

## MONARCH CORPORATION

SITE SERVICING REPORT
STORMWATER SITE MANAGEMENT PLAN AND EROSION
AND SEDIMENT CONTROL PLAN
STONEBRIDGE DEVELOPMENTS
PHASE 11 - BLOCKS 331, 332 & 333

Project 25099-5.2.2 AUGUST 2010



# **TABLE OF CONTENTS**

| 1.  | INTRODUCTION                          | 1 |
|-----|---------------------------------------|---|
| 2.  | WATER DISTRIBUTION                    | 1 |
| 3.  | WASTEWATER SYSTEM (SANITARY SEWERS)   | 2 |
| 4.  | STORMWATER SYSTEM                     | 2 |
| 5.  | SOURCE CONTROLS                       | 5 |
| 5.1 | General                               | 5 |
| 5.2 | Lot Grading                           | 5 |
| 5.3 | Roof Leaders                          | 5 |
| 5.4 | Vegetation                            | 5 |
| 5.5 | Groundwater Recharge                  | 5 |
| 6.  | CONVEYANCE CONTROLS                   | 6 |
| 6.1 | General                               | 6 |
| 6.2 | Flat Vegetated Swales                 | 6 |
| 6.3 | Catchbasin and Maintenance Hole Sumps | 6 |
| 6.4 | Pervious Rearyard Drainage            | 6 |
| 7.  | SEDIMENT AND EROSION CONTROL PLAN     | 6 |
| 7.1 | General                               | 6 |
| 7.2 | Trench Dewatering                     | 7 |
| 7.3 | Bulkhead Barriers                     | 7 |
| 7.4 | Seepage Barriers                      | 7 |
| 7.5 | Surface Structure Filters             | 7 |
| 7.6 | Stockpile Management                  | 8 |
| 8.  | CONCLUSIONS                           | 9 |

# TABLE OF CONTENTS (CONT'D)

#### **APPENDICIES:**

### Appendix A:

25099-501 Sanitary Drainage Are Plan – Phase 11

Sanitary Sewer Design Sheet

## Appendix B:

25099-400 Ponding Plan – Phase 11

25099-500 Storm Drainage Area Plan – Phase 11

Storm Sewer Design Sheet

Storm Sewer Design Sheet – Temporary Outlet

HGL Calculations Figure SK-1 SYMHYMO Output

Major System Outlet Flow Calculations

### **Appendix C:**

25099-900 Erosion and Sediment Control Plan – Phase 11

Detail S8

## 1. INTRODUCTION

Design of the site has been undertaken in accordance with the following reports:

- Barrhaven South Master Servicing Study prepared by Stantec Consulting, June 2007.
- Jockvale Servicing Study South Nepean Urban Area (Official Plan Area 12A) prepared by Cumming Cockburn, March 1999.
- Corrigan Stormwater Management Facility Stormwater Management Report and Design Brief prepared by IBI Group, July 2008.
- Site Servicing Study Stonebridge Development, Phase 10S Recreation Center/School/Park/Fire Station Complex prepared by IBI Group, August 2009.
- Site Servicing Report, Stormwater Site Management Plan and Erosion and Sediment Control Plan, Stonebridge Developments, Phase 11 & 12.

Phase 11 and 12 of the Stonebridge subdivision is located south of Cambrian Road and east of Greenbank Road as shown on the Key Plan. The site consists primarily of single family lots with street and private townhouse units which are the last remaining phases of the Stonebridge development south of Cambrian Road. Phase 11 covers approximately 17.2 hectares including the private sites while Phase 12 covers approximately 14.5 hectares. Block 331 is a 11 unit freehold townhouse site fronting onto Dundonald Drive. Block 332 and 333 is a 109 unit private townhouse site backed on the east and west sides of Blackleaf Drive. Sanitary, storm and water for the two phases will be connected to existing infrastructure constructed in previous phases.

This report deals with the townhouse blocks 331, 332 and 333 which are located in Phase 11. Design of these blocks have been incorporated into the design of Phase 11 and 12.

### 2. WATER DISTRIBUTION

The site is provided by existing watermains located on Blackleaf Drive, Cheyenne Way, Dundonald Drive, Kilbirnie Drive and Kilmarnock Way. Watermain pipe sizes have been determined through hydraulic analysis to ensure peak demand pressures and fire flow requirements are met. Results of the analysis are included in the Water Distribution Plan for Phases 11 and 12 which is a separate report.

Water service for Block 331 is provided by the proposed watermain on Dundonald Drive while water service for Blocks 332 and 333 is provided by the proposed watermain on Blackleaf Drive.



## 3. WASTEWATER SYSTEM (SANITARY SEWERS)

The sanitary sewer outlet for Phase 11 is through the existing 300 mm sanitary sewer located at Blackleaf Drive and Cheyenne Way while Phase 12 drains to the existing 300 mm sanitary sewer at Kilbirnie Drive and Kilmarnock Way. Phase 11 also includes the extension of Cheyenne Way and the extension of the existing sanitary sewer stub at Cheyenne Way adjacent to Decona Terrace. Block 331 is serviced from the proposed sanitary sewer on Dundonald Drive while Blocks 332 and 333 drain to the proposed sanitary sewer on Blackleaf Drive.

All sanitary sewers within the Stonebridge development are designed in accordance with current City of Ottawa criteria, including the following:

Average Residential Rate 350 L/capita/day

■ Population Density Single Family – 3.4 ppu

Townhouse – 2.7 ppu

Stacked Townhouse - 2.3 ppu

Residential Peaking Factor
 Harmon Formula

Infiltration Allowance
 0.28 l/s/ha

Average Non-Residential Rate\*
 0.578 l/s/ha (50,000 l/day/ha)

(Commercial, Industrial, School)

Non-Residential Peaking Factor
 1.5

Minimum Velocity 0.60 m/s

Sanitary drainage from Phases 11 and 12 have been incorporated in previous phases of the Stonebridge Subdivision which outlets directly into the South Nepean collector sewer on the east side of Jockvale Road and west of the Jock River Crossing. There are no external sanitary drainage areas draining through Phases 11 and 12 as these phases represent the limit of the Stonebridge development south of Cambrian Road.

Appendix A contains the sanitary drainage area plans and sanitary sewer design sheets. On the Sanitary Sewer Design Sheet, the actual depth of flow is indicated for all pipes larger than 200 mm to demonstrate that the flow depth is greater than 30% of the diameter.

## 4. STORMWATER SYSTEM

Storm drainage from Phase 12 is tributary to Phase 11 which outlets to the future trunk storm sewer on Greenbank Road as outlined in the Corrigan Stormwater Management Report. A temporary outlet is available through the adjacent Phase 10S lands to the north that will service Phase 11 and 12 on an interim basis should the construction of the Greenbank trunk sewer be delayed. The temporary storm sewer will eventually become the permanent storm sewer for the proposed recreation center/school/park/fire station complex planned for the Phase 10S lands, as described in the Site Servicing Study. The temporary sewer is sized to service all the tributary Phase 11 lands, including Blocks 331, 332 and 333, except for the south leg of Sunita Crescent, which is

<sup>\*</sup> As noted in Appendix E of the Barrhaven South Master Servicing Study.

downstream of the temporary connection, and all of the Phase 12 lands. A section of the storm sewer linking Sunita Crescent and the park complex will be removed once the connection to the Greenbank trunk sewer is completed.

A section of Cheyenne Way from Decona Terrace to the bend drains back to Decona and is tributary to the Jockvale Stormwater Management Facility in accordance with the Phase 6 design. The areas tributary to the Jockvale Stormwater Management Facility are identified on the drainage area plan and design sheets.

There are no external storm drainage areas tributary to Phase 11 and 12. Drainage from an existing residence fronting onto Greenbank Road picked up on Blackleaf Drive south of Sunita in Phase 11. South of Phase 12 there is an area of existing drainage (Area B1 in the Corrigan Stormwater Management Report) that is tributary to Greenbank Road. In advance of the storm sewer construction on Greenbank Road, it is proposed to temporary intercept the flow in a temporary ditch inlet catchbasin in the Greenbank Road ditch south of Kilbirnie Drive. A total temporary external drainage area of 3.69 hectares is shown on the storm drainage area plan and the rational method flow has been added to the storm sewer design sheet.

At the outlet to the Greenbank trunk storm sewer, a hydraulic grade line elevation of 92.2 m is provided in the Corrigan Stormwater Management Report. The HGL has been extended back into the Phase 11 storm sewers until it meets to sewer obvert. Calculations are included in Appendix B and the HGL elevations are shown on the drawings where it is higher than the sewer obvert. In Block 333, the HGL of the storm sewers on Blackleaf Drive has been extended into the block. In Blocks 331 and 332, the HGL does not extend above pipe obvert. All underside of footing elevations have been set a minimum of 0.3 m above the higher of the HGL or sewer obvert. The minimum underside of footing elevations are shown on the Grading Plan. A check of the HGL for the temporary storm sewer was undertaken using the HGL elevation of 91.30 at Cambrian Road from the Corrigan Stormwater Management Report, as the temporary HGL at Sunita is lower than the permanent HGL from Greenbank, the permanent will be used.

Storm sewers are sized to convey a 5 year storm using City of Ottawa IDF curves and to convey the capture rate of 85 l/s/ha except for the portion of Cheyenne Way which is tributary to the Jockvale Stormwater Management Facility and has a capture rate of 70/l/s/ha. Due to the shape of the development, the capture rate produces a higher flow than the rationale method at the downstream end of the system and is used to size the pipe. To ensure that the design flows are not exceeded, inlet control devices (ICD's) are used in every inlet to the storm sewers and some pairs of street catchbasins are interconnected to reduce the total number of inlets. Standard IPEX/Pedro Plastic ICD's are used with the following release rates at the standard 1.22 m head.

Type A - 20.0 l/sType B - 28.4 l/sType C - 37.0 l/sType X - 13.4 l/s

The Type X ICD's are used exclusively in rear yard catchbasins. The location of the ICD's and interconnected catchbasins are shown on the project drawings.

Major system overland flow routes are provided with a maximum level of ponding of 0.3 m for rear yards and local streets and 0.25 m on collector roads. High points between road sags are set to provide a minimum 0.1% longitudinal slope. The major system route for Phase 12 outlets to the Stonebridge golf course through a dedicated block on Centerra Court. Kinloch Court and Dundonald Drive in Phase 11 also outlets to the golf course on Dundonald. The remainder of Phase

11 and portions of Phase 6 and 7B outlets through a dedicated block on Sunita Crescent to the Phase 10S park complex and into a future major system retention area as outlined in the Corrigan Stormwater Management Report.

Major system peak flows at the three major system outlets and for Block 321 have been determined by the SWMHYMO computer model. At these locations, the depth of flow and velocity has been calculated to ensure that the product of velocity and depth (VXD) do not exceed 0.6. Calculations and model output are included in Appendix B and summarized as follows:

| Location                 | Major System Flow (m²/s) | VXD  |
|--------------------------|--------------------------|------|
| Block 335 Sunita         | 3.2                      | 0.47 |
| Block 329 Centerra       | 1.4                      | 0.28 |
| Dundonald at golf course | 0.5                      | 0.11 |
| Block 321 Chenoa         | 0.2                      | 0.07 |

As demonstrated, the product of velocity and depth is less than 0.6 at all locations.

In the Corrigan Stormwater Management Report, a storage rate of 42 m³/ha is required for the lands which make up Phases 11 and 12. Storage is provided in the roadway sags which are indicated on the ponding plans. The total volume of street ponding available in the 26 ponding areas identified on the ponding plans, including 4 ponding areas on Block 332 and 333, are 1,282.4 m³. The total storm drainage area for Phase 11 and 12 including Blocks 331, 332 and 333 is 27.11 hectares giving a storage rate of 47.3 m³/ha which exceeds the required rate of 42 m³/ha.

Storm drainage area plans, ponding plans, storm sewer design sheets and the hydraulic grade line calculations are included in Appendix B.

### 5. SOURCE CONTROLS

### 5.1 General

Since an end of pipe treatment facility is provided for this development, stormwater management will focus on site level or source control management of runoff. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- · flat lot grading;
- split lot drainage;
- · pre-installation of roof leader splash pads; and
- · vegetation planting.
- · groundwater recharge

## 5.2 Lot Grading

All lots and townhouse blocks within the development will make use of the split drainage runoff concept. In accordance with local municipal standards, all lot grading will be between two and seven percent. All front yard drainage will be directed over landscaped front yards to the roadway system and all rearyard drainage will be directed to a swale drainage system. Typically swales will have slopes of 1.5%. These measures all serve to encourage individual lot infiltration.

## 5.3 Roof Leaders

The development will consist of single family lots and townhouse units. It is proposed that roof leaders from these units be constructed such that runoff is directed to grassed areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slow release rate to the conveyance network.

# 5.4 Vegetation

As with most subdivision agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development, including roadside planting, provide opportunities to re-create lost natural habitat.

## 5.5 Groundwater Recharge

With regard to the existing hydrologic regime in the Stonebridge Development, seepage barriers made of impervious clay dykes will be constructed in the municipal service trenches at regular intervals to reduce ground water lowering at the site. Appropriately placed, these seepage barriers help to re-establish and maintain the historic ground water regime after construction of the development. Detail drawing S8 is attached for reference in Appendix C.

### 6. CONVEYANCE CONTROLS

## 6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales
- pervious rearyard drainage
- catchbasin sumps

# 6.2 Flat Vegetated Swales

All rearyards within the Stonebridge Development make use of relatively flat vegetated swales. These swales generally employ saw-toothing at regular intervals. These swales encourage infiltration and runoff treatment.

## 6.3 Catchbasin and Maintenance Hole Sumps

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be to OPSD 705.02. All storm sewer maintenance holes serving local sewers less than 900 mm shall be constructed with a 300 mm sump per City of Ottawa Stardards.

# 6.4 Pervious Rearyard Drainage

Some of the rearyard swales make use of a filter wrapper perforated drainage pipe constructed immediately below rearyard swales. This perforated pipe system is designed to provide some groundwater recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system. Typically, a 250 mm Ø perforated pipe wrapped in a filter sock is constructed in a crushed stone surround at an invert elevation about 1.0 metre below grade. These pipes are in turn directly connected to rearyard catchbasins at regular intervals.

## 7. SEDIMENT AND EROSION CONTROL PLAN

### 7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches;
- filter cloths will remain on open surface structure such as manholes; catchbasins until these structures are commissioned and put into use; and
- silt fence on the site perimeter.

## 7.2 Trench Dewatering

Although little groundwater is expected during construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

## 7.3 Bulkhead Barriers

Although the storm sewers eventually outlet into a sediment forebay, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer to reduce sediment loadings during construction. This bulkhead will trap any sediment carrying flows thus preventing any construction-related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

# 7.4 Seepage Barriers

In order to further reduce sediment loading to the stormwater management facility, seepage barriers will be installed on any surface water courses at appropriate locations that may become evident during construction. These barriers will be similar to either the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110. They are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

### 7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures should be covered in some fashion to prevent sediment from entering the minor storm sewer system. Until rearyards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be constructed with a geotextile filter fabric located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

## 7.6 Stockpile Management

During construction of any development similar to the Stonebridge Development both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rearyard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern. These materials are quickly used and the mitigative measures stated previously, especially the  $\frac{1}{2}$  diameter sewer bulkheads and filter fabric in catchbasins and manholes help to manage these concerns.

Roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

## 8. CONCLUSIONS

As demonstrated in this report, the water, wastewater and stormwater systems are designed in conformance with the City of Ottawa standards.

The use of the lot level controls, conveyance controls and the end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the sediment and erosion control plan during construction will minimize harmful impacts on surface water.

Prepared by:

D L. M. ERION TO ONTHEIO

Lance Erion, P. Eng. Associate

J:\25099-StnbrPh11\5.2 Reports\5.2.2 Civil\2010-08-03\CTR\_StormwaterMngmtPlanErosion\_2010-08-03.docx



# IBI GROUP

IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario

#### SANITARY SEWER DESIGN SHEET

JOB #: 25099-5.7 DATE PRINTED: 05-Aug-10 DESIGN: LE

PROJECT: STONEBRIDGE PHASE 11 DEVELOPER: MONARCH CORPORATION

| LOCAT                           | ION            |                |            |                | INDIVI           | DUAL |              | CUI  | M. RES. FLOV  | v I          |       | INFILTRATIO  | N     | TOTAL        |                |      | PR    | OPOSED S | SEWER    |                |            | FLOW  | DEPTH |
|---------------------------------|----------------|----------------|------------|----------------|------------------|------|--------------|------|---------------|--------------|-------|--------------|-------|--------------|----------------|------|-------|----------|----------|----------------|------------|-------|-------|
| STREET                          | FROM           | ТО             |            | RESID. UNIT    |                  | RES. |              | 36.  |               | PEAK         | INCR. | CUM.         |       | DESIGN       |                |      |       |          | VEL.     | AVAIL.         | AVAIL.     | Flow  | Depth |
|                                 | МН             | МН             | Sngls      | Towns<br>Semis | Stacked<br>Towns | AREA | POP.         | POP. | PEAK<br>FACT. | FLOW         | AREA  | AREA         | FLOW  | FLOW         | CAP.           | PIPE | LGTH. | SLOPE    | (full)   | CAP.           | CAP.       | qa/Qa | da/Df |
|                                 |                |                | -          | Jeilis         | TOWIIS           | (Ha) |              | -    | FACT.         | (l/s)        | (Ha)  | (Ha)         | (l/s) | (l/s)        | 1/5            | (mm) | (m)   | %        | m/s      | (I/s)          | (%)        | (%)   | (%)   |
| Phase 11                        |                |                | -          |                |                  |      |              |      |               |              |       |              |       |              |                |      |       | -        |          |                |            |       |       |
| Kinlock Court                   | 140 A          | 141 A          | 18         |                |                  | 1.41 | 61.2         | 61   | 4.00          | 1.00         | 1.41  | 1.41         | 0.39  | 1.40         | 26.49          | 200  | 97.0  | 0.60     | 0.82     | 25.10          | 95%        |       |       |
| Kinlock Court                   | 141 A          | 142 A          | 11         |                |                  | 0.76 | 37.4         | 99   | 4.00          | 1.62         | 0.76  | 2.17         | 0.61  | 2.22         | 26.49          | 200  |       |          | 0.82     | 24.27          | 92%        |       |       |
| Kinlock Court                   | 142 A          | 144 A          | 2          |                |                  | 0.21 | 6.8          | 105  | 4.00          | 1.73         | 0.21  | 2.38         | 0.67  | 2.39         | 26.49          | 200  |       | 0.60     | 0.82     | 24.10          | 91%        |       |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
| Dundonald Drive                 | 143 A          | 144 A          |            | 6              |                  | 0.27 | 16.2         | 16   | 4.00          | 0.27         | 0.27  | 0.27         | 0.08  | 0.34         | 48.38          | 200  | 35.5  | 2.00     | 1.49     | 48.04          | 99%        |       |       |
| Dundonald Drive                 | 144 A          | 146 A          | <b></b>    | 5              |                  | 0.29 | 13.5         | 135  | 4.00          | 2.22         | 0.29  | 2.94         | 0.82  | 0.00         | 40.20          | 200  | 90.0  | 0.22     | 0.00     | 10.22          | 0.40/      |       |       |
| Dundonald Drive                 | 144 /          | 140 A          | 1          | -              |                  | 0.25 | 13.3         | 133  | 4.00          | 2.22         | 0.29  | 2.94         | 0.02  | 3.04         | 19.36          | 200  | 80.6  | 0.32     | 0.60     | 16.32          | 84%        |       |       |
| Blackleaf Drive                 | 146 A          | 147 A          | 8          |                |                  | 0.60 | 27.2         | 162  | 4.00          | 2.66         | 0.60  | 3.54         | 0.99  | 3.65         | 19.36          | 200  | 64.1  | 0.32     | 0.60     | 15.71          | 81%        |       |       |
| Blackleaf Drive                 | 147 A          | 148 A          | 1          |                |                  | 0.18 | 3.4          | 166  | 4.00          | 2.72         | 0.18  | 3.72         | 1.04  | 3.76         |                | 200  |       |          | 0.60     | 15.60          | 81%        |       |       |
| Blackleaf Drive                 | 148 A          | 153 A          |            |                |                  |      |              | 166  | 4.00          | 2.72         | 0.00  | 3.72         | 1.04  | 3.76         | 19.36          | 200  | 16.7  | 0.32     | 0.60     | 15.60          | 81%        |       |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
| Cheyenne Way                    | 149 A          | 150 A          | 3          |                |                  | 0.33 | 10.2         | 10   | 4.00          | 0.17         | 0.33  | 0.33         | 0.09  | 0.26         | 44.62          | 200  |       |          | 1.38     | 44.36          | 99%        |       |       |
| Cheyenne Way                    | 150 A          | 153 A          | 14         |                |                  | 0.98 | 47.6         | 58   | 4.00          | 0.95         | 0.98  | 1.31         | 0.37  | 1.31         | 39.76          | 200  | 117.4 | 1.35     | 1.23     | 38.44          | 97%        |       |       |
| Block 332 Kennacraig Pr.        | 175 A          | 151 A          | -          | 5              |                  | 0.17 | 13.5         | 14   | 4.00          | 0.22         | 0.17  | 0.17         | 0.05  | 0.27         | 27.60          | 200  | 42.4  | 0.65     | 0.85     | 27.33          | 99%        |       |       |
| Block 332 Kennacraig Pr.        | 151 A          | 152 A          |            | 7              |                  | 0.23 | 18.9         | 32   | 4.00          | 0.22         | 0.17  | 0.40         | 0.03  | 0.64         | 24.19          | 200  |       | -        | 0.85     | 23.55          | 97%        |       |       |
| Block 332 Kennacraig Pr.        | 152 A          | 153 A          |            | 20             |                  | 0.62 | 54.0         | 86   | 4.00          | 1.42         | 0.62  | 1.02         | 0.29  | 1.70         | 44.62          | 200  |       | _        | 1.38     | 42.92          | 96%        | -     |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
| Blackleaf Drive                 | 153 A          | 155 A          | 1          |                |                  | 0.17 | 3.4          | 313  | 4.00          | 5.14         | 0.17  | 6.22         | 1.74  | 6.88         | 31.01          | 250  | 62.7  | 0.25     | 0.61     | 24.13          | 78%        | 22%   | 32%   |
| Disal 200 Kananasia Da          | 454 A          | 455 4          |            | - 04           |                  | 0.75 | 040          |      | 4.00          | 100          | 0.75  | A 75         | 0.04  |              |                | 000  |       | 100      |          | 11.00          | 070/       |       |       |
| Block 332 Kennacraig Pr.        | 154 A          | 155 A          | -          | 24             |                  | 0.75 | 64.8         | 65   | 4.00          | 1.06         | 0.75  | 0.75         | 0.21  | 1.27         | 45.92          | 200  | 92.5  | 1.80     | 1.42     | 44.65          | 97%        |       |       |
| Blackleaf Drive                 | 155 A          | 161 A          | 6          |                |                  | 0.42 | 20.4         | 399  | 4.00          | 6.54         | 0.42  | 7.39         | 2.07  | 8.60         | 31.01          | 250  | 75.0  | 0.25     | 0.61     | 22.41          | 72%        | 28%   | 36%   |
| Didokicai Diive                 | 100 A          | 101 /          | <b>├</b> ~ |                |                  | 0.42 | 20.4         | 333  | 4.00          | 0.54         | 0.42  | 7.55         | 2.07  | 0.00         | 31.01          | 230  | 75.0  | 0.23     | 0.01     | 22.41          | 1270       | 2070  | 3070  |
| Block 333 Pamplona Pr.          | 156 A          | 157 A          |            | 4              |                  | 0.19 | 10.8         | 11   | 4.00          | 0.18         | 0.19  | 0.19         | 0.05  | 0.23         | 36.68          | 200  | 21.0  | 1.15     | 1.13     | 36.45          | 99%        |       |       |
| Block 333 Pamplona Pr.          | 157 A          | 158 A          |            | 2              |                  | 0.07 | 5.4          | 16   | 4.00          | 0.27         | 0.07  | 0.26         | 0.07  | 0.34         | 36.68          | 200  |       |          |          | 36.34          | 99%        |       |       |
| Block 333 Pamplona Pr.          | 158 A          | 160 A          |            | 3              |                  | 0.08 | 8.1          | 24   | 4.00          | 0.40         | 0.08  | 0.34         | 0.10  | 0.49         | 36.68          | 200  | 20.5  | 1.15     | 1.13     | 36.18          | 99%        |       |       |
| 51 1 000 5                      | 450            | 100            |            | - 10           |                  |      | 10.0         |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
| Block 333 Pamplona Pr.          | 159 A          | 160 A          | <b> </b>   | 16             |                  | 0.41 | 43.2         | 43   | 4.00          | 0.71         | 0.41  | 0.41         | 0.11  | 0.82         | 30.61          | 200  | 56.5  | 0.80     | 0.94     | 29.79          | 97%        |       |       |
| Block 333 Treadway Pr.          | 160 A          | 161 A          |            | 9              |                  | 0.26 | 24.3         | 92   | 4.00          | 1.51         | 0.26  | 1.01         | 0.28  | 1.79         | 24.19          | 200  | 77.3  | 0.50     | 0.75     | 22.40          | 93%        |       |       |
| Blook ood Treadway 11.          | 100 /1         | 101 /          |            | -              |                  | 0.20 | 24.0         | 32   | 4.00          | 1.51         | 0.20  | 1.01         | 0.20  | 1.73         | 24.13          | 200  | 11.5  | 0.50     | 0.73     | 22.40          | 33 /6      |       |       |
| Blackleaf Drive                 | 161 A          | 166 A          | 2          |                |                  | 0.23 | 6.8          | 497  | 3.98          | 8.10         | 0.23  | 8.63         | 2.42  | 10.52        | 45.09          | 300  | 66.5  | 0.20     | 0.62     | 34.57          | 77%        | 23%   | 33%   |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
| Block 333 Rannoch Pr.           | 162 A          | 166 A          |            | 16             |                  | 0.50 | 43.2         | 43   | 4.00          | 0.71         | 0.50  | 0.50         | 0.14  | 0.85         | 24.19          | 200  | 93.4  | 0.50     | 0.75     | 23.34          | 96%        |       |       |
| 0                               | 400 A          | 404 4          | -          |                |                  | 0.50 | 00.4         |      | 100           | 0.00         | 0.50  | 2.50         | 2.15  |              |                |      |       | 0.05     | 0.05     | 07.40          | 2001       |       |       |
| Sunita Crescent Sunita Crescent | 163 A<br>164 A | 164 A<br>165 A | 6          |                |                  | 0.52 | 20.4<br>3.4  | 20   | 4.00          | 0.33         | 0.52  | 0.52         | 0.15  | 0.48         | 27.60          | 200  |       |          |          | 27.12          | 98%        |       |       |
| Sunita Crescent                 | 165 A          | 166 A          | 11         |                |                  | 0.68 | 37.4         | 61   | 4.00          | 0.39<br>1.00 | 0.07  | 0.59<br>1.27 | 0.17  | 0.56<br>1.36 | 27.60<br>44.62 | 200  |       |          |          | 27.04<br>43.26 | 98%<br>97% |       |       |
|                                 | 100 /1         | 100 /1         | <u> </u>   |                |                  | 0.00 | V/.T         | - 31 | 7.00          | 1.00         | 0.00  | 1.21         | 0.00  | 1.30         | 44.02          | 200  | 00.5  | 1.70     | 1.30     | 40.20          | 31 /0      |       |       |
| Blackleaf Drive                 | 166 A          | 167 A          | 2          |                |                  | 0.26 | 6.8          | 608  | 3.93          | 9.80         | 0.26  | 10.66        | 2.98  | 12.78        | 45.09          | 300  | 70.7  | 0.20     | 0.62     | 32.31          | 72%        | 28%   | 38%   |
| Blackleaf Drive                 | 167 A          | 168 A          | 2          |                |                  | 0.27 | 6.8          | 615  | 3.93          | 9.90         | 0.27  | 10.93        | 3.06  | 12.96        | 45.09          | 300  | 15.2  | 0.20     | 0.62     | 32.13          | 71%        | 29%   | 38%   |
| Blackleaf Drive                 | 168 A          | 170 A          | 6          |                |                  | 0.50 | 20.4         | 636  | 3.92          | 10.21        | 0.50  | 11.43        | 3.20  | 13.41        | 45.09          | 300  | 53.1  | 0.20     | 0.62     | 31.68          | 70%        | 30%   | 38%   |
| Cuaita Crasar - 1               | 470 ^          | 470 4          | 40         |                |                  | 0.00 | 24.0         |      | 400           | 200          | 0.00  | 0.00         | 0.10  |              |                |      |       |          |          | 20.65          |            |       |       |
| Sunita Crescent Sunita Crescent | 173 A<br>172 A | 172 A<br>171 B | 10         |                |                  | 0.68 | 34.0<br>40.8 | 75   | 4.00          | 0.56         | 0.68  | 0.68<br>1.42 | 0.19  | 0.75<br>1.62 | 27.60<br>24.19 | 200  |       |          |          | 26.85<br>22.57 | 97%<br>93% |       |       |
| Sunita Crescent                 | 172 A          |                | 2          | -              |                  | 0.74 | 6.8          | 82   | 4.00          | 1.23         |       | 1.42         | 0.40  | 1.62         | 19.36          |      |       |          |          | 17.55          | 93%        |       |       |
| Sunita Crescent                 |                | 170 A          | 5          |                |                  | 0.43 | 17.0         | 99   | 4.00          | 1.62         |       | 2.10         | 0.47  | 2.21         | 19.36          |      |       |          |          |                |            |       |       |
|                                 |                |                |            |                |                  |      | -            |      |               |              |       |              |       |              | 10.50          |      |       | 1        | 2.50     |                |            |       |       |
| Blackleaf Drive                 | 170 A          | Ex. Stub       | 5          |                |                  | 0.49 | 17.0         | 751  | 3.88          | 11.94        | 0.49  | 14.02        | 3.93  | 15.86        | 55.24          | 300  | 74.5  | 0.30     | 0.76     | 39.37          | 71%        | 29%   | 38%   |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
|                                 |                |                |            | -              |                  |      |              |      | -             |              |       |              |       |              |                |      |       | -        |          |                |            |       |       |
|                                 |                | -              | -          |                |                  |      |              |      | -             |              |       |              |       | $\vdash$     |                |      | -     | -        | <u> </u> |                |            |       |       |
|                                 |                |                | -          | -              |                  |      |              |      | <del> </del>  |              |       |              | -     | $\vdash$     |                |      | -     |          |          |                |            |       |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              | -     |              |                |      | -     | 1        |          |                |            |       |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |
|                                 |                |                |            |                |                  |      |              |      |               |              |       |              |       |              |                |      |       |          |          |                |            |       |       |



Where Q = average daily per capita flow (3.05 l/cap.d.) or (0.0041l/sec./cap)

I = Unit of peak extraneous flow (0.28 l/sec/ha)

M = Residential Peaking factor = Harmon Peaking Factor , M = 1+(14/(4+P^0.5)) , where P = population in thousands

Population Density = 3.4 per single family, 2.7 per semi-detached and row townhouse units and 2.3 per stacked townhouse unit

Commercial, Office Space and School - Average flow 50,000 l/day/ha (0.578 l/s/ha) with Peaking Factor = 1.5

Undeveloped or Other Lands = 60 persons/gross hectare



 $\triangledown$  single service location

DRIVEWAY LOCATION

CB STANDARD STREET CATCHBASIN

RYCB REARYARD CB C/W TOP OF GRATE

SINGLE CONNECTION BETWEEN PAIRS OF STREET CATCHBASINS

( ■cb) CB WITH INLET CONTROL DEVICE

MAX. RELEASE RATE I/s TYPE A IPEX/PEDRO TYPE B IPEX/PEDRO TYPE C IPEX/PEDRO
TYPE X PEDRO 37.0 13.4

BARRIER CURB

DEPRESSED CURB PHASE LIMITS

→ AREA IN HECTARES POPULATION

7 REVISED AS PER NEW LEGAL LME 10:08:0
BLOCKS 331, 332, AND 333

6 LOWER TEMPORARY MAJOR STORM LME 10:07:11 5 REVISED AS PER CITY COMMENTS LME 10:07:0 4 REVISED AS PER CITY COMMENTS LME 10:06:1 3 REVISED AS PER CITY COMMENTS LME 10:05:1 2 REVISED AS PER CITY COMMENTS LME 10:03:0



REVISIONS



333 Preston Street Tower 1, Suite 400 Ottawa, Ontario Canada K1S 5N4 Tel (613)225-1311 FAX (613)225-9868

STONEBRIDGE PHASE 11





SANITARY DRAINAGE AREA PLAN

| Design      | LME | Date<br>JANUARY 2010 |
|-------------|-----|----------------------|
| Drawn       | DPS | Checked<br>LME       |
| Project No. |     | Drawing No.          |
| 250         | )99 | 501                  |

# **APPENDIX B**



IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

## STORM SEWER DESIGN SHEET

PROJECT: Stonebridge Phase 11 LOCATION: City of Ottawa CLIENT: Monarch Corporation

| LOCATION                                              |            |                        |                                                  |        |          |         | EA (Ha) | _      |           |              |                |            |           | IGN FLO        |                           |            |                | F SERVICE |                      |                                                  |         |                  | STRICT              | ED FLOW        |            |                      |         | WER DA       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | AVAIL. (         | , ,            |
|-------------------------------------------------------|------------|------------------------|--------------------------------------------------|--------|----------|---------|---------|--------|-----------|--------------|----------------|------------|-----------|----------------|---------------------------|------------|----------------|-----------|----------------------|--------------------------------------------------|---------|------------------|---------------------|----------------|------------|----------------------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|----------------|
| STREET                                                | FROM       | то                     | C=                                               |        | C=       | C=      | C=      | C=     |           | ACCUM.       |                | TIME       | TOTAL     | . 1            | PEAK                      |            | A (ha)         | FLOV      |                      |                                                  |         | T (L/s)          | 1                   | INDIV.         | ACCUM.     | CAP.                 | LENGTH  |              | SLOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | RATIONAL         | ICD REST       |
|                                                       | МН         | MH                     | 0.20                                             | 0.30   | 0.45     | 0.55    | 0.60    | 0.90   | 2.78AC    | 2.78AC       | (min.)         | IN PIPE    | (min.)    | (mm/Hr)        | FLOW (L/s)                | INDIV.     | ACCUM.         | INDIV.    | ACCUM.               | 1                                                | 13.4 2  | 0.0 28.4         | 37.0                | FLOW (L/s)     | FLOW (L/s) | (L/s)                | (M)     | (mm)         | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (M/s)  | 5 YEAR           | FLOW           |
| rom Phasa 12                                          |            |                        | -                                                |        |          |         |         |        | -         | 21.62        |                |            | 26.51     |                |                           |            | 13.99          |           | 1,189.15             | -                                                |         | -                | +-                  |                | 1,182.80   |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| rom Phase 12                                          |            |                        | -                                                |        |          | _       |         |        |           | 21.02        |                |            | 20.31     |                |                           |            | 13.99          |           | 1,109.13             |                                                  | _       | _                | +                   |                | 1,102.00   |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Phase 11                                              |            |                        | 1                                                |        |          |         |         |        | _         |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  | +                   |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Kinloch Court                                         | 140        | 141                    |                                                  |        | 1.08     |         |         |        | 1.35      | 22.97        | 26.51          | 0.96       | 27.48     | 58.58          | 1,345.65                  | 1.08       | 15.07          | 91.80     | 1,280.95             |                                                  | 1       | 2                |                     | 53.40          | 1,236.20   | 1,560.63             | 101.0   | 1050         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.746  | 13.78%           | 20.79          |
| Kinloch Court                                         | 141        | 142                    |                                                  |        | 0.22     |         |         |        | 0.28      | 23.25        | 27.48          | 0.82       | 28.30     | 57.21          | 1,330.09                  | 0.22       | 15.29          | 18.70     |                      |                                                  | 1       |                  |                     | 13.40          |            |                      | 66.5    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 15.54%           | 20.66          |
| Kinloch Court                                         | 142        | 144                    |                                                  |        | 0.42     |         |         |        | 0.53      | 23.78        | 28.30          | 0.43       | 28.73     | 56.09          | 1,333.85                  | 0.42       | 15.71          | 35.70     | 1,335.35             |                                                  |         | 2                |                     | 40.00          | 1,289.60   | 1,574.90             | 35.1    | 1200         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.349  | 15.31%           | 18.12          |
| D - 1 11 W                                            | 4.40       | 444                    | -                                                |        |          |         | 0.50    |        | 0.00      | 0.00         | 45.00          | 0.00       | 45.00     | 00.50          |                           | 0.50       | 0.50           | 47.60     | 47.60                | -                                                | _       | _                | +-                  | 46.80          | 46.80      | 100.91               | 51.0    | 300          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.383  | 22.99%           | 53.62          |
| Dundonald Way                                         | 143        | 144                    | -                                                |        | _        |         | 0.56    |        | 0.93      | 0.93         | 15.00          | 0.62       | 15.62     | 83.56          | 77.71                     | 0.56       | 0.56           | 47.60     | 47.60                | -                                                | 2       | <del>'   -</del> | +                   | 40.80          | 46.00      | 100.91               | 31.0    | 300          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.303  | 22.9970          | 33.02          |
| Dundonald Way                                         | 144        | 146                    | -                                                |        | -        |         | 0.25    |        | 0.42      | 25.13        | 28.73          | 0.99       | 29.72     | 55.52          | 1,395.25                  | 0.25       | 16.52          | 21.25     | 1,404.20             |                                                  | _       | 1                | +                   | 20.00          | 1,356.40   | 1,574.90             | 80.0    | 1200         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.349  | 11.41%           | 13.87          |
|                                                       |            |                        |                                                  |        |          |         | 0.20    |        | 0         |              |                |            |           |                | .,,                       | 0.20       |                |           | .,,                  |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Dundonald Way                                         | 145        | 146                    |                                                  |        |          |         | 0.25    |        | 0.42      | 0.42         | 10.00          | 0.48       | 10.48     | 104.19         | 43.76                     | 0.25       | 0.25           | 21.25     | 21.25                |                                                  |         | 1                |                     | 20.00          | 20.00      | 87.71                | 49.5    | 250          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.731  | 50.11%           | 77.20          |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Blackleaf Drive                                       | 146        | 147                    | _                                                |        |          |         | 0.46    |        | 0.77      |              |                |            |           |                | 1,428.38                  |            | 17.23          |           | 1,464.55             | $\vdash$                                         |         | 2                | -                   | 40.00          |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 18.90%           | 19.58          |
| Blackleaf Drive                                       | 147        | 148                    | -                                                |        | 0.15     |         | 0.12    |        | 0.39      |              | 30.64          |            |           |                | 1,419.99                  | 0.27       | 17.50          | 22.95     |                      | -                                                | 2       | _                | +                   | 26.80          |            | 1,761.25             |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 19.38%<br>20.37% | 18.06<br>18.06 |
| Blackleaf Drive                                       | 148        | 153                    | _                                                | _      | _        |         |         |        | 0.00      | 26.71        | 31.20          | 0.25       | 31.45     | 52.51          | 1,402.43                  | 0.00       | 17.50          | 0.00      | 1,487.50             | -                                                | -       | _                | +                   | 0.00           | 1,443.20   | 1,761.25             | 17.9    | 1330         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.192  | 20.3170          | 10.00          |
| Cheyenne Way                                          | 149        | 150                    | <del>                                     </del> |        | 0.39     |         | 0.22    |        | 0.85      | 0.85         | 15.00          | 0.34       | 15.34     | 83.56          | 71.02                     | 0.61       | 0.61           | 51.85     | 51.85                |                                                  | 1       | 1                | +                   | 33.40          | 33.40      | 87.34                | 24.5    | 300          | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.197  | 18.68%           | 61.76          |
| Cheyenne Way                                          | 150        | 153                    |                                                  |        | 0.71     |         | 0.07    |        | 1.00      |              |                |            |           |                | 152.57                    |            | 1.39           | 66.30     |                      |                                                  | _       | 1                |                     | 33.40          |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 6.32%            | 58.98          |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Block 332 Kennacraig Private                          | 175        | 151                    |                                                  |        |          |         | 0.55    |        | 0.92      | 0.92         | 15.00          | 0.79       |           |                | 76.87                     |            | 0.55           | 46.75     |                      | _                                                | 1       | 1                |                     | 33.40          |            | -                    | 41.4    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 23.29%           | 66.67          |
| Block 332 Kennacraig Private                          | 151        | 152                    | _                                                |        |          |         | 0.07    |        | 0.12      | 1.04         | 15.79          | 0.97       |           |                | 84.35                     |            | 0.62           | 5.95      |                      |                                                  | 1       |                  | -                   | 13.40          |            | 100.21               | 51.3    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 15.83%           | 53.30          |
| Block 332 Kennacraig Private                          | 152        | 153                    | -                                                |        |          |         | 0.31    |        | 0.52      | 1.56         | 16.76          | 1.26       | 18.02     | 78.28          | 122.11                    | 0.31       | 0.93           | 26.35     | 79.05                | $\vdash$                                         | _       | 1                | +                   | 20.00          | 66.80      | 175.99               | 80.9    | 450          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.072  | 30.62%           | 62.04          |
| Blackleaf Drive                                       | 153        | 155                    | _                                                |        | 0.26     |         |         |        | 0.33      | 30.45        | 31.45          | 0.83       | 32.29     | 52.22          | 1,590.12                  | 0.26       | 20.08          | 22 10     | 1,706.80             | $\vdash$                                         | 1       | 2                | +                   | 53.40          | 1,630.20   | 2,331.26             | 63.8    | 1500         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.278  | 31.79%           | 30.07          |
| Blackleal Drive                                       | 155        | 100                    | _                                                |        | 0.20     |         |         |        | 0.33      | 30.43        | 31.43          | 0.03       | 32.29     | 52.22          | 1,590.12                  | 0.20       | 20.00          | 22.10     | 1,700.00             |                                                  | -       | -                | +                   | 33.40          | 1,030.20   | 2,001.20             | 00.0    | 1000         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.270  | 01.7070          | 00.01          |
| Block 332 Kennacraig Private                          | 154        | 155                    |                                                  |        |          |         | 0.61    |        | 1.02      | 1.02         | 15.00          | 1.80       | 16.80     | 83.56          | 85.23                     | 0.61       | 0.61           | 51.85     | 51.85                |                                                  | 1       | 2                |                     | 53.40          | 53.40      | 100.21               | 95.0    | 375          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.879  | 14.95%           | 46.71          |
| <b>9</b>                                              |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Blackleaf Drive                                       | 155        | 161                    |                                                  |        | 0.29     |         | 0.02    |        | 0.40      | 31.87        | 32.29          | 0.94       | 33.23     | 51.30          | 1,634.82                  | 0.31       | 21.00          | 26.35     | 1,785.00             |                                                  | 1       | 1                |                     | 33.40          | 1,717.00   | 2,331.26             | 72.1    | 1500         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.278  | 29.87%           | 26.35          |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  | -                   |                |            |                      | 0.1.5   | 0.50         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000  | 77.450/          | 00.40          |
| Block 333 Pamplona Private                            | 156        | 157                    | -                                                |        |          |         | 0.07    |        | 0.12      | 0.12         | 15.00          | 0.41       |           | 83.56          | 10.03                     | -          | 0.07           | 5.95      |                      | $\vdash$                                         | 1       |                  | -                   | 13.40          |            | 43.88                |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 77.15%<br>77.51% | 69.46<br>69.46 |
| Block 333 Pamplona Private Block 333 Pamplona Private | 157<br>158 | 158<br>160             | _                                                |        |          | -       | -       |        | 0.00      | 0.12<br>0.12 | 15.41<br>15.65 | 0.23       |           | 82.24<br>81.53 | 9.87                      | -          | 0.07           | 0.00      |                      |                                                  |         |                  | +                   | 0.00           |            | 43.88                |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                  | 69.46          |
| Block 333 Fampiona Filvate                            | 130        | 100                    | <del>                                     </del> |        |          |         |         |        | 0.00      | 0.12         | 15.05          | 0.30       | 10.02     | 01.00          | 9.70                      | 0.00       | 0.07           | 0.00      | 3.93                 |                                                  | _       | _                | +                   | 0.00           | 13.40      | 45.00                | 13.0    | 200          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000  | 11.1070          | 00.40          |
| Block 333 Pamplona Private                            | 159        | 160                    | 1                                                |        |          |         | 0.22    |        | 0.37      | 0.37         | 10.00          | 1.08       | 11.08     | 104.19         | 38.55                     | 0.22       | 0.22           | 18.70     | 18.70                |                                                  |         | 1                |                     | 20.00          | 20.00      | 100.21               | 57.0    | 375          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.879  | 61.53%           | 80.04          |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Block 333 Treadway Private                            | 160        | 161                    |                                                  |        |          |         | 0.30    |        | 0.50      | 0.99         | 15.00          | 1.54       | 16.54     | 83.56          | 82.72                     | 0.30       | 0.59           | 25.50     | 50.15                |                                                  |         | 2                |                     | 40.00          | 73.40      | 100.21               | 81.0    | 375          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.879  | 17.46%           | 26.76          |
|                                                       |            |                        | _                                                |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  | -                   | 0400           | 4 004 40   | 0.004.00             | 00.5    | 4500         | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.070  | 27.47%           | 19.17          |
| Blackleaf Drive                                       | 161        | 166                    | _                                                |        | 0.61     |         |         |        | 0.76      | 33.62        | 33.23          | 0.87       | 34.09     | 50.29          | 1,690.91                  | 0.61       | 22.20          | 51.85     | 1,887.00             | -                                                |         | 1                | 2                   | 94.00          | 1,884.40   | 2,331.26             | 66.5    | 1500         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.278  | 27.41%           | 19.17          |
| Block 333 Rannoch Private                             | 162        | 166                    | _                                                |        |          |         | 0.51    |        | 0.85      | 0.85         | 10.00          | 1.82       | 11.82     | 104.19         | 88.56                     | 0.51       | 0.51           | 43.35     | 43.35                | $\vdash$                                         | 1       | 3                | +                   | 73.40          | 73.40      | 100.21               | 96.0    | 375          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.879  | 11.63%           | 26.76          |
| Block Goo Rannoon i nvate                             | 102        | 100                    | 1                                                |        |          |         | 0.01    |        | 0.00      | 0.00         | 10.00          | 1.02       | 11.02     | 104.10         | 00.50                     | 0.01       | 0.01           | 40.00     | 40.00                |                                                  |         | <u> </u>         | _                   | 70.10          | 70.10      | 100.21               |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Sunita Crescent                                       | 163        | 164                    |                                                  |        | 0.33     |         |         |        | 0.41      | 0.41         | 10.00          | 2.43       | 12.43     | 104.19         | 42.72                     | 0.33       | 0.33           | 28.05     | 28.05                |                                                  |         | 1                |                     | 20.00          | 20.00      | 91.44                | 117.1   | 375          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 53.28%           | 78.13          |
| Sunita Crescent                                       | 164        | 165                    |                                                  |        | 0.06     |         |         |        | 0.08      | 0.49         | 15.00          | 0.28       |           |                | 40.94                     |            | 0.39           | 5.10      |                      |                                                  | 1       |                  |                     | 13.40          |            |                      | -       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 55.22%           | 63.47          |
| Sunita Crescent                                       | 165        | 166                    |                                                  |        | 0.42     |         |         |        | 0.53      | 1.02         | 15.28          | 1.69       | 16.97     | 82.67          | 84.32                     | 0.42       | 0.81           | 35.70     | 68.85                | $\vdash$                                         |         | 1                | -                   | 20.00          | 53.40      | 132.98               | 82.3    | 450          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.810  | 36.59%           | 59.84          |
| Blackleaf Drive                                       | 166        | 167                    | <del> </del>                                     | _      | 0.71     |         | 0.16    |        | 1.16      | 36.65        | 34.09          | 0.95       | 35.05     | 49.41          | 1,810.84                  | 0.87       | 24.39          | 72.05     | 2.073.15             | -                                                | 2       | 2                | +                   | 66.80          | 2,078.00   | 2,331.26             | 73.1    | 1500         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.278  | 22.32%           | 10.86          |
| Blackleaf Drive                                       | 167        | 168                    | <del>                                     </del> |        | 0.71     |         | 0.16    |        | 0.31      |              | 35.05          |            |           | 49.41          | 1,791.61                  |            | 24.59          |           | 2,073.15             | _                                                | 1       | -                | +                   | 13.40          |            | -                    |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 23.15%           |                |
| Blackleaf Drive                                       | 168        |                        | _                                                |        | 0.20     |         |         |        | 0.00      |              |                |            |           |                |                           | -          | 24.64          |           | 2,094.40             | _                                                |         |                  |                     | 0.00           |            | 2,331.26             | -       |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                  |                |
|                                                       |            |                        |                                                  |        |          |         |         |        | 1.00      | 22.00        | 23.27          | 30         | 23.02     | .5.20          | .,                        |            | 1              | 0.50      |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Blackleaf Drive                                       | 169        | 170                    |                                                  |        | 0.29     |         |         |        | 0.36      | 0.36         | 10.00          | 1.25       | 11.25     | 104.19         | 37.51                     | 0.29       | 0.29           | 24.65     | 24.65                |                                                  |         | 1                |                     | 20.00          | 20.00      | 100.21               | 66.0    | 375          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.879  | 62.57%           | 80.04          |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  | _                   |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 00 101           |                |
| Sunita Crescent                                       | 170        | 171                    |                                                  |        | 0.57     |         |         |        |           | 38.03        | 36.02          |            |           |                |                           |            | 25.50          |           | 2,167.50             |                                                  |         | 2                | +                   | 53.40          |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Sunita Crescent Sunita Crescent                       | 171<br>172 | 172<br>173             |                                                  |        | 0.85     |         |         |        | 1.06      |              |                |            |           |                |                           |            | 26.35<br>27.17 |           | 2,239.75<br>2,309.45 |                                                  | 2       | 2                | +                   | 83.60<br>53.40 |            | 3,006.23<br>3,006.23 |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Ourilla Orescelli                                     | 112        | 173                    | _                                                |        | 0.62     |         |         |        | 1.03      | 40.12        | 30.32          | 1.29       | 39.02     | 40.54          | 1,020.98                  | 0.02       | 21.11          | 09.70     | 2,309.43             | <del>                                     </del> | -       | -                | +                   | 33.40          | 2,301.00   | 5,000.23             | 100.0   | 1030         | 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.002  | 00.2070          | 20.40          |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
|                                                       |            |                        |                                                  |        | Refer to | o Phase | 12 Sto  | rm Sew | er Desig  | n Sheet      |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Designed: LME                                         |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  | 10 00               |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
|                                                       |            |                        |                                                  |        |          |         |         |        |           | _            |                | AIC, where |           |                |                           | Level of S | Service=       | 85.00     | L/s/Ha               | Assume                                           | ed CB H | ead= <u>1.</u>   | 22 <sub>m</sub> [1: | 5 yr]          |            | 1                    | Mann    | ings Coeff   | cient (n) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.013  |                  |                |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           | econd (l/s)    |                           | 1          |                |           |                      | l                                                |         |                  |                     |                |            |                      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                  |                |
| Checked:                                              |            |                        |                                                  |        |          |         |         |        |           |              |                | in Hectare |           |                | Company of the company of | 1          |                |           |                      | 1                                                |         |                  |                     |                |            | 1                    |         | 100          | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     |                  |                |
|                                                       |            |                        |                                                  |        |          |         |         |        |           |              |                |            |           |                | our (mm/hr)               | 1          |                |           |                      | l                                                |         |                  |                     |                |            | 1                    | do"     | The same     | The state of the s | M      |                  |                |
|                                                       |            |                        | Re                                               | vision |          |         |         |        | Date      |              | [1=998         | .071/((TC+ | 6.053)^0. | 814]           |                           | 1          |                |           |                      | l                                                |         |                  |                     |                |            |                      | 14      | //           | M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 1    |                  |                |
| Dwg. Reference:<br>25099-500                          |            | File Ref:<br>5099- 5.7 |                                                  |        |          | ite:    |         |        | Sheet No. | ):           |                |            |           |                |                           | 1          |                |           |                      |                                                  |         |                  |                     |                |            |                      | THE COL | THE PARTY OF | Compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5. V   |                  |                |
|                                                       | 2:         | J.C -650               |                                                  |        | U4/U8    | VZUTU   |         |        | 1 01 1    |              |                |            |           |                |                           |            |                |           |                      |                                                  |         |                  |                     |                |            | 1. 5                 | 63 /    | /            | C 700 0 3 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21. 13 |                  |                |



IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

## STORM SEWER DESIGN SHEET

PROJECT: Stonebridge Phase 11 & 12 Temporary Outlet LOCATION: City of Ottawa

CLIENT: Monarch Corporation

| LOCATION                   |        |           |              |         |       | AR     | EA (Ha) |         |          |        |          |            |        | RATIONAL D   | ESIGN FLOV  | V          |            | T                                                | LEVEL O           | F SERVICE |          | T        | SE     | WER DAT     | A            |             | AVAIL. C       | AP. (%)  |
|----------------------------|--------|-----------|--------------|---------|-------|--------|---------|---------|----------|--------|----------|------------|--------|--------------|-------------|------------|------------|--------------------------------------------------|-------------------|-----------|----------|----------|--------|-------------|--------------|-------------|----------------|----------|
| STREET                     | FROM   | то        | C=           | C=      | C=    | C=     |         |         | INDIV.   | ACCUM. | INLET    | TIME       | TOTAL  |              | I (10 year) | PEAK       | TOTAL PEAK | ARI                                              | EA (ha)           | FLOW      |          | CAP.     | LENGTH | PIPE        | SLOPE        | VEL.        | RATIONAL       | LEVEL OF |
|                            | MH     | MH        | 0.20         | 0.30    | 0.45  | 0.70   | 0.60    | 0.80    | 2.78AC   | 2.78AC | (min.)   | IN PIPE    | (min.) | (mm/Hr)      |             | FLOW (L/s) | FLOW (L/s) | INDIV.                                           | ACCUM.            | INDIV.    | ACCUM.   | (L/s)    | (M)    | (mm)        | (%)          | (M/s)       | 5 YEAR         | SERVICE  |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
| TEMPORARY OUTLET THROU     | GH PAR | LANDS     | _            |         |       | -      | -       | -       |          |        |          |            |        |              |             |            |            | -                                                |                   |           |          |          |        |             |              | -0          |                |          |
| Sunita Crescent (see Storm |        |           |              |         |       | _      |         |         |          | _      |          |            |        |              |             |            |            | <del>                                     </del> |                   |           |          |          |        |             |              |             |                |          |
| Sewer Design Sheet         |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
| Stonebridge Phase 11 & 12) | 170    | 171       |              |         |       |        |         |         |          | 38.03  | 37.22    | 1.20       | 38.42  | 46.48        |             | 1,767.69   | 1,767.69   | 0.00                                             | 25.50             | 0.00      | 2,167.50 | 2,331.26 | 92.2   | 1500        | 0.10         | 1.278       | 24.17%         | 7.02%    |
|                            | 474    |           |              |         |       | -      |         |         |          |        |          |            | 22.22  | 45.40        |             | 4 700 74   | 4 700 74   |                                                  | 05.50             | 0.00      | 0.407.50 | 0.000.00 | F4.0   | 1350        | 0.16         | 1.507       | 22.36%         | 2.66%    |
| Temporary Outlet Block 335 | 171    | 300A      | -            | _       | _     |        | -       |         | 0.00     | 38.03  | 38.42    | 0.57       | 38.99  | 45.46        | -           | 1,728.71   | 1,728.71   | 0.00                                             | 25.50             | 0.00      | 2,167.50 | 2,226.68 | 51.3   | 1330        | 0.16         | 1.507       | 22.3076        | 2.0076   |
| Park                       | 300A   | 300       |              |         |       |        |         | <b></b> | 0.00     | 38.03  | 38.99    | 0.24       | 39.23  | 44.99        |             | 1,710.97   | 1,710.97   | 0.00                                             | 25.50             | 0.00      | 2,167.50 | 2,226.68 | 21.7   | 1350        | 0.16         | 1.507       | 23.16%         | 2.66%    |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
| Park                       | 300    | 301       |              | 2.18    |       |        |         | 0.76    | 3.51     | 41.54  | 38.99    | 1.01       | 40.00  | 44.99        |             | 1,868.89   | 1,868.89   | 2.94                                             | 28.44             | 249.90    | 2,417.40 | 2,489.69 | 102.5  | 1350        | 0.20         | 1.685       | 24.93%         | 2.90%    |
| Park                       | 301    | 301A      |              |         | _     | -      |         |         | 0.00     | 41.54  | 40.00    | 0.33       | 40.33  | 44.18        |             | 1,985.32   | 1,985.32   | 0.00                                             | 28.44             | 0.00      | 2 567 40 | 2,783.72 | 37.0   | 1350        | 0.25         | 1.884       | 28.68%         | 7.77%    |
| Faik                       | 301    | 30 IA     |              |         |       |        |         |         | 0.00     | 41.54  | 40.00    | 0.55       | 40.33  | 44.10        |             | 1,303.32   | 1,903.32   | 0.00                                             | 20.44             | 0.00      | 2,507.40 | 2,703.72 | 07.0   | 1000        | 0.20         | 1.004       | 20.0070        | 7.1770   |
| Park                       | 301A   | 302       |              |         |       |        |         |         | 0.00     | 41.54  | 40.33    | 0.58       | 40.91  | 43.93        |             | 1,974.79   | 1,974.79   | 0.00                                             | 28.44             | 0.00      | 2,567.40 | 2,783.72 | 65.0   | 1350        | 0.25         | 1.884       | 29.06%         | 7.77%    |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             | 05.0404        | 00.000   |
| Park                       | 302    | 303       |              |         |       | -      | 2.43    | 2.74    | 10.15    | 51.69  | 40.33    | 0.67       | 41.00  | 43.93        |             | 2,420.66   | 2,420.66   | 5.17                                             | 33.61             | 439.45    | 3,006.85 | 3,761.39 | 82.9   | 1500        | 0.26         | 2.062       | 35.64%         | 20.06%   |
| Cambrian Road              | 303    | 304       | -            | _       |       | 0.73   | _       | _       | 1.42     | 1.42   | 41.00    | 1.27       | 42.27  |              | 50.70       | 71.99      |            | 0.73                                             | 0.73              | 175.20    |          |          |        |             |              |             |                |          |
| - Cambrian Road            | 000    | 004       | _            | 0.73    |       | 0.70   |         |         | 1.42     | 51.69  |          | 1.27       | 42.27  | 43.42        |             | 2,394.31   | 2,466.30   |                                                  |                   |           |          | 3,793.06 | 110.0  | 1800        | 0.10         | 1.444       | 34.98%         | 14.47%   |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
| Cambrian Road              | 304    | Ex. 177   |              |         |       |        |         |         |          | 1.42   | 42.27    | 1.19       | 43.46  |              | 49.60       |            |            | 0.00                                             |                   | 0.00      |          | 0.700.00 | 400.0  | 4000        | 0.40         | 4 444       | 20.000/        | 4.4.470/ |
|                            |        |           | -            |         | _     | -      |         |         |          | 51.69  | 42.27    |            |        | 42.49        |             | 2,346.17   | 2,416.61   | 0.00                                             | 34.34             | 0.00      | 3,244.10 | 3,793.06 | 103.2  | 1800        | 0.10         | 1.444       | 36.29%         | 14.47%   |
|                            |        |           | _            | _       | _     | _      |         | _       |          |        |          |            |        |              |             |            |            | _                                                |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            | -                                                |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           | -            |         |       | _      |         | _       |          |        |          |            |        |              |             |            |            | -                                                |                   |           |          | _        |        |             |              |             |                |          |
|                            |        |           | _            |         |       | _      |         |         |          |        |          |            |        |              |             |            |            | <del>                                     </del> |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         | _       |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              | _       |       |        | -       |         |          |        | -        |            |        |              |             |            |            | -                                                |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            | -                                                |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           | _            |         |       |        |         |         |          |        |          |            |        |              |             |            |            | <del>                                     </del> |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            | -      |           | -            |         |       | -      |         |         |          |        |          |            |        |              | -           |            |            | ├──                                              |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           | <del> </del> |         | _     | _      | _       |         |          |        |          |            |        |              |             |            |            | <b> </b>                                         |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |
|                            |        |           |              |         |       |        |         |         |          |        |          |            |        |              |             |            |            | I avel et                                        | Candias =         |           |          |          |        |             |              |             |                |          |
| Designed: LME              |        |           |              |         |       |        |         |         |          |        | 0 = 0.70 | VIC 11-1-1 |        |              |             |            |            | Level of                                         |                   | 05.00     | L/s/Ha   |          | Mann   | ings Coeffi | cient (n) -  | 0.013       |                |          |
|                            |        |           |              |         |       |        |         | _       |          |        |          | AIC, where |        | econd (I/s)  |             |            |            | 1                                                | 5 Year<br>10 Year |           | L/s/Ha   |          | wann   | ings Coeffi | Cient (II) = | 0.013       |                |          |
| Checked:                   |        |           |              |         |       |        |         |         |          |        |          | in Hectare |        | coolid (IIS) |             |            |            | 1                                                | .v roai           | 240.00    | 2/0//10  |          |        | 150 l/s ad  | lded for m   | ajor syster | n retention ar | ea       |
|                            |        |           |              |         |       | _      |         |         |          |        |          |            |        | ters per Hou | r (mm/hr)   |            |            | 1                                                |                   |           |          |          |        | release flo |              | •           |                |          |
|                            |        |           | Re           | evision |       |        |         |         | Date     |        |          | .071/((TC+ |        |              |             |            |            | 1                                                |                   |           |          |          |        |             |              |             |                |          |
| Dwg. Reference:            |        | File Ref: |              |         |       | ate:   |         |         | Sheet No |        |          |            |        |              |             |            |            | 1                                                |                   |           |          |          |        |             |              |             |                |          |
|                            | 2      | 5099- 5.7 |              |         | 04/08 | 3/2010 |         |         | 1 of 1   |        |          |            |        |              |             |            |            |                                                  |                   |           |          |          |        |             |              |             |                |          |



STONEBRIDGE PHASE 11 HGL CALCULATION - 100 YEAR

| [                                                                                                                                                                                                                                                                                                                 | 7                                                         |                                                                                         |                                                      | <u> </u>     |                              |             |             |                                |                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|--------------|------------------------------|-------------|-------------|--------------------------------|--------------------------------|
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | FROM                                                      | TO                                                                                      |                                                      | MANNING      | 3 FORMU                      | ILA - FLOV  | WING FUL    | -L                             |                                |
| SUNITA CRESCENT                                                                                                                                                                                                                                                                                                   | MH                                                        | MH                                                                                      | ID .                                                 |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   |                                                           |                                                                                         |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   | 173                                                       | 172                                                                                     |                                                      |              |                              |             |             |                                |                                |
| INVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 90.261                                                    | 90.366                                                                                  |                                                      |              |                              |             |             |                                |                                |
| DIAMETER (mm)                                                                                                                                                                                                                                                                                                     |                                                           |                                                                                         | 1650                                                 | DIA          | AREA                         | PERIM.      | HYD.R.      | VEL.                           | Q                              |
| LENGHT (m)                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                         | 105.5                                                | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| OBVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 91.937                                                    | 92.042                                                                                  |                                                      | 1.676        | 2.21                         | 5.26        | 0.42        | 1.36                           | 2998.49                        |
| FLOW (I/s)                                                                                                                                                                                                                                                                                                        |                                                           | •                                                                                       | 2,309.5                                              |              |                              |             |             | <del></del>                    |                                |
| HGL (m)                                                                                                                                                                                                                                                                                                           | 92.200                                                    | 92.262                                                                                  |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   |                                                           |                                                                                         |                                                      |              |                              |             |             |                                |                                |
| MANHOLE LOSS (m)                                                                                                                                                                                                                                                                                                  |                                                           | 0.010                                                                                   |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   |                                                           |                                                                                         |                                                      |              |                              |             |             |                                |                                |
| TOTAL HGL (m)                                                                                                                                                                                                                                                                                                     |                                                           | 92.272                                                                                  |                                                      |              |                              |             |             |                                |                                |
| MAX. SURCHARGE (mm)                                                                                                                                                                                                                                                                                               |                                                           | 229                                                                                     |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   | ./\                                                       |                                                                                         |                                                      |              | ·····                        |             |             |                                |                                |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | FROM                                                      | то                                                                                      | PIPE                                                 |              |                              |             |             |                                |                                |
| SUNITA CRESCENT                                                                                                                                                                                                                                                                                                   | МН                                                        | мн                                                                                      | ID                                                   |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   | ,,,,,                                                     | .,                                                                                      |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   | 172                                                       | 171                                                                                     |                                                      |              |                              |             |             |                                |                                |
| INVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 90.366                                                    | 90.456                                                                                  |                                                      |              |                              |             |             |                                |                                |
| DIAMETER (mm)                                                                                                                                                                                                                                                                                                     | 1 - 2,000                                                 |                                                                                         | 1650                                                 | DIA          | AREA                         | PERIM.      | HYD.R.      | VEL.                           | Q                              |
| LENGHT (m)                                                                                                                                                                                                                                                                                                        | <b> </b>                                                  | ······································                                                  | 90.1                                                 | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| OBVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 92.042                                                    | 92.132                                                                                  |                                                      | 1.676        | 2.21                         | 5.26        | 0.42        | 1.36                           | 3004.50                        |
| FLOW (1/s)                                                                                                                                                                                                                                                                                                        | 32.042                                                    | 02.102 <sub>1</sub>                                                                     | 2,239,8                                              | 1.070        | £41£-1                       | 0,20        | 0.72        | 1.00                           | 000-7.00                       |
| 1 ' '                                                                                                                                                                                                                                                                                                             | 92.272                                                    | 92.322                                                                                  | 2,239.0                                              |              |                              |             |             |                                |                                |
| HGL (m)                                                                                                                                                                                                                                                                                                           | 92.212                                                    | 92.322                                                                                  |                                                      |              |                              |             |             |                                |                                |
| MANHOLE LOSS (m)                                                                                                                                                                                                                                                                                                  |                                                           | 0.009                                                                                   |                                                      |              |                              |             |             |                                |                                |
| MAN OLL LOSS (III)                                                                                                                                                                                                                                                                                                | -                                                         | 0.009                                                                                   |                                                      |              |                              |             |             |                                |                                |
| TOTAL HGL (m)                                                                                                                                                                                                                                                                                                     |                                                           | 92.331                                                                                  |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   |                                                           | 199                                                                                     |                                                      |              |                              |             |             |                                |                                |
| BRANY CHRUTHADILL (PARA)                                                                                                                                                                                                                                                                                          |                                                           |                                                                                         |                                                      |              |                              |             |             |                                |                                |
| MAX. SURCHARGE (mm)                                                                                                                                                                                                                                                                                               |                                                           | 1001                                                                                    |                                                      |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   | I FOOM                                                    |                                                                                         | O'O''                                                |              |                              |             |             |                                |                                |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | FROM                                                      | то                                                                                      | PIPE                                                 |              |                              |             |             |                                |                                |
|                                                                                                                                                                                                                                                                                                                   | FROM MH                                                   |                                                                                         | PIPE<br>ID                                           |              |                              |             |             |                                |                                |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | МН                                                        | TO<br>MH                                                                                |                                                      |              |                              |             |             |                                |                                |
| FRICTION LOSS<br>SUNITA CRESCENT                                                                                                                                                                                                                                                                                  | MH<br>171                                                 | TO<br>MH                                                                                |                                                      |              |                              |             |             |                                |                                |
| FRICTION LOSS SUNITA CRESCENT INVERT ELEVATION (m)                                                                                                                                                                                                                                                                | МН                                                        | TO<br>MH                                                                                | ID                                                   | Dia          | ABCA                         | DEDM        | LVO B       | l VE                           |                                |
| FRICTION LOSS<br>SUNITA CRESCENT<br>INVERT ELEVATION (m)<br>DIAMETER (mm)                                                                                                                                                                                                                                         | MH<br>171                                                 | TO<br>MH                                                                                | 1500                                                 | DiA          | AREA                         | PERIM.      | HYD.R.      | VEL.                           | Q                              |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m)                                                                                                                                                                                                                                      | MH<br>171<br>90.608                                       | TO<br>MH<br>170<br>90.700                                                               | ID                                                   | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                                                                                                                                                                                                 | MH<br>171                                                 | TO<br>MH                                                                                | 1500<br>92.2                                         |              |                              |             |             |                                |                                |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                                                                                                                                                                                                      | MH<br>171<br>90.608<br>92.132                             | TO<br>MH<br>170<br>90.700                                                               | 1500                                                 | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                                                                                                                                                                                                 | MH<br>171<br>90.608                                       | TO<br>MH<br>170<br>90.700                                                               | 1500<br>92.2                                         | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)                                                                                                                                                                                              | MH<br>171<br>90.608<br>92.132                             | TO MH 170 90.700 92.224 92.411                                                          | 1500<br>92.2                                         | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                                                                                                                                                                                                      | MH<br>171<br>90.608<br>92.132                             | TO<br>MH<br>170<br>90.700                                                               | 1500<br>92.2                                         | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)                                                                                                                                                                             | MH<br>171<br>90.608<br>92.132                             | TO MH 170 90.700 92.224 92.411 0.010                                                    | 1500<br>92.2                                         | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m)                                                                                                                                                             | MH<br>171<br>90.608<br>92.132                             | TO MH 170 90.700 92.224 92.411 0.010 92.421                                             | 1500<br>92.2                                         | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)                                                                                                                                                                             | MH<br>171<br>90.608<br>92.132                             | TO MH 170 90.700 92.224 92.411 0.010                                                    | 1500<br>92.2                                         | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.132<br>92.331                                          | TO MH 170 90.700 92.224 92.411 0.010 92.421 197                                         | 1500<br>92.2<br>2,167.5                              | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.132<br>92.331                                          | TO MH 170 90.700 92.224 92.411 0.010 92.421 197                                         | 1500<br>92.2<br>2,167.5                              | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.132<br>92.331                                          | TO MH 170 90.700 92.224 92.411 0.010 92.421 197                                         | 1500<br>92.2<br>2,167.5                              | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.132<br>92.331<br>97.331                                | 92.224<br>92.411<br>0.010<br>92.421<br>197                                              | 1500<br>92.2<br>2,167.5                              | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE                                                                                                          | 92.132<br>92.331<br>97.000<br>92.132                      | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169                        | 1500<br>92.2<br>2,167.5                              | (m)          | (M2)                         | (m)         | (m)         | (m/s)                          | (l/s)                          |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE                                                                                                           | 92.132<br>92.331<br>97.331                                | 92.224<br>92.411<br>0.010<br>92.421<br>197                                              | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID                | (m)<br>1.524 | (M2)<br>1.82                 | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28                  | (l/s)<br>2328.82               |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm)                                                                       | 92.132<br>92.331<br>97.000<br>92.132                      | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169                        | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID                | (m)<br>1.524 | (M2)<br>1.82                 | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28                  | (l/s)<br>2328.82               |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m)                                                            | 92.132<br>92.331<br>92.331<br>FROM<br>MH                  | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100                 | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID                | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                      | 92.132<br>92.331<br>97.000<br>92.132                      | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169                        | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID<br>375<br>66.0 | (m)<br>1.524 | (M2)<br>1.82                 | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82               |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s)                           | 92.132<br>92.331<br>92.331<br>FROM<br>MH<br>170<br>91.903 | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100  92.481         | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID                | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                      | 92.132<br>92.331<br>92.331<br>FROM<br>MH                  | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100                 | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID<br>375<br>66.0 | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)                   | 92.132<br>92.331<br>92.331<br>FROM<br>MH<br>170<br>91.903 | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100  92.481         | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID<br>375<br>66.0 | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s)                           | 92.132<br>92.331<br>92.331<br>FROM<br>MH<br>170<br>91.903 | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100  92.481         | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID<br>375<br>66.0 | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m) | 92.132<br>92.331<br>92.331<br>FROM<br>MH<br>170<br>91.903 | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100  92.481  92.437 | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID<br>375<br>66.0 | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |
| FRICTION LOSS SUNITA CRESCENT  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)                   | 92.132<br>92.331<br>92.331<br>FROM<br>MH<br>170<br>91.903 | TO MH  170 90.700  92.224  92.411  0.010  92.421 197  TO MH  169 92.100  92.481         | 1500<br>92.2<br>2,167.5<br>PIPE<br>ID<br>375<br>66.0 | (m)<br>1.524 | (M2)<br>1.82<br>AREA<br>(M2) | (m)<br>4.79 | (m)<br>0.38 | (m/s)<br>1.28<br>VEL.<br>(m/s) | (l/s)<br>2328.82<br>Q<br>(l/s) |

| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | FROM                             | TO                                                                                            | PIPE                                                  |              |              |             |                  |                                         |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|--------------|-------------|------------------|-----------------------------------------|------------------|
| BLACKLEAF DRIVE                                                                                                                                                                                                                                                                                                   | мн І                             | МН                                                                                            | ID                                                    |              |              |             |                  |                                         | į                |
| DE (O)(LE) (I D) (I V E                                                                                                                                                                                                                                                                                           |                                  | ,,,,,                                                                                         |                                                       |              |              |             |                  |                                         | į                |
|                                                                                                                                                                                                                                                                                                                   | 470                              | 100                                                                                           |                                                       |              |              |             |                  |                                         |                  |
|                                                                                                                                                                                                                                                                                                                   | 170                              | 168                                                                                           |                                                       |              |              |             |                  |                                         |                  |
| INVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 90.760                           | 90.818                                                                                        |                                                       |              |              |             |                  |                                         |                  |
| DIAMETER (mm)                                                                                                                                                                                                                                                                                                     |                                  |                                                                                               | 1500                                                  | DIA          | AREA         | PERIM.      | HYD.R.           | VEL.                                    | Q                |
| LENGHT (m)                                                                                                                                                                                                                                                                                                        |                                  |                                                                                               | 56.6                                                  | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| OBVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 92.284                           | 92.342                                                                                        |                                                       | 1.524        | 1.82         | 4.79        | 0.38             | 1.29                                    | 2360.12          |
| II .                                                                                                                                                                                                                                                                                                              | 32.2041                          | 32.372]                                                                                       | 0.004.4                                               | 1.02 1       | 1.02         |             |                  |                                         |                  |
| FLOW (I/s)                                                                                                                                                                                                                                                                                                        |                                  |                                                                                               | 2,094.4                                               |              |              |             |                  |                                         |                  |
| HGL (m)                                                                                                                                                                                                                                                                                                           | 92,421                           | 92.467                                                                                        | l                                                     |              |              |             |                  |                                         |                  |
| 1                                                                                                                                                                                                                                                                                                                 |                                  |                                                                                               |                                                       |              |              |             |                  |                                         |                  |
| MANHOLE LOSS (m)                                                                                                                                                                                                                                                                                                  |                                  | 0.010                                                                                         |                                                       |              |              |             |                  |                                         | 1                |
|                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                               |                                                       |              |              |             |                  |                                         | ļ                |
| TOTAL HGL (m)                                                                                                                                                                                                                                                                                                     |                                  | 92.477                                                                                        |                                                       |              |              |             |                  |                                         |                  |
| MAX. SURCHARGE (mm)                                                                                                                                                                                                                                                                                               | l                                | 135                                                                                           |                                                       |              |              |             |                  |                                         |                  |
| WAX. SONOTATOL (IIII)                                                                                                                                                                                                                                                                                             | <u> </u>                         | 1001                                                                                          |                                                       |              |              |             |                  |                                         |                  |
|                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                               |                                                       |              |              |             |                  |                                         | į.               |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | FROM                             | TO                                                                                            | PIPE                                                  |              |              |             |                  |                                         |                  |
| BLACKLEAF DRIVE                                                                                                                                                                                                                                                                                                   | MH                               | MH                                                                                            | ID                                                    |              |              |             |                  |                                         | i                |
|                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                               |                                                       |              |              |             |                  |                                         |                  |
|                                                                                                                                                                                                                                                                                                                   | 168                              | 167                                                                                           |                                                       |              |              |             |                  |                                         |                  |
| INVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 90.838                           | 90.855                                                                                        |                                                       |              |              |             |                  |                                         | 1                |
| 1                                                                                                                                                                                                                                                                                                                 | 55.555                           | 50.000                                                                                        | 4500                                                  | DIA          | AREA         | PERIM.      | HYD.R.           | VEL.                                    | Q                |
| DIAMETER (mm)                                                                                                                                                                                                                                                                                                     | <u> </u>                         |                                                                                               | 1500                                                  |              |              |             | ——— <del>,</del> |                                         | (I/s)            |
| LENGHT (m)                                                                                                                                                                                                                                                                                                        | ļ                                |                                                                                               | 17.1                                                  | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   |                  |
| OBVERT ELEVATION (m)                                                                                                                                                                                                                                                                                              | 92.362                           | 92.379                                                                                        |                                                       | 1.524        | 1.82         | 4.79        | 0.38             | 1.28                                    | 2326.06          |
| FLOW (I/s)                                                                                                                                                                                                                                                                                                        |                                  |                                                                                               | 2,094.4                                               |              |              |             |                  |                                         |                  |
| HGL (m)                                                                                                                                                                                                                                                                                                           | 92.477                           | 92.491                                                                                        |                                                       |              |              |             |                  |                                         |                  |
| 1102 (11)                                                                                                                                                                                                                                                                                                         | <u>×=</u>                        |                                                                                               |                                                       |              |              |             |                  |                                         |                  |
| MANUOLE LOCC (m)                                                                                                                                                                                                                                                                                                  | 1                                | 0.010                                                                                         |                                                       |              |              |             |                  |                                         |                  |
| MANHOLE LOSS (m)                                                                                                                                                                                                                                                                                                  |                                  | 0.010                                                                                         |                                                       |              |              |             |                  |                                         |                  |
|                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                               |                                                       |              |              |             |                  |                                         |                  |
| TOTAL HGL (m)                                                                                                                                                                                                                                                                                                     |                                  | 92.501                                                                                        |                                                       |              |              |             |                  |                                         | 1                |
|                                                                                                                                                                                                                                                                                                                   | i i                              | 122                                                                                           |                                                       |              |              |             |                  |                                         | J                |
| MAX. SURCHARGE (mm)                                                                                                                                                                                                                                                                                               | JI                               | 144                                                                                           |                                                       |              |              |             |                  |                                         |                  |
| MAX. SURCHARGE (mm)                                                                                                                                                                                                                                                                                               | <u> </u>                         | 144                                                                                           |                                                       |              |              |             |                  | *************************************** |                  |
|                                                                                                                                                                                                                                                                                                                   | FROM                             |                                                                                               | PIPE                                                  |              |              |             |                  |                                         |                  |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | FROM                             | TO                                                                                            | PIPE<br>ID                                            |              |              |             |                  |                                         |                  |
|                                                                                                                                                                                                                                                                                                                   | FROM MH                          |                                                                                               | PIPE<br>ID                                            |              |              |             |                  |                                         |                  |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | MH                               | TO<br>MH                                                                                      | 3                                                     |              |              |             |                  |                                         |                  |
| FRICTION LOSS<br>BLACKLEAF DRIVE                                                                                                                                                                                                                                                                                  | MH<br>167                        | TO<br>MH<br>166                                                                               | 3                                                     |              |              |             |                  |                                         |                  |
| FRICTION LOSS                                                                                                                                                                                                                                                                                                     | MH                               | TO<br>MH                                                                                      | ID                                                    |              |              |             |                  |                                         |                  |
| FRICTION LOSS<br>BLACKLEAF DRIVE                                                                                                                                                                                                                                                                                  | MH<br>167                        | TO<br>MH<br>166                                                                               | ID<br>1500                                            | DIA          | AREA         | PERIM.      | HYD.R.           | VEL.                                    | Q                |
| FRICTION LÖSS BLACKLEAF DRIVE INVERT ELEVATION (m)                                                                                                                                                                                                                                                                | MH<br>167                        | TO<br>MH<br>166                                                                               | ID                                                    | DIA<br>(m)   | AREA (M2)    | PERIM.      | HYD.R.           | VEL.                                    | Q<br>(l/s)       |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m)                                                                                                                                                                                                                                      | MH<br>167<br>90.885              | TO<br>MH<br>166<br>90.958                                                                     | ID<br>1500                                            | (m)          | (M2)         | (m)         | (m)              |                                         | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                                                                                                                                                                                                 | MH<br>167                        | TO<br>MH<br>166                                                                               | 1500<br>73.1                                          |              |              | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                                                                                                                                                                                                      | 92.409                           | TO<br>MH<br>166<br>90.958                                                                     | ID<br>1500                                            | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                                                                                                                                                                                                 | MH<br>167<br>90.885              | TO<br>MH<br>166<br>90.958                                                                     | 1500<br>73.1                                          | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)                                                                                                                                                                                              | 92.409                           | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559                                                 | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                                                                                                                                                                                                      | 92.409                           | TO<br>MH<br>166<br>90.958                                                                     | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)                                                                                                                                                                                              | 92.409                           | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559                                                 | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)                                                                                                                                                                            | 92.409                           | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559<br>0.009                                        | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)                                                                                                                                                                                              | 92.409                           | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559                                                 | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m)                                                                                                                                                             | 92.409                           | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559<br>0.009                                        | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.409<br>92.501                 | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559<br>0.009<br>92.568<br>86                        | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                          | 92.409<br>92.501                 | TO MH  166 90.958  92.482  92.559  0.009  92.568  86                                          | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.409<br>92.501                 | TO<br>MH<br>166<br>90.958<br>92.482<br>92.559<br>0.009<br>92.568<br>86                        | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.409<br>92.501<br>FROM<br>MH   | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH                                    | 1500<br>73.1<br>2,073.2                               | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.409<br>92.501<br>FROM<br>MH   | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161                               | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID                 | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)                                                                                                                                         | 92.409<br>92.501<br>FROM<br>MH   | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH                                    | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID                 | (m)          | (M2)         | (m)         | (m)              | (m/s)<br>1.28                           | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE                                                                                                          | 92.409<br>92.501<br>FROM<br>MH   | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161                               | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID                 | (m)          | (M2)         | (m)         | (m)              | (m/s)                                   | (l/s)            |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm)                                                                      | 92.409<br>92.501<br>FROM<br>MH   | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161                               | 1500<br>73.1<br>2,073.2<br>PIPE<br>1D                 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28                           | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m)                                                           | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568  86  TO MH  161 91.025                       | 1500<br>73.1<br>2,073.2                               | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                      | 92.409<br>92.501<br>FROM<br>MH   | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161                               | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID                 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                           | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568  86  TO MH  161 91.025                       | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)                                      | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568  86  TO MH  161 91.025                       | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                           | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568  86  TO MH  161 91.025                       | 1500<br>73.1<br>2,073.2<br>PIPE<br>ID<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)                   | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568  86  TO MH  161 91.025                       | 1500<br>73.1<br>2,073.2<br>PIPE<br>1D<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)                           | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161 91.025  92.549                | 1500<br>73.1<br>2,073.2<br>PIPE<br>1D<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m) | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161 91.025  92.549  92.612  0.008 | 1500<br>73.1<br>2,073.2<br>PIPE<br>1D<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |
| FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)  MANHOLE LOSS (m)  TOTAL HGL (m) MAX. SURCHARGE (mm)  FRICTION LOSS BLACKLEAF DRIVE  INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)                   | 92.409 92.501 FROM MH 166 90.958 | TO MH  166 90.958  92.482  92.559  0.009  92.568 86  TO MH  161 91.025  92.549                | 1500<br>73.1<br>2,073.2<br>PIPE<br>1D<br>1500<br>66.5 | (m)<br>1.524 | (M2)<br>1.82 | (m)<br>4.79 | (m)<br>0.38      | (m/s)<br>1.28<br>VEL.<br>(m/s)          | (l/s)<br>2328.61 |

| FRICTION LOSS               | FROM          | ТО            | PIPE    |       |      |         |          |       |         |
|-----------------------------|---------------|---------------|---------|-------|------|---------|----------|-------|---------|
| BLACKLEAF DRIVE             | мн            | МН            | ۵I      |       |      |         |          |       |         |
|                             |               |               |         |       |      |         |          |       |         |
|                             | 161           | 155           |         |       |      |         |          |       |         |
| INVERT ELEVATION (m)        | 91.025        | 91.097        |         |       |      |         |          |       |         |
| DIAMETER (mm)               |               |               | 1500    | DIA   | AREA | PERIM.  | HYD.R.   | VEL.  | Q       |
| LENGHT (m)                  |               |               | 72.1    | (m)   | (M2) | (m)     | (m)      | (m/s) | (l/s)   |
| OBVERT ELEVATION (m)        | 92.549        | 92.621        |         | 1.524 | 1.82 | 4.79    | 0.38     | 1.28  | 2328.90 |
| FLOW (I/s)                  |               |               | 1,785.9 |       |      |         |          |       |         |
| HGL (m)                     | 92.620        | 92.662        |         |       |      |         |          |       |         |
|                             |               |               |         |       |      |         |          |       |         |
| MANHOLE LOSS (m)            |               | 0.007         |         |       |      |         |          |       |         |
|                             | ,             |               |         |       |      |         |          |       |         |
| TOTAL HGL (m)               |               | 92.669        |         |       |      |         |          |       |         |
| MAX. SURCHARGE (mm)         |               | 48            |         |       |      |         |          |       |         |
|                             |               |               |         | ì     |      |         |          |       |         |
| FRICTION LOSS               | FROM          | ТО            | PIPE    |       |      |         |          |       |         |
| BLACKLEAF DRIVE             | MH            | MH            | ID      |       |      |         |          |       | •       |
|                             | 466           | 454           |         |       |      |         |          |       |         |
| INNVERTELENATION (m)        | 155<br>91,124 | 154<br>91.188 |         |       |      |         |          |       |         |
| INVERT ELEVATION (m)        | 91.124        | 91.100        | 1500    | DIA   | AREA | PERIM.  | HYD.R.   | VEL.  | Q       |
| DIAMETER (mm)<br>LENGHT (m) |               |               | 63.8    |       | (M2) | (m)     | (m)      | (m/s) | (I/s)   |
| li                          | 92.648        | 92,712        | 00.0    | 1,524 | 1.82 | <u></u> | <u> </u> |       |         |
| OBVERT ELEVATION (m)        | 92.040        | 92.712        | 1 700 0 |       | 1.02 | 1 7.73  | 0.00     | 1,40  | 2001.10 |
| FLOW (I/s)                  | 92.669        | 92.704        | 1,706.8 |       |      |         |          |       |         |
| HGL (m)                     | 92.009        | 92.704        |         |       |      |         |          |       |         |
| MANHOLE LOSS (m)            | ļ             | 0.000         |         |       |      |         |          |       |         |
| WANTOLE LOSS (III)          | <b> </b>      | 0.000         |         |       |      |         |          |       |         |
| TOTAL HGL (m)               |               | 92.704        |         | 1     |      |         |          |       |         |
| MAX. SURCHARGE (mm)         |               | -8            |         |       |      |         |          |       |         |

# STONEBRIDGE PHASE 11 - BLOCK 333 |HGL CALCULATION - 100 YEAR

| FRICTION LOSS                        | FROM    | то            | PIPE  | MANNING  | FORMU     | A - ELOM | ING FULL                              |        |            |
|--------------------------------------|---------|---------------|-------|----------|-----------|----------|---------------------------------------|--------|------------|
| RANNOCK PRIVATE                      | MH      | MH            | ID ID | MANINING | S I OINNO | LA-ILOV  | VIIVO : OLL                           |        |            |
| RANNOCK FRIVATE                      | 10111   | 1481          | טו    |          |           |          |                                       |        |            |
|                                      | 166     | 162           |       |          |           |          |                                       |        |            |
| INVERT ELEVATION (m)                 | 92,100  | 92.388        |       |          |           |          |                                       |        |            |
| DIAMETER (mm)                        | 0211001 | 02000         | 375   | DIA      | AREA      | PERIM.   | HYD.R.                                | VEL.   | Q          |
| LENGHT (m)                           |         |               | 96.0  | (m)      | (M2)      | (m)      | (m)                                   | (m/s)  | (l/s)      |
| OBVERT ELEVATION (m)                 | 92.481  | 92.769        |       | 0.381    | 0.11      | 1.20     | 0.10                                  | 0.88   | 100.12     |
| FLOW (I/s)                           |         |               | 72.9  |          |           | 1        |                                       |        |            |
| HGL (m)                              | 92.570  | 92.723        |       |          |           |          |                                       |        |            |
|                                      |         |               |       |          |           |          |                                       |        |            |
| MANHOLE LOSS (m)                     |         |               |       |          |           |          |                                       |        |            |
|                                      |         |               |       |          |           |          |                                       |        |            |
| TOTAL HGL (m)                        |         | 92.723        |       |          |           |          |                                       |        |            |
| MAX. SURCHARGE (mm)                  |         | -46           |       |          |           |          |                                       |        |            |
|                                      |         |               |       |          |           |          |                                       |        |            |
| FRICTION LOSS                        | FROM    | TO            | PIPE  |          |           |          |                                       |        |            |
| PARK                                 | MH      | MH            | ID    |          |           |          |                                       |        |            |
|                                      |         |               |       |          |           |          |                                       |        |            |
|                                      | 161     | 160           |       | ì        |           |          |                                       |        |            |
| INVERT ELEVATION (m)                 | 92.168  | 92.411        |       |          |           |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 (50) |            |
| DIAMETER (mm)                        |         |               | 375   |          | AREA      | PERIM.   | HYD.R.                                | VEL.   | Q<br>(l/s) |
| LENGHT (m)                           | 00.540  | 00.700        | 81.0  | (m)      | (M2)      | (m)      | (m)                                   | (m/s)  | 100.12     |
| OBVERT ELEVATION (m)                 | 92.549  | 92.792        |       | 0.381    | 0.11      | 1.20     | 0.10                                  | 0.88   | 100.12     |
| FLOW (I/s)                           | 00.000  | 00.000        | 57.0  |          |           |          |                                       |        |            |
| HGL (m)                              | 92.620  | 92.699        |       |          |           |          |                                       |        |            |
| MANHOLE LOSS (m)                     |         |               |       |          |           |          |                                       |        |            |
| IMANHOLE LOSS (III)                  |         |               |       |          |           |          |                                       |        |            |
| TOTAL HGL (m)                        |         | 92 699        |       |          |           |          |                                       |        |            |
| 11 ' '                               |         | -93           |       |          |           |          |                                       |        |            |
| TOTAL HGL (m)<br>MAX. SURCHARGE (mm) |         | 92.699<br>-93 |       |          |           |          |                                       |        |            |

|                                                                                   |        |                           |               | W            |              | =                                       |               |               |            |
|-----------------------------------------------------------------------------------|--------|---------------------------|---------------|--------------|--------------|-----------------------------------------|---------------|---------------|------------|
| FRICTION LOSS                                                                     | FROM   | ТО                        | PIPE          | MANNING      | FORMU        | LA - FLOW                               | VING FULL     | •             |            |
| PARK                                                                              | MH     | MH                        | ID            |              |              |                                         |               |               |            |
|                                                                                   |        | 000                       |               |              |              |                                         |               |               |            |
|                                                                                   | 303    | 302                       |               |              |              |                                         |               |               |            |
| INVERT ELEVATION (m)                                                              | 89.605 | 89.824                    |               |              |              |                                         | 10/2 D        | 1,7~;         |            |
| DIAMETER (mm)                                                                     |        |                           | 1500          |              | AREA         | PERIM.                                  | HYD.R.        | VEL.          | Q          |
| LENGHT (m)                                                                        |        |                           | 82.9          |              | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| OBVERT ELEVATION (m)                                                              | 91.129 | 91.348                    | ,,            | 1.524        | 1.82         | 4.79                                    | 0.38          | 2.08          | 3788.64    |
| FLOW (I/s)                                                                        |        |                           | 3,006.0       |              |              |                                         |               |               | į          |
| HGL (m)                                                                           | 91.300 | 91.438                    |               |              |              |                                         |               |               |            |
|                                                                                   |        |                           |               |              |              |                                         |               |               |            |
| MANHOLE LOSS (m)                                                                  |        | 0.022                     |               | 1            |              |                                         |               |               |            |
|                                                                                   |        |                           |               | ]            |              |                                         |               |               |            |
| TOTAL HGL (m)                                                                     |        | 91.460                    |               |              |              |                                         |               |               |            |
| MAX. SURCHARGE (mm)                                                               |        | 112                       |               |              |              |                                         |               |               |            |
|                                                                                   |        |                           |               |              |              |                                         |               |               |            |
| FRICTION LOSS                                                                     | FROM   | TO                        | PIPE          |              |              |                                         |               |               |            |
| PARK                                                                              | MH     | МН                        | ID            |              |              |                                         |               |               |            |
|                                                                                   |        |                           |               |              |              |                                         |               |               |            |
|                                                                                   | 302    | 301A                      |               | ]            |              |                                         |               |               | 1          |
| INVERT ELEVATION (m)                                                              | 89.976 | 90.139                    |               |              |              |                                         |               |               |            |
| DIAMETER (mm)                                                                     |        |                           | 1350          | DIA          | AREA         | PERIM.                                  | HYD.R.        | VEL.          | Q          |
| LENGHT (m)                                                                        |        |                           | 65.0          |              | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| OBVERT ELEVATION (m)                                                              | 91.348 | 91.511                    | /-            | 1.372        | 1.48         | *************************************** | 0.34          | 1.89          | 2786.96    |
| FLOW (I/s)                                                                        | 0,,0,0 | 0011                      | 2,566.6       | <u> </u>     |              | <u> </u>                                |               |               |            |
| HGL (m)                                                                           | 91,460 | 91.598                    | 2,000.0       | 1            |              |                                         |               |               |            |
| I I GL (III)                                                                      | 31.400 |                           |               |              |              |                                         |               |               |            |
| MANHOLE LOSS (m)                                                                  |        | 0.023                     |               |              |              |                                         |               |               |            |
| WANNOLE LOSS (III)                                                                |        | 0.020]                    |               |              |              |                                         |               |               |            |
| TOTAL HGL (m)                                                                     |        | 91.621                    |               | 1            |              |                                         |               |               |            |
| MAX. SURCHARGE (mm)                                                               |        | 111                       |               |              |              |                                         |               |               |            |
| WAX. SUNCTIANGE (IIIII)                                                           |        |                           |               |              |              |                                         |               |               |            |
| COLOTION L OCC                                                                    | FROM   | то                        | PIPE          | 1            |              |                                         |               |               |            |
| FRICTION LOSS                                                                     | 11 1   | 1                         |               |              |              |                                         |               |               |            |
| PARK                                                                              | MH     | MH                        | ID            |              |              |                                         |               |               | 1          |
|                                                                                   | 0040   | 004                       |               | 4.           |              |                                         |               |               |            |
| 4.0 (EDT #1.5) (ATION ()                                                          | 301A   | 90.231                    |               | ŀ            |              |                                         |               |               |            |
| INVERT ELEVATION (m)                                                              | 90.139 | 90.231                    |               | <u> </u>     |              | T DEDUA                                 | 113 (D D )    | 1.751         |            |
| DIAMETER (mm)                                                                     |        |                           | 1350          | 4)           | AREA         | PERIM.                                  | HYD.R.        | VEL.          | (l/s)      |
| LENGHT (m)                                                                        |        |                           | 37.0          |              | (M2)         | (m)                                     | (m)           | (m/s)         |            |
| OBVERT ELEVATION (m)                                                              | 91.511 | 91.603                    |               | 1.372        | 1.48         | 4.31                                    | 0.34          | 1.88          | 2775.15    |
| FLOW (I/s)                                                                        |        |                           | 2,566.6       |              |              |                                         |               |               |            |
| HGL (m)                                                                           | 91.621 | 91.700                    |               |              |              |                                         |               |               |            |
|                                                                                   |        |                           |               |              |              |                                         |               |               |            |
| MANHOLE LOSS (m)                                                                  |        | 0.022                     |               |              |              |                                         |               |               | į          |
|                                                                                   |        |                           |               | -            |              |                                         |               |               |            |
| TOTAL HGL (m)                                                                     |        | 91.722                    |               |              |              |                                         |               |               |            |
| MAX. SURCHARGE (mm)                                                               |        | 119                       |               |              |              |                                         |               |               |            |
|                                                                                   |        |                           |               |              |              |                                         |               |               |            |
| FRICTION LOSS                                                                     | FROM   | ТО                        | PIPE          |              |              |                                         |               |               |            |
| PARK                                                                              | МН     | MH                        | ID            |              |              |                                         |               |               |            |
|                                                                                   |        |                           |               |              |              |                                         |               |               |            |
|                                                                                   | 301    | 300                       |               |              |              |                                         |               |               |            |
| H                                                                                 |        |                           |               |              |              |                                         |               | ***           |            |
| INVERT ELEVATION (m)                                                              | 90.231 | 90.436                    |               |              |              |                                         |               |               |            |
| INVERT ELEVATION (m) DIAMETER (mm)                                                | 90.231 | 90.436                    | 1350          |              | AREA         | PERIM.                                  | HYD.R.        | VEL.          | Q          |
| li .                                                                              | 90.231 | 90.436                    | 1350<br>102.5 |              | AREA<br>(M2) | PERIM.                                  | HYD.R.<br>(m) | VEL.<br>(m/s) | Q<br>(l/s) |
| DIAMETER (mm)<br>LENGHT (m)                                                       | 90.231 |                           |               |              |              | (m)                                     |               |               | (l/s)      |
| DIAMETER (mm)<br>LENGHT (m)<br>OBVERT ELEVATION (m)                               |        |                           | 102.5         | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| DIAMETER (mm)<br>LENGHT (m)<br>OBVERT ELEVATION (m)<br>FLOW (i/s)                 | 91.603 | 91.808                    |               | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| DIAMETER (mm)<br>LENGHT (m)<br>OBVERT ELEVATION (m)                               |        |                           | 102.5         | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| DIAMETER (mm)<br>LENGHT (m)<br>OBVERT ELEVATION (m)<br>FLOW (l/s)<br>HGL (m)      | 91.603 | 91.808                    | 102.5         | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| DIAMETER (mm)<br>LENGHT (m)<br>OBVERT ELEVATION (m)<br>FLOW (l/s)                 | 91.603 | 91.808                    | 102.5         | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) | 91.603 | 91.808<br>91.915<br>0.018 | 102.5         | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |
| DIAMETER (mm)<br>LENGHT (m)<br>OBVERT ELEVATION (m)<br>FLOW (I/s)<br>HGL (m)      | 91.603 | 91.808                    | 102.5         | (m)<br>1.372 | (M2)         | (m)                                     | (m)           | (m/s)         | (l/s)      |

| FRICTION LOSS        | FROM   | TO     | PIPE    |       |      |        |        |       |         |
|----------------------|--------|--------|---------|-------|------|--------|--------|-------|---------|
| PARK                 | МН     | MH     | ۵l      |       |      |        |        |       |         |
|                      |        | ,      |         |       |      |        |        |       |         |
|                      | 300    | 171    |         |       |      |        |        |       |         |
| INVERT ELEVATION (m) | 90.436 | 90.551 |         |       |      |        |        |       |         |
| DIAMETER (mm)        |        |        | 1350    |       | AREA | PERIM. | HYD.R. | VEL.  | Q       |
| LENGHT (m)           |        |        | 71.9    | (m)   | (M2) | (m)    | (m)    | (m/s) | (l/s)   |
| OBVERT ELEVATION (m) | 91.808 | 91.923 |         | 1.372 | 1.48 | 4.31   | 0.34   | 1.51  | 2225.29 |
| FLOW (I/s)           |        |        | 2,166.7 |       |      |        |        |       |         |
| HGL (m)              | 91.933 | 92.042 |         |       |      |        |        |       |         |
|                      |        |        |         |       |      |        |        |       |         |
| MANHOLE LOSS (m)     |        | 0.000  |         |       |      |        |        |       |         |
|                      |        |        |         |       |      |        |        |       |         |
| TOTAL HGL (m)        |        | 92.042 |         |       |      |        |        |       |         |
| MAX. SURCHARGE (mm)  |        | 120    |         |       |      |        |        |       |         |



IBI GROUP

1:7500

(D:\...MRCsub01.out) IBI Group

```
00002>
00003> SSSSS W W M M H H Y Y M M OOO 999 999 =========
00004> S W W W MM MM H H Y Y MM MM O O 9 9 9 9 9
00005> SSSS W W W M M M HHHHH Y M M M O O ## 9 9 9 9 Ver. 4.02
     S WW M M H Y M M O O 9999
                                                  9999 July 1999
                                                  9 ========
00007> SSSSS WW M M H H Y M M 000
                                            9
                                            9 9 9 # 3699242
<80000
                                                 999 ======
                                            999
         StormWater Management HYdrologic Model
00009>
00010>
00011> ***************************
     00012>
     ****** A single event and continuous hydrologic simulation model ******
00013>
     ****** based on the principles of HYMO and its successors ******

*******

OTTHYMO-83 and OTTHYMO-89.
00014>
               OTTHYMO-83 and OTTHYMO-89.
00015>
     00016>
     ****** Distributed by: J.F. Sabourin and Associates Inc.
00017>
                        Ottawa, Ontario: (613) 727-5199
00018>
                       Gatineau, Quebec: (819) 243-6858
00019>
     *****
                       E-Mail: swmhymo@jfsa.Com
00020>
00021>
00022>
     00023>
00024> ++++++ Licensed user: Cumming Cockburn Limited
                     : Cumming Cockburn Limited
Ottawa SERIAL#:3699242
                                                       ++++++
00025> ++++++
00027>
     00028>
     ******

++++++ PROGRAM ARRAY DIMENSIONS ++++++

******

Maximum value for ID numbers : 10
00029>
     ****** Maximum value for ID numbers: 10

****** Max. number of rainfall points: 15000

****** Max. number of flow points: 15000
00030>
00031>
                                                       *****
00032>
     *****************
00033>
00034>
00035>
     ************* DETAILED OUTPUT
00036>
     00037>
00038> * DATE: 2010-06-15 TIME: 15:52:02 RUN COUNTER: 004270 *
     ***************
00039>
     * Input filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\MRCsub01.dat *
00040>
     * Output filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\MRCsub01.out
00041>
     * Summary filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\MRCsub01.sum
00042>
     * User comments:
00043>
     * 1:____
00044>
00045> * 2:___
00046> * 3:
00047> ************************
00048>
00049> -----
00050> 001:0001-----
00051> *#***************************
00052> *# Project Name: Corrigan SWM Facility
00053> *# Project Number: 13931
00054> *# Date :
00055> *# Modeller : Cumming Cockburn Limited
00057> *# License # : 3699242
                            *************************
00058> *#**************
00059> *
00060> *
00061> -----
00062> | START | Project dir.: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\
00063> ------ Rainfall dir.: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\
00064> TZERO = .00 hrs on 0
00065> METOUT= 2 (output = METRIC)
00066> NRUN = 001
                                                              Page 1
Cumming Cockburn Limited
```

```
IBI Group
(D:\...MRCsub01.out)
00067> NSTORM= 0
00068> -----
00069> 001:0002-----
00071> *# 2010-06 MAJOR FLOW - STONEBRIDGE PHASES 11 AND 12
00072> *# PARAMETERS REVISED TO REFLECT DETAILED DESIGN
00074> *
00077> *# 100 YEAR 3 HOUR CHICAGO STORM - 10 MIN TIME STEP
* <08000
00081> -----
00082> | READ STORM | Filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\CH 00083> | Ptotal= 71.68 mm| Comments: CHICAGO 3 HOUR 10 MIN 100 YEAR STORM
00084> -----
                                  TIME RAIN | TIME R
                             TIME RAIN
00085>
00086>
00087>
<88000
00089>
00090>
                                     .83 40.760 | 1.67 13.730 | 2.50 6.340 |
00091>
00092>
00093> -----
00094> 001:0003-----
00095> *
00097> *# AREA B2 (RESIDENTIAL)
00098> *# MH 136/315
00099> *# Note: Overflow to external drainage area
00101> *
00102> -----
00103> | CALIB STANDHYD | Area (ha)= 12.40
00104 > 101:000210 DT= 2.00 | Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00
00105> -----
                                                              IMPERVIOUS PERVIOUS (i)
00106>
                Surface Area (ha) = 4.96 7.44

Dep. Storage (mm) = .80 1.50

Average Slope (%) = .50 2.00

Length (m) = 394.00 40.00

Mannings n = .013 .250
00107>
00108>
00109>
00110>
00111>
00112>

      Max.eff.Inten.(mm/hr) = over (min)
      178.56
      65.59

      Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = .19
      5.68 (ii) 14.03 (ii) 14.00 14.00 14.00 14.00 14.00 14.00

00113>
00114>
00115>
00116>
00117>
                                                                                                               *TOTALS*
00118>
                   PEAK FLOW (cms) = 1.96 .84

TIME TO PEAK (hrs) = 1.03 1.20

RUNOFF VOLUME (mm) = 70.88 33.72

TOTAL RAINFALL (mm) = 71.68 71.68

PUNOFF COFFEICIENT = 99 .47
                                                                                                                2.446 (iii)
00119>
                                                                                                                  1.033
00120>
                                                                                                               48.583
00121>
                                                                                                               71.677
00122>
                 RUNOFF COEFFICIENT =
                                                                   .99
                                                                                                                 . 678
00123>
00124>
                       (i) ON PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00125>
                              CN^* = 77.0 Ia = Dep. Storage (Above)
00126>
                      (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00127>
                               THAN THE STORAGE COEFFICIENT.
00128>
                     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00129>
 00130>
 00131> -----
 00132> 001:0004----
```

(D:\...MRCsub01.out)

```
00133> *
00134> *
00135> -----
                         Requested routing time step = 1.0 min.
00136> | ROUTE RESERVOIR |
00137> | IN>01:(000210) |
                         ====== OUTLFOW STORAGE TABLE =======
00138> | OUT<07: (000110) |
                          OUTFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.)
00139> -----
                           (cms)
00140>
                           .000 .0000E+00 | 1.064 .5400E-01
1.054 .1000E-03 | .000 .0000E+00
00141>
00142>
00143>
        00144>
00145>
00146>
00147>
       OVERFLOW<09: (000106)
00148>
00149>
                     TOTAL NUMBER OF SIMULATED OVERFLOWS = 2
CUMULATIVE TIME OF OVERFLOWS (hours) = .32
PERCENTAGE OF TIME OVERFLOWING (%) = 5.49
00150>
00151>
00152>
00153>
00154>
                     PEAK FLOW REDUCTION (Qout/Qin)(%) = 43.514
TIME SHIFT OF PEAK FLOW (min) = 2.00
00155>
00156>
                     MAXIMUM STORAGE USED
                                             (ha.m.) = .5377E-01
00157>
00158>
00159> -----
00160> 001:0005-----
00161> *
00162> -----
00163> | DIVERT HYD |
00164> | INID=09 (000106) |
00165> -----
00166> Outflow / Inflow Relationships
          Flow 01 + Flow 04 = Total
00167>
          (cms) (cms) (cms)
.000 .000 .000
00168>
00169>
            .197 1.161 1.358
00170>
00171>
               NHYD
                        AREA QPEAK TpeakDate_hh:mm R.V. NFE WetHrs
00172>
00173> (ha) (cms)
00174> 1Din = 09:000106 1.55 1.358
                               (cms) (mm) (hrs) 1.358 No date 1:04 48.583 2 0.
        00175>
00176>
00176> IDout= 01:000101 .23 .197 No_date 1:04 48.583 2 0. 00177> IDout= 04:000102 1.33 1.161 No_date 1:04 48.583 2 0.
00178> -----
00179> 001:0006-----
00180> *
00181> *
00182> *
00184> *# AREA B3 (RESIDENTIAL)
00185> *# MH 141/333
00186> *# Note: Overflow to external drainage area
00188> *
00189> -----
00190> | CALIB STANDHYD | Area (ha)= 4.11
00191 > 01:000210 DT= 2.00 | Total Imp(%) = 40.00 Dir. Conn.(%) = 40.00
00192> -----
                              IMPERVIOUS
                                          PERVIOUS (i)
00193>
       Surface Area (ha)= 1.64 2.47
Dep. Storage (mm)= .80 1.50
Average Slope (%)= .50 2.00
Length (m)= 350.00 40.00
Mannings n = .013 .250
00194>
00195>
00196>
00197>
00198>
Cumming Cockburn Limited
                                                                      Page 3
```

(D:\...MRCsub01.out) IBI Group

```
00199>
           Max.eff.Inten.(mm/hr) = 178.56 65.59

over (min) 6.00 14.00

Storage Coeff. (min) = 5.29 (ii) 13.64 (ii)

Unit Hyd. Tpeak (min) = 6.00 14.00

Unit Hyd. peak (cms) = .20 .08
00200>
00201>
00202>
00203>
00204>
                                                                *TOTALS*
00205>
00206> PEAK FLOW (cms)= .66 .28

00207> TIME TO PEAK (hrs)= 1.03 1.20

00208> RUNOFF VOLUME (mm)= 70.88 33.72

00209> TOTAL RAINFALL (mm)= 71.68 71.68

00210> RUNOFF COEFFICIENT = .99 .47
                                                                 .826 (iii)
                                                                 1.033
                                                                 48.583
                                                                71.677
                                                                  . 678
00211>
            (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00212>
           CN^* = 77.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00213>
00214>
00215>
                 THAN THE STORAGE COEFFICIENT.
00216>
           (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00217>
00218> -----
00219> 001:0007-----
00220> *
00221> *
00222> -----
00223> | ROUTE RESERVOIR |
                              Requested routing time step = 1.0 min.
00224> | IN>01:(000210)
                          1
00225> | OUT<04:(000110) |
                              ----- OUTLFOW STORAGE TABLE -----
                               OUTFLOW STORAGE | OUTFLOW STORAGE
00226> -----
                                  (cms) (ha.m.) | (cms)
.000 .0000E+00 | .352
00227>
                                (cms)
                                                                 (ha.m.)
                                  .000 .0000E+00 | .352 .2572E-01
.349 .1000E-03 | .000 .0000E+00
00228>
00229>
00230>
                                   AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 4.11 .826 1.033 48.583
00231> ROUTING RESULTS
           7.007.4.10.011.0
00232>
00233>
         INFLOW >01: (000210)
OUTFLOW<04: (000110)
         OVERFLOW<04: (000110)
OVERFLOW<08: (000106)
                                    3.74 .352 1.117 48.583
.37 .366 1.117 48.583
00234>
00235>
                         TOTAL NUMBER OF SIMULATED OVERFLOWS = 2
CUMULATIVE TIME OF OVERFLOWS (hours) = .27

27
4.91
00236>
00237>
00238>
00239>
00240>
00241>
                         PEAK FLOW REDUCTION [Qout/Qin](%)= 42.630
00242>
                         TIME SHIFT OF PEAK FLOW (min)= 5.00
00243>
                         MAXIMUM STORAGE USED
                                                      (ha.m.) = .2565E-01
00244>
00245>
00246> -----
00248> *
00249> -----
00250> | DIVERT HYD |
00251> | INID=08 (000106)|
00252> -----
00253> Outflow / Inflow Relationships
            Flow 01 + Flow 10 = Total
00254>
             (cms) (cms) (cms)
.000 .000 .000
.142 .224 .366
00255>
00256>
00257>
00258>
00259> NHYD AREA QPEAK TpeakDate_hh:mm R.V. NFE WetHrs
00260> (ha) (cms) (mm) (hrs)
00261> IDin = 08:000106 .37 .366 No_date 1:07 48.583 2 0.
        00262>
0.
                                                                                    Page 4
Cumming Cockburn Limited
```

```
IBI Group
(D:\...MRCsub01.out)
00265> -----
00266> 001:0009-----
00267> *
00269> *# ADDING OVERFLOW FROM B2
00271> *
00272> -----
DWF
                                                                    COLORS OF STATE OF ST
00277>
                                      SUM 08:000107 1.70 1.358 1.07 48.58 .000
00278>
00279>
00280> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00281>
00282> -----
00283> 001:0010------
00284> *
00285> *
00286> *
00288> *# EXTERNAL LANDS (STONEBRIDGE)
00289> *# Note: Minor and overflow to external area
00290> *# (minor tributary to Jockvale SWM Facility)
00292> *
00293> -----
00294> | CALIB STANDHYD |
                                                    Area (ha)= 2.23
                                                  Area (ha)= 2.25
Total Imp(%)= 54.00 Dir. Conn.(%)= 41.00
00295> | 01:000210 DT= 2.00 |
00296> -----
                 00297>
00298>
00299>
<00200>
                Length
Mannings n
00301>
00302>
00303>
                Max.eff.Inten.(mm/hr) = 178.56 118.07

over (min) 4.00 10.00

Storage Coeff. (min) = 4.04 (ii) 10.64 (ii)

Unit Hyd. Tpeak (min) = 4.00 10.00

Unit Hyd. peak (cms) = .28 .11
00304>
00305>
00306>
00307>
00308>
                                                                                                            *TOTALS*
00309>

      PEAK FLOW
      (cms)=
      .41
      .20

      TIME TO PEAK
      (hrs)=
      1.00
      1.13

      RUNOFF VOLUME
      (mm)=
      70.88
      38.34

      TOTAL RAINFALL
      (mm)=
      71.68
      71.68

      RUNOFF COEFFICIENT
      =
      .99
      .53

                                                                                                             .546 (iii)
00310>
00311>
                                                                                                                 1 000
                                                                                                            51.680
00312>
                                                                                                            71.677
00313>
                                                                                                              .721
                  RUNOFF COEFFICIENT =
00314>
00315>
                      (i) ON PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00316>
                              CN^* = 77.0 Ia = Dep. Storage (Above)
00317>
                     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00318>
00319>
                              THAN THE STORAGE COEFFICIENT.
                    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00320>
00321>
00322> -----
00323> 001:0011-----
00324> *
00325> *
00326> ------
00327> | ROUTE RESERVOIR | Requested routing time step = 1.0 min.
00328> | IN>01:(000210) |
00329> | OUT<02: (000110) | GENERALE OUTLFOW STORAGE TABLE STORAGE
00330> ----- OUTFLOW STORAGE | OUTFLOW STORAGE
```

```
IBI Group
(D:\...MRCsub01.out)
                                                      (cms) (ha.m.) | (cms) (ha.m.)
.000 .0000E+00 | .180 .2480E-02
.178 .1000E-03 | .000 .0000E+00
                                                     (cms)
00331>
00332>
00333>
00334>
                                                           AREA QPEAK TPEAK
(ha) (cms) (hrs)
2.23 .546 1.000
1.64 .180 .933
.59 .365 1.017
                                                                                                          R.V.
                 ROUTING RESULTS
                                                          AREA
00335>
                   00336>
                                                                                                             (mm)
                                                                                                        51.680
                 INFLOW >01: (000210)
00337>
                  OUTFLOW<02: (000110)
                                                                                                          51.680
00338>
                                                                                          1.017
                 OVERFLOW<09: (000106)
                                                                                                         51.680
00339>
00340>
                                        TOTAL NUMBER OF SIMULATED OVERFLOWS = 2
CUMULATIVE TIME OF OVERFLOWS (hours) = .45
PERCENTAGE OF TIME OVERFLOWING (%) = 9.41
00341>
00342>
00343>
00344>
00345>
                                        PEAK FLOW REDUCTION [Qout/Qin](%)= 32.991
TIME SHIFT OF PEAK FLOW (min)= -4.00
00346>
00347>
                                                                                        (ha.m.) = .2460E-02
                                         MAXIMUM STORAGE USED
00348>
00349>
00350> -----
00351> 001:0012-----
00352> *
00354> *# ADDING OVERFLOW FROM B3, EXTERNAL LANDS
00356> *
00357> -----
TO AND THE RESIDENCE OF THE PROPERTY OF THE PR
00362>
                                     SUM 01:000107 .82 .462 1.12 50.82 .000
00363>
00364>
            NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00365>
00366>
00367> ---
00368> 001:0013-----
00369> *
00371> *# ADDING MINOR FLOW FROM B2, B3
00372> *#
00373> *
00374> -----
.000
                                      00379>
                                      SUM 10:000107 14.59 1.416 1.12 48.58 .000
00380>
00381>
             NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00382>
00383>
00384> -----
00385> 001:0014-----
00386> *
00388> *# AREA B4A (RESIDENTIAL)
00389> *# MH 155/340
00390> *# Note: Overflow routed to B6B
00392> *
00393> -----
00394 > + CALIB STANDHYD + Area (ha) = 5.80
00395> | 01:000210 DT= 2.00 | Total Imp(%)= 49.00 Dir. Conn.(%)= 49.00
00396> -----
```

Cumming Cockburn Limited

(D:\...MRCsub01.out) IBI Group

```
IMPERVIOUS PERVIOUS (i)
00397>

      Surface Area
      (ha) =
      2.84
      2.96

      Dep. Storage
      (mm) =
      .80
      1.50

      Average Slope
      (%) =
      .50
      2.00

      Length
      (m) =
      263.00
      40.00

      Mappings n
      =
      .013
      .250

00398>
00399>
00400>
           Length
Mannings n
00401>
                               222
                                        .013
                                                        .250
00402>
            Mannings n
00403>
            Max.eff.Inten.(mm/hr)= 178.56 71.11 over (min) 4.00 12.00 Storage Coeff. (min)= 4.46 (ii) 12.54 (ii) Unit Hyd. Tpeak (min)= 4.00 12.00 Unit Hyd. peak (cms)= .26 .09
00404>
00405>
00406>
00407>
                                                        .09
00408>
00409>
                                                                      *TOTALS*

      PEAK FLOW (cms) =
      1.25
      .36

      TIME TO PEAK (hrs) =
      1.00
      1.17

      RUNOFF VOLUME (mm) =
      70.88
      33.72

      TOTAL RAINFALL (mm) =
      71.68
      71.68

      RUNOFF COEFFICIENT =
      .99
      .47

                                                                       1.441 (iii)
00410>
                                                                        1.000
00411>
                                                                       51,927
00412>
                                                                       71.677
00413>
                                                                        .724
00414>
00415>
             (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00416>
             CN^* = 77.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00417>
00418>
00419>
                   THAN THE STORAGE COEFFICIENT.
00420>
             (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00421>
00422> -----
00423> 001:0015-----
00424> *
00425> *
00426> -----
00427> | ROUTE RESERVOIR |
                                 Requested routing time step = 1.0 min.
00428> | IN>01: (000210)
00430> -----
                                  OUTFLOW STORAGE | OUTFLOW STORAGE
                                     (cms) (ha.m.) | (cms)
.000 .0000E+00 | .498
                                    (cms)
                                                                        (ha.m.)
00431>
                                                              .498 .1957E-01
00432>
                                     .494 .1000E+00 | .498 .1937E=01
00433>
00434>
           R.V.
(mm)
00435>
00436>
00437>
                                                                       51.927
                                                                       51.927
                                                              .983
1.017
00438>
                                                                        51.927
         OVERFLOW<08: (000106)
00439>
00440>
                            TOTAL NUMBER OF SIMULATED OVERFLOWS = 2
CUMULATIVE TIME OF OVERFLOWS (hours) = .37

OF TIME OVERFLOWING (%) = 6.96
00441>
00442>
00443>
00444>
00445>
                            PEAK FLOW REDUCTION [Qout/Qin](%)= 34.570
00446>
                            TIME SHIFT OF PEAK FLOW (min)= -1.00
00447>
                           MAXIMUM STORAGE USED
                                                            (ha.m.) = .1946E-01
00448>
00449>
00450>
00451> 001:0016-----
00452> *
00453> *
00454> *
00456> *# ADDING MINOR FLOW FROM B2, B3, B4A
00458> *
00459> -----
00460> | ADD HYD (000107) | ID: NHYD AREA QPEAK TPEAK R.V.
                                                                               DWF
                       ---- (ha) (cms) (hrs) (mm) (cms)
ID1 10:000107 14.59 1.416 1.12 48.58 .000
00461> -----
                                                                                      Page 7
Cumming Cockburn Limited
```

```
IBI Group
(D:\...MRCsub01.out)
                       +ID2 04:000110 4.66 .498 .98 51.93 .000
00463>
00464>
                        SUM 01:000107 19.25 1.914 1.12 49.39 .000
00465>
00466>
        NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00467>
00468>
00469> -----
00470> 001:0017-----
00473> *# AREA B4B (RESIDENTIAL)
00474> *# MH 171
00475> *# Note: Overflow routed to B6B
00477> *
00478> -----
00479> | CALIB STANDHYD | Area (ha)= 5.08
00480> | 04:000210 DT= 2.00 | Total Imp(%)= 39.00 Dir. Conn.(%)= 39.00
00481> -----
                                     IMPERVIOUS PERVIOUS (i)
00482>

      Surface Area
      (ha) =
      1.98
      3.10

      Dep. Storage
      (mm) =
      .80
      1.50

      Average Slope
      (%) =
      .50
      2.00

      Length
      (m) =
      307.00
      40.00

      Mannings n
      =
      .013
      .250

00483>
00484>
00485>
00486>
00487>
00488>
         Max.eff.Inten.(mm/hr) = 178.56 65.59

over (min) 4.00 14.00

Storage Coeff. (min) = 4.89 (ii) 13.24 (ii)

Unit Hyd. Tpeak (min) = 4.00 14.00

Unit Hyd. peak (cms) = .24 .08
00489>
00490>
00491>
00492>
            Unit Hyd. peak (cms)=
                                           .24
                                                        .08
00493>

      PEAK FLOW (cms) =
      .85
      .36

      TIME TO PEAK (hrs) =
      1.00
      1.20

      RUNOFF VOLUME (mm) =
      70.88
      33.72

      TOTAL RAINFALL (mm) =
      71.68
      71.68

      RUNOFF COEFFICIENT =
      .99
      .47

                                                                     *TOTALS*
00494>
                                                                     1.014 (iii)
00495>
                                                                      1.000
00496>
00497>
                                                                     71.677
00498>
00499>
00500>
           (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00501>
            CN* = 77.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00502>
00503>
                  THAN THE STORAGE COEFFICIENT.
00504>
            (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00505>
00506>
00507> -----
00508> 001:0018-----
00509> *
00510> *
00511> -----
00512> | ROUTE RESERVOIR |
                                 Requested routing time step = 1.0 min.
00513> | IN>04:(000210) |
                                 00514> | OUT<10: (000110) |
                                    TFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.) .000 .0000E+00 | .436 .1848E-01
00515> -----
                                 OUTFLOW
                                   (cms)
00516>
                                    .000 .0000E+00 | .436 .1848E-01
.432 .1000E-03 | .000 .0000E+00
00517>
00518>
00519>
           00520>
00521>
00522>
00523>
          OVERFLOW<07: (000106)
00524>
00525>
                           TOTAL NUMBER OF SIMULATED OVERFLOWS =
00526>
                           TOTAL NUMBER OF SIMULATED OVERFLOWS = 1

CUMULATIVE TIME OF OVERFLOWS (hours) = .33
00527>
                       PERCENTAGE OF TIME OVERFLOWING (%)= 6.15

Page 8
```

Cumming Cockburn Limited

```
IBI Group
(D:\...MRCsub01.out)
00529>
00530>
            PEAK FLOW REDUCTION [Qout/Qin] (%) = 43.016
TIME SHIFT OF PEAK FLOW (min) = 2.00
00531>
00532>
                          (ha.m.) = .1842E-01
            MAXIMUM STORAGE USED
00533>
00534>
00535>
00536> 001:0019-----
00537> *
00538> *
00539> *
00541> *# ADDING MINOR FLOW FROM B2, B3, B4A, B4B
00543> *
00544> -----
00549>
           SUM 04:000107 23.63 2.351 1.12 49.17 .000
00550>
00551>
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00552>
00553>
00554> -----
00555> 001:0020-----
00556> *
00558> *# ADDING FLOW FROM B1, A1-A7 TO FLOW FROM B2-B4
00560> *
00561> -----
.93 51.68
           TD1 04:000107 23.63 2.351 1.12 49.17
+ID2 02:000110 1.64 .180 .93 51.68
00564>
00565>
           00566>
           SUM 01:000107 25.27 2.530 1.12 49.34 .000
00567>
00568>
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00569>
00570>
00571>
00572> 001:0021-----
00573> *
00575> *# ADDING MAJOR FLOW FROM B4A, B4B
00577> *
00578> -----
.000
           00583>
           SUM 05:000107 1.84 1.489 1.03 50.52
00584>
00585>
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00586>
00587>
00588> -----
00589> 001:0022-----
00590> *
00592> *# EXTERNAL LANDS (STONEBRIDGE)
00593> *# Note: Overflow routed to B6B, minor flow to external
00594> *# (tributary to Jockvale SWM facility)
```

Cumming Cockburn Limited

Page 9

(D:\...MRCsub01.out)

```
00596> *
00597> -----
00598> | CALIB STANDHYD | Area (ha) = 32.30
00599> | 10:000210 DT= 2.00 | Total Imp(%) = 54.00 Dir. Conn.(%) = 41.00
00600> -----
                               IMPERVIOUS PERVIOUS (i)
00601>
       Surface Area (ha)= 17.44 14.86
Dep. Storage (mm)= .80 1.50
Average Slope (%)= .50 2.00
Length (m)= 607.00 40.00
Mannings n = .013 .250
00602>
00603>
00604>
00605>
00606>
00607>
        00608>
00609>
00610>
00611>
00612>
                                                         *TOTALS*
00613>

      PEAK FLOW
      (cms)=
      4.64
      2.45

      TIME TO PEAK
      (hrs)=
      1.07
      1.20

      RUNOFF VOLUME
      (mm)=
      70.88
      38.34

      TOTAL RAINFALL
      (mm)=
      71.68
      71.68

      RUNOFF COEFFICIENT
      =
      .99
      .53

                                                          6.444 (iii)
00614>
                                                           1.100
00615>
                                                          51.680
00616>
                                                          71.677
00617>
                                                          .721
00618>
00619>
          (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00620>
00621>
               CN^* = 77.0 Ia = Dep. Storage (Above)
          (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00622>
00623>
                THAN THE STORAGE COEFFICIENT.
           (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00624>
00625>
00626> -----
00627> 001:0023-----
00628> *
00629> *
00630> -----
00631> | ROUTE RESERVOIR | Requested routing time step = 1.0 min.
(cms) (ha.m.) | (cms) (ha.m.)
.000 .0000E+00 | 2.284 .1357E+00
2.261 .1000E-03 | .000 .0000E+00
00635>
00636>
00637>
00638>
        00639>
00640>
00641>
00642>
00643>
00644>
                       TOTAL NUMBER OF SIMULATED OVERFLOWS =
00645>
                                                           . 47
                       CUMULATIVE TIME OF OVERFLOWS (hours)=
00646>
                       PERCENTAGE OF TIME OVERFLOWING (%)= 13.66
00647>
00648>
00649>
                       PEAK FLOW REDUCTION [Qout/Qin](%)= 35.444
00650>
                       TIME SHIFT OF PEAK FLOW (min) = -2.00
00651>
                       MAXIMUM STORAGE USED
                                                (ha.m.) = .1354E \pm 00
00652>
00654>
00655> 001:0024------
00656> *
00658> *# MAJOR FLOW TO BLACKLEAF DITCH
00660> *
                                                                          Page 10
Cumming Cockburn Limited
```

IBI Group (D:\...MRCsub01.out) 00661> -----00662> | DIVERT HYD 00663> | INID=04 (000106)| 00664> -----00665> Outflow / Inflow Relationships Flow 08 + Flow 07 = Total00666> (cms) (cms) (cms) 00667> .000 00668> 2.000 2.200 4.200 00669> 00670> NHYD AREA QPEAK TpeakDate\_hh:mm R.V. NFE WetHrs 00671> (cms) (mm) 4.160 No\_date 1:06 51.680 (hrs) 00672> (ha) IDin = 04:0001066.90 00673> 00674> IDout= 08:000101 3.28 1.981 No\_date 1:06 51.680
IDout= 07:000102 3.61 2.179 No\_date 1:06 51.680 2 0. 2 0. 00675> 00676> 00677> 00678> 001:0025-----00679> \* 00681> \*# ADDING MAJOR FLOW ON BLACKLEAF TO B4A, B4B 00683> \* 00684> -----00685> | ADD HYD (000107) | ID: NHYD AREA 00686> -----00687> 00688> 00689> SUM 04:000107 5.12 3.168 1.07 51.26 .000 00690> 00691> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00692> 00693> 00694> -----00695> 001:0026-----00696> \* 00697> FINISH 00698> WARNINGS / ERRORS / NOTES 00700> \_\_\_\_\_ 00701>

Simulation ended on 2010-06-15 at 15:52:02

00702>

00704> 00705>

|                                                                                                   | PRO UTOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PD0    FOT NO. 2 C 0 C 0    | aucur.                           |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|--|--|
| IRI                                                                                               | CLIENT: MONORALLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | SHEET: 1 OF: 2  DATE: 2010-06-17 |  |  |
| GROUP                                                                                             | DESCRIPTION: FLOW CALCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PREPARED BY: L.C.           | OTHER:                           |  |  |
|                                                                                                   | The state of the s |                             |                                  |  |  |
| FLOW                                                                                              | THROUGH MASON SYETEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 007673                      |                                  |  |  |
| Q=                                                                                                | In AR 48 s 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                  |  |  |
| BLOCK                                                                                             | 1 335 SUNITA CHESCONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,<br>,                      |                                  |  |  |
|                                                                                                   | 1. NO FLOW Q= 3.2 m <sup>3</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                           |                                  |  |  |
| SECTION   n=0.265 man parm ]   10.30   long, tuding   clope = 1.1%                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |  |  |
|                                                                                                   | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                  |  |  |
|                                                                                                   | FLO HE14-17 4-026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                  |  |  |
| n = [2.0 x 0.016 (rough captalt) + 6.0 x 0.024 (grass)]/8-0.022                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |  |  |
| ACTUAL Q = $1/0.022(1.81)(0.23)^{3/3}\sqrt{011} = 3.26 n^{3/5}$<br>V = Q/A = 3.26/1.81 = 1.80 m/s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |  |  |
| De                                                                                                | 07H X UCLOL177 = 1.80 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.26 - 0.47                 | 2 < 0.60                         |  |  |
| BLOCK                                                                                             | 329 CONTERNA COUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1_                          |                                  |  |  |
| REQ                                                                                               | VINOD FLOW Q= 1.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>8</sup> / <sub>5</sub> |                                  |  |  |
| Sca                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.25                       | s, tud incl slope = 2.09         |  |  |
| ·n                                                                                                | = 0.024 (grass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                  |  |  |
| AC                                                                                                | TUNL Q = 1/0.024 (0.85)(0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15) J.02 =<br>165 = 1.65 m  | 1.40m <sup>3</sup> /s            |  |  |
| DE                                                                                                | PTH X VELOCITY = 165 X O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 = 0.28                   | L 0.60                           |  |  |

|       | PROJECT            | E STONEBAL | 0/ < 1 | DHNS:= | /10 12   | PROJECT NO.: | 25099 | SHEET   | 2 of: 2    |
|-------|--------------------|------------|--------|--------|----------|--------------|-------|---------|------------|
| IBI   | CLIENT:<br>DESCRIP | MONAL      | _      |        | 11 - 1 - | PREPARED BY: | L-E · | DATE: 2 | 2010-06-17 |
| Broch | 321                | CHENDA     | WAT    | 70     | HIRH     | CONNEL       | WAT   |         |            |
|       |                    |            |        |        | ~·       |              |       |         |            |



long tudin 1 slope = 065%

FOR FLOW HEIGHT h=0.10 Area =  $0.30^{-2}$  n=0.022 (see RIOLH 335) ACTUAL  $Q=\frac{10.022(0.30)(0.07)\sqrt{0.065}}{0.20^{-3}/5} = 0.20^{-3}/5$  $V=\frac{0.20}{0.30} = 0.65$  m/s

DEATH & VICLOCITY = 0.10 × 0.65 = 0.07 < 0.60

# DONDONALD WAY

REQUIRED FLOW Q - 0.5 m3/s

SECTION longitudinil stope

11 - ASPHALT VIDIT = 0.600

FOR FLW MOIGHT h= 6.14 MOA = 065 n2

 $F(\neg v_{NL} Q = \frac{1}{0.016} (0.65)(0.07)^{\frac{1}{3}} \sqrt{.006} = 0.53 - \frac{3}{5}$   $V = \frac{9}{4} = 0.53/065 = 0.51 - 15$ 

DEPTH X VELOCITY = 0.14 x 081 = 0.11 < 0.60









#### NOTES:

- 1. CLAY SEAL TO EXTEND FROM BOTTOM OF TRENCH EXCAVATION TO UNDERSIDE OF ROAD STRUCTURE.
- 2. CLAY SEAL TO EXTEND FULL TRENCH WIDTH TO EXISTING NATIVE SOILS WITH A MINIMUM THICKNESS OF 1.0m ALONG PIPES.
- 3. CLAY SEAL TO BE LOCATED SO THAT NO PIPE JOINTS ARE WITHIN THE CLAY SEAL MATERIAL.



NO TRACKING OF MUD OR SEDIMENTS IS ALLOWED ONTO EXISTING ROADS. ANY MUD OR SEDIMENT OBSERVED ON EXISTING ROADS MUST BE REMOVED IMMEDIATLEY.



■ ■ SILT FENCE AS PER OPSD-219.110

> STRAW BALE FLOW CHECK AS PER OPSD-219.180

| No. | REVISIONS                                              | Ву  | Date      |
|-----|--------------------------------------------------------|-----|-----------|
| 1   | ISSUED FOR APPROVAL                                    | LME | 10: 01: 2 |
| 2   | REVISED AS PER CITY COMMENTS                           | LME | 10: 03: 0 |
| 3   | ISSUED FOR TENDER                                      | LME | 10: 03: 2 |
| 4   | REVISED AS PER CITY COMMENTS                           | LME | 10: 05: 1 |
| 5   | REVISED AS PER CITY COMMENTS                           | LME | 10: 06: 1 |
| 6   | REVISED AS PER CITY COMMENTS                           | LME | 10: 07: 0 |
| 7   | LOWER TEMPORARY MAJOR STORM<br>RETENTION AREA BY 0.30m | LME | 10: 07: 1 |
| 8   | REVISED AS PER NEW LEGAL<br>BLOCKS 331, 332, AND 333   | LME | 10: 08: 0 |
| 9   |                                                        |     |           |
| 10  |                                                        |     |           |
| 11  |                                                        |     |           |
| 12  |                                                        |     |           |
| 13  |                                                        |     |           |
|     |                                                        |     |           |





333 Preston Street Tower 1, Suite 400 Ottawa, Ontario Canada K1S 5N4 Tel (613)225-1311 FAX (613)225-9868

# STONEBRIDGE PHASE 11





# EROSION AND SEDIMENT CONTROL PLAN

| Design<br>LME | Date<br>JANUARY 2010 |
|---------------|----------------------|
| Drawn<br>DPS  | Checked<br>LME       |
| Project No.   | Drawing No.          |
| 25099         | 900                  |