119-121 BEECHWOOD AVE GEOTECHNICAL REPORT

Project No.: CP-18-0056

Prepared for:

BluePrint 17-1010 Polytek St Ottawa, Ontario K1J 9J1

Prepared by:

McIntosh Perry 115 Walgreen Rd, R.R. 3 Carp, ON K0A 1L0

February 2019 - Revised

TABLE OF CONTENTS

1.0	INTRO	DDUCTION
2.0	SITE [DESCRIPTION1
3.0	FIELD	PROCEDURES1
4.0	LABO	RATORY TEST PROCEDURES
5.0	SITE C	GEOLOGY AND SUBSURFACE CONDITIONS
5.1	Site	e Geology
5.2	Sub	surface Conditions2
5.	.2.1	Fill
5.	.2.2	Shale3
5.3	Gro	undwater
5.4	Che	emical Analysis
6.0	DISCU	JSSIONS AND RECOMMENDATIONS
6.1	Ger	neral4
6.2	Pro	ject Design4
6.	.2.1	Existing Site Condition4
6.	.2.2	Proposed Development4
6.3	Fro	st Protection
6.4	Site	Classification for Seismic Site Response
6.5	Slat	bs-on-Grade5
6.6	Sha	llow Foundations
6.	.6.1	Bearing Capacity5
6.7	Late	eral Earth Pressure
7.0	PAVE	MENT STRUCTURE
8.0	CONS	TRUCTION CONSIDERATIONS
9.0	SITE S	SERVICES
10.0	CEME	NT TYPE AND CORROSION POTENTIAL
11.0	CLOS	URE9
12.0	REFE	RENCES

APPENDICES

- Appendix A Limitations of Report
- Appendix B Figures
- Appendix C Borehole Records
- Appendix D Laboratory Results
- Appendix E Seismic Hazard Calculation

GEOTECHNICAL INVESTIGATION and FOUNDATION DESIGN RECOMMENDATION REPORT 119-121 Beechwood Ave, Ottawa, Ontario

1.0 INTRODUCTION

This report presents the factual findings obtained from a geotechnical investigation performed at the abovementioned site, for the proposed construction of a two-story office and retail building in Ottawa, Ontario. The field work was carried out on May 7, 2018 and comprised of five boreholes advanced to a maximum depth of 5.4 m below existing ground surface.

The purpose of the investigation was to explore the subsurface conditions at this site and to provide anticipated geotechnical conditions influencing the design and construction of the proposed building.

McIntosh Perry Consulting Engineers Ltd (McIntosh Perry) carried out the investigation at the request of BluePrint.

2.0 SITE DESCRIPTION

The properties under consideration for proposed development are located at 119 and 121 Beechwood Ave, east of the intersection with Chapleau Ave. The property is located north east of the Rideau River in a neighbourhood called Beechwood in Ottawa. The property is located on the main road, which is lined with residential and commercial properties. The existing two properties contains, two story homes with basements that have been used as commercial space. An asphalt driveway runs between the two properties and leads into a paved parking area behind 119 Beechwood. Behind 121 Beechwood is small grass area with gravel and two storage units. It is understood all of the existing structures will be removed as part of the proposed construction.

It is understood the proposed structure will be a 3-storey office and retail building, with basement, with proposed underside of footings at El. 54.82 m.

Location of the property is shown on Figure 1, included in Appendix B.

3.0 FIELD PROCEDURES

Staff of McIntosh Perry Consulting Engineers (McIntosh Perry) visited the site before the drilling investigation to mark out the proposed borehole locations and assess access for drill rig access. Utility clearance was carried out by USL-1 on behalf of McIntosh Perry. Public and private utility authorities were informed and all utility clearance documents were obtained before the commencement of drilling work.

The equipment used for drilling was owned and operated by Ohlmann Geotechnical Services (OGS) Ltd. of Almonte, Ontario. Boreholes were advanced using hollow stem augers aided by a truck-mounted CME-75 drilling rig. Boreholes were advanced to a maximum depth of 5.4 m below the ground level. Soil samples were obtained at 0.6 to 0.76 m intervals of depth in boreholes using a 50 mm outside diameter split spoon sampler in accordance with the Standard Penetration Test (SPT) procedure. Boreholes were backfilled with auger cuttings, cored bedrock was sealed with bentonite. All boreholes were restored to match the original surface. Borehole locations are shown on Figure 2, included in Appendix B. Geotechnical boreholes were only drilled in the driveways and parking area as the existing building are still in place limiting access to whole proposed building footprint.

4.0 LABORATORY TEST PROCEDURES

As a result of the poor quality of the shale samples retrieved, no samples were suitable for laboratory testing.

Paracel Laboratories Ltd., in Ottawa carried out chemical tests on one representative soil sample to determine the soil corrosivity characteristics. Test results are included in Appendix D.

The soil samples recovered will be stored in McIntosh Perry storage facility for a period of one month after submission of the final report. Samples will be disposed after this period of time unless otherwise requested in writing by the Client.

5.0 SITE GEOLOGY AND SUBSURFACE CONDITIONS

5.1 Site Geology

Based on published physiography maps of the area (Ontario Geological Survey) the site is located within the Ottawa Valley Clay Plains. Surficial geology maps of southern Ontario identify the property as on fine-textured glaciomarine deposits.

The Ottawa Valley between Pembroke and Hawkesbury, Ontario consists of clay plains interrupted by ridges of rock or sand. It is naturally divided into two parts, above and below Ottawa, Ontario. Within the valley, the bedrock is further faulted so that some of the uplifted blocks appear above the clay beds. The sediments themselves in the valley are deep silty clay. Although the clay deposits are grey in color like the limestones that underlies them in part, they are only mildly calcareous and likely derived from the more acidic rock of the Canadian Shield.

5.2 Subsurface Conditions

In general, the site stratigraphy consists of fill material underlain by shale. The soils encountered at this site can be divided into two different zones.

a) Fill

b) Shale

The soils encountered during the course of the investigation, together with the field and laboratory test results are shown on the Record of Borehole sheets included in Appendix C. Description of the strata encountered are given below.

5.2.1 Fill

Asphalt thickness was observed to range from 25 to 50 mm. Below the asphalt was a layer of fill which began as grey sand and gravel, which transitioned to gravelly clay fill, observed to be firm, moist and brown. SPT 'N' values within this layer were 6 to 10 blows/300 mm. The thickness of the fill, was observed to range from 1.1 m to 1.5 m, corresponding to an elevation of El. 57.0 to 56.4 m.

5.2.2 Shale

Below the fill in boreholes BH18-1 through BH18-4, was highly weathered to weathered brown to black shale bedrock. Due to the weathered and fractured nature of the shale, boreholes were advanced into the layer through auguring. The shale was cored in BH18-1 and showed the rock core recovery (CR) ranging from 63 to 100%. Rock quality designation (RQD) for the cored rock samples ranged from 0% to 12%. Dry clay seams were observed within the core. The bedrock observed was highly fractured, and in very poor to poor condition throughout the length of the sampling depth.

5.3 Groundwater

Groundwater was not observed in the open boreholes BH18-2 through BH18-5, an accurate water level could not be obtained in borehole BH 18-1 due to the presence of core water. Groundwater level may be expected to fluctuate due to seasonal changes.

5.4 Chemical Analysis

The chemical test results conducted by Paracel Laboratories in Ottawa, Ontario, to determine the resistivity, pH, sulphate and chloride content of representative soil and surface water samples are shown in Table 5-1 below:

Table 5-1. Son chemical Analysis Results								
Borehole	Sample	Depth / El. (m)	рН	Sulphate (%)	Chloride (%)	Resistivity (Ohm-cm)		
BH18-02	SS-01	0.76-1.36	7.72	0.0080	0.0522	1,040		

Table 5-1: Soil Chemical Analysis Results

6.0 DISCUSSIONS AND RECOMMENDATIONS

6.1 General

This section of the report provides recommendations for the design of a two-storey office and retail building. The recommendations are based on interpretation of the factual information obtained from the boreholes advanced during the subsurface investigation. The discussions and recommendations presented are intended to provide sufficient information to the designer of the proposed building to select the suitable types of foundation to support the structure.

The comments made on the construction are intended to highlight aspects which could have impact or affect the detailed design of the building, for which special provisions may be required in the Contract Documents. Those who requiring information on construction aspects should make their own interpretation of the factual data presented in the report. Interpretation of the data presented may affect equipment selection, proposed construction methods, and scheduling of construction activities.

6.2 Project Design

6.2.1 Existing Site Condition

Detailed site condition is provided in Section 2. The property is predominately leveled with the parking area behind 191 Beechwood Ave observed to be approximately 0.4 m lower than the backyard of 121 Beechwood. Site contains two two-storey single family home. The surrounding area consisted of residential and commercial properties. The location of the site is shown on Figure 1 included in Appendix B.

6.2.2 Proposed Development

It is understood that the proposed development will be a three-storey office and retail building without a basement and will likely be a conventional slab on grade with shallow footing foundation, understood proposed underside of footing is at El. 54.82 m.

6.3 Frost Protection

Based on applicable building codes, a minimum earth cover of 1.8 m, or the thermal equivalent of insulation, should be provided for all exterior footings to reduce the effects of frost action.

6.4 Site Classification for Seismic Site Response

Selected spectral responses in the general vicinity of the site for 10% chance of exceedance in 50 years (475 years return period) are as indicated in Table 6-1, shown below and in Appendix D;

_									
	Sa(0.2)	Sa(0.5)	Sa(2.0)	PGA	PGV				
ſ	0.162	0.088	0.021	0.102	0.068				

Table 6-1: Selected Seismic Spectral Responses (10% in 50 Yrs)

The site can be classified as a Site Class "C" for soft rock for the purposes of site-specific seismic response to earthquakes based on Table 4.1.8.4.A OBC 2012.

6.5 Slabs-on-Grade

Free-floating Slabs-on-grade should be supported on minimum 200 mm of Granular A compacted to 100% SPMDD. In case the subgrade needs to be raised Granular B type II or Granular A needs to be compacted to minimum 96% SPMDD. If the slab-on-grade is designed to support internal columns, the fill used for the grade raise shall be compacted to minimum 100% SPMDD. The fill should be placed in horizontal lifts of uniform thickness of no more than 300 mm before compaction and it should be placed at appropriate moisture content. The requirements for fill material and compaction may be addressed with a note on the structural drawing for foundation or grading drawing and/or with a Non-Standard Special Provision (NSSP).

All slab-on-grade units shall float independently from all load-bearing structural elements.

6.6 Shallow Foundations

Considering the order of structural loads expected at the foundation level, provision of conventional strip footings will be adequate. Footings are expected to be buried to resist overturning and sliding and also to provide protection against frost action.

The excavation should extend at a minimum to the top of shale, any existing fill and any material from the existing building must be removed from the footprint of the proposed building. Extremely weathered shale and all loose pieces of rock shall be removed from the footprint of the proposed footings. A geotechnical staff shall attend the site upon completion of excavation and approve the subgrade. According to bedrock geology maps shale formation is Georgian Bay, Blue Mountain, and Billings. Therefore, shale is expected to degrade relatively quickly upon exposure and based on the expected level of weathering at footing elevation. Foundation footprint shall be protected by placement of grout or lean concrete upon excavation. The grout reduces the risk of degradation and also improves the integrity of the rock surface. The other option is to rapidly place the forms on the approved subgrade, apply the grout/lean concrete and then proceed with rebar placement. If the shale has to be over-excavated due to surficial poor quality, the grade can be raised by lean concrete within the influence zone of the footing. The influence zone of the footing is defined by a line going outward and downward from the edge of the footing to the subgrade. The lean concrete shall provide compression strength equal or higher than the shale.

Shale is frost susceptible. If adequate frost cover is not provided, the deficit of earth cover should be compensated by application of synthetic insulation material adequately projecting beyond foundation walls.

6.6.1 Bearing Capacity

Assuming the strip footings are constructed through excavating the fill and weathered bedrock to an elevation of El 55.05 or lower, the following bearing capacity values can be used for structural design;

A factored bearing pressure at Ultimate Limit State (ULS) of 150 kPa can be used for the design on approved shale subgrade. If footings are placed on rock, the serviceability settlements are expected to be minimal and there is no relevance to serviceability limit state (SLS).

Due to the expected size of rock fractures, strip footings shall not be less than 0.75 m in width and isolated pad footings shall not be less than 1.5 m in shorter dimension.

6.7 Lateral Earth Pressure

Free draining material should be used as backfill material for foundation walls. If the proper drainage is provided "at rest" condition may be assumed for calculation of earth pressure on foundation walls. The following parameters are recommended for the granular backfill.

Table 6-1: Backfill	Material Properties
---------------------	----------------------------

Borehole	Granular "A"	Granular "B"
Effective Internal Friction Angle, ϕ'	35°	30°
Unit Weight, $\gamma (kN/m^3)$	22.8	22.8

7.0 PAVEMENT STRUCTURE

No details are provided on the traffic loads but it is understood that the parking lot and surrounding paved area is to be used frequently by light to heavy weight vehicles on a daily basis. Pavement structure most likely to be placed on fill material overlaying Shale bedrock. Subgrade should be proof rolled prior to placing sub-base. All top soil and soft and deleterious material shall be removed and subgrade should be proof rolled under the supervision of a geotechnical engineer or technician, prior to placing the pavement structure. Should grade raise be required, compacted Granular B Type II or Granular A should be placed as needed and compacted to 95% SPMDD prior to construction of pavement structure.

The proposed pavement structure for light vehicles parking area and access road is included in Table 7-1;

	Material				
Surface	Superpave 12.5 mm, PG 58-34	50			
Base	OPSS Granular A	150			
Sub-base	OPSS Granular B Type II	450			

Table 7-1: "Light Duty" I	Pavement Structure
---------------------------	--------------------

The light duty pavement structure is suitable for the pavement on parking stalls for ordinary passenger cars and small pick-up trucks. A high-durability pavement structure is required for areas with heavy truck traffic, such as access roads or loading bays if required. The recommended high-durability structure is included in Table 7-2;

	Material					
Surface	Superpave 12.5 mm, PG 58-34	50				
Binder	Superpave 19.0 mm, PG 58-34	60				
Base	OPSS Granular A	150				
Sub-base	OPSS Granular B Type II	450				

The base and sub base materials, i.e., Granular A and Granular Type B II, shall be in accordance with OPSS 1010. All granular compaction to minimum 100% Standard Proctor Maximum Dry Density (SPMDD). Superpave grade to be 58-34 PGAC. Asphalt layers should be compacted to comply with OPSS 310. Traffic category shall be provided to the contractor prior to preparation of mix designs.

8.0 CONSTRUCTION CONSIDERATIONS

Any organic material and existing fill material of any kind, shall be removed from the footprint of the footings and all structurally load bearing elements. If grade raise above the native subgrade is required suitable fill material to conform to specifications of OPSS Granular criteria shall be used. The Structural Fill should be free from any recycled or deleterious material, it should not be placed in lifts thicker than 300 mm and should be compacted as specified.

It is expected the founding level will be above the groundwater at the time of construction, no water was observed during the investigation. If water infiltrates into the excavation, a conventional sump and pump method can be applied. The excavated subgrade must be kept dry at all times to minimize the disturbance of the subgrade. Groundwater elevation is expected to fluctuate seasonally. No impact to neighbouring properties is expected if de-watering of the excavation is required.

The excavations are expected to be advanced through the fill subgrade. The overburden excavation should be completed in accordance with Ontario Regulation (O.Reg.) 213/91 under the Occupational Health and Safety Act (OHSA) with specific reference to acceptable side slopes and stabilization requirements. The general stratigraphy outlined herein can be considered an OHSA Type 3 Soil. For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. If excavation extends into the bedrock, OPSS.PROV 202 specifies requirements of rock excavation.

If inadequate space for sloped excavation is determined based on property limits and type 3 slope requirements, stamped shop drawings for a protection system should be provided in accordance with OPSS 539, Construction Specification for Temporary Protection Systems, and OPSS 902, Construction Specifications for Excavation and Backfilling – Structures. Special provision should be provided for installation and decommission of the shoring system to ensure proposed construction does not impact existing neighbouring foundations and the adjacent side road.

No information on the neighbouring properties type or depth of foundation has been provided. Existing properties should be reviewed prior to construction by a structural engineer to assess per-construction condition.

Groundwater was not encountered during the investigation, based on the expected depth of excavation, groundwater flow into the excavation in excess of 50,000 liter per day is not expected for this proposed construction. As a result, a PTTW or registration for EASR with respect to de-watering, is not expected to be required as a result of the construction. If during construction water elevation is different than observed, or excessive runoff is encountered in the excavation, a PPTW or EASR may be required. Given the encountered stratigraphy and expected water level, no significant impact is expected for any adjacent structures only due to potential groundwater lowering.

A geotechnical engineer or technician should attend the site to confirm the type of the material and level of compaction.

Foundation walls should be backfilled with free-draining material such as OPSS Granular types A or B. The native till is not a suitable material for backfilling. Sub-drains with positive drainage to the City sewer should be provided at foundation level.

9.0 SITE SERVICES

At the subject site, the burial depth of water-bearing utility lines is typically 2.4 m below ground surface. If this depth is not achievable due to design restrictions, equivalent thermal insulation should be provided. The contractor should retain a professional engineer to provide detailed drawings for excavation and temporary support of the excavation walls during construction.

Utilities should be supported on minimum of 150 mm bedding of Granular A compacted to minimum 96% of SPMDD. Utility cover can be Granular A or Granular B type II compacted to 96% SPMDD. All covers are to be compacted to 100% SPMDD if intersecting structural elements. The engineer designing utilities shall ensure the proposed utility pipes can tolerate compaction loads.

Cut-off walls should be provided for utility trenches running below the groundwater level to mitigate the settlement risk due to groundwater lowering. At this site, there is not a high concern for groundwater lowering, however installation of cut-off walls is a good practice to reduce the risk of fine grain material washing into the granular backfill of utility trenches.

10.0 CEMENT TYPE AND CORROSION POTENTIAL

A soil sample was submitted to Parcel laboratories for testing of chemical properties relevant to exposure of concrete elements to sulphate attacks as well as potential soil corrosivity effects on buried metallic structural element. Test results are presented in Tables 5-1.

The potential for sulphate attack on concrete structures is moderate. Type GU Portland cement is expected to be adequate to protect buried concrete elements in the subsurface conditions encountered.

The corrosion potential for buried steel elements was determined as 'non-aggressive'.

11.0 CLOSURE

We trust this geotechnical investigation and foundation design report meets requirements of your project. The "Limitations of Report" presented in Appendix A are an integral part of this report. Please do not hesitate to contact the undersigned should you have any questions or concerns.

McIntosh Perry Consulting Engineers Ltd.

Mary-Ellen Gleeson, M.Eng., P.Eng Geotechnical Engineer

5 MA

N'eem Tavakkoli, M.Eng., P.Eng. Senior Geotechnical Engineer

12.0 REFERENCES

Canadian Geotechnical Society, "Canadian Foundation Engineering Manual", 4th Edition, 2006.

Ontario Ministry of Natural Resources (OMNR), Ontario Geological Survey, Special Volume 2, "The Physiography of Southern Ontario", 3rd Edition, 1984.

Google Earth, Google, 2015.

119-121 BEECHWOOD AVE

APPENDIX A LIMITATIONS OF REPORT

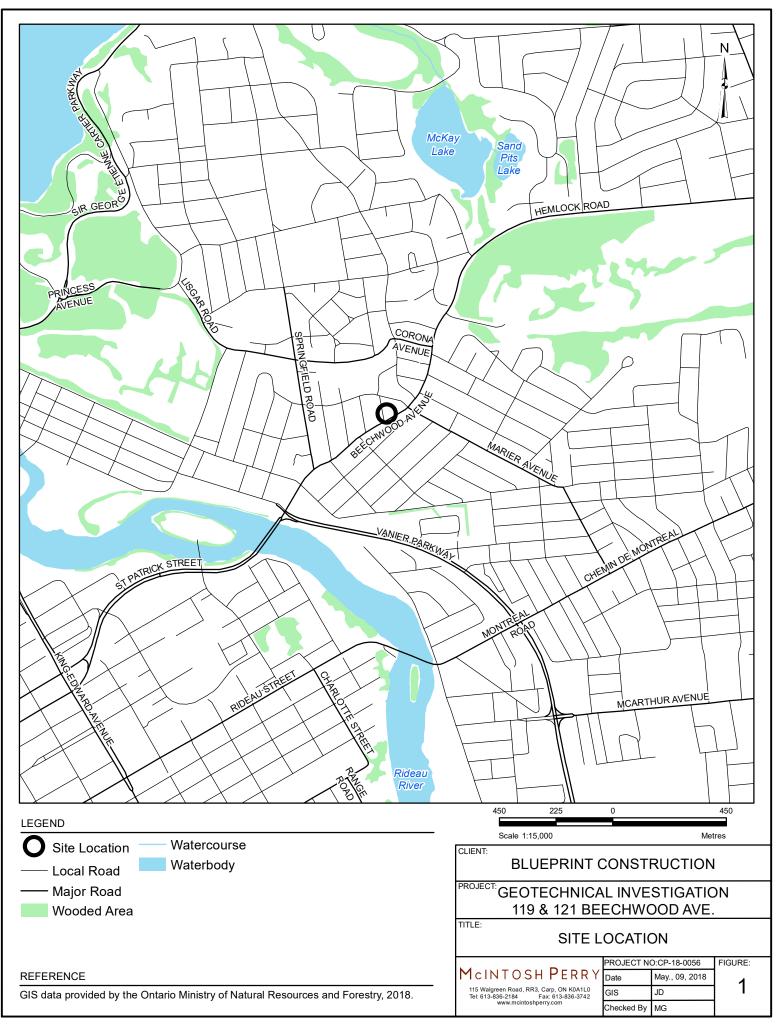
LIMITATIONS OF REPORT

McIntosh Perry Consulting Engineers Ltd. (McIntosh Perry) carried out the field work and prepared the report. This document is an integral part of the Foundation Investigation and Design report presented.

The conclusions and recommendations provided in this report are based on the information obtained at the borehole locations where the tests were conducted. Subsurface and groundwater conditions between and beyond the boreholes may differ from those encountered at the specific locations where tests were conducted and conditions may become apparent during construction, which were not detected and could not be anticipated at the time of the site investigation. The benchmark level used and borehole elevations presented in this report are primarily to establish relative differenced in elevations between the borehole locations and should not be used for other purposes such as to establish elevations for grading, depth of excavations or for planning construction.

The recommendations presented in this report for design are applicable only to the intended structure and the project described in the scope of the work, and if constructed in accordance with the details outlined in the report. Unless otherwise noted, the information contained in this report does not reflect on any environmental aspects of either the site or the subsurface conditions.

The comments or recommendation provided in this report on potential construction problems and possible construction methods are intended only to guide the designer. The number of boreholes advanced at this site may not be sufficient or adequate to reveal all the subsurface information or factors that may affect the method and cost of construction. The contractors who are undertaking the construction shall make their own interpretation of the factual data presented in this report and make their conclusions, as to how the subsurface conditions of the site may affect their construction work.


The boundaries between soil strata presented in the report are based on information obtained at the borehole locations. The boundaries of the soil strata between borehole locations are assumed from geological evidences. If differing site conditions are encountered, or if the Client becomes aware of any additional information that differs from or is relevant to the McIntosh Perry findings, the Client agrees to immediately advise McIntosh Perry so that the conclusions presented in this report may be re-evaluated.

Under no circumstances shall the liability of McIntosh Perry for any claim in contract or in tort, related to the services provided and/or the content and recommendations in this report, exceed the extent that such liability is covered by such professional liability insurance from time to time in effect including the deductible therein, and which is available to indemnify McIntosh Perry. Such errors and omissions policies are available for inspection by the Client at all times upon request, and if the Client desires to obtain further insurance to protect it against any risks beyond the coverage provided by such policies, McIntosh Perry will co-operate with the Client to obtain such insurance.

McIntosh Perry prepared this report for the exclusive use of the Client. Any use which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. McIntosh Perry accepts no responsibility and will not be liable for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

119-121 BEECHWOOD AVE

APPENDIX B FIGURES

119-121 BEECHWOOD AVE

APPENDIX C BOREHOLE LOGS

EXPLANATION OF TERMS USED IN REPORT

N-VALUE: THE STANDARD PENETRATION TEST (SPT) N-VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD 51mm O.D SPLIT BARREL SAMPLER TO PENETRATE 0.3m INTO UNDISTURBED GROUND IN A BOREHOLE WHEN DRIVEN BY A HAMMER WITH A MASS OF 63.5 kg, FALLING FREELY A DISTANCE OF 0.76m. FOR PENETRATIONS OF LESS THAN 0.3m N-VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED. AVERAGE N-VALUE IS DENOTED THUS N.

DYNAMIC CONE PENETRATION TEST: CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (51mm O.D. 60° CONE ANGLE) DRIVEN BY 475J IMPACT ENERGY ON 'A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION IS MEASURED AS THE NUMBER OF BLOWS FOR EACH 0.3m ADVANCE OF THE CONICAL POINT INTO THE UNDISTURBED GROUND.

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSENESS.

CONSISTENCY: COHESIVE SOILS ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STRENGTH (c,) AS FOLLOWS:

Γ	C _u (kPa)	0 – 12	12 – 25	25 – 50	50 – 100	100 – 200	>200
		VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD

DENSENESS: COHESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF DENSENESS AS INDICATED BY SPT N VALUES AS FOLLOWS:

N (BLOWS/0.3m)	0 – 5	5 – 10	10 – 30	30 – 50	>50
	VERY LOOSE	LOOSE	COMPACT	DENSE	VERY DENSE

ROCKS ARE DESCRIBED BY THEIR COMPOSION AND STRUCUTRAL FEATURES AND/OR STRENGTH.

RECOVERY: SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH OF THE CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE INTACT CORE PIECES, 100mm+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (RQD), FOR MODIFIED RECOVERY IS:

RQD (%)	0 – 25	25 – 50	50 – 75	75 – 90	90 - 100
	VERY POOR	POOR	FAIR	GOOD	EXCELLENT

JOINT AND BEDDING:

SPACING	50mm	50 – 300mm	0.3m – 1m	1m – 3m	>3m
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

ABBREVIATIONS AND SYMBOLS

FIELD SAMPLING

THINKALL DIGTON

MECHANICALL PROPERTIES OF SOIL

	SS	SPLIT SPOON	TP	THINWALL PISTON	m _v	kPa ⁻ '	COEFFICIENT OF VOLUME CHANGE
١	WS	WASH SAMPLE	OS	OSTERBERG SAMPLE	Cc	1	COMPRESSION INDEX
5	ST	SLOTTED TUBE SAM	MPLE RC	ROCK CORE	Cs	1	SWELLING INDEX
E	BS	BLOCK SAMPLE	PH	TW ADVANCED HYDRAULIC	CALLY c _a	1	RATE OF SECONDARY CONSOLIDATION
(CS	CHUNK SAMPLE	PM	TW ADVANCED MANUALLY	Cv	m²/s	COEFFICIENT OF CONSOLIDATION
-	TW	THINWALL OPEN	FS	FOIL SAMPLE	Н	m	DRAINAGE PATH
					Tv	1	TIME FACTOR
			STRESS AN	D STRAIN	U	%	DEGREE OF CONSOLIDATION
ι	u _w	kPa	PORE WATER PR	RESSURE	σ'vo	kPa	EFFECTIVE OVERBURDEN PRESSURE
r	r _u	1	PORE PRESSUR	E RATIO	σ΄ρ	kPa	PRECONSOLIDATION PRESSURE
(σ	kPa	TOTAL NORMAL	STRESS	τ _f	kPa	SHEAR STRENGTH
0	σ'	kPa	EFFECTIVE NOR	MAL STRESS	c'	kPa	EFFECTIVE COHESION INTERCEPT
1	τ	kPa	SHEAR STRESS		Φ,	_°	EFFECTIVE ANGLE OF INTERNAL FRICTION
0	σι, σ2, σ	₅₃ kPa	PRINCIPAL STRE	ESSES	Cu	kPa	APPARENT COHESION INTERCEPT
٤	ε	%	LINEAR STRAIN		Φu	_°	APPARENT ANGLE OF INTERNAL FRICTION
Ę	ε ₁ , ε ₂ , ε	s ₃ %	PRINCIPAL STRA	AINS	τ _R	kPa	RESIDUAL SHEAR STRENGTH
E	E	kPa	MODULUS OF LI	NEAR DEFORMATION	τ _r	kPa	REMOULDED SHEAR STRENGTH
(G	kPa	MODULUS OF SH	IEAR DEFORMATION	St	1	SENSITIVITY = c_u / τ_r
ļ	μ	1	COEFFICIENT OF	FRICTION			

PHYSICAL PROPERTIES OF SOIL

Ps	kg/m ³	DENSITY OF SOLID PARTICLES	е	1,%	VOID RATIO	e _{min}	1,%	VOID RATIO IN DENSEST STATE
Υ_{s}	kN/m ³	UNIT WEIGHT OF SOLID PARTICLES	n	1,%	POROSITY	I _D	1	DENSITY INDEX = $\frac{e_{max} - e}{e_{max} - e_{min}}$
Pw	kg/m ³	DENSITY OF WATER	w	1,%	WATER CONTENT	D	mm	
\dot{Y}_{w}	kN/m ³	UNIT WEIGHT OF WATER	Sr	%	DEGREE OF SATURATION	Dn	mm	N PERCENT – DIAMETER
P	kg/m ³	DENSITY OF SOIL	Ŵ	%	LIQUID LIMIT	C	1	UNIFORMITY COEFFICIENT
r	kŇ/m ³	UNIT WEIGHT OF SOIL	WP	%	PLASTIC LIMIT	ĥ	m	HYDRAULIC HEAD OR POTENTIAL
$P_{\rm d}$	kg/m ³	DENSITY OF DRY SOIL	W _s	%	SHRINKAGE LIMIT	q	m ³ /s	RATE OF DISCHARGE
\tilde{T}_{d}	kŇ/m ³	UNIT WEIGHT OF DRY SOIL	l₽ [°]	%	PLASTICITY INDEX = $(W_L - W_L)$	v	m/s	DISCHARGE VELOCITY
P_{sat}	kg/m ³	DENSITY OF SATURATED SOIL	ĥ.	1	LIQUIDITY INDEX = $(W - W_P)/I_P$	i	1	HYDAULIC GRADIENT
γ_{sat}	kN/m ³	UNIT WEIGHT OF SATURATED SOIL	l _c	1	CONSISTENCY INDEX = $(W_1 - W) / 1_P$	k	m/s	HYDRAULIC CONDUCTIVITY
P'	kg/m ³	DENSITY OF SUBMERED SOIL	e _{max}	1,%	VOID RATIO IN LOOSEST STATE	i	kN/m ³	SEEPAGE FORCE
r	kN/m ³	UNIT WEIGHT OF SUBMERGED SOIL	,max			-		

~	10	:11	V T C	SHPERRY	RE	COF	RD	0	FE	BOR	EHC	DLE	E No	o 18	-01			Page 1 of 1
	ATE ROJ	: ECT		05/2018 - 08/05/2018 -18-0056BEECHWOOD	LOCATION	_				od Ave () ₋on: -75.6					INATE PILED	D BY: BY:	MG MG	
С	IEN.	NT:	Blu	iePrint	DATUM:		eode							CHEC	KED E	3Y:	NT	
EL	EV.	ATIC	DN: <u>58</u>		REMARK:						1			REPC	RT DA	ATE: 3	22/05	/2018
DEPTH - feet		DEPTH - meters	0 DEPTH - m	SOIL PROFILE DESCRIPTION Natural ground surface	SYMBOL	<u>م</u>		RECOVERY	"N" or RQD	GROUNDWATER CONDITIONS	RESIST 20 SHEAI Vane ◇Int ◆Re	e test act emolded	LOT 60 ↓ NGTH Lab v □ Int ■ Re	ane	CC LIN W _P	VATEF ONTEN and MITS (* W 50	NT %) ₩ _L ⊣	REMARKS & GRAIN SIZE DISTRIBUTION (%) G S M C
	-		0.0	50 mm Surface Treated Fill. Sandy gravle, loose, moist, g	irey	8												
-	5	- 1	0.1 <u>56.9</u> 1.1	Shale Bedrock; highly weathered fractured, very poor, clay seams, dry		SS-01	$\left \right $	38	6									
-	╞					-	\square											
ŀ	F	- 2	<u>55.8</u> 2.1	Shale Bedrock; weathered, fractu	ured.	_ SS-03 ≓		125	50							_		
╞	-			very poor to poor, black		RC-04		105	0									
ŀ	F					RC-05		63	0									
-1	₀⊢	- 3												_				
-	-	- 4				RC-06		92	0									
- 1	5-	- 4				RC-07		98	12									
F	-	- 5												_				
ŀ	-		52.6 5.4	END OF BOREHOLE														
- 2	0 -	- 6																
ŀ	-																	
- Sth	-	- 7																
- 2	5-																	
- I	╞	- 8									\vdash							
		_																
	0 - -	- 9																
	-																	

M	1 c	:11	Ν	то	SH PERRY	R	E	COF	RD	0	FE	BOR	EH	O	LE	Ν	o 1	8-	02			Page 1 of 1
DA	TE	:		<u>08</u> /	05/2018 - 08/05/2018	LOCAT	ION:	<u>1</u> 1	<u>9-12</u>	<u>1 Be</u> e	chwo	od Ave ()					OR	IGIN	ATED	BY:	MG	
PR	oJ	EC	T:	CP	-18-0056BEECHWOOD	COORD	DINA	TES: La	ıt: 45	.4418	13 , L	.on: -75.6	72652		-		со	MPII	LED B	Y:	MG	
CL	IEN	IT:		Blu	ePrint	DATUM	1:	Ge	eode	tic							СН	ECK	ED B	/ :	NT	
EL	EV	ATI	ON	1: 58.	0 m	REMAR	RK:	No	o wat	er ob	served	l in open	boreho	ole.			RE	POR	T DA	E:	22/05	/2018
eet		meters	_	ε_	SOIL PROFILE							ATER	DYNA RESIS	STAN	CE PL	от	80	•	CO	ATEI NTEI and		REMARKS &
DEPTH - feet		TH - me		BELEVATION - M	DESCRIPTION		SYMBOL	TYPE AND NUMBER	STATE	RECOVERY	"N" or RQD	GROUNDWATER CONDITIONS	SHE Va	AR S ne tes	TRE	NGTI Lab	H (kPa vane		LIM W _P	TS (GRAIN SIZE DISTRIBUTION (%)
		DEPTH	i		Natural ground surface		Ś	i z		REC	N	GRO CC	۱	Intact Remo 0 4		F	ntact Remolde 0 100		₽ 25	-0-		GSMC
			- 11	0.0 57.9	\ 40 mm Surface Trated	/	***														-	
-	-			0.0 57.2	Fill. Gravelly sand, some silt, dry,	brown																
-		• 1		0.8	Fill. Gravelly clay, firm, moist, brow	wn		SS-01		29	7							-				
	5			<u>56.4</u> 1.5	Shale Bedrock. Highly weathered fractured, dry, brown to grey	, highly		SS-02		94	100											
-	-	2	2					- - -														
	-							SS-03	\mid	73	107											
- 1 -	0	- 3		<u>54.7</u> 3.3	END OF BOREHOLE	-		SS-04	\mid	73	50											Auger refusal
-	-	- 4	1		SPT sampler refusal on bedroc	k																
- 1	5																					
-	-	- 5	5																			
F	-																					
- 2	0	6	5															-				
-	-																					
lie.c.	-	- 7	7																			
- 2	5																					
	-	8	5																			
nevidence.		- 9	•																			
	U - - -																					
	-																					

	M	c	N T O	SH PERRY	RE	COF	RD	0	FE	BOR	EHC	C	No	18	-03	3		Page 1 of 1
	ОАТ	E:	08/	/05/2018 - 08/05/2018	LOCATION	: <u>1</u> 1	19-12	1 Bee	chwo	od Ave ()				ORIGI	NATE	D BY	MG	
	PRO	JECI	г : <u>СР</u>	P-18-0056BEECHWOOD	COORDINA	TES: La	at: 45	.4418	24 , I	_on: -75.6	72704			COMF	PILED	BY:	MG	
		NT:		uePrint	DATUM:	G	eode	tic						CHEC	KED	BY:	NT	
Ľ	ELE	VATIO	ON: 57.		REMARK:					d in open l				REPO	RT D	ATE:	22/05	/2018
	- teet	- meters	Е - Е	SOIL PROFILE				PLES		WATER		ANCE P 40	LOT 60		C	VATE ONTE and MITS	NT	REMARKS & GRAIN SIZE
	DEPTH - feet	DEPTH - I	DEPTH - m	DESCRIPTION	SYMBOL	TYPE AND NUMBER	STATE	RECOVERY	"N" or RQD	GROUNDWATER CONDITIONS	Vane ◇Int ◆Re	test act molded	NGTH (I Lab va □ Inta ■ Ren	ine ct nolded	w _P	w	W _L	DISTRIBUTION (%)
				Natural ground surface						Ŭ	20	40 6	0 80	100	25	5 50	75 ⊔↓∪∪⊥	GSMC
-		-	0.0 57.7 0.0 <u>57.2</u> 0.6	40 mm Surface Treated Fill.Sand and gravel to gravelly sa trace silt, moist, brown to grey. Fill. Gravelly clay, firm, moist, brow														
	5	- 1 - -	56.7 1.1	Shale Bedrock. Highly weathered fractured, dry, brown to black	, highly	SS-01		58	31									
		- - 2 -	55.7 2.1	END OF BOREHOLE		SS-02		100	72									
	10	- - - 3		Auger refusal on bedrock.														
		-																
	15	4 - -																
		- 5 -																
	20	- - - 6																
-	20	-																
Borenole_vs.cv	25	7 - - -																
Style/Log_BC		- - 8 -																
Jeki Geolecsuis		- - - 9																
	30	-																

1	1	cII	NT	os	H PERRY	R	EC	COF	RD	0	FE	BOR	EH	0	LE	N	o 1	8-	04	ŀ				Pa	age 1	of 1
	AT	E:	(08/05/2	018 - 08/05/2018	LOCATIO	ON:	<u>11</u>	9-12	1 Bee	chwo	od Ave ()			-		OR	IGIN	ATE	DВ	/ : <u>MG</u>	à				
P	RO	JEC.	T: (CP-18-	0056BEECHWOOD	COORDI	NA	TES: La	at: 45	.4417	37 , I	_on: -75.6	7268		_		со	MPII	LED	BY:	MG	à				
c	LIE	NT:	Ę	BluePri	nt	DATUM:		G	eode	tic					-		СН	ЕСК	ED E	BY:	NT					
E	LE\	νΑτι	ON: 5	58.2 m		REMAR	K :	No	o wat	er ob	serve	d in open l	boreh	ole.	-		RE	POR	TDA	TE:	22/	05/2	2018			
	Sel	- meters	5	<u>_</u>	SOIL PROFILE			_				ATER NS	RESI	AMIC (ISTAN 20	CE PL	.OT	80	•		/AT DNT and	ENT		F	REMA 8		s
	חברוח - ופפו	H - me	VIION	E H	DESCRIPTION		SYMBOL	TYPE AND NUMBER	STATE	RECOVERY	"N" or RQD	GROUNDWATER CONDITIONS	SHE		TRE	NGTH	(kPa) vane			AITS	6 (%)			RAIN STRIE	I SIZ BUTI	
		DEPTH	ELEVATION - m				SYI	NL N	S	RECO	N	GROL	$\stackrel{\diamond}{\bullet}$	Intact Remo	Ided	🗌 In 📕 R			₩ _P 	-0	W 	'L		(%		
\vdash	_		58.2	/ I INd	atural ground surface mm Surface Treated	/8	~~~						+		μĤ				щŤ	щ	ΨΨ	щ	G	S	М	<u> </u>
	ŀ	-	58.	し _ん Fi	I. Sandy gravel, moist, grey																					
		_	58.0 0.2	0_/ 「	I. Gravelly clay, firm, moist, brow	^{vn}																				
	┝	-							\vdash	,																
	ŀ	- 1	57.0				*	SS-01	IX	33	10											-				
ŀ	t	_	1.2	2 Sł	nale Bedrock. highly weathered,				\square																	
┢	5	_		fra	actured, very poor, dry, brown to	black			\vdash																	
ŀ	-	-						SS-02	IX.	79	50															
ŀ		- 2	2						\square																	
		_							5																	
	┝	-						SS-03	IX	79	90															
ľ	ŀ	-							\vdash																	
F	10	- 3 -					_	SS-04	\bigtriangledown	60	50															
ŀ	-	-	54.9 3.3	9 3 El	ND OF BOREHOLE		_		\vdash																	
ŀ	-	-		s	PT sampler refusal on bedrocl	k.																				
L	t																									
	-																									
		-																								
F	15	_																								
ŀ		- 5	5																							
ŀ	┝	-																								
┟	F	-																								
		_																								
	~	- 6	5																		_	_				
Γ	20	-																								
ŀ	t	-																								
ŀ		-																								
\mathbf{F}	-	- 7	, 																		_	_				
	ŀ	-																								
	25	-																								
	25	-																								
- 60	ŀ	- 8	8										·					_				-				
200	t	_																								
-	F	-																								
000	┝	-	1																							
-	30	- 9	2													\rightarrow			+	+	+					
5		-	1																							
LING	┝	-	1																							
	_	-														_									_	_
-			-				_		-					-					1							_

DATE: 080022018 - 62052018 LOCATION: 119-121 Bacchwold Are () ORIGINATED BY: MG COORDNATES: LICATION: COORDNATES: LICATION: COORDNATES:	١	1	211	0 T V	SH PERRY	R	E	COF	RD	0	FE	BOR	EH	10	LE	E N	0	18	-0	5				Pa	ige 1	of 1
CLEMT: Durghtm DATUM: Seconda: CHECKED BY: NT ELVATION: 57.0 m REMAR: No water observed in open boshole. REPORT DATE: Water observed in open boshole. Water observed in ope	D	ATE	:	<u>08</u> /	05/2018 - 08/05/2018	LOCAT	ION:	<u>11</u>	9-12	1 Bee	echwo	od Ave ()			_		С	RIG	NATI	ED B'	Y : <u>M</u>	IG				
ELEVATION: 97.3 m REMARK: No water observed in gene borehoot: REPORT DATE: 20052010 value SOUL PROFILE SAMPLES gradue	Р	RO,	JECT	: <u>CP</u>	-18-0056BEECHWOOD	COORI	DINA	TES: La	at: 45	.4419	06 , I	_on: -75.6	72737	7	_		С	OMF	PILED	BY:	Μ	IG				
B SOLL PROFILE SAMPLES B B WATER SESTANCE TO COME PR. WATER SESTANCE TO C	c	LIE	NT:	Blu	ePrint	DATUN	1:	G	eode	tic					_		С	HEC	KED	BY:	Ν	Т				
1 1 DESCRIPTION 10	E	LE\	ΑΤΙΟ	DN: 57.		REMAR	RK:					d in open l	boreh	ole.	_		R	EPO	RT D	ATE:	22	2/05/	2018			
Understand Underst			Ś		SOIL PROFILE			S	AMF	PLES	; T	E.					. •	2					_			_
Understand Underst	to		eter	ے ^י				9 @		~	٩	ATE					80)	C			Г	F			3
Understand Underst			Ĕ	No +			ğ	BEI	ATE	/ER	BQ	N							U			6)		RAIN	I SIZ	
U 20 40 60 60 00 25 70 60 60 70 60 60 70 60 60 70 60 60 70 60 60 70 60 70			H	TAT ITI	DESCRIPTION		ΥM		ST	l S	" or		Va	ane te	st	Lab	o vane		w,	, w	, I	w,	DIS			ON
U 20 40 60 60 00 25 70 60 60 70 60 60 70 60 60 70 60 60 70 60 60 70 60 70		5	DEF	ы Б			S			Ë	Ľ.	ы С В С		Remo	olded	- F	Remol		⊢	0)	1				
Image: State of the second and greet, dry grey (1) Image: State of the second and greet, dry grey (1)				5 7.3	Natural ground surface							_	2	20 4	ю е 	8 0		00	2	550) 7: 	5	G	S	М	С
GB-01 1.5 1.4 END OF BOREHOLE Auger grinding on probable bedrock. 1.5 1.4 1.4 1.4 END OF BOREHOLE 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		╞		57.3	Fill. Sand and gravel, dry, grey	/																				
GB-01 1 55 0 1 4 END OF BOREHOLE Auger grinding on probable bedrock. 1 0 3 4 4 - 10 3 4 4 - 10 4 - 20 6 - 20 6 - 20 6 - 20 6 - 3 - 4 - 4 - 4 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9		F		57.1	Fill. Gravelly clay, moist, brown																					
- -	F			0.2						,																
- -	F	╞	- 1					GB-01	\mathbb{N}											_						
- -	ŀ	╞		55.9					$ \rangle$																	
	\vdash	5			END OF BOREHOLE]																		
					Auger grinding on probable be	edrock.																				
		F	- 2																							
	f																									
	ŀ	+																								
	ŀ	10	- 3																							
	ŀ																									
	ŀ	-																								
		F																								
			- 4																							
	ſ	-																								
	F	15																								
	ŀ		- 5																							
	ŀ	╞																								
	ŀ	F																								
		Ē																								
			- 6																							
		20																								
	F																									
	ŀ																									
	ŀ	╞	- 7																							
	his.cv	F																								
	lole	25																								
	porei																									
	- Tog	ŀ	- 8																	_						
	lyic	ŀ																								
	econ	F																								
	Ceor	╞	,										1													
	opek	30	- 9										<u> </u>							+						
	0/0												1													
	EINDE	┝																								

119-121 BEECHWOOD AVE

APPENDIX D LAB RESULTS

RELIABLE.

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Road RR#3 Carp, ON KOA 1L0 Attn: Mary Ellen Gleeson

Client PO: CP-18-0056 Project: CP-18-0056-Beachwood Custody: 31740

Report Date: 16-May-2018 Order Date: 10-May-2018

Order #: 1819630

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1819630-01 CP-18-0056-BH18-02 SS-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 16-May-2018 Order Date: 10-May-2018 Project Description: CP-18-0056-Beachwood

Order #: 1819630

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC, water extraction	15-May-18	15-May-18
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	15-May-18	15-May-18
Resistivity	EPA 120.1 - probe, water extraction	15-May-18	16-May-18
Solids, %	Gravimetric, calculation	15-May-18	15-May-18

Order #: 1819630

Report Date: 16-May-2018

Order Date: 10-May-2018

Project Description: CP-18-0056-Beachwood

	Client ID:	CP-18-0056-BH18-02	-	-	-
		SS-01			
	Sample Date:	05/07/2018 09:00	-	-	-
	Sample ID:	1819630-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	86.2	-	-	-
General Inorganics					
рН	0.05 pH Units	7.72	-	-	-
Resistivity	0.10 Ohm.m	10.4	-	-	-
Anions					
Chloride	5 ug/g dry	522	-	-	-
Sulphate	5 ug/g dry	80	-	-	-

Order #: 1819630

Report Date: 16-May-2018

Order Date: 10-May-2018

Project Description: CP-18-0056-Beachwood

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	5	ug/g						
Sulphate	ND	5	ug/g						
General Inorganics Resistivity	17800	0.10	Ohm.m						

Order #: 1819630

Report Date: 16-May-2018

Order Date: 10-May-2018

Project Description: CP-18-0056-Beachwood

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	11.1	5	ug/g dry	11.2			0.9	20	
Sulphate	26.8	5	ug/g dry	26.6			1.0	20	
General Inorganics									
pН	7.73	0.05	pH Units	7.66			0.9	10	
Resistivity	50.6	0.10	Ohm.m	54.4			7.1	20	
Physical Characteristics % Solids	88.2	0.1	% by Wt.	90.0			2.0	25	

Order #: 1819630

Report Date: 16-May-2018

Order Date: 10-May-2018

Project Description: CP-18-0056-Beachwood

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Chloride Sulphate	103 129	5 5	ug/g ug/g	11.2 26.6	91.7 103	78-113 78-111			

Report Date: 16-May-2018 Order Date: 10-May-2018 Project Description: CP-18-0056-Beachwood

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

119-121 BEECHWOOD AVE

APPENDIX E SEISMIC HAZARD CALCULATION

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Site: 45.4417 N, 75.6726 W User File Reference: 119-121 Beechwood Ave

Requested by: , McIntosh Perry

Sa(0.05)	Sa(0.1)	Sa(0.2)	Sa(0.3)	Sa(0.5)	Sa(1.0)	Sa(2.0)	Sa(5.0)	Sa(10.0)	PGA (g)	PGV (m/s)
0.449	0.525	0.440	0.335	0.238	0.118	0.056	0.015	0.0054	0.282	0.197

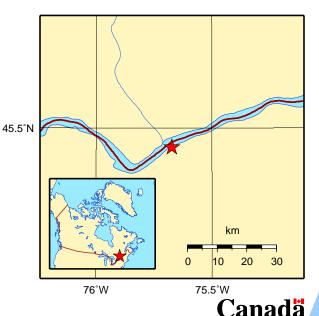
Notes. Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC 2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are specified in **bold** font. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. *These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.*

Ground motions for other probabilities:			
Probability of exceedance per annum	0.010	0.0021	0.001
Probability of exceedance in 50 years	40%	10%	5%
Sa(0.05)	0.044	0.150	0.249
Sa(0.1)	0.061	0.188	0.301
Sa(0.2)	0.055	0.162	0.256
Sa(0.3)	0.044	0.125	0.196
Sa(0.5)	0.031	0.088	0.139
Sa(1.0)	0.015	0.045	0.070
Sa(2.0)	0.0061	0.021	0.033
Sa(5.0)	0.0012	0.0047	0.0081
Sa(10.0)	0.0006	0.0019	0.0032
PGA	0.033	0.102	0.164
PGV	0.021	0.068	0.111

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada

User's Guide - NBC 2015, Structural Commentaries NRCC no.xxxxxx (in preparation)45.Commentary J: Design for Seismic Effects


Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

Aussi disponible en français

Natural Resources Canada Ressources naturelles Canada

May 09, 2018