

Site Servicing and Stormwater Management Report 1158 Second Line Road Ottawa, Ontario

Type of Document: Plan of Subdivision Submission

Client: Theberge Homes

Project Number: OTT-00245003-A0

Prepared By: Jason Fitzpatrick, P.Eng. **Reviewed By:** Bruce Thomas, P.Eng.

exp Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Date Submitted: April 2018

Site Servicing and Stormwater Management Report 1158 Second Line Road, Ottawa, Ontario

Type of Document: Plan od Subdivison Submission

Client: Theberge Homes

Project Number: OTT-00245003-A0

Prepared By: exp 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada T: 613 688-1899 F: 613 225-7337 www.exp.com

Jason Fitzpatrick, P.Eng. Project Engineer Infrastructure Services Bruce Thomas, P.Eng. Senior Project Manager Infrastructure Services

Date Submitted: April 2018

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Legal Notification

This report was prepared by exp Services Inc. for the account of Theberge Homes.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Table of Contents

1	Introduction1					
2	Refe	renced Guidelines	1			
3	Sanit	ary Sewer Design	2			
4	Wate	rmain Servicing	3			
	4.1	Water Demands	4			
	4.2	Fire Flow Requirements	4			
	4.3	Boundary Conditions	5			
	4.4	Modelling Results	5			
5	Storr	nwater Management	7			
	5.1	Design Criteria	7			
	5.2	Runoff Coefficients	7			
	5.3	Calculation of Allowable Release Rate	8			
	5.4	Pre-Development Conditions	8			
	5.5	Calculation of Post-Development Runoff	9			
	5.6	Storm Sewer Design	9			
	5.7	Flow Control & Stormwater Storage1	0			
	5.8	Storage Requirements1	1			
6	Eros	ion and Sediment Control1	2			
7	Cond	lusions1	3			

List of Figures

Figure A1: Site Location Plan	Appendix A
Figure A2: Sanitary Drainage Areas	Appendix A
Figure A3: Post-Development Catchment Areas	Appendix A
Figure A4: Site Plan	Appendix A
Figure A5: Survey Plan	

List of Tables

Table No:

Page or Appendix No

Table 5-5: Summary of Post-Development Flows	9
Table 5-6: Summary of ICDs1	1
Table 5-7: Summary of Storage Requirements and Release Rates	1
Table B1: Sanitary Design Sheet	В
Table C1: Water Demand Chart	С
Table C2: Calculation of Fire Flow Requirements (4 unit block)	С
Table C3: Calculation of Fire Flow Requirements (5 unit block)	С
Table C4: Calculation of Fire Flow Requirements (6 unit block)	С
Table D1: Boundary Condition 1 Results	D
Figure D1: Boundary Condition 1 Location	D
Table D2: Boundary Condition 2 Results	D
Figure D2: Boundary Condition 2 Location	D
Table E1: 2-year Storm Sewer Calculation Sheet	Е
Table E2: 5-year Storm Sewer Calculation Sheet	Е
Table E3: 100-year Storm Sewer Calculation Sheet	Е
Table F1: Average Runoff Coefficients (Pre-Development)	F
Table F2: Pre-Development Runoff Calculations	F
Table F3: Allowable Runoff Calculations	F
Table F3: Calculation of Average Runoff Coefficients (Post-Development)	F
Table F4: Average Runoff Coefficients (Pre-Development)	F
Table F5: Summary of Post Development Runoff (Uncontrolled and Controlled)	F
Table F6: Summary of Surface Storage	F
Table F7: Summary of Underground Pipe Storage	F
Table F8: Summary of Underground Manhole/Catchbasin Storage	F
Table F9: Table F9 - Storage Volumes for 2-year, 5-Year and 100-Year Storms	F
Table F10: Drainage Area Information	F
Table F11: Stormtech MC-3500 Chamber – Cumulative Storage by Depth Table	F
Table F12: Stormtech MC-3500 Chamber – Cumulative Storage Table	F
Table F13: Inlet Control Device Table	F
Table F14: Storage-Discharge & Stage-Storage Information	F
Chart F15: Storage-Discharge & Stage-Storage Curve	F
Table F16: Storage Volume Requirements for 5 Year and 100 Year Storms	F
Table F17: Required Storage (2-yr)	F
Table F18: Required Storage (5-yr)	F
Table F19: Required Storage (100-yr)	F
Table F20: Summary of Results	F

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

List of Appendices

Appendix A – Figures Appendix B – Sanitary Design Sheet Appendix C – Water Tables Appendix D – WATERCAD Results Appendix E – Storm Sewer Design Sheets Appendix F – SWM Design Sheets Appendix G – Manufacturer Information Appendix H – Background Information Appendix I – Correspondence

1 Introduction

Theberge Homes retained **exp** Services Inc. (EXP) to undertake a site servicing and stormwater management study in support of a zoning by-law amendment and plan of subdivision applications for a proposed development at 1158 Second Line Road in the City of Ottawa. The property is situated on Second Line Road, 270m south of Old Carp Road in the City of Ottawa, Ontario as shown on Figure 1 in Appendix A.

The development is comprised of forty-nine (49) townhome units. This report will discuss the adequacy of the adjacent municipal storm sewers, sanitary sewers and watermains to convey the storm runoff, sewage flows and provide the water demands that will result from the proposed development.

The 1.23-hectare development being proposed by Theberge Homes will consist of a five (5) 4-unit townhome blocks, one (1) 5-unit townhome block, and four (4), 6-unit townhome blocks. A single dwelling unit is currently located on the property.

There are municipal sanitary sewers, storm sewers and watermains within Goward Drive that will be utilized to service the development.

This report will identify any sanitary, storm or watermain servicing requirements, and provide a design brief for submission, along with the engineering drawings, for City of Ottawa approval.

2 Referenced Guidelines

Various documents were referred to in preparing the current report including:

- Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa (Guidelines) including:
- Technical Bulletin ISDTB-2012-4 (20 June 2012)
- Technical Bulletin ISDTB-2014-01 (05 February 2014)
- Technical Bulletin PIEDTB-2016-01 (September 6, 2016)
- Technical Bulletin ISDTB-2018-01 (21 March 2018)
- Ontario Ministry of Transportation (MTO) Drainage Manual, 1995-1997
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001).
 - Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM)
 - Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS)
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 1999
- Ontario Building Code 2012, Ministry of Municipal Affairs and Housing.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

3 Sanitary Sewer Design

The sanitary sewer system is designed based on a population flow, and an area based infiltration allowance. The flows were calculated using City of Ottawa design guidelines as follows: **Population:**

49-Town homes x 2.7 person/unit	= <u>132.3</u> = 133 Persons
<u>Sanitary Flow</u> Average Domestic Flow	= 280 L/person/day
Domestic Flow = 133 x 280 L/person/day x (1/86,400 sec/day) Peak Factor = 1 + 14 / (4 + (43.2/1000) ^{0.5})	= 0.43 L/sec = 4.0 (4.0 Max)
Q Peak Domestic = 0.175 L/sec x 4.0	= 1.72 L/sec
<u>Infiltration:</u> Q Infiltration = 0.33 L/ha/sec x 1.23 ha	= 0.41 L/sec
Total Peak Sewage Flow:	0.41 2,000
Total Sanitary Flow = $1.72 + 0.41$	= 2.13 L/sec

4 Watermain Servicing

A. Methodology

The water distribution system proposed for this development is designed in accordance with the City of Ottawa Design Guidelines (July 2010). The following steps indicate the basic methodology that was used in the hydraulic analysis:

- A water distribution model was created by adding junction nodes at intersections and creating watermains between the junctions.
- For each junction node the water demand was determined based on the number of contributing homes and the corresponding population.
- The water consumption rates were calculated for the maximum day and maximum hour conditions.
- Hydraulic boundary conditions were set from the information obtained from the City of Ottawa.
- The required fire flow was determined, and
- The proposed water distribution model was simulated in and the results compared with the City of Ottawa criteria.

B. Design Criteria

A summary of design parameters used in the water distribution model were taken from Section 4.0 of the City's Guidelines, and are as follows:

•	Population Density (Townhome) =	2.7 person/unit
•	Average daily water consumption (Residential) =	350 L/cap/day
•	Maximum Day Factor	(4.32 x Avg. Day)
•	Maximum Hour Factor	(6.5 x Avg. Day)
•	C factor (200 mm – 300 mm)	110
٠	Minimum Allowable Pressure =	275 kPa (40 psi)
•	Maximum Allowable Pressure =	690 kPa (100 psi)

• Minimum Static Pressure (Under Fire Flow Conditions) = 140 kPa (20 psi)

Please note that the maximum day and peak hour factors, noted above, were determined based on MOECC GDWS Table 3-3 as the population of the proposed development is less than 500 persons. This requirement is noted in Section 4.2.8 of the City's WDG001.

4.1 Water Demands

The domestic water demands are estimated below, utilizing parameters from the SDG002 and the GDWS. The following summarizes the parameters used.

Population: 49-Townhome (Row) x 2.7 person/unit = 132.325- Existing Single-Family x 3.4 person/unit = 85.0 = 217.3 Persons = 350 L/person/day Average daily water consumption = 217.3Number of residents • Maximum Day Factor = 4.32 x Avg. Day (from GDWS, Table 3-3) • Maximum Hour Factor = 6.5 x Avg. Day (from GDWS, Table 3-3)

The average, maximum day and peak hour domestic (residential) demands for the building are as follows:

•	Average Day	= 350 x 217.3 / 86,400 sec/day = 0.88 L/sec
•	Maximum Day	= 4.32 x 0.88 = 3.8 L/sec
•	Peak Hour	= 6.5 x 0.88 = 5.72 L/sec

Detailed calculations of the domestic water demands are provided in Table C1 of Appendix C.

4.2 Fire Flow Requirements

Water for fire protection will be available utilizing the proposed fire hydrants located along the proposed private roadway. The required fire flows for the proposed site was calculated based on typical values as established by the Fire Underwriters Survey 1999. The fire flow requirements were calculated for all blocks. It was determined the most critical building was a 6-Unit Block having a fire flow requirement of 150 L/sec.

The following equation from the Fire Underwriters document "Water Supply for Public Fire Protection", 1991, was used for calculation of the on-site supply rates required to be supplied by the hydrants:

where

F = Required Fire flow in Litres per minute

- C = Coefficient related to type of Construction
- A = Total Floor Area in square metres

A reduction for low hazard occupancy of -25% for residential dwellings, and an increase for fire area exposure of +70% (max) was used. Below is a sample calculation of the fire flow requirements for Block 4 (most critical) residential building.

6-Unit Block

F = $200 * 1.0 * \sqrt{(527.5m2 \times 2 \text{ storeys})}$ = 7146 L/min or 7,000 L/min (rounded to 1,000)F =7000 L/min * (-25% non-combustible)= 5,250 L/minF =5,250 L/min * (+75% exposure factor)= 9,188 L/min

F(required) = 9,000 L/min or 150 L/sec

The following summarizes the total required fire flow including reductions/increases due to factors effecting burning.

- 4 Unit Block: 117 L/sec (7,000 L/min)
- 5 Unit Block: 133 L/sec (8,000 L/min)
- 6 Unit Block: 150 L/sec (9,000 L/min)

The fire flow requirement for the proposed building is **150** L/sec (9,000 L/min) based on the FUS. Please refer to Tables C2 through Table C4 in Appendix C for detailed calculations using the FUS method.

4.3 Boundary Conditions

Boundary conditions were provided for modelling purposes. WaterCAD modelling software was used to calculate pressures and flows under maximum day plus fire flow and peak hour conditions.

Boundary conditions were obtained from City of Ottawa personnel for the purpose of hydraulic modeling. Boundary conditions were used for the connection points at either Connection # 1 on Goward Drive (J-10) or Connection Location #2 (J-13) on Whernside Terrace. Refer to Appendix I for information provided by City of Ottawa staff.

	Location #1	Location #2
Condition	Goward	Whernside Terrace
Max Day plus Fire Flow (9000 L/min)	119.5m	120.8m
Peak Hour	140.2m	142.0m

4.4 Modelling Results

The results of the WaterCAD modelling under maximum day plus fire flow and peak hourly conditions based on the boundary condition at Location #1, are summarized in Table 4-1 below. Results for both locations #1 and # 2 are included in Appendix D.

Label	Demand (L/s)	Elevation (m)	Hydraulic Grade (m)	Pressure (psi)
J-1	0.22	103.98	140.17	51.4
J-2	0.65	103.74	140.18	51.7
J-3	0.72	102.10	140.18	54.1
J-4	0.58	102.60	140.18	53.3
J-5	0.22	103.30	140.17	52.3
J-6	0.79	101.13	140.18	55.4
J-7	0.63	101.40	140.19	55.1
J-8	0.00	101.00	140.19	55.6
J-9	0.72	102.40	140.19	53.6
J-10	0.00	100.76	140.20	56.0
J-11	0.14	102.35	140.19	53.7
J-12	0.07	101.25	140.19	55.3
J-14	0.36	101.50	0.36	140.19
J-15	0.36	100.80	0.36	140.20

Table 4-1: Summary of Results for Peak Hour (Boundary Location #1)

Table 4-2: Summary Results for Maximum Day Plus Fire Flow (Boundary Location #2)

Label	Fire Flow (Needed) (L/s)	Fire Flow (Available) (L/s)	Flow (Total Needed) (L/s)	Flow (Total Available) (L/s)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Satisfies Fire Flow Constraints?
J-1	150.00	11.30	150.14	11.44	20.0	20.1	False
J-2	150.00	163.26	150.43	163.69	20.0	20.4	True
J-3	150.00	175.06	150.48	175.54	20.0	22.5	True
J-4	150.00	165.58	150.38	165.96	20.0	21.0	True
J-5	150.00	11.31	150.14	11.45	20.0	20.2	False
J-6	150.00	174.58	150.52	175.10	20.0	23.0	True
J-7	150.00	166.35	150.42	166.77	20.0	21.4	True
J-8	150.00	200.00	150.00	200.00	20.0	37.4	True
J-9	150.00	124.52	150.48	125.00	20.0	20.0	False
J-10	150.00	168.09	150.00	168.09	20.0	20.0	True
J-11	150.00	184.71	150.10	184.81	20.0	21.4	True
J-12	150.00	177.49	150.05	177.54	20.0	20.0	True
J-13	150.00	200.00	150.12	200.12	20.0	57.9	True
J-14	150.00	200.00	150.24	200.24	20.0	25.3	True
J-15	150.00	167.90	150.24	168.14	20.0	20.0	True

n/a not applicable. Junctions J-1 and J-5 are services. J-9 is not within site.

The calculated minimum and maximum working pressures anticipated within the development are 51.7 psi and 56.0 psi under peak hour conditions, with an estimated fire flow available at the proposed hydrant # 1 (J-3) near Block 4 of \pm 174 L/sec, which is greater than the required 150 L/sec for a 6-unit townhome block.

5 Stormwater Management

5.1 Design Criteria

The storm sewer system was designed in conformance with the latest version of the City of Ottawa Design Guidelines (October 2012). Section 5 "Storm and Combined Sewer Design", and Section 8 "Stormwater Management" from the design manual were referenced.

The allowable release rate for the site is limited to a 2-year storm event using a time of concentration of 10 minutes and a runoff coefficient of 0.40 as per Section 5.1.5.1 of the SDG002. Flows in excess of the 2-year and up to the 100-year storm event will be detained onsite.

Minor System Design Criteria

- The storm sewers have been designed and sized based on the Rational Method and the Manning's Equation under free flow conditions for the 2-year storm using a 10 minute inlet time.
- Inflow rates into the minor system are limited to 100 L/sec, which is based on the capture rate established for this site as per the Stormwater Site Management Plan for Morgan's Grant Phase 12D.
- The storm sewer within the Morgan's Grant Subdivision were designed as a minor (pipe) and major drainage (overland) system, or a dual drainage concept. The minor system was designed to convey runoff based on the 5-year storm under free-flow conditions.
- A separate foundation drainage and surface drainage networks are proposed, with the surface drainage works sized to convey and detain a 100-year storm, whereas the foundation drainage system is sized to convey foundation drainage only.

Major System Design Criteria

- The major system has been designed to accommodate onsite detention with sufficient capacity to attenuate the 100-year design storm. Any excess of runoff above the 100-year event will flow overland offsite.
- Onsite storage is provided for up to the 100-year design storm. Although there is a maximum allowable ponding depth of 300mm on the ground surface, the entire 100-year storm will be stored within underground chambers. Calculation of the required onsite storage volumes is supported by calculations provided in Appendix F.
- Calculation of the required storage volumes has been prepared based on the Modified Rational Method as identified in Section 8.3.10.3 of the City's Sewer Guidelines.

5.2 Runoff Coefficients

Runoff coefficients used for post-development conditions were based on actual areas measured in CAD. Runoff coefficients for impervious surfaces (roofs, asphalt, and concrete) were taken as 0.90, whereas pervious surfaces (grass/landscaping) were taken as 0.20.

Average runoff coefficients for all catchments were calculated using PCSWMM's area weighting routine. This modelling software has a GIS engine which allows for catchment (or polygon) definition including attributes. The runoff coefficients for all catchments were area weighted to derive at average runoff

coefficients based on hard surfaces (concrete or asphalt) having an imperviousness of 100%, soft surfaces (landscaping surfaces) having a zero percent imperviousness. The conversion from an imperviousness percent to a runoff coefficient was taken as C=[IMP]*0.70 +20.

The average runoff coefficient for the overall site area under post-development conditions was calculated as 0.64, whereas the pre-development average runoff coefficient was less than 0.10.

5.3 Calculation of Allowable Release Rate

To control runoff from the site it will be necessary to limit post-development flows to the allowable capture based on previous Morgan's Grant, Phase 12D design.

The allowable release rate from the site was set just below the design peak flow rate for the minor system. From the original storm design sheet, the storm sewer was sized based on a 5-year level of service with a runoff coefficient of 0.50 and a time of concentration of 20 minutes. The following parameters will be used to determine the allowable release rates from the proposed site to the existing sewer on Goward Drive, using the Rational Formula.

Q_{ALL} = 2.78 C I A

Where:

Qall	=	Peak Discharge (L/sec)
С	=	Runoff Coefficient (C=0.50)
I	=	Average Rainfall Intensity for return period (70.25 mm/hr)
	=	732.951/(Tc+6.199) ^{0.810} (5-year)
Тс	=	Time of concentration (20 mins)
А	=	Drainage Area (1.20 hectares)

The peak design flow, based on the 5-year storm, was estimated at 117.2 L/sec. This peak storm flow was taken from the third row of the original storm design sheet for the Morgan's Grant Phase 12D, and is attached for reference in Appendix H.

Although the downstream storm sewers were sized for this peak flow, a total of 100 L/sec (or 5 inlets at 20 L/sec/inlet) was selected as the minor system capture rate. This flow was used to establish the 100-year hydraulic grade line.

Therefore, the minor system capture rate from the site was limited to 100 L/sec in the 100-year event under post-development conditions. All remaining storm runoff in excess of 100 L/sec is detained onsite.

5.4 **Pre-Development Conditions**

Although pre-development peak flows did not govern the storm sewer design, the peak flows under predevelopment conditions was estimated for comparison. The pre-development runoff coefficient for the site was determined to be 0.04. The existing site only includes one residential home, which will be demolished for the re-development of the site.

Using a time of concentration (T_c) of 20 minutes and an average runoff coefficient of 0.04, the predevelopment release rates from the site were estimated at 6.6, 8.9 and 19.0 L/sec for the 2-year, 5-year and 100-year storms respectively.

5.5 Calculation of Post-Development Runoff

As a result of the changes onsite the overall post development runoff coefficient will increase over existing conditions. The increase in runoff will be the result of changes due to site development (i.e. additional hard surfaces, roof areas and hard landscaping).

The post-development average runoff coefficient for the site was calculated as 0.64, based on an average runoff coefficient of 0.20 for grassed areas and 0.90 for hard surfaces.

Based on the storm drainage areas the 2-year, 5-year and 100-year post-development peak flows are calculated based on the Rational Method and are summarized in the Table 5-5 below with detailed calculations provided in Table F5 of Appendix E.

				า = 2-yeaเ	•	Storm	i = 5-year	•	Storn	า = 100-y	ear
Area No	Area (ha)	Tc (min)	Cavg	Q (L/sec)	Q _{CAP} (L/sec)	Cavg	Q (L/sec)	Q _{CAP} (L/sec)	Cavg	Q (L/sec)	Q _{CAP} (L/sec)
1	0.0955	10	0.71	14.5		0.71	19.6		0.89	42.1	
2	0.0552	10	0.80	9.4		0.80	12.8		1.00	27.4	
3	0.1161	10	0.75	18.6		0.75	25.2		0.94	54.0	
4	0.0742	10	0.50	7.9		0.50	10.7		0.63	23.0	
5	0.0680	10	0.76	11.0		0.76	15.0		0.95	32.0	
6	0.0583	10	0.75	9.3		0.75	12.7	1	0.94	27.1	
7	0.1539	10	0.77	25.3	(42.0)	0.77	34.3	(50.5)	0.96	73.5	(00.0)
8	0.0438	10	0.73	6.8	(43.0)	0.73	9.3	(50.5)	0.91	19.8	(82.0)
9	0.0263	10	0.72	4.0		0.72	5.5		0.90	11.7	
10	0.0559	10	0.81	9.7		0.81	13.1		1.00	27.8	
11	0.0436	10	0.49	4.6		0.49	6.2	1	0.61	13.2	
12	0.1701	10	0.47	17.1		0.47	23.2		0.59	49.6	
13	0.1814	10	0.50	19.4		0.50	26.3		0.63	56.3	
14	0.0209	10	0.40	1.8		0.40	2.4	1	0.50	5.2	
15	0.0310	10	0.64	4.2	4.2	0.64	5.7	5.7	0.80	12.3	12.3
16	0.0068	10	0.20	0.3	0.3	0.20	0.4	0.4	0.25	0.8	0.8
Totals	1.2008			163.9	47.5		222.4	56.6		476.0	95.2

Table 5-5: Summary of Post-Development Flows

Flows in (brackets) under Q_{CAP} denotes flows that are controlled.

In summary, the 2-year, 5-year and 100-year post-development flows are 163.9 L/sec, 222.4 L/sec and 476.0 L/sec respectively. Flow control devices will be used to restrict these runoff rates from the site to **47.5** L/sec, **56.6** L/sec and **95.2** L/sec for the 2-year, 5-year and 100-year storms respectively. Further details regarding the onsite detention and storage methods are provided in the proceeding section.

5.6 Storm Sewer Design

Average runoff coefficients were calculated for all drainage areas for sizing of the storm sewers. Postdevelopment drainage areas are illustrated on Figure 3 in Appendix A. Average runoff coefficients were calculated for each catchment and inlet times of 10 minutes were used as per City of Ottawa Guidelines.

A minimum 300mm diameter storm sewer is proposed for the main line storm sewer capturing surface runoff. A minimum 200mm diameter storm sewer is proposed for the foundation drainage system.

All new storm sewers were sized for the 2-year peak flow. Design sheets for the 2-year sizing of the storm sewer system are included in Appendix E.

5.7 Flow Control & Stormwater Storage

It will be necessary to control runoff to the allowable rate; therefore, runoff will be detained using an inlet control device (ICD) within the storm system. This will ensure that sufficient stormwater detention is provided and that the peak flows entering the existing storm sewer on Goward Drive will be equal to or less than the allowable rate.

The following itemizes the design methodology used:

- For the entire catchment tributary to the ICD, the drainage area and average runoff coefficient was calculated. The average runoff coefficient was calculated with the area weighting routine in PCSWMM. The drainage area information for the catchment is provided in Table F10.
- The volume available in chambers was taken from the Manufacture's literature, which is provided in Appendix H for reference.
- The total storage available in the underground chambers was estimated based on the above Manufacturer's data and the required 100-year volume as estimated using the Modified Rational Method.
- Inputted the type of ICD, outlet pipe invert, and outlet pipe diameter to obtain the maximum head and discharge rate for the selected ICD. The ICD information selected in provided in Table F13 with the associated Manufactures' technical brochure in Appendix H.
- A combination stage-storage and storage-discharge table (Table E14) was generated to summarize the discharge rates and storage volumes based on the ICD selected and chamber storage volumes provided.
- Tables for the 2-year, 5-year, and 100-yr storage requirements, based on the Modified Rational Method (MRM) were used for various release rates to overlay onto the combination stage-storage and storage-discharge curves. Tables F17 through F18 illustrate the MRM at different release rates, whereas Table F17 provides the storage volumes at the actual discharge rates.
- The intersection of the stage-discharge rates and the MRM volumes provide the actual 2-yr, 5-yr, and 100-yr storage, release rates and elevations.
- A summary Table (F20) is provided indicating the 2-year, 5-year and 100-year data for: release rate, storage volume, depth, and elevation (or stage).

The following Table 5-6 summarizes the ICDs that are proposed.

Table 5-6: Summary of ICDs

Area No	ICD Location	Controlled Rate (L/sec)	Min Elev. (m)	Max Elev. (m)	Head (m)	ICD Type / Model
1-14	STM MH 213	82.0	98.50	100.176	1.676	IPEX HF Type F

5.8 Storage Requirements

Stormwater storage requirements and associated controlled release rates within the site are summarized below in Table 5-7. Detailed calculations using the Modified Rational Method of the onsite storage requirements are provided in Appendix F.

Area	Area	Releas	se Rate	(L/s)	Storag	e Requi	red (m ³)	Storage Provided	Control	Control
No.	(ha)	2-yr	5-yr	100-yr	2-yr	5-yr	100-yr	(m3)	Location	Туре
1	0.0955									
2	0.0552									
3	0.1161									
4	0.0742									
5	0.0680									
6	0.0583									
7	0.1539	43.0	50.5	82.0	79.6	79.6	287.1	292.0 55-Chambers	ICD at	Tempest MHF
8	0.0438	43.0	50.5	82.0	79.0	79.0	207.1	55-Chambers	STMH213	Туре F
9	0.0263									
10	0.0559									
11	0.0436									
12	0.1701									
13	0.1814									
14	0.0209									
15	0.0310	4.2	5.7	12.3	none	none	none	none	Uncontrolled	
16	0.0068	0.3	0.4	0.8	none	none	none	none	Uncontrolled	
Total	1.20	47.5	56.6	1.2	79.6	116.8	287.1	292.0		

 Table 5-7: Summary of Storage Requirements and Release Rates

6 Erosion and Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

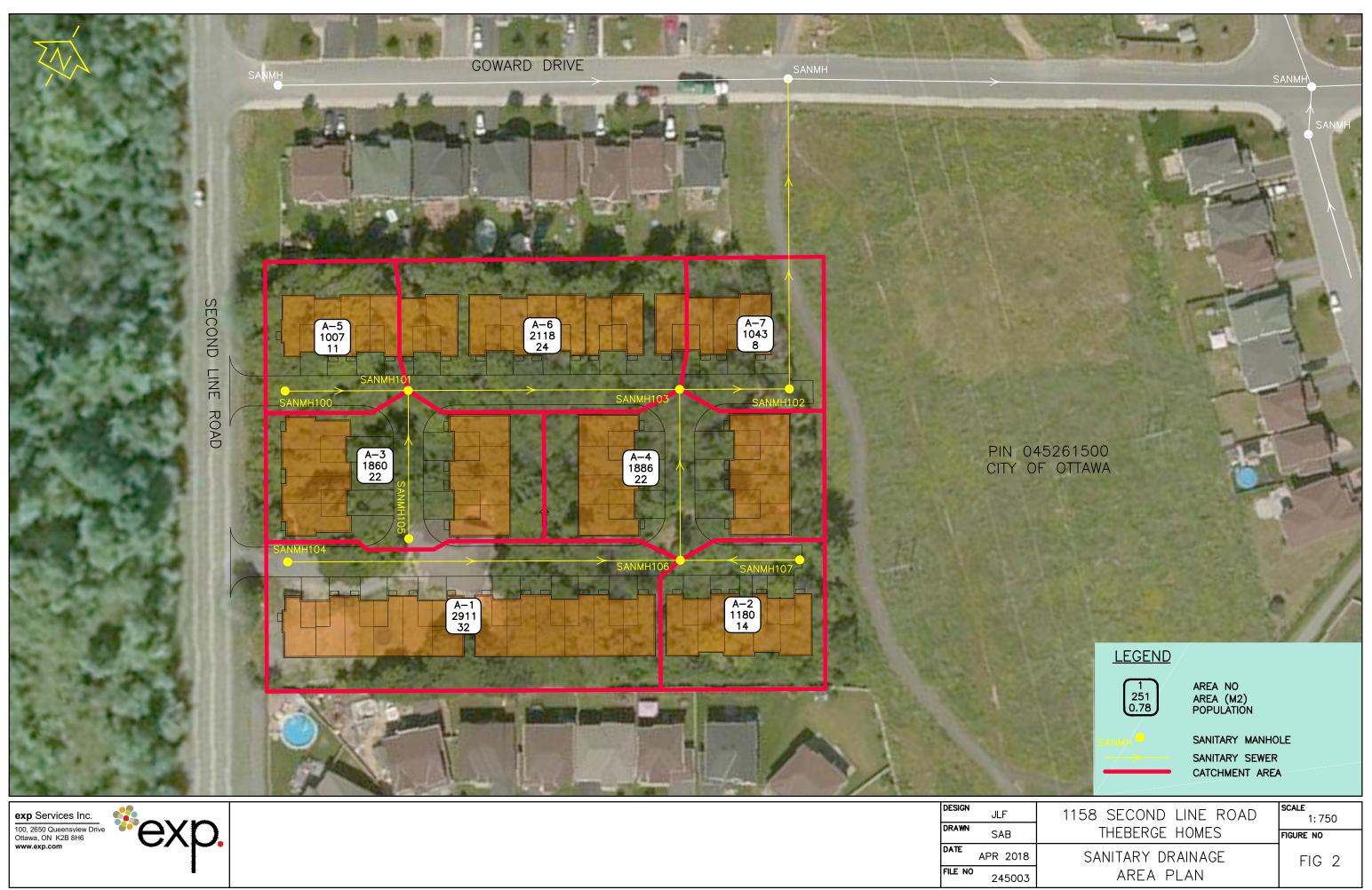
- extent of exposed soils shall be limited at any given time,
- exposed areas shall be re-vegetated as soon as possible,
- filter cloth shall be installed between frame and cover of all new catch basins and catch basin manholes,
- filter cloth shall be installed between frame and cover of the existing catch basins and catch basin manholes as identified on the site grading and erosion control plan,
- light duty silt fencing will be used to control runoff around the construction area. Silt fencing locations are identified on the site grading and erosion control plan.
- visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations,
- In some cases barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed,
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract,
- during the course of construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer, and
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) OPSS 805, and City of Ottawa specifications.

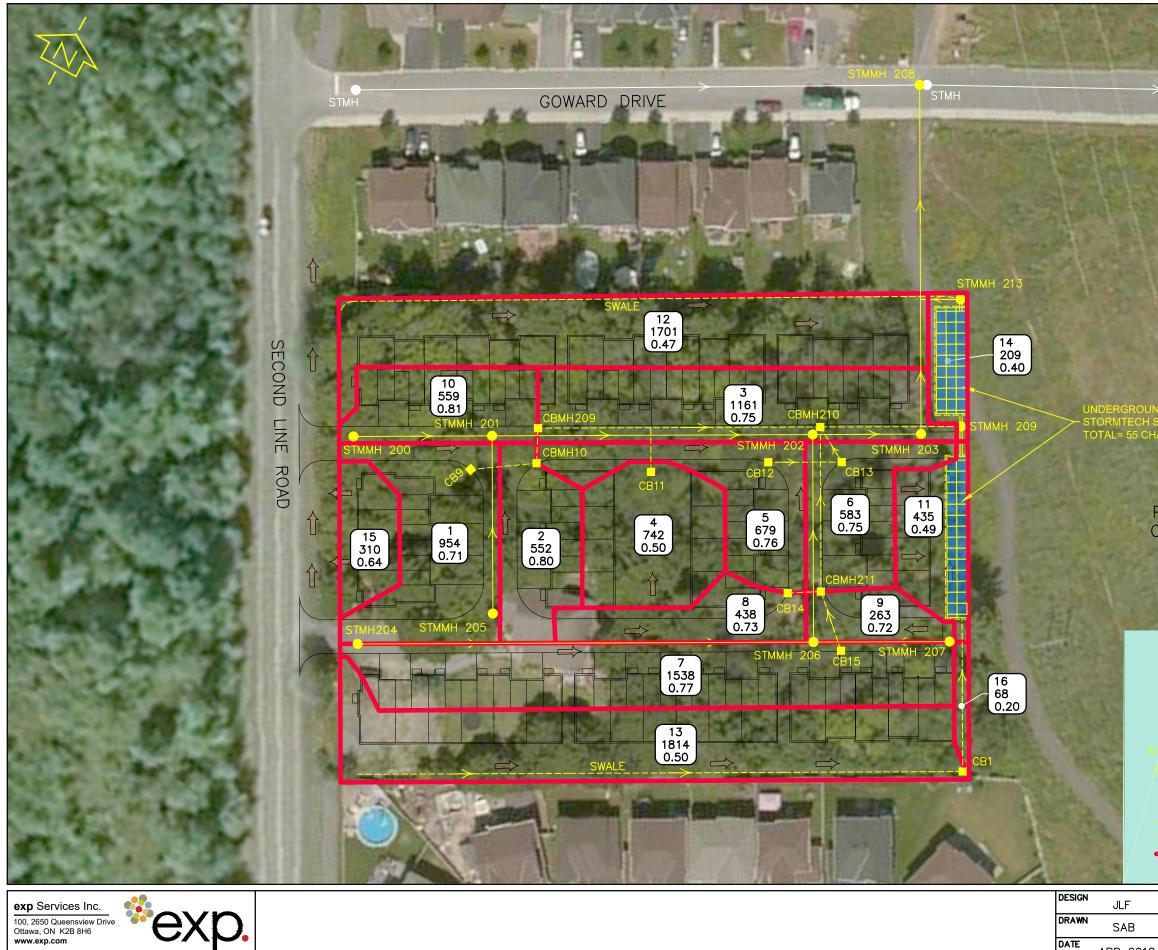
7 Conclusions

This report addresses stormwater runoff from the proposed development located at 1158 Second Line Road in the City of Ottawa. The proposed 1.2-hectare development by Theberge Homes is a comprised of forty-nine (49) townhome units. The following summarizes the servicing and stormwater requirements for the site:

- The allowable capture rate from the proposed site was based on the minor system capture rate established as part of the Morgan's Grant Subdivision Phase 12D, which was set a 100 L/sec. This capture rate was based on the 5-year storm design for the 1.2-hectare site using a time of concentration of 20 minutes and a runoff coefficient of 0.50 for a peak flow of 117.2 L/sec.
- Post-development runoff coefficient for the site was calculated at 0.64, with a 2-year, 5-year and 100yr peak flows of 163.9 L/sec, 222.4 L/sec and 476.0 L/sec respectively. Flow control devices will be used to restrict these runoff rates from the site to **47.5** L/sec, **56.6** L/sec and **95.2** L/sec for the 2-year, 5-year and 100-year storms respectively. Therefore, stormwater rrunoff from the site is controlled to less than the allowable rate of 100 L/sec.
- One Inlet control devices (ICD) will be used to control runoff to the allowable discharge rate of 100 L/sec. The Inlet control device will be installed in the most downstream manhole of the storm system as shown on the Site Servicing plan, and will control peak flows to 82.0 L/sec at 1.7m of head.
- A total peak flow of 95.2 L/sec will occur, which includes the 82.0 L/sec of controlled flow and 13.1 L/sec of uncontrolled runoff from the site. A separate foundation drainage system and surface drainage system is proposed.
- The estimated storage required to control peak flows to the allowable release rate was 287.1 m³ based on the Modified Rational Method, with a total storage volume of 292 m³ provided.
- The proposed development has an estimated peak sewage flow of 2.12 L/sec based on City of Ottawa Guidelines. A new 200mm sewer will be installed with a minimum slope of 0.49% having a full flow capacity of 23.3 L/sec. The sanitary sewer will be connected into the existing municipal sanitary sewer on Goward Drive.
- A hydraulic water model was developed to determine the pressures available under peak hour and maximum day plus fire flow conditions. Two possible boundary conditions were provided by City staff for modelling. Two connections to the existing city water distribution system are is necessary was there would be more that 50 residential units on a single feed without the second connection.
- The calculated minimum and maximum working pressures anticipated within the development are 51.7 psi and 56.0 psi under peak hourly conditions, with an estimated fire flow available at the proposed hydrant # 1 (J-3) near Block 4 of ± 174 L/sec, which is greater than the required 150 L/sec for a 6-unit townhome block. Correspondence from the City staff indicate an excess of this amount is available. The maximum estimated fire flow requirement based on the FUS was calculated at 150 L/sec for the largest 6-unit townhome block. Two fire hydrants are proposed to provide fire protection.
- The storm sewer system is sized to accommodate the 2-year design storm under free flow conditions.
- All units have an underside of footing elevation a minimum of 0.30 metres above the storm sewer hydraulic grade line. An overland flow route is provided for the major storm event.
- Erosion and sediment control methods will be used during construction to limit erosion potential.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018


Appendix A – Figures


Figure A1: Site Location Plan Figure A2: Sanitary Drainage Areas Figure A3: Post-Development Catchment Areas Figure A4: Site Plan Figure A5: Survey Plan

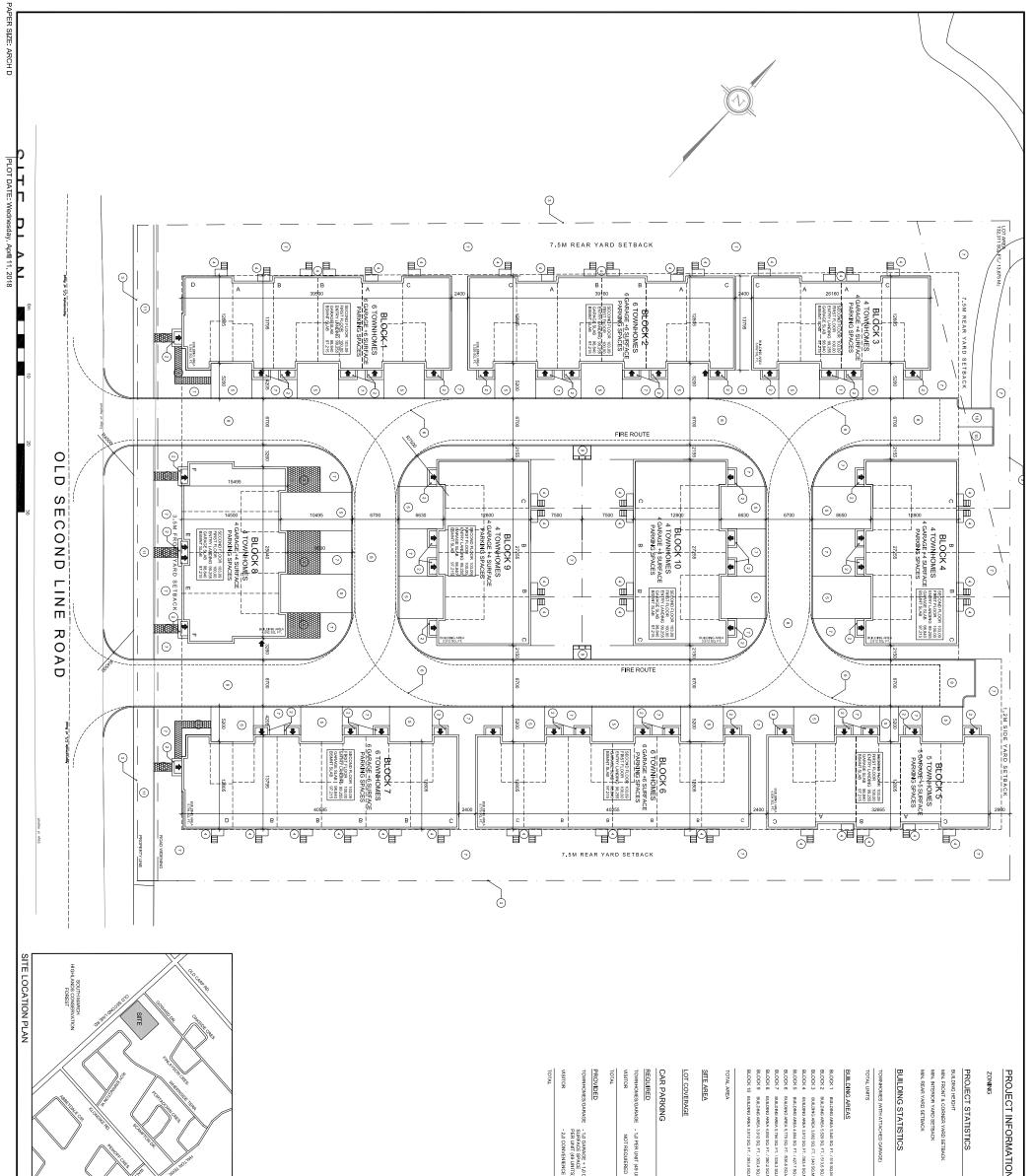
exp Services Inc. 100-2650 Queensview Drive		DESIGN JLF	1158 SECOND LINE ROAD THEBERGE HOMES	SCALE 1:10000
Ottawa, ON K2B 8H6		SAB	THEDENGE HOWLS	SKETCH NO
www.exp.com		DATE APR 2018	SITE LOCATION	FIG 1
	4	FILE NO 245003	PLAN	

APR FILE NO 245

	STORM WATER STORAGE CHAME OVERLAND FLOW DIRECTION STORM SEWER - SURFACE DR/ STORM SEWER - FOUNDATION CATCHMENT AREA - SURFACE	AINAGE DRAINAGE
F	1158 SECOND LINE ROAD	SCALE 1: 750
νB	THEBERGE HOMES	FIGURE NO
2018	POST-DEVELOPMENT	FIG 3
5003	CATCHMENTS PLAN	_

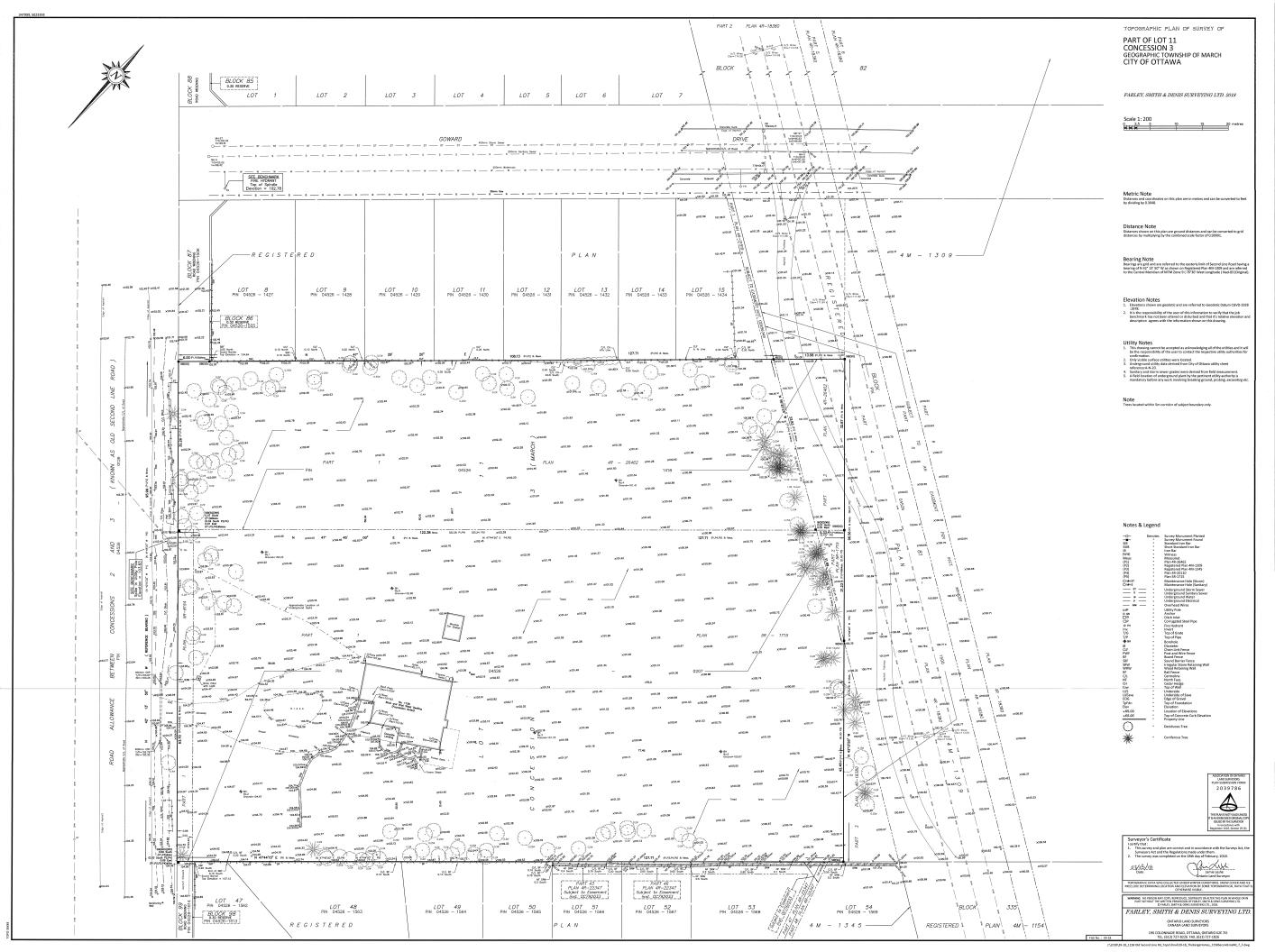
STORM CATCHBASIN MANHOLE

1 251 0.78


AREA NO AREA (M2) RUNOFF COEFF

STORM CATCHBASIN

STORM MANHOLE


PIN 045261500 CITY OF OTTAWA

- 1.0 PER UNIT (49 NOT REQUIEREI

1.0 GARAGE + 1.0 SURFACE SPACE PER UNIT (49 UNIT - 2.0 CONVENIENC

					100 M 3.5-4-2 M 1.2 M 1.2 M 1.2 M 7.5 M 800 M 80	R. 00
50 Carnetot Drive 50 Carnetot Drive Nepean, ON K2G5X8 Tel: (613) 852-1343 gino@gjala.com	CIVIL ENGINEEK exp Services Inc. 100-2650 Cueensview Drive Ottawa, ON K2B 8H6 Ottawa, ON K2B 8H6 Fax: (613) 662-8753 bruce.flomas@exp.com LANDSCAPE ARCHITECT Gino Aiello		Farley, Smith & Denis Surveying Itd 190 Colomade Road Ottawa Ontario K2E7J5 Tel: (613) 727-8226 PROJECT DEVELOPER	LEGAL DESCRIPTION Topographic Plan of Survey of Part of Lot 11 Concession 3 Geographic Township of March City of Ottawa	 PRECAST CONCRETE STARS PROPERTY LNE ASPHALT DRVEWAY FIRE ROUTE PRAVATE STREET ASPHALT SURFACE INSTOR PARIMA CONCRETE SIDEWALK 	DRAWING NOTES:
soure 1:250 PROJECT No. 1802	SITE PLAN	1158 OLD SECOND LINE OTTAWA ONTARIO	URBANDIVA Design Inc.	CUBY THEBERGE	THIS DERWING MAY NOT RE LIGE TO CONSTRUCTION DO NOT SCALE DRAWING MOTE SUSTED ON EARCH ON TRUCK TES MANDE MILTED ON EARCH ON DISCUTES ASSEMBLE TO THE REFER TO THE OF THE OFFICE TO THE	TIS THE RESPONSIBILITY OF THE APPROPRIATE CONTRACTOR TO CLECY AND VERY ALL DIMENSIONS ON STE AND TO REPORT ALL RERORS AND/OR OMISSION TO THE ARCHITECT. ALL CONTRACTORS MUST COMPLY WITH ALL PERTINENT CODES AND BY-LAWS.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix B – Sanitary Design Sheet

Table B1: Sanitary Design Sheet

TABLE B1 -SANITARY SEWER CALCULATION SHEET

LOCA	TION				RE	SIDENTI	AL AREA	AND POPULA	TION			COMM	1ERCIAL		INDUST		IN	ST	C+I+I	IN	IFILTRATI	ON				SEWE	R DATA			T
							POPUL	ATION															Peak	D	ia.	Slope	Length	Capacity		
Street	From	То	Area No.	Area (ha)	1-Bed Apt	2-Bed Apt	Towns	Individual Population	Cumulat ive Populati on		Peak Flow (L/sec)	AREA (Ha)	ACCU AREA (Ha)	AREA (Ha)	ACCU AREA (Ha)	Peak Factor (per MOE)	AREA (Ha)	ACCU AREA (Ha)	PEAK FLOW (L/s)	AREA (ha)	ACCU AREA (Ha)	INFILT FLOW (L/s)	FLOW (L/s)	(mm)	actual	(%)	(m)	(L/s)	Full Velocity (m/s)	y Qpeak/ Qcap
1158 Second Line																	, ,							. ,						
Block 6, 7	MH 104	MH106	A-1	0.2911			12	32	32	4.00	0.41									0.2911	0.2911	0.10	0.51	200	201.16	2.36	87.68	51.17	1.61	0.01
				0.4400			-			4.00	0.40									0.1100	0.4400		0.22	200	201.10	2.00	26.70	47.40	4.40	
Block 5	MH107	MH106	A-2	0.1180			5	14	14	4.00	0.18									0.1180	0.1180	0.04	0.22	200	201.16	2.00	26.79	47.10	1.48	0.00
Block 4, 10	MH106	MH103	A-4	0.1886			8	22	68	4.00	0.88									0.1860	0.5951	0.20	1.08	200	201.16	2.90	41.18	56.72	1.78	0.02
Block 8, 9	MH105	MH101	A-3	0.1860			8	22	90	4.00	1.17									0.1886	0.1886	0.06	1.23	200	201.16	3.02	33.12	57.88	1.82	0.02
Block 1	MH100	MH101	A-5	0.1007			4	11	101	4.00	1.31									0.1007	0.1007	0.03	1.34	200	201.16	2.70	27.50	54.73	1.72	0.02
Block 1,2,3	MH101	MH103	A-6	0.2118			9	24	125	4.00	1.62									0.2118	0.5011	0.17	1.79	200	201.16	2.90	60.61	56.72	1.78	0.03
	14402			0 10 12			2	8	133	4.00	4.72									0.4042	1.2005	0.40	2.42	200	201.10	0.40	24.40	22.22	0.72	
Block 3	MH103 MH102	MH102 EXMH	A-7 A-8	0.1043			3	8	133	4.00	1.72 1.72									0.1043	1.2005	0.40	2.12	200	201.16	0.49	24.49 69.28	23.32 23.55	0.73	0.09
	14111102	EXIMIT	AU						100	4.00	1.72										1.2005	0.40	2.12	200	201.10	0.50	05.20	25.55	0.74	0.05
				1.2005			49	133													1.2005	0.40								
Average Daily Flow Commercial Flow (L			50,000	L/person, L/gross h or L/gros	a/day	Populat		<u>sities</u>		Q(i) = Pea	ak Popula ak Extrane idual; Area	ous Flow	= I * Ac		(L/sec)							Designed M.Ghad	ban, EIT.			Project: 1158 Sec Location	cond Line	1		
Industrial Flow (L/s,	/ha) =		35,000	L/gross h or L/gross	a/day	Townho	ouse (rov	,	2.7 2.1	A _c = Cum	ulative Are ing Factor	ea (hectar	es))					mpleted: /04/05				trick, P.E	ng.		Ottawa,				
Max Res Peak Facto Commercial / Inst P		r =	4.0 1.5	5. 2, 8103		1-Bedro			1.4	P = Popu Qcap, (M Manning	ation (tho anning) =	ousands of 1/n S ^{1/2} F	persons) R ^{2/3} A _{c Man}									Dwg Ref Site Serv		n (Dwg N	lo. SS1)	File Ref: 245003 Sheet Ap	Sanitary I	Design	Sheet N 1 of 1	

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix C – Water Tables

Table C1: Water Demand Chart

- Table C2: Calculation of Fire Flow Requirements (4 unit block)
- Table C3: Calculation of Fire Flow Requirements (5 unit block)
- Table C4: Calculation of Fire Flow Requirements (6 unit block)

TABLE C1: Water Demand Chart

Location:	1158 Old Sec	cond Line									Population	Densities				ovn
Project No:	245012	-	-								Single Fami		3.4	person/uni	t	zxh
Designed by:	M. Ghadban		-								Semi-Detal	nced	2.7	person/uni	t	
Checked By:	J.Fitzpatrick		-								Duplex		2.3	person/uni	t	
Date Revised:	April 2018		_								Townhome	e (Row)	2.7	person/uni	t	
			-								Bachelor A	partment	1.4	person/uni	t	
Nater Consump	<u>tion</u>										1 Bedroom	Apartment	1.4	person/uni	t	
Residential =	<u>350</u>	L/cap/d	lay								2 Bedroom	Apartment	2.1	person/uni		
												Apartment	3.1	person/uni		
											Avg. Aptart	ment	1.8	person/uni	t	
				No. of I	Jnits								Demands in (L/	/sec)		
	Sing	les/Semi	s/Towns	6		Ap	partmei	nts				Maximum Demand (L/day)	Peak Hourly Demand (L/day)			
Proposed Buildings	Single Familty	Semi- Detached	Duplexz	Townhome	Bachelor	1 Bedroom	2 Bedroom	4 Bedroom	Avg Apt.	Total Persons (pop)	Average Demand (L/day)	4.32 x Avg Day	6.50 x Avg Day	Avg Day (L/s)	Max Day (L/s)	Max Hour (L/s)
Proposed Buildings																
J-1				3						8.1	2835	12,238	18,435	0.03	0.14	0.21
J-2				9		-	-		-	24.3	8505	36,714	55,305	0.10	0.42	0.64
J-3				10		-	-		-	27.0	9450	40,793	61,450	0.11	0.47	0.71
J-4				9						24.3	8505	36,714	55,305	0.10	0.42	0.64
J-5				3						8.1	2835	12,238	18,435	0.03	0.14	0.21
J-6				11						29.7	10395	44,872	67,595	0.12	0.52	0.78
J-11				3						8.1	2835	12,238	18,435	0.03	0.14	0.21
J-12				1						2.7	945	4,079	6,145	0.01	0.05	0.07
Existing Homes																
J-7	7									23.8	8330	35,958	54,167	0.10	0.42	0.63
J-8		1														
J-9	8									27.2	9520	41,095	61,905	0.11	0.48	0.72
J-10																
J-13	2									6.8	2380	10,274	15,476	0.03	0.12	0.18
J-14	4									13.6	4760	20,548	30,953	0.06	0.24	0.36
J-15	4									13.6	4760	20,548	30,953	0.06	0.24	0.36
Totals =	25			49						217.3	76055	328,309	494,560	0.88	3.80	5.72

TABLE C2: CALCULATION OF FIRE FLOW REQURIEMENTSCalculation Based on Fire Underwriters Survey, 19991158 Old Second Line Road, 4 unit block

An estimate of the Fire Flow required for a given fire area may be estimated by:

$$F = 220 \quad x \quad C \quad x \quad \sqrt{A}$$

where

F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Wood Frame	1.5				
	Ordinary Construction	1	Ordinary Construction	1		
Frame (C)	Non-combustible Construction	0.8		•		
	Fire Resistive Construction	0.6				
	Third Floor (if any)		0			
Input Building	Second Floor (if any)		372.58	745.2 m²		
Floor Areas (A)	First Floor		372.58	740.2 11		
	Basement (At least 50% below grade, not in	cluded)	0			
Fire Flow (F)	$F = 220 x C x \sqrt{A}$					6,005
Round Fire Flow (F)	Round to nearest 1,000					6,000
	Reductions/Inc	reases Due	to Factors Effecting Burni	ng		
Choose	Non-combustible	-25%				
Choose Combustibility of	Limited Combustible	-15%				
Building	Combustible	0%	Non-combustible	-25%	-1,500	4,500
Contents	Free Burning	15%				
	Rapid Burning	25%				
	Adequate Sprinkler Conforms to NFPA13	-30%	No Sprinkler	0%	0	4.500
	No Sprinkler	0%		070	Ŭ	1,000
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System	-10%	Not Standard Water Supply or Unavailable	0%	0	4,500
System	Not Standard Water Supply or Unavailable	0%				
	Fully Supervised Sprinkler System	-10%	Not Fully Supervised or	0%	0	4,500
	Not Fully Supervised or N/A	0%	N/A	070	Ŭ	1,000
Choose	North Side	15%	10.1 m to 20.0 m			
Structure	East Side	15%	10.1 m to 20.0 m	60%	2.700	7.200
Exposure	South Side	15%	10.1 m to 20.0 m	0070	2,700	7,200
Distance	West Side	15%	10.1 m to 20.0 m			
Obtain Required		Total R	equired Fire Flow, Round	ed to the Nea	arest 1,000 L/min =	7,000
Fire Flow				Total Requir	red Fire Flow, L/s =	117

TABLE C3: CALCULATION OF FIRE FLOW REQURIEMENTSCalculation Based on Fire Underwriters Survey, 19991158 Old Second Line Road, 5 unit block

An estimate of the Fire Flow required for a given fire area may be estimated by:

$$F = 220 \quad x \quad C \quad x \quad \sqrt{A}$$

where

F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Wood Frame	1.5				
	Ordinary Construction	1	Ordinary Construction	1		
Frame (C)	Non-combustible Construction	0.8	ordinary construction	•		
	Fire Resistive Construction	0.6				
	Third Floor (if any)		0			
Input Building	Second Floor (if any)		439.2	878.4 m²		
Floor Areas (A)	First Floor		439.2	070.4 m		
	Basement (At least 50% below grade, not in	cluded)	0			
Fire Flow (F)	$F = 220 x C x \sqrt{A}$					6,520
Round Fire Flow (F)	Round to nearest 1,000					7,000
	Reductions/Inc	reases Due	to Factors Effecting Burnin	ng		
Choose	Non-combustible	-25%				
Combustibility of	Limited Combustible	-15%				
Building	Combustible	0%	Non-combustible	-25%	-1,750	5,250
Contents	Free Burning	15%				
	Rapid Burning	25%				
	Adequate Sprinkler Conforms to NFPA13	-30%	No Sprinkler	0%	0	5,250
	No Sprinkler	0%		070	•	0,200
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System	-10%	Not Standard Water Supply or Unavailable	0%	0	5,250
System	Not Standard Water Supply or Unavailable	0%				
	Fully Supervised Sprinkler System	-10%	Not Fully Supervised or	0%	0	5,250
	Not Fully Supervised or N/A	0%	N/A	070	0	0,200
Choose	North Side	15%	10.1 m to 20.0 m			
Structure	East Side	0%	45.1 m or Greater	50%	2.625	7.875
Exposure	South Side	15%	10.1 m to 20.0 m	50 /0	2,025	1,015
Distance	West Side	20%	3.1 m to 10.0 m			
Obtain Required		Total R	equired Fire Flow, Round	ed to the Nea	arest 1,000 L/min =	8,000
Fire Flow				Total Required Fire Flow, L		133

TABLE C4: CALCULATION OF FIRE FLOW REQURIEMENTSCalculation Based on Fire Underwriters Survey, 19991158 Old Second Line Road, 6 unit block

An estimate of the Fire Flow required for a given fire area may be estimated by:

$$F = 220 \quad x \quad C \quad x \quad \sqrt{A}$$

where

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Wood Frame	1.5				
Choose Building	Ordinary Construction	1	Ordinary Construction	1		
Frame (C)	Non-combustible Construction	0.8	Ordinary construction			
	Fire Resistive Construction	0.6				
	Third Floor (if any)		0			
Input Building	Second Floor (if any)		527.5	1055.0 m²		
Floor Areas (A)	First Floor		527.5	1055.0 11		
	Basement (At least 50% below grade, not inc	cluded)	0			
Fire Flow (F)	$F = 220 x C x \sqrt{A}$					7,146
Round Fire Flow (F)	Round to nearest 1,000					7,000
	Reductions/Inc	reases Due	to Factors Effecting Burnin	ng		
0	Non-combustible	-25%				
Choose	Limited Combustible	-15%				
Combustibility of Building	Combustible	0%	Non-combustible	-25%	-1,750	5,250
Contents	Free Burning	15%				
Contonito	Rapid Burning	25%				
	Adequate Sprinkler Conforms to NFPA13	-30%	No Sprinkler	0%	0	5.250
	No Sprinkler	0%	No Sprinkler	070	0	5,250
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System	-10%	Not Standard Water Supply or Unavailable	0%	0	5,250
System	Not Standard Water Supply or Unavailable	0%				
	Fully Supervised Sprinkler System	-10%	Not Fully Supervised or	0%	0	5,250
	Not Fully Supervised or N/A	0%	N/A			-,
Choose	North Side	10%	20.1 m to 30.0 m	1		
Structure	East Side	25%	0 m to 3.0 m	75%	3,938	9,188
Exposure	South Side	15%	10.1 m to 20.0 m	75%	3,930	9,100
Distance	West Side	25%	0 m to 3.0 m			
Obtain Required		Total R	Required Fire Flow, Round	ed to the Nea	arest 1,000 L/min =	9,000
Fire Flow				Total Requir	red Fire Flow, L/s =	150

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix D – WATERCAD Results

Table D1: Boundary Condition 1 ResultsFigure D1: Boundary Condition 1 LocationTable D2: Boundary Condition 2 ResultsFigure D2: Boundary Condition 2 Location

WATERCAD MODEL RESULTS - 1158 SECOND LINE ROAD

Peak Hour Scenario - HGL at Location 1

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (psi)
J-1	103.98	0.22	140.17	51.4
J-2	103.74	0.65	140.18	51.7
J-3	102.10	0.72	140.18	54.1
J-4	102.60	0.58	140.18	53.3
J-5	103.30	0.22	140.17	52.3
J-6	101.13	0.79	140.18	55.4
J-7	101.40	0.63	140.19	55.1
J-8	101.00	0.00	140.19	55.6
J-9	102.40	0.72	140.19	53.6
J-10	100.76	0.00	140.20	56.0
J-11	102.35	0.14	140.19	53.7
J-12	101.25	0.07	140.19	55.3
J-14	101.50	0.36	140.19	54.9
J-15	100.80	0.36	140.20	55.9

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start Node	Stop Node	Length (Scaled) (m)	Diameter (mm)	Hazen- Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/m)
P-1	J-1	J-2	24	50	110.0	-0.22	0.11	0.00065
P-2	J-2	J-3	57	204	110.0	-0.82	0.02	0.00001
P-3	J-2	J-4	33	204	110.0	-0.05	0.00	0.00000
P-4	J-4	J-5	25	50	110.0	0.22	0.11	0.00065
P-6	J-4	J-6	57	204	110.0	-0.85	0.03	0.00001
P-7	J-6	J-3	33	204	110.0	0.31	0.01	0.00000
P-10	J-7	J-9	120	204	110.0	0.72	0.02	0.00001
P-11	J-7	J-10	103	204	110.0	-3.37	0.10	0.00011
P-12	J-8	J-11	121	204	110.0	1.37	0.04	0.00002
P-13	J-11	J-3	32	204	110.0	1.23	0.04	0.00002
P-14	J-7	J-12	68	204	110.0	2.02	0.06	0.00004
P-15	J-12	J-6	29	204	110.0	1.95	0.06	0.00004
P-17	J-8	J-14	59	204	110.0	-1.37	0.04	0.00002
P-18	J-10	J-15	9	204	110.0	2.09	0.06	0.00004
P-19	J-14	J-15	89	155	110.0	-1.73	0.09	0.00012
P-21	R-1	J-10	21	600	130.0	5.46	0.02	0.00000

Reservoir Table - Time: 0.00 hours

ID	Label	Elevation (m)	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
64	R-1	140.20	Zone - 1	5.46	140.20

245003 Water Model, Rev3.wtg 4/16/2018

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley WaterGEMS CONNECT Edition [10.00.00.50] Page 1 of 6

WATERCAD MODEL RESULTS - 1158 SECOND LINE ROAD

Max Day Plus Fireflow Scenario - HGL at Location 1

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (psi)
J-1	103.98	0.14	140.19	51.4
J-2	103.74	0.43	140.19	51.7
J-3	102.10	0.48	140.19	54.1
J-4	102.60	0.38	140.19	53.4
J-5	103.30	0.14	140.19	52.4
J-6	101.13	0.52	140.19	55.4
J-7	101.40	0.42	140.19	55.1
J-8	101.00	0.00	140.19	55.6
J-9	102.40	0.48	140.19	53.6
J-10	100.76	0.00	140.20	56.0
J-11	102.35	0.10	140.19	53.7
J-12	101.25	0.05	140.19	55.3
J-14	101.50	0.24	140.19	54.9
J-15	100.80	0.24	140.20	55.9

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start Node	Stop Node	Length (Scaled) (m)	Diameter (mm)	Hazen- Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/m)
P-1	J-1	J-2	24	50	110.0	-0.14	0.07	0.00028
P-2	J-2	J-3	57	204	110.0	-0.53	0.02	0.00000
P-3	J-2	J-4	33	204	110.0	-0.04	0.00	0.00000
P-4	J-4	J-5	25	50	110.0	0.14	0.07	0.00028
P-6	J-4	J-6	57	204	110.0	-0.56	0.02	0.00000
P-7	J-6	J-3	33	204	110.0	0.21	0.01	0.00000
P-10	J-7	J-9	120	204	110.0	0.48	0.01	0.00000
P-11	J-7	J-10	103	204	110.0	-2.24	0.07	0.00005
P-12	J-8	J-11	121	204	110.0	0.90	0.03	0.00001
P-13	J-11	J-3	32	204	110.0	0.80	0.02	0.00001
P-14	J-7	J-12	68	204	110.0	1.34	0.04	0.00002
P-15	J-12	J-6	29	204	110.0	1.29	0.04	0.00002
P-17	J-8	J-14	59	204	110.0	-0.90	0.03	0.00001
P-18	J-10	J-15	9	204	110.0	1.38	0.04	0.00002
P-19	J-14	J-15	89	155	110.0	-1.14	0.06	0.00006
P-21	R-1	J-10	21	600	130.0	3.62	0.01	0.00000

WATERCAD MODEL RESULTS - 1158 SECOND LINE ROAD

Max Day Plus Fireflow Scenario - HGL at Location 1

Label	Fire Flow (Needed) (L/s)	Fire Flow (Available) (L/s)	Flow (Total Needed) (L/s)	Flow (Total Available) (L/s)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Satisfies Fire Flow Constraints?
J-1	0.00	10.84	150.14	10.98	0.0	20.2	False
J-2	0.00	197.85	150.43	198.28	0.0	20.4	True
J-3	0.00	200.00	150.48	200.48	0.0	26.6	True
J-4	0.00	200.00	150.38	200.38	0.0	21.4	True
J-5	0.00	10.87	150.14	11.01	0.0	20.2	False
J-6	0.00	200.00	150.52	200.52	0.0	29.1	True
J-7	0.00	200.00	150.42	200.42	0.0	37.5	True
J-8	0.00	200.00	150.00	200.00	0.0	23.5	True
J-9	0.00	156.10	150.48	156.58	0.0	20.0	True
J-10	0.00	200.00	150.00	200.00	0.0	56.0	True
J-11	0.00	200.00	150.10	200.10	0.0	24.6	True
J-12	0.00	200.00	150.05	200.05	0.0	31.1	True
J-14	0.00	200.00	150.24	200.24	0.0	23.1	True
J-15	0.00	200.00	150.24	200.24	0.0	53.6	True

Fire Flow Report - Time: 0.00 hours

Reservoir Table - Time: 0.00 hours

ID	Label	Elevation (m)	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
64	R-1	140.20	Zone - 1	3.62	140.20

WATERCAD MODEL RESULTS - 1158 SECOND LINE ROAD

Peak Hour Scenario - HGL at Location 2

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (psi)
J-1	103.98	0.22	141.95	53.9
J-2	103.74	0.65	141.97	54.3
J-3	102.10	0.72	141.97	56.6
J-4	102.60	0.58	141.97	55.9
J-5	103.30	0.22	141.95	54.9
J-6	101.13	0.79	141.97	58.0
J-7	101.40	0.63	141.97	57.6
J-8	101.00	0.00	141.98	58.2
J-9	102.40	0.72	141.96	56.2
J-10	100.76	0.00	141.97	58.5
J-11	102.35	0.14	141.97	56.2
J-12	101.25	0.07	141.97	57.8
J-13	101.19	0.18	142.00	57.9
J-14	101.50	0.36	141.98	57.5
J-15	100.80	0.36	141.97	58.4

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start Node	Stop Node	Length (Scaled) (m)	Diameter (mm)	Hazen- Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/m)
P-1	J-1	J-2	24	50	110.0	-0.22	0.11	0.00065
P-2	J-2	J-3	57	204	110.0	-1.13	0.03	0.00001
P-3	J-2	J-4	33	204	110.0	0.26	0.01	0.00000
P-4	J-4	J-5	25	50	110.0	0.22	0.11	0.00065
P-6	J-4	J-6	57	204	110.0	-0.54	0.02	0.00000
P-7	J-6	J-3	33	204	110.0	-1.33	0.04	0.00002
P-10	J-7	J-9	120	204	110.0	0.72	0.02	0.00001
P-11	J-7	J-10	103	204	110.0	-1.42	0.04	0.00002
P-12	J-8	J-11	121	204	110.0	3.32	0.10	0.00010
P-13	J-11	J-3	32	204	110.0	3.18	0.10	0.00010
P-14	J-7	J-12	68	204	110.0	0.07	0.00	0.00000
P-15	J-12	J-6	29	204	110.0	0.00	0.00	0.00000
P-16	J-13	J-8	68	204	110.0	5.46	0.17	0.00026
P-17	J-8	J-14	59	204	110.0	2.14	0.07	0.00005
P-18	J-10	J-15	9	204	110.0	-1.42	0.04	0.00002
P-19	J-14	J-15	89	155	110.0	1.78	0.09	0.00013
P-20	R-2	J-13	16	600	130.0	5.64	0.02	0.00000

Reservoir Table - Time: 0.00 hours

ID	Label	Elevation (m)	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
65	R-2	142.00	Zone - 1	5.64	142.00

245003 Water Model, Rev3.wtg 4/16/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley WaterGEMS CONNECT Edition [10.00.00.50] Page 4 of 6

WATERCAD MODEL RESULTS - 1158 SECOND LINE ROAD

Max Day Plus Fireflow Scenario - HGL at Location 2

Label	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (psi)
J-1	103.98	0.14	141.98	53.9
J-2	103.74	0.43	141.98	54.3
J-3	102.10	0.48	141.98	56.6
J-4	102.60	0.38	141.98	55.9
J-5	103.30	0.14	141.98	54.9
J-6	101.13	0.52	141.98	58.0
J-7	101.40	0.42	141.98	57.6
J-8	101.00	0.00	141.99	58.2
J-9	102.40	0.48	141.98	56.2
J-10	100.76	0.00	141.99	58.5
J-11	102.35	0.10	141.99	56.3
J-12	101.25	0.05	141.98	57.8
J-13	101.19	0.12	142.00	57.9
J-14	101.50	0.24	141.99	57.5
J-15	100.80	0.24	141.99	58.5

Junction Table - Time: 0.00 hours

Pipe Table - Time: 0.00 hours

Label	Start Node	Stop Node	Length (Scaled) (m)	Diameter (mm)	Hazen- Williams C	Flow (L/s)	Velocity (m/s)	Headloss Gradient (m/m)
P-1	J-1	J-2	24	50	110.0	-0.14	0.07	0.00028
P-2	J-2	J-3	57	204	110.0	-0.74	0.02	0.00001
P-3	J-2	J-4	33	204	110.0	0.17	0.01	0.00000
P-4	J-4	J-5	25	50	110.0	0.14	0.07	0.00028
P-6	J-4	J-6	57	204	110.0	-0.35	0.01	0.00000
P-7	J-6	J-3	33	204	110.0	-0.88	0.03	0.00001
P-10	J-7	J-9	120	204	110.0	0.48	0.01	0.00000
P-11	J-7	J-10	103	204	110.0	-0.94	0.03	0.00001
P-12	J-8	J-11	121	204	110.0	2.20	0.07	0.00005
P-13	J-11	J-3	32	204	110.0	2.10	0.06	0.00004
P-14	J-7	J-12	68	204	110.0	0.04	0.00	0.00000
P-15	J-12	J-6	29	204	110.0	-0.01	0.00	0.00000
P-16	J-13	J-8	68	204	110.0	3.62	0.11	0.00012
P-17	J-8	J-14	59	204	110.0	1.42	0.04	0.00002
P-18	J-10	J-15	9	204	110.0	-0.94	0.03	0.00001
P-19	J-14	J-15	89	155	110.0	1.18	0.06	0.00006
P-20	R-2	J-13	16	600	130.0	3.74	0.01	0.00000

WATERCAD MODEL RESULTS - 1158 SECOND LINE ROAD

Max Day Plus Fireflow Scenario - HGL at Location 2

Label	Fire Flow (Needed) (L/s)	Fire Flow (Available) (L/s)	Flow (Total Needed) (L/s)	Flow (Total Available) (L/s)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Satisfies Fire Flow Constraints?
J-1	0.00	11.30	150.14	11.44	0.0	20.1	False
J-2	0.00	163.26	150.43	163.69	0.0	20.4	True
J-3	0.00	175.06	150.48	175.54	0.0	22.5	True
J-4	0.00	165.58	150.38	165.96	0.0	21.0	True
J-5	0.00	11.31	150.14	11.45	0.0	20.2	False
J-6	0.00	174.58	150.52	175.10	0.0	23.0	True
J-7	0.00	166.35	150.42	166.77	0.0	21.4	True
J-8	0.00	200.00	150.00	200.00	0.0	37.4	True
J-9	0.00	124.52	150.48	125.00	0.0	20.0	False
J-10	0.00	168.09	150.00	168.09	0.0	20.0	True
J-11	0.00	184.71	150.10	184.81	0.0	21.4	True
J-12	0.00	177.49	150.05	177.54	0.0	20.0	True
J-13	0.00	200.00	150.12	200.12	0.0	57.9	True
J-14	0.00	200.00	150.24	200.24	0.0	25.3	True
J-15	0.00	167.90	150.24	168.14	0.0	20.0	True

Fire Flow Report - Time: 0.00 hours

Reservoir Table - Time: 0.00 hours

ID	Label	Elevation (m)	Zone	Flow (Out net) (L/s)	Hydraulic Grade (m)
65	R-2	142.00	Zone - 1	3.74	142.00

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix E – Storm Sewer Design Sheets

Table E1: 2-year Storm Sewer Calculation SheetTable E2: 5-year Storm Sewer Calculation SheetTable E3: 100-year Storm Sewer Calculation Sheet

TABLE E1: 2-YEAR STORM SEWER CALCULATION SHEET

 Return Period Storm =
 2-year
 (5-years, 100-years)

 Default Inlet Time=
 10
 (minutes)

 Manning Coefficient =
 0.013
 (dimensionless)

			S	URFACE A	AREAS(ha))	Foun	dation Dr	anage			FLOW (U	NRESTRIC	TED)								SEWER DATA						
From Node	To Node	Drianage Type	Area No.	Area (ha)	∑ Area (ha)	Average R	No of Bldgs	∑ Bldgs	Flow (L/sec)	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	I (mm/h)	Indiv. Flow	Return Period	Q (L/s)	Q Total (L/s)		Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Capacity, Q _{CAP} (L/sec)	Velocit Vf	ty (m/s) Va	Time in Pipe, Tt (min)	Hydraul Q/Q _{CAP}	lic Ratios Va/Vf
																										+		
CB9	CBMH10	SURFACE	1	0.0954		0.71				0.19	0.188	10.00	76.81	14.46	2-year	14.5	14.5	201.2	200	PVC	5.42	12.00	77.54	2.43	1.56	0.13	0.19	0.64
CBMH10 CBMH209	CBMH209 CBMH210	SURFACE SURFACE	2	0.0552	0.1506	0.80				0.12	0.311 0.437	10.13	76.31	9.37	2-year	23.7	23.7	251.5	250	PVC	3.01	6.97	104.79	2.10	1.41	0.08	0.23	0.67
CDIVILI203	CDIVINZ TO	SOIN AGE	4	0.0742						0.10	0.540	10.21	76.00	7.84	2-year	41.0	41.0	299.4	300	PVC	2.52	56.01	152.64	2.17	1.52	0.61	0.27	0.70
CB15	CBMH211	SURFACE	7	0.1538	0.1538	0.77				0.33	0.329	10.00	76.81	25.29	2-year	25.3	25.3	251.5	250	PVC	6.54	12.39	154.46	3.10	1.83	0.11	0.16	0.59
CB14	CBMH211	SURFACE	8	0.0438	0.0438	0.73				0.09	0.089	10.00	76.81	6.83	2-year	6.8	6.8	201.2	200	PVC	9.50	6.59	102.66	3.22	1.54	0.07	0.07	0.48
			-																									
CBMH211	CBMH210	SURFACE	5	0.0679	0.2655	0.76				0.14	0.562	10.11	76.37	9.28	2-year	52.2	52.2	366.4	375	PVC	2.91	32.65	281.19	2.71	1.73	0.31	0.19	0.64
0.51 11.0 4.0	071 11 10 00	01/05105																										
CBMH210	STMH209	SURFACE	3	0.1161	0.7206	0.75				0.24	1.465	10.83	73.78	17.86	2-year	108.1	108.1	1525.0	1500	CONC	0.40	27.92	4672.21	2.53	0.78	0.59	0.02	0.31
SWALE 2	CB1	SURFACE	13	0.1814						0.25	0.2521	10.00	76.81	19.37	-	19.4	19.4											
CB1 CHAMBERS	CHAMBERS STMH209	SURFACE SURFACE	16 11	0.0068	0.1882	0.20				0.00	0.2559	10.00 10.55	76.81 74.76	0.29 4.43	2-year 2-year	19.7 23.6	19.7 23.6	201.2 600.0	200 600	PVC HDPE	1.00	30.92 6.02	33.31 614.01	1.04 2.17	0.94	0.55	0.59	0.90
CHAMBERG				0.0433	0.2317	0.43				0.00	0.5152	10.55	74.70	4.45	2-year	20.0	23.0	000.0	000		1.00	0.02	014.01	2.17	0.07	0.15	0.04	0.51
STMH209	CHAMBERS	SURFACE	14	0.0209	0.9732	0.40				0.02	1.8037	11.42	71.76	1.67	2-year	129.4	129.4	600.0	600	HDPE	1.00	2.55	614.01	2.17	1.43	0.03	0.21	0.66
SWALE 1	CBMH213	SURFACE	12	0.1701	0.1701	0.47				0.22	0.2223	10.00	76.81	17.07		17.1	17.1									<u> </u>		
CHAMBERS	CBMH213	SURFACE			1.1433						2.0260	11.45	71.66		2-year	145.2	145.2	600.0	600	HDPE	1.00	2.25	614.01	2.17	1.45	0.03	0.24	0.67
CBMH213	TEE(203-208)	SURFACE									2.0260	11.45	71.66		2-year	145.2	145.2	299.4	300	PVC	3.34	7.94	175.72	2.50	2.48	0.05	0.83	0.99
STMH204	STMH206	FOUNDATION					12	12	5.4								5.4	201.2	200	PVC	2.27	90.46	50.18	1.57	0.87	1.74	0.11	0.55
STMH207	STMH206	FOUNDATION					5	5	2.3								2.3	201.2	200	PVC	1.20	28.21	36.49	1.14	0.55	0.86	0.06	0.48
STMH206	STMH202	FOUNDATION					8	25	11.3								11.3	201.2	200	PVC	2.90	41.18	56.72	1.78	1.19	0.58	0.20	0.67
STMH205	STMH201	FOUNDATION					8	8	3.6								3.6	201.2	200	PVC	2.95	35.26	57.21	1.79	0.86	0.68	0.06	0.48
STMH200	STMH201	FOUNDATION					5	5	2.3								2.3	201.2	200	PVC	2.98	27.50	57.50	1.80	0.56	0.82	0.04	0.31
STMH201	STMH202	FOUNDATION					8	21	9.5								9.5	201.2	200	PVC	2.86	63.61	56.33	1.77	1.04	1.02	0.17	0.59
STMH202	STMH203	FOUNDATION					3	49	22.1			0.58	155.61				22.1	251.5	250	PVC	0.42	21.49	39.14	0.79	0.56	0.64	0.56	0.71
STMH203	TEE (203-208)	FOUNDATION						49	22.1			1.22	144.57				22.1	447.9	450	PVC	0.42	27.92	182.45	1.16	0.66	0.70	0.12	0.57
TEE (203-208)	STMH208	OUTLET PIPE			1.1433			49	22.1		2.0260	11.47	71.57		2-year	145.0	167.1	447.9	450	PVC	0.30	69.27	154.20	0.98	1.02	1.13	1.08	1.04
		OW CONTROLL			1.1400			40	22.1		2.0200	11.47	11.07		2 year	140.0	107.1	447.3	400	1.00	0.00	00.21	104.20	0.00	1.02	1.10	1.00	1.04
TOTALS =				1.143		0.64				2.0260								Designed:				Project:						
<u>Definitions:</u> Q = 2.78*AIR. w	horo		Drainage T		an From	Foundatio					Ottawa Rain		Values from		sign Guideli	nes, SDG00)2	J. Fitzpatri	ick, P.Eng.				GE HOMES					ļ
Q = 2.78*AIR, w Q = Peak Flow A = Watershed I = Rainfall Inte	in Litres per se Area (hectare	cond (L/s)	FOUNDATI SURFACE COMBIN	= Draina	age From S		lets	& Inlets			2-year 5-year 100-vear	<u>a</u> 732.951 998.071 1735.688	<u>b</u> 6.199 6.053 6.014	<u>c</u> 0.810 0.814 0.820				Checked: B. Thomas	s, P.Eng.			Location 1158 SE	n: COND LINE	ROAD				
R = Runoff Coe		nsionless)	Foundatior	n Drain All	lowance (L/s/unit) =		<u>0.45</u>			100-year	1133.000	0.014	0.020				Dwg Refer FIGURE 3	ence:			File Ref: 245003	Storm Desi	gn Sheet			Sheet No 1 of 1):

exp

TABLE E2: 5-YEAR STORM SEWER CALCULATION SHEET

 Return Period Storm =
 5-year
 (5-years, 100-years)

 Default Inlet Time=
 10
 (minutes)

 Manning Coefficient =
 0.013
 (dimensionless)

			S	URFACE A	AREAS(ha))	Four	dation Dri	anage			FLOW (U	INRESTRIC	TED)								SEWER DATA						
From Node	To Node	Drianage Type	Area No.	Area (ha)	∑ Area (ha)	Average R	No of Bldgs	∑ Bldgs	Flow (L/sec)	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Indiv. Flow	Return Period	Q (L/s)	Q Total (L/s)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Capacity, Q _{CAP} (L/sec)	Velocit Vf	ty (m/s) Va	Time in Pipe, Tt (min)	Hydraul Q/Q _{CAP}	ic Ratios Va/Vf
																							(-,,					
CB9	CBMH10	SURFACE	1	0.0954		0.71				0.19	0.188	10.00	104.19	19.62	5-year	19.6	19.6	201.2	200	PVC	5.42	12.00	77.54	2.43	1.63	0.12	0.25	0.67
CBMH10 CBMH209	CBMH209 CBMH210	SURFACE SURFACE	2	0.0552	0.1506	0.80				0.12	0.311 0.437	10.12	103.55	12.71	5-year	32.2	32.2	251.5	250	PVC	3.01	6.97	104.79	2.10	1.47	0.08	0.31	0.70
CDIVII 1203	CDIVILIZ TO	SOIN ACE	4	0.0742						0.10	0.540	10.20	103.14	10.64	5-year	55.7	55.7	299.4	300	PVC	2.52	56.01	152.64	2.17	1.54	0.61	0.36	0.71
CB15	CBMH211	SURFACE	7	0.1538	0.1538	0.77				0.33	0.329	10.00	104.19	34.30	5-year	34.3	34.3	251.5	250	PVC	6.54	12.39	154.46	3.10	2.08	0.10	0.22	0.67
CB14	CBMH211	SURFACE	8	0.0438	0.0438	0.73				0.09	0.089	10.00	104.19	9.26	5-year	9.3	9.3	201.2	200	PVC	9.50	6.59	102.66	3.22	1.71	0.06	0.09	0.53
			•									10.00	104.15	0.20	5 year	0.0	0.0	201.2	200	1.00	0.00	0.00	102.00	0.22	1.71	0.00	0.00	0.00
CBMH211	CBMH210	SURFACE	5	0.0679	0.2655	0.76				0.14	0.562	10.10	103.67	12.60	5-year	70.8	70.8	366.4	375	PVC	2.91	32.65	281.19	2.71	1.81	0.30	0.25	0.67
			0	0.0585	0.3236	0.75				0.12	0.003	10.10	103.07	12.00	5-year	70.8	70.8	300.4	375	FVC	2.91	32.05	201.19	2.71	1.01	0.30	0.25	0.07
CBMH210	STMH209	SURFACE	3	0.1161	0.7206	0.75				0.24	1.465	10.81	100.10	24.23	5-year	146.7	146.7	1525.0	1500	CONC	0.40	27.92	4672.21	2.53	0.78	0.59	0.03	0.31
SWALE 2	CB1	SURFACE	13	0.1814						0.25	0.2521	10.00	104.19	26.27		26.3	26.3									-		
CB1	CHAMBERS	SURFACE	16	0.0068	0.1882	0.20				0.00	0.2559	10.00	104.19	0.39	5-year	26.7	26.7	201.2	200	PVC	1.00	30.92	33.31	1.04	1.02	0.50	0.80	0.98
CHAMBERS	STMH209	SURFACE	11	0.0435	0.2317	0.49				0.06	0.3152	10.50	101.61	6.02	5-year	32.0	32.0	600.0	600	HDPE	1.00	6.02	614.01	2.17	1.00	0.10	0.05	0.46
STMH209	CHAMBERS	SURFACE	14	0.0209	0.9732	0.40				0.02	1.8037	11.40	97.32	2.26	5-year	175.5	175.5	600.0	600	HDPE	1.00	2.55	614.01	2.17	1.52	0.03	0.29	0.70
SWALE 1	CBMH213	SURFACE	12	0.1701	0.1701	0.47				0.22	0.2223	10.00	104.19	23.16		23.2	23.2									<u> </u>		
CHAMBERS	CBMH213	SURFACE			1.1433						2.0260	11.43	97.20		5-year	196.9	196.9	600.0	600	HDPE	1.00	2.25	614.01	2.17	1.52	0.02	0.32	0.70
CBMH213	TEE(203-208)	SURFACE									2.0260	11.43	97.20		5-year	196.9	196.9	299.4	300	PVC	3.34	7.94	175.72	2.50	2.60	0.05	1.12	1.04
STMH204	STMH206	FOUNDATION					12	12	5.4								5.4	251.5	250	PVC	2.27	90.46	91.00	1.83	0.84	1.80	0.06	0.46
																	-											
STMH207	STMH206	FOUNDATION					5	5	2.3								2.3	251.5	250	PVC	1.20	28.21	66.16	1.33	0.41	1.14	0.03	0.31
STMH206	STMH202	COMBIN					8	25	11.3								11.3	251.5	250	PVC	2.90	41.18	102.85	2.06	1.13	0.60	0.11	0.55
STMH205	STMH201	FOUNDATION					8	8	3.6								3.6	251.5	250	PVC	2.95	35.26	103.74	2.08	0.65	0.91	0.03	0.31
STMH200	STMH201	FOUNDATION					5	5	2.3								2.3	201.2	200	PVC	2.98	27.50	57.50	1.80	0.56	0.82	0.04	0.31
STMH201	STMH202	FOUNDATION					8	21	9.5								9.5	201.2	200	PVC	2.86	63.61	56.33	1.77	1.04	1.02	0.17	0.59
STMH202	STMH203	COMBIN					3	49	22.1			0.60	213.29				22.1	299.4	300	PVC	0.42	21.49	62.31	0.89	0.62	0.58	0.35	0.70
STMH203	TEE (203-208)	COMBIN						49	22.1			1.18	199.33				22.1	447.9	450	PVC	0.42	27.92	182.45	1.16	0.66	0.70	0.12	0.57
TEE (203-208)	STMH208	COMBIN			1.1433			49	22.1		2.0260	11.46	97.09		5-year	196.7	218.7	447.9	450	PVC	0.30	69.27	154.20	0.98	1.02	1.13	1.42	1.04
, , ,				1.143		0.64																						
							2.0260	Ottawa Rain	<u>a</u> .	<u>b</u>	<u>c</u>	esign Guidel	ines, SDG00	02	Designed: J. Fitzpatri	ick, P.Eng.				GE HOMES								
A = Watershed I = Rainfall Inte	Area (hectare nsity (mm/h)	s)	COMBIN	= Draina	age From I	Both Four	dations				2-year 5-year 100-year	732.951 998.071 1735.688	6.199 6.053 6.014	0.810 0.814 0.820				Checked: B. Thomas					COND LINE	ROAD			Ch	
R = Runoff Coe	fficients (dime	nsionless)	Foundatior	u ∪rain Ali	iowance (L/S/UNIt) =	:	<u>0.45</u>										Dwg Refer FIGURE 3	ence:			File Ref: 245003 !	Storm Desi	gn Sheet			Sheet No 1 of 1	

exp

TABLE E3: 100-YEAR STORM SEWER CALCULATION SHEET

 Return Period Storm =
 100-year
 (5-years, 100-years)

 Default Inlet Time=
 10
 (minutes)

 Manning Coefficient =
 0.013
 (dimensionless)

ng coefficient =	0.013	(amensiomess)	

			S	URFACE A	AREAS(ha))	Found	dation Dr	ianage			FLOW (I	JNRESTRIC	TED)					SEWER DATA									
																	Q Total						Capacity,	Velocit	y (m/s)	Time in	Hydraul	lic Ratios
From Node	To Node	Drianage Type	Area No.	Area (ha)	∑ Area (ha)	Average R	No of Bldgs	∑ Bldgs	Flow (L/sec)	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Indiv. Flow	Return Period	Q (L/s)	(L/s)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Q _{CAP} (L/sec)	Vf	Va	Pipe, Tt (min)	Q/Q _{CAP}	Va/Vf
CB9	CBMH10	SURFACE	1	0.0954	0.0954	0.71				0.19	0.188	10.00	178.56	33.62	100-year	33.6	33.6	201.2	200	PVC	5.42	12.00	77.54	2.43	1.72	0.12	0.43	0.71
CBMH10	CBMH209	SURFACE	2	0.0552	0.1506	0.80				0.12	0.311	10.12	177.50	21.79	100-year	55.2	55.2	251.5	250	PVC	3.01	6.97	104.79	2.10	1.49	0.08	0.53	0.71
CBMH209	CBMH210	SURFACE	10	0.0559	0.2065	0.81				0.13	0.437																	
			4	0.0742	0.2807	0.50				0.10	0.540	10.19	176.80	18.23	100-year	95.5	95.5	299.4	300	PVC	2.52	56.01	152.64	2.17	1.98	0.47	0.63	0.91
CB15	CBMH211	SURFACE	7	0.1538	0.1538	0.77				0.33	0.329	10.00	178.56	58.79	100-year	58.8	58.8	251.5	250	PVC	6.54	12.39	154.46	3.10	2.19	0.09	0.38	0.71
CB14	CBMH211	SURFACE	8	0.0438	0.0438	0.73				0.09	0.089	10.00	178.56	15.87	100-year	15.9	15.9	201.2	200	PVC	9.50	6.59	102.66	3.22	1.90	0.06	0.15	0.59
CBMH211	CBMH210	SURFACE	5	0.0679	0.2655	0.76				0.14	0.562																+	
			6	0.0583	0.3238	0.75				0.12	0.683	10.09	177.70	21.60	100-year	121.4	121.4	299.4	300	PVC	2.91	32.65	164.02	2.33	2.29	0.24	0.74	0.98
CBMH210	STMH209	SURFACE	3	0.1161	0.7206	0.75				0.24	1.465	10.67	172.68	41.80	100-year	253.0	253.0	447.9	450	CONC	1.00	27.92	281.52	1.79	1.79	0.26	0.90	1.00
SWALE 2	CB1	SURFACE	13	0.1814	0.1814	0.50				0.25	0.2521	10.00	178.56	45.02		45.0	45.0											
CB1	CHAMBERS	SURFACE	16	0.0068	0.1882	0.20				0.20	0.2559	10.00	178.56	0.68	100-year	45.7	45.7	201.2	200	PVC	4.20	30.92	68.26	2.14	1.97	0.26	0.67	0.92
CHAMBERS	STMH209	SURFACE	11	0.0435		0.49				0.06	0.3152	10.26	176.20	10.44	100-year	55.5	55.5	600.0	600	HDPE	1.00	6.02	614.01	2.17	1.15	0.09	0.09	0.53
STMH209	CHAMBERS	SURFACE	14	0.0209	0.9732	0.40				0.02	1.8037	10.93	170.51	3.96	100-year	307.5	307.5	600.0	600	HDPE	1.00	2.55	614.01	2.17	1.54	0.03	0.50	0.71
SWALE 1	CBMH213	SURFACE	12	0.1701	0.1701	0.47				0.22	0.2223	10.00	178.56	39.69		39.7	39.7											
CHAMBERS	CBMH213	SURFACE			1.1433						2.0260	10.95	170.28		100-year	345.0	345.0	600.0	600	HDPE	1.00	2.25	614.01	2.17	1.54	0.02	0.56	0.71
CBMH213	TEE(203-208)	SURFACE									2.0260	10.95	170.28		100-year	345.0	345.0	299.4	300	PVC	3.34	7.94	175.72	2.50	2.60	0.05	1.96	1.04
																											-	
STMH204	STMH206	FOUNDATION					12	12	5.4								5.4	251.5	250	PVC	2.27	90.46	91.00	1.83	0.84	1.80	0.06	0.46
STMH207	STMH206	FOUNDATION					5	5	2.3								2.3	251.5	250	PVC	1.20	28.21	66.16	1.33	0.41	1.14	0.03	0.31
STMH206	STMH202	FOUNDATION					8	25	11.3								11.3	251.5	250	PVC	2.90	41.18	102.85	2.06	1.13	0.60	0.11	0.55
STMH205	STMH201	FOUNDATION					8	8	3.6								3.6	251.5	250	PVC	2.95	35.26	103.74	2.08	0.65	0.91	0.03	0.31
STMH200	STMH201	FOUNDATION					5	5	2.3								2.3	251.5	250	PVC	2.98	27.50	104.26	2.09	0.65	0.71	0.02	0.31
STMH201	STMH202	FOUNDATION					8	21	9.5								9.5	201.2	200	PVC	2.86	63.61	56.33	1.77	1.04	1.02	0.17	0.59
STMH202	STMH203	FOUNDATION					3	49	22.1			0.60	368.49				22.1	251.5	250	PVC	0.42	21.49	39.14	0.79	0.56	0.64	0.56	0.71
STMH203	TEE (203-208)	OUTLET						49	22.1			1.25	341.46				22.1	447.9	450	PVC	0.42	27.92	182.45	1.16	0.66	0.70	0.12	0.57
TEE (203-208)	STMH208	OUTLET			1.1433			49	22.1		2.0260	10.98	170.08		100-year	344.6	366.6	447.9	450	PVC	0.30	69.27	154.20	0.98	1.02	1.13	2.38	1.04
TOTALS =				1.143		0.64				2.026					1	I												L
<u>Definitions:</u> Q = 2.78*AIR, w	ibara		Drainage T FOUNDATI		= Droing	ige From F	oundatio				Ottawa Rainfall Intensity Values from Sewer Design Guidelines, SDG002 a b c							Designed: J. Fitzpatr	ick, P.Eng.			Project: THEBER	GE HOMES					
		d (1 /c)	SURFACE			•					2-1025	<u>a</u> 732.951	<u>b</u> 6.199					Chackad				Location						
A = Watershee	in Litres per secon d Area (hectares)	u (L/S)		= Draina		ge From S Both Found					2-year 5-year	998.071	6.053	0.810 0.814				Checked: B. Thoma:	s, P.Eng.			Location 1158 SEC	: COND LINE	ROAD				
I = Rainfall Inte											100-year	1735.688	6.014	0.820														
R = Runoff Coe	efficients (dimensio	nless)	Foundatio	n Drain Al	lowance (L/s/unit) =	:	<u>0.45</u>										Dwg Refer FIGURE 3	ence:			File Ref: 245003 9	Storm Desig	n Sheet			Sheet No 1 of 1	4

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix F – SWM Design Sheets

- Table F1: Average Runoff Coefficients (Pre-Development)
- Table F2: Pre-Development Runoff Calculations
- **Table F3: Allowable Runoff Calculations**
- Table F3: Calculation of Average Runoff Coefficients (Post-Development)
- Table F4: Average Runoff Coefficients (Pre-Development)
- Table F5: Summary of Post Development Runoff (Uncontrolled and Controlled)
- Table F6: Summary of Surface Storage
- Table F7: Summary of Underground Pipe Storage
- Table F8: Summary of Underground Manhole/Catchbasin Storage
- Table F9: Table F9 Storage Volumes for 2-year, 5-Year and 100-Year Storms
- Table F10: Drainage Area Information
- Table F11: Stormtech MC-3500 Chamber Cumulative Storage by Depth Table
- Table F12: Stormtech MC-3500 Chamber Cumulative Storage Table
- Table F13: Inlet Control Device Table
- Table F14: Storage-Discharge & Stage-Storage Information
- Chart F15: Storage-Discharge & Stage-Storage Curve
- Table F16: Storage Volume Requirements for 5 Year and 100 Year Storms
- Table F17: Required Storage (2-yr)
- Table F18: Required Storage (5-yr)
- Table F19: Required Storage (100-yr)
- Table F20: Summary of Results

Runoff Coeffients		C _{gravel} =	<u>0.80</u>	C _{ROOF} =	<u>0.90</u>	C _{GRASS} =	<u>0.20</u>	C _{Conc} =	<u>0.90</u>		
Area No.	Gravel Areas (m ²)	A * C _{GRAV}	Roof Areas (m ²)	A * C _{ROOF}	Grassed Areas (m ²)	A * C _{GRASS}	Conc (m ²)	A * C _{CONC}	Sum AC	Total Area (m ²)	C _{AVG}
Entire Site	325.4	260.3	214.9	193.4	11427	0.20	37.7	0.90	454.9	12005.5	0.04
Totals	325.4	260.3	214.9	193.4	11,427.5	0.2	37.7	0.9	454.9	12,005.5	0.04
Site % IMP =	4.8%						Average Rur	off Coeff =	C _{AVG} =	<u>455</u> 12,006	= 0.04

TABLE F1 - AVERAGE RUNOFF COEFFICIENTS (Pre Development)

TABLE F2 - PRE-DEVELOPMENT RUNOFF CALCULATIONS

		Time of		Storm = 2 yı	•		Storm = 5 y	r	St	torm = 100 v	yr
Area Description	Area (ha)	Conc, Tc (min)	I ₂ (mm/hr)	Cavg	Q _{5PRE} (L/sec)	I₅ (mm/hr)	Cavg	Q _{5PRE} (L/sec)	l ₁₀₀ (mm/hr)	Cavg	Q _{100PRE} (L/sec)
Total Site	1.2006	20	52.03	0.04	6.6	70.25	0.04	8.9	119.95	0.047	19.0
Totals	1.2006		<u> </u>		6.6			8.9			19.0
<u>Notes</u>											
2-yr Storm Intensity,	l = 732.951/	(Tc+6.199) ^{0.8}	¹⁰ (City of Ot	tawa)							
5-yr Storm Intensity,	I = 998.071/	(Tc+6.035) ^{0.8}	¹⁴ (City of Ot	tawa)							
100-yr Storm Intensi	ity, I = 1735.6	88/(Tc+6.014	4) ^{0.820} (City of	Ottawa)							
Cavg for 100-year is	increased by	25%									

TABLE F3 - ALLOWABLE RUNOFF CALCULATIONS

		Time of		Storm = 5 yı	•				
		Conc, Tc			Q _{ALLOW}	Q _{ICD}			
Area Description	Area (ha)	(min)	I₅ (mm/hr)	Cavg	(L/sec)	(L/sec)			
Total Site	1.2006	20	70.29	0.50	117.3	100.0			
Totals	1.2006				117.3	100.0			
<u>Notes</u>									
Allowable Capture Rate is based on 5-year storm at Tc=20 minutes.									
QICD is the Controlle					WM Report				
5-yr Storm Intensity,	l = 998.071/	(Tc+6.035) ^{0.8}	[⊥] [≄] (City of Ot	tawa)					

noff Coeffients	5	C _{ASPH/CONC} =	<u>0.90</u>	C _{ROOF} =	<u>0.90</u>	C _{GRASS} =	<u>0.20</u>			
	Asphalt /									
	Conc		_					1 .		
	Areas		Roof Areas		Grassed			¹ Total		
Area No.	(m²)	A * C_{ASPH}	(m²)	$A * C_{ROOF}$	Areas (m ²)	A * C_{GRASS}	Sum AC	Area (m ²)	² C _{AVG}	Comments
Entire Site	3208	2886.8	4344.3	3909.9	4454.2	890.8	7687.5	12006	0.64	For Info
Entire Site	5208	2000.0	4344.5	5909.9	4454.2	890.8	7007.5	12000	0.04	For Injo
1								955	0.71	
2								552	0.80	
3								1161	0.75	
4								742	0.50	
5								680	0.76	
6								583	0.75	
7								1539	0.77	
8								438	0.73	
9								263	0.72	
10								559	0.81	
11								436	0.49	
12								1701	0.47	
13								1814	0.50	
14								209	0.40	
15								310	0.64	
16								68	0.20	
Total	3,207.5	2,886.8	4,344.3	3,909.9	4,454.2	890.8	7,687.5	12008	0.64	
Site % IMP =			*		Average Rur			<u>7,687</u> 12,008	= 0.64	

TABLE F4 - AVERAGE RUNOFF COEFFICIENTS (Post Development)

TABLE F5 - SUMMARY OF POST DEVELOPMENT RUNOFF (Uncontrolled and Controlled)

		Time of		Storm	= 2 yr			Storm	= 5 yr			Storm	n = 100 yr		
		Conc, Tc			Q	Q _{CAP}			Q	Q _{CAP}		I ₁₀₀	Q		
Area No	Area (ha)	(min)	C _{AVG}	$I_2 (mm/hr)$	(L/sec)	(L/sec)	C _{AVG}	I₅ (mm/hr)	(L/sec)	(L/sec)	C _{AVG}	(mm/hr)	(L/sec)	$Q_{CAP}(L/sec)$	Comments
1	0.0955	10	0.71	76.81	14.5		0.71	104.19	19.6		0.89	178.56	42.1		
2	0.0552	10	0.80	76.81	9.4		0.80	104.19	12.8		1.00	178.56	27.4		
3	0.1161	10	0.75	76.81	18.6		0.75	104.19	25.2		0.94	178.56	54.0		
4	0.0742	10	0.50	76.81	7.9		0.50	104.19	10.7		0.63	178.56	23.0		
5	0.0680	10	0.76	76.81	11.0		0.76	104.19	15.0		0.95	178.56	32.0		
6	0.0583	10	0.75	76.81	9.3		0.75	104.19	12.7		0.94	178.56	27.1	1	
7	0.1539	10	0.77	76.81	25.3	42.0	0.77	104.19	34.3	50.5	0.96	178.56	73.5	82.0	To Underground Stor
8	0.0438	10	0.73	76.81	6.8	43.0	0.73	104.19	9.3	50.5	0.91	178.56	19.8	82.0	Flow Controlled at ST
9	0.0263	10	0.72	76.81	4.0		0.72	104.19	5.5	1	0.90	178.56	11.7		
10	0.0559	10	0.81	76.81	9.7		0.81	104.19	13.1	1	1.00	178.56	27.8		
11	0.0436	10	0.49	76.81	4.6		0.49	104.19	6.2	1	0.61	178.56	13.2		
12	0.1701	10	0.47	76.81	17.1		0.47	104.19	23.2	1	0.59	178.56	49.6		
13	0.1814	10	0.50	76.81	19.4		0.50	104.19	26.3	1	0.63	178.56	56.3		
14	0.0209	10	0.40	76.81	1.8		0.40	104.19	2.4	1	0.50	178.56	5.2		
15	0.0310	10	0.64	76.81	4.2	4.2	0.64	104.19	5.7	5.7	0.80	178.56	12.3	12.3	overland (uncontrol
16	0.0068	10	0.20	76.81	0.3	0.3	0.20	104.19	0.4	0.4	0.25	178.56	0.8	0.8	overland (uncontrol
Totals	1.2008				163.9	47.5			222.4	56.6			476.0	95.2	

<u>Notes</u> 2-yr Storm Intensity, I = 732.951/(Tc+6.199)^{0.810} (City of Ottawa) 5-yr Storm Intensity, I = 998.071/(Tc+6.035)^{0.814} (City of Ottawa) 100-yr Storm Intensity, I = 1735.688/(Tc+6.014)^{0.820} (City of Ottawa)

For Flows under column Qcap which are shown in brackets (0.0), denotes flows that are uncontrolled

TABLE F6 - SUMMARY OF SURFACE STORAGE (NOT USED)

Drainage Area	Ponding Number	T/G	Max W/L (m)	Area (m²)	Depth(m)	Total Volume (c.m.)
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
Subtotal						

TABLE F7 - SUMAMRY OF UNDERGROUND PIPE STORAGE

Drainage Area Located	U/S Manhole	D/S Manhole	Length (m)	Pipe Dia (mm)	Pipe Area (m2) or Trench Vol (m3/m)	Volume (c.m.)
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11	Chambers		30.63		4.6	142.2
12						
13						
14	Chambers		64.60		2.3	149.9
15						
16						
Subtotal			95.23			292.0
	ea is Volume pe	r metre (5.068 m		m long chai	mbers)	

TABLE F8 - SUMMARY OF UNDERGROUND MANHOLE/CATCHBASIN STORAGE (NOT USED)

Drainage						Storage		
Area				Inv Elev	Sump Elev	Depth	Area	Volume
Located	No.	Size	T/G (m)	(m)	(m)	(m)	(s.m.)	(c.m.)
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
Subtotal								

TOTAL STORAGE AVAILABLE (Pipe, Structure, Surface) cu.m. =

292.0

I

Area No.	Aroa (ba)	Cavg	Cavg	Cavg	Rele	ease Rate	(L/s)	Control	Storage	e Required	(m ³)		Stor	age Provided (n	1 ³)	
Area No.	Alea (lia)	(2-yr)	(5-yr)	(100-yr)	2-yr	5-yr	100-yr	Method	2-yr	5-yr	100-yr	Roof	Surface	Chambers	Structure	Total
1	0.0955	0.71	0.71	0.89												
2	0.0552	0.80	0.80	1.00												
3	0.1161	0.75	0.75	0.94												
4	0.0742	0.50	0.50	0.63												
5	0.0680	0.76	0.76	0.95												
6	0.0583	0.75	0.75	0.94												
7	0.1539	0.77	0.77	0.96	43.0	50.5	82.0	ICD AT	79.6	116.8	287.1			292.0		292.0
8	0.0438	0.73	0.73	0.91	45.0	50.5	82.0	STMH213	79.0	110.0	207.1			292.0		292.0
9	0.0263	0.72	0.72	0.90												
10	0.0559	0.81	0.81	1.00												
11	0.0436	0.49	0.49	0.61												
12	0.1701	0.47	0.47	0.59												
13	0.1814	0.50	0.50	0.63												
14	0.0209	0.40	0.40	0.50												
15	0.0310	0.64	0.64	0.80	4.2	5.7	12.3	none	none	none	none					none
16	0.0068	0.20	0.20	0.25	0.3	0.4	0.8	none	none	none	none					none
Totals =	1.201				47.5	56.6	95.2		79.6	116.8	287.1			292.0		292.0

TABLE F9 - SUMMARY OF TOTAL STORAGE REQUIRED & PROVIDED

Table F9 - Storage Volumes for 2-year, 5-Year and 100-Year Storms

Intensity, I (mm/hr) (L/sec) Rate (L/sec) Rate (L/sec) Intensity, I (m³) Intensity, I (mm/hr) (L/sec) Rate (L/sec) Ra	· · · · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Return Period = 100 (years) 0.814 IDF Parameters, A = 1735.688 0.82
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Return Period = 100 (years) 0.814 IDF Parameters, A = 1735.688 0.82
Time Interval = 2 (mins) Drainage Area = 1.1630 (hectares) Release Rate = 1.1630 (l/sec) Release Rate = 50.5 (l/sec) Return Period = 2 (years) IDF Parameters, A = 732.951 , B = 0.810 IDF Parameters, A = 732.951 , C = 6.199 (I = $A/(T_c+C)$ Rainfall Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Rainfall Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Rainfall Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Rainfall Intensity, I (mm/hr) Peak Flow Release Rate (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Rainfall Intensity, I (mm/hr) Peak Flow Rate (L/sec)	Return Period = 100 (years) 0.814 IDF Parameters, A = 1735.688 0.82
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Return Period = 100 (years) 0.814 IDF Parameters, A = 1735.688 0.82
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Return Period = 100 (years) 0.814 IDF Parameters, A = 1735.688 0.82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Return Period = 100 (years) 0.814 IDF Parameters, A = 1735.688 0.82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.814 IDF Parameters, A = 1735.688 0.82
$ \begin{array}{ c c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	
Rainfall Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Rainfall (m³) Peak Flow (m³) Peak Flow (mm/hr) Release Rate (L/sec) Storage Rate (L/sec) Rainfall (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage (m³) 0 167.2 351.4 43.00 308.4 0.00 230.5 484.3 50.500 433 2 133.3 280.2 43.00 237.2 28.46 182.7 383.9 50.500 333 4 111.7 234.8 43.00 191.8 46.03 152.5 320.5 50.500 226 6 96.6 203.1 43.00 160.1 57.63 131.6 276.5 50.500 226 8 85.5 179.6 43.00 136.6 65.56 116.1 244.0 50.500 193 10 76.8 161.4 43.00 118.4 71.04 104.2 219.0 50.500 168	, C = 6.053 (I = A/(T _c +C) , C = 6.02
Rainfall Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Storage (m ³) Rainfall Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Storage Rate (L/sec) Release Rate (L/sec) 0 160.2 133.3 280.2 43.00 191.8 46.03 152.5 320.5 50.500 226 8 85.5 179.6 43.00 136.6 65.56 116.1 244.0 50.500 166 <td></td>	
2 133.3 280.2 43.00 237.2 28.46 182.7 383.9 50.500 333 4 111.7 234.8 43.00 191.8 46.03 152.5 320.5 50.500 270 6 96.6 203.1 43.00 160.1 57.63 131.6 276.5 50.500 226 8 85.5 179.6 43.00 136.6 65.56 116.1 244.0 50.500 193 10 76.8 161.4 43.00 118.4 71.04 104.2 219.0 50.500 166	corage Storage (L/sec) (m ³) Rainfall Intensity, I (L/sec) Rate (L/sec) Rate (L/sec) Rate (L/sec) (m ³)
4 111.7 234.8 43.00 191.8 46.03 152.5 320.5 50.500 270 6 96.6 203.1 43.00 160.1 57.63 131.6 276.5 50.500 226 8 85.5 179.6 43.00 136.6 65.56 116.1 244.0 50.500 193 10 76.8 161.4 43.00 118.4 71.04 104.2 219.0 50.500 166	433.8 0.00 398.6 1047.1 82.000 965.1 0.0
6 96.6 203.1 43.00 160.1 57.63 131.6 276.5 50.500 226 8 85.5 179.6 43.00 136.6 65.56 116.1 244.0 50.500 193 10 76.8 161.4 43.00 118.4 71.04 104.2 219.0 50.500 168	333.4 40.01 315.0 827.5 82.000 745.5 89.4
8 85.5 179.6 43.00 136.6 65.56 116.1 244.0 50.500 193 10 76.8 161.4 43.00 118.4 71.04 104.2 219.0 50.500 168	270.0 64.80 262.4 689.3 82.000 607.3 145.
10 76.8 161.4 43.00 118.4 71.04 104.2 219.0 50.500 168	226.0 81.35 226.0 593.7 82.000 511.7 184.
	193.5 92.88 199.2 523.3 82.000 441.3 211.
	168.5 101.07 178.6 469.0 82.000 387.0 232.
12 69.9 146.9 43.00 103.9 74.79 94.7 199.0 50.500 146	148.5 106.92 162.1 425.9 82.000 343.9 247.5
<u>14</u> <u>64.2</u> <u>135.0</u> <u>43.00</u> <u>92.0</u> <u>77.27</u> <u>86.9</u> <u>182.7</u> <u>50.500</u> <u>132</u>	132.2 111.04 148.7 390.7 82.000 308.7 259.
<u>16</u> <u>59.5</u> <u>125.0</u> <u>43.00</u> <u>82.0</u> <u>78.76</u> <u>80.5</u> <u>169.1</u> <u>50.500</u> <u>118</u>	118.6 113.84 137.5 361.3 82.000 279.3 268.
	107.0 115.61 128.1 336.5 82.000 254.5 274.
	97.1 116.56 120.0 315.1 82.000 233.1 279.
	88.5 <u>116.83</u> <u>112.9</u> <u>296.5</u> <u>82.000</u> <u>214.5</u> <u>283</u> .
	80.9 116.53 106.7 280.2 82.000 198.2 285.
	74.2 115.77 101.2 265.8 82.000 183.8 286.
	<u>68.2 114.60 96.3 252.9 82.000 170.9 287.</u>
	<u>62.8</u> <u>113.09</u> <u>91.9</u> <u>241.3</u> <u>82.000</u> <u>159.3</u> <u>286</u>
	58.0 111.27 87.9 230.9 82.000 148.9 285.
	53.5 109.19 84.3 221.4 82.000 139.4 284.
	<u>49.5</u> <u>106.88</u> <u>81.0</u> <u>212.7</u> <u>82.000</u> <u>130.7</u> <u>282</u> .
	45.8 104.35 77.9 204.7 82.000 122.7 279.
	42.4 101.64 75.1 197.4 82.000 115.4 276.
Max = 79.61	116.83 287.

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(Tc+C)^{B}$

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) Parameters a,b,c are for City of Ottawa

TABLE F10 - DRAINAGE AREA INFORMATION

Area No:	Area (ha)	Cavg (2yr)	Cavg (5yr)	Cavg (100yr)
Areas 1-14	1.16300	0.65	0.65	0.81

TABLE F11 - STORMTECH MC-3500 CHAMBER - CUMULATIVE STORAGE BY DEPTH TABLE Chamber Length = 2.184

Depth Above E	Bottom of Storag	ge Trench	Cumulativ MC-3500	MC-3500		
(Sorted by De	pth in Descendi	ng Order)	Chamber	End Cap		
(in)	(mm)	(m)	(m3)	(m3)		
66	1676	1.6764	5.068	1.330		
65 64	1651 1626	1.6510 1.6256	5.019 4.971	1.314 1.298		
63	1600	1.6002	4.922	1.281		
62	1575	1.5748	4.874	1.265		
61 60	1549 1524	1.5494 1.5240	4.825 4.777	1.249 1.233		
59	1499	1.4986	4.728	1.233		
58	1473	1.4732	4.680	1.201		
57 56	1448 1422	1.4478 1.4224	4.631	1.185		
50	1397	1.4224	4.583 4.534	1.169		
54	1372	1.3716	4.486	1.136		
53	1346	1.3462	4.436	1.120		
52	1321	1.3208	4.385	1.104		
51 50	1295 1270	1.2954 1.2700	4.331 4.276	1.088 1.071		
49	1245	1.2446	4.216	1.054		
48	1219	1.2192	4.150	1.037		
47	1194	1.1938	4.080	1.020		
46 45	1168 1143	1.1684 1.1430	4.007 3.932	1.003 0.985		
45	1145	1.1430	3.855	0.966		
43	1092	1.0922	3.775	0.948		
42	1067	1.0668	3.694	0.929		
41 40	1041 1016	1.0414 1.0160	3.611 3.526	0.910		
39	991	0.9906	3.440	0.890		
38	965	0.9652	3.352	0.850		
37	940	0.9398	3.263	0.830		
36 35	914 889	0.9144	3.173	0.809		
32	864	0.8890 0.8636	3.081 2.989	0.788		
33	838	0.8382	2.895	0.745		
32	813	0.8128	2.800	0.723		
31 30	787 762	0.7874	2.705 2.608	0.701		
29	737	0.7366	2.000	0.655		
28	711	0.7112	2.416	0.631		
27	686	0.6858	2.314	0.607		
26	660	0.6604	2.214	0.583		
25 24	635 610	0.6350 0.6096	2.114 2.013	0.559		
23	584	0.5842	1.911	0.510		
22	559	0.5588	1.809	0.485		
21	533	0.5334	1.706	0.460		
20 19	508 483	0.5080 0.4826	1.603 1.499	0.434		
18	457	0.4572	1.395	0.383		
17	432	0.4318	1.290	0.357		
16	406	0.4064	1.184	0.331		
15 14	381 356	0.3810 0.3556	1.079 0.973	0.305		
13	330	0.3302	0.866	0.252		
12	305	0.3048	0.759	0.225		
11	279	0.2794	0.652	0.199		
10 9	254 229	0.2540	0.544	0.172		
8	203	0.2200	0.430	0.143		
7	178	0.1778	0.339	0.113		
6	152	0.1524	0.291	0.097		
5	127 102	0.1270	0.242	0.081		
3	76	0.1010	0.194	0.004		
2	51	0.0508	0.097	0.032		
1 0	25 0	0.0254 0.0000	0.048	0.016 0.000		

	Above Bottom of			/e Volume
	ch (Sorted by D		MC-3500	MC-3500
	Asccending Ord	ler)	Chamber	End Cap
(in)	(mm)	(m)	(m3)	(m3)
0	0	0.0000	0.000	0.000
1	25	0.0254	0.048	0.016
2	51	0.0508	0.097	0.032
3	76 102	0.0762	0.145 0.194	0.048
4	102	0.1016 0.1270	0.194	0.064
5	127	0.1270	0.242	0.081
7	152	0.1324	0.339	0.097
8	203	0.2032	0.388	0.113
9	229	0.2286	0.436	0.125
10	254	0.2540	0.544	0.172
11	279	0.2794	0.652	0.199
12	305	0.3048	0.759	0.225
13	330	0.3302	0.866	0.252
14	356	0.3556	0.973	0.278
15	381	0.3810	1.079	0.305
16	406	0.4064	1.184	0.331
17	432	0.4318	1.290	0.357
18	457	0.4572	1.395	0.383
19	483	0.4826	1.499	0.409
20	508	0.5080	1.603	0.434
21	533	0.5334	1.706	0.460
22	559	0.5588	1.809	0.485
23 24	584	0.5842	1.911	0.510
24	610 635	0.6096 0.6350	2.013	0.539 0.559
25	660		2.114	0.559
26	686	0.6604 0.6858	2.214	0.583
28	711	0.7112	2.314	0.631
20	737	0.7366	2.410	0.655
30	762	0.7620	2.608	0.678
31	787	0.7874	2.705	0.701
32	813	0.8128	2.800	0.723
33	838	0.8382	2.895	0.745
34	864	0.8636	2.989	0.767
35	889	0.8890	3.081	0.788
36	914	0.9144	3.173	0.809
37	940	0.9398	3.263	0.830
38	965	0.9652	3.352	0.850
39	991	0.9906	3.440	0.871
40	1016	1.0160	3.526	0.890
41	1041	1.0414	3.611	0.910
42	1067	1.0668	3.694	0.929
43	1092	1.0922	3.775	0.948
	1118	1.1176	3.855	0.966
45 46	1143	1.1430	3.932	0.985
46	1168 1194	1.1684 1.1938	4.007 4.080	1.003 1.020
47	1194	1.2192	4.080	1.020
40	1219	1.2446	4.130	1.054
49 50	1245	1.2700	4.276	1.071
51	1295	1.2954	4.331	1.088
52	1321	1.3208	4.385	1.104
53	1346	1.3462	4.436	1.120
54	1372	1.3716	4.486	1.136
55	1397	1.3970	4.534	1.152
56	1422	1.4224	4.583	1.169
57	1448	1.4478	4.631	1.185
58	1473	1.4732	4.680	1.201
59	1499	1.4986	4.728	1.217
60	1524	1.5240	4.777	1.233
61	1549	1.5494	4.825	1.249
62	1575	1.5748	4.874	1.265
63	1600	1.6002	4.922	1.281
64	1626	1.6256	4.971	1.298
65	1651	1.6510	5.019	1.314
66	1676	1.6764	5.068	1.330

TABLE F12 - STORMTECH MC-3500 CHAMBER - CUMULATIVE STORAGE BY DEPTH TABLE

Length per Chamber, From Manufacturer (m) End Cap Length, From Manufacturer (m) L = Total Length of Chambers (m) Bottom Width of Chambers, From Manufacturer (m) Dsit form Chamber to Edge of Trench (m) Bottom Width of Trench Width + 2 x dist to edge, W (m)

2.184	
0.673	
50	
1.956	
0.300	
2.556	

75.60

292.0

No Chamber Req'd

No End Caps Req'd - Trench length (m) - Trench width (m)

- Bottom Area (m2)

Total Trench Length (actual) Including End Caps = Maximium Trench Volume (m³)

Water Depth (in)	Water Depth (m)	Total Storage Volume Per Chamber (m3)	Volume Per End Cap (m3)	Total Storage Volume in Trench (m3)
0	0.000	0.000	0.000	0.000
1	0.025	0.048	0.016	2.800
2	0.051	0.097	0.032	5.655
3	0.076	0.145 0.194	0.048	8.455 11.310
4 5	0.102 0.127	0.242	0.004	14.120
6	0.152	0.291	0.097	16.975
7	0.178	0.339	0.113	19.775
8	0.203	0.388	0.129	22.630
9	0.229	0.436	0.145	25.430
10	0.254	0.544	0.172	31.640
11	0.279 0.305	0.652 0.759	0.199 0.225	37.850 43.995
<u>12</u> 13	0.330	0.866	0.223	50.150
13	0.356	0.973	0.278	56.295
15	0.381	1.079	0.305	62.395
16	0.406	1.184	0.331	68.430
17	0.432	1.290	0.357	74.520
18	0.457 0.483	1.395 1.499	0.383	80.555
<u>19</u> 20	0.483	1.603	0.409	86.535 92.505
20	0.533	1.706	0.460	98.430
22	0.559	1.809	0.485	104.345
23	0.584	1.911	0.510	110.205
24	0.610	2.013	0.539	116.105
25	0.635	2.114	0.559	121.860
26	0.660	2.214 2.314	0.583	127.600
27 28	0.686 0.711	2.416	0.631	133.340 139.190
28	0.737	2.511	0.655	144.655
30	0.762	2.608	0.678	150.220
31	0.787	2.705	0.701	155.785
32	0.813	2.800	0.723	161.230
33	0.838	2.895 2.989	0.745 0.767	166.675 172.065
<u>34</u> 35	0.889	3.081	0.788	172.005
36	0.914	3.173	0.809	182.605
37	0.940	3.263	0.830	187.765
38	0.965	3.352	0.850	192.860
39	0.991	3.440	0.871	197.910
40	1.016 1.041	3.526 3.611	0.890	202.830 207.705
<u>41</u> 42	1.067	3.694	0.929	212.460
43	1.092	3.775	0.948	217.105
44	1.118	3.855	0.966	221.685
45	1.143	3.932	0.985	226.110
46	1.168	4.007	1.003	230.415
47 48	1.194 1.219	4.080 4.150	1.020	234.600 238.620
48	1.245	4.130	1.054	242.420
49 50	1.270	4.276	1.071	245.890
51	1.295	4.331	1.088	249.085
52	1.321	4.385	1.104	252.215
53	1.346 1.372	4.436 4.486	1.120 1.136	255.180 258.090
54 55	1.372	4.466	1.150	258.090
56	1.422	4.583	1.169	263.755
57	1.448	4.631	1.185	266.555
58	1.473	4.680	1.201	269.410
59	1.499	4.728	1.217	272.210
60	1.524 1.549	4.777 4.825	1.233 1.249	275.065
<u>61</u> 62	1.549	4.874	1.249	277.865 280.720
63	1.600	4.922	1.281	283.520
64	1.626	4.971	1.298	286.385
65	1.651	5.019	1.314	289.185
66	1.676	5.068	1.330	292.040

Sorte	d in Assendin	a Order	Sorted i	n Assendir	na Order	
Water Depth (in)	Water Depth (m)	Total Storage Volume in Trench (m3)	Water Depth (in)	Water Depth (m)	(m3)	
0	0.000	0.000	66 65	1.676 1.651	292.04 289.19	
2	0.025	5.655	64	1.626	289.19	
3	0.076	8.455	63	1.600	283.52	
4	0.102	11.310	62	1.575	280.72	
5	0.127	14.120	61	1.549	277.87	
6	0.152	16.975	60	1.524	275.07	
7	0.178 0.203	19.775 22.630	59 58	1.499 1.473	272.21 269.41	
9	0.229	25.430	57	1.448	266.56	
10	0.254	31.640	56	1.422	263.76	
11	0.279	37.850	55	1.397	260.89	
12	0.305	43.995 50.150	54	1.372	258.09	
13 14	0.330	56.295	53 52	1.346 1.321	255.18 252.22	
14	0.381	62.395	52	1.295	249.09	
16	0.406	68.430	50	1.270	245.89	
17	0.432	74.520	49	1.245	242.42	
18	0.457	80.555	48	1.219	238.62	
19 20	0.483	86.535 92.505	47 46	1.194 1.168	234.60 230.42	
20	0.533	98.430	40	1.143	226.11	
22	0.559	104.345	44	1.118	221.69	
23	0.584	110.205	43	1.092	217.11	
24	0.610	116.105	42	1.067	212.46	
25	0.635	121.860 127.600	41	1.041	207.71	
26 27	0.660	133.340	40 39	1.016 0.991	202.83 197.91	
28	0.711	139.190	38	0.965	192.86	
29	0.737	144.655	37	0.940	187.77	
30	0.762	150.220	36	0.914	182.61	
31	0.787	155.785 161.230	35	0.889	177.34	
32 33	0.813 0.838	166.675	34 33	0.864	172.07 166.68	
34	0.864	172.065	32	0.813	161.23	
35	0.889	177.335	31	0.787	155.79	
36	0.914	182.605	30	0.762	150.22	
37 38	0.940	187.765 192.860	29	0.737	144.66	
38	0.965 0.991	192.800	28 27	0.711 0.686	139.19 133.34	
40	1.016	202.830	26	0.660	127.60	
41	1.041	207.705	25	0.635	121.86	
42	1.067	212.460	24	0.610	116.11	
43	1.092	217.105 221.685	23 22	0.584	110.21	
44 45	1.118	226.110	22	0.559 0.533	104.35 98.43	
46	1.168	230.415	20	0.508	92.51	
47	1.194	234.600	19	0.483	86.54	
48	1.219	238.620	18	0.457	80.56	
49	1.245	242.420 245.890	17	0.432	74.52 68.43	
50 51	1.270 1.295	249.085	16 15	0.406	68.43	
52	1.321	252.215	13	0.356	56.30	
53	1.346	255.180	13	0.330	50.15	
54	1.372	258.090	12	0.305	44.00	
55 56	1.397	260.890	11	0.279	37.85	
56	1.422	266.555	9	0.254	25.43	
58	1.473	269.410	8	0.203	22.63	
59	1.499	272.210	7	0.178	19.78	
60	1.524	275.065	6	0.152	16.98	
61	1.549	277.865 280.720	5	0.127	14.12	
62 63	1.575 1.600	283.520	3	0.102	11.31 8.46	
64	1.626	286.385	2	0.051	5.66	
65	1.651	289.185	1	0.025	2.80	
66	1.676	292.040	0	0.000	0.00	

TABLE F13 - INLET CONTROL DEVICE INFORMATION

		Info for Plug-Type ICDs								
Control Type	Orifice Type	Orifice Coeff	Orifice Area (mm ²)	Outlet Pipe Invert (m) & Diameter	Outlet Pipe Invert (m) & Diameter	Oritice Centroid	Max Elev (m)	Max Head (m)	Max Discharge (L/sec)	
ICD - IPEX MHF	19-MHF-TypeF	0.61	23959	98.35	0.300	98.50	100.176	1.676	83.95	

TABLE E14 - STORAGE-DISCHARGE & STAGE STORAGE INFORMATION

	ICD F		Storage	
age / Elev (m)	Head Above	ICD FLow	Volume	Comments
• • • •	ICD Orifice	(L/s)	(m3)	
	(m)	. ,		
100.176	1.676	83.96	292.04	Max Storage
100.151	1.651	83.32	289.19	
100.126	1.626	82.67	286.39	
100.100	1.600	82.03	283.52	
100.075	1.575	81.37	280.72	
100.049 100.024	1.549 1.524	80.71 80.05	277.87 275.07	
99.999	1.499	79.38	272.21	
99.973	1.473	78.70	269.41	
99.948	1.448	78.02	266.56	
99.922	1.422	77.33	263.76	
99.897	1.397	76.64	260.89	
99.872	1.372	75.94	258.09	
99.846	1.346	75.23	255.18	
99.821	1.321	74.52	252.22	
99.795	1.295	73.80	249.09	
99.770	1.270	73.07	245.89	
99.745	1.245	72.34	242.42	
99.719	1.219	71.60	238.62	
99.694	1.194	70.85	234.60	
99.668	1.168	70.09	230.42	
99.643	1.143	69.32	226.11	
99.618	1.118	68.55	221.69	
99.592 99.567	1.092	67.77 66.97	217.11 212.46	
99.541	1.067 1.041	66.17	207.71	
99.516	1.041	65.36	202.83	
99.491	0.991	64.54	197.91	
99.465	0.965	63.70	192.86	
99.440	0.940	62.86	187.77	
99.414	0.914	62.01	182.61	
99.389	0.889	61.14	177.34	
99.364	0.864	60.26	172.07	
99.338	0.838	59.37	166.68	
99.313	0.813	58.46	161.23	
99.287	0.787	57.54	155.79	
99.262	0.762	56.60	150.22	
99.237	0.737	55.65	144.66	
99.211	0.711	54.68	139.19	
99.186	0.686	53.70	133.34	
99.160	0.660	52.69	127.60	
99.135 99.110	0.635 0.610	51.67 50.63	121.86 116.11	
99.084	0.584	49.56	110.21	
99.059	0.559	49.30	104.35	
99.033	0.533	47.36	98.43	
99.008	0.508	46.22	92.51	
98.983	0.483	45.05	86.54	
98.957	0.457	43.84	80.56	
98.932	0.432	42.61	74.52	
98.906	0.406	41.34	68.43	
98.881	0.381	40.02	62.40	
98.856	0.356	38.67	56.30	
98.830	0.330	37.26	50.15	
98.805	0.305	35.80	44.00	
98.779	0.279	34.27	37.85	
98.754	0.254	32.68	31.64	
98.729	0.229	31.00	25.43	
98.703	0.203	29.23	22.63	
98.678 98.652	0.178	27.34	19.78	
98.627	0.152	25.31	16.98	
98.602	0.127 0.102	23.11 20.67	14.12 11.31	
98.576	0.076	17.90	8.46	
98.551	0.051	14.61	5.66	
98.525	0.025	10.33	2.80	
98.500	0.000	0.00	0.00	Centroid Elev
98.35	0.000	0.00	0.00	Inv elev
			-	

CHART F15 - STORAGE-DISCHARGE & STAGE STORAGE CURVE

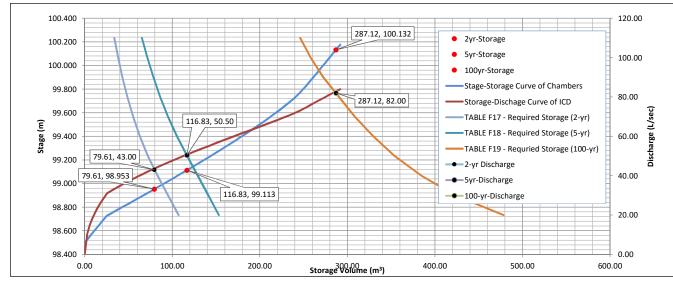


TABLE F16 - Storage Volume Requirements for 5 Year and 100 Year Storms

	Area No: $C_{AVG} =$ $C_{AVG} =$ $C_{AVG} =$	0.65	(2-yr) (5-yr) (100-yr, 5-yr	+ 25% to Max 1	1.0)		Time Interval = Drainage Area =		(mins) (hectares)						
		Release Rate =	43.00	(L/sec)			Release Rate =	50.50	(L/sec)		Re	elease Rate =	82.00	(L/sec)	
	Return Period = 2 (years)				Return Period =	5	(years)		Ret	urn Period =	100	(years)			
	IDF P	arameters, A =	732.951	, B =	0.810	IDF	Parameters, A =	998.071		0.814	IDF Par	ameters, A =	1735.688		0.820
Duration (min)		(I = A/(T	_+C)	, C =	6.199		$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C)$	-	, C =	6.014
	Rainfall Intensity, I (mm/hr)			Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	351.4	43.00	308.4	0.00	230.5	484.4	50.500	433.9	0.00	398.6	1047.1	82.000	965.1	0.00
2	133.3	280.2	43.00	237.2	28.46	182.7	383.9	50.500	333.4	40.01	315.0	827.5	82.000	745.5	89.46
4	111.7	234.8	43.00	191.8	46.03	152.5	320.5	50.500	270.0	64.80	262.4	689.3	82.000	607.3	145.76
6	96.6	203.1	43.00	160.1	57.63	131.6	276.5	50.500	226.0	81.36	226.0	593.7	82.000	511.7	184.22
8	85.5	179.6	43.00	136.6	65.56	116.1	244.0	50.500	193.5	92.89	199.2	523.3	82.000	441.3	211.82
10	76.8	161.4	43.00	118.4	71.05	104.2	219.0	50.500	168.5	101.08	178.6	469.1	82.000	387.1	232.24
12	69.9	146.9	43.00	103.9	74.80	94.7	199.0	50.500	148.5	106.92	162.1	425.9	82.000	343.9	247.62
14	64.2	135.0	43.00	92.0	77.27	86.9	182.7	50.500	132.2	111.04	148.7	390.7	82.000	308.7	259.29
16	59.5	125.0	43.00	82.0	78.77	80.5	169.1	50.500	118.6	113.85	137.5	361.3	82.000	279.3	268.16
18	55.5	116.6	43.00	73.6	79.50	75.0	157.6	50.500	107.1	115.62	128.1	336.5	82.000	254.5	274.82
20	52.0	109.3	43.00	66.3	79.61	70.3	147.6	50.500	97.1	116.56	120.0	315.1	82.000	233.1	279.72
22	49.0	103.0	43.00	60.0	79.23	66.1	139.0	50.500	88.5	116.83	112.9	296.5	82.000	214.5	283.18
24	46.4	97.5	43.00 43.00	54.5	78.42	62.5	131.4	50.500 50.500	80.9	116.54	106.7	280.2	82.000	198.2	285.45 286.71
26 28	44.0 41.9	92.5 88.1	43.00	49.5 45.1	75.80	59.3 56.5	124.7 118.7	50.500	74.2 68.2	115.78 114.61	101.2 96.3	265.8 252.9	82.000 82.000	183.8 170.9	286.71 287.12
30	41.9	88.1	43.00	45.1 41.2	75.80	58.5	118.7	50.500	68.2	114.61	96.3	252.9	82.000	170.9	287.12
30	38.3	84.2	43.00	37.6	72.13	53.9	113.5	50.500	58.0	113.10	87.9	241.3	82.000	148.9	285.83
Max =	50.5	30.0	45.00	57.0	79.61	51.0	100.5	50.500	58.0	111.28	57.5	230.9	32.000	140.5	285.85

TABLE F17 - Required Storage (2-yr)

		• • • • •										
Runoff Coeffcient, C	=		0.65		Duration Inter	rval (min) =		1				
Drainage Area (ha)	=		1.163 Release Rate Start (min) =					20				
Return Period (yrs) =	:		2		Release Rate	e Interval (mi	n) =	10				
	Rel	ease Rate>	20	30	40	50	60	70	80	90	100	110
	Rainfall		_•									
	Intensity	Peak Flow					Storage Requ	uired (m ³)				
Duration (min)	(mm/hr)	(L/sec)					otorage requ	mou (m)				
0	167.2	351.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	148.1	311.3	17.5	16.9	16.3	15.7	15.1	14.5	13.9	13.3	12.7	12.1
2	133.3	280.2	31.2	30.0	28.8	27.6	26.4	25.2	24.0	22.8	21.6	20.4
3	121.5	255.3	42.3	40.5	38.7	36.9	35.1	33.3	31.5	29.7	27.9	26.1
4	111.7	234.8	51.5	49.1	46.7	44.3	41.9	39.5	37.1	34.7	32.3	29.9
5	103.6	217.7	59.3	56.3	53.3	50.3	47.3	44.3	41.3	38.3	35.3	32.3
6	96.6	203.1	65.9	62.3	58.7	55.1	51.5	47.9	44.3	40.7	37.1	33.5
7	90.7	190.5	71.6	67.4	63.2	59.0	54.8	50.6	46.4	42.2	38.0	33.8
8	85.5	179.6	76.6	71.8	67.0	62.2	57.4	52.6	47.8	43.0	38.2	33.4
9	80.9	170.0	81.0	75.6	70.2	64.8	59.4	54.0	48.6	43.2	37.8	32.4
10	76.8	161.4	84.8	78.8	72.8	66.8	60.8	54.8	48.8	42.8	36.8	30.8
11	73.2	153.8	88.3	81.7	75.1	68.5	61.9	55.3	48.7	42.1	35.5	28.9
12	69.9	146.9	91.4	84.2	77.0	69.8	62.6	55.4	48.2	41.0	33.8	26.6
13	66.9	140.7	94.1	86.3	78.5	70.7	62.9	55.1	47.3	39.5	31.7	23.9
14	64.2	135.0	96.6	88.2	79.8	71.4	63.0	54.6	46.2	37.8	29.4	21.0
15	61.8	129.8	98.8	89.8	80.8	71.8	62.8	53.8	44.8	35.8	26.8	17.8
16	59.5	125.0	100.8	91.2	81.6	72.0	62.4	52.8	43.2	33.6	24.0	14.4
17	57.4	120.7	102.7	92.5	82.3	72.1	61.9	51.7	41.5	31.3	21.1	10.9
18	55.5	116.6	104.3	93.5	82.7	71.9	61.1	50.3	39.5	28.7	17.9	7.1
19	53.7	112.8	105.8	94.4	83.0	71.6	60.2	48.8	37.4	26.0	14.6	3.2
20	52.0	109.3	107.2	95.2	83.2	71.2	59.2	47.2	35.2	23.2	11.2	-0.8
Maximum Storage R	ate =		107.2	95.2	83.2	72.1	63.0	55.4	48.8	43.2	38.2	33.8

TABLE F18 - Required Storage (5-yr)

Runoff Coeffcient, C Prainage Area (ha) Return Period (yrs) =	=		0.65 1.163 5		Duration Inter Release Rate Release Rate	Start (min) :		1 20 10				
(etaini enou (yis) -		-	-						-			-
		ease Rate>	20	30	40	50	60	70	80	90	100	110
	Rainfall Intensity Peak Flow						Storage Requ	uired (m ³)				
Duration (min)	(mm/hr)	(L/sec)										
0	230.5	484.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	203.5	427.7	24.5	23.9	23.3	22.7	22.1	21.5	20.9	20.3	19.7	19.1
2	182.7	383.9	43.7	42.5	41.3	40.1	38.9	37.7	36.5	35.3	34.1	32.9
3	166.1	349.0	59.2	57.4	55.6	53.8	52.0	50.2	48.4	46.6	44.8	43.0
4	152.5	320.5	72.1	69.7	67.3	64.9	62.5	60.1	57.7	55.3	52.9	50.5
5	141.2	296.7	83.0	80.0	77.0	74.0	71.0	68.0	65.0	62.0	59.0	56.0
6	131.6	276.5	92.3	88.7	85.1	81.5	77.9	74.3	70.7	67.1	63.5	59.9
1	123.3	259.1	100.4	96.2	92.0	87.8	83.6	79.4	75.2	71.0	66.8	62.6
8	116.1	244.0	107.5	102.7	97.9	93.1	88.3	83.5	78.7	73.9	69.1	64.3
9	109.8	230.7	113.8	108.4	103.0	97.6	92.2	86.8	81.4	76.0	70.6	65.2
10	104.2	219.0	119.4	113.4	107.4	101.4	95.4	89.4	83.4	77.4	71.4	65.4
11	99.2	208.5	124.4	117.8	111.2	104.6	98.0	91.4	84.8	78.2	71.6	65.0
12	94.7	199.0	128.9	121.7	114.5	107.3	100.1	92.9	85.7	78.5	71.3	64.1
13	90.6	190.5	133.0	125.2	117.4	109.6	101.8	94.0	86.2	78.4	70.6	62.8
14	86.9	182.7	136.7	128.3	119.9	111.5	103.1	94.7	86.3	77.9	69.5	61.1
15	83.6	175.6	140.0	131.0	122.0	113.0	104.0	95.0	86.0	77.0	68.0	59.0
16	80.5	169.1	143.1	133.5	123.9	114.3	104.7	95.1	85.5	75.9	66.3	56.7
17	77.6	163.1	146.0	135.8	125.6	115.4	105.2	95.0	84.8	74.6	64.4	54.2
18	75.0	157.6	148.6	137.8	127.0	116.2	105.4	94.6	83.8	73.0	62.2	51.4
19	72.5	152.4	151.0	139.6	128.2	116.8	105.4	94.0	82.6	71.2	59.8	48.4
20	70.3	147.6	153.2	141.2	129.2	117.2	105.2	93.2	81.2	69.2	57.2	45.2
Vaximum Storage R	ate =		153.2	141.2	129.2	117.2	105.4	95.1	86.3	78.5	71.6	65.4

TABLE F19 - Requried Storage (100-yr)

Runoff Coeffcient, C	=		0.81		Duration Inter			5				
Drainage Area (ha) =			1.163		Release Rate			20				
Return Period (yrs) =			100		Release Rate	e Interval (mir	n) =	10				
	Rele	ease Rate>	20	30	40	50	60	70	80	90	100	110
	Rainfall											
	Intensity	Peak Flow					Storage Requ	ired (m ³)				
Duration (min)	(mm/hr)	(L/sec)					• •	. ,				
0	398.6	1047.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	178.6	469.1	269.4	263.4	257.4	251.4	245.4	239.4	233.4	227.4	221.4	215.4
20	120.0	315.1	354.1	342.1	330.1	318.1	306.1	294.1	282.1	270.1	258.1	246.1
30	91.9	241.3	398.4	380.4	362.4	344.4	326.4	308.4	290.4	272.4	254.4	236.4
40	75.1	197.4	425.8	401.8	377.8	353.8	329.8	305.8	281.8	257.8	233.8	209.8
50	64.0	168.0	444.0	414.0	384.0	354.0	324.0	294.0	264.0	234.0	204.0	174.0
60	55.9	146.8	456.6	420.6	384.6	348.6	312.6	276.6	240.6	204.6	168.6	132.6
70	49.8	130.8	465.3	423.3	381.3	339.3	297.3	255.3	213.3	171.3	129.3	87.3
80	45.0	118.2	471.3	423.3	375.3	327.3	279.3	231.3	183.3	135.3	87.3	39.3
90	41.1	108.0	475.2	421.2	367.2	313.2	259.2	205.2	151.2	97.2	43.2	-10.8
100	37.9	99.6	477.4	417.4	357.4	297.4	237.4	177.4	117.4	57.4	-2.6	-62.6
110	35.2	92.5	478.3	412.3	346.3	280.3	214.3	148.3	82.3	16.3	-49.7	-115.7
120	32.9	86.4	478.2	406.2	334.2	262.2	190.2	118.2	46.2	-25.8	-97.8	-169.8
130	30.9	81.2	477.1	399.1	321.1	243.1	165.1	87.1	9.1	-68.9	-146.9	-224.9
140	29.2	76.6	475.3	391.3	307.3	223.3	139.3	55.3	-28.7	-112.7	-196.7	-280.7
150	27.6	72.5	472.8	382.8	292.8	202.8	112.8	22.8	-67.2	-157.2	-247.2	-337.2
160	26.2	68.9	469.7	373.7	277.7	181.7	85.7	-10.3	-106.3	-202.3	-298.3	-394.3
170	25.0	65.7	466.1	364.1	262.1	160.1	58.1	-43.9	-145.9	-247.9	-349.9	-451.9
180	23.9	62.8	462.1	354.1	246.1	138.1	30.1	-77.9	-185.9	-293.9	-401.9	-509.9
190	22.9	60.2	457.7	343.7	229.7	115.7	1.7	-112.3	-226.3	-340.3	-454.3	-568.3
200	22.0	57.7	453.0	333.0	213.0	93.0	-27.0	-147.0	-267.0	-387.0	-507.0	-627.0
Maximum Storage Ra	ate =		478.3	423.3	384.6	354.0	329.8	308.4	290.4	272.4	258.1	246.1

TABLE F20 - SUMMARY OF RESULTS

Area Number	Areas 1-14
Control Type	ICD - IPEX MHF
Orifice Type	19-MHF-TypeF
ICD Outlet Pipe Invert (m)	98.35
ICD Outlet Pipe Diameter (mm)	300
2-year Release Rate (L/sec):	43.65
2-year Storage Volume (m3):	79.61
2-year Depth (m):	0.453
2-year Stage / Elev (m):	98.953
5-year Release Rate (L/sec):	50.76
5-year Storage Volume (m3):	116.83
5-year Depth (m):	0.613
5-year Stage / Elev (m):	99.113
100-year Release Rate (L/sec):	82.84
100-year Storage Volume (m3):	287.12
100-year Depth (m):	1.632
100-year Stage / Elev (m):	100.132

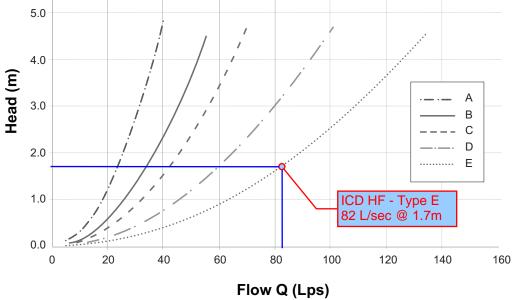
exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix G – Manufacturer Information

- Tempest Inlet Control Devices (Cover, Page 9)
- StormTech MC-3500 & MC-4500 Design Manual (Cover, 2, 3, 16, 17)

Volume III: TEMPEST™ INLET CONTROL DEVICES


Municipal Technical Manual Series

LMF (Low to Medium Flow) ICD HF (High Flow) ICD MHF (Medium to High Flow) ICD

1

Chart 3: HF & MHF Preset Flow Curves

6.0

NOTE: Do not use or test the products in this manual with compressed air or other gases including air-over-water-boosters

MC-3500 & MC-4500 Design Manual

StormTech[®] Chamber Systems for Stormwater Management

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS[™]

StormTech MC-3500 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for commercial and municipal applications.

StormTech MC-3500 Chamber (not to scale)

Nominal Chamber Specifications

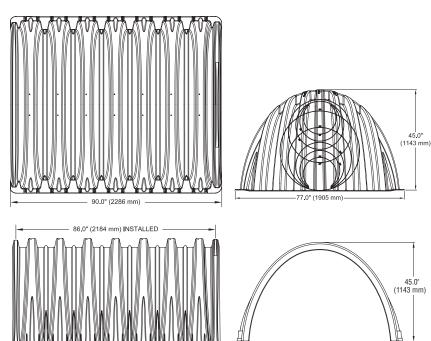
Size (L x W x H)	90" (2286 mm) x 77" (1956 mm) x 45" (1143 mm)
Chamber Storage	109.9 ft³ (3.11 m³)
Min. Installed Storage*	178.9 ft³ (5.06 m³)
Weight	134 lbs (60.8 kg)

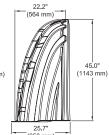
*This assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity.

StormTech MC-3500 End Cap (not to scale)

Nominal Chamber Specifications

Size (L x W x H)	26.5" (673 mm) x 71" (1803 mm) x 45.1" (1145 mm)
Chamber Storage	14.9 ft³ (0.42 m³)
Min. Installed Storage*	46.0 ft³ (1.30 m³)
Weight	49 lbs (22.2 kg)


*This assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 6" (150 mm) of stone perimeter, 9" (230 mm) between chambers/end caps and 40% stone porosity.


Shipping

15 chambers/pallet

16 end caps/pallet

7 pallets/truck

MC.3500 Chamber

StormTech MC-3500 Chamber

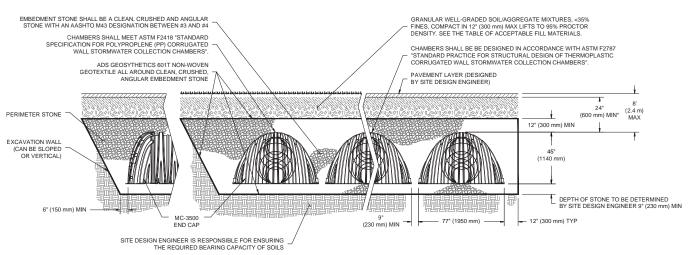
Storage Volume Per Chamber/End Cap ft³ (m³)

	Bare Unit Storage		— Stone	Cap and S Foundatio mm)	
	ft³	9	12	15	18
	(m³)	(230)	(300)	(375)	(450)
MC-3500	109.9	178.9	184.0	189.2	194.3
Chamber	(3.11)	(5.06)	(5.21)	(5.36)	(5.5)
MC-3500	14.9	46.0	47.7	49.4	51.1
End Cap	(0.42)	(1.33)	(1.35)	(1.40)	(1.45)

NOTE: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume. End cap volume assumes 6" (150 mm) stone perimeter.

Amount of Stone Per Chamber

ENGLISH tons		Stone Found	lation Depth	
(yd³)	9"	12"	15"	18"
MC-3500	9.1 (6.4)	9.7 (6.9)	10.4 (7.3)	11.1 (7.8)
End Cap	4.1 (2.9)	4.3 (3.0)	4.5 (3.2)	4.7 (3.3)
METRIC kg (m ³)	230 mm	300 mm	375 mm	450 mm
MC-3500	8220 (4.9)	8831 (5.3)	9443 (5.6)	10054 (6.0)
End Cap	3699 (2.2)	3900(2.3)	4100 (2.5)	4301 (2.6)


NOTE: Assumes 12" (300 mm) of stone above, and 9" (230 mm) row spacing, and 6" (150 mm) of perimeter stone in front of end caps.

Volume of Excavation Per Chamber/End Cap yd³ (m³)

		Stone Foundation Depth											
	9" (230 mm)	12" (300 mm)	15"(375 mm)	18"(450 mm)									
MC-3500	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)	13.8 (10.5)									
End Cap	4.1 (3.1)	4.2 (3.2)	4.4 (3.3)	4.5 (3.5)									

NOTE: Assumes 9" (230 mm) separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as the depth of cover increases.

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30° (750 mm).

Special applications will be considered on a project by project basis. Please contact our application department should you have a unique application for our team to evaluate.

General Cross Section

5.0 Cumulative Storage Volumes

Tables 7 and **8** provide cumulative storage volumes for the MC-3500 chamber and end cap. These tables can be used to calculate the stagestorage relationship for the retention or detention system. Digital spreadsheets in which the number of chambers and end caps can be input for quick cumulative storage calculations are available at www.stormtech.com. For assistance with sitespecific calculations or input into routing software, contact the StormTech Technical Services Department.

TABLE 7 – MC-3500 Incremental Storage Volume Per Chamber

Assumes 40% stone porosity. Calculations are based upon a 9" (230 mm) stone base under the chambers, 12" (300 mm) of stone above chambers, and 9" (230 mm) of spacing between chambers.

Depth of Water in System Inches (mm)	Chambe	ulative er Storage (m³)	Total System Cumulative Storage ft ^a (m ^a)	Depth of Water in System Inches (mm)		umulative nber Storage ft³ (m³)	Total System Cumulative Storage ft ^s (m ³)
66 (1676)		0.00	178.96 (5.068)	32 (813)		73.52 (2.082)	98.90 (2.800)
65 (1651)		0.00	177.25 (5.019)	31 (787)		70.75 (2.003)	95.52 (2.705)
64 (1626)		0.00	175.54 (4.971)	30 (762)		67.92 (1.923)	92.12 (2.608)
63 (1600)	Stone	0.00	173.83 (4.922)	29 (737)		65.05 (1.842)	88.68 (2.511)
62 (1575)	Cover	0.00	172.11 (4.874)	28 (711)		62.12 (1.759)	85.21 (2.413)
61 (1549)		0.00	170.40 (4.825)	27 (686)		59.15 (1.675)	81.72 (2.314)
60 (1524)		0.00	168.69 (4.777)	26 (680)		56.14 (1.590)	78.20 (2.214)
59 (1499)		0.00	166.98 (4.728)	25 (635)		53.09 (1.503)	74.65 (2.114)
58 (1473)		0.00	165.27 (4.680)	24 (610)		49.99 (1.416)	71.09 (2.013)
57 (1448)		0.00	163.55 (4.631)	23 (584)		46.86 (1.327)	67.50 (1.911)
56 (1422)		0.00	161.84 (4.583)	22 (559)		43.70 (1.237)	63.88 (1.809)
55 (1397)	V	0.00	160.13 (4.534)	21 (533)		40.50 (1.147)	60.25 (1.706)
54 (1372)	109.	.95 (3.113)	158.42 (4.486)	20 (508)		37.27 (1.055)	56.60 (1.603)
53 (1346)	109.	.89 (3.112)	156.67 (4.436)	19 (483)		34.01 (0.963)	52.93 (1.499)
52 (1321)	109.	69 (3.106)	154.84 (4.385)	18 (457)		30.72 (0.870)	49.25 (1.395)
51 (1295)	109.4	40 (3.098)	152.95 (4.331)	17 (432)		27.40 (0.776)	45.54 (1.290)
50 (1270)	109.0	00 (3.086)	151.00 (4.276)	16 (406)		24.05 (0.681)	41.83 (1.184)
49 (1245)	108.3	31 (3.067)	148.88 (4.216)	15 (381)		20.69 (0.586)	38.09 (1.079)
48 (1219)	107.3	28 (3.038)	146.55 (4.150)	14 (356)		17.29 (0.490)	34.34 (0.973)
47 (1194)	106.	03 (3.003)	144.09 (4.080)	13 (330)		13.88 (0.393)	30.58 (0.866)
46 (1168)	104.0	61 (2.962)	141.52 (4.007)	12 (305)		10.44 (0.296)	26.81 (0.759)
45 (1143)	103.	04 (2.918)	138.86 (3.932)	11 (279)		6.98 (0.198)	23.02 (0.652)
44 (1118)	101.3	33 (2.869)	136.13 (3.855)	10 (254)		3.51 (0.099)	19.22 (0.544)
43 (1092)	99.	50 (2.818)	133.32 (3.775)	9 (229)		0.00	15.41 (0.436)
42 (1067)	97.	56 (2.763)	130.44 (3.694)	8 (203)		0.00	13.70 (0.388)
41 (1041)	95.	52 (2.705)	127.51 (3.611)	7 (178)		0.00	11.98 (0.339)
40 (1016)	93.3	39 (2.644)	124.51 (3.526)	6 (152)	Sto		10.27 (0.291)
39 (991)	91.	16 (2.581)	121.47 (3.440)	5 (127)		dation 0.00	8.56 (0.242)
38 (965)	88.	86 (2.516)	118.37 (3.352)	4 (102)	i uui	0.00	6.85 (0.194)
37 (948)	86.4	47 (2.449)	115.23 (3.263)	3 (76)		0.00	5.14 (0.145)
36 (914)	84.	01 (2.379)	112.04 (3.173)	2 (51)		0.00	3.42 (0.097)
35 (889)	81.4	49 (2.307)	108.81 (3.081)			0.00	
34 (864)	78.8	89 (2.234)	105.54 (2.989)	1 (25)		0.00	1.71 (0.048)
33 (838)	76.	24 (2.159)	102.24 (2.895)				

NOTE: Add 1.71 ft^g (0.030 m³) of storage for each additional inch (25 mm) of stone foundation. Contact StormTech for cumulative volume spreadsheets in digital format.

TABLE 8 – MC-3500 Incremental Storage Volume Per End Cap

Assumes 40% stone porosity. Calculations are based upon a 9" (230 mm) stone base under the chambers, 12" (300 mm) of stone above end caps, and 9" (230 mm) of spacing between end caps and 6" (150 mm) of stone perimeter.

and of Mala			Total Custom
Depth of Water in System		umulative Cap Storage	Total System Cumulative Storage
Inches (mm)		ft ³ (m ³)	ft ^a (m ^a)
66 (1676)		0.00	46.96 (1.330)
65 (1651)	1 î	0.00	46.39 (1.314)
64 (1626)		0.00	45.82 (1.298)
63 (1600)	Stone		45.25 (1.281)
62 (1575)	Cover		44.68 (1.265)
61 (1549)	Cover	0.00	44.08 (1.203)
60 (1524)		0.00	
	++		43.54 (1.233)
59 (1499)		0.00	42.98 (1.217)
58 (1473)	++	0.00	42.41 (1.201)
57 (1448)	++	0.00	41.84 (1.185)
56 (1422)		0.00	41.27 (1.169)
55 (1397)	15	0.00	40.70 (1.152)
54 (1372)		.64 (0.443)	40.13 (1.136)
53 (1346)		.64 (0.443)	39.56 (1.120)
52 (1321)		.63 (0.443)	38.99 (1.104)
51 (1295)		.62 (0.442)	38.41 (1.088)
50 (1270)		.60 (0.442)	37.83 (1.071)
49 (1245)		.56 (0.441)	37.24 (1.054)
48 (1219)	15	.51 (0.439)	36.64 (1.037)
47 (1194)	15	.44 (0.437)	36.02 (1.020)
46 (1168)	15	.35 (0.435)	35.40 (1.003)
45 (1143)	15	.25 (0.432)	34.77 (0.985)
44 (1118)	15	5.13 (0.428)	34.13 (0.966)
43 (1092)	14	.99 (0.424)	33.48 (0.948)
42 (1067)		.83 (0.420)	32.81 (0.929)
41 (1041)		.65 (0.415)	32.13 (0.910)
40 (1016)		.45 (0.409)	31.45 (0.890)
39 (991)		.24 (0.403)	30.75 (0.871)
38 (965)		.00 (0.396)	30.03 (0.850)
37 (948)		.74 (0.389)	29.31 (0.830)
36 (914)		.47 (0.381)	28.58 (0.809)
35 (889)		3.18 (0.373)	27.84 (0.788)
34 (864)		.86 (0.364)	27.08 (0.767)

NOTE: Add 0.56 ft⁹ (0.016 m³) of storage for each additional inch (25 mm) of stone foundation. Contact StormTech for cumulative volume spreadsheets in digital format.

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix H – Background Information

- Master Design Sheet (Hydraulic Grade Line Analysis)
- Storm Design Sheet
- Overland Flow Balance Sheet
- Storm Drainage Plan

MORGAN'S GRANT - STAGE 12 - Minto Developments Inc. (MASTER DESIGN SHEET) CITY OF OTTAWA JLR No.: 17732

100 YEAR IDF CURVE

Manning's Coefficient (n) = 0.013	Checked by: L.J.
STREET NUMBER 0.0 0.00 0.4 0.44 0.5 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	SS CALCULATION 1:100 YR HGL COVER COVER HGL Instion Bend Major Loss Minor Loss Total Losses Applied ELEVATIONS Top Foot HGL Centerline
From To C2 0.3 0.4 0.4 0.5 0.5 0.4 0.4 0.4 0.5 0.4 <th0.4< th=""> 0.4</th0.4<>	(m) (m) Losses (m) Upstr. Downs. Upstr. Downs.
KLONDIKE RD. 667 667 667 687 2.0 63.0 6.0 69.08 6.0 69.08 6.0	0.564 0.044 0.608 0.000 98.758 98.330 1.742 0.920 4.442 3.620
KLONDKERD 667 666 7 0.20 <th< td=""><td>2.221 0.110 2.331 0.000 98.330 96.350 0.920 0.500 3.820 3.200 3.568 0.182 3.749 0.000 95.750 91.850 1.100 0.450 3.900 3.150</td></th<>	2.221 0.110 2.331 0.000 98.330 96.350 0.920 0.500 3.820 3.200 3.568 0.182 3.749 0.000 95.750 91.850 1.100 0.450 3.900 3.150
PIEKOFF CR. 660 661 0.730 1 0.730 1 0.730 1 0.71 0.81 20.0 110.77 0.92 3 0 0.757 161 3 6 10 0.00 10.77 0.92 3 6 0 0.00 10.77 0.92 3 0.00 10.77 0.92 0.92 0.90 0.92 0.92 0.92 0.92 0.92	0.359 0.005 0.365 0.365 97.441 95.207 0.359 0.569 3.059 3.283 38 0.141 1.115 0.279 1.394 1.384 95.207 9.694 0.593 0.566 3.283 3.206
MALLSENDAVE 655 863 0.120 0.320 0.58 0.58 20.00 11.1 20 0.00 20.00 7.54 1.00 0.50	
WALLSENDAVE. 663 664 C	0.072 0.006 0.077 0.077 91.694 91.500 0.506 0.400 3.206 3.100
664 685 685 610 6	
665A 648	22 0.119 0.256 0.374 0.000 88.690 88.600 0.410 0.500 3.110 3.200
KLONDIKERD. 648 647 0.80 0.180 0.180 1.01 4.02 2.70 9.70 9.70 9.70	0.441 0.048 0.489 0.000 88.606 88.266 0.494 0.434 3.194 3.134
WIMBLEDONST 548 547 6 7 6 7 6 7 7 64 547 6 7 6 7 7 6 7 6 7 7 6 7 6 7 7 6 7 6 7 7 6 7 7 6 7	0.000 0.0000 0.000 0.000 <t< td=""></t<>
546 545 0 0.50 0.74 2.06 2.13 105.73 217.52 3 6 120 100 120 0.40 115 12.2 0.40 10.3 100 100.70 <th< td=""><td>0.330 0.011 0.341 0.000 88.554 88.262 0.176 0.508 2.876 3.208</td></th<>	0.330 0.011 0.341 0.000 88.554 88.262 0.176 0.508 2.876 3.208
KLONDIKE RD. 646 645 646 0.80 0.80 0.80	0.588 0.055 0.643 0.000 88.266 87.821 0.634 1.129 3.334 3.830
	0.440 0.058 0.498 0.000 87.170 86.820 0.530 2.480 3.230 5.180
BRECHINCR. 666 6 4.0 4.	90 0.025 0.450 0.115 0.565 0.000 89.936 39.449 0.214 0.356 2.914 3.056 83 0.085 0.554 0.168 0.722 0.000 89.449 88.836 0.356 0.464 3.056 3.164
PENRITHST. 669 007 0.320 4.51 0.32 4.51 0.34 4.57 3.5.8 81.4 735.7 1 1 15 230 21.0 25.0 25.0 27.0 25.0 25.0 27.0 25.0 27.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	0.014 0.137 0.014 0.151 0.151 98.089 87.938 1.211 1.062 3.911 3.762 0.139 0.035 0.175 0.175 87.938 87.763 1.062 1.537 3.762 4.237
Image: Constraint of the	0.139 0.035 0.175 0.175 0.175 0.763 1.162 1.337 3.762 4.237 0.000 0.000 0.000 0.000 89.336 89.599 0.214 0.802 2.914 3.502
BRECHINGR Org International	0.110 0.587 0.110 0.697 0.000 90.245 89.525 0.155 0.875 2.855 3.575
EALING ST. 600 67 67 602 0.20 1 1 1 4 60 600 6.57 6.00 8.44 5.52 6.50 8.44 5.52 8.42 8.44 5.29 6.02 1.70 0.10 0.12 1.70 0.12 1.71 1.54 2.01 1.54 0.00 8.00 8.44 1.55 1.70 0.10 0.12 1.71	0.524 0.016 0.540 0.000 89.461 88.821 0.939 0.820 3.639 3.529 24 0.126 0.509 0.250 0.700 0.000 88.821 88.282 0.829 1.018 3.529 3.718
PENRITH ST. 050 691 0	0.260 0.133 0.200 0.394 0.394 87.763 87.369 1.537 1.131 4.237 3.831
BECHINGR 704 703 6.00 6.00 6.01 6.01 70.7 8.92 7.3 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.00 6.00 6.00 6.00 6.00 6.00 6.01 <t< td=""><td>0.530 0.016 0.546 0.000 89.424 98.777 0.976 0.522 2.676 2.222</td></t<>	0.530 0.016 0.546 0.000 89.424 98.777 0.976 0.522 2.676 2.222
702 701 0.290 1.3 21.4 105.42 11.9 1 4 90 0.00 80.00 3.35 1.8 1.10 1.0 1.0 1.0 0.70 50.00 0.70 50.00 0.87 88.400 3.25 91.40 88.50 87.67 3.36 0.020 1.03 0.157 0.157 1 1 1 1 1.0 1 4 90 0.00 80.00 3.36 1.07 1.00 1.07 50.00 0.77 90.00 88.77 88.400 3.25 91.40 80.54 87.679 3.36 0.02 10.37 0.157 <td></td>	
BRECHNOR. 700	
PENELTATI A CONTRACT A	0.113 0.004 0.117 0.117 87.886 87.769 0.214 0.971 2.914 3.671
PENRITH ST. 701 691 0	
HEYSHAMLANE 691 677 676 0.400 6 0.53 51.4 31.04 80.58 41600 2 135 2700 287.00 51.64 31.04 80.58 41600 2 135 2700 2100 287.00 51.64 31.04 80.58 41600 2 135 2700 2100 287.00 55.1 2.40 93.07 65.05 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 5.64 91.00 85.34 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04 91.00 81.04	0.315 0.376 0.315 0.691 0.691 87.369 85.679 1.231 1.921 3.931 4.621 0.089 0.480 0.069 0.569 0.569 86.679 86.110 1.921 1.350 4.621 4.050
676 675 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	17 0.089 0.058 0.406 0.464 0.464 86.110 85.646 1.350 1.804 4.050 4.504 0 0.259 0.031 0.290 0.290 85.646 85.356 1.804 1.134 4.504 3.834
	0.198 0.033 0.230 0.230 85.356 85.125 1.134 0.575 3.834 3.275 0.022 0.464 0.022 0.487 0.000 87.878 87.078 0.562 0.822 3.062 3.522
688 688 V 0.260 V 0.29 0.56 20.58 108.49 60.32 1 2 40 0.00 400 0.34 300 1.40 119.37 1.64 1.51 0.119 0.55 11.00 0.11 90.60 87.027 86.727 86.727 86.727 86.727 86.73 3.127 80.00 86.673 3.127 80.09 1.129 0.117	0.022 0.464 0.022 0.464 0.022 0.464 0.022 0.462 0.362 <th< td=""></th<>
PALTON ST 689 673 0 140 0.280 0 5.2 1.47 21.49 105.10 154.95 2 5 100 0.00 0.81 20.0 150 123.47 1.89 1.89 0.27 1.37 78.0 0.77 88.00 85.42 85.12 3.478 88.40 84.24 83.946 4.154 0.03 257.46 0.056 0.066	96 0.098 0.771 0.193 0.965 0.965 86.090 85.125 0.110 0.575 2.810 3.275
	0.243 0.277 0.243 0.519 0.519 85.125 84.606 0.575 -0.106 3.275 2.594 0.019 0.571 0.019 0.569 0.000 88.795 88.242 -0.267 0.378 2.433 3.878
WOLISTON GR 676 681 0.80 6 0.40 0.40 0.40 2.00 4.00 0.00 4.00 2.00 4.00 4.00 0.00 8.00 0.00 4.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 4.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 8.00 0.00 <	0.017 0.066 0.017 0.083 0.000 88.192 88.129 1.028 0.961 3.728 3.661
KETTLEWELLWAY 687 0.19	31 0.063 0.346 0.124 0.470 0.000 87.846 87.084 0.594 0.966 3.284 3.666
WOLISTORICR 664 1 0.50 1 0 0.72 1.92 2.09 10.08 164 1.0 1.00 198.1 0.00	
PAITOR ST. 689 684 0.00 1 0.00 1.0 0.00	0.140 0.005 0.145 0.000 86.185 95.855 0.015 0.255 2.715 2.955 06 0.006 0.031 0.013 0.044 0.044 85.855 85.496 0.255 0.484 2.955 3.184
WOLISTON CR. 684 670 0.360 0.070 0.10 0.50 3.04 2.86 101.0 307.03 3 15 300 0.00 0.52 55 1.64 57.45 2.62 0.27 1.34 84.20 0.55 88.680 85.486 84.971 3.184 87.200 84.115 83.590 3.08 0.092 0.092 0.092	32 0.094 0.376 0.186 0.562 0.562 85.496 84.816 0.484 -0.316 3.184 2.384
FLAMBORDUGUHWN 670 671 0.620 0.620 0.88 3.00 2.00 9.00 2.00 9.00 1.01 2.01 3.01 2.01 3.01 1.01 3.01 3.01 3.01 3.01 3.02 1.02 1.02 0.020 1.01 0.020 1.01 3.0	
672 101 UNRESTRICTED REAR YARD FLOWS-PHASE 12 (hs) 0.0 61.91 37.0 75.92 4700.20 1 17.0 3400 257.96 3657.96 0.94 15.0 0.49 3697.72 2.64 3.02 1.04 2.48 79.2 0.50 87.80 89.884 82.54 3.316 87.10 83.486 82.146 3.60 0.19 57.74 1.04 0.312 0.312	12 0.319 0.342 0.631 0.973 0.973 84.606 83.633 <u>0.106</u> 0.767 2.594 3.467
Mydro Ea 906 Image: Constraint of the con	
M GOWARD DRIVE 568 697 6 6.2 6 6.0 10 6.0 </td <td>76 1.178 0.202 1.380 0.000 99.400 98.224 0.398 0.714 2.800 3.116 31 0.507 0.104 0.612 0.000 98.197 97.738 0.741 0.561 3.143 2.963</td>	76 1.178 0.202 1.380 0.000 99.400 98.224 0.398 0.714 2.800 3.116 31 0.507 0.104 0.612 0.000 98.197 97.738 0.741 0.561 3.143 2.963
Mark	0.000 0.000 0.000 98.060 97.990 0.498 0.568 2.900 2.970
1 00 900 0	0.000 0.000 0.000 97.950 97.712 0.608 0.586 3.010 2.988
FINLAYSON CRESCENT 705 704 0 <td>0.000 0.000 0.000 0.000 98.670 98.562 0.398 0.366 2.800 2.768</td>	0.000 0.000 0.000 0.000 98.670 98.562 0.398 0.366 2.800 2.768
7/1 7/1 7/2 <td>0.003 0.199 0.003 0.201 0.000 98.026 97.862 0.342 0.356 2.744 2.758</td>	0.003 0.199 0.003 0.201 0.000 98.026 97.862 0.342 0.356 2.744 2.758
GOWARD DRIVE 996 0.10 0.10 0.58 22.51 101.67 90.2 3 11.00 280 0 800 349 2.00 1.47 1.66 0.41 1.23 67.57 0.76 97.82 97.952 3.04 100.68 97.37 10.41 0.025 10.41 0.021 10.41 0.021 1 <t< td=""><td>0.389 0.021 0.409 0.000 97.662 97.357 0.636 0.901 3.038 3.303</td></t<>	0.389 0.021 0.409 0.000 97.662 97.357 0.636 0.901 3.038 3.303
IBMPATINAL CRESCENT 804 803 0.481 0.489 0.489 0.489 0.75 0.75 2.00 11.07 8.37 1 1.00 20 100.0 1	0.014 0.288 0.014 0.282 0.000 98.160 97.953 0.398 0.515 2.800 2.917 0.014 0.044 0.041 0.001 97.913 97.973 0.555 0.389 2.957 2.982 0.014 0.049 0.049 0.000 97.913 97.855 0.080 2.957 2.982 0.051 0.280 0.102 0.362 0.000 97.898 97.655 0.280 0.022 3.022
802 905 0.049 0.05 0.81 21.53 105.00 84.94 0 1.00 20 0 0.00 104.94 1.06/ 375 0.30 100.18 0.88 1.00 0.331 0.92 67.47 1.28 100.86 97.838 0.04 97.457 3.02 100.66 97.635 97.254 3.02 0.029 177.087 5.141 0.050 0.050	50 0.051 0.260 0.102 0.362 0.000 97.838 97.635 0.620 0.623 3.022 3.025

STORM SEWER DESIGN SHEET AND HYDRAULIC GRADE LINE ANALYSIS

Date: September 3, 2003 Revised : December 17, 2004 Revised : August 24, 2005 Designed by: G.F. Checked by: L.J. Updated by: J.B.

J.L.Richards ENGINEERS · ARCHITECTS · PLANNERS

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

CITY OF OTTAWA

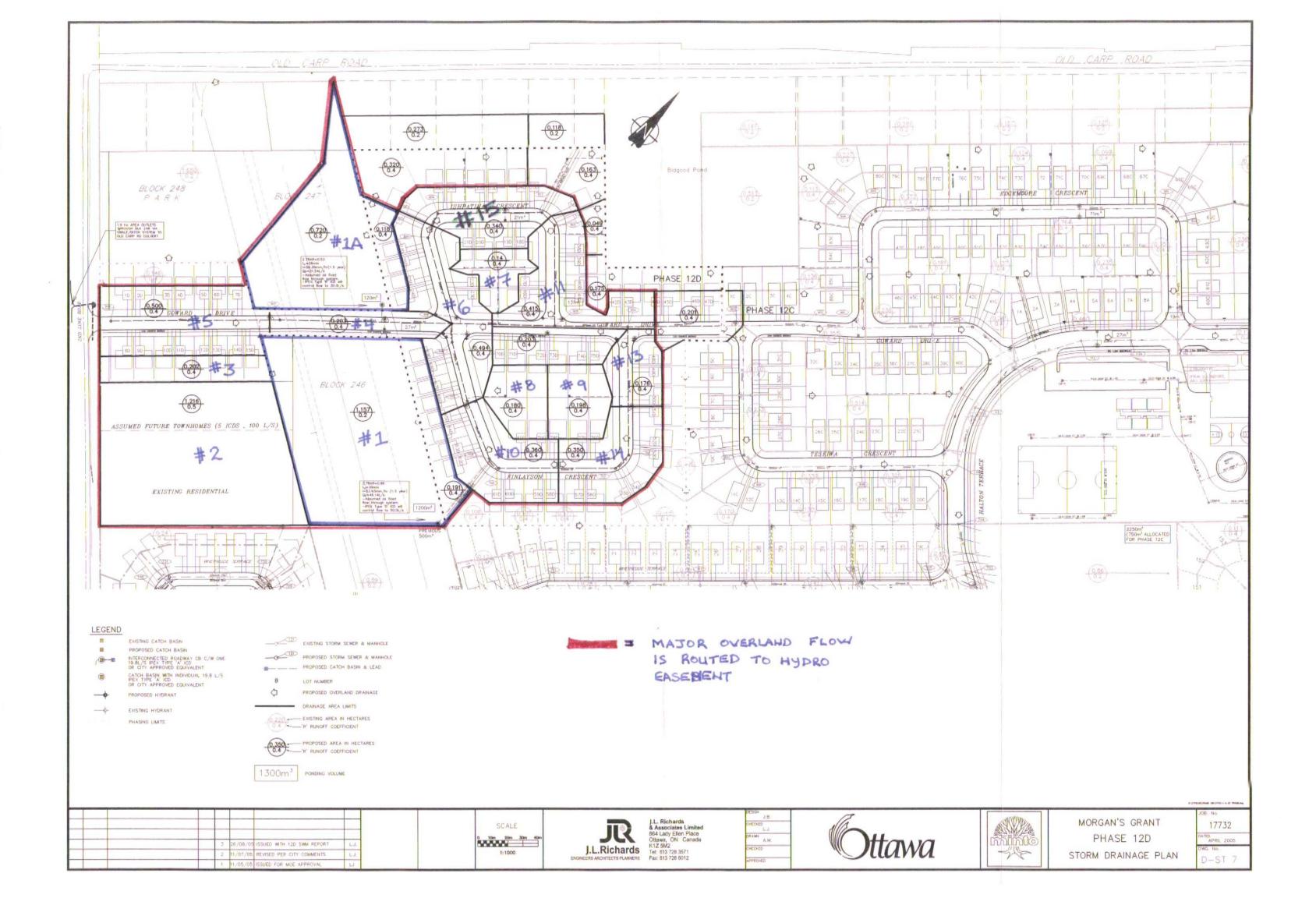
wilder w MINTO DEVELOPMENTS INC. **MORGAN'S GRANT SUBDIVISION - PHASE 12D** JLR NO. 17732

ESIGN PARAMETERS /anning's Coefficient, n = 0.013 IDF CURVE = 5 year

DECM DEC DEC <th>COMMENTS</th> <th>Cover</th> <th>TREAM Invert</th> <th></th> <th>Pr. Center Line</th> <th>Cover</th> <th></th> <th>Obvert</th> <th></th> <th>Pr. Center Line</th> <th>RESIDUAL CAP. (L/s)</th> <th></th> <th></th> <th>SEV VEL. (m/s)</th> <th>CAPAC. (L/s)</th> <th></th> <th>DIA. (mm)</th> <th>PEAK FL.</th> <th></th> <th>FLOW COMF TIME (min.)</th> <th>the second second second second</th> <th>2.78AR</th> <th>0.6 0.7</th> <th>" in (ha) 0.5</th> <th>0.45</th> <th>0.3 0.4</th> <th>0.2</th> <th>H. # TO</th> <th>M. FROM</th> <th>STREET</th>	COMMENTS	Cover	TREAM Invert		Pr. Center Line	Cover		Obvert		Pr. Center Line	RESIDUAL CAP. (L/s)			SEV VEL. (m/s)	CAPAC. (L/s)		DIA. (mm)	PEAK FL.		FLOW COMF TIME (min.)	the second second second second	2.78AR	0.6 0.7	" in (ha) 0.5	0.45	0.3 0.4	0.2	H. # TO	M. FROM	STREET
427 62 633 63 70 <	Flow controlled to 30 L/				Line							-	-	-	-	-					, , , , , , , , , , , , , , , , , , , ,	0.53				0.118	0.720			BLK 248
APP A	PHASE 12D - Fixed flowrate from Blks 247/24	3.12 2.96	97.767 97.204	98.224 97.738	101.34 100.70	2.80 3.14	98.943 97.664		0.027	102.20 101.34		1.01 1.51	112.00 114.87	1.86 1.27	304.76 283.74	1.05 0.40	450 525			21.01		2.47 0.23		1.216						GOWARD DRIVE
BX 26 70 70 70 7							97.755 97.645		0.040	100.96 100.96			17.43 59.50							<i>20.00</i> 20.33						2				HPATINA CRESCENT
No. No. <td>Flow controlled to 50 L/</td> <td></td> <td>30.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.191</td> <td>1.157</td> <td></td> <td></td> <td></td>	Flow controlled to 50 L/																			30.00						0.191	1.157			
V V	PHASE 12D PHASE 12D	2.74 2.76	97.721 97.481	98.026 97.862	100.77 100.62	2.81 2.74	98.217 97.645	98.522 98.026		101.33 100.77	32.46 24.21	0.45 0.67	41.34 40.92	1.51	110.50 115.67	1.20	300 375	78.04 91.47	70.03 69.06	20.10 20.55	0.40	0.40 0.20						701 700	<mark>704</mark> 701	
803 902 0.040 0.040 0.13 21.33 07.5 7.46 375 2.30 100.87 0.40 97.80 <td></td> <td>21.44 22.51</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.837</td> <td></td> <td></td> <td></td> <td>GOWARD DRIVE</td>																				21.44 22.51						0.837				GOWARD DRIVE
GOWARD DRIVE 905 904 0.415 0.45 5.89 2.28 6.3.9 454.85 600 0.7 55.90 1.84 4.64 1.04 1.00 0.01 95.77 95.37 </td <td>PHASE 12D</td> <td>2.98</td> <td>97.497</td> <td>97.878</td> <td>100.86</td> <td>2.96</td> <td>97.532</td> <td>97.913</td> <td>0.040</td> <td>100.87</td> <td>23.72</td> <td>0.23</td> <td>11.88</td> <td>0.88</td> <td>100.18</td> <td>0.30</td> <td>375</td> <td>76.46</td> <td>67.51</td> <td>21.31 21.53</td> <td>1.13</td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td>0.391</td> <td>802</td> <td>803</td> <td>HPATINA CRESCENT</td>	PHASE 12D	2.98	97.497	97.878	100.86	2.96	97.532	97.913	0.040	100.87	23.72	0.23	11.88	0.88	100.18	0.30	375	76.46	67.51	21.31 21.53	1.13	0.00					0.391	802	803	HPATINA CRESCENT
703 702 703 702 0 0.00 0.00 21.58 66.97 0.00 300 35.5 96.86 101.33 0.40 98.376	PHASE 12D	3.93	96.367	96.976	100.91	3.34	96.707	97.316	0.041	100.66	81.04	0.44	48.61	1.84	535.90	0.70	600	454.85	63.79	23.28	5.88	0.46				0.415		904	905	GOWARD DRIVE
903 902 903 902 903 902 903 903 904 903 904 904 905 901 99.50 90.00 94.50 95.75 94.28 95.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 95.75 96.80 96.80 95.75 96.80 95.75 96.80 95.75 96.80 96.80 95.75 96.80<	PHASE 12D	2.91	98.011	98.316	101.23	2.97	98.054	98.359	0.040	101.33	59.68	0.25	12.38	0.82	59.68	0.35	300	0.00	66.97	21.58 21.83	0.00	0.00				0.548		702	703	
602 601 0.233 0.26 0.81 21.48 67.16 54.44 300 0.75 87.36 1.20 12.30 0.17 32.92 98.94 0.40 96.70 96.70 95.703 2.78 PHASE 12C 0.00 116 0.039 0.389 0.38 1.9 21.65 66.82 79.36 12.25 69.00 0.51 84.85 98.79 96.94 96.09 95.50 91.40 93.035 2.79 PHASE 12C 4ALTON TERRACE 116 115 0.321 0.366 1.54 22.60 65.02 104.43 525 0.70 375.35 1.68 41.10 0.41 274.92 95.50 0.279 91.531 90.998 3.09 9.10 95.00 91.244 90.710 4.06 PHASE 12C 4LLTON TERRACE 114 113 0.478 0.460 0.51 14.29 2.48 41.10 0.41 274.92 95.50 0.279 91.531 90.998 3.10 92.49 90.703 4.10 90.703 4.10 90.703 4.10 91.70	PHASE 12C PHASE 12C PHASE 12C	3.29 2.79 3.07	93.688 92.353 91.196	94.298 92.962 91.882	97.59 95.75 94.95	4.51 3.89 3.25	94.380 93.088 91.812	94.990 93.698 92.497	0.100 0.600 0.465	99.50 97.59 95.75	321.49 325.73 239.62	0.23 0.22 0.55	40.00 40.00 72.50	2.89 2.98 2.19	842.47 868.37 807.97	1.73 1.84 0.85	600 600 675	520.99 542.64 568.35	62.11 61.73 61.37	24.25 24.48 24.71 25.26	7.10 7.49 7.96	0.00 0.39 0.46				0.355		902 901 900	903 902 901	GOWARD DRIVE
And the second of the secon	PHASE 12C PHASE 12C PHASE 12C PHASE 12C PHASE 12A	2.78 2.79 3.71 4.06	95.703 93.835 91.486 90.710	96.008 94.140 91.790 91.244	98.79 96.93 95.50 95.30	2.84 2.82 3.06 3.97	95.796 95.663 93.569 90.998	96.101 95.968 93.874 91.531	0.040 0.266 0.279	98.94 98.79 96.93 95.50	32.92 84.85 103.11 274.92	0.17 0.51 0.43 0.41	12.30 69.00 64.50 41.10	1.20 2.25 2.48 1.68	87.36 164.21 181.29 375.35	0.75 2.65 3.23 0.70	300 300 300 525	54.44 79.36 78.19 100.43	67.16 66.82 65.83 65.02	21.48 21.65 22.16 22.60	0.81 1.19 1.19 1.54	0.26 0.38 0.00 0.36				0.233 0.339 0.321		601 600 116	602 601 600 116	
And A	PHASE 12A PHASE 12A	3.45 3.74	89.763 89.519	90.601 90.357	94.05 94.10	3.77 3.48	90.040 89.733	90.878 90.571	0.040	94.65 94.05	436.92 459.82	0.37	46.10 33.00	2.10 2.19	1159.90 1207.26	0.60	825 825	722.98 747.44	60.12 59.56	23.41 25.49 25.86 26.11	10.69 11.21	0.53 0.51				0.478		113 112A	<mark>114</mark> 113	HALTON TERRACE
503 502 0.408 0.599 0.89 1.46 21.33 67.46 98.16 375 0.85 168.62 1.48 98.00 1.10 70.46 95.51 92.641 92.60 2.87 94.60 91.808 91.427 2.79 PHASE 12C 502 501 0.282 0.987 1.25 2.71 22.43 65.32 176.99 525 0.35 265.41 1.19 93.00 1.30 88.42 94.60 91.808 91.427 2.79 PHASE 12C 501 500 0.00 2.71 23.74 62.99 170.65 525 0.35 265.41 1.19 93.00 1.30 88.42 94.60 91.808 91.427 2.79 PHASE 12C 500 500 112 0.065 3.36 23.91 62.69 210.70 525 1.33 91.40 91.426 91.48 91.482 90.99 3.00 91.48 91.482 91.48 91.482 91.482 91.48 91.485 91.48 91.485 91.48 91.48	PHASE 12C PHASE 12C PHASE 12C PHASE 12C PHASE 12C	2.87 2.79 2.96 2.98	92.336 91.427 90.949 90.866	92.641 91.808 91.482 91.399	95.51 94.60 94.44 94.38	2.85 2.87 2.79 3.00	92.459 92.260 91.274 90.909	92.764 92.641 91.808 91.442	0.040	95.61 95.51 94.60 94.44	62.78 70.46 88.42 94.76	0.15 1.10 1.30 0.17	12.30 98.00 93.00 12.30	1.38 1.48 1.19 1.19	100.87 168.62 265.41 265.41	1.00 0.85 0.35 0.35	300 375 525 525	38.09 98.16 176.99 170.65	67.76 67.46 65.32 62.99	20.00 21.18 21.33 22.43 23.74 23.91	0.56 1.46 2.71 2.71	0.00 0.89 1.25 0.00				0.599 0.987	0.408	503 502 501 500	504 503 502 501	3EMOORE CRESCENT

120= 8.462ha

V:\17732.DS\Phase 12D\Design\ST & SAN Design - M.G. Stage 12D - Rev2.xls


Min vel = 0.8m/s

STORM SEWER DESIGN SHEET

Rev. No. 0: MOE Submission for Phase 12D - May 11/ 2005 Rev. No. 1: City Comments for Phase 12D - July 11/ 2005 Rev. No. 2: City Comments for Phase 12D - August 11/ 2006 Rev. No. 3: Issued with Phase 12D SWM Report - August 24/ 2007 Designed by: J.B.

	М	H. #		AREA	AS FOR "	R" in (ha)				FLOW COM	PUTATION	1				SEV					U	PSTREAM	1		1	DOWNS	TREAM		
STREET	FROM	ТО	0.2	0.3 0.4	0.45	0.5	0.6 0.	7 2.78AF	2.78AR (CUM.)	TIME (min.)	INTENS (mm/hr	PEAK FL. (L/s)	DIA. (mm)	SLOPE (%)	CAPAC. (L/s)	VEL. (m/s)	LENGTH (m)	FL.TIME (min.)	RESIDUAL CAP. (L/s)	Pr. Center Line		Obvert	Invert	Cover	Pr. Center Line	Obvert	Invert	Cover	COMMENTS
MUSKEGO CRESCENT	402	111		0.22	2			0.25	0.25	20.00 21.02	70.25	17.34	300	0.87	94.09	1.29	78.77	1.02	76.75	92.06		89.473	89.168	2.59	92.51	88.788	88.483	3.72	PHASE 12B
HALTON TERRACE	111	110		0.20	0			2.46	19.08	26.58	58.48	1195.63	825	1.20	1640.35	2.97	72.40	0.41	444.72	92.51	0.017	88.771	87.933	3.74	91.00	87.902	87.064	3.10	+School Flow (2.78xAC = 2.24) from CCL
	110	109		0.57	9			0.64	19.72	26.99 27.45	57.90	1221.74	825	1.20	1640.35	2.97	81.90	0.46	418.61	91.00	0.560	87.342	86.504	3.66	91.00 90.10	86.359	85.521	3.74	PHASE 12A
MUSKEGO CRESCENT	402	401		0.23				0.26	0.26	20.00	70.25		300			1.24	13.84	0.19	71.79	92.06		89.179	88.874	2.88	91.96	89.068	88.763	2.89	PHASE 12B
	401	400	0.334	0.42				0.66	0.92	20.19	69.84		300		153.08	2.10	74.30	0.59 0.55	88.62	91.96	0.040	89.028	88.723	2.93	90.24	87.317	87.012	2.92	PHASE 12B
	400	303	0.195	0.97	6			1.19	2.12	20.78 21.33	68.59	145.19	375	1.74	241.26	2.12	70.02	0.55	96.07	90.24		87.317	86.936	2.92	88.84	86.099	85.718	2.74	PHASE 12B
DUNOLLIE CRESCENT	304	303				0.154		0.21	0.21	20.00	70.25	15.04	300	0.30	55.25	0.76	11.22	0.25	40.21	88.65		86.134	85.829	2.52	88.84	86.100	85.796	2.74	PHASE 12B
										20.25																			
DUNOLLIE CRESCENT	303	109		0.24	0			0.27	2.60	21.33 22.51	67.46	175.25	525	0.36	269.18	1.20	85.61	1.18	93.93	88.84		86.099	85.565	2.74	90.10	85.791	85.257	4.31	PHASE 12B
HALTON TERRACE	109	108		0.13	0 0.460	0.147		0.92	23.24	27.45	57.25	1410.62	825	1.20	1640.35	2.97	66.80	0.37	229.73	90.10		85.791	84.953	4.31	88.53	84.990	84.151	3.54	PHASE 12A
										27.82																			
DUNOLLIE CRESCENT	302A	302	0.216			0.085		0.24	0.24	20.00	70.25		300			0.98	15.18	0.26	54.59	88.53		85.387	85.082		88.45		85.006	3.14	PHASE 12B
1	302	301				0.716		1.00	1.23	20.26	69.69			0.35		0.95	69.40	1.22	22.24	88.45			84.930		88.20	85.068		3.13	PHASE 12B
	301	300				0.288		0.40	1.63 1.63	21.48	67.17	109.74	375	0.40	115.67	1.01	9.99	0.16	5.94		0.040		84.647		88.27		84.607	3.28	PHASE 12B
-	300	108						0.00	1.63	21.64 23.51	66.84	109.21	450	0.20	133.01	0.81	90.70	1.87	23.80	88.27		84.988	84.531	3.28	88.53	84.807	84.350	3.72	PHASE 12B
HALTON TERRACE	108	107			0.500			0.63	25.50	27.82	56.74	1526.82	1050	0.45	1910.95	2.14	31.70	0.25	384.13	88.53		84.807	83.740	3.72	88.75	84.664	83.597	4.09	PHASE 12A
	107	106		4				0.00	25.50	28.07 28.40	56.40	1518.28	1050	0.45	1910.95	2.14	43.10	0.34	392.67	88.75	0.040				88.05				PHASE 12A
McBRIEN STREET	203	202		0.13	0	_		0.14	0.14	20.00	70.25	10.16	300	1.52	124.37	1.70	98.50	0.96	114.21	90.71		87.706	87.401	3.00	89.09	86.209	85.904	2.88	PHASE 12A
	202	201		0.10	-	0.690		0.96	1.10	20.96	68.21	75.28	375	0.85	168.62	1.48	74.40	0.84	93.35	89.09		86.209	85.828				85.195		PHASE 12A
	201	200						0.00	1.10	21.80	66.53	73.43	375	0.85	168.62	1.48	12.70	0.14	95.20		0.030	85.546	85.165				85.057		PHASE 12A
	200	106						0.00	1.10	21.94 22.11	66.53 66.25	73.12	375	1.75	241.95	2.12	20.90	0.16	168.83	88.35	0.030	85.408	85.027	2.94	87.92	85.043	84.662	2.88	PHASE 12A
HALTON TERRACE	106	105			0.447			0.56	27.16	28.40	55.95	1599.90	1050	0.55	2112.63	2.36	41.00	0.29	512.74	88.05	0.040	84.390	83.323	3.66	87.25	84.165	83.098	3.09	PHASE 12A
A CONTRACTOR OF A CONTRACTOR A CONTR	105	Ex. 101	0.465	0.312	2 0.652	0.084		1.54	28.70	28.69 29.36	55.57	1675.06	1200	0.40	2572.29	2.20	88.70	0.67	897.23			83.950	82.730	3.10	87.10				PHASE 12A

Z = 8,885hq Total aug = 24,834ha

J.L. RICHARDS & ASSOCIATES LIMITED, Consulting Engineers, Architects & Planners

CITY OF OTTAWA MORGAN'S GRANT PHASE 12D SUBDIVISION MINTO DEVELOPMENTS INC. Designed by: J.B.

Checked by: G.F.

Date: August 2005

JLR Project No. 17732

STORMWATER STORAGE / OVERFLOW BALANCE TABLE

DRAINAG	E AREA				INLET	FLOW			STORAGE (m ³)		OVER	FLOW	SURPLUS
		"C"	AREA	INLET	rs (l/s)	1		REQUIRED		PROVIDED		то	STORAGE
CATCHMENT	AREA #	FACTOR	(Ha)	20.00	13.40	Unrest. RYCBs	111/11/14/14/14	LOCAL (m ³)	LOCAL + OVERFLOW (m ³)	(m ³)	(m ³)	AREA #	m³
ISHPATINA	#15	0.400	0.340	1	0	0	20	29.51	29.51	20.60	8.91	#11	
FINLAYSON	#14	0.400	0.350	1	0	0	20	30.72	30.72	0.00	30.72	#13	
FINLAYSON (at GOWARD)	#13	0.400	0.176	1	0	0	20	11.88	42.61	0.00	42.61	#11	
GOWARD	#11	0.400	0.618	2	0	0	40	51.73	103.26	131.30	-28.04	#6	28.04
FINLAYSON	#10	0.400	0.360	1	0	0	20	31.95	31.95	0.00	31.95	#6	
RY (73, 74, 75, 76, 77, 78)	#9	0.400	0.198	0	0	34	34	10.61	10.61	0.00	10.61	#8	
RY (70, 71, 72, 79, 80)	#8	0.400	0.180	0	0	34	34	8.90	19.51	0.00	19.51	#6	
RY (16-23)	#7	0.400	0.140	0	0	62	62	0.00	0.00	0.00	0.00	#6	
GOWARD (at FINLAYSON/ISHPATINA)	#6	0.400	0.494	2	0	0	40	37.97	89.43	0.00	89.43	#4	
GOWARD	#5	0.400	0.500	1	0	0	20	50.26	50.26	0.00	50.26	#4	
GOWARD	#4	0.400	0.203	1	0	0	20	14.47	154.16	27.08	127.08	#1	
FUTURE TOWNHOUSES	#2	0.500	1.216	5	0	0	100	126.46	126.46	0.00	126.46	#1	
RY(8-15)	#3	0.400	0.202	0	0	34	34	10.99	10.99	0.00	10.99	#1	
BLK 246 and RY of units 62-69	#1	0.228	1.348	2.5	0	0	50	64.19	328.72	1213.00	-884.28		884.28

Printed: 9/19/2005 @ 10:33 AM

exp Services Inc.

Theberge Homes 1158 Second Line Road OTT-00245003-A0 April 2018

Appendix I – Correspondence

Boundary Conditions 1158 Second Line Road

Information Provided

Date provided: 05 April 2018

Provided Information:

	Dem	nand
Scenario	L/min	L/s
Average Daily Demand	30.6	0.5
Maximum Daily Demand	178.2	3.0
Peak Hour	269.4	4.5
Fire Flow Demand	8000	133
Fire Flow Demand	9000	150
Fire Flow Demand	11000	183

of connections

2

Location

Results

Connection 1 - Goward Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	150.9	71.4
Peak Hour	140.2	56.2
Max Day plus Fire (8,000 l/min)	123.8	32.9
Max Day plus Fire (9,000 l/min)	119.5	26.7
Max Day plus Fire (10,000 l/min)	118.3	25.1

¹ Ground Elevation = 100.76 m

Connection 2 - Whernside Terr

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	150.9	70.6
Peak Hour	142.0	55.5
Max Day plus Fire (8,000 l/min)	124.9	33.7
Max Day plus Fire (9,000 l/min)	120.8	27.9
Max Day plus Fire (10,000 l/min)	119.9	26.5

¹ Ground Elevation = 101.19 m

Consideration

 Maximum fire flow city will accommodate for about 1158 Second Line Road property is 10,000 L/min.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.