3095 Albion Road Ahlul-Bayt Center Ottawa Transportation Impact Study

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

February 2016

Novatech File: 113093 Ref: R-2015-176

February 23rd, 2016

City of Ottawa Planning and Growth Management Branch 110 Laurier Ave. W., 4th Floor Ottawa, ON K1P 1J1

Attention:

Mr. Wally Dubyk, C.E.T.

Project Manager, Infrastructure Approvals

Dear Sir:

Reference:

3095 Albion Road – Ahlul-Bayt Center Ottawa (ABCO)

Transportation Impact Study

Our File No.: 113093

This Transportation Impact Study has been prepared in support of a Site Plan Control (SPC) application for 3095 Albion Road.

The structure and format of this report follows the 2006 City of Ottawa Transportation Impact Assessment (TIA) Guidelines. A checklist of the documentation requirements as outlined in Appendix D of the TIA guidelines is attached with reference to corresponding report sections.

A PDF version of this report and copies of the electronic software files are provided on the enclosed disk. We trust that the Transportation Impact Study will be to your satisfaction; please call if you have any questions as you complete your review of the study.

Yours truly,

NOVATECH

Jennifer Luong, P.Eng. Transportation Engineer

Documentation and Reporting Checklist

Report Context (Section 1.0)

Description application	n of the development (include all of the following that are known at the time of the i):
	Municipal address; Location relative to major elements of the existing transportation system (e.g., the site is located in the southwest quadrant of the intersection of Main Street/ First Street, 600 metres from the Maple Street Rapid Transit Station); Existing land uses or permitted use provisions in the Official Plan, Zoning By-law, etc.;
	Proposed land uses and relevant planning regulations to be used in the analysis; Proposed development size (building size, number of residential units, etc.) and location on site;
	Estimated date of occupancy; Planned phasing of development; Proposed number of parking spaces (not relevant for Draft Plans of Subdivision); and
	Proposed access points and type of access (full turns, right-in/ right-out, turning restrictions, etc. Study area;
	Time periods and phasing; and
	Horizon years (include reference to phased development).
to the surn shows the developme	nust include a key plan that shows the general location of the development in relation rounding area. The TIS must also provide a draft site plan of a suitable scale that general location of the development and the proposed access. If the proposed ent/ redevelopment is to be constructed in phases, a description must be provided for e, identifying the proposed timing of implementation.
Existing	Conditions (Section 2.0 and 4.0)
	Existing roads and ramps in the study area, including jurisdiction, classification, number of lanes, and posted speed limit;
	Existing intersections, indicating type of control, lane configurations, turning restrictions, and any other relevant data (e.g., extraordinary lane widths, grades, etc.);
	Existing access points to adjacent developments (both sides of all roads bordering the site);
	Existing transit system, including stations and stops;
	Existing on- and off-road bicycle facilities and pedestrian sidewalks and pathway networks;
	Existing system operations (V/C, LOS); and
	Major trip generators/ attractors within the Study Area should be indicated.

M:\2013\113093\DATA\Reports\Traffic\113093 - Albion Road Mosque TIS.docx

The TIS report must include: a context plan of a suitable scale that shows the general location of the development, the proposed access locations and the existing conditions in the surrounding area; figures documenting the existing travel demands by mode; and a summary of collisions for the effected study area roads. A photographic inventory of the transportation network elements in the vicinity of the proposed access points would be beneficial to staff in their review of the Consultant's report.

Demand	Forecasting (Section 3.0)
	General background growth; Other study area developments; Changes to the study area road network; Future background system operations (V/C, LOS, queue lengths): • include figures documenting future background travel demands by mode for each horizon year
	Trip generation rates;
	Trip distribution and assignment:
	 include figures documenting forecasted site trip generation and assignment by mode; and
	 include figures documenting total future travel demands by mode for each horizon year.
Impact A	Analysis (Sections 4.0 to 7.0)
	Total future system operations (V/C, LOS, queue lengths); Signal and auxiliary lane (device) warrants; Operational/ safety assessment (e.g., sight line assessment where grades are an issue); Storage analysis for closely spaced intersections; Pedestrian and bicycle network connections and continuity; On-site circulation and design; Potential for neighbourhood impacts; and TDM.

EXECUTIVE SUMMARY

The Ahlul-Bayt Center Ottawa (ABCO) is proposed to be relocated from their existing facility in Vanier to 3095 Albion Road, south of Kitchener Avenue. The ABCO is a Lebanese Muslim Canadian registered charitable organization which offers the community ongoing social, cultural, educational, and religious services. The proposed development will consist of a 3-storey building with a private school, mosque, and community/recreational centre. The construction is anticipated to be complete in 2016.

The intersections to be evaluated in this report were confirmed with the City prior to the preparation of this report. The time periods for analysis include the weekday midday and PM peak hours to reflect the worst-case combination of background and site generated traffic. Analysis has been completed for the build-out scenario in 2016 and a five year horizon of 2021.

No background traffic growth was included based on a review of historic traffic data and the 2011 and 2031 TRANS model. The vehicle trips associated with each program or facility have been identified based on the staff experience at the existing ABCO facility in Vanier. The estimated vehicle trips have been compared to ITE rates (where available) to validate the assumptions. Total traffic volumes have been calculated by adding the proposed site traffic to the existing traffic.

Provisions for non-auto travel modes were assessed, including access to local pedestrian, bicycle and transit systems. The proposed on-site design was reviewed in terms of on-site parking activities. A shared access is proposed with 3091 Albion Road which was previously approved as part of a previous Site Plan application. Potential for community impacts and the conformance to Transportation Demand Management (TDM) principles were also evaluated. The main conclusions and recommendations of this report are as follows:

Traffic Analysis

- All traffic movements within the study area are currently operating at a LOS C or better during the AM and PM peak hours.
- No growth in background traffic is anticipated within the 2021 horizon timeframe and therefore the existing conditions are expected to reflect the background traffic condition.
- An additional 15 metres of storage length is recommended for the westbound left turn lane at the Bank Street/Kitchener Avenue intersection to accommodate the existing/background traffic.
- With the operation of the proposed development, all traffic movements within the study area are anticipated to continue to operate at a LOS C or better during the AM and PM peak periods.
- An additional 10 metres of storage length is recommended for the westbound left turn lane at the Bank Street/Kitchener Avenue intersection to accommodate the projected total traffic.

- The need for additional westbound left turn storage is predominantly related to existing/background traffic. If the existing storage provisions were adequate the addition of site generated traffic would not justify the implementation of a road modification. It is recommended that the City monitor operating conditions at the Bank Street/Kitchener Avenue intersection and implement any required road modifications as funding becomes available.
- There are eight anticipated annual events which will generate up to 600 persons (or 200 vehicles). These events are often scheduled on weekends or off-peak time periods but may occasionally occur during the AM peak hour.

Site Design

- The proposed shared access with 3091 Albion Road has been approved through a previous site plan application and rights-of-way granted by the Committee of Adjustment.
- The City of Ottawa's *Zoning By-Law* (ZBL) requires a minimum of 282 parking spaces on-site. The proposed parking lot satisfies these requirements with a total of 285 spaces.
- A total of 13 bicycle parking spaces will be provided to meet the minimum requirements identified in the ZBL.

Community Impacts and Transportation Demand Management

- The traffic assessment considered all traffic to/from the subject site. Existing turn
 prohibitions along Kitchener Avenue will limit the use of this route for trips to/from the
 subject site. Enforcement or extensions to the existing turn restrictions may be required.
- The proposed development conforms to the City's TDM initiatives by encouraging carpooling amongst the members of the community.

Table of Contents

1.0	INTRODUCTION	1
1.1	ANALYSIS PARAMETERS	2
2.0	EXISTING CONDITIONS	2
	ROADWAY FACILITIES 1.1 Albion Road 1.2 Walkley Road STUDY AREA INTERSECTIONS EXISTING PEDESTRIAN FACILITIES EXISTING BICYCLE FACILITIES EXISTING TRANSIT FACILITIES EXISTING TRAFFIC VOLUMES COLLISION RECORDS	2 3 3 4
3.0	TRAVEL DEMAND FORECASTING	7
3. 3. 3.4	PLANNED PROJECTS HISTORIC BACKGROUND GROWTH TRIP GENERATION 3.1 School 3.2 Recreation/Community Centre 3.3 Mosque 3.4 Banquet Hall and Annual Events TRIP DISTRIBUTION 4.1 Vehicular Traffic	7 8 9 11 12
4.0	INTERSECTION ANALYSIS	13
4.1 4.2	EXISTING AND BACKGROUND TRAFFICTOTAL TRAFFIC	
5.0	PROVISIONS FOR NON-AUTO MODES	17
6.0	ON-SITE DESIGN	.17
6.1 6.2	PROPOSED ACCESSPARKING	
7.0	NEIGHBOURHOOD IMPACTS	
8.0	TRANSPORTATION DEMAND MANAGEMENT	18
9.0	CONCLUSIONS AND RECOMMENDATIONS	19
APPEI APPEI	Idices NDIX A SITE PLAN NDIX B OC TRANSPO SYSTEM MAP NDIX C TRAFFIC COUNTS AND SIGNAL TIMING PLANS NDIX D COLLISION DATA	

APPENDIX E SYNCHRO REPORTS

Tables	
Table 1: Reported Collisions	6
Table 2: Typical Facility Programs by Weekday and Time Period	
Table 3: School Trips	
Table 4: Exercise Facility Trips	9
Table 5: Religious Education Trips	9
Table 6: Youth Group Trips	10
Table 7: Scouts Trips	
Table 8: Heritage Language Program Trips	11
Table 9: Mosque – Vehicle Trips	
Table 10: Summary of Peak Hour Vehicle Trips (Inbound and Outbound)	12
Table 11: Vehicle Trip Distribution	13
Table 12: Existing Peak Hour Intersection Operations	16
Table 13: Total Traffic Intersection Operations	16
Table 14: Minimum Vehicle Parking Requirements	
Table 15 : Minimum Bicycle Parking Requirements	18
Figures	4
Figure 1: Study Area and Site	
Figure 2: Daily Variation in Background Traffic by Time of Day	<u>2</u>
Figure 3: Existing Peak Hour Traffic Volumes	
Figure 5: 2016 and 2021 Peak Hour Total Traffic	
FIGURE 3. 2010 AND 2021 FEAK FIGURE FOR HALLICE	1 3

Novatech

1.0 INTRODUCTION

The following Transportation Impact Study (TIS) has been prepared as requested by the City in support of a Site Plan Control (SPC) application for the Ahlul-Bayt Center Ottawa (ABCO) to be relocated from their existing site in Vanier to 3095 Albion Road. The ABCO is a Lebanese Muslim Canadian registered charitable organization which offers the community ongoing social, cultural, educational, and religious services. The ABCO will include a school, mosque, community centre and recreational facilities. The subject site is located south of Walkley Road and immediately north of the railway tracks, as shown in **Figure 1**.

Figure 1: Study Area and Site

The subject site is surrounded by the railway tracks to the south, industrial and commercial land uses to the north, and green space to the west.

The site is to be developed in a single phase with full build-out anticipated in 2017. The development will consist of a 3-storey building with a private school, mosque, and community/recreational centre. Vehicle access to the site is proposed through a full movement access along Albion Road which is proposed to be shared with the existing southern access for 3091 Albion Road. The proposed site plan is provided in **Appendix A**.

1.1 Analysis Parameters

The study area for this report includes Albion Road between the site access and Walkley Road as well as the signalized intersection of Bank Street and Kitchener Avenue.

As shown in **Figure 2**, the background traffic at the intersections of Albion Road / Walkley Road and Bank Street / Kitchener Avenue is highest in the PM peak period. The midday and AM peak hours are approximately 20% and 30% lower than the PM peak hour, respectively.

The selected time period for analysis is the weekday Midday and PM peak hours as they represent the 'worst case' combination of site generated traffic and adjacent street traffic.

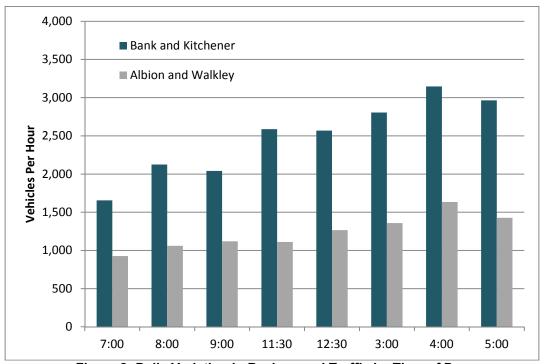


Figure 2: Daily Variation in Background Traffic by Time of Day

2.0 EXISTING CONDITIONS

2.1 Roadway Facilities

2.1.1 Albion Road

Albion Road is a collector road that runs on a north-south alignment with a two-lane undivided urban cross-section. Albion Road has a posted speed limit of 50km/h through the study area and is not designated as a truck route.

2.1.2 Walkley Road

Walkley Road is an arterial road that runs on an east-west alignment between Riverside Drive and Ramsayville Road. Walkley Road has a four lane divided urban cross-section with a

depressed median allowing left turns in/out of local businesses and driveways. Walkley Road has a posted speed limit of 50km/h through the study area and is a designated truck route.

2.2 Study Area Intersections

The lane configurations at each of the study area intersections can be summarized as follows:

Albion Road & Walkley Road

- This intersection is a four legged signalized intersection;
- The northbound and southbound approaches consist of a single left turn lane and a shared through-right lane;
- The eastbound approach consists of two through lanes, a left turn lane, and a channelized right turn lane;
- The westbound approach consists of a left turn lane, and two through lanes; of which the right-most through lane is shared by right turning traffic.

Albion Road & Heatherington Road

- This intersection is a three legged stop-controlled intersection;
- All legs have a single approach lane.

Bank Street & Kitchener Avenue

- This intersection is a four legged signalized intersection;
- The northbound approach consists of a left turn lane, two through lanes, and a third through lane which meets Bank Street 30m south of the intersection and ends 45m north of the intersection:
- The southbound approach consists of a left turn lane and two through lanes;
- The eastbound and westbound approaches consist of a left turn lane and a shared through-right lane.

2.3 Existing Pedestrian Facilities

Asphalt sidewalks are provided on both the east and west sides of Albion Road from Walkley Road to Kitchener Avenue. South of Kitchener Avenue, no dedicated facilities are provided for pedestrians. Walkley Road has concrete sidewalks on both the north and south sides of the road through the study area. A concrete sidewalk is provided along one side of Kitchener Avenue and both sides of Bank Street.

Pedestrian cross-walks are provided on all sides of the Walkley Road/Albion Road, Heatherington Road/Albion Road, and Bank Street/Kitchener Avenue intersections.

2.4 Existing Bicycle Facilities

The City of Ottawa Primary Urban Cycling Network in the 2013 Transportation Master Plan (TMP) identifies Walkley Road as a spine route and Albion Road as a local route. The area is bounded by Walkley Road and Bank Street which currently have no dedicated cycling facilities and therefore limited comfortable cycling routes are available to reach the site. A series of local

roads through the surrounding community may provide comfortable cycling routes to the site for short-distance trips.

2.5 Existing Transit Facilities

There are currently no transit services provided within a 400m radius of the site (a 5 minute walk). There are two local routes which travel along Heatherington Road with stops located immediately east of Albion Road, approximately 550m from the site.

2.6 Existing Traffic Volumes

Weekday traffic counts were completed by the City of Ottawa at the following intersections:

Walkley Road and Albion Road Tuesday, July 17, 2012
 Albion Road and Heatherington Road Friday, July 11, 2003
 Bank Street and Kitchener Avenue Thursday, July 16, 2015

To confirm the traffic data at Albion Road / Heatherington Road remains relevant and to identify the scale of site traffic at 3091 Albion Road during peak hour, traffic counts were undertaken at both locations for a 30-minute period during the AM and PM peaks on Monday November 2, 2015 and Tuesday November 3, 2015. Traffic count summary sheets are provided in **Appendix C**. The 2015 observations were similar to the traffic data collected in 2003 with a variation of less than 20 vehicles over a 30-minute period. As a result, the 2003 traffic data has been used to reflect the existing condition. The midday peak hour at the existing site access has been estimated as 80% of the PM peak, consistent with the pattern for the background traffic in the study area as identified in Section 1.1. The existing peak hour traffic volumes are shown in **Figure 3**.

2.7 Collision Records

Historical collision data from the last three years (2011 to 2013) was obtained from the City's Public Works and Service Department for all study area intersections. Copies of the collision summary reports are included in **Appendix D**.

The data was evaluated to determine if there are any identifiable collision patterns. The Ottawa TIA Guidelines define a collision pattern as more than one collision at a roadway location that involves similar directions and impact types. Further analysis may be warranted for intersections with a pattern of six or more collisions for any one movement or a total of 33 or more collisions, over a three-year period.

The following table provides a summary of the number of collisions reported in the study area between January 1, 2011 and January 1, 2014. Ten of the collisions included injuries, of which one involved a cyclist and two involved pedestrians.

Engineers, Planners & Landscape Architects

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6

Telephone (
Facsimile (
Website www.nova

(613) 254-9643 (613) 254-5867 www.novatech-eng.com

AHLUL-BAYT CENTRE 3095 ALBION ROAD

EXISTING CONDITIONS

NOV 2015

113093

FIGURE 3

Table 1: Reported Collisions

Location	Number of Reported Collisions (Jan. 2011 to Jan. 2014)		
Intersections			
Albion Road & Walkley Road	14		
Albion Road & Kitchener Avenue	1		
Albion Road & Heatherington Road	1		
Bank Street & Kitchener Avenue	22		
Mid-Block on Albion Road			
Walkley Road to Lilibet Crescent	1		
Lilibet Crescent to Heatherington Road	2		
Kitchener Road to End	1		

A total of 14 collisions were recorded at the Albion Road / Walkley Road intersection over the last three years. Five (5) of the collisions were rear-end impacts, 4 were turning impacts, 4 were angle impacts, 1 involved a single vehicle. Six (6) of the fourteen collisions occurred in wet or snowy conditions where the collision may have been influenced by environmental factors. None of these collisions meet the City of Ottawa's criteria for further analysis with respect to patterns or total collisions.

A total of 22 collisions were recorded at the Bank Street / Kitchener Avenue intersection over the last three years. Thirteen (13) of the collisions were rear-end impacts, 5 were turning impacts, 2 were angle impacts, 1 involved a single vehicle, and 1 involved a sideswipe. Eight (8) of the 22 collisions occurred in wet or snowy conditions where the collision may have been influenced by environmental factors. The number of rear-end collisions on the northbound approach meets the City of Ottawa's criteria for further analysis.

With respect to the potential impacts of site generated traffic at the Bank Street / Kitchener Avenue intersection:

- Of the 13 rear-end collisions, none are attributed to the movements that motorists will
 use to enter/leave the proposed development. It is noteworthy that one rear-end
 collision in each of the northbound and southbound directions is attributable to lanechanging.
- The proposed site traffic represents an increase of 2 to 4% of the total intersection traffic during the midday and p.m. peak hours.
- The proposed site traffic represents an increase of approximately 25% of the existing northbound right turn traffic.

3.0 TRAVEL DEMAND FORECASTING

3.1 Planned Projects

The City of Ottawa's 2013 *Transportation Master Plan* (TMP) identified Walkley Road between the Transitway and Heron Road as a transit priority route but this project was not included within the 2031 affordable network. As Walkley Road currently has limited or no transit service through this area, it is not expected that this project will be re-visited within the planning horizon.

There are no planned projects exclusively for pedestrians or cyclists in the study area.

3.2 Historic Background Growth

Traffic counts at the intersection of Walkley Road and Albion Road were reviewed for 2003, 2004, 2006, and 2012. The traffic along both Walkley Road and Albion Road have decreased by approximately 15% to 20% in the last 6 to 9 year period. It should be noted that all counts occurred in the summer months at approximately the same time of year and therefore the decrease in volume is not attributable to seasonal variation. Similar observations were also identified for development applications in the surrounding area along Heron Road and Bank Street. Similar to these findings, a review of the anticipated growth along Walkley Road, Albion Road and Bank Street in the vicinity of the subject site, as shown in the TRANS model (2011 to 2031), identified no growth over the 20-year planning horizon. Based on this information, no background growth has been applied to the road network. As no growth is anticipated, the 2017 and 2022 background traffic volumes remain consistent with the existing condition.

3.3 Trip Generation

The ABCO is a Lebanese Muslim Canadian registered charitable organization which offers the community ongoing social, cultural, educational, and religious services. The ABCO is relocating from their existing site in Vanier to 3095 Albion Road. The proposed building includes a mix of several uses including a school, community centre, recreational facility, mosque, and banquet hall. The uses and programs for day-to-day operations have been reviewed independently from the banquet hall which will be used for occasional events, as described further in Section 3.3.4.

The approximate time periods associated with each program or facility are identified in **Table 2**. During the weekday time period, the school remains the major trip generator with occasional evening programming at the community centre. The exercise facilities and mosque will continue to generate trips throughout the day and evening time periods. On weekends, Saturday mornings reflect the worst-case scenario with overlapping heritage language school and Scouts programs in addition to the use of the mosque and exercise facilities.

The vehicle trips associated with each program or facility have been identified based on the existing staff experience at the facility in Vanier. The estimated vehicle trips have been compared to ITE rates (where available) to validate the assumptions. Given the limited access to transit and the city-wide catchment area, it has been assumed that few people will travel by

non-auto modes. Higher proportions of carpooling are anticipated and estimated vehicle occupancies are identified for each trip generator.

Table 2: Typical Facility Programs by Day and Time Period

Use / Program		Weekday			Saturday			
		Midday	PM	Evening	AM	Noon	Mid-PM	Evening
School	>	>	>					
Heritage Language School					~	>	✓	
Religious Education				>				
Girls' Youth Group				>				
Boys' Youth Group								>
Scouts					\	>	>	
Exercise Facility	>	>	>	>	>	>	>	>
Prayers	>	>	>	>	\	>	>	~

Note: Limited programming on Sundays and therefore trips considered negligible compared to weekdays and Saturday.

3.3.1 School

The elementary and middle school will include approximately 16 classrooms and serve approximately 170 students. The school will have 17 teachers and administrative staff and will be in session from Monday to Friday between 8:15AM and 3:15PM.

Based on the 2011 OD Data for work trips to the Alta Vista area, it has been assumed that 75% of the teachers drive to the site; amounting to 12 vehicles. Based on current operations at the ABCO school in the Vanier area, it is expected that most students will carpool to/from school with an average of 3 students per vehicle; amounting to approximately 57 vehicles. It has been conservatively assumed that all students and teachers arrive within a single one-hour period during the AM peak hour, as summarized in **Table 3**. During the PM peak hour, 65% of teachers and students are expected to depart during the peak hour while the remaining 35% remain on-site for after-school programs. By comparison, the ITE rates for a private school (LU534) identify approximately 30% more vehicle trips in both the morning and afternoon peak periods; likely reflective of lower carpooling rates amongst students.

Table 3: School Trips

	Teachers	Students
Persons	17	170
Non-Auto Modes (5%)	4	9
Vehicle Occupancy	1.1	3
Vehicles	12	54
Peak Hour Vehicle Trips (In/Out)		
-AM Peak Hour	12 / 0	54 / 54*
-PM Peak Hour	0/8	35 / 35*

Note: * All drivers assumed to drop-off/pick-up only. Some linked vehicle trips may exist which is not accounted for.

3.3.2 Recreation/Community Centre

The recreation and community centre will include sports facilities and community programs. The centre will employ 9 full-time or part-time staff and up to 30 occasional volunteers to lead youth programs and serve on the Executive and Trustee boards. A total of ten vehicle trips have been included to account for these staff and volunteers.

Exercise Facility

The exercise facility is proposed to be open from 7:00AM to 10:00PM but access will be limited to some facilities during school hours. The facility will include a swimming pool, gymnasium, and squash court. Peak use of the facility is expected to be approximately 50 persons and occur in the evening period from 7:00PM to 10:00PM. If on average users stay on-site for 1.5 hours, two-way vehicle trip rates are anticipated to be approximately 58vph, as shown in **Table 4**. By comparison, the ITE Trip Generation Manual Recreational Community Centre rates suggest two-way peak hour trips of up to 45vph; suggesting the estimate of 58vph is likely conservative.

Table 4: Exercise Facility Trips

	Users
Persons	50
Non-Auto Modes (5%)	3
Vehicle Occupancy	1.1
Vehicles	43
Average Length of Stay	1.5 hours
Peak Hour Vehicle Trips (In / Out)	
-Evening and Weekends	29 / 29
-Weekday (33% reduction assumed during school hours)	19 / 19

Religious Education

A religious education session will be hosted every Thursday evening at approximately 7:00PM and will serve 200 persons including both children and adults. It has been assumed that 95% will arrive by vehicle with an average of 3 students per vehicle, or 64 vehicles, as shown in

Table 5. As some students are adults, it has been assumed that only 25% of drivers will be exclusively dropping-off/picking-up while the remainder of drivers will remain on site to either attend the education session or use on-site facilities.

Table 5: Religious Education Trips

	Leaders	Students
Persons	7	200
Non-Auto Modes (5%)	0	10
Vehicle Occupancy	1.1	3
Vehicles	6	64
Peak Hour Vehicle Trips (In/Out) 7:00PM Arrival	6/0	64 / 16

Youth Groups

The centre will host a girls' youth group for ages 9 to 16 years on Friday evenings beginning at approximately 7:00PM. A boys' youth group for ages 15 to 18 years will be hosted on Saturday evenings beginning at approximately 7:00PM. The youth groups will be run by a team of 8 to 10 councillors. Most youth will carpool to the site with an average of 3 youths per vehicle, as summarized in **Table 6**. Half of the vehicles are expected to remain on-site while drivers attend the youth group or use the recreational facility while the other half return at the end of each session to pick-up the youth.

Table 6: Youth Group Trips

	Girls' Yout	h Group	Boys' Youth Group		
	Councilor	Youth	Councilor	Youth	
Persons	10	120	8	100	
Non-Auto Modes (5%)	1	6	0	5	
Vehicle Occupancy	1.1	3	1.1	3	
Vehicles	8	38	7	32	
Peak Hour Vehicle Trips (In/Out)	8/0	38 / 19	7/0	32 / 16	

Scouts

A Scouts program will be hosted at the site on Saturday mornings from approximately 10:00AM to 12:00PM. The Scouts will include both boys and girls from ages 6 to 14 years and will be run by a team of 15 Scout Leaders. Consistent with the travel assumptions for the youth groups, it is expected that only 5% arrive by non-auto modes and on average 3 scouts arrive in each vehicle, as shown in **Table 7**. Half of the vehicle drivers are assumed to remain on-site to make use of the available facilities while the second half are assumed to return to pick-up Scouts at the end of the program.

Table 7: Scouts Trips

	Leaders	Scouts
Persons	15	150
Non-Auto Modes (5%)	1	8
Vehicle Occupancy	1.1	3
Vehicles	13	48
Peak Hour Vehicle Trips (In/Out)		
-Arrival (AM Peak)	13 / 0	48 / 24
-Departure (Midday)	0 / 13	24 / 48

Heritage Language Program

A Heritage Language Program will be hosted on Saturdays from approximately 10:00AM to 2:00PM. This program will include approximately 160 students and 15 teachers. Consistent with previous assumptions, students are expected to carpool with an average of 3 students per vehicle, as shown in **Table 8**. Half of the drivers are assumed to remain on-site to make use of the available facilities.

Table 8:	Heritage	Language	Program	Trips

	Teachers	Students
Persons	15	160
Non-Auto Modes (5%)	1	8
Vehicle Occupancy	1.1	3
Vehicles	13	51
Peak Hour Vehicle Trips (In/Out)		
-Arrival (AM Peak)	13 / 0	51 / 26
-Departure (Mid-Afternoon)	0 / 13	26 / 51

3.3.3 Mosque

Prayer services will occur approximately 5 times per day with the exact times shifting throughout the year. Peak attendance for weekly prayers will occur on Friday afternoon (approximately 1:00PM). Attendance at the mosque for prayers is not highly prioritized within the community and therefore attendance is expected to be less than what is observed at other mosques in Ottawa. At the existing site in Vanier, prayers are not held during the school day and therefore none of the community members currently attend Friday afternoon. It has been conservatively assumed that as many as 200 persons would be in attendance at midday on Friday (not including school children and staff already on-site).

In addition to the Friday afternoon service, typical weekday attendance at prayers has been estimated at approximately 70 persons (not including school children and staff). On weekends, typical attendance at prayers is expected to increase to approximately 90 persons to account for some school-aged children attending with their parents.

The time periods have been conservatively assumed to align with the peak travel demand for other on-site programs. The estimated people and vehicle trips are summarized in **Table 9**. It has been conservatively assumed that all persons attending prayers arrive and depart within a single hour as most prayer sessions are limited to approximately 30 minutes. By comparison, the ITE Trip Generation Manual land use for mosques (which is limited to a single observation) identifies 67% or 96% of trips occurring during the peak hour of generator as inbound trips; suggesting most remain on-site for more than a 1-hour period.

Table 9: Mosque - Vehicle Trips

	Typical Weekday	Friday Midday Peak Hour	Saturday
Persons	70	200	90
Non-Auto Modes (5%)	4	10	5
Vehicle Occupancy	1.65	1.65	2.1
Vehicles	40	115	40
Peak Hour Vehicle Trips (In/Out)	40 / 40	115 / 115	40 /40

The trip generation, as identified in **Table 3** through **Table 9** above, is summarized in **Table 10** and identifies typical peak hour trips of 203vph to 323vph for typical day-to-day scenarios.

There are approximately eight annual events which are identified separately (**Section 3.3.4**) for which a detailed traffic assessment has not been carried out. As previously identified in Section 1.1, the weekday midday (Friday) and PM peak hours were selected for further analysis to reflect the worst case combination of background and site generated traffic.

Table 10: Summary of Peak Hour Vehicle Trips (Inbound and Outbound)

WEEKDAYS					
Use or Program	AM	Midday (Fri)	PM	Evening	
School	66 / 54	-	35 / 43	-	
Recreational Centre Staff	10/0	5 /5	3/7	0 / 10	
Religious Education (Thurs)	-	-	1	70 / 16	
Girls' Youth Group (Fri)	-	-	1	46 / 19*	
Exercise Facility	19 / 19	19 / 19	29 / 19	29 /29	
Prayers	40 / 40	115 / 115	40 /40	40 /40	
Sub Total	135 / 113	139 / 139	107 / 109	139 / 95*	
Sub-Total	248	278	216	234*	
SATURDAY					
Use / Program	AM	Noon	Mid-Afternoon	Evening	
Recreational Centre Staff	10/0	5 /5	3/7	0 / 10	
Heritage Language School	64 / 26	-	26 / 64	-	
Boys' Youth Group	-	-	ı	39 / 16	
Scouts	61 / 24	24 / 61	-	-	
Exercise Facility	29 / 29	29 / 29	29 / 29	29 /29	
Prayers	40 / 40	40 / 40	40 / 40	40 / 40	
Sub Total	204 / 119	98 / 135	98 / 140	108 / 95	
Sub-Total	323	233	238	203	

Note: * Weekday evening sub-total reflective of Thursday evening as the worst-case scenario.

3.3.4 Banguet Hall and Annual Events

Up to eight annual events are anticipated at the ABCO facility with attendance as high as 600 persons. Five (5) of the events are typically held on a Saturday evening while the remaining three (3) events may occur during the AM peak period. During these events, families typically travel together with an average of 3-4 persons per car. As a result, the peak direction traffic prior to or following an event is estimated at no more than 200 vehicles.

3.4 Trip Distribution

3.4.1 Vehicular Traffic

The origins of trips to the proposed mosque were based on a combination of information provided by the community with respect to household locations of their members and the population distribution across the National Capital Region as identified in the 2011 OD data. Approximately half of the members live in the south end of the City which includes the South Gloucester/Leitrim, Hunt Club and Alta Vista areas. The remaining 50% are spread out across Ottawa and therefore were assigned proportionately to the remaining districts by population (as

identified in the 2011 OD Data). With consideration to the estimated trip origins, the trip assignment has been derived with consideration given to several key factors, including:

- Existing traffic patterns;
- The location of the site access with respect to the adjacent roadway system; and
- The principles of logical trip routing.

Both Albion Road and Kitchener Avenue are designated collector roads which provide direct connections from the site to the arterial road network. The assignment of site-generated vehicular trips to the road network is summarized in **Table 11**.

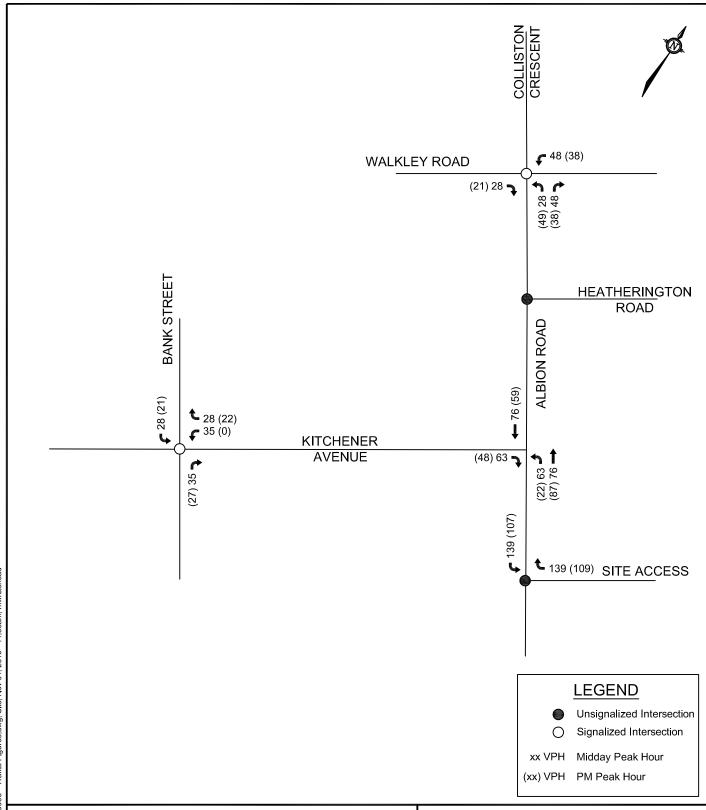
Table 11: Vehicle Trip Distribution

Access	Direction	Proportion
Albion Road	Walkley Road - West	20%
Albioti Road	Walkley Road - East	35%
Kitchener Avenue	Bank Street - North	20%
Richeriel Avenue	Bank Street - South	25%

The following turn restrictions currently exist along Kitchener Avenue limiting site access:

- Kitchener Avenue & Bank Street No NBR 7:00-9:00AM Monday-Friday
- Kitchener Avenue & Bank Street No WBL 3:30-5:30PM Monday-Friday
- Kitchener Avenue & Albion Road No EBR 5:00PM 5:00AM
- Kitchener Avenue & Albion Road No NBL 5:00PM 5:00AM

Turn restrictions also exist along Bank Street limiting northbound right turns during the AM peak period onto all local roads between Kitchener Avenue and Walkley Road.


As a result of the turn prohibitions, outbound trips during the PM peak hour destined south on Bank Street have been re-routed to westbound on Walkley Road via Albion Road. The projected peak hour trips generated by the proposed development are shown in **Figure 4**. The projected total traffic volumes are shown in **Figure 5**.

4.0 INTERSECTION ANALYSIS

4.1 Existing and Background Traffic

Intersection capacity analysis was completed for the existing traffic condition during the weekday midday and PM peak hours. The analysis was based on the existing roadway and lane configurations within the study area, and traffic signal timing data obtained from the Public Works & Service Department. The signal timings are included in **Appendix C**. As traffic growth is not anticipated in the study area, the existing traffic is anticipated to reflect the background traffic up to the 2022 horizon year.

The results of the analysis are summarized in **Table 12** for the weekday midday and PM peak hours. Detailed reports are included in **Appendix E**.

Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive

Ottawa, Ontario, Canada K2M 1P6

Telephone Facsimile Website (613) 254-9643 (613) 254-5867 www.novatech-eng.com

AHLUL-BAYT CENTRE 3095 ALBION ROAD

SITE TRAFFIC

NOV 2015

113093

FIGURE 4

Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive

Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643 Facsimile (613) 254-5867 Website www.novatech-eng.com

AHLUL-BAYT CENTRE 3095 ALBION ROAD

TOTAL TRAFFIC

NOV 2015

113093

FIGURE 5

	Mic	Midday Peak PM Peak		PM Peak		k
Intersection	Max v/c or Delay	LOS	Movement	Max v/c or Delay	LOS	Movement
Albion Road & Walkley Road	0.55	Α	NBL	0.61	В	NBL
Albion Road & Heatherington Road ¹	9.0s	Α	SB	9.6s	Α	NB
Albion Road & 3091 Albion Road South Access ¹	8.6s	Α	WB	8.6s	Α	WB
Bank Street & Kitchener Avenue	0.56	А	SBTR	0.70	В	SBTR

Note: 1 - Unsignalized Intersection

All movements are currently operating at a good LOS B or better during both peak hours. The analysis shows a westbound left turn queue of 30 metres at Bank Street & Kitchener Avenue during the midday peak, which exceeds the existing storage length of approximately 15 metres. An additional 15 metres of storage length is required to accommodate the existing/background traffic.

4.2 Total Traffic

Intersection capacity analysis was completed for the projected total traffic volumes, which are the sum total of the background traffic and traffic likely to be generated by the proposed development. The analysis was based on the existing intersection lane arrangements and signal timing plans. The results of the analysis are summarized in **Table 13** for the weekday midday and PM peak hours and the detailed reports are included in **Appendix E**.

Table 13: Total Traffic Intersection Operations

	Mid	day Pe	ak	PM Peak		(
Intersection	Max v/c or Delay	LOS	Movement	Max v/c or Delay	LOS	Movement
Walkley Road & Albion Road	0.62	В	NBL	0.71	С	NBL
Albion Road & Heatherington Road ¹	10.2s	В	SB	11.4s	В	NB
Albion Road & Site Access ¹	9.2 s	Α	WB	9.1s	Α	WB
Bank Street & Kitchener Avenue	0.64	В	WBL	0.70	В	SBTR

Note: 1 - Unsignalized Intersection

Under the total traffic scenario, all movements are expected to continue to operate at a good LOS C or better during both the midday and PM peak periods. The addition of site traffic is expected to extend the westbound left turn queue at Bank Street & Kitchener Avenue by approximately 10 metres. A storage length of approximately 40 metres is required to accommodate the projected total traffic, during typical day-to-day operations. There will be

occasions where annual events create peaks in traffic demand (8 annual events anticipated) exceeding the available left turn storage. However, these events typically occur on weekends or during off-peak time periods when background traffic is relatively minor.

It is noted that the need for additional westbound left turn storage is predominantly related to existing/background traffic. If the existing storage provisions were adequate the addition of site generated traffic would not justify the implementation of a road modification. It is recommended that the City monitor operating conditions at the Bank Street/Kitchener Avenue intersection and implement any required road modifications as funding becomes available.

5.0 PROVISIONS FOR NON-AUTO MODES

As previously identified in **Section 2.3**, existing sidewalks are provided along both sides of Walkley Road and Albion Road (north of Kitchener Avenue). South of Kitchener Avenue, traffic volumes and speeds are very low due to the proximity to the railway tracks where the roadway ends. Given the limited access to transit and the city-wide catchment area, it is anticipated that pedestrian trips accessing the site will be low. Consideration will likely be given to extending the sidewalk along Albion Road south of Kitchener Avenue when the City develops anticipated sports facilities southwest of the site.

As outlined in **Section 2.4**, the site is not well connected to the city-wide cycling network. There are no planned improvements to the cycling network in the area as part of the 2031 affordable network.

There are no transit stops within a 5 minute walk of the subject site. The closest local stop is located at the intersection of Heatherington Road/Albion Road and is served by local Routes 8 and 41. There are no anticipated improvements to the transit service in the area within the 2031 planning horizon.

6.0 ON-SITE DESIGN

6.1 Proposed Access

Access to the proposed development will be provided through the existing southern access to 3091 Albion Road. The existing all-movement access will be shared between both addresses and was previously approved through site plan approval for 3095 Albion Road.

6.2 Parking

The proposed development consists of a school, mosque, community/recreation centre and banquet hall. The subject site is located in Area C of Schedule 1 to the ZBL. Minimum vehicular parking space requirements for the development are shown in **Table 14**. The proposed parking lot satisfies these requirements with a total of 285 spaces.

Land Use	Relevant Quantity	Minimum Parking Rate	Minimum Parking Spaces
Elementary/Middle School	16 classrooms	1.5 per classroom	24
Worship Area	990 m ² GFA	10 per 100m ² GFA	99
Community Centre	1395 m ² GFA	4 per 100m ² GFA	56
Assembly Space	1029 m ² GFA	10 per 100m ² GFA	103
TOTAL			282

Table 14: Minimum Vehicle Parking Requirements

The ZBL identifies a minimum requirement of 13 bicycle parking spaces to be provided for the proposed development, as identified in **Table 15**.

Table 15 : Minimum Bio	ycle Parking Requirements
------------------------	---------------------------

Land Use	Relevant Quantity	Minimum Parking Rate	Minimum Parking Spaces
School	946m ²	1 per 100m ² GFA	9
All Other Uses	5,914m ²	1 per 1,500 m ² GFA	4
TOTAL			13

7.0 NEIGHBOURHOOD IMPACTS

The subject site is located adjacent to an industrial site and surrounded to the north and west by a residential community. The property access is located on Albion Road, a north-south collector roadway that serves approximately 400vph during the weekday peak hour. Residences typically back onto Albion Road with only infrequent driveways for high-rise residential buildings or commercial buildings with direct access onto Albion Road. Kitchener Avenue is a collector road that runs east-west from Albion Road to Bank Street immediately north of the subject site and serves approximately 250vph during the weekday peak hour. Kitchener Avenue is typically fronted by low-rise townhouses or single-detached residences with frequent driveways.

All site traffic is generally expected to continue directly along the collector road network to Bank Street and Walkley Road. However, existing prohibitions exist at certain times of day at Albion Road / Kitchener Avenue, Bank Street/Kitchener Avenue and at the intersection of Bank Street with each local road between Kitchener Avenue and Walkley Road. These turn restrictions will require site traffic to/from the mosque to take the less-direct route along Walkley Road to Albion Road. Should traffic concerns be raised by residents in the area, additional enforcement or extensions to the existing turn restrictions should be considered.

8.0 TRANSPORTATION DEMAND MANAGEMENT

The City of Ottawa has developed a comprehensive Transportation Demand Management (TDM) strategy as part of its efforts to reduce automobile dependency. TDM measures can reduce transportation infrastructure requirements by encouraging people to change their travel mode, timing or destination.

The proposed development conforms to the City's TDM initiatives by encouraging carpooling initiatives between students and community members. In addition, large events are typically scheduled outside of typical peak periods as this strategy reduces the demand upon the transportation infrastructure and aligns with community members' schedules.

9.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the foregoing analysis, the main conclusions and recommendations of this report are as follows:

Traffic Analysis

- All traffic movements within the study area are currently operating at a LOS C or better during the AM and PM peak hours.
- No growth in background traffic is anticipated within the 2022 horizon timeframe and therefore the existing conditions are expected to reflect the background traffic condition.
- An additional 15 metres of storage length is recommended for the westbound left turn lane at the Bank Street/Kitchener Avenue intersection to accommodate the existing/background traffic.
- With the operation of the proposed development, all traffic movements within the study area are anticipated to continue to operate at a LOS C or better during the AM and PM peak periods.
- An additional 10 metres of storage length is recommended for the westbound left turn lane at the Bank Street/Kitchener Avenue intersection to accommodate the projected total traffic.
- The need for additional westbound left turn storage is predominantly related to existing/background traffic. If the existing storage provisions were adequate the addition of site generated traffic would not justify the implementation of a road modification. It is recommended that the City monitor operating conditions at the Bank Street/Kitchener Avenue intersection and implement any required road modifications as funding becomes available.
- There are eight anticipated annual events which will generate up to 600 persons (or 200 vehicles). These events are often scheduled on weekends or off-peak time periods but may occasionally occur during the AM peak hour.

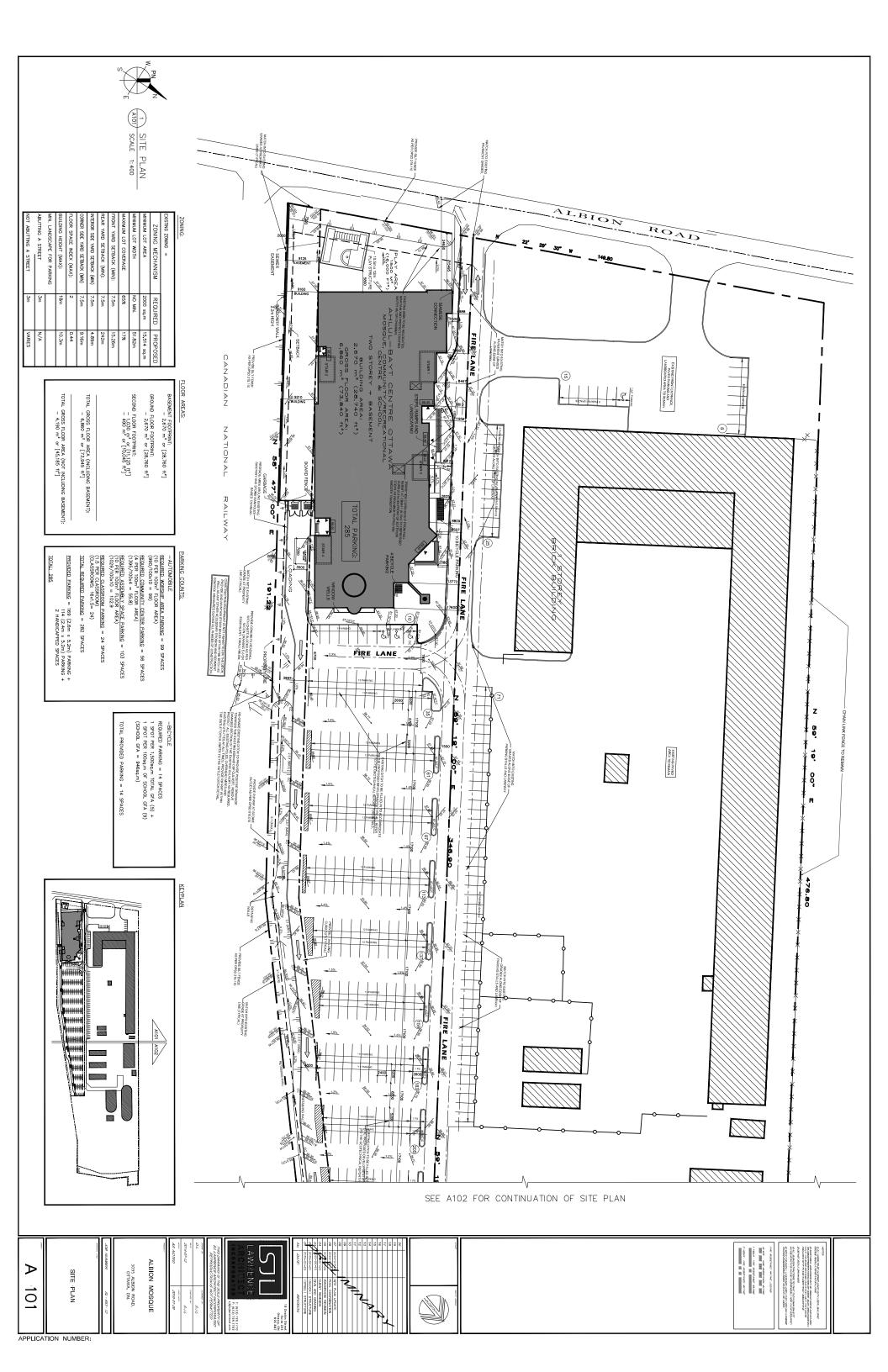
Site Design

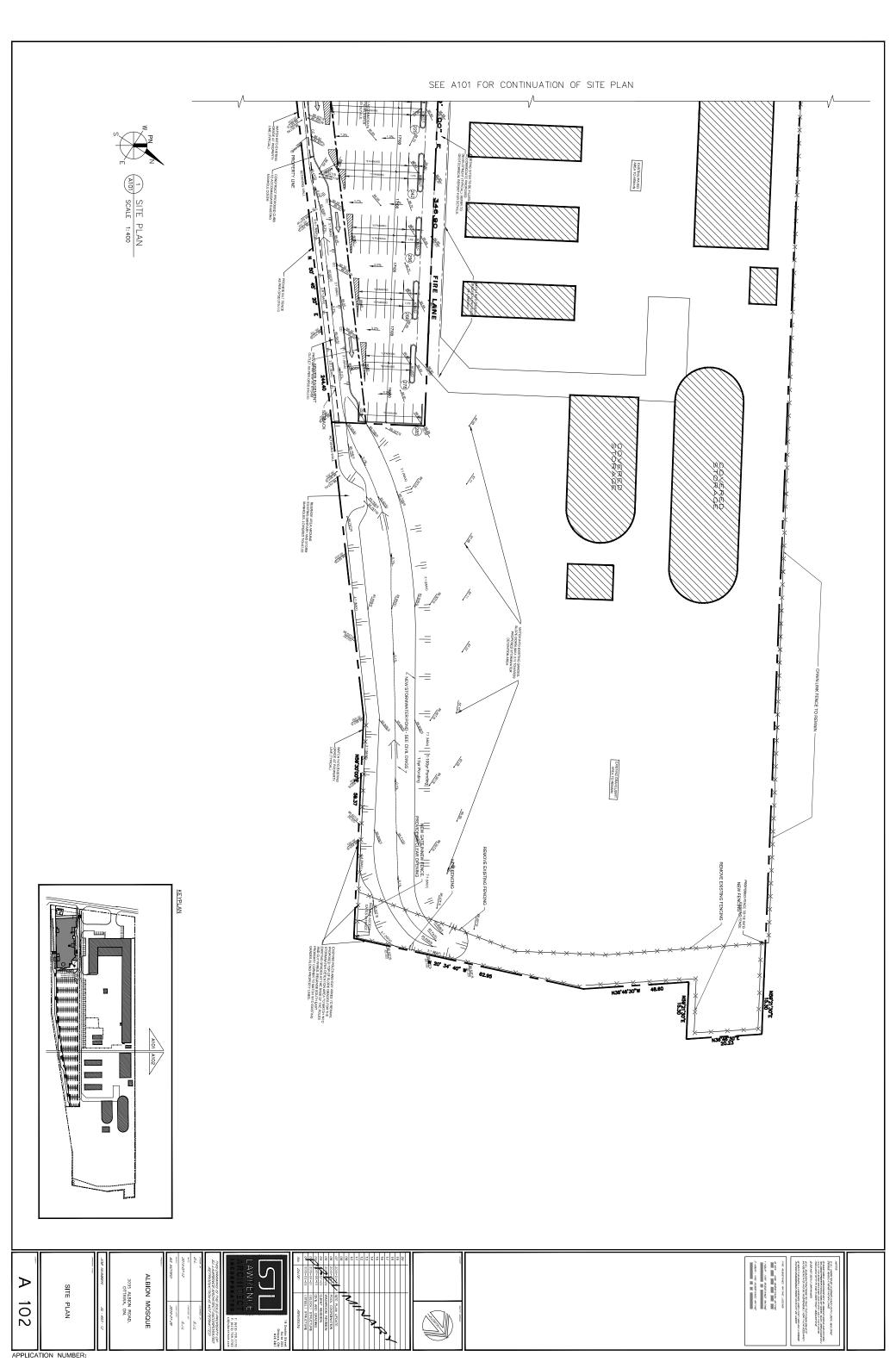
• The proposed shared access with 3091 Albion Road has been approved through a previous site plan application and rights-of-way granted by the Committee of Adjustment.

- The City of Ottawa's Zoning By-Law (ZBL) requires a minimum of 282 parking spaces on-site. The proposed parking lot satisfies these requirements with a total of 285 spaces.
- A total of 13 bicycle parking spaces will be provided to meet the minimum requirements identified in the ZBL.

Community Impacts and Transportation Demand Management

- The traffic assessment considered all traffic to/from the subject site. Existing turn
 prohibitions along Kitchener Avenue will limit the use of this route for trips to/from the
 subject site. Enforcement or extensions to the existing turn restrictions may be required.
- The proposed development conforms to the City's TDM initiatives by encouraging carpooling amongst the members of the community.

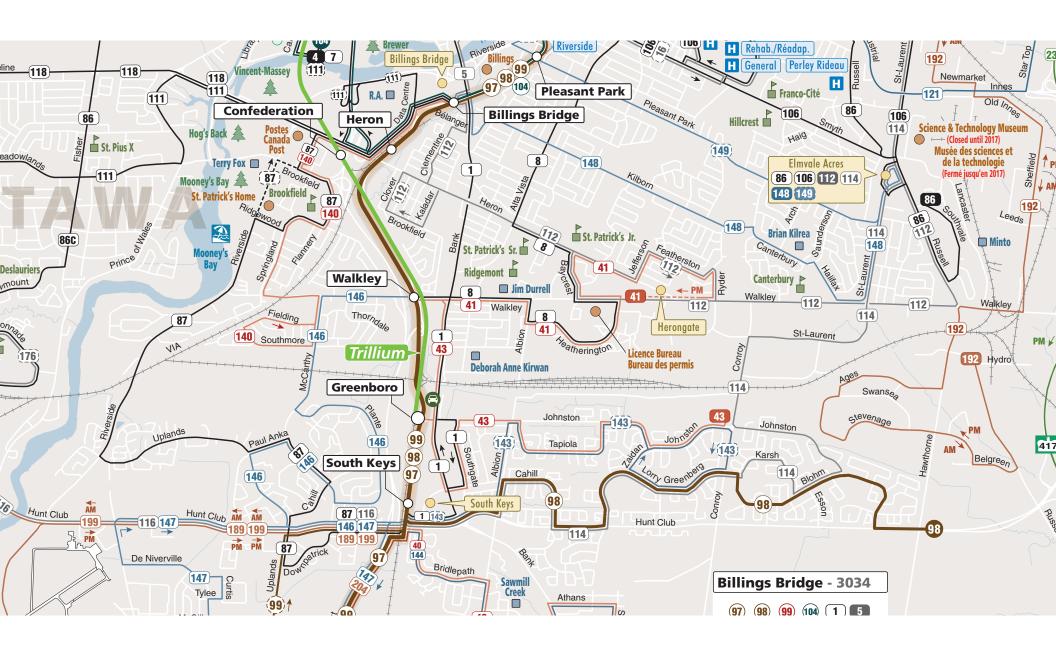

NOVATECH



Jennifer Luong, P.Eng. Transportation Engineer

APPENDIX A

SITE PLAN

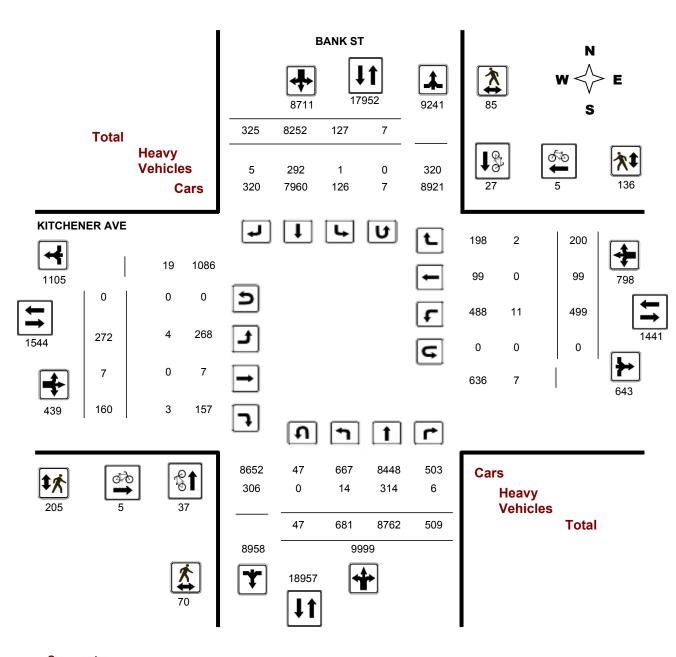


Transportation	Impact Study
----------------	--------------

APPENDIX B

OC TRANSPO SYSTEM MAP

Transp	ortation Impact Study 30	95 Albion Road
	APPENDIX C	
	TRAFFIC COUNTS AND SIGNAL TIMING PLANS	


Public Works - Traffic Services

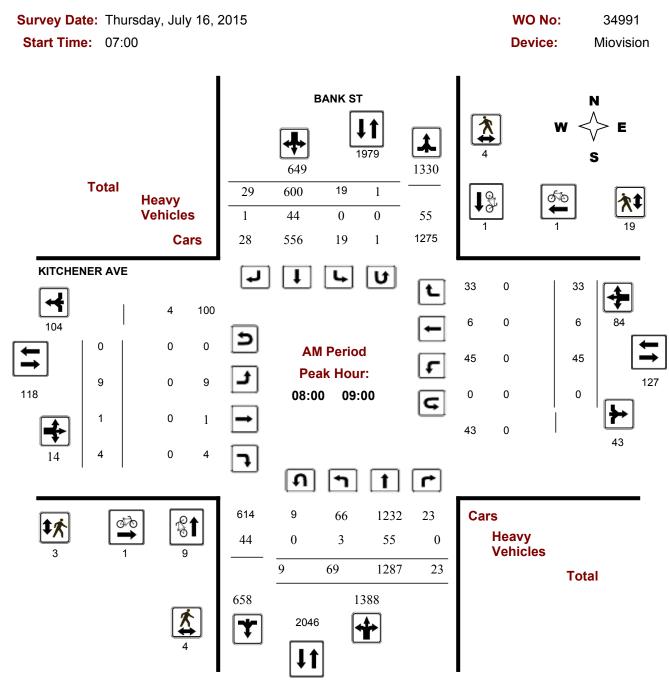
Turning Movement Count - Full Study Diagram

KITCHENER AVE @ BANK ST

Survey Date: Thursday, July 16, 2015 WO#: 34991

Device: Miovision

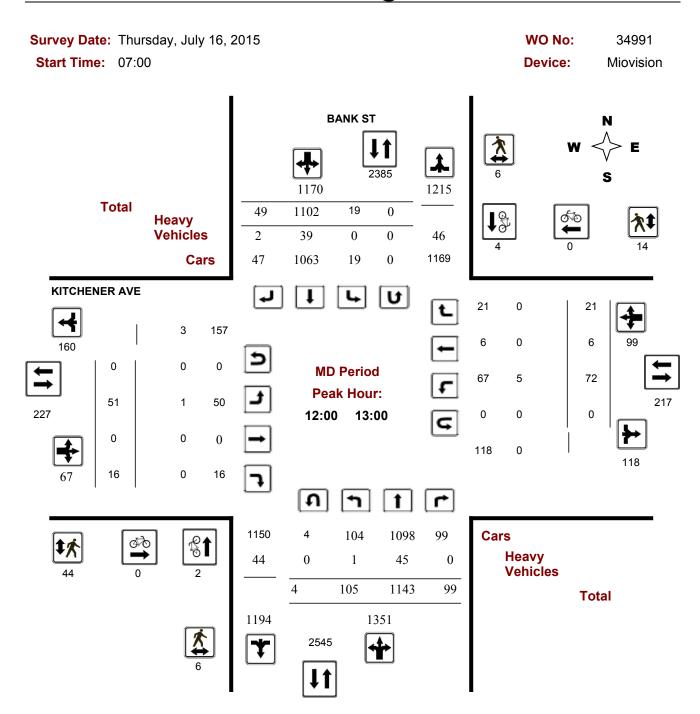
Comments


2015-Sep-14 Page 1 of 1

Public Works - Traffic Services

Turning Movement Count - Full Study Peak Hour Diagram

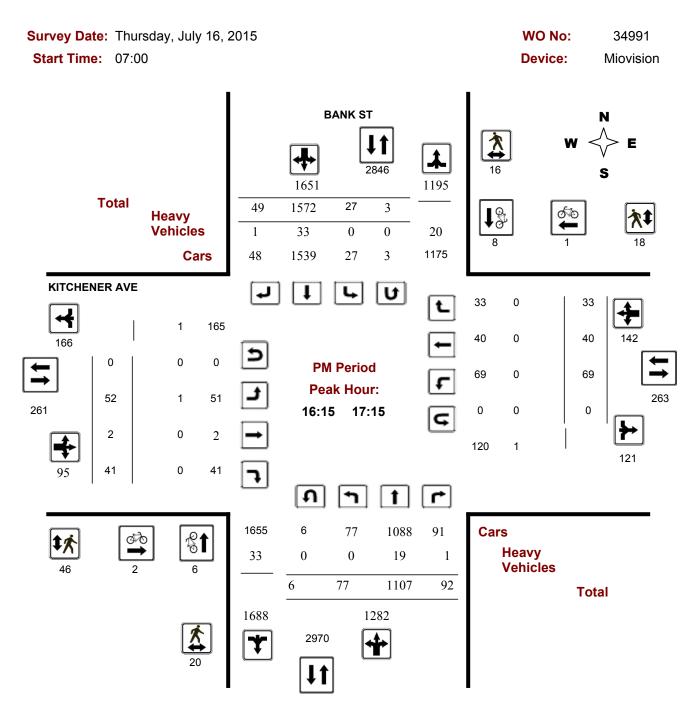
KITCHENER AVE @ BANK ST


Comments

2015-Sep-14 Page 1 of 3

Turning Movement Count - Full Study Peak Hour Diagram

KITCHENER AVE @ BANK ST



Comments

Turning Movement Count - Full Study Peak Hour Diagram

KITCHENER AVE @ BANK ST

Comments

Work Order 34991

Turning Movement Count - Full Study Summary Report

KITCHENER AVE @ BANK ST

Survey Date: Thursday, July 16, 2015 Total Observed U-Turns

AADT Factor

Northbound: 47

Southbound:

.90

Eastbound:

Westbound: 0

Full Study

0

			В	ANK S	Γ							KITCH	HENEF	R AVE	<u> </u>				
	N	orthbou	ınd		Sou	thboun	d			East	bound			We	stboui	nd	-		
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	•	Grand Total
07:00 08:00	61	1073	9	1143	16	399	37	452	1595	10	0	0	10	33	1	16	50	60	1655
08:00 09:00	69	1287	23	1379	19	600	29	648	2027	9	1	4	14	45	6	33	84	98	2125
09:00 10:00	77	1013	53	1143	7	770	32	809	1952	8	0	1	9	55	2	23	80	89	2041
11:30 12:30	105	1095	85	1285	23	1073	46	1142	2427	44	0	21	65	68	10	17	95	160	2587
12:30 13:30	97	1090	84	1271	10	1074	48	1132	2403	47	0	18	65	68	6	26	100	165	2568
15:00 16:00	98	1059	69	1226	5	1312	50	1367	2593	61	3	32	96	74	16	27	117	213	2806
16:00 17:00	83	1104	90	1277	27	1550	47	1624	2901	51	1	43	95	70	45	35	150	245	3146
17:00 18:00	91	1041	96	1228	20	1474	36	1530	2758	42	2	41	85	86	13	23	122	207	2965
Total	681	8762	509	9952	127	8252	325	8704	18656	272	7	160	439	499	99	200	798	1237	19893
Equ 12Hr	946	12179	707	13832	176	11470	451	12097	25929	378	9	222	609	693	137	278	1108	1717	27646
Note: These	values	are calcu	lated I	oy multip	lying th	e totals	by the	approp	riate ex	oansion	factor.			1.	.39				
Avg 12Hr	851	10961	636	12448	158	10323	405	10887	23335	340	8	199	548	623	123	250	997	1545	24881
Note: These	volume	s are cal	culated	d by mult	iplying	the Equi	ivalent	12 hr. t	otals by	the AA	DT fact	or.		.9	0				
Avg 24Hr	1114	14358	833	16306	206	13523	530	14261	30568	445	10	260	717	816	161	327	1306	2023	32594
Note: These	volume	s are cal	culated	d by mult	iplying	the Ave	rage D	aily 12	hr. total:	s by 12	to 24 ex	kpansic	n factor	. 1.	.31				

Comments:

Note: U-Turns are not included in Totals.

W.O.

34991

Turning Movement Count - 15 Minute Summary Report

KITCHENER AVE @ BANK ST

Survey Date: Thursday, July 16, 2015

Total Observed U-Turns

Northbound: 47
Eastbound: 0

Westbound: 0

BANK ST

KITCHENER AVE

Southbound:

		N	Iorthbou	und		So	uthboun	d			Eas	stbound	d		Wes	stbound	i			
Time o I	Dawlad		ST	рт	N TOT	ΙT	ST	рт	S TOT	STR TOT	ı T	ST	рт	E TOT	LT	ST	рт	W TOT	STR TOT	Grand
Time I	07:15	<u>LT</u> 7	201	<u>RT</u> 3	212	<u>LT</u> 5	73	<u>RT</u> 7	85	297	<u>LT</u> 2	0	RT 0	2	3	0	RT 3	6	8	Total 305
	07:30	23	252	2	277	3	92	8	103	380	2	0	0	2	3	0	2	5	7	387
07:30	07:45		303	2	317	5 5	108		126	443	1	0	0	1	3	0	4	8	9	452
07:45	08:00	11 20	317	2	339	3	126	13 9	138	477	5	0	0	5	23	1	7	31	36	513
08:00	08:15	12	370	2	385	3	127	6	136	521	3	0	3	6	7	1	10	18	24	545
08:15	08:30	18	324	2	348	2	145	0	148	496	1	0	0	1	, 11	1	9	21	22	518
08:30	08:45	25	292	9	328	5	165	7	177	505	2	0	1	3	11	1	2	14	17	522
08:45	09:00	14	301	10	327	9	163	, 16	188	515	3	1	0	4	16	3	12	31	35	550
09:00	09:15	17	244	13	274	1	173	9	183	457	2	0	0	2	15	0	5	20	22	479
	09:30	10	252	8	273	3	205	3	211	484	4	0	1	5	18	1	8	27	32	516
09:30	09:45	21	249	14	285	2	183	4	189	474	2	0	0	2	12	0	7	19	21	495
09:45	10:00	29	268	18	317	1	209	16	226	543	0	0	0	0	10	1	3	14	14	557
11:30	11:45	20	239	19	279	8	282	14	304	583	10	0	3	13	20	3	4	27	40	623
11:45	12:00	28	289	15	332	4	223	8	235	567	9	0	8	17	15	3	4	22	39	606
12:00	12:15	25	271	31	329	6	279	8	293	622	10	0	5	15	12	2	5	19	34	656
	12:30	32	296	20	349	5	289	16	310	659	15	0	5	20	21	2	4	27	47	706
12:30	12:45	31	300	20	351	6	239	13	258	609	11	0	3	14	19	2	6	27	41	650
	13:00	17	276	28	322	2	295	12	309	631	15	0	3	18	20	0	6	26	44	675
13:00	13:15	22	276	19	317	1	272	13	287	604	5	0	6	11	12	4	5	21	32	636
13:15	13:30	27	238	17	283	1	268	10	279	562	16	0	6	22	17	0	9	26	48	610
15:00	15:15	20	275	17	313	1	293	17	311	624	18	1	5	24	31	2	9	42	66	690
15:15	15:30	34	261	14	310	1	314	5	320	630	12	0	9	21	16	3	6	25	46	676
15:30	15:45	21	266	18	311	2	339	17	358	669	12	1	11	24	11	5	10	26	50	719
15:45	16:00	23	257	20	300	1	366	11	378	678	19	1	7	27	16	6	2	24	51	729
16:00	16:15	26	275	23	325	5	366	8	380	705	14	0	10	24	18	11	8	37	61	766
16:15	16:30	18	288	25	331	5	405	11	421	752	14	1	14	29	11	15	8	34	63	815
16:30	16:45	15	267	18	301	4	394	18	418	719	10	0	7	17	22	13	9	44	61	780
16:45	17:00	24	274	24	324	13	385	10	408	732	13	0	12	25	19	6	10	35	60	792
17:00	17:15	20	278	25	326	5	388	10	404	730	15	1	8	24	17	6	6	29	53	783
17:15	17:30	32	241	23	301	4	390	11	405	706	9	1	13	23	18	4	8	30	53	759
17:30	17:45	16	270	25	312	7	361	7	375	687	7	0	12	19	24	2	3	29	48	735
17:45	18:00	23	252	23	301	4	335	8	348	649	11	0	8	19	27	1	6	34	53	702
TOTAL	_: (681	8762	509	9999	127	8252	325	8711	18710	272	7	160	439	499	99	200	79	8 1237	19947

Note: U-Turns are included in Totals.

Comment:

Work Order 34991

Turning Movement Count - Pedestrian Volume Report

		ŀ	KITCHEN	ER AVE @ BA	NK ST		
Count Dat	e: Thursday, Ju	ıly 16, 2015				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	2	2	3	3	6	8
07:15 07:30	1	0	1	2	3	5	6
07:30 07:45	0	2	2	1	5	6	8
07:45 08:00	1	0	1	8	1	9	10
07:00 08:00	2	4	6	14	12	26	32
08:00 08:15	1	1	2	1	7	8	10
08:15 08:30	3	2	5	0	4	4	9
08:30 08:45	0	0	0	2	8	10	10
08:45 09:00	0	1	1	0	0	0	1
08:00 09:00	4	4	8	3	19	22	30
09:00 09:15	2	1	3	1	3	4	7
09:15 09:30	0	2	2	2	7	9	11
09:30 09:45	3	3	6	4	2	6	12
09:45 10:00	1	0	1	3	3	6	7
09:00 10:00	6	6	12	10	15	25	37
11:30 11:45	5	1	6	6	3	9	15
11:45 12:00	3	1	4	8	2	10	14
12:00 12:15	1	0	1	20	2	22	23
12:15 12:30	2	0	2	13	7	20	22
11:30 12:30	11	2	13	47	14	61	74
12:30 12:45	2	3	5	6	2	8	13
12:45 13:00	1	3	4	5	3	8	12
13:00 13:15	0	0	0	1	6	7	7
13:15 13:30	1	2	3	7	3	10	13
12:30 13:30	4	8	12	19	14	33	45
15:00 15:15	5	2	7	5	5	10	17
15:15 15:30	2	3	5	7	4	11	16
15:30 15:45	0	5	5	5	6	11	16
15:45 16:00	9	13	22	12	10	22	44
15:00 16:00	16	23	39	29	25	54	93
16:00 16:15	3	5	8	17	7	24	32
16:15 16:30	6	3	9	15	4	19	28
16:30 16:45	6	6	12	15	5	20	32
16:45 17:00	7	2	9	10	4	14	23
16:00 17:00	22	16	38	57	20	77	115
17:00 17:15	1	5	6	6	5	11	17
17:15 17:30	0	11	11	7	5	12	23
17:30 17:45	3	2	5	8	3	11	16
17:45 18:00	1	4	5	5	4	9	14
17:00 18:00	5	22	27	26	17	43	70
Total	70	85	155	205	136	341	496

Comment:

W.O. 34991

Turning Movement Count - Heavy Vehicle Report

KITCHENER AVE @ BANK ST

Survey Date: Thursday, July 16, 2015

BANK ST KITCHENER AVE

		Northb	ound		5	Southb	ound	_			Eastbo	ound		,	Westbo	ound				
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	08:00	3	58	0	61	0	32	0	32	93	0	0	0	0	1	0	0	1	1	94
08:00	09:00	3	55	0	58	0	44	1	45	103	0	0	0	0	0	0	0	0	0	103
09:00	10:00	3	46	3	52	0	43	0	43	95	1	0	0	1	1	0	0	1	2	97
11:30	12:30	1	46	0	47	1	41	2	44	91	1	0	1	2	4	0	0	4	6	97
12:30	13:30	1	47	1	49	0	35	1	36	85	1	0	1	2	5	0	1	6	8	93
15:00	16:00	1	26	0	27	0	31	0	31	58	0	0	1	1	0	0	0	0	1	59
16:00	17:00	0	19	1	20	0	38	1	39	59	1	0	0	1	0	0	1	1	2	61
17:00	18:00	2	17	1	20	0	28	0	28	48	0	0	0	0	0	0	0	0	0	48
Total	:	14	314	6	334	1	292	5	298	632	4	0	3	7	11	0	2	13	20	652

Heavy Vehicles are vehicles having one rear axle with four or more wheels, or having two or more rear axles. These vehicles include most O.C. Transpo, school and inter-city buses. Further, they ARE included in the Turning Movement Count Summary.

Printed on: 2015-Sep-1 Page 1 of 1

Turning Movement Count - Cyclist Volume Report

Work Order 34991

KITCHENER AVE @ BANK ST

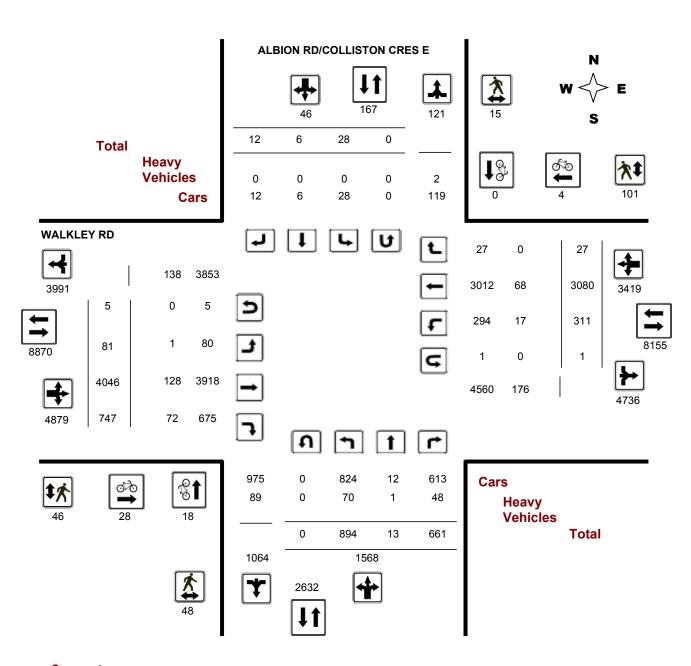
Count Date: Thursday, July 16, 2015 Start Time: 07:00

BANK ST KITCHENER AVE

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	9	0	9	0	0	0	9
08:00 09:00	9	1	10	1	1	2	12
09:00 10:00	3	0	3	0	0	0	3
11:30 12:30	2	3	5	0	0	0	5
12:30 13:30	1	3	4	1	0	1	5
15:00 16:00	5	6	11	0	2	2	13
16:00 17:00	4	10	14	1	1	2	16
17:00 18:00	4	4	8	2	1	3	11
Total	37	27	64	5	5	10	74

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.



Turning Movement Count - Full Study Diagram

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012 WO#: 30904

Device:

Comments

Turning Movement Count - Full Study Peak Hour Diagram

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012 WO No: 30904

Start Time: 07:00 Device:

Comments

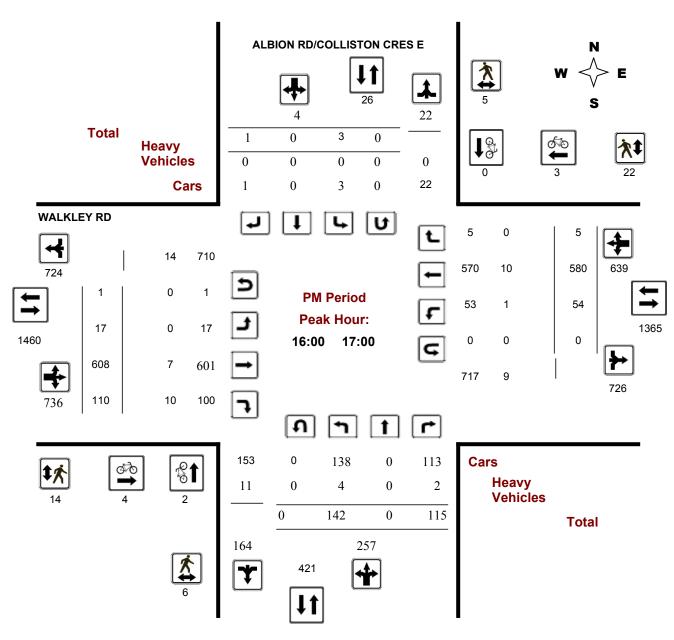
Turning Movement Count - Full Study Peak Hour Diagram

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012 WO No: Start Time: 07:00 Device: ALBION RD/COLLISTON CRES E **Total** Heavy **Vehicles** Cars **WALKLEY RD** U **MD Period Peak Hour:** 12:30 13:30 ค t Cars Heavy **Vehicles Total**

Comments

2015-Sep-14 Page 2 of 3



Turning Movement Count - Full Study Peak Hour Diagram

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012 WO No: 30904

Start Time: 07:00 Device:

Comments

Work Order 30904

Turning Movement Count - Full Study Summary Report

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012

Total Observed U-Turns

AADT Factor

Northbound:

Southbound:

1

.90

Eastbound:

Westbound:

5

Full Study

										Jua	y								
	AL	BION	RD/C	OLLIS	TON (CRES	E					WAI	LKLEY	′ RD					
	No	orthbo	und		Sout	hboun	ıd			East	bound			We	stbour	nd	•		
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	•	Grand Total
07:00 08:00	70	1	57	128	13	5	9	27	155	3	361	74	438	45	288	0	333	771	926
08:00 09:00	105	2	77	184	3	0	1	4	188	2	495	104	601	19	248	5	272	873	1061
09:00 10:00	67	2	71	140	4	1	0	5	145	5	463	69	537	50	376	12	438	975	1120
11:30 12:30	128	1	67	196	2	0	1	3	199	9	475	83	567	32	312	1	345	912	1111
12:30 13:30	100	3	73	176	1	0	0	1	177	10	516	124	650	43	397	0	440	1090	1267
15:00 16:00	136	3	108	247	1	0	0	1	248	20	524	90	634	35	438	4	477	1111	1359
16:00 17:00	142	0	115	257	3	0	1	4	261	17	608	110	735	54	580	5	639	1374	1635
17:00 18:00	146	1	93	240	1	0	0	1	241	15	604	93	712	33	441	0	474	1186	1427
Total	894	13	661	1568	28	6	12	46	1614	81	4046	747	4874	311	3080	27	3418	8292	9906
Equ 12Hr	1242	18	918	2178	38	8	16	62	2240	112	5623	1038	6773	432	4281	37	4750	11523	13763
Note: These	values a	are calc	ulated b	oy multip	lying th	e totals	by the	approp	riate exp	oansior	factor.			1	.39				
Avg 12Hr	1118	16	826	1960	34	7	14	55	2017	100	5060	934	6095	388	3852	33	4275	10370	12386
Note: These	volumes	s are ca	lculated	by mul	tiplying	the Equ	ivalent	12 hr. t	otals by	the AA	ADT fact	or.		.9	90				
Avg 24Hr	1464	20	1082	2567	44	9	18	72	2642	131	6628	1223	7984	508	5046	43	5600	13584	16225
Note: These	volumes	s are ca	lculated	d by mul	tiplying	the Ave	rage Da	aily 12 I	hr. totals	s by 12	to 24 ex	xpansic	on factor	r. 1	.31				

Comments:

Note: U-Turns are not included in Totals.

W.O.

30904

Turning Movement Count - 15 Minute Summary Report

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012

Total Observed U-Turns

Northbound: 0 Eastbound: 5

Westbound: 1

ALBION RD/COLLISTON CRES E

WALKLEY RD

Southbound:

	AL	RION	RD/C	OLLIS	ION	CRES	5 E				'	WALI	KLEY	RD					
	N	orthbo	und		So	uthbour	nd			Ea	stbound			We	stbound				
Time Perio	d <u>LT</u>	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:1	5 14	0	12	26	5	3	7	15	41	1	68	10	79	0	69	0	69	148	189
07:15 07:3	30 17	1	14	32	1	0	0	1	33	0	65	21	86	11	61	0	72	158	191
07:30 07:4	5 17	0	15	32	3	1	0	4	36	1	122	13	136	26	85	0	111	247	283
07:45 08:0	0 22	0	16	38	4	1	2	7	45	1	106	30	137	8	73	0	81	218	263
08:00 08:1	5 24	0	16	40	1	0	1	2	42	0	112	32	144	11	93	1	105	249	291
08:15 08:3	34	1	23	58	0	0	0	0	58	0	113	19	132	1	35	0	36	168	226
08:30 08:4	5 30	1	22	53	2	0	0	2	55	1	140	17	158	4	51	1	56	214	269
08:45 09:0	0 17	0	16	33	0	0	0	0	33	1	130	36	167	3	69	3	75	242	275
09:00 09:1	5 18	1	23	42	1	0	0	1	43	0	110	19	129	6	93	0	99	228	271
09:15 09:3	30 16	1	13	30	0	0	0	0	30	1	127	14	142	12	89	0	101	243	273
09:30 09:4	5 12	0	15	27	2	0	0	2	29	4	102	16	122	16	76	1	93	215	244
09:45 10:0	0 21	0	20	41	1	1	0	2	43	0	124	20	144	16	118	11	145	289	332
11:30 11:4	5 33	0	14	47	1	0	0	1	48	1	115	17	133	11	109	1	121	254	302
11:45 12:0	00 34	0	13	47	0	0	0	0	47	1	115	22	138	7	70	0	77	215	262
12:00 12:1	5 30	1	18	49	0	0	0	0	49	6	119	28	153	6	54	0	60	213	262
12:15 12:3	30 31	0	22	53	1	0	1	2	55	1	126	16	143	8	79	0	87	230	285
12:30 12:4	5 28	2	18	48	1	0	0	1	49	1	150	38	189	14	98	0	112	301	350
12:45 13:0	0 24	0	19	43	0	0	0	0	43	2	126	24	153	11	99	0	110	263	306
13:00 13:1	5 16	1	16	33	0	0	0	0	33	2	135	32	170	8	105	0	113	283	316
13:15 13:3	32	0	20	52	0	0	0	0	52	5	105	30	140	10	95	0	105	245	297
15:00 15:1	5 33	0	28	61	0	0	0	0	61	5	133	15	153	9	102	1	112	265	326
15:15 15:3	33	0	21	54	0	0	0	0	54	3	134	23	160	14	111	1	126	286	340
15:30 15:4	5 35	1	32	68	0	0	0	0	68	5	123	21	150	6	80	1	88	238	306
15:45 16:0	00 35	2	27	64	1	0	0	1	65	7	134	31	172	6	145	1	152	324	389
16:00 16:1	5 44	0	33	77	2	0	0	2	79	4	161	25	190	11	126	1	138	328	407
16:15 16:3	30	0	28	58	0	0	0	0	58	1	160	29	191	12	130	1	143	334	392
16:30 16:4	5 35	0	25	60	0	0	0	0	60	4	151	20	175	16	164	0	180	355	415
16:45 17:0	00 33	0	29	62	1	0	1	2	64	8	136	36	180	15	160	3	178	358	422
17:00 17:1	5 53	0	31	84	0	0	0	0	84	4	167	23	194	5	116	0	121	315	399
17:15 17:3	30 43	1	23	67	1	0	0	1	68	4	164	19	187	11	114	0	125	312	380
17:30 17:4	5 32	0	25	57	0	0	0	0	57	3	143	26	172	10	115	0	125	297	354
17:45 18:0	0 18	0	14	32	0	0	0	0	32	4	130	25	160	7	96	0	103	263	295
TOTAL:	894	13	661	1568	28	6	12	46	1614	81	4046	747	4879	311	3080	27	34	19 8298	9912

Note: U-Turns are included in Totals.

Comment:

Work Order 30904

Turning Movement Count - Pedestrian Volume Report

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Count Date	e: Tuesday, Jul	ly 17, 2012				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	1	5	6	6
07:15 07:30	1	0	1	2	1	3	4
07:30 07:45	0	0	0	1	0	1	1
07:45 08:00	2	0	2	0	3	3	5
07:00 08:00	3	0	3	4	9	13	16
08:00 08:15	0	1	1	0	2	2	3
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	1	1	1
08:45 09:00	3	0	3	0	2	2	5
08:00 09:00	3	1	4	0	5	5	9
09:00 09:15	1	0	1	0	0	0	1
09:15 09:30	0	1	1	3	2	5	6
09:30 09:45	2	1	3	1	0	1	4
09:45 10:00	0	0	0	4	0	4	4
09:00 10:00	3	2	5	8	2	10	15
11:30 11:45	1	1	2	5	14	19	21
11:45 12:00	5	3	8	2	13	15	23
12:00 12:15	0	0	0	1	0	1	1
12:15 12:30	2	0	2	0	4	4	6
11:30 12:30	8	4	12	8	31	39	51
12:30 12:45	5	0	5	0	2	2	7
12:45 13:00	2	1	3	2	2	4	7
13:00 13:15	0	1	1	1	0	1	2
13:15 13:30	0	0	0	0	0	0	0
12:30 13:30	7	2	9	3	4	7	16
15:00 15:15	1	0	1	0	3	3	4
15:15 15:30	1	0	1	1	11	12	13
15:30 15:45	5	0	5	0	1	1	6
15:45 16:00	3	1	4	1	5	6	10
15:00 16:00	10	1	11	2	20	22	33
16:00 16:15	0	0	0	1	12	13	13
16:15 16:30	4	4	8	12	8	20	28
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	2	1	3	1	2	3	6
16:00 17:00	6	5	11	14	22	36	47
17:00 17:15	1	0	1	0	0	0	1
17:15 17:30	0	0	0	1	4	5	5
17:30 17:45	5	0	5	4	3	7	12
17:45 18:00	2	0	2	2	1	3	5
17:00 18:00	8	0	8	7	8	15	23
Total	48	15	63	46	101	147	210

Comment:

W.O. 30904

Turning Movement Count - Heavy Vehicle Report

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Survey Date: Tuesday, July 17, 2012

ALBION RD/COLLISTON CRES E

WALKLEY RD

		Northb	ound			Southb	ound	_			Eastb	ound		,	Westbo	ound	_			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	08:00	10	0	12	22	0	0	0	0	22	0	11	7	18	3	10	0	13	31	53
08:00	09:00	16	1	7	24	0	0	0	0	24	0	25	8	33	0	10	0	10	43	67
09:00	10:00	8	0	3	11	0	0	0	0	11	0	29	12	41	6	14	0	20	61	72
11:30	12:30	7	0	8	15	0	0	0	0	15	1	13	6	20	1	7	0	8	28	43
12:30	13:30	9	0	7	16	0	0	0	0	16	0	14	15	29	4	3	0	7	36	52
15:00	16:00	8	0	7	15	0	0	0	0	15	0	21	8	29	0	8	0	8	37	52
16:00	17:00	4	0	2	6	0	0	0	0	6	0	7	10	17	1	10	0	11	28	34
17:00	18:00	8	0	2	10	0	0	0	0	10	0	8	6	14	2	6	0	8	22	32
Total	:	70	1	48	119	0	0	0	0	119	1	128	72	201	17	68	0	85	286	405

Heavy Vehicles are vehicles having one rear axle with four or more wheels, or having two or more rear axles. These vehicles include most O.C. Transpo, school and inter-city buses. Further, they ARE included in the Turning Movement Count Summary.

Printed on: 2015-Sep-1 Page 1 of 1

Turning Movement Count - Cyclist Volume Report

Work Order 30904

ALBION RD/COLLISTON CRES E @ WALKLEY RD

Count Date: Tuesday, July 17, 2012 Start Time: 07:00

ALBION RD/COLLISTON CRES E

WALKLEY RD

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	0	0	3	0	3	3
08:00 09:00	4	0	4	4	0	4	8
09:00 10:00	4	0	4	2	0	2	6
11:30 12:30	0	0	0	1	0	1	1
12:30 13:30	2	0	2	2	0	2	4
15:00 16:00	3	0	3	3	0	3	6
16:00 17:00	2	0	2	4	3	7	9
17:00 18:00	3	0	3	9	1	10	13
Total	18	0	18	28	4	32	50

Comment:

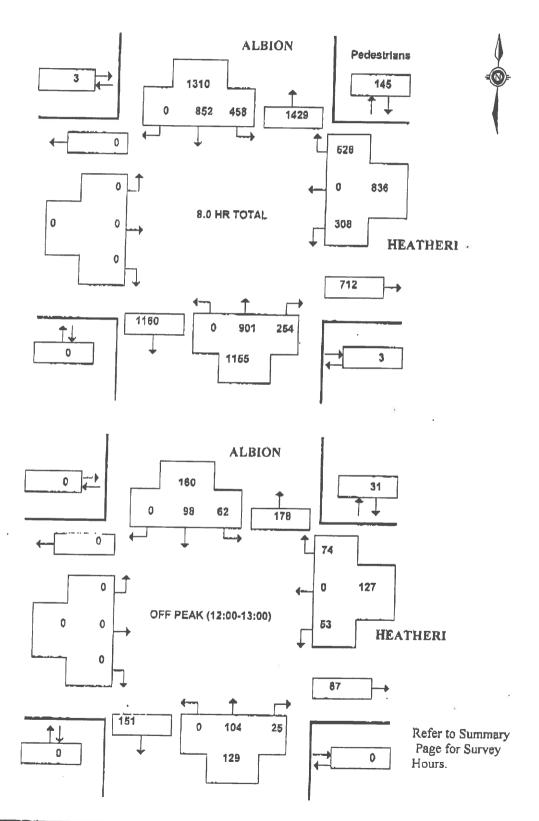
Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHERI)

Survey Date: Friday 11 July 2003

Conditions; WET Start Time: 0700


Total Observed U-Turns

Northbound: Eastbound:

O Southbound:

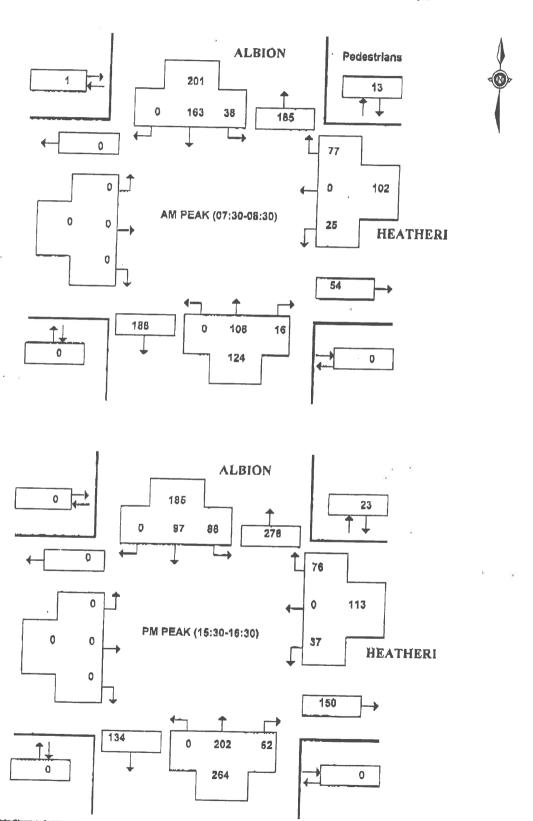
0 Westbound: 0 **AADT Factor** Friday in July is

0.9

ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHERI)

Survey Date: Friday 11 July 2003


Conditions: WET Start Time! 0700 Total Observed U-Turns

Northbound: Eastbound:

O Southbound:

0 Westbound: 0 **AADT Factor** Friday in July is

0.9

Vehicular Turning Movements - Summary

ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHER!)

Survey Date: Friday 11 July 2003

Conditions: WET Start Time: 0700 Total Observed U-Turns

Northbound: 0 Southbound: 0 Eastbound: 0

Westbound: 0

AADT Factor Friday in July is

0.9

		-		-	ALBI	ON					_		- н	EAT	'HERI	. –		_		
		N	orthbo	und	SUB	Sc	oothtoo	ind	SUB	STR	Ea	stbour		SUB		Vesib	ound	SUB	OTD.	CD (AND
Time	Period	1.7	ST	RT	TOT	LT	sr	RT	TOT	TOT	LT.	ST.	ŔT	TOT	ĹТ	ST	RT	TOT		GRAND TOT
07:00	-08:00	Ô	70	12	82	30	193	0	223	305	0	0	0	0	25	0		88		393
08:00-	-09:00	0	105	16	121	41	116	0	157	278	0	٥	0	0	26	0				379
09:00-	-10:00	0	85	29	114	38	97	0	135	249	0	Q	0	D	30	0				329
11:30-	-12:30	0	100	36	136	56	91	0	147	283	0	0	0	0	47	0		121	121	404
12:30-	13:30	0	90	20	110	62	103	0	165	275	0	0	0	0	51	٥		120	120	395
15:00-	16:00	0	174	47	221	68	118	0	186	407	a	a	0	0	37	0		109	109	
16:00-	17:00	0	182	54	236	88	78	٥	186	402	0	0	0	٥	38	٥	70	108		516
17:00-	18:00	D	95	40	135	75	5 6	0	131	266	0	٥	0	0	54	0	55	109	108 109	510
8.0 HR	TOTAL	0	901	254	1155	458	852	0	1310		0	0	0		308		528	836	836	375
	· · · · · · · · · · · · · · · · · · ·																020		000	3301
EQU, I	2 FIR TOTAL	0	1252	353	1605	636	1184	٥	1820	3425	0	0	0	0	428	n	733	1161	1161	4586
Note:	These values are	e cal	culate	d by	multip	lying	the to	otals	by the		priate	ехра		facto	or.		, 00	1101	1101	4500
	2 HR TOTAL				1443				1637	3080	0	0	0		385	0	659	1044	1044	4124
Note: 7	These volumes a	ire ç	alcula	ted h	y mult	iplyii	ng the	Equ	ivalen	t 12 hr.	total	s by t	he A	ADT	factor			104	1044	7167
	HR TOTAL				1890				2144	4034	0	0	0	0	504	0	863	1257	1367	£404
Note: 7	These volumes v														304	Ü	903	1307	1901	5401
										,										
AM TOT	AL (0700-0900)	D	175	28	203	71	309	0	380	583	0	٥	0	0	51	0	138	189	189	772

Vehicular Turning Movements (15 Min. Volumes)

ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHERI)

Survey Date: Friday 11 July 2003

Conditions: WET Start Time: 07:00

Total Observed U-Turns

Northbound: 0 Southbound: 0 Eastbound: 0 Westbound: 0

AADT Factor Friday in July is

0.9

		AL Northbound			ALBI	ON	-				_		- 141	eath	ERI	_				
]	North	bou	nd	St	В	South	bound	SUlls	STR	Εa	istbol				West	bound			
Time Perioc	1 1	,]	51	RT	.LC		r s	T RT	TOT	TOT	LI	r s	T RT	BU2 TOT	LT	S	T RT	SUB TOT	\$TR TOT	GRAND TOT
07:00-07:15		0	9	5	1	4	8 4	0	49	63	() (0 0	0	4		0 14		18	81
07:15-07:30		0	15	3	1	9	3 46	0	49	67) (0	0	8		0 15		23	90
07:30-07:45		0	28	3	3	1 1.	2 56	0	68	99	C) (0	6		D 15		23	122
07:45-08:00		0	18	1	19)	7 50	0	57	76	0) (0	0	5	(0 19	24	24	100
08:00-08:15		0 ;	30	7	37	, (3 -30	0	38	75	0	0	0	0	4	·) 15	19	19	94
08:15-08:30		0 :	32	5	37	4	27	0	38	75	0	0	0	0	8			36	36	111
08:30-08:45		0 2	24	0	24	- 13	29	0	42	86	· 0	0	0	0	8	Ċ		30	30	96
08:45-09:00		0 1	9	4	23	Ş	30	0	39	62	٥	0	0	0	6	0	-	16	16	76
09:00-09:15	1	0 1	9	7	26	8	26	0	34	60	Q	0	0	Ó	11	٥		27	27	87
09:15-09:30	(0 1	9	7	26	10	20	0	30	56	٥	0	0	0	7	٥		19	19	75
09:30-09:45	() 2	5	7	32	11	26	0	37	69	0	0	0	0	5	0	10	15	15	84
09:45-10:00	(5	2	8	30	9	25	٥	34	64	0	0	Ó	0	7	0	12	19	19	83
11:30-11:45	(2	7	8	35	15	30	٥	45	80	0	0	0	0	8	0	21	29	29	109
11:45-12:00	C	2	0	12	32	12	26	0	38	70	0	0	0	0	14	0	18	32	32	102
12:00-12:15	Ċ	2!	9 .	10	39	13	16	0	29	68	0	Q	0	0	13	0	23	36	36	104
12:15-12:30	0	24	4	6	30	16	19	0	35	65	0	0	0	0	12	0	12	24	24	89
12:30-12:45	0	28	3	5	33	17	26	0	43	76	0	٥	٥	0	13	0	20	33	33	109
12:45-13:00	0	23	3	4	27	16	37	0	53	80	0	0	0	0	15	0	19	34	34	114
13:00-13:15	0	14	}	7	21	15	20	Q	35	56	0	0	0	0	15	0	18	33	33	89
13:15-13:30	0	25	;	4	29	14	20	0	34	63	0	0	0	0	В	0	12	20	20	83
15:00-15:15	0	38		8	46	13	30	0	43	89	0	0	0	0	7	0	18	25	25	114
15:15-15:30	0	42		6	48	12	38	0	50	98	0	0	,0	0	13	0	15	28	28	126
15:30-15:45	0	55	1	7	72	26	23	0	49	121	0	0	0	0	10	٥	17	27	27	148
15:45-16:00	0	3 9	1	6	55	17	27	0	44	99	0	0	0	0	7	٥	22	29	29	128
16:00-16:15	Q	63	10	0	73	26	28	0	54	127	0	0	0	0	7	0	19	26	26	153
16:15-16:30	0	45	19	9	64	19	19	0	38	102	0	0	0	0	13	0	18	31	31	133
16:30-16:45	0	43	11	1	54	24	9	0	33	87	0	0	0	0	13	0	13	26	26	113
16:45-17:00	0	31	14	1	45	19	22	0	41	86	0	Ó	0	0	5	0	20	26	25	111
17:00-17:15	0	33	8	}	41	22	24	0	46	87	0	0	0	0	13	0	12	25	25	112
17:15-17:30	0	18	13	i	31	17	11	0	28	59	0	0	0	_	11	٥	12	23	23	82
17:30-17:45	0	26	9	1	35	17	9	0	26	61	0	0	0	-	14	0	19	33	33	94
17:45-18:00	0	16	10		28	19	12	0	31	59	0	0	D	•		0	12	26	28	87
																	-			

Approved by: DT

Printed on: 09/04/2009

Pedestrian Volume Summary Sheet - Hourly Volumes

ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHERI)

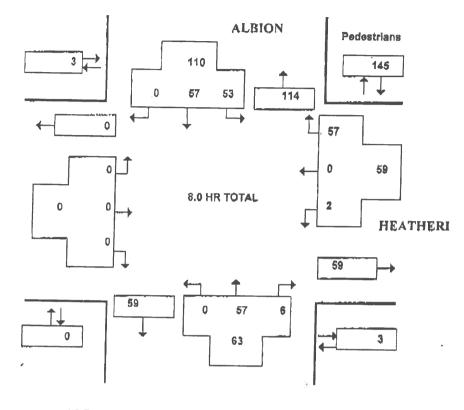
Survey Date: Frid			Conditio	ns; WET	Sta	rt Time: 07	00
Time Period	CROSSING ALBION N/B APPROACH	CROSSING ALIBION S/IB APPROACH	STREET	CROSSING HEATHERI E/B APPROACH	CROSSING HEATHERI W/B APPROACH	STREET TOTAL	GRANI TOTAI
07:00-08:00	1	3	4	0	16	16	2
08:00-09:00	0	0	0	0	8	8	
09:00-10:00	0	0	0	0	15	15	1!
11:30-12:30	1	0	1	0	22	22	2:
12:30-13:30	0	0	0	0	28	28	28
15:00-16:00	0	0	0	0	34	34	34
16:00-17:00	1	0	1	0	7	7	8
17:00-18:00	0	0	0	0	15	15	15
8.0 HR TOTAL	3	3	6	0 `	145	145	151
AM PEAK PERIO	D (7:00-9:00)	PEAK P	ERIOD SU	MMARIES	<i>Y</i>		
07:00-07:15	1	1	2	0			
07:15-07:30	0	1	4		2	2	4
07:30-07;45	0	Ó	0	0	6	6	7
07:45-08:00	0	4	4	0	3	3	3
08:00-08:15	0	0	0	0	5	5	6
08:15-08:30	Ó	0	0	0	. 4	4	4
08:30-08:45	0	•	0	0	1	1	1
08:45-09:00	0	0	0	0	0	0	0
TOTALS	1	3	4	0	24	3	3
OFF PEAK PERIOD	(11:30-13:30)		,		24	24	28
11:30-11:45	1	0	1	0	0		
1:45-12:00	0	Ō	0	Õ	-6	0 6	7
2:00-12:15	0	0	o	Ö	4	4	6 4
2:15-12:30	0	0	0	Ö	12	12	12
2:30-12:45	0	0	0	0	6	6	6
2:45-13:00 3:00-13:15	0	0	0	0	9	9	9
3:15-13:30	0	0	0	0	3	3	3
OTALS	1	0	1	0	10	10	10
M PEAK PERIOD (····	50	50	51
5:30-15:45	0	0	0	0	15	4.5	
5:45-16:00	0	Ó	0	0		15	15
5:00-16:15	٥	0	0	-	5	5	5
5:15-16:30	0	0	•	0	1	1	1
5:30-16:45	1	. 0	0	0	2	2	2
5:45-17:00	Ö	_	7 -	0	1	1	2
7:00-17:15	•	0	0	0	3	3	3
7:15-17:30	0	0	0	0	8	8	8
TALS	0	0	0	0	2	2	2
	1	Q	1	0	37	37	38

Approved by: DT

Printed on: 09/04/2009

Heavy Vehicle Summary Sheet - Hourly Volumes

Count ID 16723


ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHERI)

Survey Date ; Friday 11 July 2003

Conditions: WET

Start Time: 0700

	-			ALB	ION	2/7						H	EATH	ERI	_				
	No	וסלולוזים	ind	SUB	So	ալեհեն	bnud	SUB	STR	Eas	tboun	d	SUB	ν	Vesibo	und	SUB	\$10 A	GRAND
Time Period	LT	ST	RT.	TOT	LT	ST	RT	TOT	TOT	LT	ST	RT	TOT	LT	ST	RT	TOT	TOT	TOT
07:00-08:00	0	6	0	6	5	12	0	17	23	0	0	0	0	0	0	8	8	8	31
08:00-09:00	Ó	16	۵	16	5	9	0	14	30	0	0	0	0	0	0	10	10	10	40
09:00-10:00	0	12	0	12	6	11	0	17	29	0	0	0	0	0	0	6	6	6	35
11:30-12:30	0	8	2	10	7	В	0	15	25	0	0	0	0	0	0	7	7	7	32
12:30-13:30	0	5	1	6	7	8	0	15	21	0	٥	0	0	1	0	7	8	8	29
15:00-16:00	0	4	2	6	7	7	Q:	14	20	0	0	0	0	0	0	7	7	7	27
16:00-17:00	0	4	1	5	8	1	0	9	14	0	0	0	0	0	0	5	5	5	19
17:00-18:00	0	2	0	2	8	1	0	9	11	0 .	0	0	0	1	0	7	8	8	19
8.0 HR TOTAL	0	57	G	63	53	57	0	110	173	0	0	0	0	2	0	57	59	59	232

Pleavy Vehicles are vehicles having one rear axic with four or more wheels, or having two or more rear axics. These vehicles include most O.C. Transpo, school and inter-city buses. Further, they ARE included in the Turning Movement Count Summary.

Approved by: DT

Printed on: 09/04/2009

Count ID 16723

Bicycle Volume Summary Sheet - Hourly Volumes

ALBION RD and HEATHERINGTON RD

(ULRS Listing ALBION & HEATHERI)

Survey Date: Friday 11 July 2003

Conditions: WET

Start Time: 0700

Time Period	ONUOEITROUND APPRÓACH ON ALBION	SOUTHHOUND APPROACH ON ALBION	STREET TOTAL	EASTBOUND APPROACH ON HEATHERI	WESTBOUND APPROACH ON HEATHERI	STREET TOTAL	GRAND TOTAL
07:00-08:00	0	1	1	0	0	0	1
08:00-09:00	0	3	3	0	2	2	5
09:00-10:00	0	1	1	. 0	1	1	2
11:30-12:30	0	0	0	0	2	2	2
12:30-13:30	0	0	0	0	1	1	1
15:00-16:00	0	0	0	0	0	0	0
16:00-17:00	0	3	3	0	2	2	5
17:00-18:00	0	1	1	0	3	3	4
8.0 HR TOTAL	0	9	9	0	11	11	20

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

Approved by: DT

Printed on: 09/04/2009

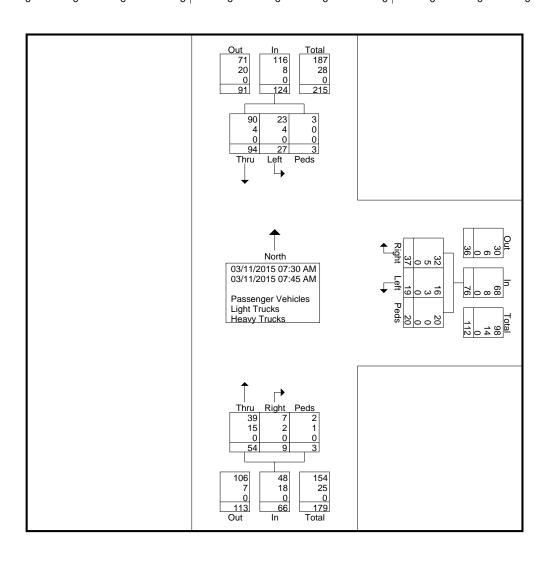
TOTAL P.29

Weather: Clear

Serial Number: T12-1614

Collected By: Meghan Whitehead

Notes:


File Name : 11309311

Site Code : 11309311

Start Date : 03/11/2015

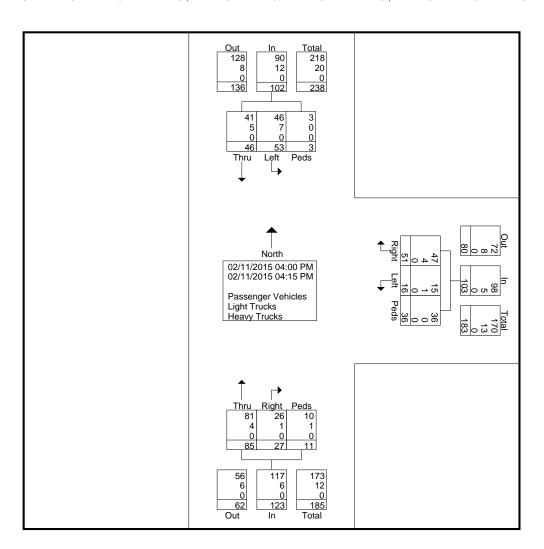
Page No : 1

		South	bound			Westb	ound			North	bound		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds /	App. Total	Int. Total
07:30 AM	42	12	1	55	16	9	12	37	3	35	1	39	131
07:45 AM	52	15	2	69	21	10	8	39	6	19	2	27	135
Total	94	27	3	124	37	19	20	76	9	54	3	66	266
Grand Total	94	27	3	124	37	19	20	76	9	54	3	66	266
Apprch %	75.8	21.8	2.4		48.7	25	26.3		13.6	81.8	4.5		
Total %	35.3	10.2	1.1	46.6	13.9	7.1	7.5	28.6	3.4	20.3	1.1	24.8	
Passenger Vehicles	90	23	3	116	32	16	20	68	7	39	2	48	232
% Passenger Vehicles	95.7	85.2	100	93.5	86.5	84.2	100	89.5	77.8	72.2	66.7	72.7	87.2
Light Trucks	4	4	0	8	5	3	0	8	2	15	1	18	34
% Light Trucks	4.3	14.8	0	6.5	13.5	15.8	0	10.5	22.2	27.8	33.3	27.3	12.8
Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0

Weather: Clear

Serial Number: T12-1614

Collected By: Meghan Whitehead


Notes:

File Name : 11309301

Site Code : 11309301 Start Date : 02/11/2015

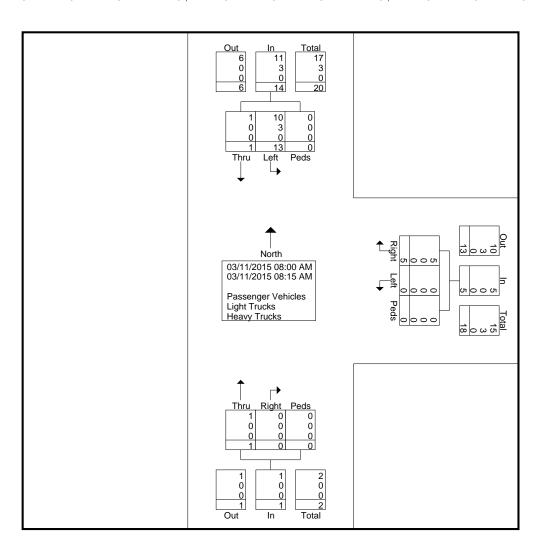
Page No : 1

		Southl	bound			Westb	ound			North	oound		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds A	App. Total	Int. Total
04:00 PM	21	32	3	56	29	6	22	57	14	56	7	77	190
04:15 PM	25	21	0	46	22	10	14	46	13	29	4	46	138
Grand Total	46	53	3	102	51	16	36	103	27	85	11	123	328
Apprch %	45.1	52	2.9		49.5	15.5	35		22	69.1	8.9		
Total %	14	16.2	0.9	31.1	15.5	4.9	11	31.4	8.2	25.9	3.4	37.5	
Passenger Vehicles	41	46	3	90	47	15	36	98	26	81	10	117	305
% Passenger Vehicles	89.1	86.8	100	88.2	92.2	93.8	100	95.1	96.3	95.3	90.9	95.1	93
Light Trucks	5	7	0	12	4	1	0	5	1	4	1	6	23
% Light Trucks	10.9	13.2	0	11.8	7.8	6.2	0	4.9	3.7	4.7	9.1	4.9	7
Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0

Weather: Clear

Serial Number: T12-1614

Collected By: Meghan Whitehead


Notes:

File Name : 11309322

Site Code : 11309322

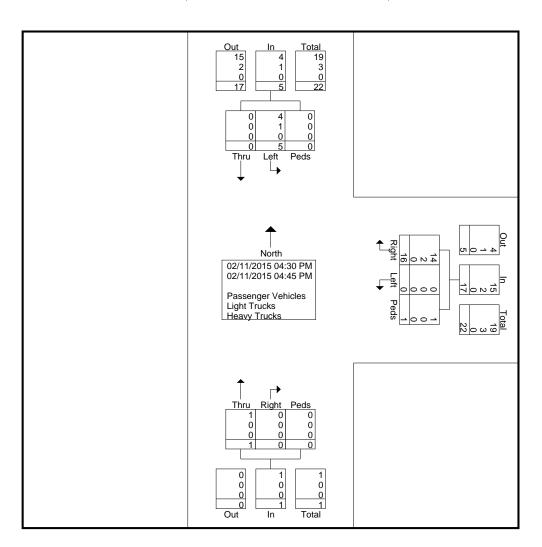
Start Date : 03/11/2015 Page No : 1

		South	bound			Westb	ound			North	oound		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds A	pp. Total	Int. Total
08:00 AM	0	10	0	10	5	0	0	5	0	0	0	0	15
08:15 AM	1	3	0	4	0	0	0	0	0	1	0	1	5
Grand Total	1	13	0	14	5	0	0	5	0	1	0	1	20
Apprch %	7.1	92.9	0		100	0	0		0	100	0		
Total %	5	65	0	70	25	0	0	25	0	5	0	5	
Passenger Vehicles	1	10	0	11	5	0	0	5	0	1	0	1	17
% Passenger Vehicles	100	76.9	0	78.6	100	0	0	100	0	100	0	100	85
Light Trucks	0	3	0	3	0	0	0	0	0	0	0	0	3
% Light Trucks	0	23.1	0	21.4	0	0	0	0	0	0	0	0	15_
Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0

Weather: Clear

Serial Number: T12-1614

Collected By: Meghan Whitehead


Notes:

File Name : 11309302

Site Code : 11309302

Start Date : 02/11/2015 Page No : 1

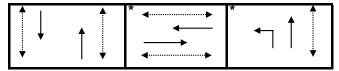
					_		_		_				
		South	bound			Westk	ound			North	bound		
Start Time	Thru	Left	Peds	App. Total	Right	Left	Peds	App. Total	Right	Thru	Peds	App. Total	Int. Total
04:30 PM	0	2	0	2	7	0	1	8	0	1	0	1	11
04:45 PM	0	3	0	3	9	0	0	9	0	0	0	0	12
Total	0	5	0	5	16	0	1	17	0	1	0	1	23
Grand Total	0	5	0	5	16	0	1	17	0	1	0	1	23
Apprch %	0	100	0		94.1	0	5.9		0	100	0		
Total %	0	21.7	0	21.7	69.6	0	4.3	73.9	0	4.3	0	4.3	
Passenger Vehicles	0	4	0	4	14	0	1	15	0	1	0	1	20
% Passenger Vehicles	0	80	0	80	87.5	0	100	88.2	0	100	0	100	87
Light Trucks	0	1	0	1	2	0	0	2	0	0	0	0	3
% Light Trucks	0	20	0	20	12.5	0	0	11.8	0	0	0	0	13
Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0

Traffic Signal Timing

City of Ottawa, Public Works Department

Traffic Operations Unit

Intersection:	Main:	Bank	Side:	Kitchener	
Controller:	MS-320	0	TSD:	5100	
Author:	Chong I	Luo		Date:	31-Mar-14


Existing Timing Plans[†]

Plan Ped Minimum Time

	AM Peak	Off Peak	PM Peak	Night	Weekend	Walk	DW	A+R
	1	2	3	4	5			
Cycle	120	110	130	100	110			
Offset	19	32	10	Х	32			
NB Thru	86	76	96	66	76	14	13	3.7 + 2.3
SB Thru	71	61	79	41	61	14	13	3.7 + 2.3
EB Thru	34	34	34	34	34	7	21	3.3 + 3.0
WB Thru	34	34	34	34	34	7	21	3.3 + 3.0
NBLT	15	15	17	25	15	-	-	3.7 + 1.0

Phasing Sequence[‡]

Plans: All

Schedule

Weekday

Time	Plan
0:15	4
6:30	1
9:30	2
15:00	3
18:30	2
22:30	4

Saturday

Time	Plan
0:15	4
8:00	5
21:00	4

Sunday

Time	Plan
0:15	4
8:30	2
11:00	5
21:00	4

Notes

- †: Time for each direction includes amber and all red intervals
- ‡: Start of first phase should be used as reference point for offset

Asterisk (*) Indicates actuated phase

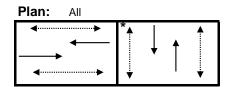
(fp): Fully Protected Left Turn

Traffic Signal Timing

City of Ottawa, Public Works & Services Department

Traffic Operations Unit

 Intersection:
 Main:
 Walkley
 Side:
 Albion / Colliston


 Controller:
 MS 3200
 TSD:
 5450

 Author:
 Basel Ansari
 Date:
 14-Sep-15

Existing Timing Plans[†]

Ped Minimum Time Plan DW Walk A+R AM Peak Off Peak PM Peak Weekend Night 4 70 Cycle 80 80 60 80 Offset 52 56 52 14 EB Thru 41 50 33 53 3.3+2.7 WB Thru 41 53 33 9 13 3.3+2.7 50 53 NB Thru 29 27 30 27 27 7 14 3.3+2.9 27 27 7 14 SB Thru 29 30 27 3.3+2.9

Phasing Sequence[‡]

Schedule

Weekday							
Plan							
4							
1							
2							
3							
2							
4							

Saturday							
Time Plan							
0:15	4						
6:30	2						
11:00	5						
19:30	2						
22:00	4						

Sunday								
Time	Plan							
0:15	4							
6:30	2							
21:00	4							

Notes

†: Time for each direction includes amber and all red intervals

‡: Start of first phase should be used as reference point for offset

Asterix (*) Indicates actuated phase

(fp): Fully Protected Left Turn

Transportation	Impact Study
----------------	--------------

APPENDIX D

COLLISION DATA

OnTRAC Reporting System FROM: 2011-01-01 TO: 2014-01-01

	1 0.							
	D, COLLISTON CRES to LILIB cipality: Ottawa	ET CRES Traffic Control: No control		Numb	er of Collisions: 1			
	DAME DAY GIAGO DAY	IMPACT TYPE CLASS	DID	SURFACE	VEHICLE	VICTOR E (INDE	ELDCE EXTENT	No.
	DATE DAY TIME ENV	LIGHT TYPE CLASS	DIR	COND'N	MANOEUVRE	VEHICLE TYPE	FIRST EVENT	PED
1	2012-06-25 Mo 15:55 Clear	Daylight Rear end P.D. only	/ V1 S V2 S	Dry Dry	Slowing or Slowing or	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
ALBION RI	D, END to KITCHENER AVE							
Former Muni	cipality: Ottawa	Traffic Control: No control		Numb	er of Collisions: 1			
	DATE DAY TIME ENV	IMPACT LIGHT TYPE CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	No. PED
2	2011-09-15 Thu 00:00 Clear	Dark Single vehicle P.D. only	, \/1 C	Loose sand or	Going ahead	Automobile, station	Ditch	0
	D & HEATHERINGTON RD	Dark Single Verlicle F.D. Only	/ VI 3	Loose saild of	Going aneau	Automobile, station	DIGH	U
_	cipality: Ottawa	Traffic Control: Stop sign		Numb	er of Collisions: 1			
	o.pa.ii.y. Citatia							N.
	DATE DAY TIME ENV	LIGHT TYPE CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	No. PED
3	2013-11-26 Tue 20:10 Clear	Dark Rear end P.D. only	/ V1 N V2 N	Loose snow Loose snow	Slowing or Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
ALBION RI	D, HEATHERINGTON RD to LI	LIBET CRES				, , , , , , , , , , , , , , , , , , , ,		
Former Muni	cipality: Ottawa	Traffic Control: No control		Numb	er of Collisions: 2			
		IMPACT		SURFACE	VEHICLE			No.
	DATE DAY TIME ENV	LIGHT TYPE CLASS	DIR	COND'N	MANOEUVRE	VEHICLE TYPE	FIRST EVENT	PED
4	2012-04-15 Sun 23:37 Clear	Dark Angle P.D. only	/ V1 W V2 N	Dry Dry	Reversing Going ahead	Automobile, station Police vehicle	Other motor vehicle Other motor vehicle	0
5	2013-01-08 Tue 14:25 Clear	Daylight Angle P.D. only		Wet Wet	Turning right Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
ALBION RI	D & KITCHENER AVE				Jonny amoud	ratee, etatio		
Former Muni	cipality: Ottawa	Traffic Control: Stop sign		Numb	er of Collisions: 1			
		IMPACT		SURFACE	VEHICLE			No.
	DATE DAY TIME ENV	LIGHT TYPE CLASS	DIR	COND'N	MANOEUVRE	VEHICLE TYPE	FIRST EVENT	PED
6	2012-05-16 We 11:32 Clear	Daylight Angle P.D. only	/ V1 E V2 N	Dry Dry	Turning left Going ahead	Passenger van Pick-up truck	Other motor vehicle Other motor vehicle	0
(Note: Time of	f Day = "00:00" represents unknowr	n collision time						
Monday, O	ctober 05, 2015							Page 1 of 3
- 1								_

OnTRAC Reporting System FROM: 2011-01-01 TO: 2014-01-01

ALBION RD & WALKLEY RD

Traffic Control: Traffic signal Number of Collisions: 14 Former Municipality: Ottawa **IMPACT SURFACE** VEHICLE No. DATE DAY TIME ENV LIGHT **TYPE** CLASS DIR COND'N MANOEUVRE VEHICLE TYPE FIRST EVENT **PED** 7 2011-06-26 Sun 15:15 Clear Daylight Angle P.D. only V1 N 0 Dry Going ahead Automobile, station Other motor vehicle V2 E Drv Going ahead Pick-up truck Other motor vehicle 8 2011-10-09 Sun 14:00 Clear Daylight Rear end P.D. only V1 E Dry Going ahead Automobile, station Other motor vehicle 0 V2 E Dry Stopped Automobile, station Other motor vehicle 9 2012-01-13 Fri 12:00 Snow Slush Other motor vehicle Daylight Rear end P.D. only V1 N Going ahead Automobile, station 0 V2 N Slush Stopped Automobile, station Other motor vehicle 10 2012-02-27 Mo 17:44 Snow Rear end P.D. only V1 E Loose snow Turning right Pick-up truck Other motor vehicle 0 Dark V2 E Loose snow Turning right Automobile, station Other motor vehicle 2012-04-07 Sat 20:41 Clear P.D. only V1 W 0 11 Dark **Turning** Drv Turning left Automobile, station Other motor vehicle V2 E Going ahead Automobile, station Other motor vehicle Dry 12 2012-04-07 Sat 18:58 Clear Daylight Rear end P.D. only V1 E Dry Slowing or Automobile, station Other motor vehicle 0 V2 E Dry Slowing or Pick-up truck Other motor vehicle 13 2012-05-11 Fri 17:44 Clear Daylight Angle Non-fatal V1 W Drv Going ahead Bicycle Other motor vehicle 0 V2 N Drv Turning right Pick-up truck Cvclist 2012-09-13 Thu 14:11 Clear P.D. only V1 E Dry Going ahead Automobile, station Other motor vehicle 0 14 Daylight Angle V2 N Dry Turning left Automobile, station Other motor vehicle 15 2013-01-06 Sun 13:31 Snow Daylight Rear end P.D. only V1 N Slush Slowing or Automobile, station Other motor vehicle 0 V2 N Slush Stopped Automobile, station Other motor vehicle P.D. only V1 W 16 2013-02-27 We 16:00 Snow Daylight Angle Loose snow Going ahead Automobile, station Other motor vehicle 0 Loose snow V2 S Turning right Automobile, station Other motor vehicle Non-fatal V1 W 17 2013-04-24 We 21:45 Rain Dark **Turning** Wet Turning left Automobile, station Other motor vehicle 0 V2 E Wet Going ahead Passenger van Other motor vehicle P.D. only V1 W Dry 18 2013-06-24 Mo 14:03 Clear Daylight Turning Turning left Pick-up truck Other motor vehicle 0 V2 E Dry Going ahead Automobile, station Other motor vehicle 19 2013-07-18 Thu 13:18 Clear Daylight Single vehicle Non-fatal V1 E Turning right Truck and trailer Pedestrian Dry 1

(Note: Time of Day = "00:00" represents unknown collision time

Monday, October 05, 2015

Page 2 of 3

OnTRAC Reporting System

20 2013-08-30 Fri 21:26 Rain Dark Turning P.D. only V1 W Wet Turning left Automobile, station Other motor vehicle 0 V2 E Wet Going ahead Automobile, station Other motor vehicle

FROM: 2011-01-01 TO: 2014-01-01

(Note: Time of Day = "00:00" represents unknown collision time

Monday, October 05, 2015

Collision Main Detail Summary OnTRAC Reporting System

BANK ST & KITCHENER AVE

Former Municipality: Ottawa Traffic Control: Traffic signal Number of Collisions: 22

Former Municip	pailty. Ottawa	Trainic Control. Trainic s	signai	Nullibe	el di Collisions. 22			
	DATE DAY TIME ENV	IMPACT TYPE	CLASS DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	No. PED
1	2011-01-18 Tue 19:19 Snow	Dark Turning	P.D. only V1 S V2 N	Packed snow Packed snow	Going ahead Turning left	Passenger van Automobile, station	Other motor vehicle Other motor vehicle	0
2	2011-02-18 Fri 14:00 Clear	Daylight Turning	Non-fatal V1 N V2 S	Wet Wet	Turning left Going ahead	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
3	2011-03-20 Sun 13:57 Clear	Daylight Rear end	P.D. only V1 N V2 N	Dry Dry	Turning left Turning left	Pick-up truck Automobile, station	Other motor vehicle Other motor vehicle	0
4	2011-03-27 Sun 11:36 Clear	Daylight Rear end	P.D. only V1 N V2 N	Dry Dry	Going ahead Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
5	2011-07-11 Mo 14:00 Clear	Daylight Rear end	Non-fatal V1 N V2 N	Dry Dry	Slowing or Stopped	Automobile, station Pick-up truck	Other motor vehicle Other motor vehicle	0
6	2011-08-19 Fri 15:50 Clear	Daylight Rear end	Non-fatal V1 S V2 S V3 S	Dry Dry Dry	Going ahead Stopped Stopped	Truck - closed Automobile, station Automobile, station	Other motor vehicle Other motor vehicle Other motor vehicle	0
7	2012-05-02 We 15:54 Clear	Daylight Rear end	Non-fatal V1 S V2 S V3 S	Dry Dry Dry	Going ahead Stopped Stopped	Automobile, station Municipal transit bus Automobile, station	Other motor vehicle Other motor vehicle Other motor vehicle	0
8	2012-05-09 We 10:55 Clear	Daylight Angle	P.D. only V1 E V2 S	Dry Dry	Turning right Going ahead	Delivery van Automobile, station	Other motor vehicle Other motor vehicle	0
9	2012-10-09 Tue 12:39 Clear	Daylight Rear end	P.D. only V1 S V2 S V3 S V4 S	Dry Dry Dry Dry	Going ahead Slowing or Stopped Stopped	Pick-up truck Automobile, station Automobile, station Passenger van	Other motor vehicle Other motor vehicle Other motor vehicle Other motor vehicle	0
10	2012-10-10 We 16:27 Clear	Daylight Rear end	P.D. only V1 N V2 N	Dry Dry	Slowing or Stopped	Passenger van Automobile, station	Other motor vehicle Other motor vehicle	0
11	2012-10-14 Sun 14:00 Rain	Daylight Rear end	P.D. only V1 N V2 N	Wet Wet	Going ahead Slowing or	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0

FROM: 2011-01-01 TO: 2014-01-01

(Note: Time of Day = "00:00" represents unknown collision time

Monday, November 09, 2015

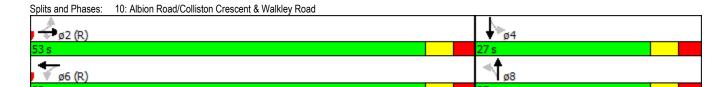
OnTRAC Reporting System

12	2012-12-27 Thu	17:15	Snow	Dark	Angle	P.D. only	V1 S	Packed snow	Slowing or	Automobile, station	Skidding/Sliding	0
							V2 E	Packed snow	Turning left	Automobile, station	Other motor vehicle	
13	2013-01-24 Thu	08:13	Clear	Daylight	Turning	Non-fatal	V1 N	Dry	Turning left	Automobile, station	Other motor vehicle	0
					•		V2 S	Dry	Going ahead	Automobile, station	Other motor vehicle	
14	2013-02-27 We	14:38	Snow	Daylight	Rear end	P.D. only	V1 S	Loose snow	Slowing or	Automobile, station	Other motor vehicle	0
				, 0		,	V2 S		Stopped	Municipal transit bus	Other motor vehicle	
15	2013-04-19 Fri	12:50	Clear	Daylight	Turnina	Non-fatal	V1 N	Dry	Making U-Turn	Pick-up truck	Other motor vehicle	0
				, ,	3		V2 S		Going ahead	Automobile, station	Other motor vehicle	
16	2013-07-07 Sun	16:04	Rain	Davlight	Rear end	P.D. only	V1 N	Wet	Slowing or	Pick-up truck	Other motor vehicle	0
				., 3		,	V2 N		Slowing or	Pick-up truck	Other motor vehicle	
17	2013-08-08 Thu	16:31	Clear	Davlight	Rear end	P.D. only	V1 N	Drv	Slowing or	Automobile, station	Skidding/Sliding	0
				., 3		,	V2 N		Slowing or	Pick-up truck	Other motor vehicle	-
18	2013-08-31 Sat	16:50	Clear	Davlight	Sideswipe	P.D. only	V1 N	Dry	Changing lanes	Automobile, station	Other motor vehicle	0
				, 0		,	V2 N		Turning left	Automobile, station	Other motor vehicle	
19	2013-10-09 We	14:48	Clear	Davlight	Single vehicle	Non-fatal	V1 E	Dry	Turning right	Automobile, station	Pedestrian	1
20	2013-11-07 Thu	-			Rear end	P.D. only		Wet	Changing lanes	Passenger van	Other motor vehicle	0
	20.0 0	00	0.00.	20			V2 S	Wet	Stopped	Automobile, station	Other motor vehicle	·
21	2013-11-29 Fri	12:55	Clear	Daylight	Rear end	P.D. only	_	Wet	Changing lanes	Pick-up truck	Other motor vehicle	0
	2010 11 20 111	12.00	Oloui	Dayligili	rtour ond	1 .D. omy	V2 N		Stopped	Pick-up truck	Other motor vehicle	Ü
							V3 N		Stopped	Pick-up truck	Other motor vehicle	
22	2013-12-16 Mo	17:45	Clear	Dark	Turning	P.D. only	-		Turning left	Automobile, station	Other motor vehicle	0
	2010 12 10 100	17.40	Oloai	Duik	ranning	i .b. only	V2 S		Going ahead	Automobile, station	Other motor vehicle	U
							۷ <u>2</u>	Diy	Coming anteau	Automobile, station	Other motor vernore	

FROM: 2011-01-01 TO: 2014-01-01

(Note: Time of Day = "00:00" represents unknown collision time

Monday, November 09, 2015


Transportation	Impact 3	Study
----------------	----------	-------

APPENDIX E

SYNCHRO REPORTS

	•	→	•	•	←	•	4	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	44	7	*	∳ ሴ		*	1,		ች	ĵ.	
Volume (vph)	12	516	124	43	397	0	100	3	73	0	1	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		30.0	50.0		0.0	40.0		0.0	15.0		0.0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (m)	30.0			60.0			40.0			15.0		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.96	0.99			1.00	0.97				
Frt			0.850					0.855				
Flt Protected	0.950			0.950			0.950		_			
Satd. Flow (prot)	1626	3252	1455	1595	3191	0	1551	1361	0	1780	1780	0
Flt Permitted	0.499	0050	4000	0.439	0404	^	0.757	4004	0	4700	4700	
Satd. Flow (perm)	852	3252	1398	733	3191	0	1232	1361	0	1780	1780	0
Right Turn on Red			Yes			Yes		00	Yes			Yes
Satd. Flow (RTOR)			136		Ε0			80				
Link Speed (k/h)		50			50			50			50	
Link Distance (m) Travel Time (s)		269.2 19.4			286.2 20.6			229.1 16.5			124.0 8.9	
()	2	19.4	10	7	20.0	6	3	10.5	11	1	0.9	
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	2		2	- 1		0	ა		2	4		5
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	4%	4%	4%	6%	6%	6%	9%	9%	9%	0.91	0.91	0.91
Adj. Flow (vph)	13	567	136	47	436	0	110	3	80	0 70	1	0 70
Shared Lane Traffic (%)	10	301	100	71	700	U	110		00	U		U
Lane Group Flow (vph)	13	567	136	47	436	0	110	83	0	0	1	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.5	ragin	Lon	3.5	rugiit	Lon	3.5	rugin	Lon	3.5	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Perm	0.0	Perm	Perm	0.0		Darm	0.0		Perm	0.0	
Turn Type Protected Phases	Perm	NA	Pellii	Pellii	NA 6		Perm	NA		Pellii	NA	
	2	2	2	C	0		0	8		1	4	
Permitted Phases Detector Phase	2 2	2	2	6 6	6		8	8		4	4	
Switch Phase	2			U	U		0	0		4	4	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	28.0	28.0	28.0	28.0	28.0		27.0	27.0		27.0	27.0	
Total Split (s)	53.0	53.0	53.0	53.0	53.0		27.0	27.0		27.0	27.0	
Total Split (%)	66.3%	66.3%	66.3%	66.3%	66.3%		33.8%	33.8%		33.8%	33.8%	
Maximum Green (s)	47.0	47.0	47.0	47.0	47.0		20.8	20.8		20.8	20.8	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.9	2.9		2.9	2.9	
							0			0		

	•	→	•	•	←	•	•	†	-	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2	6.2		6.2	6.2	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max		None	None		None	None	
Walk Time (s)	9.0	9.0	9.0	9.0	9.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0	13.0	13.0	13.0		13.8	13.8		13.8	13.8	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Act Effct Green (s)	59.2	59.2	59.2	59.2	59.2		13.1	13.1			13.1	
Actuated g/C Ratio	0.74	0.74	0.74	0.74	0.74		0.16	0.16			0.16	
v/c Ratio	0.02	0.24	0.13	0.09	0.18		0.55	0.29			0.00	
Control Delay	5.3	5.1	1.4	5.7	4.9		40.5	10.0			25.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Delay	5.3	5.1	1.4	5.7	4.9		40.5	10.0			25.0	
LOS	Α	Α	Α	Α	Α		D	Α			С	
Approach Delay		4.4			5.0			27.4			25.0	
Approach LOS		Α			Α			С			С	
Queue Length 50th (m)	0.6	14.9	0.0	2.1	11.0		16.5	0.4			0.1	
Queue Length 95th (m)	2.8	27.5	6.0	7.1	21.0		30.2	11.4			1.4	
Internal Link Dist (m)		245.2			262.2			205.1			100.0	
Turn Bay Length (m)	50.0		30.0	50.0			40.0					
Base Capacity (vph)	630	2405	1069	542	2360		320	413			462	
Starvation Cap Reductn	0	0	0	0	0		0	0			0	
Spillback Cap Reductn	0	0	0	0	0		0	0			0	
Storage Cap Reductn	0	0	0	0	0		0	0			0	
Reduced v/c Ratio	0.02	0.24	0.13	0.09	0.18		0.34	0.20			0.00	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 0 (0%), Referenced to p	hase 2:EBTL and	d 6:WBTL, S	Start of Gree	en								
Natural Cycle: 55												
Control Type: Actuated-Coordin	nated											
Maximum v/c Ratio: 0.55												
Intersection Signal Delay: 7.8					tersection LC							
Intersection Capacity Utilization	า 55.8%			IC	U Level of S	ervice B						
Analysis Period (min) 15												

	•	•	†	/	>	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		î,			ર્ન	
Sign Control	Stop		Stop			Stop	
Volume (vph)	53	74	104	25	62	98	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Hourly flow rate (vph)	58	81	114	27	68	108	
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total (vph)	140	142	176				
Volume Left (vph)	58	0	68				
Volume Right (vph)	81	27	0				
Hadj (s)	-0.16	0.02	0.23				
Departure Headway (s)	4.5	4.5	4.6				
Degree Utilization, x	0.17	0.18	0.23				
Capacity (veh/h)	747	772	745				
Control Delay (s)	8.4	8.4	9.0				
Approach Delay (s)	8.4	8.4	9.0				
Approach LOS	Α	Α	Α				
Intersection Summary							
Delay			8.6				
Level of Service			Α				
Intersection Capacity Utilization	on		42.4%	IC	U Level c	of Service	A
Analysis Period (min)			15				

	•	•	†	~	>	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		f)			ર્ન
Volume (veh/h)	0	18	2	0	18	Ö
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	0	20	2	0	20	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None		1	None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	42	2			2	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	42	2			2	
tC, single (s)	6.6	6.4			4.3	
tC, 2 stage (s)						
tF (s)	3.7	3.5			2.4	
p0 queue free %	100	98			99	
cM capacity (veh/h)	914	1032			1510	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	20	2	20			
Volume Left	0	0	20			
Volume Right	20	0	0			
cSH	1032	1700	1510			
Volume to Capacity	0.02	0.00	0.01			
Queue Length 95th (m)	0.02	0.00	0.01			
Control Delay (s)	8.6	0.0	7.4			
Lane LOS	0.0 A	0.0	7.4 A			
Approach Delay (s)	8.6	0.0	7.4			
Approach LOS	6.0 A	0.0	1.4			
	٨					
Intersection Summary						
Average Delay			7.6			
Intersection Capacity Utiliz	ation		17.7%	IC	CU Level of S	Service
Analysis Period (min)			15			

	۶	-	\rightarrow	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	Î.		*	î.		*	44	#	*	ቀ ሴ	
Volume (vph)	50	Ô	16	72	1	21	105	1143	99	19	1102	49
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	15.0		0.0	15.0		0.0	80.0		25.0	105.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor	0.99	0.93		0.99	0.97				0.94	0.99	0.99	
Frt		0.850			0.882				0.850		0.994	
Flt Protected	0.950	4000	_	0.950	4454	^	0.950	0000	4400	0.950	0045	
Satd. Flow (prot)	1658	1380	0	1610	1454	0	1642	3283	1469	1626	3215	0
Flt Permitted	0.739	4200	^	0.746	4454	0	0.173	2002	1270	0.234	2045	0
Satd. Flow (perm)	1281	1380	0	1256	1454	0	299	3283	1379	398	3215	0
Right Turn on Red		199	Yes		22	Yes			Yes 61		6	Yes
Satd. Flow (RTOR) Link Speed (k/h)		50			50			50	01		50	
Link Distance (m)		75.9			226.6			279.1			272.7	
Travel Time (s)		5.5			16.3			20.1			19.6	
Confl. Peds. (#/hr)	6	0.0	50	6	10.5	20	44	20.1	20	14	13.0	50
Confl. Bikes (#/hr)			30	U		20	77		2			4
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	3%	3%	3%	4%	4%	4%
Adj. Flow (vph)	53	0	17	76	6	22	111	1203	104	20	1160	52
Shared Lane Traffic (%)			•••									V _
Lane Group Flow (vph)	53	17	0	76	28	0	111	1203	104	20	1212	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	J .		3.5	J -		3.5	J -		3.5	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OITLX			OITLX			CITLX			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		5	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	5.0	5.0	10.0	10.0	
Minimum Split (s)	34.3	34.3		34.3	34.3		14.7	33.0	33.0	33.0	33.0	
Total Split (s)	34.3	34.3		34.3	34.3		14.7	75.7	75.7	61.0	61.0	
Total Split (%)	31.2%	31.2%		31.2%	31.2%		13.4%	68.8%	68.8%	55.5%	55.5%	
Maximum Green (s)	28.0	28.0		28.0	28.0		10.0	69.7	69.7	55.0	55.0	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.0	3.0		3.0	3.0		1.0	2.3	2.3	2.3	2.3	

	•	-	•	•	←	•	•	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		4.7	6.0	6.0	6.0	6.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			14.0	14.0	14.0	14.0	
Flash Dont Walk (s)	21.0	21.0		21.0	21.0			13.0	13.0	13.0	13.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0	0	0	
Act Effct Green (s)	12.8	12.8		12.8	12.8		89.5	89.4	89.4	73.5	73.5	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.81	0.81	0.81	0.67	0.67	
v/c Ratio	0.36	0.05		0.52	0.15		0.30	0.45	0.09	0.08	0.56	
Control Delay	50.6	0.3		58.0	21.5		5.2	4.9	1.9	9.6	12.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	50.6	0.3		58.0	21.5		5.2	4.9	1.9	9.6	12.2	
LOS	D	Α		Е	С		Α	Α	Α	Α	В	
Approach Delay		38.4			48.2			4.7			12.2	
Approach LOS		D			D			Α			В	
Queue Length 50th (m)	11.3	0.0		16.5	1.2		4.5	40.7	1.8	1.6	74.6	
Queue Length 95th (m)	23.2	0.0		30.8	9.5		10.7	66.0	6.9	5.6	109.2	
Internal Link Dist (m)		51.9			202.6			255.1			248.7	
Turn Bay Length (m)	15.0			15.0			80.0		25.0	105.0		
Base Capacity (vph)	326	499		319	386		365	2668	1132	265	2150	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.16	0.03		0.24	0.07		0.30	0.45	0.09	0.08	0.56	

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.56 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 77.7%

Intersection LOS: B

ICU Level of Service D

Analysis Period (min) 15

		•	→	•	•	←	•	4	†	/	\	ļ	4
Line Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph)		*				≜ ↑							
Storage Langth (m)						580	5			115		Ő	1
Storage Lanes	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Tapes Langh (rm)	Storage Length (m)	50.0		30.0	50.0		0.0	40.0		0.0	15.0		0.0
Lane URI Factor	Storage Lanes	1		1	1		0	1		0	1		0
Ped Bike Factor	Taper Length (m)				60.0			40.0			15.0		
Fit Protected			0.95				0.95			1.00			1.00
Filt Protected 0,950 0,9		1.00			1.00			0.98			0.98		
Satt Flow (prot) 1688 3316 1483 1688 3310 0 1688 1417 0 1691 1463 0				0.850		0.999			0.850			0.850	
File Permitted										_			
Satic Flow (perm)	. ,		3316	1483		3310	0		1417	0		1463	0
Right Tum on Red			0040	4007		0040	^		4447	•		4400	
Sairt, Flow (RTOR)	" /	/3/	3316		/19	3310		1300	1417		1186	1463	
Link Speed (k/h)						0	Yes		004	Yes		000	Yes
Link Distance (m)				113									
Travel Time (s)	. ,												
Confl. Bikes (#thr)													
Conf. Bikes (#hr)	()	_	19.4	20	6	20.0	27	1/	10.5	20	22	0.9	10
Peak Hour Factor		5			0			14			22		19
Heavy Vehicles (%) 2% 2% 2% 2% 2% 2% 2%	` ,	0.07	0.07		0.07	0.07		0.07	0.07		0.07	0.07	0.07
Adj. Flow (ph) 19 627 113 56 598 5 146 0 119 3 0 1 Shared Lane Traffic (%) Lane Group Flow (vph) 19 627 113 56 603 0 146 119 0 3 1 0 Enter Blocked Intersection No													
Shared Lane Traffic (%) Lane Group Flow (vph) 19 627 113 56 603 0 146 119 0 3 3 1 0 0 0 0 0 0 0 0 0													
Lane Group Flow (vph) 19 627 113 56 603 0 146 119 0 3 1 0		10	021	110	30	330		170	U	113	,	· ·	
Enter Blocked Intersection		19	627	113	56	603	0	146	119	0	3	1	0
Lane Alignment	1 (17												
Median Width(m)													
Link Offset(m)		Lon		rugin	Lon		rugiit	Lon		rugiit	Lon		rugiit
Crosswalk Width(m) 4.8	` /												
Two way Left Turn Lane Headway Factor 1.09 1.00 1.00 0.													
Turning Speed (k/h) 1													
Number of Detectors	•	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Detector Template	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0	Number of Detectors	1	2	1	1	2			2		1	2	
Trailing Detector (m) 0.0	Detector Template		Thru	Right									
Detector 1 Position(m) Detector 1 Size(m) Detector 1 Channel													
Detector 1 Size(m)	· ,												
Detector 1 Type													
Detector 1 Channel													
Detector 1 Extend (s) 0.0		CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0													
Detector 2 Position(m) 9.4 9.4 9.4 9.4 9.4													
Detector 2 Size(m) 0.6 0.0 0		0.0		0.0	0.0			0.0			0.0		
Detector 2 Type CI+Ex	` ,												
Detector 2 Channel	` ,												
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm NA Protected Phases 2 6 8 4 Permitted Phases 2 2 6 8 4 Detector Phase 2 2 2 6 6 8 8 4 Switch Phase 4 4 4 4 4 4 4 Minimum Initial (s) 10.0 <t< td=""><td></td><td></td><td>CI+EX</td><td></td><td></td><td>CI+EX</td><td></td><td></td><td>CI+EX</td><td></td><td></td><td>CI+EX</td><td></td></t<>			CI+EX			CI+EX			CI+EX			CI+EX	
Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 2 2 6 8 4 Permitted Phases 2 2 2 6 6 8 8 4 Detector Phase 2 2 2 6 6 8 8 4 4 Switch Phase 8 4 4 4 4 4 4 5 8 8 4			0.0			0.0			0.0			0.0	
Protected Phases 2 6 8 4 Permitted Phases 2 2 6 8 4 Detector Phase 2 2 2 6 6 8 8 4 4 Switch Phase Minimum Initial (s) 10.0	()	Dorm		Dorm	Dorm			Dorm			Dorm		
Permitted Phases 2 2 2 6 8 4 Detector Phase 2 2 2 6 6 8 8 4 4 Switch Phase Minimum Initial (s) 10.0		reiiii		reiiii	reiiii			reiiii			reiiii		
Detector Phase 2 2 2 2 6 6 8 8 4 4 Switch Phase Minimum Initial (s) 10.0 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27		2		2	6	U		Q	O		1	4	
Switch Phase Minimum Initial (s) 10.0 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td><td></td><td>Q</td><td></td><td></td><td>1</td><td></td></t<>			2			6			Q			1	
Minimum Initial (s) 10.0 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 </td <td></td> <td>2</td> <td></td> <td></td> <td>U</td> <td>U</td> <td></td> <td>U</td> <td>U</td> <td></td> <td>7</td> <td></td> <td></td>		2			U	U		U	U		7		
Minimum Split (s) 28.0 28.0 28.0 28.0 28.0 28.0 27.2 27.2 27.2 27.2 27.2 Total Split (s) 50.0 50.0 50.0 50.0 50.0 30.0		10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Total Split (s) 50.0 50.0 50.0 50.0 50.0 50.0 30.0	. ,												
Total Split (%) 62.5% 62.5% 62.5% 62.5% 62.5% 37.5% 37.5% 37.5% Maximum Green (s) 44.0 44.0 44.0 44.0 23.8 23.8 23.8 Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3	,												
Maximum Green (s) 44.0 44.0 44.0 44.0 23.8 23.8 23.8 Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3													
Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3													

	•	-	•	•	←	*	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2	6.2		6.2	6.2	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max		None	None		None	None	
Walk Time (s)	9.0	9.0	9.0	9.0	9.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0	13.0	13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Act Effct Green (s)	53.1	53.1	53.1	53.1	53.1		14.7	14.7		14.7	14.7	
Actuated g/C Ratio	0.66	0.66	0.66	0.66	0.66		0.18	0.18		0.18	0.18	
v/c Ratio	0.04	0.28	0.12	0.12	0.27		0.61	0.27		0.01	0.00	
Control Delay	6.3	6.5	1.8	6.9	6.4		40.6	1.5		23.7	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	6.3	6.5	1.8	6.9	6.4		40.6	1.5		23.7	0.0	
LOS	Α	Α	Α	Α	Α		D	Α		С	Α	
Approach Delay		5.8			6.5			23.0			17.8	
Approach LOS		Α			Α			С			В	
Queue Length 50th (m)	0.9	18.5	0.0	2.8	17.6		21.8	0.0		0.4	0.0	
Queue Length 95th (m)	3.9	33.6	6.0	9.0	32.2		37.0	0.0		2.4	0.0	
Internal Link Dist (m)		245.2			262.2			205.1			100.0	
Turn Bay Length (m)	50.0		30.0	50.0			40.0			15.0		
Base Capacity (vph)	489	2202	965	477	2199		386	578		352	598	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.04	0.28	0.12	0.12	0.27		0.38	0.21		0.01	0.00	

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 26 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.61

Intersection Signal Delay: 8.8

Intersection LOS: A ICU Level of Service B

Intersection Capacity Utilization 58.3%

Analysis Period (min) 15

Splits and Phases: 10: Albion Road/Colliston Crescent & Walkley Road

	•	•	†	<i>></i>	\	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		\$			ર્ન		
Sign Control	Stop		Stop			Stop		
Volume (vph)	37	76	202	62	88	97		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Hourly flow rate (vph)	40	82	217	67	95	104		
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total (vph)	122	284	199					
Volume Left (vph)	40	0	95					
Volume Right (vph)	82	67	0					
Hadj (s)	-0.27	-0.11	0.18					
Departure Headway (s)	4.7	4.3	4.7					
Degree Utilization, x	0.16	0.34	0.26					
Capacity (veh/h)	694	803	734					
Control Delay (s)	8.6	9.6	9.3					
Approach Delay (s)	8.6	9.6	9.3					
Approach LOS	Α	Α	А					
Intersection Summary								
Delay			9.3					
Level of Service			Α					
Intersection Capacity Utilization	on		47.4%	IC	U Level o	of Service	Α	
Analysis Period (min)			15					

	•	•	†	/	\	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		1>			4	
Volume (veh/h)	0	32	2	0	14	Ö	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	0	34	2	0	15	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	32	2			2		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	32	2			2		
tC, single (s)	6.6	6.4			4.3		
tC, 2 stage (s)							
tF (s)	3.7	3.5			2.4		
p0 queue free %	100	97			99		
cM capacity (veh/h)	928	1032			1510		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	34	2	15				
Volume Left	0	0	15				
Volume Right	34	0	0				
cSH	1032	1700	1510				
Volume to Capacity	0.03	0.00	0.01				
Queue Length 95th (m)	0.03	0.00	0.01				
Control Delay (s)	8.6	0.0	7.4				
Lane LOS	0.0 A	0.0	7. 4				
Approach Delay (s)	8.6	0.0	7.4				
Approach LOS	Α	0.0	7.7				
Intersection Summary			7.0				
Average Delay	dia.a		7.9		ell averte f	Camila	
Intersection Capacity Utiliza	ation		17.5%	IC	U Level of	Service	;
Analysis Period (min)			15				

	۶	→	•	•	←	•	4	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	î,		*	î.		ሻ	44	7	*	ቀ ሴ	
Volume (vph)	52	2	41	69	1 40	33	77	1107	92	27	1572	49
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	15.0		0.0	15.0		0.0	80.0		25.0	105.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor	0.98	0.90		0.97	0.97				0.89	0.99	0.99	
Frt	2.25	0.857		0.050	0.932		0.050		0.850	0.050	0.995	
Flt Protected	0.950	4000	•	0.950	4044	•	0.950	0040	4400	0.950	0000	
Satd. Flow (prot)	1674	1360	0	1691	1614	0	1658	3316	1483	1658	3282	0
Flt Permitted	0.708	1200	^	0.728	1014	^	0.095	2240	4240	0.249	2000	0
Satd. Flow (perm)	1223	1360	0	1262	1614	0	166	3316	1316	431	3282	0
Right Turn on Red		42	Yes		29	Yes			Yes 58		4	Yes
Satd. Flow (RTOR) Link Speed (k/h)		50			50			50	30		50	
Link Distance (m)		75.9			226.6			279.1			272.7	
Travel Time (s)		5.5			16.3			20.1			19.6	
Confl. Peds. (#/hr)	16	0.0	66	20	10.0	34	46	20.1	38	18	10.0	62
Confl. Bikes (#/hr)	10		2	20		1	40		6	10		8
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	0%	0%	0%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	54	2	42	71	41	34	79	1141	95	28	1621	51
Shared Lane Traffic (%)	<u> </u>	_	· -	•		•	. •					Ŭ.
Lane Group Flow (vph)	54	44	0	71	75	0	79	1141	95	28	1672	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	J .		3.5	J .		3.5	J -		3.5	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0 0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s) Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	0.0 9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		CITLX			CITLX			CITLX			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	Perm	NA	
Protected Phases	1 01111	4		1 01111	8		5	2	1 01111	1 01111	6	
Permitted Phases	4	•		8			2	_	2	6		
Detector Phase	4	4		8	8		5	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	34.3	34.3		34.3	34.3		9.7	33.0	33.0	33.0	33.0	
Total Split (s)	34.3	34.3		34.3	34.3		17.0	96.0	96.0	79.0	79.0	
Total Split (%)	26.3%	26.3%		26.3%	26.3%		13.0%	73.7%	73.7%	60.6%	60.6%	
Maximum Green (s)	28.0	28.0		28.0	28.0		12.3	90.0	90.0	73.0	73.0	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.0	3.0		3.0	3.0		1.0	2.3	2.3	2.3	2.3	

	•	-	•	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		4.7	6.0	6.0	6.0	6.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			14.0	14.0	14.0	14.0	
Flash Dont Walk (s)	21.0	21.0		21.0	21.0			13.0	13.0	13.0	13.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0	0	0	
Act Effct Green (s)	13.3	13.3		13.3	13.3		106.0	104.7	104.7	94.5	94.5	
Actuated g/C Ratio	0.10	0.10		0.10	0.10		0.81	0.80	0.80	0.73	0.73	
v/c Ratio	0.44	0.25		0.55	0.39		0.36	0.43	0.09	0.09	0.70	
Control Delay	64.8	19.1		71.1	40.2		7.2	4.7	1.7	8.2	13.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	64.8	19.1		71.1	40.2		7.2	4.7	1.7	8.2	13.5	
LOS	E	В		Е	D		Α	Α	Α	Α	В	
Approach Delay		44.3			55.2			4.6			13.5	
Approach LOS		D			Е			Α			В	
Queue Length 50th (m)	14.0	0.5		18.7	11.8		3.3	38.7	1.6	2.0	120.5	
Queue Length 95th (m)	27.3	12.0		34.1	26.8		8.0	61.3	6.2	7.2	195.0	
Internal Link Dist (m)		51.9			202.6			255.1			248.7	
Turn Bay Length (m)	15.0			15.0			80.0		25.0	105.0		
Base Capacity (vph)	262	325		271	369		275	2664	1068	312	2381	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.21	0.14		0.26	0.20		0.29	0.43	0.09	0.09	0.70	

Area Type: Other

Cycle Length: 130.3 Actuated Cycle Length: 130.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 12.7

Intersection LOS: B Intersection Capacity Utilization 88.1% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 50: Bank Street & Retail Access/Kitchener Avenue

	•	→	\rightarrow	•	←	•	4	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	44	7	*	♦ %		*	Î.		*	ĵ₃	
Volume (vph)	12	516	152	91	397	0	128	3	121	0	1	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		30.0	50.0		0.0	40.0		0.0	15.0		0.0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (m)	30.0			60.0			40.0			15.0		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.96	0.99			1.00	0.97				
Frt	0.050		0.850	0.050			0.050	0.853				
Flt Protected	0.950	0050	4.455	0.950	0404	•	0.950	40.57	_	4700	4700	
Satd. Flow (prot)	1626	3252	1455	1595	3191	0	1551	1357	0	1780	1780	0
Flt Permitted	0.499	2050	4200	0.439	2404	^	0.757	1057	^	4700	4700	0
Satd. Flow (perm)	852	3252	1398	733	3191	0	1232	1357	0	1780	1780	0
Right Turn on Red			Yes 167			Yes		133	Yes			Yes
Satd. Flow (RTOR)		50	107		50			50			50	
Link Speed (k/h) Link Distance (m)		269.2			286.2			229.1			124.0	
Travel Time (s)		19.4			200.2			16.5			8.9	
Confl. Peds. (#/hr)	2	13.4	10	7	20.0	6	3	10.5	11	4	0.9	5
Confl. Bikes (#/hr)	2		2	,		U	J		2	4		J
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	4%	4%	4%	6%	6%	6%	9%	9%	9%	0.51	0.51	0.31
Adj. Flow (vph)	13	567	167	100	436	0	141	3	133	0	1	0
Shared Lane Traffic (%)	10	001	107	100	100		171		100	, ,		
Lane Group Flow (vph)	13	567	167	100	436	0	141	136	0	0	1	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5		20.0	3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0 9.4	0.0	0.0	0.0 9.4		0.0	0.0 9.4		0.0	0.0 9.4	
Detector 2 Position(m)		9.4 0.6			0.6			0.6			0.6	
Detector 2 Size(m)					CI+Ex						CI+Ex	
Detector 2 Type Detector 2 Channel		Cl+Ex			CI+EX			CI+Ex			CI+EX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	2	1 01111	1 01111	6		1 01111	8		1 01111	4	
Permitted Phases	2		2	6	<u> </u>		8			4		
Detector Phase	2	2	2	6	6		8	8		4	4	
Switch Phase		_	_							·	•	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	28.0	28.0	28.0	28.0	28.0		27.0	27.0		27.0	27.0	
Total Split (s)	53.0	53.0	53.0	53.0	53.0		27.0	27.0		27.0	27.0	
Total Split (%)	66.3%	66.3%	66.3%	66.3%	66.3%		33.8%	33.8%		33.8%	33.8%	
Maximum Green (s)	47.0	47.0	47.0	47.0	47.0		20.8	20.8		20.8	20.8	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.9	2.9		2.9	2.9	

	•	-	•	•	←	•	•	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2	6.2		6.2	6.2	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max		None	None		None	None	
Walk Time (s)	9.0	9.0	9.0	9.0	9.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0	13.0	13.0	13.0		13.8	13.8		13.8	13.8	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Act Effct Green (s)	53.0	53.0	53.0	53.0	53.0		14.8	14.8			14.8	
Actuated g/C Ratio	0.66	0.66	0.66	0.66	0.66		0.18	0.18			0.18	
v/c Ratio	0.02	0.26	0.17	0.21	0.21		0.62	0.38			0.00	
Control Delay	6.2	6.5	1.7	7.7	6.2		41.4	8.5			23.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	
Total Delay	6.2	6.5	1.7	7.7	6.2		41.4	8.5			23.0	
LOS	Α	Α	Α	Α	Α		D	Α			С	
Approach Delay		5.4			6.4			25.2			23.0	
Approach LOS		Α			Α			С			С	
Queue Length 50th (m)	0.6	16.5	0.0	5.3	12.2		21.1	0.4			0.1	
Queue Length 95th (m)	3.1	30.5	7.3	15.2	23.2		36.2	13.6			1.3	
Internal Link Dist (m)		245.2			262.2			205.1			100.0	
Turn Bay Length (m)	50.0		30.0	50.0			40.0					
Base Capacity (vph)	564	2156	983	486	2115		320	451			462	
Starvation Cap Reductn	0	0	0	0	0		0	0			0	
Spillback Cap Reductn	0	0	0	0	0		0	0			0	
Storage Cap Reductn	0	0	0	0	0		0	0			0	
Reduced v/c Ratio	0.02	0.26	0.17	0.21	0.21		0.44	0.30			0.00	
Intersection Summary												
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 0 (0%), Referenced to pha	ase 2:EBTL and	d 6:WBTL, S	tart of Gree	n								
Natural Cycle: 55		•										
Control Type: Actuated-Coordina	ted											
Maximum v/c Ratio: 0.62												
Intersection Signal Delay: 9.3				In	tersection LOS	S: A						
Intersection Capacity Utilization 5	57.0%				U Level of Se							
Analysis Period (min) 15												
Splits and Phases: 10: Albion I	Road/Colliston	Crescent &	Walkley Roa	ad								
A								No				

	•	•	†	~	\	Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		ĵ.			đ
Sign Control	Stop		Stop			Stop
Volume (vph)	53	74	180	25	62	174
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	58	81	198	27	68	191
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total (vph)	140	225	259			
Volume Left (vph)	58	0	68			
Volume Right (vph)	81	27	0			
Hadj (s)	-0.16	0.06	0.21			
Departure Headway (s)	4.9	4.6	4.7			
Degree Utilization, x	0.19	0.29	0.34			
Capacity (veh/h)	675	745	730			
Control Delay (s)	9.0	9.5	10.2			
Approach Delay (s)	9.0	9.5	10.2			
Approach LOS	Α	Α	В			
Intersection Summary						
Delay			9.7			
Level of Service			Α			
Intersection Capacity Utilization			48.1%	ICL	J Level of Se	rvice
Analysis Period (min)			15			

	•	•	†	-	\	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W					વી
Volume (veh/h)	0	157	1 ,	0	157	0
Sign Control	Stop		Free	-		Free
Grade	0%		0%			0%
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	0	173	2	0	173	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	347	2			2	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	347	2			2	
tC, single (s)	6.6	6.4			4.3	
tC, 2 stage (s)						
tF (s)	3.7	3.5			2.4	
p0 queue free %	100	83			89	
cM capacity (veh/h)	545	1032			1510	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	173	2	173			
Volume Left	0	0	173			
Volume Right	173	0	0			
cSH	1032	1700	1510			
Volume to Capacity	0.17	0.00	0.11			
Queue Length 95th (m)	4.8	0.0	3.1			
Control Delay (s)	9.2	0.0	7.7			
Lane LOS	A	0.0	Α			
Approach Delay (s)	9.2	0.0	7.7			
Approach LOS	A	0.0				
Intersection Summary						
Average Delay			8.4			
Intersection Capacity Utilization			32.8%	IC	U Level of Serv	rice
Analysis Period (min)			15			
,						

	٠	-	\rightarrow	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	Î.		*	î.		*	44	#	*	ቀ ሴ	
Volume (vph)	50	Ô	16	107	1	49	105	1143	134	47	1102	49
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	15.0		0.0	15.0		0.0	80.0		25.0	105.0		0.0
Storage Lanes	1		0	1		0	1		1	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor	0.99	0.93		0.99	0.97				0.94	0.99	0.99	
Frt	0.0=0	0.850		0.050	0.866		0.050		0.850	0.050	0.994	
Flt Protected	0.950	4000	_	0.950	4.400	•	0.950	0000	4400	0.950	0045	
Satd. Flow (prot)	1658	1380	0	1610	1422	0	1642	3283	1469	1626	3215	0
Flt Permitted	0.719	4200	^	0.746	1400	^	0.168	2002	4270	0.234	2045	
Satd. Flow (perm)	1247	1380	0	1256	1422	0	290	3283	1379	398	3215	0
Right Turn on Red		199	Yes		52	Yes			Yes 82		6	Yes
Satd. Flow (RTOR) Link Speed (k/h)		50			50			50	02		50	
Link Distance (m)		75.9			226.6			279.1			272.7	
Travel Time (s)		5.5			16.3			20.1			19.6	
Confl. Peds. (#/hr)	6	0.0	50	6	10.0	20	44	20.1	20	14	10.0	50
Confl. Bikes (#/hr)	<u> </u>		30	U		20	77		2			4
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	2%	2%	2%	5%	5%	5%	3%	3%	3%	4%	4%	4%
Adj. Flow (vph)	53	0	17	113	6	52	111	1203	141	49	1160	52
Shared Lane Traffic (%)			•••									02
Lane Group Flow (vph)	53	17	0	113	58	0	111	1203	141	49	1212	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	J .		3.5	J .		3.5	J -		3.5	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s) Detector 1 Delay (s)	0.0 0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4	0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OITLX			OITLX			CITLX			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	Perm	NA	
Protected Phases	1 01111	4		1 01111	8		5	2	1 01111	1 01111	6	
Permitted Phases	4	•		8			2	_	2	6		
Detector Phase	4	4		8	8		5	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	34.3	34.3		34.3	34.3		14.0	33.0	33.0	33.0	33.0	
Total Split (s)	34.3	34.3		34.3	34.3		14.7	75.7	75.7	61.0	61.0	
Total Split (%)	31.2%	31.2%		31.2%	31.2%		13.4%	68.8%	68.8%	55.5%	55.5%	
Maximum Green (s)	28.0	28.0		28.0	28.0		10.0	69.7	69.7	55.0	55.0	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.0	3.0		3.0	3.0		1.0	2.3	2.3	2.3	2.3	

	•	-	•	•	•	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		4.7	6.0	6.0	6.0	6.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			14.0	14.0	14.0	14.0	
Flash Dont Walk (s)	21.0	21.0		21.0	21.0			13.0	13.0	13.0	13.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0	0	0	
Act Effct Green (s)	15.5	15.5		15.5	15.5		83.5	82.2	82.2	70.0	70.0	
Actuated g/C Ratio	0.14	0.14		0.14	0.14		0.76	0.75	0.75	0.64	0.64	
v/c Ratio	0.30	0.05		0.64	0.24		0.36	0.49	0.13	0.19	0.59	
Control Delay	45.1	0.2		60.2	14.9		7.3	6.9	2.5	12.7	14.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	45.1	0.2		60.2	14.9		7.3	6.9	2.5	12.7	14.1	
LOS	D	Α		Е	В		Α	Α	Α	В	В	
Approach Delay		34.2			44.8			6.5			14.1	
Approach LOS		С			D			Α			В	
Queue Length 50th (m)	10.9	0.0		24.5	1.2		5.3	47.8	3.0	4.2	75.7	
Queue Length 95th (m)	22.0	0.0		41.3	12.4		12.8	78.1	10.3	13.3	120.8	
Internal Link Dist (m)		51.9			202.6			255.1			248.7	
Turn Bay Length (m)	15.0			15.0			80.0		25.0	105.0		
Base Capacity (vph)	317	499		319	400		343	2453	1051	253	2046	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.17	0.03		0.35	0.14		0.32	0.49	0.13	0.19	0.59	

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 12.6

Intersection Capacity Utilization 77.7%

Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

	•	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	44	7	*	♠ ₺		75	ĵ.		*	ĵ.	
Volume (vph)	18	608	131	92	580	5	191	Ō	153	3	Ő	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		30.0	50.0		0.0	40.0		0.0	15.0		0.0
Storage Lanes	1		1	1		0	1		0	1		0
Taper Length (m)	30.0			60.0			40.0			15.0		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00		0.94	1.00	1.00		0.98	0.96		0.98	0.97	
Frt			0.850		0.999			0.850			0.850	
Flt Protected	0.950			0.950			0.950		_	0.950		
Satd. Flow (prot)	1658	3316	1483	1658	3310	0	1658	1417	0	1691	1463	0
Flt Permitted	0.422	0040	4007	0.409	0040		0.757	4447	•	0.657	4.400	
Satd. Flow (perm)	734	3316	1397	711	3310	0	1300	1417	0	1146	1463	0
Right Turn on Red			Yes		0	Yes		004	Yes		000	Yes
Satd. Flow (RTOR)			135		2			224			232	
Link Speed (k/h)		50			50			50			50	
Link Distance (m) Travel Time (s)		269.2 19.4			286.2 20.6			229.1 16.5			124.0 8.9	
()	5	19.4	20	6	20.0	27	14	10.5	20	22	0.9	19
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	5		4	0		3	14		28 2	22		19
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	0.97	0.97	0.97
Adj. Flow (vph)	19	627	135	95	598	5	197	0	158	3	0 /0	1
Shared Lane Traffic (%)	13	UZI	100	33	330	J	107	U	100	,	U	
Lane Group Flow (vph)	19	627	135	95	603	0	197	158	0	3	1	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	3.5	rugin	Lon	3.5	rugiit	Lon	3.5	rugiit	Lon	3.5	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0	2.0	2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6	2.0	2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Perm	0.0	Perm	Perm	0.0		Darm	0.0		Perm	0.0	
Turn Type	Perm	NA	Pellii	Pellii	NA 6		Perm	NA		Pellii	NA	
Protected Phases	2	2	2	C	0		0	8		1	4	
Permitted Phases Detector Phase	2 2	2	2	6 6	6		8	8		4	4	
Switch Phase	2			U	Ü		0	0		4	4	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	28.0	28.0	28.0	28.0	28.0		27.2	27.2		27.2	27.2	
Total Split (s)	50.0	50.0	50.0	50.0	50.0		30.0	30.0		30.0	30.0	
Total Split (%)	62.5%	62.5%	62.5%	62.5%	62.5%		37.5%	37.5%		37.5%	37.5%	
Maximum Green (s)	44.0	44.0	44.0	44.0	44.0		23.8	23.8		23.8	23.8	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7		2.9	2.9		2.9	2.9	
\-/												

	•	-	•	•	←	•	•	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2	6.2		6.2	6.2	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max		None	None		None	None	
Walk Time (s)	9.0	9.0	9.0	9.0	9.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0	13.0	13.0	13.0		14.0	14.0		14.0	14.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Act Effct Green (s)	50.7	50.7	50.7	50.7	50.7		17.1	17.1		17.1	17.1	
Actuated g/C Ratio	0.63	0.63	0.63	0.63	0.63		0.21	0.21		0.21	0.21	
v/c Ratio	0.04	0.30	0.14	0.21	0.29		0.71	0.33		0.01	0.00	
Control Delay	7.7	7.9	2.0	9.3	7.8		42.3	2.9		21.3	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	7.7	7.9	2.0	9.3	7.8		42.3	2.9		21.3	0.0	
LOS	Α	Α	Α	Α	Α		D	Α		С	Α	
Approach Delay		6.9			8.0			24.8			16.0	
Approach LOS		Α			Α			С			В	
Queue Length 50th (m)	1.0	21.2	0.0	5.7	20.2		29.3	0.0		0.4	0.0	
Queue Length 95th (m)	4.4	37.7	7.3	16.5	36.2		46.8	5.0		2.3	0.0	
Internal Link Dist (m)		245.2			262.2			205.1			100.0	
Turn Bay Length (m)	50.0		30.0	50.0			40.0			15.0		
Base Capacity (vph)	464	2099	934	450	2097		386	578		340	598	
Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.04	0.30	0.14	0.21	0.29		0.51	0.27		0.01	0.00	

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 26 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.8

Intersection Capacity Utilization 59.7%

Analysis Period (min) 15

Splits and Phases: 10: Albion Road/Colliston Crescent & Walkley Road

Intersection LOS: B

ICU Level of Service B

	•	•	†	~	\	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		ĵ,			ą
Sign Control	Stop		Stop			Stop
Volume (vph)	37	76	289	62	88	156
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	40	82	311	67	95	168
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total (vph)	122	377	262			
Volume Left (vph)	40	0	95			
Volume Right (vph)	82	67	0			
Hadj (s)	-0.27	-0.07	0.16			
Departure Headway (s)	5.1	4.5	4.8			
Degree Utilization, x	0.17	0.47	0.35			
Capacity (veh/h)	633	781	718			
Control Delay (s)	9.1	11.4	10.4			
Approach Delay (s)	9.1	11.4	10.4			
Approach LOS	Α	В	В			
Intersection Summary						
Delay			10.7			
Level of Service			В			
Intersection Capacity Utilization			55.3%	ICU	J Level of Se	rvice
Analysis Period (min)			15			

	•	•	†	/	\	ļ
Movement	WBL	WBR	NBT	• NBR	SBL	SBT
Lane Configurations	W	-,,_,,		-,,_,,	-022	र्
Volume (veh/h)	0	141	1	0	121	4
Sign Control	Stop	ודו	Free	U	121	Free
Grade	0%		0%			0%
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	0.50	152	2	0.00	130	0.00
Pedestrians	U	102	2	U	100	U
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			INUITE			NOITE
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	262	2			2	
vC1, stage 1 conf vol	202				2	
vC2, stage 2 conf vol						
vCu, unblocked vol	262	2			2	
tC, single (s)	6.6	6.4			4.3	
tC, 2 stage (s)	0.0	0.7			7.0	
tF (s)	3.7	3.5			2.4	
p0 queue free %	100	85			91	
cM capacity (veh/h)	630	1032			1510	
			OD 4		1010	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	152	2	130			
Volume Left	0	0	130			
Volume Right cSH	152 1032	0 1700	0 1510			
Volume to Capacity	0.15	0.00	0.09			
Queue Length 95th (m)	4.1	0.0	2.3			
Control Delay (s)	9.1	0.0	7.6			
Lane LOS	A	0.0	A			
Approach Delay (s)	9.1	0.0	7.6			
Approach LOS	Α					
Intersection Summary						
Average Delay			8.3			
Intersection Capacity Utilization			29.6%	IC	U Level of Servi	ice
Intersection Capacity Utilization Analysis Period (min)			29.6% 15	IC	U Level of Servi	ice

		۶	-	\rightarrow	•	←	•	4	†	/	\	↓	1
Volume (php) 52	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (php) 52	Lane Configurations	75	î.		*	î.		*	44	#	*	∳ ሴ	
Storage Langth (m)	Volume (vph)	52	2	41		40	55						49
Storage Lanes		1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Tapes Langh (rm)	Storage Length (m)	15.0		0.0	15.0		0.0	80.0		25.0	105.0		0.0
Lane UNI Factor	Storage Lanes			0			0			1	-		0
Ped Bike Factor 0.98 0.90 0.97 0.97 0.97 0.98 0.99 0.99 Filt Prolected 0.950 0													
Fit Protected				1.00			1.00	1.00	0.95				0.95
Filt Protected 0.950 0.9		0.98			0.97						0.99		
Satt Flow (prot) 1674 1360 0 1691 1699 0 1658 3316 1483 1688 3282 0			0.857			0.913				0.850		0.995	
File Permitted			4000			4500	•		00.10	4.400		0000	
Satic Flow (perm) 160 150 1262 1569 0 166 3316 1316 431 3282 0			1360	U		1569	U		3316	1483		3282	0
Right Tum an Red			4200	^		4500	0		2240	4240		2000	0
Said, Flow (RTOR)	. ,	1160	1300	-	1202	1509		100	3310		431	3282	
Link Speade (k/h)			42	res		40	res					4	res
Link Distance (m)									EΩ	75			
Travel Time (s)	. ,												
Confl. Bikes (#hr)													
Conf. Bikes (#hr)	` '	16	5.5	66	20	10.3	3/1	16	20.1	30	10	19.0	62
Peak Hour Factor		10			20			40			10		
Heavy Vehicles (%)	` ,	n 97	0.97		N 97	N 97		0.97	N 97		0.97	0.97	
Adj. Flow (poh) 54 2 42 71 41 57 79 1141 123 49 1621 51 Shared Lane Traffic (%) Lane Group Flow (vph) 54 44 0 71 98 0 79 1141 123 49 1672 0 Enter Blocked Intersection No													
Shared Lane Traffic (%) Lane Group Flow (vph) 54	, ,												
Lane Group Flow (vph)		01		72	, ,	71	01	7.5	1171	120	70	1021	01
Enter Blocked Intersection		54	44	0	71	98	0	79	1141	123	49	1672	0
Lane Alignment	1 (17												
Median Width(m)													
Link Offset(m)								20.0					
Crosswalk Width(m) 4.8													
Two way Left Turn Lane Headway Factor 1.09 1.00			4.8			4.8			4.8			4.8	
Turning Špeed (k/h) 1													
Number of Detectors	Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Detector Template	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0	Number of Detectors		2			2			2	1	-	2	
Trailing Detector (m) 0.0													
Detector 1 Position(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Extend (s) Detector 1 Detector 1 Extend (s) Detector 1 Detector 2 Detecto													
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6													
Detector 1 Type CI+Ex													
Detector 1 Channel	Detector 1 Size(m)												
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0		2.2	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s) 0.0													
Detector 2 Position(m) 9.4 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type													
Detector 2 Size(m) 0.6 0.6 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex C		0.0			0.0			0.0		0.0	0.0		
Detector 2 Type CI+Ex	()												
Detector 2 Channel	` ,												
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA pm+pt NA Perm Perm NA Protected Phases 4 8 5 2 2 6 Permitted Phases 4 4 8 8 5 2 2 6 6 Switch Phase 8 5 2 2 6 6 6 6 8 5 2 2 6 7 7 10 10 <td></td> <td></td> <td>CI+EX</td> <td></td> <td></td> <td>CI+EX</td> <td></td> <td></td> <td>CI+EX</td> <td></td> <td></td> <td>UI+EX</td> <td></td>			CI+EX			CI+EX			CI+EX			UI+EX	
Turn Type Perm NA Perm NA pm+pt NA Perm Perm NA Protected Phases 4 8 5 2 2 6 Permitted Phases 4 4 8 8 5 2 2 6 6 Switch Phase 8 5 2 2 6 6 6 6 8 5 2 2 6 7 7 10 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			0.0			0.0			0.0			0.0	
Protected Phases 4 8 5 2 6 Permitted Phases 4 8 2 2 6 Detector Phase 4 4 8 8 5 2 2 6 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 5.0 10.0 10.0 10.0 10.0 Minimum Split (s) 34.3 34.3 34.3 9.7 33.0 37.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0		Dorm			Darm			nm⊥nt		Dorm	Dorm		
Permitted Phases 4 8 2 2 2 6 Detector Phase 4 4 8 8 5 2 2 6 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 5.0 10.0 10.0 10.0 Minimum Split (s) 34.3 34.3 34.3 9.7 33.0 33.0 33.0 Total Split (s) 34.3 34.3 34.3 17.0 96.0 96.0 79.0 79.0 Total Split (%) 26.3% 26.3% 26.3% 13.0% 73.7% 73.7% 60.6% 60.6% Maximum Green (s) 28.0 28.0 28.0 12.3 90.0 90.0 73.0 73.0 Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7		i Giiii			I CIIII					I CIIII	i Cilli		
Detector Phase 4 4 8 8 5 2 2 2 6 6 Switch Phase Minimum Initial (s) 10.0		Λ			8	U			2	2	6	U	
Switch Phase Minimum Initial (s) 10.0 <t< td=""><td></td><td></td><td>4</td><td></td><td></td><td>R</td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td></t<>			4			R			2			6	
Minimum Initial (s) 10.0 </td <td></td> <td>T</td> <td>7</td> <td></td> <td>U</td> <td></td> <td></td> <td>J</td> <td></td> <td></td> <td>0</td> <td>U U</td> <td></td>		T	7		U			J			0	U U	
Minimum Split (s) 34.3 34.3 34.3 34.3 9.7 33.0 33.0 33.0 33.0 Total Split (s) 34.3 34.3 34.3 17.0 96.0 96.0 79.0 79.0 Total Split (%) 26.3% 26.3% 26.3% 13.0% 73.7% 73.7% 60.6% 60.6% Maximum Green (s) 28.0 28.0 28.0 12.3 90.0 90.0 73.0 73.0 Yellow Time (s) 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7		10.0	10.0		10.0	10.0		5.0	10.0	10.0	10.0	10.0	
Total Split (s) 34.3 34.3 34.3 34.3 17.0 96.0 96.0 79.0 79.0 Total Split (%) 26.3% 26.3% 26.3% 13.0% 73.7% 73.7% 60.6% 60.6% Maximum Green (s) 28.0 28.0 28.0 12.3 90.0 90.0 73.0 73.0 Yellow Time (s) 3.3 3.3 3.3 3.7 3.7 3.7 3.7	. ,												
Total Split (%) 26.3% 26.3% 26.3% 26.3% 13.0% 73.7% 73.7% 60.6% 60.6% Maximum Green (s) 28.0 28.0 28.0 12.3 90.0 90.0 73.0 73.0 Yellow Time (s) 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7	,												
Maximum Green (s) 28.0 28.0 28.0 28.0 90.0 90.0 73.0 73.0 Yellow Time (s) 3.3 3.3 3.3 3.7 3.7 3.7 3.7													
Yellow Time (s) 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7 3.7													

	•	-	•	•	←	•	4	†	~	\	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.3	6.3		6.3	6.3		4.7	6.0	6.0	6.0	6.0	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			14.0	14.0	14.0	14.0	
Flash Dont Walk (s)	21.0	21.0		21.0	21.0			13.0	13.0	13.0	13.0	
Pedestrian Calls (#/hr)	0	0		0	0			0	0	0	0	
Act Effct Green (s)	13.3	13.3		13.3	13.3		106.0	104.7	104.7	94.5	94.5	
Actuated g/C Ratio	0.10	0.10		0.10	0.10		0.81	0.80	0.80	0.73	0.73	
v/c Ratio	0.46	0.25		0.55	0.48		0.36	0.43	0.11	0.16	0.70	
Control Delay	66.6	19.1		71.1	36.5		7.2	4.7	1.7	9.0	13.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	66.6	19.1		71.1	36.5		7.2	4.7	1.7	9.0	13.5	
LOS	Е	В		Е	D		Α	Α	Α	Α	В	
Approach Delay		45.3			51.1			4.5			13.4	
Approach LOS		D			D			Α			В	
Queue Length 50th (m)	14.1	0.5		18.7	12.6		3.3	38.7	2.1	3.7	120.5	
Queue Length 95th (m)	27.4	12.0		34.1	30.1		8.0	61.3	7.4	11.6	195.0	
Internal Link Dist (m)		51.9			202.6			255.1			248.7	
Turn Bay Length (m)	15.0			15.0			80.0		25.0	105.0		
Base Capacity (vph)	249	325		271	375		275	2664	1071	312	2381	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.22	0.14		0.26	0.26		0.29	0.43	0.11	0.16	0.70	

Area Type: Other

Cycle Length: 130.3 Actuated Cycle Length: 130.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 12.7 Intersection Capacity Utilization 88.1%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 50: Bank Street & Retail Access/Kitchener Avenue

