Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Phase I-II - Environmental Site Assessment

1050 Somerset Street West Ottawa, Ontario

Prepared For

Claridge Homes

July 13, 2011

Report: PE2278-2

Paterson Group Inc.

Consulting Engineers 28 Concourse Gate - Unit 1 Ottawa (Nepean), Ontario Canada K2E 7T7

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup Ottawa Kingston

TABLE OF CONTENTS

PAGE

	EXECUTIVE SUMMARYii
1.0 2.0 3.0	INTRODUCTION
4.0	PHASE I - ENVIRONMENTAL SITE ASSESSMENT 4.1 Historical Research 3 4.2 Field Assessment 4 4.3 Historical Review 5 4.4 Exterior Assessment 5
5.0	4.4 Exterior Assessment 9 4.5 Interior Assessment 10 4.6 Adjacent Properties 12 4.7 Assessment - Phase I 12 PHASE II - ENVIRONMENTAL SITE ASSESSMENT 12
5.0	5.1Subsurface Investigation135.2Subsurface Profile155.3Groundwater155.4Soil Sample Headspace Analysis155.5Analytical Test Results16
6.0	ASSESSMENT AND RECOMMENDATIONS 6.1 Assessment
7.0	STATEMENT OF LIMITATIONS 26
APPENDICE	S

Appendix 1	Soil Profile & Test Data Sheets
	Symbols and Terms
	Analytical Test Results

Appendix 2 Aerial Photographs MOE Freedom for Information Request Figure 1 - Key Plan Drawing No. PE2278-2 - Test Hole Location Plan

EXECUTIVE SUMMARY

Assessment

A Phase I - Environmental Site Assessment was carried out for the property located at 1050 Somerset Street West, in the City of Ottawa, Ontario. The purpose of this environmental assessment was to research the past and current use of the site and adjacent properties and identify any environmental concerns with the potential to have impacted the subject property.

A Phase II - ESA was conducted on the subject property to address potential concerns from the presence of a reported former on-site gasoline UST and a suspected existing furnace oil UST. The current use of the southern portion of the site building as an automotive garage was also noted as a potential concern. These concerns were identified during the Phase I - ESA portion of our assignment.

Soil

A total of eight (8) boreholes and one (1) test pit were placed on the subject property (BH1 to BH8) and (TP1). It should be noted that a geotechnical investigation was carried out on the subject site in conjunction with the Phase II-ESA. The test pit was excavated adjacent to the west wall of the building in the area of the suspected furnace oil tank location. The purpose of this test pit was to determine if the UST was still in place and to determine if the subsurface environment had been impacted by the presence of this suspected tank. The presence of the UST was confirmed and olfactory signs of petroleum hydrocarbon contamination were observed in soil samples recovered from this test pit. BH4, BH6 and BH7 were placed to delineate the extent of impacted soil encountered in TP1. BH1 was placed along the southeast portion of the property in the area of the reported former gasoline UST, BH8 was placed further down-gradient of BH1 to assess potential subsurface migration from the reported former gasoline UST. BH5 was placed on the interior of the garage portion of the building to assess in-ground hoists and other ancillary equipment. BH2 and BH3 were placed at selected locations on the subject property for geotechnical purposes.

Based on visual and olfactory observations, in conjunction with our combustible vapour readings, five (5) soil samples were submitted for analysis for a combination of the following parameters: benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, fractions 1 to 4) and metals.

Soil Sample TP1-G2 identified PHC (F1, F2 and F3) and xylene concentrations in excess of the selected 2009 MOE Table 3 standards adjacent to the furnace oil UST. Soil sample BH5-SS3 had a reported concentration of the F3 range of PHCs in excess of the MOE Table 3 standards on the interior of the garage building. Lead was found to exceed the selected MOE Table 3 Standards in the analysed soil sample from BH7 in the shallow fill material. This particular fill layer was not observed in any other boreholes. No other metal parameter concentrations were detected above the selected MOE standards in the analyzed soil samples.

Groundwater

Groundwater samples were collected from the monitoring well installed in BH1 and BH5 on April 26 and July 8, 2011. A slight hydrocarbon odour and perceived sheen was noted in the groundwater sample recovered from BH5. The samples were submitted for analytical testing of volatile organic compounds (VOCs), PHCs and/or polycyclic aromatic hydrocarbons (PAHs).

The analysed groundwater sample from BH5 had PHC (F2, F3 and F4) concentrations in excess of the selected MOE Table 3 Standards. None of the other PHC, VOC or PAH parameters were detected in excess of the selected MOE standards from the analysed groundwater samples.

Recommendations

Potentially Hazardous Building Materials

Based on the approximate age of the building (1960's), asbestos containing materials (ACMs) are potentially present in the subject building. The potential ACMs include the suspended ceiling tiles, hard plaster finishes and the thermal pipe insulation. These materials were noted to be in good condition at the time of our inspection and do not represent an immediate concern. An asbestos survey of the building must be conducted in accordance with Ontario Regulation 278/05, under the Occupational Health and Safety Act, prior to the disturbance of these materials.

Lead-based paints may be present in the building based on it's approximate date of construction. Lead testing should be conducted in the building prior to the disturbance of painted surfaces. Major works involving lead painted surfaces, including demolition of the premises, must be done in accordance with Ontario Regulation 843, under the Occupational Health and Safety Act.

If the buildings are going to be demolished in the near future, a designated substance survey (which addresses lead and ACMs) should be conducted instead of the aforementioned testing.

Monitoring Wells

If the monitoring wells installed in BH1 and BH5 are not going to be used in the future, they should be abandoned according to Ontario Regulation 903. Otherwise, the wells will be registered with the MOE under this regulation. Further information can be provided upon request in this regard.

Underground Storage Tank

As previously mentioned, an underground furnace oil storage tank was encountered during the course of our field program. Under the Technical Standards and Safety Authority (TSSA), which regulates fuel oil burning systems in the province of Ontario, this underground furnace oil storage tank must be removed from the subject site along with any associated piping. Furthermore, a report from an environmental engineering firm must be prepared regarding the soil and groundwater conditions within the underground storage tank nest. As a result, it is recommended that a member of this firm be present at the time of the underground storage tank removal.

Soil and Groundwater

It is understood that the proposed redevelopment of the site is to consist of a multi-storey residential building with several levels of underground parking, which would involve the excavation and off-site disposal of the majority of the soil from the property. The most practical time to carry out a remediation program of the contaminated soil and groundwater would be in conjunction with the excavation for redevelopment. It is recommended that a soil remediation program be conducted in the area of the existing underground storage tank, interior of the garage building and asphalt parking area to the southeast of the building in order to remove and dispose of the soil in excess of the selected 2009 MOE Table 3 standards. This soil must be disposed of at a licenced waste disposal facility. Impacted groundwater may also be encountered at the time of excavation for redevelopment. If encountered, impacted groundwater should be pumped from the excavation and taken off-site by a licensed pumping contractor. It is also recommended that a member of this firm be present at the time of the removal of the impacted soil and groundwater in order to provide direction and to obtain confirmatory samples upon the completion of the remediation program.

Based on our findings to date, it is estimated that approximately 700 m³ of contaminated soil are present on the property.

Ottawa

1.0 INTRODUCTION

At the request of Claridge Homes, Paterson conducted a Phase I-II - Environmental Site Assessment (ESA) of the commercial property located at 1050 Somerset Street West, in the City of Ottawa, Ontario.

This report has been prepared specifically and solely for the above noted project which is described herein. It contains all of our findings and results of the environmental conditions at this site.

2.0 SITE INFORMATION

Address:	1050 Somerset Street West, Ottawa, Ontario.
Legal Description:	Plan 73, Lots 1 to 4, City of Ottawa, Ontario
Location:	The subject property is located on the southwest corner of the Somerset Street West and Breezehill Avenue North intersection, in the City of Ottawa, Ontario. Refer to Figure 1- Key Plan in Appendix 2 for the site location.
Site Description:	
Configuration:	Rectangular
Area:	2415 m² (approximate)
Current Use:	The site is currently occupied by a single storey vacant commercial building and an automotive garage. The northern portion of the building has a basement level while the southern portion is a slab-on-grade style.
Services:	The property is situated in a municipally serviced neighbourhood.

3.0 SCOPE OF WORK

The scope of work for this Phase I-II - Environmental Site Assessment was as follows:

- Investigate the existing conditions present at the subject property by carrying out a field study and historical review in accordance with CSA Z768-01.
- Conduct a Phase II - ESA, according to CSA Z769-00, to assess any potential impacts from former and current uses of the subject property.
- Present the results of our findings in a comprehensive report.
- Provide a preliminary environmental site evaluation based on our findings.
- Provide preliminary remediation recommendations and further investigative work if contamination is encountered or suspected.

4.0 PHASE I - ENVIRONMENTAL SITE ASSESSMENT

4.1 Historical Research

The methodology for the Phase I - Environmental Site Assessment program was carried out in two segments. The first consisted of a historical review which included a brief research of the past use of the site. This portion of the program was carried out by personnel from our environmental division. The following is a list of the key information sources reviewed by this firm.

Federal Records

- Maps and photographs (Geological Survey of Canada surficial and subsurface mapping).
- Air photos at the Energy Mines and Resources Air Photo Library.
- □ National Archives.

Provincial Records

- MOE document titled "Waste Disposal Site Inventory in Ontario".
- □ MOE Brownfield Registration Database website.
- MOE Freedom of Information and Privacy Office.
- Office of Technical Standards and Safety Authority, Fuels Safety Branch.

Municipal Records

- □ City of Ottawa website.
- City of Ottawa document entitled "Old Landfill Management Strategy; Phase 1 -Identification of Sites, City of Ottawa, Ontario"; finalized October 2004.

Local Information Sources

Personal Interviews.

4.2 Field Assessment

The second segment of the Phase I-ESA consisted of a field investigation which included a walk-through inspection and detailed visual assessment of the environmental conditions of the subject property. The field investigation was carried out on April 13, 2011 by personnel from our Environmental Division.

As part of the field assessment, the site and existing structure were inspected for signs of the following:

- Evidence of previous or existing fuel storage tanks.
- On-site use or storage of hazardous materials.
- On-site handling or disposal of liquid or solid waste materials.
- Aboveground piping systems, including pumps, valves, and joints.
- Truck or rail loading or unloading areas.
- Electrical conduits, abandoned pipelines or pumping stations.
- Remnants of old buildings.
- Signs of surficial contamination (ie: staining, distressed vegetation).
- Unnaturally discoloured, ponded, or flowing waters.
- Surficial drainage, wetlands, natural waterways, or watercourses through the property (ie: ditches, creeks, ponds, poor drainage).
- Any evidence of potable water supply wells or groundwater monitoring wells (such as leak detection monitoring wells for underground storage tank systems or abandoned systems).
- Any abnormal odours associated with the site, whether from on-site or off-site sources.
- The presence of any recent soil disturbances such as soil removal, filling, tilling, aradina, etc.
- Asbestos containing materials (ACMs).
- Urea formaldehyde foam insulation (UFFI).
- Products containing Polychlorinated Biphenyls (PCBs).
- Ozone depleting substances (ODS).
- Lead-containing materials.
- Current use of neighbouring properties.

4.3 **Historical Review**

Air Photo Research

Historical air photos, from the national air photo library, were reviewed for the subject property and adjacent sites. A summary of our findings is presented below.

- 1928 The subject and neighbouring properties to the north and west appear to be occupied by residential dwellings at this time. The neighbouring property to the south is occupied by a school while the neighbouring property to the east appears to be partially developed at this time. Somerset Street West and Breezehill Avenue North can be seen at this time.
- 1946 No significant changes were made to the subject site or adjacent properties.
- 1958 No significant changes were made to the subject site or adjacent properties.
- 1966 The current subject building can be seen at this time. The neighbouring properties to the south, north and east are unchanged from the previous photo. The neighbouring site to the west is vacant at this time.
- 1986 An addition can be seen on the southern portion of the subject building (garage portion of building). Redevelopment can be seen on the neighbouring properties to the east and west at this time. The neighbouring properties to the north and south are unchanged at this time.
- The subject and neighbouring properties are depicted as they appear 2002 today.

Copies of some of the aerial photographs listed above are included in Appendix 2.

National Archives

City directories from 1931 to 2000 were reviewed (at approximate ten year intervals) for the subject site and surrounding properties.

Based on the directories, the subject property has been occupied by the current building since the 1960's. Prior to this time, the subject site was occupied by residential dwellings. Based on the available information, adjacent properties have generally been used for residential, institutional or commercial purposes since their development. No specific concerns were noted with the neighbouring properties with the exception of 55 Breezehill Avenue (southeast of the site), which was listed as an automotive garage from the 1980's to 2000. The current on-site garage was also listed in the directories from the 1980's to 2000. A grocery store was listed in the northern portion of the property from the 1980's to 2000.

The 1965 Fire Insurance Plans (FIPs) were reviewed as part of this assessment. The subject site is occupied by residential dwellings at this time. The neighbouring properties to the north and west are occupied by residential dwellings in 1965. The neighbouring property to the south is occupied by a school in the FIPs reviewed. An automotive garage can be seen to the southeast of the subject site (opposite side of Breezehill Avenue).

Technical Standards and Safety Authority (TSSA)

The TSSA, Fuels Safety Branch in Toronto was contacted by email on March 30, 2011. There are no underground storage tanks recorded in the TSSA registry for the subject property. The subject site is not currently registered with the TSSA as a private fuel outlet. Surrounding properties immediately adjacent to the subject site are also not registered with the TSSA.

Ontario Ministry of Environment (MOE)

A search of the MOE Brownfields Environmental Site Registry was conducted as part of this assessment. No records of site condition (RSCs) were identified within 500 m of the site.

A requisition form was sent to the MOE requesting a search into regulatory infractions, legal undertakings against the property, spill occurrences, existing waste generator numbers, and waste registrations at the subject property and neighbouring sites. A response from the MOE is expected within the next 60 days.

The MOE search is not considered to be an exhaustive search, and is subject to any matters that an examination of the site and neighbouring lands may reveal. A copy of the MOE response letter will be forwarded to Claridge Homes, should it reveal any concerns with respect to the subject site.

The Ontario Ministry of Environment document entitled "Waste Disposal Site Inventory in Ontario, 1991" was reviewed as part of the historical research. This document includes all recorded active and closed waste disposal sites, industrial manufactured gas plants, and coal tar distillation plants in the Province of Ontario. Two (2) closed waste disposal sites were identified within 500 m of the subject property. Please refer to Table 1 below for more details regarding these closed waste disposal facilities.

City of Ottawa Landfill Document

The document prepared by Golder Associates entitled "Old Landfill Management Strategy, Phase I - Identification of Sites, City of Ottawa", was reviewed. Two (2) landfill sites were identified within 500 m of the subject property, as presented in Table 1.

Table 1 Former Landfill Site						
Landfill Number	dfill Address Activity Owner Location					
UR-41	Bayswater Avenue at Wellington Street West - west of Bayswater Avenue between Wellington Street West and Somerset Street West.	pre-1928	Private	100 m NW		
UR-6	Nepean Bay - green space between Ottawa Parkway, C.P. Railway, Scott Street and LeBreton Flats.	1963-1964	NCC	400 m N		

These sites are not considered to have had the potential to impact to the subject site based on their distance from the subject property and their down gradient location from the subject site.

Former Industrial Sites

The report titled "Mapping and Assessment of Former Industrial Sites, City of Ottawa" prepared by Intera Technologies Limited was reviewed. The Intera report indicated the presence of four (4) former industrial sites within 500 m of the subject property, as presented in Table 2.

Ottawa

North Bay

	Table 2 Former Industrial Sites							
Site No.	Location	Types of Industry	Operator	Approx. Distance from Subject Site				
61	East side of Breezehill Avenue North, north of Somerset Street West	Bulk oil and gas storage.	Canadian Oil Company Limited.	100 m NE				
76	North side of Wellington Street at Breezehill Avenue North	Non-industrial site - railway workshops and roundhouses.	Canadian Pacific Railway.	200 m N				
62	Northeast corner of Bayview Road and O'Mera Avenue	Non-industrial site - railway workshops and roundhouses.	Canadian Pacific Railway.	300 m N				
50	975 Gladstone Avenue	Printing, publishing and allied Industries	British American Bank Note Company Limited.	400 m S				

These industrial sites are not considered to have the potential to impact the subject site based on either their distance from the subject property or their suspected down gradient location.

Personal Interviews

Garage staff were interviewed at the time of the site inspection. We were informed by garage personnel that the suspected furnace oil underground storage tank on the west side of the building was used to supply heating fuel to the former on-site grocery store. We were also informed that the garage previously had an in-ground hoist, which was removed in 1995. The staff also indicated that all waste oil was stored in 200 L drums within the garage and are empted by a licenced contractor as needed. The garage staff also indicated that a former gasoline underground storage tank was located in the southeast corner of the property.

4.4 Exterior Assessment

Building

The subject site is occupied by a concrete block commercial building. The northern portion of the building is a single storey vacant former grocery store which has a basement level and a flat tar and gravel style roof. The southern portion of the building is occupied by a single storey slab on grade style automotive garage which also has a flat tar and gravel style roof. The northern portion of the building is currently heated with a natural gas fired furnace and electric baseboard heaters, while the southern portion of the building is heated with a natural gas fired HVAC unit.

Site

The building occupies the majority of the site, while the remainder of the site is asphalt covered and used for vehicular parking. The site and regional topography slope downward to the north. Site drainage consists of surface runoff to on-site catch basins or to catch basins on the adjacent roadways.

Potential Environmental Concerns

Gamma Fuels and Chemical Storage

Based on our on-site observations, more specifically the presence of vent and fill pipes, it was suspected that an underground furnace oil storage tank was situated adjacent to the west wall of the automotive portion of the garage. At the time of our initial site visit, it was not possible to determine if this suspected underground tank was in place or whether it had been removed. Please refer to Section 5.0 for more information regarding the above noted suspected underground storage tank (UST).

Based on conversations with on-site personnel from the garage, it is our understanding that a gasoline fuel storage tank was previously located in the southeast portion of the subject site. It is our understanding that this tank has been removed from the property.

There were no ASTs observed on the exterior of the subject property during the course of our field work.

□ Waste Management

Solid non-hazardous waste and recycling is collected and stored in bins on the east side of the southern portion of the building and is removed by a licenced contractor on a regular basis. No waste is currently generated in the northern portion of the building.

□ PCBs

No concerns with respect to PCBs were noted on the exterior of the subject property at the time of the site inspection.

4.5 Interior Assessment

The northern portion of the building is currently vacant (former grocery store). The southern portion of the building is occupied by an automotive garage.

A general description of the interior of the building is as follows:

- The floors are concrete.
- The walls were finished with a combination of concrete block, decorative panelling and hard plaster.
- The ceilings were finished with hard plaster, suspended tiles and steel decking.
- Lighting used throughout the building was a combination of incandescent and fluorescent.

Potentially Hazardous Building Products

□ Asbestos Containing Materials (ACMs)

Based on the approximate date of construction of the structure, (1960's), some building materials are considered to have the potential to contain asbestos. The suspected ACMs include the suspended ceiling tiles, hard plaster finishes and the thermal pipe insulation. The suspected ACMs were generally in good condition and do not represent an immediate concern.

Lead-Based Paint

Based on the approximate date of construction of the subject building, leadbased paints may be present throughout the structure. Painted surfaces were generally in fair condition.

Phase I-II - Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario

D PCBs

Fluorescent light fixtures were observed throughout the buildings. Fluorescent light ballasts manufactured prior to 1981 may contain PCBs. It is expected that most light ballasts were replaced in the past thirty (30) years and do not contain PCBs. No leakage or staining was observed from light ballasts or any of the electrical equipment observed on site.

Urea Formaldehyde Foam Insulation (UFFI)

No signs indicating the presence of UFFI were observed within the structures during our inspection.

Other Potential Environmental Concerns

Gamma Fuels and Chemical Storage

No fuels or chemicals were observed on the interior of the northern portion of the building with one exception. A partially full 50 L hydraulic fluid container was observed within the basement at the time of our inspection. No concerns were noted with the storage of this container.

One (1) 205 litre waste oil AST was observed in the garage. The AST stores engine oil for vehicle oil changes. Cleaning solvents, antifreeze, and gear lube were also observed in the garage. Staining on the concrete was observed at several locations within the garage at the time of our assessment.

□ Waste Management

Waste oil from the garage is stored in 200 L containers. These containers are reportedly emptied by a licenced contractor on an as-needed basis.

□ Ozone Depleting Substances (ODSs)

Potential sources of ODSs include the fire extinguishers. These appliances should be regularly serviced and maintained by licenced contractors.

□ Wastewater Discharges

The liquid discharge from the subject property includes the sewage and wash water from the building. The subject site discharges into the City of Ottawa sewer system.

Ottawa

Kingston North Bay

4.6 Adjacent Properties

Land use adjacent to the subject site is as follows:

- □ North Somerset Street West followed by commercial and residential;
- □ South School;
- East Breezehill Avenue North followed by commercial;
- U West Laneway followed by residential.

The current use of the adjacent properties does not pose a significant environmental concern to the subject site. Land use adjacent to the subject site is illustrated on Drawing PE2278-1 - Test Hole Location Plan in Appendix 2.

4.7 Assessment - Phase I

The purpose of the Phase I-ESA was to research the past and current uses of the subject property and neighbouring sites in order to identify potential environmental concerns associated with the site, or neighbouring properties, which have the potential to impact the subject site.

The following potential areas of concern were identified during the Phase I-ESA:

- The subject site is currently occupied by an automotive garage.
- A suspected underground furnace oil storage tank was potentially located to the west of the subject building.
- A former gasoline underground storage tank was reportedly located in the southeast portion of the property.

A Phase II-ESA was recommended and conducted on the exterior of the subject site to identify potential soil and groundwater impacts from the above noted areas of concern. A supplemental drilling program was also conducted which included the placement of two (2) boreholes inside the subject building.

5.0 PHASE II - ENVIRONMENTAL SITE ASSESSMENT

5.1 Subsurface Investigation

Field Program

The subsurface investigation was conducted on April 14 and 18 and July 5 and 6, 2011, and consisted of the placement of eight (8) boreholes and one (1) test pit on the exterior of the subject property (BH1 to BH8) and (TP1). It should be noted that a geotechnical investigation was carried out on the subject site in conjunction with the Phase II-ESA. The test pit was excavated adjacent to the west wall of the building in the area of the suspected furnace oil tank location. The purpose of this test pit was to determine if the UST was still in place and to determine if the subsurface environment had been impacted by the presence of this suspected tank. BH4, BH6 and BH7 were placed to delineate the extent of impacted soil encountered in TP1. BH1 was placed along the southeast portion of the property in the area of the reported former gasoline UST, BH8 was placed further down-gradient of BH1 to assess potential subsurface migration from the reported former gasoline UST. BH5 was placed on the interior of the garage portion of the building to assess in-ground hoists and other ancillary equipment. BH2 and BH3 were placed at selected locations on the subject property for geotechnical purposes. The borehole and test pit locations and areas of potential concern are illustrated on Drawing No. PE2278-2 - Test Hole Location Plan in Appendix 2. The boreholes were advanced using a Truck-mounted power auger drill rig while the test pit was excavated with a rubber tired back-hoe.

The boreholes were completed to depths ranging from 2.4 to 13.2 m below the existing grade. A total of seventy-seven (77) soil samples were recovered from the boreholes by means of auger and split spoon sampling. A total of two (2) soil samples were recovered from the test pit by means of grab sampling. Upon recovery, all samples were immediately sealed in appropriate containers to facilitate the preliminary screening procedure. The depths at which the auger and split spoon samples were obtained from the boreholes are shown as "**AU**" and "**SS**" respectively, on the Soil Profile & Test Data sheets in Appendix 1.

All samples recovered as part of this investigation will be stored in the laboratory for a period of one (1) month after issuance of this report. All samples will then be discarded unless this firm is otherwise directed.

Underground Storage Tank

A furnace oil underground storage tank, and associated piping, was encountered during the excavation of TP1. The tank was approximately 3 m x 2 m in size. It should be noted that the condition of the entire tank was not evaluated as only one of the sides was exposed during this portion of the field program. It should also be noted that suspected petroleum hydrocarbon impacted soil was encountered under the tank. This material was subsequently sampled for laboratory analysis.

Monitoring Well Installation

Groundwater monitoring wells were installed in BH1 and BH5 upon completion of the sampling program. Typical monitoring well construction details are described below:

- Slotted 50 mm diameter PVC screen at base of borehole, to just above the water table.
- □ 50 mm diameter PVC riser pipe from the top of the screen to the ground surface.
- □ No.3 silica sand backfill within annular space around screen.
- **300** mm thick bentonite hole plug directly above PVC slotted screen.
- Clean backfill from top of bentonite plug to the ground surface.

Refer to the Soil Profile and Test Data sheets for BH1 and BH5 in Appendix 1 for specific well construction details.

Soil Sampling Protocol

Soil sampling protocols were followed using the MOE document titled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

The auger samples and soil samples from the split spoons were recovered using a stainless steel split spoon or by hand, using protective gloves (changed after each sample). The samples were placed into plastic bags. If significant contamination was encountered, the samples were placed into glass jars. Sampling equipment was washed in soapy water and rinsed with methylhydrate after each split spoon to prevent cross contamination of the samples. Samples were stored in coolers to reduce analyte volatilization during transportation.

Analytical Testing

Paracel Laboratories (Paracel), of Ottawa, performed the laboratory analysis on the soil and groundwater samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL). Paracel is accredited and certified by SCC/CAEAL for specific tests registered with the association.

5.2 Subsurface Profile

The soil profile encountered at the boreholes consists of a layer asphalt underlain by a layer of granular fill consisting of sand and gravel. The fill layer extended to a maximum depth of 3 m below ground surface. The fill is underlain by a native silty clay layer which was underlain by glacial till. Bedrock was encountered at a depth of approximately 11 m in two borehole locations as part of the geotechnical investigation. Specific details of the soil profile at each test hole location can be seen on the Soil Profile and Test Data sheets in Appendix 1.

5.3 Groundwater

The groundwater level was measured in the monitoring wells installed in BH1 and BH5 April 26 and July 11, 2011. The groundwater was encountered at depths ranging from approximately 1.1 to 2.2 m below ground surface. It should be noted that groundwater levels fluctuate throughout the year with seasonal variations.

5.4 Soil Sample Headspace Analysis

A Gastech calibrated to hexane was used to measure the combustible vapour concentrations in the headspace of the soil samples recovered from the boreholes. The technical protocol was obtained from Appendix C of the MOE document titled "Interim Guidelines for the Remediation of Petroleum Contamination at Operating Retail and Private Fuel Outlets in Ontario", dated March 1992.

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey, ensuring consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The parts per million (ppm) scale is used to measure concentrations of combustible vapours.

Combustible vapour readings in the boreholes ranged from 0 to 25 ppm. These vapour readings are not considered to be representative of elevated concentrations of highly volatile substances such as gasoline. Vapour readings cannot be used to identify the presence of heavier hydrocarbon products such as engine oil. Vapour readings of 110 and 490 ppm were obtained from the two (2) soil samples obtained from the test pit placed adjacent to the suspected furnace oil tank. These readings are considered to be representative of petroleum hydrocarbon impacted soil.

The results of the vapour survey are presented on the Soil Profile and Test Data sheets.

5.5 Analytical Test Results

Remediation Standards

The remediation criteria for the subject site were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*", dated July 27, 2009. These criteria came into effect July 1, 2011. The MOE Standards are based on the following considerations:

- Coarse grained soil conditions.
- Surface soil and groundwater conditions.
- Non-Potable groundwater situation.
- Residential land use.

Soil Analysis

Five (5) soil samples were submitted for analysis for a combination of the following parameters: benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, fractions 1 to 4) and metals. The results of the analytical testing are presented in Tables 3 and 4. A copy of the laboratory certificates of analysis are included in Appendix 1.

Ottawa

Kingston North Bay

Table 3Analytical Test Results - SoilBTEX and PHCs (Fractions 1 to 4)							
Parameter	MDL	\$	Soil Sample (µg/g)	Table 3 Standards Residential Land Use (µg/g)			
	(µg/g)	TP1 G2	BH5 SS3	2009 Standards			
Benzene	0.02	0.09	nd	-	0.21		
Ethylbenzene	0.05	1.93	nd	-	2.0		
Toluene	0.05	0.44	nd	-	2.3		
Xylenes (Total)	0.05	<u>12.7</u>	nd	-	3.1		
F_1 PHCs (C_6 - C_{10})	10	<u>228</u>	nd	nd	55		
F ₂ PHCs (C ₁₀ -C ₁₆)	10	<u>7,490</u>	46	29	98		
F ₃ PHCs (C ₁₆ -C ₃₄)	10	4,900	<u>969</u>	39	300		
F ₄ PHCs (C ₃₄ -C ₅₀)	10	nd	217	nd	2,800		
Notes: MDL - Method Detection Limit Ind - Not Detected (< MDL)							

Soil Sample TP1-G2 identified PHC (F1, F2 and F3) and xylene concentrations in excess of the MOE Table 3 standards. Soil sample BH5-SS3 had a reported concentration of the F3 range of PHCs in excess of the MOE Table 3 standards. The remaining identified BTEX and PHC concentrations were below the selected MOE standards.

Ottawa

Table 4 Analytical Test Results - Soil Metals								
Parameter	MDL (µg/g)	Soil Sample - (µg/g)		MOE Table 3 Residential (µg/g)				
		BH1-SS3	BH7-AU2	2009 Standards				
Antimony	1	nd	nd	7.5				
Arsenic	1	2	3	18				
Barium	1	139	277	390				
Beryllium	0.5	nd	nd	4				
Boron	5	nd	8.3	120				
Cadmium	0.5	nd	nd	1.2				
Chromium	5	27	18	160				
Chromium (VI)	0.4	nd	nd	8				
Cobalt	1	7	5	22				
Copper	5	19	23	140				
Lead	1	32	<u>145</u>	120				
Mercury	0.1	nd	0.2	0.27				
Molybdenum	1	nd	nd	6.9				
Nickel	5	18	13	100				
Selenium	1	nd	nd	2.4				
Silver	0.3	nd	nd	20				
Thallium	1	nd	nd	1				
Vanadium	10	36	22	86				
Zinc	20	60	176	340				
Notes: MDL - Mei nd - Not D Bold - Re	Zinc 20 60 1/6 340 Notes: MDL - Method Detection Limit nd - Not Detected (< MDL)							

Lead was found to exceed the selected MOE Table 3 Standards in the analysed soil (fill) sample from BH7. No other metal parameter concentrations were detected in the analyzed soil samples above the selected MOE Table 3 standards.

Groundwater Analysis

Groundwater samples were recovered from the monitoring wells installed in BH1 and BH5 on April 26 and July 11, 2011. A slight hydrocarbon odour and perceived sheen was noted in the groundwater sample recovered from BH5. The samples were submitted for analytical testing of volatile organic compounds (VOCs), PHCs and/or polycyclic aromatic hydrocarbons (PAHs). The results of the analytical testing are presented in Tables 5, 6 and 7. The laboratory reports are included in Appendix 1 of this report.

Table 5 Analytical Test Results - Groundwater PHCs (Fractions 1 to 4)							
Groundwater MOE Table 3 MDL Sample (ug/L) Standards (ug/L)							
Parameter	(ug/L)	BH1 GW1	BH5 GW1	2009 Standards			
F1 PHCs (C ₆ -C ₁₀)	25	nd	nd	750			
F2 PHCs (C ₁₀ -C ₁₆)	100	nd	<u>408</u>	150			
F3 PHCs (C ₁₆ -C ₃₄)	100	nd	<u>10,100</u>	500			
F4 PHCs (C ₃₄ -C ₅₀) 100 nd <u>1,460</u> 500							
Notes: MDL - Method Detection Limit Image: Image							

The groundwater sample analysed from BH1 did not contain any detectable PHC concentrations. The analysed groundwater sample from BH5 had PHC (F2, F3 and F4) concentrations in excess of the selected MOE Table 3 Standards.

Table 6 Analytical Test Results - Groundwater Volatile Organic Compounds (VOCs)							
	Groundwater Sample (ug/L) MOE Standards (ug/L)						
Parameters	(µg/L)	BH1 GW1	BH5 GW1	Table 3			
Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene	5.0 0.5 0.5 0.5 0.5 0.5 0.5	19.8 nd nd nd nd nd nd	nd nd nd nd nd nd	130,000 44 85,000 380 5.6 0.79 630			
Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2 - Dibromoethane	1.0 0.5 3.0 0.5 0.2	nd nd nd nd	nd nd nd nd nd	nv 2.4 nv 82,000 nv			
m - Dichlorobenzene o - Dichlorobenzene p - Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	0.5 0.5 0.5 0.5 0.5 0.5	nd nd nd nd nd	nd nd nd nd nd nd	9,600 4,600 8 4,400 320 1.6			
1,1-Dichloroethylene c-1,2-Dichloroethylene t-1,2-Dichloroethylene 1,2-Dichloropropane	0.5 0.5 1.0 0.5	nd nd nd nd	nd nd nd nd	1.6 1.6 1.6 16			
c-1,3-Dichloropropene t-1,3-Dichloropropene	0.5 0.5	nd nd	nd nd	5.2			
Ethylbenzene Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl tert-Butyl Ether Methylene Chloride Styrene 1,1,1,2-tetrachloroethane 1,1,2,2-tetrachloroethane	0.5 5.0 2.0 5.0 0.5 0.5 0.5	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	2,300 470,000 140,000 190 610 1,300 3.4 3.2			
Notes: MDL - Metl Notes: Note: Notes: Note	Notes: MDL - Method Detection Limit Image:						

Table 6 - continued Analytical Test Results - Groundwater Volatile Organic Compounds (VOCs)					
Paramotors	MDL	Groundwater	Sample (ug/L)	MOE Standards (µg/L)	
Faranneters	(µg/L)	BH1 GW1	BH5 GW1	Table 3	
Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane	0.5 0.5 0.5 0.5 0.5 1.0	nd nd nd nd nd	nd nd nd nd nd	1.6 18,000 640 4.7 1.6 2,500	
1,3,5-Trimethylbenzene Vinyl Chloride Total Xylenes	0.5 0.5 0.5	nd nd nd	nd nd nd	nv 0.5 4,200	
Notes: MDL - Met Notes: Note: Notes: Notes	hod Dete etected (- rrent MO	ction Limit < MDL) E standard			

No detectable VOC parameter concentrations were identified in the groundwater samples analysed with one exception, acetone was identified in sample BH1-GW1. This acetone concentration was below the selected MOE Table 3 standards.

North Bay

Table 7 Analytical Test Results - Groundwater Polynuclear Aromatic Hydrocarbons (PAHs)					
Parameter	MDL (µg/L)	Groundwater Sample (µg/L)	Table 3 Standards (µg/L)		
		BH1 GW1			
Acenaphthene	0.05	nd	600		
Acenaphthylene	0.05	nd	1.8		
Anthracene	0.01	0.01	2.4		
Benzo[a]anthracene	0.01	nd	4.7		
Benzo[a]pyrene	0.01	nd	0.81		
Benzo[b]fluoranthene	0.05	nd	0.75		
Benzo[ghi]perylene	0.05	nd	0.2		
Benzo[k]fluoranthene	0.05	nd	0.4		
Biphenyl	0.05	0.07	nv		
Chrysene	0.05	nd	1		
Dibenzo[a,h]anthracene	0.05	nd	0.52		
Fluoranthene	0.01	0.04	130		
Fluorene	0.05	0.2	400		
Indeno[1,2,3-cd]pyrene	0.05	nd	0.2		
1-Methylnaphthalene	0.05	0.15			
2-Methylnaphthalene	0.05	0.18	1800		
Naphthalene	0.05	0.2	1400		
Phenanthrene	0.02	0.74	580		
Pyrene	0.02	nd	68		
Notes: MDL - Method nd - Not detec nv - No curren	Detection Limit ted above the MD t MOE standard	L			

None of the PAH parameters detected were in excess of the MOE applicable standards.

6.0 ASSESSMENT AND RECOMMENDATIONS

6.1 Assessment

A Phase I - Environmental Site Assessment was carried out for the property located at 1050 Somerset Street West, in the City of Ottawa, Ontario. The purpose of this environmental assessment was to research the past and current use of the site and adjacent properties and identify any environmental concerns with the potential to have impacted the subject property.

A Phase II - ESA was conducted on the subject property to address potential concerns from the presence of a reported former on-site gasoline UST and a suspected existing furnace oil UST. The current use of the southern portion of the site building as an automotive garage was also noted as a potential concern. These concerns were identified during the Phase I - ESA portion of our assignment.

Soil

A total of eight (8) boreholes and one (1) test pit were placed on the subject property (BH1 to BH8) and (TP1). It should be noted that a geotechnical investigation was carried out on the subject site in conjunction with the Phase II-ESA. The test pit was excavated adjacent to the west wall of the building in the area of the suspected furnace oil tank location. The purpose of this test pit was to determine if the UST was still in place and to determine if the subsurface environment had been impacted by the presence of this suspected tank. The presence of the UST was confirmed and olfactory signs of petroleum hydrocarbon contamination were observed in soil samples recovered from this test pit. BH4, BH6 and BH7 were placed to delineate the extent of impacted soil encountered in TP1. BH1 was placed along the southeast portion of the property in the area of the reported former gasoline UST, BH8 was placed further down-gradient of BH1 to assess potential subsurface migration from the reported former gasoline UST. BH5 was placed on the interior of the garage portion of the building to assess in-ground hoists and other ancillary equipment. BH2 and BH3 were placed at selected locations on the subject property for geotechnical purposes.

Based on visual and olfactory observations, in conjunction with our combustible vapour readings, five (5) soil samples were submitted for analysis for a combination of the following parameters: benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, fractions 1 to 4) and metals.

Soil Sample TP1-G2 identified PHC (F1, F2 and F3) and xylene concentrations in excess of the selected 2009 MOE Table 3 standards adjacent to the furnace oil UST. Soil sample BH5-SS3 had a reported concentration of the F3 range of PHCs in excess of the MOE Table 3 standards on the interior of the garage building. Lead was found to exceed the selected MOE Table 3 Standards in the analysed soil sample from BH7 in the shallow fill material. This particular fill layer was not observed in any other boreholes. No other metal parameter concentrations were detected above the selected MOE standards in the analyzed soil samples.

Groundwater

Groundwater samples were collected from the monitoring well installed in BH1 and BH5 on April 26 and July 8, 2011. A slight hydrocarbon odour and perceived sheen was noted in the groundwater sample recovered from BH5. The samples were submitted for analytical testing of volatile organic compounds (VOCs), PHCs and/or polycyclic aromatic hydrocarbons (PAHs).

The analysed groundwater sample from BH5 had PHC (F2, F3 and F4) concentrations in excess of the selected MOE Table 3 Standards. None of the other PHC, VOC or PAH parameters were detected in excess of the selected MOE standards from the analysed groundwater samples.

6.2 Recommendations

Potentially Hazardous Building Materials

Based on the approximate age of the building (1960's), asbestos containing materials (ACMs) are potentially present in the subject building. The potential ACMs include the suspended ceiling tiles, hard plaster finishes and the thermal pipe insulation. These materials were noted to be in good condition at the time of our inspection and do not represent an immediate concern. An asbestos survey of the building must be conducted in accordance with Ontario Regulation 278/05, under the Occupational Health and Safety Act, prior to the disturbance of these materials.

Lead-based paints may be present in the building based on it's approximate date of construction. Lead testing should be conducted in the building prior to the disturbance of painted surfaces. Major works involving lead painted surfaces, including demolition of the premises, must be done in accordance with Ontario Regulation 843, under the Occupational Health and Safety Act.

If the buildings are going to be demolished in the near future, a designated substance survey (which addresses lead and ACMs) should be conducted instead of the aforementioned testing.

Monitoring Wells

If the monitoring wells installed in BH1 and BH5 are not going to be used in the future, they should be abandoned according to Ontario Regulation 903. Otherwise, the wells will be registered with the MOE under this regulation. Further information can be provided upon request in this regard.

Underground Storage Tank

As previously mentioned, an underground furnace oil storage tank was encountered during the course of our field program. Under the Technical Standards and Safety Authority (TSSA), which regulates fuel oil burning systems in the province of Ontario, this underground furnace oil storage tank must be removed from the subject site along with any associated piping. Furthermore, a report from an environmental engineering firm must be prepared regarding the soil and groundwater conditions within the underground storage tank nest. As a result, it is recommended that a member of this firm be present at the time of the underground storage tank removal.

Soil and Groundwater

It is understood that the proposed redevelopment of the site is to consist of a multistorey residential building with several levels of underground parking, which would involve the excavation and off-site disposal of the majority of the soil from the property. The most practical time to carry out a remediation program of the contaminated soil and groundwater would be in conjunction with the excavation for redevelopment. It is recommended that a soil remediation program be conducted in the area of the existing underground storage tank, interior of the garage building and asphalt parking area to the southeast of the building in order to remove and dispose of the soil in excess of the selected 2009 MOE Table 3 standards. This soil must be disposed of at a licenced waste disposal facility. Impacted groundwater may also be encountered at the time of excavation for redevelopment. If encountered, impacted groundwater should be pumped from the excavation and taken off-site by a licensed pumping contractor. It is also recommended that a member of this firm be present at the time of the removal of the impacted soil and groundwater in order to provide direction and to obtain confirmatory samples upon the completion of the remediation program.

Based on our findings to date, it is estimated that approximately 700 m³ of contaminated soil are present on the property.

7.0 STATEMENT OF LIMITATIONS

This Phase I-II - Environmental Site Assessment (ESA) report has been prepared in general accordance with the agreed scope-of-work and the requirements of CSA Z768-01 and CSA Z769-00. The conclusions presented herein are based on information gathered from a limited historical review along with the field inspection and testing program. The findings of the Phase I-II - ESA update are based on a review of readily available geological, historical, and regulatory information and a cursory review made at the time of the field assessment. The historical research relies on information supplied by others, such as local, provincial, and federal agencies and was limited within the scope-of-work, time, and budget of the project herein.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those described by the test holes themselves.

This report was prepared for the sole use of Claridge Homes. Permission from the above noted party and our firm will be required to release this report to any other party.

Paterson Group Inc.

Luke Lopers, B.A.Sc.

Mark S. D'Arcy, P.Eng.

Report Distribution:

- Claridge Homes (3 copies and 1 PDF copy)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TEST RESULTS

SOIL PROFILE AND TEST DATA Consulting Engineers

Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

BORINGS BY CME 55 Power Auger

DATUM

TBM - Nail in pole located on west side of subject site. Geodetic elevation = 63.136m, FILE NO. provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS но

DATE 18 Apr 11

PE2278

BH 1	
t. Blows/0.3m	
m Dia. Cone	

Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

			SAN	SAMPLE		DEPTH	DEPTH ELEV.	Pen. Resist. Blows/0.3m
GROUND SURFACE	STRATA PI	ЭДХТ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	 So min Dia. Cone Lower Explosive Limit % 20 40 60 80
Asphaltic concrete0.00		AU	1			0-	-62.44	
Icrushed stone and gravel 0.6 FILL: Brown silty clay with sand and crushed stone 1.4		ss	2	33	15	1-	-61.44	↓ · · · · · · · · · · · · · · · · · · ·
FILL: Brown silty sand, trace		ss	3	42	5	2-	-60.44	
FILC: Brown silty sand with gravel and cobbles, trace concrete 2.9	7	ss	4	0	0		E0 44	
- 600mm void encountered @ 2.3m depth		ss	5	92	2	3-	-59.44	
Stiff to very stiff, brown		ss	6	100	2	4-	-58.44	
- grey by 3.7m depth	3					5-	-57.44	
		ss	7	100	3	6-	-56.44	
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders		ss	8	100	7			
7.3	1 <u>(^^^^</u>	ss	9	75	23	7-	-55.44	
GLACIAL TILL: Compact, grey silty sand with clay,		∦ ss	10	33	20	8-	-54.44	
gravel, cobbles and boulders	7	∦ ss	11	33	17	9-	-53.44	
(GWL @ 1.10m-Apr. 26/11)								
								100 200 300 400 500

SOIL PROFILE AND TEST DATA Consulting Engineers

Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATUM

TBM - Nail in pole located on west side of subject site. Geodetic elevation = 63.136m, FILE NO. provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. r A 10 Apr 11

PE2278

-	ЪЦ	2
	БП	2

BORINGS BY CME 55 Power Auger				D	DATE	18 Apr 11		DITZ
SOIL DESCRIPTION	гот		SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA I	ЛҮРЕ	NUMBER	°. ≈ecovery	N VALUE or RQD	(m)	(m)	Lower Explosive Limit %
GROUND SURFACE						0-	-62 56	
Asphaltic concrete0.	05	δ Δ11	1			Ŭ	02.00	
FILL: Brown silty sand with crushed stone and gravel	45	ss	2	25	35	1-	-61.56	
		ss	3	75	15	2-	-60.56	
Voru stiff, brown SILTY CLAY		ss	4	67	13			
		ss	5	50	13	3-	-59.56	
- firm by 3.7m depth		ss	6	100	4	4-	-58.56	
GLACIAL TILL: Stiff, grey 5.	03	ss	7	92	8	5-	-57.56	
silty clay with sand, gravel, cobbles and boulders5.	95	∭ ss	8	50	8	6-	-56.56	
		j∦ ss	9	8	18			
GLACIAL TILL: Compact, grey silty sand with clay, grey silty sand baulders		ss	10	50	10	7-	-55.56	
gravel, cobbles and boulders		SS T	11	8	11	8-	-54.56	
9.	<u>07</u>	∬ ss	12	8	4	9-	-53.56	
End of Borenole								100 200 300 400 500 Gastech 1314 Bdg (npm)
								▲ Full Gas Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

Monitoring Well Construction

Phase I - II Environmental Site Assessment **1050 Somerset Street West**

DATUM

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7 Ottawa, Ontario TBM - Nail in pole located on west side of subject site. Geodetic elevation = 63.136m, FILE NO. **PE2278** provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. **BH 3** BORINGS BY CME 55 Power Auger DATE 6 Jul 11 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE 0\0 O Lower Explosive Limit % 40 60 80 20 **GROUND SURFACE** -61.84 0-Asphaltic concrete 0.08 AU 1

Consulting Engineers

FILL: Brown silty sand with		ss	2	17	63	1-60.84	
and boulders		ss	3	25	46	2-59.84	
- trace clay by 1.45m depth		ss	4	8	33		
2. Very stiff brown SII TY	97					3-58.84	
CLAY	73	ss	5	100	10		
GLACIAL TILL: Stiff brown		ss	6	75	12	4-57.84	
silty clay with sand, gravel, cobbles and boulders		ss	7	33	11	5+56.84	
- grey by 4.5m depth			8	12	13		
		A oo				6+55.84	
6.	78	∬ ss	9	42	13		
		ss	10	17	9	7-54.84	
		ss	11	25	3	8-53.84	
GLACIAL TILL: Loose, grey silty sand with clay, gravel,						0-55.04	
cobbles and boulders		∬ ss	12	50	8	9-52.84	
						10-51.84	
<u>10</u> .	9/ ^ ^ ^ ^	- BC	1	100	100	11-50.84	
				100	100		
BEDROCK: Grey limestone	$\begin{array}{c} 3 & 5 & 5 \\ \hline 3 & 5 & 5 \\ \hline 3 & 5 & 5 \\ \hline 3 & 5 & 7 \\ \hline \end{array}$	BC	2	100	97	12-49.84	
10	$ \begin{array}{r} \frac{1}{2} \\ \frac{1}{2} \\ $				01	10 10 01	
End of Borehole		-				13+48.84	
							100 200 300 400 500
							Gastecn 1314 Kog. (ppm)
				1			\blacksquare rui das nesp. \bigtriangleup Methane Einn.

SOIL PROFILE AND TEST DATA

Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATUM

TBM - Nail in pole located on west side of subject site. Geodetic elevation = 63.136m, FILE NO. **PE2278** provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. **BH** 4 BORINGS BY CME 55 Power Auger DATE 18 Apr 11 SAMPLE Pen. Resist. Blows/0.3m PLOT DEPTH | ELEV. • 50 mm Dia. Cone SOIL DESCRIPTION

Consulting Engineers

	텅	당 SAMPLE				DEPTH FI	FI FV	Pen. Resist. Blows/0.3m	Vell
SOIL DESCRIPTION	ΡĽ			54		(m)	(m)	• 50 mm Dia. Cone	lot v
	STRATA	TYPE	NUMBER	€COVER!	N VALUE or RQD			Lower Explosive Limit %	Monitorir Constru
GROUND SURFACE				<u>щ</u>	4	0-	-62 69	20 40 60 80	~
Asphaltic concrete0.08		AU	1				02.03		
FILL: Brown silty sand with crushed stone, gravel, cobbles		ss	2	42	77	1-	-61.69		
2.29		ss	3	50	75	2-	-60.69		
FILL: Grey-brown silty clay,		ss	4	25	17	3-	-59 69		
		ss	5	42	7		00.00		
Very stiff, brown SILTY CLAY4.50		ss	6	67	11	4-	-58.69		
GLACIAL TILL Stiff grov		ss	7	33	11	5-	-57.69	· • • • • • • • • • • • • • • • • • • •	
silty clay with gravel, cobbles and boulders		ss	8	50	13	6-	-56.69		
<u>6.7</u> 8		ss	9	42	10	7	EE 60		
GLACIAL TILL: Loose to		SS 7	10	21	7	7-	-22.09		
compact, grey silty sand with clay, gravel, cobbles and boulders		SS 17	11	42	10	8-	-54.69		
9.07 End of Borehole		∦ ss	12	58	18	9-	-53.69		
								100 200 300 400 50 Gastech 1314 Edg (ppm)	00
								▲ Full Gas Resp. △ Methane Elim.	
nate	rsonaroun	Consulting	Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario						
--------------	--	------------------	--	----------	--	--			
28 Concourse	e Gate, Unit 1, Ottawa, ON K2E 7T7	Engineers							
DATUM TE	BM - Nail in pole located on west side	of subject site.	Geodetic elevation = 63.136m,	FILE NO.					

provided by Annis, O'Sulliva	provided by Annis, O'Sullivan, Vollebekk Ltd. PE2278						3				
BORINGS BY Portable Drill				D	ATE	5 Jul 11			HOLE	^{NO.} BH 5	
	Ę		SAN	IPLE		DEDTU		Pen. R	esist. I	Blows/0.3m	lell
SOIL DESCRIPTION	A PLO		<i>~</i>	ХХ	변승	(m)	eLEV. (m)	• 5	0 mm D	Dia. Cone	ing M ructio
	TRAT	ТҮРЕ	IUMBEI	COVEI	VALU r RQI			 Lowe 	r Explo	sive Limit %	onitor Const
GROUND SURFACE	01		2	RE	z o	0		20	40	60 80	Σ
						0-	-				
FILL: Brown silty sand with		x ss	1			1-	_ ·		·	· · · · · · · · · · · · · · · · · · ·	
זעניין זעניי זעניין זעניין		ss	2	50							
Brown SILTY CLAY				100		2-	-			· • • • • • • • • • • • • • • • • • • •	
- grey by 1.8m depth			3	100							
			4	100		3-	_				
			5	100						· • • • • • • • • • • • • • • • • • • •	
		A SS	6	0		4-	-	·····		· · · · · · · · · · · · · · · · · · ·	
4.86	3	∦ ss	7	100				4		· • • • • • • • • • • • • • • • • • • •	
End of Borehole											
(GWL @ 2.17m-July 11/11)											
								100 Gasted ▲ Full Ga	200 :h 1314 as Resp.	300 400 5 Rdg. (ppm) △ Methane Elim.	00

nat	ersonaroun	Consulting	SOIL PROFILE AN	ND TEST	DATA	
28 Conco	urse Gate, Unit 1, Ottawa, ON K2E 7T7	Engineers	Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario			
DATUM	TBM - Nail in pole located on west side provided by Annis, O'Sullivan, Vollebekk	of subject site. Ltd.	. Geodetic elevation = 63.136m,	FILE NO.	PE2278	

REMARKS

BORINGS BY Portable Drill				D	ATE {	5 Jul 11			HOLE NO.	BH 6	
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Blow	s/0.3m	Well
	FRATA P	IYPE	MBER	% COVERY	VALUE ROD	(m)	(m)	 Lowe 	r Explosive	Limit %	onstruc
GROUND SUBFACE	ν.	-	ñ	REC	N 10			20	40 60	80	ΣO
Concrete slab 0.15 FILL: Crushed stone 0.28		≅ AU	1			0-			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Grey SILTY SAND with clay 0.30		(ss	2	100		1-	-			••••••	
GLACIAL TILL; Grey silty clay with sand, gravel, cobbles		ss	3	100					· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
and boulders 2 44		(ss	4	100		2-	-	4		••••••	
End of Borehole								100 Gastec ▲ Full Ga	200 300 h 1314 Rdg s Resp. △ M	400 50 J. (ppm) ethane Elim.	00

patersongroup

SOIL PROFILE AND TEST DATA Consulting Engineers

Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATUM

TBM - Nail in pole located on west side of subject site. Geodetic elevation = 63.136m, FILE NO. provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO.

PE2278

BORINGS BY CME 55 Power Auger					C	DATE	BH 7	BH 7		
SOIL DESCRIPTION		LOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m 50 mm Dia, Cone	Well
		STRATA F	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	 Lower Explosive Limit % 20 40 60 80 	Monitoring
Asphaltic concrete	0 13		ω Διι	1			0-	-62.00		
FILL: Crushed stone	$-\frac{0.19}{0.25}$ $-\frac{0.25}{0.60}$			2	50	16	1-	-61.00		
	' {	XX	1 00						······································	
Stiff, brown SILTY CLAY			ss	4	50	19	2-	-60.00		
trace cand by 2.2m depth		XX	ss	5	67	6				
			ss	6	92	7	3-	-59.00		
	4.50		ss	7	33	40	4-	-58.00		
		· · · · · · · · · · · · · · · · · · ·	ss	8	25	12	5-	-57.00		
			ss	9	50	12	6-	-56.00		
	, , ,		ss	10	75	7	7-	-55.00		
clay with sand, gravel, cobbles and boulders	, , , ,						0	E4 00		
	۱ ۱ ۱						8-	-54.00		
							9-	-53.00		
							10-	-52.00		
	11.28	^^^^/ ^^^^/	BC	1	100	100	11-	-51.00		
BEDROCK: Grey limestone	3333				100	00	12-	-50.00		
	<u>13</u> . <u>18</u>					30	13-	-49.00		
End of Borenole										
									100 200 300 400 500 Gastech 1314 Rdg (ppm)	0
									▲ Full Gas Resp. \triangle Methane Elim.	

patersongroup

SOIL PROFILE AND TEST DATA

PE2278

BH 8

Phase I - II Environmental Site Assessment 1050 Somerset Street West Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

DATUM

TBM - Nail in pole located on west side of subject site. Geodetic elevation = 63.136m, FILE NO. provided by Annis, O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. BORINGS BY CME 55 Power Auger DATE 6 Jul 11

Consulting Engineers

SOIL DESCRIPTION				SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	l Well
			IYPE	MBER	% COVERY	VALUE ROD	(m)	(m)	 Lower Explosive Limit % 	onitoring
GROUND SURFACE	ō	0		IN	REC	z Ö			20 40 60 80	Σ
Asphaltic concrete ().05	×~	a AU	1			0-	-62.49	<u> </u>	
FILL: Crushed stone, trace).3¢X	××	AU	2				2	· · · · · · · · · · · · · · · · · · ·	
FILL: Brown silty sand with	·-' 🕅	X	SS	3	67	50+	1-	-61.49 ⁻		
1- cobbles and boulders by 2.2m	1. 83		SS	4	50	50+	2-	∠ 60.49-		
Brown CLAYEY SILT, some	 2.97		ss	5	92	16				
Brown SILTY CLAY	3.73		ss	6	92	5	3-	-59.49		
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders			SS	7	50	31	4-	-58.49		
	<u>5.26</u>		SS	8	92	6	5-	-57.49 4		
sand with clay, gravel, cobbles	5.94 <u>\^^</u>		SS	9	21	16		2		
									↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic limit, % (water content above which soil behaves plastically)
PI	-	Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'c / p'o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Eric Leveque

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 10941	Report Date: 21-Apr-2011
Project: PE2278	Order Date: 18-Apr-2011
Custody: 84353	Order #: 1117027

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 1117027-01 TP1-G2

Mark Frata Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10941

Project Description: PE2278

Order #: 1117027

Report Date: 21-Apr-2011 Order Date:18-Apr-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	Analysis Date
BTEX	EPA 8260 - P&T GC-MS	20-Apr-11	21-Apr-11
CCME PHC F1	CWS Tier 1 - P&T GC-FID	20-Apr-11	21-Apr-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	20-Apr-11	21-Apr-11
Solids, %	Gravimetric, calculation	20-Apr-11	20-Apr-11

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Order #: 1117027

Report Date: 21-Apr-2011 Order Date:18-Apr-2011

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10941

Project Description: PE2278

	Client ID:	TP1-G2	-	-	-
	Sample Date:	15-Apr-11	-	-	-
	Sample ID:	1117027-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	83.3	-	-	-
Volatiles					-
Benzene	0.02 ug/g dry	0.09	-	-	-
Ethylbenzene	0.05 ug/g dry	1.93	-	-	-
Toluene	0.05 ug/g dry	0.44	-	-	-
m,p-Xylenes	0.05 ug/g dry	7.99	-	-	-
o-Xylene	0.05 ug/g dry	4.75	-	-	-
Xylenes, total	0.05 ug/g dry	12.7	-	-	-
Toluene-d8	Surrogate	101%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	10 ug/g dry	228	-	-	-
F2 PHCs (C10-C16)	10 ug/g dry	7490	-	-	-
F3 PHCs (C16-C34)	10 ug/g dry	4900	-	-	-
F4 PHCs (C34-C50)	10 ug/g dry	<10	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

WWW.PARACELLABS.COM

Client: Paterson Group Consulting Engineers

Client PO: 10941 N/ - 41- -

Xylenes, total

Surrogate: Toluene-d8

Project Description: PE2278

ug/g

ug/g

106

50-140

Order #: 1117027

Report Date: 21-Apr-2011 Order Date:18-Apr-2011

Notes

Analista	5 1	Reporting		Source		%REC	RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit
Hydrocarbons								
F1 PHCs (C6-C10)	ND	10	ug/g					
F2 PHCs (C10-C16)	ND	10	ug/g					
F3 PHCs (C16-C34)	ND	10	ug/g					
F4 PHCs (C34-C50)	ND	10	ug/g					
Volatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					

0.05

ND

8.49

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 4 of 7

Client: Paterson Group Consulting Engineers Client PO: 10941

Project Description: PE2278

Order #: 1117027 Report Date: 21-Apr-2011

Order Date:18-Apr-2011

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	10	ug/g dry	ND				50	
F3 PHCs (C16-C34)	ND	10	ug/g dry	ND				50	
F4 PHCs (C34-C50)	ND	10	ug/g dry	ND				50	
Physical Characteristics									
% Solids	92.9	0.1	% by Wt.	93.1			0.2	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	10.1		ug/g dry	ND	109	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10941

Project Description: PE2278

Report Date: 21-Apr-2011 Order Date:18-Apr-2011

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	211	10	ug/g	ND	106	80-120			
F2 PHCs (C10-C16)	77	10	ug/g	ND	96.3	61-129			
F3 PHCs (C16-C34)	201	10	ug/g	ND	101	61-129			
F4 PHCs (C34-C50)	131	10	ug/g	ND	109	61-129			
Volatiles									
Benzene	3.40	0.02	ug/g	ND	84.9	60-130			
Ethylbenzene	3.38	0.05	ug/g	ND	84.4	60-130			
Toluene	3.30	0.05	ug/g	ND	82.5	60-130			
m,p-Xylenes	6.73	0.05	ug/g	ND	84.2	60-130			
o-Xylene	3.28	0.05	ug/g	ND	82.0	60-130			
Surrogate: Toluene-d8	7.87		ug/g		98.3	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

Order #: 1117027

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10941

Project Description: PE2278

Report Date: 21-Apr-2011 Order Date:18-Apr-2011

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947
E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

OPARACEL LABORATORIES LTD.	TRU RES REL	STED . PONSI IABLE	VE.					300	-2319 St. La Ottawa, O t: 612 800	urent Blvd N K1G 4J8 3-731-9577)-749-1947	Cha	in of (lab u	Cust	tody
OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISS	GAUGA @	SAR	NIA			Reg. Drinking Wo	ter	e: pa	racel@parac	ellabs.com	N	0	8435	3
Client Name: PATERSON GROUP	Project	Ref: P	E 22	78		Waterworks Name:					Page) of 1			
Contact Name: Enic Enic	Quote /	ł				Waterworks Numbe	er:							
Address: 28 CONCOURSE GATTE, UNIT 1	PO #	109	41			Address:					Print Nam	e: DA	AD.	hT
OTTAWA ON KZE 717	E-mail	Address:	nor	RECH	210000	After hours Conta	ct:	10.00			Signature	De	107	1-
Telephone: 613, 226, 7381	Fax:	3.2	76,63	344	24 1	Public Health Unit	<u>e pe</u>	y-ena	nguna	BICA	TAT:		1 2-day l	Reg
Matrix Types: S-Soil/Sed. GW-Ground Water SV	V-Surface	Water	SS-Stor	n/Sanita	ry Sewer D	W-Drinking V	Vater RD	W-Reg	ulated Dr	inking Wa	ter P - Pa	int A-A	Air O -Ot	ther
Samples submitted under: (Indicate ONLY one) 0. Reg 153(511) Table 2 0. Reg 170/03 0. Reg 318// CCME 0. Reg 0. Reg 243/07 0. Reg 319/08 0/ner	08 🗌 Priva	e well	Type of I Location)W Sampl Types: S	e: R = Raw; T = Surface Wat	' = Treated; D = D er; G = Ground V	istribution Water	4		Requi	ired Analy	/ses		
Paracel Order Number	Matrix	Air Volume	ype of Sample	of Containers	Samı	ole Taken	Free / Combined hlorine Residual mg/L	HCS FI-F4	STEX					
Sample ID / Location Name	-		H	**	Date	Time	# 0	à	D	- 1				
1 191-62	S			1	2011	16:00		X	×	d'	TOml	/		
2														
3	_	2												
4														
5														
6														
7														
8														
9														-
10										_				-
Comments:								Pres	ervation V	erification:	pH_N/4	Ł Tem	perature _	
Relinquished By (Print & Sign):							Lab Use On	ly: "						
#971 SWIFT	Receiv	ed By /Depot:				Received at Lah:	1/2	t	~	Verified	MIC	•		
Date/Time:	Date/I	ime:				Date/Time:	m.	18	11	Date/Tir	ne: A	or 18	111	2:31
ChainOfCustody Rev 2.0, January 2010							2 Su	izit	30	-			1	

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Eric Leveque

Clie Proi Cus Phone: (613) 226-7381 Fax: (613) 226-6344

nt PO: 10683	Report Date: 26-Apr-2011
ect: PE2278	Order Date: 20-Apr-2011
tody: 66284	Order #: 1117093

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 1117093-01 BH1 SS3

Mark Fiste Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10683

Project Description: PE2278

Order #: 1117093

Report Date: 26-Apr-2011 Order Date:20-Apr-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Extraction Date Analysis Date				
Chromium, hexavalent	MOE E3056 - Extraction, colourimetric	26-Apr-11	26-Apr-11				
Mercury	EPA 7471A - CVAA, digestion	21-Apr-11	21-Apr-11				
Metals	EPA 6020 - Digestion - ICP-MS	25-Apr-11	25-Apr-11				
Solids, %	Gravimetric, calculation	20-Apr-11	20-Apr-11				

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Order #: 1117093

Report Date: 26-Apr-2011 Order Date:20-Apr-2011

Client: Paterson Group Consulting Engineers Client PO: 10683

Project Description: PE2278

	Client ID:	BH1 SS3	-	-	-
	Sample Date:	18-Apr-11	-	-	-
	Sample ID:	1117093-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	82.1	-	-	-
Metals			-		-
Antimony	1 ug/g dry	<1	-	-	-
Arsenic	1 ug/g dry	2	-	-	-
Barium	1 ug/g dry	139	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5 ug/g dry	27	-	-	-
Chromium (VI)	0.4 ug/g dry	<0.4	-	-	-
Cobalt	1 ug/g dry	7	-	-	-
Copper	5 ug/g dry	19	-	-	-
Lead	1 ug/g dry	32	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1 ug/g dry	<1	-	-	-
Nickel	5 ug/g dry	18	-	-	-
Selenium	1 ug/g dry	<1	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1 ug/g dry	<1	-	-	-
Uranium	1 ug/g dry	<1	-	-	-
Vanadium	10 ug/g dry	36	-	-	-
Zinc	20 ug/g dry	60	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645. Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

Client: Paterson Group Consulting Engineers Client PO: 10683

Project Description: PE2278

Order #: 1117093 Report Date: 26-Apr-2011

Order Date:20-Apr-2011

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.4	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Lead	ND	1	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Selenium	ND	1	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1	ug/g						
Uranium	ND	1	ug/g						
Vanadium	ND	10	ug/g						
Zinc	ND	20	ug/g						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Client: Paterson Group Consulting Engineers Client PO: 10683

Project Description: PE2278

Order #: 1117093 Report Date: 26-Apr-2011

Order Date:20-Apr-2011

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1	ua/a drv	ND				26	
Arsenic	1.6	1	ua/a dry	1.6			4.0	35	
Barium	131	1	ua/a drv	133			1.1	34	
Bervllium	ND	0.5	ua/a drv	ND				25	
Boron	ND	5.0	ug/g dry	ND				33	
Cadmium	ND	0.5	ug/g dry	ND				33	
Chromium (VI)	ND	0.4	ug/g dry	ND				35	
Chromium	37.5	5	ug/g dry	37.0			1.5	32	
Cobalt	8.3	1	ug/g dry	8.2			1.2	32	
Copper	17.7	5	ug/g dry	17.3			1.9	32	
Lead	22.2	1	ug/g dry	21.7			2.1	44	
Mercury	ND	0.1	ug/g dry	ND				35	
Molybdenum	1.8	1	ug/g dry	1.7			7.3	29	
Nickel	21.1	5	ug/g dry	21.0			0.6	29	
Selenium	ND	1	ug/g dry	ND				28	
Silver	0.39	0.3	ug/g dry	0.34			14.2	28	
Thallium	ND	1	ug/g dry	ND				27	
Uranium	ND	1	ug/g dry	ND				27	
Vanadium	41.9	10	ug/g dry	41.0			2.2	27	
Zinc	46.2	20	ug/g dry	46.2			0.1	27	
Physical Characteristics			,						
% Solids	92.9	0.1	% by Wt.	93.1			0.2	25	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Client: Paterson Group Consulting Engineers Client PO: 10683

Project Description: PE2278

Report Date: 26-Apr-2011 Order Date:20-Apr-2011

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	55.7		ug/L	ND	111	80-120			
Arsenic	52.9		ug/L	ND	106	80-120			
Barium	52.2		ug/L	ND	104	80-120			
Beryllium	48.3		ug/L	ND	96.6	80-120			
Boron	45.9		ug/L	ND	91.7	80-120			
Cadmium	52.3		ug/L	ND	105	80-120			
Chromium (VI)	5.2	0.4	ug/g	ND	105	89-123			
Chromium	52.9		ug/L	ND	106	80-120			
Cobalt	52.5		ug/L	ND	105	80-120			
Copper	53.4		ug/L	ND	107	80-120			
Lead	46.9		ug/L	ND	93.9	80-120			
Mercury	1.45	0.1	ug/g	ND	96.6	72-128			
Molybdenum	50.0		ug/L	ND	100	80-120			
Nickel	52.5		ug/L	ND	105	80-120			
Selenium	56.4		ug/L	ND	113	80-120			
Silver	51.1		ug/L	ND	102	80-120			
Thallium	47.3		ug/L	ND	94.7	80-120			
Uranium	43.9		ug/L	ND	87.8	80-120			
Vanadium	52.7		ug/L	ND	105	80-120			
Zinc	49.0		ug/L	ND	97.9	80-120			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645. Kitimat Rd., Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

Order #: 1117093

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10683

Project Description: PE2278

Order #: 1117093

Report Date: 26-Apr-2011 Order Date: 20-Apr-2011

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

	PARACEL LABORATORIES LTD. A © NIAGARA FALLS © MISSISSAUGA © SARNIA						300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com				Chain of Custody Record Nº 66284 Pg of _				0f
ompany Name: PATERSON GROUP	. Pro	ject Re	ef:	6 235	()	PE	22	78	_	Date R	equired				
Idress: 29 CONCOURCE GATE UNIT	Ou	# ote #	06	0)			□Not	Duoted		Turn Ar	ound Ti	me: []	l-day] 2-day	Regul
:: (0/3-226-730) Cell:								(10	Regul	atory/Gui	deline Re	quirement	9/ -
nail: eleveque @ patersongroup. Ca	Pre	servati	ve to	be added by	Para	cel? [□Yes	□No		0.	Ro	9. 5	511.	-101	5 Q.
Matrix Types: S-Soil/Sed GW-Ground Water SV	V–Surfac	ce Water	· SS-	Storm/Sanitary	Sewe	r A-A	ir 0-01	her F	RDW-	Regula	ated D	/ rinking	Water		
Sample Information									Ana	lysis I	Requir	ed			
acel Order #				<	3										
H17093,	Matrix	Air Volume	# Containers	Date Sampled dd/mm/yy	MOF met	FXF - FY									
Sample Identification					7	13									
B41 552	5		1	18/04/4	1										
BHISSS	5		1	Le M		/	-	Nov	H	M	hall	NA	e r	er	
								Er	íc.	ZA	. (HOL	D		
				(/					1	1		1
P	0				50	m	76	2	C	nt	21		-		+
7120	AC	· /	0	~		1		/		7	-	+	+-	++	-
	>	0	201	tru		4	2+	1/10			-		+		
	_			11111		/	41	17	1	4		t T	11		+
						_	_	U	/	V G	n	CF	2.17	17	<u> </u>
,							_	+			-	+	+		
				P-					H 1						
omments: <u>* Go ahlaa Wit</u> <u>Ply Eric-L. IC Ap</u>	r.20	net 11	a (s tor Sub-	SU	rfa	np	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)$	#-1	_(^	51	enf) [6	. 6 ° C	
APP h/// Fime: Received at Depot: Date: 1/0/2	Time:			Received at Lab: Date: App r	MC 19/	/ ₁₅	Time:	2:40	V D	erified I ate: D	By: DV.	<i>fot</i>		me: 8 · ;	26

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Luke Lopers

С Ρ С Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 10897	Report Date: 6-Jul-2011
Project: PE2278	Order Date: 5-Jul-2011
Custody: 83379	Order #: 1128097

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1128097-01 BH5-SS3

Mark Frata

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10897

Project Description: PE2278

Order #: 1128097

Report Date: 06-Jul-2011 Order Date:5-Jul-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX	EPA 8260 - P&T GC-MS	6-Jul-11 6-Jul-11
CCME PHC F1	CWS Tier 1 - P&T GC-FID	6-Jul-11 6-Jul-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	6-Jul-11 6-Jul-11
Solids, %	Gravimetric, calculation	6-Jul-11 6-Jul-11

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 2 of 7

Order #: 1128097

Report Date: 06-Jul-2011 Order Date:5-Jul-2011

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10897

Project Description: PE2278

	Client ID:	BH5-SS3	-	-	-
	Sample Date:	05-Jul-11	-	-	-
	Sample ID:	1128097-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	75.4	-	-	-
Volatiles					-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
Toluene-d8	Surrogate	98.0%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	10 ug/g dry	<10	-	-	-
F2 PHCs (C10-C16)	10 ug/g dry	46	-	-	-
F3 PHCs (C16-C34)	10 ug/g dry	969	-	-	-
F4 PHCs (C34-C50)	10 ug/g dry	217	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

WWW.PARACELLABS.COM

Client: Paterson Group Consulting Engineers

Client PO: 10897

Project Description: PE2278

Order #: 1128097 Report Date: 06-Jul-2011

RPD

Limit

RPD

%REC

Limit

%REC

Order Date:5-Jul-2011

Notes

Method Quality Cont	trol: Blank			
Analyte	Result	Reporting Limit	Units	Source Result
Hydrocarbons				

Hvdrocarbons						
F1 PHCs (C6-C10)	ND	10	ua/a			
F2 PHCs (C10-C16)	ND	10	ug/g			
F3 PHCs (C16-C34)	ND	10	ug/g			
F4 PHCs (C34-C50)	ND	10	ug/g			
Volatiles						
Benzene	ND	0.02	ug/g			
Ethylbenzene	ND	0.05	ug/g			
Toluene	ND	0.05	ug/g			
m,p-Xylenes	ND	0.05	ug/g			
o-Xylene	ND	0.05	ug/g			
Xylenes, total	ND	0.05	ug/g			
Surrogate: Toluene-d8	7.96		ug/g	99.5	50-140	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Client: Paterson Group Consulting Engineers Client PO: 10897

Project Description: PE2278

Report Date: 06-Jul-2011 Order Date:5-Jul-2011

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	ND	10	ua/a drv	ND				40	
F2 PHCs (C10-C16)	ND	10	ug/g wet	ND				50	
F3 PHCs (C16-C34)	ND	10	ug/g wet	ND				50	
F4 PHCs (C34-C50)	ND	10	ug/g wet	ND				50	
Physical Characteristics									
% Solids	89.4	0.1	% by Wt.	88.2			1.4	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	4.64		ug/g dry	ND	99.0	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Order #: 1128097

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10897

Project Description: PE2278

Report Date: 06-Jul-2011 Order Date:5-Jul-2011

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	101	10	ug/g	ND	101	80-120			
F2 PHCs (C10-C16)	84	10	ug/g	ND	105	61-129			
F3 PHCs (C16-C34)	205	10	ug/g	ND	102	61-129			
F4 PHCs (C34-C50)	102	10	ug/g	ND	85.4	61-129			
Volatiles									
Benzene	0.684	0.02	ug/g	ND	73.3	60-130			
Ethylbenzene	1.94	0.05	ug/g	ND	87.4	60-130			
Toluene	8.66	0.05	ug/g	ND	80.1	60-130			
m,p-Xylenes	6.13	0.05	ug/g	ND	91.1	60-130			
o-Xylene	2.40	0.05	ug/g	ND	89.0	60-130			
Surrogate: Toluene-d8	7.96		ug/g		99.5	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 6 of 7

Order #: 1128097

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10897

Project Description: PE2278

Report Date: 06-Jul-2011 Order Date:5-Jul-2011

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947
E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

> 123 Christina St. N. Sarnia, ON N7T 5T7

SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 7 of 7

OPARACEL LABORATORIES LTD.	TRUS RESP RELI	STED . PONSI ABLE	VE.					300	0-2319 St. La Ottawa, Ol t: 613 800 f: 613	urent Blvd N K1G 4J8 3-731-9577 3-749-1947 3-731-9064	Chai	(lab use o	ustod	y			
OTTAWA 🖲 NIAGARA FALLS 🖲 MISSIS	SAUGA ®	JGA 🖲 SARNIA					e: paracel@paracellabs.com Reg. Drinking Water						3319				
Client Name: Paterson	Project I	Project Ref: AEZZ78					Waterworks Name:						Page _ of _				
Contact Name:	perquote #				W	aterworks Numbe	er:					Sample Tak	en by:	-			
Address:	PO #	100	297		A	ddress:		1993			Print Nam	: D_					
20 concoursegate	E-mail A	Address:	01/		A	fter hours Contac	ct:	1.12		3	Signature:	D	~ 1				
Telephone: Dean ONT	Fax:	per	-		p	ublic Health Unit	p.			-		10	>P	1			
(13) 226 738) Matrix Truck 6 Stilled CW 6	W 0 0		00 0	10.1							TAT:	1-day 2	-day Reg.	ł			
Matrix Types: S-Soll/Sed. GW-Ground Water S	W-Surface	Water	SS-Stori	n/Sanita	ry Sewer D'	W-Drinking V	Water RD	W-Reg	gulated Dr	inking Wa	iter P-Pai	nt A-Air	0-Other				
□ 0. Reg 155 (51b) Table □ 0. Reg 170/03 □ 0. Reg 318 □ CCME □ 0. Reg 243/07 □ 0. Reg 319/08 □ Oth	3/08 🗌 Private er:	e well	Type of I Location	OW Sample Types: S	e: R = Raw; T = Surface Wate	= Treated; D = D r; G = Ground V	Distribution Water			Requ	ired Analy	ses					
Paracel Order Number	Matrix	Air Volume	pe of Sample	of Containers	Samp	e Taken	ree / Combined Ilorine Residual mg/L	STEX	HC'S-F4								
Sample ID / Location Name			Ty	#	Date	Time	- <u>-</u> - 5		A								
1 BHS - 553	S				05/07/11	11:30		1		6	and a	- viel					
2					1.							- vi un					
3														-			
4														-			
5														_			
6														-			
7																	
8								_						_			
0														_			
7								_									
10								1									
Comments:								Pre	servation V	erification	рН_ <u>N/</u>	Temper	ature <u>23</u>				
Relinquished By (Print & Sign):	Receive	ed By	~ 11	1	a	Received	Lab Use Onl	y:		Verifier		1		-			
Data/Tima:	Driver/	Depot:	lath	Bear	5	at Lab: M	15	44		By:	MC						
Dater Time: 05/07/// 3:00pm	Date/1	me:				Date/Time:	July 5	/11	4:15	Date/Ti	me: Tr	14 5	11 4				

ChainOfCustody Rev 2.0, January 2010

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Mark D'Arcy

Clien Proje Cust

Approved By:

Phone: (613) 226-7381 Fax: (613) 226-6344

1

1 4

nt PO: 10926	Report Date: 12-Jul-201
ect: PE2278	Order Date: 7-Jul-201
ody: 85592	Order #: 112822

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1128224-01 BH7-AU2 1128224-02 BH8-SS5

Mark Fiste

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10926

Project Description: PE2278

Report Date: 12-Jul-2011 Order Date:7-Jul-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	12-Jul-11	12-Jul-11
CCME PHC F1	CWS Tier 1 - P&T GC-FID	7-Jul-11	11-Jul-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	9-Jul-11	11-Jul-11
Chromium, hexavalent	MOE E3056 - Extraction, colourimetric	8-Jul-11	8-Jul-11
Mercury	EPA 7471A - CVAA, digestion	11-Jul-11	11-Jul-11
Metals	EPA 6020 - Digestion - ICP-MS	11-Jul-11	11-Jul-11
Solids, %	Gravimetric, calculation	11-Jul-11	11-Jul-11

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Order #: 1128224

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Order #: 1128224

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 10926

Project Description: PE2278

Report Date: 12-Jul-2011 Order Date:7-Jul-2011

	Client ID:	BH7-AU2	BH8-SS5	-	-
	Sample Date:	00-JUI-11 1129224 01	00-JUI-11 1129224 02	-	-
	Sample ID:	1120224-01 Soil	1120224-02 Soil	-	-
Physical Characteristics	MDL/Units	301	301	-	-
	0.1.% by W/t	00.7	70.0		
% Solids	0.1 /0 Dy Wt.	88.7	78.9	-	-
Metals			1 1		1
Antimony	1 ug/g ary	<1	-	-	-
Arsenic	1 ug/g dry	3	-	-	-
Barium	1 ug/g dry	277	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	8.3	-	-	-
Boron, available	0.5 ug/g dry	0.9	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5 ug/g dry	18	-	-	-
Chromium (VI)	0.4 ug/g dry	<0.4	-	-	-
Cobalt	1 ug/g dry	5	-	-	-
Copper	5 ug/g dry	23	-	-	-
Lead	1 ug/g dry	145	-	-	-
Mercury	0.1 ug/g dry	0.2	-	-	-
Molybdenum	1 ug/g dry	<1	-	-	-
Nickel	5 ug/g dry	13	-	-	-
Selenium	1 ug/g dry	<1	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1 ug/g dry	<1	-	-	-
Uranium	1 ug/g dry	<1	-	-	-
Vanadium	10 ug/g dry	22	-	-	-
Zinc	20 ug/g dry	176	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	10 ug/g dry	-	<10	-	-
F2 PHCs (C10-C16)	10 ug/g dry	-	29	-	-
F3 PHCs (C16-C34)	10 ug/g dry	-	39	-	-
F4 PHCs (C34-C50)	10 ug/g dry	-	<10	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

Client: Paterson Group Consulting Engineers Client PO: 10926

Method Quality Control: Blank

Hydrocarbons

Analyte

Uranium

Zinc

Vanadium

Project Description: PE2278

Units

ug/g

ug/g

ug/g

Source

Result

Report Date: 12-Jul-2011 Order Date:7-Jul-2011

RPD

Limit

Notes

RPD

Order #: 1128224

%REC

%REC

Limit

F1 PHCs (C6-C10)	ND	10	ug/g
F2 PHCs (C10-C16)	ND	10	ug/g
F3 PHCs (C16-C34)	ND	10	ug/g
F4 PHCs (C34-C50)	ND	10	ug/g
Metals			
Antimony	ND	1	ug/g
Arsenic	ND	1	ug/g
Barium	ND	1	ug/g
Beryllium	ND	0.5	ug/g
Boron, available	ND	0.5	ug/g
Boron	ND	5.0	ug/g
Cadmium	ND	0.5	ug/g
Chromium (VI)	ND	0.4	ug/g
Chromium	ND	5	ug/g
Cobalt	ND	1	ug/g
Copper	ND	5	ug/g
Lead	ND	1	ug/g
Mercury	ND	0.1	ug/g
Molybdenum	ND	1	ug/g
Nickel	ND	5	ug/g
Selenium	ND	1	ug/g
Silver	ND	0.3	ug/g
Thallium	ND	1	ug/g

1

10

20

Reporting

. Limit

Result

ND

ND

ND

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Client: Paterson Group Consulting Engineers Client PO: 10926

Project Description: PE2278

Order #: 1128224 Report Date: 12-Jul-2011

Order Date:7-Jul-2011

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	ND	10	ua/a dry	ND				40	
F2 PHCs (C10-C16)	ND	10	ug/g wet	ND				50	
F3 PHCs (C16-C34)	ND	10	ug/g wet	ND				50	
F4 PHCs (C34-C50)	ND	10	ug/g wet	ND				50	
Metals									
Antimony	ND	1	ug/g dry	ND				26	
Arsenic	2.9	1	ug/g dry	3.1			4.6	35	
Barium	22.1	1	ug/g dry	22.3			0.9	34	
Beryllium	ND	0.5	ug/g dry	ND				25	
Boron, available	ND	0.5	ug/g dry	ND				35	
Boron	ND	5.0	ug/g dry	ND				33	
Cadmium	ND	0.5	ug/g dry	ND				33	
Chromium (VI)	ND	0.4	ug/g dry	ND				35	
Chromium	7.0	5	ug/g dry	7.1			1.9	32	
Cobalt	3.6	1	ug/g dry	3.6			0.9	32	
Copper	5.9	5	ug/g dry	6.1			3.4	32	
Lead	5.3	1	ug/g dry	5.2			1.4	44	
Mercury	0.144	0.1	ug/g dry	0.163			12.5	35	
Molybdenum	1.2	1	ug/g dry	1.1			8.7	29	
Nickel	8.5	5	ug/g dry	8.8			2.9	29	
Selenium	1.0	1	ug/g dry	1.2			13.4	28	
Silver	0.57	0.3	ug/g dry	0.82			35.2	28	QR-01
Thallium	ND	1	ug/g dry	ND				27	
Uranium	ND	1	ug/g dry	ND				27	
Vanadium	11.6	10	ug/g dry	11.0			5.1	27	
Zinc	22.6	20	ug/g dry	21.7			4.4	27	
Physical Characteristics									
% Solids	86.9	0.1	% by Wt.	85.7			1.3	25	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Client: Paterson Group Consulting Engineers Client PO: 10926

Method Quality Control: Spike

Project Description: PE2278

Report Date: 12-Jul-2011 Order Date:7-Jul-2011

Order #: 1128224

Analyte	Pocult	Reporting	l lucita	Source		%REC	חחח	RPD	Notoo
, individ	Result	Limit	Units	Result	%REC	LIMIL	KFD	Limit	NOLES
Hydrocarbons									
F1 PHCs (C6-C10)	199	10	ua/a	ND	99.5	80-120			
F2 PHCs (C10-C16)	56	10	ua/a	ND	70.0	61-129			
F3 PHCs (C16-C34)	158	10	ua/a	ND	79.0	61-129			
F4 PHCs (C34-C50)	100	10	ug/g	ND	83.6	61-129			
Metals									
Antimony	55.1		ug/L	ND	110	80-120			
Arsenic	53.3		ug/L	ND	107	80-120			
Barium	52.2		ug/L	ND	104	80-120			
Beryllium	54.4		ug/L	ND	109	80-120			
Boron, available	4.58	0.5	ug/g	ND	91.7	70-122			
Boron	54.0		ug/L	ND	108	80-120			
Cadmium	52.1		ug/L	ND	104	80-120			
Chromium (VI)	4.8	0.4	ug/g	ND	97.0	89-123			
Chromium	54.4		ug/L	ND	109	80-120			
Cobalt	54.5		ug/L	ND	109	80-120			
Copper	53.0		ug/L	ND	106	80-120			
Lead	54.4		ug/L	ND	109	80-120			
Mercury	1.58	0.1	ug/g	ND	105	72-128			
Molybdenum	53.6		ug/L	ND	107	80-120			
Nickel	53.0		ug/L	ND	106	80-120			
Selenium	53.3		ug/L	ND	107	80-120			
Silver	52.3		ug/L	ND	105	80-120			
Thallium	57.5		ug/L	ND	115	80-120			
Uranium	56.8		ug/L	ND	114	80-120			
Vanadium	55.2		ug/L	ND	110	80-120			
Zinc	51.6		ug/L	ND	103	80-120			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10926

Project Description: PE2278

Report Date: 12-Jul-2011 Order Date:7-Jul-2011

Order #: 1128224

Sample and QC Qualifiers Notes

1- LG-SMP005 : Sample - F1/BTEX/VOCs (soil) not submitted according to Reg. 179 (511) - not field preserved

2- QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

lone

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

GPARACEL LABORATORIES LTD.	EL TRUSTED. RESPONSIVE. S LTD. RELIABLE.						Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com				Chain of Custody (Lab Use Only) N? 85592			
OTTAWA @ KINGSTON @ NIAGARA @ MI	SSISSAU	IGA @	SAR	INIA		www.pa	racellabs.com			Pa	nge 🔟	of		
Client Name: Poterson Group. Contact Name: Mork D'Arcy Address: Telephone: (613) 226-7381		Project Reference: PE 22 78 Quote #								TAT: [] Regular 2 Day [] 1 Day [] Same Day Date Required:				
Samples Submitted Under: []O. Reg. 153/04 T	ableh	10. Re	g 511/09	Table <u>3</u> []PV	VQO []CCME	[] Sewer Use	(Storm) []Se	wer Use (Sanitary)	[]Othe	er:			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	SS (Storm/S	anitary S	ewer) P (Paint) A (Air) O (Other)			Requ	ired An	alyses				
Paracel Order Number: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S Matrix	Air Volume	# of Containers	Sample Date J - 4 6/11	Taken Time $12 \rho m$ $2 \rho m$	- Fy	<pre></pre>		(c0 .)	nl				
9		-						-						
Comments: Full metals, surface	sampl	25	per	Mark.	- MC		1		l yl		Method Pe	of Delivery: crace	p	
Nork D'Arz Date/Time: Js y 7/11 9:500m	Die Serv Receiv Date/T Tempe	ed by Dr	iver/Depo Scol	ot: 15E 111 1:09 °C	Received a M Date/Tim Temperatu	at Lab: / C : July ure: <u>19,2</u>	7/11 2 °C	100	Verifie A Date/T pH Ve	d By: <u>U</u> C inte: rified []		aly 7/ N/A	<u>'11 4:0</u>	

Chain of Custody (Env) - Rev 0.0 April 2011

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Eric Leveque

С Ρ С

Phone: (613) 226-7381 Fax: (613) 226-6344

lient PO: 10537	Report Date: 2-May-2011
roject: PE2278	Order Date: 26-Apr-2011
ustody: 84455	Order #: 1118076

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1118076-01 BH1-GW1

Mark Frata Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10537

Project Description: PE2278

Order #: 1118076

Report Date: 02-May-2011 Order Date:26-Apr-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analy	sis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	27-Apr-11 2	9-Apr-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	27-Apr-11 2	7-Apr-11
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	28-Apr-11 2	8-Apr-11
VOCs	EPA 624 - P&T GC-MS	27-Apr-11 2	9-Apr-11

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 2 of 11

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10537

Project Description: PE2278

Order #: 1118076 Report Date: 02-May-2011

Order Date:26-Apr-2011

	_				
	Client ID:	BH1-GW1	-	-	-
	Sample Date:	26-Apr-11	-	-	-
T	Sample ID:	Water	-	-	-
Volatiles	WDL/Units	Water	_	_	_
Acotono	5.0 ug/l	10.9			
Aceione	0.5 ug/L	19.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 11

Order #: 1118076

Report Date: 02-May-2011 Order Date: 26-Apr-2011

Client: Paterson Group Consulting Engineers Client PO: 10537 Project Description: PE2278 **Client ID:** BH1-GW1 Sample Date: 26-Apr-11 --1118076-01 Sample ID: _ _ Water **MDL/Units** --0.5 ug/L Styrene <0.5 _ _ -0.5 ug/L 1,1,1,2-Tetrachloroethane <0.5 _ 0.5 ug/L 1,1,2,2-Tetrachloroethane <0.5 _ _ 0.5 ug/L Tetrachloroethylene < 0.5 ---0.5 ug/L Toluene <0.5 ---0.5 ug/L 1,2,4-Trichlorobenzene <0.5 _ --1,1,1-Trichloroethane 0.5 ug/L <0.5 ---0.5 ug/L 1,1,2-Trichloroethane <0.5 ---0.5 ug/L Trichloroethylene < 0.5 _ _ -1.0 ug/L Trichlorofluoromethane <1.0 ---0.5 ug/L 1,2,4- Trimethylbenzene < 0.5 -_ _ 0.5 ug/L 1,3,5-Trimethylbenzene <0.5 _ --0.5 ug/L Vinyl chloride <0.5 ---0.5 ug/L m,p-Xylenes <0.5 ---0.5 ug/L o-Xylene <0.5 ---0.5 ug/L Xylenes, total <0.5 ---Surrogate 4-Bromofluorobenzene 102% ---Dibromofluoromethane Surrogate 114% _ --Surrogate Toluene-d8 121% ---Hydrocarbons 25 ug/L F1 PHCs (C6-C10) <25 ---100 ug/L F2 PHCs (C10-C16) <100 _ --100 ug/L F3 PHCs (C16-C34) <100 -_ -100 ua/L F4 PHCs (C34-C50) <100 -_ 125 ug/L F1 + F2 PHCs <125 _ --200 ug/L F3 + F4 PHCs <200 ---Semi-Volatiles 0.05 ug/L Acenaphthene < 0.05 _ --0.05 ug/L Acenaphthylene -< 0.05 _ -0.01 ug/L Anthracene 0.01 ---0.01 ug/L Benzo [a] anthracene <0.01 _ _ -0.01 ug/L Benzo [a] pyrene < 0.01 -_ -0.05 ug/L Benzo [b] fluoranthene < 0.05 _ _ 0.05 ug/L Benzo [g,h,i] perylene < 0.05 ---0.05 ug/L Benzo [k] fluoranthene < 0.05 ---

> P: 1-800-749-1947 E: paracel@paracellabs.com

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 11

WWW.PARACELLABS.COM

Report Date: 02-May-2011

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10537

Project Description: PE2278

Order Date:26-Apr-2011

	Client ID:	BH1-GW1	-	-	-
	Sample Date:	26-Apr-11	-	-	-
	Sample ID:	1118076-01	-	-	-
	MDL/Units	Water	-	-	-
Biphenyl	0.05 ug/L	0.07	-	-	-
Chrysene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	0.04	-	-	-
Fluorene	0.05 ug/L	0.20	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	0.15	-	-	-
2-Methylnaphthalene	0.05 ug/L	0.18	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	0.33	-	-	-
Naphthalene	0.05 ug/L	0.20	-	-	-
Phenanthrene	0.05 ug/L	0.74	-	-	-
Pyrene	0.01 ug/L	<0.01	-	-	-
2-Fluorobiphenyl	Surrogate	93.6%	-	-	-
Terphenyl-d14	Surrogate	75.7%	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 11

Client: Paterson Group Consulting Engineers Client PO: 10537

Project Description: PE2278

Order #: 1118076 Report Date: 02-May-2011

Order Date:26-Apr-2011

Method Quality Control: Blank									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Semi-Volatiles			-						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L		70.0	o			
Surrogate: 2-Fluorobiphenyl	15.7		ug/L		78.6	31-154			
Surrogate: Terphenyl-d14	14.7		ug/L		73.6	37-156			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloromethana	ND	0.5	ug/L						
Dibromochloromothono		3.0	ug/L						
Diblomochioromethane		0.5	ug/L						
1.2 Dibromoothano		1.0	ug/L						
1.2-Diblomoentane		0.2	ug/L						
1 3-Dichlorobenzene		0.5	ug/L						
1 4-Dichlorobenzene		0.5	ug/L						
1 1-Dichloroethane	ND	0.5	ug/L						
1 2-Dichloroethane	ND	0.5	ug/L						
1.1-Dichloroethylene	ND	0.5	ug/L						
cis-1.2-Dichloroethylene	ND	0.5	ug/L						
trans-1.2-Dichloroethylene	ND	0.5	ua/L						
1.2-Dichloroethylene, total	ND	0.5	ua/L						
1.2-Dichloropropane	ND	0.5	ua/l						
cis-1.3-Dichloropropylene	ND	0.5	ua/L						
trans-1.3-Dichloropropylene	ND	0.5	ua/L						
1.3-Dichloropropene, total	ND	0.5	ua/L						
Ethylbenzene	ND	0.5	ua/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						

P: 1-800-749-1947 E: paracel@paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

WWW.PARACELLABS.COM

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 6 of 11

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10537

Method Quality Control: Blank

Project Description: PE2278

Report Date: 02-May-2011

Order #: 1118076

Order Date:26-Apr-2011

Analyte	Result	Reporting	Linita	Source		%REC	חחם	RPD	Notoo
, individe	Result	Limit	Units	Result	%REC	Linnit	KFD	Limit	notes
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,2,4- Trimethylbenzene	ND	0.5	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	32.4		ug/L		101	50-140			
Surrogate: Dibromofluoromethane	32.0		ug/L		100	50-140			
Surrogate: Toluene-d8	38.5		ug/L		120	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 7 of 11

Client: Paterson Group Consulting Engineers Client PO: 10537

Project Description: PE2278

Order #: 1118076 Report Date: 02-May-2011

Order Date:26-Apr-2011

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ua/l	ND				30	
Benzene	0.53	0.5	ug/L	0.65			20.3	30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	0.65	0.5	ug/L	0.85			26.7	30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	61.7	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	3.66	0.5	ug/L	4.33			16.8	30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-I richloroethane	ND	0.5	ug/L	ND				30	
1,1,2-I richloroethane	ND	0.5	ug/L	ND				30	
I richloroethylene	ND	0.5	ug/L	ND				30	
	ND	1.0	ug/L	ND			40.7	30	
1,2,4- Trimethylbenzene	2.20	0.5	ug/L	2.68			19.7	30	
1,3,5-1 rimetnyibenzene		0.5	ug/L					30	
		0.5	ug/L				25.0	30	
	J.∠8	0.5	ug/L	4.20			∠⊃.ď 14.4	30	
U-Ayicile Surrogate: A-Bromofluorobanzana	11.J 22 F	0.5	ug/L	13.1 ND	105	50-140	14.4	30	
Surrogate: 4-Divinionul/UDENZENE	33.0 25 7		ug/L		110	50 140			
Surrogate. Dividitioniuoroniemane	30.7		ug/L		112	50-140			
Surroyate. Toluene-ud	38.0		ug/L	ND	119	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4JB NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 11

Client: Paterson Group Consulting Engineers Client PO: 10537

Method Quality Control: Spike

Report Date: 02-May-2011

Order #: 1118076

Order Date:26-Apr-2011

		Reportina		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1830	25	ug/L	ND	91.5	68-117			
F2 PHCs (C10-C16)	1490	100	ug/L	ND	93.1	61-129			
F3 PHCs (C16-C34)	3510	100	ug/L	ND	87.8	61-129			
F4 PHCs (C34-C50)	2100	100	ug/L	ND	87.5	61-129			
Semi-Volatiles									
Acenaphthene	3.82	0.05	ug/L	ND	76.5	32-116			
Acenaphthylene	3.82	0.05	ug/L	ND	76.4	26-120			
Anthracene	3.73	0.01	ug/L	ND	74.6	29-126			
Benzo [a] anthracene	4.23	0.01	ug/L	ND	84.5	29-126			
Benzo [a] pyrene	4.39	0.01	ug/L	ND	87.7	29-111			
Benzo [b] fluoranthene	3.51	0.05	ug/L	ND	70.2	26-111			
Benzo [g,h,i] perylene	3.86	0.05	ug/L	ND	77.1	23-128			
Benzo [k] fluoranthene	3.89	0.05	ug/L	ND	77.8	23-135			
Biphenyl	3.08	0.05	ug/L	ND	61.5	31-107			
Chrysene	4.84	0.05	ug/L	ND	96.8	29-137			
Dibenzo [a,h] anthracene	3.85	0.05	ug/L	ND	77.0	20-131			
Fluoranthene	4.68	0.01	ug/L	ND	93.5	24-131			
Fluorene	3.79	0.05	ug/L	ND	75.8	28-123			
Indeno [1,2,3-cd] pyrene	4.01	0.05	ug/L	ND	80.2	20-128			
1-Methylnaphthalene	3.76	0.05	ug/L	ND	75.2	25-127			
2-Methylnaphthalene	3.63	0.05	ug/L	ND	72.7	21-119			
Naphthalene	3.86	0.05	ug/L	ND	77.2	29-118			
Phenanthrene	3.90	0.05	ug/L	ND	78.1	34-108			
Pyrene	4.29	0.01	ug/L	ND	85.7	29-131			
Surrogate: 2-Fluorobiphenyl	21.0		ug/L		105	31-154			
Surrogate: Terphenyl-d14	16.8		ug/L		83.9	37-156			
Volatiles									
Acetone	79.5	5.0	ua/L	ND	79.5	50-140			
Benzene	29.1	0.5	ug/L	ND	72.7	60-130			
Bromodichloromethane	30.6	0.5	ug/L	ND	76.4	60-130			
Bromoform	30.4	0.5	ug/L	ND	76.0	60-130			
Bromomethane	20.9	0.5	ug/L	ND	52.3	50-140			
Carbon Tetrachloride	24.0	0.2	ug/L	ND	60.0	60-130			
Chlorobenzene	32.1	0.5	ug/L	ND	80.3	60-130			
Chloroethane	26.4	1.0	ug/L	ND	66.1	50-140			
Chloroform	31.0	0.5	ug/L	ND	77.4	60-130			
Chloromethane	31.0	3.0	ug/L	ND	77.4	50-140			
Dibromochloromethane	33.2	0.5	ug/L	ND	83.0	60-130			
Dichlorodifluoromethane	22.5	1.0	ug/L	ND	56.3	50-140			
1,2-Dibromoethane	33.1	0.2	ug/L	ND	82.8	60-130			
1,2-Dichlorobenzene	31.8	0.5	ug/L	ND	79.4	60-130			
1,3-Dichlorobenzene	31.6	0.5	ug/L	ND	79.0	60-130			
1,4-Dichlorobenzene	31.4	0.5	ug/L	ND	78.5	60-130			
1,1-Dichloroethane	29.6	0.5	ug/L	ND	73.9	60-130			
1,2-Dichloroethane	30.5	0.5	ug/L	ND	76.2	60-130			
1,1-Dichloroethylene	30.7	0.5	ug/L	ND	76.7	60-130			
cis-1,2-Dichloroethylene	32.2	0.5	ug/L	ND	80.5	60-130			
trans-1,2-Dichloroethylene	29.1	0.5	ug/L	ND	72.7	60-130			
1,2-Dichloropropane	30.2	0.5	ug/L	ND	75.6	60-130			
cis-1,3-Dichloropropylene	32.3	0.5	ug/L	ND	80.7	60-130			
trans-1,3-Dichloropropylene	34.7	0.5	ug/L	ND	86.6	60-130			
Ethylbenzene	32.1	0.5	ug/L	ND	80.2	60-130			
Hexane	21.0	1.0	ug/L	ND	52.6	60-130		(QS-02

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 11

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10537

Method Quality Control: Spike

Order #: 1118076
Report Date: 02-May-2011
Order Date: 2014

Order Date:26-Apr-2011

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Methyl Ethyl Ketone (2-Butanone)	74.5	5.0	ug/L	ND	74.5	50-140			
Methyl Butyl Ketone (2-Hexanone)	78.8	10.0	ug/L	ND	78.8	50-140			
Methyl Isobutyl Ketone	79.1	5.0	ug/L	ND	79.1	50-140			
Methyl tert-butyl ether	73.8	2.0	ug/L	ND	73.8	50-140			
Methylene Chloride	29.6	5.0	ug/L	ND	74.1	60-130			
Styrene	34.2	0.5	ug/L	ND	85.6	60-130			
1,1,1,2-Tetrachloroethane	34.6	0.5	ug/L	ND	86.6	60-130			
1,1,2,2-Tetrachloroethane	33.3	0.5	ug/L	ND	83.2	60-130			
Tetrachloroethylene	29.7	0.5	ug/L	ND	74.3	60-130			
Toluene	29.9	0.5	ug/L	ND	74.8	60-130			
1,2,4-Trichlorobenzene	31.0	0.5	ug/L	ND	77.4	60-130			
1,1,1-Trichloroethane	29.8	0.5	ug/L	ND	74.6	60-130			
1,1,2-Trichloroethane	31.5	0.5	ug/L	ND	78.7	60-130			
Trichloroethylene	29.4	0.5	ug/L	ND	73.4	60-130			
Trichlorofluoromethane	30.3	1.0	ug/L	ND	75.6	60-130			
1,2,4- Trimethylbenzene	31.4	0.5	ug/L	ND	78.5	60-130			
1,3,5-Trimethylbenzene	36.0	0.5	ug/L	ND	90.0	60-130			
Vinyl chloride	37.0	0.5	ug/L	ND	92.6	50-140			
m,p-Xylenes	63.9	0.5	ug/L	ND	79.9	60-130			
o-Xylene	32.2	0.5	ug/L	ND	80.6	60-130			
Surrogate: 4-Bromofluorobenzene	32.1		ug/L		100	50-140			
Surrogate: Dibromofluoromethane	31.8		ug/L		99.4	50-140			
Surrogate: Toluene-d8	33.4		ua/L		104	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 11

Client: Paterson Group Consulting Engineers

Client PO: 10537

Project Description: PE2278

Order #: 1118076 Report Date: 02-May-2011

Order Date:26-Apr-2011

Sample and QC Qualifiers Notes

1- QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Niagara Falls, ON L2J 04 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 11 of 11

WWW.PARACELLABS.COM

OPARACEL LABORATORIES LTD.	TRU RES RELI	STED . PONSI IABLE	VE.					300	0-2319 S Ottawa t:	t. Laurent Blv a, ON K1G 4J 613-731-957 800-749-194		hain (of Cu	stody
OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISS	AUGA @	SAR	NIA			Reg. Drinking Wa	iter	e: pa	aracel@p	aracellabs.co	4 n	Nº.	84	455
Client Name: Paterson	Project	Ref: P	EZZZ	78		Waterworks Name:						Page / of /		
Contact Name: Eric Leveque	Quote #	Quote # Waterwa					er:	23				Sample Taken by:		
Address: 28 Concourse Cate, Unit	/ PO# /	^{PO#} 10537				Address:					Prin	Print Name: TI Robinson		
	E-mail	E-mail Address:					ict:			176 - 1	Sign	nature:	U	-
Telephone: 613-226-7381	Fax:	0-	01			Public Health Uni	it:					TAT: 1-d	ay 2-da	y 🍂 Reg.
Matrix Types: S-Soil/Sed. GW-Ground Water SV	V-Surface	Water	SS-Stor	m/Sanita	ry Sewer D	W-Drinking	Water RD	W-Reg	gulated	Drinking V	Vater I	P-Paint A	-Air O	-Other
Samples submitted under: (Indicate ONLY one) ☑ 0. Reg 153 (511) Table ⊥ □ 0. Reg 170/03 □ 0. Reg 318/ □ CCME □ 0. Reg 243/07 □ 0. Reg 319/08 □ 0the	08 🗌 Privat	e well	Type of I Location	DW Sampl Types: S	e: R = Raw; T = Surface Wate	er; G = Ground	Distribution Water			Re	quired A	red Analyses		
Paracel Order Number	Matrix	Air Volume	ype of Sample	t of Containers	Samp	ole Taken	Free / Combined Chlorine Residual mg/L	10 63	HC3	AHS				
Sample ID / Location Name			F	++	Date	Time		2	5	A				
1 BHL-EWI	GW				26/4/1	1 IZpm		×	×	X				
2					an an									
3	_	-					-							
4														
5	_													
6														
7														
8							-							
9	ő													
10					_		-							
Comments:								Pre Ve	servation rified by	n Verificati	on: pH _	T	emperatu	re <u>14.9</u>
Relinquished By (Print & Sign): T. Robinson							Lab Use On	ly:			J	-/-		
Date/Time: 4/26/11 2145	Receit Driver	ved By "Depot." Time:	1.el	bent	2	Received at Lab:	Xs_	5	4	Verif By:	ed M	14	t	~

ChainOfCustody Rev 2.0, January 2010

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Mark D'Arcy

С Ρ С Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 10190	Report Date: 12-Jul-2011
Project: PE2278	Order Date: 11-Jul-2011
Custody: 85648	Order #: 1129059

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1129059-01 BH5-GW1

Mark Frata Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10190

Project Description: PE2278

Order #: 1129059

Report Date: 12-Jul-2011 Order Date:11-Jul-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	11-Jul-11 11-Jul-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	12-Jul-11 12-Jul-11
VOCs	EPA 624 - P&T GC-MS	11-Jul-11 11-Jul-11

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10190

Project Description: PE2278

Report Date: 12-Jul-2011 Order Date:11-Jul-2011

Order #: 1129059

			1		r
	Client ID: Sample Date:	8H5-GW1 11- Jul-11		-	-
	Sample Date:	1129059-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles				· · · · · · · · · · · · · · · · · · ·	
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	
Chlorobenzene	0.5 ug/L	<0.5	-	-	
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd, Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

Report Date: 12-Jul-2011 Order Date:11-Jul-2011

Client: Paterson Group Cons	ulting Engineers			Orde	r Date:11-Jul-2011
Client PO: 10190		Project Descripti	on: PE2278		
	Client ID: Sample Date: Sample ID:	BH5-GW1 11-Jul-11 1129059-01	-	-	-
	MDL/Units	Water	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
1,2,4-Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	90.0%	-	-	-
Dibromofluoromethane	Surrogate	115%	-	-	-
Toluene-d8	Surrogate	112%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	408	-	-	-
F3 PHCs (C16-C34)	100 ug/L	10100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	1460	-	-	-
F1 + F2 PHCs	125 ug/L	408	-	-	-
F3 + F4 PHCs	200 ug/L	11500	-	-	_

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Paterson Group Consulting Engineers Client PO: 10190

Project Description: PE2278

Order #: 1129059 Report Date: 12-Jul-2011

Order Date:11-Jul-2011

Method Quality Control: Bla	nk	-	•						
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			Ū						
Acetone	ND	5.0	ua/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-I etrachloroethane	ND	0.5	ug/L						
1,1,2,2-1 etrachioroethane	ND	0.5	ug/L						
Tetrachioroethylene	ND	0.5	ug/L						
1 Oluene	ND	0.5	ug/L						
1,2,4-Trichloroothono		0.5	ug/L						
1, 1, 1-1 Inchioroethane		0.5	ug/L						
Trichlereethylere		0.5	ug/L						
Trichlorofluoromothono		0.5	ug/L						
		1.0	ug/L						
1,2,4-Thimethylbenzene		0.5	ug/L						
Vinul oblorido		0.5	ug/L						
m n Xylanaa		0.5	ug/L						
n,p-Aylene		0.5	ug/L						
Vilenes total		0.5	ug/L						
Ayrenes, lulai Surragete: 1-Bromofluorobanzana		0.5	ug/L		86.9	50-140			
Surragato: Dibromofluoromothana	21.0		ug/L		106	50-140			
Surrogate. Distornonuorometriane	33.0		ug/L		100	50-140			
Surrogate: Toluene-av	35.8		ug/L		112	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 WWW.PARACELLABS.COM

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Client: Paterson Group Consulting Engineers Client PO: 10190

Project Description: PE2278

Order #: 1129059 Report Date: 12-Jul-2011

Order Date:11-Jul-2011

Method Quality Control: Duplicate

Analita	D "	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbona									
		4050						20	
F1 PHCs (C6-C10)	ND	1250	ug/L	ND				30	
Volatiles									
Acetone	627	250	ug/L	596			5.2	30	
Benzene	ND	25.0	ug/L	ND				30	
Bromodichloromethane	ND	25.0	ug/L	ND				30	
Bromoform	ND	25.0	ug/L	ND				30	
Bromomethane	ND	25.0	ug/L	ND				30	
Carbon Tetrachloride	ND	10.0	ug/L	ND				30	
Chlorobenzene	ND	25.0	ug/L	ND				30	
Chloroethane	ND	50.0	ug/L	ND				30	
Chloroform	ND	25.0	ug/L	ND				30	
Chloromethane	ND	150	ug/L	ND				30	
Dibromochloromethane	ND	25.0	ug/L	ND				30	
Dichlorodifluoromethane	ND	50.0	ug/L	ND				30	
1,2-Dibromoethane	ND	10.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	25.0	ug/L	ND				30	
1,3-Dichlorobenzene	ND	25.0	ug/L	ND				30	
1,4-Dichlorobenzene	ND	25.0	ug/L	ND				30	
1,1-Dichloroethane	ND	25.0	ug/L	ND				30	
1,2-Dichloroethane	ND	25.0	ug/L	ND				30	
1,1-Dichloroethylene	ND	25.0	ug/L	ND			0.5	30	
cis-1,2-Dichloroethylene	483	25.0	ug/L	486			0.5	30	
trans-1,2-Dicnioroetnyiene	ND	25.0	ug/L	ND				30	
1,2-Dichloropropane	ND	25.0	ug/L					30	
trong 1.2 Dichloropropylene	ND	25.0	ug/L					30	
Itans-1,3-Dichloropropylene	ND	25.0	ug/L					30	
Hoveno	ND	25.0	ug/L					30	
Methyl Ethyl Ketone (2 Putenene)	2700	30.0	ug/L	2700			0.1	30	
Methyl Butyl Ketone (2 Hovenene)	2790	200	ug/L	2790			0.1	30	
Methyl Isobutyl Ketone		250	ug/L					30	
Methyl tert-butyl ether		100	ug/L					30	
Methylene Chloride		250	ug/L					30	
Styrono		25.0	ug/L					30	
1 1 1 2-Tetrachloroethane		25.0	ug/L					30	
1 1 2 2-Tetrachloroethane	ND	25.0	ug/L	ND				30	
Tetrachloroethylene	ND	25.0	ug/L	ND				30	
Toluene	ND	25.0	ug/L	ND				30	
1 2 4-Trichlorobenzene	ND	25.0	ug/L	ND				30	
1.1.1-Trichloroethane	ND	25.0	ug/L	ND				30	
1.1.2-Trichloroethane	ND	25.0	ua/L	ND				30	
Trichloroethylene	ND	25.0	ug/L	ND				30	
Trichlorofluoromethane	ND	50.0	ug/L	ND				30	
1,2,4-Trimethylbenzene	ND	25.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	25.0	ug/L	ND				30	
Vinyl chloride	ND	25.0	ug/L	ND				30	
m,p-Xylenes	ND	25.0	ug/L	ND				30	
o-Xylene	ND	25.0	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	1480		ug/L	ND	92.7	50-140			
Surrogate: Dibromofluoromethane	1970		ug/L	ND	123	50-140			
Surrogate: Toluene-d8	1700		ug/L	ND	106	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4JB NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: Paterson Group Consulting Engineers Client PO: 10190

Method Quality Control: Spike

Report Date: 12-Jul-2011

Order #: 1129059

Order Date:11-Jul-2011

		Reporting		Sourco		%REC		PDD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	1870	25	ua/L	ND	93.4	68-117			
F2 PHCs (C10-C16)	1270	100	ua/L	ND	79.1	61-129			
F3 PHCs (C16-C34)	3680	100	ua/l	ND	92.0	61-129			
F4 PHCs (C34-C50)	2430	100	ug/L	ND	101	61-129			
Volatiles	2.00		«g/=			020			
Acetone	110	5.0	ua/l	ND	110	50-140			
Bonzono	29.7	0.5	ug/L		71 7	60 1 20			
Bromodichloromothana	20.7 51.0	0.5	ug/L		107	60 130			
Bromoform	47.0	0.5	ug/L		140	60 130			
Bromomothana	20 0	0.5	ug/L		07.4	50 140			
Carbon Tatraphlarida	40.1	0.5	ug/L		37.4	50-140 60 120			
Chlorohonzono	49.1	0.2	ug/L		123	60 1 20			
Chloropenzene	43.7	0.5	ug/L		109	60-130 50 140			
Chloroform	42.0	1.0	ug/L	ND	106	50-140			
Chlorororm Chloromath and	48.8	0.5	ug/L	ND	122	60-130			
Chioromethane Diference al lange at the sec	45.7	3.0	ug/L	ND	114	50-140			
Dibromocnioromethane	39.0	0.5	ug/L	ND	97.6	60-130			
Dicniorodifiuoromethane	29.7	1.0	ug/L	ND	74.3	50-140			
1,2-Dibromoethane	45.0	0.2	ug/L	ND	112	60-130			
1,2-Dichlorobenzene	38.6	0.5	ug/L	ND	96.5	60-130			
1,3-Dichlorobenzene	40.0	0.5	ug/L	ND	100	60-130			
1,4-Dichlorobenzene	40.4	0.5	ug/L	ND	101	60-130			
1,1-Dichloroethane	36.7	0.5	ug/L	ND	91.7	60-130			
1,2-Dichloroethane	48.0	0.5	ug/L	ND	120	60-130			
1,1-Dichloroethylene	28.8	0.5	ug/L	ND	72.0	60-130			
cis-1,2-Dichloroethylene	29.0	0.5	ug/L	ND	72.6	60-130			
trans-1,2-Dichloroethylene	29.8	0.5	ug/L	ND	74.4	60-130			
1,2-Dichloropropane	28.3	0.5	ug/L	ND	70.8	60-130			
cis-1,3-Dichloropropylene	26.4	0.5	ug/L	ND	65.9	60-130			
trans-1,3-Dichloropropylene	31.4	0.5	ug/L	ND	78.4	60-130			
Ethylbenzene	42.1	0.5	ug/L	ND	105	60-130			
Hexane	31.7	1.0	ug/L	ND	79.2	60-130			
Methyl Ethyl Ketone (2-Butanone)	88.3	5.0	ug/L	ND	88.3	50-140			
Methyl Butyl Ketone (2-Hexanone)	92.7	10.0	ug/L	ND	92.7	50-140			
Methyl Isobutyl Ketone	72.6	5.0	ug/L	ND	72.6	50-140			
Methyl tert-butyl ether	71.7	2.0	ug/L	ND	71.7	50-140			
Methylene Chloride	38.4	5.0	ug/L	ND	96.1	60-130			
Styrene	39.3	0.5	ug/L	ND	98.3	60-130			
1,1,1,2-Tetrachloroethane	42.4	0.5	ug/L	ND	106	60-130			
1,1,2,2-Tetrachloroethane	51.4	0.5	ug/L	ND	129	60-130			
Tetrachloroethylene	37.7	0.5	ug/L	ND	94.3	60-130			
Toluene	28.9	0.5	ug/L	ND	72.3	60-130			
1,2,4-Trichlorobenzene	32.7	0.5	ug/L	ND	81.7	60-130			
1,1,1-Trichloroethane	44.4	0.5	ug/L	ND	111	60-130			
1,1,2-Trichloroethane	37.5	0.5	ug/L	ND	93.7	60-130			
Trichloroethylene	27.0	0.5	ug/L	ND	67.5	60-130			
Trichlorofluoromethane	41.1	1.0	ug/L	ND	103	60-130			
1,3,5-Trimethylbenzene	30.5	0.5	ug/L	ND	76.3	60-130			
Vinyl chloride	52.4	0.5	ug/L	ND	131	50-140			
m,p-Xylenes	86.8	0.5	ug/L	ND	109	60-130			
o-Xylene	44.8	0.5	ug/L	ND	112	60-130			
Surrogate: 4-Bromofluorobenzene	34.6		ug/L		108	50-140			
Surrogate: Dibromofluoromethane	34.1		ug/L		107	50-140			
Surrogate: Toluene-d8	29.4		ug/L		91.9	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

WWW.PARACELLABS.COM

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10190

Project Description: PE2278

Report Date: 12-Jul-2011 Order Date:11-Jul-2011

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947
E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

GPARACEL	ACEL TRUSTED. Head Office 300-2319 St. L RESPONSIVE. Ottawa, Ontar p: 1-800-749-1 e: paracel@pa							lice 9 St. Laure Ontario K 749-1947 91@parace	ent Blvd. 1G 4J8 ellabs.com		Cha a Nº	in of Cust .ab Use Only 856	tody) 48
OTTAWA KINGSTON	MISSISSAL	IGA @	SAF	INIA			www.par	acellabs.c	com		Pag	e <u>1</u> of .	1
Client Name: Paterson Contact Name: Mork D'Arcy Address: 28 Concourse Grate, Unitl Ottawa, ON Telephone: 6/3 226-738 (Samples Submitted Under: []O. Reg. 153/04	Table	Q. Reg	Project I Quote # PO # Email A Mode	Reference: PEZ 10190 ddress: Arcy@pater. Table=2 []PV	2278 Songrou	Р, Са ИЕ []Se	wer Use (Storm) [] Sewer Use (TAT: Date R Sanitary)	[] R [] 2 [Å[1 [] S tequired: [] Other:	egular Day Day ame Day	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	er) SS (Storm/S	anitary S	ewer)P(Paint) A (Air) O (Other)				Requ	iired An	alyses		
Paracel Order Number: 29059 Sample ID/Location Name	Matrix	Air Volume	# of Containers	Sample	Taken Time	VOCS	Fi-Fy						
1 BH5-GW1	GW		3	July 11/1	gam	×	\times						
2 3 4													
5						_				+			
6													
7 							-						
9			-										
10													
Comments:		5			n h	() F			·	11/21		Method of De Para	livery: Uccl
Relinquished By (Print & Sign): T. Robigson	Receive	ed by Dri	ver/Depo	t: SC	Rece	eived at Lab):	72		Verifie M	d By: /C	il	- 210
Dute Fine: S. J. 11 2211 122	Date/Ti	me: //	1071	11 12:501	ZA Date	Tiphe: Ju	17.30	6 C	2:45	Date/T	rified [] B	4 1/1 Jy:	13:5 [A
Date Time: JULY (1, 2011 10pm	Tremper		Chain	of Custody (Er	ny) - Rev ()	0 Anril 2	011						

Chain of Custody (Env) - Rev 0.0 April 2011

APPENDIX 2

AERIAL PHOTOGRAPHS

MOE FREEDOM OF INFORMATION REQUEST

FIGURE 1 - KEY PLAN

DRAWING NO. PE2278-2 - TEST HOLE LOCATION PLAN

Ministry of Environment and Energy

Freedom of Information Request

This form is for requesting documents which are in the Ministry's files on environmental concerns related to properties. Please refer to the guide on completion and use of this form. Our fax no. is (416) 314-4285.

	Requester Data	For Ministry Use Only							
Name, Company Name, Mailing Address and Eric Leveque	Email Address of Requester		FOI Request No.	Date Request Received					
Paterson Group Inc. 28 Concourse Gate - Unit 1		Fee Paid							
Ottawa, ON K2E 7T7 Email address: eleveque@pa	atersongroup.ca	🗆 ACCT 🗆 CHQ 🗆	VISA/MC 🗆 CASH						
Telephone/Fax Nos. Tel. 613-226-7381 Fax 613-226-6344	re/Fax Nos. Your Project/Reference No. Signature/Print /Name of Requester 613-226-7381 PE2278 Eric Leveque								
Request Parameters									
Municipal Address / Lot, Concession, Geographic Township (Municipal address essential for cities, towns or regions)									
Present Property Owner(s) and Date(s) of Own	nership								
Previous Property Owner(s) and Date(s) of Ownership									
Present/Previous Tenant(s),(if applicable)									
Finateri Boyd (garage) and vacant									
Search Parameters Specify Year(s) Requested Files older than 2 years may require \$60.00 retrieval cost. There is no guarantee that records responsive to your request will be located. Specify Year(s) Requested									
Environmental concerns (Ge	1	all							
Orders				all					
Spills				all					
Investigations/prosecutions	► Owner AND tena	nt information must be provided		all					
Waste Generator number/cla	asses			all					
	Certificate	s of Approval > Proponent infor	mation must be provided						
1985 and prior records are sear Certificates of Approval number	rched manually. Searc r(s) (if known). If supp	h fees in excess of \$300.00 could be orting documents are also required	incurred, depending on the types, mark SD box and specify type of	s and years to be searched. Specify e.g. maps, plans, reports, etc.					
			SD	Specify Year(s) Requested					
air - emissions									
water - mains, treatment, ground l	level, standpipes & elevate	ed storage, pumping stations (local & boos	er)						
Sewage - sanitary, storm, treatme	ent, stormwater, leachate &	& leachate treatment & sewage pump statio	ons						
waste water - industrial discharg	les								
waste sites - disposal, landfill site	es, transfer stations, proce	essing sites, incinerator sites							
waste systems - PCB destructi	on, mobile waste processi	ng units, haulers: sewage, non-hazardou	s & hazardous waste						
pesticides - licenses	- Maria (Maria) - 11 (Maria)	Abo Minister of Et		- 14					

\$30.00/hour and 20 cents/page for photocopying and you will be contacted for approval for fees in excess of \$30.00.

City Centre Ave Albert S EI 40 Preston Rd O-Train 民 Elm St Spi a Avenue City Centre w Rd MILSI Rue Albe prestor Tom Brown 41500000 36 Somerset St N Bayview Rd Hilda St dia St Plouffe Park \$ Takaki Automotive SITE 40 Ome ø 007 Oak orporation Garland St Hilda St 3 Breezemil Ave N Laponostin (g) American D Menon St Spadina Ave 2 Laurel St 3 Inving Ave Lorena Ave N Rue Laurel Fairmont Ave Gladstone P 36 Ne Avenue Gladstone Elmdale House Tavern Spadina Ave Ŧ Hintonburgh Inving Ave om Penh M Bayswater Ave lle House Park Sherbrooke Ave ng St 417

FIGURE 1 KEY PLAN

