

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development Municipal Infrastructure Environmental / Water Resources Traffic / Transportation Structural Recreational

Planning

Land / Site Development Planning Application Management Municipal Planning Documents & Studies Expert Witness (OMB) Wireless Industry

Landscape Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

Ahlul-Bayt Centre Ottawa 3095 Albion Road North

Development Servicing Study and Stormwater Management Report

AHLUL-BAYT CENTRE OTTAWA 3095 ALBION ROAD NORTH

DEVELOPMENT SERVICING STUDY AND STORMWATER MANAGEMENT REPORT

Prepared by:

NOVATECH Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

> January 27, 2016 Revised: January 6, 2017

Ref: R-2015-048 Novatech File No. 113093

January 6, 2017

Ahlul-Bayt Centre Ottawa 200 Baribeau Street Ottawa, Ontario K1L 7R6

Attention: Mr. Akram Farhat

Dear Sir:

Re: Development Servicing Study and Stormwater Management Report Ahlul-Bayt Centre Ottawa 3095 Albion Road North Ottawa, ON Our File No.: 113093

Enclosed herein is a copy of the revised 'Development Servicing Study and Stormwater Management Report' for the proposed development. The site is located at 3095 Albion Road North, in the City of Ottawa. This report addresses the approach to site servicing and stormwater management for the subject property and is submitted in support of the site plan amendment application.

Please contact the undersigned, should you have any questions or require additional information.

Yours truly,

NOVATECH

Francois Themath

François Thauvette, P. Eng. Project Manager

FT/sm

cc: Syd Robertson (City of Ottawa) Shawn Lawrence (SJL Architect) Massoud Yazdani (M&E Engineering)

M:\2013\113093\DATA\REPORTS\DSS&SWM\DSS & SWM_REPORT_REV2.DOC

TABLE OF CONTENTS

1.0	INTRO	DUCTION1	l
1.1	1	Purpose1	
1.2	2	Location and Site Description1	
1.3	3	Consultation and Reference Material 2	?
	Referenc	e Items 2	
2.0	PROP	DSED DEVELOPMENT2	2
3.0	SITE S	ERVICING2	2
3.1	I	Sanitary 3	;
3.2	2	Water 4	•
	3.2.1	Domestic Water Demand 5	;
	3.2.2	Water Supply for Fire-Fighting 6	;
3.3	3	Storm and Stormwater Management 6	;
	3.3.1	Stormwater Management Criteria and Objectives7	,
3.4	1	SWM Modeling (Visual OTTHYMO)7	,
	3.4.1	Design Storms 8	•
	3.4.2	Model Parameters 8	•
	3.4.3	Model Results 9)
	3.4.4	Post-Development Conditions)
	3.4.4.1	Major System Overflow Route10)
	3.4.4.2 3.4.4.3	Base Flow)
4.0	SITE G	RADING	l
5.0	EROSI	ON AND SEDIMENT CONTROL11	I
6.0	GEOTI	ECHNICAL INVESTIGATIONS12	2
7.0	CONC	LUSIONS12	2

LIST OF FIGURES

- Figure 1: Aerial Plan
- SWM-1: Pre-Development Stormwater Management
- SWM-2: Post-Development Stormwater Management

LIST OF APPENDICIES

- Appendix A: Correspondence and Existing MOE CofAs
- Appendix B: Development Servicing Study Checklist
- Appendix C: FUS Fire Flow Calculations, WM Boundary Conditions, Schematic of the Hydraulic Model, Hydraulic Modeling Results
- Appendix D: SWM Modeling Results (Visual OTTHYMO), IDF Curves, Stage-Storage Tables and Broad Crested Weir Calculations
- Appendix E: IPEX Inlet Control Device Information
- Appendix F: CDS Oil-Grit Separator Information
- Appendix G: Engineering Drawings

LIST OF DRAWINGS

General Plan of Services (113093-GP1 and 113093-GP2)

Grading and Erosion & Sediment Control Plans (113093-GR1 and 113093-GR2)

1.0 INTRODUCTION

Novatech has been retained to complete the site servicing and stormwater management design for the proposed Ahlul-Bayt Centre in Ottawa. The proposed development will consist of a twostorey building and associated parking lots. The building will serve as a mosque (place of worship), community centre, recreational facility and school.

1.1 Purpose

This report addresses the approach to site servicing and stormwater management and is being submitted in support of the site plan amendment application.

1.2 Location and Site Description

The 1.55 ha property is located at 3095 Albion Road North. The existing site is vacant and is bordered by Albion Road to the west; City of Ottawa owned vacant land to the east, the Twin Equipment property to the north and CN Railway lands to the south. Some development work associated with the previously approved design, including the installation of site services, was started in 2010 but never completed.

The subject site is located within the Sawmill Creek sub-watershed and is therefore subject to specific stormwater requirements.

Figure 1 – Aerial Plan provides an aerial view of the site.

The legal description of the property is designated as Part of Lot 2, Concession 4 (Rideau Front) Geographic Township of Gloucester, in the City of Ottawa.

1.3 Consultation and Reference Material

An industrial development proposal for this property was completed in 2009/2010. The servicing and stormwater management designs were approved by the City of Ottawa, the Rideau Valley Conservation Authority (RVCA) and Ministry of Environment (MOE) at that time. The following MOE Certificates of Approval (C of A) were obtained for the previously approved works. Refer to **Appendix A** for a copy of the following MOE C of A's:

- Municipal and Private Sewage Works (MOE C of A No. 4934-87QPDD, Aug. 6, 2010)
- Industrial Sewage Works SWM (MOE C of A No. 2184-87CJLR, July 21, 2010)

Although the 2009/2010 design was approved, the development was never fully constructed. The property was since then sold and the current development is being proposed. A preconsultation meeting was held with the City of Ottawa on March 27, 2015, at which time the new owner was advised of the general submission requirements for the proposed development. Refer to **Appendix A** for a summary of the correspondence with the City of Ottawa.

The MOECC has been advised of the proposed redevelopment, however a subsequent meeting has not yet been held with the RVCA regarding the new proposal. Based on the previously approved design, we anticipate requiring new approvals from both the MOECC and the RVCA. Refer to **Appendix A** for a copy of the correspondence with the MOECC.

Reference Items

- ¹ The "Geotechnical Investigation Report" (Ref. No. PG 3635-1) was prepared by Paterson Group Inc. on November 19, 2015.
- ² The "Phase 1 Environmental Site Assessment Report" (Ref. No. PE3666-1R) was prepared by Paterson Group Inc., on June 3, 2016.
- ³ The "3091 Albion Road, Twin Realty Ltd. Fish Habitat Observations" dated August 29, 2009, prepared by Muncaster Environmental Planning.

2.0 PROPOSED DEVELOPMENT

The proposed development will consist of a two-storey building and associated parking lots. The multi-use building will serve as a mosque (place of worship), community centre, recreational facility and school. An enclosed outdoor play area is being proposed on the west side of the building. Similar to the previously approved design, the re-alignment of the existing on-site drainage ditch as well as the construction of a stormwater detention area on the adjacent Twin Equipment property to the north (3091 Albion Road North) will be required to accommodate the proposed development. Access off the municipal roadway will be shared by both properties (3091 & 3095 Albion Road North).

3.0 SITE SERVICING

The proposed building will be serviced by extending services to the municipal watermain and sanitary sewer in Albion Road North. Stormwater flows will continue to be directed into the existing drainage ditch located south of the property. Stormwater runoff from the subject site will be directed to Sawmill Creek. The objective of the site servicing design is to conform to the requirements of the City of Ottawa; to provide a suitable domestic water supply, proper sewage

outlets and to ensure that appropriate fire protection is provided. Servicing criteria, expected sewage flows and water demands for the subject site have been established using the City of Ottawa municipal design guidelines for sewer and water distribution. Refer to the enclosed plans and to the subsequent sections of the report for further details.

The City of Ottawa Servicing Study Guidelines for Development Applications requires a Development Servicing Study Checklist to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist is enclosed in **Appendix B** of the report.

3.1 Sanitary

The proposed building will be serviced by extending a new sanitary sewer from the municipal sanitary sewer in Albion Road North. The existing municipal sewer is a 300mm dia. sewer at a 1.4% slope and has an approximate capacity of 119.4 L/s.

The adjacent Twin Equipment site (3091 Albion Road North) is currently serviced by a 250mm dia. sanitary sewer flowing south across the subject property. The existing 250mm dia. sanitary sewer currently flows into the existing 450mm dia. trunk sewer located in an easement along the south property line of the subject site. This existing Twin Equipment sanitary sewer and trunk sewer are to remain operational. Similar to the proposed site flows, sewage from the trunk sewer is being conveyed to the existing 450mm dia. sanitary sewer in Albion Road North. Refer to the enclosed **General Plan of Services** (113093-GP1 and 113093-GP2) for details.

The City of Ottawa design criteria were used to calculate the theoretical sanitary flows for the proposed building. The following design criteria were taken from Section 4 – 'Sanitary Sewer Systems' and Appendix 4-A - 'Daily Sewage Flow For Various Types of Establishments' of the City of Ottawa Sewer Design Guidelines. Due to the nature of the proposed multi-use facility, two uses anticipated to generate the largest peak flows (i.e. a mosque and a school) have been analysed. These scenarios will occur independently.

The first scenario consists of a large religious gathering. This will occur several times per year and the anticipated average daily sewage flows for this scenario will be similar to those used for assembly halls with full facilities. The design criteria for the first scenario are as follows:

- Maximum Design Population: 600 people
- Average Daily Sewage Flow: 36 L/person/day (assembly hall with full facilities)
- Site Area: 1.55 ha
- Institutional Peaking Factor = 1.5
- Infiltration Allowance: 0.28 L/s/ha x 1.55 ha site = 0.43 L/s

Table 3.1 identifies the theoretical sanitary flows based on a large gathering of 600 people.

Design Flow Basis	Site Area (ha)	Max. Design Population	Average Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Infiltration Allowance (L/s)	Total Flow (L/s)
Religious Gathering	1.55	600	0.25	1.5	0.38	0.43	0.81

 Table 3.1
 Theoretical sanitary flows based on a large religious gathering

The second scenario will consist of a typical school use. The design criteria for the second scenario are as follows:

- Maximum Design Population: 170 students & 20 full time staff
- Average Daily Sewage Flow: 90 L/student/day (day school with cafeteria, gym and showers)
- Average Daily Sewage Flow: 75 L/person/day (full-time staff)
- Site Area: 1.55 ha
- Institutional Peaking Factor = 1.5
- Infiltration Allowance: 0.28 L/s/ha x 1.55 ha site = 0.43 L/s

Table 3.2 identifies theoretical sanitary flows based on school use (170 students and 20 staff)

Table 3.2Theoretical sanitary flows based on a school use

Design Flow Basis	Site Area (ha)	Max. Design Population	Average Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Infiltration Allowance (L/s)	Total Flow (L/s)
Students	-	170	0.18	1.5	0.27	-	0.27
Staff	-	20	0.02	1.5	0.03	-	0.03
Total	1.55	190	0.20	1.5	0.30	0.43	0.73*

*Includes an infiltration allowance of 0.43 L/s

Based on the two scenarios analysed above, the large religious gathering yields a slightly larger peak sanitary flow of approximately 0.81 L/s, including infiltration. The proposed 200mm dia. sanitary service will be a gravity pipe at a minimum slope of 1.0% with a full flow conveyance capacity of approximately 34.2 L/s and will have sufficient capacity to convey the theoretical sanitary flows calculated above.

3.2 Water

The proposed building will be serviced by a 150mm dia. water service connected to the existing 150mm dia. watermain in Albion Road North complete with a shut-off valve at the property line. The water meter will be located in the mechanical room; while the remote meter will be located on the exterior face of the building. The proposed building will be sprinklered and supplied with a fire department siamese connection located within 45m of the existing municipal fire hydrant along Albion Road North. The proposed 150mm diameter service will be sized to provide both the required domestic water demand and fire flow for the proposed building. In order to determine if the existing 150mm dia. watermain in Albion Road North has adequate capacity to accommodate the proposed development a hydraulic analysis based on boundary conditions provided by the City of Ottawa was completed. Due to the nature of the proposed multi-use facility, two uses anticipated to generate the largest water demands (i.e. a mosque and a school) have been analysed. These scenarios will occur independently.

Based on the City of Ottawa guidelines, typical watermain operating pressures are as follows:

- Normal operating pressure are to range between 345 kPa (50 psi) and 552 kPa (80 psi) under Max Day demands
- Minimum system pressures are to be 276 kPa (40 psi) under Peak Hour demands
- Minimum system pressures are to be 140 kPa (20 psi) under Max Day + Fire Flow demands

3.2.1 Domestic Water Demand

The theoretical water demands for the proposed building were calculated based on the City of Ottawa and MOE Design Guidelines for Drinking-Water Systems.

The first scenario consists of a large religious gathering. This will occur several times per year and the anticipated water demands will be similar to those used for assembly halls with full facilities. The design criteria for the first scenario are as follows:

- Max Design Population: 600 people
- Max. Day Demand Peaking Factor = 2.75 (Max. value taken from MOE Table 3.1)
- Peak Hour Demand Peaking Factor = 4.13 (Max. value taken from MOE Table 3.1)

Table 3.3 identifies the theoretical domestic water demands based on a large gathering of 600 people.

Table 3.3 Theoretical Domestic Water Demand based on a Large Religious Gathering

Type of Use	Design	Average Day	Maximum Day	Peak Hour
	Population	Demand (L/s)*	Demand (L/s)	Demand (L/s)
Religious Gatherings	600	0.25	0.69	1.03

*Value taken from **Table 3.1** above

The second scenario will consist of a typical school use. The design criteria for the second scenario are as follows:

- Max Design Population: 170 students + 20 staff
- Daily Average Water Use: Ranges between 70-140 L/student/day (MOE Table 3.2)
- Maximum Day Demand Peaking Factor = 4.6 (value interpolated from MOE Table 3.3)
- Peak Hour Demand Peaking Factor = 6.9 (value interpolated from MOE Table 3.3)

 Table 3.4 identifies the theoretical domestic water demands based on a school use for 170 students and 20 staff.

Table 3.4 T	heoretical Water Der	mand based on a S	School Use
-------------	----------------------	-------------------	------------

Type of Use	Design	Average Day	Maximum Day	Peak Hour
	Population	Demand (L/s)*	Demand (L/s)	Demand (L/s)
School	190	0.20	0.92	1.38

*Value taken from Table 3.2 above, which falls within the typical range defined by the MOE

Based on the two scenarios analysed above, the school use scenario yields slightly larger domestic water demands.

3.2.2 Water Supply for Fire-Fighting

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for the proposed building. Based on preliminary FUS calculations, the fire flow requirements for the building are expected to be in the order of 2,114 USGPM (or 8,000 L/min). The fire flow requirements include both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler system will be designed by the fire protection (sprinkler) contractor as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Refer to **Appendix C** for a copy of the FUS fire flow calculations.

The hydraulic model EPANET was used for the purpose of analyzing the performance of the proposed water service for the following theoretical conditions:

- Maximum Day + Fire Flow Demand
- Peak Hour Demand

A schematic representation of the hydraulic network depicts the node and pipe numbers used in the model. The model is based on hydraulic boundary conditions provided by the City of Ottawa. **Table 3.5** and **Table 3.6** summarize the hydraulic model results. Refer to **Appendix C** for further details.

Table 3.5: Maximum Day + Fire Flow Demand

Operating Condition	Min. System Pressure	Max. System Pressure
A Max Day demand of 0.92 L/s at Node N4 (Building) + a Fire Flow of 133 L/s at Node N3 (Hydrant)	A minimum system pressure of 255.35 kPa (37.04 psi) is available at Node N3 (Hydrant)	A maximum system pressure of 335.50 kPa (48.66 psi) is available at Node N2 (Connection)

Table 3.6: Peak Hour Demand

Operating Condition	Min. System Pressure	Max. System Pressure
A Peak Hour demand of 1.4 L/s	Minimum system pressures of 356.00 kPa	A maximum system pressure of 369.84 kPa
at Node N4 (Building)	(51.63 psi) are available at Node N4 (Building)	(53.64 psi) is available at Node N3 (Hydrant)

The model results indicate that the proposed water service will provide adequate system pressures for both the Maximum Day + Fire Flow Demand and Peak Hour Demand conditions, within the normal operating pressure ranges specified by the City of Ottawa.

3.3 Storm and Stormwater Management

The total drainage area (5.055 ha) for this project includes both the subject site (1.546 ha) and a portion of the neighbouring Twin Equipment site (3.509 ha), which currently drains through the subject site. Under pre-development conditions, all flows sheet drain uncontrolled off site. As indicated in **Figure SWM-1: Pre-Development Stormwater Management Plan**, runoff either

	The Rislow Conc. 571	Se Malering Calls, STUDE CI, CP MICH					
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	¹⁶				
	X 05.07						
x 00.07							
ND							
	DIRECTION OF MAJOR	R OVERLAND FLOW	1				
	TORM DRAINAGE BO	DUNDARY					
— — F	ROPERTY LINE						
E-2 s	SUB-CATCHMENT AREA ID						
·98 A	AREA (ha)						
67 / 1	1.5 YR POST-DEVELOPMENT RUNOFF COFFFICIENT						
	IS THE OUT DEVELO						
	AHLUL-B	AYT CEN	ΓRE				
		(ABCO)					
ndscape Architects			J.T.				
I Cowpland Drive	PRE-DEVELOPIVIEN I						
nada K2M 1P6	STORMW	STORMWATER MANAGEMENT					
(613) 254-9643							
novatech-eng.com.			FIGURE				
	JAN 2016	113093	SWM-1				
		CUT11	17 MM2 970mm V129mm				

sheet drains directly towards Albion Road North or towards the on-site drainage ditch, which drains into the larger ditch located south of the subject site. All site flows are tributary to Sawmill Creek.

Under post-development conditions, the 5.055 ha drainage area will be further divided into the following five (5) sub-catchment areas: R-1, A-0, A-1, A-2 and A-3. Based on the existing elevations, runoff from areas A-0 and A-1 will sheet drain uncontrolled off site, while runoff from the remaining areas R-1, A-2 and A-3 (contributing off-site flows from the Twin Equipment site) will be directed towards the re-aligned on-site drainage ditch and be controlled prior to being released into the ditch tributary to Sawmill Creek, located south of the property. Refer to **Figure SWM-2: Post-Development Stormwater Management Plan** for details. The re-aligned on-site ditch will be enhanced with a large upstream surface storage area to the west. Stormwater runoff directed into the re-aligned ditch will be backed up by the control structure, located near the site outlet, and directed towards the upstream surface storage area. The re-aligned drainage ditch and stormwater detention area will provide water quantity control for the site up to and including the 1:100 year design event, pursuant to the requirements of the Sawmill Creek subwatershed study. Refer to the **General Plan of Services (113093-GP1)** for details.

Due to the nature of the site and the receiving waters (Sawmill Creek), all stormwater runoff from the site, with the exception of the direct runoff, will be directed through an oil-grit separator unit prior to being conveyed to the existing drainage ditch south of the subject site. The stormwater interceptor and the storage facility will provide the required water quality control prior to directing flows off-site.

3.3.1 Stormwater Management Criteria and Objectives

The criteria and objectives for the proposed stormwater management design are as follows, per the requirements of the Sawmill Creek Subwatershed Study Update:

- Provide 500m³/ha of storage at a release rate of 4.8 L/s/ha;
- For flows in excess of the initial storage requirement, control post-development flows to predevelopment levels;
- Provide on-site water quality control (minimum 80% TSS removal) prior to releasing flows from the site;
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

3.4 SWM Modeling (Visual OTTHYMO)

The stormwater management design was evaluated using the Visual OTTHYMO hydrologic model, which uses storage-discharge rating curves to represent the range of release rates over the full operating depth of the system.

/ 1:5	YR POST-DEVELO	PMENT RUNOFF CC	DEFFICIENT
ECH	AHLUL-B OTTAWA	AYT CENT (ABCO)	ΓRE
lscape Architects Cowpland Drive da K2M 1P6	POST-DE STORMW/	EVELOPME ATER MAN	ENT AGEMEN
(613) 254-9643 (613) 254-5867	NOT TO	SCALE	
vatech-eng.com	JAN 2016	^{JDB} 113093	FIGURE SWM-2

3.4.1 Design Storms

The following design storms were simulated to determine which storm distribution generates the highest peak flows and storage requirements:

<u>rms</u>
ar
ar

The 24 hour Chicago storm yielded the highest peak flows from the site and was therefore used as the critical storm distribution for the design. Simulation results for all storms have been included in **Appendix D**.

3.4.2 Model Parameters

Sub-catchment Areas

Table 3-7 summarizes the sub-catchment areas and parameters used in the model. Refer to **Figure SWM-2: Post-Development Stormwater Management Plan** for details.

			% Impervious (OTTHYMO)		
Area ID	Area (ha)	Runoff Coefficient	Directly Connected	Total (TIMP)	
			(XIMP) ²	(******)	
A-0	0.184	0.37	0.28	0.28	
A-1	0.035	0.74	0.78	0.78	
R-1 + A-2 ¹	(0.267 + 1.095) 1.362	0.84	0.73	0.91	
A-3	3.474	0.72	0.68	0.85	
Total	5.055 (Use 5.1)				

Table 3-7: Catchment Parameters

¹ The model includes sub-catchment R1 and A2 as a single catchment.

² XIMP values are taken as 80% of TIMP values for areas A2 and A3 due to the presence of large roof areas

The total drainage area used in the calculations (5.1 ha) includes both the subject site (1.6 ha) and contribution flows from the neighbouring Twin Equipment property (3.5 ha) to the north, which drains through the subject site. Release rates and required storage volumes, however, are based on the site area. Based on discussions with the City of Ottawa, off-site flows from the Twin Equipment property will be allowed to drain through the proposed stormwater system at pre-development rates.

All drainage areas were simulated using the Standard Unit Hydrograph (STANDHYD) subroutine. Infiltration was simulated using Horton's Equation with the standard values listed in City of Ottawa Sewer Design Guidelines.

Storage-Discharge Rating Curves

The head vs. discharge rating curves for the proposed ICD were used to create storagedischarge rating curves based on the storage characteristics for each area. These storagedischarge curves were then included in the OTTHYMO model using the ROUTE RESERVOIR subroutine. The stage-storage-discharge curves and supporting calculations are provided in **Appendix D**. Details of the proposed ICD specification are provided in **Appendix E**.

3.4.3 Model Results

The modelling results indicate a storage requirement of $1,145m^3$ during the 1:100-year design event. The maximum storage available in the stormwater detention area is approximately $2,180m^3$ up to an elevation of 86.45m. The 100-year overall release rate is 1,041 L/s, which is less than the existing conditions 1,872 L/s. The full model output results are provided in **Appendix D**. During the 2-year storm, the total outflow is 162 L/s (compared to 624 L/s under existing conditions) with a storage volume of 960 m³ used. The sub-watershed storage requirement of 770m³ released at 7 L/s is attained at a rainfall volume slightly less than what was calculated for the 2-year storm.

Table 3.5 compares the post-development flows from the site to be developed to the predevelopment flows for the 1:2 year, 1:5 year and 1:100 year design events.

Return Period	Pre-Development Flow (L/s)	Post-Development Flow (L/s)		
(rears)	Total Area (5.1 ha)	A-0 + A-1	A-2 + A-3 + R-1	Total Area (5.1 ha)
2	624 L/s	18 L/s	159 L/s *	162 L/s *
5	899 L/s	26 L/s	359 L/s *	371 L/s *
100	1,872 L/s	58 L/s	988 L/s *	1,041 L/s *

Table 3.5: Comparison of Pre-Development Flows to Post-Development Flows

*Indicates controlled flow or partially controlled flows

As indicated in the table above, the post-development flows are significantly reduced when compared to the pre-development conditions. The post-development flows have been controlled per the requirements of the Sawmill Creek Subwatershed Study.

3.4.4 Post-Development Conditions

The proposed building will be serviced by a 250mm diameter storm sewer which outlets to the realigned drainage ditch via the proposed storm sewer system. The re-aligned drainage ditch and upstream stormwater detention area will drain through STM MH 5 which contains the IPEX Tempest LMF 95 vortex ICD which has an invert of 85.00m. Flow is then directed to the oil-grit separator unit (CDS model PMSU 20_15_4) which provides quality treatment. Flow is then directed to the existing ditch and the 600mm diameter CSP culvert on the downstream lands. An overflow weir is also provided for flows in excess of the control flows from the sub-watershed

study (7 L/s). This weir is proposed to have an invert of 86.00m and to have a width of 3.2m as shown on the **General Plan of Services** (113093-GP1).

3.4.4.1 Major System Overflow Route

In the case of a major rainfall event exceeding the design storms provided for, stormwater located within the re-aligned drainage ditch will pond to a maximum water elevation of 86.40m before spilling over the top of the bank and draining south towards the larger drainage ditch, tributary to Sawmill Creek. The major system overflow route is shown on the enclosed **Grading and Erosion & Sediment Control Plans (113093-GR1** and **113093-GR2**).

3.4.4.2 Base Flow

Due to the nature of this site and the receiving waters (Sawmill Creek) a general assessment of base flow, including both groundwater and surface flows should be considered.

The soils within the western portion of the site to be developed are underlined with a layer of silty-clay approximately 2m thick, which will act as a barrier for groundwater flow. The soils within the eastern portion of the site however mostly consist of silty-sand, which allows the flow of groundwater. The majority of the eastern portion of the site will remain undeveloped. Furthermore, the construction of the SWM detention area and re-aligned on-site drainage ditch will promote infiltration of stormwater into the ground.

Although the on-site drainage ditch is being re-aligned, the tributary area, drainage patterns and outlet point from the site (i.e. via the existing 600mm dia. culvert) to the larger existing tributary of Sawmill Creek south of the property, are all being maintained. This is consistent with the conclusion of the fish and fish habitat assessment report entitled: "3091 Albion Road, Twin Realty Ltd. – Fish Habitat Observations" dated August 29, 2009, prepared by Muncaster Environmental Planning. The following excerpt was taken directly from the report: "Providing downstream inputs are maintained, removal of the on-site channels would not appear to have the potential to impact the productivity of the Sawmill Creek System".

Consequently, the proposed development should not adversely affect the base flow from this site and should have no impact on the receiving ditch or Sawmill Creek.

3.4.4.3 Stormwater Quality Control

The subject site is located within the jurisdiction of the Rideau Valley Conservation Authority (RVCA) and is tributary to Sawmill Creek. As a result, an 'Enhanced' Level of Protection, equivalent to a long-term average removal of 80% of total suspended solids (TSS), with at least 90% of the total rainfall being captured and treated, is required.

The shallow slope of the re-aligned drainage ditch along with the low flow outlet will promote settling of suspended solids and infiltration through the bottom of the stormwater management system. As an extra level of quality control protection, a new oil-grit separator unit (CDS Model PMSU 20_15_4m) will be installed downstream of STM MH 5 on the proposed 300mm dia. outlet pipe from the site. Stormwater runoff collected by the on-site storm sewer system from areas R-1, A-2 and A-3 (4.84 ha tributary area) will be directed through the proposed treatment unit. The contributing area includes the proposed paved parking areas, the building roof, the on-site landscaped areas as well as a portion of the existing site to the north.

As stated above, the proposed oil-grit separator has been sized to provide an 'Enhanced' level of water quality treatment prior to discharging the stormwater towards the municipal drainage system south of the site. Echelon Environmental and Contech Stormwater Solutions Inc. have modeled and analyzed the tributary area to provide a CDS unit capable of meeting the TSS removal requirements. The model parameters for the TSS removal were based on historical rainfall data for Ottawa from the Ontario Climate Centre. It was determined that a CDS Model PMSU 20_15_4m will exceed the target removal rate, providing a net annual 83.6% TSS removal. The CDS unit has a treatment capacity of approximately 20 L/s, a sediment storage capacity of 1.0m³; an oil storage capacity of 232 L, a total storage volume of 1.78m³ and will treat a net annual volume of approximately 99.0% for the tributary area.

Maintenance and Monitoring of Storm Sewer and SWM Systems

It is recommended that the client implement a maintenance and monitoring program for both the on-site storm sewers and the stormwater management systems: The storm drainage system should be inspected routinely (at least annually); the vortex ICD unit should be inspected to ensure it is fitted securely and free of debris; and the oil-grit separator should be inspected at regular intervals and maintained when necessary to ensure optimum performance.

Refer to **Appendix F** for the CDS unit operation, design, performance and maintenance summary parameters as well as the annual TSS removal efficiency data.

4.0 SITE GRADING

The existing site slopes towards the existing on-site drainage ditch. A portion of the existing Twin Equipment site to the north also sheet drains onto the subject site. To accommodate the proposed development, the existing ditch will be filled-in and re-aligned next to the south property line. The finished floor elevation (FFE) of the proposed building will be set at an elevation of 88.40m. The proposed site will match into the Twin Equipment access road pavement elevations and slope south towards the re-aligned drainage ditch. The storm sewer system will be shallow due to the fact that it outlets into an open ditch. The grades adjacent to the perimeter of the subject site will be maintained, where possible. Refer to the enclosed **Grading and Erosion & Sediment Control Plans (113093-GR1** and **113093-GR2**) for details.

5.0 EROSION AND SEDIMENT CONTROL

To mitigate erosion and to prevent sediment from entering the storm sewer system, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags will be placed under the grates of nearby catchbasins, manholes and will remain in place until vegetation has been established and construction is completed.
- Silt fencing will be placed as per OPSS 577 and OPSD 219.110 along the surrounding construction limits;
- Straw Bale Flow Check Dams will be placed per OPSD 219.180 as indicated on the plans;
- A Mud Mat will be placed at the site entrance;
- Street sweeping and cleaning will be performed as required to suppress dust and to provide safe and clean roadways adjacent to the construction site.

The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken regularly.

In addition, the following will provide permanent erosion and sediment control measures:

- Grass drainage swales along the property lines and the stormwater detention area as indicated on the plans;
- Rip-rap lined outlet to reduce flow velocities and minimize erosion to the existing ditch.
- A CDS type Oil/Grit Separator will be installed to provide water quality control prior to releasing stormwater from sub-catchment areas R-1, A-2 and A-3.

6.0 GEOTECHNICAL INVESTIGATIONS

A Geotechnical Investigation Report has been prepared for the proposed site. Refer to the Paterson Group 'Geotechnical Investigation' (Report. No. PG3635-1), dated November 19, 2015 for subsurface conditions, construction recommendations and geotechnical inspection requirements.

7.0 CONCLUSIONS

This report has been prepared in support of the site plan amendment application for the proposed Ahlul-Bayt Centre Ottawa located at 3095 Albion Road North, in the City of Ottawa.

The conclusions are as follows:

- The proposed development will consist of a 2-storey multi-use building complete with associated parking lot and landscaped areas.
- The proposed building will be serviced by extending services to the municipal watermain and sanitary sewer in Albion Road North.
- The building will be sprinklered and supplied with a fire department siamese connection. The siamese connection will be located within 45m of the existing municipal fire hydrant along Albion Road North.
- On-site water quantity control and water quality control are required for this site.
- Water quantity control will be achieved by the use of an inlet control device, a concrete control weir structure and surface detention within the re-aligned drainage ditch and stormwater detention areas.
- Stormwater management for the site will be provided by a surface stormwater storage system, which has been adequately sized to provide the required storage in order to control the 100-year post-development flow and over control the 5-year flow from the site to the allowable release rates.
- Additional on-site water quality treatment will be provided by the installation of an oil-grit separator (CDS Model PMSU 20_15_4m) downstream of the proposed inlet control device installed STM MH 5. The treatment unit will provide 83.6% TSS removal and will treat 99.0% of the total annual runoff.

- Regular inspection and maintenance of the storm sewer system, including the inlet control device (ICD), concrete control weir, stormwater storage facility and CDS unit, is recommended to ensure that the storm drainage system is clean and operational.
- The tributary area, drainage patterns and outlet point from the site to the existing tributary of Sawmill Creek south of the property, are all being maintained.
- The proposed development should not adversely affect the base flow from this site and should have no impact on the receiving ditch or Sawmill Creek.
- Erosion and sediment controls are to be provided both during construction and on a permanent basis.

It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

NOVATECH

Servicing/Grading Prepared by:

Stephen Matthews, B. A.(Env) Senior Design Technologist

SWM Prepared by:

Bryan Orendorff, P. Eng. Project Manager | Water Resources

Servicing/Grading Reviewed by:

François Thauvette, P. Eng. Senior Project Manager | Land Development & Public Sector Engineering

APPENDIX A

Correspondence and Existing MOE CofAs

Steve Matthews

From: Sent: To: Cc: Subject: Attachments: Robertson, Syd <Syd.Robertson@ottawa.ca> March-27-15 7:56 AM Francois Thauvette Jort-Conway, Melissa Albion Rd N_3095 - Pre-consultation Servicing Memo Albion Rd N_3095 - Servicing Memo.pdf

Hi Francois:

Attached please find a copy of the Pre-consultation Servicing Memo for the above noted site.

Please call me if you have any questions.

Thanks,

Syd Robertson, C.E.T.

Project Manager, Infrastructure Approvals Development Review Services Branch, Urban Outer Core Planning & Growth Management Department 110 Laurier Ave. W., 4th Floor E Ottawa, ON K1P JJ1

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 27916 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

27 Mar 2015

To / Destinataire	Melissa Jort-Conway, Planner	
From / Expéditeur	Syd Roberson, Infrastructure Project Manager	
Subject / Objet	Pre-Application Consultation 3095 Albion Rd. N, Ward 10 <i>The proposed development includes a community centre,</i> <i>recreational and athletic facility, mosque (place of worship)</i> <i>and school.</i>	File No. PC2013-0194

Please note the following information regarding the engineering design submission for the above noted site:

- 1. The Servicing Study Guidelines for Development Applications are available at the following address: <u>http://ottawa.ca/en/development-application-review-process-0/servicing-study-guidelines-development-applications</u>
- 2. Servicing & site works shall be in accordance with the following documents:
 - ⇒ Ottawa Sewer Design Guidelines (2013)
 - ⇒ Ottawa Design Guidelines Water Distribution (2010)
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (2004)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (2006)
 - ⇒ City of Ottawa Park and Pathway Development Manual (2012)
 - ⇒ City of Ottawa Accessibility Design Standards (2012)
 - ⇒ Ottawa Standard Tender Documents (2015)
 - ⇒ Ontario Provincial Standards for Roads & Public Works (2014)
- 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at InformationCentre@ottawa.ca or by phone at (613) 580-2424 x.44455).
- 4. Stormwater Management Criteria

The municipal storm system on Albion Road north, outlets to a drainage ditch that is a direct tributary to Sawmill Creek, downstream of the Sawmill Creek Wetlands Stormwater Management Facility. Consequently on-site stormwater quantity and water quality controls will be required based on the criteria in the Sawmill Creek Sub-Water Study.

i. Water Quality Treatment:

Enhance level of treatment (80% TSS removal).

ii. Quantity Control:

To be based on the following Table from the Sawmill Creek Subwatershed Study Update, dated May 2003, prepared by CH2MHill.

Table 16 Estimated stormwater detention storage-outflow relationship

needed for downstream creek erosion control in Sawmill Creek						
Effective imperviousness of development area	Estimated detention storage required	Peak storage release rate				
% of total area	m ³ per hectare of development	L/s per ha of				
	area	development area				
70%	500	4.8				
60%	330	4.1				
50%	280	3.5				
42%	260	3.0				
35%	230	2.7				

Estimated Stormwater Detention Storage-Outflow Relationship needed for downstream creek erosion control in Sawmill Creek

Notes:

1. The effective impervious represents the amount of impervious area that drains directly to the site's drainage outlet (e.g. storm sewer). Runoff from the ineffective impervious area is assumed to be infiltrated. As an example, a site with 60% total actual imperviousness and in which 30% of impervious runoff is infiltrated, would have an effective imperviousness of 42%.

The above detention requirements represent a general design guideline that is derived from the analysis detailed in Appendix C. As indicated, the detention volume requirement is substantially reduced if effective imperviousness is reduced by runoff reduction by infiltration within development areas. This shows that designing to promote infiltration has the double benefit of reducing downstream erosion impact while helping to maintain local infiltration.

- 5. Deep Services (Storm, Sanitary & Water Supply)
 - i. New connections to the 600mm dia backbone watermain as well as to the easement sanitary & storm sewers are not permitted.
 - ii. Provide a sanitary monitoring manhole located in an accessible location on private property near the property line (ie. Not in a parking area).
- 6. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service
 - ii. Type of development
 - iii. Amount of fire flow required Calculations to be based on the Fire Underwriters Survey.
 - iv. Average daily demand: ____ l/s.
 - v. Maximum daily demand: ____l/s.
 - vi. Maximum hourly daily demand: ____ l/s.

Francois Thauvette

From: Sent: To: Subject: Attachments: Francois Thauvette Friday, January 06, 2017 12:08 PM 'Diamond, Emily (MOECC)' Proposed Ahlul-Bayt Centre Ottawa (3095 Albion Rd. North) - Pre-consultation w MOECC MOE CofA_4934-87QPDD.pdf; MOE CofA_2184-87CJLR.pdf

Hi Emily,

We are working a new project located at 3095 Albion Road North, in the City of Ottawa. The proposed development will consist of a two-storey building and associated parking lots. The multi-use building will serve as a mosque (place of worship), community centre, recreational facility and school. An enclosed outdoor play area is being proposed on the west side of the building. Similar to the previously approved design, the re-alignment of the existing on-site drainage ditch as well as the construction of a stormwater detention area on the adjacent Twin Equipment property to the north (3091 Albion Road North) will be required to accommodate the proposed development. Access off the municipal roadway will be shared by both properties (3091 & 3095 Albion Road North).

This e-mail is to advise you that an industrial development proposal for this same property was completed in 2009/2010. The servicing and stormwater management designs were approved by the City of Ottawa, the Rideau Valley Conservation Authority (RVCA) and Ministry of Environment (MOE) at that time. The following MOE Certificates of Approval (C of A) were obtained for the previously approved works (PDF copies attached):

- Municipal and Private Sewage Works (MOE C of A No. 4934-87QPDD, Aug. 6, 2010)
- Industrial Sewage Works SWM (MOE C of A No. 2184-87CJLR, July 21, 2010)

Although the 2009/2010 design was approved and Site Plan approval was obtained, the development was never fully constructed. The property was since sold and the development described in the first paragraph above is being proposed. A pre-consultation meeting was held with the City of Ottawa, at which time the new owner was advised of the general submission requirements for the proposed development.

Based on the proposed design, we anticipate requiring new ECAs (or amendments to the existing C of As). Please use this a record of our pre-consultation with the MOECC.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

RECEIVED AUG 1 2 2010

Ministry of the Environment Ministère de l'Environnement

CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4934-87QPDD Issue Date: August 6, 2010

Twin Realty Ltd. 3091 Albion Road N Ottawa, Ontario K1V 9V9

Site Location: 3091 & 3095 Albion Road, N. Ward 10 City of Ottawa

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

storm sewers and sanitary sewers to be constructed in the City of Ottawa, on 3095 Albion Road N;

all in accordance with the application from Twin Realty Ltd., dated **June 16, 2010**, including final plans and specifications prepared by Novatech Engineering Consultants Ltd.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>eachportion</u> appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director:
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Director

The Secretary* Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto, Ontario M5G 1E5

<u>and</u>

Section 53. Ontario Water Resources Act Ministry of the Environment 2 St. Clair Avenue West. Floor 12A Toronto, Ontario M4V 1L5

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 6th day of August, 2010

Jennifer Barolet, P.Eng. Director Section 53, *Ontario Water Resources Act*

DR/

c: District Manager, MOE Ottawa Sarah McCormick, Novatech Engineering Consultants Ltd. Richard Buchanan, Program Manager, Infrastructure Approvals Linda Carkner, Program Manager, Infrastructure Services Francois Thauvette, Novatech Engineering Consultants

RECEIVED JUL 2 6 2010

Ministry of the Environment Ministère de l'Environnement

AMENDED CERTIFICATE OF APPROVAL INDUSTRIAL SEWAGE WORKS NUMBER 2184-87CJLR Issue Date: July 21, 2010

Twin Realty Ltd. 3091 Albion Rd N Ottawa, Ontario K1V 9V9

Site Location: Twin Equipment 3091and 3095 Albion Road North Ottawa City,

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the establishment of stormwater management *Works* to serve the Twin Equipment / Albion North Business Park commercial development located at 3091 Albion Road North and 3095 Albion Road North bordered by Albion Road to the west, City of Ottawa owned vacant land to the east, a Hydro corridor to the north and CN Railway lands to the south in the City of Ottawa, for the treatment and disposal of stormwater run-off from a catchment area of 6.52 hectares consisting of four catchment areas A1, A2, A3 and A4, to provide Enhanced water qualify protection and to attenuate post-development peak flows to pre-development levels, discharging to the Sawmill Creek tributary, for all storm events up to and including the 100 year return storm, comprising of an on-site drainage ditch, inlet control devices (ICD) and an oil/grit separator as follows:

Proposed SWM Facility for Catchment Area A3 (0.67 ha.) and A4 (4.36 ha.)

- a stormwater management system to provide Enhanced water quality control and quantity control flow of 473.2 L/s during the 5-year storm event and 581.2 L/s during the 100 year storm even, comprised of the following:

- a realigned ditch at the western portion of the site, having an active storage volume of approximately 128.3 m³ during the 100 year storm event and a total storage volume of 216 m³, discharging to a manhole STM MH 1 described below;
- a manhole STM MH 1, receiving runoff from the realigned ditch and from the on-site storm sewer system, equipped with a 205 mm diameter orifice plate ICD to control discharge from STM MH 1 at a maximum 5-year storm flowrate of 64.1 L/s and a maximum 100-year storm flowrate of 78.5 L/s, discharging via a 450 mm diameter pipe, manhole STM MH 4 and a 600 mm diameter pipe to an oil/grit separator described below;
- a realigned ditch at the eastern portion of the site, having an active storage volume of approximately 1,030.1

 m^3 during the 100 year storm event and a total storage volume of 1,264 m^3 , discharging to a manhole STM MH 2 described below;

- a manhole STM MH 2, receiving runoff from the realigned ditch and from the on-site storm sewer system, equipped with a 433 mm diameter orifice plate ICD to control discharge from STM MH 2 at a maximum 5-year storm flowrate of 310.6 L/s and a maximum 100-year storm flowrate of 370.6 L/s, discharging via a 525 mm diameter pipe, manhole STM MH 4 and a 600 mm diameter pipe to an oil/grit separator described below;
- an oil grit separator (model Stormceptor STC 6000), receiving runoff from a catchment area of 5.03 hectares, having a sediment storage capacity of 26.945 m³, an oil storage capacity of 3.93 m³ and a total storage capacity of 31.285 m³, discharging via a 600 mm diameter outlet pipe, headwall, rip-rap to an existing 600 mm diameter culvert that discharges to the Sawmill Creek tributary;

Existing SWM Facility for Catchment Area A1 (0.89 ha.) and A2 (0.6 ha.)

- a stormwater management *Works* for the collection and transmission of stormwater runoff from a catchment area of 1.49 hectares consisting of 0.89 hectares of existing building roof, paved parking and landscaped areas and 0.6 hectares of natural areas with uncontrolled runoff of 30.5 L/s during the 5-year storm event and 64.1 L/s during the 100 year storm event, to attenuate post-development peak flows to pre-development levels for all storm events up to and including the 100 year return storm, consisting of the following:

Stormwater Management System

- a stormwater management system to service a commercial development located at 3091 Albion Road in the City of Ottawa, controlling up to 100-year storm event runoff from a total area of 0.89 hectares relying on a swale and two (2) catchbasins with catchbasin CB1 equipped with an inlet control device (ICD) to control the discharge from CB1 to storm sewer at a maximum 5-year and 100 year storm flowrate of approximately 68.0 L/s;

including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned *Works*;

all in accordance with the following submitted supporting documents:

- 1. <u>Application for Approval of Industrial Sewage Works</u> submitted by Francois Vachon of Twin Realty Ltd. received on January 23, 2007, related to the Works of the Existing SWM Facility;
- 2. A report titled "Twin Equipment Servicing Brief and Stormwater Management Report Albion Road, Ottawa" prepared by McIntosh Perry Consulting Engineers dated December 19, 2006, related to the Works of the Existing SWM Facility;.
- 3. <u>Application for Approval of Municipal and Private Sewage Works</u> submitted by Twin Realty Ltd. dated June 16, 2010;.
- 4. Stormwater Management Report titled "Twin Equipment / Albion North Business Park 3091 & 3095 Albion Road North" and enclosed design drawings dated July 23, 2009 and revised

December 17, 2009 and January 29, 2010, prepared by Novatech Engineering Consultants Ltd.; and

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Certificate " means this entire certificate of approval document, issued in accordance with Section 53 of the Ontario Water Resources Act, and includes any schedules;

"Director " means any Ministry employee appointed by the Minister pursuant to section 5 of the Ontario Water Resources Act;

"District Manager " means the District Manager of the Ottawa District Office of the Ministry ;

"Ministry " means the Ontario Ministry of the Environment;

"Owner " means Twin Realty Ltd. and includes its successors and assignees;

"Works " means the sewage works described in the Owner 's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate .

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

(1) The *Owner* shall make all necessary investigations, take all necessary steps and obtain all necessary approvals so as to ensure that the physical structure, setting and operations of the works do not constitute a safety or health hazard to the general public.

(2) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.

(3) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

(4) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.

2. EXPIRY OF APPROVAL

The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within **five (5)** years of the date of this *Certificate*.

3. CHANGE OF OWNER

The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within thirty (30) days of the change occurring:

(a) change of Owner;

(b) change of address of the Owner;

(c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*; and

(d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations</u> <u>Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*.

4. **OPERATION AND MAINTENANCE**.

(1) The *Owner* shall ensure that, at all times, the *Works* and related equipment and appurtenances which are installed or used to achieve compliance with this *Certificate* are properly operated and maintained and meet with the operation and maintenance requirements of the Municipality.

(2) The Owner shall inspect the Works at least once a year and, if necessary, clean and maintain the Works to prevent the excessive buildup of sediments, oil/grit and/or vegetation.

(3) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at a readily accessible location for inspection by the *Ministry*. The logbook shall include the following:

(a) the name of the Works ; and

(b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

5. <u>RECORD KEEPING</u>

The *Owner* shall retain for a minimum of **five (5) years** from the date of their creation, all records and information related to or resulting from the operation and maintenance activities required by this *Certificate*.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.
- 4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected.
- 5. Condition 5 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 2670-765K2X issued on August 17, 2007

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u> , R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto, Ontario M5G 1E5

<u>AND</u>

The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 21st day of July, 2010

Jennifer Barolet, P.Eng. Director Section 53, Ontario Water Resources Act

AM/

c: District Manager, MOE Ottawa Francois Thauvette, Novatech Engineering Consultants Ltd.

APPENDIX B

Development Servicing Study Checklist

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1

1

General Content

- NA Executive Summary (for larger reports only).
 - \checkmark Date and revision number of the report.
 - Location map and plan showing municipal address, boundary, and layout of proposed development.
 - \checkmark Plan showing the site and location of all existing services.
 - Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
 - Summary of Pre-consultation Meetings with City and other approval agencies.
 - Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
 - Statement of objectives and servicing criteria.
 - Identification of existing and proposed infrastructure available in the immediate area.
 - Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).

Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.

NA Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.

Proposed phasing of the development, if applicable.

Reference to geotechnical studies and recommendations concerning servicing.

All preliminary and formal site plan submissions should have the following information:

- Metric scale
- North arrow (including construction North)
- Key plan

NA

 \square

 ∇

1

 $\overline{\mathbf{A}}$

 $\overline{\Lambda}$

- Name and contact information of applicant and property owner
- Property limits including bearings and dimensions
- Existing and proposed structures and parking areas
- Easements, road widening and rights-of-way
- Adjacent street names

4.2 Development Servicing Report: Water

Confirm consistency	with Master Servicing Study,	if available
---------------------	------------------------------	--------------

- Availability of public infrastructure to service proposed development
- Identification of system constraints
- ✓ Identify boundary conditions
- Confirmation of adequate domestic supply and pressure

Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.

Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.

- MA 🗆
 - Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
 - Address reliability requirements such as appropriate location of shut-off valves
- NA Check on the necessity of a pressure zone boundary modification.
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.

NA Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.

V

 $\overline{1}$

 ∇

 ∇

 \square

 ∇

Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.

Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.

4.3 Development Servicing Report: Wastewater

Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).

Confirm consistency with Master Servicing Study and/or justifications for deviations.

- Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.
- Description of existing sanitary sewer available for discharge of wastewater from proposed development.
 - Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
- Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
 - Description of proposed sewer network including sewers, pumping stations, and forcemains.

- NIA Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
- NA Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
 - Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
- NA Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
 - \checkmark Special considerations such as contamination, corrosive environment etc.

4.4 Development Servicing Report: Stormwater Checklist

- Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)
- Analysis of available capacity in existing public infrastructure.
- A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
- Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
- Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
 - Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
- Set-back from private sewage disposal systems.
 - Watercourse and hazard lands setbacks.
 - Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
- Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.

 ∇

 $\overline{\mathbf{A}}$

NA

NA

 $\overline{\Lambda}$ Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period). J1 Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals. ∇ Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions. V Any proposed diversion of drainage catchment areas from one outlet to another. ∇ Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. NA 🗆 If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event. \Box Identification of potential impacts to receiving watercourses $\sqrt{}$ Identification of municipal drains and related approval requirements. V Descriptions of how the conveyance and storage capacity will be achieved for the development. ∇ 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading. NA T Inclusion of hydraulic analysis including hydraulic grade line elevations. ∇ Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors. NA Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions. NA D Identification of fill constraints related to floodplain and geotechnical investigation.

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

Note Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.

 $\overline{\mathbf{A}}$

 $\overline{1}$

TBD

Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.

NA Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)

4.6 Conclusion Checklist

Clearly stated conclusions and recommendations

Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.

All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

APPENDIX C

FUS Fire Flow Calculations, WM Boundary Conditions, Schematic of the Hydraulic Model, Hydraulic Modeling Results

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech #: 113093 Project Name: Ahlul-Bayt Centre, Ottawa Date: 17-Dec-15 Input By: Stephen Matthews

Legend Input by User

No Information or Input Required

Building Description: Religious Gathering and Community Centre, 3 Storey building, 3325 GFA

Step			Choose	Multiplier Options	Value Used	Total Fire Flow (L/min)	
	Construction Ma	aterial					
	Coefficient	Wood frame		1.5			
1	related to type	Ordinary construction	Yes	1			
	of construction	Non-combustible construction		0.8	1		
	С	Fire resistive construction (< 3 hrs)		0.7			
	•	Fire resistive construction (> 3 hrs)		0.6			
	Floor Area						
2		Building Footprint (n ²)	2675				
-	Α	Number of Floors/Storeys	3				
		Gross Floor Area of structure (m ²)			3,325		
	F	Base fire flow without reductions				13 000	
	•	$F = 220 C (A)^{0.5}$				10,000	
		Reductions or Su	ircharges				
	Occupancy haza	ard reduction or surcharge					
		Non-combustible	Yes	-25%			
3		Limited combustible		-15%			
Ŭ	(1)	Combustible		0%	-25%	9,750	
		Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduc	tion					
		Fully Automatic Sprinkler System	No	-50%			
4		Adequately Designed System (NFPA 13)	Yes	-30%	-30%		
-	(2)	Standard Water Supply	No	-10%		-2,925	
		Fully Supervised System	No	-10%			
			Cumi	ulative Total	-30%		
	Exposure surch	arge (cumulative (%))					
		North Side	20.1 - 30 m		10%		
5		East Side	> 45.1m		0%		
Ŭ	(3)	South Side	> 45.1m		0%	975	
		West Side	> 45.1m		0%		
			Cumi	lative Total	10%		
		Total Required fire Flow, rounded to near	rest 1000L/m	in	L/min	8,000	
		(2,000 L/min < Fire Flow < 45,000 L/min)		or		133	
	(1) + (2) + (3)	Required Duration of Fire Flow (hours)		UI	USGPIN	2,114	
		Required Duration of Fire Flow (nours)			Hours	2	
		Required Volume of Fire Flow (m)			m	960	

Steve Matthews

From:	Francois Thauvette
Sent:	September-02-15 11:24 AM
То:	Steve Matthews
Subject:	FW: Albion Rd N_3095 - Proposed Water Service
Attachments:	3095 Albion Rd Aug 2015.pdf

FYI... Boundary conditions are provided below.

François Thauvette, P. Eng., Project Manager

NOVATECH Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x219 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Robertson, Syd [mailto:Syd.Robertson@ottawa.ca]
Sent: September-02-15 11:14 AM
To: Francois Thauvette
Subject: FW: Albion Rd N_3095 - Proposed Water Service

Hi François:

The following are boundary conditions, HGL, for hydraulic analysis at 3095 Albion Rd (zone 2C) assumed to be connected to the 152mm on Albion Rd (see attached PDF for location).

Minimum HGL = 123.5m

Maximum HGL = 135.3m

MaxDay (0.74 L/s) + FireFlow (107 L/s) = 120.8m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Summary of the demand data provide by the consultant:

- Proposed Development: Consists of a mosque (place of worship) with adjoining community centre, recreational and athletic facility, and school.
- Amount of fire flow required: 107 L/s
- Average daily demand: 0.16 L/s
- Maximum daily demand: 0.74 L/s
- Maximum hourly daily demand: 1.1 L/s

Syd Robertson, C.E.T.

Project Manager, Infrastructure Approvals Development Review Services Branch, Urban Outer Core Planning & Growth Management Department 110 Laurier Ave. W., 4th Floor E Ottawa, ON K1P 1J1

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 27916 ottawa.ca/planning / ottawa.ca/urbanisme

From: Francois Thauvette [mailto:f.thauvette@novatech-eng.com]
Sent: August 27, 2015 12:56 PM
To: Robertson, Syd
Cc: Steve Matthews
Subject: RE: Albion Rd N_3095 - Proposed Water Service

Hi Syd,

Please see responses below in RED. Please review and confirm if the existing 150mm dia. WM in Albion Road N. will provide sufficient fire flow and pressure to accommodate the proposed development. If not, we will need to discuss options (i.e. how to obtain permission to connect to the backbone 600mm dia. WM).

Regards,

François Thauvette, P. Eng., Project Manager
NOVATECH Engineers, Planners & Landscape Architects
240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x219 | Fax: 613.254.5867
The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Robertson, Syd [mailto:Syd.Robertson@ottawa.ca]
Sent: August-27-15 11:39 AM
To: Francois Thauvette
Subject: RE: Albion Rd N_3095 - Proposed Water Service

Hi François:

New connections to backbone mains are prohibited. Connect the proposed water service to the 152mm dia local watermain on Albion Road North.

Please submit a boundary condition request by providing the following information:

 Proposed location of water service – Connect the proposed 150mm dia. building service to the existing 150mm dia. WM in Albion Road N. (only if adequate), otherwise we will need to discuss options (i.e. connection to the existing 600mm dia. WM). The proposed design assumes using the existing municipal hydrant H047 on plan (370-025) for fire-fighting purposes. No private on-site hydrant is being proposed.

- 2. Amount of fire flow required. Fire flow = 107 L/s per FUS calculations (attached)
- 3. Average daily demand: ____ I/s. Average Daily Demand = 0.16 L/s (based on school/community centre use, which exceeds the demand calculated when considering as a place of assembly/worship)
- 4. Maximum daily demand: ____l/s. Max Day Demand = 0.74 L/s (based on MOE Table 3-3 Peaking Factors)
- 5. Maximum hourly daily demand: ____ I/s. Peak Hour Demand = 1.1 L/s (based on MOE Table 3-3 Peaking Factors)

Thanks,

Syd Robertson, C.E.T.

Project Manager, Infrastructure Approvals Development Review Services Branch, Urban Outer Core Planning & Growth Management Department 110 Laurier Ave. W., 4th Floor E Ottawa, ON K1P 1J1

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 27916 ottawa.ca/planning / ottawa.ca/urbanisme

From: Robertson, Syd Sent: August 26, 2015 9:29 AM To: 'Francois Thauvette' Subject: Albion Rd N_3095 - Proposed Water Service

Hi François:

I forwarded your water service inquiry to the City's Environmental Engineering Branch for comments, regarding the proposed connection to the 610mm dia feedermain, in order to achieve the required fire flows. I'll keep you posted on their response.

With regards to the private watermain crossing the subject site, a private easement should be established, in favour of the adjacent property owner, for maintenance and access (if not already in place). Should the private watermain be relocated to the City ROW then a License of Occupation would be required.

Syd Robertson, C.E.T.

Project Manager, Infrastructure Approvals Development Review Services Branch, Urban Outer Core Planning & Growth Management Department 110 Laurier Ave. W., 4th Floor E Ottawa, ON K1P 1)1

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 27916 ottawa.ca/planning / ottawa.ca/urbanisme This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Connect to Ex. 150mm WM (Albion Rd)

Ahlul-Bayt Centre Ottawa

Maximum Day + Fire Flow Demand Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc N1	86.4	0	114.58	28.18	276.45	40.10
Junc N2	86.6	0	120.8	34.2	335.50	48.66
Junc N3	85.8	133	111.83	26.03	255.35	37.04
Junc N4	87.2	0.92	120.8	33.6	329.62	47.81
Resvr R1	120.8	-133.92	120.8	0	0.00	0.00

Maximum Day + Fire Flow Demand

Network Table - Links

Link ID	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss
	m	mm		L/s	m/s	m/km
Pipe P1	12	150	100	133	7.53	518.4
Pipe P2	5.3	150	100	133	7.53	518.4
Pipe P3	1	150	100	0.92	0.05	0.06
Pipe P4	60	150	100	0.92	0.05	0.05

Ahlul-Bayt Centre Ottawa

Peak Hour Demand Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc N1	86.4	0	123.5	37.1	363.95	52.79
Junc N2	86.6	0	123.5	36.9	361.99	52.50
Junc N3	85.8	0	123.5	37.7	369.84	53.64
Junc N4	87.2	1.4	123.49	36.29	356.00	51.63
Resvr R1	123.5	-1.4	123.5	0	0.00	0.00

Peak Hour Demand

Network Table - Links

Link ID	Length m	Diameter mm	Roughness	Flow L/s	Velocity m/s	Unit Headloss m/km
Pipe P1	12	150	100	0	0	0
Pipe P2	5.3	150	100	0	0	0
Pipe P3	1	150	100	1.4	0.08	0.11
Pipe P4	60	150	100	1.4	0.08	0.11

APPENDIX D

SWM Modeling Results (Visual OTTHYMO), IDF Curves, Stage-Storage Tables and Broad Crested Weir Calculations

Detailed Outp na)= 0.07 0.0 nm)= 1.57 4.6	ut.txt 04 67
%)= 1.00 0.5 (m)= 27.08 40.0 = 0.013 0.25	;0)0 50 MIN. TIME STEP.
TRANSFORMED HY	
RAIN TIME RAIN " mm/hr hrs mm/hr ' 2.05 1.083 18.21 2. 2.05 1.167 18.21 2. 2.37 1.250 76.81 2. 2.37 1.333 76.81 2. 2.81 1.417 24.08 2. 2.91 1.500 24.08 2.	TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr 083 5.09 3.08 2.46 167 5.09 3.17 2.46 250 4.29 3.25 2.28 333 4.29 3.3 2.28 417 3.72 3.42 2.12
2.501 1.500 24.06 2. 3.50 1.583 12.36 2. 3.50 1.667 12.36 2. 4.69 1.750 8.32 2. 4.69 1.833 8.32 2.	5.60 3.72 3.58 2.12 5.83 3.29 3.58 1.99 667 3.29 3.67 1.99 .750 2.95 3.75 1.87 .833 2.95 3.83 1.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.917 2.68 3.92 1.77 .000 2.68 4.00 1.77
r)= 76.81 24.8 (n) 5.00 20.0	32 D0
n)= 1.30 (ii) 19.9 n)= 5.00 20.0 ns)= 0.33 0.0	98 (ii) 00 *TOTALS*
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 0.013 (iii) 58 1.33 99 19.94 88 33.88 18 0.59
COEFF. IS SMALLER THAN TIME	E STEP!
TON SELECTED FOR PERVIOUS)= 76.20 K (1/hr)= 13.20 Cum.Inf. (mr	LOSSES: r)= 4.14 m)= 0.00
) SHOULD BE SMALLER OR EQU AGE COEFFICIENT. S NOT INCLUDE BASEFLOW IF	JAL ANY.
Area (ha)= 0.45 Fotal Imp(%)= 28.00 Dir.	. Conn.(%)= 25.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	105 (1) 12 37 50 50 50
$\begin{array}{rrrr} r = & 76.81 & 1.8 \\ r) & 5.00 & 55.0 \\ in = & 1.98 & (ii) & 54.8 \\ in = & 5.00 & 55.0 \\ ns = & 0.31 & 0.0 \end{array}$	34 20 35 (ii) 20 22 *TOTALS*
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 0.024 (iii) 17 1.33 52 9.22 38 33.88 05 0.27
is)= 's)= m)= m)= =	0.02 0.0 1.33 2.1 32.31 1.0 33.88 33.8 0.95 0.0 Page 2

Detailed Output.txt

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORTO	ONS E	QUATIC	N SELE	CTED	FOR	PER	VIOUS	LOS	SES:
	FO	(mm,	/hr)=	76.20			К	(1/h	r)=	4.14
	FC	(mm,	/hr)=	13.20	,	Cum.1	nf.	(m	m)=	0.00
(ii)	TIME	STEP	(DT)	SHOULD	BE	SMALL	ER (OR EQ	UAL	
	THAN	THE S	STORAC	GE COEF	FICI	ENT.				

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	3.40 85.00	Dir. C	:onn.(%)=	= 68.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVI 2.8 1.5 1.0 150.5 0.01	OUS 9 7 0 5 3	PERVIOUS 0.51 4.67 0.50 40.00 0.250	; (i)	
Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	(mm/hr)= r (min) (min)= k (min)= (cms)=	76.8 5.0 3.6 5.0 0.2	1 0 3 (ii) 0 5	83.35 20.00 15.14 20.00 0.07	(ii)	τοται s*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(cms)= (hrs)= (mm)= (mm)= IENT =	0.4 1.3 32.3 33.8 0.9	7 3 1 8 5	0.07 1.58 12.00 33.88 0.35		0.490 (iii) 1.33 25.82 33.88 0.76
***** WARNING: STOR	AGE COEFF.	IS SMAL	LER THA	N TIME S	TEP!	
(i) HORTONS Fo (m Fc (m	EQUATION S m/hr)= 76. m/hr)= 13.	ELECTED 20 20 C	FOR PER K um.Inf.	VIOUS LC (1/hr)= (mm)=	OSSES: = 4.14 = 0.00	
(11) TIME STE THAN THE (iii) PEAK FLO	V DOES NOT	OEFFICIE INCLUDE	BASEFL	OW IF AN	IY.	
(11) TIME STE THAN THE (iii) PEAK FLO 	STORAGE C STORAGE C W DOES NOT 	(ha)= Imp(%)=	NT. BASEFL 1.10 37.00	OW IF AN	- IY. 	= 30.00
(11) TIME STEL THAN THE (iii) PEAK FLO 	(ha) = (m) = (m) = (m) = (m) = (m) =	(ha)= imp(%)= imp(%)= impervi 0.4 1.5 1.0 85.6 0.01	1.10 37.00 0US 33 3	Dir. C Dir. C PERVIOUS 0.69 4.67 0.50 40.00 0.250	- IY. Conn.(%)= ; (i)	- 30.00
(11) TIME STE THAN THE (111) PEAK FLO CALIB STANDHYD (0004) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. Ove Storage Coeff. Unit Hyd. Tpeak	<pre>STORAGE C STORAGE C W DOES NOT UDES NOT UDE</pre>	(ha)= (ha)= Imp(%)= IMPERVI 0.4 1.5 1.0 85.6 0.01 76.8 5.0 2.5 5.0 0.2	1.10 37.00 0US 1 7 0 3 3 1 0 9 9 (ii)	Dir. C Dir. C PERVIOUS 0.69 4.67 0.50 40.00 0.250 41.13 45.00 40.80 40.80 0.03	IY. (%)= ; (i) (ii)	= 30.00
(11) TIME STEL THAN THE (iii) PEAK FLO 	<pre>STORAGE C</pre>	(ha)= (ha)= Imp(%)= IMPERVI 0.4 1.5 1.0 85.6 0.01 76.8 5.0 0.2 5.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	ASEER BASEFL 1.10 37.00 0US 1 7 0 3 3 3 1 0 9 9 (ii) 9 7 3 1 8 5	Dir. C Dir. C PERVIOUS 0.69 4.67 0.50 40.00 0.250 4.13 45.00 40.86 45.00 0.03 0.03 0.03 0.03 0.03 0.03 0.00 2.48 33.88 0.07	IY. conn.(%)= ; (i) (ii)	- 30.00 TTOTALS* 0.070 (iii) 1.33 11.41 33.88 0.34
(11) TIME STE THAN THE (iii) PEAK FLO 	STORAGE C W DOES NOT Area Area (ha) = (ma) = (ma) = (ma) = (ma) = (ma) = (ma) = (ma) = (ma) = (cms) = (cms) = (cms) = (mm) = IENT = AGE COEFF.	(ha)= (ha)= Imp(%)= IMPERVI 0.4 1.5 1.0 85.6 0.01 76.8 5.0 0.2 5.5 5.0 0.2 2 0.0 1.3 33.8 0.9 IS SMAL	ASEFL BASEFL 1.10 37.00 00US 7 0 3 3 1 0 9 (ii) 9 9 (iii) 9 7 3 1 8 5 LLER THA	Dir. C Dir. C PERVIOUS 0.69 4.67 0.50 4.000 0.250 4.13 45.00 0.03 0.01 2.00 2.48 33.88 0.07 N TIME S Page 3	IY. conn.(%)= ; (i) (ii) ; ; ; ; ; ; ;	<pre>TOTALS* 0.070 (iii) 1.33 11.41 33.88 0.34</pre>

			Detaile	ed Output.	txt	
(1) HORTONS FO (1	EQUATION mm/hr)= 76	SELECTE	D FOR PER	RVIOUS LOS (1/hr)=	SSES: 4.14	
FC (i (ii) TIME ST	mm/hr)= 13 EP (DT) S⊦	3.20 HOULD BE	Cum.Inf SMALLER	OR EQUAL	0.00	
THAN TH (iii) PEAK FL	E STORAGE OW DOES NO	COEFFIC	IENT. JDE BASEFI	LOW IF ANY	<i>(</i> .	
ADD HYD (0006) 1 + 2 = 3		AREA	QPEAK	TPEAK	R.V.	
		(ha) 0.11	(cms) 0.013	(hrs) 1.33	(mm) 19.94	
+ ID2= 2 (0002):	0.45	0.024	1.33	9.22	
ID = 3 (0006):	0.56	0.037	1.33	11.33	
NOTE: PEAK F	LOWS DO NO	OT INCLU	JDE BASEFI	LOWS IF AN	IY.	
$\begin{vmatrix} ADD & HTD & (0000) \\ 3 + 2 = 1 \end{vmatrix}$		AREA	QPEAK	TPEAK	R.V.	
ID1= 3 (0006):	0.56	0.037	1.33	11.33	
+ 1D2= 2 (0003): ==========	3.40	0.490	1.33	25.82	
ID = 1 (0006):	3.96	0.527	1.33	23.77	
NOTE: PEAK F	LOWS DO NO	DT INCLU	JDE BASEFI	LOWS IF AN	IY.	
$\begin{vmatrix} ADD HYD \\ 1 + 2 = 3 \end{vmatrix}$		AREA	QPEAK	TPEAK	R.V.	
ID1= 1 (0006):	(ha) 3.96	(cms) 0.527	(hrs) 1.33	(mm) 23.77	
+ ID2= 2 (0004): ======	1.10	0.070	1.33	11.41	
ID = 3 (0006):	5.06	0.597	1.33	21.08	
NOTE: PEAK F	LOWS DO NO	OT INCLU	JDE BASEFI	LOWS IF AN	IY.	
CALIB	 Area	(ha)	= 1.36			
ID= 1 DT= 5.0 min	Total	I Imp(%)	= 91.00	Dir. Co	onn.(%)=	73.00
	(1)	IMPE	RVIOUS	PERVIOUS	(i)	
Dep. Storage	(na)= (mm)=	1		4.67		
Average Slope Length	(%)= (m)=	1 95	L.00 5.22	0.50 40.00		
Mannings n	=	0.	013	0.250		
Max.Eff.Inten	.(mm/hr)=	76	5.81	201.24		
Storage Coeff	. (min)=	2	.76 (ii)	10.84 ((ii)	
Unit Hyd. Tpe Unit Hyd. pea	ак (min)= k (cms)=	Ċ).28	0.09		
PEAK FLOW	(1 21	0.04	*	TOTALS* 0.226 (iii)
	(CMS)=).ZI	0.0.		
TIME TO PEAK RUNOFF VOLUME	(Cms)= (hrs)= (mm)=	1	2.31	1.50 16.34		1.33 28.00
TIME TO PEAK RUNOFF VOLUME TOTAL RAINFAL	(Cms)= (hrs)= (mm)= L (mm)=	1 32 33	2.31 3.88	1.50 16.34 33.88		1.33 28.00 33.88

Detailed Output.txt RUNOFF COEFFICIENT = 0.95 0.48 0.83 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	Detailed Output.txt (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0013) 4.840 0.727 1.33 26.43 OUTFLOW: ID= 1 (0012) 4.840 1.92 26.38 PEAK FLOW REDUCTION [Qout/Qin](%)= 14.65 TIME SHIFT OF PEAK FLOW (min)= 35.00 MAXIMUM STORAGE USED (ha.m.)= 0.0909
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{vmatrix} ADD HYD & (0013) \\ 1 + 2 = 3 \\ minormal{times} \\ 1 + 2 = 3 \\ minormal{times} \\ 1 + 2 = 3 \\ minormal{times} \\ (ha) & (cms) & (hrs) & (mm) \\ 1 + 102 = 2 & (0009) : & 1.36 & 0.526 & 1.33 & 28.00 \\ + 102 = 2 & (0009) : & 3.48 & 0.501 & 1.33 & 25.82 \\ \hline \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) & (cms) & (cms) & (cms) & (cms) & (cms) \\ 1 - 2 & (cms) \\ 1 - 2 & (cms) & (cms$	CALTB Area (ha)= 0.04 STANDHYD (0011) Area (ha)= 0.04 IDE 1 DT= 5.0 min Total Imp(%)= 78.00 Dir. Conn.(%)= 78.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.03 0.01 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 16.33 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 76.81 1.05 over (min) 5.00 70.00 Storage Coeff. (min)= 0.26 (ii) 67.22 (ii)
RESERVOIR (0012) IN= 2> OUT= 1 DT= 5.0 min OUTFLOW STORAGE <	Unit Hyd. iPeak (mn)= 5.00 70.00 Unit Hyd. peak (cms)= 0.34 0.02 *TOTALS* PEAK FLOW (cms)= 0.01 0.00 0.007 (iii) TIME TO PEAK (hrs)= 1.33 2.42 1.33 RUNOFF VOLUME (mm)= 32.31 1.05 25.40 TOTAL RAINFALL (mm)= 33.88 33.88 33.88 RUNOFF COEFFICIENT = 0.95 0.03 0.75 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Page 6

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Detailed Output.txt TIME RAIN TERANSFORMED HYETOGRAPH TIME RAIN TIME RAIN <th colsp<="" th=""></th>	
ADD HYD (0010) AREA QPEAK TPEAK R.V.	Unit Hyd. ipeak (imi)= 3.00 13.00 Unit Hyd. ipeak (imi)= 0.34 0.08 *TOTALS* * PEAK FLOW (cms)= 0.32 0.00 0.019 (iii) TIME TO PEAK (hrs)= 1.33 1.50 1.33 RUNOFF VOLUME (mm)= 43.59 13.59 29.49 TOTAL RAINFALL (mm)= 45.16 45.16 45.16 RUNOFF COEFFICIENT = 0.97 0.65 0.65 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 k (1/hr)= 4.14 FC (mm/hr)= 776.20 K (1/hr)= 4.14 FC (mm/hr)= 71.20 K (1/hr)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Image: Coefficient of the coeff	
READ STORM Filename: C:\Users\borendorff.NOVATECH\AppD ata\Local\Temp\ 828b6ea6-f7be-4f55-aa5c-00940feb087a\8fb786b5 Ptotal= 45.16 mm Comments: City of Ottawa: 5yr-4hr Chicago (10 minu TIME RAIN TIME RAIN 0.50 3.68 1.50 0.83 6.15 0.83	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.07 0.04 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 27.08 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. Page 7	RUNOFF COEFFICIENT = 0.97 0.18 0.38 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Page 8	

Detailed Output.txt

CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area (ha)= 3 Total Imp(%)= 85	.40 .00 Dir. Conn.(%)	= 68.00
Surface Area (1 Dep. Storage (1 Average Slope 1 Length 1 Mannings n May Eff Inten (mm/)	$\begin{array}{rcrr} \text{IMPERVIOUS} \\ \text{ha}) = & 2.89 \\ \text{mm}) = & 1.57 \\ (\%) = & 1.00 \\ (m) = & 150.55 \\ = & 0.013 \\ \text{hc}) = & 104.19 \end{array}$	PERVIOUS (i) 0.51 4.67 0.50 40.00 0.250 187.68	
Storage Coeff. (m Unit Hyd. Tpeak (m Unit Hyd. peak (cr	in) = 3.21 (in) = 3.21 (in) = 5.00 (in) = 5.00 (in) = 5.00 (in) = 0.27 (in) = 0.65 (in)	15.00 15.00 11.53 (ii) 15.00 0.09 0.13	*TOTALS*
TIME TO PEAK (hi RUNOFF VOLUME (r TOTAL RAINFALL (r RUNOFF COEFFICIENT	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.50 21.09 45.16 0.47	1.33 36.39 45.16 0.81

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORTO	ONS EQUATION SELECTED FOR PERVIOU	JS LOSSES:
	FO	(mm/hr)= 76.20 К (1/	/hr)= 4.14
	FC	(mm/hr)= 13.20 Cum.Inf. ((mm)= 0.00
(ii)	TIME	STEP (DT) SHOULD BE SMALLER OR E	EQUAL
	THAN	THE STORAGE COEFFICIENT.	
(iii)	PEAK	FLOW DOES NOT INCLUDE BASEFLOW]	IF ANY.

CALIB STANDHYD (0004) ID= 1 DT= 5.0 min	Area Total	(ha)= 1.10 Imp(%)= 37.00) Dir. Conn.(9	%)= 30.00
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.	(ha)= (mm)= (%)= (m)= = (mm/hr)=	IMPERVIOUS 0.41 1.57 1.00 85.63 0.013 104.19	PERVIOUS (i) 0.69 4.67 0.50 40.00 0.250 31.67	
ove Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak PEAK FLOW TIME TO PEAK	r (min) (min)= (min)= (cms)= (cms)=	5.00 2.29 (ii) 5.00 0.30 0.09 1.33	20.00 19.23 (ii) 20.00 0.06 0.04 1 58	*TOTALS* 0.105 (iii) 1.33
RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(mm)= (mm)= LENT =	43.59 45.16 0.97	9.50 45.16 0.21	19.73 45.16 0.44

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORTO	ONS EQUATI	ON SELECTE	D FOR PERVI	OUS LOSSES:	
	FO	(mm/hr)=	76.20	к (1/hr)= 4.14	
	FC	(mm/hr)=	13.20	Cum.Inf.	(mm)= 0.00	
(ii)	TIME	STEP (DT)	SHOULD BE	SMALLER OR	EQUAL	
	THAN	THE STORA	GE COEFFIC	IENT.		
(iii)	PEAK	FLOW DOES	NOT INCLU	DE BASEFLOW	IF ANY.	

Page 9

Detailed Output.txt

ADD HYD (0006) 1 + 2 = 3 TD1= 1 (0001): + ID2= 2 (0002): ID = 3 (0006):	AREA QPEAH (ha) (cms) 0.11 0.019 0.45 0.035 0.56 0.054	C TPEAK R.V. (hrs) (mm) 1.33 29.49 1.33 17.12 1.33 19.55	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASE	EFLOWS IF ANY.	
$\begin{vmatrix} ADD HYD & (0006) \\ 3 + 2 = 1 \\ ID1= 3 & (0006): \\ + ID2= 2 & (0003): \\ \hline $	AREA QPEAF (ha) (cms) 0.56 0.054 3.40 0.714	C TPEAK R.V. 0 (hrs) (mm) 1.33 19.55 1.33 36.39	
ID = 1 (0006):	3.96 0.768	1.33 34.01	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASE	EFLOWS IF ANY.	
ADD HYD (0006) 1 + 2 = 3 TD1= 1 (0006): + ID2= 2 (0004):	AREA QPEAH (ha) (cms) 3.96 0.768 1.10 0.105	<pre>K TPEAK R.V. (hrs) (mm) 1.33 34.01 1.33 19.73</pre>	
ID = 3 (0006):	5.06 0.872	1.33 30.90	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASE	FLOWS IF ANY.	
CALIB STANDHYD (0007) Area ID= 1 DT= 5.0 min Total	(ha)= 1.3 Imp(%)= 91.0	36 00 Dir. Conn.(%)=	73.00
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	IMPERVIOUS 1.24 1.57 1.00 95.22 0.013	PERVIOUS (i) 0.12 4.67 0.50 40.00 0.250	
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	104.19 5.00 2.44 (i 5.00 0.30	292.88 10.00 i) 7.00 (ii) 10.00 0.14	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.28 1.33 43.59 45.16 0.97	0.07 1.42 25.93 45.16 0.57	0.347 (iii) 1.33 38.82 45.16 0.86
***** WARNING: STORAGE COEFF	. IS SMALLER T	THAN TIME STEP!	
(i) HORTONS EQUATION	SELECTED FOR F	PERVIOUS LOSSES: (1/hr) = 4.14	

FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

Page 10

Detailed Output.txt (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	Detailed Output.txt
CALIB STANDHYD (0009) Area (ha)= 3.48 DI= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.96 0.52 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 152.32 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 104.19 187.68 over (min) 5.00 15.00 Storage Coeff. (min)= 3.23 (ii) 11.55 (ii) Unit Hyd. peak (ms)= 0.27 0.09 VIII Hyd. peak (cms)= 0.66 0.14 0.730 (iii) TIME TO PEAK (hrs)= 1.33 1.50 1.33 RUNOFF VOLUME (mm)= 43.59 21.09 36.39 TOTAL AINFALL (mm)= 45.16 45.16 45.16 RUNOFF COEFFICIENT = 0.97 0.47 0.81 **** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 Cmm.Inf. (mm)= 0.00	$ \begin{vmatrix} 5TATODHYD (0008) & Area (ha) = 0.18 \\ D=1 DT= 5.0 min & Total Imp(%) = 28.00 & Dir. Conn.(%) = 28.00 \\ \hline Total Imp(%) = 28.00 & Dir. Conn.(%) = 28.00 \\ \hline Surface Area (ha) = 0.05 & 0.13 \\ Dep. Storage (mm) = 1.57 & 4.67 \\ Average Slope (%) = 1.00 & 0.50 \\ Length (m) = 34.64 & 40.00 \\ Mannings n = 0.013 & 0.250 \\ \hline Max.Eff.Inten.(mm/hr) = 104.19 & 22.50 \\ over (min) & 5.00 & 25.00 \\ Storage Coeff. (min) = 1.33 (ii) 20.76 (ii) \\ Unit Hyd. Tpeak (min) = 5.00 & 25.00 \\ \hline Unit Hyd. Tpeak (min) = 5.00 & 25.00 \\ \hline Vert Min = 0.013 & 0.05 \\ \hline TIME TO PEAK (hrs) = 1.33 & 1.67 & 1.33 \\ RUNOFF VOLUME (mm) = 43.59 & 7.50 & 17.60 \\ TOTAL RAINFALL (mm) = 45.16 & 45.16 & 45.16 \\ RUNOFF COEFFLIENT = 0.97 & 0.17 & 0.39 \\ \hline ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! \\ (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr) = 76.20 & K (1/hr) = 4.14 \\ FC (mm/hr) = 76.20 & K (1/hr) = 4.14 \\ FC (mm/hr) = 70.SMALLER OR EQUAL THAN THE STORAGE COEFFLIENT. \\ (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \\ \hline $
ADD HYD (0013) AREA QPEAK TPEAK R.V.	
RESERVOIR (0012) I IN= 2> 0UT= 1 OUTFLOW STORAGE DT= 5.0 min OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.3000 0.0070 0.0074 0.0074 0.810 0.2000 0.0000 0.0000 0.0000 0.0074 0.810 1.8000 0.2179 0.2000 0.1000 0.2000 0.0000 0.2000 0.0000 0.1000 0.0000 0.2000 0.1000 0.1000 0.0000 0.2000 0.1000 0.2000 0.1000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 NEA QPEAK TPEAK R.V. (ha) (cms) (min) = 15.00 MAYTIMUM CTORACE (han) MAYTIMUM CTORACE (han)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Page 11	Page 12

ADD HYD (0010) Detailed Output.txt 1 + 2 = 3 AREA OPEAK TPEAK R.V.	Detailed Output.txt 3.58 4.25 0.583 7.54 1.583 27.32 2.583 7.08 3.58 4.25 0.667 7.54 1.667 27.32 2.667 7.08 3.67 4.25 0.750 10.16 1.750 18.24 2.750 6.35 3.75 3.99 0.833 10.16 1.833 18.24 2.813 6.35 3.83 3.99 0.917 15.97 1.917 13.74 2.917 5.76 4.00 3.77 1.000 15.97 2.000 13.74 3.000 5.76 4.00 3.77
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Max.Eff.Inten.(mm/hr)= 178.56 219.12 over (min) 5.00 10.00 Storage coeff. (min)= 0.93 (ii) 8.74 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 Unit Hyd. peak (cms)= 0.34 0.12
ADD HYD (0010) 3 + 2 = 1 AREA QPEAK TPEAK R.V.	"TOTALS" PEAK FLOW (cms)= 0.03 0.01 0.041 (iii) TIME TO PEAK (hrs)= 1.33 1.42 1.33 RUNOFF VOLUME (mm)= 74.43 38.04 57.33 TOTAL RAINFALL (mm)= 76.00 76.00 76.00 RUNOFF COEFFICIENT 0.98 0.50 0.75
ID = 1 (0010): 5.06 0.311 1.58 36.32	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
READ STORM Filename: C:\Users\borendorff.NOVATECH\AppD ata\Local\Temp\ 828b6ea6-f7be-4f55-aa5c-00940feb087a\bf7a8701 Ptotal= 76.00 mm Comments: City of Ottawa: 100yr-4hr Chicago (10 mi	
TIME RAIN TIME RAIN <th< td=""><td>$\begin{array}{rcl} \mbox{IMPERVIOUS} & \mbox{PERVIOUS} & \mbox{IMPERVIOUS} & \mbox{PERVIOUS} & \mbox{(i)} \\ \mbox{Surface Area} & \mbox{(ha)} = & 0.13 & 0.32 \\ \mbox{Dep. Storage} & \mbox{(mm)} = & 1.57 & 4.67 \\ \mbox{Average Slope} & \mbox{(\%)} = & 1.00 & 0.50 \\ \mbox{Length} & \mbox{(m)} = & 5.4.77 & 40.00 \\ \mbox{Mannings} & \mbox{mannnings} & \mbox{mannnnings} & mannnnnnnnnnnnnnnnnnnnnnn$</td></th<>	$\begin{array}{rcl} \mbox{IMPERVIOUS} & \mbox{PERVIOUS} & \mbox{IMPERVIOUS} & \mbox{PERVIOUS} & \mbox{(i)} \\ \mbox{Surface Area} & \mbox{(ha)} = & 0.13 & 0.32 \\ \mbox{Dep. Storage} & \mbox{(mm)} = & 1.57 & 4.67 \\ \mbox{Average Slope} & \mbox{(\%)} = & 1.00 & 0.50 \\ \mbox{Length} & \mbox{(m)} = & 5.4.77 & 40.00 \\ \mbox{Mannings} & \mbox{mannnings} & \mbox{mannnnings} & mannnnnnnnnnnnnnnnnnnnnnn$
CALIB STANDHYD (0001) Area (ha)= 0.11 ID= 1 DT= 5.0 min Total Imp(%)= 66.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.07 0.04 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50	0111 Hyd. peak (LHS)= 0.35 0.09 *TOTALS* PEAK FLOW (cms)= 0.06 0.067 (iii) TIME TO PEAK (hrs)= 1.33 1.50 1.33 RUNOFF VOLUME (mm)= 74.43 30.24 41.28 TOTAL RAINFALL (mm)= 76.00 76.00 76.00 RUNOFF COEFFICIENT = 0.98 0.40 0.54 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EDUATION SELECTED FOR PERVIOUS LOSSES:
Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	FO (mm/hr)= 75.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
TIME RAIN TIME RAIN <th< td=""><td></td></th<>	

$\begin{array}{rcl} & & & & & & \\ \text{Dep. Storage} & (mm) = & 1.57 & 4.67 \\ \text{Average Slope} & (\%) = & 1.00 & 0.50 \\ \text{Length} & (m) = & 150.55 & 40.00 \\ \text{Mannings n} & = & 0.013 & 0.250 \\ \end{array}$	Detailed Output.txt NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
Max.Eff.Inten.(mm/hr)= 178.56 362.98 over (min) 5.00 10.00 Storage Coeff. (min)= 2.59 (ii) 7.22 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 Unit Hyd. peak (cms)= 0.29 0.14 *TOTALS* * PEAK FLOW (cms)= 1.13 0.35 1.456 (iii) TIME TO PEAK (hrs)= 1.33 1.42 1.33 RUNOFF VOLUME (mm)= 76.00 76.00 76.00 RUNOFF COEFFICIENT = 0.98 0.63 0.87	ADD HYD (0006) 3 + 2 = 1 TD1= 3 (0006): 0.56 0.128 1.33 44.43 + ID2= 2 (0003): 3.40 1.456 1.33 65.84 TD = 1 (0006): 3.96 1.584 1.33 62.81 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
<pre>(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
CALIB Area (ha) = 1.10 STANDHYD (0004) Total Imp(%) = 37.00 Dir. Conn.(%) = 30.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 0.41 0.69 Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = 1.00 0.50 Length (m) = 85.63 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr) = 178.56 152.71 over (min) 5.00 15.00 Storage Coeff. (min) = 1.85 (ii) 10.88 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. peak (cms) = 0.32 0.09 *TOTALS* PEAK FLOW (cms) = 0.16 0.15 0.238 (iii) TIME TO PEAK (hrs) = 1.33 1.50 1.33 RUNOFF VOLUME (mm) = 76.00 76.00 76.00 RUNOFF COEFFICIENT = 0.98 0.42 0.59 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr) = 76.20 K (1/hr) = 4.14 Fc (mm/hr) = 13.20 cum.Inf. (mm) = 0.00 (ii) TIME STORAGE COEFF. IS SMALLER FOR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. CALTB STANDHYD (0007) ID= 1 DT= 5.0 min Total Imp(%) = 91.00 Dir. Conn.(%) = 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 1.24 0.12 Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = 1.00 0.50 Length (m) = 95.22 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr) = 178.56 519.91 over (min) 5.00 10.00 Storage Coeff. (min= 1.97 (ii) 5.64 (ii)) Unit Hyd. peak (cms) = 0.31 0.15 PEAK FLOW (cms) = 0.31 0.15 PEAK FLOW (cms) = 1.33 1.33 RUNOFF VOLUME (mm) = 74.43 54.05 68.93 TOTAL RAINFALL (mm) = 76.00 76.00 RUNOFF VOLUME (mm) = 76.00 76.00 RUNOFF VOLUME (mm) = 76.00 76.00 RUNOFF VOLUME (mm) = 76.00 76.00 RUNOFF COEFFICIENT = 0.98 0.71 0.91 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr) = 13.20 Cum.Inf. (m0.00 (ii) TIME STEP_(COT) SHOULD BE SMALLER OR EQUAL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = May Eff Inten (mm/hr)-	Detailed 2.96 1.57 1.00 152.32 0.013 178.56	Output.txt 0.52 4.67 0.50 40.00 0.250	
vover (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.00 2.61 (ii) 5.00 0.29	10.00 7.24 (ii) 10.00 0.14	*70741.5*
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	1.15 1.33 74.43 76.00 0.98	0.35 1.42 47.58 76.00 0.63	1.490 (iii) 1.33 65.84 76.00 0.87
*** WARNING: STORAGE COEFF.	IS SMALLER THAN	TIME STEP!	
 (i) HORTONS EQUATION SE Fo (mm/hr)= 76.2 FC (mm/hr)= 13.2 (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT 	LECTED FOR PERV 0 K 0 Cum.Inf. LD BE SMALLER C EFFICIENT. INCLUDE BASEFLC	/IOUS LOSSES: (1/hr)= 4.14 (mm)= 0.00 R EQUAL W IF ANY.	
ADD HYD (0013)			
1 + 2 = 3 A	REA QPEAK	TPEAK R.V (hrs) (mm	<u>'</u>
ID1=1 (0007): 1 + $TD2=2 (0009): 3$.36 0.620	1.33 68.93	
ID = 3 (0013): 4	.84 2.109	1.33 66.71	=
NOTE: PEAK FLOWS DO NOT	INCLUDE BASEFLC	WS IF ANY.	
RESERVOIR (0012) IN= 2> OUT= 1 DT= 5.0 min OUTFL 0.00 0.00 0.00 0.20	DW STORAGE) (ha.m.) 00 0.0000 70 0.0074 74 0.0810 00 0.1000	OUTFLOW (cms) 0.3000 0.5300 1.8000 0.0000	STORAGE (ha.m.) 0.1050 0.1375 0.2179 0.0000
INFLOW : ID= 2 (0013) OUTFLOW: ID= 1 (0012)	AREA QPEA (ha) (cms) 4.840 2. 4.840 0.	K TPEAK 5) (hrs) 109 1.33 843 1.50	R.V. (mm) 66.71 66.65
PEAK FLOW TIME SHIFT MAXIMUM ST	REDUCTION [Q OF PEAK FLOW ORAGE USED	out/Qin](%)= 3 (min)= 1 (ha.m.)=	9.98 0.00 0.1575
CALIB STANDHYD (0008) Area D= 1 DT= 5.0 min Total I	(ha)= 0.18 mp(%)= 28.00	Dir. Conn.(%)	= 28.00
Surface Area (ha)=	IMPERVIOUS F 0.05	PERVIOUS (i) 0.13	

	Length Mannings n	(m)= =	Detaileo 34.64 0.013	1 Output.tx 40.00 0.250	ĸt	
	Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)= (min) (min)= (min)= (cms)=	178.56 5.00 1.07 (ii) 5.00 0.34	126.32 15.00 10.82 (i 15.00 0.09	i)	
	PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.02 1.33 74.43 76.00 0.98	0.02 1.50 29.07 76.00 0.38	*TOTALS 0.036 1.33 41.77 76.00 0.55	*(iii)
***	* WARNING: STORA	GE COEFF. IS	SMALLER THAN	N TIME STE	P!	
	(i) HORTONS E Fo (mm, Fc (mm, (ii) TIME STEP THAN THE (iii) PEAK FLOW	QUATION SELE /hr)= 76.20 /hr)= 13.20 (DT) SHOULD STORAGE COEF DOES NOT IN	CTED FOR PER K Cum.Inf. BE SMALLER (FICIENT. CLUDE BASEFL(VIOUS LOSS (1/hr)= (mm)= DR EQUAL DW IF ANY.	ES: 4.14 0.00	
CAI ST/ ID=	_IB ANDHYD (0011) 1 DT= 5.0 min	Area (Total Imp	ha)= 0.04 (%)= 78.00	Dir. Con	n.(%)= 78.0	0
	Surface Area Dep. Storage Average Slope Length Mannings n	IM (ha)= (mm)= (%)= (m)= =	IPERVIOUS 0.03 1.57 1.00 16.33 0.013	PERVIOUS (0.01 4.67 0.50 40.00 0.250	i)	
	Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)= (min) (min)= (min)= (cms)=	178.56 5.00 0.68 (ii) 5.00 0.34	126.32 15.00 10.43 (i 15.00 0.09	i)	*
	PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.02 1.33 74.43 76.00 0.98	0.00 1.50 29.07 76.00 0.38	0.016 1.33 64.45 76.00 0.85	(iii)
***	* WARNING: STORA	GE COEFF. IS	SMALLER THAN	N TIME STE	P!	
	(i) HORTONS E Fo (mm, Fc (mm, (ii) TIME STEP THAN THE (iii) PEAK FLOW	QUATION SELE /hr)= 76.20 /hr)= 13.20 (DT) SHOULD STORAGE COEF DOES NOT IN	CTED FOR PER K Cum.Inf. BE SMALLER (FICIENT. CLUDE BASEFL(VIOUS LOSS (1/hr)= (mm)= DR EQUAL DW IF ANY.	ES: 4.14 0.00	
ADI	$\begin{array}{c c} D & HYD & (0010) \\ 1 + 2 = 3 \\ \end{array}$	ARE (ha	A QPEAK	TPEAK (hrs)	R.V. (mm)	
	+ ID2 = 2 (00)	11): 0.0 12): 4.8	4 0.016	1.33	66.65	
	ID = 3 (00)	10): 4.8	8 0.850	1.50	66.63	
	NOTE: PEAK FLO	WS DO NOT IN	ICLUDE BASEFLO Pa	OWS IF ANY age 18		

Detailed	Output.txt
----------	------------

ADD HYD (0010)	AREA	QPEAK	TPEAK	R.V.
3 + 2 = 1	(ha)	(cms)	(hrs)	(mm)
ID1= 3 (0010):	4.88	0.850	1.50	66.63
+ ID2= 2 (0008):	0.18	0.036	1.33	41.77
ID = 1 (0010):	5.06	0.882	1.50	65.75

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

****** ** SIMULATION NUMBER: 4 **

Ptotal- 48 47 mm	Comment	ata\I 828b6	ocal\Ter bea6-f7be	endortt.No mp\ e-4f55-aa	5c-00940	AppD feb087a\4	4c184de
Protect = 48.47 mm TIME hrs 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.67 2.83 3.00 3.17 3.33 3.67 3.83 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00	RAIN mm/hr 0.40 0.41 0.41 0.41 0.41 0.41 0.41 0.41	TIME hrs 6.17 6.33 6.50 6.67 7.00 7.17 7.33 7.50 7.67 7.63 7.67 7.63 8.07 7.63 8.07 7.63 8.17 8.33 8.00 9.17 9.33 9.00 9.13 9.00 9.13 9.50 9.67 9.33 10.00 10.67 10.83 11.00 10.67 11.77 11.33 11.50	RAIN mm/hr 1.37 1.49 1.63 2.05 2.35 2.81 3.50 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 4.69 7.30 5.09 4.29 3.72 2.85 2.37 2.95 2.95 2.25 2.25 2.37 2.95 2.25 2.25 2.35 2.25 2.35 2.35 2.35 2.3	Mai: 2yr-2; ' TIME ' hrss 12.17 12.37 12.37 12.67 12.83 13.10 13.17 13.50 13.67 13.67 13.67 14.17 14.33 14.07 14.67 14.67 14.67 15.07 15.67 15.83 16.50 16.67 16.83 16.67 16.83 17.00 16.67 17.77 17.33 17.50 17.67 17.87 18.00	RAIN mm/hr 1.16 1.13 1.06 1.03 1.00 0.95 0.93 0.90 0.88 0.84 0.75 0.73 0.75 0.75 0.72 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76	Lago Lub 1 TIME hrss 18.17 18.33 18.50 18.17 19.33 19.50 19.67 19.33 20.50 20.47 20.33 20.50 20.67 21.33 21.60 21.67 21.33 22.50 22.67 22.33 22.60 23.17 23.33 23.50 23.67 23.83 24.00	RAI mm/h 0.577 0.566 0.555 0.499 0.486 0.447 0.446 0.4420 0.4420 0.4420 0.4420 0.44200 0.44200 0.4420000000000

ID= 1 DT= 5.0 min	Total	Imp(%)=	Detailed 66.00	Output.txt Dir. Conn.(%)=	53.00

Surface Area Dep. Storage Average Slope Length	(ha)= (mm)= (%)= (m)=	IMPERVIOUS 0.07 1.57 1.00 27.08	PERVIOUS (i) 0.04 4.67 0.50 40.00
Mannings n	=(m) =	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	l hrs	mm/hr	l'hrs	mm/hr	i hrs	mm/hr
0 083	0 40	6 083	1 37	12 083	1 20 1	18 08	0 57
0.005	0.40	6 167	1 27	12.005	1.20	10.00	0.57
0.107	0.40	0.107	1.5/	112.107	1.20	10.1/	0.57
0.250	0.41	6.250	1.49	12.250	1.16	18.25	0.56
0.333	0.41	6.333	1.49	12.333	1.16	18.33	0.56
0.417	0.41	6.417	1.63	12.417	1.13	18.42	0.55
0.500	0.41	6.500	1.63	12.500	1.13	18.50	0.55
0 583	0 12	6 583	1 82	12 583	1 00	18 58	0.55
0.303	0.42		1 02	112.000	1.00	10.50	0.55
0.667	0.42	0.007	1.82	112.007	1.09	10.0/	0.55
0.750	0.43	6.750	2.05	12.750	1.06	18.75	0.54
0.833	0.43	6.833	2.05	12.833	1.06	18.83	0.54
0.917	0.44	6.917	2.37	12.917	1.03	18.92	0.53
1.000	0.44	7,000	2.37	13,000	1.03	19.00	0.53
1 083	0 45	7 083	2 81	13 083	1 00 1	19 08	0 53
1 167	0.45	7 167	2.01	12 167	1 00	10 17	0.53
1.107	0.45	1 7 250	2.01	112 200	1.00	10 25	0.55
1.250	0.46	1 7.250	3.50	113.250	0.97	19.25	0.52
1.333	0.46	/.333	3.50	13.333	0.97	19.33	0.52
1.417	0.47	7.417	4.69	13.417	0.95	19.42	0.51
1,500	0.47	7.500	4.69	13.500	0.95	19.50	0.51
1 583	0 48	7 583	7 30	13 583	0 93 1	19 58	0 51
1 667	0.40	7 667	7.20	12 667	0.02	10 67	0.51
1.007	0.40	7.007	10 21	112 700	0.93	10.75	0.51
1.750	0.49	1 7.750	10.21	113.750	0.90	19.75	0.50
1.833	0.49	7.833	18.21	13.833	0.90	19.83	0.50
1.917	0.50	7.917	76.81	13.917	0.88	19.92	0.49
2.000	0.50	8.000	76.81	14.000	0.88	20.00	0.49
2.083	0.51	8.083	24.08	14.083	0.86	20.08	0.49
2 167	0 51	8 167	24 08	14 167	0.86	20 17	0 49
2 250	0.52	8 250	12 26	14 250	0.00	20.25	0.49
2.230	0.52	0.230	12.30	14.230	0.04	20.23	0.40
2.333	0.52	0.333	12.30	14.333	0.64	20.33	0.40
2.417	0.53	8.417	8.32	14.41/	0.82	20.42	0.48
2.500	0.53	8.500	8.32	14.500	0.82	20.50	0.48
2.583	0.55	8.583	6.30	14.583	0.81	20.58	0.47
2.667	0.55	8.667	6.30	14.667	0.81	20.67	0.47
2.750	0.56	8.750	5.09	14.750	0.79	20.75	0.47
2 833	0 56	8 833	5 09	1/ 833	0 70	20 83	0 47
2.033	0.50		4 20	14 017	0.75	20.03	0.46
2.917	0.50	0.917	4.29	114.917	0.70	20.92	0.40
3.000	0.58	9.000	4.29	115.000	0.78	21.00	0.46
3.083	0.60	9.083	3.72	15.083	0.76	21.08	0.46
3.167	0.60	9.167	3.72	15.167	0.76	21.17	0.46
3.250	0.61	9.250	3.29	15.250	0.75	21.25	0.45
3.333	0.61	9.333	3.29	15.333	0.75	21.33	0.45
3.417	0.63	9.417	2.95	15.417	0.73	21.42	0.45
3 500	0 63	9 500	2 95	15 500	0 73	21 50	0 45
2 500	0.05	0 500	2.55	115 500	0.75	21.50	0.41
5.303	0.05	9.303	2.00	115.303	0.72	21.30	0.44
3.00/	0.65	9.007	2.08	112.00/	0.72	21.07	0.44
3.750	0.67	9.750	2.46	15.750	0.71	21.75	0.44
3.833	0.67	9.833	2.46	15.833	0.71	21.83	0.44
3.917	0.70	9.917	2.28	15.917	0.69 İ	21.92	0.44
4,000	0.70	10.000	2.28	16.000	0.69	22.00	0.44
4 083	0 72	110 083	2 12	16 083	0.68	22 08	0 43
4 167	0.72	10.003	2.12	16 167	0.00	22.00	0.42
4.107	0.72	110.107	2.12	110.107	0.00	22.17	0.45
4.250	0.75	110.220	T.99	110.250	0.6/	22.25	0.43
4.333	0.75	110.333	1.99	16.333	0.67	22.33	0.43
4.417	0.78	10.417	1.87	16.417	0.66	22.42	0.42
4.500	0.78	10.500	1.87	16.500	0.66	22.50	0.42
4.583	0.82	10.583	1.77	16.583	0.65	22.58	0.42

Page 20

| CALIB | | STANDHYD (0001) | Area (ha)= 0.11

Page 19

Detailed Output.txt 4.667 0.82 10.667 1.77 16.667 0.65 22.67 0.42 4.750 0.85 10.750 1.68 16.750 0.64 22.75 0.42 4.833 0.85 10.833 1.68 16.833 0.64 22.83 0.42 4.917 0.89 10.917 1.60 16.917 0.63 27.92 0.41	Detailed Output.txt THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
<pre>Si200 0:86 10:120 1:00 1:00 17:00 0:31 25:00 0:41 S:003 0:94 11:083 1:52 17:083 0:62 23:08 0.41 S:083 0:94 11:167 1:52 17:167 0:62 23:17 0.41 S:250 0:99 11:250 1:46 17:250 0:61 23:25 0:40 S:333 0:99 11:33 1:46 17:333 0:61 23:33 0:40 S:417 1:04 11:417 1:40 17:500 0:60 23:42 0:40 S:500 1:04 11:500 1:40 17:500 0:60 23:42 0:40 S:533 1:11 11:501 1:40 17:500 0:60 23:50 0:40 S:567 1:11 11:667 1:34 17:667 0:59 23:67 0:40 S:667 1:11 11:67 1:34 17:667 0:59 23:67 0:40 S:667 1:11 11:750 1:29 17:750 0:58 23:75 0:39 S:917 1:27 11:917 1:24 17:917 0:58 23:83 0:39 S:917 1:27 11:917 1:24 17:917 0:58 23:92 0:39 6:000 1:27 12:000 1:24 18:000 0:58 24:00 0:39 Max.Eff.Inten.(mm/hr)= 76:81 34:62 over (min)= 1:30 (ii) 17:65 (ii) Unit Hyd. peak (min)= 5:00 20:00 Storage Coeff. (min)= 1:30 (ii) 17:65 (ii) Unit Hyd. peak (mis)= 0:33 0:00 *TOTALS* PEAK FLOW (cms)= 0:01 0:00 0:013 (iii) TIME TO PEAK (hrs)= 8:00 8:25 8:00 RUNOFF VOLUME (mm)= 46:90 8:50 27:11 TOTAL RAINFALL (mm)= 48:47 48:47 48:47 RUNOFF COEFFICIENT = 0:97 0:18 0:56 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIJUS LOSSES: F0 (mm/hr)= 13:20 Cum.Inf. (mm)= 0:00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFF.IGIENT.</pre>	$ \begin{vmatrix} CALIB \\ STANDHYD (0003) \\ ID= 1 DT= 5.0 min \end{vmatrix} Area (ha)= 3.40 \\ Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 \\ \hline \\ IMPERVIOUS PERVIOUS (1) \\ Surface Area (ha)= 2.89 0.51 \\ Dep. Storage (mm)= 1.57 4.67 \\ Average Slope (%)= 1.00 0.50 \\ Length (m)= 150.55 40.00 \\ Mannings n = 0.013 0.250 \\ \hline \\ Max.Eff.Inten.(mm/hr)= 76.81 137.67 \\ over (min) 5.00 15.00 \\ Storage Coeff. (min)= 3.63 (ii) 13.04 (ii) \\ Unit Hyd. Tpeak (min)= 5.00 15.00 \\ Unit Hyd. Tpeak (min)= 4.27 0.08 \\ \hline \\ PEAK FLOW (CmS)= 0.47 0.09 0.515 (iii) \\ TIME TO PEAK (hrs)= 8.00 8.17 8.00 \\ RINOFF VOLUME (mm)= 48.47 48.47 48.47 \\ RUNOFF COEFFICIENT = 0.97 0.31 0.76 \\ \hline \\ ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! \\ (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 36.00 cm.Inf. (mm)= 0.00 \\ (ii) TIME STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \\ \end{vmatrix}$
<pre>(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIB STANDHYD (0002) ID= 1 DT 5.0 min Total Imp(%) = 28.00 Dir. Conn.(%) = 25.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 0.13 0.32 Dep. Storage (ma) = 1.57 4.67 Average Slope (%) = 1.00 0.50 Length (m) = 54.77 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr) = 76.81 8.06 over (min) 5.00 35.00 Storage Coeff. (min) = 1.98 (ii) 31.28 (ii) Unit Hyd. Tpeak (min) = 5.00 35.00 Unit Hyd. Tpeak (min) = 5.00 35.00 Vinit Hyd. Tpeak (min) = 5.00 35.00 Vinit Hyd. Tpeak (min) = 5.00 35.00 Unit Hyd. Tpeak (min) = 5.00 35.00 NUNOFF VOLUME (mm) = 46.90 3.87 14.63 TOTAL RAINFALL (mm) = 48.47 48.47 48.47 RUNOFF VOLUME (mm) = 48.47 48.47 48.47 RUNOFF COEFFLIENT = 0.97 0.08 0.30 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr) = 76.20 cum.Inf. (mm) = 4.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL Page 21 </pre>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Detailed Output.txt	Detailed Output.txt (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CALIB Area (ha)= 3.48 STANDHYD (0009) Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 Surface Area (ha)= 2.96 0.52 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 152.32 40.00 ManDings n 0.013 0.250
ADD HYD (0006) 3 + 2 = 1 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 101= 3 (0006): 0.56 0.038 8.00 17.08 + 102= 2 (0003): 3.40 0.515 8.00 36.66 10 = 1 (0006): 3.96 0.553 8.00 33.89 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Max.eff.Inten.(mm/hr) = 76.81 137.67 over (min) 5.00 15.00 Storage Coeff. (min) = 3.65 (ii) 13.07 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. Tpeak (min) = 0.25 0.08 *TOTALS* 0.25 0.08 PEAK FLOW (cms) = 0.48 0.09 0.527 (iii) TIME TO PEAK (hrs) = 8.00 8.17 8.00 RUNOFF VOLUME (mm) = 48.47 48.47 48.47 RUNOFF COEFFICIENT = 0.97 0.31 0.76
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20</pre>
CALIB Area (ha)= 1.36 ID=1 DF 5.0 min Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.24 0.12 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 95.22 40.00 Mannings n = 0.013 0.250	ADD HYD (0013) 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) TD1= 1 (0007): 1.36 0.231 8.00 39.27 + ID2= 2 (0009): 3.48 0.527 8.00 36.66 ID = 3 (0013): 4.84 0.757 8.00 37.39 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
Max.Eff.Inten.(mm/hr)= 76.81 216.45 over (min) 5.00 15.00 Storage Coeff. (min)= 2.76 (ii) 10.61 (ii) Unit Hyd.Tpeak (min)= 5.00 15.00 Unit Hyd.Tpeak (min)= 5.00 15.00 Vint Hyd.Tpeak (min)= 0.28 0.09 *TOTALS* *TOTALS* PEAK FLOW (cms)= 0.21 0.04 0.231 (iii) TIME TO PEAK (hrs)= 8.00 8.17 8.00 RUNOFF VOLUME (mm)= 46.90 18.65 39.27 TOTAL RAINFALL (mm)= 0.97 0.38 0.81 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (RESERVOIR (0012) IN= 2> 0UT= 1 DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE
(1) MORIONS EQUALION SELECTED FOR PERVIJOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 Page 23	PEAK FLOW REDUCTION [QOUT/QII](%)= 21.00 TIME SHIFT OF PEAK FLOW (min)= 25.00 MAXIMUM STORAGE USED (ha.m.)= 0.0960 Page 24

Detailed Output.txt

CALIB STANDHYD (0008) ID= 1 DT= 5.0 min	Area Total	(ha)= 0.1 Imp(%)= 28.0	18 00 Dir. Conn.(%)= 28.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.05 1.57 1.00 34.64 0.013	PERVIOUS (i) 0.13 4.67 0.50 40.00 0.250	
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	m/hr)= (min) (min)= (min)= (cms)=	76.81 5.00 1.50 (i 5.00 0.33	5.29 40.00 i) 36.17 (ii) 40.00 0.03	****
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(cms)= (hrs)= (mm)= (mm)= NT =	0.01 8.00 46.90 48.47 0.97	0.00 8.58 3.09 48.47 0.06	0.011 (iii) 8.00 14.15 48.47 0.29

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORTO	ONS EQUA	TION S	ELECTE	D FOR PEF	VIOUS	LOSS	SES:
	FO	(mm/hr)= 76.	20	К	(1/hr	·)=	4.14
	FC	(mm/hr)= 13.	20	Cum.Inf.	(mn	1)=	0.00
(ii)	TIME	STEP (D	T) SHO	ULD BE	SMALLER	OR EQU	JAL	
	THAN	THE STO	RÁGE C	OEFFIC	IENT.			
(iii)	PEAK	FLOW DO	ES NOT	INCLU	DE BASEFL	OW IF	ANY	

STAN	NDHYD 1 DT=	(001 5.0 m	1) in	Area Total	(ha)= Imp(%)=	0.04 78.00	Dir.	Conn.(%)=	78.00)
S E A L N	Surfac Dep. S Averag Length Mannin	e Area torage le Slop lgs n	a e pe	(ha)= (mm)= (%)= (m)= =	IMPERVI 0.0 1.5 1.0 16.3 0.01	OUS 3 7 0 3 3	PERVIOU 0.01 4.67 0.50 40.00 0.250	US (i) 7))			
N S U U F F F F F	Max.Ef Storag Jnit H Jnit H PEAK F FIME T RUNOFF FOTAL RUNOFF	f.Int le Coe lyd. T lyd. p CO PEAL CO PEAL VOLUI RAINF	en.(i over ff. peak eak K ME ALL FICI	nm/hr)= (min) (min)= (cms)= (cms)= (hrs)= (nm)= (nm)= ENT =	76.8 5.0 0.9 5.0 0.3 0.0 8.0 46.9 48.4 0.9	1 0 6 (ii) 4 1 0 0 7 7	5.29 40.00 35.62 40.00 0.03 0.00 8.58 3.09 48.47 0.06) 2 (ii) 3	*T0 0 3 4	TALS [*] .007 8.00 1.61 8.47 0.65	(iii)

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORT	ONS EQUATI	ON SELECTE	D FOR PERVI	OUS LOSSES:
	FO	(mm/hr)=	76.20	к (1/hr)= 4.14
	FC	(mm/hr)=	13.20	Cum.Inf.	(mm) = 0.00
(ii)	TIME	STEP (DT)	SHOULD BE	SMALLER OR	EQUAL
	THAN	THE STORA	GE COEFFIC	IENT.	
(iii)	PEAK	FLOW DOES	NOT INCLU	DE BASEFLOW	IF ANY.

Page 25

ADD HYD (0010) 1 + 2 = 3 ID1= 1 (0011) + ID2= 2 (0012)	AREA (ha) : 0.04 : 4.84	QPEAK (cms) 0.007 0.159	TPEAK (hrs) 8.00 8.42	R.V. (mm) 31.61 37.34		
ID = 3 (0010)	: 4.88	0.160	8.42	37.29		
NOTE: PEAK FLOWS	DO NOT INC	LUDE BASEFLO	WS IF ANY	<i>′</i> .		
ADD HYD (0010) 3 + 2 = 1	AREA	QPEAK	TPEAK	R.V.		
ID1=3 (0010) + $ID2=2 (0008)$	(na) : 4.88 : 0.18	0.160 0.011	(nrs) 8.42 8.00	(mm) 37.29 14.15		
ID = 1 (0010)	: 5.06	0.162	8.42	36.47		
NOTE: PEAK FLOWS	DO NOT INC	LUDE BASEFLO	WS IF ANY	.		
** SIMULATION NUMBER:	5 **					
*******	*****					
READ STORM	Filename:	C:\Users\bo	rendorff.	NOVATECH	\AppD	
READ STORM	Filename:	C:\Users\bo ata\Local\T 828b6ea6-f7	rendorff. emp∖ be-4f5॒5-a	NOVATECH	\AppD Ofeb087a\	b9b068
READ STORM	Filename: Comments:	C:\Users\bo ata\Local\T 828b6ea6-f7 City of Ott	rendorff. emp\ be-4f55-a awa: 5yr-	NOVATECH a5c-00940 24hr Chio	\AppD Dfeb087a\ cago (10	b9b068 min
READ STORM Ptotal= 64.13 mm Ptotal= 64.13 mm TIME hrs 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00 2.17 2.33 2.50 2.50	Filename: Comments: RAIN 0.52 0 0.53 0 0.55 0 0.55 0 0.55 0 0.56 0 0.57 0 0.60 0 0.62 0 0.63 0 0.66 0 0.68 0 0.69 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.65 0 0.65	C:\Users\bo ata\Local\T 828b6ea6-f7 City of Ott TIME RAIN hrs mm/hr 6.17 1.78 6.33 1.94 6.33 1.94 6.63 2.13 6.67 2.37 7.00 3.10 6.83 2.68 7.00 3.10 7.17 3.68 7.30 6.15 7.33 4.58 7.50 6.15 7.83 24.17 7.83 24.17 7.80 104.19 8.17 32.04 8.13 16.34 8.57 10.95	rendorff. emp\ be-4f55-a wa: 5yr- rTIME hrs 12.17 12.33 12.60 12.67 12.83 13.00 13.17 13.33 13.50 13.67 13.83 14.00 014.17 14.43 14.50	NOVATECH' ka5c-0094/ 24hr Chid RAIN mm/hr 1.51 1.42 1.38 1.37 1.24 1.30 1.27 1.24 1.30 1.27 1.24 1.30 1.27 1.51 1.24 1.30 1.27 1.51 1.24 1.30 1.27 1.51 1.24 1.38 1.24 1.38 1.24 1.38 1.24 1.25 1.24 1.24 1.24 1.25 1.24 1.24 1.25 1.24 1.27 1.24 1.24 1.25 1.27 1.24 1.26 1.27 1.24 1.26 1.27 1.24 1.26 1.27 1.24 1.26 1.27 1.26 1.27 1.24 1.26 1.27 1.26 1.27 1.24 1.26 1.27 1.27 1	(AppD) Dfeb087a cago (10) TIME hrs 18.17 18.50 18.67 18.67 19.17 19.33 19.00 19.17 19.33 19.50 19.07 19.43 20.00 20.17 20.37 20.57	b9b068 min RAII 0.74 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.66 0.65 0.64 0.63 0.63 0.63

Page 26

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Detailed Output.txt 3.750 0.88 9.750 3.22 15.750 0.92 21.75 0.57 3.833 0.88 9.833 3.22 15.833 0.92 21.83 0.57 3.917 0.91 9.917 2.98 15.917 0.90 21.92 0.56 4.000 0.91 10.000 2.98 16.000 0.90 22.00 0.56 4.083 0.94 10.1083 2.77 16.083 0.88 22.08 0.56 4.167 0.94 10.167 2.77 16.167 0.88 22.17 0.56 4.250 0.98 10.250 2.60 16.250 0.87 22.25 0.55 4.333 0.98 10.233 2.60 16.250 0.87 22.25 0.55
$ \begin{array}{c c} CALIB \\ STANDHYD (0001) \\ ID= 1 DT= 5.0 min \\ \hline Total Imp(%) = 66.00 \\ Dir. Conn.(%) = 53.00 \\ \hline \\ IMPERVIOUS \\ PERVIOUS (i) \\ Surface Area (ha) = 0.07 \\ O.04 \\ Dep. Storage (mm) = 1.57 \\ Average Slope (%) = 1.00 \\ Uength (m) = 27.08 \\ A0.00 \\ Mannings n = 0.013 \\ O.250 \\ \hline \\ NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. \\ \hline \\ \hline \\ TIME \\ RAIN \\ HT mm/hr \\ HT m m/hr \\ HT m mm/hr \\ HT mmm/hr \\ HT mmm/hr \\ HT mmm/hr \\ HT mmmm mmmm \\ HT mmmmm \\ HT mmmmmm \\ HT mmmmmmm \\ HT mmmmmmmmm \\ HT mmmmmmmmmm$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CALIB Area (ha)= 0.45 STANDHYD (0002) Total Imp(%)= 28.00 Dir. Conn.(%)= 25.00 ID= 1 DT= 5.0 min Total Imp(%)= 28.00 Dir. Conn.(%)= 25.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.13 0.32 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 54.77 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 104.19 35.61 over (min) 5.00 20.00 Storage Coeff. (min)= 1.75 (ii) 17.92 (ii) Unit Hyd. Tpeak (cms)= 0.32 0.06 PEAK FLOW (cms)= 0.03 0.02 0.038 (iii) Page 28 0.03 0.02 0.038 (iii)

Detailed Output.txt TIME TO PEAK (hrs)= 8.00 8.25 8.00 RUNOFF_VOLUME (mm)= 62.56 11.57 24.32	Detailed Output.txt TOTAL RAINFALL (mm)= 64.13 64.13 RUNOFF COEFFICIENT = 0.98 0.20 0.43
TOTAL RAINFALL (mm)= 64.13 64.13 64.13 RUNOFF COEFFICIENT = 0.98 0.18 0.38	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	FO (mm/hr)= 76.20 Cum.Inf. (mm)= 0.00 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB Area (ha)= 3.40 STANDHYD (0003) Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Surface Area (ha)= 2.89 0.51 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 150.55 40.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Max.Eff.Inten.(mm/hr) = 104.19 207.94 over (min) 5.00 15.00 Storage Coeff. (min) = 3.21 (ii) 11.19 (ii) Unit Hyd. Tpeak (min) = 5.00 15.00 Unit Hyd. peak (cms) = 0.27 0.09 *TOTALS*	$ \begin{vmatrix} ADD & HYD & (0006) \\ & 3 + 2 = 1 \\ & (ha) & (cms) & (hrs) & (mm) \\ & (ha) & (cms) & (hrs) & (mm) \\ + ID2 = 3 & (0006) : & 0.56 & 0.057 & 8.00 & 27.45 \\ + ID2 = 2 & (0003) : & 3.40 & 0.732 & 8.00 & 50.30 \\ \end{vmatrix} $
PEAK FLOW (cms)= 0.65 0.15 0.732 (iii) TIME TO PEAK (hrs)= 8.00 8.17 8.00 RUNOFF VOLUME (mm)= 62.56 24.24 50.30 TOTAL RAINFALL (mm)= 64.13 64.13 64.13 RUNOFF COEFFICIENT 0.98 0.38 0.78	ID = 1 (0006): 3.96 0.790 8.00 47.06 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 cum.inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
CALTB	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
STANDHYD (0004) Area (ha)= 1.10 Total Imp(%)= 37.00 Dir. Conn.(%)= 30.00 ID= 1 DT= 5.0 min IMPERVIOUS Imp(%)= 37.00 Dir. Conn.(%)= 30.00 Surface Area (ha)= 0.41 0.69 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 85.63 40.00 Max.Eff.Inten.(mm/hr)= 104.19 49.24 over (min) 5.00 20.00 Storage Coeff. (min)= 2.29 (ii) 16.49 (ii) Unit Hyd. peak (cms)= 0.30 0.06 *TOTALS* PEAK FLOW (cms)= 0.09 0.05 0.110 (iii) TIME TO PEAK (hrs)= 8.00 8.25 8.00 8.00 RUNOFF VOLUME (mm)= 62.56 12.87 27.77 Page 29 Page 29 Page 29 Page 29 Page 29 Page 29 Page 29	CALIB Area (ha)= 1.36 STANDHYD (0007) ID= 1 DT= 5.0 min ID= 1 DT= 5.0 min Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.24 0.12 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 95.22 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 104.19 299.22 over (min) Storage Coeff. (mi)= 2.44 (ii) 7.00 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 10.10 Unit Hyd. peak (cms)= 0.30 0.14 *TOTALS* Page 30 *TOTALS *TOTALS

PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	Detail = 0.28 = 8.00 = 62.56 = 64.13 = 0.98	ed Output.txt 0.07 8.08 28.41 64.13 0.44	0.351 (iii) 8.00 53.34 64.13 0.83
***** WARNING: STORAGE COE	F. IS SMALLER TH	AN TIME STEP!	
 (i) HORTONS EQUATION Fo (mm/hr)=: Fc (mm/hr)=: (ii) TIME STEP (DT) THAN THE STORAGI (iii) PEAK FLOW DOES N 	N SELECTED FOR PE 76.20 k 13.20 cum.Inf SHOULD BE SMALLER COEFFICIENT. NOT INCLUDE BASEF	RVIOUS LOSSES: (1/hr)= 4.14 . (mm)= 0.00 OR EQUAL LOW IF ANY.	}
CALIB STANDHYD (0009) Area ID= 1 DT= 5.0 min Tota	a (ha)= 3.48 al Imp(%)= 85.00	Dir. Conn.(%	6)= 68.00
Surface Area (ha) Dep. Storage (mm) Average Slope (%) Length (m) Mannings n	IMPERVIOUS = 2.96 = 1.57 = 1.00 = 152.32 = 0.013	PERVIOUS (i) 0.52 4.67 0.50 40.00 0.250	
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) Unit Hyd.Tpeak (min)= Unit Hyd.peak (cms)=	= 104.19 5.00 = 3.23 (ii) = 5.00 = 0.27	207.94 15.00 11.22 (ii) 15.00 0.09	*T0TAI S*
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	= 0.66 = 8.00 = 62.56 = 64.13 = 0.98	0.16 8.17 24.24 64.13 0.38	0.749 (iii) 8.00 50.30 64.13 0.78
***** WARNING: STORAGE COEF	F. IS SMALLER TH	AN TIME STEP!	
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 			
ADD HYD (0013) 1 + 2 = 3 ID1= 1 (0007): + ID2= 2 (0009):	AREA QPEAK (ha) (cms) 1.36 0.351 3.48 0.749	TPEAK R. (hrs) (n 8.00 53.3 8.00 50.3	V. 1m) 34 30
ID = 3 (0013):	4.84 1.100	8.00 51.1	=== L5
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.			
RESERVOIR (0012) IN= 2> OUT= 1 DT= 5.0 min OU	UTFLOW STORAGE (cms) (ha.m.) 0.0000 0.0000 0.0070 0.0074	 OUTFLOW (cms) 0.3000 0.5300 Page 31 	STORAGE (ha.m.) 0.1050 0.1375

	0.007	Detai 4 0.081 0 0.100	led Output.txt 0 1.8000 0 0.0000	0.2179 0.0000
INFLOW : ID= 2 OUTFLOW: ID= 1	(0013) (0012)	AREA Q (ha) (4.840 4.840	PEAK TPEAK cms) (hrs) 1.100 8.00 0.359 8.2	R.V. (mm) 0 51.15 5 51.10
F T N	PEAK FLOW TIME SHIFT O MAXIMUM STO	REDUCTION F PEAK FLOW RAGE USED	[Qout/Qin](%)= (min)= (ha.m.)=	32.66 15.00 0.1136
CALIB STANDHYD (0008) ID= 1 DT= 5.0 min	Area Total Im	(ha)= 0.1 p(%)= 28.0	8 0 Dir. Conn.(%	%)= 28.00
Surface Area Dep. Storage Average Slope Length Mannings n	I (ha)= (mm)= (%)= (m)= =	MPERVIOUS 0.05 1.57 1.00 34.64 0.013	PERVIOUS (i) 0.13 4.67 0.50 40.00 0.250	
Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	(mm/hr)= (min) (min)= ((min)= (cms)=	104.19 5.00 1.33 (ii 5.00 0.33	31.98 20.00) 18.21 (ii) 20.00 0.06	*T0TAI S*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.01 8.00 62.56 64.13 0.98	0.01 8.25 10.68 64.13 0.17	0.017 (iii) 8.00 24.29 64.13 0.38
***** WARNING: STORA	GE COEFF. I	S SMALLER T	HAN TIME STEP!	
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 				
CALIB STANDHYD (0011) ID= 1 DT= 5.0 min	Area Total Im	(ha)= 0.0 p(%)= 78.0	4 0 Dir. Conn.(%	%)= 78.00
Surface Area Dep. Storage Average Slope Length Mannings n	I (ha)= (mm)= (%)= (m)= =	MPERVIOUS 0.03 1.57 1.00 16.33 0.013	PERVIOUS (i) 0.01 4.67 0.50 40.00 0.250	
Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	(mm/hr)= (min) (min)= ((min)= (cms)=	104.19 5.00 0.85 (ii 5.00 0.34	31.98 20.00) 17.73 (ii) 20.00 0.06	*ΤΟΤΔΙ S *
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= EENT =	0.01 8.00 62.56 64.13 0.98	0.00 8.25 10.68 64.13 0.17 Page 32	0.009 (iii) 8.00 45.33 64.13 0.71

$\label{eq:constraint} \begin{array}{c} \mbox{Detailed Output.txt} \\ ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! \\ (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 \\ (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \\ \mbox{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ID = 3 (0010): 4.88 0.361 8.25 51.05 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	 CALIB STANDHYD (0001) Area (ha)= 0.11 ID= 1 DT= 5.0 min Total Imp(%)= 66.00 Dir. Conn.(%)= 53.00
$\frac{ADD HYD (0010)}{3 + 2 = 1} + \frac{AREA}{(ba)} (pEAK TPEAK R.V. (mm) + 101 = 3 (0010) : (ba) (ma) (ba) (ba) (ba) (ba) (ba) (ba) (ba) (b$	IMPERVIOUS PERVIOUS (1) Surface Area (ha) = 0.07 0.04 Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = 1.00 0.50 Length (mm) = 27.08 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TTME RAIN TIME RA

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} & \text{Detailed Output.txt} \\ \text{Average Slope} & (\%) = 1.00 & 0.50 \\ \text{Length} & (m) = 54.77 & 40.00 \\ \text{Mannings n} & = 0.013 & 0.250 \\ \end{array}$ $\begin{array}{c} \text{Max.Eff.Inten.}(mm/hr) = 178.56 & 164.71 \\ & \text{over (min)} & 5.00 & 15.00 \\ \text{Unit Hyd. Tpeak (min)} = 1.41 (ii) & 10.17 (ii) \\ \text{Unit Hyd. Tpeak (min)} = 5.00 & 15.00 \\ \text{Unit Hyd. peak (cms)} = 0.33 & 0.10 \\ \end{array}$ $\begin{array}{c} \text{PEAK FLOW} & (cms) = 0.066 & 0.08 & 0.097 (iii) \\ \text{TIME TO PEAK (hrs)} = 8.00 & 8.17 & 8.00 \\ \text{RUNOFF VOLUME (mm)} = 105.17 & 36.33 & 53.54 \\ \text{TOTAL RAINFALL (mm)} = 106.74 & 106.74 & 106.74 \\ \text{RUNOFF COEFFICIENT} = 0.99 & 0.34 & 0.50 \\ \end{array}$ $\begin{array}{c} \text{***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! \\ (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr) = 76.20 & K (1/r) = 4.14 \\ FC (mm/hr) = 13.20 & Cum.Inf. (mm) = 0.00 \\ (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL \\ THAN THE STORAGE COEFFICIENT. \\ (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \end{array}$
<pre>4 1917 1.88 10.917 3.40 16.917 1.32 122.92 0.86 5.000 1.88 11.000 3.40 17.000 1.32 12.00 0.86 5.083 1.98 11.083 3.24 17.083 1.30 123.08 0.85 5.167 1.98 11.167 3.24 17.167 1.30 123.17 0.85 5.250 2.09 11.250 3.10 17.250 1.28 123.23 0.84 5.333 2.09 11.333 3.10 17.333 1.28 123.33 0.84 5.417 2.21 11.417 2.97 17.417 1.26 123.42 0.84 5.500 2.21 11.500 2.97 17.500 1.26 123.50 0.84 5.500 2.21 11.500 2.97 17.500 1.26 123.50 0.84 5.500 2.21 11.667 2.85 17.667 1.24 123.67 0.83 5.667 2.34 11.667 2.85 17.667 1.24 123.67 0.83 5.750 2.50 11.770 2.74 17.750 1.23 123.75 0.82 5.833 2.50 11.750 2.74 17.757 1.24 123.67 0.83 5.750 2.69 11.917 2.64 18.00 1.21 123.92 0.81 6.000 2.69 12.000 2.64 18.000 1.21 124.00 0.81 Max.Eff.Inten.(mm/hr)= 178.56 232.76 over (min) 5.00 10.00 Storage Coeff. (min)= 0.93 (ii) 8.56 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 Unit Hyd. Tpeak (min)= 105.17 42.99 75.94 TOTALS* PEAK FLOW (cms)= 0.03 0.02 0.043 (iii) TIME TO PEAK (hrs)= 8.00 8.08 8.00 RUNOFF VOLUME (mm)= 106.74 106.74 106.74 RUNOFF COEFFICIENT = 0.99 0.40 0.71 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= f3.20 Cum.Inf. (mm)= 0.00 (ii) TIME STORAGE COEFF. IS CALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STORAGE COEFF. IS MALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 Cum.Inf. (mm)= 0.00 (ii) TIME STORAGE COEFF. IS CMALLER OR EQUAL THAN THE STORAGE COEFF. IS MALLER OR EQUAL</pre>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
CALIE	CALIB Area (ha)= 1.10 STANDHYD D(004) Total Imp(%)= 37.00 Dir. Conn.(%)= 30.00 ID= 1 DT= 5.0 min Total Imp(%)= 37.00 Dir. Conn.(%)= 30.00 Surface Area (ha)= 0.41 0.69 0.41 0.69 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 85.63 40.00 Page 36

Detailed Output.txt Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 178.56 182.05 Storage Coeff. (min)= 5.00 15.00 Unit Hyd. Tpeak (min)= 5.00 10.26 (ii) Unit Hyd. peak (cms)= 0.32 0.09 *TOTALS* *TOTALS* PEAK FLOW (cms)= 0.16 0.18 NUNOFF VOLUME (mm)= 105.17 37.94 58.11 TOTAL RAINFALL (mm)= 106.74 106.74 106.74 RUNOFF COEFFICIENT 0.99 0.36 0.54 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 cum.inf. (mm)= 0.00 (ii) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 cum.inf. (mm)= 0.00 (iii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iiii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	$\begin{array}{c} \mbox{Detailed Output.txt} \\ \mbox{Dep. Storage} (mm) = 1.57 4.67 \\ \mbox{Average Slope} (\%) = 1.00 0.50 \\ \mbox{Length} (m) = 95.22 40.00 \\ \mbox{Mannings n} = 0.013 0.250 \\ \mbox{Mannings n} = 0.013 0.250 \\ \mbox{Max.Eff.Inten.}(mm/hr) = 178.56 522.47 \\ \mbox{Over (min)} 5.00 10.00 \\ \mbox{Storage Coeff.} (min) = 1.97 (ii) 5.64 (ii) \\ \mbox{Unit Hyd. peak} (mn) = 5.00 10.00 \\ \mbox{Unit Hyd. peak} (ms) = 0.31 0.15 \\ \mbox{PEAK FLOW} (cms) = 0.31 0.15 \\ \mbox{PEAK FLOW} (cms) = 0.49 0.13 0.621 (iii) \\ \mbox{TIME TO PEAK} (hrs) = 8.00 8.00 8.00 \\ \mbox{RUNOFF VOLUME} (mm) = 106.74 106.74 106.74 \\ \mbox{RUNOFF COEFFICIENT} = 0.99 0.53 0.86 \\ \mbox{***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!} \\ \mbox{(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:} \\ \mbox{Fo (mm/hr) = 13.20 } (m.1nf. (mm) = 0.00 \\ \mbox{(i) THM THE STORAGE COEFFICIENT.} \\ \mbox{(ii) THA THE STORAGE COEFFICIENT.} \\ \mbox{(iii) THAN THE STORAGE COEFFICIENT.} \\ \mbox{(iiii) THAN THE STORAGE COEFFICIENT.} \\ (iiii) THAN THE STORAGE COEFFICIE$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CALIB Area (ha)= 3.48 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.96 0.52 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 152.32 40.00 Mannings n = 0.013 0.250
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Max.Ef.Inten.(mm/hr)= 178.56 367.67 over (min) 5.00 10.00 Storage Coeff. (min)= 2.61 (ii) 7.24 (ii) Unit Hyd. peak (nin)= 5.00 Unit Hyd. peak (cms)= 0.29 0.14 PEAK FLOW (cms)= 1.15 0.37 1.506 (iii) TIME TO PEAK (hrs)= 8.00 8.08 8.00 RUNOFF VOLUME (mm)= 105.17 51.26 87.92 TOTAL RAINFALL (mm)= 106.74 106.74 106.74 DWDEF COEFFCETURE (mm)= 106.74 106.74 106.74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<pre>**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:</pre>
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	ADD HYD (0013) 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (nm) ID1= 1 (0007): 1.36 0.621 8.00 92.17 + ID2= 2 (0009): 3.48 1.506 8.00 87.92 ID = 3 (0013): 4.84 2.127 8.00 89.12 Page 38

Detailed Output.txt NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Detailed Output.txt Max.Eff.Inten.(mm/hr)= 178.56 154.14 over (min) 5.00 10.00 Storage Coeff. (min)= 0.68 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00
INFLOW : ID= 2 (0012) INFLOW STORAGE OUTFLOW STORAGE 0.0000 0.0000 0.3000 0.1050 0.0074 0.5300 0.1375 0.0074 0.6300 0.2179 0.2000 0.1000 0.0000 0.0074 0.6300 0.2179 0.2000 0.1000 0.0000 AREA QPEAK TPEAK NFLOW : ID= 2 (0013) 4.840 2.127 8.00 89.12 OUTFLOW : ID= 1 (0012) 4.840 0.998 8.17 89.06 PEAK FLOW REDUCTION [Qout/Qin](%)= 46.92 TIME SHIFT OF PEAK FLOW (min)= 10.00 MAXIMUM STORAGE USED (ha.m.)= 0.1691	Unit Hyd. peak (um)- Unit Hyd. peak (um)- 9.34 0.11 *TOTALS* PEAK FLOW (cms)= 0.34 0.11 *TOTALS* PEAK FLOW (cms)= 0.02 0.00 0.017 (iii) TIME TO PEAK (hrs)= 8.00 8.08 8.00 RUNOFF VOLUME (mm)= 105.17 35.22 85.67 TOTAL RAINFALL (mm)= 106.74 106.74 106.74 RUNOFF COEFFICIENT = 0.99 0.33 0.80 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$\begin{array}{c ccccc} \hline call B \\ \hline call B \\ \hline STANDHYD (0008) \\ ID= 1 DT= 5.0 min \\ \hline Total Imp(%) = 28.00 \\ \hline Total Imp(%) = 28.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	**************************************
Page 39	Page 40

Detailed Output.txt CALIB Area (ha)= 0.11 STANDHYD (0001) Area (ha)= 0.11 ID= 1 DT= 5.0 min Total Imp(%)= 66.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.07 Dep. Storage (mm)= 1.57 Average Slope (%)= 1.00 Length (m)= VOTE DATEAL TANGAL WAS TANGONGS TO 5.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.083 1.27 3.083 1.69 6.083 9.23 9.08 1.27 0.167 1.27 3.167 1.69 6.167 9.23 9.17 1.27 0.250 1.27 3.250 1.69 6.250 9.23 9.25 1.27 0.333 1.27 3.333 1.69 6.333 9.23 9.33 1.27 0.417 1.27 3.417 1.69 6.417 9.23 9.42 1.27 0.500 1.27 3.500 1.69 6.500 9.23 9.58 1.02 0.667 0.59 3.667 1.69 6.667 4.06 9.67 1.02 0.667 0.59 3.667 1.69 6.633 4.06 9.58 1.02 0.667 0.59 3.917 1.69 6.633 4.06 9.58 1.02 0.667 0.59 3.917 1.69 6.633 4.06 9.83 1.02 0.833 0.59 3.833 1.69 6.833 4.06 9.92 1.02 1.000 0.59 4.000 1.69 7.000 4.06 1.000 1.02 1.083 1.10 4.083 2.29 7.183 2.71 10.08 1.44 1.167 1.10 4.167 2.29 7.150 2.71 10.17 1.44 1.250 1.10 4.250 2.29 7.250 2.71 10.25 1.44 1.333 1.10 4.333 2.29 7.333 2.71 10.33 1.44 1.417 1.10 4.417 2.29 7.417 2.71 10.42 1.44 1.583 1.10 4.583 2.88 7.583 2.37 10.58 0.93 1.667 1.10 4.67 2.88 7.677 2.37 10.67 0.93 1.667 1.10 4.670 2.88 7.677 2.37 10.67 0.93 1.633 1.10 4.750 2.88 7.783 2.37 10.83 0.93 1.631 1.10 4.750 2.88 7.733 2.37 10.83 0.93 1.631 1.10 4.750 2.88 7.733 2.37 10.83 0.93 1.917 1.10 4.917 2.28 7.733 2.37 10.83 0.93 1.917 1.10 4.917 2.88 7.937 2.37 10.920 0.93	Surface Area (ha)= 0.13 0.32 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 54.77 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 36.24 1.32 over (min) 5.00 65.00 Unit Hyd. peak (min)= 5.00 65.00 Unit Hyd. peak (cms)= 0.29 0.02 *TOTALS* PEAK FLOW (cms)= 0.01 0.00 0.011 (iii) TIME TO PEAK (hrs)= 6.00 7.00 6.00 RUNOFF VOLUME (mm)= 42.33 42.33 42.33 RUNOFF COEFFICIENT = 0.96 0.03 0.26 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER ROR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
2.083 1.44 5.083 4.57 8.083 1.86 11.08 0.85 2.250 1.44 5.250 4.57 8.250 1.86 11.25 0.85 2.333 1.44 5.333 4.57 8.333 1.86 11.33 0.85 2.417 1.44 5.417 4.57 8.417 1.86 11.42 0.85 2.500 1.44 5.500 4.57 8.500 1.86 11.50 0.85 2.583 1.27 5.583 36.24 8.583 1.95 11.58 0.85 2.667 1.27 5.750 36.24 8.750 1.95 11.67 0.85 2.833 1.27 5.833 36.24 8.833 1.95 11.83 0.85 2.417 1.27 5.97 36.24 8.750 1.95 11.75 0.85 2.833 1.27 5.833 36.24 8.333 1.95 11.83 0.85 2.917 1.27 5.917 36.24 8.917 1.95 11.95 0.85 3.000 1.27 6.000 36.24 9.000 1.95 12.00 0.85 Max.Eff.Inten.(mm/hr)= 36.24 28.20	CALIB Area (ha)= 3.40 Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.89 0.51 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 150.55 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 36.24 62.77 over (min) 5.00 20.00 storage Coeff. (min)= 4.90 (ii) 17.79 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.23 0.06 PEAK FLOW (Cms)= 0.23 0.06 RUNOFF volubue (mm)= 42.33 42.33 42.33 RUNOFF COEFFICIENT = 0.96 0.32 0.76 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTON SELECTED FOR PERVIOUS OSES: Fo (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 Fige 42
Detailed Output.txt (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	Detailed Output.txt + ID1= 1 (0006): 3.96 0.302 6.00 29.51 + ID2= 2 (0004): 1.10 0.034 6.00 14.09
--	---
	ID = 3 (0006): 5.06 0.336 6.00 26.16
CALIB	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
STANDHYD (0004) Area (ha)= 1.10 ID= 1 DT= 5.0 min Total Imp(%)= 37.00 Dir. Conn.(%)= 30.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CALIB Area (ha)= 1.36 STANDHYD (0007) Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00 ID= DT= 5.0 min Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.24 0.12 Dep. Storage (mm)= 1.57 4.67
Max.Eff.Inten.(mm/hr)= 36.24 4.44	Average Slope (%)= 1.00 0.50 Length (m)= 95.22 40.00
over (min) 5.00 45.00 Storage Coeff. (min)= 3.49 (ii) 40.68 (ii)	Mannings n = 0.013 0.250
Unit Hyd. Tpeak (min)= 5.00 45.00 Unit Hyd. peak (cms)= 0.26 0.03	Max.Eff.Inten.(mm/hr)= 36.24 95.38 over (min) 5.00 15.00
PEAK FLOW (cms)= 0.03 0.01 0.034 (iii) TIME TO PEAK (hrs)= 6.00 6.67 6.00 TOTALS* 0.05 6.67 6.00	Storage Coeff. (min)= 3.72 (ii) 14.62 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.25 0.08 *TTTLC*
$\begin{array}{cccc} \text{KONOFF VOLUME} & (\text{IIIII}) = & 40.76 & 2.86 & 14.09 \\ \text{TOTAL RAINFALL} & (\text{IIIII}) = & 42.33 & 42.33 & 42.33 \\ DUBLE CONFERENCE IN THE RESERVENCE OF CONFERENCE OF CONF$	PEAK FLOW (cms)= 0.10 0.02 0.124 (iii)
$\frac{1}{1000} + \frac{1}{1000} + 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(i) HORTONG FOULTON OF FOTO OF POLYOUS LOSSES	$\frac{101 \text{ ALIMFALL}}{\text{RUNOFF COEFFICIENT}} = \frac{42.55}{0.96} + \frac{42.55}{0.40} + \frac{42.55}{0.81}$
(1) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo $(mr/hr) = 76.20$ K $(1/hr) = 4.14$	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
ADD HYD (0006) 1 + 2 = 3 AREA QPEAK TPEAK R.V. 	
====================================	10-10-10-300000000000000000000000000000
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Surface Area $(ha) =$ 2.96 0.52 Dep. Storage $(mm) =$ 1.57 4.67 Average Slope $(\%) =$ 1.00 0.50 Length $(m) =$ 152.32 40.00 Mannings n $=$ 0.013 0.250
ADD HYD (0006)	Max.Eff.Inten.(mm/hr)= 36.24 62.77
3 + 2 = 1 AREA QPEAK TPEAK R.V.	over (min) 5.00 20.00 Storage Coeff (min)= 4.94 (ii) 17.82 (ii)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.22 0.06 *TOTALS*
ID = 1 (0006): 3.96 0.302 6.00 29.51 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	PEAK FLOW (cms)= 0.24 0.06 0.290 (iii) TIME TO PEAK (hrs)= 6.00 6.08 6.00 RUNOFF VOLUME mm)= 40.76 13.68 32.10 TOTAL PATALEX main 43.23 43.32 12.32
	RUNOFF COEFFICIENT = 0.96 0.32 0.76
	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
$\begin{vmatrix} 1 \\ 1 + 2 \\ \\ (ha) \\ (cms) \\ Page 43 \end{vmatrix}$ AREA QPEAK TPEAK R.V.	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Page 44

Detailed Output.txt Fc (mm/hr)= 13.20 cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	Detailed Output.txt (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
ADD HYD (0013) 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 1D1=1 (0007): 1.36 0.124 6.00 34.27 + ID2=2 (0009): 3.48 0.290 6.00 32.10 ID = 3 (0013): 4.84 0.415 6.00 32.71 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	$\begin{array}{c} 101 = 1 & 01 = 3.0 & \text{min} \mid & 101$
RESERVOIR (0012) IN= 2> 0UT= 1 DT= 5.0 min OUTFLOW STORAGE	Unit Hyd. peak (cms) = 0.33 0.01 PEAK FLOW (cms) = 0.00 0.00 0.003 (iii) TIME TO PEAK (hrs) = 5.83 7.58 6.00 RUNOFF VOLUME (mm) = 40.76 0.41 30.85 TOTAL RAINFALL (mm) = 42.33 42.33 42.33 RUNOFF COEFFICIENT = 0.96 0.01 0.73 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW: ID= 2 (0013) 4.840 0.415 6.00 32.71 OUTFLOW: ID= 1 (0012) 4.840 0.130 6.42 32.65 PEAK FLOW REDUCTION [Qout/Qin](%)= 31.30 TIME SHIFT OF PEAK FLOW (min)= 25.00 MAXIMUM STORAGE USED (ha.m.)= 0.0931	 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ADD HYD (0010) 1 + 2 = 3 AREA QPEAK TPEAK R.V.
Max.Eff.Inten.(mm/hr)= 36.24 0.41 over (min) 5.00 100.00 Storage Coeff. (min)= 2.03 (ii) 98.32 (ii) Unit Hyd. Tpeak (min)= 5.00 100.00 Unit Hyd. peak (cms)= 0.31 0.01 *TOTALS* PEAK FLOW (cms)= 0.01 0.00 0.005 (iii) TIME TO PEAK (hrs)= 5.92 7.58 6.00 RUNOFF VOLUME (mm)= 40.76 0.41 11.70 TOTAL RAINFALL (mm)= 42.33 42.33 42.33 RUNOFF COEFFICIENT = 0.96 0.01 0.28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.</pre>	**************************************

Detailed Output.txt ataLocal\Temp\ 828b6ea6-f7be-4f55-aa5c-00940feb087a\Sec04b5c Comments: City of Ottawa: 5yr-12hr SCS (30 minute TIME RAIN TIME RAIN TIME RAIN TIME RAIN 0.50 1.69 3.50 2.25 6.50 12.25 9.50 1.69 1.00 0.79 4.00 2.25 7.00 5.39 10.00 1.35 1.50 1.46 4.50 3.03 7.50 3.60 10.50 1.24 2.00 1.46 4.50 3.03 7.50 3.60 10.50 1.24 2.50 1.91 5.50 6.07 8.50 2.47 11.50 1.12 3.00 1.69 6.00 48.08 9.00 2.58 12.00 1.12 IMPERVIOUS PERVIOUS (1) Surface Area (ha)= 0.07 0.04 0.07 0.04 67 467	Detailed Output.txt Max.Eff.Inten.(mm/hr)= 48.08 50.89 over (min) 5.00 20.00 Storage Coeff. (min)= 1.56 (ii) 15.58 (ii) Unit Hyd.Tpeak (min)= 5.00 20.00 Unit Hyd.Tpeak (cms)= 0.33 0.07 PEAK FLOW (cms)= 0.01 0.00 0.011 (iii) TIME TO PEAK (hrs)= 5.83 6.08 6.00 RUNOFF VOLUME (mm)= 54.61 15.39 36.18 TOTAL RAINFALL (mm)= 56.18 56.18 56.18 RUNOFF COEFFICIENT = 0.97 0.27 0.64 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
Average Slope ($\%$)= 1.00 0.50 Length (m)= 27.08 40.00 Mannings n = 0.013 0.250	CALIB STANDHYD (0002) Area (ha)= 0.45 ID= 1 DT= 5.0 min Total Imp(%)= 28.00 Dir. Conn.(%)= 25.00
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN 'TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr 'rs mm/hr hrs mm/hr 0.083 1.69 3.083 2.25 6.083 12.25 9.08 1.69 0.167 1.69 3.167 2.25 6.167 12.25 9.17 1.69 0.250 1.69 3.250 2.25 6.250 12.25 9.33 1.69 0.333 1.69 3.333 2.25 6.333 12.25 9.33 1.69 0.417 1.69 3.417 2.25 6.417 12.25 9.42 1.69 0.500 1.69 3.500 2.25 6.583 5.39 9.58 1.35 0.667 0.79 3.583 2.25 6.583 5.39 9.58 1.35 0.667 0.79 3.566 2.25 6.675 3.39 9.67 1.35 0.750 0.79 3.750 2.25 6.5917 5.39 9.62 1.35 1.083 1.46 4.083 3.03 7.083 3.60 10.08 1.91 1.167 1.46 4.167 3.03 7.167 5.39 9.92 1.35 1.083 1.46 4.4083 3.03 7.333 3.60 10.25 1.91 1.250 1.46 4.250 3.03 7.250 3.60 10.25 1.91 1.333 1.46 4.433 3.03 7.333 3.60 10.25 1.91 1.333 1.46 4.453 3.03 7.333 3.15 10.58 1.24 1.583 1.46 4.453 3.03 7.500 3.15 10.58 1.24 1.583 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.683 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.583 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.583 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.683 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.583 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.583 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.683 1.46 4.453 3.82 7.583 3.15 10.58 1.24 1.583 1.46 4.4533 3.82 7.583 3.15 10.58 1.24 1.583 1.46 4.583 3.82 7.583 3.155 10.58 1.24 1.583 1.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CALIB STANDHYD (0003) Area (ha)= 3.40 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.89 0.51 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 150.55 40.00 Mannings n 0.013 0.250 Max.Eff.Inten.(mm/hr)= 48.08 89.15 over (min) 5.00 20.00 Page 48

Detailed Output.txt Storage Coeff. (min)= 4.38 (ii) 15.58 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.23 0.07	$\begin{vmatrix} 3 + 2 = 1 \\ 101 = 3 (0000 \\ 102 = 2 (0003) \end{vmatrix}$
PEAK FLOW (cms)= 0.31 0.09 0.392 (iii)	+ IDZ- Z (000. ==================================
RUNOFF VOLUME (mm)= 54.61 21.68 44.07 TOTAL RAINFALL (mm)= 56.18 56.18 56.18 RUNOFF COEFFICIENT = 0.97 0.39 0.78	NOTE: PEAK FLOW
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	
(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO $(mm/hr) = 76.20$ K $(1/hr) = 4.14$ FC $(mm/hr) = 3.20$ C $(mm) = 0.00$	ADD HYD (0006) 1 + 2 = 3
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	ID1= 1 (0000 + ID2= 2 (0004
	ID = 3 (0006
$\begin{array}{c c} \hline CALIB \\ CALIB \\ STANDHYD (0004) \\ Area (ha) = 1.10 \\ TD - 1 DT = 5 0 eig Total Imp(%) = 27.00 \\ pir conp (%) = 20.00 \\ \hline \end{array}$	NOTE: PEAK FLOWS
	CALIB
Surface Area (ha)= 0.41 0.69 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50	ID= 1 DT= 5.0 min
Length (m)= 85.63 40.00 Mannings n = 0.013 0.250	Surface Area Dep. Storage
Max.Eff.Inten.(mm/hr)= 48.08 34.64	Average Slope Length
over (min) 5.00 20.00 Storage Coeff. (min)= 3.12 (ii) 19.47 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. neak (cms)= 0.27 0.06	Mannings n Max.Eff.Inten.(mm over
PEAK FLOW Cms)= 0.04 0.04 0.071 (iii) TIME TO PEAK (hrs)= 6.00 6.17 6.00	Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (
RUNOFF VOLUME (mm)= 54.61 10.39 23.66 TOTAL RAINFALL (mm)= 56.18 56.18 56.18 RUNOFF COEFFICIENT = 0.97 0.18 0.42	PEAK FLOW (TIME TO PEAK
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEI
(1) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo $(mm/hr) = 76.20$ K $(1/hr) = 4.14$	***** WARNING: STORAG
FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	(i) HORTONS EQ Fo (mm/
(111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	(ii) TIME STEP
	(iii) PEAK FLOW I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CALIB STANDHYD (0009) ID= 1 DT= 5.0 min
ID = 3 (0006): 0.56 0.033 6.00 23.51	
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Surface Area Dep. Storage Average Slope Length
	Mannings n
ADD HYD (0006) Page 49	Max.Eff.Inten.(mr
i age its	

3 + 2 = 1 ID1= 3 (0006): + ID2= 2 (0003):	Detailer AREA QPEAK (ha) (cms) 0.56 0.033 3.40 0.392	d Output.txt TPEAK R.V. (hrs) (mm) 6.00 23.51 6.00 44.07	
TD = 1 (0006):	3.96 0.425	6.00 41.17	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASEFL	OWS IF ANY.	
ADD HYD (0006) 1 + 2 = 3	AREA QPEAK (ha) (cms)	TPEAK R.V. (hrs) (mm)	
ID1= 1 (0006): + ID2= 2 (0004):	3.96 0.425 1.10 0.071	6.00 41.17 6.00 23.66	
ID = 3 (0006):	5.06 0.496	6.00 37.36	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASEFL	OWS IF ANY.	
CALIB STANDHYD (0007) Area ID= 1 DT= 5.0 min Total	(ha)= 1.36 Imp(%)= 91.00	Dir. Conn.(%)=	73.00
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)=	IMPERVIOUS 1.24 1.57 1.00 95.22	PERVIOUS (i) 0.12 4.67 0.50 40.00	
Mannings n =	0.013	0.250	
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	48.08 5.00 3.32 (ii) 5.00 0.26	131.03 15.00 12.93 (ii) 15.00 0.08	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFAL (mm)= RUNOFF COEFFICIENT =	0.13 6.00 54.61 56.18 0.97	0.04 6.00 25.50 56.18 0.45	0.169 (iii) 6.00 46.75 56.18 0.83
***** WARNING: STORAGE COEFF	. IS SMALLER THA	N TIME STEP!	
 (i) HORTONS EQUATION FO (mm/hr)= 76 FC (mm/hr)= 13 (ii) TIME STEP (DT) SH THAN THE STORAGE (iii) PEAK FLOW DOES NO 	SELECTED FOR PER .20 K .20 Cum.Inf. OULD BE SMALLER COEFFICIENT. T INCLUDE BASEFL	VIOUS LOSSES: (1/hr)= 4.14 (mm)= 0.00 OR EQUAL OW IF ANY.	
STANDHYD (0009) Area ID= 1 DT= 5.0 min Total	(ha)= 3.48 Imp(%)= 85.00	Dir. Conn.(%)=	68.00
Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	IMPERVIOUS 2.96 1.57 1.00 152.32 0.013	PERVIOUS (i) 0.52 4.67 0.50 40.00 0.250	
<pre>Max.Eff.Inten.(mm/hr)=</pre>	48.08 Pi	89.15 age 50	

Detailed Output.txt over (min) 5.00 20.00 Storage Coeff. (min)= 4.41 (ii) 15.61 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.23 0.07 *TOTALS* PEAK FLOW (cms)= 0.32 0.09 0.401 (iii) TIME TO PEAK (hrs)= 6.00 6.08 6.00 RUNOFF VOLUME (mm)= 56.18 56.18 56.18 RUNOFF COEFFICIENT = 0.97 0.39 0.78 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$
(111) PEAK FLOW DOES NOI INCLUDE BASEFLOW IF ANY.	CALIB STANDHYD (0011) Area_ (ha)= 0.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \text{ID}= 1 \text{ DT}= 5.0 \text{ min} \\ \hline \text{Total Imp}(\%) = 78.00 \text{ Dir. Conn.}(\%) = 78.00 \\ \hline \text{IMPERVIOUS} & \text{PERVIOUS (i)} \\ \hline \text{Surface Area} & (ha) = & 0.03 & 0.01 \\ \hline \text{Dep. Storage} & (mm) = & 1.57 & 4.67 \\ \text{Average Slope} & (\%) = & 1.00 & 0.50 \\ \text{Length} & (m) = & 16.33 & 40.00 \\ \hline \text{Mannings n} & = & 0.013 & 0.250 \\ \hline \text{Max.Eff.Inten.}(mm/hr) = & 48.08 & 24.30 \\ & & & & & & & & & & & & & & & & & & $
RESERVOIR (0012) IN= 2> OUT= 1 DT= 5.0 min OUTFLOW STORAGE (cms) (ha.m.) 0.0000 0.0000 0.0074 0.5300 0.2000 0.0000 0.0000 0.00174 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000	Unit Hyd. peak (cms)= 0.34 0.06 *TOTALS* PEAK FLOW (cms)= 0.00 0.00 (iii) TIME TO PEAK (hrs)= 5.75 6.17 6.00 RUNOFF VOLUME (mm)= 54.61 8.10 43.51 TOTAL RAINFALL (mm)= 56.18 56.18 56.18 RUNOFF COEFFICIENT = 0.97 0.14 0.77 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0013) 4.840 0.571 6.00 44.83 OUTFLOW: ID= 1 (0012) 4.840 0.313 6.08 44.77 PEAK FLOW REDUCTION [Qout/Qin](%)= 54.82 TIME SHIFT OF PEAK FLOW (min)= 5.00 MAXIMUM STORAGE USED (ha.m.)= 0.1072	 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 cum.inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB STANDHYD (0008) Area (ha)= 0.18 ID= 1 DT= 5.0 min Total Imp(%)= 28.00 Dir. Conn.(%)= 28.00 ID= 1 DT= 5.0 min Total Imp(%)= 28.00 Dir. Conn.(%)= 28.00 ID= 1 DT= 5.0 min Total Imp(%)= 28.00 Dir. Conn.(%)= 28.00 ID= 1 DT= 5.0	$ \begin{vmatrix} ADD & HYD & (0010) \\ 1 & + 2 & = 3 \\ \hline (ha) & (Cms) & (hrs) & (mm) \\ \hline 1D1 = 1 & (0011) : & 0.04 & 0.004 & 6.00 & 43.51 \\ + & 1D2 = 2 & (0012) : & 4.84 & 0.313 & 6.08 & 44.77 \\ \hline 1D1 = 3 & (0010) : & 4.88 & 0.314 & 6.08 & 44.76 \\ \hline NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \\ \end{vmatrix} $
Max.Eff.Inten.(mm/hr)= 48.08 24.30 over (min) 5.00 25.00 Storage Coeff. (min)= 1.81 (ii) 20.65 (ii) Unit Hyd. Tpeak (min)= 5.00 25.00 Page 51	ADD HYD (0010) 3 + 2 = 1 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) Page 52

Detailed Output.txt + ID1= 3 (0010): 4.88 0.314 6.08 44.76 + ID2= 2 (0008): 0.18 0.009 6.00 21.12 ID = 1 (0010): 5.06 0.320 6.08 43.92 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Detailed Output.txt1.9172.444.9176.397.9175.2610.922.072.0002.445.0006.398.0005.2611.002.072.0833.195.08310.148.0834.1311.081.882.1673.195.16710.148.0834.1311.271.882.2503.195.25010.148.2334.1311.251.882.3333.195.33310.148.3334.1311.421.882.4173.195.41710.148.4174.1311.421.882.5003.195.50010.148.5004.1311.501.882.6672.825.58380.888.5844.3211.501.882.6672.825.66780.388.6674.3211.671.882.6332.825.68380.388.8334.3211.671.882.6332.825.69780.388.8344.3211.671.882.6332.825.69180.388.8334.3211.671.882.8332.825.83380.388.8334.3211.671.882.8332.825.83380.388.8334.3211.671.882.6672.825.66780.388.8344.3211.751.882.8332.825.83380.388.8344.3211.75 <td< th=""></td<>
READ STORM Filename: C:\USErS\borendorff.NOVATECH\AppD ata\Local Yemp, Comments: City of ottawa: 100/r-12hr SCS (30 minut TIME RAIN Time RAIN Time RAIN hrs mm/hr hrs mm/hr	<pre> 1.00 2.02 (0.00 0.038 0.00 4.32 12.00 1.88</pre>

Detailed Output.txt	Detailed Output.txt
CALIB STANDHYD (0003) Area (ha)= 3.40 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ID = 3 (0006): 0.56 0.093 6.00 51.11 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
Max.Eff.Inten.(mm/hr)= 80.38 158.27 over (min) 5.00 15.00 Storage Coeff. (min)= 3.56 (ii) 12.47 (ii) Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.26 0.08 *TOTALS* PEAK FLOW (cms)= 0.52 0.19 0.706 (iii) TIME TO PEAK (hrs)= 6.00 6.00 6.00 RUNOFF VOLUME (mm)= 92.34 45.47 77.34 TOTAL RAINFALL (mm)= 93.91 93.91 RUNOFF COEFFICIENT = 0.98 0.48 0.82	$ \begin{vmatrix} ADD & HYD & (0006) \\ & 3 + 2 = 1 \\ \hline TD1 = 3 & (0006) : \\ + & TD2 = 2 & (0003) : \\ \hline TD1 = 3 & (0006) : \\ + & TD2 = 2 & (0003) : \\ \hline TD1 = 1 & (0006) : \\$
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20</pre>	ADD HYD (0006) 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (mm) ID1= 1 (0006): 3.96 0.799 6.00 73.63 + ID2= 2 (0004): 1.10 0.181 6.00 51.33 ID = 3 (0006): 5.06 0.980 6.00 68.78 NOTE: PEAK ELOWS DO NOT INCLUDE BASEFLOWS TE ANY.
CALIB Area (ha)= 1.10 ID= 10T= 5.0 min Total Imp(%)= 37.00 Dir. Conn.(%)= 30.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.41 0.69 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 85.63 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 80.38 75.50 over (min) 5.00 15.00 Unit Hyd. Tpeak (min)= 5.00 15.00 Unit Hyd. peak (cms)= 0.29 0.08 PEAK FLOW (cms)= 0.07 0.11 TIME TO PEAK (hrs)= 6.00 6.00 RUNOFF VOLUME (mm)= 92.34 33.75 51.33 TOTAL RAINFALL (mm)= 93.91 93.91 93.91 RUNOFF COEFFICIENT = 0.98 0.36 0.55 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EDIATION SELECTED FOR PERVIOUS LOSSES:	CALTB STANDHYD (0007) ID= 1 DT= 5.0 min Total Imp(%) = 91.00 Dir. Conn.(%) = 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 1.24 0.12 Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = 1.00 0.50 Length (m) = 95.22 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr) = 80.38 227.94 over (min) 5.00 15.00 Storage Coeff. (mi) = 2.71 (ii) 10.40 (ii) Unit Hyd. Tpeak (mn) = 5.00 15.00 Unit Hyd. Tpeak (ms) = 0.29 0.09 *TOTALS* PEAK FLOW (cms) = 0.22 0.07 0.292 (iii) TIME TO FEAK (hrs) = 6.00 6.00 6.00 RUNOFF VOLUME (mm) = 92.34 52.20 81.50 TOTAL RAINFALL (mm) = 3.91 93.91 93.91 RUNOFF COEFFICIENT = 0.98 0.56 0.87
FO (mm/hr) = 76.20 K (L/hr) = 4.14 FC (mm/hr) = 13.20 C M (L/hr) = 4.14 FC (mm/hr) = 13.20 C MINIF. (mm) = 0.00 (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Page 55	<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20</pre>

Detailed	Output.txt

CALIB STANDHYD (0009) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)= 8	3.48 35.00 D	vir. Co	onn.(%)=	68.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOU 2.96 1.57 1.00 152.32 0.013	JS PER 4 0	VIOUS 0.52 4.67 0.50 0.00 0.250	(i)		
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(mm/hr)= (min) (min)= (min)= (cms)=	80.38 5.00 3.59 5.00 0.26	15 1 (ii) 1 1	8.27 5.00 2.49 5.00 0.08	(ii) *T	0741 5*	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.53 6.00 92.34 93.91 0.98	4 9	0.19 6.00 5.47 3.91 0.48	. 1	0.722 (iii) 6.00 77.34 93.91 0.82	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i)	HORTO	ONS EQUATI	ON SELECTE	D FOR PERVI	OUS LOSSES:
	FO	(mm/hr)=	76.20	к (1/hr)= 4.14
	FC	(mm/hr)=	13.20	Cum.Inf.	(mm)= 0.00
(ii)	TIME	STEP (DT)	SHOULD BE	SMALLER OR	EQUAL
	THAN	THE STORA	GE COEFFIC	IENT.	
(iii)	PEAK	FLOW DOES	NOT INCLU	DE BASEFLOW	IF ANY.

AREA (ha) 1.36 3.48	QPEAK (cms) 0.292 0.722	TPEAK (hrs) 6.00 6.00	R.V. (mm) 81.50 77.34
4.84	1.014	6.00	78.51
	AREA (ha) 1.36 3.48 4.84	AREA QPEAK (ha) (cms) 1.36 0.292 3.48 0.722 4.84 1.014	AREA QPEAK TPEAK (ha) (cms) (hrs) 1.36 0.292 6.00 3.48 0.722 6.00 4.84 1.014 6.00

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR (0012) IN= 2> OUT= 1 DT= 5.0 min OUT 0 0 0 0 0 0 0 0 0 0 0 0 0	FFLOW STO ms) (ha .0000 0. .0070 0. .0074 0. .2000 0.	RAGE C m.) 0000 0074 0810 1000	DUTFLOW (cms) 0.3000 0.5300 1.8000 0.0000	STORAGE (ha.m.) 0.1050 0.1375 0.2179 0.0000	
INFLOW : ID= 2 (0013) OUTFLOW: ID= 1 (0012) PEAK FU TIME SHIF MAXIMUM	AREA (ha) 4.840 4.840 -OW REDUCT T OF PEAK F STORAGE U	QPEAK (cms) 1.014 0.748 TON [Qout/C LOW SED (TPEAK (hrs) 6.00 6.08 Qin](%)= 7 (min)= 9 (ha.m.)= 0	R.V. (mm) 78.51 78.46 3.75 5.00 0.1539	

Page 57

1		Detaile	ed Output.txt	
CALIB STANDHYD (0008) ID= 1 DT= 5.0 min	Area Total I	(ha)= 0.18 mp(%)= 28.00	Dir. Conn.(%)= 28.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.05 1.57 1.00 34.64 0.013	PERVIOUS (i) 0.13 4.67 0.50 40.00 0.250	
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)= (min) (min)= (min)= (cms)=	80.38 5.00 1.48 (ii) 5.00 0.33	66.07 15.00 14.10 (ii) 15.00 0.08	*T0TAI S*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.01 5.83 92.34 93.91 0.98	0.02 6.08 31.36 93.91 0.33	0.029 (iii) 6.00 48.43 93.91 0.52
***** WARNING: STORA	GE COEFF.	IS SMALLER TH	AN TIME STEP!	
(i) HORTONS E Fo (mm Fc (mm (ii) TIME STEP THAN THE (iii) PEAK FLOW	QUATION SE /hr)= 76.2 /hr)= 13.2 (DT) SHOU STORAGE CO DOES NOT	LECTED FOR PE 0 K 0 Cum.Inf LD BE SMALLER EFFICIENT. INCLUDE BASEF	RVIOUS LOSSES: (1/hr)= 4.14 . (mm)= 0.00 OR EQUAL LOW IF ANY.	
CALIB STANDHYD (0011) ID= 1 DT= 5.0 min	Area Total I	(ha)= 0.04 mp(%)= 78.00	Dir. Conn.(%)= 78.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.03 1.57 1.00 16.33 0.013	PERVIOUS (i) 0.01 4.67 0.50 40.00 0.250	
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)= (min) (min)= (min)= (cms)=	80.38 5.00 0.94 (ii) 5.00 0.34	66.07 15.00 13.57 (ii) 15.00 0.08	*TOTAL 5*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.01 5.75 92.34 93.91 0.98	0.00 6.08 31.36 93.91 0.33	0.008 (iii) 6.00 78.92 93.91 0.84
***** WARNING: STORA	GE COEFF.	IS SMALLER TH	AN TIME STEP!	
(i) HORTONS E Fo (mm Fc (mm (ii) TIME STEP THAN THE (iii) PEAK FLOW	QUATION SE /hr)= 76.2 /hr)= 13.2 (DT) SHOU STORAGE CO DOES NOT	LECTED FOR PE 0 K 0 Cum.Inf LD BE SMALLER EFFICIENT. INCLUDE BASEF	RVIOUS LOSSES: (1/hr)= 4.14 . (mm)= 0.00 OR EQUAL LOW IF ANY.	
ADD HYD (0010)				

Detailed Output.txt 	Detailed Output.txt 0.667 0.73 6.667 0.97 12.667 5.28 18.67 0.73 0.750 0.73 6.750 0.97 12.750 5.28 18.75 0.73 0.833 0.73 6.83 0.97 12.833 5.28 18.83 0.73 0.917 0.73 6.917 0.97 12.917 5.28 18.92 0.73 1.000 0.73 6.917 0.97 12.917 5.28 18.92 0.73 1.000 0.73 6.917 0.97 12.917 5.28 18.92 0.73 1.003 0.34 7.083 0.97 13.000 5.28 19.00 0.73 1.083 0.34 7.167 0.97 13.167 2.33 19.08 0.58 1.167 0.34 7.120 0.97 13.250 2.33 19.25 0.58 1.250 0.97 13.250 2.33 19.25 0.58
ADD HYD (0010) 3 + 2 = 1 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) ID1= 3 (0010): 4.88 0.751 6.08 78.46 + ID2= 2 (0008): 0.18 0.029 6.00 48.43 ID = 1 (0010): 5.06 0.772 6.08 77.39 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
READ STORM Filename: C:\Users\borendorff.NOVATECH\AppD ata\Local\Temp\ 828b6ea6-f7be-4f55-aa5c-00940feb087a\fdc36da6 Ptotal= 48.47 mm Comments: City of Ottawa: 2yr-24hr SCS (60 minute TIME RAIN TIME RAIN TIME hrs mm/hr hrs mm/hr 1.00 0.73 7.00 0.97 2.00 0.34 8.00 0.97 13.00 5.28 3.00 0.63 9.00 1.31 15.00 1.55 21.00 0.82 4.00 0.63 10.00 1.65 16.00 1.36 22.00 0.53 5.00 0.82 11.00 2.62 17.00 1.07 23.00 0.48 6.00 0.73 12.00 20.75 18.00 1.11 24.00 0.48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CALIB Area (ha)= 0.11 STANDHYD (0001) Area (ha)= 0.11 ID= 1 DT= 5.0 min Total Imp(%)= 66.00 pir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.07 0.04 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 27.08 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN ' TIME rAIN ' TIME RAIN TIME provide mm/hr hrs mm/hr hrs mm/hr	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.083 0.167 0.167 0.250 0.73 0.250 0.73 0.333 0.73 0.333 0.73 0.417 0.73 0.583 0.73 0.583 0.73 0.	5.917 0.73 11.917 20.75 17.917 1.11 23.92 0.48 6.000 0.73 12.000 20.75 18.000 1.11 24.00 0.48 Max.Eff.Inten.(mm/hr)= 20.75 14.81 over (min) 5.00 30.00 Storage Coeff. (min)= 2.19 (ii) 25.16 (ii) Unit Hyd. Tpeak (min)= 5.00 30.00 Page 60

Detailed Output.txt Unit Hyd. peak (cms)= 0.31 0.04 PEAK FLOW (cms)= 0.00 0.004 (iii) TIME TO PEAK (hrs)= 11.42 12.25 12.00 RUNOFF VOLUME (mm)= 46.90 5.09 26.45 TOTALS* 48.47 48.47 48.47 RUNOFF COEFFICIENT 0.97 0.10 0.55	Detailed Output.txt PEAK FLOW (cms)= 0.13 0.04 0.168 (iii) TIME TO PEAK (hrs)= 12.00 12.08 12.00 RUNOFF VOLUME (mm)= 46.90 12.05 35.75 TOTAL RAINFALL (mm)= 48.47 48.47 48.47 RUNOFF COEFFICIENT 0.97 0.25 0.74
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>	 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB STANDHYD (0002) Area (ha)= 0.45 ID=1D=5.0 min Total Imp(%)= 28.00 pir. Conn.(%)= 25.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.13 0.32 Dep. Storage (m)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 54.77 40.00 Max.Eff.Inten.(mm/hr)= 20.75 0.00 over (min) 5.00 300.00 Storage Coeff. (min)= 3.34 (i) 296.66 (i) Unit Hyd. Tpeak (min)= 5.00 00 Unit Hyd. Tpeak (min)= 0.26 0.00 PEAK FLOW (cms)= 0.01 0.00 12.00 RUNOFF VOLUME (mm)= 48.47 48.47 48.47 RUNOFF VOLUME (mm)= 48.47 48.47 48.47 RUNOFF COEFFICIENT = 0.97 0.00 0.24 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ****** WARNING: THE PERVIDUS AREA HAS NO FLOW . (i) HORTONS EQUATION SELECTED FOR PERVIDUS LOSSES: Fo (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mn)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	$\begin{bmatrix} CALIB & & Area & (ha) = 1.10 \\ ID= 1 DT= 5.0 min & Total Imp(%) = 37.00 & Dir. Conn.(%) = 30.00 \\ \hline \\ ID= 1 DT= 5.0 min & Total Imp(%) = 37.00 & Dir. Conn.(%) = 30.00 \\ \hline \\ \\ Surface Area & (ha) = 0.41 & 0.69 \\ Dep. Storage (mm) = 1.57 & 4.67 \\ Average Slope & (%) = 1.00 & 0.50 \\ Length & (m) = 85.63 & 40.00 \\ Mannings n & = 0.013 & 0.250 \\ \hline \\ \\ Max.Eff.Inten.(mm/hr) = 20.75 & 0.31 \\ & over (min) & 5.00 & 115.00 \\ Unit Hyd. Tpeak (min) = 4.37 (ii) 111.58 (ii) \\ Unit Hyd. Tpeak (min) = 5.00 & 115.00 \\ Unit Hyd. peak (cms) = 0.23 & 0.01 \\ \hline \\ \\ \\ \\ PEAK FLOW (cms) = 0.02 & 0.00 & 0.019 (iii) \\ TIME TO PEAK (hrs) = 11.92 & 13.83 & 12.00 \\ RUNOFF VOLUME (mm) = 46.90 & 0.28 & 14.27 \\ TOTAL RAINFALL (mm) = 46.47 & 48.47 & 48.47 \\ RUNOFF COEFFICIENT = 0.97 & 0.01 & 0.29 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
(111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Detailed Output.txt ID = 1 (0006): 3.96 0.179 12.00 32.76 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Detailed Output.txt PEAK FLOW (cms)= 0.14 0.04 0.172 (iii) TIME TO PEAK (hrs)= 12.00 12.08 12.00 RUNOFF VOLUME (mm)= 46.90 12.05 35.75 TOTAL RAINFALL (mm)= 48.47 48.47 48.47 RUNOFF COEFFICIENT = 0.97 0.25 0.74 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/r)= 26.20 K (1/hr)= 4.14
ID1= 1 (0006): 3.96 0.179 12.00 32.76 + ID2= 2 (0004): 1.10 0.019 12.00 14.27 ID1= 3 (0006): 5.06 0.198 12.00 28.74 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALIB STANDHYD (0007) Area (ha)= 1.36 ID=1 DT= 5.0 min Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.24 0.12 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 95.22 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 20.75 49.05 Storage Coeff. (min)= 5.00 20.00 Storage Coeff. (min)= 4.65 (ii) 18.88 (ii) Unit Hyd. Tpeak (min)= 0.02 0.00 Wint Hyd. Peak (cms)= 0.22 0.06 *TOTALS* 100 PEAK FLOW (cms)= 0.06 0.02 0.072 (iii) TIME TO PEAK (hrs)= 12.00 12.00 12.00 RUNOFF VOLUME (mm)= 48.47 48.47 48.47 RUNOFF VOLUME (mm)= 48.47 48.47 48.47 VEXTOR EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 0.00 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFL	$ \begin{vmatrix} ADD HYD (0013) \\ 1 + 2 = 3 \\ (ha) (cms) (hrs) (mm) \\ IDI = 1 (0007): 1.36 0.072 12.00 38.46 \\ + ID2 = 2 (0009): 3.48 0.172 12.00 36.51 \\ \hline H D2 = 2 (0009): 3.48 0.172 12.00 36.51 \\ \hline H D2 = 3 (0013): 4.84 0.245 12.00 36.51 \\ \hline H D = 3 (0013): 4.84 0.245 12.00 36.51 \\ \hline H D = 2> OUT = 1 \\ DT = 5.0 min \\ \hline H D = 2> OUT = 1 \\ OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) \\ O.0000 0.0000 0.3000 0.1050 \\ 0.0074 0.0810 1.8000 0.2179 \\ 0.2000 0.1000 0.0000 0.0000 \\ O.0000 0.0000 0 \\ O.0000 0.0000 0.0000 \\ O.0000 0.0000 \\ O.0000 0.0000 0.0000 \\ O.0000 \\ O.0000 0.0000 \\ O.0000 \\ O.000 \\ O.0000 \\ O.0000 \\ O.00$
CALIB Area (ha)= 3.48 STANDHYD (0009) Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.96 0.52 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 152.32 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 20.75 30.97 Storage Coeff. (min)= 6.17 (ii) 23.27 (ii) Unit Hyd. peak (cms)= 0.19 0.05 Page 63 Page 63	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.05 0.13 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 34.64 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 20.75 0.00 Storage Coeff. (min)= 2.54 (ii) 295.86 (ii) Unit Hyd. Tpeak (min)= 5.00 300.00 Unit Hyd. peak (cms)= 0.29 0.00 PEAK FLOW (cms)= 0.00 0.003 (iii) TIME TO PEAK (hrs)= 11.50 0.00 12.00 RUNOFF VOLUME (mm)= 46.90 0.00 12.71

Detailed Output.txt TOTAL RAINFALL (mm) = 48.47 48.47 48.47 RUNDEF COEFFICIENT = 0.97 0.00 0.26	I
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	NOTE:
<pre>***** WARNING: THE PERVIOUS AREA HAS NO FLOW . (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20</pre>	********* ** SIMULA ********
THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	READ S
	 Ptotal= 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Max.Eff.Inten.(mm/hr)= 20.75 0.00 over (min) 5.00 295.00 Storage Coeff. (min)= 1.62 (ii) 294.94 (ii) Unit Hyd. Tpeak (min)= 5.00 295.00 Unit Hyd. peak (cms)= 0.32 0.00	CALIB STANDHYD ID= 1 DT=
PEAK FLOW (cms)= 0.00 0.00 0.002 (iii) TIME TO PEAK (hrs)= 11.33 0.00 12.00 RUNOFF VOLUME (mm)= 46.90 0.00 32.05 TOTAL RAINFALL (mm)= 48.47 48.47 48.47 RUNOFF COEFFICIENT = 0.97 0.00 0.66	Surfac Dep. S Averac Length
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! ***** WARNING: THE PERVIOUS AREA HAS NO FLOW .	NC
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	
ADD HYD (0010) AREA QPEAK TPEAK R.V.	
ID = 3 (0010): 4.88 0.110 12.25 36.42	
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
ADD HYD (0010) 3 + 2 = 1 AREA QPEAK TPEAK R.V. 	
+ ID2= 2 (0008): 0.18 0.003 12.00 12.71	

Detailed Output.txt ID = 1 (0010): 5.06 0.111 12.25 35.58 PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ ********* TION NUMBER: 11 ** _____ STORM Filename: C:\Users\borendorff.NOVATECH\AppD ata\Local\Temp\ 828b6ea6-f7be-4f55-aa5c-00940feb087a\05dd4245 Comments: City of Ottawa: 5yr-24hr SCS (60 minute 54.11 mm | _____ RAIN |' TIME RAIN TIME TIME RAIN | TIME RAIN RAIN | TIME mm/hr | hrs 6.99 | 19.00 3.08 | 20.00 2.05 | 21.00 1.80 | 22.00 1.41 | 23.00 1.47 | 24.00 mm/hr |' hrs 1.28 | 13.00 1.28 | 14.00 1.73 | 15.00 2.18 | 16.00 mm/hr 0.96 0.45 hrs hrs mm/hr 1.00 7.00 8.00 0.96 0.83 1.09 0.71 3.00 9.00 10.00 4.00 1.09 | 11.00 3.46 | 17.00 0.96 | 12.00 27.45 | 18.00 5.00 1.41 | 23.00 1.47 | 24.00 0.64 6.00 0.64 _____ -----Area (ha)= 0.11 Total Imp(%)= 66.00 Dir. Conn.(%)= 53.00 (0001) 5.0 min | _____ IMPERVIOUS 0.07 1.57 1.00 27.08 0.013 PERVIOUS (i) 0.04 4.67 0.50 (ha)= (mm)= (%)= (m)= e Area torage je Slope 40.00 0.250 ngs n · _ TE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME	D HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
0.083	0.96	6.083	1.28	12.083	6.99	18.08	0.96
0.167	0.96	6.167	1.28	12.167	6.99	18.17	0.96
0.250	0.96	6.250	1.28	12.250	6.99	18.25	0.96
0.333	0.96	6.333	1.28	12.333	6.99	18.33	0.96
0.417	0.96	6.417	1.28	12.417	6.99	18.42	0.96
0.500	0.96	6.500	1.28	12.500	6.99	18.50	0.96
0.583	0.96	6.583	1.28	12.583	6.99	18.58	0.96
0.667	0.96	6.667	1.28	12.667	6.99	18.67	0.96
0.750	0.96	6.750	1.28	12.750	6.99	18.75	0.96
0.833	0.96	6.833	1.28	12.833	6.99	18.83	0.96
0.917	0.96	6.917	1.28	12.917	6.99	18.92	0.96
1.000	0.96	7.000	1.28	13.000	6.99	19.00	0.96
1.083	0.45	7.083	1.28	13.083	3.08	19.08	0.77
1.167	0.45	7.167	1.28	13.167	3.08	19.17	0.77
1.250	0.45	7.250	1.28	13.250	3.08	19.25	0.77
1.333	0.45	7.333	1.28	13.333	3.08	19.33	0.77
1.417	0.45	7.417	1.28	13.417	3.08	19.42	0.77
1.500	0.45	7.500	1.28	13.500	3.08	19.50	0.77
1.583	0.45	7.583	1.28	13.583	3.08	19.58	0.77
1.667	0.45	7.667	1.28	13.667	3.08	19.67	0.77
1.750	0.45	7.750	1.28	13.750	3.08	19.75	0.77
1.833	0.45	7.833	1.28	13.833	3.08	19.83	0.77
1.917	0.45	7.917	1.28	13.917	3.08	19.92	0.77
2.000	0.45	8.000	1.28	14.000	3.08	20.00	0.77
2.083	0.83	8.083	1.73	114.083	2.05	20.08	1.09

Page 66

	De	tailed (Output.txt			
$\begin{array}{c} 2.167 & 0.83 \\ 2.250 & 0.83 \\ 2.333 & 0.83 \\ 2.417 & 0.83 \\ 2.500 & 0.83 \\ 2.583 & 0.83 \\ 2.583 & 0.83 \\ 2.667 & 0.83 \\ 2.583 & 0.83 \\ 2.583 & 0.83 \\ 2.500 & 0.83 \\ 3.250 & 0.83 \\ 3.000 & 0.83 \\ 3.167 & 0.83 \\ 3.250 & 0.84 \\ 3.250 & 0.84 \\$	8.167 8.250 8.233 8.417 8.500 9.083 8.667 9.250 9.417 9.250 9.417 9.250 9.417 9.250 9.417 9.250 9.417 9.500 9.417 10.000 10.683 10.467 10.250 10.683 10.683 10.67 10.250 10.683 10.67 10.250 10.683 10.67 11.200 11.200 11.417 11.503 11.503 11.	$\begin{array}{c} 1,73\\$	$\begin{array}{c} 14. \ 167\\ 14. \ 250\\ 14. \ 333\\ 14. \ 417\\ 14. \ 583\\ 14. \ 667\\ 14. \ 750\\ 14. \ 583\\ 14. \ 917\\ 15. \ 000\\ 15. \ 083\\ 15. \ 15. \ 750\\ 15. \ 333\\ 15. \ 15. \ 667\\ 15. \ 750\\ 15. \ 833\\ 16. \ 667\\ 16. \ 750\\ 16. \ 833\\ 16. \ 417\\ 16. \ 500\\ 16. \ 833\\ 16. \ 417\\ 16. \ 500\\ 16. \ 833\\ 16. \ 667\\ 16. \ 750\\ 16. \ 833\\ 16. \ 667\\ 16. \ 750\\ 16. \ 833\\ 16. \ 667\\ 16. \ 750\\ 16. \ 833\\ 16. \ 667\\ 16. \ 750\\ 16. \ 833\\ 16. \ 667\\ 16. \ 750\\ 16. \ 833\\ 17. \ 667\\ 17. \ 750\\ 17. \ 833\\ 17. \ 667\\ 17. \ 750\\ 17. \ 833\\ 17. \ 667\\ 17. \ 750\\ 17. \ 833\\ 17. \ 667\\ 17. \ 750\\ 17. \ 833\\ 17. \ 917\\ 17. \ 500\\ 17. \ 507\\ 17.$	2.005 22.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 1.880 1.841 1.841 1.441 1.441 1.441 1.447	20.17 20.23 20.33 20.42 20.50 20.58 20.67 20.75 20.75 20.75 20.75 20.75 20.20 21.00 21.00 21.02 21.32 21.32 21.32 21.42 22.42 21.42 22.42 22.53 22.42 22.55 23.42 23.42 23.55 23.55	$\begin{array}{c} 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 1.09\\ 0.71\\ 0.71\\ 0.71\\ 0.71\\ 0.664\\ 0.6$
8.000 0.96 Max.Eff.Inten.(mm/hr)= over (min)	27.45	27.45	24.52 25.00	1.47	24.00	0.64
Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	1.96 5.00 0.31	(ii)	20.73 (ii) 25.00 0.05	****		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.00 11.42 62.54 64.11 0.98		0.00 12.08 13.38 64.11 0.21	*101 0. 12 39 64	ALS [*] 006 (iii) 2.00 0.43 4.11 0.62	
***** WARNING: STORAGE COEFF.	IS SMALLE	R THAN	TIME STEP!			
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. 						
(111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.						

Page 67

		Detaileo	d Output.txt	
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area (h Total Imp(a)= 0.45 %)= 28.00	Dir. Conn.(%)	= 25.00
Surface Area Dep. Storage Average Slope Length Mannings n	- (ha)= (mm)= (%)= (m)= =	ERVIOUS 0.13 1.57 1.00 54.77 0.013	PERVIOUS (i) 0.32 4.67 0.50 40.00 0.250	
Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	(mm/hr)= r (min) (min)= k (min)= (cms)=	27.45 5.00 2.99 (ii) 5.00 0.28	14.71 30.00 26.01 (ii) 30.00 0.04	***
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC:	(cms)= (hrs)= (mm)= (mm)= IENT =	0.01 11.58 62.54 64.11 0.98	0.01 12.25 6.62 64.11 0.10	0.014 (iii) 12.00 20.60 64.11 0.32
(i) HORTONS I FO (m FC (m (ii) TIME STEI THAN THE (iii) PEAK FLOW	EQUATION SELEC n/hr)= 76.20 n/hr)= 13.20 > (DT) SHOULD STORAGE COEFF W DOES NOT INC	TED FOR PER' K Cum.Inf. BE SMALLER ICIENT. LUDE BASEFL	VIOUS LOSSES: (1/hr)= 4.14 (mm)= 0.00 DR EQUAL DW IF ANY.	
CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area (h Total Imp(a)= 3.40 %)= 85.00	Dir. Conn.(%)	= 68.00
Surface Area Dep. Storage Average Slope Length Mannings n	IMP (ha)= (mm)= (%)= (m)= 1 =	ERVIOUS 2.89 1.57 1.00 50.55 0.013	PERVIOUS (i) 0.51 4.67 0.50 40.00 0.250	
Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	(mm/hr)= (min) (min)= ((min)= (cms)=	27.45 5.00 5.48 (ii) 5.00 0.20	45.35 25.00 20.15 (ii) 25.00 0.05	*TOTAL S*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(cms)= (hrs)= (mm)= (mm)= LENT =	0.18 12.00 62.54 64.11 0.98	0.06 12.00 19.84 64.11 0.31	0.232 (iii) 12.00 48.88 64.11 0.76
(i) HORTONS I FO (mr FC (mr (ii) TIME STEI THAN THE (iii) PEAK FLOW	EQUATION SELEC n/hr)= 76.20 n/hr)= 13.20 > (DT) SHOULD STORAGE COEFF V DOES NOT INC	TED FOR PER K Cum.Inf. BE SMALLER ICIENT. LUDE BASEFLO	VIOUS LOSSES: (1/hr)= 4.14 (mm)= 0.00 DR EQUAL DW IF ANY.	
CALTB				

Detailed Output.txt ID= 1 DT= 5.0 min Total Imp(%)= 37.00 Dir. Conn.(%)= 30.00	Detailed Output.txt
$\frac{\text{IMPERVIOUS PERVIOUS (i)}}{\text{Surface Area (ha)} = 0.41 0.69}$ Den Storage (m)= 1.57 4.67	CALIB STANDHYD (0007) Area (ha)= 1.36 ID= 1 DT= 5.0 min Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00
Average Slope (%)= 1.00 0.50 Length (m)= 85.63 40.00 Mannings n = 0.013 0.250	IMPERVIOUSPERVIOUS (i)Surface Area $(ha) =$ 1.24 0.12 Dep. Storage $(mm) =$ 1.57 4.67 Auropage Clara $(0) =$ 0.50
Max.Eff.Inten.(mm/hr)= 27.45 16.71 over (min) 5.00 30.00 Storage Coeff. (min)= 3.90 (ii) 25.79 (ii)	$\begin{array}{ccccc} A & A & A & B & B & B & B & B & B & B &$
Unit Hyd. Tpeak (min)= 5.00 30.00 Unit Hyd. peak (cms)= 0.25 0.04 *TOTALS*	Max.Eff.Inten.(mm/hr)= 27.45 69.15 over (min) 5.00 20.00 Storage Coeff. (min)= 4.16 (ii) 16.56 (ii)
PEAK FLOW (CmS)= 0.03 0.02 0.041 (111) TIME TO PEAK (hrs)= 11.83 12.25 12.00 RUNOFF VOLUME (mm)= 62.54 8.41 24.65 TOTAL RAINFALL (mm)= 64.11 64.11	Unit Hyd. Tpeak (mn)= 5.00 20.00 Unit Hyd. peak (cms)= 0.24 0.06 *TOTALS* PEAK FLOW (cms)= 0.08 0.02 0.098 (iii)
RUNOFF COEFFICIENT = 0.98 0.13 0.38	TIME TO PEAK (hrs)= 11.92 12.00 12.00 RUNOFF VOLUME (mm)= 62.54 24.08 52.16 TOTAL RAINFALL (mm)= 64.11 64.11 64.11 TOTAL RAINFALL (mm)= 64.12 64.11
(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 $(mm/hr) = 76.20$ K $(1/hr) = 4.14$ FC $(mm/hr) = 13.20$ Cum.Inf. $(mm) = 0.00$	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
(ii) TIME STEP (DT) SHOULD BE SMALLER OR ÈQUÁL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO $(mm/hr)=76.20$ K $(1/hr)=4.14$ FC $(mm/hr)=13.20$ Cum.inf. $(mm)=0.00$ (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
$\begin{vmatrix} ADD HYD & (0006) \\ 1 + 2 = 3 \end{vmatrix}$ AREA QPEAK TPEAK R.V.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STANDHYD (0009) Area (ha)= 3.48 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00
ID = 3 (0006): 0.56 0.020 12.00 24.30 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
ADD HYD (0006) 3 + 2 = 1 AREA QPEAK TPEAK R.V. 	Max.Eff.Inten.(mm/hr)= 27.45 45.35 over (min) 5.00 25.00 Storace Coeff. (min)= 5.52 (ii) 20.19 (ii)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Unit Hyd. Tpeak (min)= 5.00 25.00 Unit Hyd. peak (cms)= 0.20 0.05 *TOTALS*
ID = 1 (0006): 3.96 0.252 12.00 45.40 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	PEAK FLOW (cms)= 0.18 0.06 0.238 (111) TIME TO PEAK (hrs)= 12.00 12.00 12.00 RUNOFF VOLUME (mm)= 62.54 19.84 48.88 TOTAL RAINFALL (mm)= 64.11 64.11 64.11 RUNOFF COEFFICIENT 0.98 0.31 0.76
ADD HYD (0006) AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) ID1= 1 (0006): 3.96 0.252 12.00 45.40 + ID2= 2 (0004): 1.10 0.041 12.00 24.65	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO $(mm/hr) = 76.20$ K $(1/hr) = 4.14$ FC $(mm/hr) = 13.20$ Cum.inf. $(mm) = 0.00$ (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK ELOW DOES NOT INCLUDE RASEELOW TE ANY
ID = 3 (0006): 5.06 0.293 12.00 40.89	CITTY FEAR FLUW DUES NUT INCLUDE DASEFLUW IF ANT.
NUTE. FEAR FLUWS DU NUT INCLUDE DASEFLUWS IF ANY.	ADD HYD (0013)
Page 69	Page 70

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Detailed output.txt Surface Area (ha)= 0.03 0.01 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 16.33 40.00 Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 27.45 13.04 0.00 over (min) 5.00 30.00 30.00 Storage Coeff. (min)= 1.44 (ii) 25.61 (ii) Unit Hyd. peak (cms)= 0.33 0.04 PEAK FLOW (cms)= 0.00 0.000 0.002 (iii) TIME TO PEAK (hrs)= 11.33 12.25 12.00 RUNOFF VOLUME (mm)= 64.11 64.11 64.22 TOTAL ATATALL (mm)= 64.11 64.11 64.11 RUNOFF VOLUME (mm)= 0.98 0.08 0.72 ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 cum.inf. (mm)= 0.00 (ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL
CALIB	ADD HYD (0010) 1 + 2 = 3 AREA QPEAK TPEAK R.V.
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= f3.20 cmm.ff. (mm)= 0.00 (iii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: Fo (mm/hr)= 76.20 k (1/hr)= 4.14 FC (mm/hr)= 13.20 cmm.ff. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>	ADD HYD (0010) AREA OPEAK TPEAK R.V. ID1= 3 (0010): (cms) (hrs) (mm) HD2= 2 (0008): 0.18 0.005 12.00 49.71 + ID2= 2 (0008): 0.18 0.005 12.00 48.69 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ************************************
CALIB CALIB STANDHYD (0011) ID= 1 DT= 5.0 min Total Imp(%)= 78.00 Dir. Conn.(%)= 78.00 IMPERVIOUS PERVIOUS (i) Page 71	Ptotal=106.73 mm Comments: City of Ottawa: 100yr-24hr SCGS (60 minut TIME RAIN TI

Detailed Output.txt 4.00 1.39 10.00 3.63 16.00 2.99 22.00 1.17 5.00 1.81 11.00 5.76 17.00 2.35 23.00 1.07 6.00 1.60 12.00 45.69 18.00 2.46 24.00 1.07	Detailed Output.txt 3.917 1.39 9.917 3.63 15.917 2.99 21.92 1.17 4.000 1.39 10.000 3.63 166.000 2.99 22.00 1.17 4.083 1.81 10.083 5.76 16.083 2.35 22.08 1.07 4.167 1.81 10.167 5.76 16.167 2.35 22.17 1.07 4.250 1.81 10.250 5.76 16.250 2.35 22.17 1.07
CALIB Area (ha)= 0.11 IJD=1 DT= 5.0 min Total Imp(%)= 66.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.07 0.04 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 27.08 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.500 1.60 11.500 43.69 17.50 2.46 23.50 1.07 5.583 1.60 11.583 45.69 17.583 2.46 23.58 1.07 5.667 1.60 11.667 45.69 17.50 2.46 23.58 1.07 5.750 1.60 11.750 45.69 17.750 2.46 23.58 1.07 5.833 1.60 11.833 45.69 17.750 2.46 23.75 1.07 5.917 1.60 11.917 45.69 17.833 2.46 23.83 1.07 6.000 1.60 12.000 45.69 18.000 2.46 23.92 1.07 6.000 1.60 12.000 45.69 18.000 2.46 24.00 1.07 Max.Eff.Inten.(mm/hr)= 45.69 49.96 over (min) 5.00 20.00 Storage Coeff. (min)= 1.60 (ii) 15.72 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.33 0.07 PEAK FLOW (cms)= 0.01 0.00 0.012 (iii) TIME TO PEAK (hrs)= 11.42 12.00 12.00 RUNOFF VOLUME (mm)= 105.16 34.82 72.10 TOTAL RAINFALL (mm)= 10.73 106.73 106.73 RUNOFF COEFFICIENT = 0.99 0.33 0.68 ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K ($1/hr$)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
3.230 1.39 9.230 3.63 15.230 2.99 21.33 1.17 3.331 1.39 9.333 3.63 15.333 2.99 21.33 1.17 3.417 1.39 9.417 3.63 15.417 2.99 21.42 1.17 3.500 1.39 9.500 3.63 15.500 2.99 21.50 1.17 3.583 1.39 9.583 3.63 15.583 2.99 21.58 1.17 3.667 1.39 9.667 3.63 15.667 2.99 21.67 1.17 3.750 1.39 9.750 3.63 15.750 2.99 21.67 1.17 3.833 1.39 9.833 3.63 15.833 2.99 21.83 1.17 3.833 1.39 9.833 3.63 15.833 2.99 21.83 1.17 Page 73	Storage Coeff. (min) = 2.44 (ii) 18.84 (ii) Unit Hyd. Tpeak (min) = 5.00 20.00 Unit Hyd. peak (cms) = 0.30 0.06 PEAK FLOW (cms) = 0.01 0.03 0.042 (iii) TIME TO PEAK (hrs) = 11.58 12.00 12.00 RUNOFF VOLUME (mm) = 105.16 28.12 47.38 Page 74

Detailed Output.txt TOTAL RAINFALL (mm)= 106.73 106.73 106.73 RUNOFF COEFFICIENT = 0.99 0.26 0.44	Detailed Output.txt ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	ADD HYD (0006)
CALIB STANDHYD (0003) Area (ha)= 3.40 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00	1 + 2 = 3 AREA QPEAK TPEAK R.V.
IMPERVIOUS PERVIOUS (1) Surface Area (ha)= 2.89 0.51 Dep. storage (mm)= 1.57 4.67	ID = 3 (0006): 0.56 0.054 12.00 52.23
Average Slöpe (%)= 1.00 0.50 Length (m)= 150.55 40.00 Mannings n = 0.013 0.250	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
Max.Eff.Inten.(mm/hr)= 45.69 84.27 over (min) 5.00 20.00	ADD HYD (0006)
Storage Coeff. (min)= 4.47 (ii) 15.92 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.23 0.07	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
PEAK FLOW (cms)= 0.29 0.11 0.407 (iii) TIME TO PEAK (hrs)= 12.00 12.00 12.00	$\begin{array}{c} + 102 = 2 & (0005): & 5.40 & 0.407 & 12.00 & 85.19 \\ \hline \\ = = = = = = = = = = = = = = = = =$
RUNOFF VOLUME (mm)= 105.16 42.76 85.19 TOTAL RAINFALL (mm)= 106.73 106.73 106.73 RUNOFF COEFFICIENT = 0.99 0.40 0.80	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (OT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) DRAW FOR AND FOR THE AND F	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
(III) PEAK FLOW DUES NUT INCLUDE DASEFLOW IF ANY.	ID = 3 (0006): 5.06 0.567 12.00 74.35
CALIB STANDHYD (0004) Area (ha)= 1.10 STANDHYD (0004) Area (ha)= 1.10	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
IID= 1 DI= 5.0 min 10tal Imp(%)= 57.00 DIT. Conn.(%)= 50.00 IMPERVIOUS PERVIOUS (i)	CALIB STANDHYD (0007) Area (ha)= 1.36
Surface Area (ha)= 0.41 0.69 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50	ID= 1 DT= 5.0 min Total Imp(%)= 91.00 Dir. Conn.(%)= 73.00
Length (m)= 85.63 40.00 Mannings n = 0.013 0.250	Surface Area (ha)= 1.24 0.12 Dep. Storage (mm)= 1.57 4.67
Max.Eff.Inten.(mm/hr)= 45.69 37.53 over (min) 5.00 20.00	Average Slope (%)= 1.00 0.50 Length (m)= 95.22 40.00 Mannings n = 0.013 0.250
Storage Coeff. (min)= 3.18 (ii) 19.02 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. neak (cmc)= 0.27 0.06	Max.Eff.Inten. $(mm/hr) = 45.69$ 123.87
PEAK FLOW (cms)= 0.04 0.06 0.106 (iii)	Storage Coeff. (min) 3.39 (ii) 13.21 (ii) Unit Hyd. Tpeak (min) 5.00 15.00
TIME TO PEAK (hrs)= 11.75 12.00 12.00 RUNOFF VOLUME (mm)= 105.16 29.37 52.11 TOTAL RAINFALL (mm)= 106.73 106.73 106.73	Unit Hyd. peak (cms)= 0.26 0.08 *TOTALS* PFAK FLOW (cms)= 0.13 0.04 0.167 (jij)
RUNOFF COEFFICIENT = 0.99 0.28 0.49 Page 75	TIME TO PEAK (hrs)= 11.83 12.00 12.00 Page 76

Detailed Output.txt	Detailed Output.txt
TOTAL RAINFALL (mm)= 106.73 106.73 106.73 RUNOFF COEFFICIENT = 0.99 0.46 0.84	AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	INFLOW : ID= 2 (0013)
 (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUBE BASEFLOW IF ANY. 	PEAK FLOW REDUCTION [Qout/Qin](%)= 87.05 TIME SHIFT OF PEAK FLOW (min)= 0.00 MAXIMUM STORAGE USED (ha.m.)= 0.1355
	CALIB STANDHYD (0008) Area (ha)= 0.18 ID= 1 DT= 5.0 min Total Imp(%)= 28.00 Dir. Conn.(%)= 28.00
STANDHYD (0009) Area (ha)= 3.48 ID= 1 DT= 5.0 min Total Imp(%)= 85.00 Dir. Conn.(%)= 68.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.96 0.52 Dep Storage (mm)= 1 57 4 67	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Average Slope $(\%) = 1.00$ 0.50 Length $(m) = 152.32$ 40.00	Max.Eff.Inten.(mm/hr)= 45.69 32.41
Mannings n = 0.013 0.250 Max.Eff.Inten.(mm/hr)= 45.69 84.27 over (min) 5.00 20.00 Storage coeff (min) 4.50 (jii) 15.05 (jii)	over (min) 5.00 20.00 Storage Coeff. (min)= 1.85 (ii) 18.64 (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.32 0.06
Storage Coeff. (min) = 4.50 (17) 15.53 (17) Unit Hyd. Tpeak (min) = 5.00 20.00 Unit Hyd. peak (cms) = 0.23 0.07 *TOTALS* PEAK FLOW (cms) = 0.30 0.12 0.416 (iii)	PEAK FLOW (cms)= 0.01 0.01 0.01 (iii) TIME TO PEAK (hrs)= 11.42 12.00 12.00 RUNOFF VOLUME (mm)= 105.16 27.25 49.06 TOTAL RATHEAL (mm)= 106.73 106.73
TIME TO PEAK (hrs)= 12.00 12.00 12.00 RUNOFF VOLUME (mm)= 105.16 42.76 85.19	RUNOFF COEFFICIENT = 0.99 0.26 0.46
$\frac{101 \text{ RAINFALL (mm)} = 106.73 + 10$	(i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:
<pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: F0 (mm/hr)= 76.20 K (1/hr)= 4.14 Fc (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.</pre>	FO (mm/hr)= 76.20 K (1/hr)= 4.14 FC (mm/hr)= 13.20 Cum.Inf. (mm)= 0.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
(111) PEAK FLOW DUES NOT INCLUDE BASEFLOW IF ANY.	 CALIB STANDHYD (0011) Area (ha)= 0.04 ID= 1 DT= 5.0 min Total Imp(%)= 78.00 Dir. Conn.(%)= 78.00
$ \begin{vmatrix} ADD & HYD & (0013) \\ 1 & + & 2 & = & 3 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.03 0.01 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= 1.00 0.50 Length (m)= 16.33 40.00 Mannings n = 0.013 0.250
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	Max.Eff.Inten.(mm/hr)= 45.69 32.41 over (min) 5.00 20.00
	Storage COETT. (min)= 1.18 (ii) 1/.9/ (ii) Unit Hyd. Tpeak (min)= 5.00 20.00 Unit Hyd. peak (cms)= 0.33 0.06
RESERVOIR (0012) IN= 2> 0UT= 1 DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE Cms) (ha.m.) (Cms) (ha.m.) 0.0000 0.0000 0.0070 0.0074 0.0074 0.5300 0.0070 0.0074 0.2000 0.0000 0.0000 0.0000	*TOTALS* PEAK FLOW (cms)= 0.00 0.00 0.005 (iii) TIME TO PEAK (hrs)= 11.33 12.00 12.00 RUNOFF VOLUME (mm)= 105.16 27.25 86.35 TOTAL RAINFALL (mm)= 106.73 106.73 106.73 RUNOFF COEFFICIENT = 0.99 0.26 0.81
Page 77	WARNING, STORAGE COEFF. IS SMALLER THAN TIME STEP: Page 78

Detailed Output txt

		Decarre	u output.	LXL
 (i) HORTONS EQUATION F0 (mm/hr)= 7 FC (mm/hr)= 1 (ii) TIME STEP (DT) S THAN THE STORAGE (iii) PEAK FLOW DOES N 	SELECTE 6.20 3.20 HOULD BE COEFFIC OT INCLU	ED FOR PER K Cum.Inf SMALLER CIENT. JDE BASEFI	RVIOUS LOS (1/hr)= . (mm)= OR EQUAL LOW IF ANY	SSES: 4.14 0.00
ADD HYD (0010) 1 + 2 = 3 ID1= 1 (0011): + ID2= 2 (0012):	AREA (ha) 0.04 4.84	QPEAK (cms) 0.005 0.508	TPEAK (hrs) 12.00 12.00	R.V. (mm) 86.35 86.49
ID = 3 (0010):	4.88	0.513	12.00	86.49
NOTE: PEAK FLOWS DO N	OT INCLU	JDE BASEFI	LOWS IF AN	NY.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AREA (ha) 4.88 0.18	QPEAK (cms) 0.513 0.017	TPEAK (hrs) 12.00 12.00	R.V. (mm) 86.49 49.06

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ID = 1 (0010): 5.06 0.529 12.00 85.16

FINISH

Ottawa Sewer Design Guidelines

APPENDIX 5-A OTTAWA INTENSITY DURATION FREQUENCY (IDF) CURVE

City of Ottawa

Appendix 5-A.1

November 2004

Surface Storage Table for Area A-1			
Elevation	Surface Area	Cumulative Volume	
m	m²	m ³	
85.15	0	0	
85.20	7.2	0.2	
85.40	85.4	9.4	
85.60	243.7	42.3	
85.80	2374.7	304.2	
86.00	2681.2	809.8	
86.20	2975.4	1375.4	
86.40	3285.6	2001.5	
86.45	3828.4	2179.4	

Stage Storage Curve: Area A-1 Surface Storage in SWM Facility

ABCO, SWM Facility BROAD CRESTED WEIR

Broad Crested Weir

Q (m³/s) = C x L x H^(3/2)

Weir Coefficeint	1.84
Bottom Width (m)	3.2
Bottom of Weir Elevation (m)	86.00

Water Level Elevation	Flow Rate	Over Weir
(m)	(m³/s)	(L/s)
86.00	0.000	0.0
86.05	0.066	65.8
86.10	0.186	186.2
86.15	0.342	342.1
86.20	0.527	526.6
86.25	0.736	736.0
86.30	0.967	967.5
86.35	1.219	1219.2
86.40	1.490	1489.6
86.45	1.777	1777.4

APPENDIX E

IPEX Inlet Control Device Information

IPEX Tempest™ Inlet Control Devices

Municipal Technical Manual Series

Vol. I, 2nd Edition

© 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.

PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD

Purpose

To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

Product Description

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps – 17lps (31gpm – 270gpm)

Product Function

The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

Product Construction

Constructed from durable PVC, the LMF ICD is light weight 8.9 Kg (19.7 lbs).

Product Applications

Will accommodate both square and round applications:

Square Application Round Application Universal Mounting Plate

Universal Mounting Plate Hub Adapter

Spigot CB

Wall Plate

4

IPEX

Chart 1: LMF 14 Preset Flow Curves

NOTE: Do not use or test the products in this manual with compressed air or other gases including air-over-water-boosters

IPEX

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
 (4) nuts, universal mounting plate, ICD device.
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX Tempest™ LMF ICD

6

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

IPEX Tempest™ LMF ICD

APPENDIX F

CDS Oil-Grit Separator Information

Steve Matthews

From:	George Gebara <george@echelonenvironmental.ca></george@echelonenvironmental.ca>
Sent:	September-21-15 4:31 PM
То:	Steve Matthews
Subject:	RE: CDS Sizing Request - Ahlul Bayt Centre
Attachments:	Ahlul Bayt Center, Ottawa (Novatech 09-2015).pdf
Attachments:	Ahlul Bayt Center, Ottawa (Novatech 09-2015).pdf

Steven,

Here you go.

Additional information :

Unit	Sump Volume (m³)	Total Holding Volume (m ³)	Oil Capacity (L)
PMIU20_15_4i	1.016	1.773	232
PMSU20_15_4	1.016	1.773	232
PMSU20_15_5	1.668	2.826	313
PMSU20_15_5ES	2.039	3.197	313
PMSU20_15_6	2.402	4.050	414

The _4, _5 and _6 are for manhole sizes. For this unit a 4 foot (1200 mm) is sufficient The es is for extended sump, again for thsi unit, a normal sump is sufficient The "I" unit is a direct inlet unit (grated cover)

Standard industry warranty and site visits.

Budget prices are: _4 unit at 2 M is \$15500 plus taxes and at 4 M is \$16500 plus taxes.

George Gebara, B. Eng. Project Manager, Eastern Ontario Echelon Environmental Inc. cel: (613)298-5725 head office: (905)948-0000 fax: (905)948-0577 www.echelonenvironmental.ca

To: George Gebara Subject: RE: CDS Sizing Request - Ahlul Bayt Centre

Hi George,

I just wanted to follow up on the OGS sizing for this project. We are not under a tight deadline right now, but I do anticipate that we will need to have something for submission to the City of Ottawa shortly. Can you please provide me with an update on the status of this request and let me know when we might receive the confirmation of sizing. If there is any further information that you need from me, please do not hesitate to call.

Thanks, Steve

Stephen Matthews, Design / Drafting Technologist

NOVATECH Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 223 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: George Gebara [<u>mailto:george@echelonenvironmental.ca</u>] Sent: August-27-15 3:30 PM To: Steve Matthews <<u>S.Matthews@novatech-eng.com</u>> Subject: RE: CDS Sizing Request - Ahlul Bayt Centre

With apologies. I have not forgotten, we are working on it and will have a submittal for you soon.

As the flow will be limited to 7.4 l/sec into the OGS, our smallest unit will suffice. However, if the net flow (as a result of area and I) is large, sediment accumulation may be high. As such, we will verify if an extended sump is needed, or if the unit must be stepped up in manhole size.

Once again, my apologies and I will get back to you

Ahlul bayt...should be "ahl ul bayt"..."people/owners/family of the house" is the simple translation....this phrase has broad meaning and you can extend it to mean "heaven"...I am guessing a religious center. Interesting.

Georges

George Gebara, B. Eng. Project Manager, Eastern Ontario Echelon Environmental Inc. cel: (613)298-5725 head office: (905)948-0000 fax: (905)948-0577 www.echelonenvironmental.ca From: Steve Matthews [mailto:S.Matthews@novatech-eng.com]
Sent: August-24-15 11:34 AM
To: George Gebara
Cc: Bryan Orendorff; Francois Thauvette
Subject: CDS Sizing Request - Ahlul Bayt Centre

Hi George,

We are currently working on another project in Ottawa that requires an oil/grit separator unit. The project is for the Ahlul Bayt Centre and is located in a developed industrial area at 3095 Albion Road in the City of Ottawa. The project details are as follows:

Total Tributary area = 4.84 ha (this area includes a site area of 1.37 ha [at 90% impervious] and an off-site tributary area of 3.47 ha [at 80% impervious] the off-site areas are simply being conveyed and do not require treatment) Total Imperviousness = 83% Time of concentration = 10min IDF Curve = City of Ottawa (104.2mm/hr Intensity for 5yr) (178.6mm/hr Intensity for 100yr)

We have a requirement to provide a level of quality control treatment to meet the MOE 'Enhanced Protection' guidelines (i.e. 80% TSS removal and 90% of annual runoff treated) for the on-site areas only. The oil/grit separator will be installed on a new 300mm dia. PVC pipe with 90 degrees of separation through the structure and approximately 1.25m of cover on the pipes. A standard particle distribution (Fines) should be adequate for the design.

The peak design flow will be set at only 7.4 L/s based on the City's stringent requirements for the Sawmill Creek subwatershed. As a result, there will be significant upstream attenuation in a linear SWM facility and a vortex type ICD within the parking lot storm structure immediately upstream of the OGS. This should significantly reduce the amount of suspended solids reaching the OGS. Flows for the 1:5yr event and larger will by-pass the OGS completely and be controlled and conveyed from the site via a concrete control weir directing flows to the off-site outlet ditch.

			_	OTTH Rating	ITYMO g Curve
Surface S	Surface Storage Table for Area A-1			Release	Storage
Elevation	Surface Area	Cumulative		Rate	Volume
Elevation	Sufface Area	Volume		(m³/s)	(ha-m)
m	m²	m ³			
85.15	0	0		0.0000	0.00000
85.20	7.2	0.2		0.0070	0.00002
85.40	85.4	9.4		<mark>0.0074</mark>	<mark>0.00094</mark>
85.60	243.7	42.3		0.6000	0.00423
85.80	2374.7	304.2		0.7700	0.03042
86.00	2681.2	809.8		0.8000	0.08098
86.20	2975.4	1375.4		1.1100	0.13754
86.40	3285.6	2001.5		1.8000	0.20015
86.45	3828.4	2179.4		2.0000	0.21794

Can you please size a CDS unit for us and provide the design details as well as an approximate cost estimate. I have attached a preliminary sketches of the site showing the proposed location of the unit and the site grading with the linear SWM facility. Thank you for your time and consideration in this matter. If there is any further information you require, please do not hesitate to call.

Regards, Steve

Stephen Matthews, Design / Drafting Technologist

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 223 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

Sept.21, 2015

Mr. Stephen Matthews Novatech Engineering Consultants Ltd 240 Michael Cowpland Drive, Suite 200 Ottawa, ON K2M 1P6

Subject: Submittal for CDS PMSU 20_15_4 Project: Ahlul Bayt Center,Ottawa ON.

Mr. Mathews,

Echelon Environmental is pleased to offer this detailed submittal package for approval of the CDS PMSU 20_15_4

Design Parameters

The proposed CDS PMSU unit was designed based on the following parameters sent to Echelon by Novatech Engineering Consultants Ltd.

Drainage Area:	1.37 ha
Imperviousness:	90%
Runoff Coefficient:	0.84 (Calculated)
Release rate	7.4 l/sec
Time of Concentration:	10 minutes (Assumed)
Target Particle Size Distribution:	Fine Distribution (see appendix I)
MOE Treatment Level:	TSS: 80%, Treated Volume: >90% (MOE LEVEL I)
Peak Flow to OGS:	TBD

TSS Removal Calculation

Our TSS removal calculation can be found in Appendix I. As indicated on the calculation, the CDS unit has been selected to capture 80% TSS on an average annual basis and treat 90% of the site runoff. As noted on the calculation, the TSS removal efficiency was based on a Fine PSD and Based on 42 years of hourly rainfall data from Canadian Station 6105976, Ottawa ON. . Appendix I also the validation against the chosen PSD.

Appendix II shows the anticipated grit load/cleaning cycle.

Cutsheet /Reference Drawing

PMSU 20_15_4 reference drawing is in Appendix III. Full Submittal drawing available upon request.

Structural Design

The proposed CDS PMSU unit has been is designed to Canadian Highway Bridge Design Code (CHBDC) loadings. All concrete components are manufactured at an OPS pre-qualified plant.

Approval Background

Currently over 2000 CDS units installed throughout Ontario with single units treating drainage areas ranging from 0.1 ha to 50 ha. The CDS Stormwater Treatment System is an approved product in Ontario and is servicing various jurisdictions throughout the province.

Approval of the CDS Technology for TSS Removal

<u>NJDEP</u> – CDS has met NJDEP's testing requirements and is a re-certified product as of January, 2015. It is also the only Oil/Grit Separator to have achieved Tier One and Tier Two testing with approved scour testing as of January, 2015.

Ministry of Environment - The Ministry of Environment (MOE) has reviewed the system and has provided Certificate of Approval/Environmental Compliance, (see Appendix IV). Approvals are for sites using CDS units to achieve Level 1 (80% TSS Removal, 90% Runoff Treated) treatment. Ontario Provincial Standards - Ontario Provincial Standards' (OPS) Special Review Committee for the approval of oil/grit separators in municipal roadway applications, standardized a review process for all municipalities. CDS has been reviewed and approved by OPS. Certification is attached, Appendix IV. **System Features**

Conventional oil-grit separators rely solely on gravity for grit separation. By contrast, CDS units utilize multiple hydraulic techniques to allow large flows to be processed in a compact footprint. These processes include gravity, swirl concentration and a patented inertial based screening process. In a CDS system, the energy in the storm flow is used to enhance separation, thereby allowing for a much more compact treatment chamber.

Floatables Containment

The CDS system removes 100% of the buoyant and neutrally buoyant material larger than 2.4mm up to the treatment flowrate. The system also incorporates a riser tube on top of the treatment chamber that extends beyond the high water condition to maintain the capture of buoyant material during peak events and temporary backwater conditions.

Hydrocarbon Capture

CDS units are capable of capturing and retaining hydrocarbons with its integral oil baffle design. CDS units were tested and demonstrated to be greater than 99% effective in controlling dry-weather accidental oil spills.

Internal High Flow By-Pass Capability

CDS units have an internal by-pass weir and are capable of by-passing peak design storm events. CDS units are custom designed for each site based on the specific hydraulic requirements.

Sump is Separate from the Treatment Chamber

CDS units have a separate treatment chamber and grit storage sump chamber. With this design feature, the geometry of the treatment chamber is not impacted by accumulated grit, and the independent sump chamber volume can be optimized to capture the estimated accumulated grit in between maintenance cycles.

Inspection and Maintenance

Echelon Environmental provides a full Operations and Maintenance Manual with as-built drawings included for all CDS units. Echelon Environmental also offers a comprehensive Inspection and Maintenance Program to assist owners in establishing long term maintenance for their separators.

We trust this submittal fully addresses all the tender requirements for the oil-grit separator.

Yours Truly, Echelon Environmental Inc. George Gebara, B.Eng - Project Manager

APPENDIX I CDS TSS REMOVAL CALCULATIONS PSD VALIDATION
STORMWATER

SOLUTIONS

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON A FINE PARTICLE SIZE DISTRIBUTION

Project Name: Location: OGS #:	Ahlul Bayt Cer Ottawa, ON OGS	ntre		Engineer: Contact: Report Date:	Novatech Stephen Matth 28-Aug-15	ews	
Area Weighted C Orifice Control CDS Model	1.37 0.84 7.4 2015	ha (assumed) L/s (select from pull	down)	Rainfall Static (select from Ra Particle Size I CDS Treatmen	on # ainfall Data colu Distribution nt Capacity	215 umn D) FINE 20	l/s
<u>Rainfall</u> Intensity ¹ (mm/hr)	Percent Rainfall Volume ¹	Cumulative Rainfall Volume	<u>Total</u> <u>Flowrate</u> <u>(I/s)</u>	<u>Treated</u> Flowrate (I/s)	<u>Operating</u> <u>Rate (%)</u>	<u>Removal</u> <u>Efficiency</u> <u>(%)</u>	Incremental Removal (%)
0.5	9.2%	9.2%	1.6	1.6	8.1	96.5	8.8
1.0	10.6%	19.8%	3.2	3.2	16.1	94.2	10.0
1.5	9.9%	29.7%	4.8	4.8	24.2	91.9	9.1
2.0	8.4%	38.1%	6.4	6.4	32.3	89.6	7.5
2.5	7.7%	45.8%	7.4	7.4	37.3	88.2	6.8
3.0	5.9%	51.7%	7.4	7.4	37.3	88.2	5.2
3.5	4.4%	56.1%	7.4	7.4	37.3	88.2	3.8
4.0	4.7%	60.7%	7.4	7.4	37.3	88.2	4.1
4.5	3.3%	64.0%	7.4	7.4	37.3	88.2	2.9
5.0	3.0%	67.1%	7.4	7.4	37.3	88.2	2.7
6.0	5.4%	72.4%	7.4	7.4	37.3	88.2	4.7
7.0	4.4%	76.8%	7.4	7.4	37.3	88.2	3.8
8.0	3.5%	80.3%	7.4	7.4	37.3	88.2	3.1
9.0	2.8%	83.2%	7.4	7.4	37.3	88.2	2.5
10.0	2.2%	85.3%	7.4	7.4	37.3	88.2	1.9
15.0	7.0%	92.3%	7.4	7.4	37.3	88.2	6.2
20.0	4.5%	96.9%	7.4	7.4	37.3	88.2	4.0
25.0	1.4%	98.3%	7.4	7.4	37.3	88.2	1.3
30.0	0.7%	99.0%	7.4	7.4	37.3	88.2	0.6
35.0	0.5%	99.5%	7.4	7.4	37.3	88.2	0.4
40.0	0.5%	100.0%	7.4	7.4	37.3	88.2	0.5
45.0	0.0%	100.0%	7.4	7.4	37.3	88.2	0.0
50.0	0.0%	100.0%	7.4	7.4	37.3	88.2	0.0
90.1 Removal Efficiency Adjustment ² = 6.5% Predicted Net Annual Load Removal Efficiency = 83.6% Predicted % Annual Rainfall Treated = 99.0% 1 - Based on 42 years of hourly rainfall data from Canadian Station 6105976. Ottawa ON							
2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.							

CDS Stormwater Treatment Unit Performance

Particle Size	% of Particle		
(µm)	Mass		
< 20	20		
20 – 40	10		
40 - 60	10		
60 – 130	20		
130 – 400	20		
400 – 2000	20		

Table 1. Fine Particle Size Distribution (PSD)

Removal Efficiencies – CDS Unit Testing Under Various Flow Rates

The following performance curves are based on controlled tests using a full scale CDS Model PMSU20_20 (2400 micron screen), 1.1-cfs (494-gpm) capacity treatment unit.

Figure 1. CDS Unit Performance for Fine PSD

CDS Unit Performance Testing Protocol

Tests were conducted using two types of sand – U.S. Silica OK-110 and UF sediment (a mixture of U.S. Silica sands). Particle size gradations for the two types of sand are illustrated in Figure 2.

Figure 2. Test material particle size gradations - CDS Model PMSU20_20 test (Analytical results provided by MACTEC Engineering and Consulting Inc. FL ASTM D-422 with Hydrometer method)

The influent concentration (mg/L) for the test was set at 200-mg/L and verified from slurry feeding. Effluent samples were taken at fixed time intervals during each test run at various flow rates. The composite effluent samples were sent to Test American Analytical Testing Lab, OR for TSS analysis (ASTM D3977-97).

TSS removal rates for the specified PSD (d_{50} of 90 μ m) under various flow rates were calculated from Figure 2 shows the removal efficiency as a function of operating flow rate. This removal efficiency curve as a function of percent flow rate can be applied to all CDS unit models.

APPENDIX II ANTICIPATED GRIT LOAD/CLEANING CYCLE

Phone: 905-948-0000 Fax: 905-948-0577 info@echelonenvironmental.ca www.echelonenvironmental.ca

Engineer: Novatech	Engineer: Novatech Engineeirng			Project: Ahlul Bayt Cent			1
Contact: Mr/ S. Mathews P.Eng				Mode	el: PMSU2	0_15_4	
Report Date:				OGS Locatio	n: OGS 1		
Area :	1.37	ha					
Imperviousness :	90	%					
Runoff Coefficient :	0.84						
ssumptions:							
. Annual Rainfall		919	mm				
. Typical Grit Concentrat	ion	300	mg/l				
Apparent Grit Density		1.7	kg/l	(estimated	d)		
Grit Capture Efficiency		50%					
Runoff Volume = Area x Rainfall Depth x Runoff Coefficient =10,576 cGrit Collected = Grit Concentration x Runoff Volume x Grit Capture Efficiency =1.586 k						cu.m kg	
Grit Volume = Mass / Apparent Density =933 litresor0.933 cu.					cu.m		
Therefore it can be expected that this site will generate approximately 0.933cu.m of grit annually.							
Suma	Capacity o	f CDS unit =	1	.016 cu.m			

APPENDIX III CDS PMSU 20_15_4 Cutsheet/Reference DRAWING

APPENDIX IV Ontario Provincial Standards Approval MOE Certificate ECHNOLOGY ASSESSMENT • TECHNOLOGY ASSESSMEN

OF TECHNOLOGY ASSESSMENT

CDSTM Technologies

The Ontario Ministry of the Environment has reviewed the solid/liquid separation system developed by **CDSTM Technologies**. Based on the review of the documentation submitted by the company (see the Notable Aspects section and Appendix), and data from pilot-scale testing and full-scale operations conducted by various agencies, the Ministry concludes that the continuous deflection separation (CDSTM) system can provide useful removal of solids and floatables as part of a stormwater management system.

The CDS[™] Technologies may be able to provide "basic to enhanced" level of protection when used alone, maintained for effective operation, and when appropriately designed for the development area to be serviced. CDS[™] units may also be used for pretreatment in combination with other non-proprietary technologies such as man-made wetlands, treatment ponds and infiltration basins.

Romays John Mayes, (A) Director

Standards Development Branch Ministry of the Environment (September 2006)

Ontario

New Environmental Technology Evaluation Program

Promoting the development and application of new environmental technologies

	A Ser (Membership vice of Ontario Sood Roads	Monday, April 27, 2015
Home Newsroom Products & Services Standards	Pre-Qualified Products	Product Classification	About Us
Echolon Environmental		Contacts	Register 🔒 Login
Supplier of stormwater treatment systems Category: Distributor		Rob Rainfor General Man Echelon Env	d, P.Eng. ager /ironmental
Products * For product details select the down arrow. Info 濧 CDS Technologies Precast Manhole Stormwater Unit (PMSU) ▲ Info 濧 ChamberMaxx	505 Hood Road, Unit #26 Markham, ON L3R 5V6 Phone: 905-948-0000 x225 Fax: 905-948-0577 Cellular: 416-899-0553 Email: rob@echelonenvironmental.ca Web: http://www.echelonenvironmental.ca		
Products Distributed Contech Construction Products Inc. CDS [®] Using patented continuous deflective separation technology, the CDS [®] separates and traps debris, sediment, and oil from stormwater runoff. T the system allows for 100% removal of floatables and neutrally buoyan available in offline, inline, and grate inlet configurations. The unique link receive stormwater in a single treatment unit. Its unique forebay design multiple pipes on a 170° arc. If needed, the system can perform as a ci flow from the rest of the drainage collection system? eliminating the ne baffle skirt surrounding the non-blocking screening process traps oil an captured oil and grease from high bypass flows, preventing re-entrainn in precast or cast-in-place. Offline units can treat flows from 1 to 300 cf treat up to 7.5 cfs (170 L/s), and internally bypass larger flows in exces removal capability of the CDS system has been proven in the lab and f	system, effectively screens, he indirect screening capability of material, without blinding. It is it design provides more ways to allows it to receive single or tch basin or drop inlet and receive ed for additional structures. An oil d grease. It separates previously went. The CDS [®] system is available is (30 to 8500 L/s). Inline units can s of 50 cfs (1420 L/s). The pollutant eld.		www.eeneronenvironinentai.ca

APPENDIX G

Engineering Drawings

INLET CONTROL DEVICE DATA - STM MH 5						
TEMPEST VORTEX ICD	DIAMETER OF OUTLET PIPE	DESIGN FLOW	DESIGN HEAD	WATER ELEVATION		
IPEX LMF 95	300mm Ø	7.4 L/s	0.83 m	85.98 m		

ON (mm)	COVER (mm)	THIC
	1500-1200	Ę
E THE	1200-900	7
n FOR EVERY	900-600	1

í		
EX. SAN	I EX. UP	
<u> (STRUC</u> T/G=87.L	0 29 EX. O/H HYDRO	KITCHENER AV CVERHEAD POWERLINES
		KEY PLAN
/WV.=81.45		The position of all pole lines, conduits,
		and above ground utilities and structures is not necessarily shown on the contract
		drawings, and where shown, the accuracy of the position of such utilities and structures is not guaranteed. Before starting work,
		determine the exact location of all such utilities and structures and assume all liability for damage to them.
EX.		SITE BENCHMARK
450mm@ C		REFERENCED TO LOCAL GEODETIC DATUM AS INDICATED ON DRAWING. SEE EXISTING VERTICAL CONTROL MONUMENT No.3453 (TABLET ON FOUNDATION) ON SOUTH-WEST CORNER OF
ONC. SAN		BUILDING LOCATED AT 3091 ALBION ROAD NORTH.
		OWNER INFORMATION AHLUL-BAYT CENTRE
		200 BARIBEAU STREET OTTAWA, ONTARIO, K1L 7R6
		E-MAIL: akromi@gmail.com
		IAMES B. LENNOY & ASSOCIATES INC
		LANDSCAPE ARCHITECTS 332 CARLING AVE. OTTAWA, ONTARIO K2H 5A8 Tel. (613) 722-5168 Fax. 1(866) 343-3942
A	EX. SANMH (STRUCT ID: MHSA 33730) T/G=86.68	
14-7 	(/ EX. STMMH (STRUCT ID: MHST 33660) T/G=86.80	ROFESSIONA
-4		and transit that
Ĩ		9 F.S. THAUVETTE
		BOMNCEOFONTATIO
	APPROVED C REFUSED C	
	THIS DAY OF, 20	NOVATECH
	DON HERWEYER, MCIP, RPP, MANAGER DEVELOPMENT REVIEW SOUTH	Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6
	PLANNING, INFRASTRUCTURE AND ECONOMIC DEVELOPMENT DEPARTMENT, CITY OF OTTAWA	Telephone (613) 254-9643 Facsimile (613) 254-5867 Website www.novatech-eng.com
HYDRO		
	WATERMAIN NOTES:	
	MOST CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 2. SPECIFICATIONS:	
	ITEM SPEC. NO. REFERENCE WATERMAIN TRENCHING W17 CITY OF OTTAWA THERMAL INSULATION IN SHALLOW TRENCHES W22 CITY OF OTTAWA	
	WATERMAIN CROSSING BELOW SEWERS W25 CITY OF OTTAWA WATERMAIN CROSSING BELOW SEWERS W25 CITY OF OTTAWA WATERMAIN PVC DR 18	
	 EXCAVATION, INSTALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE CONTRACTOR. CONNECTIONS AND SHUT-OFFS AT THE MAIN AND CHLORINATION OF THE WATER SYSTEM SHALL BE PERFORMED BY CITY OFFICIALS. 	
R	 WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE UNLESS OTHERWISE INDICATED. PROVIDE MINIMUM 0.5m CLEARANCE BETWEEN OUTSIDE OF PIPES AT ALL CROSSINGS, UNLESS 	
	 6. WATER SERVICE IS TO BE CONSTRUCTED TO WITHIN 1.0m OF FOUNDATION WALL AND CAPPED, UNLESS OTHERWISE INDICATED. 	
C		2 JAN. 6, 2017 REVISED PER CITY COMMENTS
	SEVVER NUTES: 1. SUPPLY AND CONSTRUCT ALL SEWERS AND APPURTENANCES IN ACCORDANCE WITH THE MOST CURRENT CITY	NO. DATE: REVISION:
	0F OT FAWA STANDARDS AND SPECIFICATIONS. 2. SPECIFICATIONS: ITEM SPEC. No. REFERENCE	
JP	STM/SAN/CATCHBASIN MANHOLE (1200Ø / 1200x1200)701.010 / M-4OPSD/M-CON (or APPROVED EQ)STM/SAN/CBMH FRAME AND COVERS24.1 / S24 / S25CITY OF OTTAWAWATERTIGHT MANHOLE FRAME AND COVER401.030OPSD	
	CATCHBASIN (600x600) 705.010 OPSD CATCHBASIN FRAME AND COVER 400.020 OPSD STORM SEWER PVC DR 35 / CONC. 65D	S. J. LAWRENCE ARCHITECT INCORPORATED
	SUBDRAIN SEARCH SEARCH FOODR 35 SUBDRAIN HDPE PERF. / NON-PERF. PIPE SEWER TRENCH - BEDDING (GRANULAR 'A') COVER (GRANULAR 'A' OR GRANULAR 'B' TYPE I WITH MAX. PARTICLE SIZE=25mm)	18 Deakin Street, Suite 205, Nepean, ON K2E 8B7 Tel: (613) 739–7770 Fax: (613) 739–7703 Email: sjl@sjlarchitect.com
	3. ALL STORM AND SANITARY SERVICE LATERALS SHALL BE EQUIPPED WITH BACKFLOW PREVENTERS AS PER THE CITY OF OTTAWA STANDARD DETAILS S14 AND S14.1 OR S14.2.	
	 PIPE BEDDING, COVER AND BACKFILL ARE TO BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. THE USE OF CLEAR CRUSHED STONE AS A BEDDING LAYER SHALL NOT BE PERMITTED. INSULATE ALL SANITARY AND STORM SEWER PIPES THAT HAVE LESS THAN 1.5m COVER WITH HI-40 RIGID 	DRAWN BY: DESIGNED BY: SM SM / FST
	 INSULATION. REFER TO SHALLOW SEWER INSULATION DETAIL ON DRAWING 113093-GP2. PROVIDE FROST TAPERS AS PER OPSD 803.031. 6. FLEXIBLE CONNECTIONS ARE REQUIRED FOR CONNECTING PIPES. TO MANHOLES (FOR EXAMPLE KOR-N-SEAL) 	DATE: CHECKED BY: JANUARY 2016 FST SCALE: PLOT DATE: 1.400 LANL 07, 0010
	 PSX: POSITIVE SEAL AND DURASEAL). THE CONCRETE CRADLE FOR THE PIPE CAN BE ELIMINATED. ALL STORM MANHOLES AND CATCHBASIN MANHOLES ARE TO HAVE MINIMUM 300mm SUMPS UNLESS OTHERWISE INDICATED. ALL CATCHBASINS ARE TO HAVE MINIMUM 600mm SUMPS UNITED ALL CATCHBASINS ARE TO HAVE AND ALL CA	PROJECT:
	MANHOLES AND CATCHBASING ARE TO HAVE MINIMUM OUTHIN SUMPS UNLESS OTHERWISE INDICATED. ALL STORM MANHOLES AND CATCHBASIN MANHOLES THAT HAVE ICDS INSTALLED WITHIN THE OUTLET PIPES ARE TO HAVE MINIMUM 600mm SUMPS TO ACCOMMODATE THE ICD.	AHLUL-BAYT CENTRE OTTAWA
	8. EXISTING SANITARY MANHOLES THAT ARE IDENTIFIED ON THE PLANS TO BE ABANDONED WITHIN THE NEW PAVED PARKING AREA ARE TO HAVE THE FRAME AND GRATES REMOVED ALONG WITH ANY RISER SECTIONS NECESSARY TO COMPLETE THE GRANULAR SUB-BASE FOR THE PAVEMENT. FILL THE BASE OF THE MANHOLES WITH 2" STONE TO THE OBVERT OF THE ABANDONED PIPES FULL THE DEMANDED OF THE MANHOLE WITH CAMP TO THE TO THE OBVERT OF THE ABANDONED PIPES FULL THE DEMANDED OF THE MANHOLE WITH CAMP TO THE	3095 ALBION ROAD NORTH OTTAWA, ONTARIO
	9. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS 250mm@ OR GREATER TO ENSURE THAT THEY ADE	NOVATECH JOB NO.: 113093-00
/	CLEAN AND OPERATIONAL. UPON COMPLETION OF CONTRACT, THE CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES, OBTAIN APPROVAL FROM THE CITY'S SEWER OPERATIONS.	DRAWING NAME:
	CONTROL OF ALL SANITARY SEWERS. LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE WITH OPSS 410.07.16, 410.07.16.04 AND 407.07.24. DYE TESTING IS TO BE COMPLETED ON ALL SANITARY SERVICES TO CONFIRM PROPER CONNECTION TO THE SANITARY SEWER MAIN THE FIELD TESTS SHALL BE PERFORMED IN THE	GENERAL PLAN OF SERVICES
	PRESENCE OF A CERTIFIED PROFESSIONAL ENGINEER WHO SHALL SUBMIT A CERTIFIED COPY OF THE TEST RESULTS.	
	ANY ALIGNMENT CHANGES, ETC.	113093-GP2

