

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

THE SALVATION ARMY BARRHAVEN CHURCH 102 BILL LEATHEM DRIVE

CITY OF OTTAWA

PROJECT NO.: 16-855

JULY 2017 – REV 3 © DSEL

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR 102 BILL LEATHEM DRIVE

THE SALVATION ARMY BARRHAVEN CHURCH

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	2
1.2	Required Permits / Approvals	3
1.3	Pre-consultation	3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	4
3.0	WATER SUPPLY SERVICING	5
3.1	Existing Water Supply Services	5
3.2	Water Supply Servicing Design	5
3.3	Water Supply Conclusion	7
4.0	WASTEWATER SERVICING	8
4.1	Existing Wastewater Services	8
4.2	Wastewater Design	8
4.3	Wastewater Servicing Conclusions	10
5.0	STORMWATER MANAGEMENT	11
5.1	Existing Stormwater Services	11
5.2	Post-development Stormwater Management Target	11
5.3	Proposed Stormwater Management System	11
5.4	Stormwater Servicing Conclusions	13
6.0	EROSION AND SEDIMENT CONTROL	14
7.0	UTILITIES	15
8.0	CONCLUSION AND RECOMMENDATIONS	16

FIGURES

Figure 1	Site Location
	TABLES
Table 1	Water Supply Design Criteria
Table 2	Water Demand and Boundary Conditions Proposed Conditions – Phase I
Table 3	Water Demand and Boundary Conditions Proposed Conditions – Phase II
Table 4	Wastewater Allowance
Table 5	Wastewater Design Criteria
Table 6	Summary of Estimated Peak Wastewater Flow – Phase I
Table 7	Summary of Estimated Peak Wastewater Flow – Phase II
Table 8	Stormwater Flow Rate Summary - Phase I
Table 9	Stormwater Flow Rate Summary – Phase II
	APPENDICES
Appendix A Appendix B Appendix C Appendix D Drawings / Figures	Pre-consultation Notes Water Supply Wastewater Collection Stormwater Management Proposed Site Plan

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR

102 BILL LEATHEM DRIVE THE SALVATION ARMY BARRHAVEN CHURCH JULY 2017 – REV 3

CITY OF OTTAWA PROJECT NO.: 16-855

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare a Functional Servicing and Stormwater Management report in support of the application for a Zoning By-law Amendment (ZBLA) and Site Plan Control (SPC) at 102 Bill Leathern Drive.

The subject property is located within the City of Ottawa urban boundary, in the Gloucester-South Nepean ward. As illustrated in *Figure 1*, the subject property is located at the intersection of Bill Leathern Drive and Leiken Drive. Comprised of a single parcel, the subject property measures approximately *1.96 ha* and is zoned Light Industrial Zone.

Figure 1: Site Location

The proposed ZBLA and SPC would allow for the development of a 1-story church building fronting onto Bill Leathem Drive. The proposed phased development would include approximately 1128.0 m^2 in phase I and 1696.2 m^2 in phase II of congregation areas, office spaces, an assembly hall and associated parking lots, with access from Bill Leathem Drive within 1.43 ha within the existing site. A copy of the site plan is included in **Drawings/Figures**.

The objective of this report is to support the application for ZBLA and SPC by providing sufficient detail to demonstrate that the proposed development is supported by existing and proposed municipal servicing infrastructure and that the site design conforms to current City of Ottawa design standards.

1.1 Existing Conditions

The existing site is currently an undeveloped parcel of land located within the South Merivale Business Park.

A topo survey was completed by Stantec on Geomatics on February 29, 2016 and is included in *Drawings/Figures*. The elevations range between 90.12m and 89.46m with a grade change of 0.66m from the Northeast to the Southwest corner of the property.

Sewer and watermain mapping collected from the City of Ottawa indicate that the following services exist across the property frontages within the adjacent municipal right-of-ways:

Water Supply

- > 305 mm diameter PVC watermain within Bill Leathern Drive
- > 400 mm diameter watermain within Leikin Drive

Sanitary Sewers

- 375 mm diameter concrete sewer tributary to Barrhaven Trunk within Bill Leathem Drive
- > 750 mm diameter concrete sanitary sewer tributary to Barrhaven Trunk within Leikin Drive

Storm Sewers

- 1350 mm and 1500 diameter concrete storm sewer tributary to Longfields/Davidson Heights Stormwater Management Facility (*LDHSMF*) within Bill Leathem Drive
- 1650-2400 mm diameter concrete storm sewer running along the West edge of the property tributary to LDHSMF
- > 525 mm diameter concrete storm sewer tributary to *LDHSMF* within Leikin Drive

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

The proposed development involves the construction of a single storey church on lands zoned Light Industrial Zone 9. DSEL has reviewed the development's obligation under Section 53 of the Ontario Water Resources act and Ontario Regulation 525/98. Ontario Regulation 525/98 states that Subsection 53 (1) and (3) of the Act do not apply to lands designed as one parcel, that discharge into a storm sewer that is not combined, does not service industrial and or located on industrial land. The Act defines industrial land as " land used for the production, processing, repair, maintenance or storage of goods or materials, or the processing, storage, transfer or disposal of waste, but does not include land used primarily for the purpose of buying or selling, (a) goods or materials other than fuel, or (b) services other than vehicle repair services." The proposed development will be developed as a single parcel of land, will outlet into a storm sewer that is not combined, and does not fall within the definition of industrial lands per the Act. Therefore, it is DSEL's opinion that the proposed stormwater management system is exempt from the approval requirements under Section 53 of the Act. DSEL have communicated their opinion to the local MOE office via email, but have not received their feedback at the time of publication. Correspondence is included in *Appendix A*.

1.3 Pre-consultation

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (City Standards)
- Ottawa Design Guidelines Water Distribution
 City of Ottawa, July 2010.
 (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
- Design Guidelines for Sewage Works,
 Ministry of the Environment, 2008.
 (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update (OBC)
- Water Supply for Public Fire Protection Fire Underwriters Survey, 1999. (FUS)
- Longfields/Davidson Heights Serviceability Study, City of Nepean Oliver, Mangione, McCalla & Associates Ltd., February 1993, (LDH Servicing Study)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 2W pressure zone as shown by the City of Ottawa water distribution map in *Appendix B*. An existing 305 mm diameter watermain is located within the Bill Leathem Drive right-of-way in addition to a 400 mm diameter watermain within the Leikin Drive right-of-way.

3.2 Water Supply Servicing Design

It is proposed that the development be serviced via a 50 mm diameter connection to the 305 mm diameter watermain within Bill Leathem Drive. Servicing details for the proposed connection are shown by drawing **SSP-1** and **SSP-2** included in this report.

Table 1 summarizes the **Water Supply Guidelines** employed in the preparation of the preliminary water demand estimate.

Table 1
Water Supply Design Criteria

Design Parameter	Value				
Church	30 L/seat/d				
Assembly Hall	30 L/seat/d				
Office	75 L/9.3m ² /d				
Minimum Watermain Size	150mm diameter				
Minimum Depth of Cover	2.4m from top of watermain to finished grade				
During normal operating conditions desired	350kPa and 480kPa				
operating pressure is within					
During normal operating conditions pressure must	275kPa				
not drop below					
During normal operating conditions pressure must	552kPa				
not exceed					
During fire flow operating pressure must not drop	140kPa				
below					
*Daily average based on Appendix 4-A from Water Supply Guidelines ** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.					

** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons
-Table updated to reflect ISD-2010-2

Table 2 summarizes the anticipated water supply demand and boundary conditions for the proposed development based on the **Water Supply Guidelines**.

Table 2 Water Demand and Boundary Conditions Proposed Conditions – Phase I

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² @ Ground Elevation (m H₂O / kPa)	
Average Daily Demand	4.0	58.3	571.9
Max Day + Fire Flow	5.9 + 7,000 = 7,005.9	35.9	352.2
Peak Hour	10.7	35.9	352.2

Water demand calculation per *Water Supply Guidelines*. See *Appendix B* for detailed calculations.
 Boundary conditions supplied by the City of Ottawa for the demands indicated in the correspondence; assumed ground elevation 89.3m. See *Appendix B*.

Table 3 summarizes the anticipated water supply demand and boundary conditions for the proposed development based on the **Water Supply Guidelines**.

Table 3
Water Demand and Boundary Conditions
Proposed Conditions – Phase II

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² @ Ground Elevation (m H ₂ O / kPa)	
Average Daily Demand	9.0	58.3	571.9
Max Day + Fire Flow	13.5 + 9,000 = 9,013.5	35.1	344.3
Peak Hour	24.3	35.9	352.2

Water demand calculation per *Water Supply Guidelines*. See *Appendix B* for detailed calculations.
 Boundary conditions supplied by the City of Ottawa for the demands indicated in the correspondence; assumed ground elevation 89.3m. See *Appendix B*.

Fire flow requirements are to be determined in accordance with Local Guidelines (*FUS*), City of Ottawa *Water Supply Guidelines*, and the Ontario Building Code.

Using the *FUS* method a conservative estimation of fire flow had been established. The following assumptions were coordinated with the project team:

- > Type of construction Ordinary Construction
- Occupancy type Combustible
- Sprinkler Protection Non-Sprinkler System

The above assumptions result in an estimated fire flow of approximately **7,000** L/min for Phase I and **9,000** L/min for Phase II.

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand as indicated in the boundary request correspondence included in *Appendix B*.

The City provided both the anticipated minimum and maximum water pressures, as well as the estimated water pressure during fire flow demand for the demands as indicated by the correspondence in *Appendix B*. Initial boundary conditions obtained indicate residual pressures exceeds the required pressure range as specified in *Table 1* and the *Water Supply Guidelines*, as a result, pressure reducing valves are required.

3.3 Water Supply Conclusion

Anticipated water demand under proposed conditions was submitted to the City of Ottawa for establishing boundary conditions.

Boundary conditions provided by the City indicate residual pressures exceeds the required pressure; as a result, pressure reducing valves will be required.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site lies within the Barrhaven Trunk Sewer catchment area which is tributary to the West Rideau Trunk Collector, as shown by the City sewer mapping included in *Appendix C*. An existing 375 mm diameter sanitary sewer within Bill Leathern Drive and a 750 mm diameter sanitary sewer within Leikin Drive are available to service the proposed development.

4.2 Wastewater Design

The *LDH Servicing Study* used an industrial sanitary flow rate of 45,000 L/ha/day with a peaking factor determined by the MOE industrial sewage graph reproduced in Appendix 4-B of the *City Guidelines* to size trunk infrastructure.

Table 4 summarizes sanitary allowance for the subject property which was calculated based on the criteria presented in the **LDH Servicing Study**. See **Appendix C** for detailed calculations.

Table 4
Wastewater Allowance

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.74
Estimated Peak Dry Weather Flow	2.98
Estimated Peak Wet Weather Flow	3.38

As the sanitary sewer within Leikin Drive is more than 7m below existing grade to avoid deep connections, it is proposed that the development will connect to the 375 mm diameter sanitary sewer within Bill Leathern Drive. Servicing details are shown by **SSSP-1** and **SSP-2** included with this report.

Table 5 summarizes the **City Standards** employed in the design of the proposed wastewater sewer system.

Table 5
Wastewater Design Criteria

Design Parameter	Value
Church	30 L/seat/d
Assembly Hall	30 L/seat/d
Office	75 L/9.3m ² /d
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
Infiltration and Inflow Allowance	0.28L/s/ha
Sanitary sewers are to be sized employing the	$Q = \frac{1}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
Manning's Equation	$Q = -AR^{-3}S^{-2}$
Minimum Sewer Size	200mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity	3.0m/s
Extracted from Sections 4 and 6 of the City of Ottawa Sew	er Design Guidelines, October 2012.

Table 6 demonstrates the anticipated peak flow from the proposed Phase I development. See **Appendix C** for associated calculations.

Table 6
Summary of Estimated Peak Wastewater Flow – Phase I

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.08
Estimated Peak Dry Weather Flow	0.12
Estimated Peak Wet Weather Flow	0.52

Table 7 demonstrates the anticipated peak flow from the proposed Phase II development. See **Appendix C** for associated calculations.

Table 7
Summary of Estimated Peak Wastewater Flow – Phase II

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.16
Estimated Peak Dry Weather Flow	0.24
Estimated Peak Wet Weather Flow	0.64

Preliminary estimates of the sanitary flow based on the concept plan provided in **Drawings/Figures** anticipates an ultimate peak wet weather flow of **0.64 L/s**. Detailed calculations are included in **Appendix C**.

Based on the analysis above, sufficient capacity is available in the local sewers to accommodate the contemplated development.

4.3 Wastewater Servicing Conclusions

Based on the information from the *LDH Servicing Study*, sufficient capacity is available to accommodate the anticipated *0.64 L/s* ultimate peak wet weather flow from the contemplated development.

The contemplated wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the Rideau River watershed. The existing lands are currently undeveloped and contain no stormwater management controls for flow attenuation. The subject property currently surface drains to the existing right-of-ways fronting the subject property where it is collected by the municipal catchbasin system or sheet drains towards the **LDHSMF**.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed, and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA).

Based on the information from the *LDH Servicing Study*, the subject site is expected to store up to the 100-year storm event onsite; an excerpt has been included in *Appendix D*.

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa, where the proposed development is required to:

- Establish an allowable release rate of 48.9 L/s/ha based on the **LDH Servicing Study** and the correspondence included in **Appendix A**.
- Attenuate all storms up to and including the City of Ottawa 100-year design event are to be attenuated on site.
- No quality controls are anticipated as the municipal storm sewers outlet to the LDHSMF.

Based on the above the allowable release rate for the proposed development is 70.5 L/s.

5.3 Proposed Stormwater Management System

In order to achieve the allowable post-development stormwater runoff release rate established in **Section 5.2**, the proposed development will employ surface storage that will outlet to the existing 1350 mm diameter storm sewer within Bill Leathem Drive.

The private stormwater sewer system has been sized to control and store up to the 100-year storm runoff rate in accordance with the *City Standards*. Detailed layout and sizing is illustrated by *FIG-1* and *FIG-2* included with this report and the sewer calculation sheet in *Appendix D*.

A vegetated swale is proposed to promote infiltration and provide storage. The swale is proposed to run along the east side of the building towards a catch basin North East of the building, to capture and direct stormwater runoff from the landscaped areas to the attenuated storm sewers system on site.

In Phase I, a temporary swale within the proposed Phase II footprint is proposed to direct stormwater runoff towards the parking lot towards CB104.

Flow from rooftops will discharge to surface to the vegetated swale.

Runoff from the parking area will be attenuated by a 97mm Inlet Control Device (ICD) located in **STM101**, as illustrated by **SSP-1** and **SSP-2**. Detailed calculations are located in **Appendix D**.

Stormwater drainage areas are shown by **SWM-1** and **SWM-2** along with detailed calculations included in **Appendix D**.

Existing undeveloped areas will maintain existing flow patterns. Unattenuated areas will flow overland to the existing municipal right-of-way. Unattenuated areas will be compensated for in areas with controls. Servicing details are illustrated by **SSP-1** and **SSP-2** in **Drawings/Figures**.

Table 8 summarizes the Phase I post-development flow rates, unattenuated areas are compensated for in areas with flow attenuation controls.

Table 8
Stormwater Flow Rate Summary - Phase I

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Storage	100-Year Available Storage
	(L/s)	(m³)	(L/s)	(m³)	(m³)
Unattenuated Areas	15.6	0.0	33.4	0.0	0.0
Attenuated Areas	36.0	88.5	36.6	264.9	298.1
Total	51.6	88.5	70.0	264.9	298.1

Table 9 summarizes the Phase II post-development flow rates, unattenuated areas are compensated for in areas with flow attenuation controls.

Table 9
Stormwater Flow Rate Summary – Phase II

Control Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(L/s)	(m³)	(L/s)	(m³)	(m³)
Unattenuated Areas	15.6	0.0	33.3	0.0	0.0
Attenuated Areas	36.1	110.4	36.7	321.8	323.6
Total	51.7	110.4	70.0	321.8	323.6

To attenuate flow to the established release rate of **70.5 L/s**, it is estimated that approximately **264.9 m**³ of storage will be required on site in Phase I, and **321.8 m**³ of storage will be required on site in Phase II; storage calculations are contained within **Appendix D**.

5.4 Stormwater Servicing Conclusions

Post development stormwater runoff will be required to be restricted to the allowable target release rate for storm events up to and including the 100-year storm in accordance with *City Standards*.

To attenuate flow to the established release rate of 70.5 L/s, it is estimated that approximately 321.8 m^3 of storage will be required.

Based on the LDH Servicing Study, stormwater quality controls are not required.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or approved equivalent installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catch basins and frames.
- Plan construction at proper time to avoid flooding.

Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change filter cloth at catch basins.

7.0 UTILITIES

The proposed development will be coordinated and approved by the utility company having jurisdiction.

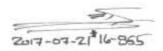
8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained to prepare an Assessment of Adequacy of Public Services report in support of the application for a Zoning By-law Amendment (ZBLA) and Site Plan Control (SPC) at 102 Bill Leathern Drive. The preceding report outlines the following:

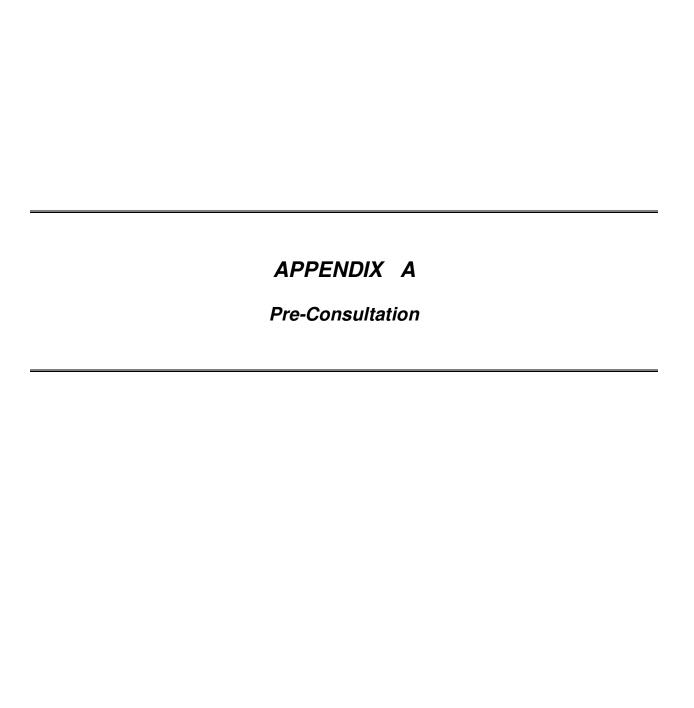
- The FUS method for estimating fire flow indicated a max of **9,000 L/min** is required for the proposed development, based on boundary conditions provided by the City the existing municipal water infrastructure is capable of providing the proposed development with water within the City's required pressure range;
- The contemplated development is anticipated to have a peak wet weather flow of **0.64 L/s**; Based on the **LDH Servicing Study**, the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Based on **LDH Servicing Study**, the contemplated development is required to attenuate post development flows to an equivalent release rate of **48.9 L/s/ha**; a max of **321.8 m**³ is required to meet the release rate;
- It is proposed that stormwater objectives will be met through storm water retention via surface storage. A 97mm ICD will be installed in **STM101** to restrict runoff;
- Based on consultation with the City of Ottawa, stormwater quality controls are not required.

Prepared by, **David Schaeffer Engineering Ltd.**

Prepared by, **David Schaeffer Engineering Ltd.**



Per: Robert D. Freel, P. Eng.


Per: Alison J. Gosling

Reviewed by,

David Schaeffer Engineering Ltd.

Per: Adam D. Fobert, P. Eng.

DEVELOPMENT SERVICING STUDY CHECKLIST

16-855 12/04/2016

		, ,
	General Content	
□ .	Executive Summary (for larger reports only).	N/A
<	Date and revision number of the report.	Report Cover Sheet
	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
	Plan showing the site and location of all existing services.	Figure 1
3	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
<	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
3	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
<	Statement of objectives and servicing criteria.	Section 1.0
]	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	N/A
]	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
]	Proposed phasing of the development, if applicable.	N/A
]	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.4
]	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	N/A
.2	Development Servicing Report: Water Confirm consistency with Master Servicing Study, if available	N/A
」	Availability of public infrastructure to service proposed development	Section 3.1
V	Availability of public lilitastructure to service proposed developilient	3ection 3.1

4.2 Development Servicing Report: Water				
	Confirm consistency with Master Servicing Study, if available	N/A		
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1		
\boxtimes	Identification of system constraints	Section 3.1		
\boxtimes	Identify boundary conditions	Section 3.1, 3.2		
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.3		

SEL©

\boxtimes	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available	Section 3.2
	fire flow at locations throughout the development.	
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
	Reference to water supply analysis to show that major infrastructure is capable	·
	of delivering sufficient water for the proposed land use. This includes data that	Section 2.2.2.2
\boxtimes	shows that the expected demands under average day, peak hour and fire flow	Section 3.2, 3.3
	conditions provide water within the required pressure range	
	Description of the proposed water distribution network, including locations of	
	proposed connections to the existing system, provisions for necessary looping,	N/A
ш	and appurtenances (valves, pressure reducing valves, valve chambers, and fire	NA
	hydrants) including special metering provisions.	
	Description of off-site required feedermains, booster pumping stations, and	
	other water infrastructure that will be ultimately required to service proposed	N/A
	development, including financing, interim facilities, and timing of	,
	implementation.	
\boxtimes	Confirmation that water demands are calculated based on the City of Ottawa	Section 3.2
	Design Guidelines.	
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
	streets, parcers, and building locations for reference.	
4.3	Development Servicing Report: Wastewater	
	Summary of proposed design criteria (Note: Wet-weather flow criteria should	
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	
\boxtimes	data from relatively new infrastructure cannot be used to justify capacity	Section 4.2
	requirements for proposed infrastructure).	
	Confirm consistency with Master Servicing Study and/or justifications for	N/A
	deviations.	N/A
	Consideration of local conditions that may contribute to extraneous flows that	
	are higher than the recommended flows in the guidelines. This includes	N/A
	groundwater and soil conditions, and age and condition of sewers.	
\boxtimes	Description of existing sanitary sewer available for discharge of wastewater	Section 4.1
\boxtimes	Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 4.1
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of	Section 4.1
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be	
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	Section 4.1 Section 4.2
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	
\boxtimes	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the	Section 4.2
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	
\boxtimes	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 4.2
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on	Section 4.2 Section 4.2, Appendix C
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the	Section 4.2 Section 4.2, Appendix C Section 4.2
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses,	Section 4.2 Section 4.2, Appendix C
	Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the	Section 4.2 Section 4.2, Appendix C Section 4.2

ii DSEL©

	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and	N/A
	maximum flow velocity. Identification and implementation of the emergency overflow from sanitary	
	pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
4.4	Development Servicing Report: Stormwater Checklist	
\boxtimes	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
\boxtimes	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
\boxtimes	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawings/Figures
\boxtimes	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
\boxtimes	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
\boxtimes	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
	Record of pre-consultation with the Ontario Ministry of Environment and the	A company altitude
\boxtimes	Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
\boxtimes	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
\boxtimes	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3
	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	N/A
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	N/A
	Identification of potential impacts to receiving watercourses	N/A
	Identification of municipal drains and related approval requirements.	N/A

DSEL© iii

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
_	100 year flood levels and major flow routing to protect proposed development	
	from flooding for establishing minimum building elevations (MBE) and overall grading.	N/A
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 6.0
	Identification of floodplains – proponent to obtain relevant floodplain	
	information from the appropriate Conservation Authority. The proponent may	N1 / A
	be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information	N/A
	does not match current conditions.	
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
	investigation.	
4.5	Approval and Permit Requirements: Checklist	
	Conservation Authority as the designated approval agency for modification of	
	floodplain, potential impact on fish habitat, proposed works in or adjacent to a	
\boxtimes	watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2
	Rivers Improvement ct. Where there are Conservation Authority regulations in	Section 1.2
	place, approval under the Lakes and Rivers Improvement Act is not required,	
	except in cases of dams as defined in the Act.	
	Application for Certificate of Approval (CofA) under the Ontario Water	N/A
	Resources Act.	
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A
	Government Services Canada, Ministry of Transportation etc.)	
4.6	Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	Section 7.0
	Comments received from review agencies including the City of Ottawa and	
	information on how the comments were addressed. Final sign-off from the	
	responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional	

v DSEL©

Hall, James <James.Hall@ottawa.ca> From: February-03-15 3:40 PM Sent: 'Robert Freel' To: Adam Fobert Cc: RE: South Merivale Business Park Subject: Hi Bobby, Adam, I concur with your approach outlined below. Regards, Jim From: Robert Freel [mailto:rfreel@dsel.ca] Sent: Monday, February 02, 2015 5:44 PM To: Hall, James Cc: Adam Fobert Subject: South Merivale Business Park Good afternoon James, As a follow up to your meeting with Adam we have been able to find the following information concerning the South Merivale Business Park with regards to servicing. The information has been extracted from the servicing study for the Longfields/Davidson Heights area attached: Sanitary Flow Allowance - 45,000 L/ha/day based on the reference below; Site Plan (pg. 11) indicates an industrial flow was used and the chart at the bottom of (pg. 16) indicates the flow rate assumed based on MOE quidelines. Storm Sewers - 0.7 cfs/acre or 48.9L/s/ha based on the references and assumptions below; City of Nepean Design Guidelines indicate storm sewers are to be sized to convey 5year flow (pg. 44)

o All CBs are to include inlet restriction to 0.7 cfs (pg. 44) Table 3 (pg. 49) indicates 58 CBs for the subject area 901 (58.5 acres) as show by storm drainage figure (pg. 154) Results in a release rate of 0.7 cfs/acre or 48.9L/s/ha All industrial and commercial lands are to contain the 100-year event. (pg. 22) Can you confirm the criteria above or if further/updated information is available, provide the relevant information as necessary. Please feel free to contact Adam or me to discuss. Thank you, Bobby Freel, EIT. david schaeffer engineering 1td. 120 Iber Road, Unit 203 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.258

rfreel@DSEL.ca

cell: email: (613) 314-7675

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying

of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute

distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par

une personne autre que son destinataire prévu est interdite. Je vous remercie de

collaboration.

Alison Gosling

To: Alison Gosling

Subject: RE: 102 Bill Leathern Drive - ECA Requiremetn

From: Alison Gosling [mailto:agosling@dsel.ca]

Sent: April-19-16 3:52 PM

To: 'Diamond, Emily (MOECC)' < Emily. Diamond@ontario.ca>

Cc: Robert Freel <rfreel@dsel.ca>

Subject: 102 Bill Leathern Drive - ECA Requiremetn

Good morning Emily,

We just wanted to touch base with you regarding a proposed development we are working on located at 102 Bill Leathem Drive.

The existing site is currently an undeveloped parcel within the South Merivale Business Park. The proposed 1.4ha development consists of a 1-story church building.

The current site surface either drains to the existing right-of-ways fronting the subject property where it is collected by the municipal catchbasin system and directed to or sheet drains overland to the Longfields/Davidson Heights Stormwater Management Facility. Proposed stormwater controls will use subsurface storage, and surface ponding to attenuate the release rate to City of Ottawa requirements.

Our understanding is this project would typically require an Environmental Compliance Approval through the Ministry of the Environment and Climate Change. Due to the industrial zoning it does not fall under the approval exemption set out in Ontario Regulation 525/98 as part of the Ontario Water Resources Act.

Subsection 53(1) and (3) of the Act do not apply to the use, operation, establishment, alteration, extension or replacement of or a change in a storm water management facility that,

- (a) is designed to service one lot or parcel of land;
- (b) discharges into a storm sewer that is not a combined sewer:
- (c) does not service industrial land or a structure located on industrial land; and
- (d) is not located on industrial land.

It is our understanding that the intent of the regulation is to regulate and review industrial lands. The proposed development does not contemplate industrial uses, nor does it present opportunities to support this type of use; no loading docks are proposed, there is no propose storage of dangerous goods or use/discharge of industrial chemicals, etc..

We hope you could support and provide a comment with regards to our assumption above that this property should be exempt from requiring an ECA. Please feel free to call to discuss this further.

Thanks in advance,

Alison Gosling Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.542 **fax**: (613) 836-7183 email: agosling@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Alison Gosling

Subject:

FW: 102 Bill Leathern Drive - ECA Requiremetn

Sent: Monday, May 9, 2016 1:02 PM **To:** Alison Gosling <agosling@dsel.ca> **Cc:** Robert Freel <rfreel@dsel.ca>

Subject: RE: 102 Bill Leathern Drive - ECA Requiremetn

Hi Alison,

I agree that the site would not be considered industrial land therefore providing the proposed SWMF meets the other approval exemption requirements, the site would be exempt from requiring an ECA:

Subsection 53(1) and (3) of the Act do not apply to the use, operation, establishment, alteration, extension or replacement of or a change in a storm water management facility that,

- (a) is designed to service one lot or parcel of land;
- (b) discharges into a storm sewer that is not a combined sewer:
- (c) does not service industrial land or a structure located on industrial land; and
- (d) is not located on industrial land.

Let me know if you have any further questions.

Regards,

Emily Diamond

Environmental Officer Ministry of the Environment and Climate Change

Ottawa District Office 2430 Don Reid Drive Ottawa, Ontario, K1H 1E1 Tel: 613-521-3450 ext 238

Fax: 613-521-5437

e-mail: emily.diamond@ontario.ca

From: Alison Gosling [mailto:agosling@dsel.ca]

Sent: April-19-16 3:52 PM **To:** Diamond, Emily (MOECC)

Cc: Robert Freel

Subject: 102 Bill Leathern Drive - ECA Requiremetn

Good morning Emily,

We just wanted to touch base with you regarding a proposed development we are working on located at 102 Bill Leathem Drive.

The existing site is currently an undeveloped parcel within the South Merivale Business Park. The proposed 1.4ha development consists of a 1-story church building.

The current site surface either drains to the existing right-of-ways fronting the subject property where it is collected by the municipal catchbasin system and directed to or sheet drains overland to the Longfields/Davidson Heights Stormwater Management Facility. Proposed stormwater controls will use subsurface storage, and surface ponding to attenuate the release rate to City of Ottawa requirements.

Our understanding is this project would typically require an Environmental Compliance Approval through the Ministry of the Environment and Climate Change. Due to the industrial zoning it does not fall under the approval exemption set out in Ontario Regulation 525/98 as part of the Ontario Water Resources Act.

Subsection 53(1) and (3) of the Act do not apply to the use, operation, establishment, alteration, extension or replacement of or a change in a storm water management facility that,

- (a) is designed to service one lot or parcel of land;
- (b) discharges into a storm sewer that is not a combined sewer;
- (c) does not service industrial land or a structure located on industrial land; and
- (d) is not located on industrial land.

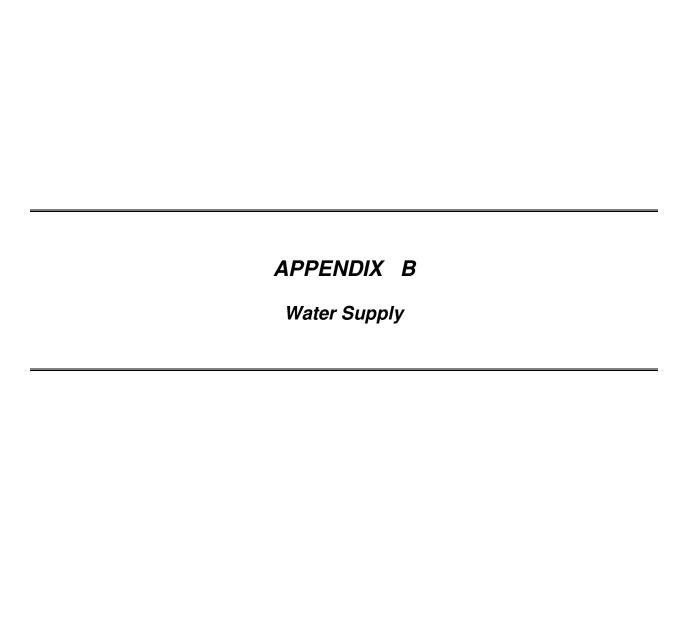
It is our understanding that the intent of the regulation is to regulate and review industrial lands. The proposed development does not contemplate industrial uses, nor does it present opportunities to support this type of use; no loading docks are proposed, there is no propose storage of dangerous goods or use/discharge of industrial chemicals, etc..

We hope you could support and provide a comment with regards to our assumption above that this property should be exempt from requiring an ECA. Please feel free to call to discuss this further.

Thanks in advance,

Alison Gosling Project Coordinator / Junior Designer

DSEL


david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.542

fax: (613) 836-7183 **email**: <u>agosling@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

The Salvation Army 102 Bill Leathem Drive Proposed Site Conditions Phase I

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Pop
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Pop	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0

Institutional / Commercial / Industrial Demand

				Avg. [Daily	Max I	Day	Peak I	Hour
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Church with Kitchen	30	L/seat/d	184	5.52	3.8	8.3	5.8	14.9	10.4
Assembly Hall	30	L/seat/d	40	0.13	0.1	0.2	0.1	0.3	0.2
Office	75	L/9.3m ² /d	6	0.05	0.0	0.1	0.1	0.1	0.1
		Total I/	CI Demand	5.7	4.0	8.5	5.9	15.4	10.7
		Tot	tal Demand	5.7	4.0	8.5	5.9	15.4	10.7

The Salvation Army 102 Bill Leathem Drive Proposed Site Conditions Phase II

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Pop
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Pop	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0

Institutional / Commercial / Industrial Demand

			Avg. [Daily	Max I	Day	Peak I	Hour
Property Type	Unit Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Church with Kitchen	30 L/seat/d	426	12.78	8.9	19.2	13.3	34.5	24.0
Assembly Hall	30 L/seat/d	40	0.13	0.1	0.2	0.1	0.3	0.2
Office	75 L/9.3m ² /d	6	0.05	0.0	0.1	0.1	0.1	0.1
	Total	I/CI Demand	13.0	9.0	19.4	13.5	35.0	24.3
	T	otal Demand _	13.0	9.0	19.4	13.5	35.0	24.3

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

DEEL

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

Type of Construction Coefficient per FUS Part II, Section 1
 1128.0 m² Total floor area based on FUS Part II section 1

Fire Flow 7388.9 L/min

7000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Combustible 0%

Fire Flow 7000.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

N >45m 0% S >45m 0% E 30.1m-45m 5% W >45m 0%

% Increase 5% value not to exceed 75% per FUS Part II, Section 4

Increase 350.0 L/min

Total Fire Flow

Fi	re Flow	7350.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4
		7000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

- -Type of construction, Occupancy Type and Sprinkler Protection information provided by Vandenberg & Wildeboer Architects.
- -Calculations based on Fire Underwriters Survey Part II

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

DSEL

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

Type of Construction Coefficient per FUS Part II, Section 1
 1696.2 m² Total floor area based on FUS Part II section 1

Fire Flow 9060.7 L/min

9000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Combustible 0%

Fire Flow 9000.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	% Increase	5%	_
W	>45m	0%	_
Ε	30.1m-45m	5%	
S	>45m	0%	
Ν	>45m	0%	

% Increase 5% value not to exceed 75% per FUS Part II, Section 4

Increase 450.0 L/min

Total Fire Flow

Fire Flow	9450.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4
	9000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

- -Type of construction, Occupancy Type and Sprinkler Protection information provided by Vandenberg & Wildeboer Architects.
- -Calculations based on Fire Underwriters Survey Part II


Boundary Conditions at 102 Bill Lethem

Information Provided:

Date provided: 06 Apr 2016

Criteria	Demand (L/s) for Phase-1	Demand (L/s) for Ultimate Cond.
Average Demand	0.07	0.15
Maximum Daily Demand	0.10	0.22
Peak Hourly Demand	0.18	0.40
Fire Flow Demand	117	150
Maximum Daily + Fire Flow Demand	117.1	150.22

Location:

Phase-1:

Results:

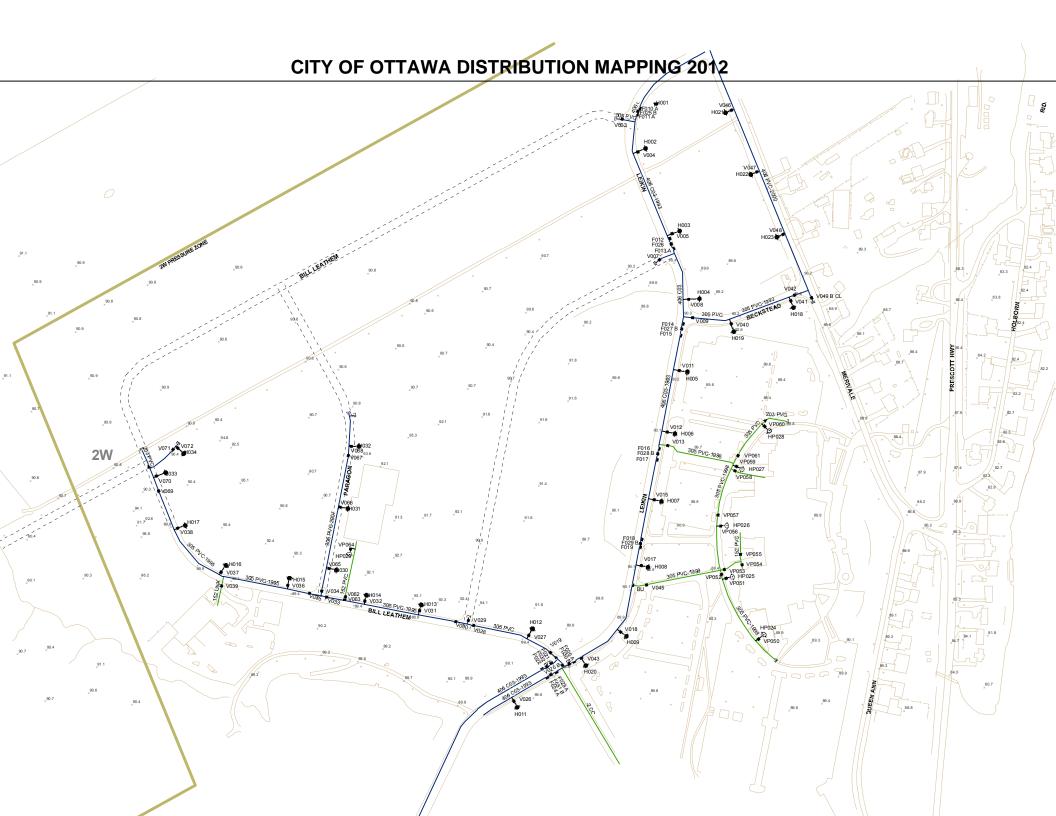
Connection-1:

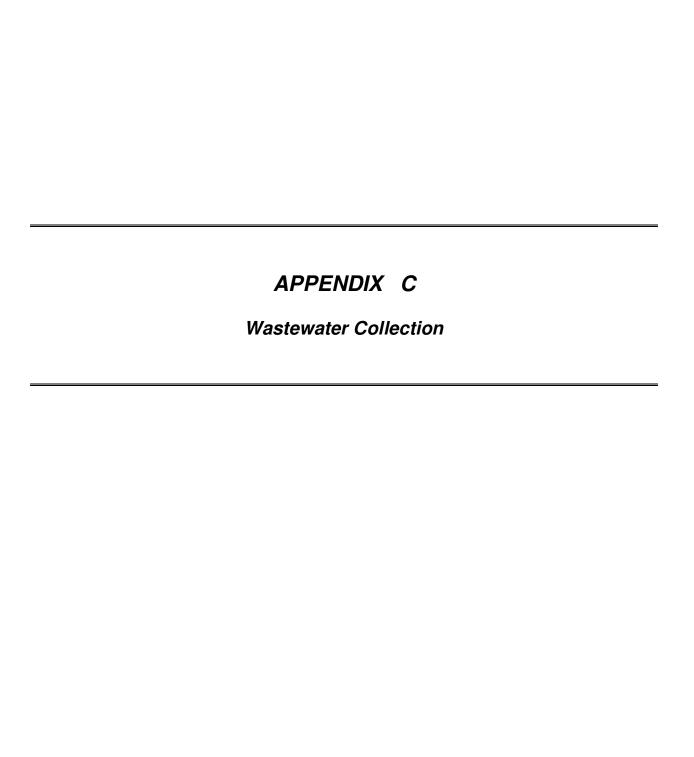
Criteria	Head (m)	Pressure (psi)
Max HGL	147.6	82.9
PKHR	125.2	50.9
MXDY + Fire Flow (117.1 L/s)	125.2	50.9

Phase-2:

Results:

Connection-1:


Criteria	Head (m)	Pressure (psi)
Max HGL	147.6	82.9
PKHR	125.2	50.9
MXDY + Fire Flow (150.22 L/s)	124.4	49.9


Considerations:

 According to the City of Ottawa Water Design Guidelines as well as the Ontario Building Code, the maximum pressure at any point within a distribution system shall not exceed 80 psi in occupied areas. Measures should be taken to try to reduce the residual pressure below 80 psi without the use of special pressure control equipment. In circumstances where the residual pressure cannot be reduced below 80 psi without the use of pressure control equipment, a pressure reducing valve (PRV) should be installed at site.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

The Salvation Army 102 Bill Leathem Drive Wastewater Allowance

Wastewater Design Flows per Unit Count Per LDH Servicing Study

Site Area 1.43 ha

Extraneous Flow Allowances

Infiltration / Inflow 0.40 L/s

Domestic Contributions

Unit Type	Unit Rate	Units	Pop
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Townhouse	2.7		0
Stacked Townhouse	2.3		0
Apartment			
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

Total Pop 0

Average Domestic Flow 0.00 L/s

Peaking Factor 4.00

Peak Domestic Flow 0.00 L/s

Institutional / Commercial / Industrial Contributions

Property Type	Unit	Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space*	5	L/m ² /d		0.00
Hospitals	900	L/bed/d		0.00
School	70	L/student/d		0.00
Industrial	45,000	L/gross ha/d	1.4	0.74

Average I/C/I Flow	0.74
Peak Institutional / Commercial Flow	0.00
Peak Industrial Flow**	2.98
Peak I/C/I Flow	2.98

^{*} assuming a 12 hour commercial operation

^{**} peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.74 L/s
Total Estimated Peak Dry Weather Flow Rate	2.98 L/s
Total Estimated Peak Wet Weather Flow Rate	3.38 L/s

The Salvation Army 102 Bill Leathem Drive Proposed Development Phase I

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area 1.43 ha

Extraneous Flow Allowances

Infiltration / Inflow 0.40 L/s

Domestic Contributions

Unit Type	Unit Rate	Units	Pop
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Townhouse	2.7		0
Stacked Townhouse	2.3		0
Apartment			
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

Total Pop 0

Average Domestic Flow 0.00 L/s

Peaking Factor 4.00

Peak Domestic Flow 0.00 L/s

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Church with Kitchen	30 L/seat/d	184	0.06
Assembly Hall	30 L/seat/d	40	0.01
Office	75 L/9.3m ² /d	6	0.00
	Av	erage I/C/I Flow	0.08
	Peak Institutional / Co	ommercial Flow	0.12
	Peak Ir	ndustrial Flow**	0.00
		Peak I/C/I Flow	0.12

^{*} assuming a 12 hour commercial operation

^{**} peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.08 L/s
Total Estimated Peak Dry Weather Flow Rate	0.12 L/s
Total Estimated Peak Wet Weather Flow Rate	0.52 L/s

The Salvation Army 102 Bill Leathem Drive Proposed Development Phase II

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area 1.43 ha

Extraneous Flow Allowances

Infiltration / Inflow 0.40 L/s

Domestic Contributions

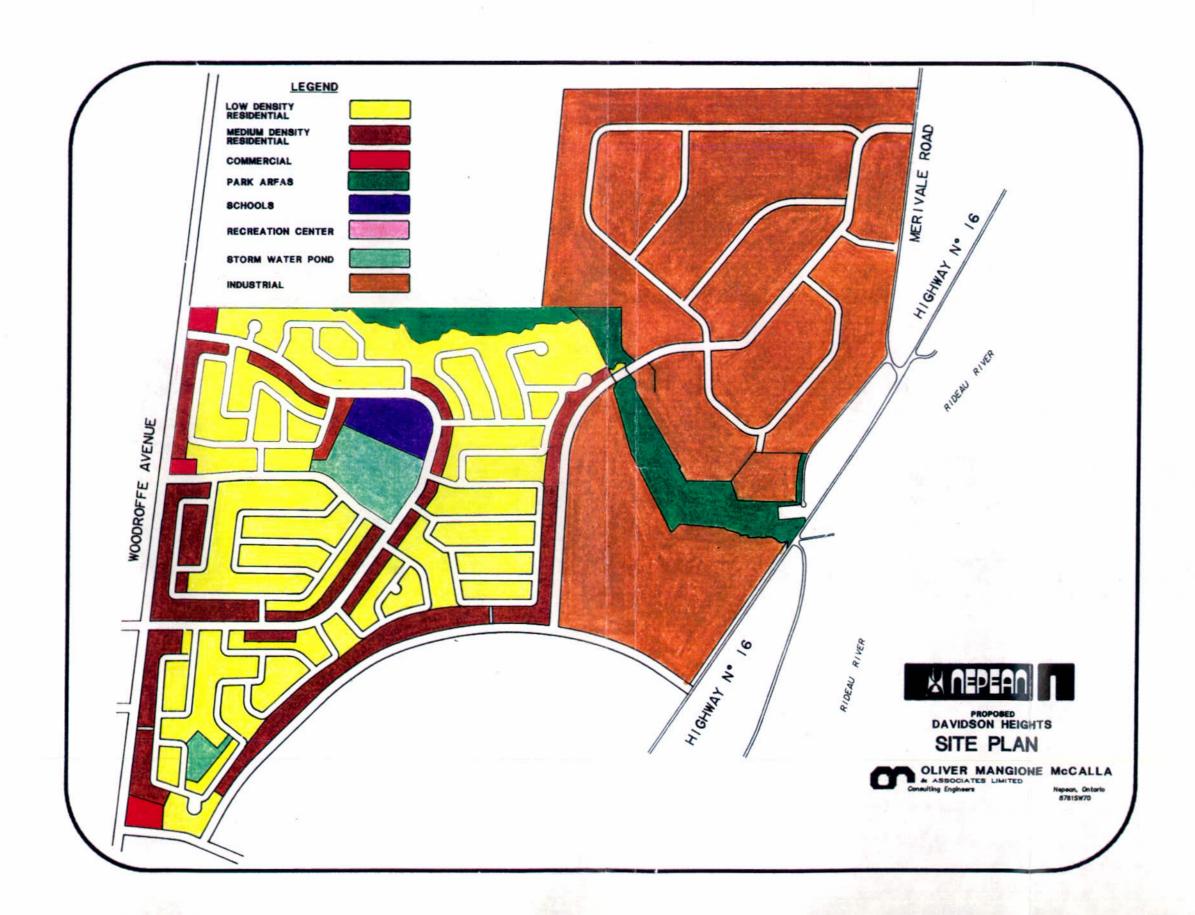
Unit Type	Unit Rate	Units	Pop
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Townhouse	2.7		0
Stacked Townhouse	2.3		0
Apartment			
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

Total Pop 0

Average Domestic Flow 0.00 L/s

Peaking Factor 4.00

Peak Domestic Flow 0.00 L/s


Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Church with Kitchen	30 L/seat/d	426	0.15
Assembly Hall	30 L/seat/d	40	0.01
Office	75 L/9.3m ² /d	6	0.00
	Av	erage I/C/I Flow	0.16
	Peak Institutional / Co	ommercial Flow	0.24
	Peak li	ndustrial Flow**	0.00
		Peak I/C/I Flow	0.24

^{*} assuming a 12 hour commercial operation

^{**} peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.16 L/s
Total Estimated Peak Dry Weather Flow Rate	0.24 L/s
Total Estimated Peak Wet Weather Flow Rate	0.64 L/s

If the West Rideau Collector is not in place before the allowable population growth of 3,200 people is reached, a temporary expansion of the Merivale Pumping Station will be required.

2.2 Proposed Sanitary Sewers

Sketches SK-2 and SK-3 depict the proposed trunk sanitary sewers within the Longfields Community and Davidson Heights respectively. Drawings 91-8461-SAN1 and 91-8461-SAND2 depict the gravity limits of the proposed sanitary sewers in each of the communities, demonstrating how future development areas will be integrated into the proposed trunk sanitary sewer systems. These drawings also depict the information contained on sketches SK-2 and SK-3 in more detail, and are located in the pouches at the back of this report.

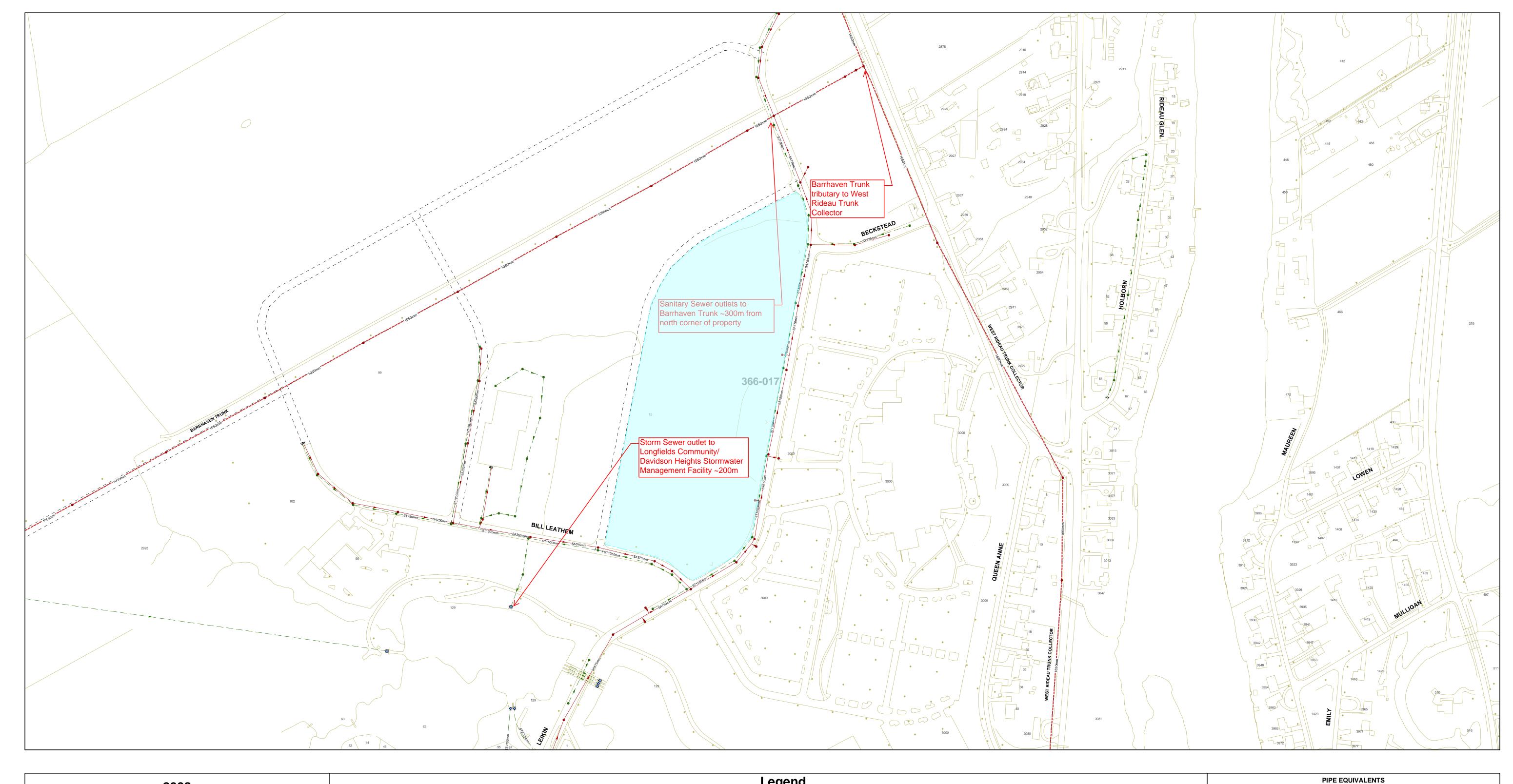
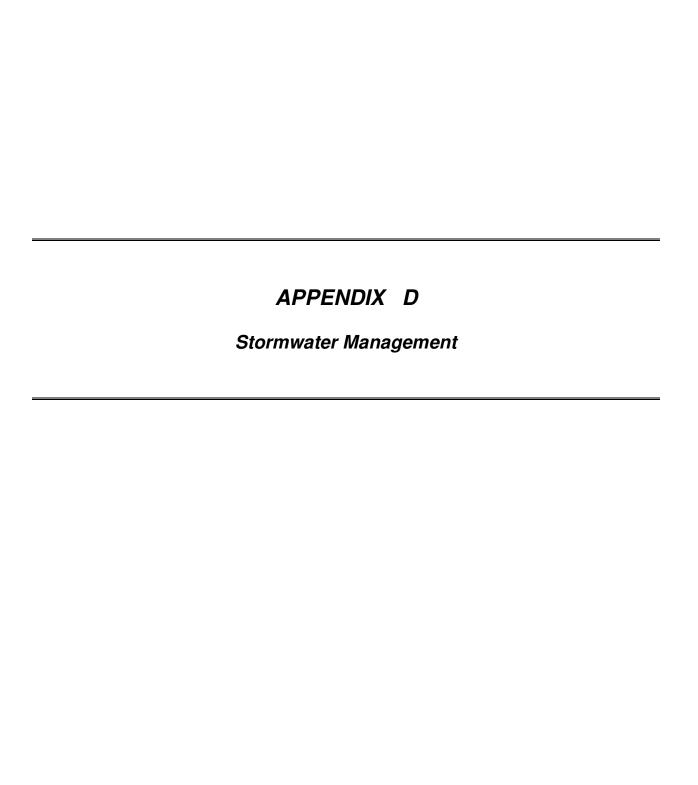

The following design criteria were used to size the trunk facilities.

TABLE 1
SANITARY SEWER DESIGN CRITERIA


DESCRIPTION	DESIGN CRITERIA	PEAKING FACTOR
Residential	450 L/cap/day (* 44.5 people/ha)	Hammon William Equation
Commercial	37,128 L/ha/day (85 persons/ha)	Hammon William Equation
Institutional	37,128 L/ha/day (85 persons/ha)	Hammon William Equation
Industrial	45,000 L/ha/day	MOE Graph
Infiltration	0.11 L/ha/day	

^{*} Provided by City of Nepean Planning Staff

The Savlation Army 102 Bill Leathern Drive **Proposed Conditions** Phase I

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Area 1.44 ha

a 48.9 L/s/ha * Per the Longfields/Davidson Heights Serviceability Study, prepared by Oliver, Mangione, McCalla & Associates, 70.5 L/s dated February 1993

Estimated Post Development Peak Flow from Unattenuated Areas

U1

	Imperv.	Perv	Total	
Area	0.007	0.266	0.273	
С	0.9	0.2	0.22	

Total Area 0.273 ha

0.22 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}		Q _{actual} *	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
12.2	93.9	15.6	15.6	0.0	0.0	160.8	33.4	33.4	0.0	0.0

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Area ID A1+EX1 Available Sub-surface Storage

Maintenance Structures

A1	Imperv.	Perv	Total
Area	0.467	0.681	1.148
С	0.9	0.2	0.48

A1+EX1	Imperv.	Perv	Total
Area	0.467	0.709	1.175
C	0.9	0.2	0.48

EX1	Imperv.	Perv	Total
Area	0.000	0.028	0.028
С	0.9	0.2	0.20

A1+EX1	Imperv.	Perv	Total
Area	0.467	0.709	1.175
С	0.9	0.2	0.48

Stage Attenuated Areas Storage Summary_

		Surface Storage			Surface and Subsurface Storage			
	Stage	Α	h _o	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m³)	(m³)	(L/s)	(hr)
Orifice INV	85.97		0.00			0.0	0.0	0.00
Storage Pipe SL	86.23		0.26	0.26	0.0	0.0	10.2	0.00
Storage Pipe OBV	86.50		0.53	0.26	0.0	0.0	14.5	0.00
T/L	89.05	0.4	3.08	2.55	0.3	0.3	35.0	0.00
0.15 m ponding	89.20	698.1	3.23	0.15	35.8	36.1	35.9	0.28
0.30 m ponding	89.35	3077.0	3.38	0.15	262.0	298.1	36.7	2.26

^{*} V=Incremental storage volume

Where $V = Surface Ponding Volume (m^3)$

d = delta d (m)

 $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $V = \frac{1}{3} \times d \times (A_1$ 0.007 m²

g =gravitational constant (9.81 m/s^2) $h_{\rm \,o\,eff}$ =Effective head above the orifice due to waterlevel at outlet

D=Diameter of the orifice (m)

 $^{^{\}star\star}V_{acc}\!\!=\!\!Total$ surface and sub-surface

 $[\]dagger$ $Q_{release}$ = Release rate claclulated from orifice equation

The Savlation Army 102 Bill Leathem Drive Proposed Conditions Phase I

Orifice Location Total Area C

STM101 Dia 97 mm
1.175 ha
0.48 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

ľ	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
10	104.2	162.6	36.0	126.6	75.9	178.6	348.4	36.6	311.8	187.1
15	83.6	130.4	36.0	94.4	84.9	142.9	278.8	36.6	242.2	218.0
20	70.3	109.7	36.0	73.6	88.3	120.0	234.0	36.6	197.4	236.9
25	60.9	95.1	36.0	59.0	88.5	103.8	202.6	36.6	166.0	249.0
30	53.9	84.2	36.0	48.1	86.6	91.9	179.2	36.6	142.6	256.7
35	48.5	75.7	36.0	39.7	83.3	82.6	161.1	36.6	124.5	261.5
40	44.2	69.0	36.0	32.9	79.0	75.1	146.6	36.6	110.0	264.0
45	40.6	63.4	36.0	27.4	73.9	69.1	134.7	36.6	98.1	264.9
50	37.7	58.8	36.0	22.7	68.2	64.0	124.8	36.6	88.2	264.5
55	35.1	54.8	36.0	18.8	62.0	59.6	116.3	36.6	79.7	263.1
60	32.9	51.4	36.0	15.4	55.3	55.9	109.1	36.6	72.5	260.8
65	31.0	48.5	36.0	12.4	48.4	52.6	102.7	36.6	66.1	257.8
70	29.4	45.8	36.0	9.8	41.1	49.8	97.1	36.6	60.5	254.3
75	27.9	43.5	36.0	7.5	33.7	47.3	92.2	36.6	55.6	250.2
80	26.6	41.5	36.0	5.4	26.0	45.0	87.8	36.6	51.2	245.6
85	25.4	39.6	36.0	3.5	18.1	43.0	83.8	36.6	47.2	240.7
90	24.3	37.9	36.0	1.9	10.1	41.1	80.2	36.6	43.6	235.5
95	23.3	36.4	36.0	0.3	1.9	39.4	76.9	36.6	40.3	229.9
100	22.4	35.0	35.0	0.0	0.0	37.9	74.0	36.6	37.3	224.1
105	21.6	33.7	33.7	0.0	0.0	36.5	71.2	36.6	34.6	218.0
110	20.8	32.5	32.5	0.0	0.0	35.2	68.7	36.6	32.1	211.7

5-year Q_{attenuated} 36.05 L/s 5-year Max. Storage Required Est. 5-year Storage Elevation 88.5 m³ 89.23 m

100-year Q_{attenuated} 36.60 L/s 100-year Max. Storage Required Est. 100-year Storage Elevation 264.9 m³ 89.33 m

Summary of Release Rates and Storage Volumes

Control Area	5-Year Release Rate (L/s)	5-Year Required Storage (m³)	100-Year Release Rate (L/s)	100-Year Required Storage (m³)	100-Year Available Storage (m³)
Unattenuated Areas	15.6	0.0	33.4	0.0	0.0
Attenuated Areas	36.0	88.5	36.6	264.9	298.1
Total	51.6	88.5	70.0	264.9	298.1

The Savlation Army 102 Bill Leathem Drive Proposed Conditions Phase I

														Sewer Data	1			-
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	T _c	ı	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q/Qfull
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)
A101	CB101	STM103	0.143	0.45	0.06	0.06	10.0	104.2	18.8	200	1.00	11.0	0.031	0.050	1.04	32.8	0.2	0.57
							10.2											
A102	CB102	STM103	0.244	0.34	0.08	0.08	10.0	104.2	23.8	250	1.00	11.0	0.049	0.063	1.21	59.5	0.2	0.40
							10.2											
A103	CB103	STM103	0.188	0.78	0.15	0.15	10.0	104.2	42.4	250	1.00	8.3	0.049	0.063	1.21	59.5	0.1	0.71
							10.1											
A104	CB104	STM103	0.235	0.45	0.11	0.11	10.0	104.2	30.8	250	1.00	8.3	0.049	0.063	1.21	59.5	0.1	0.52
							10.1											
	STM103	STM102	0.000	0.00	0.00	0.40	10.2	103.3	114.7	525	0.20	72.3	0.216	0.131	0.89	192.3	1.4	0.60
	STM102	STM101			0.00	0.40	11.5	96.7	107.4	525	0.20	10.6	0.216	0.131	0.89	192.3	0.2	0.56
							11.7											
A105	CB'L'106	CB'T'108	0.339	0.46		0.16	10.0		45.3	300	0.60		0.071	0.075		74.9		
	CB'T'108 CB105	CB105 STM101			0.00	0.16 0.16	10.4 10.8	101.9 100.0	44.3 43.5	300 300	0.60 1.00		0.071 0.071	0.075 0.075	1.06 1.37	74.9 96.7	0.4	
	00103	OTIVITOT			0.00	0.10	11.0		40.0	300	1.00	13.0	0.071	0.073	1.57	30.1	0.2	0.43
	STM101	STM104	0.000	0.00	0.00	0.56	11.7	95.9	148.2	600	0.16	16.2	0.283	0.150	0.87	245.6	0.3	0.60
	STM101	EX	0.000	0.00	0.00	0.56	12.0		146.1	600	0.16		0.283	0.150		245.6		0.60
							12.2		2.1							,,,,		

The Savlation Army 102 Bill Leathern Drive **Proposed Conditions** Phase II

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Area 1.44 ha

a 48.9 L/s/ha * Per the Longfields/Davidson Heights Serviceability Study, prepared by Oliver, Mangione, McCalla &

Associates, dated February 1993 70.5 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

U1

	Imperv.	Perv	Total
Area	0.007	0.266	0.273
С	0.9	0.2	0.22

Total Area

0.273 ha

0.22 Rational Method runoff coefficient

		5-year					100-year						
ſ	t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} *	Q _{release}	Q _{stored}	V _{stored}		
ı	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)		
ſ	12.2	93.9	15.6	15.6	0.0	0.0	160.8	33.3	33.3	0.0	0.0		

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Area ID A1+EX1 Available Sub-surface Storage Maintenance Structures

A1	Imperv.	Perv	Total
Area	0.590	0.558	1.148
С	0.9	0.2	0.56

EX1	Imperv.	Perv	I otal
Area	0.000	0.028	0.028
С	0.9	0.2	0.20

A1+EX1	Imperv.	Perv	Total
Area	0.590	0.585	1.175
С	0.9	0.2	0.55

Stage Attenuated Areas Storage Summary

_		Sı	ırface Stora	ge	Sur	face and Subs	urface Stora	age
	Stage	Α	h _o	delta d	V*	V _{acc} **	Q _{release} †	$V_{drawdown}$
	(m)	(m²)	(m)	(m)	(m³)	(m³)	(L/s)	(hr)
Orifice INV	85.97		0.00			0.0	0.0	0.00
Storage Pipe SL	86.23		0.26	0.26	0.0	0.0	10.2	0.00
Storage Pipe OBV	86.50		0.53	0.26	0.0	0.0	14.5	0.00
T/L	89.05	0.4	3.08	2.55	0.3	0.3	35.0	0.00
0.15 m ponding	89.20	807.0	3.23	0.15	41.3	41.6	35.9	0.32
0.30 m ponding	89.35	3220.9	3.38	0.15	282.0	323.6	36.7	2.45

^{*} V=Incremental storage volume

Where $V = Surface Ponding Volume (m^3)$

d = delta d (m)

 $V = \frac{1}{3} \times d \times (A_1 + A_2 + \sqrt{A_1 \times A_2})$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $Q = C_d \times A \times \sqrt{2 \times g \times (h_o - \frac{1}{2}D)}$ $g = gravitational constant (9.81 m/s^2)$

 $h_{o\,eff}$ =Effective head above the orifice due to waterlevel at outlet

D=Diameter of the orifice (m)

^{**}V_{acc}=Total surface and sub-surface

[†] Q_{release} = Release rate claclulated from orifice equation

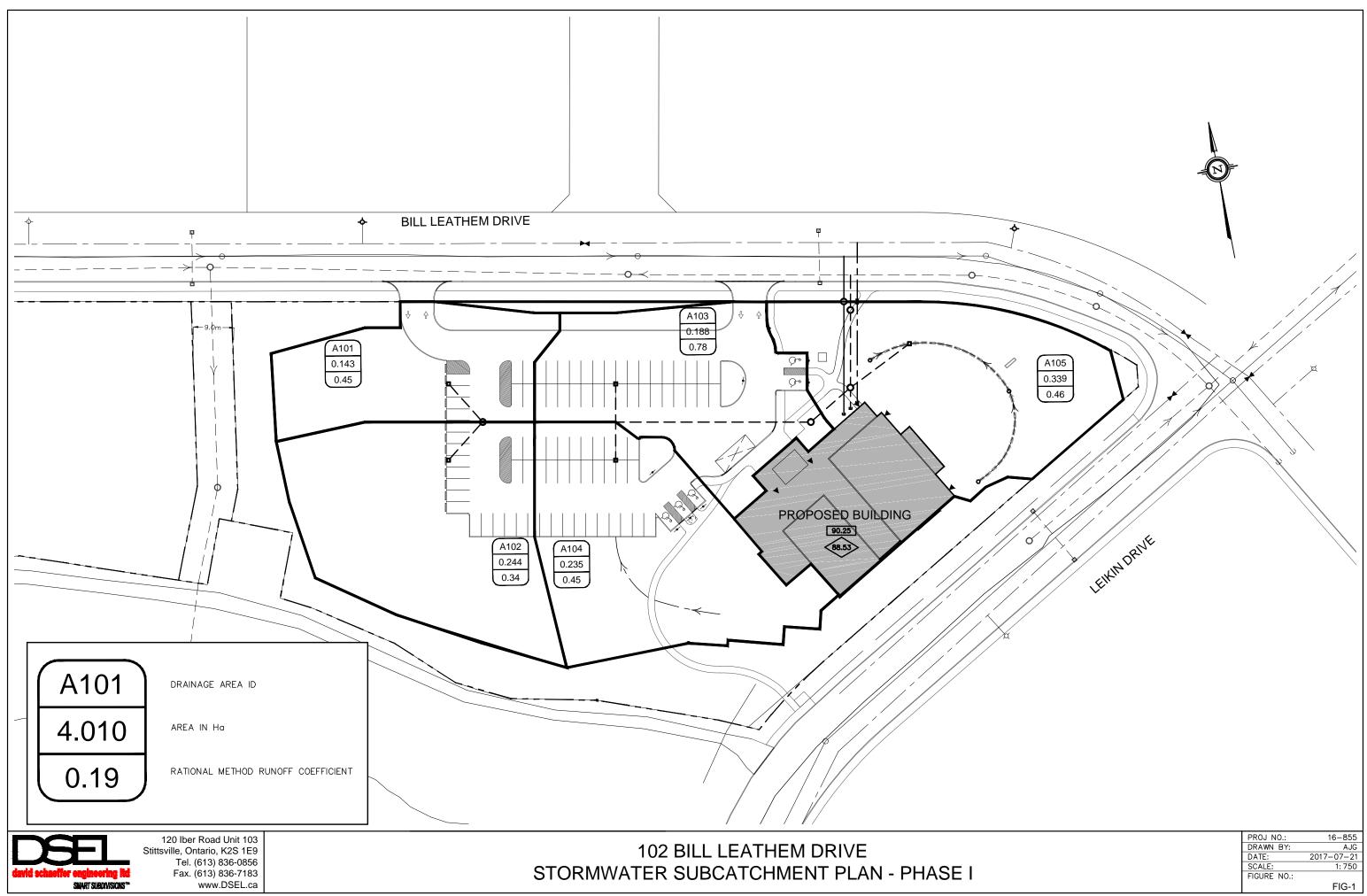
The Savlation Army 102 Bill Leathem Drive Proposed Conditions Phase II

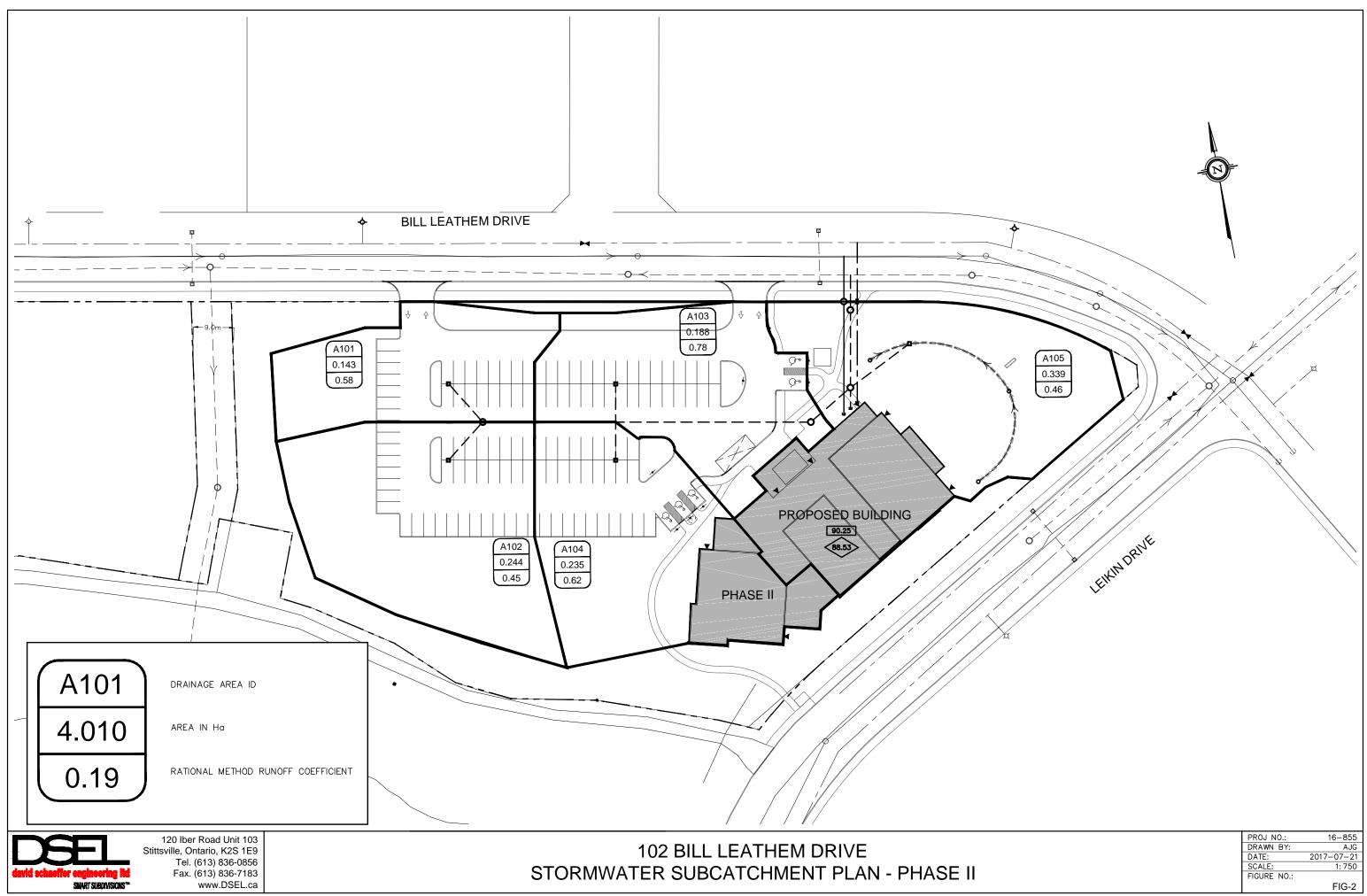
Orifice Location Total Area C

STM101 Dia 97 mm
1.175 ha
0.55 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

1	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	187.6	36.1	151.6	90.9	178.6	402.0	36.7	365.2	219.1
15	83.6	150.5	36.1	114.4	102.9	142.9	321.7	36.7	285.0	256.5
20	70.3	126.5	36.1	90.4	108.5	120.0	270.0	36.7	233.3	280.0
25	60.9	109.7	36.1	73.6	110.4	103.8	233.8	36.7	197.1	295.6
30	53.9	97.1	36.1	61.0	109.9	91.9	206.8	36.7	170.1	306.2
35	48.5	87.4	36.1	51.3	107.7	82.6	185.9	36.7	149.2	313.3
40	44.2	79.6	36.1	43.5	104.4	75.1	169.2	36.7	132.5	317.9
45	40.6	73.2	36.1	37.1	100.1	69.1	155.4	36.7	118.7	320.6
50	37.7	67.8	36.1	31.7	95.2	64.0	144.0	36.7	107.3	321.8
55	35.1	63.3	36.1	27.2	89.6	59.6	134.2	36.7	97.5	321.8
60	32.9	59.3	36.1	23.2	83.7	55.9	125.8	36.7	89.1	320.8
65	31.0	55.9	36.1	19.8	77.3	52.6	118.5	36.7	81.8	319.0
70	29.4	52.9	36.1	16.8	70.6	49.8	112.1	36.7	75.4	316.6
75	27.9	50.2	36.1	14.1	63.6	47.3	106.4	36.7	69.7	313.5
80	26.6	47.8	36.1	11.7	56.4	45.0	101.3	36.7	64.6	309.9
85	25.4	45.7	36.1	9.6	48.9	43.0	96.7	36.7	60.0	305.9
90	24.3	43.7	36.1	7.7	41.3	41.1	92.5	36.7	55.8	301.5
95	23.3	42.0	36.1	5.9	33.5	39.4	88.8	36.7	52.1	296.8
100	22.4	40.4	36.1	4.3	25.6	37.9	85.3	36.7	48.6	291.7
105	21.6	38.9	36.1	2.8	17.5	36.5	82.2	36.7	45.5	286.3
110	20.8	37.5	36.1	1.4	9.3	35.2	79.2	36.7	42.5	280.7

5-year Q_{attenuated} 36.09 L/s 5-year Max. Storage Required Est. 5-year Storage Elevation 110.4 m³ 89.24 m


100-year Q_{attenuated} 36.70 L/s 100-year Max. Storage Required Est. 100-year Storage Elevation 321.8 m³ 89.35 m


Summary of Release Rates and Storage Volumes

Control Area	5-Year Release Rate (L/s)	5-Year Required Storage (m³)	100-Year Release Rate (L/s)	100-Year Required Storage (m³)	100-Year Available Storage (m³)
Unattenuated Areas	15.6	0.0	33.3	0.0	0.0
Attenuated Areas	36.1	110.4	36.7	321.8	323.6
Total	51.7	110 4	70.0	321.8	323.6

The Savlation Army 102 Bill Leathem Drive Proposed Conditions Phase II

									Sewer Data								
Up	Down	Area	С	Indiv AxC	Acc AxC	T _c	ı	Q	DIA	Slope	Length	A _{hvdraulic}	R	Velocity	Qcap	Time Flow	Q / Q full
		(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)
CB101	STM103	0 143	0.58	0.08	0.08	10.0	104.2	24 2	200	1 00	11.0	0.031	0.050	1 04	32.8	0.2	0.74
02.01	01111100	0.1.10	0.00	0.00	0.00	10.2	10112		200		1110	0.001	0.000	1.01	02.0	0.2	0
CB102	STM103	0.244	0.45	0.11	0.11	10.0	104.2	31.9	250	1.00	11.0	0.049	0.063	1.21	59.5	0.2	0.54
00.02	01111100	0.2.1.	00	0	0	10.2	10112	01.0	200	1.00		0.0.0	0.000		00.0	0.2	0.0 .
CB103	STM103	0.188	0.78	0.15	0.15	10.0	104.2	42.4	250	1.00	8.3	0.049	0.063	1.21	59.5	0.1	0.71
				-		10.1						0.0.0				-	
CB104	STM103	0.235	0.62	0.15	0.15	10.0	104.2	42.3	250	1.00	8.3	0.049	0.063	1,21	59.5	0.1	0.71
						10.1											
STM103	STM102	0.000	0.00	0.00	0.49	10.2	103.3	139.5	525	0.20	72.3	0.216	0.131	0.89	192.3	1.4	0.73
STM102	STM101			0.00	0.49		96.7	130.7	525	0.20	10.6	0.216	0.131	0.89	192.3	0.2	0.68
						11./											
CB'L'106	CB'T'108	0.339	0.46		0.16	10.0	104.2	45.3	300	0.60	28.6	0.071			74.9	0.4	0.61
																	0.59
CB105	STM101			0.00	0.16			43.5	300	1.00	15.6	0.071	0.075	1.37	96.7	0.2	0.45
						11.0											
STM101	STM104	0.000	0.00	0.00	0.64	11.7	95.9	171.2	600	0.16		0.283	0.150	0.87	245.6		0.70
STM104	EX			0.00	0.64		94.5	168.8	600	0.16	7.3	0.283	0.150	0.87	245.6	0.1	0.69
	CB101 CB102 CB103 CB104 STM103 STM102 CB'1106 CB'1108 CB105 STM101	CB101 STM103 CB102 STM103 CB103 STM103 CB104 STM103 STM103 STM102 STM102 STM101 CB1L'106 CBT'108 CB'T'108 CB105 CB105 STM101 STM101 STM104	CB101 STM103 0.143 CB102 STM103 0.244 CB103 STM103 0.188 CB104 STM103 0.235 STM103 STM102 0.000 STM102 STM101 CB'L'106 CB'L'108 0.339 CB'T'108 CB105 CB105 STM101 STM101 STM104 0.000	(ha) (-) CB101 STM103 0.143 0.58 CB102 STM103 0.244 0.45 CB103 STM103 0.188 0.78 CB104 STM103 0.235 0.62 STM103 STM102 0.000 0.00 STM102 STM101 0.000 0.46 CB'I'106 CB'I'108 0.339 0.46 CB'I'108 CB105 CB105 CB105 STM101 STM101 STM104 0.000 0.00	CB101 STM103 0.143 0.58 0.08 CB102 STM103 0.244 0.45 0.11 CB103 STM103 0.188 0.78 0.15 CB104 STM103 0.235 0.62 0.15 STM103 STM102 0.000 0.00 0.00 STM102 STM101 0.00 0.00 0.00 CB1/106 CBT108 0.339 0.46 0.16 CB1/108 CB105 0.00 0.00 STM101 0.00 0.00 0.00 STM101 STM101 0.00 0.00	(ha) (·) CB101 STM103 0.143 0.58 0.08 0.08 CB102 STM103 0.244 0.45 0.11 0.11 CB103 STM103 0.188 0.78 0.15 0.15 CB104 STM103 0.235 0.62 0.15 0.15 STM103 STM102 0.000 0.00 0.00 0.49 STM102 STM101 0.000 0.00 0.49 CB'L'106 CB'T'108 0.339 0.46 0.16 0.16 CB'T'108 CB105 0.00 0.16 CB105 STM101 0.000 0.00 0.00 STM101 STM101 0.000 0.00 0.00 STM101 STM101 0.000 0.00 0.00	CB101 STM103 0.143 0.58 0.08 0.08 10.0 CB102 STM103 0.244 0.45 0.11 0.11 10.0 CB103 STM103 0.188 0.78 0.15 0.15 10.0 CB104 STM103 0.235 0.62 0.15 0.15 10.0 STM103 STM102 0.000 0.00 0.00 0.49 10.2 STM102 STM102 0.000 0.00 0.49 11.5 STM102 STM101 0.00 0.49 11.5 CB1-108 CB105 0.00 0.16 10.4 CB105 STM101 0.00 0.16 10.8 STM101 STM101 0.00 0.16 10.8 STM101 0.00 0.00 0.64 11.7	(ha) (·) (min) (mm/hr) CB101 STM103 0.143 0.58 0.08 0.08 10.0 104.2 CB102 STM103 0.244 0.45 0.11 0.11 10.0 104.2 CB103 STM103 0.188 0.78 0.15 0.15 10.0 104.2 CB104 STM103 0.235 0.62 0.15 0.15 10.0 104.2 STM103 STM102 0.000 0.00 0.49 10.2 103.3 STM102 STM101 0.00 0.49 11.5 96.7 CB'17106 CBT'108 0.339 0.46 0.16 0.16 10.0 104.2 CB'17108 CB105 0.00 0.16 10.4 101.0 CB105 0.00 0.16 10.4 101.0 CB105 0.00 0.16 10.8 100.0 CB105 0.00 0.64 11.7 95.9 STM101 ST	(ha) (·) (min) (mm/hr) (L/s) CB101 STM103 0.143 0.58 0.08 0.08 10.0 104.2 24.2 CB102 STM103 0.244 0.45 0.11 0.11 10.0 104.2 31.9 CB103 STM103 0.188 0.78 0.15 0.15 10.0 104.2 42.4 CB104 STM103 0.235 0.62 0.15 0.15 10.0 104.2 42.3 STM103 STM102 0.000 0.00 0.49 10.2 103.3 139.5 STM102 STM101 0.00 0.49 11.5 96.7 130.7 CB'1106 CBT'108 0.339 0.46 0.16 0.16 10.0 104.2 45.3 CB105 0.00 0.16 10.4 10.9 44.3 CB105 0.00 0.16 10.4 10.9 44.3 CB105 0.00 0.01 10.4 11.0	CB101 STM103 O.143 O.58 O.08 O.08 10.0 104.2 24.2 200	(ha) (-) (min) (mm/hr) (L/s) (mm) (%) CB101 STM103 0.143 0.58 0.08 0.08 10.0 104.2 24.2 200 1.00 CB102 STM103 0.244 0.45 0.11 0.11 10.0 104.2 31.9 250 1.00 CB103 STM103 0.188 0.78 0.15 0.15 10.0 104.2 42.4 250 1.00 CB104 STM103 0.235 0.62 0.15 0.15 10.0 104.2 42.3 250 1.00 STM103 STM103 0.235 0.62 0.15 0.15 10.0 104.2 42.3 250 1.00 STM103 STM102 0.000 0.00 0.00 0.49 10.2 103.3 139.5 525 0.20 STM102 STM101 0.000 0.00 0.49 11.5 96.7 130.7 525 0.20 STM102 STM101 0.000 0.00 0.49 11.5 96.7 130.7 525 0.20 CB1'106 CBT'108 0.339 0.46 0.16 0.16 10.0 104.2 45.3 300 0.60 CBT'108 CB105 0.00 0.16 10.4 101.9 44.3 300 0.60 CB105 STM101 0.00 0.00 0.16 10.8 100.0 43.5 300 1.00 STM101 STM104 0.000 0.00 0.00 0.64 11.7 95.9 171.2 600 0.16 STM101 STM104 EX 0.00 0.64 12.0 94.5 168.8 600 0.16	CB101 STM103 O.143 O.58 O.08 O.08 O.08 10.0 104.2 24.2 200 1.00 11.0	Up Down (ha) Area (ha) C Indiv AxC (ha) T _C (min) I (mMhr) Q DIA (L/s) Slope (mm) Length Apyraulic (m²) Apyraulic (m²) CB101 STM103 0.143 0.58 0.08 0.08 10.0 104.2 24.2 200 1.00 11.0 0.031 CB102 STM103 0.244 0.45 0.11 0.11 10.0 104.2 31.9 250 1.00 11.0 0.049 CB103 STM103 0.188 0.78 0.15 0.15 10.0 104.2 42.4 250 1.00 8.3 0.049 CB104 STM103 0.235 0.62 0.15 0.15 10.0 104.2 42.4 250 1.00 8.3 0.049 CB104 STM103 0.235 0.62 0.15 0.15 10.0 104.2 42.3 250 1.00 8.3 0.049 STM103 STM102 0.000 0.00 0.49 11.2 103.3 139.5<	Up Down Area C Indiv AxC Acc AxC T _C I Q DIA Slope Length A _{hydraulic} R (min) (min) (min) (L/s) (mm) (%) (m) (m ²) (m) (m ²) (m) (min) (min)	Up Down Area C Indiv AxC Acc AxC T _C I Q DIA Slope Length A _{hydraulic} R Velocity (min) (mm/hr) (L/s) (mm) (%) (m) (m²) (m) (m/s) (Up Down Area C Indiv AxC Acc AxC T _C I Q DIA Slope Length A _{hydraulic} R Velocity Qcap (min) (mm/hr) (L/s) (mm) (%) (m) (m²) (m²) (m/s) (L/s) (L/s) (mm) (m²) (m²) (m²) (m²) (m²) (m/s) (L/s) (L/s)	Up Down Area C Indiv AxC Acc AxC T _C I Q DIA Slope Length A _{Invidualic} R Velocity Qcap Time Flow (min) (mm/hr) (L/s) (mm) (%) (m) (m³) (m) (m/s) (L/s) (min) (mm/hr) (L/s) (mm) (%) (m) (m³) (m) (m/s) (L/s) (min) (m/s) (m/

CITY OF NEPEAN DESIGN GUIDELINES LONGFIELDS/DAVIDSON HEIGHTS JUNE 10, 1991

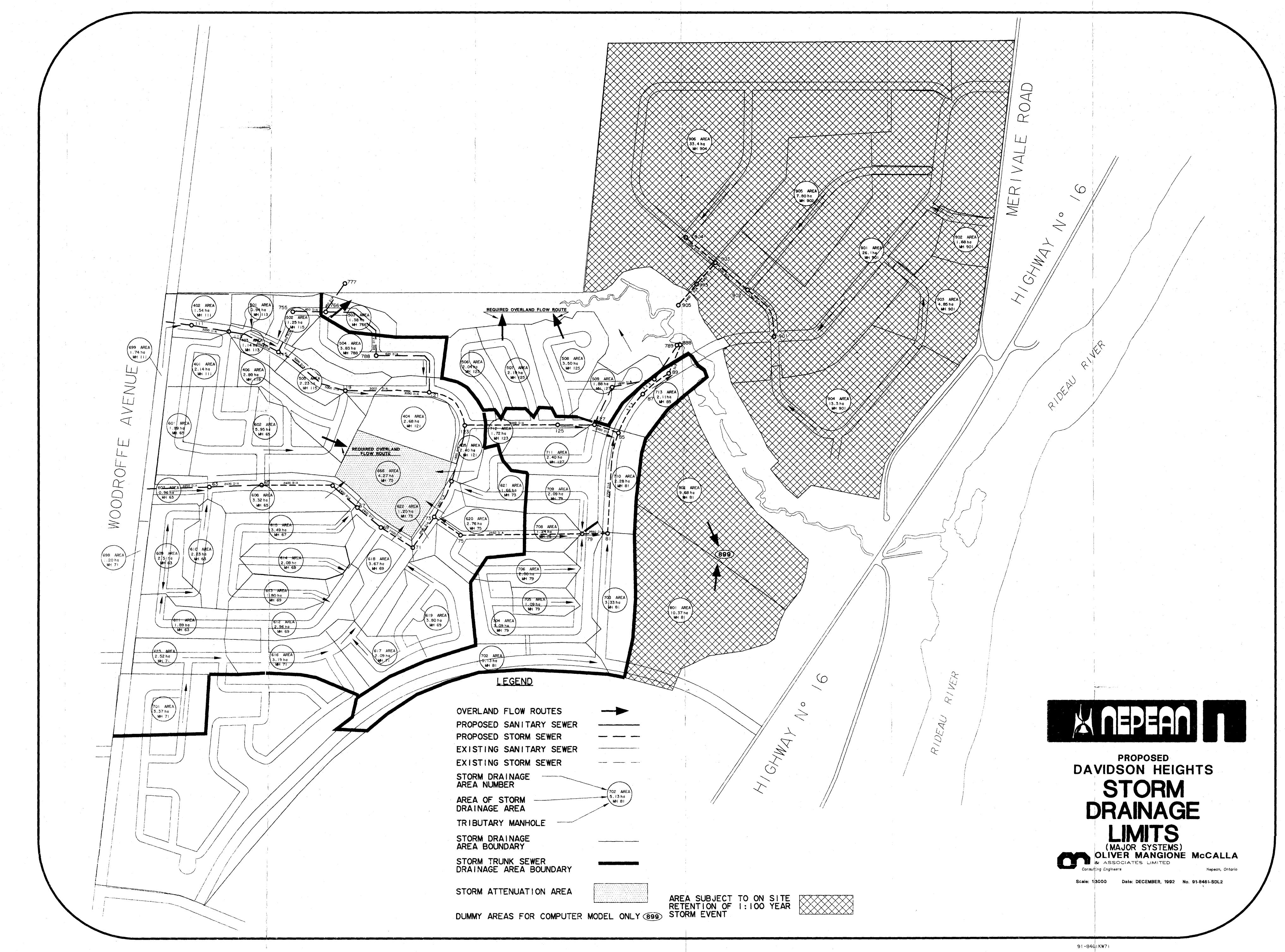
- 1. Drawings should clearly show overland flow routes for both rear yards and streets ensuring flows drain to a storm pond.
- 2. All storm sewers within Longfields/Davidson Heights Proposed Subdivision should be designed using the Rationale Method with City of Nepean's Standard 5 year IDF curves. The designer should review this sewer size and ensure that the sewer size equals or is larger than the trunk sewer sizes depicted on the Site Servicing Plans 91-8461-D1 and 91-8461-D2.
- 3. Top of footing elevations should be 0.3 metres (1 foot) above the HGL summarized on Table 1 attached, and should also be 0.3 metres (1 foot) above the obvert of the local storm service used to service the basement. Grading plans should clearly indicate the proposed top of footing elevations.
- 4. Street road sags are to be a maximum depth of 0.25 metres (10 inches) measured from the top of the catch basin grate to the bottom of the major system overflow.
- 5. Boulevards should have a minimum of 2 percent crossfall from the property line to the top of the curb. All boulevard grades at the property line should be equal to or greater than the major system overflow for the area, the elevation of the gutter outlet for each road sag should be included on the grading plan.
- 6. Rear yards will have swale profile grades set at a minimum of 2 percent.
- 7. Rear yard sags shall be a maximum depth of 0.3 metres (1 foot), measured from the top of the catch basin to the outfall crest of sag.
- 8. Overland flow routes will have a minimum slope of 0.1 percent (measured from crest to crest) for both rear yards and streets.
- 9. The grade at the house will be a minimum of 0.3 metres (1 foot) above the major system outlet.
- 10. Foundation openings for both front and rear yards will be a minimum of 0.4 metres above major system outlets (foundation openings include window sills, and door openings).

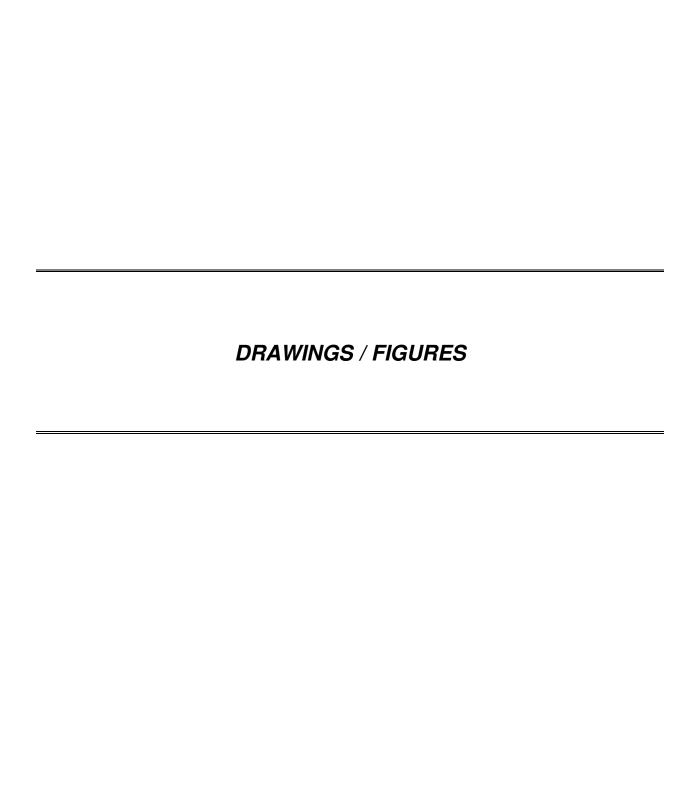
- 11. Rear yard swales are to include drainage tile with geotextile sock, crushed stone, bedding and geotextile cover as per the City of Nepean's design standard (Drawing #NS704).
- 12. Intermediate catch basins are to be constructed on line with three intermediate catch basins being connected to a standard concrete catch basin equipped with a 0.7 c.f.s. Inlet Control Restrictor (ICD). Tributary drainage areas to a single rear yard ICD should be 0.21 hectares, although 20 percent of rear yard ICD's can drain an area of up to 0.40 hectares.
- 13. All concrete catch basins are to include a 600 mm sump.
- 14. All catch basins to include ICD's restricted to 0.7 c.f.s. Designer to supply information on number of ICD's per drainage area. Table III highlights the available number of catch basins for all drainage areas.

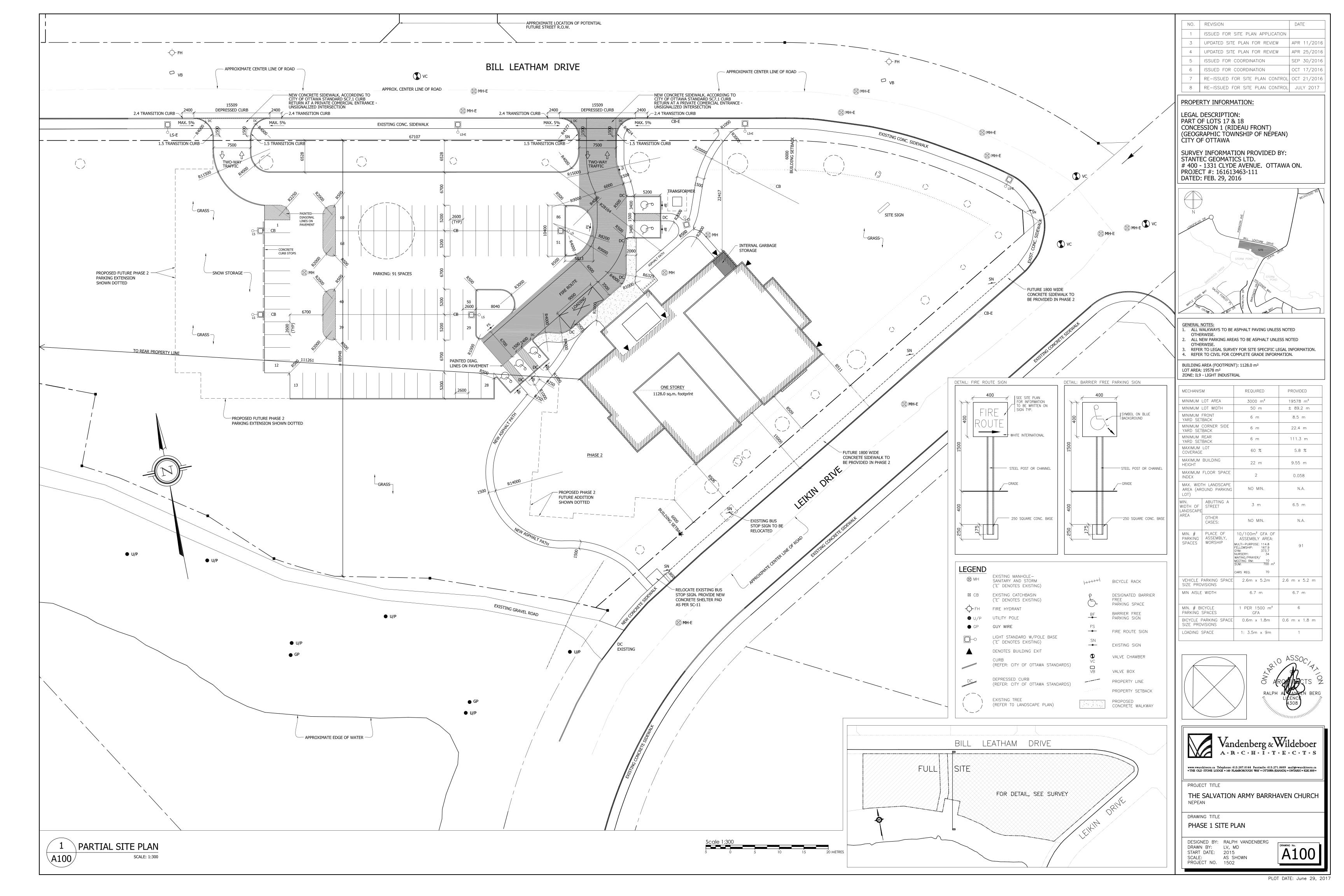
The designer will supply to the City of Nepean a summary of the total number of ICD used and the total corresponding drainage area.

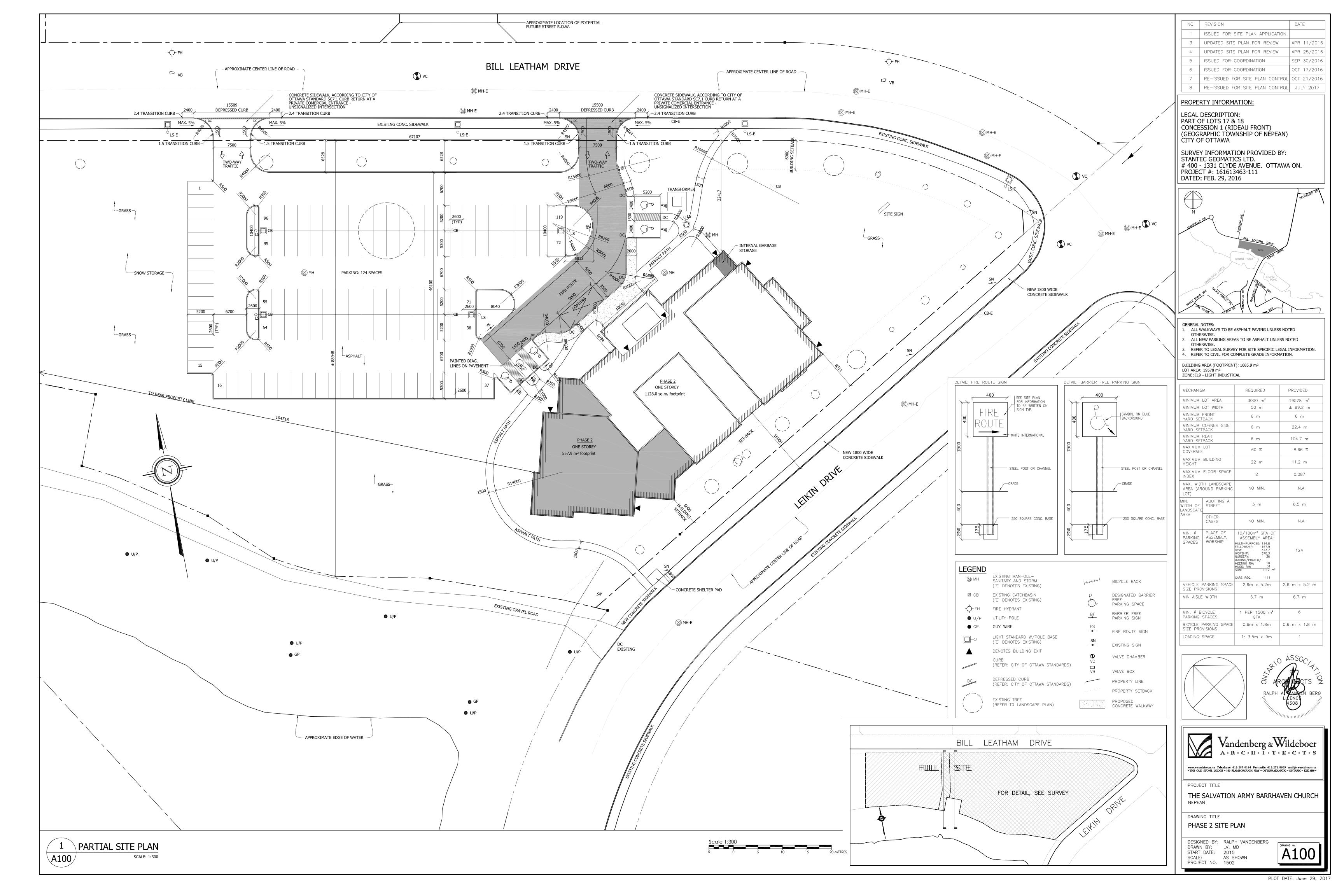
- 15. All intermediate catch basins are to be installed on private property.
- 16. The designer is to provide a summary of all available rear yard and street storage, ensuring it corresponds to the information provided on Page 14 of this report.

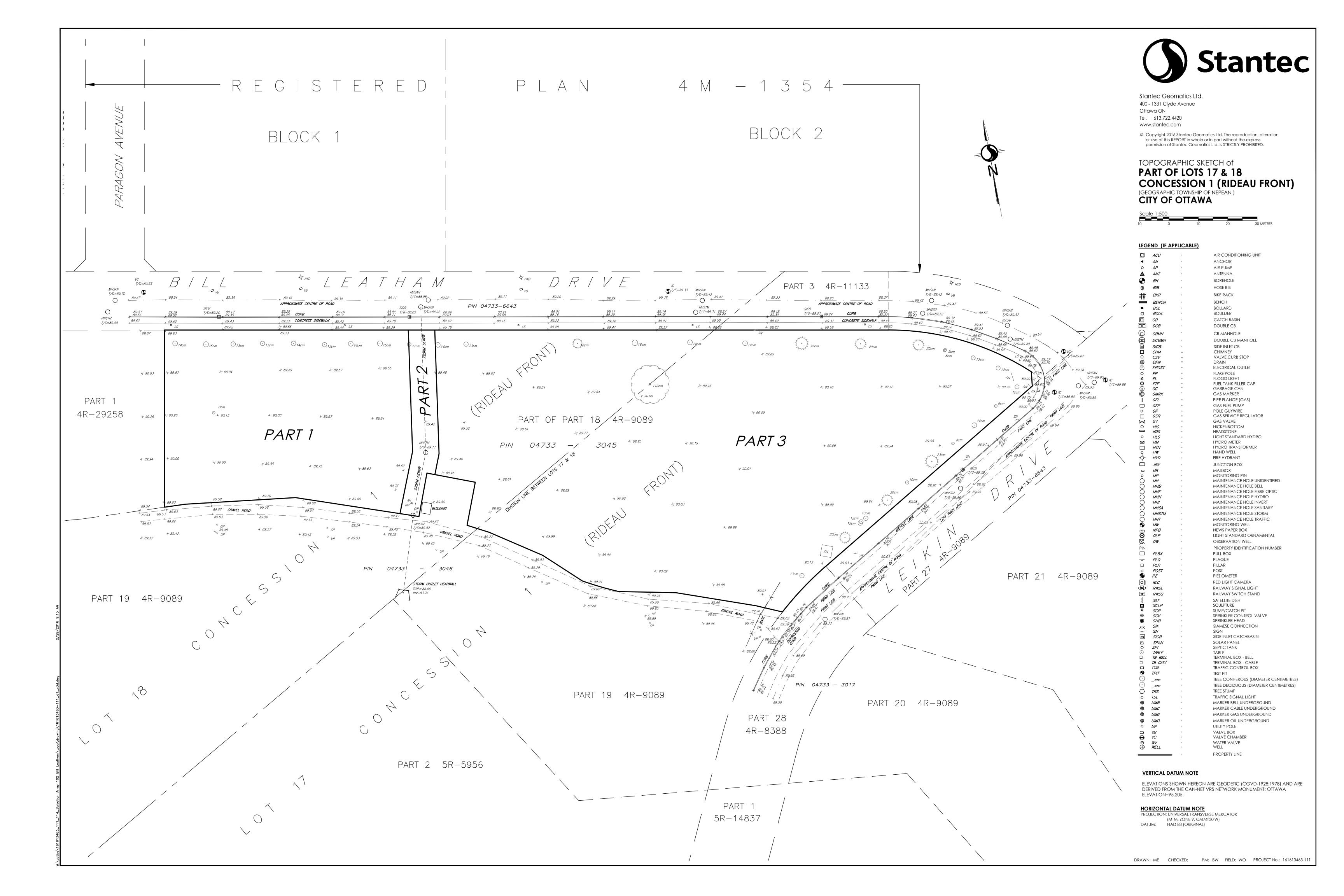
APPENDIX "2"


LOCATION	IDENTIFICATION NUMBER IN COMPUTER PROGRAM	FLOW RESTRICTION FOR SUB- AREA THAT CONTAINS POND (L/S)	TOTAL CONTRIBUTING DRAINAGE AREA (HA)	MANHOLE NUMBER	TOTAL STORAGE REQUIRED	STORAGE IN ROAD SAGS, PARKING LOTS AND ROOF STORAGE	STORAGE IN REAR YARDS	REQUIRED SIZE OF ATTENUATION FACILITY
Longfields Northwest	58	119	145.3	308	23,326 m³	10,800	6,000	6,526 m³
Longfields Northeast	49	99	79.4	29	12,705 m³	5,000	3,000	4,705 m³
Longfields Central East	97	79	85.9	107	12,336 m³	3,800	3,000	5,536 m³
Longfields South Central	373	238	31.0	49	4,108 m³	400	740	3,040 m³
Davidson Heights Central	666	159	97.9	73	17,516 m³	3,900	5,100	8,516 m³
Industrial Area	899	No pond	20.0	81	6,131	6,131	-	
Davidson Heights East	988	No pond	26.5		4,860	2,920	1,940	•




			ABLE CB's PER MENT ELEVA		AREA	
i	110 1111111	110711 D7 10L		1.0.1.0		MINIMUM
						BASEMENT
SUBAREA	No. OF	AREA	DESIGNATED	INVERT	HGL	ELEVATION
ID.	CB's	(ACRES)	MANHOLE	(m.)	(m.)	(m.)
1	10	7.4	1	95.23	95.56	95.86
2	4	3.1	1	95.23	95.56	95.86
3	4	2.8	1	95.23	95.56	95.86
4	5	3.7	3	93.14	93.53	93.83
5	5	3.7	3	93.14	93.53	93.83
		<u> </u>	595	91.87	92.27	92.57
6	2	1.4	5	90.79	91.22	91.52
7	23	17.9	7	90.00	91.01	91.31
8	10	7.9	5	90.79	91.22	91.52
9	1	0.7	7	90.00	91.01	91.31
10	19	14.5	9	89.58	90.84	91.14
11	3	2.2		89.58	90.84	91.14
			308	88.46	90.50	90.80
	•		387	88.15	90.28	90.58
			337	87.27	90.17	90.47
13	8	6.2		87.05	90.12	90.42
14	17	13.3		87.05	90.12	90.42
26	16	9.7		88.55	89.95	90.25
27	9	6.7		86.34	89.73	90.03
28	7	5.3		88.82	89.92	90.22
23	13	9.9		88.39	90.42	90.72
24	6	4.6		88.39	90.42	90.72
<u></u>	6	23.1		86.85	89.93	90.23
50	20	15.7		86.80	89.89	90.19
51	16	12.6		86.80	89.89	90.19
56	30	·	307	86.80	89.89	90.19
	30	20.1	506		89.73	
		 	306	86.53	89.70	
57	9	6.8		86.73	89.93	
12	8			91.26	91.52	
21	19			88.39	90.42	
53	16			86.46	89.59	
	10	1	515	86.32	89.39	
	-	 	516		89.29	
	<u> </u>	1	517	86.05	89.23	
15	6	11.2	··	90.00	91.01	91.3
16				90.00	91.01	91.3
17					90.84	
18					90.84	
19					90.38	
20				88.39	90.42	
22				88.55	89.95	
25				88.55	89.95	
25	 		17		89.86	
			20		89.92	
1						· • • • • • • • • • • • • • • • • • • •


						TABLE 3. NUMBER OF ALLOWABLE CB'S PER DRAINAGE AREA AND MINIMUM BASEMENT ELEVATIONS						
SUBAREA N	i i					MINIMUM						
SUBAREA N						BASEMENT						
	No. OF		DESIGNATED	INVERT	HGL	ELEVATION						
ID.	CB's	(ACRES)	MANHOLE	(m.)	(m.)	(m.)						
29	0	2	21	88.43	89.84	90.14						
33	2	2.9	25	88.06	89.87	90.17						
37	6	3.7	29	87.76	89.83	90.13						
30	13	10	25	88.06	89.87	90.17						
31	18	14.2	335	87.34	89.74	90.04						
			536	87.08	89.72	90.02						
32	4	2.9	25	88.06	89.87	90.17						
34	8	6.4	25	88.06	89.87	90.17						
35	8	6.2	29	87.76	89.83	90.13						
36	8	5.9	27	88.61	89.91	90.21						
			23	87.78	89.84	90.14						
38	9	7.3	29	87.76	89.83	90.13						
39	7	5.1	29	87.76	89.83	90.13						
			541	87.68	89.72	90.02						
40	19	14.8	33	86.92	89.58	89.88						
41	19	14.6	719	87.77	89.28	89.58						
42	24	18.4	419	88.73	89.47	89.77						
	·		559	88.45	89.41	89.71						
43	11	8.2	319	88.12	89.37	89.67						
44	9	6.7	319	88.12	89.37	89.67						
949	20	15.6	919	86.78	88.81	89.11						
			579	86.04	88.67	88.97						
45	15	11.3	819	87.30	89.03	89.33						
946	9	7.3	719	87.77	89.28	89.58						
46	14	10.4	35	86.81	89.52	89.82						
948	11	8.6	219	85.47	88.50	88.80						
48	7	5.1	31	87.18	89.63	89.93						
			533	87.03	89.58	89.88						
749	4	3.4	27	88.61	89.91	90.21						
849	4	3.4	31	87.18	89.63	89.93						
49	5	3.7	29	87.76	89.83	90.13						
52	21	16.2	305	86.46	89.59	89.89						
54	25	19	305	86.46	89.59	89.89						
55	13	10.1	105	85.93	89.21	89.51						
66			57		TH MODEL							
68			57	SEE SOU	TH MODEL							
80	17	13.2	55	87.68	90.47	90.77						
81	13	10.1	55	87.68	90.47	90.77						
78	1	1.1	53	87.80	90.62	90.92						
79	2	1.5	55	87.68	90.47	90.77						
82	5	4.1	55	87.68	90.47	90.77						
198	14	7.2	57	87.27	90.18	90.48						
86	16	12.6		86.83	89.65	89.95						
87	23	17.7		86.83	89.65	89.95						
88	15	11.3	109	85.33	88.70	89.00						
90	12	9	219	85.47	88.50	88.80						


TABLE 3. NUMBER OF ALLOWABLE CB'S PER DRAINAGE AREA AND MINIMUM BASEMENT ELEVATIONS						
	WINTER	VIOIVI DI NOL	THE THE PARTY OF T	110110		MINIMUM
1						BASEMENT
SUBAREA	No. OF	AREA	DESIGNATED	INVERT	HGL	ELEVATION
ID.	CB's	(ACRES)	MANHOLE	(m.)	(m.)	(m.)
91	14	10.4	105	85.93	89.21	89.51
92	5	3.8	105	85.93	89.21	89.51
93	14	10.7		85.33	88.70	89.00
95	11	8.7	507	85.58	88.90	89.20
			508	85.43	88.79	89.09
96	4	3	105	85.93	89.21	89.51
89	9	6.9	107	85.74	89.08	89.38
85	11	8.4	57	87.27	90.18	90.48
98	23	17.6		85.74	89.08	89.38
84	9	6.7	57	87.27	90.18	90.48
97	4	3	107	85.74	89.08	89.38
942	6	4.3	221	84.77	87.66	87.96
943	2	1.5	221	84.77	87.66	87.96
904	37	37.8	901	85.46	86.73	87.03
902	3	3	901	85.46	86.73	87.03
903	6	5.9	901	85.46	86.73	87.03
905	20	21	902	85.17	86.56	86.86
901	58	58.5		85.46	86.73	87.03
906	82	82.2		85.37	86.64	86.94
			201	88.16	91.01	91.31
			203	87.99	90.75	91.05
			208	88.58	90.70	91.00
			209	87.84	90.37	90.67
		···	210	87.01	90.14	90.44
			215 217	86.34	89.73	90.03
			310	86.07	89.40	89.70
				87.66	90.20	90.50
}			511 539	87.46	90.15	90.45
 		 	521	88.23 86.88	90.43 89.97	90.73
			525	86.52	89.79	90.27
			597	86.21	89.49	90.09
			549	85.86	88.95	89.25
			550	85.64	88.69	88.99
			551	85.36	87.95	88.25
	··· <u>-</u> ·	 	566	84.60	87.48	87.78
		 	567	84.42	87.31	87.61
		 	568	84.25	87.14	87.44
		 	569	84.08	86.97	
			570	83.92	86.81	87.11
			571	83.74	86.64	86.94
		 	572	83.57	86.48	
L	1	L		1 00.07	60.46	00.78

