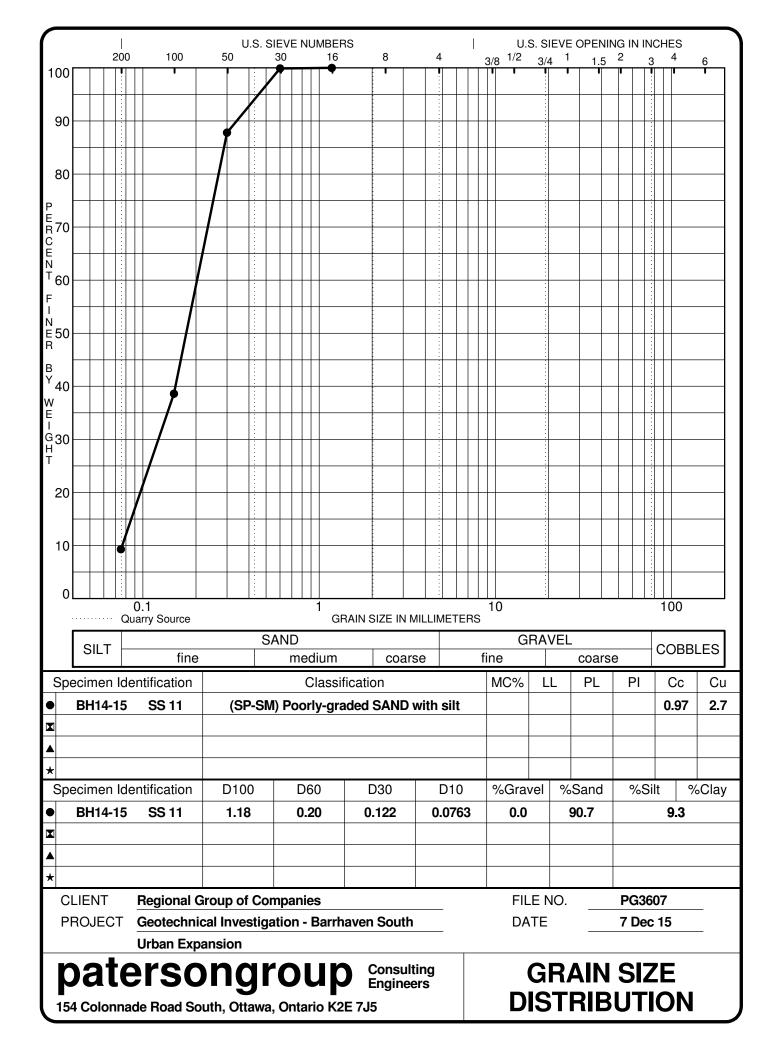

STRATA PLOT

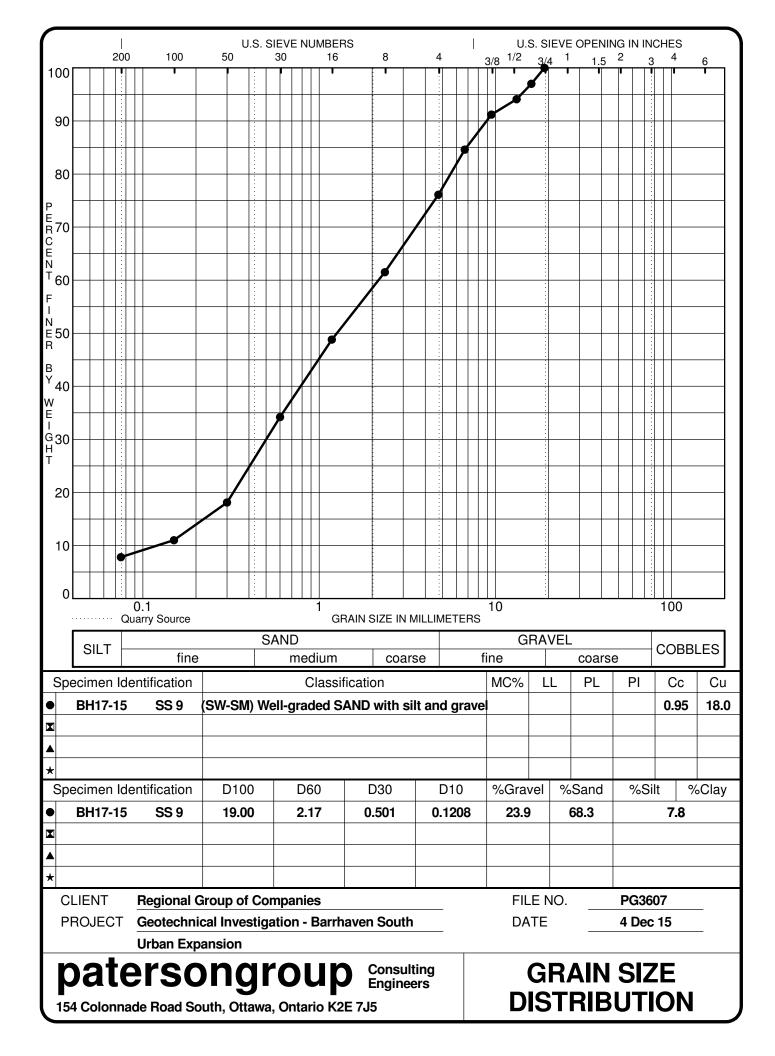


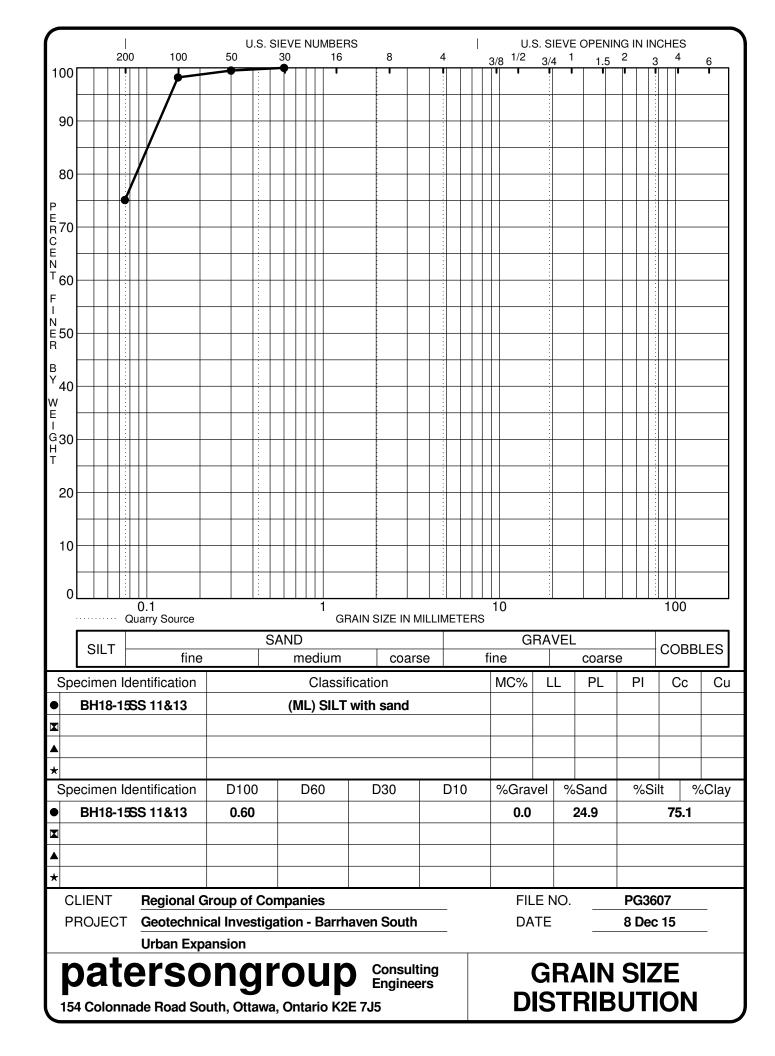

MONITORING WELL AND PIEZOMETER CONSTRUCTION

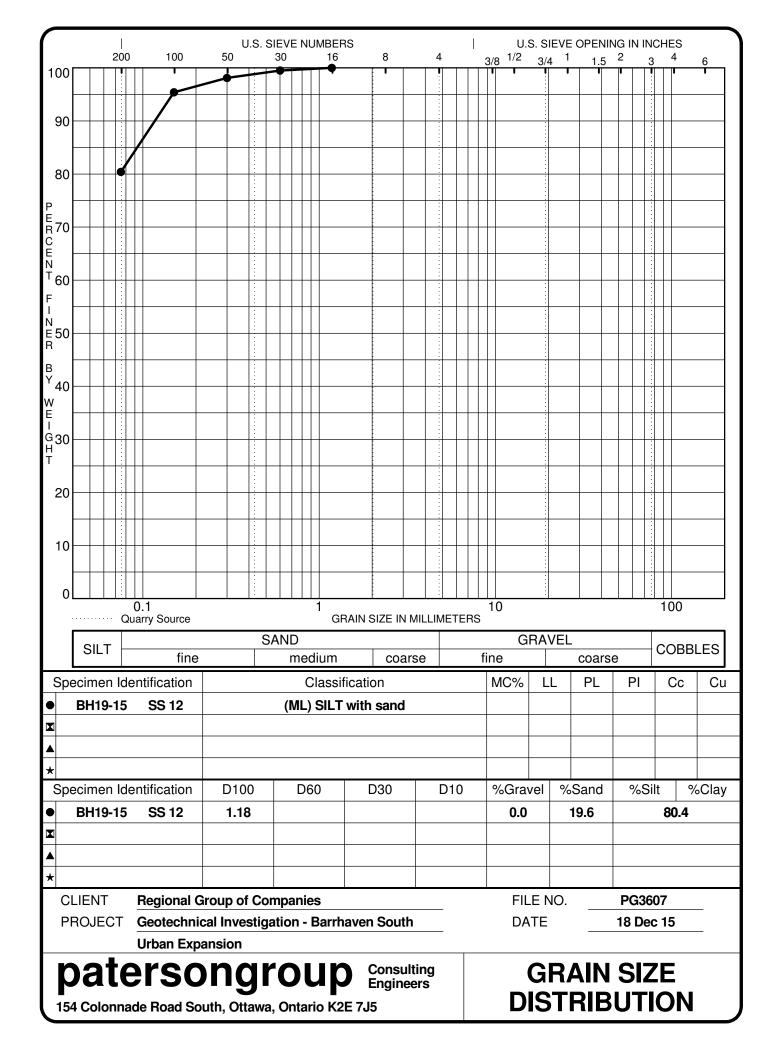


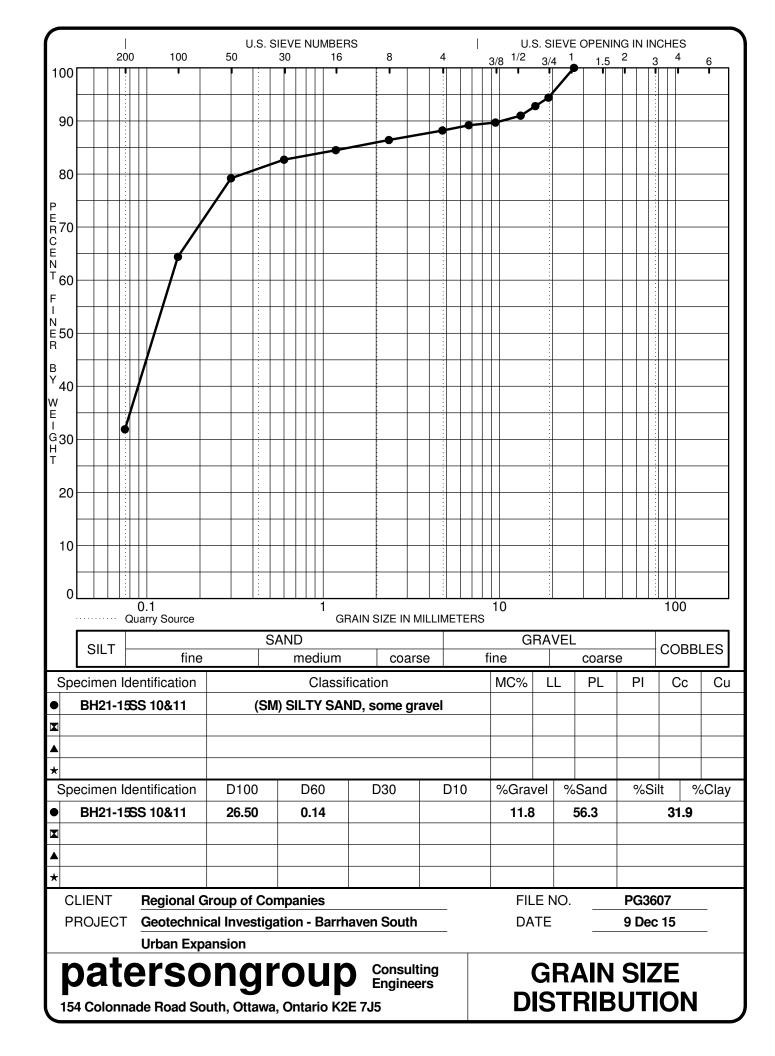


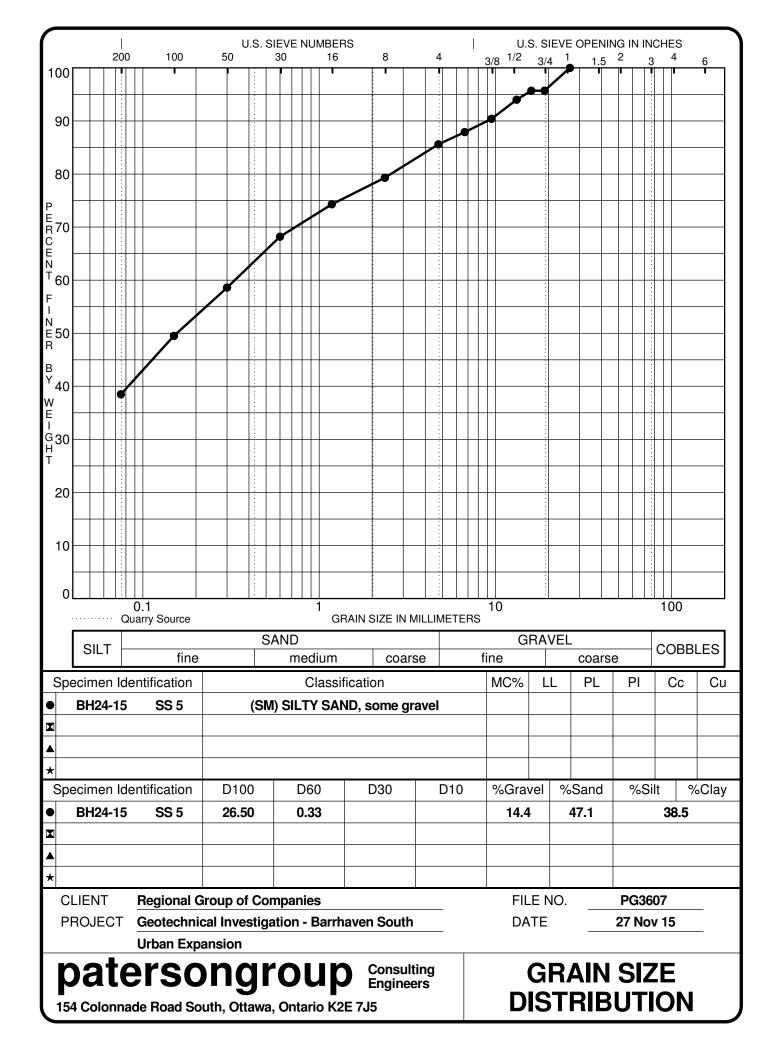


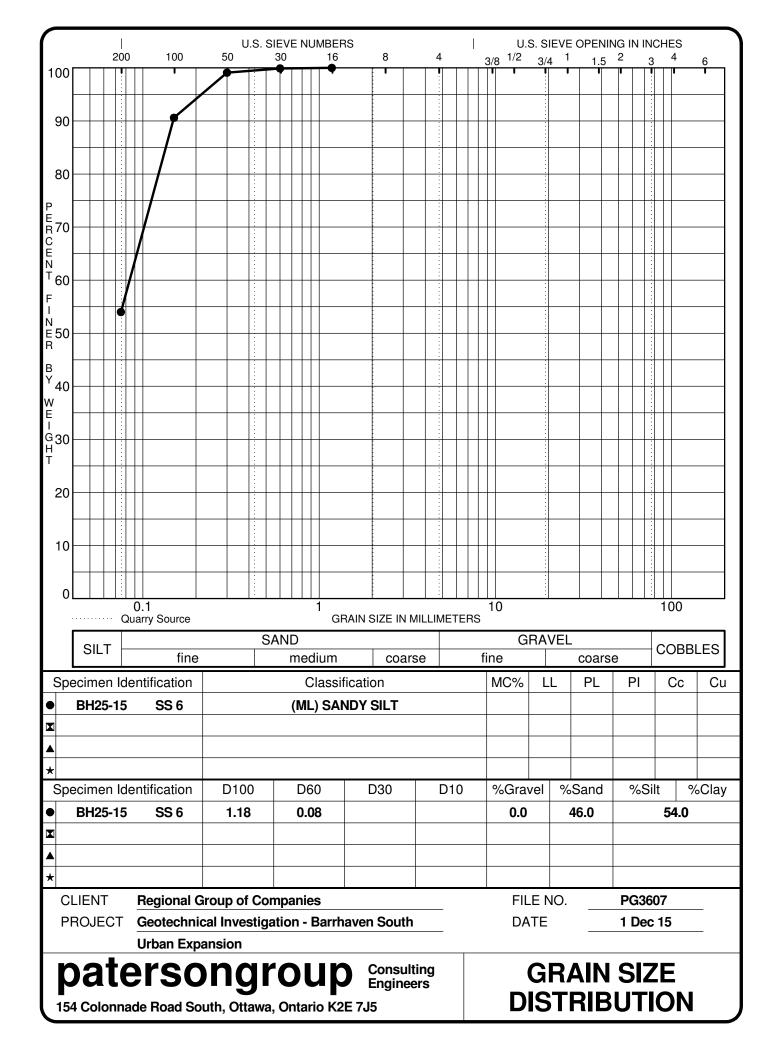


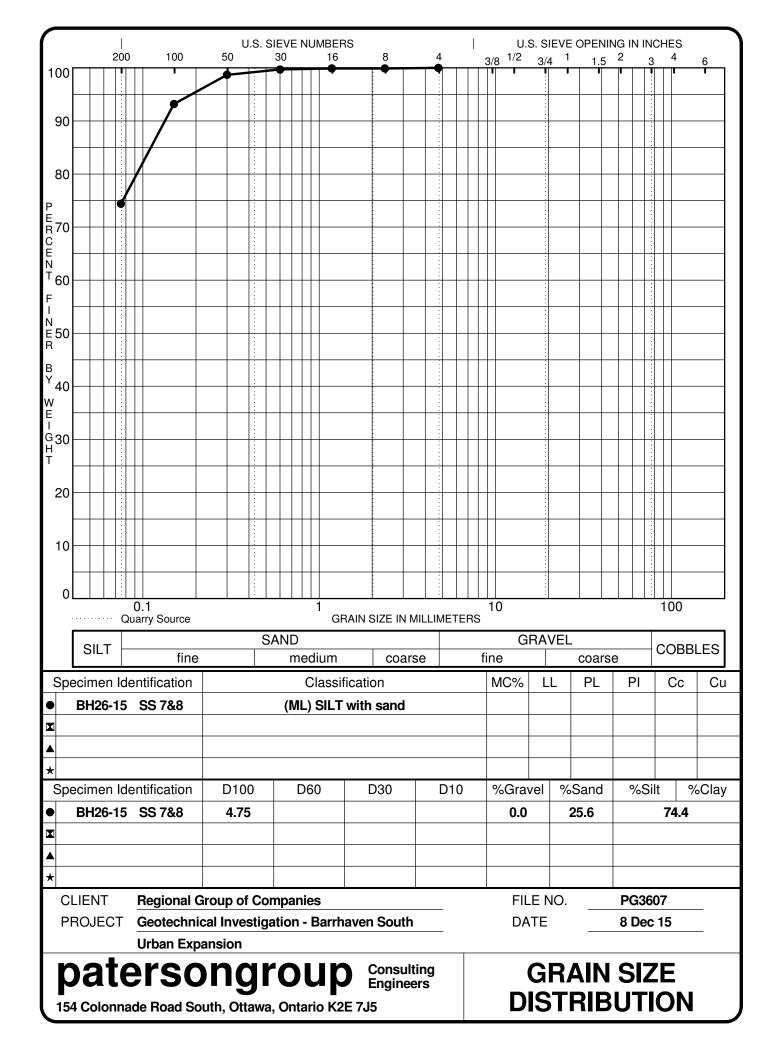


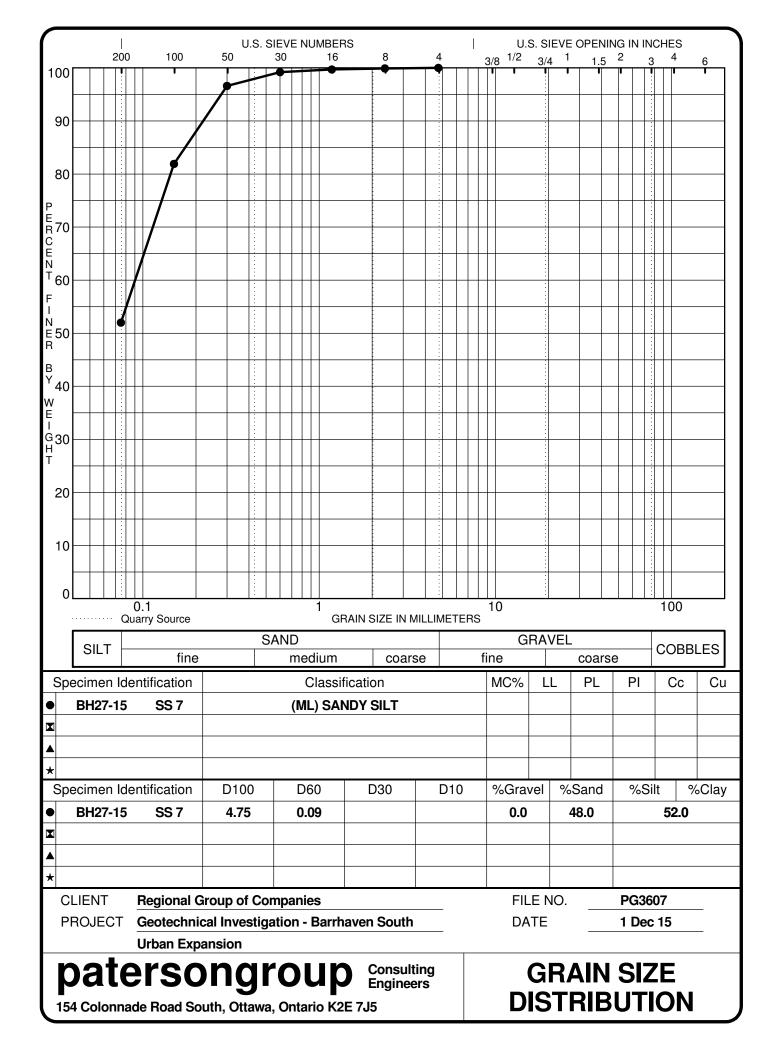


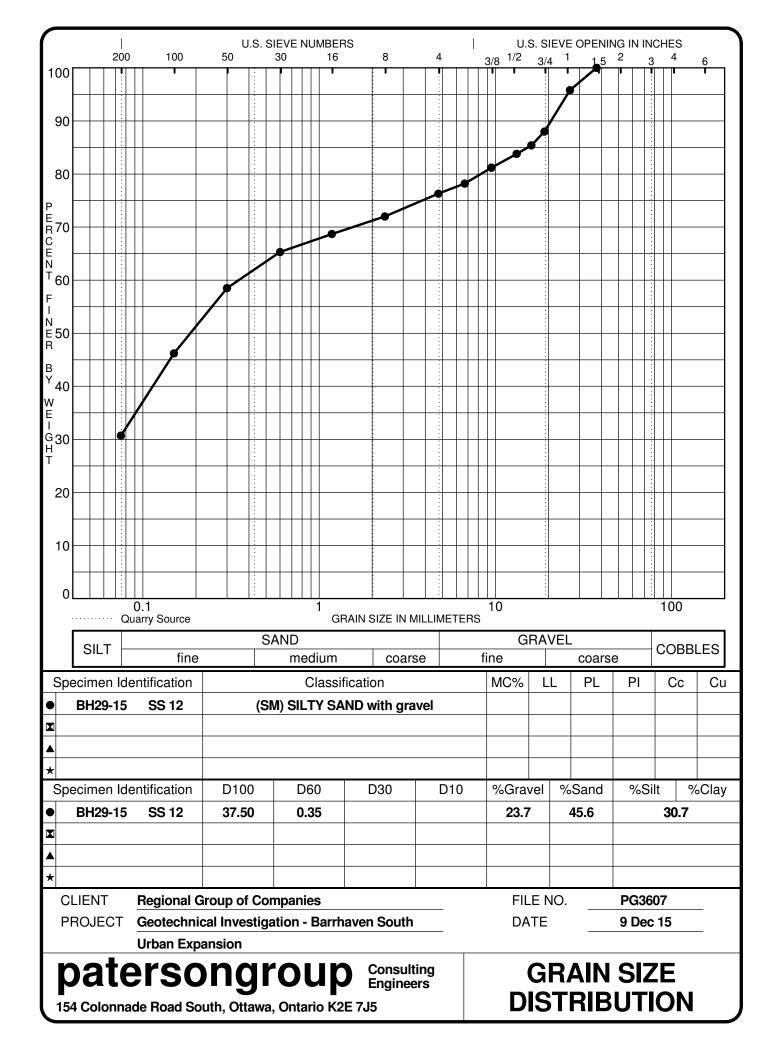


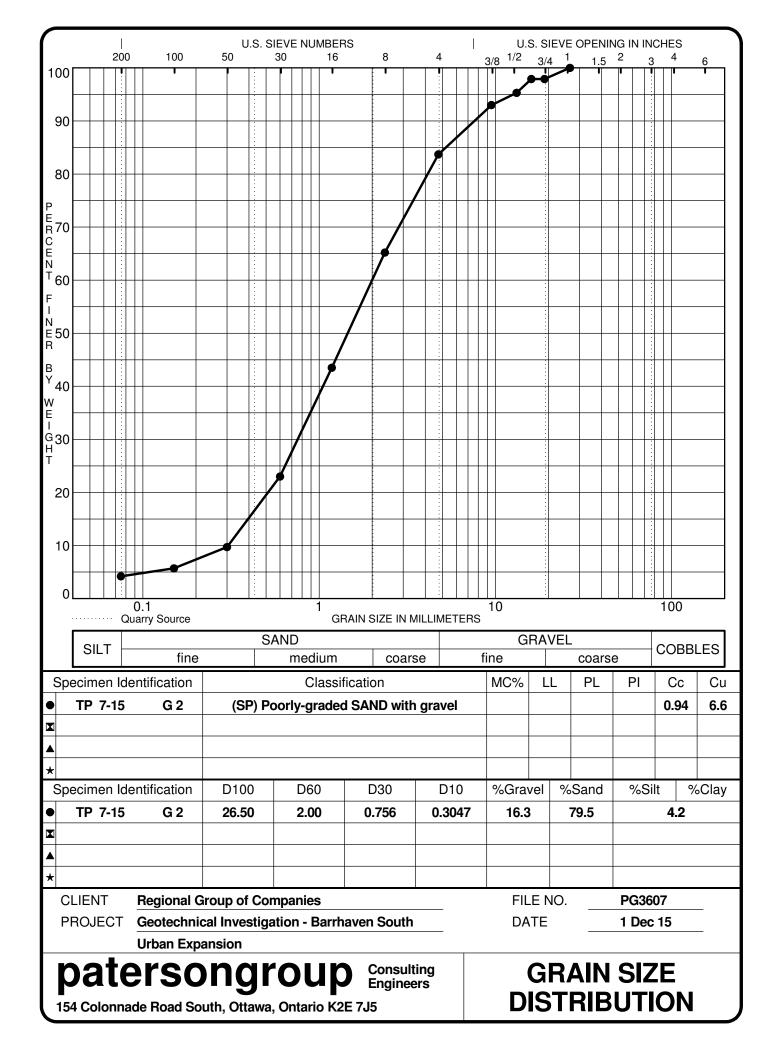


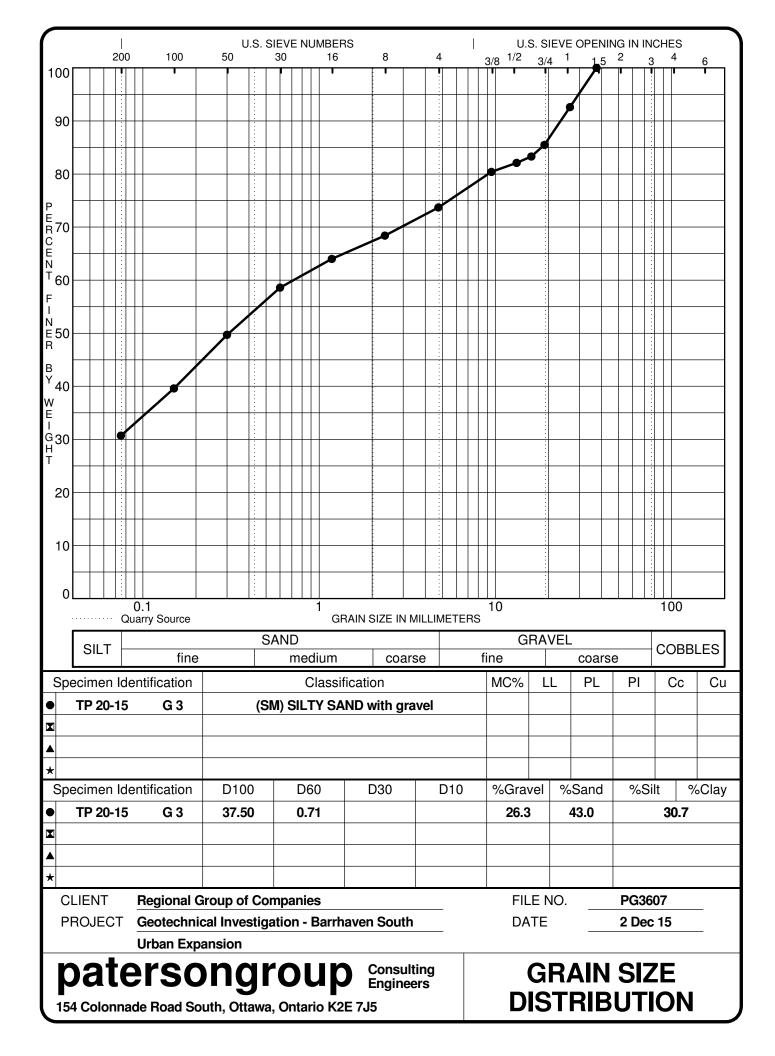


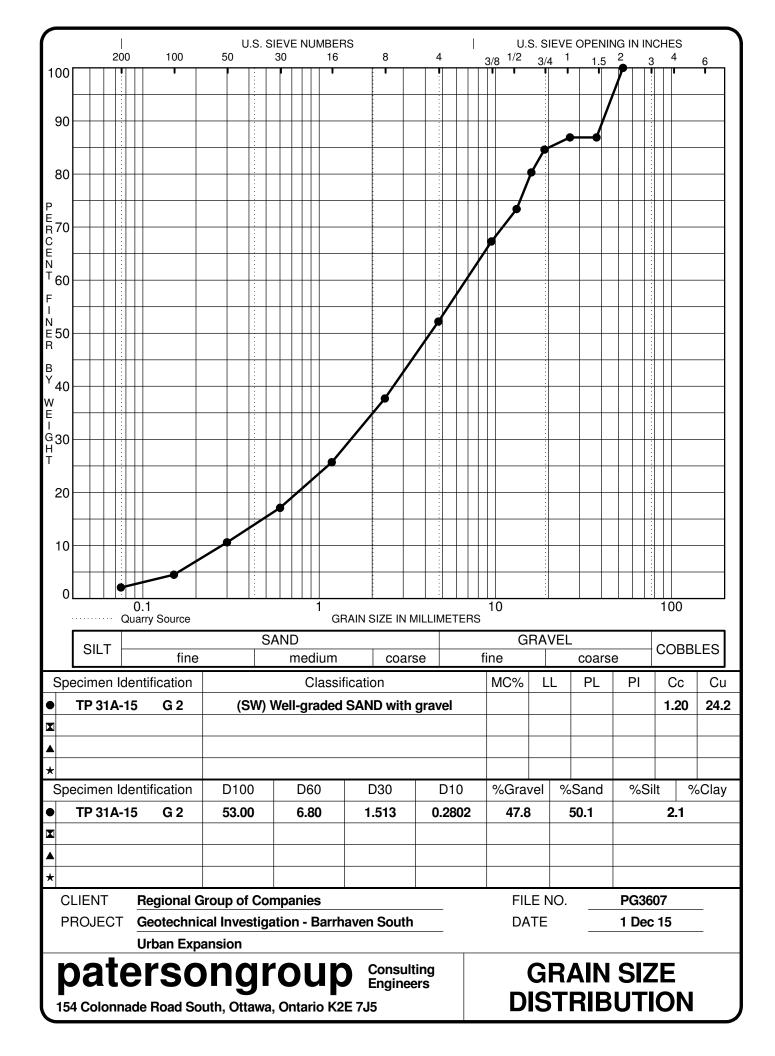


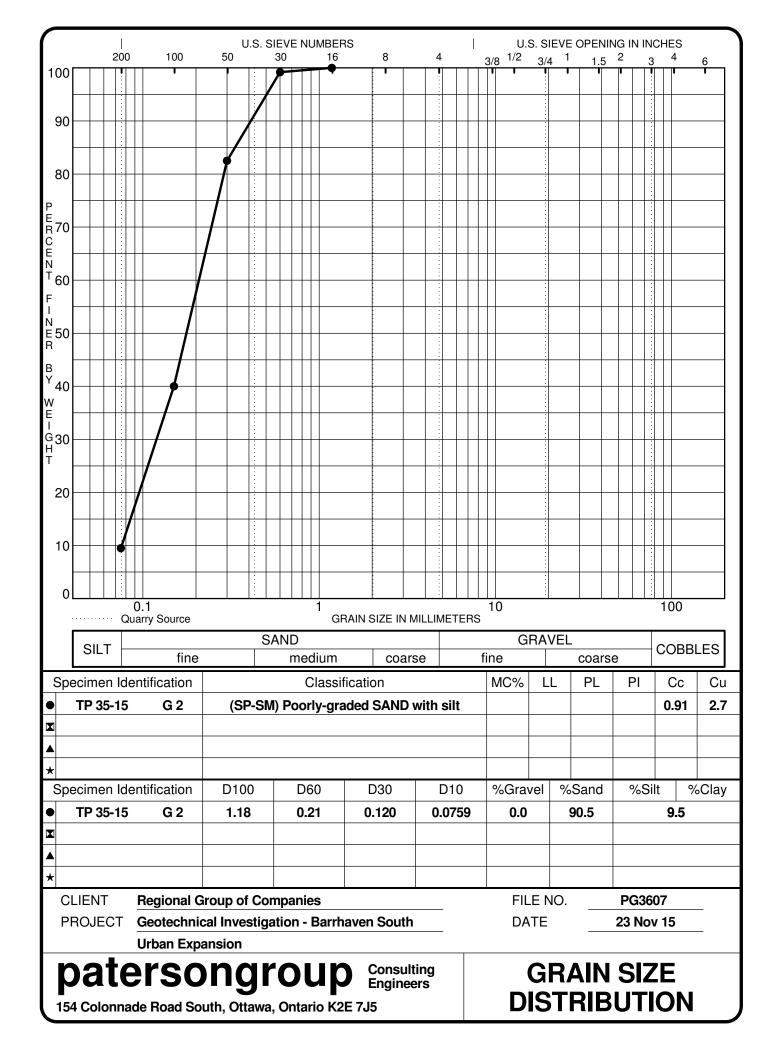


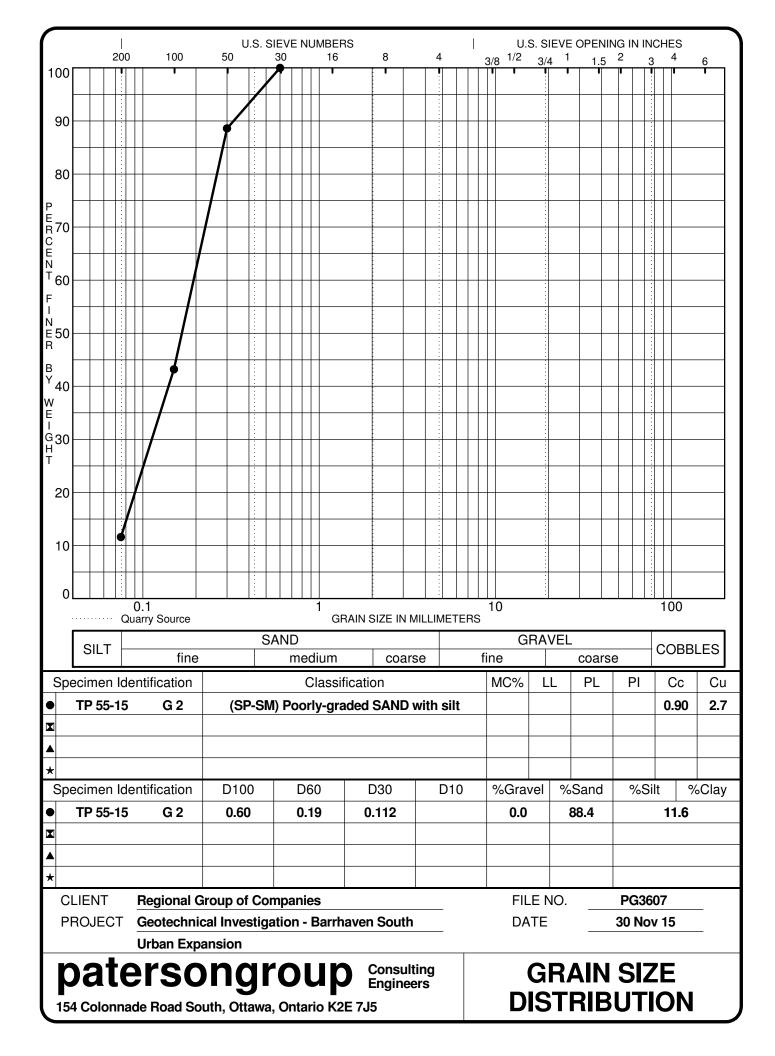


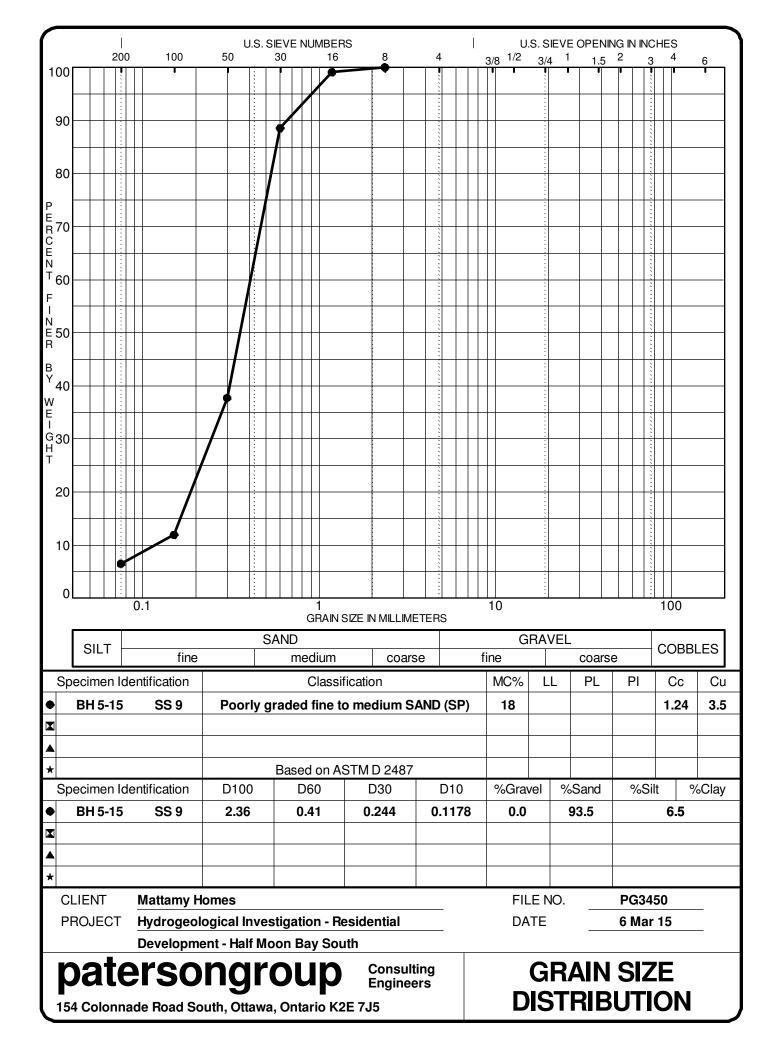


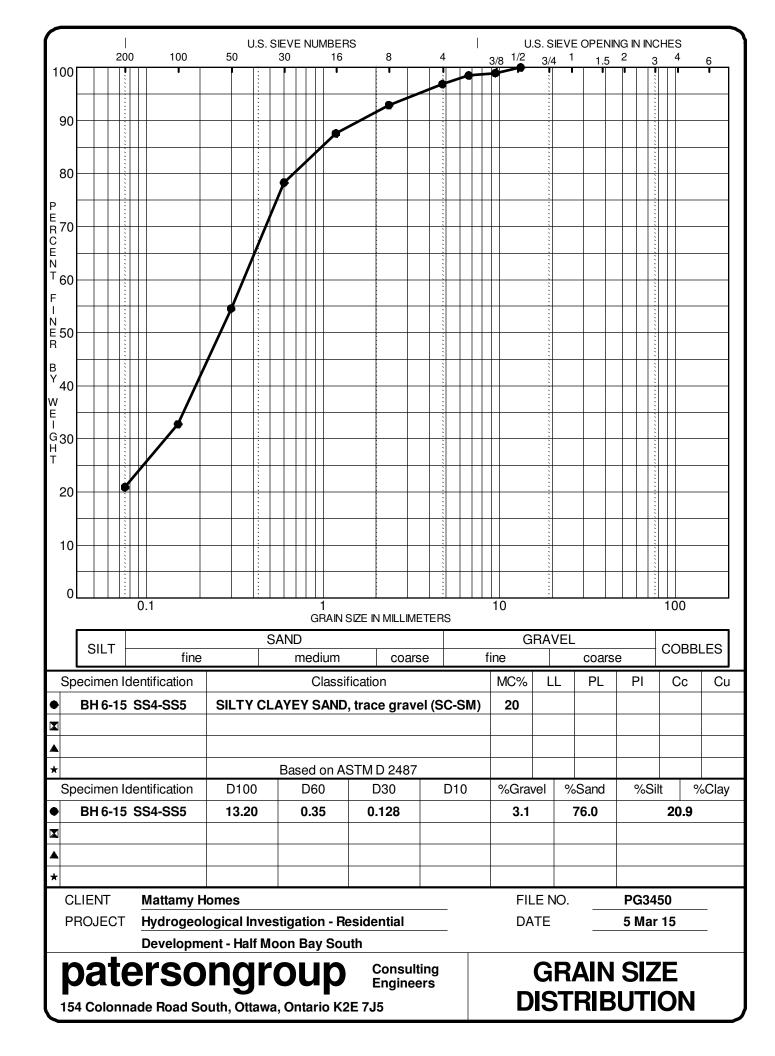


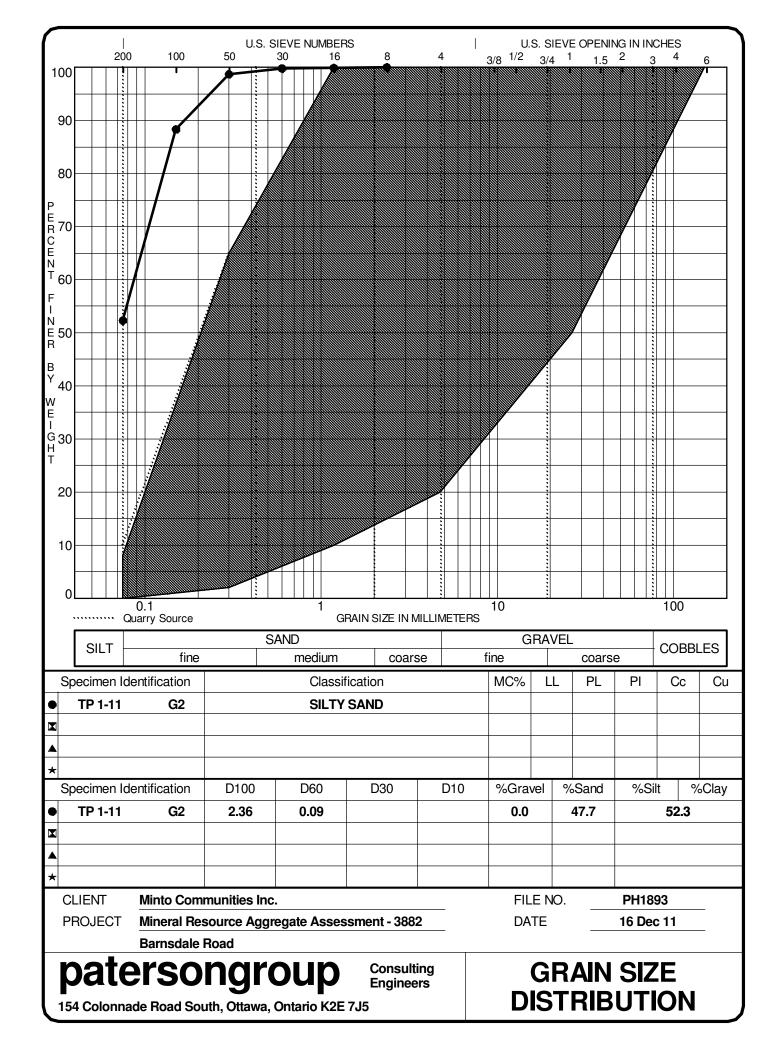


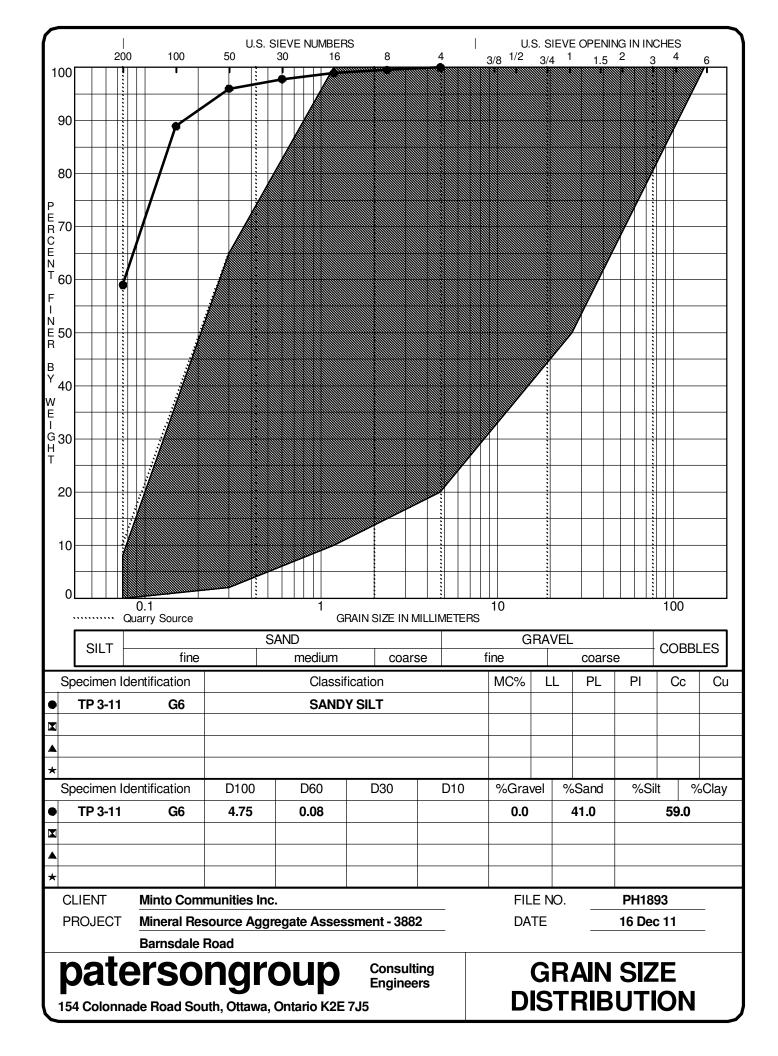


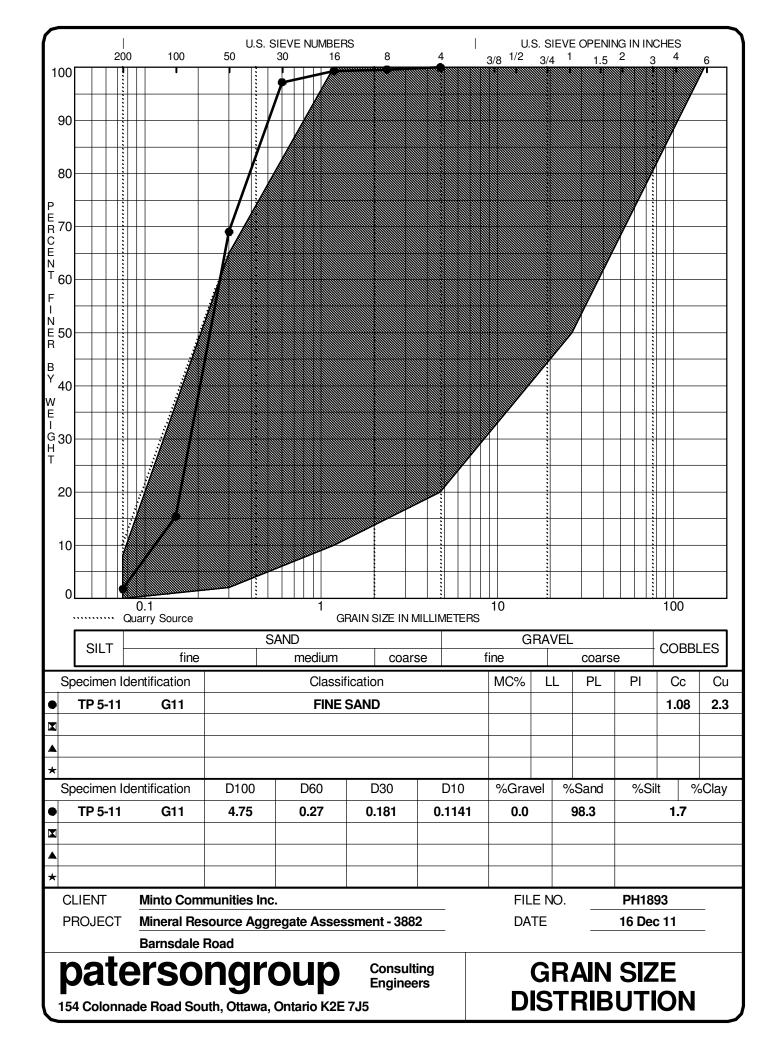


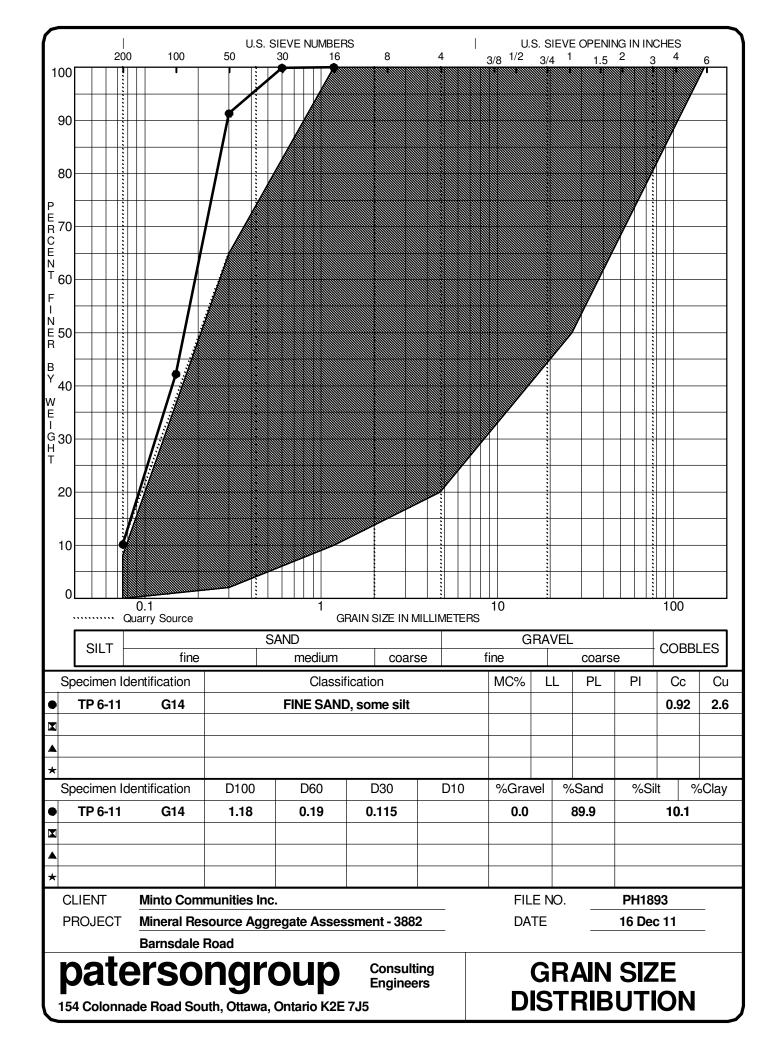


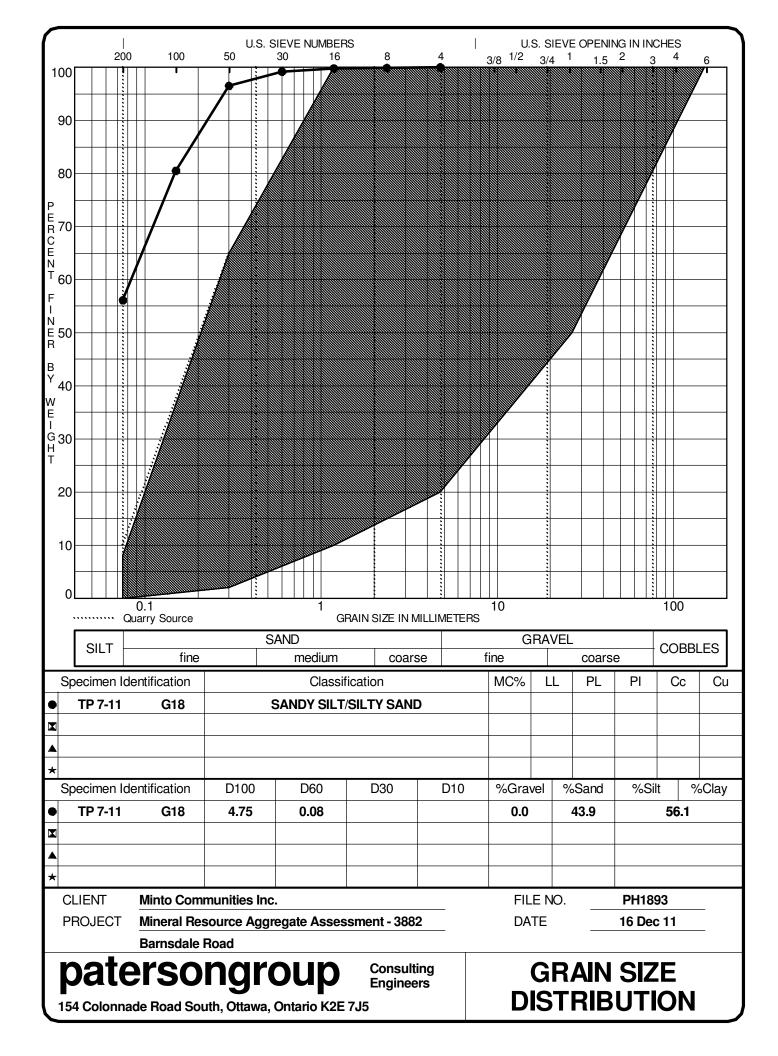


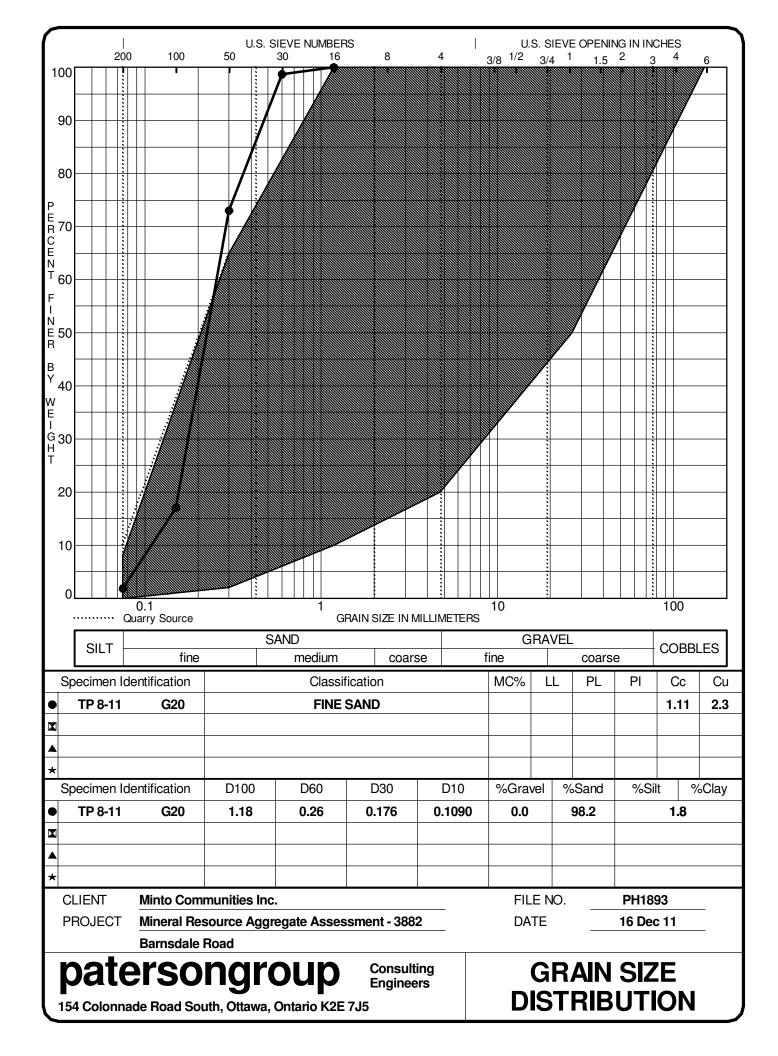


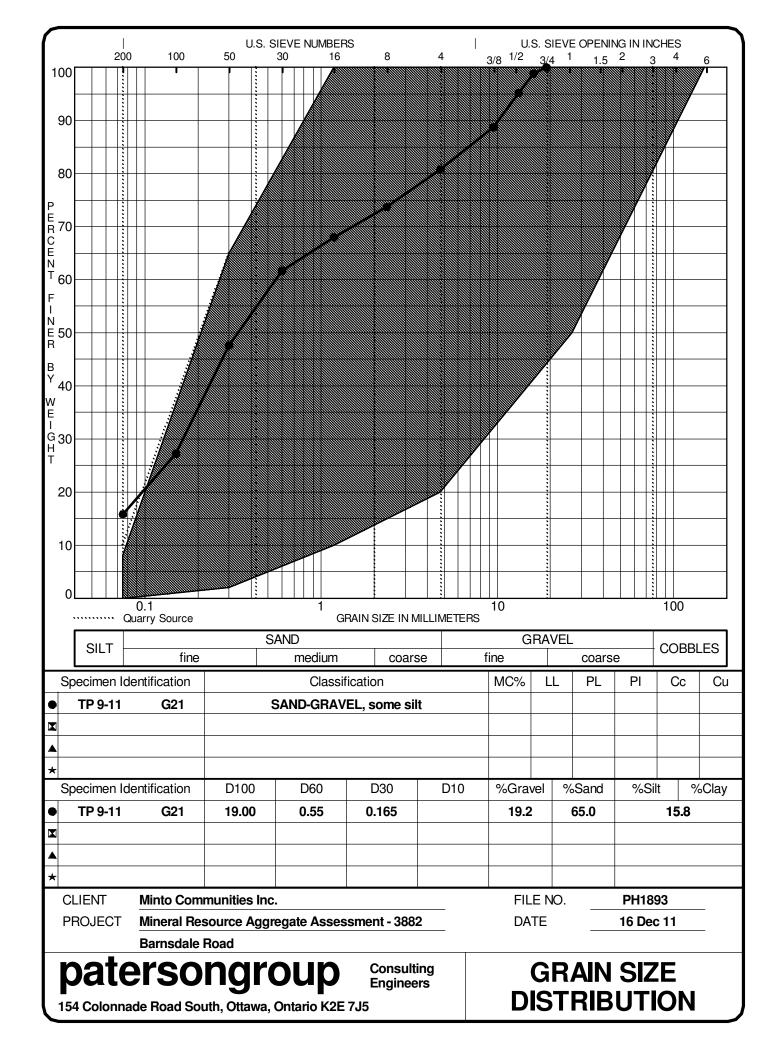


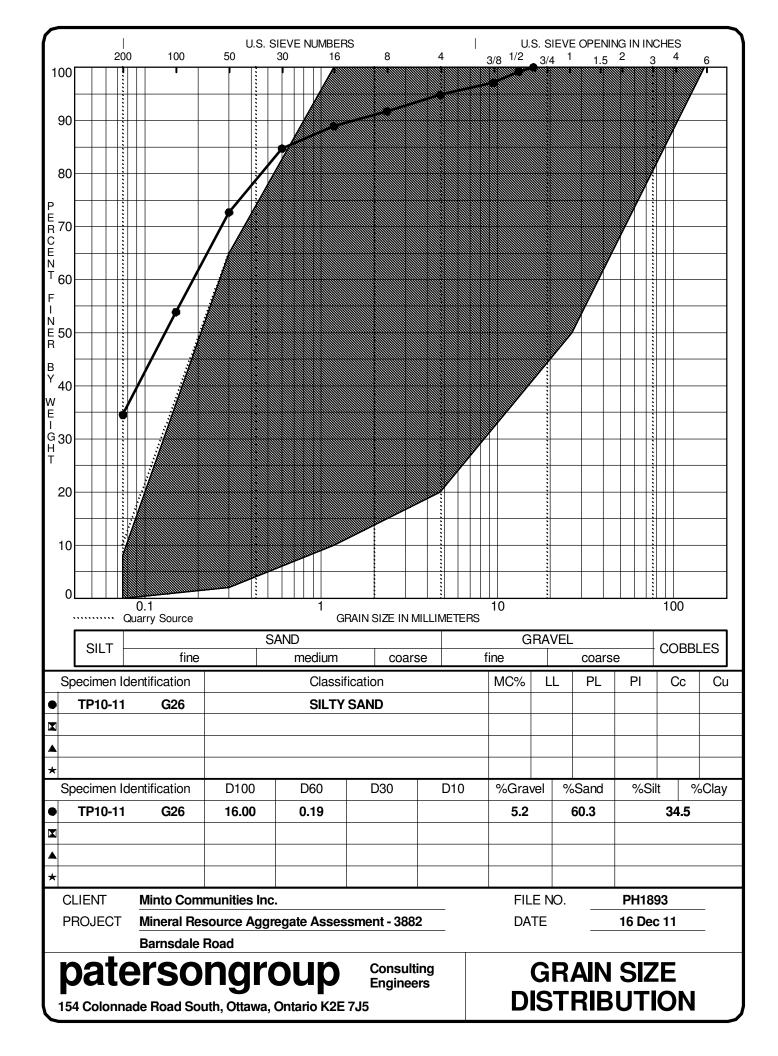


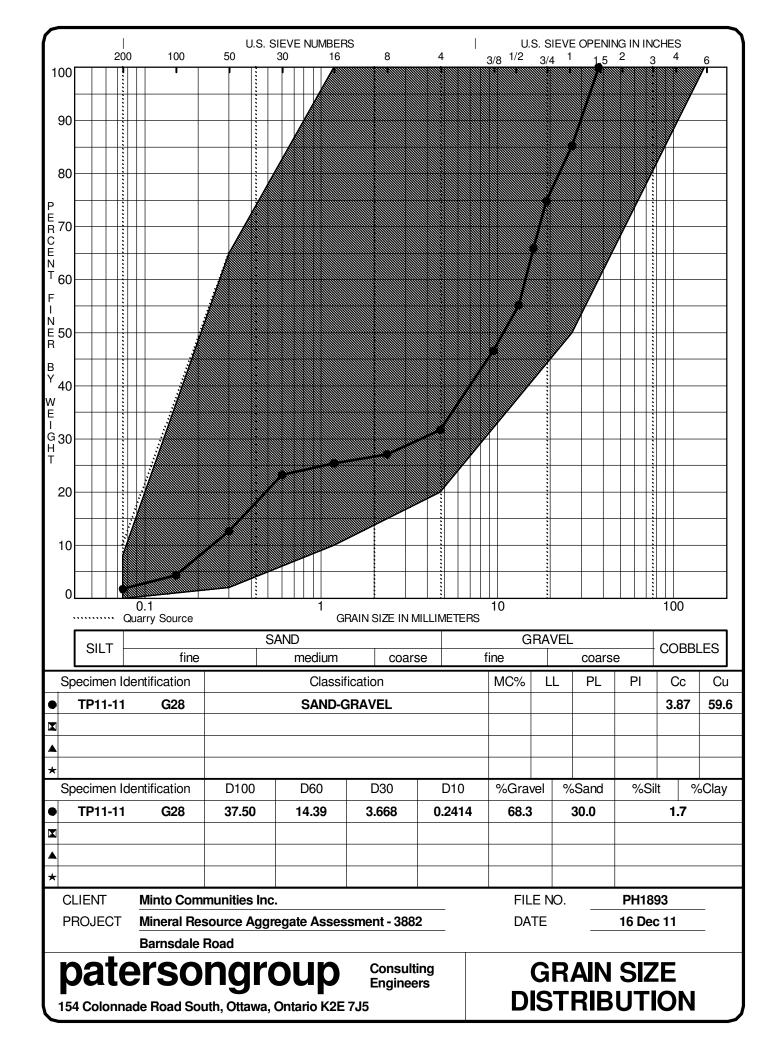


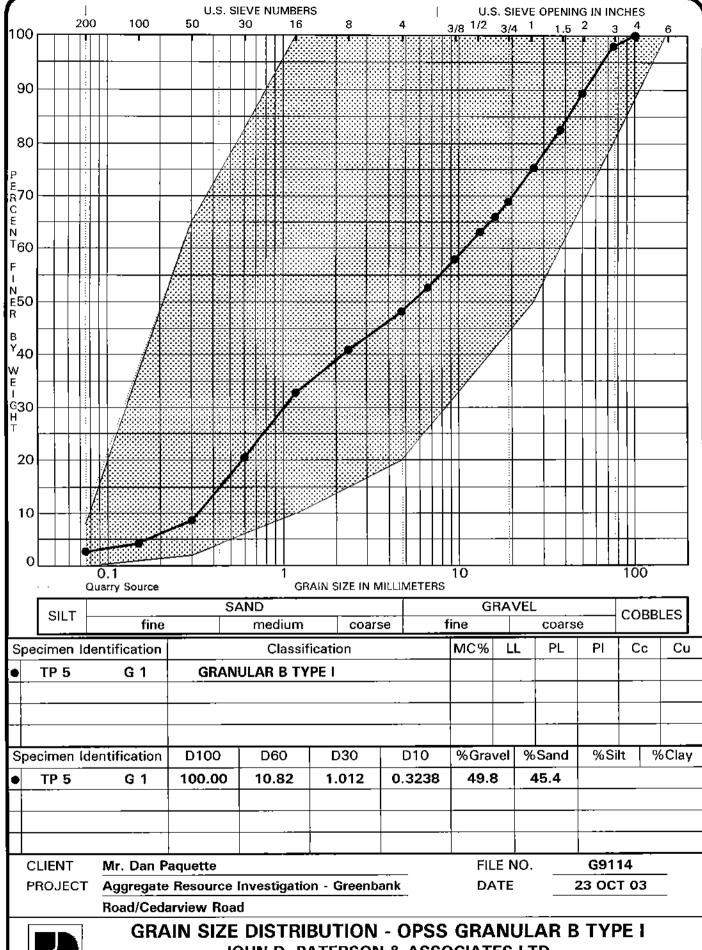


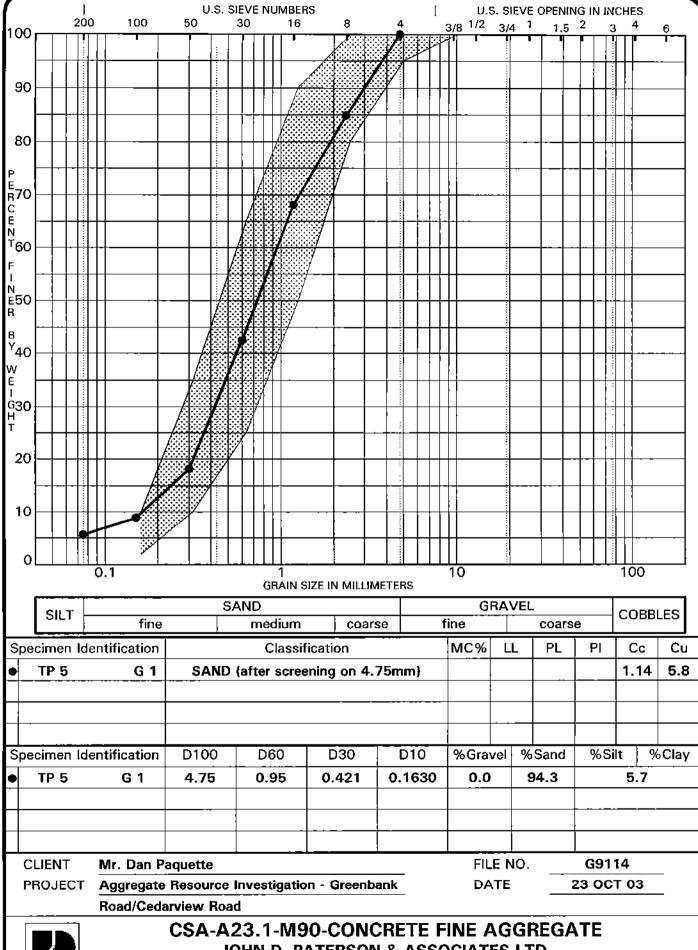


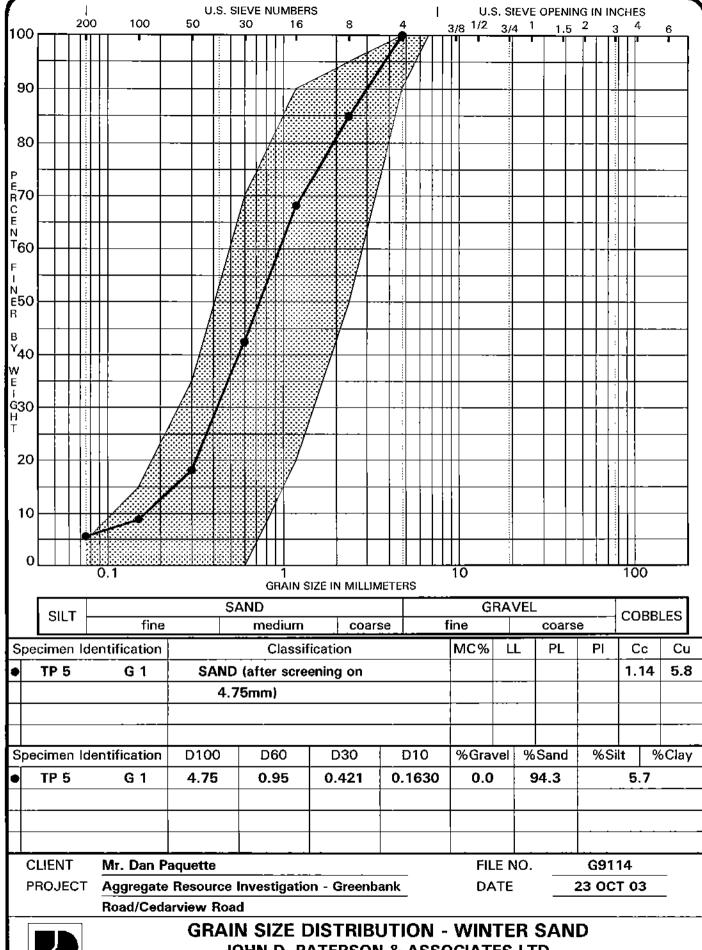


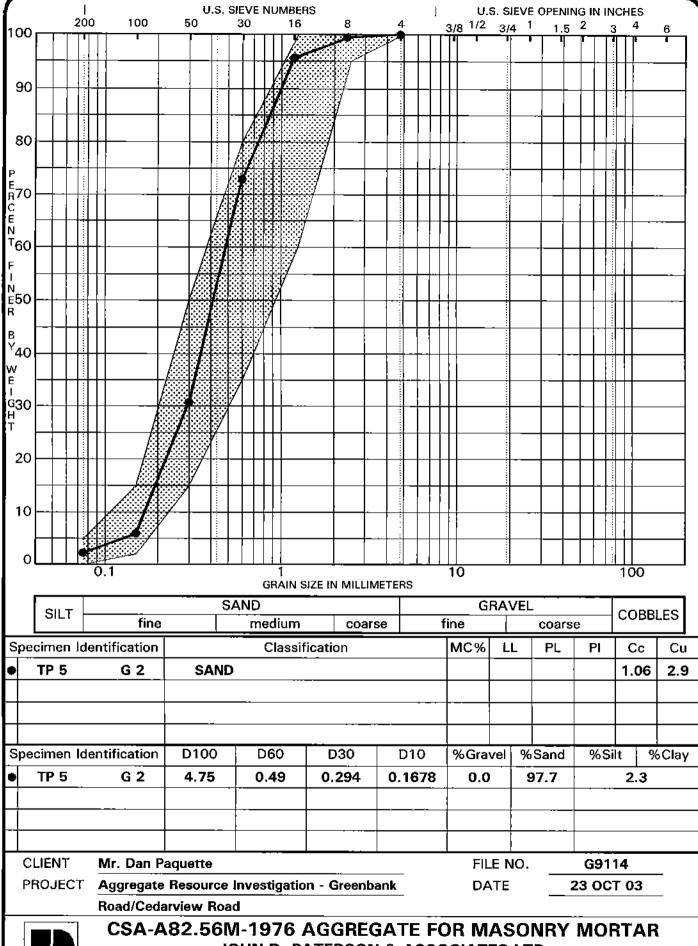


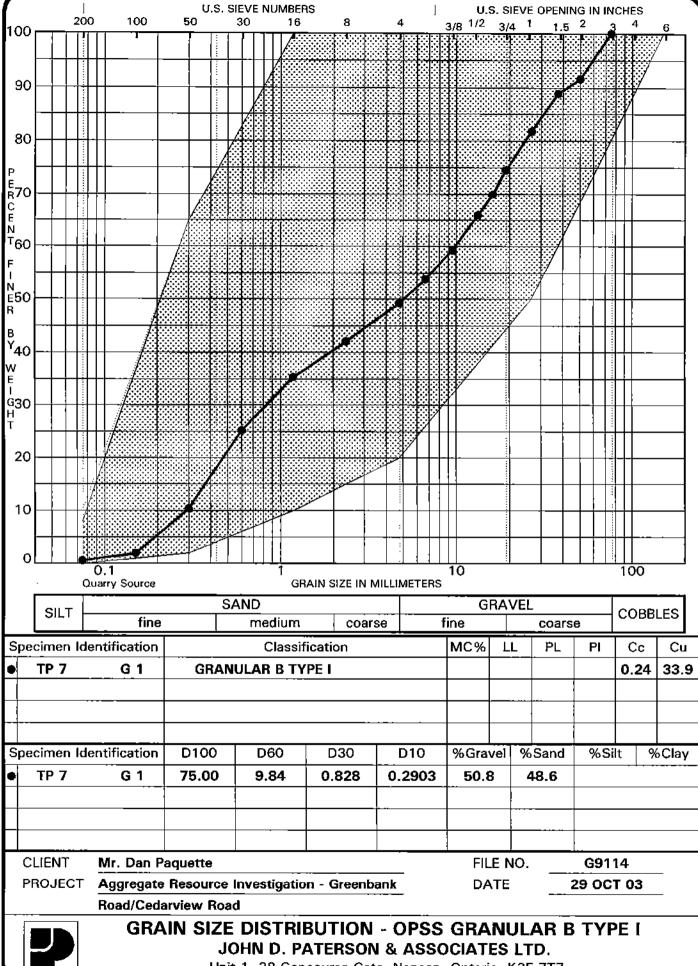


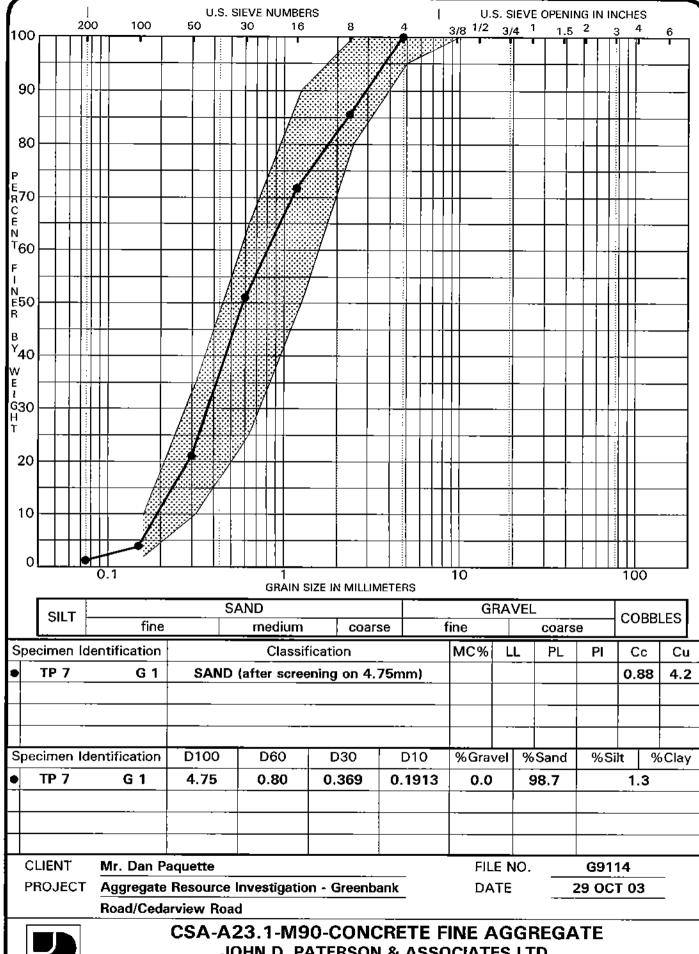


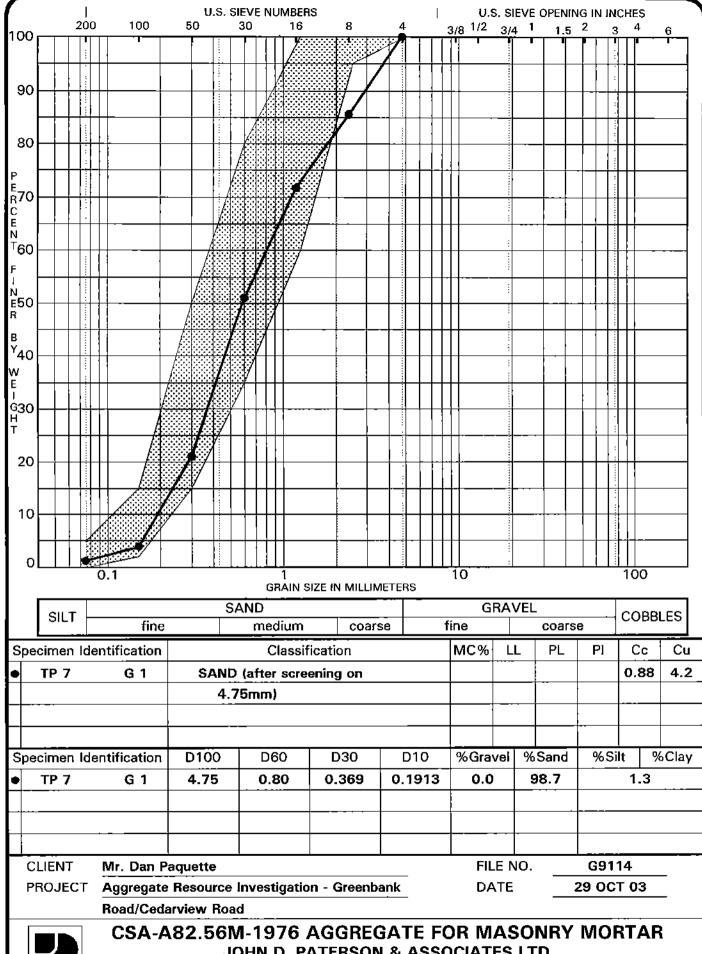


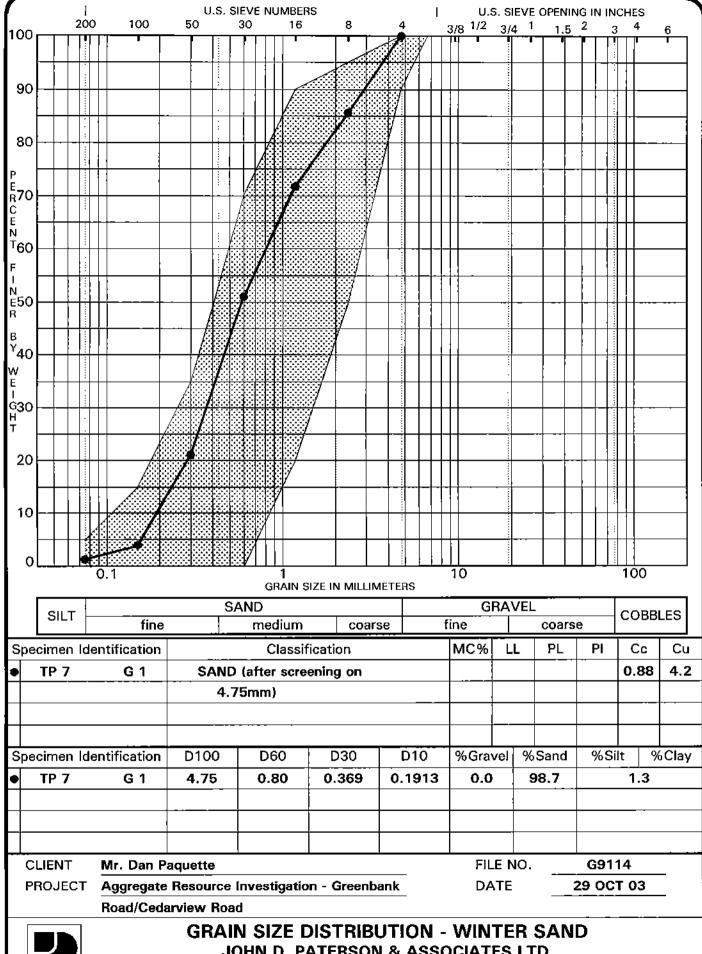


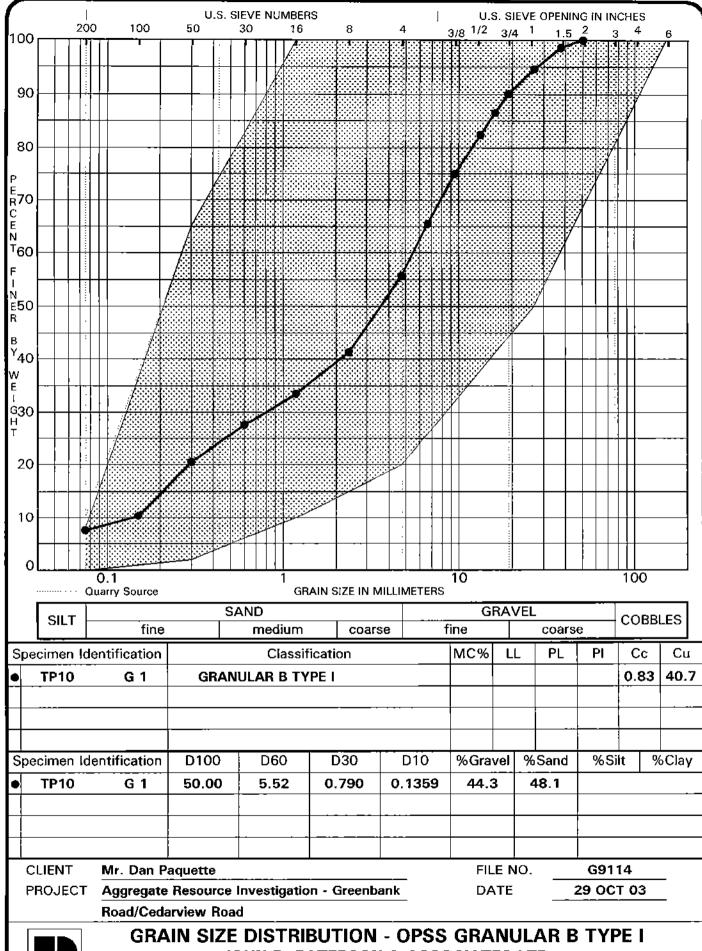


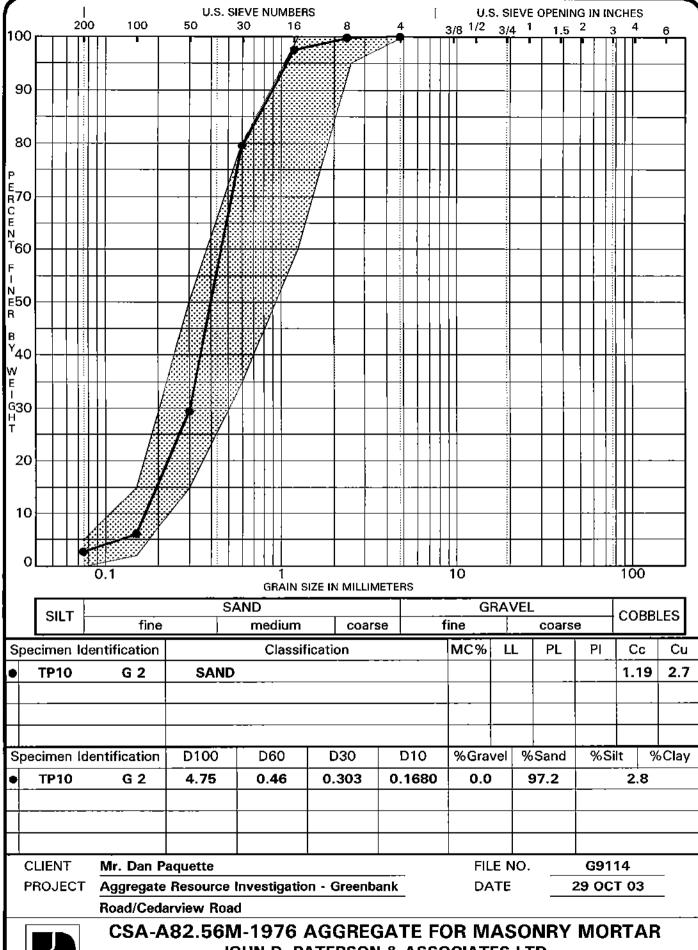


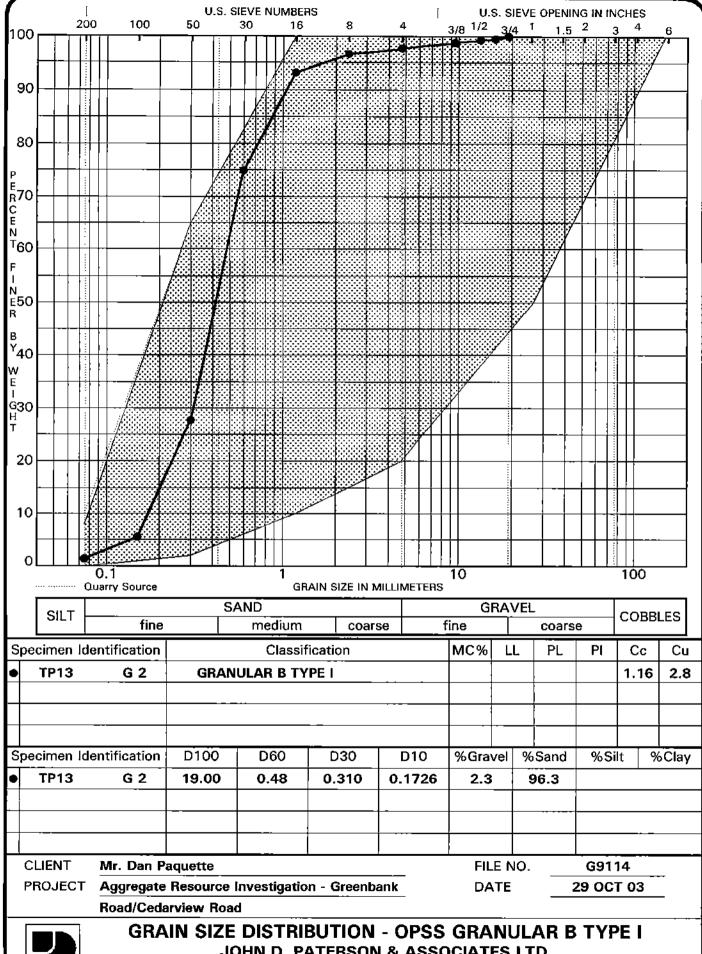


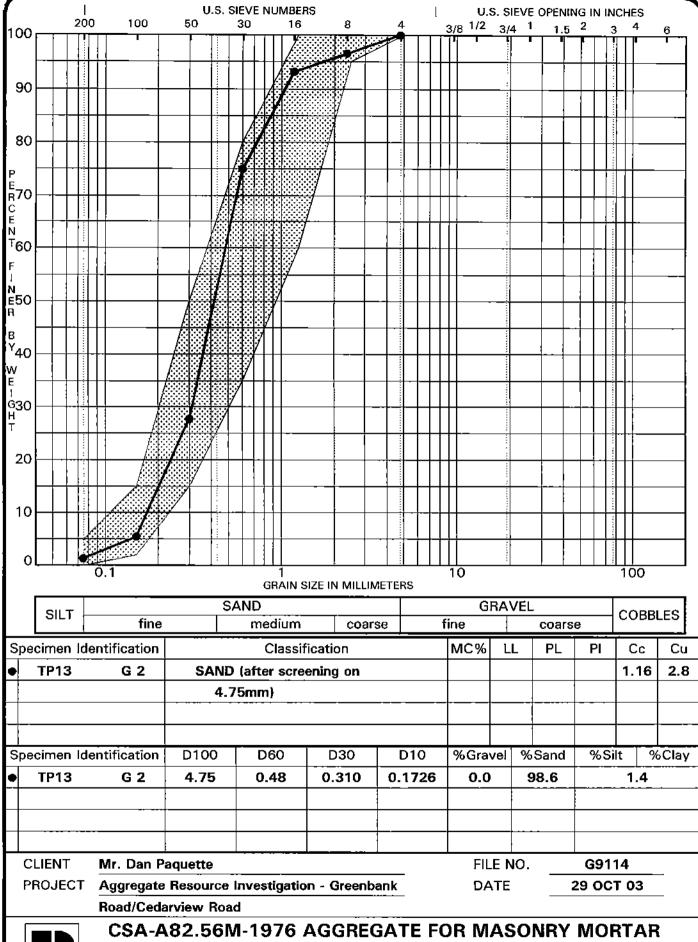


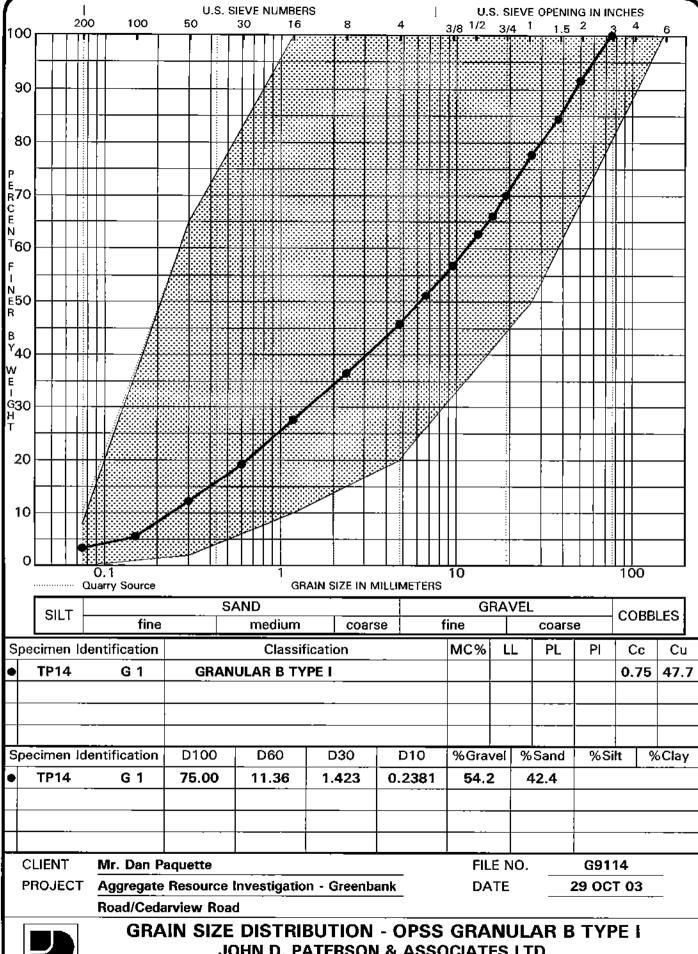


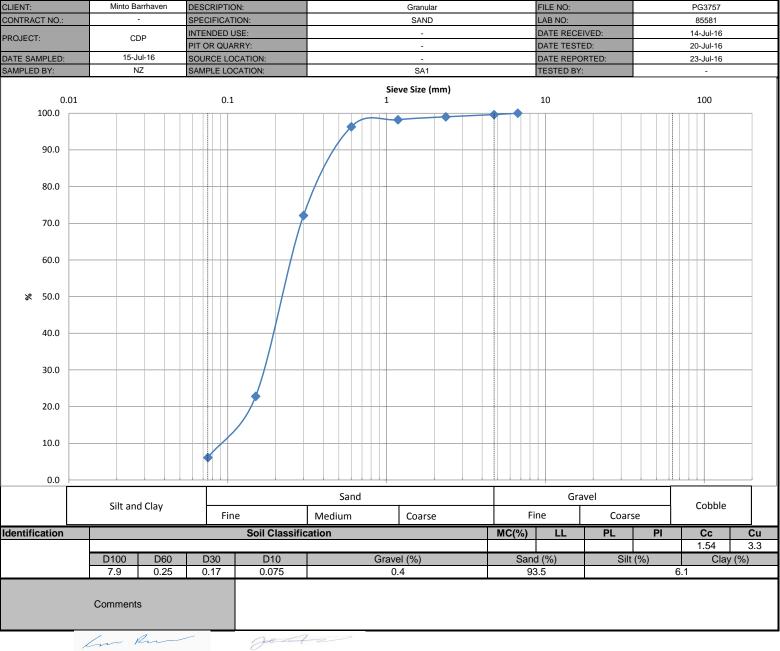


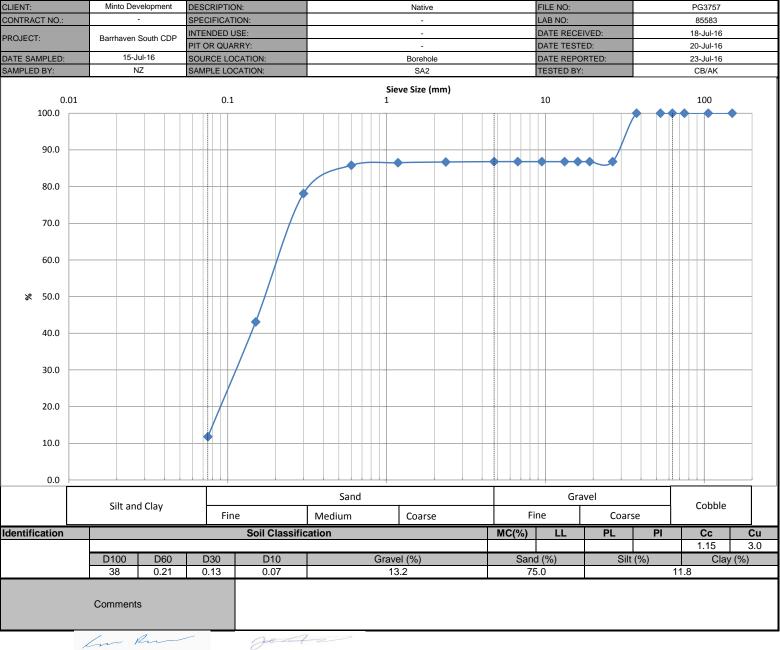


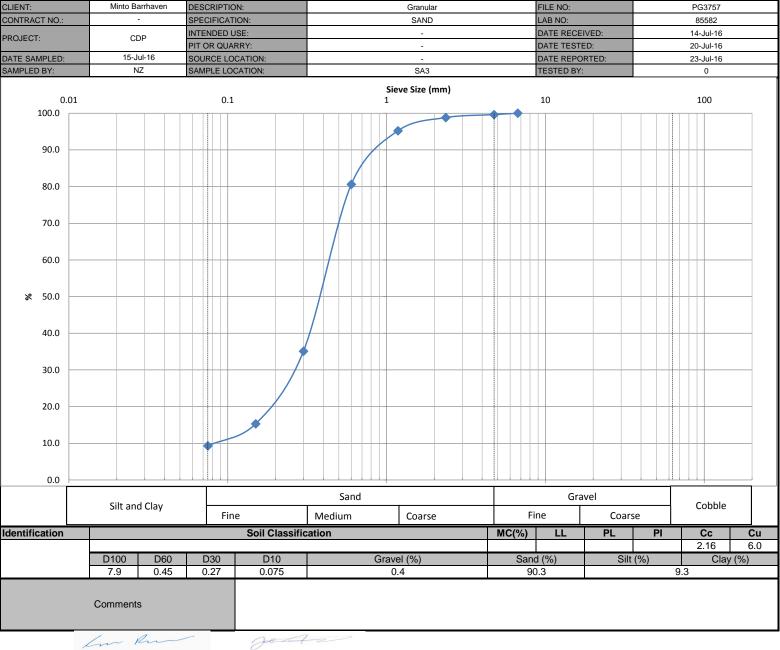


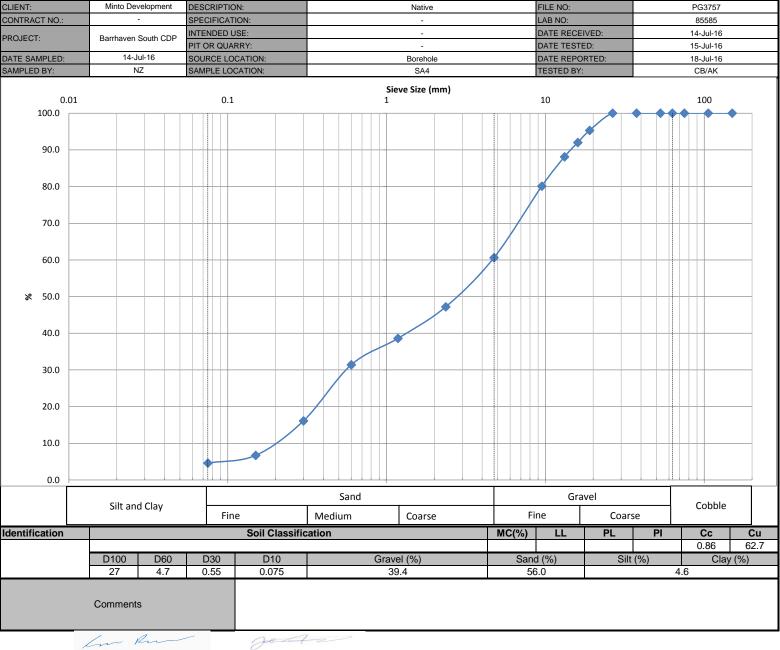


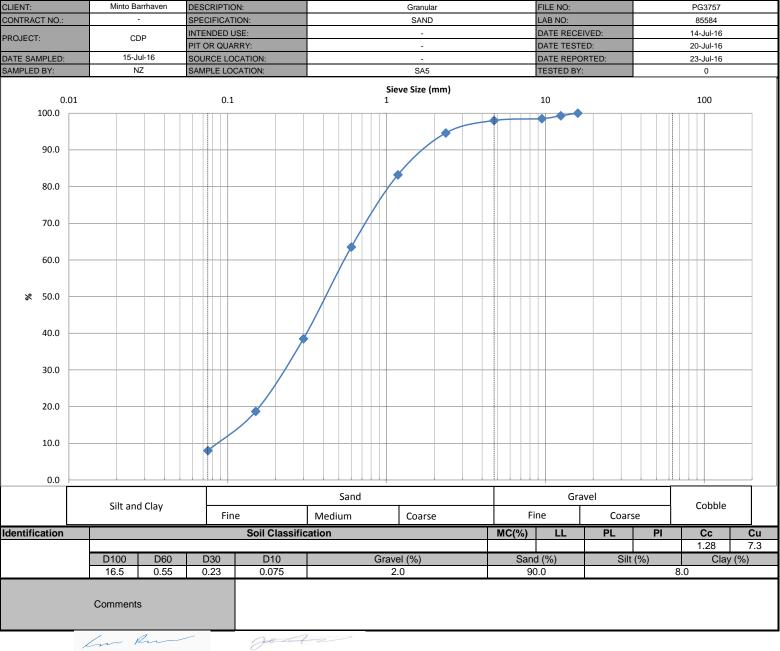


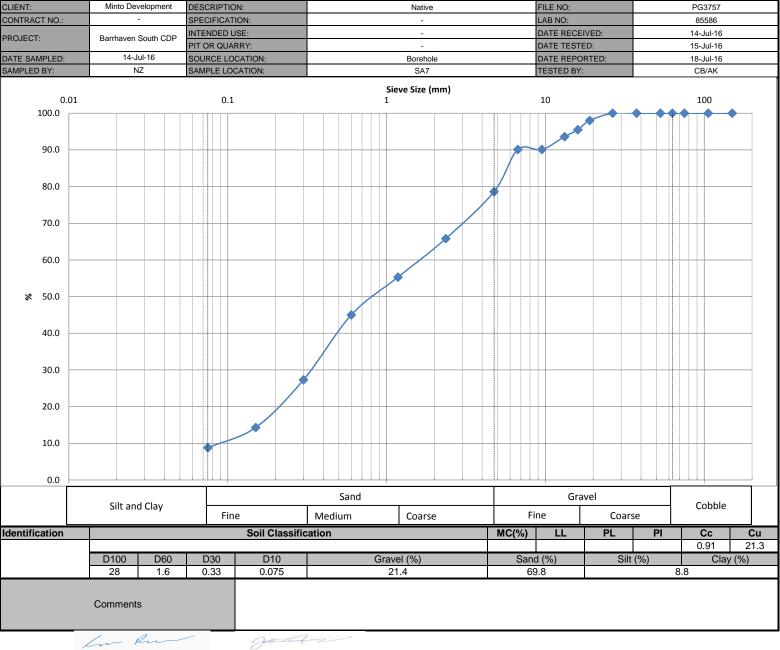


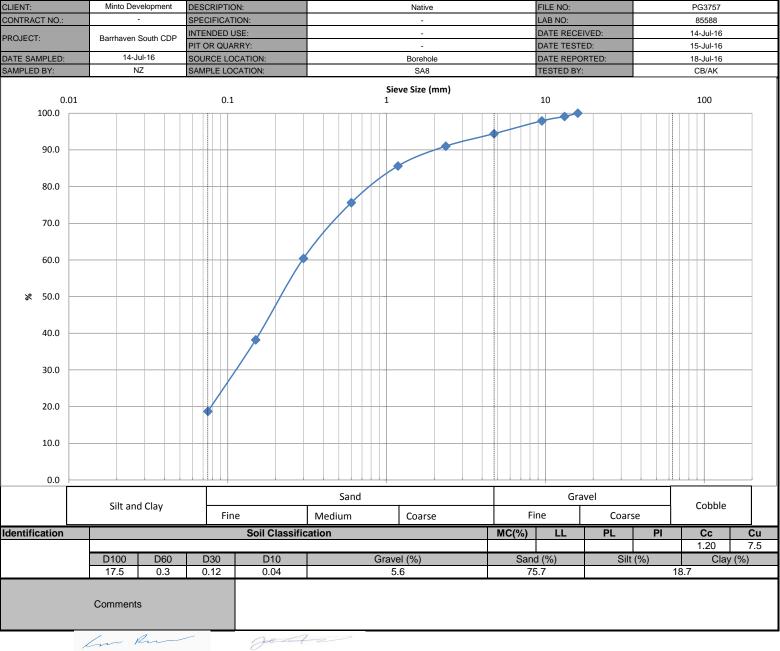


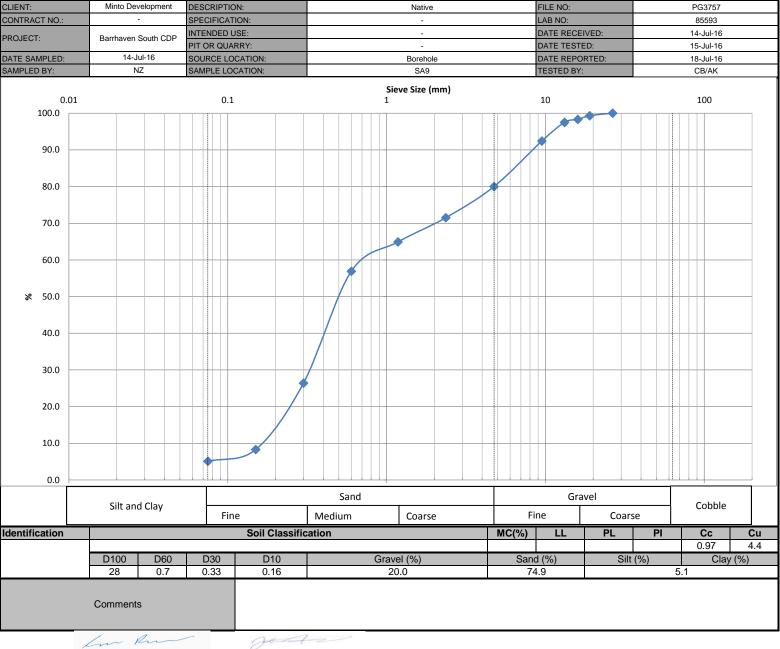


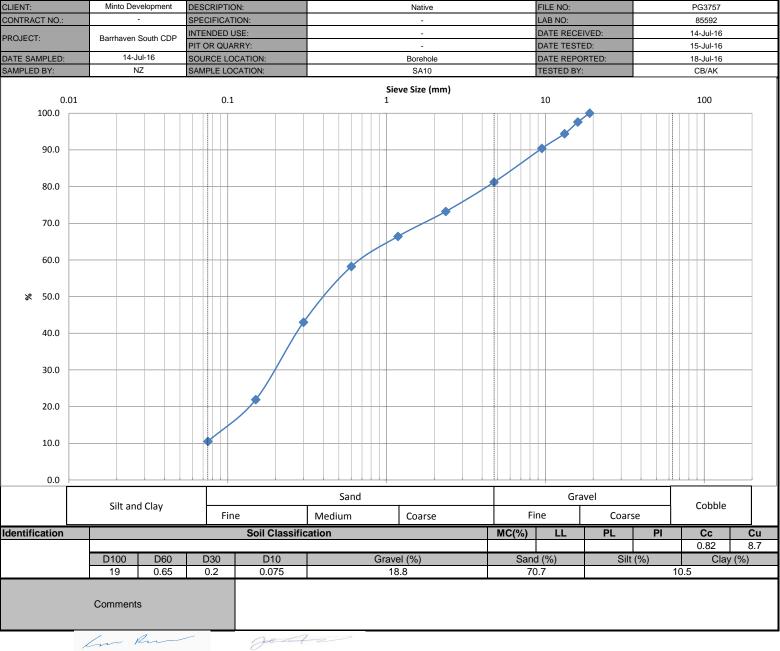


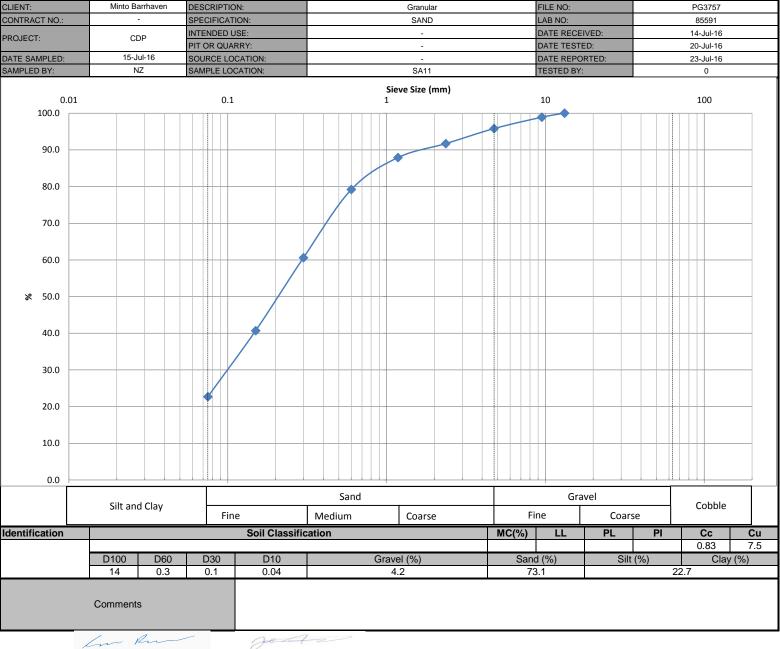


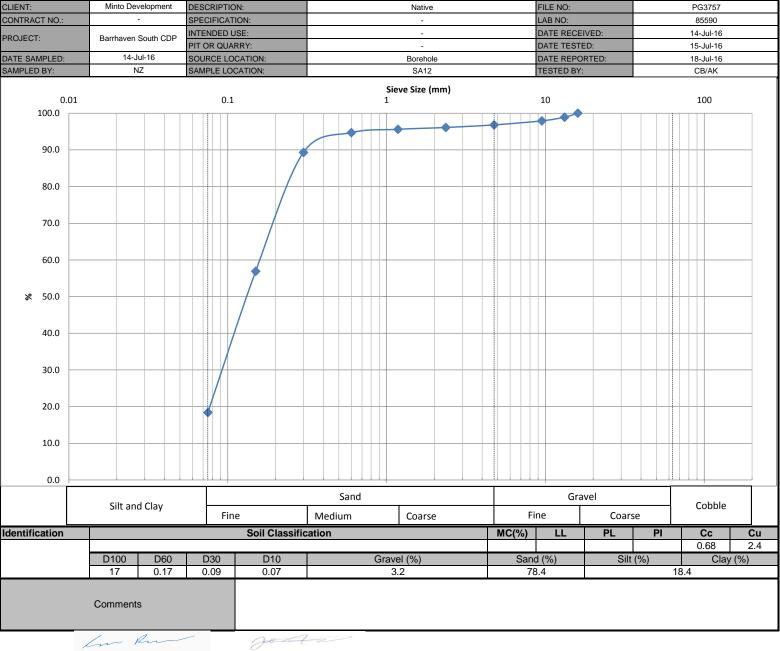


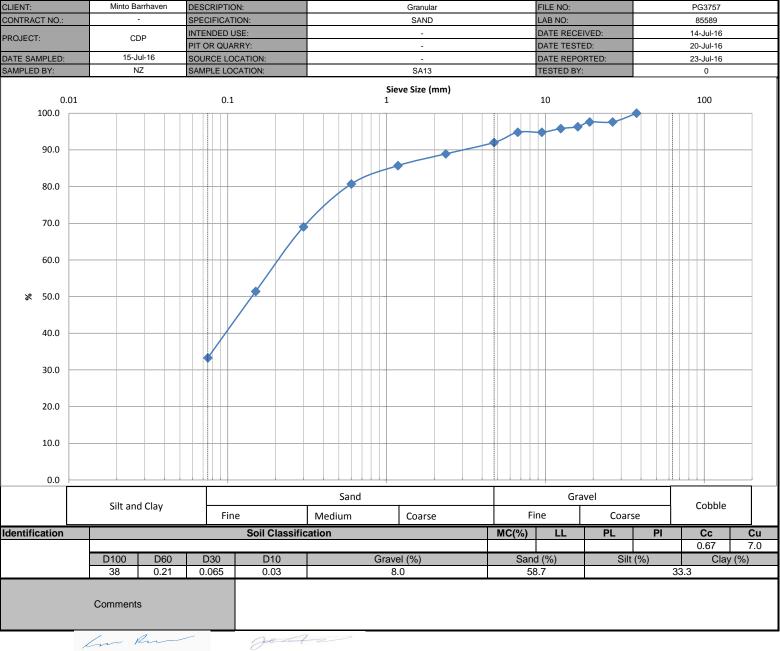


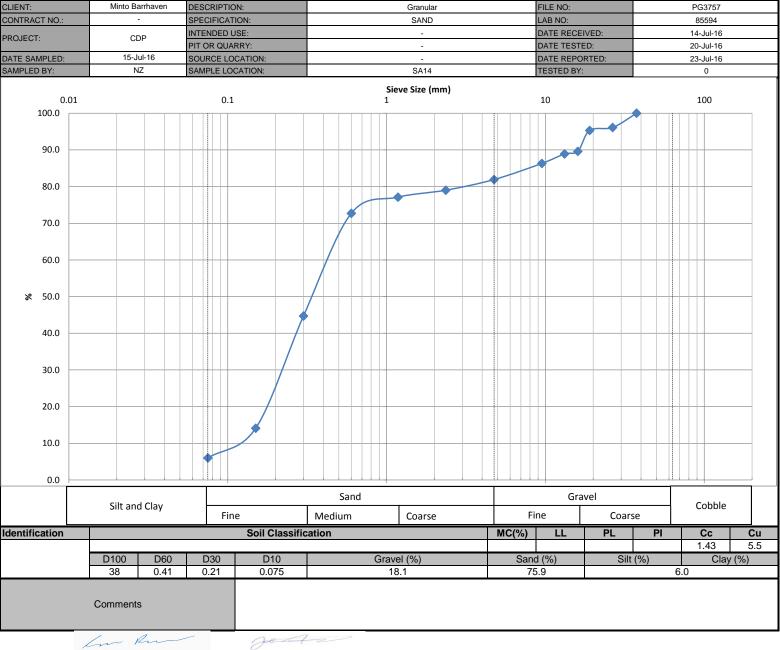


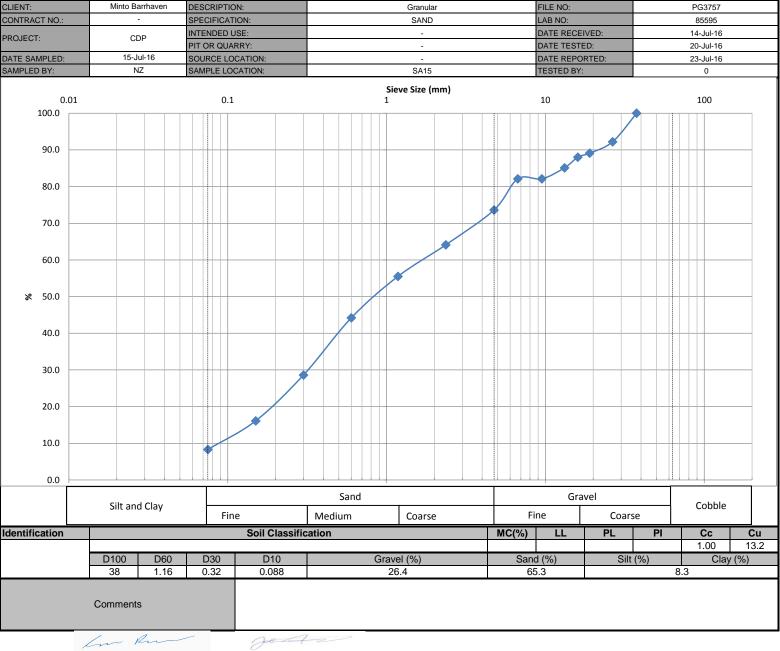


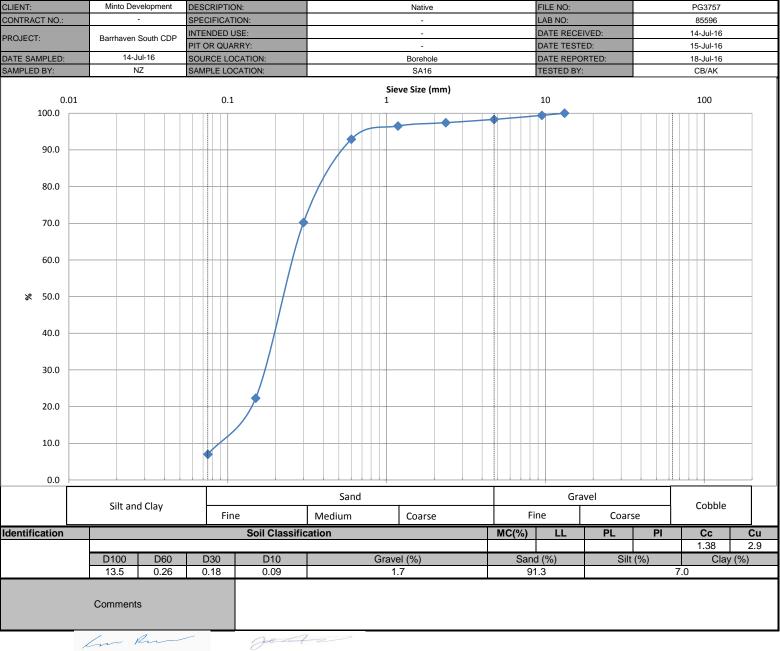


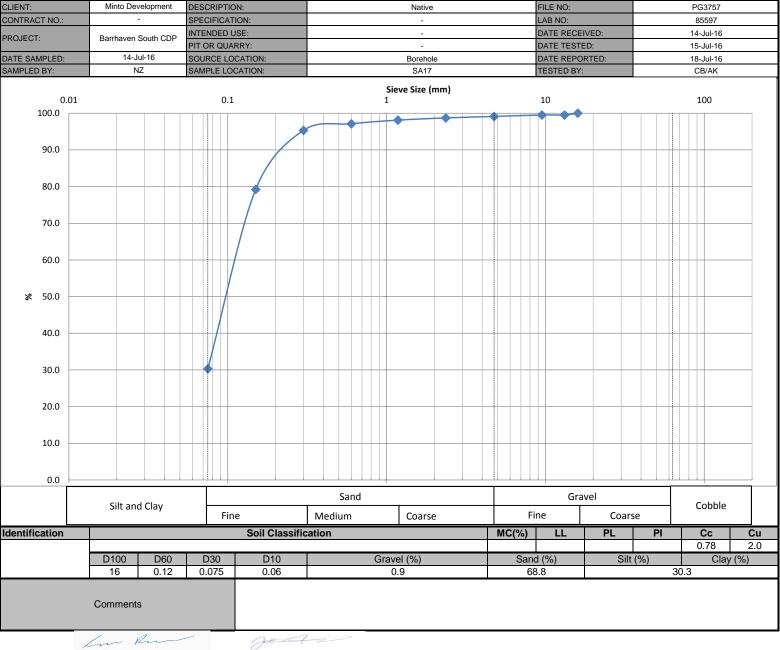


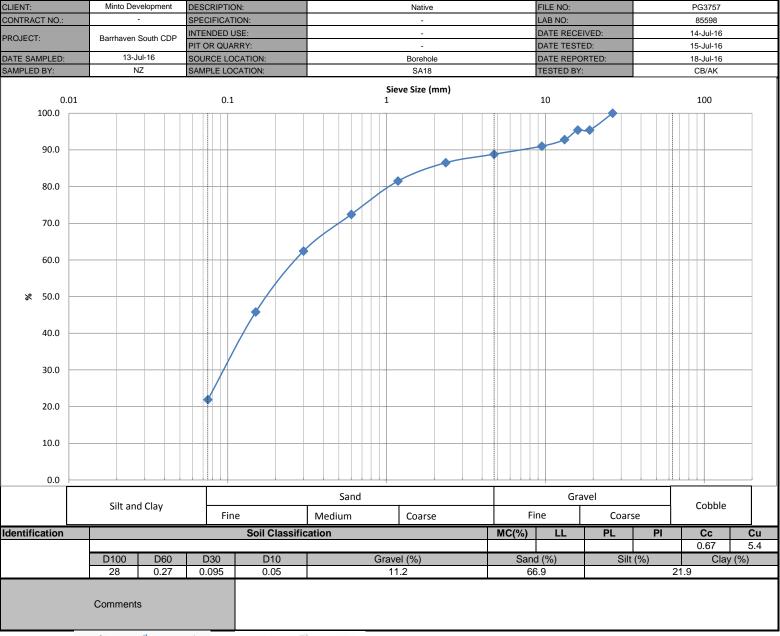












In Rue gester

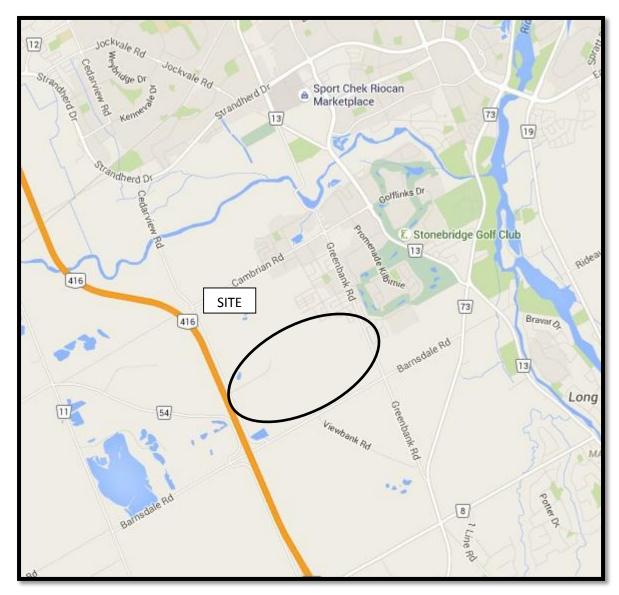
APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 TO 7 - SLOPE STABILITY SECTIONS

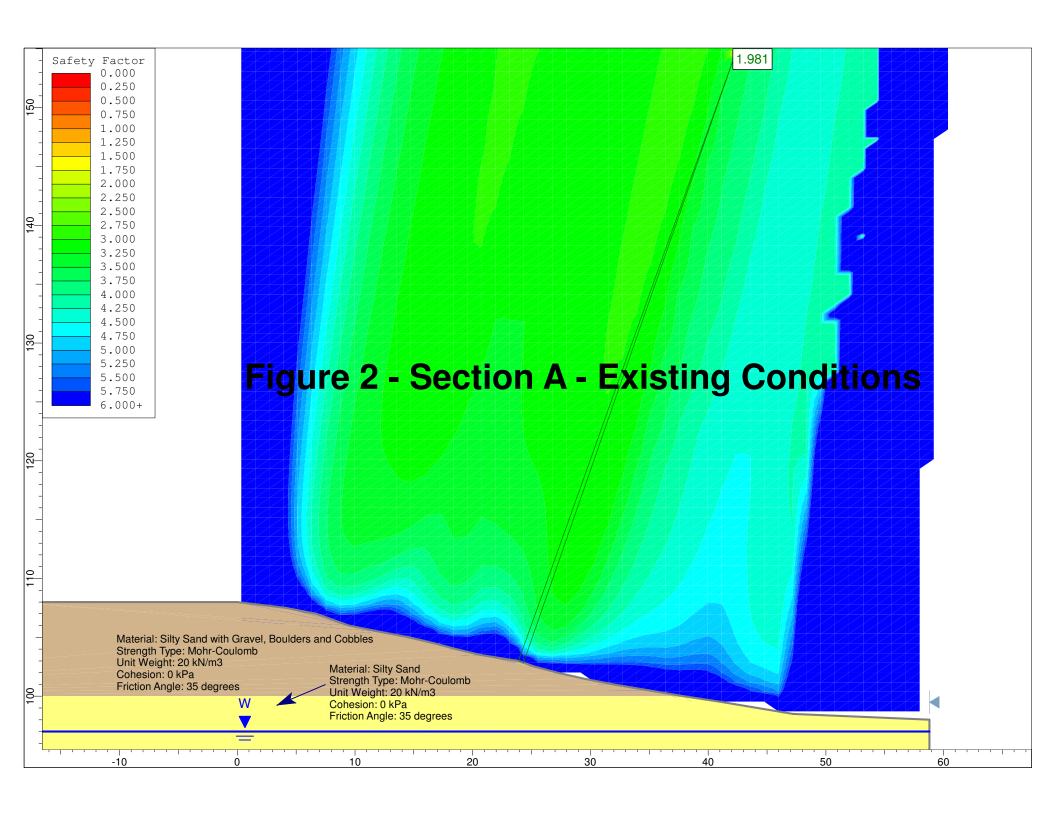
PHOTOGRAPHS FROM FIELD INVESTIGATION

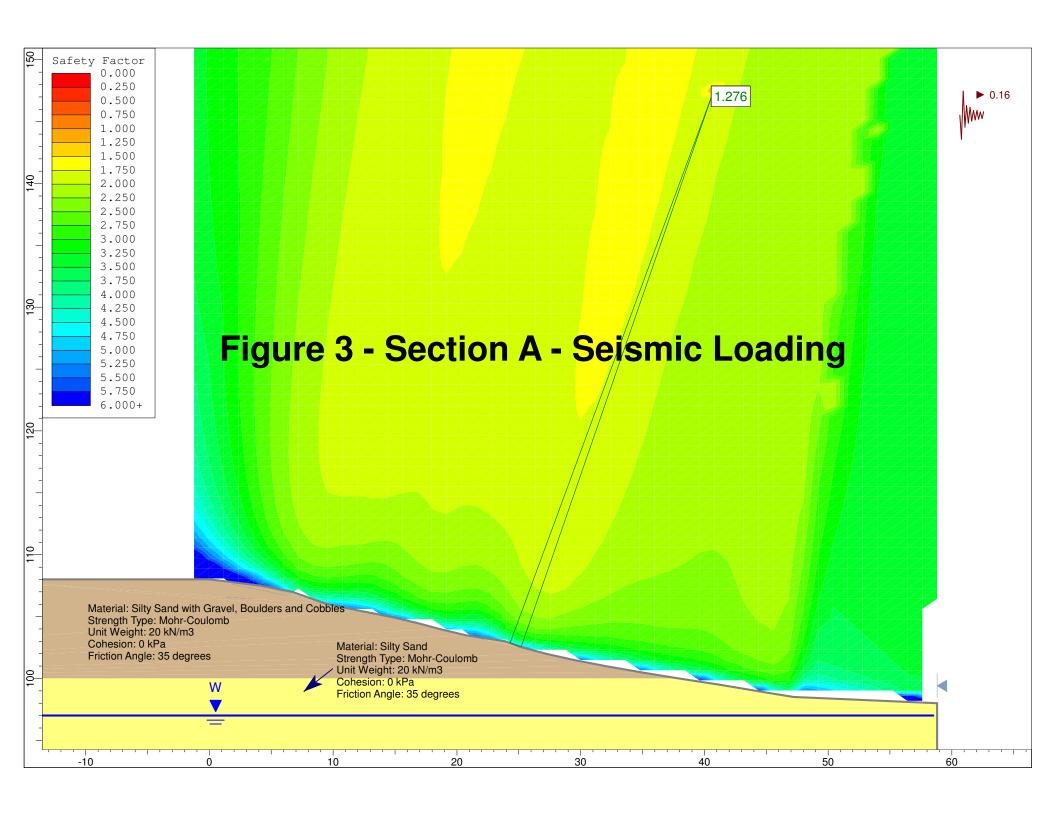
DRAWING PG3607-1 - TEST HOLE LOCATION PLAN

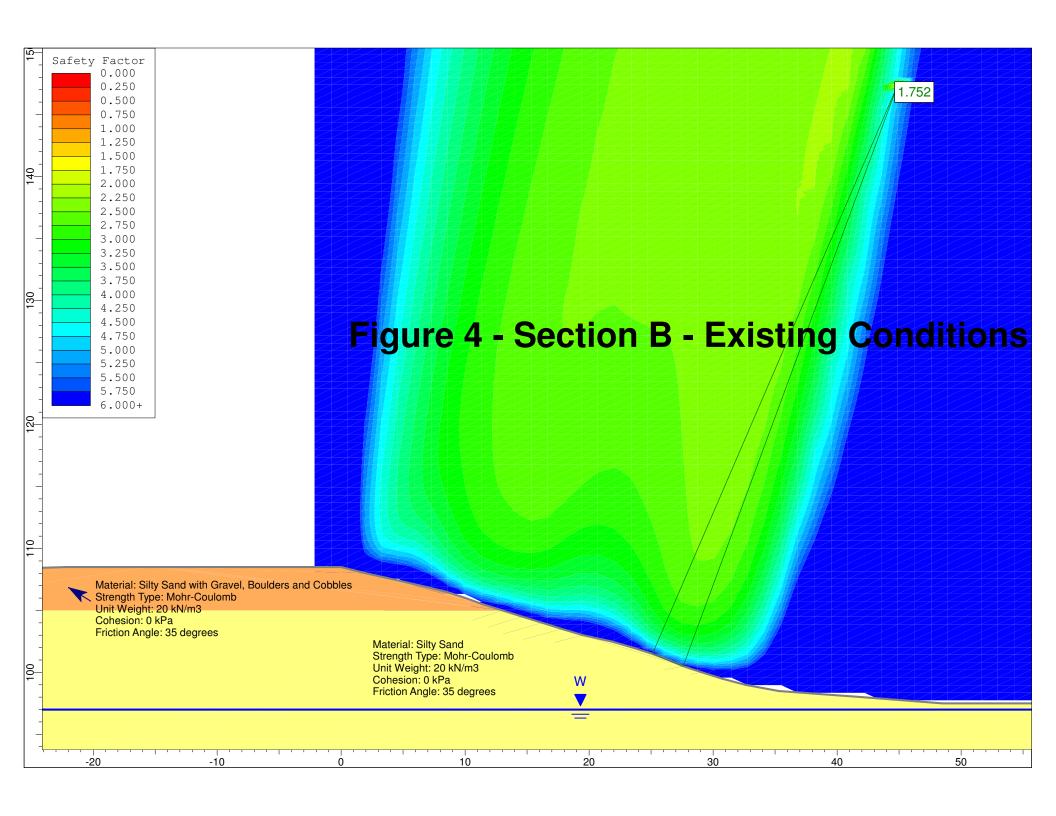

DRAWING PG3607-2 - SURFICIAL GEOLOGY

DRAWING PG3607-3 - REGIONAL BEDROCK MAPPING

DRAWING PG3607-4 - DRIFT THICKNESS


DRAWING PG3607-5 - AGGREGATE RESOURCES INVENTORY OF THE CITY OF OTTAWA


DRAWING PG3607-6 - SEISMIC SITE CLASS



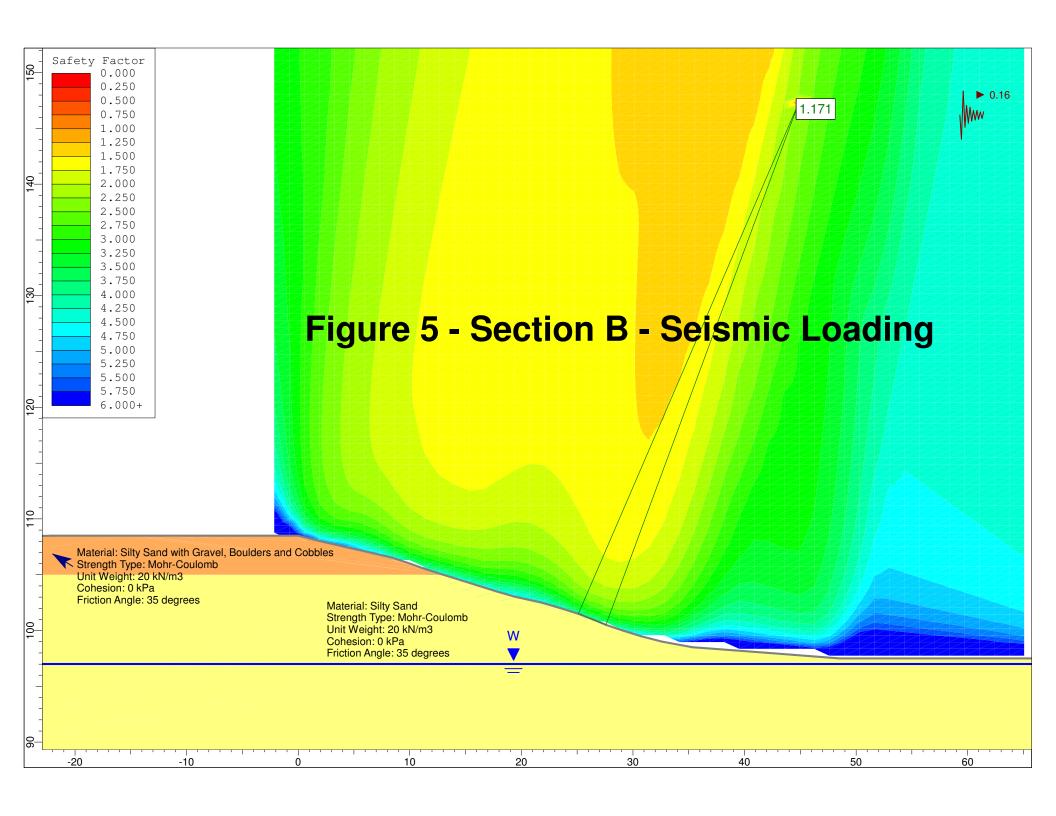

Source: Google Maps

FIGURE 1
KEY PLAN

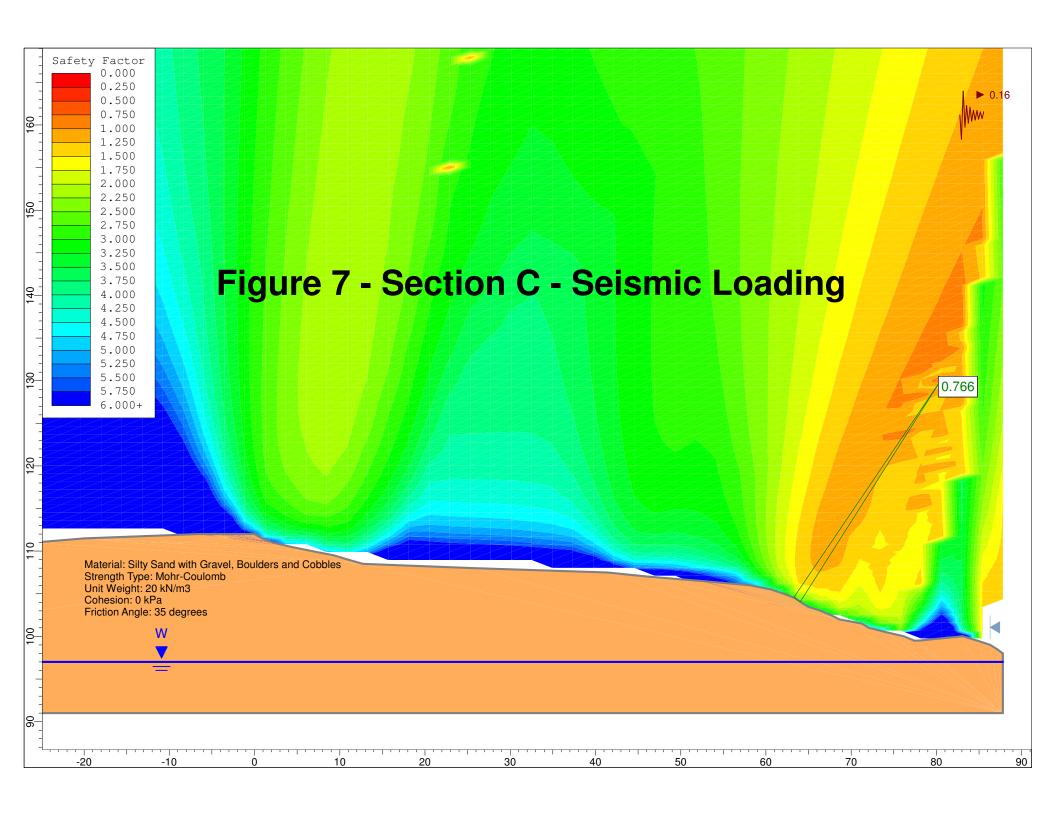


Photo 1: Looking south at BH 3-15 (November 30, 2015).

Photo 2: Looking east at TP 20-15 (December 2, 2015).

Photo 3: Looking southeast from TP 4-15 (December 2, 2015).

Photo 4: Subsoil profile at TP 38-15 (December 1, 2015).

Photo 5: Looking south from TP 57-15 (November 24, 2015).

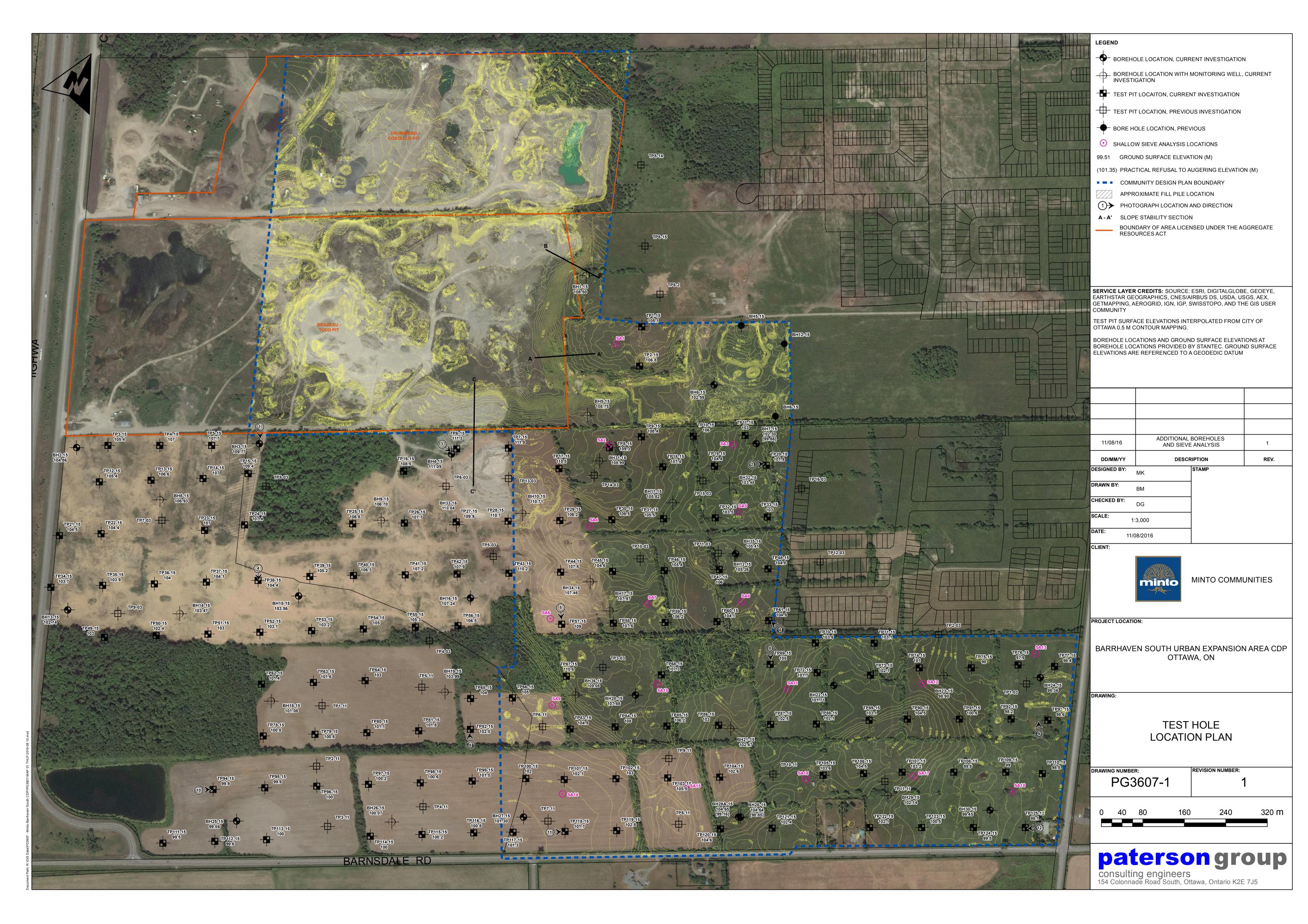
Photo 6: Looking northwest from TP 61-15 (November 24, 2015).

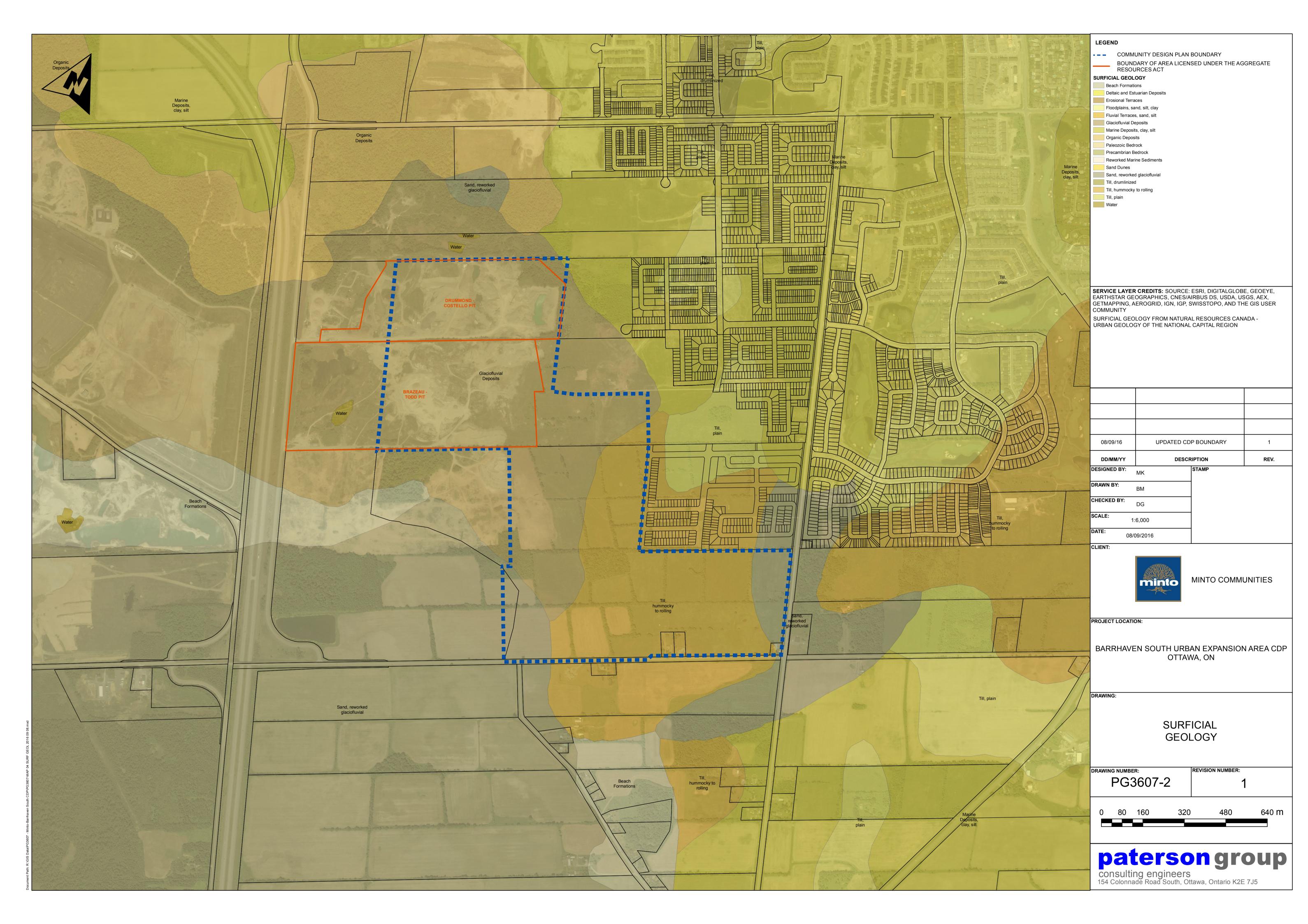
Photo 7: Looking south at TP 69-15 (November 24, 2015).

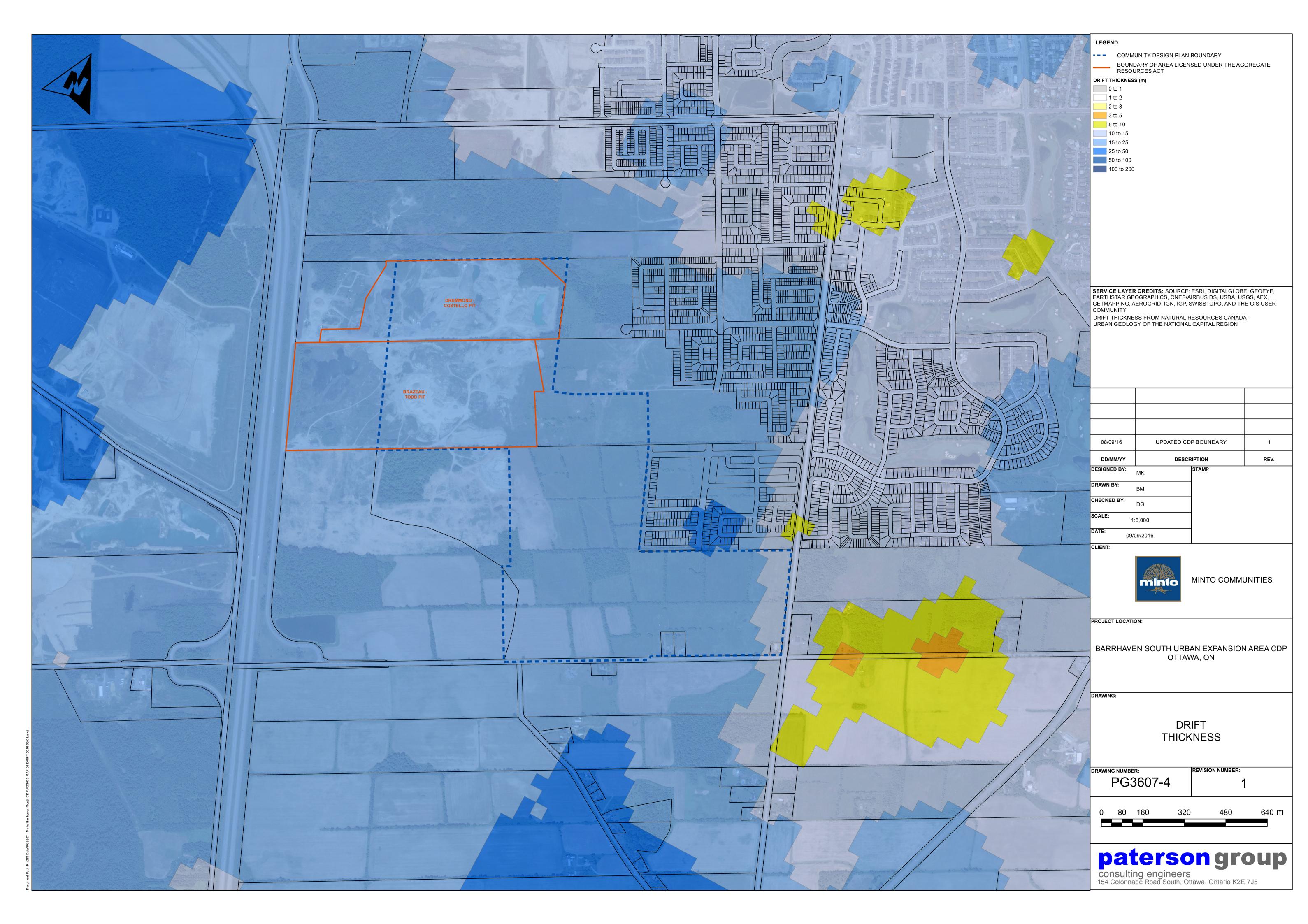
Photo 8: Ground surface at TP 82-15 (September 20, 2015).

Photo 9: Looking north from TP 93-15 (November 19, 2015).

Photo 10: Looking east from TP 94-15 (November 17, 2015).




Photo 11: Looking east from TP 118-15 (November 17, 2015).


Photo 12: Looking west from TP 125-15 (November 18, 2015).

