patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Geotechnical Investigation

Proposed Residence Building 1125 Colonel By Drive Ottawa, Ontario

Prepared For

Carleton University c/o ZW Group

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

November 21, 2014

Report PG3292-2

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION 1
2.0	PROPOSED PROJECT 1
3.0	METHOD OF INVESTIGATION3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing
4.0	OBSERVATIONS4.1Surface Conditions54.2Subsurface Profile54.3Groundwater6
5.0	DISCUSSION5.1Geotechnical Assessment85.2Site Grading and Preparation85.3Foundation Design95.4Design for Earthquakes105.5Basement Slab Construction125.6Basement Wall125.7Pavement Structure14
6.0	DESIGN AND CONSTRUCTION PRECAUTIONS6.1Foundation Drainage and Backfill166.2Protection of Footings Against Frost Action166.3Excavation Side Slopes176.4Pipe Bedding and Backfill176.5Groundwater Control186.6Winter Construction18
7.0	RECOMMENDATIONS 19
8.0	STATEMENT OF LIMITATIONS

APPENDICES

- Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Boreholes by Others
- Appendix 2Figure 1 Key PlanFigures 2 and 3 Seismic Shear Wave Velocity ProfilesDrawing PG3292-2 Test Hole Location Plan

1.0 INTRODUCTION

Paterson Group (Paterson) was commissioned by ZW Group acting on behalf of Carleton University to conduct a geotechnical investigation for the proposed residence building to be located at 1125 Colonel By Drive in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the current investigation were to:

- Determine the subsoil and groundwater conditions at this site by means of test pits and boreholes.
- □ Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 PROPOSED PROJECT

It is understood that the proposed development consists of a multi-storey building with up to 20 storeys. It is our understanding the proposed building will be constructed with a basement level and will be tied into the tunnel system at Carleton University. The courtyard portion will also be lowered from the existing grade to the level just below the basement floor slab at an elevation of 62.7 m.

Associated at grade parking areas, access lanes and landscaped areas are also anticipated as part of the development.

Furthermore, it is our understanding that a pedestrian tunnel will constructed to connect the proposed residential building to the current tunnel system.

3.0 METHOD OF INVESTIGATION

3.1 Field Investigation

Field Program

The field program for the supplemental geotechnical investigation was carried out on November 5 and 6, 2014. At that time a total of 7 boreholes and 5 test pits were completed to a maximum depth of 6.7 m. The field program for the previous geotechnical investigation was carried out on July 25, and 28, 2014. At that time a total of 6 boreholes were advanced to a maximum depth of 9.8 m. In addition, 4 test pits were excavated to a maximum depth of 6.5 m on August 7, 2014.

The test holes were distributed in a manner to provide general coverage of the proposed structure taking into consideration of site features and underground utilities. The test holes locations are illustrated on Drawing PG3292-2 - Test Hole Location Plan included in Appendix 2.

The boreholes were completed using a track-mounted auger drill rig operated by a two person crew. The test pits were completed using a hydraulic shovel supplied by Dufresne Piling or Drummonds. All fieldwork was conducted under the full-time supervision of personnel from our geotechnical division under the direction of a senior engineer. The testing procedure consisted of augering or excavating to the required depths at the selected locations and sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using a 50 mm diameter splitspoon (SS) sampler or auger flights. The soils samples (grab samples) recovered from the test pits were recovered from the excavation sidewalls. All soil samples were visually inspected and initially classified on site. The split-spoon, auger and grab samples were placed in sealed plastic bags and transported to the our laboratory for examination and classification. The depths at which the split-spoon, auger and grab samples were recovered from the test holes are shown as SS, AU and G, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1. The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was conducted in cohesive soils using a field vane apparatus.

Overburden thickness was evaluated during the course of the site investigation by dynamic cone penetration testing (DCPT) at BH 6. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed at the borehole and test pits were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible polyethylene standpipes were installed in all boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. Open hole groundwater levels were noted in the test pits at the time of the field program.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were selected by Vincent P. Colliza Architects Inc. They were determined in the field and surveyed by Paterson personnel. The ground surface elevation at each test hole location was referenced to a temporary benchmark (TBM), consisting of the finished floor slab of the existing residence building located to the south of the subject site. A geodetic elevation of 65.6 m was provided for the TBM on the drawing provided by Vincent P. Colizza Architects Inc. The location of the TBM, test holes and the ground surface elevations at the test hole locations are presented on Drawing PG3292-2 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging.

3.4 Analytical Testing

One soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the samples. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 OBSERVATIONS

4.1 Surface Conditions

Generally, the central and east portion of the subject site is currently occupied by an existing asphaltic concrete automobile parking area. The west portion slopes approximately 3 m down from the parking area into a low-lying vegetated area covered with fill, mulch, grass and some brush.

The site is bordered to the south by the existing 5 to 6 storey residence building, to the north and east by asphaltic car parking and to the west by vacant treed property followed by Colonel By Drive.

4.2 <u>Subsurface Profile</u>

Overburden

Generally, the subsurface profile at the test hole locations consists of a pavement structure or topsoil overlying fill material varying in thickness between 1.9 and 5 m. The existing fill material is overlying a firm to hard silty clay deposit and/or compact to dense sand and gravel deposit (possibly a glacial till). TP 3 to TP 9, which were extended within the lower west portion of the subject site, consist of a layer of topsoil overlying a silty sand and silty clay layer followed by a compact to dense sand and gravel deposit.

Bedrock

Specific details of the soil profile at each test hole location are presented on the Soil Profile and Test Data sheets provided in Appendix 1. Based on available geological mapping, bedrock in the area of the subject site consists of interbedded silty dolostone, limestone, shale and fine-grained quartz sandstone of the Gull River Formation. The overburden drift thickness is estimated to be between 10 to 15 m depth. Practical auger or DCPT refusal depths can be found in Table 1 below.

Table 1 Practical Refusal to Augering or DCPT												
Borehole Number	Elevation (m)	Depth to refusal (m)	Refusal Elevation (m)									
BH 1	66.12	5.54	60.58									
BH 2	65.58	9.5	56.08									
BH 3	65.97	8.15	57.82									
BH 4	65.44	7.64	57.8									
BH 5	62.73	6.12	56.61									
BH 6	65.61	12.12	53.49									
BH 9	65.19	5.36	59.83									
BH 10	65.3	5.21	60.09									
BH 11	65.52	4.7	60.82									
BH 12	65.65	4.67	60.98									

4.3 Groundwater

Groundwater levels were measured in the flexible standpipes on August 5, 2014 and November 12, 2014. The results are presented in Table 2 on the following page. The groundwater levels obtained in August at the subject site were considered elevated at that time due to the normal water levels in the Rideau Canal located near the subject site. It should be noted that surface water can become trapped within the backfilled borehole, which can lead to higher than normal groundwater readings.

The long term groundwater level can also be estimated based on the recovered soil sample's moisture level and consistency. Based on these observations, the long term groundwater table is anticipated to be at a geodetic elevation of 60.5 to 61.5 m. It should be further noted that the groundwater level could vary at the time of construction and with fluctuations within the Rideau Canal.

	oat	ersong	roup
0	ttawa	Kingston	North Bay

Table 2 - Mea	asured Groundwater	Levels							
Test Hole	Ground Surface	Water	Water Level						
Number	Elevation (m)	Depth (m)	Elevation (m)	Date					
BH 1	66.12	5.16	60.96	August 5, 2014					
BH 2	65.58	4.86	60.72	August 5, 2014					
BH 3	65.97	5.13	60.84	August 5, 2014					
BH 4	65.44	4.75	60.69	August 5, 2014					
BH 5	62.73	1.88	60.85	August 5, 2014					
BH6	65.61	4.64	60.97	August 5, 2014					
BH 7	64.25	Dry		November 12, 2014					
BH 8	64.01	1.54	62.47	November 12, 2014					
BH 9	65.19	1.68	63.51	November 12, 2014					
BH 10	65.30	5.03	60.27	November 12, 2014					
BH 11	65.52	3.83	61.69	November 12, 2014					
BH 12	65.65	Dry		November 12, 2014					
BH 13	65.33	5.26	60.07	November 12, 2014					

Note: The ground surface elevation at each test hole location was referenced to a temporary benchmark (TBM), consisting of the finished floor slab of the existing residence building located to the south of the subject site. A geodetic elevation of 65.60 m was provided for the TBM on the drawing provided by Vincent P. Colizza Architects Inc.

5.0 DISCUSSION

5.1 <u>Geotechnical Assessment</u>

The subject site is satisfactory for the proposed hi-rise structure. Since the building will have a basement level throughout, excavated fill materials will be used to raise the low-lying areas on the western portion. Concrete filled trenches will be used to transfer the footing loads to the dense sand-gravel deposit in areas where the dense sand-gravel deposit is not encountered at founding depth. Foundations will consist of conventional spread footings founded directly on either the dense sand-gravel deposit or lean concrete filled trenches extending to the dense sand-gravel deposit.

The above and other considerations are discussed in the following paragraphs.

5.2 Site Grading and Preparation

Stripping Depth

Only topsoil and deleterious fill, such as those containing organic materials, should be stripped from under the proposed building and other settlement sensitive structures. For the most part, the existing fill will be left in place and will be used to support the floor slab.

Fill Placement

The excavated fill from the basement area will be evaluated and, where acceptable, will be reused to backfill the low-lying western portion of the site. Segregation of poor quality fill may be required. Based on the test pit observations, the fill material appears to be satisfactory. The material will be placed in 300 mm lifts and will be compacted to 98% of the material's standard Proctor maximum dry density (SPMDD). Furthermore, trench excavations for footings will also produce excavated fill that can be re-used on site for in-filling the low lying areas and in landscaped areas.

Where additional fill is required to raise the site to below the proposed underside of the sub-floor granular materials, an OPSS Granular B Type II can be used for this purpose as engineered fill. The engineered fill should be placed in maximum 300 mm loose lifts and compacted to 98% of the material's SPMDD.

5.3 Foundation Design

Shallow Foundation

It should be noted that footings placed on an undisturbed, dense sand-gravel deposit (possibly glacial till) bearing surface or on a lean concrete filled trench extending to the dense sand-gravel deposit can be designed using a bearing resistance value at SLS of **250 kPa** and a factored bearing resistance value at ULS of **400 kPa**.

The above noted bearing resistance values at SLS will be subjected to potential postconstruction total and differential settlements of 25 and 20 mm, respectively. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance values at ULS.

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to an overburden bearing medium when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V, passes only through in situ soil or engineered fill of the same or higher capacity as the soil.

Lean Concrete Filled Trenches

For the slab-on-grade area of the building where the dense sand-gravel deposit is deeper than the proposed founding elevation, consideration will be given to excavating vertical trenches to expose the underlying dense sand-gravel deposit surface and backfilling with lean concrete (**17 MPa** 28-day compressive strength). Typically, the excavation side walls will be used as the form to support the concrete. The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying dense sand-gravel deposit.

The trench excavation should be at least 150 mm wider than all sides of the footing at the base of the excavation. Once the trench excavation is approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

5.4 Design for Earthquakes

A seismic shear wave velocity test was completed for the subject site to accurately determine the applicable seismic site classification for the proposed building based on Table 4.1.8.4.A of the Ontario Building Code 2012. The shear wave velocity test was completed by Paterson personnel. Two seismic shear wave velocity profiles from the on site testing are presented in Appendix 2.

Field Program

The seismic shear wave test was completed along the north property boundary, as presented in Drawing PG3292-1 - Test Hole Location Plan in Appendix 2. Paterson field personnel placed 24 horizontal geophones in a straight line in roughly an east-west orientation. The 4.5 Hz. horizontal geophones were mounted to the surface by means of a 75 mm ground spike attached to the geophone land case. The geophones were spaced at 2 m intervals and were connected by a geophone spread cable to a Geode 24 Channel seismograph.

The seismograph was connected to a laptop and a hammer trigger switch attached to a 12 pound dead blow hammer. The hammer trigger switch sends a start signal to the seismograph. The hammer is strikes an I-Beam seated into the ground surface, which creates a polarized shear wave. The hammer shots are repeated between four to eight times at each shot location to improve signal to noise ratio. The shot locations are completed in forward and reverse directions (i.e.- striking both sides of the I-Beam seated parallel to the geophone array). The shot locations are located at the centre of the geophone array, as well as 3, 4.5 and 20 m away from the first and last geophone.

The test method completed by Paterson are guided by the standard test procedures outlined by the expert seismologists at Carleton University and Geological Survey of Canada (GSC).

Data Processing and Interpretation

Interpretation for the shear wave velocity results were completed by Paterson personnel. Shear wave velocity measurement was completed by reflection/refraction methods. The interpretation is performed by recovering arrival times from direct and refracted waves. The interpretation is repeated at each shot location to provide an average shear wave velocity, Vs_{30} , of the upper 30 m below the structures foundation. The layer intercept times, velocities from different layers and critical distances are interpreted from the shear wave records to compute the bedrock depth at each location. The bedrock velocity was interpreted by the main refractor wave velocity, which is considered a conservative estimate of the bedrock velocity due to the increasing quality of the bedrock with depth. As bedrock quality increases, the bedrock shear wave velocity also increases. Based on testing results, bedrock is generally present at 15 to 16 m depth below the existing pavement structure.

Based on the test results, the overburden and bedrock seismic shear wave velocities are 184 m/s and 1,820 m/s, respectively. The Vs_{30} was calculated using the standard equation for average shear wave velocity from the Ontario Building Code (OBC) 2012. It is our understanding that typical foundations will be bearing on shallow footings placed on the dense glacial till at an approximate geodetic elevation of 61.5 m.

$$V_{s30} = \frac{Depth_{OfInterest}(m)}{\sum \left(\frac{(Depth_i(m))}{Vs_i(m/s)}\right)}$$
$$V_{s30} = \frac{30m}{\left(\frac{11.5m}{184m/s} + \frac{18.5m}{1,820m/s}\right)}$$
$$V_{s30} = 413m/s$$

Based on the seismic test results, the average shear wave velocity, Vs_{30} , for foundations at the subject site is 413 m/s. Therefore, a **Site Class C** is applicable for design of the proposed building, as per Table 4.1.8.4.A of the OBC 2012. The soils underlying the subject site are not considered to be susceptible to liquefaction.

5.5 Basement Slab Construction

With the removal of all topsoil and deleterious materials, within the footprint of the proposed building, the existing fill, free of organics and deleterious materials, can be left in place provided the existing fill is proof rolled and the sub-slab fill thickness is increased to a minimum 300 mm in basement areas and 500 mm in non-basement areas.

The existing material below the existing pavement structure, free of organics and deleterious material, approved by the geotechnical consultant may be used to build up the lower west portion of the subject site below the finished concrete floor slab. The existing mulch and organics within the landscaping area should be removed prior to the placement of fill.

The upper 500 mm of sub-slab fill should consist of an OPSS Granular A material for slab-on-grade and 300 mm for basement slab construction. All backfill material within the footprint of the proposed building should be placed in maximum 300 mm thick loose lifts and compacted to at least 98% of the material's SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type I or II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the basement walls of the subject structure. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a bulk (drained) unit weight of 20 kN/m³.

It is expected that the foundation wall will be provided with a perimeter drainage system; therefore, the retained soils should be considered drained. For the undrained conditions, the applicable effective (undrained) unit weight of the retained soil can be taken as 13 kN/m³. A hydrostatic pressure should be added to the total static earth pressure when using the effective unit weight. The total earth pressure (P_{AE}) includes both the static earth pressure component (P_o) and the seismic component (ΔP_{AE}).

Two distinct conditions, static and seismic, should be reviewed for design calculations. The parameters for design calculations for the two conditions are presented on the following pages.

Static Conditions

The static horizontal earth pressure (p_o) could be calculated with a triangular earth pressure distribution equal to $K_o \cdot \gamma \cdot H$ where:

- K_{o} = at-rest earth pressure coefficient of the applicable retained soil, 0.5
- γ = unit weight of fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)

An additional pressure with a magnitude equal to $K_o \cdot q$ and acting on the entire height of the wall should be added to the above diagram for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure will only be applicable for static analyses and should not be used in conjunction with the seismic loading case. Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

Seismic Conditions

The total seismic force (P_{AE}) includes both the earth force component (P_o) and the seismic component (ΔP_{AE}) .

The seismic earth force (ΔP_{AE}) could be calculated using $0.375 \cdot a_c \cdot \gamma \cdot H^2/g$ where:

- $a_{c} = (1.45 a_{max}/g)a_{max}$
- γ = unit weight of fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)
- $g = gravity, 9.81 \text{ m/s}^2$

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32g according to OBC 2012. The vertical seismic coefficient is assumed to be zero. The earth force component (P_o) under seismic conditions could be calculated using P_o = 0.5 K_o γ H², where K_o = 0.5 for the soil conditions presented above.

The total earth force (P_{AE}) is considered to act at a height, h (m), from the base of the wall, where:

 $h = \{P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)\} / P_{AE}$

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

5.7 <u>Pavement Structure</u>

Car only parking, heavy truck parking areas, and access lanes are anticipated at this site. The proposed pavement structures are presented in Tables 3 and 4.

Table 3 - Recommended Pavement Structure - Car Only Parking Areas									
Thickness (mm)	Material Description								
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
300	SUBBASE - OPSS Granular B Type II								
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill								

Table 4 - Recommended Pavement Structure Access Lanes and Heavy Truck Parking Areas									
Thickness (mm)	Material Description								
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
400	SUBBASE - OPSS Granular B Type II								
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil, or fill								

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the material's SPMDD using suitable vibratory equipment.

6.0 DESIGN AND CONSTRUCTION PRECAUTIONS

6.1 Foundation Drainage and Backfill

Perimeter Drainage and Backfill

A perimeter drainage system is recommended for the proposed building. The system should consist of a 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a composite drainage system, such as Miradrain G100N or Delta Drain 6000. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be used for backfill material.

Underfloor Drainage

It is anticipated that underfloor drainage will be required to control water infiltration in the basement portion and for the tunnel connection. For preliminary design purposes, we recommend that 150 mm diameter perforated PVC pipes be placed at 6 to 8 m centres and connected to the exterior perimeter drainage system with 150 mm diameter sleeves through the footings.

The spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

6.3 <u>Excavation Side Slopes</u>

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by opencut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

At least 150 mm of OPSS Granular A should be used for pipe bedding for sewer and water pipes. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A. The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to a minimum of 95% of the material's SPMDD.

Generally, it should be possible to re-use the native soils or existing fill, free of organics and deleterious materials, above the cover material if the excavation and filling operations are carried out in dry weather conditions.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

6.5 <u>Groundwater Control</u>

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

It is expected that the flow of groundwater into the excavation will be low to moderate through the sides of the excavation. However, it is expected that the groundwater inflow will be controllable using open sumps and pumps.

A temporary MOE permit to take water (PTTW) will be required for this project if more than 50,000 L/day are to be pumped during the construction phase. At least 3 to 4 months should be allowed for completion of the application and issuance of the permit by the MOE.

6.6 <u>Winter Construction</u>

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

7.0 RECOMMENDATIONS

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

8.0 STATEMENT OF LIMITATIONS

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the grading plan, drawings and specifications are completed.

A geotechnical investigation of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Carleton University, ZW Group or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

David J. Gilbert, P.Eng.

Carlos P. Da Silva, P.Eng.

Report Distribution

- **ZW** Group (3 copies)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

BOREHOLES BY OTHERS

Ķ

Piezometer Construction

100

 \triangle Remoulded

Undisturbed

patersongroup			Con	sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Boad South, Ottawa, O	ntario	Г Р К2Е 7	Eng J5	ineers	G	eotechnic roposed F	al Inves Residenc	tigation ce Building	j - Carletor	1 University		
DATUM TBM - Door sill on the east	end of	Leed	s Res	idence	Geo	olonel By	Drive, C	Ottawa, On 5.59m.	tario FILE NO.			
REMARKS	0.10.01									PG3292		
BOBINGS BY CME 55 Power Auger				D	\TF	July 25-20)14		HOLE NO.	BH 1		
			SAN					Pon B	esist Blov	ve/0.3m		
SOIL DESCRIPTION	A PLOJ			ע	Ë٥	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia.	Cone		
	TRAT	ТҮРЕ	UMBE.	COVE.	VALU F RQI			• v	later Conte	ent %		
GROUND SURFACE	ß		z	RE	z ^o		-66 10	20	40 60	80		
T FILL: Mulch 0.15	5	- ኞ Διι	1			0	-00.12					
FILL: Brown silty sand to silty clay, trace crushed stone		ss	2	29	19	1-	-65.12					
<u>1.6</u> 8	3	ss	3	29	20	2-	-64 12		· · · · · · · · · · · · · · · · · · ·			
FILL: Brown silty sand, some crushed stone		ss	4	21	4		04.12					
- with clay by 2.1m depth		ss	5	25	14	3-	-63.12		· · · · · · · · · · · · · · · · · · ·			
4 43	,	ss	6	42	9	4-	-62.12					
GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders,	- ~ ~ ~ ~ / - ^ ^ ^ ^ ^ / ^ ^ ^ ^ ^ /	ss	7	58	30	5-	-61.12					
trace clay	4	ss	8	100	50+		• · · · -	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • •			
End of Borehole												
Practical refusal to augering at 5.54m depth												
(GWL @ 5.16m-August 5, 2014)												
								20 Shea	40 60 ar Strength	80 1 (kPa)		

Soll PROFILE AND TEST DATA 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Soll PROFILE AND TEST DATA Geotechnical Investigation Proposed Residence Building - Carleton University Colonnel By Drive, Ottawa, Ontario

DATUM	TBM - Door sill on the east e	end of	Leed	s Resi	dence	e. Geo	detic elev	ation = 65	5.59m.	FILE NO.	° G3292
REMARKS	CME 55 Dowor Augor							N1 4		HOLE NO.	H 2
BURINGS BY	CIVIE 55 FOWER Auger	1			U		July 25, 20	514			
SC	DIL DESCRIPTION	PLOT		SAM	PLE		DEPTH (m)	ELEV. (m)	Pen. Re	esist. Blows 0 mm Dia. Ce	/0.3m one
		ATA	E	BER	ÆR)	SD EUE		()			

SOIL DESCRIPTION						DEPTH	ELEV.	Pen. Resist. Blows/0.3m
		ТҮРЕ	NUMBER	% ECOVERY	N VALUE or RQD	(m)	(m)	● So min Dia. Cone taugo taug
GROUND SURFACE				ы Ж	4	0-	-65 58	20 40 60 80
Asphaltic concrete0.05	\bigotimes	× AU	1			0	00.00	
FILL: Brown silty sand with gravel		ss	2	17	4	1-	-64.58	
<u>2.00</u>		ss	3	42	4	2-	-63.58	
FILL: Grey silty clay with gravel, some brick, trace sand 3.10		ss	4	100	3	3-	-62.58	
Black SILTY CLAY , trace sand, gravel and organics <u>3.81</u>		ss	5	75	8		02.00	
		ss	6	83	61	4-	-61.58	
		ss	7	50	13	5-	-60.58	
		ss	8	50	8			
GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles		× SS	9	60	50+	6-	-59.58	
and boulders, trace clay		≍ SS	10	0	50+	7-	-58.58	
		ss	11	100	16	8-	- 57.58	
		X SS	12	67	37	9-	-56.58	
9.50		X SS	13	100	50+			
Practical refusal to augering at 9.50m depth (GWL @ 4.86m-August 5, 2014)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Soll PROFILE AND TEST DATA Geotechnical Investigation Proposed Residence Building - Carleton University Colonel By Drive, Ottawa, Ontario DATUM TBM - Door sill on the east end of Leeds Residence. Geodetic elevation = 65.59m. FILE NO. PG3292 HOLE NO.

BORINGS BY CME 55 Power Auger		DATE July 25, 2014							BH 3			
SOIL DESCRIPTION ដ			SAMPLE			DEPTH	ELEV.	Pen. Re 50	sist. Blows/0.3m) mm Dia. Cone	eter ction		
	STRATA	ТҮРЕ	NUMBER	° €COVERY	VALUE Dr RQD	(11)	(11)	⊖ Wa	ater Content %	Piezome Construe		
GROUND SURFACE			-	R	ZŬ	0-	65 97	20	40 60 80			
FILL: Brown silty clay wtih sand,		S AU	1				03.97					
		∦ ss ₹	2	50	7	1-	-64.97					
		∦ss Voo	3	42	22	2-	-63.97					
FILL: Brown silty sand, some crushed stone		ss	4 5	4	4	3-	-62.97					
<u>3.81</u>		ss	6	46	6	4-	-61.97					
GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles and boulders, trace clay		ss	7	50	31	5-	-60.97					
		∦ss ⊽	8	58	54	6-	- 59.97					
		∦ss Vss	9	42	7	7-	-58.97					
8 15		ss	11	37	46	8-	- 57 97					
End of Borehole		-										
Practical refusal to augering at 8.15m depth												
(GWL @ 5.13m-August 5, 2014)												
								20 Shear	40 60 80 10 r Strength (kPa) rbed △ Remoulded	00		

Dates Consulting Engineers SOIL PROFILE AND TEST DATA 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Geotechnical Investigation Proposed Residence Building - Carleton University Colonel By Drive, Ottawa, Ontario

DATUM TBM - Door sill on the east end of Leeds Residence. Geodetic elevation = 65.59m. FILE NO. PG3292													
REMARKS							HOLE NO. DULA						
BORINGS BY CME 55 Power Auger		DATE July 28, 2014							BH 4				
SOIL DESCRIPTION		SAMPLE				DEPTH	ELEV.	Pen. Re 5	esist. Blows/0.3m 0 mm Dia. Cone	eter ction			
	FRATA	LYPE	JMBER	% COVERY	VALUE RQD	(11)	(11)	• v	/ater Content %	^o iezom			
GROUND SURFACE	-S		M	REC	z ö		05.44	20	40 60 80	щO			
Asphaltic concrete0.05		× AU	1			0-	-65.44			8 🛞			
FILL: Brown sand with gravel, trace silt		× SS	2	0	50+	1-	-64.44						
1.42		l V ss	3	67	5								
FILL: Grey-brown silty clay with sand		A V ss	4	25	4	2-	-63.44						
<u> </u>			5	8	8	3-	-62.44						
			6	83	57	4-	-61.44						
			7	88	50								
GLACIAL TILL: Compact to dense, brown silty sand, some gravel,			0	22	60	5-	-60.44						
cobbles and boulders, trace clay			0	- 33	10	6-	-59.44						
		X 55	9	42	13	7-	-58.44						
7. <u>6</u> 4	^^^^^/ <u>^^^^^</u>	ss ss	10 11	25 0	37 50+								
Practical refusal to augering at 7.64m													
(GWL @ 4.75m-August 5, 2014)													

Dates Consulting Engineers Soil PROFILE AND TEST DATA 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Geotechnical Investigation Proposed Residence Building - Carleton University Colonel By Drive, Ottawa, Ontario

DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence	e. Geo	detic eleva	ation = 65	5.59m.	FILE N	10. P	G3292		
REMARKS									HOLE	NO			
BORINGS BY CME 55 Power Auger	1			D	ATE	July 25, 20	14	1		В	H 5		
SOIL DESCRIPTION			SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m			0.3m one	tion	
	STRATA F	ТҮРЕ	NUMBER	°° ECOVERY	I VALUE or RQD	(m)	(m)	• N	/ater C	ontent	t %	Piezome Construc	
				Ř	4	- o-	62.73	20	40	60	80 		
FILL: Brown silty sand, some clay, trace organics		§ AU ∦ SS	1 2	17	16	1-	61.73						
Grey-brown SILTY CLAY, trace		ss	3	46	5	2-	60.73				· · · · · · · · · · · · · · · · · · ·		
<u>2.80</u>		ss ss ss	4 5	100 42	7	3-	59.73					20	
GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles and boulders, trace clay		ss	6	58	52	4-	58.73			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		∦ss ∏ss	8	46	60 64	5-	57.73				· · · · · · · · · · · · · · · · · · ·		
End of Borehole6.12		<u>-</u> ss	9		50+	6-	56.73						
Practical refusal to augering at 6.12m depth													
(GWL @ 1.88m-August 5, 2014)													

Shear Strength (kPa) ▲ Undisturbed △ Remoulded

40

20

60

80

100

Solid PROFILE AND TEST DATA Geotechnical Investigation Proposed Residence Building - Carleton University TBM - Door sill on the east end of Leeds Residence. Geodetic elevation = 65.59m. FILE NO.

BEMARKS										PG3292	
				-			014		HOLE N	^{D.} BH 6	
						July 20, 21				/2.2	
SOIL DESCRIPTION	LOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. H	esist. Bi 0 mm Di	ows/0.3m a Cone	tion
	A P		Ř	IRY	Ba	(m)	(m)				
	TRA 1	LYPE	OMBE	SOVE	L AL			• •	Vater Co	ntent %	Cons
GROUND SURFACE	N.		E	RE	z ö		05.01	20	40	60 80	
		AU 8	1			0-	-65.61				
	'****	2822 177					04.04				
		ss	2	75	15	1-	-64.61				
FILL: Brown to grey silty clay with		SS	3	50	6						
gravel, some sand						2-	-63.61				
		ss	4	67	4						
<u>3.1</u> (100		3-	62.61			· · · · · · · · · · · · · · · · · · ·	
		1 22	5	100							
Grey SILTY CLAY, trace sand		ss	6	100	31	4-	61.61				
4.62	2	∕∐ ∜ZSS	7	100	50+						
						5-	60.61				
		ss	8	73	50+						
		<u>_</u>				6-	-59.61				
		∦ ss	9	42	13						
brown silty sand with gravel, cobbles						7-	-58.61				
and boulders, trace clay			10	58	9						
		ss	11	17	18	8-	-57 61				
							07.01				
		∬ss	12	50	7		EC C1				
			13	42	16	9-	- 50.01				
9.7	5	100		42							
commenced at 9.75m depth.		2				10-	-55.61				
		^						· · · · · · · · · · · · · · · · · · ·			
Inferred GLACIAL TILL						11-	-54.61				
									<u> </u>		
12.12	<u>2 ^^^^</u>	1				12-	-53.61				•
Practical DCPT refusal at 12 12m											
depth											
(GWL @ 4.64m-August 5, 2014)											
								20	<u> </u>	::: ::: 60	
								She	ar Strend	ith (kPa)	

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA **Geotechnical Investigation**

▲ Undisturbed

△ Remoulded

154 Colonnade Boad South Ottawa Ontario K2E 7.15

Proposed Residence Building - Carleton University

					Co	olonel By Drive, (Ottawa, Or	Itario	
DATUM TBM - Door sill on the east en	nd of L	eeds	s Resi	idence	e. Geo	detic elevation = 6	5.59m.	FILE NO. PG3292	2
REMARKS								HOLE NO. BU 7	
BORINGS BY CME 55 Power Auger				D	ATE	November 5, 2014			
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH ELEV.	Pen. R	esist. Blows/0.3m 0 mm Dia. Cone	eter
	RATA	YPE	MBER	% OVERY	ROD		• V	Vater Content %	iezom
GROUND SURFACE	ES	F	ŊŊ	REC	N		20	40 60 80	
		AU	1			0+64.25			
FILL: Brown silty sand with gravel, some cobbles		SS	2	42	48	1-63.25			
FILL: Brown silty clay with sand,		SS	3	33	11	2-62.25			
		SS	4	42	32				
FILL: Brown silty sand with gravel, some cobbles		SS	5	25	6	3+61.25			
brick pieces from 3.5 to 3.7m depth 2.27		SS	6	42	6	4+60.25			
Stiff, grey SILTY CLAY, trace sand		SS	7	92	4	5-59.25			
GLACIAL TILL: Grey clayey sand		SS	8	42	4				
Bin dry - Nov. 12, 2014)									
							20 Shea	40 60 80 ar Strength (kPa)	100

natersonard		In	Con	sulting	g SOIL PROFILE AND TEST DATA							
154 Colonnade Road South. Ottawa. Or	ntario	۲ ۲ K2E 7	Eng J5	ineers	Geotechnical Investigation Proposed Residence Building - Carleton University Colonal By Drive, Ottawa, Onterio							
DATUM TBM - Door sill on the east e	end of	Leeds	s Res	idence	C . Ge	olonel By	ation = 65	5.59m.	file NO.			
REMARKS										PG3292		
BORINGS BY CME 55 Power Auger				D	ATE	Novembe	r 5, 2014		HOLE NO.	BH 8		
	F		SAN	IPLE				Pen. R	esist. Blo			
SOIL DESCRIPTION	PLO			ĸ	61	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia	. Cone	neter uctior	
	RATA	ХРЕ	MBER	over	ROD	1		• v	later Con	tent %	iezor onstr	
GROUND SURFACE	ST	H	INN	REC	N O N O			20	40 60) 80	۵Ğ	
TOPSOIL0.20	××	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1			- 0-	-64.01		· · · · · · · · · · · · · · · · · · ·	······································		
		× V ∝ o	-	0.5	_	4	62.01					
			2	25	1		-03.01					
FILL: Brown silty sand with gravel,		ss	3	25	8	2-	-62.01					
Some day		- 	1	50	15				· · · · · · · · · · · · · · · · · · ·			
			-	50		3-	61.01		· · · · · · · · · · · · · · · · · · ·	······································		
3.45 GLACIAL TILL: Brown silty sand		X SS	5	25	50+							
with gravel, cobbles and boulders <u>4.11</u>		= SS	6	100	50+	4-	60.01					
(GWL @ 1.54m-Nov. 12, 2014)												
								<u>20</u>	40 60) 80 1	 00	
								Shea	urbed △	h (kPa) Remoulded		

20	40)
Shear	Stre	end
▲ Undistu	rbed	

Soll PROFILE AND TEST DATA Soll PROFILE AND TEST DATA Soll Proposed Residence Building - Carleton University Colonel By Drive, Ottawa, Ontario Datum TBM - Door sill on the east end of Leeds Besidence Geodetic elevation = 65.59m

DATUM TEM - Door sill on the east e	ena oi	Leea	s Res	idence	e. Geo	delic elev	alion = 65	5.5901.	FILE NO.	PG3292	
REMARKS									HOLE NO	D. BHO	
BORINGS BY CME 55 Power Auger				D	DATE	Novembe	r 5, 2014				
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Re 5	esist. Bl 0 mm Di	ows/0.3m a. Cone	eter ction
	RATA	YPE	MBER	% OVERY	VALUE ROD		(11)	• v	Vater Co	ntent %	iezom onstru
GROUND SURFACE	L2	н	ŊŊ	REC	Z O			20	40	60 80	щО
TOPSOIL0.15	\times	× AU	1			0-	-65.19				
		≊ ∛ss	2	33	30	1-	-64.19				
some shale		∏ ∏ <<	3	50	47						
2.29		∆ 33 ≋	3	50	47	2-	-63.19		·····		
Grov SILTY CLAY, some grovel		S AU S AU	4			3-	-62.19		· · · · · · · · · · · · · · · · · · ·		
trace sand		ss	5	67	2						
3.90		∦ ss	6	58	31	4-	61.19				
GLACIAL TILL: Very dense, brown silty sand with gavel, cobbles, boulders, trace clay		× SS	7	60	50+	5-	-60 19				
5.36		= SS	8	0	50+		00110		······		
Practical refusal to augering at 5.36m depth											
(GWL @ 1.68m-Nov. 12, 2014)											
								20 Shea ▲ Undist	40 ar Streng urbed 2	60 80 1 Jth (kPa) △ Remoulded	¹ 00

Soll PROFILE AND TEST DATA Soll PROFILE AND TEST DATA Soll PROFILE AND TEST DATA Geotechnical Investigation Proposed Residence Building - Carleton University DATUM TBM - Door sill on the east end of Leeds Residence. Geodetic elevation = 65.59m. FILE NO. REMARKS FILE NO. PG3292

									HOLE N	^{0.} BH10	
BORINGS BY CME 55 Power Auger			DIIIO								
SOIL DESCRIPTION	PLOT		SAM	IPLE		DEPTH (m)	ELEV. (m)	Pen. Re 5	esist. B 0 mm D	neter uction	
	TRATA	ТҮРЕ	UMBER	COVER	VALUE r RQD			• v	/ater Co	ntent %	Piezon Constru
GROUND SURFACE	0		2	RE	z °		05.00	20	40	60 80	
Asphaltic concrete0.08		X X X X X X X X X X X X X X X X X X X	1			0-	-65.30				
FILL: Crushed stone0.18		×.							• • • • • • • • •	••••••	
		ss	2	50	38	1-	-64.30				
FILL: Brown silty sand with gravel		ss	3	50	13		<u> </u>				
2.59		и V aa		40		2-	-63.30			· · · · · · · · · · · · · · · · · · ·	
		Ass	4	46	8	3-	-62 30			· · · · · · · · · · · · · · · · · · ·	
GLACIAL TILL: Grey silty clay, some sand and gravel		ss	5	83	7		02.30			· · · · · · · · · · · · · · · · · · ·	
3.01		ss	6	58	43	4-	61.30		· · · · · · · · · · · · · · · · · · ·		
GLACIAL TILL: Dense, brown silty sand with gravel, cobbles, boulders,		x ss	7	29	50+	_					
						5-	-60.30				
Practical refusal to augering at 5.21m depth											
(GWL @ 5.03m-Nov. 12, 2014)											
								20	<u> </u>	60 80	_ 100
								Shea	r Stren	gth (kPa)	
								L Undist	urbed 4	∆ Remoulded	

na	atersonaroun	Consulting	SOIL PROFILE AND TEST DATA							
154 Co	olonnade Road South, Ottawa, Ontario K2E	′ Engineers 7J5	Geotechnical Investigation Proposed Residence Building Colonel By Drive, Ottawa, On	g - Carleton University tario						
DATUM	TBM - Door sill on the east end of Lee	ds Residence. (Geodetic elevation = 65.59m.	FILE NO. PG3292						
BORING	кэ азву СМЕ 55 Power Auger	DAT	E November 5, 2014	HOLE NO. BH11						

	LOT	SAMPLE			DEPTH ELEV.		Pe	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone						
	RATA P	YPE	MBER	% OVERY	ALUE	(m)	(m)		> Wat	er Co	ntent %	iezomet onstruct		
GROUND SURFACE	ST	H	N N	REC	N OL		05 50		20 4	10	60 80	шO		
Asphaltic concrete0.08		S AU	1			0-	+65.52							
		ss	2	58	11	1-	-64.52							
		n Vissi	3	62	4									
FILL: Grey silty clay, some sand and gravel		V ee		50		2-	-63.52							
9		∦ss	4	50	3	3-	-62.52							
<u>3.71</u>		-						· <u>Å</u> .						
GLACIAL TILL: Brown silty sand, some gravel, cobbles and boulders		ss	6	50	30	4-	-61.52			· · · · · · · · · · ·				
End of Borehole	<u>\^^^^</u>	≍ SS	7	60	50+									
Practical refusal to augering at 4.70m depth														
(GWL @ 3.83m-Nov. 12, 2014)														
									: : : 20 /	::: 10	60 80 1	 100		
									Shear S	Streng	gth (kPa) ∆ Remoulded			
	1							_ 0						

Dates Consulting Engineers SOIL PROFILE AND TEST DATA 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Geotechnical Investigation Proposed Residence Building - Carleton University Colonel By Drive, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Or	ntario	K2E 7	J5		C	olonel By	Drive, (Ottawa, Or	itario		·y
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence	e. Geo	detic elev	vation = 6	5.59m.	FILE NO	PG3292	>
REMARKS									HOLE N	0	-
BORINGS BY CME 55 Power Auger				C	ATE	Novembe	r 5, 2014			BH12	
	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. B	lows/0.3m	er
SOIL DESCRIPTION	A P		R	IRY	E D D	(m)	(m)	4 5		a. Cone] amet
	TRAT	ТУРЕ	UMBE	COVE ∾	VAL R			• v	Vater Co	ntent %	Piez(
GROUND SURFACE	ß		Z	RE	z °	0	65.65	20	40	60 80	
Asphaltic concrete0.05		₿ AU	1] 0-	-05.05				
FILL: Brown silty sand, some gravel				10	07	1-	64 65				
- some brick by 1.3m depth 1.52		1 22	2	42	21		04.00				
		ss	3	29	13	2-	-63 65				
FILL: Grey silty clay, some sand and				75		_	00.00			· · · · · · · · · · · · · · · · · · ·	ः विविति
gravel		1 22	4	/5	4	3-	62.65				
								Δ			
	,	V ee	5	50	Q	4-	61.65				
GLACIAL TILL: Dense, brown silty _{4.67}			6	100	50						
Sand with gravel, cobbles and \boulders				100	50+						
End of Borehole	[
Practical refusal to augering at 4.67m depth											
(BH dry - Nov. 12, 2014)											

60

80

 \triangle Remoulded

100

20

Undisturbed

40

Shear Strength (kPa)

patersongroup Consulting Engineers **Geotechnical Investigation** Proposed Residence Building - Carleton University 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Colonel By Drive, Ottawa, Ontario

DATUM TBM - Door sill on the east e	end of	Leeds	s Resi	dence	. Geo	detic elev	ation = 65	5.59m.	FILE	NO.	PG32	92
REMARKS									HOLE	NO.		52
BORINGS BY CME 55 Power Auger	1			D	BH13							
SOIL DESCRIPTION	LOT		SAM	IPLE		DEPTH	ELEV.	Pen. Re	esist.) mm	Blow Dia. (s/0.3m Cone	tion
	LATA P	ЪE	IBER	WERY	ALUE ROD	(m)	(m)		lotor (Conto	nt 9/	ezome
GROUND SURFACE	STR	Т	NUN	RECO	N OF			0 V\ 20	40	-50 nie 60	80 ⁸⁰	<u>i</u> S B
Asphaltic concrete0.05		₩AU	1			0-	-65.33				·····	
FILL: Brown crushed stone with silty sand		∛ss	2	25	8	1-	-64.33					
1.52		ss	3	50	7	2-	60.00					
FILL: Brown silty clay with gravel		∬ Ss	4	54	2	2-	-03.33					
3.60		ss	5	50	4	3-	-62.33					
TOPSOIL 3.66		≙ ∑ss	6	57	50+	4-	-61.33					
GLACIAL TILL: Brown silty sand		∛ss	7	50	38	5-	-60.33					
with gravel, cobbles and boulders		∬ Ss	8	33	12	5	00.00					
c 70		∬ Ss	9	58	19	6-	-59.33					
		Δ										
(GWL @ 5.26m-Nov. 12, 2014)												

60

80

 \triangle Remoulded

100

40

Shear Strength (kPa)

20

Undisturbed

natoreonard		In	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA		
154 Colonnade Road South, Ottawa, Or	ntario	К2Е 7	Eng J5	ineers	Geotechnical Investigation Proposed Residence Building - Carleton University Colonel By Drive, Ottawa. Ontario							
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence.	e. Geodetic elevation = 65.59m. FILE NO.							
REMARKS									HOLE NO	·		
BORINGS BY Hydraulic Shovel	1			DA	TE	August 7,	2014			IP1		
SOIL DESCRIPTION	PLOT		SAN			DEPTH	ELEV. (m)	Pen. R 5	esist. Blo 60 mm Dia	ows/0.3m . Cone	leter Iction	
	TRATA	ТҮРЕ	UMBER	COVERS	VALUE r RQD	(,	()	• V	Vater Con	tent %	Piezom Constru	
GROUND SURFACE	ß		Z	RE	z ^o	- 0-	-65 82	20	40 6	0 80		
TOPSOIL 0.30 FILL: Brown silty clay with sand, trace wood 1.40		G	1			1-	-65.82 -64.82					
FILL: Brown silty sand, some clay and boulders		G	2			2- 3-	-63.82 -62.82					
5.00						4-	-61.82					
GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles and boulders, trace clay		G	3			6-	-60.82 -59.82					
End of Test Pit (Groundwater infiltration at 6.2m depth)								20 Shea ▲ Undist	40 6 ar Strengt	0 80 10 b (kPa) Remoulded	00	

natoreonard		n	Con	sulting	SO	IL PRO	FILE AN	ID TEST DATA	
154 Colonnade Road South, Ottawa, Or	ntario	Р К2Е 7	Eng J5	ineers	Geotechn Proposed	ical Inves Residend	tigation ce Building	- Carleton University	/
DATUM TBM - Door sill on the east e	end of	Leed	s Resi	idence.	Geodetic ele	vation = 6	5.59m.	FILE NO. PG3292	
REMARKS							-		
BORINGS BY Hydraulic Shovel	1			DA	TE August 7	, 2014		TP 2	1
SOIL DESCRIPTION	PLOT		SAN	IPLE		ELEV.	Pen. Re • 50	esist. Blows/0.3m) mm Dia. Cone	eter ction
	RATA	TPE	MBER	°^ ©VERY	VALUE ROD		• w	ater Content %	iezom
GROUND SURFACE	LS	F	N	REC	zÖ		20	40 60 80	шО
TOPSOIL <u>0.20</u> FILL: Brown silty clay, some sand,		_)+65.97			
trace wood, gravel and cobbles		_ G	1		1	-64.97			
FILL: Brown silty sand, some clay		G	2		2	2-63.97			
					3	8-62.97			
		F.			2	-61.97			
GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles, boulders, trace clay 5.50		_ G	3		Ę	5-60.97			
End of Test Pit							20 Shea ▲ Undistu	40 60 80 1 r Strength (kPa) rbed △ Remoulded	00

natersonard		in	Con	sulting		SOI	l pro	FILE AN	ND TES	ST DATA	
154 Colonnade Road South, Ottawa, Or	ntario	Р К2Е 7	Eng 'J5	ineers	G	eotechnic roposed F	al Inves Residenc	tigation e Building	g - Carlet	on University	1
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence.	Geo	odetic elev	ration = 6	5.59m.	FILE NO.	DODDO	
REMARKS										PG3292	
BORINGS BY Hydraulic Shovel		1		DA	TE	August 7,	2014	1		[~] TP 3	1
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Blo 0 mm Dia	ows/0.3m a. Cone	ter tion
	TAP	ы	ER	ERY	EUE	(m)	(m)				zome
	STRA	ТУР	NUME		N VAJ or F			0 V	Vater Cor	ntent %	Con
				<u>д</u>		- 0-	62.29				
Brown SILTY SAND, some clay 0.30 Grey SILTY CLAY 0.70		-									
GLACIAL TILL: Compact to dense, grey-brown silty sand with gravel, cobbles, boulders, trace clay		G	1			1-	-61.29				
End of Test Pit								20 Shea ▲ Undist	40 e ar Streng urbed △	50 80 10 th (kPa) Remoulded	00

natereonard		In	Con	sulting		SOI	l pro	FILE A	ND TEST	DATA	
154 Colonnade Road South, Ottawa, Or		Р К2Е 7	Eng 'J5	ineers	Ge Pr	eotechnic oposed I	cal Inves Residenc	tigation ce Building	g - Carleton	1 University	1
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence.	Geo	olonel By detic elev	ation = 6	Ottawa, Or 5.59m.	FILE NO.		
REMARKS										PG3292	
BORINGS BY Hydraulic Shovel				DA	TE /	August 7,	2014		HOLE NO.	TP 4	
	Ę		SAN	IPLE				Pen. R	esist. Blov	vs/0.3m	, <u> </u>
SOIL DESCRIPTION	PLC			ĸ	61 .	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia.	Cone	meter
	TRATZ	ТҮРЕ	UMBEF	COVEF	VALU			• V	Vater Conte	ent %	Piezol
GROUND SURFACE	ō		Ē	RE	zö	0-	-62 20	20	40 60	80	
TOPSOIL <u>0.30</u>							02.20				
Brown SILTY SAND 0.50 Dark grev SILTY SAND, some		+									
gravel and cobbles		ļ									
Hard, brown SILTY CLAY			4			1-	+61.20				
GLACIAL TILL: Dark brown silty		L G									
sand with gravel, cobbles, boulders,											
End of Test Pit		<u>.</u>				2-	-60.20				
								20 Shea	40 60 ar Strength	80 10 (kPa)	00
								▲ Undist	urbed \triangle R	lemoulded	

natersonard	וור	In	Con	sulting		SOI	l pro	FILE AND TEST DATA	
154 Colonnade Road South, Ottawa, Or	ntario	К2Е 7	Eng J5	ineers	Ge Pr Co	eotechnic oposed F	al Invest Residenc Drive	tigation e Building - Carleton University Ottawa, Ontario	
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence.	Geo	detic elev	ation = 65	5.59m. FILE NO.	
REMARKS								HOLE NO	
BORINGS BY Hydraulic Shovel				DA	TE	Novembe	r 6, 2014	TP 5	
SOIL DESCRIPTION	PLOT		SAN	IPLE भ		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m 50 mm Dia. Cone	neter uction
	STRATA	ТҮРЕ	NUMBER	COVER'	VALUE Dr RQD			O Water Content %	Piezon Constru
GROUND SURFACE	07		-	RI	z v	0-	-61.68	20 40 60 80	
_TOPSOIL0.30		G	1			1-	- 60 69		
FILL: Grey silty sand, trace clay		G	2				00.00		
GLACIAL TILL: Brown silty sand		G	3			2-	-59.68		Ā
with gravel, cobbles, trace clay 3.00 End of Test Pit		G	4			3-	-58.68		
(Groundwater infiltration at 2.3m depth)									
								20 40 60 80 100 Shear Strength (kPa) ▲ Maintain Arrows and the second s	0

natersonard		In	Con	Consulting		SOIL PROFILE AND TEST DATA						
154 Colonnade Road South, Ottawa, On	ntario	К2Е 7	Eng J5	ineers	Geotechnical Investigation Proposed Residence Building - Carleton University Colonel By Drive, Ottawa, Ontario							
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence.	Geo	odetic elev	ation = 65	5.59m.	FILE NO.			
REMARKS									HOLE NO.	PG3292		
BORINGS BY Hydraulic Shovel				DA	TE	November	6, 2014			FP 6		
SOIL DESCRIPTION	PLOT		SAN			DEPTH	ELEV.	Pen. R 5	esist. Blow 0 mm Dia. C	s/0.3m Cone	eter ction	
	STRATA	STRATA TYPE NUMBER © ECOVER		1	()	○ Water Content %						
GROUND SURFACE	07		4	RE	z	- 0-	-61.76	20	40 60	80		
TOPSOIL 0.45 FILL: Brown silty sand with crushed		-	1			1-	-60.76					
FILL: Brown silty sand with cobbles and boulders 2.10		G	2			2-	- 59.76					
GLACIAL TILL: Brown silty sand with gravel, cobbles and bouldes 3.00		G	3				50.70				Ţ	
End of Test Pit						3-	-58.76					
(Groundwater infiltration at 2.4m depth)								20 Shea ▲ Undist	40 60 ar Strength (urbed △ Re	80 10 (kPa) moulded	00	

natersonar		In	Con	nsulting	,	SOI	l pro	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, O	ntario	К2Е 7	Eng J5	jineers	Ge	eotechnic roposed F	al Inves Residenc	tigation ce Building	g - Carleto	n University	,
DATUM TBM - Door sill on the east	end of	Leed	s Res	idence.	Geo	odetic elev	ation = 6	5.59m.	FILE NO.	DOGGO	
REMARKS										PG3292	
BORINGS BY Hydraulic Shovel				DA	TE	Novembe	r 6, 2014	1	HOLE NO.	TP 7	
	год		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Blov	ws/0.3m	er ion
SOIL DESCRIPTION	[A P]	ы	R	IRY	ΞQ	(m)	(m)	• 5	o mm Dia.	Cone	omet
	STRAI	ІТҮРІ	NUMBE		VAL N RC			• v	Vater Cont	ent %	Piez Cons
GROUND SURFACE	07		4	RB	z	- 0-	-61.73	20	40 60	80	
TOPSOIL0.30		G	1								
		G	2			1-	-60 73				
FILL: Grey-brown silty sand with clay, gravel and cobbles							00.70				
		-									
		G	3				50 70				
2.10						2-	- 59.73			· · · · · · · · · · · · · · · · · · ·	V
GLACIAL TILL: Grey silty sand with											-
gravel, cobbles and boulders											
End of Test Pit		+				3-	-58.73				
(Groundwater infiltration at 2.3m											
depiny											
								20 Shea	40 60 ar Strenati	80 10 h (kPa)	00
								▲ Undist	urbed Δ	Remoulded	

natersonard		In	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, On	Itario	К2Е 7	Eng 'J5	ineers	G Pi	eotechnic roposed F	al Inves Residenc	tigation ce Building	y - Carleto	n University	/
DATUM TBM - Door sill on the east e	nd of	Leed	s Res	idence.	Geo	odetic elev	ation = 6	5.59m.	FILE NO.	DODDO	
REMARKS										PG3292	
BORINGS BY Hydraulic Shovel				DA	TE	Novembe	r 6, 2014	1	HOLE NO.	TP 8	1
	텅		SAN	IPLE				Pen. R	esist. Blov	ws/0.3m	- 5
SOIL DESCRIPTION	A PL		~	Х	ы о	(m)	(m)	• 5	0 mm Dia.	Cone	mete uctic
	RAT	TPE	MBEI		VALU RQI			• v	Vater Cont	ent %	iezo
GROUND SURFACE	LS.		N	REC	z ⁰		01 70	20	40 60	80	шО
TOPSOIL0.30		G	1			0-	-01.79				
		G	2								
FILL: Grey-brown silty sand with clay						1-	-60.79				
- some gravel, cobbles and boulders											
		G	3								
		G	4			2-	-59.79				
2.40		-									
GLACIAL TILL: Grey silty sand with		G	5								⊻
End of Test Pit		+									
(Groundwater infiltration at 2.7m											
depth)											
								20 Show	40 60	80 10	1 DO
								▲ Undist	urbed Δ [Remoulded	

natersonard		In	Con	sulting		SOI	L PRO	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, On	ntario	K2E 7	Eng ′J5	ineers	C P	Geotechnic Proposed F Colonel By	al Invest Residenc Drive	tigation e Building ttawa On	g - Carleto Itario	n University	,
DATUM TBM - Door sill on the east e	end of	Leed	s Res	idence.	Ge	odetic elev	ation = 65	5.59m.	FILE NO.	DC2202	
REMARKS										PG3292	
BORINGS BY Hydraulic Shovel	1	1		DA	TE	November	6, 2014		HOLE NO.	TP 9	
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Blo 0 mm Dia.	ws/0.3m Cone	ater tion
	RATA I	ζ₽Ε	ABER	° NERY	ALUE ROD	(m)	(m)	0 V	Vater Cont	tent %	ezome instruc
GROUND SURFACE	STI	H		REC	N O N	5		20	40 60	80	ĒQ
TOPSOIL 0.30						- 0-	-61.80			·····	
		G	1								
FILL: Brown silty sand with gravel,											
clay and cobbles						1-	-60.80				
Grev-brown SILTY CLAY with send 1 co	X		2								
	KK KA	G	3								
		Ļ				2-	-59.80				
GLACIAL TILL: Grev silty clay with											
gravel										· · · · · · · · · · · · · · · · · · ·	₽
3.00		-				3-	-58.80				
End of Test Pit											
(Groundwater infiltration at 2.7m depth)											
								20 Shea	40 60 ar Strenat	80 10 h (kPa)	00
								▲ Undist	urbed \triangle	Remoulded	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic limit, % (water content above which soil behaves plastically)
PI	-	Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'c / p'o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PROJE CLIEN PROJE	ECT: Carleton University Northern Prope T: Carleton University	erty (Devel	opmer	nt			DRILL	ING D	ATA											
PROJE	T: Carleton University																				
PROJE								Metho	d: Hol	low Ste	em Au	iger/C	oring								
DATUM	ECT LOCATION: Parking Lots P-6 and I	P-7						Diame	eter: 20)3mm/l	N size	e core				RE	F. NO	.: 14(05-7	10/720	
	M: Geodetic							Date:	Dec/1	1/2012	2					EN	ICL NO).:			
BHLO	CATION: See Borehole Location Plan			A 8 4751				DYNAM	AIC CO	NÊ PEN	ETRA	TION						- 1			
	SOIL PROFILE			AMPL		ш.		RESIS		PLOT	\geq		00	PLASTIC	MOIS	JRAL TURE	LIQUID	zi	IWI	REMAR AND	KS.
(m)		5			ର୍ଷ -	NATE NS	z			0 60	8		00	Wp	CONT	TENT V	WL	ET PE (kPa)	INN (GRAIN S	SIZE
ELEV DEPTH	DESCRIPTION	TAP	Ш		0.3 n		ATIO	O UN	ICONFI	NED	+	FIELD V & Sonsiti	ANE			·		POCK (Cu)	VTUBA	DISTRIBU	TION
		STRA	NUME	γPE	ž	SROL	ELEV	 QL 5 	JICK TF 0 10	RAXIAL	× 0 21	LAB V/ 00 2	ANE 50	10	0 2		(%)		Ż	GR SA S	51 CI
62.0	Silty Clay, some organics, brown,	XX	-	-								<u> </u>	<u> </u>						-		
0.2	damp, soft (Fill)		1	SS	2												0				
	damp, soft-firm																				
61.2	Silty Clay, trace organics, moist	111																	52		
0.0	stiff-very stiff	H.	2	ss	6		61						<u> </u>						F		
		X	1																		
60.5	City Clay, and maint aliff	X																	8		
1.5	Sitty Clay, grey, moist, suit	R		22	6												d		16		
		12	ľ	00	ľ		60														
		12																	6		
		1			-												54		16.		
		1.	4	55	þ																
		H.	1—				59										49		~		
		12															43		17.3		
		R	5	SS	2																
		P.	 																		
		Y.					50														
		14					58														
			1																		
57.4	Silt some sand trace clay, grey,	1/1	1—																		
	wet, firm		6	ss	6												0				
							57														
															1						
55.9							56													28 37	35
6.1	Silty Sand and Gravel, trace clay, wet, loose (Till)	P																		26776	
			7	SS	5			1							0						
		P				-				1											
							55						-		<u> </u>						
		Ĩ																			
54.4	Silty Sand, some gravel, trace clay,	10				1														18 60	22
	wet, loose (Till)	間	8	ss	8		54					<u> </u>			0						
		¢					~														
		旧	1											1							
	- Auger Refusal at 9.0 m. Switched	: -																			
	to coring	12																			
<u>53.0</u> 9.0	Dense Sandy Till with cobbles and	14	1			-1	53		[1		1	1								
	boulders (Till)																				
			RC	COR			l l														
					1						l										
i Laada da	Continued Next Page	V//			I		L.,	<u> </u>	Numeric -		-	6-20	4		<u>!</u>	<u>.</u>	1	<u> </u>	I	L	
GROUN	DWATER ELEVATIONS					NOTES	+ 3	×°:	to Sens	sitivity			Strain	n at Failu	re						
Shallow	/ Single Installation 👤 🛛 🛛 Deep/Dual Insta	allation	Y	Y																	

PROJE CLIEN	ECT: Carleton University Northern Prop IT: Carleton University ECT LOCATION: Parking Lots P-6 and	erty C P-7)eve	lopmei	nt			DRILL Metho Diame	.ING (d: Hol eter: 2	DATA low Sti 03mm/	em Au 'N size	iger/C	oring			RE	EF. NC).: 14	405-7	10/720
DATU	M: Geodetic							Date:	Dec/	1/201	2					EN		O.:		
BH LO	CATION: See Borehole Location Plan							-	10.00		10004									
	SOIL PROFILE	_	S	AMPL	ES	~		RESIS	TANCE	PLOT				PLASTI	NATL	RAL	LIQUID		M	REMAR
(m) L <u>EV</u> EPTH	DESCRIPTION	TRATA PLOT	IUMBER	YPE	V" BLOWS 0.3 m	ROUND WATE	LEVATION	2 SHEA • Ut	0 4 R STI ICONF	0 6 RENG INED RIAXIAL	0 8 TH (kf + ×	0 1 FIELD V & Sensit LAB V/	ANE MITY ANE				LIMIT w _L ——	POCKET PEN (Cu) (kPa)	NATURAL UNIT (Mij/m ³)	AND GRAIN S DISTRIBU (%)
	Dense Sandy Till with cobbles and boulders (Till)(Continued)	A A A A A A A A	RC 2	CORE	F		51													
49.8 12.2	Limestone, fresh moderately closely bedded, grey TCR = 57% SCR = 57%		RC 3	CORE			50											-		
	RQD = 57%	K					49													
<u>48.7</u> 13.3	Shaley Limestone, fresh to slighly weathered, very close to closely bedded with closely spaced horizontal joints TCR = 80%		RC	CORE			48													
47.2	SCR = 70% RQD = 60%		4																	
14.0	weathered, very close to closely bedded with closely spaced horizontal joints TCR = 85%		RC 5	CORE			47											-		
45.7	SCR = 85% RQD = 79%						46													
16.3	END OF BOREHOLE																			

۰ ۴

PROJ	ECT: Carleton University Northern Prop	ertv [)eve	lopme	nt			DRIL		ATA										
CLIEN	T: Carleton University							Metho	od: Hol	low Ste	em Auger/C	oring								
PROJ	ECT LOCATION: Parking Lots P-6 and	P-7						Diame	eter: 20)3mm/	N size core				RE	F. NO).: 14	405-7	10/720	
DATU	M: Geodetic							Date:	Dec/0	2/2012	2				EN		Э.:			
BHLC	CATION: See Borehole Location Plan								10.00		CTRATION.									
	SOIL PROFILE		S	AMPL	ES	- <u>~</u>		RESIS	TANCE	PLOT			PLASTI	NATU		נוטטו		M	REMA	RKS
(m)		5			(0)	ATE		2	0 4	0 60) 80 1	<u>ļ</u> 0	EIMIT	CONT	ENT	LIMIT	T PEN (Pa)	INT (GRAIN) SIZE
ELEV	DESCRIPTION	APL	ĸ		0Wi 0.3 m	ND N TION	TION	SHEA	AR STE	RENGT	TH (kPa)	ANE	 	c	,	-	OCKE (Cu) (URAL	DISTRIBU	UTION
		FRAT	UMBI	ЪЕ Г		ND ND	EVA	• QI	UICK TR		× LAB V	ANE	WAT	ER CO	NTENT	(%)	-	NA	51,781	,
65.6	Asphalt	s XX	z	-	£	00	-Sand	5		10 15	0 200 2	50	- '				-		20 62	18
0010	Sand and Gravel, brown, frozen,	\bigotimes	1	SS	50/								0							
	very dense (Fill)	\otimes	·		5"		65													
64.8	Condu Silt trace wood trace	\bigotimes					05													
0.0	organics, grey, moist, soft-stiff (Fill)	\otimes	2	22	a								0							
		\otimes			ľ															
64.1		\boxtimes																		
1.5	Silty Clay, grey, moist, stiff (Fill)	\bigotimes					64							_						
		\bigotimes	3	55	4		-Bento	 nite												
63.3		\bigotimes														55				
2.3	Silty Clay, grey with black mottling, moist_stiff (Fill)	\boxtimes													. 1		[
		\boxtimes	4	SS	2		63													
		\bigotimes							4.2											
		\bigotimes		VANE					+						ĺ					
		\otimes		<u> </u>	<u></u>															
		\otimes					62													
61.7	Silly Sand and Groval brown moist	Ķ																	33 36	31
3.9	dense-very dense	00	5	ss	30								0							
					<u> </u>															
		0					₩1	200.0	 m											
		0	6	SS	66		Dec 1	3, 201	2				0							
		60	_			目														
		00				E	60 Sand													
		0					Sand													
<u>59.5</u>	Gravelly Sand trace silt grev wet	- 5					Scree	n I					1						24 61	5
0.1	compact	• C	7	ss	23									0			1			
		0					59										~			
		• C				1日														
		0																		
		. 0																		
58.0		0					58					-					-		41 58	1
7.6	Sand and Gravel, brown, wet, compact	0					-Sand								-					
	·	0	8	55	9			l						Í						
		0	-		-	-	-Bento	nite												
		0					57										_			
		0				日常										1				
56 5		0										1				1	1		56 /1	3
9.1	Sand and Gravel with	0			1											i			00 41	5
	cobbles/boulders, brown, wel, very dense	0	9	SS	61		8 64							1				1		
		0				-		1												
		1.0	1		1	RX-	2	I.	1							1			<u> </u>	

. .

																		_			
PROJECT: Carleton Universit	y Northern Proper	ty D	evel	ортеп	t			DRIL	LING	ATA											
CLIENT: Carleton University								Metho	od: Ho	low St	em Au	ger/Co	oring								
PROJECT LOCATION: Parkir	ng Lots P-6 and P-	-7						Diam	eter: 2	03mm/	N size	core				RE	F. NO	.: 14	05-7	10/720	
DATUM: Geodetic								Date:	Dec/	02/201	2					EN	ICL NO).:			
BH LOCATION: See Borehole	Location Plan	— т						DYNA	MIC CC		ETRA										
SOIL PROFI	LE				ES	۲		RESIS	TANCE	PLOT	\geq			PLASTI	C MOIS	TURE	LIQUID	7	M	REMA	RKS
(m)		5			<u>ଏ</u> _	VATE 4S	-	2	20 4	0 6	0 8		0	Wp	CON	TENT	WL	ST PER	(m ¹)	GRAIN	SIZE
ELEV DESCRIPT	ION	APL	£		LOW 3 m	N DI DI	TIO	SHE/	AR ST NCONF	RENG INED	ГН (КР +	FIELD VA	NE					(CU)	TURA (Mg	DISTRIB	
DEFIN		ΣĮ	IMB	Ë,	۵) 	D N N	EV	• 0			×	LAB VA	NE	WAT	FER CC	NTENT	r(%)		٩ ٧	00 54	
		io o	z	<u> </u>		50	Ξ		1	50 1:						<u>, , , , , , , , , , , , , , , , , , , </u>				GR 3A	31 01
- Auger refusal at 10.3	3 m. Switched	0																			
10.3 Dense Sandy Till with	boulders and		RC	CORE																	
54.9 CODDIE (111) 10.7 Sand, trace gravel, tra	ace silt, brown,	\mathcal{A}	-				55													7 88	5
wet, dense (Till)		M	10	ss	36										0						
						193															
54.2						992															
11.4 Dense sandy Till with Boulders (Till)	Cobbles and					992	54									i —					
			RC 2	CORE		Re															
			~			882															
		1/2				B5	-Sloug	l h													
			RC			22	53									ļ					
		11	3	CORE		<u>B</u>															
52 5		9/				200															
13.1 Limestone with shale	partings.	$\langle\!\langle$																			
Fresh to slightly weat closely bedded with c	hered. Very	\mathbb{Z}																			
closely spaced horizo	ontal joints.	X				E G	52		<u> </u>							1					
Dark grey.		\square	RC 4	CORE																	
TCR = 95% SCR = 80%		X				<u>A</u> S							ļ		Ì		1		1		
RQD = 76%		$\langle\!\langle$																1			
51.0		Σ				×3	51							-							
14.6 Limestone with shale Fresh close to very c	partings.	\mathbb{X}				RS I															
with close to moderat	tely closely	U				R															
spaced joints. Grey.		X	RC			F SS		1										1			
TCR = 100%		$\langle\!\langle$	5	CORE		R	50														
RQD = 63%		Ŋ				RS	3 50			T											
		X				85															
49.4 16.2 END OF BOREHOLI	E	Y77				600z		-				1		+	1				-		
Wateriavela			l											1							
vvatenevels.			1					1										1		1	
Dec 4th, 2012	Uepth 4.6 m									1											
Dec 13th, 2012	4.7 m									1											
																1					
						1								1	i i						
												÷.	1								
							1														
				[1												1			
																	1		1		
			ł					1													
						1	1														
							1						1								
				1		1	1	<u> </u>	1		1	1			1	1.	l	<u> </u>		1	
						GRAPH	1 + 3	.׳:	Numb to Sen	ers refer sitivity	(ς ^{ε=3%}	Strai	n at Faik	ILE						

Shallow/ Single Installation 💆 👤 Deep/Dual Installation 💇 👤

. .

ODI Oppositento Limitod

	Geotechnical Environmental Materials Hydro	geolo	gy		LO	g of	BOR	EHC	DLE E	3H13	8-1									1	OF 2
PROJ	ECT: Carleton University Residence Bui	iding						DRIL		ATA							_				
CLIEN	T: Carleton University							Methe	od: CM	E55-H	ollow	stem a	augers	6							
PROJI	ECT LOCATION: Ottawa, Ontario							Diam	eter: 20	00 mm						R	EF. NC).: 19	985-7	10	
DATU	M: Geodetic							Date:	Nov/2	27/201	3					E	NCL N	0.:			
BHLC	CATION: See Borehole Location Plan						T-11-11-				ETDA										
	SOIL PROFILE		s	AMPL	ES	~		RESIS	TANCE	PLOT				PLAST			LIQUID		WT	REM	ARKS
(m)		5				ATEF		2	20 4	0 6	<u>ع</u> 0	30 1	00	LIMIT	CON	ITENT	LIMIT	r PEN	UNIT ('n	A GRAI	ND N SIZE
ELEV	DESCRIPTION	PLO	œ		3 m	NOL N	NO	SHE/	AR STI	RENG	TH (kl	Pa) FIELD V	ANE	Im		°		Cu) (I	(KN/	DISTR	BUTION
DEPTH		RAT/	MBE	뀓	률으		EX	• 0	UICK TF	RIAXIAL	×	& Sensit	ANE	WA	TER CO	ONTEN	T (%)	đ	NAT	20	70)
65.6		ST	ž	≥	,z	50			25 5	0 7	5 1	00 1	25		25 1	50	75			GR SA	SI CL
6 0,0	SAND AND GRAVEL: 200 mm	\mathbb{X}					S S													35 42	(23)
0.2	(FILL)	\otimes	l '	55	20		ž.														()
	trace gravel, some shale pieces,	\bigotimes					65							-	1		1				
	compact, dark black to grey, moist	\boxtimes					2												1		
	(ГЕС)	\otimes	2	SS	25		X							0							
		\otimes					T A														
		\bigotimes	2	66	0		64	<u> </u>	ļ					0				-		14 46	(40)
63.8	011 777 01 477	×	Ľ		3														1		
1.8	SILTY CLAY: some organics, some clay lumps, some shale pieces, firm.	\bigotimes					T.							1							
	grey, moist (FILL)	\bigotimes			<u> </u>		T A														
		\bigotimes					Ž														
		\bigotimes	4	ss	8		ମ୍ 63 ମ		1				1	10-				1			
		\otimes	<u> </u>		<u> </u>		ž														
		\otimes					Z														
62.3	ORGANICS: some wood pieces,	\sum_{n}	5	ss	7		Z							0					1		
3.5	rootlets, soft, black, moist	0 .	1		ļ		-Cuttin	l										-			
	some shale pieces, compact to very	0					ł	Ĩ													
	dense, greyish brown, moist	0					¥														
		0					Ŧ														
		0																	1		
		0				NGV 1	치 이														22.27
		0	6	ss	74		7							0				1		48 41	(11)
		0				94		60.4 г													
		0				CH N	τ. 														
		0					60)										1			
		0	7]											
				<u> </u>					Ì										1		
		0	7	00	17	A									,						
		0	11		1 "	M	4 59	,	<u> </u>					_				-			
		0	,—			No.	4			1											
		0				A	¥.														
		0																			
			4																		
7.6	SAND: trace silt, some gravel,	0	-		1		-Bent	onite			1	1	1	-		T					
5	compact, grey, wet		8	SS	13						1			0							
			-	<u> </u>														1			
							Sand														
							5	7							-	+	+	-			
						目目															
56.5																					
9.1	SILTY SAND: some cobbles and	1																			
	very dense, grey, wet (TILL)		9	SS	31		- -							0			_	_			
		19	1_			- E	1	1												1	
		V									1							_		1	
	Continued Next Page					GRAP	<u>H</u> + 3	.×3:	Numbe	ers refer		° ε=39	% Strai	n at Fail	ure						
<u>GROU</u>	NDWATER ELEVATIONS		~	#7		NOTE	2		to Sen	sitivity											
Shallov	w/ Single Installation 🖳 📃 Deep/Dual Insta	allatio	nV	<u>V</u>																	

A SPL Consultants Limited

2 **e**2

PROJ	ECT: Carleton University Residence Bui	Iding						DRILI	.ING D	ATA									_		
CLIEN	NT: Carleton University							Metho	d: CM	E55-H	ollow	stem a	ugers	i		-			10 <i>E</i> 7	10	
PROJ	JECT LOCATION: Ottawa, Ontario							Diame	Nov/2	7/201	3					E) 18 0.:	100-1	10	
BHLO	OCATION: See Borehole Location Plan																				
	SOIL PROFILE		s	AMPL	ES	~		DYNAI RESIS	AIC COI TANCE	NE PEN PLOT		ION		PLAST	NATI	URAL	LIQUID		N1	REM	ARKS
(m)		οī			a	ATEF IS		2	0 4	0 6	8 (0 10	0	LIMIT Wa	CON	TENT	LIMIT Wi	T PEN. (Pa)	", "UNITY	GRAI	ND N SIZE
ELEV DEPTH	DESCRIPTION	TRATA PL	UMBER	ŕPE	1" BLOW	ROUND W	LEVATION		R STE		FH (kF + - ×	Pa) FIELD V & Sensiti LAB V		WA			i T (%) 75	POCKE (Cu) (I	NATURAL (KN/		BUTIC %)
	SILTY SAND: some cobbles and boulders, some gravel, compact to very dense, grey, wet	IS N	ž	<u> </u>	2	00	យ FScree	2 1	5 5		5 10	1.	25							GR SA	51
	(TILL)(Continued)	19			50		55														
			10	SS	blows / 100																
					mm																
		9					54														
53.4 12.2	GRAVELLY SAND: some cobbles																				
	and boulders, compact to dense, grey, wet (TILL)						53														
			1	CORE																	
<u>52.2</u> 13.4	BEDROCK: Limestone with shale	X	<u> </u>		<u> </u>	Provide the second seco															
	partings, fresh, close to very closesly bedded						52														
	TCR = 100% RQD = 50%	Ŵ					Cuttin	gs													
		Ŵ	2	CORE																	
							51									<u> </u>					
	TCR = 100%	K	_			R															
	RQD = 66%	Ŵ																			
		Ŵ	3	CORF			50														
		Ň																			
<u>49.1</u> 16.5	END OF BOREHOLE	¥//	╞			PP 92	R						<u> </u>		1			┢╴			
	Notes: 1) Auger refusal encountered at 12.1																				
	m below surface 2) Coring started at 12.1 m in the gravely sand till layer and continued																				
	into bedrock																				
														1							
																				1	
CROU	INDWATER ELEVATIONS						<u>+</u> + 3	,׳:	Numbe	rs refer	C	€=3%	Strain	at Failu	ire						

н н ¹

V	Geotechnical Environmental Materials Hydro	geolo	gy		LO	G OF	BOR	EH	OLE	BH13	-2			_						1 0	- 2
PROJ	ECT: Carleton University Residence Bu	ilding)					DRI	LLING I	ATA											
CLIEN	IT: Carleton University							Metl	nod: CM	IE55-H	ollow	stem a	ugers	5		_					
PROJ	ECT LOCATION: Ottawa, Ontario							Diar	neter: 2	00 mm						RE	EF. NC).: 19 ~	985-7	10	
DATU	M: Geodetic							Date	e: Nov/a	27/2013	3					EN	NCL N	0.:			
BHLC	CATION: See Borehole Location Plan						1	DYN	AMIC CC	NE PÉN	ETRA	TION									
	SOIL PROFILE		8	AMPL	ES	œ		RES	ISTANCE	PLOT	\geq			PLAST		URAL		-	IM.	REMARK	S
(m)		5			<u>ا</u> م	VATE	-		20 4	0 60	8 0	30 10	0	Wp	CON	TENT N	WL	(PP)	L UNIT	GRAIN SI	ZE
ELEV	DESCRIPTION	APL	<u>۳</u>		<u>п 0</u>	ND V	TIO	SHE	EAR ST	RENGI	ін (кі ÷	FIELD VA	NE					(n) (n)	TURA (KN	DISTRIBUT	ION
DEPTH		RAT	JMB	Щ. Ш	·		EVA	•		RIAXIAL	×	LAB VA	NE	WA	TER CO	NTEN	T (%)	-	NA	(70)	
65.6		ST	ž	<u> </u>	<u>z</u>	ចីប័			25 5	0 7	5 1	00 12	!5		25 5		/5			GR SA SI	CI
6 0,0 65,4	Asphalt: 40 mm — SAND AND GRAVEL: 200 mm	\mathbb{X}																ł			
-0.2	(FILL)	XX																1			
	SILTY SAND : trace gravel, some shale pieces, dark black to grey,	\boxtimes					65										1				
	moist, compact (FILL)	\bigotimes																			
		\otimes	1	SS	13									0							
		\boxtimes																			
		\mathbb{X}	—		hit		64														
63.8		\boxtimes	2	SS	grave			1													
1.8	SILTY CLAY: some organics, shale	\boxtimes						93													
	pieces, inni, grey, molar (incc)	\otimes																			
		\otimes	1																		
		\otimes	3	SS	4		63							-		<u>}</u> -					
		\otimes	1																		
		\bigotimes	}—																		
		\otimes	4	ss	2		X										þ				
		\mathbb{X}			-		67											1			
		\otimes				24 2	a 02														
		\otimes					-Bento	nite													
		\otimes			1										1						
61 1		\otimes	}				Sand														
4.5	SAND AND GRAVEL: trace silt,	0.	, 		50		61											-			
	some shale pieces, compact, greyish brown, moist	0	5	22	blows		,							0							
ļ			ľ		150 mm																
1		0	2	-																	
		0	1				6							_							
		0	2			E		1													
		0				E															
		0					+Scree	en I												1	
			6	ss	32									0							
				1			59											-			
1		0	2			1日															
		0					-														
		0	2																		
59.0		0																			
7.6	SILTY SAND: some cobbles and	14		-	1-		2 51 2 51	3		-								7			
	boulders, some gravel, compact, grev wet (TILL)		7	ss	31		52							0							
	3.0,1	19	1_			885	a a a a a a a a a a a a a a a a a a a				ļ										
						383	2														
							4 5	/									_	-			
		1/4			1		2														
						188	2														
			1-	+	1		92														
			8	ss	20		2							0						29 47	(24
			1				5	5		1		-	1		1						
		1					2		ļ												
·L	Continued Next Page		· (4			GRAP	4 0.5		Numb	ers refer		_ ε=3%									
GROU	NDWATER ELEVATIONS					NOTES	1	, × 3	to Sen	sitivity		0	Stai	natral	ue.						
Shallo	w/ Single Installation 💟 🗶 Deep/Dual Inst	allatio	ν	V																	

SPL Consultants Limited

\diamond	SPL Consultants Lim Geotechnical Environmental Materials Hydro	ite	d		LO	G OF	BOR	EH	IOLE	BH1	3-2	2									2 0	DF 2
PRO.	ECT: Carleton University Residence Bui	ilding]					DRI	ILLING	DATA					_		_					
	NT: Carleton University							Met	thod: C	VE55- 200 m	Hollo	ow ste	em aug	ers			REF	=. NO	.: 19	985-7	10	
DATL	IM: Geodetic							Dat	e: Nov	/27/20	13						ENC		D.:			
BHL	OCATION: See Borehole Location Plan										NET	PATIC	N									
 	SOIL PROFILE	-	s	AMPL	ES	с К		RES	SISTANC	EPLO	2	2		PLA		IATUR/	RE L		z	t WT	REMAR	RKS
(m)		LOT			ŚΕ	WAT	z	SH	EAR S		50 STH	(kPa					•1 	WL	KET PE (KPa)	(MIM)	GRAIN S	SIZE
DEPTH	DESCRIPTION	ATA F	ABER	ш	BLO/ 0.3	DUND	VATIC	٥	UNCON			+ FIE & S	LD VANE Sensitivity		ATER	CONT	ENT ((%)	001	NATUR (K	(%)	
		STR	NON	۲Ľ	1. N	R S	ELE	Ľ	25	50	75	100	125		25	50	75	; 			GR SA	SI CI
	SILTY SAND: some cobbles and boulders, some gravel, compact,																					
	grey, wet (TILL)(Continued)	V																				
						B	55															
			9	SS	34		Cuttin	gs						0								
			<u> </u>																			
							54										_					
53.5 12.1	GRAVELLY SAND TILL: some		1			H.																
	boulders, compact, grey, wet		10	ss	23									0								
							53			1									1			
							52															
			11	SS	50																	
51.4					100																	
14.2	END OF BOREHOLE Notes:				mm	/																
	1) Borehole terminated at 14.2 m on auger refusal																					
l l																						
		1																				
5																					<u> </u>	
GRO	INDWATER ELEVATIONS		_				1 + ³	,×	3 Num to Se	pers ref	er	0	ε=3% S	train at F	ailure							
Shallo	w/ Single Installation Deep/Dual Insta	allatio	n	V																		

CLIEN PROJI DATU	IT: Carleton University																				
								Met	hod: CN	1E55-H	lollow	stem	auger	s		_				40	
BHIC	ECT LOCATION: Ottawa, Ontario							Diar	neter: 2	00 mm	ן ז					R	EF. NO).: 11 O ·	982-1	10	
	M: Geodetic							Dale	a. NOVA	20/201	5					L		0			
01120	SOIL PROFILE		S	AMPL	ES			DYN RES	AMIC CO		NETRA	TION			NA			Γ	_	REMA	ARKS
(m)		⊢				TER			20	0 6	i0 8	30	100	LIMIT	IC MOI	STURE	LIQUID	DEN.	NIT W	AN	ID
ELEV	DECODIDEION	PLO	~		3 m	D WA	NO	SHE	EAR ST	RENG	TH (kl	Pa)				w 	w _L	CKET 20) (kP	KN/m	DISTRIE	UTION
EPTH	DESCRIPTION	RATA	MBEI	щ	BLO	NUO	EVAT	•	UNCONF QUICK T	'INED RIAXIAL	. ×	& Sens LAB V	tivity ANE	WA	TER C	ONTEN	IT (%)	200	NATL	(9	6)
65.6		STI	Z	Σ.	z	50			25	50 7	5 1	00	125		25	50	75	┢		GR SA	SI C
68.8	Asphait: 40 mm SAND AND GRAVEL: 200 mm	\boxtimes		00	25																
0.2	(FILL)	\otimes	'	33	25									Ŭ							
	some shale pieces, dark black to	\bigotimes					65											1			
	grey, moist, compact	\bigotimes																			
		\bigotimes	2	SS	8									0							
		\bigotimes																			
62.0		\bigotimes	3	SS	2		64											1			
1.8	SILTY CLAY: some organics, shale	\bigotimes				1		1													
	pieces, firm, grey, moist	\boxtimes																			
	 some organics, wood, rootlets below 2.2 m 	\bigotimes																			
		\bigotimes	4	SS	5		63		_	· · ·					-0			1			
		\bigotimes																			
		\bigotimes						1													
		\bigotimes	5	SS	14									0							
		\bigotimes					62	┣─		1		-	_					-			
		\otimes																			
		\otimes																			
		\otimes																			
4.5	SAND AND GRAVEL: trace silt,	<u> </u>					61		_							_		-			
	some shale pieces, compact, greyish brown, moist,	0	6	22	51									0						40 43	(17
		 o	ľ																		
		0																			
		0]	60	<u> </u>										-			
		0																			
		0																			
	 some cobbles, wet, grey below 6.1 	0	7		67																
		0	'	33	01		59		_		ļ	<u> </u>	_			_	_	-			
		0				1															
		0					ļ														
		0.0																			
58.0		0					58						_	_			_	-			
7.6	SAND: trace gravel, compact, brown, wet														8						
	,		8	SS	23										20						
			<u> </u>	-	1	1															
							₋														
							^{5/}														
	- greyish brown below 9.1 m				1	1						1									
			9	ss	14										8					0 87	(13
ſ				<u> </u>	<u> </u>	-	56) 	_												
			<u> </u>															<u> </u>		<u> </u>	

PROJ	ECT: Carleton University Residence Be	uilding)					DRIL Meth	LING	DATA 1E55-H	lollow	stem	augers	6		DI) · 10	385.7	710
PROJ DATU	ECT LOCATION: Ottawa, Ontario M: Geodetic							Diam	ieter: 2 : Nov/	00 mm 28/201	า 3					E	NCL N	0.: 19 0.:	992-1	10
BH LC	CATION: See Borehole Location Plan		5		FS			DYNA			NETRA	TION								
(m) <u>ELEV</u> DEPTH	DESCRIPTION	TRATA PLOT	UMBER	АРЕ	V" BLOWS 0.3 m	ROUND WATER ONDITIONS	LEVATION	SHE O U O U	AR ST	RENG RENG	50 E TH (ki + ×	Pa) FIELD V & Sonsi LAB V	00 ANE tivity ANE	PLAST LIMIT Wp H WA	TER CO	URAL STURE ITENT W C	LIQUIE LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m²)	GI
	SAND: trace gravel, compact, brown, wet(Continued)	s.	Z		-	00	ш							<u> </u>						GR
							55						<u> </u>							
	- some gravel below 10.6 m		10	ss	26									0						
							54									-				
							53													
							52							<u> </u>				-		
51.1																	1	-		_
	Notes: 1) Borehole terminated at 14.5 m on auger refusal																			
																	1			

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 AND 3 - SEISMIC SHEAR WAVE VELOCITY PROFILES

DRAWING PG3292-2 - TEST HOLE LOCATION PLAN

KEY PLAN

patersongroup

Figure 2 – Shear Wave Velocity Profile at Shot Location – 30 m

Figure 3 – Shear Wave Velocity Profile at Shot Location 66 m

iutocad drawings\geotechnical\pg32xx\pg3