December 2011

REPORT ON

Phase II Environmental Site Assessment 645 Longfields Drive, Proposed Church, Ottawa, Ontario

Submitted to: Sequoia Community Church 190 Colonnade Rd., Suite 8B Ottawa, Ontario K2E 7J5

Attention: Mr. Robert Jonkman, P.Eng.

REPORT

Report Number: Distribution: 11-1122-0210 (2000)

2 copies - Sequoia Community Church

1 e-copy - Sequoia Community Church

2 copies - Golder Associates Ltd.

Golder

A world of capabilities delivered locally

Executive Summary

Golder Associates Ltd. (Golder) was retained by Sequoia Community Church (Sequoia) to complete a Phase II Environmental Site Assessment (Phase II ESA) for the property located at 645 Longfields Drive in Ottawa, Ontario (Site). The Site is bounded by Greenbank Road to the west, CN railway to the north, the future Highbury Park Drive to the south and the Southwest Transitway to the east.

The Phase II ESA was carried out in general accordance with the scope of work described in Golder's proposal P1-1122-0181 and dated October 31, 2011. The Phase II ESA field program was completed in conjunction with the geotechnical investigation that was concurrently carried out at the Site by Golder. The results from the geotechnical investigation are presented in a separate report.

The Executive Summary highlights key points from the report only; for complete information and findings, as well as the limitations, the reader should examine the complete report.

The objective of the Phase II ESA was to investigate the potential for subsurface impacts to the Site as a result of the former use of part of the Site as a snow disposal facility and to assess the quality of the fill material present on the Site.

To achieve this objective the scope of work of the Phase II ESA included the following:

- Collecting soil samples from four test pits and submitting selected soil samples for laboratory analysis;
- Collecting three composite soil samples from the fill piles on the Site and submitting for laboratory analyses; and,
- Investigating groundwater quality via the installation of a monitoring well in the area of the Site previously occupied by the snow dump for the collection and analyses of groundwater.

Based on the Phase II ESA scope of work completed at the Site, the following conclusions can be made:

- The subsurface conditions at the Site are generally described as topsoil and/or fill underlain by silty sand and gravel overlying sandstone bedrock. The depth to the bedrock encountered in the geo-environmental test pits and the borehole ranges from exposed bedrock at ground surface to 0.75 metres below ground surface;
- MOE Table 7 Standards: Generic Site Condition Standards for Shallow Soil in a Non-Potable Ground Water Condition, for Industrial/Commercial/Community Property Use, coarse textured soil (April 15, 2011) is applicable for the Site and was used for comparison of the analytical results of the soil and groundwater samples that were submitted for laboratory analysis;
- Soil sampling completed at the Site indicated that the concentrations of petroleum hydrocarbons Fraction 1 to Fraction 4 (PHC F1 to F4), volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), metals, pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and free cyanide in all soil samples analysed for one or more of these parameters were below the applicable MOE Table 7 Standards. Thus, the soil samples are not contaminated in terms of the regulation;

- Fill sampling completed at the Site indicated that the concentrations of PHC F1 to F4 and metals in the three composite fill samples submitted for laboratory analyses were below the MOE Table 7 Standards. Thus, the fill is not contaminated in terms of the regulation;
- Groundwater sampling completed at the Site indicated that the concentrations of PHC F1 to F4, VOCs, metals, sodium and chloride in the groundwater sample collected from the monitoring well installed in the part of the Site previously occupied by the former snow dump were below the applicable MOE Table 7 Standards. Thus, the groundwater sample is not contaminated in terms of the regulation;
- The soil and groundwater sampling completed at the Site did not suggest that the former snow dump impacted the subsurface of the part of the Site previously occupied by the former snow dump. As such, no further investigations are required at this time;
- The monitoring well installed on the Site as part of the Phase II ESA if no longer required should be decommissioned in accordance with O. Reg.903;
- The monitoring well that was observed in the southwest part of the Site, south of the access road and near to the Site entrance, was confirmed to be located on the part of the Site owned by the City of Ottawa (City). No information regarding the well was provided by the City;
- There were no issues of potential environmental concern identified during the Phase I ESA in the vicinity of the southwest monitoring well. Based on the results from the snow dump area being below the applicable standards, sampling of the well in the southwest part of the Site is not considered necessary to evaluate environmental conditions at the Site; and,
- Considering that the well will be part of the land purchased it should be decommissioned in accordance with O.Reg.903.

Table of Contents

EXE	CUTIVE	SUMMARY	i
1.0	INTRO	DUCTION	.1
2.0	BACK	GROUND	. 2
3.0	OBJEC	TIVES	. 3
4.0	SCOPE	OF WORK	.4
5.0	МЕТНО	DDOLOGY	. 5
	5.1	Health and Safety	. 5
	5.2	Underground Utility Locates	. 5
	5.3	Soil and Groundwater Investigation	. 5
	5.3.1	Borehole Drilling, Soil Sampling and Monitoring Well Installation	. 5
	5.3.2	Test Pit Excavation and Soil Sampling	. 6
	5.3.3	Fill Sampling	. 7
	5.3.4	Groundwater Sampling	. 8
6.0	RESUL	TS	. 9
	6.1	Applicable Standards and Guidelines	. 9
	6.2	Overburden and Bedrock Geology	. 9
	6.3	Hydrogeology	10
	6.4	Soil Headspace Vapour Measurements	10
	6.5	Soil Analytical Results	10
	6.6	Fill Analytical Results	1
	6.7	Groundwater Analytical Results	1
	6.8	Quality Control and Quality Assurance	1
7.0	CONCL	USIONS	13
8.0	REPOR	RT LIMITATIONS	4
9.0	CLOSU	IRE	15

TABLES

Table 1: Summary of Soil Analytical Results for Petroleum Hydrocarbons Metals
Table 2: Summary of Soil Sample Analytical Results for Volatile Organic Compounds
Table 3: Summary of Soil Sample Analytical Results for Metals and Inorganics
Table 4: Summary of Soil Sample Analytical Results for Pylicyclic Aromatic Hydrocarbons
Table 5: Summary of Groundwater Sample Analytical Results for Petroleum Hydrocarbons
Table 6: Summary of Groundwater Sample Analytical Results for Volatile Organic Compounds
Table 7: Summary of Groundwater Sample Analytical Results for Metals and Inorganics

FIGURES

Figure 1: Key Plan Figure 2: Site Plan and Approximate Borehole Locations

APPENDICES

APPENDIX A Record of Boreholes

APPENDIX B Record of Test Pits

APPENDIX C Laboratory Certificates of Analyses

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by Sequoia Community Church (Sequoia) to complete a Phase II Environmental Site Assessment (Phase II ESA) for the property located at 645 Longfields Drive in Ottawa, Ontario (Site). The Site is bounded by Greenbank Road to the west, CN railway to the north, the future Highbury Park Drive to the south and the Southwest Transitway to the east.

The Phase II ESA was carried out in general accordance with the scope of work described in Golder's proposal P1-1122-0181 and dated October 31, 2011. The Phase II ESA field program was completed in conjunction with the geotechnical investigation that was concurrently carried out at the Site by Golder. The results from the geotechnical investigation are presented in a separate report.

The Site location is shown on Figure 1.

2.0 BACKGROUND

The Site is owned by the City of Ottawa (City) and Jock River Farms Limited. The Site is currently vacant land overgrown with trees and grass and has always been vacant land. Part of the Site was used as a snow disposal facility for about 20 years by the former City of Nepean and was closed in the summer of 2008. It is understood that a potential Site transaction is pending and that upon the Site acquisition by Sequoia the Site will be developed with a church. A Phase I ESA (Report entitled "*Phase I Environmental Site Assessment, 645 Longfields Drive, Proposed Church, Ottawa, Ontario*"), dated December 2, 2011 was recently completed by Golder for the Site for due diligence purposes due to the potential Site transaction. The Phase I ESA identified the following potential issues of concern which relate to subsurface impacts on soil and groundwater:

- The historical information review indicated that a City of Nepean snow dump was located in the central part of the Site. The snow dump was in operation for around 20 years between the late 1980s and 2008. The former presence of a snow dump on the Site is considered to be an issue of potential environmental concern associated with the potential for subsurface impacts to the Site from contaminants such as petroleum hydrocarbons ("PHCs"), benzene, toluene, ethylbenzene, xylenes ("BTEX"), polycyclic aromatic hydrocarbons (PAHs), metals, pH, sodium and chloride (from road salt compounds) measured as sodium adsorption ratio ("SAR") contained in the melt water from the snow; and,
- Several piles of fill material were observed in the central area of the Site previously occupied by the snow dump. The fill material originated from the recent construction of the Southwest Transitway located on adjacent lands east of the Site. As part of the 2008 Phase II ESA completed by Golder for the Southwest Transitway construction project, soil sampling and analyses of PHC F1 to F4, metals and SAR was conducted in the area of potential environmental concern where the future Southwest Transitway crossed the snow dump. The soil analytical results indicated that one of the soil samples analysed in this area contained measured concentrations of PHC F3 and F4. Given that the above mentioned soil sampling was limited in area; it is considered that the soil results are not representative of the quality of the fill material currently stockpiled on the Site. Additional testing of composite soil samples collected from the piles of the fill material are required in order to assess the quality of the fill located on the Site. In addition, new MOE "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", April 15, 2011 that are currently applicable for the Site should be sampled in order to evaluate the fill quality.

3.0 **OBJECTIVES**

The objective of the Phase II ESA was to assess the soil and groundwater quality at the Site for potential impacts associated with the former use of part of the Site as a snow disposal facility and to assess the quality of the fill material present on the Site.

4.0 SCOPE OF WORK

The Phase II ESA was carried out in conjunction with the geotechnical investigation carried out at the Site by Golder as part of the proposed Site development with a church.

The Phase II ESA scope of work included:

- 1) Carrying-out private and public utility locates.
- 2) Preparing a Health and Safety Plan prior to initiating the fieldwork.
- 3) Completing four (4) geo-environmental test pits and drilling one (1) borehole installed with a monitoring well on the Site in order to address the potential issue of environmental concern associated with the former presence of a snow dump on the Site. Collecting soil and/or groundwater samples for subsequent laboratory analyses.
- 4) Submitting selected soil samples from the four test pits for laboratory analyses of one or more of the following parameters: PHC (F1-F4) volatile organic compounds (VOCs) including BTEX, PAHs, metals, pH, SAR, free cyanide and electrical conductivity (EC).
- 5) Collecting three (3) composite soil samples from the fill piles on the Site and submitting for laboratory analyses of PHC F1 to F4 and/or metals in order to assess the quality of the fill material.
- 6) Collecting a groundwater sample from the monitoring well and submitting for laboratory analyses of PHC F1 to F4, VOCs, chloride, sodium and metals.
- 7) Implementing a quality control/quality assurance program during the field work.
- 8) Interpretation of results and preparation of this report.

5.0 **METHODOLOGY**

5.1 Health and Safety

Prior to initiating the fieldwork, Golder developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan.

5.2 Underground Utility Locates

Prior to commencing the intrusive field program, Golder retained a utility locations contractor - USL-1 Inc. to identify the locations of all private and public utilities within the work area and to mark the location of said utilities.

5.3 Soil and Groundwater Investigation

5.3.1 Borehole Drilling, Soil Sampling and Monitoring Well Installation

In order to address the issue of potential environmental concern associated with the former presence of a snow dump on the Site, one (1) borehole BH11-8 installed with a monitoring well was drilled in the part of the Site previously occupied by the former snow dump.

The approximate location of the borehole is shown on Figure 2.

The borehole drilling and monitoring well installation was conducted on November 25, 2011, using a truckmounted drill rig ("CME-55"), supplied and operated by Marathon Drilling Co Ltd. ("Marathon") of Ottawa, Ontario The borehole drilling and monitoring well installation activities were monitored in the field by Golder staff.

No overburden was present at BH11-8 and as such, no soil samples were collected from this borehole during the drilling. To achieve the objectives of the investigation, the BH11-8 was cored into the bedrock to a sufficient depth to intersect the groundwater table. As such, BH11-8 was advanced into bedrock by means of diamond drill coring equipment (size NQ) to a total depth of 9.25 metres below ground surface (mbgs). Following the completion of the drilling, a monitoring well constructed of a 32 millimetre diameter PVC pipe, threaded PVC slot #10 screen and a solid riser was installed. The screen was installed at the bottom of the borehole between 4.66 mbgs and 9.25 mbgs. An attempt was made to install the screen of the well to straddle the inferred water table so that any hydrocarbon impact (with a floating phase) would be detected in the well. Silica sand backfill (granular filter) was placed in the borehole around the screened portion of the monitoring well up to 1.5 mbgs and bentonite was placed to seal the core hole of the annular space between the PVC riser from 1.5 mbgs to the ground surface. After the installation, the monitoring well was developed by removing approximately 1.5 well volumes until the well went dry.

The monitoring well was tagged in accordance with Ontario Regulation 903 under Tag #A061835.

Borehole and monitoring well details are presented on the Record of Boreholes in Appendix A.

5.3.2 Test Pit Excavation and Soil Sampling

As part of the geotechnical investigation that was concurrently carried out at the Site by Golder, in total fourteen (14) test pits were excavated at the Site. In order to assess the soil quality in the area of the former snow dump, four (4) test pits (TP11-2, TP11-5, TP11-6 and TP11-9) out of the fourteen (14) were used for environmental purposes (hereafter referred as geo-environmental test pits). The geo-environmental test pits were selected based on their proximity to the former snow dump. TP11-2 was completed in the area outside of the former snow dump in order to assess the background soil conditions at the Site. TP11-5, TP11-6 and TP11-9 were excavated in the area where the former snow dump and the access road to the snow dump are located in order to investigate the potential for soil impacts as a result of the former snow dump.

The approximate location of the test pits is shown on Figure 2.

The test pitting program was completed on November 24, 2011, using a backhoe supplied and operated by Marathon. The test pit excavation was monitored in the field by Golder staff.

The four geo-environmental test pits were excavated until the bedrock was encountered to a depth ranging between 0.40 mbgs at TP11-5 and 0.75 mbgs at TP11-2. Each test pit was sampled by Golder noting the composition and quality of the soil. Soil samples were collected using a hand trowel and dedicated nitrile sample gloves. Given the shallow depth of the test pits one (1) or two (2) discrete soil samples representing different soil layers were collected from each of the test pits. Each soil sample was logged in the field, placed in laboratory supplied glass sample jars and refrigerated until selected samples were delivered to the laboratory for analysis. A separate aliquot of each soil sample was placed in a sealed plastic bag and allowed to equilibrate to ambient temperature prior to measurement of organic vapours using a MiniRae 2000 photionization detector (PID) (details regarding the soil vapour measurements are provided in section 6.4 of this report). The PID results combined with the field observations were used to select representative soil samples for laboratory analysis. One (1) or two (2) worst case soil samples were selected from TP11-2, TP11-5, TP11-6 and TP11-9 based on visual and olfactory observations and/or from depth horizons at which potential impact would most likely have occurred and PID readings. Selected soil samples were stored in coolers with ice and submitted under chain of custody procedures to Maxxam Analytics of Ottawa (Maxxam) for laboratory analysis of one or more of the following parameters: metals, VOCs, PHC F1 to F4, PAHs, SAR, EC, free cyanide and pH. The soil samples collected for PHC F1 and VOCs analyses were collected in methanol preserved vials.

The table below summarizes the soil sample IDs submitted for analytical analyses, depths, PID head space readings, and chemicals of concern analyzed:

	Summary of s	Soli Samples Subr	nitted for Analyse	es
Soil sample ID	Test Pit Location	Depth Interval (mbgs)	PID readings (ppm)	Analyses
TP11-2	Test pit completed outside the area occupied by the former snow dump (representing the background soil conditions at the Site)	SA2 (0.5-0.75)	1.7	PHC F1 to F4, VOCs, PAHs, metals, pH, and SAR
TP11-5	Test pit completed in the area occupied by the former snow dump	SA1 (0-0.25)	1.5	Metals and SAR
TP11-6	Test pit completed in the area occupied by the former snow dump and the access road to the snow dump	SA2 (0.45-0.62)	1.5	Metals and SAR
		SA1 (0.1-0.3)	1.3	Metals, pH, SAR, free cyanide, EC
TP11-9	Test pit completed in the area occupied by the former spow dump	SA2 (0.41-0.65)	1.9	PHC F1 to F4, VOCs, PAHs, metals, pH, SAR, free cyanide, EC
		SA12 (0.41- 0.65) Duplicate of SA2	-	PHC F1 to F4, VOCs, PAHs, metals, pH, SAR, free cyanide, EC

The test pits details are presented on the Record of Test Pits in Appendix B.

5.3.3 **Fill Sampling**

As already mentioned in section 2.0 of this report, piles of fill material originated from the recent construction of the Southwest Transitway (located adjacent to the Site) are present on the Site. Generally three (3) areas of fill piles were observed at the Site. As such, three composite samples (SA1, SA2, and SA3) were collected from each of the piles in order to assess the fill quality and were submitted for laboratory analyses of PHC F1 to F4 or metals.

Two of the composite samples (SA1 and SA3) were submitted to Maxxam for analyses of metals and one composite sample (SA2) was submitted for analyses of PHC F1 to F4.

The approximate location of the piles of the fill material and the composite samples collected from the piles is shown on Figure 2.

5.3.4 Groundwater Sampling

Golder collected a groundwater sample from the monitoring well on November 30, 2011. Prior to sampling, the static water level was recorded in the monitoring well (recorded groundwater level is presented in Section 6.3). The well was then purged until the well went dry three times. The purged water from the well had no evidence of hydrocarbon sheens or odours. Well purging and sampling was completed using dedicated tubing and a Waterra foot valve. One groundwater sample was collected from the monitoring well MW/BH11-8 and one duplicate sample was collected from MW/BH11-8 (identified as MW/BH11-88) for QA/QC purposes. The groundwater samples were collected directly into laboratory supplied bottles, placed in an insulated cooler with ice packs, and submitted under chain of custody documentation to Maxxam for analysis of dissolved metals, VOCs, PHC F1 to F4, metals, sodium and chloride. The groundwater sample collected for metal analyses was field filtered using a 0.45 µm filter.

6.0 **RESULTS**

6.1 Applicable Standards and Guidelines

Provincial standards described in the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*" dated April 15, 2011 (the Standard Document) are currently used for the assessment of potentially contaminated sites in the context of Ontario Regulation ("O. Reg.") 153/04 as amended.

The following rationale was used for the selection of the standards to be used for reference purpose only:

- The Site is located in an area which is serviced by a municipal drinking water supply which is not supplied by the local groundwater. No drinking water supply wells are known to be present within 100 m of the Site. Thus, existing private and municipal water supplies will not be adversely affected if non-potable groundwater standards are utilized for this Site;
- The overburden thickness encountered in the borehole BH11-8 as well as in the test pits completed at the Site was less than 2 m;
- The Site is not adjacent to a water body and does not contain land that is within 30 m of a water body;
- The Site is not located within an area of natural significance, or included or is adjacent to such area;
- Given that the Site will be developed with a church, the most sensitive land use of the Site is industrial/commercial/community, based on the assumption that there will be no full-time day care or preschool in the proposed church; and,
- Based on observed soil conditions in the test pits, sand and gravel was assumed to be possible pathways for the migration of impacted groundwater and therefore the criteria associated with a coarse textured soil were considered most applicable to this Site (conservative approach).

Based on the above evidence, it appears that the Site would be classified as a shallow soil property (i.e., a sensitive property) under O. Reg. 153/04 as amended as more than 1/3 of the property could have a thickness of overburden of 2.0 metres or less. As such, the *MOE Table 7 Standards: Generic Site Condition Standards for Shallow Soil in a Non-Potable Ground Water Condition*, for Industrial/Commercial/Community Property Use, coarse textured soil ("MOE Table 7 Standards") is applicable for the Site and was used for comparison of the analytical results of the soil and groundwater samples that were submitted for laboratory analysis.

6.2 Overburden and Bedrock Geology

The subsurface conditions at the Site are generally described as topsoil and/or fill underlain by silty sand and gravel overlying sandstone bedrock. Fill was encountered at TP11-5, TP11-6, and TP11-9. The fill is comprised of brown and gray sand, some gravel, occasional asphaltic and concrete pieces, and traces of plastic and metal. The thickness of the fill layer varied between 0.20 and 0.30 m. The depth to the bedrock encountered in the geo-environmental test pits and the borehole ranged from exposed bedrock at BH11-8 to 0.75 mbgs at TP11-2. No visible staining or hydrocarbon odour was observed in any of the collected soil samples.

A detailed description of the subsurface conditions encountered in the geo-environmental test pits and during the borehole drilling is presented in Appendices A and B.

96.03

In addition, a detailed description of the subsurface conditions encountered in the geotechnical test pits concurrently completed at the Site by Golder as part of the geotechnical investigation is presented in a separate geotechnical report prepared for the Site.

6.3 Hydrogeology

Golder visited the Site on November 30, 2011 to record the static water level in the monitoring well MW/BH11-8 prior to groundwater sampling.

LocationDepth to
Groundwater Level
TOP (m),
November 30, 2011Depth to
Groundwater Level
from the Ground
Surface (m),
November 30, 2011Ground surface
elevation (masl)*Calculated Water
Table Elevation (masl)
November 30, 2011

A summary of the groundwater level recorded on November 30, 2011 is presented below.

Notes: 1) TOP – Top of the pipe;

BH11-8

*- geodetic elevation

At the time of the water level measurements on November 30, 2011, the groundwater table in the monitoring well MW/BH11-8 was intersected by the screen which allowed detection and measurement of any floating petroleum product in the well if present. Free phase floating hydrocarbons were not detected in the monitoring well during the well purging on November 30, 2011.

4.97

6.4 Soil Headspace Vapour Measurements

5.64

A representative portion of the soil samples collected from the geo-environmental test pits was placed into a sealed plastic bag for organic vapour measurement using a PID. The PID used in the field was a MiniRae 2000 (Model # PGM-7300, serial number 590-001605) and was equipped with a 10.6 eV lamp. The PID was calibrated using an isobutylene standard of 100 parts per million (ppm) by a certified Golder technician, on November 23, 2011. The PID was used to provide an estimate of the relative concentrations of ionizable organic vapours in the headspace of each soil sample and was used to support the selection of the soil samples submitted from each geo-environmental test pit for laboratory analysis. The measured soil headspace vapour concentrations are presented in the Record of Test Pits in Appendix B. The measured soil headspace vapour concentrations ranged between 0 (non-detected) and 1.9 parts per million (ppm). As already mentioned in section 5.3.1 of this report, no overburden was present at BH11-8 and as such, no soil samples were collected from this location.

6.5 Soil Analytical Results

Soil analytical results compared to the MOE Table 7 (non-potable condition) Standards have been summarised in Tables 1 through 4, following the text. Laboratory Certificates of Analysis are provided in Appendix C.

A review of the analytical results showed that the concentrations of the parameters analysed in all soil samples submitted for laboratory analyses were below the MOE Table 7 Standards. Thus, the soil samples are not contaminated in terms of the regulation.

91.06

6.6 Fill Analytical Results

Fill analytical results compared to the MOE Table 7 (non-potable condition) Standards have been summarised in Table 1 and Table 3, following the text. Laboratory Certificates of Analysis are provided in Appendix B.

A review of the analytical results showed that the concentrations of the parameters analysed in the composite fill samples submitted for laboratory analyses were below the MOE Table 7 Standards. Thus, the fill is not contaminated in terms of the regulation.

6.7 Groundwater Analytical Results

Groundwater analytical results compared to the MOE Table 7 (non-potable condition) Standards have been summarised in Tables 5 through 7, following the text. Laboratory Certificates of Analysis are provided in Appendix C.

A review of the analytical results showed that the concentrations of the parameters analysed in the groundwater sample collected from MW/BH11-8 were below the MOE Table 7 Standards. Thus, the groundwater sample is not contaminated in terms of the regulation.

6.8 Quality Control and Quality Assurance

As part of the Phase II ESA, Golder implemented the following field quality control measures:

- Use of dedicated or cleaned sampling equipment between sampling events;
- Use of calibrated field monitoring equipment (PID);
- Use of appropriate laboratory supplied sampling jars;
- Analysis within an acceptable holding time;
- Delivery of samples under a Chain of Custody; and,
- Laboratory analysis by CALA accredited laboratory (Maxxam).

In addition to the above, Golder implemented the following laboratory analytical quality control measure:

- Collecting of a duplicate soil sample from TP11-9 SA2 denoted as sample TP11-9 SA12 in the laboratory reports and submission for analyses of PHC F1 to F4, VOCs, PAHs, metals, pH, SAR, free cyanide, and EC; and,
- Collecting of a duplicate groundwater sample from monitoring well MW/BH11-8 denoted as sample MW/BH11-88 in the laboratory reports and submission for analyses of dissolved metals, VOCs, PHC F1 to F4, metals, sodium and chloride.

A review of the laboratory analytical results for the soil and groundwater duplicate sample compared to the analytical results for the original samples show that differences between the results are within acceptable limits.

A review of the laboratory internal blanks, duplicates, spikes and recoveries show that all were within acceptable ranges.

Based on the above, Golder considers the data obtained during the Phase II ESA is reliable, reproducible and representative of site conditions.

7.0 CONCLUSIONS

A Phase II ESA was carried out to assess the groundwater and soil quality at the Site for potential impacts associated with the former use of part of the Site as a snow disposal facility and the presence of fill material on the Site. Based on the scope of work completed, the following conclusions can be made:

- The subsurface conditions at the Site are generally described as topsoil and/or fill underlain by silty sand and gravel overlying sandstone bedrock. The depth to the bedrock encountered in the geo-environmental test pits and the borehole ranges from exposed bedrock at ground surface to 0.75 mbgs;
- MOE Table 7 Standards: Generic Site Condition Standards for Shallow Soil in a Non-Potable Ground Water Condition, for Industrial/Commercial/Community Property Use, coarse textured soil (April 15, 2011) is applicable for the Site and was used for comparison of the analytical results of the soil and groundwater samples that were submitted for laboratory analysis;
- Soil sampling completed at the Site indicated that the concentrations of PHC F1 to F4, VOCs, PAHs, metals, EC, pH, SAR and free cyanide in all soil samples analysed for one or more of these parameters were below the applicable MOE Table 7 Standards. Thus, the soil samples are not contaminated in terms of the regulation;
- Fill sampling completed at the Site indicated that the concentrations of PHC F1 to F4 and metals in the three composite fill samples submitted for laboratory analyses were below the MOE Table 7 Standards. Thus, the fill is not contaminated in terms of the regulation;
- Groundwater sampling completed at the Site indicated that the concentrations of PHC F1 to F4, VOCs, metals, sodium and chloride in the groundwater sample collected from the monitoring well installed in the part of the Site previously occupied by the former snow dump were below the applicable MOE Table 7 Standards. Thus, the groundwater sample is not contaminated in terms of the regulation;
- The soil and groundwater sampling completed at the Site did not suggest that the former snow dump impacted the subsurface of the part of the Site previously occupied by the former snow dump. As such, no further investigations are required at this time;
- The monitoring well installed on the Site as part of the Phase II ESA if no longer required should be decommissioned in accordance with the O. Reg.903;
- The monitoring well that was observed in the southwest part of the Site, south of the access road and near to the Site entrance was confirmed to be located on the part of the Site owned by the City. No information regarding the well was provided by the City;
- There were no issues of potential environmental concern identified during the Phase I ESA in the vicinity of the southwest monitoring well. Based on the results from the snow dump area being below the applicable standards, sampling of the well in the southwest part of the Site is not considered necessary to evaluate environmental conditions at the Site; and,
- Considering that the well will be part of the land purchased it should be decommissioned in accordance with O.Reg.903.

8.0 **REPORT LIMITATIONS**

This report was prepared for the exclusive use of Sequoia Community Church. The report, which specifically includes all text and figures, is based on data and information collected during the document review and Site investigation work conducted by Golder Associates Ltd. and is based solely on the conditions of the property at the time of the Site work, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report.

The assessment of environmental conditions at the Site has been made using the results of chemical analysis of discrete soil and groundwater samples from a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at sampling locations. Additional study, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a site may be contaminated and remain undetected.

The services performed, as described in this report, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The content of this report is based on information collected during Golder Associates Ltd.'s Site investigation and its present understanding of the site conditions, and its professional judgment in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is either expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statues are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

The monitoring well installed in the course of this investigation is property of the Sequoia Community Church.

9.0 CLOSURE

We trust this report satisfies your current requirements. If you have any questions regarding this report please contact the undersigned.

GOLDER ASSOCIATES LTD.

frug

Maria Staneva, M.Eng. Environmental Consultant

Tim Robertson, P. Eng. Associate

MS/TDR/kg/hw n:\active\2011\1122 - contaminated lands\11-1122-0210 ph. i and ii esa, 645 longfields dr., sequoia church\phase ii esa\ph. ii esa report\rpt. ph. ii esa, 645 longfields dr., sequoia church, dec, 2011.doc

TABLE 1: SUMMARY OF SOIL ANALYTICAL DATA FOR PETROLEUM HYDROCARBONS AND BTEX

Parameter Sample depth (mbgs)	Reporting Limit	MOE Table 7 Criteria ¹	TP11-2 SA2 (soil background sample) 0.5-0.75	TP11-9 SA2 (sample collected from the former snow dump area) 0.41-0.65	TP11-9 SA12 (Duplicate of TP11-9 SA2) 0.41-0.65	SA2 (composite sample from fill piles)
Sampling date			24-Nov-11	24-Nov-11	24-Nov-11	25-Nov-11
Benzene	0.32	0.21	<0.02	<0.02	<0.02	< 0.02
Toluene	68	2.3	< 0.02	<0.02	<0.02	<0.02
Ethylbenzene	9.5	2	<0.02	<0.02	<0.02	<0.02
m/p xylenes	NV	NV	<0.02	<0.02	<0.02	<0.04
o xylene	NV	NV	<0.02	<0.02	<0.02	<0.02
Total xylenes	26	3.1	<0.02	<0.02	<0.02	<0.04
F1 (C6-C10)	55	55	<10	<10	<10	<10
F1 (C6-C10) - BTEX	55	55	<10	<10	<10	<10
F2 (C10-C16)	230	98	<10	<10	<10	<10
F3 (C16-C34)	1700	300	<10	<10	<10	<10
F4 (C34-C50)	3300	2800	<10	<10	<10	<10
Reached Baseline at C50	NV	NV	YES	YES	YES	YES
F4 Gravimetric	3300	2800		-	-	-

Notes:

All values expressed in µg/g

mbgs-metres below ground surface

<10-Not detected above the method detection limits (MDL)

NV = No value derived.

Shaded Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) - Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - Industrial/Commercial/Community Property Use, coarse textured soils.

TABLE 2: SUMMARY OF SOIL ANALYTICAL DATA FOR VOLATILE ORGANIC COMPOUNDS

Parameter	Reporting Limit	MOE Table 7 Criteria ¹	TP11-2 SA2 (background soil sample)	TP11-9 SA2 (sample collected from the former snow dump area)	TP11-9 SA12 (Duplicate of TP11-9 SA2)
Sample depth (mbgs)			0.5-0.75	0.41-0.65	0.41-0.65
Sampling date			24-Nov-11	24-Nov-11	24-Nov-11
Acetone	0.5	16	<0.5	<0.5	<0.5
Benzene	0.02	0.32	<0.02	<0.02	<0.02
Bromodichloromethane	0.05	18	<0.05	<0.05	<0.05
Bromoform	0.05	0.61	< 0.05	<0.05	<0.05
Bromomethane	0.05	0.05	<0.05	< 0.05	<0.05
Carbon Tetrachloride	0.05	0.21	< 0.05	< 0.05	<0.05
Chlorobenzene	0.05	2.4	<0.05	<0.05	<0.05
Chloroform	0.05	0.47	<0.05	<0.05	<0.05
Dibromochloromethane	0.05	13	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05	6.8	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05	9.6	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	0.05	0.2	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	0.05	17	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	0.05	0.064	< 0.05	< 0.05	< 0.05
Cis-1.2-Dichloroethylene	0.05	55	< 0.05	< 0.05	< 0.05
Trans-1,2-Dichloroethylene	0.05	1.3	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	0.05	0.16	< 0.05	< 0.05	< 0.05
Cis-1,3-Dichloropropylene	0.03	0.18	< 0.03	< 0.03	< 0.03
Trans-1,3-Dichloropropylene	0.04	0.18	< 0.04	< 0.04	<0.04
Ethylbenzene	0.02	9.5	<0.02	<0.02	<0.02
Ethylene Dibromide	0.05	0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	0.5	70	<0.5	<0.5	<0.5
Methylene Chloride	0.05	1.6	< 0.05	0.05	<0.05
Methyl Isobutyl Ketone	0.5	31	<0.5	<0.5	< 0.5
Methyl-t-Butyl Ether	0.05	11	< 0.05	< 0.05	< 0.05
Styrene	0.05	34	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	0.05	0.087	< 0.05	< 0.05	< 0.05
1.1.2.2-Tetrachloroethane	0.05	0.05	< 0.05	< 0.05	<0.05
Toluene	0.02	68	< 0.02	< 0.02	< 0.02
Tetrachloroethylene	0.05	4.5	< 0.05	< 0.05	< 0.05
1.1.1-Trichloroethane	0.05	6.1	< 0.05	< 0.05	< 0.05
1.1.2-Trichloroethane	0.05	0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	0.05	0.91	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.02	0.032	< 0.02	< 0.02	<0.02
m-Xvlene & p-Xvlene	0.02	NV	<0.02	<0.02	<0.02
o-Xvlene	0.02	NV	<0.02	<0.02	<0.02
Total Xvlenes	0.02	26	<0.02	<0.02	<0.02
Dichlorodifluoromethane	0.05	16	< 0.05	<0.05	<0.05
Hexane(n)	0.05	46	< 0.05	<0.05	<0.05
Trichlorofluoromethane	0.05	4	< 0.05	< 0.05	< 0.05

Notes:

All values expressed in µg/g

mbgs-metres below ground surface

<10-Not detected above the method detection limits (MDL)

NV = No value derived.

Shaded Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) - Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - Industrial/Commercial/Community Property Use, coarse textured soils.

Prepared By: MS

Checked By: NM

TABLE 3: SUMMARY OF SOIL ANALYTICAL DATA FOR METALS AND INORGANICS

11-1122-0210	(2000)
--------------	--------

Checked By: NM

Reporting Limit	MOE Table 7 Criteria ¹	TP11-2 SA2 (background soil sample)	(sample collected from the former snow dump area)	(sample collected from the former snow dump area)	(sample collected from the former snow dump area)	(sample collected from the former snow dump area)	TP11-9 SA12 (Duplicate of TP11- 9 SA2)	SA1 (composite sample from fill piles)	SA3 (composite sample from fill piles)
		0.5-0.75	0-0.25	0.45-0.62	0.10-0.30	0.41-0.65	0.41-0.65		
		24-Nov-11	24-Nov-11	24-Nov-11	24-Nov-11	24-Nov-11	24-Nov-11	25-Nov-11	25-Nov-11
0.2	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1	18	3	2	2	1	1	1	2	<1
0.5	670	120	72	61	29	63	64	98	27
0.2	8	0.6	0.3	0.5	<0.2	0.6	0.8	0.4	<0.2
0.05	2	-	-	-	0.28	0.27	0.25	-	-
0.1	1.9	0.1	0.1	0.2	0.4	0.2	0.2	0.2	<0.1
1	160	22	15	18	18	25	25	16	7
0.2	8	-	-	-	0.6	<0.2	<0.2	-	-
0.1	80	7.6	6.1	6.2	4.5	7.3	7.4	6.7	3.4
0.5	240	15	17	17	20	32	32	15	9.1
1	120	10	11	12	75	8	9	13	4
0.05	3.9	-	-	-	<0.05	0.08	0.09	-	-
0.5	40	<0.5	0.6	0.9	0.6	0.7	0.7	0.7	<0.5
0.5	370	16	9.8	10	9.5	16	16	12	6.5
0.5	5.5	0.6	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
0.2	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
0.05	3.3	0.15	0.13	0.09	0.08	0.12	0.12	0.14	<0.05
5	86	31	26	31	20	39	40	27	15
5	340	26	39	35	79	44	48	35	15
	NV	4.46	-	-	7.46	6.67	6.7	-	-
0.002	1.4	-	-	-	0.13	0.33	0.34	-	-
	12	0.71	0.64	0.77	0.28	7.6	7.4	-	-
0.01	0.051	-	-	-	<0.01	<0.04	<0.04	-	-
5	120	<5	<5	<5	<5	<5	<5	<5	<5
0.05	33	0.75	0.48	0.61	0.36	0.66	0.64	0.59	0.5
	Reporting Limit 0.2 1 0.5 0.1 1 0.2 0.05 0.1 1 0.2 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.05 5 0.002 0.01 5 0.05 0.05	Reporting Limit MOE Table 7 Criteria ¹ 0.2 40 1 18 0.5 670 0.2 8 0.05 2 0.1 1.9 1 160 0.2 8 0.05 2.40 0.1 1.9 1 160 0.2 8 0.1 80 0.5 240 0.5 3.9 0.5 5.5 0.2 40 0.5 3.3 5 86 5 340 0.02 1.4 12 0.01 0.02 1.4	MOE Table 7 Criteria ¹ (background soil sample) 0.5 Criteria ¹ (background soil sample) 0.5 0.5-0.75 24-Nov-11 0.5 0.2 40 <0.2 0.1 18 3 0.5 670 120 0.2 8 0.6 0.05 2 - 0.1 1.9 0.1 1 160 22 0.2 8 - 0.1 1.9 0.1 1 160 22 0.2 8 - 0.1 1.9 0.1 1 120 10 0.5 240 15 1 120 10 0.05 3.9 - 0.5 5.5 0.6 0.2 40 <0.2 0.05 3.3 0.15 5 86 31 5 340 26	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MOE Table 7 Limit MOE Table 7 Criteria ¹ (background soil sample) collected from the former snow dump area) collected from the former snow dump area) 0.5 0.5-0.75 0-0.25 0.45-0.62 24-Nov-11 24-Nov-11 24-Nov-11 24-Nov-11 0.2 40 <0.2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MOE Table 7 Limit MoE Table 7 Criteria ¹ (background soil sample) collected from the former snow dump area) collected from th	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MOE Table 7 Criteria ¹ (background soil sample) collected from the former snow dump area) collected from the former snow dump area) collected from the former snow dump area) (bufficate of TP11 9 SA2) SA2() 0.5-0.75 0-0.25 0.45-0.62 0.10-0.30 0.41-0.65 0.41-0.65 0.2 40 <0.2

Notes:

All values expressed in µg/g

mbgs-metres below ground surface

<10-Not detected above the method detection limits (MDL)

NV = No value derived.

Shaded Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) - Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - Industrial/Community Property Use, coarse textured soils.

TABLE 4: SUMMARY OF SOIL ANALYTICAL DATA FOR POLYCYCLIC AROMATIC HYDROCARBONS

Parameter	Reporting Limit	MOE Table 7 Criteria ¹	TP11-2 SA2 (background soil sample)	TP11-9 SA2 (sample collected from the former snow dump area)	TP11-9 SA12 (Duplicate of TP11-9 SA2)
Sample depth (mbgs)			0.5-0.75	0.41-0.65	0.41-0.65
Sampling date			24-Nov-11	24-Nov-11	24-Nov-11
Acenaphthene	0.005	96	<0.005	<0.01	<0.01
Acenaphthylene	0.005	0.15	<0.005	<0.01	<0.01
Anthracene	0.005	0.67	<0.005	<0.01	<0.01
Benzo(a)anthracene	0.005	0.96	<0.005	<0.01	<0.01
Benzo(a)pyrene	0.005	0.3	<0.005	0.01	<0.01
Benzo(b/j)fluoranthene	0.005	0.96	<0.005	0.02	0.01
Benzo(ghi)perylene	0.005	9.6	<0.005	0.01	<0.01
Benzo(k)fluoranthene	0.005	0.96	<0.005	<0.01	<0.01
Chrysene	0.005	9.6	<0.005	0.01	<0.01
Dibenzo(a,h)anthracene	0.005	0.1	<0.005	<0.01	<0.01
luoranthene	0.005	9.6	<0.005	0.02	0.02
luorene	0.005	62	<0.005	<0.01	<0.01
ndeno(1,2,3-cd)pyrene	0.005	0.76	<0.005	0.01	<0.01
-Methylnaphthalene *	0.005	76	<0.005	<0.01	<0.01
2-Methylnaphthalene *	0.005	76	<0.005	<0.01	<0.01
Naphthalene	0.005	9.6	< 0.005	<0.01	<0.01
Phenanthrene	0.005	12	<0.005	<0.01	<0.01
Pyrene	0.005	96	<0.005	0.02	0.02

Notes:

All values expressed in µg/g

mbgs-metres below ground surface

<10-Not detected above the method detection limits (MDL)

NV = No value derived.

Shaded

Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) - Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - Industrial/Commercial/Community Property Use, coarse textured soils. * The methylnaphthalene standards are appliable to both 1-Methylnaphthelene and 2-Methylnapthalene, with the provision that if both are detected the

sum of the two must not exceed the standard.

TABLE 5: SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR PETROLEUM HYDROCARBONS AND BTEX

Parameter	Reporting Limit	MOE Table 7 Criteria ¹	MW/BH 11-8	MW/BH 11-88 (Duplicate of MW/BH11-8)
Sampling date			30-Nov-11	30-Nov-11
Benzene	0.1	0.5	0.4	0.4
Toluene	0.2	320	0.2	0.2
Ethylbenzene	0.1	54	<0.1	<0.1
m/p xylenes	0.1	NV	<0.1	<0.1
o xylene	0.1	NV	<0.1	<0.1
Total Xylenes	0.1	72	<0.1	<0.1
F1 (C6-C10)	25	420	<25	<25
F1 (C6-C10) - BTEX	25	420	<25	<25
F2 (C10-C16)	100	150	<100	<100
F3 (C16-C34)	100	500	<100	<100
F4 (C34-C50)	100	500	<100	<100
Reached Baseline at C50		NV	YES	YES
F4 Gravimetric		500		

Notes:

All values expressed in µg/L

NV = No value derived.

<25-Not detected above the method detection limits (MDL)

Shaded Exceeds M

Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) -Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - All Types of Property Use, coarse textured soils.

TABLE6: SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VOLATILE ORGANIC COMPOUNDS

Parameter	Reporting	MOE Table 7 Criteria ¹	MW/BH 11-8	MW/BH 11-88 (Duplicate of MW/BH11-8)
Sampling date		ontena	30-Nov-11	30-Nov-11
Acetone	10	100000	<10	<10
Benzene	0.1	0.5	0.4	0.4
Bromodichloromethane	0.1	67000	0.1	0.1
Bromoform	0.2	5	<0.2	<0.2
Bromomethane	0.5	0.89	<0.5	<0.5
Carbon Tetrachloride	0.1	0.2	<0.1	<0.1
Chlorobenzene	0.1	140	<0.1	<0.1
Chloroform	0.1	2	1.8	1.9
Dibromochloromethane	0.2	65000	<0.2	<0.2
1,2-Dichlorobenzene	0.2	150	<0.2	<0.2
1,3-Dichlorobenzene	0.2	7600	<0.2	<0.2
1,4-Dichlorobenzene	0.2	0.5	<0.2	<0.2
1,1-Dichloroethane	0.1	11	<0.1	<0.1
1,2-Dichloroethane	0.2	0.5	<0.2	<0.2
1,1-Dichloroethylene	0.1	0.5	<0.1	<0.1
Cis-1,2-Dichloroethylene	0.1	1.6	<0.1	<0.1
Trans-1,2-Dichloroethylene	0.1	1.6	<0.1	<0.1
1,2-Dichloropropane	0.1	0.58	<0.1	<0.1
Cis-1,3-Dichloropropylene	0.2	0.5	<0.2	<0.2
Trans-1,3-Dichloropropylene	0.2	0.5	<0.2	<0.2
Ethylbenzene	0.1	54	<0.1	<0.1
Ethylene Dibromide	0.2	0.2	<0.2	<0.2
Methyl Ethyl Ketone	5	21000	<5	<5
Methylene Chloride	0.5	26	<0.5	<0.5
Methyl Isobutyl Ketone	5	5200	<5	<5
Methyl-t-Butyl Ether	0.2	15	<0.2	<0.2
Styrene	0.2	43	<0.2	<0.2
1,1,1,2-Tetrachloroethane	0.1	1.1	<0.1	<0.1
1,1,2,2-Tetrachloroethane	0.2	0.5	<0.2	<0.2
Toluene	0.2	320	0.2	0.2
Tetrachloroethylene	0.1	0.5	<0.1	<0.1
1,1,1-Trichloroethane	0.1	23	<0.1	<0.1
1,1,2-Trichloroethane	0.2	0.5	<0.2	<0.2
Trichloroethylene	0.1	0.5	<0.1	<0.1
Vinyl Chloride	0.2	0.5	<0.2	<0.2
m-Xylene & p-Xylene	0.1	NV	<0.1	<0.1
o-Xylene	0.1	NV	<0.1	<0.1
Total Xylenes	0.1	72	<0.1	<0.1
Dichlorodifluoromethane	0.5	3500	<0.5	<0.5
Hexane(n)	0.5	5	<0.5	<0.5
Trichlorofluoromethane	0.2	2000	<0.2	<0.2

Notes:

All values expressed in µg/L

NV = No value derived.

Shaded

Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) - Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - All Types of Property Use, coarse textured soils.

TABLE 7: SUMMARY OF GROUNDWATER ANALYTICAL DATA11-1122-0210 (2000)FOR METALS AND INORGANICS

Parameter	Reporting	MOE Table 7 Standard ⁽¹⁾	MW/BH 11-8	MW/BH 11-88 (Duplicate of MW/BH11-8)
Sampling date	Linit	Stanuaru	30-Nov-11	30-Nov-11
Antimony	0.5	16000	<0.5	1.3
Arsenic	1	1500	<1	<1
Barium	2	23000	76	73
Beryllium	0.5	53	<0.5	<0.5
Boron	10	36000	32	37
Cadmium	0.1	2.1	0.12	0.1
Chromium	5	640	<5	<5
Cobalt	0.5	52	9.2	9.8
Copper	1	69	28	28
Lead	0.5	20	<0.5	<0.5
Molybdenum	0.5	7300	12	13
Nickel	1	390	32	33
Sodium	100	1800000	200000	200000
Selenium	2	50	<2	<2
Silver	0.1	1.2	<0.1	<0.1
Thallium	0.05	400	<0.05	<0.05
Vanadium	0.5	200	<0.5	<0.5
Zinc	5	890	54	54
Chloride	1000	1800000	170000	150000
Uranium	0.1	330	7.7	8.2

Notes:

Prepared By: MS Checked By: NM

<0.005-Not detected above the method detection limits (MDL)

NV = No value derived. N/A = Not applicable.

Shaded Exceeds MOE Table 7 Standards

¹- Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) - Table 7 - Generic Site Condition Standards for Shallow Soils in a Non Potable Ground Water Condition - All Types of Property Use, coarse textured soils.

APPROXIMATE SITE BOUNDARY

NOTE

THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT No. 11-1122-0210/2000.

REFERENCE

DATA PROVIDED BY ESRI CANADA ARCGIS ONLINE 2011 DATUM: NAD 83, COORDINATE SYSTEM: UTM ZONE 18

	Golder Golder Ottawa, Ontario			DATE DESIGN GIS	16 Dec. 2011 MS BR	KEY PLAN
PROJECT No.	11-1122-0210			CHECK	MS	
SCALE	AS SHOWN	REV.	0	REVIEW	TDR	645 LONGFIELDS DRIVE, OTTAWA, ONTARIO

NOTE

THIS FIGURE SHOULD BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT NO. 11-1122-0210/2000.

REFERENCE

Golder

Ottawa, Ontario

BING MAPS HYBRID DATA PROVIDED BY ESRI CANADA ARCGIS ONLINE 2011.

HTTP://WWW.ESRI.COM/SOFTWARE/ARCGIS/ARCGISONLINE/BING-MAPS.HTML PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 18

BOREHOLE AND **TEST PIT LOCATIONS** PROJECT No. 11-1122-0210 SCALE AS SHOWN REV. 0

 DESIGN
 MS
 07 Dec. 2011

 GIS
 BR
 16 Dec. 2011

CHECK MS 16 Dec. 2011

REVIEW TOR 16 Dec 2011

FIGURE 2

NCL		TION: -90° AZIMUTH: DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE (m/min)	-LUSH <u>COLOUR</u>	FR CL SH VN	DF /FX-F -CLE/ I-SHE I-VEIN RECO DTAL RE %			5: CN CON J-JOII P-POI S-SLI		D ISIDE	OR: SI R S ED PI ACT. DEX R 0.3	M-SM -ROL T-STI L-PL/ DIF COR	ANAF	ION Dri	Iling FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED INUITY DATA E AND SURFACI DESCRIPTION	BC MB B-E	-BRC 3-MEC 3EDD BEDD HYE CONE	DKEN CH. E DING DRAU DUC ^T	DIAMETRAL	POINT LOAD INDEX (MPa)	NOTES WATER LEV INSTRUMENT	; VEL: ATI
0		GROUND SURFACE		96.03				28	48	8	248		4 2	10		0,0	100				Ţ,		N	4 9		
1		Slightly weathered yellow brown and light grey SANDSTONE		0.00	1																				Bentonite Seal	
2		Fresh grey SANDSTONE		93.59 2.44	2																					
4	ore				3								•••••••••••••••••••••••••••••••••••••••												Silica Sand	
2 Rotary	NQ C				4																				Ī	N N N N
					5							•														
6					6																					
7					7																				38 mm Diam. PVC #10 Slot Screen	
8					8																					<u>Xa,Xa,Xa,Xa,Xa,Xa,Xa,</u> Xa,
10		End of Drillhole		86.78																					W.L in Screen at 91.06 m Elev. on Nov. 30, 2011	

APPENDIX B Record of Test Pits

Golder

APPENDIX B Test Pit Records, 645 Longfields Drive, Ottawa, ON

Test Pit Number	Depth Interval (mbgs)	Soil Type	Sample ID (Depth in mbgs)	Organic Vapour Readings (ppm)	Observations	
TP11-2	0-0.16	Dark brown to black and red-brown SAND and GRAVEL with organic matter and roots	SA1 (0.05-0.17)	1		
	0.16-0.75	Red brown and grey brown SILTY SAND and GRAVEL with cobles, boulders and rock slabs (0.6x0.9x0.2m)	SA2 (0.5-0.75)	1.7	Test pit dry	
	0.75	Refusal at SANDSTONE BEDROCK	NA	NA		
TP11-5	0-0.20	Grey to grey brown sand and gravel, trace silt (FILL)	SA1 (0-0.25)	1.5		
	0.20-0.40	Brown SILTY SAND with gravel and sandstone, fragments of bedrock (top of weathered bedrock)	No samples was collected due to the presence of mostly bedrock fragments	NA	Test pit dry	
	0.40	Refusal at SANDSTONE BEDROCK	NA	NA		
TP11-6	0-0.30	Grey brown sand and gravel and some sandstone cobbles and boulders 0.6x0.6 m (FILL)	SA1 (0.10-0.30)	0.8	Asphaltic and concrete pieces and traces of plastic and metal observed	
	0.30-0.37	Dark brown TOPSOIL	NA	NA		
	0.37-0.62	Red-brown SAND and GRAVEL, some silt, trace organic matter and roots	SA2 (0.45-0.62)	1.5	Test pit dry	
	0.62	Refusal at SANDSTONE BEDROCK	NA	NA		
TP11-9	0-0.30	Brown and grey sand with organic matter, silty sand, trace gravel (FILL)	SA1 (0.10-0.30)	1.3	Trace of plastic pieces observed	
	0.30-0.40	Dark brown silty sand, some gravel with trace organic matter (TOPSOIL)	NA	NA		
	0.40-0.65	Brown and grey brown silty SAND and GRAVEL, traces organic matter	SA2 (0.41-0.65) 1.9 Test pit dr SA12 (0.41-0.65) 1.9 NA NA		Test pit dry	
	0.65	Refusal at SANDSTONE BEDROCK]	

Note:

Samples in bold indicate samples submitted for laboratory analysis. NA -No samples or organic vapour readings were completed mbgs-metres below ground surface

> Logged by: PH Checked by: AM

N:Active/2011/1122 - Contaminated Lands/11-1122-0210 Ph. I and II ESA, 645 Longfields Dr., Sequoia Church/Phase II ESA/Ph. II ESA Report/Appendix B (Test Pit Records)/Test Pit Records Dec 2011.doc

APPENDIX C

Laboratory Certificates of Analyses

Your Project #: 11-1122-0210 Site#: COLONEL BY DRIVE. Site Location: 645 LONGFIELDS DRIVE Your C.O.C. #: 30502201, 305022-01-01

Attention: Maria Staneva

Golder Associates Ltd 32 Steacie Dr Kanata, ON K2K 2A9

Report Date: 2011/12/09

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B1I9199 Received: 2011/12/01, 08:30

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Chloride by Automated Colourimetry ()	2	N/A	2011/12/06 CAM SOP-00463	SM 4500 CI E
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2011/12/03 OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water	2	2011/12/02	2011/12/02 OTT SOP-00001	CCME Hydrocarbons
Dissolved Metals by ICPMS ()	1	N/A	2011/12/06 CAM SOP-00447	EPA 6020
Dissolved Metals by ICPMS ()	1	N/A	2011/12/07 CAM SOP-00447	EPA 6020
Volatile Organic Compounds in Water	2	N/A	2011/12/08 CAM SOP-00226	EPA 8260 modified

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

* Results relate only to the items tested.

(1) This test was performed by Maxxam Analytics Mississauga

Success Through Science®

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JULIE CLEMENT, Ottawa Customer Service Email: JClement@maxxam.ca Phone# (613) 274-3549

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Page 2 of 18

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

RESULTS OF ANALYSES OF WATER

Maxxam ID		LV3115	LV3116		
Sampling Date		2011/11/30	2011/11/30		
	Units	MW/BH 11-8	MW/BH 11-88	RDL	QC Batch
Inorganics			-	-	-
Dissolved Chloride (Cl)	mg/L	170	150	2	2702922

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 3 of 18

Maxxam

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		LV3115		LV3116		
Sampling Date		2011/11/30		2011/11/30		
	Units	MW/BH 11-8	QC Batch	MW/BH 11-88	RDL	QC Batch
Metals						
Dissolved Cesium (Cs)	mg/L	<0.00020	2703329	<0.00020	0.00020	2704597
Dissolved Rubidium (Rb)	mg/L	0.0037	2703329	0.0038	0.00020	2704597
Dissolved Aluminum (Al)	mg/L	0.0069	2703329	0.0067	0.0050	2704597
Dissolved Antimony (Sb)	mg/L	<0.00050	2703329	0.0013	0.00050	2704597
Dissolved Arsenic (As)	mg/L	<0.0010	2703329	<0.0010	0.0010	2704597
Dissolved Barium (Ba)	mg/L	0.076	2703329	0.073	0.0020	2704597
Dissolved Beryllium (Be)	mg/L	<0.00050	2703329	<0.00050	0.00050	2704597
Dissolved Bismuth (Bi)	mg/L	<0.0010	2703329	0.0011	0.0010	2704597
Dissolved Boron (B)	mg/L	0.032	2703329	0.037	0.010	2704597
Dissolved Cadmium (Cd)	mg/L	0.00012	2703329	0.00010	0.00010	2704597
Dissolved Calcium (Ca)	mg/L	120	2703329	130	0.20	2704597
Dissolved Chromium (Cr)	mg/L	<0.0050	2703329	<0.0050	0.0050	2704597
Dissolved Cobalt (Co)	mg/L	0.0092	2703329	0.0098	0.00050	2704597
Dissolved Copper (Cu)	mg/L	0.028	2703329	0.028	0.0010	2704597
Dissolved Iron (Fe)	mg/L	<0.10	2703329	<0.10	0.10	2704597
Dissolved Lead (Pb)	mg/L	<0.00050	2703329	<0.00050	0.00050	2704597
Dissolved Lithium (Li)	mg/L	<0.0050	2703329	<0.0050	0.0050	2704597
Dissolved Magnesium (Mg)	mg/L	13	2703329	14	0.050	2704597
Dissolved Manganese (Mn)	mg/L	0.42	2703329	0.44	0.0020	2704597
Dissolved Molybdenum (Mo)	mg/L	0.012	2703329	0.013	0.00050	2704597
Dissolved Nickel (Ni)	mg/L	0.032	2703329	0.033	0.0010	2704597
Dissolved Phosphorus (P)	mg/L	<0.10	2703329	<0.10	0.10	2704597
Dissolved Potassium (K)	mg/L	4.2	2703329	4.3	0.20	2704597
Dissolved Selenium (Se)	mg/L	<0.0020	2703329	<0.0020	0.0020	2704597
Dissolved Silicon (Si)	mg/L	2.9	2703329	2.9	0.050	2704597
Dissolved Silver (Ag)	mg/L	<0.00010	2703329	<0.00010	0.00010	2704597
Dissolved Sodium (Na)	mg/L	200	2703329	200	0.10	2704597
Dissolved Strontium (Sr)	mg/L	0.83	2703329	0.85	0.0010	2704597
Dissolved Tellurium (Te)	mg/L	<0.0010	2703329	<0.0010	0.0010	2704597
Dissolved Thallium (TI)	mg/L	<0.000050	2703329	<0.000050	0.000050	2704597
Dissolved Tin (Sn)	mg/L	<0.0010	2703329	<0.0010	0.0010	2704597
Dissolved Titanium (Ti)	mg/L	<0.0050	2703329	<0.0050	0.0050	2704597
Dissolved Tungsten (W)	mg/L	1.1	2703329	1.1	0.010	2704597
Dissolved Uranium (U)	mg/L	0.0077	2703329	0.0082	0.00010	2704597
Dissolved Vanadium (V)	mg/L	<0.00050	2703329	<0.00050	0.00050	2704597

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		LV3115		LV3116		
Sampling Date		2011/11/30		2011/11/30		
	Units	MW/BH 11-8	QC Batch	MW/BH 11-88	RDL	QC Batch
Dissolved Zinc (Zn)	mg/L	0.054	2703329	0.054	0.0050	2704597
Dissolved Zirconium (Zr)	mg/L	<0.0010	2703329	<0.0010	0.0010	2704597

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 5 of 18

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		LV3115	LV3116		
Sampling Date		2011/11/30	2011/11/30		
	Units	MW/BH 11-8	MW/BH 11-88	RDL	QC Batch
Volatile Organics					
Dichlorodifluoromethane (FREON 12)	ug/L	<0.5	<0.5	0.5	2704039
Hexane	ug/L	<0.5	<0.5	0.5	2704039
Acetone (2-Propanone)	ug/L	<10	<10	10	2704039
Benzene	ug/L	0.4	0.4	0.1	2704039
Bromodichloromethane	ug/L	0.1	0.1	0.1	2704039
Bromoform	ug/L	<0.2	<0.2	0.2	2704039
Bromomethane	ug/L	<0.5	<0.5	0.5	2704039
Carbon Tetrachloride	ug/L	<0.1	<0.1	0.1	2704039
Chlorobenzene	ug/L	<0.1	<0.1	0.1	2704039
Chloroform	ug/L	1.8	1.9	0.1	2704039
Dibromochloromethane	ug/L	<0.2	<0.2	0.2	2704039
1,2-Dichlorobenzene	ug/L	<0.2	<0.2	0.2	2704039
1,3-Dichlorobenzene	ug/L	<0.2	<0.2	0.2	2704039
1,4-Dichlorobenzene	ug/L	<0.2	<0.2	0.2	2704039
1,1-Dichloroethane	ug/L	<0.1	<0.1	0.1	2704039
1,2-Dichloroethane	ug/L	<0.2	<0.2	0.2	2704039
1,1-Dichloroethylene	ug/L	<0.1	<0.1	0.1	2704039
cis-1,2-Dichloroethylene	ug/L	<0.1	<0.1	0.1	2704039
trans-1,2-Dichloroethylene	ug/L	<0.1	<0.1	0.1	2704039
1,2-Dichloropropane	ug/L	<0.1	<0.1	0.1	2704039
cis-1,3-Dichloropropene	ug/L	<0.2	<0.2	0.2	2704039
trans-1,3-Dichloropropene	ug/L	<0.2	<0.2	0.2	2704039
Ethylbenzene	ug/L	<0.1	<0.1	0.1	2704039
Ethylene Dibromide	ug/L	<0.2	<0.2	0.2	2704039
Methylene Chloride(Dichloromethane)	ug/L	<0.5	<0.5	0.5	2704039
Methyl Isobutyl Ketone	ug/L	<5	<5	5	2704039
Methyl Ethyl Ketone (2-Butanone)	ug/L	<5	<5	5	2704039
Methyl t-butyl ether (MTBE)	ug/L	<0.2	<0.2	0.2	2704039
Styrene	ug/L	<0.2	<0.2	0.2	2704039
1,1,1,2-Tetrachloroethane	ug/L	<0.1	<0.1	0.1	2704039
1,1,2,2-Tetrachloroethane	ug/L	<0.2	<0.2	0.2	2704039
Tetrachloroethylene	ug/L	<0.1	<0.1	0.1	2704039
Toluene	ug/L	0.2	0.2	0.2	2704039
1,1,1-Trichloroethane	ug/L	<0.1	<0.1	0.1	2704039
1,1,2-Trichloroethane	ug/L	<0.2	<0.2	0.2	2704039

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

VOLATILE ORGANICS BY GC/MS (WATER)

Maxyam ID		1.1/3115	1.1/3116		
Sampling Date		2011/11/30	2011/11/30		
	Units	MW/BH 11-8	MW/BH 11-88	RDL	QC Batch
Trichloroethylene	ug/L	<0.1	<0.1	0.1	2704039
Vinyl Chloride	ug/L	<0.2	<0.2	0.2	2704039
p+m-Xylene	ug/L	<0.1	<0.1	0.1	2704039
o-Xylene	ug/L	<0.1	<0.1	0.1	2704039
Xylene (Total)	ug/L	<0.1	<0.1	0.1	2704039
Trichlorofluoromethane (FREON 11)	ug/L	<0.2	<0.2	0.2	2704039
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	96	96		2704039
D4-1,2-Dichloroethane	%	103	101		2704039
D8-Toluene	%	97	99		2704039

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		LV3115	LV3116		
Sampling Date		2011/11/30	2011/11/30		
	Units	MW/BH 11-8	MW/BH 11-88	RDL	QC Batch
BTEX & F1 Hydrocarbons					
F1 (C6-C10)	ug/L	<25	<25	25	2701177
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	2701177
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	2700727
F3 (C16-C34 Hydrocarbons)	ug/L	<100	<100	100	2700727
F4 (C34-C50 Hydrocarbons)	ug/L	<100	<100	100	2700727
Reached Baseline at C50	ug/L	YES	YES		2700727
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	95	95		2701177
4-Bromofluorobenzene	%	98	112		2701177
D10-Ethylbenzene	%	82	82		2701177
D4-1,2-Dichloroethane	%	116	113		2701177
o-Terphenyl	%	84	87		2700727

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

Test Summary

Maxxam ID LV3115 Sample ID MW/BH 11-8 Matrix Water Collected 2011/11/30 Shipped Received 2011/12/01

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Chloride by Automated Colourimetry	AC	2702922	N/A	2011/12/06	DEONARINE RAMNARINE
Petroleum Hydro. CCME F1 & BTEX in Wat	HSGC/MSFD	2701177	N/A	2011/12/03	STEVE ROBERTS
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	2700727	2011/12/02	2011/12/02	LYNDSEY HART
Dissolved Metals by ICPMS	ICP/MS	2703329	N/A	2011/12/06	JOHN BOWMAN
Volatile Organic Compounds in Water	P&T/MS	2704039	N/A	2011/12/08	PAUL RUBINATO

Maxxam ID LV3116 Sample ID MW/BH 11-88 Matrix Water Collected 2011/11/30 Shipped Received 2011/12/01

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Chloride by Automated Colourimetry	AC	2702922	N/A	2011/12/06	DEONARINE RAMNARINE
Petroleum Hydro. CCME F1 & BTEX in Wat	HSGC/MSFD	2701177	N/A	2011/12/03	STEVE ROBERTS
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	2700727	2011/12/02	2011/12/02	LYNDSEY HART
Dissolved Metals by ICPMS	ICP/MS	2704597	N/A	2011/12/07	JOHN BOWMAN
Volatile Organic Compounds in Water	P&T/MS	2704039	N/A	2011/12/08	PAUL RUBINATO

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

Package 1 -2.0°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Custody seal was not present on the cooler.

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

			Matrix Spike		Spiked Blank		Method Blank		RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2700727	o-Terphenyl	2011/12/02	91	30 - 130	91	30 - 130	86	%		
2700727	F2 (C10-C16 Hydrocarbons)	2011/12/02	103	50 - 130	108	70 - 130	<100	ug/L	NC	50
2700727	F3 (C16-C34 Hydrocarbons)	2011/12/02	103	50 - 130	108	70 - 130	<100	ug/L	NC	50
2700727	F4 (C34-C50 Hydrocarbons)	2011/12/02	103	50 - 130	108	70 - 130	<100	ug/L	NC	50
2701177	1,4-Difluorobenzene	2011/12/03	89	70 - 130	91	70 - 130	92	%		
2701177	4-Bromofluorobenzene	2011/12/03	115	70 - 130	118	70 - 130	76	%		
2701177	D10-Ethylbenzene	2011/12/03	86	70 - 130	84	70 - 130	83	%		
2701177	D4-1,2-Dichloroethane	2011/12/03	106	70 - 130	92	70 - 130	108	%		
2701177	F1 (C6-C10)	2011/12/03	98	70 - 130	104	70 - 130	<25	ug/L	NC	40
2701177	F1 (C6-C10) - BTEX	2011/12/03					<25	ug/L	NC	40
2702922	Dissolved Chloride (CI)	2011/12/06	NC	75 - 125	105	80 - 120	<1	mg/L	0.02	20
2703329	Dissolved Cesium (Cs)	2011/12/06	95	80 - 120	99	80 - 120	<0.00020	mg/L		
2703329	Dissolved Rubidium (Rb)	2011/12/06	97	80 - 120	100	80 - 120	<0.00020	mg/L		
2703329	Dissolved Aluminum (AI)	2011/12/06	98	80 - 120	103	80 - 120	<0.0050	mg/L	NC	20
2703329	Dissolved Antimony (Sb)	2011/12/06	101	80 - 120	100	80 - 120	<0.00050	mg/L		
2703329	Dissolved Arsenic (As)	2011/12/06	97	80 - 120	97	80 - 120	<0.0010	mg/L		
2703329	Dissolved Barium (Ba)	2011/12/06	97	80 - 120	99	80 - 120	<0.0020	mg/L		
2703329	Dissolved Beryllium (Be)	2011/12/06	102	80 - 120	102	80 - 120	<0.00050	mg/L		
2703329	Dissolved Bismuth (Bi)	2011/12/06	97	80 - 120	98	80 - 120	<0.0010	mg/L		
2703329	Dissolved Boron (B)	2011/12/06	103	80 - 120	103	80 - 120	<0.010	mg/L		
2703329	Dissolved Cadmium (Cd)	2011/12/06	100	80 - 120	102	80 - 120	<0.00010	mg/L		
2703329	Dissolved Calcium (Ca)	2011/12/06	NC	80 - 120	97	80 - 120	<0.20	mg/L	0.6	20
2703329	Dissolved Chromium (Cr)	2011/12/06	97	80 - 120	99	80 - 120	<0.0050	mg/L		
2703329	Dissolved Cobalt (Co)	2011/12/06	96	80 - 120	99	80 - 120	<0.00050	mg/L		
2703329	Dissolved Copper (Cu)	2011/12/06	93	80 - 120	97	80 - 120	<0.0010	mg/L		
2703329	Dissolved Iron (Fe)	2011/12/06	98	80 - 120	99	80 - 120	<0.10	mg/L		
2703329	Dissolved Lead (Pb)	2011/12/06	96	80 - 120	97	80 - 120	<0.00050	mg/L		
2703329	Dissolved Lithium (Li)	2011/12/06	101	80 - 120	98	80 - 120	<0.0050	mg/L		
2703329	Dissolved Magnesium (Mg)	2011/12/06	NC	80 - 120	100	80 - 120	<0.050	mg/L	0.3	20
2703329	Dissolved Manganese (Mn)	2011/12/06	95	80 - 120	98	80 - 120	<0.0020	mg/L		
2703329	Dissolved Molybdenum (Mo)	2011/12/06	103	80 - 120	101	80 - 120	<0.00050	mg/L		
2703329	Dissolved Nickel (Ni)	2011/12/06	94	80 - 120	97	80 - 120	<0.0010	mg/L		
2703329	Dissolved Phosphorus (P)	2011/12/06	98	80 - 120	103	80 - 120	<0.10	mg/L		
2703329	Dissolved Potassium (K)	2011/12/06	95	80 - 120	99	80 - 120	<0.20	mg/L		
2703329	Dissolved Selenium (Se)	2011/12/06	100	80 - 120	101	80 - 120	<0.0020	mg/L		
2703329	Dissolved Silicon (Si)	2011/12/06	96	80 - 120	103	80 - 120	<0.050	mg/L		
2703329	Dissolved Silver (Ag)	2011/12/06	96	80 - 120	98	80 - 120	< 0.00010	mg/L		
2703329	Dissolved Sodium (Na)	2011/12/06	NC	80 - 120	103	80 - 120	<0.10	mg/L		
2703329	Dissolved Strontium (Sr)	2011/12/06	NC	80 - 120	104	80 - 120	<0.0010	mg/L		
2703329	Dissolved Tellurium (Te)	2011/12/06	96	80 - 120	97	80 - 120	<0.0010	mg/L		

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

			Matrix Spike		Spiked Blank		Method Blank		RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2703329	Dissolved Thallium (TI)	2011/12/06	96	80 - 120	97	80 - 120	<0.000050	mg/L		
2703329	Dissolved Tin (Sn)	2011/12/06	102	80 - 120	104	80 - 120	<0.0010	mg/L		
2703329	Dissolved Titanium (Ti)	2011/12/06	97	80 - 120	99	80 - 120	<0.0050	mg/L		
2703329	Dissolved Tungsten (W)	2011/12/06	100	80 - 120	101	80 - 120	<0.0010	mg/L		
2703329	Dissolved Uranium (U)	2011/12/06	98	80 - 120	99	80 - 120	<0.00010	mg/L		
2703329	Dissolved Vanadium (V)	2011/12/06	99	80 - 120	99	80 - 120	<0.00050	mg/L		
2703329	Dissolved Zinc (Zn)	2011/12/06	97	80 - 120	100	80 - 120	<0.0050	mg/L		
2703329	Dissolved Zirconium (Zr)	2011/12/06	104	80 - 120	103	80 - 120	<0.0010	mg/L		
2704039	4-Bromofluorobenzene	2011/12/08			101	70 - 130	96	%		
2704039	4-Bromofluorobenzene DUP	2011/12/08			100	70 - 130				
2704039	D4-1,2-Dichloroethane	2011/12/08			98	70 - 130	103	%		
2704039	D4-1,2-Dichloroethane DUP	2011/12/08			99	70 - 130				
2704039	D8-Toluene	2011/12/08			101	70 - 130	96	%		
2704039	D8-Toluene DUP	2011/12/08			102	70 - 130				
2704039	Dichlorodifluoromethane (FREON 12)	2011/12/08			95	60 - 140	<0.5	ug/L	13.0	40
2704039	Dichlorodifluoromethane (FREON 12) DUP	2011/12/08			108	60 - 140				
2704039	Hexane	2011/12/08			94	70 - 130	<0.5	ug/L	10.4	40
2704039	Hexane DUP	2011/12/08			105	70 - 130				
2704039	Acetone (2-Propanone)	2011/12/08			85	60 - 140	<10	ug/L	11.8	40
2704039	Acetone (2-Propanone) DUP	2011/12/08			95	60 - 140				
2704039	Benzene	2011/12/08			94	70 - 130	<0.1	ug/L	9.0	40
2704039	Benzene DUP	2011/12/08			103	70 - 130				
2704039	Bromodichloromethane	2011/12/08			94	70 - 130	<0.1	ug/L	9.0	40
2704039	Bromodichloromethane DUP	2011/12/08			103	70 - 130				
2704039	Bromoform	2011/12/08			83	70 - 130	<0.2	ug/L	10.3	40
2704039	Bromoform DUP	2011/12/08			92	70 - 130				
2704039	Bromomethane	2011/12/08			94	60 - 140	<0.5	ug/L	15.8	40
2704039	Bromomethane DUP	2011/12/08			110	60 - 140				
2704039	Carbon Tetrachloride	2011/12/08			91	70 - 130	<0.1	ug/L	10.3	40
2704039	Carbon Tetrachloride DUP	2011/12/08			101	70 - 130				
2704039	Chlorobenzene	2011/12/08			94	70 - 130	<0.1	ug/L	10.3	40
2704039	Chlorobenzene DUP	2011/12/08			104	70 - 130				
2704039	Chloroform	2011/12/08			91	70 - 130	<0.1	ug/L	9.9	40
2704039	Chloroform DUP	2011/12/08			101	70 - 130				
2704039	Dibromochloromethane	2011/12/08			89	70 - 130	<0.2	ug/L	9.2	40
2704039	Dibromochloromethane DUP	2011/12/08			97	70 - 130				
2704039	1,2-Dichlorobenzene	2011/12/08			94	70 - 130	<0.2	ug/L	10.5	40
2704039	1,2-Dichlorobenzene DUP	2011/12/08			105	70 - 130				
2704039	1,3-Dichlorobenzene	2011/12/08			96	70 - 130	<0.2	ug/L	10.1	40
2704039	1,3-Dichlorobenzene DUP	2011/12/08			106	70 - 130				

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

			Matrix Spike		Spiked Blank		Method Blank		RP	סי
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2704039	1,4-Dichlorobenzene	2011/12/08			97	70 - 130	<0.2	ug/L	10.3	40
2704039	1,4-Dichlorobenzene DUP	2011/12/08			107	70 - 130				
2704039	1,1-Dichloroethane	2011/12/08			92	70 - 130	<0.1	ug/L	9.6	40
2704039	1,1-Dichloroethane DUP	2011/12/08			102	70 - 130				
2704039	1,2-Dichloroethane	2011/12/08			93	70 - 130	<0.2	ug/L	9.4	40
2704039	1,2-Dichloroethane DUP	2011/12/08			102	70 - 130				
2704039	1,1-Dichloroethylene	2011/12/08			95	70 - 130	<0.1	ug/L	9.8	40
2704039	1,1-Dichloroethylene DUP	2011/12/08			105	70 - 130				
2704039	cis-1,2-Dichloroethylene	2011/12/08			94	70 - 130	<0.1	ug/L	10.2	40
2704039	cis-1,2-Dichloroethylene DUP	2011/12/08			104	70 - 130				
2704039	trans-1,2-Dichloroethylene	2011/12/08			94	70 - 130	<0.1	ug/L	10.3	40
2704039	trans-1,2-Dichloroethylene DUP	2011/12/08			105	70 - 130				
2704039	1,2-Dichloropropane	2011/12/08			93	70 - 130	<0.1	ug/L	9.5	40
2704039	1,2-Dichloropropane DUP	2011/12/08			103	70 - 130				
2704039	cis-1,3-Dichloropropene	2011/12/08			96	70 - 130	<0.2	ug/L	8.7	40
2704039	cis-1,3-Dichloropropene DUP	2011/12/08			105	70 - 130				
2704039	trans-1,3-Dichloropropene	2011/12/08			110	70 - 130	<0.2	uq/L	9.2	40
2704039	trans-1.3-Dichloropropene DUP	2011/12/08			92	70 - 130				
2704039	Ethylbenzene	2011/12/08			93	70 - 130	<0.1	ua/L	10.0	40
2704039	Ethylbenzene DUP	2011/12/08			102	70 - 130				
2704039	Ethylene Dibromide	2011/12/08			96	70 - 130	<0.2	ug/L	9.8	40
2704039	Ethylene Dibromide DUP	2011/12/08			106	70 - 130				
2704039	Methylene Chloride(Dichloromethane)	2011/12/08			93	70 - 130	<0.5	ug/L	7.6	40
2704039	Methylene Chloride(Dichloromethane) DUP	2011/12/08			100	70 - 130				
2704039	Methyl Isobutyl Ketone	2011/12/08			99	70 - 130	<5	uq/L	7.4	40
2704039	Methyl Isobutyl Ketone DUP	2011/12/08			106	70 - 130				
2704039	Methyl Ethyl Ketone (2-Butanone)	2011/12/08			84	60 - 140	<5	uq/L	5.7	40
2704039	Methyl Ethyl Ketone (2-Butanone) DUP	2011/12/08			89	60 - 140				
2704039	Methyl t-butyl ether (MTBE)	2011/12/08			95	70 - 130	<0.2	ug/L	7.5	40
2704039	Methyl t-butyl ether (MTBE) DUP	2011/12/08			102	70 - 130				
2704039	Styrene	2011/12/08			103	70 - 130	<0.2	ug/L	9.5	40
2704039	Styrene DUP	2011/12/08			113	70 - 130				
2704039	1,1,1,2-Tetrachloroethane	2011/12/08			94	70 - 130	<0.1	uq/L	9.8	40
2704039	1,1,1,2-Tetrachloroethane DUP	2011/12/08			104	70 - 130				
2704039	1.1.2.2-Tetrachloroethane	2011/12/08			96	70 - 130	<0.2	ua/L	9.3	40
2704039	1.1.2.2-Tetrachloroethane DUP	2011/12/08			105	70 - 130				
2704039	Tetrachloroethylene	2011/12/08			92	70 - 130	<0.1	ug/L	10.9	40
2704039	Tetrachloroethylene DUP	2011/12/08			103	70 - 130				
2704039	Toluene	2011/12/08			94	70 - 130	<0.2	ug/L	10.2	40
2704039	Toluene DUP	2011/12/08			105	70 - 130				

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

			Matrix S	Spike	Spiked Blank		Method Blank		RP	סי
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2704039	1,1,1-Trichloroethane	2011/12/08			91	70 - 130	<0.1	ug/L	10.8	40
2704039	1,1,1-Trichloroethane DUP	2011/12/08			102	70 - 130				
2704039	1,1,2-Trichloroethane	2011/12/08			95	70 - 130	<0.2	ug/L	8.4	40
2704039	1,1,2-Trichloroethane DUP	2011/12/08			103	70 - 130				
2704039	Trichloroethylene	2011/12/08			93	70 - 130	<0.1	ug/L	9.9	40
2704039	Trichloroethylene DUP	2011/12/08			103	70 - 130				
2704039	Vinyl Chloride	2011/12/08			98	70 - 130	<0.2	ug/L	12.0	40
2704039	p+m-Xylene	2011/12/08			99	70 - 130	<0.1	ug/L	11.0	40
2704039	p+m-Xylene DUP	2011/12/08			110	70 - 130				
2704039	o-Xylene	2011/12/08			89	70 - 130	<0.1	ug/L	10.7	40
2704039	o-Xylene DUP	2011/12/08			99	70 - 130				
2704039	Trichlorofluoromethane (FREON 11)	2011/12/08			99	70 - 130	<0.2	ug/L	10.7	40
2704039	Trichlorofluoromethane (FREON 11) DUP	2011/12/08			110	70 - 130				
2704039	Xylene (Total)	2011/12/08					<0.1	ug/L		
2704597	Dissolved Cesium (Cs)	2011/12/07	96	80 - 120	96	80 - 120	<0.00020	mg/L		
2704597	Dissolved Rubidium (Rb)	2011/12/07	97	80 - 120	98	80 - 120	<0.00020	mg/L		
2704597	Dissolved Aluminum (Al)	2011/12/07	102	80 - 120	102	80 - 120	<0.0050	mg/L		
2704597	Dissolved Antimony (Sb)	2011/12/07	104	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20
2704597	Dissolved Arsenic (As)	2011/12/07	99	80 - 120	97	80 - 120	<0.0010	mg/L	NC	20
2704597	Dissolved Barium (Ba)	2011/12/07	96	80 - 120	97	80 - 120	<0.0020	mg/L	1.8	20
2704597	Dissolved Beryllium (Be)	2011/12/07	98	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20
2704597	Dissolved Bismuth (Bi)	2011/12/07	98	80 - 120	98	80 - 120	<0.0010	mg/L		
2704597	Dissolved Boron (B)	2011/12/07	103	80 - 120	101	80 - 120	<0.010	mg/L	NC	20
2704597	Dissolved Cadmium (Cd)	2011/12/07	102	80 - 120	102	80 - 120	<0.00010	mg/L	NC	20
2704597	Dissolved Calcium (Ca)	2011/12/07	NC	80 - 120	95	80 - 120	<0.20	mg/L	0.5	20
2704597	Dissolved Chromium (Cr)	2011/12/07	100	80 - 120	99	80 - 120	<0.0050	mg/L	NC	20
2704597	Dissolved Cobalt (Co)	2011/12/07	99	80 - 120	100	80 - 120	<0.00050	mg/L	NC	20
2704597	Dissolved Copper (Cu)	2011/12/07	96	80 - 120	98	80 - 120	<0.0010	mg/L	NC	20
2704597	Dissolved Iron (Fe)	2011/12/07	100	80 - 120	99	80 - 120	<0.10	mg/L		
2704597	Dissolved Lead (Pb)	2011/12/07	96	80 - 120	99	80 - 120	<0.00050	mg/L	NC	20
2704597	Dissolved Lithium (Li)	2011/12/07	99	80 - 120	98	80 - 120	<0.0050	mg/L		
2704597	Dissolved Magnesium (Mg)	2011/12/07	NC	80 - 120	99	80 - 120	<0.050	mg/L	3.4	20
2704597	Dissolved Manganese (Mn)	2011/12/07	100	80 - 120	100	80 - 120	<0.0020	mg/L		
2704597	Dissolved Molybdenum (Mo)	2011/12/07	103	80 - 120	102	80 - 120	<0.00050	mg/L	NC	20
2704597	Dissolved Nickel (Ni)	2011/12/07	96	80 - 120	97	80 - 120	<0.0010	mg/L	NC	20
2704597	Dissolved Phosphorus (P)	2011/12/07	100	80 - 120	103	80 - 120	<0.10	mg/L		
2704597	Dissolved Potassium (K)	2011/12/07	98	80 - 120	97	80 - 120	<0.20	mg/L	1.9	20
2704597	Dissolved Selenium (Se)	2011/12/07	102	80 - 120	102	80 - 120	<0.0020	mg/L	NC	20
2704597	Dissolved Silicon (Si)	2011/12/07	97	80 - 120	100	80 - 120	<0.050	mg/L		
2704597	Dissolved Silver (Ag)	2011/12/07	97	80 - 120	98	80 - 120	<0.00010	mg/L	NC	20

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DRIVE Sampler Initials: DK

QUALITY ASSURANCE REPORT

			Matrix Spike		Spiked I	Blank	Method B	lank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2704597	Dissolved Sodium (Na)	2011/12/07	98	80 - 120	101	80 - 120	<0.10	mg/L	2.3	20
2704597	Dissolved Strontium (Sr)	2011/12/07	NC	80 - 120	103	80 - 120	<0.0010	mg/L		
2704597	Dissolved Tellurium (Te)	2011/12/07	100	80 - 120	100	80 - 120	<0.0010	mg/L		
2704597	Dissolved Thallium (TI)	2011/12/07	96	80 - 120	99	80 - 120	<0.000050	mg/L	NC	20
2704597	Dissolved Tin (Sn)	2011/12/07	104	80 - 120	102	80 - 120	<0.0010	mg/L		
2704597	Dissolved Titanium (Ti)	2011/12/07	97	80 - 120	95	80 - 120	<0.0050	mg/L		
2704597	Dissolved Tungsten (W)	2011/12/07	98	80 - 120	100	80 - 120	<0.0010	mg/L		
2704597	Dissolved Uranium (U)	2011/12/07	100	80 - 120	102	80 - 120	<0.00010	mg/L	NC	20
2704597	Dissolved Vanadium (V)	2011/12/07	100	80 - 120	98	80 - 120	<0.00050	mg/L	NC	20
2704597	Dissolved Zinc (Zn)	2011/12/07	99	80 - 120	99	80 - 120	<0.0050	mg/L	NC	20
2704597	Dissolved Zirconium (Zr)	2011/12/07	103	80 - 120	102	80 - 120	<0.0010	mg/L		

N/A = Not Applicable

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Page 14 of 18

Validation Signature Page

Maxxam Job #: B1I9199

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

EWA PRANJIC, M.Sc., Cchem, Scientific Specialist

PAUL RUBINATO, Analyst, Maxxam Analytics

STEVE ROBERTS, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

//		6740 Campobello Road, Mississauga, Onti	ario Canada L5N 2L8 Te	l:(905) 817-5700 Toll-f	ree:800-56	63-6266 Fa	x (905) 817	-5779 www	.maxxam.ca	a						Page of
	INVOICE INFO	RMATION:		REPORT INFORMAT	ION (if dif	fers from in	nvoice):	11			PROJEC	TINFORMAT	ION:		Laboratory Use	Only:
ompany Name:	#14090 Golder As	ssociates Ltd	Company Name:		1.11	Lann P		-414 A	Qu	iotation #:	A87099	9			MAXXAM JOB #:	BOTTLE ORDER #:
ontact Name:	Central Accounting		Contact Name:	Maria Stanev	a				P.C	0. #:		0.0				305022
Idress:	32 Steacle Dr	10	Address;			and the second			Pro	oject #:	11-112	2-0700	As Drive			000022
000	(613)502-9600	Fax: (613)592-9601	- Phone:	-		E			Pro	oject Name:	COLO	up avoi	INF		CHAIN OF CUSTODY #:	PROJECT MANAGE
nail:	maxxam@golder.c	om OttawaAccounting@golder	C Email	Maria Staney	a@aol	der com		111	Sa	e #. moled By:	4991-94	CL DT DI		_ ****	C#305022-01-01	JULIE CLEMENT
Requ	lation 153 (2011)	Other Regulations	SPEC	IAL INSTRUCTIONS				A	NALYSIS R	REQUESTED	(Please be spi	ecific):		_		REQUIRED
Table 1 Table 2 Table 3 Table 7	Res/Park Medium/Fine Ind/Comm Coarse Agri/Other For RSC	CCME Sanitary Sewer Reg. 558 Storm Sewer B MISA Municipality PWQO Other	Bylaw /law		ng Water ? (Y / N)	roleum	San .	MS Metals	Land	ñde				PL Regular (Sta (will be applie Standard TA Please note: days - contac	EASE PROVIDE ADVANCE NOTICE FO ndard) TAT: ed if Rush TAT is not specified): T = 5-7 Working days for most tests. Standard TAT for certain tests such as E vour Project Manager for details.	OR RUSH PROJECTS
	Include Criteria on Certi	ificate of Analysis (Y/N)?		in the second	Filte	Pet	12	CP	3	10		1.4		Job Specific	Rush TAT (if applies to entire submit	ssion)
N	ote: For MOE regulated drinkin	ng water samples - please use the Drinking	Water Chain of Custody	Form	eld D	153 arbo	153	153	Ø	X				Date Require	d: Time Ri	equired:
SA	MPLES MUST BE KEPT COC	DL (< 10°C) FROM TIME OF SAMPLING	UNTIL DELIVERY TO M	MAXXAM	ulate als F	eg 1	eg	69	15	0				Rush Confirm	ation Number:	
Sample B	arcode Label S	ample (Location) Identification	Date Sampled Time	Sampled Matrix	Reg	D'R	O'R	0'R	V					# of	(call la Comment	s
MBH II	1-8			Qu	N)	V	V	V	\checkmark	V			-	7		
MWI	5411-88			Gu	1		V	V	V	V				7	1.5.16-	
															1-De JULIE CLEI	ec-11 08:30 MENT
															B1I9199	
	-														S_0	OTT-001
															REC'D IN (AWATTC
*RE	LINQUISHED BY: (Signature	/Pript) Date: (YY/MM	(DD) Time:	REC	EIVED BY	(: (Signatur	e/Print)		Da	ate: (YY/MM/C	(DC)	Time:	# Jars Used and		Laboratory Use Onl	у,
Am	, huly D.	Kennedy 11/11/3	6 1808	Josh,	Free	nan	_		7011	112/01	8	3:30	Not Submitted	Time Sensit	ive Temperature (*C) on Receipt	Custody Seal Yes Present

1

Maxxam

Report Date: 2011/12/09 Maxxam Job #: B1I9199 Maxxam Sample: LV3115 Golder Associates Ltd Client Project #: 11-1122-0210 Project name: 645 LONGFIELDS DRIVE Client ID: MW/BH 11-8

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Page 17 of 18

Maxxam

Report Date: 2011/12/09 Maxxam Job #: B1I9199 Maxxam Sample: LV3116 Golder Associates Ltd Client Project #: 11-1122-0210 Project name: 645 LONGFIELDS DRIVE Client ID: MW/BH 11-88

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 11-1122-0210 Site#: COLONEL BY DRIVE. Site Location: 645 LONGFIELDS DR. Your C.O.C. #: 30502206, 305022-06-01

Attention: Maria Staneva

Golder Associates Ltd 32 Steacie Dr Kanata, ON K2K 2A9

Report Date: 2011/12/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B1I7378 Received: 2011/11/28, 14:15

Sample Matrix: Soil # Samples Received: 9

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Hot Water Extractable Boron ()	3	2011/12/02	2011/12/02 CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide ≬	3	N/A	2011/12/02 CAM SOP-00457	SM 4500CN-I
Conductivity ()	3	N/A	2011/12/02 CAM SOP-00414	APHA 2510
Hexavalent Chromium in Soil by IC (2)	3	N/A	2011/12/05 CAM SOP-00436	EPA SW846-3060/7199
Petroleum Hydro. CCME F1 & BTEX in Soil	2	2011/11/30	2011/11/30 OTT SOP-00002	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil	2	2011/11/30	2011/12/01 OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	4	2011/11/30	2011/12/01 OTT SOP-00001	CCME CWS
Acid Extr. Metals (aqua regia) by ICPMS 🐧	5	2011/12/01	2011/12/02 CAM SOP-00447	EPA 6020
Acid Extr. Metals (aqua regia) by ICPMS ()	3	2011/12/02	2011/12/02 CAM SOP-00447	EPA 6020
MOISTURE	4	N/A	2011/12/01 CAM SOP-00445	McKeague 2nd ed 1978
Moisture 🐧	3	N/A	2011/12/01 CAM SOP-00445	McKeague 2nd ed 1978
PAH Compounds in Soil by GC/MS (SIM) ()	3	2011/12/01	2011/12/02 CAM SOP - 00318	EPA 8270
pH CaCl2 EXTRACT 🐧	4	2011/12/02	2011/12/02 CAM SOP-00413	SM 4500 H
Sodium Adsorption Ratio (SAR) 🐧	4	2011/11/29	2011/12/02 CAM SOP-00102	EPA 6010
Sodium Adsorption Ratio (SAR) 🐧	2	2011/11/30	2011/12/02 CAM SOP-00102	EPA 6010
Volatile Organic Compounds in Soil 🐧	3	2011/12/03	2011/12/06 CAM SOP-00226	EPA 8260 modified

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

* Results relate only to the items tested.

(1) This test was performed by Maxxam Analytics Mississauga

(2) Soils are reported on a dry weight basis unless otherwise specified.

Success Through Science®

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JULIE CLEMENT, Ottawa Customer Service Email: JClement@maxxam.ca Phone# (613) 274-3549

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Page 2 of 25

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

RESULTS OF ANALYSES OF SOIL

Maxxam ID		LU3950	LU3951	LU3952			LU3953		
Sampling Date		2011/11/24	2011/11/24	2011/11/24			2011/11/24		
	Units	TP11-2 SA2	TP11-5 SA1	TP11-6 SA2	RDL	QC Batch	TP11-9 SA1	RDL	QC Batch
Calculated Parameters			_		_				_
Sodium Adsorption Ratio	N/A	0.71	0.64	0.77		2697048	0.28		2697048
Inorganics									
Chromium (VI)	ug/g						0.6	0.2	2700585
Conductivity	mS/cm						0.13	0.002	2700550
Free Cyanide	ug/g						<0.01	0.01	2700097
Moisture	%	15			0.2	2698020	7	1	2699954
Available (CaCl2) pH	pН	4.46				2700778	7.46		2699483

Maxxam ID		LU3953			LU3954	LU3955	LU3957				
Sampling Date		2011/11/24			2011/11/24	2011/11/24	2011/11/25				
	Units	TP11-9 SA1	RDL	QC Batch	TP11-9 SA2	TP11-9 SA12	SA2	RDL	QC Batch		
		Lab-Dup									
Calculated Parameters											
Sodium Adsorption Ratio	N/A			2697048	7.6	7.4			2698057		
Inorganics											
Chromium (VI)	ug/g	0.5	0.2	2700585	<0.2	<0.2		0.2	2700585		
Conductivity	mS/cm		0.002	2700550	0.33	0.34		0.002	2700550		
Free Cyanide	ug/g		0.01	2700097	<0.04(1)	< 0.04(1)		0.04	2700097		
Moisture	%		1	2699954	31	31	20	0.2	2698020		
Available (CaCl2) pH	pН			2699483	6.67	6.70			2700778		

N/A = Not Applicable

- RDL = Reportable Detection Limit
- QC Batch = Quality Control Batch

(1) - Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		LU3950	LU3951	LU3952		LU3953	LU3954		
Sampling Date		2011/11/24	2011/11/24	2011/11/24		2011/11/24	2011/11/24		
	Units	TP11-2 SA2	TP11-5 SA1	TP11-6 SA2	QC Batch	TP11-9 SA1	TP11-9 SA2	RDL	QC Batch
Metals									
Hot Water Ext. Boron (B)	ug/g					0.28	0.27	0.05	2700606
Acid Extractable Antimony (Sb)	ug/g	<0.2	<0.2	<0.2	2699960	<0.2	<0.2	0.2	2700611
Acid Extractable Arsenic (As)	ug/g	3	2	2	2699960	1	1	1	2700611
Acid Extractable Barium (Ba)	ug/g	120	72	61	2699960	29	63	0.5	2700611
Acid Extractable Beryllium (Be)	ug/g	0.6	0.3	0.5	2699960	<0.2	0.6	0.2	2700611
Acid Extractable Boron (B)	ug/g	<5	<5	<5	2699960	<5	<5	5	2700611
Acid Extractable Cadmium (Cd)	ug/g	0.1	0.1	0.2	2699960	0.4	0.2	0.1	2700611
Acid Extractable Chromium (Cr)	ug/g	22	15	18	2699960	18	25	1	2700611
Acid Extractable Cobalt (Co)	ug/g	7.6	6.1	6.2	2699960	4.5	7.3	0.1	2700611
Acid Extractable Copper (Cu)	ug/g	15	17	17	2699960	20	32	0.5	2700611
Acid Extractable Lead (Pb)	ug/g	10	11	12	2699960	75	8	1	2700611
Acid Extractable Molybdenum (Mo)	ug/g	<0.5	0.6	0.9	2699960	0.6	0.7	0.5	2700611
Acid Extractable Nickel (Ni)	ug/g	16	9.8	10	2699960	9.5	16	0.5	2700611
Acid Extractable Selenium (Se)	ug/g	0.6	<0.5	0.5	2699960	<0.5	<0.5	0.5	2700611
Acid Extractable Silver (Ag)	ug/g	<0.2	<0.2	<0.2	2699960	<0.2	<0.2	0.2	2700611
Acid Extractable Thallium (TI)	ug/g	0.15	0.13	0.09	2699960	0.08	0.12	0.05	2700611
Acid Extractable Uranium (U)	ug/g	0.75	0.48	0.61	2699960	0.36	0.66	0.05	2700611
Acid Extractable Vanadium (V)	ug/g	31	26	31	2699960	20	39	5	2700611
Acid Extractable Zinc (Zn)	ug/g	26	39	35	2699960	79	44	5	2700611
Acid Extractable Mercury (Hg)	ug/g					<0.05	0.08	0.05	2700611

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 4 of 25

Maxxam

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		LU3955		LU3956	LU3958	LU3958		
Sampling Date		2011/11/24		2011/11/25	2011/11/25	2011/11/25		
	Units	TP11-9 SA12	QC Batch	SA1	SA3	SA3 Lab-Dup	RDL	QC Batch
Metals		1	1	1				
Hot Water Ext. Boron (B)	ug/g	0.25	2700606				0.05	
Acid Extractable Antimony (Sb)	ug/g	<0.2	2700611	<0.2	<0.2	<0.2	0.2	2699960
Acid Extractable Arsenic (As)	ug/g	1	2700611	2	<1	<1	1	2699960
Acid Extractable Barium (Ba)	ug/g	64	2700611	98	27	25	0.5	2699960
Acid Extractable Beryllium (Be)	ug/g	0.8	2700611	0.4	<0.2	<0.2	0.2	2699960
Acid Extractable Boron (B)	ug/g	<5	2700611	<5	<5	<5	5	2699960
Acid Extractable Cadmium (Cd)	ug/g	0.2	2700611	0.2	<0.1	<0.1	0.1	2699960
Acid Extractable Chromium (Cr)	ug/g	25	2700611	16	7	8	1	2699960
Acid Extractable Cobalt (Co)	ug/g	7.4	2700611	6.7	3.4	3.5	0.1	2699960
Acid Extractable Copper (Cu)	ug/g	32	2700611	15	9.1	18(1)	0.5	2699960
Acid Extractable Lead (Pb)	ug/g	9	2700611	13	4	4	1	2699960
Acid Extractable Molybdenum (Mo)	ug/g	0.7	2700611	0.7	<0.5	<0.5	0.5	2699960
Acid Extractable Nickel (Ni)	ug/g	16	2700611	12	6.5	6.5	0.5	2699960
Acid Extractable Selenium (Se)	ug/g	<0.5	2700611	<0.5	<0.5	<0.5	0.5	2699960
Acid Extractable Silver (Ag)	ug/g	<0.2	2700611	<0.2	<0.2	<0.2	0.2	2699960
Acid Extractable Thallium (TI)	ug/g	0.12	2700611	0.14	<0.05	0.05	0.05	2699960
Acid Extractable Uranium (U)	ug/g	0.64	2700611	0.59	0.50	0.43	0.05	2699960
Acid Extractable Vanadium (V)	ug/g	40	2700611	27	15	13	5	2699960
Acid Extractable Zinc (Zn)	ug/g	48	2700611	35	15	21	5	2699960
Acid Extractable Mercury (Hg)	ug/g	0.09	2700611				0.05	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		LU3950	LU3950		LU3954	LU3955		
Sampling Date		2011/11/24	2011/11/24		2011/11/24	2011/11/24		
	Units	TP11-2 SA2	TP11-2 SA2	RDL	TP11-9 SA2	TP11-9 SA12	RDL	QC Batch
			Lab-Dup					
Polyaromatic Hydrocarbons	3							
Acenaphthene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Acenaphthylene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Anthracene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Benzo(a)anthracene	ug/g	< 0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Benzo(a)pyrene	ug/g	< 0.005	<0.005	0.005	0.01	<0.01	0.01	2700356
Benzo(b/j)fluoranthene	ug/g	< 0.005	<0.005	0.005	0.02	0.01	0.01	2700356
Benzo(g,h,i)perylene	ug/g	<0.005	<0.005	0.005	0.01	<0.01	0.01	2700356
Benzo(k)fluoranthene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Chrysene	ug/g	<0.005	<0.005	0.005	0.01	<0.01	0.01	2700356
Dibenz(a,h)anthracene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Fluoranthene	ug/g	<0.005	<0.005	0.005	0.02	0.02	0.01	2700356
Fluorene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Indeno(1,2,3-cd)pyrene	ug/g	< 0.005	<0.005	0.005	0.01	<0.01	0.01	2700356
1-Methylnaphthalene	ug/g	< 0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
2-Methylnaphthalene	ug/g	< 0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Naphthalene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Phenanthrene	ug/g	<0.005	<0.005	0.005	<0.01	<0.01	0.01	2700356
Pyrene	ug/g	<0.005	<0.005	0.005	0.02	0.02	0.01	2700356
Surrogate Recovery (%)								
D10-Anthracene	%	87	87		88	86		2700356
D14-Terphenyl (FS)	%	88	87		88	87		2700356
D8-Acenaphthylene	%	84	84		85	83		2700356

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 6 of 25

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		LU3950	LU3954	LU3955		
Sampling Date		2011/11/24	2011/11/24	2011/11/24		
	Units	TP11-2 SA2	TP11-9 SA2	TP11-9 SA12	RDL	QC Batch
Volatile Organics						
Acetone (2-Propanone)	ug/g	<0.5	<0.5	<0.5	0.5	2699172
Benzene	ug/g	<0.02	<0.02	<0.02	0.02	2699172
Bromodichloromethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Bromoform	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Bromomethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Carbon Tetrachloride	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Chlorobenzene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Chloroform	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Dibromochloromethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,2-Dichlorobenzene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,3-Dichlorobenzene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,4-Dichlorobenzene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Dichlorodifluoromethane (FREON 12)	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,1-Dichloroethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,2-Dichloroethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,1-Dichloroethylene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
cis-1,2-Dichloroethylene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
trans-1,2-Dichloroethylene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,2-Dichloropropane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
cis-1,3-Dichloropropene	ug/g	<0.03	< 0.03	<0.03	0.03	2699172
trans-1,3-Dichloropropene	ug/g	<0.04	<0.04	<0.04	0.04	2699172
Ethylbenzene	ug/g	<0.02	<0.02	<0.02	0.02	2699172
Ethylene Dibromide	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Hexane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Methylene Chloride(Dichloromethane)	ug/g	<0.05	0.05(1)	<0.05	0.05	2699172
Methyl Isobutyl Ketone	ug/g	<0.5	<0.5	<0.5	0.5	2699172
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.5	<0.5	<0.5	0.5	2699172
Methyl t-butyl ether (MTBE)	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Styrene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,1,1,2-Tetrachloroethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
1,1,2,2-Tetrachloroethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Tetrachloroethylene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Toluene	ug/g	<0.02	<0.02	<0.02	0.02	2699172
1,1,1-Trichloroethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - Trace positive value was detected for this analyte which was also detected in method blank below reporting limit. This compound is known to be a common laboratory artefact.

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		LU3950	LU3954	LU3955		
Sampling Date		2011/11/24	2011/11/24	2011/11/24		
	Units	TP11-2 SA2	TP11-9 SA2	TP11-9 SA12	RDL	QC Batch
1,1,2-Trichloroethane	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Trichloroethylene	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Vinyl Chloride	ug/g	<0.02	<0.02	<0.02	0.02	2699172
p+m-Xylene	ug/g	<0.02	<0.02	<0.02	0.02	2699172
o-Xylene	ug/g	<0.02	<0.02	<0.02	0.02	2699172
Xylene (Total)	ug/g	<0.02	<0.02	<0.02	0.02	2699172
Trichlorofluoromethane (FREON 11)	ug/g	<0.05	<0.05	<0.05	0.05	2699172
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	97	97	95		2699172
D10-o-Xylene	%	102	100	90		2699172
D4-1,2-Dichloroethane	%	95	94	97		2699172
D8-Toluene	%	101	103	101		2699172

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 8 of 25

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		LU3950	LU3954	LU3955	LU3957		
Sampling Date		2011/11/24	2011/11/24	2011/11/24	2011/11/25		
	Units	TP11-2 SA2	TP11-9 SA2	TP11-9 SA12	SA2	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/g				<0.02	0.02	2698091
Toluene	ug/g				<0.02	0.02	2698091
Ethylbenzene	ug/g				<0.02	0.02	2698091
o-Xylene	ug/g				<0.02	0.02	2698091
p+m-Xylene	ug/g				<0.04	0.04	2698091
Total Xylenes	ug/g				<0.04	0.04	2698091
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	2698091
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	2698091
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	2698077
F3 (C16-C34 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	2698077
F4 (C34-C50 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	2698077
Reached Baseline at C50	ug/g	YES	YES	YES	YES		2698077
Hydrocarbon Resemblance	ug/g	NA				N/A	2698077
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	107	108	110	111		2698091
4-Bromofluorobenzene	%	80	98	98	92		2698091
D10-Ethylbenzene	%	72	71	72	76		2698091
D4-1,2-Dichloroethane	%	113	116	115	118		2698091
o-Terphenyl	%	81	74	84	79		2698077

N/A = Not Applicable RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

Test Summary

Maxxam ID LU3950 Sample ID TP11-2 SA2 Matrix Soil

Sodium Adsorption Ratio (SAR)

Collected 2011/11/24 Shipped Received 2011/11/28

AUTOMATED STATCHK

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	2698091	2011/11/30	2011/11/30	STEVE ROBERTS
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2698077	2011/11/30	2011/12/01	LYNDSEY HART
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2699960	2011/12/01	2011/12/02	HUA REN
MOISTURE	BAL	2698020	N/A	2011/12/01	HABIBA ESSAK
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	2700356	2011/12/01	2011/12/02	DARRYL TILLER
pH CaCl2 EXTRACT		2700778	2011/12/02	2011/12/02	XUANHONG QIU
Sodium Adsorption Ratio (SAR)	CALC/MET	2697048	2011/12/02	2011/12/02	AUTOMATED STATCHK
Volatile Organic Compounds in Soil	P&T/MS	2699172	2011/12/03	2011/12/06	DANIEL KIM

Maxxam ID Sample ID Matrix	LU3950 Dup TP11-2 SA2 Soil					Collected 2011/ Shipped Received 2011/	'11/24 /11/28
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
PAH Compounds i	n Soil by GC/MS (SIM)	GC/MS	2700356	2011/12/01	2011/12/02	DARRYL TILLE	R
Maxxam ID Sample ID Matrix	LU3951 TP11-5 SA1 Soil					Collected 2011, Shipped Received 2011,	/11/24 /11/28
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Acid Extr. Metals (a	aqua regia) by ICPMS	ICP/MS	2699960	2011/12/01	2011/12/02	HUA REN	

2697048

2011/12/02

CALC/MET

2011/12/02

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

Test Summary

Maxxam ID	LU3952
Sample ID	TP11-6 SA2
Matrix	Soil

Collected	2011/11/24
Shipped	
Received	2011/11/28

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2699960	2011/12/01	2011/12/02	HUA REN
Sodium Adsorption Ratio (SAR)	CALC/MET	2697048	2011/12/02	2011/12/02	AUTOMATED STATCHK

Maxxam ID LU3953 Sample ID TP11-9 SA1 Matrix Soil Collected 2011/11/24 Shipped Received 2011/11/28

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	2700606	2011/12/02	2011/12/02	AZITA FAZAELI
Free (WAD) Cyanide	TECH	2700097	N/A	2011/12/02	LOUISE HARDING
Conductivity	COND	2700550	N/A	2011/12/02	NEIL DASSANAYAKE
Hexavalent Chromium in Soil by IC	IC/SPEC	2700585	N/A	2011/12/05	SALLY COUGHLIN
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2700611	2011/12/02	2011/12/02	VIVIANA CANZONIERI
Moisture	BAL	2699954	N/A	2011/12/01	VALENTINA KAFTANI
pH CaCl2 EXTRACT		2699483	2011/12/02	2011/12/02	XUANHONG QIU
Sodium Adsorption Ratio (SAR)	CALC/MET	2697048	2011/12/02	2011/12/02	AUTOMATED STATCHK

Maxxam ID	LU3953 Dup				(Collected	2011/11/24
Sample ID	TP11-9 SA1					Shipped	
Matrix	Soil					Received	2011/11/28
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst	
Hexavalent Chrom	nium in Soil by IC	IC/SPEC	2700585	N/A	2011/12/05	SALLY CO	DUGHLIN

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

Test Summary

Maxxam ID LU3954 Sample ID TP11-9 SA2 Matrix Soil

Collected 2011/11/24 Shipped Received 2011/11/28

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	2700606	2011/12/02	2011/12/02	AZITA FAZAELI
Free (WAD) Cyanide	TECH	2700097	N/A	2011/12/02	LOUISE HARDING
Conductivity	COND	2700550	N/A	2011/12/02	NEIL DASSANAYAKE
Hexavalent Chromium in Soil by IC	IC/SPEC	2700585	N/A	2011/12/05	SALLY COUGHLIN
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	2698091	2011/11/30	2011/11/30	STEVE ROBERTS
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2698077	2011/11/30	2011/12/01	LYNDSEY HART
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2700611	2011/12/02	2011/12/02	VIVIANA CANZONIERI
MOISTURE	BAL	2698020	N/A	2011/12/01	HABIBA ESSAK
Moisture	BAL	2699954	N/A	2011/12/01	VALENTINA KAFTANI
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	2700356	2011/12/01	2011/12/02	DARRYL TILLER
pH CaCl2 EXTRACT		2700778	2011/12/02	2011/12/02	XUANHONG QIU
Sodium Adsorption Ratio (SAR)	CALC/MET	2698057	2011/12/02	2011/12/02	AUTOMATED STATCHK
Volatile Organic Compounds in Soil	P&T/MS	2699172	2011/12/03	2011/12/06	DANIEL KIM

Maxxam ID LU3955 Sample ID TP11-9 SA12 Matrix Soil

Collected 2011/11/24 Shipped Received 2011/11/28

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	2700606	2011/12/02	2011/12/02	AZITA FAZAELI
Free (WAD) Cyanide	TECH	2700097	N/A	2011/12/02	LOUISE HARDING
Conductivity	COND	2700550	N/A	2011/12/02	NEIL DASSANAYAKE
Hexavalent Chromium in Soil by IC	IC/SPEC	2700585	N/A	2011/12/05	SALLY COUGHLIN
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	2698091	2011/11/30	2011/12/01	STEVE ROBERTS
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2698077	2011/11/30	2011/12/01	LYNDSEY HART
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2700611	2011/12/02	2011/12/02	VIVIANA CANZONIERI
MOISTURE	BAL	2698020	N/A	2011/12/01	HABIBA ESSAK
Moisture	BAL	2699954	N/A	2011/12/01	VALENTINA KAFTANI
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	2700356	2011/12/01	2011/12/02	DARRYL TILLER
pH CaCl2 EXTRACT		2700778	2011/12/02	2011/12/02	XUANHONG QIU
Sodium Adsorption Ratio (SAR)	CALC/MET	2698057	2011/12/02	2011/12/02	AUTOMATED STATCHK
Volatile Organic Compounds in Soil	P&T/MS	2699172	2011/12/03	2011/12/06	DANIEL KIM

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

Test Summary

Maxxam ID LU3956 Collected 2011/11/25 Sample ID SA1 Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/11/20 HUA REN Maxxam ID LU3957 Collected 2011/11/20 Extracted Analyzed Analyst Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 LVNDSEY HART MOISTURE BAL 2698020 N/A 2011/11/201 LVNDSEY HART Matrix Soil GC/FID 2698020 N/A 2011/11/201 LVNDSEY HART MOISTURE BAL 2698020 N/A 2011/11/201 LVNDSEY HART Matrix Soil Instrumentation Batch						
Sample ID SA1 Matrix Shipped Received Shipped Received Shipped Received Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Maxxam ID LU3957 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID Solid Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil ISC//ID 26980091 2011/11/1/30 2011/12/01 STEVE ROBERTS Petroleum Hydro. CCME F1 & Soil GC//ID 2698020 2011/11/30 2011/12/01 LVINSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIA ESSAK Maxxam ID LU3958 Soil Collected 2011/11/26 Test Description Instrumentation Batch Extracted Analyzed Analyzet Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/11/26 HUA REN Maxxam ID LU3958 Dup </td <td>Maxxam ID LU3956</td> <td></td> <td></td> <td></td> <td></td> <td>Collected 2011/11/25</td>	Maxxam ID LU3956					Collected 2011/11/25
Matrix Soil Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3957 Sample ID SA2 Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro: CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STVE ROBERTS Petroleum Hydro: CCME F1 & BTEX in Soil GC/FID 26980977 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Sample ID SA3 Soil Shipped Received 2011/11/26 Maxxam ID LU3958 Dup Collected 2011/11/20 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/12/02 HUA REN Maxxam ID LU3958 Dup Collected	Sample ID SA1					Shipped
Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3957 Collected 2011/11/20 Received 2011/11/25 Sample ID SA2 Soli Collected 2011/11/20 Analyzed Analyzed Test Description Instrumentation Batch Extracted Analyzed Analyzed Petroleum Hydro. COME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydro. COME F1 & BTEX in Soil GC/FID 2698001 2011/11/30 2011/12/01 LVNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Received Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/20 2011/12/02 HUA REN Maxxam ID	Matrix Soil					Received 2011/11/28
Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3957 Sample ID SA2 Shipped Received 2011/11/25 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. ICCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydro.ccME F1 & BTEX in Soil GC/FID 2698091 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART Matrix Soil Instrumentation Batch Extracted Analyzed Analyzet Matrix Soil Instrumentation Batch Extracted Analyzet Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN						
Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3957 Sample ID SA2 Shipped Received 2011/11/25 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 LTVEVE ROBERTS Petroleum Hydro.arbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LVBDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Sample ID SA3 Shipped Received 2011/11/25 Sample ID SA3 Matrix Soil Collected 2011/11/26 HUA REN Maxxam ID LU3958 ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Sample ID SA3 Shipped Received 2011/11/25	Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Maxxam ID LU3957 Collected 2011/11/25 Sample ID SA2 Shipped Received 2011/11/25 Matrix Soil Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydro.carbons F2-F4 in Soil GC/FID 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Sample ID SA3 Matrix Soil Collected 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/11/20 HUA REN Maxxam ID LU3958 Dup Sample ID SA3 Shipped Received 2011/11/25 Sample ID SA3 Instrumentation Batch Extracted Analyzed Analyst Matrix Soil <	Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2699960	2011/12/01	2011/12/02	HUA REN
Maxxam ID LU3957 Sample ID SA2 Matrix Collected 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydro. CCME F1 & BTEX in Soil GC/FID 2698077 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Sample ID SA3 Received 2011/11/25 Sample ID SA3 ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Sample ID SA3 ICP/MS 2699960 2011/12/01 2011/11/20 HUA REN Maxxam ID LU3958 Dup Sample ID SA3 Soil Collected 2011/11/25 Sample ID SA3 Soil Shipped Received 2011/11/126						
Maxxam ID LU3957 Collected 2011/11/25 Sample ID SA2 Shipped Received 2011/11/25 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydroc. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LVNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Sample ID SA3 Soil Collected 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Sample ID SA3 Shipped Received 2011/11/25 Sample ID SA3 ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN						
Sample ID SA2 Matrix Shipped Received Shipped Received Shipped Received Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LVNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Sample ID SA3 Matrix Soil Collected 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/11/25 Shipped Received 2011/11/25 Maxxam ID LU3958 Dup Sample ID SA3 Matrix Soil Collected 2011/11/25 Maxxam ID LU3958 Dup Sample ID SA3 Matrix Soil Collected 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst	Maxxam ID LU3957					Collected 2011/11/25
Matrix Soil Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyset Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Sample ID SA3 Matrix Soil Collected 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Sample ID SA3 Matrix Soil Collected 2011/11/25 Sample ID SA3 Matrix Soil Collected 2011/11/26 HUA REN	Sample ID SA2					Shipped
Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. COME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 LYNDSEY HART Matrix Soil Collected 2011/11/25 Shipped Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch	Matrix Soil					Received 2011/11/28
Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Sample ID SA3 Soil Collected 2011/11/25 Stample ID SA3 Soil Received 2011/11/26 Maxxam ID LU3958 Dup Shipped Shipped Received Sample ID SA3						
Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 2698091 2011/11/30 2011/12/01 STEVE ROBERTS Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Matrix Soil Fest Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/11/26 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Maxxam ID LU3958 Dup Collected 2011/11/26 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Matrix Soil Fest Description Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 269996	Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2698077 2011/11/30 2011/12/01 LYNDSEY HART MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Shipped Sample ID SA3 Soil Collected 2011/11/26 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/20 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/20 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/20 HUA REN Test Description Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	2698091	2011/11/30	2011/12/01	STEVE ROBERTS
MOISTURE BAL 2698020 N/A 2011/12/01 HABIBA ESSAK Maxxam ID LU3958 Collected 2011/11/25 Sample ID SA3 Shipped Matrix Soil Received 2011/11/28 Test Description Instrumentation Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Matrix Soil Collected 2011/11/25 Matrix Soil Instrumentation Batch Extracted Analyst Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Sample ID SA3 Received 2011/11/26 HUA REN Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2698077	2011/11/30	2011/12/01	LYNDSEY HART
Maxxam ID LU3958 Collected 2011/11/25 Sample ID SA3 Soil Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Shipped Sample ID SA3 Soil Collected 2011/11/25 Shipped Test Description Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	MOISTURE	BAL	2698020	N/A	2011/12/01	HABIBA ESSAK
Maxxam ID LU3958 Collected 2011/11/25 Sample ID SA3 Soil Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Shipped Matrix Soil Soil Collected 2011/11/25 HUA REN Matrix Soil Collected 2011/11/25 Shipped Test Description Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA BEN						
Maxxam ID LU3958 Collected 2011/11/25 Sample ID SA3 Shipped Matrix Soil Received 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Maxxam ID LU3958 Dup Collected 2011/11/25 Sample ID SA3 Shipped Received 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN						
Sample ID SA3 Matrix Shipped Received Shipped Received Shipped 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Received Collected 2011/11/25 Matrix Soil Instrumentation Batch Extracted Analyst Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Maxxam ID LU3958					Collected 2011/11/25
Matrix Soil Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Sample ID SA3 Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Sample ID SA3					Shipped
Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Sample ID SA3 Soil Keceived 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Matrix Soil					Received 2011/11/28
Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Shipped Sample ID SA3 Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN						
Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN Maxxam ID LU3958 Dup Collected 2011/11/25 Sample ID SA3 Shipped Matrix Soil Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (aqua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Maxxam ID LU3958 Dup Collected 2011/11/25 Sample ID SA3 Shipped Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA BEN	Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2699960	2011/12/01	2011/12/02	HUA REN
Maxxam ID LU3958 Dup Collected 2011/11/25 Sample ID SA3 Shipped Received 2011/11/25 Matrix Soil Instrumentation Batch Extracted Analyzed Analyst Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA BEN						
Maxxam D L03956 Dup Collected 2011/11/25 Sample ID SA3 Shipped Matrix Soil Received 2011/11/25 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA BEN						Collected 0011/11/05
Sample ID SAS Snipped Matrix Soil Received 2011/11/28 Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA BEN	Semula ID CA2					Conected 2011/11/20
Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA BEN	Janipie ID JAJ					Beasived 2011/11/29
Test Description Instrumentation Batch Extracted Analyzed Analyst Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Matrix 3011					
Acid Extr. Metals (agua regia) by ICPMS ICP/MS 2699960 2011/12/01 2011/12/02 HUA REN	Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
	Acid Extr. Metals (agua regia) by ICPMS	ICP/MS	2699960	2011/12/01	2011/12/02	HUA BEN

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

[Each tem	Package 1 9.3°C perature is the average of up to three cooler temperatures taken at receipt
	GENERAL COMMENTS
Custody	seal was not present on the cooler.
Sample	LU3950-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.
Sample	LU3953-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.
Sample	LU3954-01: PAH Analysis: Detection limits were adjusted for high moisture content.
Sample	LU3955-01: PAH Analysis: Detection limits were adjusted for high moisture content.

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

			Matrix S	Spike	Spiked	Spiked Blank		Method Blank		RPD		ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2698020	Moisture	2011/12/01							1.3	50		
2698077	o-Terphenyl	2011/12/01	79	30 - 130	81	30 - 130	75	%				
2698077	F2 (C10-C16 Hydrocarbons)	2011/12/01	114	50 - 130	113	70 - 130	<10	ug/g	NC	50		
2698077	F3 (C16-C34 Hydrocarbons)	2011/12/01	114	50 - 130	113	70 - 130	<10	ug/g	NC	50		
2698077	F4 (C34-C50 Hydrocarbons)	2011/12/01	114	50 - 130	113	70 - 130	<10	ug/g	NC	50		
2698091	1,4-Difluorobenzene	2011/11/30	108	60 - 140	109	60 - 140	112	%				
2698091	4-Bromofluorobenzene	2011/11/30	103	60 - 140	98	60 - 140	83	%				
2698091	D10-Ethylbenzene	2011/11/30	75	30 - 130	81	30 - 130	76	%				
2698091	D4-1,2-Dichloroethane	2011/11/30	113	60 - 140	111	60 - 140	116	%				
2698091	Benzene	2011/11/30	63	60 - 140	72	60 - 140	<0.02	ug/g				
2698091	Toluene	2011/11/30	67	60 - 140	75	60 - 140	<0.02	ug/g				
2698091	Ethylbenzene	2011/11/30	64	60 - 140	71	60 - 140	<0.02	ug/g				
2698091	o-Xylene	2011/11/30	66	60 - 140	72	60 - 140	<0.02	ug/g				
2698091	p+m-Xylene	2011/11/30	61	60 - 140	67	60 - 140	<0.04	ug/g				
2698091	F1 (C6-C10)	2011/11/30	97	60 - 140	88	60 - 140	<10	ug/g	NC	50		
2698091	Total Xylenes	2011/11/30					<0.04	ug/g				
2698091	F1 (C6-C10) - BTEX	2011/11/30					<10	ug/g	NC	50		
2699172	4-Bromofluorobenzene	2011/12/06	98	60 - 140	106	60 - 140	96	%				
2699172	D10-o-Xylene	2011/12/06	91	50 - 130	102	50 - 130	103	%				
2699172	D4-1,2-Dichloroethane	2011/12/06	86	60 - 140	119	60 - 140	98	%				
2699172	D8-Toluene	2011/12/06	99	60 - 140	99	60 - 140	100	%				
2699172	Acetone (2-Propanone)	2011/12/05	96	60 - 140	133	60 - 140	<0.5	ug/g	NC	50		
2699172	Benzene	2011/12/05	100	60 - 140	105	60 - 140	<0.02	ug/g	32.9	50		
2699172	Bromodichloromethane	2011/12/05	90	60 - 140	118	60 - 140	<0.05	ug/g	NC	50		
2699172	Bromoform	2011/12/05	105	60 - 140	128	60 - 140	<0.05	ug/g	NC	50		
2699172	Bromomethane	2011/12/05	69	60 - 140	140	60 - 140	<0.05	ug/g	NC	50		
2699172	Carbon Tetrachloride	2011/12/05	91	60 - 140	115	60 - 140	<0.05	ug/g	NC	50		
2699172	Chlorobenzene	2011/12/05	98	60 - 140	104	60 - 140	<0.05	ug/g	NC	50		
2699172	Chloroform	2011/12/05	92	60 - 140	113	60 - 140	<0.05	ug/g	NC	50		
2699172	Dibromochloromethane	2011/12/05	99	60 - 140	116	60 - 140	<0.05	ug/g	NC	50		
2699172	1,2-Dichlorobenzene	2011/12/05	101	60 - 140	105	60 - 140	<0.05	ug/g	NC	50		
2699172	1,3-Dichlorobenzene	2011/12/05	101	60 - 140	103	60 - 140	<0.05	ug/g	NC	50		
2699172	1,4-Dichlorobenzene	2011/12/05	102	60 - 140	106	60 - 140	<0.05	ug/g	NC	50		
2699172	Dichlorodifluoromethane (FREON 12)	2011/12/05	86	60 - 140	120	60 - 140	<0.05	ug/g	NC	50		
2699172	1,1-Dichloroethane	2011/12/05	92	60 - 140	110	60 - 140	<0.05	ug/g	NC	50		
2699172	1,2-Dichloroethane	2011/12/05	86	60 - 140	123	60 - 140	<0.05	ug/g	NC	50		
2699172	1,1-Dichloroethylene	2011/12/05	90	60 - 140	107	60 - 140	<0.05	ug/g	NC	50		
2699172	cis-1,2-Dichloroethylene	2011/12/05	102	60 - 140	102	60 - 140	<0.05	ug/g	NC	50		
2699172	trans-1,2-Dichloroethylene	2011/12/05	100	60 - 140	101	60 - 140	<0.05	ug/g	NC	50		
2699172	1,2-Dichloropropane	2011/12/05	94	60 - 140	110	60 - 140	<0.05	ug/g	NC	50		

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

			Matrix S	Spike	Spiked Blank		Method Blank		RPD		QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2699172	cis-1,3-Dichloropropene	2011/12/05	98	60 - 140	119	60 - 140	<0.03	ug/g	NC	50		
2699172	trans-1,3-Dichloropropene	2011/12/05	92	60 - 140	116	60 - 140	<0.04	ug/g	NC	50		
2699172	Ethylbenzene	2011/12/05	100	60 - 140	106	60 - 140	<0.02	ug/g	156(1, 2)	50		
2699172	Ethylene Dibromide	2011/12/05	103	60 - 140	114	60 - 140	<0.05	ug/g	NC	50		
2699172	Hexane	2011/12/05	92	60 - 140	109	60 - 140	<0.05	ug/g	NC	50		
2699172	Methylene Chloride(Dichloromethane)	2011/12/05	97	60 - 140	100	60 - 140	<0.05	ug/g	NC	50		
2699172	Methyl Isobutyl Ketone	2011/12/05	88	60 - 140	128	60 - 140	<0.5	ug/g	NC	50		
2699172	Methyl Ethyl Ketone (2-Butanone)	2011/12/05	97	60 - 140	133	60 - 140	<0.5	ug/g	NC	50		
2699172	Methyl t-butyl ether (MTBE)	2011/12/05	106	60 - 140	121	60 - 140	<0.05	uq/q	NC	50		
2699172	Styrene	2011/12/05	102	60 - 140	109	60 - 140	<0.05	uq/q	NC	50		
2699172	1,1,1,2-Tetrachloroethane	2011/12/05	99	60 - 140	111	60 - 140	<0.05	uq/q	NC	50		
2699172	1,1,2,2-Tetrachloroethane	2011/12/05	95	60 - 140	118	60 - 140	<0.05	uq/q	NC	50		
2699172	Tetrachloroethylene	2011/12/05	98	60 - 140	102	60 - 140	<0.05	uq/q	NC	50		
2699172	Toluene	2011/12/05	98	60 - 140	100	60 - 140	<0.02	uq/q	155(1, 2)	50		
2699172	1,1,1-Trichloroethane	2011/12/05	89	60 - 140	112	60 - 140	<0.05	uq/q	NC	50		
2699172	1,1,2-Trichloroethane	2011/12/05	97	60 - 140	107	60 - 140	<0.05	uq/q	NC	50		
2699172	Trichloroethylene	2011/12/05	103	60 - 140	104	60 - 140	<0.05	uq/q	NC	50		
2699172	Vinvl Chloride	2011/12/05	96	60 - 140	100	60 - 140	<0.02	ua/a	NC	50		
2699172	p+m-Xvlene	2011/12/05	98	60 - 140	104	60 - 140	<0.02	ua/a	182(1, 2)	50		
2699172	o-Xvlene	2011/12/05	94	60 - 140	105	60 - 140	<0.02	ua/a	184(1, 2)	50		
2699172	Trichlorofluoromethane (FREON 11)	2011/12/05	104	60 - 140	105	60 - 140	<0.05	uq/q	NC	50		
2699172	Xylene (Total)	2011/12/05					<0.02	uq/q	183(1, 2)	50		
2699954	Moisture	2011/12/01							0.9	20		
2699960	Acid Extractable Antimony (Sb)	2011/12/02	97	75 - 125	104	75 - 125	<0.2	uq/q	NC	30		
2699960	Acid Extractable Arsenic (As)	2011/12/02	98	75 - 125	106	75 - 125	<1	uq/q	NC	30		
2699960	Acid Extractable Barium (Ba)	2011/12/02	NC	75 - 125	106	75 - 125	<0.5	uq/q	8.9	30		
2699960	Acid Extractable Beryllium (Be)	2011/12/02	93	75 - 125	102	75 - 125	<0.2	uq/q	NC	30		
2699960	Acid Extractable Boron (B)	2011/12/02	86	75 - 125	93	75 - 125	<5	uq/q	NC	30		
2699960	Acid Extractable Cadmium (Cd)	2011/12/02	95	75 - 125	102	75 - 125	<0.1	uq/q	NC	30		
2699960	Acid Extractable Chromium (Cr)	2011/12/02	99	75 - 125	107	75 - 125	<1	ug/g	10.9	30		
2699960	Acid Extractable Cobalt (Co)	2011/12/02	95	75 - 125	105	75 - 125	<0.1	uq/q	2.6	30		
2699960	Acid Extractable Copper (Cu)	2011/12/02	95	75 - 125	104	75 - 125	<0.5	uq/q	65.0(1)	30		
2699960	Acid Extractable Lead (Pb)	2011/12/02	120	75 - 125	107	75 - 125	<1	ua/a	NC	30		
2699960	Acid Extractable Molvbdenum (Mo)	2011/12/02	97	75 - 125	103	75 - 125	<0.5	ua/a	NC	30		
2699960	Acid Extractable Nickel (Ni)	2011/12/02	96	75 - 125	105	75 - 125	<0.5	ua/a	0.4	30		
2699960	Acid Extractable Selenium (Se)	2011/12/02	95	75 - 125	105	75 - 125	<0.5	ug/a	NC	30		
2699960	Acid Extractable Silver (Ag)	2011/12/02	96	75 - 125	104	75 - 125	<0.2	uq/q	NC	30		
2699960	Acid Extractable Thallium (TI)	2011/12/02	96	75 - 125	104	75 - 125	<0.05	uq/q	NC	30		
2699960	Acid Extractable Uranium (U)	2011/12/02	101	75 - 125	107	75 - 125	<0.05	uq/q	15.5	30		
2699960	Acid Extractable Vanadium (V)	2011/12/02	96	75 - 125	101	75 - 125	<5	ug/g	NC	30		

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

			Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2699960	Acid Extractable Zinc (Zn)	2011/12/02	96	75 - 125	105	75 - 125	<5	ug/g	NC	30		
2700097	Free Cyanide	2011/12/02	102	75 - 125	104	75 - 125	<0.01	ug/g	NC	35		
2700356	D10-Anthracene	2011/12/02	87	50 - 130	84	50 - 130	90	%				
2700356	D14-Terphenyl (FS)	2011/12/02	88	50 - 130	86	50 - 130	89	%				
2700356	D8-Acenaphthylene	2011/12/02	86	50 - 130	81	50 - 130	86	%				
2700356	Acenaphthene	2011/12/02	82	50 - 130	80	50 - 130	<0.005	ug/g	NC	50		
2700356	Acenaphthylene	2011/12/02	86	50 - 130	82	50 - 130	<0.005	ug/g	NC	50		
2700356	Anthracene	2011/12/02	87	50 - 130	83	50 - 130	<0.005	ug/g	NC	50		
2700356	Benzo(a)anthracene	2011/12/02	91	50 - 130	86	50 - 130	<0.005	ug/g	NC	50		
2700356	Benzo(a)pyrene	2011/12/02	88	50 - 130	86	50 - 130	<0.005	ug/g	NC	50		
2700356	Benzo(b/j)fluoranthene	2011/12/02	82	50 - 130	83	50 - 130	<0.005	ug/g	NC	50		
2700356	Benzo(g,h,i)perylene	2011/12/02	89	50 - 130	93	50 - 130	<0.005	ug/g	NC	50		
2700356	Benzo(k)fluoranthene	2011/12/02	86	50 - 130	82	50 - 130	<0.005	ug/g	NC	50		
2700356	Chrysene	2011/12/02	88	50 - 130	87	50 - 130	<0.005	ug/g	NC	50		
2700356	Dibenz(a,h)anthracene	2011/12/02	94	50 - 130	101	50 - 130	<0.005	ug/g	NC	50		
2700356	Fluoranthene	2011/12/02	87	50 - 130	84	50 - 130	<0.005	ug/g	NC	50		
2700356	Fluorene	2011/12/02	84	50 - 130	81	50 - 130	<0.005	ug/g	NC	50		
2700356	Indeno(1,2,3-cd)pyrene	2011/12/02	88	50 - 130	93	50 - 130	<0.005	ug/g	NC	50		
2700356	1-Methylnaphthalene	2011/12/02	74	50 - 130	72	50 - 130	<0.005	ug/g	NC	50		
2700356	2-Methylnaphthalene	2011/12/02	75	50 - 130	72	50 - 130	<0.005	ug/g	NC	50		
2700356	Naphthalene	2011/12/02	80	50 - 130	77	50 - 130	<0.005	ug/g	NC	50		
2700356	Phenanthrene	2011/12/02	86	50 - 130	82	50 - 130	<0.005	ug/g	NC	50		
2700356	Pyrene	2011/12/02	90	50 - 130	88	50 - 130	<0.005	ug/g	NC	50		
2700550	Conductivity	2011/12/02					<0.002	mS/cm	3.7	35	101	75 - 125
2700585	Chromium (VI)	2011/12/05	58(1,3)	75 - 125	89	75 - 125	<0.2	ug/g	NC	35	85	75 - 125
2700606	Hot Water Ext. Boron (B)	2011/12/02					<0.05	ug/g	NC	35	98	85 - 115
2700611	Acid Extractable Antimony (Sb)	2011/12/02	92	75 - 125	99	75 - 125	<0.2	ug/g				
2700611	Acid Extractable Arsenic (As)	2011/12/02	97	75 - 125	98	75 - 125	<1	ug/g	6.7	30		
2700611	Acid Extractable Barium (Ba)	2011/12/02	NC	75 - 125	102	75 - 125	<0.5	ug/g				
2700611	Acid Extractable Beryllium (Be)	2011/12/02	99	75 - 125	105	75 - 125	<0.2	ug/g				
2700611	Acid Extractable Boron (B)	2011/12/02	NC	75 - 125	104	75 - 125	<5	ug/g				
2700611	Acid Extractable Cadmium (Cd)	2011/12/02	99	75 - 125	99	75 - 125	<0.1	ug/g				
2700611	Acid Extractable Chromium (Cr)	2011/12/02	101	75 - 125	100	75 - 125	<1	ug/g				
2700611	Acid Extractable Cobalt (Co)	2011/12/02	97	75 - 125	102	75 - 125	<0.1	ug/g				
2700611	Acid Extractable Copper (Cu)	2011/12/02	NC	75 - 125	100	75 - 125	<0.5	ug/g				
2700611	Acid Extractable Lead (Pb)	2011/12/02	NC	75 - 125	105	75 - 125	<1	ug/g				
2700611	Acid Extractable Molybdenum (Mo)	2011/12/02	101	75 - 125	100	75 - 125	<0.5	ug/g				
2700611	Acid Extractable Nickel (Ni)	2011/12/02	94	75 - 125	100	75 - 125	<0.5	ug/g				
2700611	Acid Extractable Selenium (Se)	2011/12/02	95	75 - 125	98	75 - 125	<0.5	ug/g				
2700611	Acid Extractable Silver (Ag)	2011/12/02	97	75 - 125	99	75 - 125	<0.2	ug/g				

Golder Associates Ltd Client Project #: 11-1122-0210 Site Location: 645 LONGFIELDS DR. Sampler Initials: PH

QUALITY ASSURANCE REPORT

			Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2700611	Acid Extractable Thallium (TI)	2011/12/02	93	75 - 125	103	75 - 125	<0.05	ug/g				
2700611	Acid Extractable Uranium (U)	2011/12/02	99	75 - 125	103	75 - 125	<0.05	ug/g				
2700611	Acid Extractable Vanadium (V)	2011/12/02	100	75 - 125	97	75 - 125	<5	ug/g				
2700611	Acid Extractable Zinc (Zn)	2011/12/02	NC	75 - 125	107	75 - 125	<5	ug/g				
2700611	Acid Extractable Mercury (Hg)	2011/12/02	NC	75 - 125	95	75 - 125	<0.05	ug/g				

N/A = Not Applicable

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) - Duplicate results exceeded RPD acceptance criteria. This may be due to sample heterogeneity.

(3) - The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample.

Validation Signature Page

Maxxam Job #: B1I7378

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Carriere

CRISTINA CARRIERE, Scientific Services

Eve Ristonation

EWA PRANJIC, M.Sc., Cchem, Scientific Specialist

Marial

FLOYD MAYEDE, Senior Analyst

PAUL RUBINATO, Analyst, Maxxam Analytics

Validation Signature Page

Maxxam Job #: B1I7378

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

STEVE ROBERTS, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 20 of 25

Max	Xam 🚆	axxam Analytics International Corporation o/	a Maxxam Analytics	1/005) 917 5700 Toll 6	an 800 EG	2 6066 Fau	(00E) 047	F770				CHA	IN OF	CUSTODY RI	ECORD		
~ ~	INVOICE INFOR	MATION.	Canada LSN 2L8 Te	1:(905) 817-5700 TOIL-11	ON /if dif	3-6266 Fax	(905) 817	-5779 www	.maxxam.	ca	05		ODMATIC		-	Laboratory Iloo	Page of
Company Name: #14090 Golder Associates Ltd			Company Name:							PROJECT INFORMATION:					Lister	Laboratory Use Only:	
Contact Name: Central Accounting 32 Steacie Dr Kanata ON K2K 2A9			Contact Name:	2					P.O. #:		11-1122-0			MAXXAM JOB #:	305022		
			Address					P					5.8 x				
									P	Project Name:				11 10	CHAIN OF CUSTODY #		
hone:	re: (613)592-9600 Fax: (613)592-9601		Phone:		Fax			s	Site #		OLONEL I		RIVE 645 Low		Field And And And And And And And And And An		
imail:	maxxam@golder.com, OttawaAccounting@golder.c		Email:	Maria Staney	a@gold	i@golder.com				Sampled By:		aut	Hala	an Dr.		C#305022-06-01	JULIE CLEMENT
Regulation 153 (2011) Other Regulations			SPEC	IAL INSTRUCTIONS		ANALY				SIS RECILESTED (Please be specific)		pqia				DEOLIDED	
Table 1 Table 2 Table 3 Table 3	Res/Park Hedium/Fine Ind/Comm Coarse Agri/Other For RSC Include Criteria on Certifi the For MOF regulated dinking	CCME Sanitary Sewer Byles MISA Municipality PWQO Other Cate of Analysis (Y/N)?	aw /	Form	Drinking Water ? (Y / N) d Filtered ? (Y / N)	3 Petroleum	3 PAHs	3 ICPMS Metals	AR	Ho	1003				Regular ((will be a) Standard Please no days - co Job Spec	PLEASE PROVIDE ADVANCE NOTICE F (Standard) TAT: pplied if Rush TAT is not specified): I TAT = 5-7 Working days for most tests. ote: Standard TAT for certain tests such as intact your Project Manager for details. cific Rush TAT (if applies to entire subm	OR RUSH PROJECTS
SAN	MPLES MUST BE KEPT COOL	(< 10°C) EROM TIME OF SAMPLING UN		TONN	ated s Fiel	g 15: ocart	g 15	g 15:	5	7	05				Date Req	Time P	Required:
Gris			TIL DELIVERT TO MA		egul	'Reg	Reg	Rec							Rush Con	tirmation Number: (call)	ab for #)
Sample Bar	rcode Label Sar	nple (Location) Identification Da	te Sampled Time S	Sampled Matrix	<u></u> ∞ ≥	OI	0	0							# or Bottles	Commer	its
TPII-	-2 SAZ	1	4/11/11	S		V	V	V	V	V	Y		1		5		
TPI	-55A1	2	4/11/11	S				V	v						5	-	
TPII-	6 SA2	2	4/11/1	S				~	V						5	29-N	01-11-14-15
		10					-	-									MENT
TPI	-9 SAN	15	4/11/11	S				1	1	V	8. A		-		5		
11 11	1-11	0		3		-	-	V	¥	V			_				
TD 11-	- 9 (1)	20	111/1	C		1	1	V	V	1	V				5	B1I7378	
111	10146		111114	~		~	v	~		4	V				0	S_0	OTT-002
TPI1-	-9 SA32	24	11 11/11	S		V	V	V	V	V	V				5	TEOLO INLOT	TANA A
C	11	0	El III III	C	firth -			01	1						-	RECDINOT	MANA
51	41	X	3/11/4	7		-		¥/							5		
SI	42	2	stuln	5		V									3		
S,	A3	2	5/11/1	S				V			1				3		
o				5												DNICE	
RELI	NQUISHED BY: (Signature/P	rint) Date: (YY/MM/DD	Time:	RECI	EIVED BY	(Signature	/Print)			ate: (YY/MN	M/DD)	Tim	e:	# Jars Used an	1	Laboratory Use On	lv
MADI	A CTAN/EI	A 2011/11/	28	magn	BI	Ma	clise	n	11	-11-	28	A:	15	Not Submitted	Time Se	ensitive Temperature (°C) on Receipt	Custody Seal Yes I Present
TICTUS	A SIANEV			DOV RECORD ANI	0110	PI	YE	4				-		2 - 10 - 1	-	11110	Intact

Maxxam

Golder Associates Ltd Client Project #: 11-1122-0210 Project name: 645 LONGFIELDS DR. Client ID: TP11-2 SA2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Page 22 of 25

Maxxam

Golder Associates Ltd Client Project #: 11-1122-0210 Project name: 645 LONGFIELDS DR. Client ID: TP11-9 SA2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Page 23 of 25

Maxxam

Golder Associates Ltd Client Project #: 11-1122-0210 Project name: 645 LONGFIELDS DR. Client ID: TP11-9 SA12

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Page 24 of 25

Maxxam

Golder Associates Ltd Client Project #: 11-1122-0210 Project name: 645 LONGFIELDS DR. Client ID: SA2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

At Golder Associates we strive to be the most respected global group of companies specializing in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

- Australasia
- North America South America
- + 852 2562 3658

+ 27 11 254 4800

- + 356 21 42 30 20
- + 1 800 275 3281

solutions@golder.com www.golder.com

Golder Associates Ltd. 32 Steacie Drive Kanata, Ontario, K2K 2A9 Canada T: +1 (613) 592 9600

