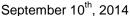


Phase II Environmental Site Assessment

5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario


Ref: BAE-1241.3

Prepared For Alium Investments Ltd.

July 15th, 2013, updated September 10th, 2014

BAE & Associates Environmental Inc. RR#1 Oro Station, ON L0L 2E0 Phone 705 715 1881 Fax 705 487 5600 envsol@rogers.com

Providing Environmental Solutions Since 1997!

TABLE OF CONTENTS

1	.0	EXECUT	I\/F	SHI	ΛΛΛΔ	RY
- 1	.()	LALGUI	$I \lor L$	COLDI	VIIVI	(I) I

- 2.0 INTRODUCTION
- 3.0 SCOPE OF WORK
- 4.0 PREVIOUS INVESTIGATIONS
- 5.0 SITE DESCRIPTION
- 6.0 **USES OF SITE**
- 7.0 SURROUNDING LAND USE
- 8.0 PHYSICAL SETTING
 - Geology and Physiography 8.1
 - 8.2 Groundwater and Surface Water
 - Other Services 8.3
- 9.0 PHASE II ESA INVESTIGATIONS
 - Borehole and Monitoring Well Program
 - 9.2 Soil and Groundwater Sampling
 - 9.3 Investigation Results
- 10.0 APPLICABLE GOVERNMENT GUIDELINES
- 11.0 LABORATORY CHEMICAL ANALYSES
- 12.0 FIELD and LABORATORY QA/QC
- 13.0 QUALIFICATIONS OF ASSESSORS
- 14.0 CONCLUSIONS
- 15.0 REFERENCES
- 16.0 LIMITATIONS

List of Figures

Figure 1: Site Location

Figure 2: Site Layout

Figure 3: Site Survey

Figure 4: Borehole and Monitoring Well Locations - 2012

Figure 5: Borehole Locations – 2014

LIST OF TABLES

TABLE 1: GROUNDWATER CHEMICAL ANALYSES - VOCs

TABLE 2: GROUNDWATER CHEMICAL ANALYSIS- METALS

TABLE 3: GROUNDWATER CHEMICAL ANALYSES -PHCs

TABLE 4: SOIL CHEMICAL ANALYSIS- METALS

TABLE 5: SOIL CHEMICAL ANALYSES - VOCs

TABLE 6: SOIL CHEMICAL ANALYSES-BTEX, F1, F2, F3, F4

APPENDIX I Certificates of Analysis

APPENDIX II Field Screening Apparatus

APPENDIX III Project Photographs

APPENDIX IV Borehole Records

LIST OF ACRONYMS AND ABBREVIATIONS

ACM **Asbestos Containing Materials** Area of Environmental Concern **AEC**

a.k.a. Also Known As

APEC Area of Potential Environmental Concern

Aboveground Storage Tank **AST**

BH **Borehole**

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

CCEA Central Canada Exhibition Association

Chlorofluorocarbon CFC

Canadian Nuclear Safety Commission CNSC

Contaminant of Concern COC

COPC Contaminant of Potential Concern CSA Canadian Standards Association **CSFL** Contaminated Site on Federal Land **CWAC** Canadian Women's Army Corporation

CWS Canada Wide Standards DSS **Designated Substance Survey**

Designated Substance and Hazardous Materials Survey DSHMS

ESA Environmental Site Assessment

FIP Fire Insurance Plan FOI Freedom of Information **HCFC** Hydro chlorofluorocarbon Historical Land Use Inventory HLUI

HVAC Heating Ventilation and Air Conditioning

Lead-Containing Paint LCP Metres Above Sea Level masl mbgs Metres Below Ground Surface Ministry of the Environment MOE

MOL Ministry of Labour

Material Safety Data Sheet **MSDS**

Monitoring Well MW

Ozone Depleting Substance **ODS** Occupational Health and Safety Act OHSA PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyls PHC Petroleum Hydrocarbon **RSC** Record of Site Condition SAR Sodium Absorption Ratio SCS Site Condition Standard

TPH Total Petroleum Hydrocarbons

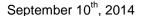
Technical Standards and Safety Authority **TSSA**

Underground Storage Tank UST

Urea Formaldehyde Foam Insulation UFFI

VOC Volatile Organic Compounds

WL Working Level


1.0 EXECUTIVE SUMMARY

BAE and Associates Environmental Inc. (BAE) were retained by *Alium Investments Ltd.* to undertake a Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal current environmental conditions for the subject property. A Phase I ESA completed by BAE had determined that a significant amount of fill had been brought onsite and thus a Phase II ESA was recommended.

As there was no requirement for the filing of a Record of Site Condition, the current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* — Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (July 2011) Criteria. The specific requirements for carrying out a Phase II ESA are set out in Part VIII of Ontario Regulation 153/04 - as amended by O. Reg. 511 (July, 2011).

The subject 13 hectare (32 acre) Site is located on an irregular parcel of land situated at the northern periphery of the Community of Greely, at the southwest corner of the intersection of Bank Street and Mitch Owens Road. The northern portion of the Site has an approximate frontage of 653m on the south side of Mitch Owens Road. The western portion of the Site has an approximate frontage of 200m on the east side of Old Prescott Road. The eastern portion of the Site has an approximate frontage of 150m on the west side of Bank Street. The southern portion of the Site has an approximate frontage of 35m on the north side of Marco Street and 720m backing onto the back of single family residential houses located along Marco Street.

The Site is currently vacant, and was previously utilized as a gravel pit (below water table in the central part of the site). It is understood and was verified by Gib Patterson that the gravel pit had been backfilled with native soil derived from pond excavations at a site near Airport Parkway and Hunt Club Road to the north. The backfilled area of the site has no significant environmental threat to neighbouring residential properties. The elevation of the onsite fill area averages 105 masl while the average elevation of the adjacent residential properties is 111 masl. This confirms that the fill area is 6+ metres below the residential properties as well as being an average of 60 metres north and away from the these properties. There are no significant environmental concerns from the current onsite operations.

The Phase II ESA was conducted to ascertain the surficial and subsurface conditions and to assess the need for further investigations and primarily to confirm that the imported fill was not impacted and that adjacent properties were not affected by the placement of this fill. Seven preliminary boreholes were advanced up to a depth of 15m below grade level (BGL) using a CME 75 mobile mounted drill rig with a 25cm diameter, hollow stem auger and split-spoon sampler. Following a recommendation by the MOE, six additional boreholes were advanced with sampling and analyses undertaken in August of 2014. Six of the above identified boreholes were developed as groundwater monitoring wells.

Representative soil and groundwater samples were submitted for independent chemical analyses of the Metal, Petroleum Hydrocarbon (PHC), Sodium Adsorption Ratio (SAR) and Volatile Organic Compound (VOC) Parameters. All analysis results met applicable MOE/EPA Criteria.

As there was no requirement for the filing of a Record of Site Condition, the current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. It is the opinion of BAE that the current environmental assessment performed is consistent with and meets MOE/EPA Criteria. The Environmental Site Assessment results do not suggest any chemical contamination associated with the imported fill or current or historical activities at the subject property and has determined that there is no evidence of any offsite impaction, or is likely to impact in the future, any adjacent public Right of Ways at levels in excess of applicable criteria. **No further environmental investigations are recommended at this time.**

2.0 INTRODUCTION

BAE and Associates Environmental Inc. (BAE) were retained by Alium Investments Ltd. to undertake a Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal current environmental conditions for the subject property. A Phase I ESA completed by BAE had determined that a significant amount of fill had been brought onsite and thus a Phase II ESA was recommended. As recommended by the MOE, an update was completed to include sampling and analysis within 3m of each of the four property lines.

As there was no requirement for the filing of a Record of Site Condition, the current investigation was conducted generally under the guidance of Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. All analysis was performed in accordance with O. Reg. 153/04 as amended and compared to Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011) Criteria. The specific requirements for carrying out a Phase II ESA are set out in Part VIII of Ontario Regulation 153/04 - as amended by O. Reg. 511 (July, 2011).

3.0 SCOPE OF WORK

The scope of work was completed to determine if there appeared to be any indications of environmental impairment on the property, which could present liability. Phase II ESA investigations were undertaken and included:

- Performing background investigations and reviewing available previous environmental reports;
- Conducting a Borehole and Monitoring Well Installation Program in the areas of potential concern to ascertain the subsurface conditions;
- Obtaining and submitting for independent chemical analysis, representative soil and groundwater samples for analyses of the Metal, Petroleum Hydrocarbon (PHC), Sodium Adsorption Ratio (SAR) and Volatile Organic Compound (VOC) Parameters; and,
- Completion of the engineering report with data and conclusions.

4.0 PREVIOUS INVESTIGATIONS

All and any pertinent reports or information were requested by BAE. There were no previous ESAs performed on the subject property with exception to the following.

4.1 Phase I ESA, BAE & Associates Environmental Inc., June 2012

At the request of Alium Investments Ltd., BAE completed a Phase I ESA in June of 2012. Following is a summary of the findings.

BAE & Associates Environmental Inc. (BAE) was retained by Alium Investments Ltd. to prepare a Phase I Environmental Site Assessment (ESA) for 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal any environmental concerns on or near the subject property.

As no Record of Site Condition was required, the terms of reference for the Phase I ESA were prepared and followed in accordance with CSA Standard Z768-01 for Phase I Environmental Site Assessments and generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) as amended.

There were no previous ESAs available for the subject property. The vacant subject 13 hectare (32 acre) Site is located on an irregular parcel of land situated at the northern periphery of the Community of Greely, at the southwest corner of the intersection of Bank Street and Mitch Owens Road. The Site encompasses three municipal addresses - 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road.

The Site is currently vacant, and was previously utilized as a gravel pit. It is understood that much of the gravel pit has been backfilled with a native fill derived from pond excavations at a site near Airport Parkway and Hunt Club Road to the north. This was further verified by Gib Patterson.

There are no other significant recorded items, soil or groundwater releases within a zone of concern. There are no ACMs, ASTs, landfills, lead, mercury, coal gasification plants, coal tar, UFFIs, USTs, PCBs, solid or liquid waste or improper storage of chemicals currently associated with the subject property. There was no evidence of staining, stressed vegetation, or odours associated with the subject or neighbouring properties.

In summary, based on the current Phase I ESA findings, the possibility of potential environmental impairment from imported fill does exist. Further testing for Metals, SAR, PHCs and VOCs of the soil and groundwater are recommended to confirm the site is free from environmental liabilities.

5.0 SITE DESCRIPTION

The legal description of the property is *Part of Lot 1, Concession 5, Geographic Township of Osgoode, City of Ottawa.* The Site encompasses three municipal addresses - 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road.

The subject 13 hectare (32 acre) Site is located on an irregular parcel of land situated at the northern periphery of the Community of Greely, at the southwest corner of the intersection of Bank Street and Mitch Owens Road. The northern portion of the Site has an approximate frontage of 653m on the south side of Mitch Owens Road. The western portion of the Site has an approximate frontage of 200m on the east side of Old Prescott Road. The eastern portion of the Site has an approximate frontage of 150m on the west side of Bank Street. The southern portion of the Site has an approximate frontage of 35m on the north side of Marco Street and 720m backing onto the back of single family residential houses located along Marco Street.

The Site is currently vacant, and was previously utilized as a gravel pit (below water table in the central part of the site). It is understood that much of the gravel pit has been backfilled with a fill derived from pond excavations at a site near Airport Parkway and Hunt Club Road to the north. There are no significant environmental concerns from the current onsite operations. Figure 1 shows the Site location, Figure 2 shows the Site layout, and Figure 3 is the Site Plan of Survey.

7.0 SURROUNDING LAND USE

Information concerning the surrounding land use in the vicinity of the subject property was obtained from documented information as well as several site visits. Properties in close proximity to the site are predominantly used as residential and aggregate extraction. Lands to the south and west of the site are in residential use, lands to the north remain in aggregate extractive use, and lands to the east are undeveloped except for a school to the immediate northeast and some scattered commercial properties.

Visual observation of the adjacent properties, to the extent possible, did not reveal the presence of any structures, equipment or materials of concern. There was no visual evidence of any underground tanks adjacent to the subject site. There was no evidence of staining, stressed vegetation, odours or environmental concerns currently associated with any of the neighbouring properties. The elevation of the onsite fill area averages 105 masl while the average elevation of the adjacent residential properties is 111 masl.

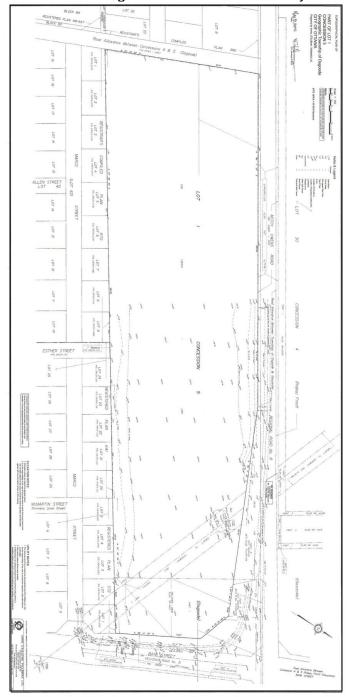


Figure 3: Site Plan of Survey

8.0 PHYSICAL SETTING

8.1 Geology and Physiography

The subject lands are located within the North Gower Drumlin Field physiographic region of southern Ontario, a drumlin field occupying much of the southern periphery of the City of Ottawa. According to Ontario Geological Survey Map 2556, the upper soils across the site mainly consist of glaciofluvial ice contact deposits of gravel and sand associated with the mapped abandoned raised beach, with glaciomarine deposits of sand and gravel mapped to the immediate west.

According to local water well records, mainly from wells located at the residential homes to the immediate south and west, the thickness of the undisturbed overburden in the close vicinity of the site is 15 to 27m. The thickest portion of the overburden appears to be along the north-south axis of the mapped abandoned raised beach trending through the centre of the site. The overburden is reported to consist primarily of granular deposits of sand and/or gravel. The onsite elevation averages 105 masl while the average elevation of the adjacent residential properties is 111 masl.

8.2 Groundwater and Surface Water

The bedrock is the most commonly utilized source of potable groundwater in the area. Of the 92 reported wells within the same Township lot as the proposed development (i.e. Lot 1, Concession 5, Osgoode), 78 wells (85%) are reported to be completed in the bedrock. The remaining 14 wells are completed in gravel deposits in the lower overburden.

Three monitoring wells were installed at the locations shown below on Figure 4. The monitoring wells were installed to depths of 6.1m (BH2), 8.2m (BH5) and 9.0m (BH6). Figure 4 also shows the contours of the watertable surface and the inferred direction of shallow groundwater in the overburden was determined to be northwesterly. Water levels were observed in the three boreholes on June 19, 2012, as summarized below.

Well	Depth	Ground Elevation*	Water Level (below grade)	Water Level Elevation*
BH2	6.1m	99.02m	3.11	95.91m
BH5	8.2m	102.19m	7.32	94.87m
BH6	9.0m	102.84m	7.69	95.15m

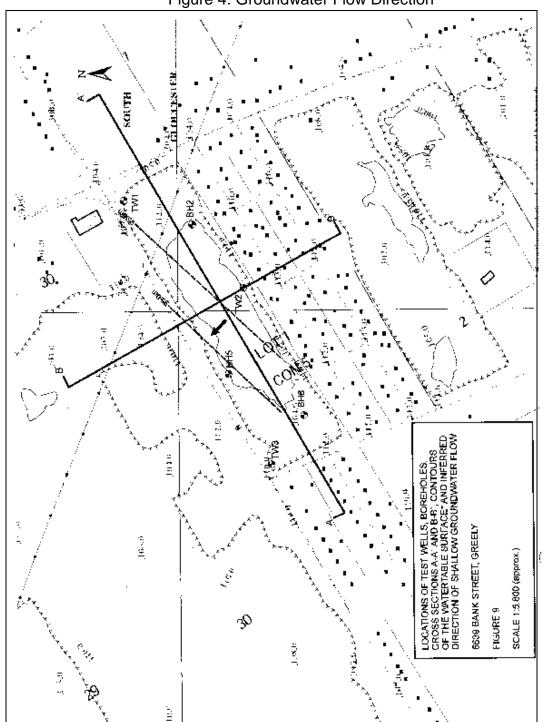


Figure 4: Groundwater Flow Direction

8.3 Other Services

The Site was serviced at the road with hydro, telephone and gas services. Sanitary sewers and municipal water are not available in this area.

9.0 PHASE II ESA INVESTIGATIONS

BAE personnel conducted the Phase II ESA onsite investigations from December 2012 until July 2013 and again on August 28, 2014. Background information obtained from the BAE Phase I ESA in conjunction with onsite investigations was performed to determine parameters of potential concern for the subject and neighbouring properties. From these investigations it was determined that the potential parameters of concern were Metals, SAR, PHC and VOC Parameters, potentially emanating from the fill placed in the central portion of the property.

Onsite investigations consisted of a visual inspection of the property and conducting a borehole (BH) drilling and monitoring well (MW) installation program. The Phase II ESA was conducted to ascertain the surficial and subsurface conditions and to assess the need for further investigations and primarily to confirm that the imported fill was not impacted and that adjacent properties were not affected by the placement of this fill. This section of the report describes the methodology and results of the Phase II ESA.

9.1 Borehole and Monitoring Well Installation and Access Program

Seven (7) boreholes were advanced up to a depth of 15m below grade level (BGL) using a CME 75 mobile mounted drill rig with a 25cm diameter, hollow stem auger and split-spoon sampler. Three boreholes were developed as groundwater monitoring wells. Following a recommendation by the MOE, six additional boreholes were advanced with sampling and analyses undertaken in August of 2014.

Figure 4 shows the borehole (BH) and monitoring well (MW) locations. Borehole locations were selected to maximise property and proposed structure coverage, as well as determined by site accessibility. Borehole 1 was drilled to a depth of 3.5m at the southeast corner of the property, along the edge that was never exposed during pit operations. Borehole 2 was drilled to a depth of 7.6m to the west of BH #1 just north of the slope that runs along the southern property line. Borehole 3 was drilled to a depth of 7.6m towards the center of the property. Borehole 4 was drilled to a depth of 6.0m along the north edge of the property, to the southwest of the hydro tower. Borehole 5 was drilled to a depth of 9.0m along the north edge, in the west side of the subject

property. Borehole 6 was drilled to a depth of 9.0m in the southwest corner of the subject property. Borehole 7 was drilled to a depth of 7.6m along the south side of the property, to the east of Borehole 6. Borehole 5101 was drilled to a depth of 0.75m along the east property perimeter. Borehole 5103 was drilled to a depth of 4.5m along the west property perimeter. Borehole 5104 was drilled to a depth of 4.5m along the north (west) property perimeter. Borehole 5105 was drilled to a depth of 4.5m along the north (east) property perimeter. Borehole 5112 was drilled to a depth of 0.6m along the south property perimeter. Borehole 5123 was drilled to a depth of 2.1m along the east property perimeter.

Water levels were measured in the open boreholes on completion of drilling. In addition, long term groundwater monitoring installations consisting of 19mm diameter PVC (polyvinyl chloride) pipes were installed in Borehole 2, 5 and 6 for subsequent monitoring. The installation configuration is documented on the corresponding borehole logs.

9.2 Soil and Groundwater Sampling

Soil samples were collected from each borehole for the purpose of subsurface characterisation and field screening and testing. Soil samples were taken at 0.75m intervals and obtained from the split spoon. Each sample was logged with respect to nature, depth, thickness and evidence of impairment. The soil samples were placed in sterile polyethylene soil bags and labelled. The headspace vapours in each soil bag were tested for total petroleum hydrocarbon vapour concentrations using an RKI Eagle, One to Six Gas Portable Monitor and a MiniRae 3000 Portable Handheld VOC Monitor. The RKI Eagle measures total petroleum hydrocarbon vapours in the range of 0ppm to 50,000ppm. The MiniRae 3000 monitors Volatile Organic Compounds (VOCs) using a photo ionization detector (PID) measures VOC vapours in the range of 0ppm to 15,000ppm. All samples registered 0ppm on the Eagle. Samples registered between 1 and 1.8ppm. This field screening process indicated no volatilic gasoline/diesel/solvent impairment in the surface or subsurface soils in these areas.

As a tertiary onsite verification of the soil conditions, four representative samples were removed and tested using the Petroflag Turbidimetric Screening Method For Total Recoverable Petroleum Hydrocarbons in Soil - Official Method US EPA SW-846 Method 9074. In addition, representative soil and groundwater samples were submitted to ALS for laboratory analysis during the Phase II ESA activities. Each sample was put into sterile, labelled laboratory supplied bottles. While under the care of BAE, the samples were maintained in ice-filled coolers following collection. Samples were submitted under chain-of-custody to ALS for independent chemical analysis.

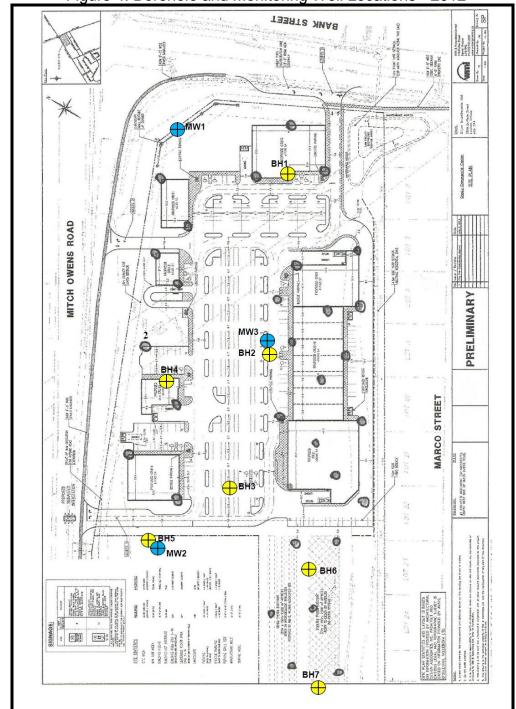


Figure 4: Borehole and Monitoring Well Locations - 2012

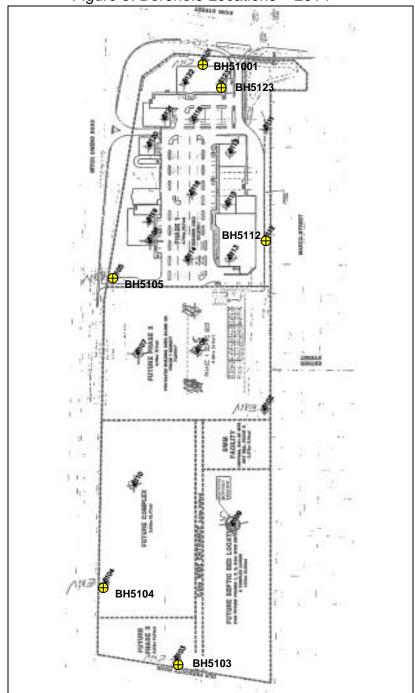


Figure 5: Borehole Locations – 2014

9.3 Investigation Results

As a tertiary verification of the subsurface conditions, representative soil and groundwater samples were submitted to ALS for independent chemical analysis of the Metal, PHC, SAR and VOC Parameters. As outlined in Section 13 below, all analysis results met applicable MOE/EPA Criteria.

10.0 APPLICABLE GOVERNMENT GUIDELINES

The current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended by O. Reg. 511 (July, 2011). All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011) Criteria.

The following rationale was used to determine the applicable site criteria:

Site Sensitivity: There were no sensitive environmental receivers identified within 30m of the site. Based on the information gathered during this investigation and previous investigations in the area, there is more than 2 m of overburden at the site.

Land Use: The site was originally developed as commercial, therefore the site will be considered to be commercial land use.

Groundwater Use: The area is not serviced by a municipal water supply. There are several known well users in the area. Based on this situation, the potable groundwater criteria would apply.

Depth and Soil Texture Criteria Selection: For this report, the full-depth criteria will be used for comparison of the analytical results.

The coarse textured soil classification will be used for comparison of analytical data. Based on the above information and assumptions, the criteria for this site corresponds to commercial land use criteria for medium to coarse textured soil using the full-depth approach and Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

11.0 LABORATORY CHEMICAL ANALYSES

All laboratory analyses were completed by an independent, accredited lab, ALS Laboratory Group of Richmond Hill/ Waterloo, Ontario (ALS). ALS is a CAEAL Registered and Accredited laboratory according to O. Reg. 153/04 section 47 (1) and ALS used the analytical methods as described in *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOE 2004, O. Reg. 153/04 section 47 (2). Appendix I of this report contains the detailed laboratory certificates of analyses. All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011). Representative soil and groundwater samples were submitted for the Metal, PHC, SAR and VOC Parameters. **As presented above and in the attached Certificates of Analysis, all analyses met applicable MOE/EPA criteria.**

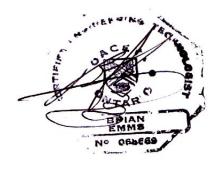
12.0 FIELD and LABORATORY QA/QC

A strict Quality Assurance/Quality Control (QA/QC) program was implemented and maintained throughout the project to ensure the Site data are representative of the actual Site conditions. The QA/QC program provides a method of documented checks to assess the precision and accuracy of collected data. The QA/QC program includes a set of standard procedures or protocols to be followed throughout the investigations. To this end, BAE field and QA/QC protocols have been developed to meet or exceed those defined in the MOE documents entitled "Guideline for Phase II Environmental Site Assessments in Ontario" (Draft, March 2006) and "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (1996) and Canadian Council of Ministers of the Environment (CCME) "Guidance Manual Sampling, Analysis, and Data Management for Contaminated Sites" (1993). The field QA/QC program included the following components:

- 1) The use of personnel protective equipment including hard hats, safety glasses, safety work boots, and chemically resistant latex/nitrile gloves for sample handling;
- 2) Thorough documentation of all field activities and sample handling practices including field notes, chain of custody forms, memos to file, etc;
- 3) Thorough decontamination of all non-dedicated sampling equipment employed in all investigation phases;

- 4) The use of laboratory analytical protocols and method detection limits that have been established in accordance with regulatory requirements of the Province of Ontario;
- 5) The RKI Eagle was re-calibrated to Hexane during the planning process;
- 6) The Petroflag Turbidimetric Screening Method For Total Recoverable Petroleum Hydrocarbons in Soil Official Method US EPA SW-846 Method 9074 was re-calibrated with the appropriate blanks and standards (each 10 samples) prior to and during usage in the field:
- 7) The MiniRae 3000 Portable Handheld VOC Monitor was calibrated using isobutylene calibration gas prior to use; and,
- 8) The ALS Quality Control Report was provided by ALS at the request of BAE. ALS includes comprehensive QC checks with every analysis to ensure high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

13.0 QUALIFICATIONS OF ASSESSORS


This investigation was completed by Brian A. Emms, C.E.T. and reviewed by G. Jan Van Iterson, P. Eng. Mr. Van Iterson is registered with the Ministry of Environment as a Qualified Person as per Ontario Regulation 153/04. Jointly, the above have performed hundreds of ESAs and site remediation for various financial institutions, municipal governments, insurance companies, law firms and the private sector.

14.0 CONCLUSIONS

As there was no requirement for the filing of a Record of Site Condition, the current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. It is the opinion of BAE that the current environmental assessment performed is consistent with and meets MOE/EPA Criteria. The Environmental Site Assessment results do not suggest any chemical contamination associated with the imported fill or current or historical activities at the subject property and has determined that there is no evidence of any offsite impaction, or is likely to impact in the future, any adjacent public Right of Ways at levels in excess of applicable criteria. **No further environmental investigations are recommended at this time.**

Respectfully submitted, BAE & Associates Environmental

Brian A. Emms, C.E.T. Senior Env. Technologist

G. Jan Van Iterson, P. Eng. Associate

15.0 REFERENCES

Chapman, L.J. and Putnam, D.F., 1984. "The Physiography of Southern Ontario", Ontario Geological Survey.

Part VIII of Ontario Regulation 153/04 and Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

16.0 LIMITATIONS

The statement of limitations associated with the current Phase II ESA is as follows:

- 1. This project and verification assessment was conducted in accordance with generally accepted engineering standards. It is possible that materials other than those described in this report are present at the site. The client acknowledges that no assessment can necessarily identify the existence of all contaminants, potential contaminants or environmental conditions:
- 2. This report was prepared for the sole and exclusive use of Alium Investments Ltd. BAE accepts no responsibility or liability for any loss, damage, expense, fine or any other claim of any nature or type, including any liability or potential liability arising from its own negligence, for any use of this report or reliance on it, in whole or in part, by anyone other than Alium Investments Ltd.;
- 3. There is no representation, warranty or condition, express or implied, by BAE or its officers, directors, employees or agents that this assessment has identified all contaminants, potential contaminants or environmental conditions at the site or that the site is free from contamination, potential contaminants or environmental conditions other than those noted in this report;
- 4. This assessment has been completed from information and documentation described in this report. We have assumed that any such information and documentation is accurate and complete. We can accept no responsibility or liability for any errors, deficiencies or inaccuracies in this report arising from errors or omissions in the information and documentation provided by others;
- 5. This assessment was based on information and the results of investigations obtained on the dates specified. BAE accepts no responsibility or liability for any

changes or potential changes in the condition of the site subsequent to the date of our investigations;

- 6. This assessment pertains only to the site specifically described in this report and not to any adjacent or other property;
- 7. This assessment does not include, nor is it intended to include, any opinion regarding the suitability of any structure on the site for any particular function, or the geotechnical conditions on the site, with the exception of how they may identify with environmental concerns. Inspections do not include compliance with building, gas, electrical or boiler codes, or any other federal, provincial or municipal codes not associated with environmental concerns. Should concerns regarding any parameters other than environmental concerns arise as a result of our investigations, they should be addressed by appropriately qualified professionals;
 - 8. Should any conditions be encountered at the subject site that differs from our findings, we request that we be notified immediately in order to allow for a reassessment.
 - 9. This report is not to be reproduced or released to any other party, other than Alium Investments Ltd. in whole or in part, without the express written consent of BAE.

LIST OF TABLES

TABLE 1: GROUNDWATER CHEMICAL ANALYSES - VOCs

TABLE 2: GROUNDWATER CHEMICAL ANALYSIS- METALS

TABLE 3: GROUNDWATER CHEMICAL ANALYSES -PHCs

TABLE 4a: SOIL CHEMICAL ANALYSIS- METALS

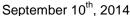

TABLE 4b: SOIL CHEMICAL ANALYSIS- METALS

TABLE 5a: SOIL CHEMICAL ANALYSES - VOCs

TABLE 5b: SOIL CHEMICAL ANALYSES - VOCs

TABLE 6a: SOIL CHEMICAL ANALYSES- F1, F2, F3, F4

TABLE 6b: SOIL CHEMICAL ANALYSES- F1, F2, F3, F4

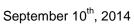
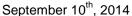



TABLE 1: GROUNDWATER CHEMICAL ANALYSES - VOCs

PARAMETER	CRITERIA*	MDL	MW-1	MW-2	MW-3
Acetone	2700	30	88	<30	<30
Benzene	5	0.50	< 0.50	<0.50	< 0.50
Bromodichloromethane	16	2.0	<2.0	<2.0	<2.0
Bromoform	25	5.0	<5.0	<5.0	<5.0
Bromomethane	0.89	0.50	< 0.50	<0.50	<0.50
Carbon tetrachloride	0.79	0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	0.50	<0.50	<0.50	<0.50
Dibromochloromethane	25	2.0	<2.0	<2.0	<2.0
Chloroform	2.4	1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.2	0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	3	0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	59	0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	1	0.50	<0.50	< 0.50	<0.50
Dichlorodifluoromethane	590	2.0	<2.0	<2.0	<2.0
1,1-Dichloroethane	5	0.50	<0.50	<0.50	<0.50
1,2-Dichloroethane	1.6	0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	1.6	0.50	<0.50	<0.50	<0.50
cis-1,2-Dichloroethylene	1.6	0.50	<0.50	<0.50	<0.50
trans-1,2-	1.6	0.50	<0.50	<0.50	<0.50
Dichloroethylene					
1,3-Dichloropropene (cis	0.5	0.50	< 0.50	< 0.50	< 0.50
& trans)					
Methylene Chloride	50	5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	5	0.50	<0.50	<0.50	<0.50
cis-1,3-Dichloropropene		0.30	< 0.30	<0.30	<0.30
trans-1,3-		0.30	< 0.30	< 0.30	< 0.30
Dichloropropene					
Ethyl Benzene	2.4	0.50	<0.50	<0.50	<0.50
n-Hexane	51	0.50	<0.50	<0.50	<0.50
Methyl Ethyl Ketone	1800	20	<20	<20	<20
Methyl Isobutyl Ketone	640	20	<20	<20	<20
MTBE	15	2.0	<2.0	<2.0	<2.0
Styrene	5.4	0.50	<0.50	<0.50	<0.50
1,1,1,2-	1.1	0.50	<0.50	<0.50	<0.50
Tetrachloroethane					
1,1,2,2-	1	0.50	<0.50	<0.50	<0.50
Tetrachloroethane			_	_	
Tetrachloroethylene	1.6	0.50	<0.50	<0.50	<0.50
Toluene	24	0.50	<0.50	<0.50	<0.50

PARAMETER	CRITERIA*	MDL	MW-1	MW-2	MW-3
1,1,1-Trichloroethane	200	0.50	<0.50	<0.50	< 0.50
1,1,2-Trichloroethane	4.7	0.50	< 0.50	<0.50	< 0.50
Trichloroethylene	1.6	0.50	< 0.50	< 0.50	< 0.50
Trichlorofluoromethane	150	5.0	<5.0	<5.0	<5.0
Vinyl chloride	0.5	0.50	< 0.50	<0.50	<0.50
o-Xylene		0.50	< 0.50	<0.50	<0.50
m+p-Xylenes		0.50	< 0.50	< 0.50	< 0.50
Xylenes (Total)	300	0.71	<0.71	<0.71	<0.71

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the Environmental Protection Act - Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 2: GROUNDWATER CHEMICAL ANALYSIS- METALS

PARAMETER	CRITERIA	MDL	MW-3
Antimony (Sb)	6	0.50	<0.50
Arsenic (As)	25	1.0	1.4
Barium (Ba)	1000	2.0	189
Beryllium (Be)	4	0.50	<0.50
Boron (B)	5000	10	57
Cadmium (Cd)	2.7	0.10	<0.10
Calcium (Ca)		0.50	105
Chromium (Cr)	50	0.50	<0.50
Cobalt (Co)	3.8	0.50	1.50
Copper (Cu)	87	1.0	<1.0
Lead (Pb)	10	1.0	<1.0
Magnesium (Mg)		0.50	25.9
Molybdenum (Mo)	70	0.50	1.76
Nickel (Ni)	100	1.0	2.6
Selenium (Se)	10	5.0	<5.0
Silver (Ag)	1.5	0.10	<0.10
Sodium (Na)	490000	5000	24800
Thallium (TI)	2	0.30	<0.30
Uranium (U)	20	2.0	2.5
Vanadium (V)	6.2	0.50	0.94
Zinc (Zn)	1100	3.0	<3.0
SAR	12	0.03	0.56

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the Environmental Protection Act – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

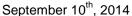


TABLE 3: GROUNDWATER CHEMICAL ANALYSES -PETROLEUM **HYDROCARBONS**

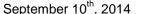
PARAMETER	MOE/EPA CRITERIA	MDL	MW-1	MW-2			
PHCs							
F1 (C6-C10)	25	25	<25	<25			
F1-BTEX	25	25	<25	<25			
F2 (C10-C16)	100	100	<100	<100			
F3 (C16-C34)	250	250	<250	<250			
F4 (C34-C50)	250	250	<250	<250			
Total PHCs	250	250	<250	<250			

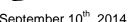
All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the Environmental Protection Act - Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

TABLE 4a: SOIL CHEMICAL ANALYSIS- METALS

PARAMETER:	*CRITERIA	MDL	BH-3	BH-4	BH5103
PARAMETER.	CKITEKIA	IVIDL			
			1.5m	1.5m	4.5m
Antimony (Sb)	50	1.0	<1.0	<1.0	<1.0
Arsenic (As)	18	1.0	2.2	3.6	1.0
Barium (Ba)	670	1.0	62.2	96.7	17.1
Beryllium (Be)	10	0.50	0.52	0.67	<0.50
Cadmium (Cd)	120	5.0	8.0	8.3	<5.0
Chromium (Cr)	1.9	0.50	<0.50	<0.50	<0.50
Cobalt (Co)	160	1.0	21.3	27.0	8.3
Copper (Cu)	100	1.0	8.1	8.6	3.6
Lead (Pb)	300	1.0	18.7	17.7	8.0
Molybdenum (Mo)	120	1.0	16.0	10.3	2.6
Nickel (Ni)	40	1.0	<1.0	<1.0	<1.0
Selenium (Se)	340	1.0	19.0	20.7	6.5
Silver (Ag)	5.5	1.0	<1.0	<1.0	<1.0
Thallium (TI)	50	0.20	<0.20	<0.20	<0.20
Uranium (U)	3.3	0.50	<0.50	<0.50	<0.50
Vanadium (V)	33	1.0	<1.0	<1.0	<1.0
Zinc (Zn)	86	1.0	31.0	41.5	17.5
SAR	5	0.10	0.87	0.41	n/a

All values in ug/g - ppm - parts per million, MDL- Method Detection Limit, *Part XV.1 of the Environmental Protection Act - Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition, (July 2011).


TABLE 4b: SOIL CHEMICAL AN	NALYSIS-	METALS
----------------------------	----------	--------


PARAMETER:	*CRITERIA	BH5104 4.5m	BH5105 4.5m	BH5112 4.5m	BH5123 2.1m
Antimony (Sb)	50	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	18	<1.0	3.4	1.7	3.5
Barium (Ba)	670	16.7	198	30.5	41.8
Beryllium (Be)	10	<0.50	<0.50	< 0.50	<0.50
Boron (B)	120	<5.0	7.8	<5.0	7.7
Cadmium (Cd)	1.9	<0.50	<0.50	<0.50	<0.50
Chromium (Cr)	160	7.3	27.9	8.3	12.8
Cobalt (Co)	100	3.1	9.8	4.3	6.4
Copper (Cu)	300	6.7	27.2	9.5	15.3
Lead (Pb)	120	1.5	9.3	4.3	9.0
Molybdenum (Mo)	40	<1.0	1.8	<1.0	2.0
Nickel (Ni)	340	4.2	21.1	7.8	10.8
Selenium (Se)	5.5	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	50	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	3.3	< 0.50	<0.50	<0.50	<0.50
Uranium (U)	33	<1.0	1.7	<1.0	<1.0
Vanadium (V)	86	21.4	40.8	18.5	24.8
Zinc (Zn)	340	6.9	43.9	14.6	22.0

All values in ug/g - ppm - parts per million, MDL- Method Detection Limit, *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition, (July 2011).

TABLE 5a: SOIL CHEMICAL ANALYSES - VOCs

PARAMETER	*CRITERIA	MDL	BH5-1.5m	BH5103 4.5m	BH5104 4.5m
Acetone	28	0.50	< 0.50	< 0.50	< 0.50
Benzene	0.4	0.020	<0.020	< 0.020	< 0.020
Bromodichloromethane	1.9	0.050	< 0.050	< 0.050	< 0.050
Bromoform	1.7	0.050	< 0.050	< 0.050	< 0.050
Bromomethane	0.05	0.050	< 0.050	< 0.050	< 0.050
Carbon tetrachloride	0.71	0.050	< 0.050	< 0.050	< 0.050
Chlorobenzene	2.7	0.050	< 0.050	< 0.050	< 0.050
Dibromochloromethane	2.9	0.050	< 0.050	< 0.050	< 0.050
Chloroform	0.18	0.050	< 0.050	< 0.050	< 0.050
1,2-Dibromoethane	0.05	0.050	< 0.050	< 0.050	< 0.050
1,2-Dichlorobenzene	1.7	0.050	<0.050	<0.050	<0.050

September 10th, 2014 Page 28

PARAMETER	*CRITERIA	MDL	BH5-1.5m	BH5103	BH5104
				4.5m	4.5m
1,3-Dichlorobenzene	12	0.050	<0.050	< 0.050	<0.050
1,4-Dichlorobenzene	0.57	0.050	< 0.050	< 0.050	< 0.050
Dichlorodifluoromethane	25	0.050	<0.050	< 0.050	< 0.050
1,1-Dichloroethane	0.6	0.050	<0.050	< 0.050	< 0.050
1,2-Dichloroethane	0.05	0.050	<0.050	< 0.050	<0.050
1,1-Dichloroethylene	0.48	0.050	<0.050	< 0.050	<0.050
cis-1,2-Dichloroethylene	2.5	0.050	<0.050	<0.050	<0.050
trans-1,2-	2.5	0.050	<0.050	< 0.050	<0.050
Dichloroethylene					
1,3-Dichloropropene (cis	0.081	0.042	<0.042	< 0.042	<0.042
& trans)					
Methylene Chloride	2	0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	0.68	0.050	<0.050	<0.050	<0.050
cis-1,3-Dichloropropene		0.030	<0.030	<0.030	<0.030
trans-1,3-		0.030	<0.030	< 0.030	< 0.030
Dichloropropene					
Ethyl Benzene	1.6	0.050	<0.050	<0.050	<0.050
n-Hexane	88	0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	88	0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	210	0.50	<0.50	<0.50	<0.50
MTBE	2.3	0.050	<0.050	<0.050	<0.050
Styrene	43	0.050	<0.050	<0.050	<0.050
1,1,1,2-	0.11	0.050	<0.050	< 0.050	<0.050
Tetrachloroethane					
1,1,2,2-	0.094	0.050	<0.050	<0.050	<0.050
Tetrachloroethane					
Tetrachloroethylene	2.5	0.050	<0.050	<0.050	<0.050
Toluene	9	0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	12	0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	0.11	0.050	<0.050	<0.050	<0.050
Trichloroethylene	0.61	0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	5.8	0.050	<0.050	<0.050	<0.050
Vinyl chloride	0.25	0.020	<0.020	<0.020	<0.020
o-Xylene		0.020	<0.020	<0.020	<0.020
m+p-Xylenes		0.030	<0.030	<0.030	<0.030
Xylenes (Total)	30	0.050	<0.050	<0.050	<0.050

All values in ug/g - ppm - parts per million, MDL- Method Detection Limit, *Part XV.1 of the Environmental Protection Act - Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition, (July 2011).

TABLE 5b: SOIL CHEMICAL ANALYSES - VOCs

PARAMETER	*CRITERIA	MDL	BH5105	BH5112	BH5123
			4.5m	4.5m	2.1m
Acetone	28	0.50	<0.50	<0.50	<0.50
Benzene	0.4	0.020	<0.020	<0.020	<0.020
Bromodichloromethane	1.9	0.050	< 0.050	< 0.050	< 0.050
Bromoform	1.7	0.050	< 0.050	< 0.050	< 0.050
Bromomethane	0.05	0.050	< 0.050	< 0.050	< 0.050
Carbon tetrachloride	0.71	0.050	< 0.050	< 0.050	< 0.050
Chlorobenzene	2.7	0.050	< 0.050	< 0.050	< 0.050
Dibromochloromethane	2.9	0.050	< 0.050	< 0.050	< 0.050
Chloroform	0.18	0.050	< 0.050	< 0.050	< 0.050
1,2-Dibromoethane	0.05	0.050	< 0.050	< 0.050	< 0.050
1,2-Dichlorobenzene	1.7	0.050	< 0.050	< 0.050	< 0.050
1,3-Dichlorobenzene	12	0.050	< 0.050	< 0.050	< 0.050
1,4-Dichlorobenzene	0.57	0.050	< 0.050	< 0.050	< 0.050
Dichlorodifluoromethane	25	0.050	< 0.050	< 0.050	< 0.050
1,1-Dichloroethane	0.6	0.050	< 0.050	< 0.050	< 0.050
1,2-Dichloroethane	0.05	0.050	< 0.050	< 0.050	< 0.050
1,1-Dichloroethylene	0.48	0.050	< 0.050	< 0.050	< 0.050
cis-1,2-Dichloroethylene	2.5	0.050	< 0.050	< 0.050	< 0.050
trans-1,2-	2.5	0.050	< 0.050	< 0.050	< 0.050
Dichloroethylene					
1,3-Dichloropropene (cis	0.081	0.042	<0.042	<0.042	< 0.042
& trans)					
Methylene Chloride	2	0.050	<0.050	<0.050	<0.050
1,2-Dichloropropane	0.68	0.050	<0.050	<0.050	<0.050
cis-1,3-Dichloropropene		0.030	<0.030	< 0.030	< 0.030
trans-1,3-		0.030	<0.030	<0.030	<0.030
Dichloropropene					
Ethyl Benzene	1.6	0.050	<0.050	<0.050	<0.050
n-Hexane	88	0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	88	0.50	<0.50	< 0.50	< 0.50

PARAMETER	*CRITERIA	MDL	BH5105	BH5112	BH5123
			4.5m	4.5m	2.1m
Methyl Isobutyl Ketone	210	0.50	< 0.50	< 0.50	< 0.50
MTBE	2.3	0.050	< 0.050	< 0.050	< 0.050
Styrene	43	0.050	< 0.050	< 0.050	< 0.050
1,1,1,2-	0.11	0.050	< 0.050	< 0.050	< 0.050
Tetrachloroethane					
1,1,2,2-	0.094	0.050	< 0.050	< 0.050	< 0.050
Tetrachloroethane					
Tetrachloroethylene	2.5	0.050	< 0.050	< 0.050	< 0.050
Toluene	9	0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	12	0.050	< 0.050	< 0.050	< 0.050
1,1,2-Trichloroethane	0.11	0.050	< 0.050	< 0.050	< 0.050
Trichloroethylene	0.61	0.050	< 0.050	< 0.050	< 0.050
Trichlorofluoromethane	5.8	0.050	< 0.050	< 0.050	< 0.050
Vinyl chloride	0.25	0.020	<0.020	< 0.020	<0.020
o-Xylene		0.020	<0.020	<0.020	<0.020
m+p-Xylenes		0.030	< 0.030	< 0.030	< 0.030
Xylenes (Total)	30	0.050	< 0.050	< 0.050	< 0.050

All values in ug/g - ppm - parts per million, MDL- Method Detection Limit, *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition, (July 2011).

TABLE 6a: SOIL CHEMICAL ANALYSES -PETROLEUM HYDROCARBONS

.,	· · · · · · · · · · · · · · · · · · ·	,		•	
PARAMETER	CRITERIA	MDL	BH3-1.5m	BH5103 4.5m	BH5104 4.5m
PHCs					
F1 (C6-C10)	65	5	<5	<5	<5
F1-BTEX	65	5	<5	<5	<5
F2 (C10-C16)	250	10	<10	<10	<10
F3 (C16-C34)	2500	50	<50	<50	<50
F4 (C34-C50)	6600	50	57	<50	<50
Total PHCs		50	57	<50	<50

All values in ug/l - ppm - parts per million MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the *Environmental Protection Act* — Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

TABLE 6b: SOIL CHEMICAL ANALYSES -PETROLEUM HYDROCARBONS

PARAMETER	CRITERIA	MDL	BH5105- 4.5m	BH5112 4.5m	BH5123 2.1m
PHCs					
F1 (C6-C10)	65	5	<5	<5	<5
F1-BTEX	65	5	<5	<5	<5
F2 (C10-C16)	250	10	16	<10	<10
F3 (C16-C34)	2500	50	83	<50	<50
F4 (C34-C50)	6600	50	<50	<50	<50
Total PHCs		50	98	<50	<50

All values in ug/l - ppm - parts per million MDL- Method Detection Limit, N/V - No Value *Part XV.1 of the *Environmental Protection Act* — Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

APPENDIX I Certificates of Analysis

BRIAN A. EMMS ATTN: BRIAN EMMS RR 1 ORO STATION ORO STATION ON LOL 2E0 Date Received: 11-DEC-12

Report Date: 15-JUL-13 07:47 (MT)

Version: FINAL REV. 2

Client Phone: 705-715-1881

Certificate of Analysis

Lab Work Order #:L1248030Project P.O. #:NOT SUBMITTEDJob Reference:CSTA-002C of C Numbers:131054

Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062
ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🚵

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTIER

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 2 of 11

Sample Detai		De la College Di III-la					15-JUL-13 07:47 (N				
Grouping	Analyte	Result	Qualifier	D.L.	Units	Analyzed	Guideline Limits				
1248030-1	MW1										
Sampled By:	CLIENT on 11-DEC-12 @ 12:00										
Matrix:	WATER						#1	#2	#3	#4	
Volatile Orga	inic Compounds										
Acetone		88		30	ug/L	13-DEC-12					
Benzene		< 0.50		0.50	ug/L	13-DEC-12					
Bromodich	nloromethane	<2.0		2.0	ug/L	13-DEC-12					
Bromoforn	n	<5.0		5.0	ug/L	13-DEC-12					
Bromomet	hane	< 0.50		0.50	ug/L	13-DEC-12					
Carbon tet	rachloride	< 0.20		0.20	ug/L	13-DEC-12					
Chloroben	zene	< 0.50		0.50	ug/L	13-DEC-12					
Dibromoch	nloromethane	<2.0		2.0	ug/L	13-DEC-12					
Chloroforn	n	<1.0		1.0	ug/L	13-DEC-12					
1,2-Dibron	and the second s	<0.20		0.20	ug/L	13-DEC-12					
1,2-Dichlo	LONG CANADA AND CANADA	< 0.50		0.50	ug/L	13-DEC-12					
1,3-Dichlo	robenzene	< 0.50		0.50	ug/L	13-DEC-12					
1,4-Dichlo	robenzene	< 0.50		0.50	ug/L	13-DEC-12					
Dichlorodi	fluoromethane	<2.0		2.0	ug/L	13-DEC-12					
1,1-Dichlo	roethane	< 0.50		0.50	ug/L	13-DEC-12					
1,2-Dichlo	roethane	< 0.50		0.50	ug/L	13-DEC-12					
1,1-Dichlo	roethylene	< 0.50		0.50	ug/L	13-DEC-12					
cis-1,2-Dic	chloroethylene	< 0.50		0.50	ug/L	13-DEC-12					
trans-1,2-l	Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12					
	ropropene (cis & trans)	< 0.50		0.50	ug/L	13-DEC-12					
Methylene	Chloride	<5.0		5.0	ug/L	13-DEC-12					
1,2-Dichlo	ropropane	< 0.50		0.50	ug/L	13-DEC-12					
cis-1,3-Dic	chloropropene	< 0.30		0.30	ug/L	13-DEC-12					
trans-1,3-l	Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12			1		
Ethyl Benz	zene	< 0.50		0.50	ug/L	13-DEC-12					
n-Hexane		< 0.50		0.50	ug/L	13-DEC-12					
Methyl Eth		<20		20	ug/L	13-DEC-12					
	butyl Ketone	<20		20	ug/L	13-DEC-12					
MTBE		<2.0		2.0	ug/L	13-DEC-12					
Styrene		< 0.50		0.50	ug/L	13-DEC-12					
	trachloroethane	< 0.50		0.50	ug/L	13-DEC-12					
	trachloroethane	< 0.50		0.50	ug/L	13-DEC-12					
Tetrachlor	oethylene	< 0.50		0.50	ug/L	13-DEC-12					
Toluene		< 0.50		0.50	ug/L	13-DEC-12					
	loroethane	< 0.50		0.50	ug/L	13-DEC-12					
	loroethane	< 0.50		0.50	ug/L	13-DEC-12					
Trichloroe	100 · 100 ·	<0.50		0.50	ug/L	13-DEC-12					
	uoromethane	<5.0		5.0	ug/L	13-DEC-12					
Vinyl chlor	ide	< 0.50		0.50	ug/L	13-DEC-12					
o-Xylene		< 0.35		0.35	ug/L	13-DEC-12					
m+p-Xyler		< 0.35		0.35	ug/L	13-DEC-12					
Xylenes (T		< 0.50		0.50	ug/L	13-DEC-12					
	4-Bromofluorobenzene	83.1		70-130	%	13-DEC-12					
S42 17:000 TO 10:00	1,4-Difluorobenzene	93.6		70-130	%	13-DEC-12					
Hydrocarbon											
F1 (C6-C1	0)	<25		25	ug/L	13-DEC-12					
F1-BTEX		<25		25	ug/L	13-DEC-12					
F2 (C10-C	16)	<100		100	ug/L	13-DEC-12					

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soil-Agricultural or Other Property Use (Coarse)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD.... Page 3 of 11

Sample Details	D. "	0	Б.	11.00				15-JUL-13 07	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
_1248030-1 MW1									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2	#3	#4
Hydrocarbons									
F3 (C16-C34)	<250		250	ug/L	13-DEC-12				
F4 (C34-C50)	<250		250	ug/L	13-DEC-12				
Total Hydrocarbons (C6-C50)	<250		250	ug/L	13-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	61.3		60-140	%	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	72.6		60-140	%	13-DEC-12				
Surrogate: Octacosane	91.0		60-140	%	13-DEC-12				
-1248030-2 MW2									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2	#3	#4
Volatile Organic Compounds									
Acetone	<30		30	ug/L	13-DEC-12				
Benzene	< 0.50		0.50	ug/L	13-DEC-12				
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12				
Bromoform	<5.0		5.0	ug/L	13-DEC-12				
Bromomethane	< 0.50		0.50	ug/L	13-DEC-12				
Carbon tetrachloride	< 0.20		0.20	ug/L	13-DEC-12				
Chlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12				
Chloroform	<1.0		1.0	ug/L	13-DEC-12				
1,2-Dibromoethane	< 0.20		0.20	ug/L	13-DEC-12				
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12				
1,1-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
1,2-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
1,1-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12				
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	13-DEC-12				
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12				
1,2-Dichloropropane	< 0.50		0.50	ug/L	13-DEC-12				
cis-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	<0.50		0.50	ug/L	13-DEC-12				
n-Hexane	<0.50		0.50	ug/L	13-DEC-12				
Methyl Leebytyl Ketone	<20 <20		20 20	ug/L	13-DEC-12				
Methyl Isobutyl Ketone			2.0	ug/L	13-DEC-12				
MTBE Styrono	<2.0			ug/L	13-DEC-12				
Styrene	<0.50 <0.50		0.50 0.50	ug/L	13-DEC-12 13-DEC-12				
1,1,1,2-Tetrachloroethane				ug/L					
1,1,2,2-Tetrachloroethane	<0.50 <0.50		0.50	ug/L	13-DEC-12 13-DEC-12				
Tetrachloroethylene Toluene	<0.50		0.50 0.50	ug/L	13-DEC-12 13-DEC-12				
Totale	<0.50		0.50	ug/L ug/L	13-DEC-12 13-DEC-12				

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

**Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories #1: T2-Soil-Agricultural or Other Property Use (Coarse) #2: T2-Soil-Agricultural or Other Property Use (Fine)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

Рназе и спунониента эте дозеобнент 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 4 of 11

Sample Details Applyto	Result	Qualifier	DI	Unito	Applyzod	15-JUL-13 07:47 (M Guideline Limits			
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ie Limits	
1248030-2 MW2									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2	#3	#4
Matrix: WATER						#1	#2	#3	#4
Volatile Organic Compounds									
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12				
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12				
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12				
Surrogate: 4-Bromofluorobenzene	82.4		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.1		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12				
F1-BTEX	<25		25	ug/L	13-DEC-12				
F2 (C10-C16)	<100		100	ug/L	13-DEC-12				
F3 (C16-C34)	<250		250	ug/L	13-DEC-12				
F4 (C34-C50)	<250		250	ug/L	13-DEC-12				
Total Hydrocarbons (C6-C50)	<250		250	ug/L	13-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	63.0		60-140	%	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	70.3		60-140	%	13-DEC-12				
Surrogate: Octacosane	93.1		60-140	%	13-DEC-12				
L1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
						#1	#2	#3	#4
						20000	CVC)	53.7%	8001
Metals				1000					
Sodium Adsorption Ratio	0.56		0.030	SAR	14-DEC-12	5	5	12	12
Dissolved Metals									
Antimony (Sb)	< 0.50	SFPL	0.50	ug/L	12-DEC-12				
Arsenic (As)	1.4	SFPL	1.0	ug/L	12-DEC-12				
Barium (Ba)	189	SFPL	2.0	ug/L	12-DEC-12				
Beryllium (Be)	< 0.50	SFPL	0.50	ug/L	12-DEC-12				
Boron (B)	57	SFPL	10	ug/L	12-DEC-12				
Cadmium (Cd)	< 0.10	SFPL	0.10	ug/L	12-DEC-12				
Calcium (Ca)-Dissolved	105	SFPL	0.50	mg/L	12-DEC-12				
Chromium (Cr)	< 0.50	SFPL	0.50	ug/L	12-DEC-12				
Cobalt (Co)	1.50	SFPL	0.50	ug/L	12-DEC-12				
Copper (Cu)	<1.0	SFPL	1.0	ug/L	12-DEC-12				
Lead (Pb)	<1.0	SFPL	1.0	ug/L	12-DEC-12				
Magnesium (Mg)-Dissolved	25.9	SFPL	0.50	mg/L	12-DEC-12				
Molybdenum (Mo)	1.76	SFPL	0.50	ug/L	12-DEC-12				
Nickel (Ni)	2.6	SFPL	1.0	ug/L	12-DEC-12				
Selenium (Se)	<5.0	SFPL	5.0	ug/L	12-DEC-12				
Silver (Ag)	< 0.10	SFPL	0.10	ug/L	12-DEC-12				
Sodium (Na)	24800	SFPL	500	ug/L	12-DEC-12				
Thallium (TI)	< 0.30	SFPL	0.30	ug/L	12-DEC-12				
4.0	2.5	SFPL	2.0	ug/L	12-DEC-12				
Uranium (U)	2.0	OIIL	2.0	ug/L	12-010-12				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soil-Agricultural or Other Property Use (Coarse)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

L1248030 CONTD.... Page 5 of 11 15-JUL -13 07:47 (MT)

Sample Details	Desuit	Ouclific	D.L.	Lleite	Anglemen			15-JUL-13 07	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelli	ne Limits	
.1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:0	00					44	#0	#0	
Matrix: WATER						#1	#2	#3	#4
Dissolved Metals									
Zinc (Zn)	<3.0	SFPL	3.0	ug/L	12-DEC-12				
Volatile Organic Compounds									
Acetone	<30		30	ug/L	13-DEC-12				
Benzene	< 0.50		0.50	ug/L	13-DEC-12				
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12				
Bromoform	<5.0		5.0	ug/L	13-DEC-12				
Bromomethane	< 0.50		0.50	ug/L	13-DEC-12				
Carbon tetrachloride	< 0.20		0.20	ug/L	13-DEC-12				
Chlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12				
Chloroform	<1.0		1.0	ug/L	13-DEC-12				
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12				
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12				
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12				
1,1-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
1,2-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
1,1-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	13-DEC-12				
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12				
1,2-Dichloropropane	< 0.50		0.50	ug/L	13-DEC-12			i i	
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	< 0.50		0.50	ug/L	13-DEC-12				
n-Hexane	< 0.50		0.50	ug/L	13-DEC-12				
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12				
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12				
MTBE	<2.0		2.0	ug/L	13-DEC-12				
Styrene	< 0.50		0.50	ug/L	13-DEC-12				
1,1,1,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12				
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Tetrachloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
Toluene	< 0.50		0.50	ug/L	13-DEC-12				
1,1,1-Trichloroethane	<0.50		0.50	ug/L	13-DEC-12				
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12				
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12				
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12				
Vinyl chloride	<0.50		0.50	ug/L	13-DEC-12				
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12				
Surrogate: 4-Bromofluorobenzene	83.0		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.5		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12				

F1 (C6-C10)

<25

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

Phase ii Environmental Site Assessment 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario

L1248030 CONTD.... Page 6 of 11

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00 Matrix: WATER						#1	#2	#3	#4
Hydrocarbons					-				
F1-BTEX	<25		25	ug/L	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	77.6		60-140	%	13-DEC-12				
1248030-4 BH3 - 1.5	1000000000								
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	17.9		0.10	%	11-DEC-12				
Saturated Paste Extractables									
SAR	0.87		0.10	SAR	12-DEC-12	5	5	12	12
Calcium (Ca)	18.4		0.10	mg/L	12-DEC-12				
Magnesium (Mg)	1.62		0.10	mg/L	12-DEC-12				
Sodium (Na)	14.4		0.10	mg/L	12-DEC-12				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12	7.5	7.5	40	50
Arsenic (As)	2.2		1.0	ug/g	12-DEC-12	11	11	18	18
Barium (Ba)	62.2		1.0	ug/g	12-DEC-12	390	390	670	670
Beryllium (Be)	0.52		0.50	ug/g	12-DEC-12	4	5	8	10
Boron (B)	8.0		5.0	ug/g	12-DEC-12	120	120	120	120
Cadmium (Cd)	< 0.50		0.50	ug/g	12-DEC-12	1	1	1.9	1.9
Chromium (Cr)	21.3		1.0	ug/g	12-DEC-12	160	160	160	160
Cobalt (Co)	8.1		1.0	ug/g	12-DEC-12	22	22	80	100
Copper (Cu)	18.7		1.0	ug/g	12-DEC-12	140	180	230	300
Lead (Pb)	16.0		1.0	ug/g	12-DEC-12	45	45	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12	6.9	6.9	40	40
Nickel (Ni)	19.0		1.0	ug/g	12-DEC-12	100	130	270	340
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12	2.4	2.4	5.5	5.5
Silver (Ag)	< 0.20		0.20	ug/g	12-DEC-12	20	25	40	50
Thallium (TI)	< 0.50		0.50	ug/g	12-DEC-12	1	1	3.3	3.3
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12	23	23	33	33
Vanadium (V)	31.0		1.0	ug/g	12-DEC-12	86	86	86	86
Zinc (Zn)	53.8		5.0	ug/g	12-DEC-12	340	340	340	340
Hydrocarbons				140000000					
F2 (C10-C16)	<10		10	ug/g	14-DEC-12	98	150	230	250
F3 (C16-C34)	<50		50	ug/g	14-DEC-12	300	1300	1700	2500
F4 (C34-C50)	57		50	ug/g	14-DEC-12	2800	5600	3300	660
Chrom. to baseline at nC50	YES			No Unit	14-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	73.4		60-140	%	14-DEC-12				
Surrogate: Octacosane	100.9		60-140	%	14-DEC-12				
.1248030-5 BH4 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: SOIL						#1	#2	#3	#4
Nation.									
Saturated Paste Extractables									

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

- #1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

L1248030 CONTD.... Page 7 of 11

Sample Details	D	0 -116	D.1	11-14				15-JUL-13 0	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
1248030-5 BH4 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2	#3	#4
Matrix: SOIL						# I	#Z	#0	
Saturated Paste Extractables									
SAR	0.41		0.10	SAR	12-DEC-12	5	5	12	12
Calcium (Ca)	9.91		0.10	mg/L	12-DEC-12				
Magnesium (Mg)	0.84		0.10	mg/L	12-DEC-12				
Sodium (Na)	5.02		0.10	mg/L	12-DEC-12				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12	7.5	7.5	40	50
Arsenic (As)	3.6		1.0	ug/g	12-DEC-12	11	11	18	18
Barium (Ba)	96.7		1.0	ug/g	12-DEC-12	390	390	670	67
Beryllium (Be)	0.67		0.50	ug/g	12-DEC-12	4	5	8	10
Boron (B)	8.3		5.0	ug/g	12-DEC-12	120	120	120	12
Cadmium (Cd)	< 0.50		0.50	ug/g	12-DEC-12	1	1	1.9	1.9
Chromium (Cr)	27.0		1.0	ug/g	12-DEC-12	160	160	160	16
Cobalt (Co)	8.6		1.0	ug/g	12-DEC-12	22	22	80	10
Copper (Cu)	17.7		1.0	ug/g	12-DEC-12	140	180	230	30
Lead (Pb)	10.3		1.0	ug/g	12-DEC-12	45	45	120	12
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12	6.9	6.9	40	40
Nickel (Ni)	20.7		1.0	ug/g	12-DEC-12	100	130	270	34
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12	2.4	2.4	5.5	5.
Silver (Ag)	< 0.20		0.20	ug/g	12-DEC-12	20	25	40	50
Thallium (TI)	< 0.50		0.50	ug/g	12-DEC-12	1	1	3.3	3.3
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12	23	23	33	33
Vanadium (V)	41.5		1.0	ug/g	12-DEC-12	86	86	86	86
Zinc (Zn)	45.7		5.0	ug/g	12-DEC-12	340	340	340	34
.1248030-6 BH5 - 1.5									
Sampled By: CLIENT on 11-DEC-12 @ 13:00							000015000	*200000	
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
	14.8		0.10	0/	11-DEC-12				
% Moisture Volatile Organic Compounds	14.0		0.10	%	11-020-12				
Acetone	< 0.50		0.50	ug/g	13-DEC-12	16	28	16	28
Benzene	<0.020		0.020	ug/g	13-DEC-12	0.21	0.17	0.32	0.4
Bromodichloromethane	< 0.050		0.050	ug/g	13-DEC-12	1.5	1.9	1.5	1.9
Bromoform	< 0.050		0.050	ug/g	13-DEC-12	0.27	0.26	0.61	1.3
Bromomethane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.0
Carbon tetrachloride	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.03	0.03	0.7
Chlorobenzene	< 0.050		0.050	ug/g	13-DEC-12	2.4	2.7	2.4	2.
Dibromochloromethane	<0.050		0.050	ug/g	13-DEC-12	2.4	2.7	2.4	2.9
Chloroform	<0.050		0.050	ug/g	13-DEC-12	0.05	0.17	0.47	0.1
1,2-Dibromoethane	<0.050		0.050	ug/g	13-DEC-12	0.05	0.17	0.47	0.0
1,2-Dichlorobenzene	<0.050		0.050	ug/g	13-DEC-12	1.2	1.7	1.2	1.7
1,3-Dichlorobenzene	<0.050		0.050	ug/g ug/g	13-DEC-12	4.8	6	9.6	1.
1,4-Dichlorobenzene	<0.050		0.050	ug/g ug/g	13-DEC-12	0.083	0.097	0.2	0.5

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

**Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

^{#1:} T2-Soil-Agricultural or Other Property Use (Coarse)

^{#2:} T2-Soil-Agricultural or Other Property Use (Fine)

^{#3:} T2-Soil-Ind/Com/Commu Property Use (Coarse)

^{#4:} T2-Soil-Ind/Com/Commu Property Use (Fine)

September 10th, 2014

ANALYTICAL GUIDELINE REPORT

L1248030 CONTD....
Page 8 of 11

	Popult	Qualifier	D.L.	Units	Applymed		Cuid-!!-	o Limito	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
1248030-6 BH5 - 1.5									
ampled By: CLIENT on 11-DEC-12 @ 13:00						#1	#2	#3	#4
fatrix: SOIL						#1	#2	#0	17-4
/olatile Organic Compounds									
1,1-Dichloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.47	0.6	0.47	0.6
1,2-Dichloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.05
1,1-Dichloroethylene	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.064	0.48
cis-1,2-Dichloroethylene	< 0.050		0.050	ug/g	13-DEC-12	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	< 0.050		0.050	ug/g	13-DEC-12	0.084	0.75	1.3	2.5
1,3-Dichloropropene (cis & trans)	< 0.042		0.042	ug/g	13-DEC-12	0.05	0.081	0.059	0.08
Methylene Chloride	< 0.050		0.050	ug/g	13-DEC-12	0.1	0.96	1.6	2
1,2-Dichloropropane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.085	0.16	0.68
cis-1,3-Dichloropropene	< 0.030		0.030	ug/g	13-DEC-12				
trans-1,3-Dichloropropene	< 0.030		0.030	ug/g	13-DEC-12				
Ethyl Benzene	< 0.050		0.050	ug/g	13-DEC-12	1.1	1.6	1.1	1.6
n-Hexane	< 0.050		0.050	ug/g	13-DEC-12	2.8	34	46	88
Methyl Ethyl Ketone	<0.50		0.50	ug/g	13-DEC-12	16	44	70	88
Methyl Isobutyl Ketone	< 0.50		0.50	ug/g	13-DEC-12	1.7	4.3	31	210
MTBE	< 0.050		0.050	ug/g	13-DEC-12	0.75	1.4	1.6	2.3
Styrene	< 0.050		0.050	ug/g	13-DEC-12	0.7	2.2	34	43
1,1,1,2-Tetrachloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.058	0.05	0.087	0.11
1,1,2,2-Tetrachloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.094
Tetrachloroethylene	< 0.050		0.050	ug/g	13-DEC-12	0.28	2.3	1.9	2.5
Toluene	<0.20		0.20	ug/g	13-DEC-12	2.3	6	6.4	9
1,1,1-Trichloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.38	3.4	6.1	12
1,1,2-Trichloroethane	< 0.050		0.050	ug/g	13-DEC-12	0.05	0.05	0.05	0.11
Trichloroethylene	< 0.050		0.050	ug/g	13-DEC-12	0.061	0.52	0.55	0.61
Trichlorofluoromethane	< 0.050		0.050	ug/g	13-DEC-12	4	5.8	4	5.8
Vinyl chloride	< 0.020		0.020	ug/g	13-DEC-12	0.02	0.022	0.032	0.25
o-Xylene	< 0.020		0.020	ug/g	13-DEC-12				
m+p-Xylenes	< 0.030		0.030	ug/g	13-DEC-12				
Xylenes (Total)	< 0.050		0.050	ug/g	13-DEC-12	3.1	25	26	30
Surrogate: 4-Bromofluorobenzene	76.2		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	87.9		70-130	%	13-DEC-12				
lydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-DEC-12	55	65	55	65
	91.3		60-140	%	13-DEC-12				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

esuit for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-All-Soil-Categories

#1: T2-Soil-Agricultural or Other Property Use (Coarse)

#2: T2-Soil-Agricultural or Other Property Use (Fine)

#3: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#4: T2-Soil-Ind/Com/Commu Property Use (Fine)

Phase II Environmental Site Assessment 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario

L1248030 CONTD Page 9 of 11 15-JUL-13 07:47 (MT)

Reference Information

Sample Paran	neter Qual	ifier key liste	d:		
Qualifier	Descript	ion			
SFPL	Sample	was Filtered a	and Preserved at the laboratory		
Methods List	ed (if appli	cable):			
ALS Test Cod	е	Matrix	Test Description	Method Reference***	
CA-DIS-WT		Water	Calcium (Ca) - Dissolved	EPA 200.8	
ETL-SAR-CAL	_C-WT	Water	Sodium Adsorption Ratio	Calculation	
F1-F4-511-CA	LC-WT	Water	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC DEC-2000 - PUB# 1310-L	

Parameters
Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed , F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- All extraction and analysis holding times were met.
 Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC DEC-2000 - PUB# 1310-S

Parameters
Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- All extraction and analysis holding times were met.
 Instrument performance showing C10, C16 and C34 response factors within 10% of their average
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

E3398/CCME TIER 1-HS F1-HS-511-WT F1-O.Reg 153/04 (July 2011)

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-HS-511-WT F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L1248030 CONTD.... Page 10 of 11 15-JUL-13 07:47 (MT)

Reference Information

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Soil F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-R511-WT Water Metals (O. Reg 153/04, 511 EPA 200.8

Amendments)
Ground water samples are filtered and preserved and analyzed by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-UG/G-CCMS-WT Soil Metal Scan Collision Cell ICPMS EPA 200.2/6020A

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MG-DIS-WT Water Magnesium (Mg) - Dissolved EPA 200.8

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

 VOC-1,3-DCP-CALC-WT
 Water
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-1,3-DCP-CALC-WT
 Soil
 Regulation 153 VOCs
 SW8260B/SW8270C

 VOC-511-HS-WT
 Water
 VOC by GCMS HS O.Reg
 SW846 8260

153/04 (July 2011) Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT Water VOC-O.Reg 153/04 (July 2011) SW846 8260

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT Soil VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

131054

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

L1248030 CONTD.... Page 11 of 11 15-JUL-13 07:47 (MT)

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwl - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

N.L. - The reporting limit.
N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

L1248030 CONTD.... Page 2 of 11 15-JUL-13 07:47 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
1248030-1 MW1			33						
ampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2		
/olatile Organic Compounds									
Acetone	88		30	ug/L	13-DEC-12	2700	2700		
Benzene	< 0.50		0.50	ug/L	13-DEC-12	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12	16	16		
Bromoform	<5.0		5.0	ug/L	13-DEC-12	25	25		
Bromomethane	< 0.50		0.50	ug/L	13-DEC-12	0.89	0.89		
Carbon tetrachloride	< 0.20		0.20	ug/L	13-DEC-12	0.79	5		
Chlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12	25	25		
Chloroform	<1.0		1.0	ug/L	13-DEC-12	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12	0.2	0.2		
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	59	59		
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12	590	590		
1,1-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12	5	5		
1,2-Dichloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.6	5		
1,1-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	14		
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	13-DEC-12	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12	50	50		
1,2-Dichloropropane	< 0.50		0.50	ug/L	13-DEC-12	5	5	4	
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	< 0.50		0.50	ug/L	13-DEC-12	2.4	2.4		
n-Hexane	< 0.50		0.50	ug/L	13-DEC-12	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12	640	640		
MTBE	<2.0		2.0	ug/L	13-DEC-12	15	15		
Styrene	< 0.50		0.50	ug/L	13-DEC-12	5.4	5.4		
1,1,1,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Tetrachloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
Toluene	< 0.50		0.50	ug/L	13-DEC-12	24	24		
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	200	200		
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	4.7	5		
Trichloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12	150	150		
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12	0.5	1.7		
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12		192857-0		
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12	300	300		
Surrogate: 4-Bromofluorobenzene	83.1		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.6		70-130	%	13-DEC-12				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD....
Page 3 of 11

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
.1248030-1 MW1			(c) 32						
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2		
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12	750	750		
F1-BTEX	<25		25		13-DEC-12	750	750		
	<100		100	ug/L		750	750		
F2 (C10-C16)			100,000,00	ug/L	13-DEC-12	150	150		
F3 (C16-C34)	<250		250	ug/L	13-DEC-12	500	500		
F4 (C34-C50)	<250		250	ug/L	13-DEC-12	500	500		
Total Hydrocarbons (C6-C50)	<250 YES		250	ug/L	13-DEC-12 13-DEC-12				
Chrom. to baseline at nC50	61.3		60-140	No Unit	13-DEC-12 13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride Surrogate: 3,4-Dichlorotoluene	72.6		60-140	%	13-DEC-12 13-DEC-12				
Surrogate: 3,4-Dichlorotoluene Surrogate: Octacosane	91.0		60-140	%	13-DEC-12 13-DEC-12				
	01.0		00-140	70	10-020-12				
_1248030-2 MW2									
Sampled By: CLIENT on 11-DEC-12 @ 12:00						#1	#2		
Matrix: WATER						π.	#2		
Volatile Organic Compounds									
Acetone	<30		30	ug/L	13-DEC-12	2700	2700		
Benzene	< 0.50		0.50	ug/L	13-DEC-12	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12	16	16		
Bromoform	<5.0		5.0	ug/L	13-DEC-12	25	25		
Bromomethane	<0.50		0.50	ug/L	13-DEC-12	0.89	0.89		
Carbon tetrachloride	<0.20		0.20	ug/L	13-DEC-12	0.79	5		
Chlorobenzene	<0.50		0.50	ug/L	13-DEC-12	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12	25	25	1	
Chloroform	<1.0		1.0	ug/L	13-DEC-12	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12	0.2	0.2		
1,2-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12	3	3		
1,3-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12				
1.4-Dichlorobenzene	<0.50		0.50	ug/L	13-DEC-12	59	59 1		
Dichlorodifluoromethane	<2.0		2.0		13-DEC-12	1			
1.1-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12 13-DEC-12	590	590		
TO A CHEST OF A CONTROL OF THE CONTR			100000000	ug/L	159500000000000000000000000000000000000	5	5		
1,2-Dichloroethane	<0.50 <0.50		0.50 0.50	ug/L	13-DEC-12 13-DEC-12	1.6	5		
1,1-Dichloroethylene				ug/L		1.6	14		
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	13-DEC-12	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12	50	50		
1,2-Dichloropropane	<0.50		0.50	ug/L	13-DEC-12	5	5		
cis-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
trans-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	<0.50		0.50	ug/L	13-DEC-12	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	13-DEC-12	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12	640	640		
MTBE	<2.0		2.0	ug/L	13-DEC-12	15	15		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

** Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD....
Page 4 of 11

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
.1248030-2 MW2			F- 32						
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2		
SEA ALIBERTAL AND SECURITION									
Volatile Organic Compounds					5000 SERVICE - 5000 SE				
Styrene	< 0.50		0.50	ug/L	13-DEC-12	5.4	5.4		
1,1,1,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Tetrachloroethylene	< 0.50		0.50	ug/L	13-DEC-12	1.6	17		
Toluene	< 0.50		0.50	ug/L	13-DEC-12	24	24		
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	200	200		
1,1,2-Trichloroethane	<0.50		0.50	ug/L	13-DEC-12	4.7	5		
Trichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12	150	150		
Vinyl chloride	< 0.50		0.50	ug/L	13-DEC-12	0.5	1.7		
o-Xylene	< 0.35		0.35	ug/L	13-DEC-12				
m+p-Xylenes	< 0.35		0.35	ug/L	13-DEC-12				
Xylenes (Total)	< 0.50		0.50	ug/L	13-DEC-12	300	300		
Surrogate: 4-Bromofluorobenzene	82.4		70-130	%	13-DEC-12				
Surrogate: 1,4-Difluorobenzene	93.1		70-130	%	13-DEC-12				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	13-DEC-12	750	750		
F1-BTEX	<25		25	ug/L	13-DEC-12	750	750		
F2 (C10-C16)	<100		100	ug/L	13-DEC-12	150	150		
F3 (C16-C34)	<250		250	ug/L	13-DEC-12	500	500		
F4 (C34-C50)	<250		250	ug/L	13-DEC-12	500	500		
Total Hydrocarbons (C6-C50)	<250		250	ug/L	13-DEC-12				
Chrom. to baseline at nC50	YES			No Unit	13-DEC-12				
Surrogate: 2-Bromobenzotrifluoride	63.0		60-140	%	13-DEC-12				
Surrogate: 3,4-Dichlorotoluene	70.3		60-140	%	13-DEC-12				
Surrogate: Octacosane	93.1		60-140	%	13-DEC-12				
_1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Matrix: WATER						#1	#2		
Metals									
Sodium Adsorption Ratio	0.56		0.030	SAR	14-DEC-12				
Dissolved Metals	0.00		0.000	C/111	11.020-12				
Antimony (Sb)	<0.50	SFPL	0.50	ug/L	12-DEC-12	6	6		
Arsenic (As)	1.4	SFPL	1.0	ug/L	12-DEC-12	25	25		
Barium (Ba)	189	SFPL	2.0	ug/L	12-DEC-12	1000	1000		
Beryllium (Be)	<0.50	SFPL	0.50	ug/L	12-DEC-12	4	4		
Boron (B)	57	SFPL	10	ug/L	12-DEC-12	5000	5000		
Cadmium (Cd)	<0.10	SFPL	0.10	ug/L	12-DEC-12	2.7	2.7		
Calcium (Ca)-Dissolved	105	SFPL	0.10	mg/L	12-DEC-12	2.1	2.1		
Chromium (Cr)	<0.50	SFPL	0.50	ug/L	12-DEC-12	50	50		
Cobalt (Co)	1.50	SFPL	0.50	ug/L ug/L	12-DEC-12	3.8	3.8		
Copper (Cu)	<1.0	SFPL	1.0	1000	12-DEC-12				
Lead (Pb)	<1.0	SFPL	1.0	ug/L ug/L	12-DEC-12 12-DEC-12	87 10	87 10		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD.... Page 5 of 11 15-JUL-13 07:47 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
.1248030-3 MW3									
Sampled By: CLIENT on 11-DEC-12 @ 12:00									
Constitution of the Consti						#1	#2		
Matrix: WATER						7,440.5			
Dissolved Metals									
Molybdenum (Mo)	1.76	SFPL	0.50	ug/L	12-DEC-12	70	70		
Nickel (Ni)	2.6	SFPL	1.0	ug/L	12-DEC-12	100	100		
Selenium (Se)	<5.0	SFPL	5.0	ug/L	12-DEC-12	10	10		
Silver (Ag)	< 0.10	SFPL	0.10	ug/L	12-DEC-12	1.5	1.5		
Sodium (Na)	24800	SFPL	500	ug/L	12-DEC-12	490000	490000		
Thallium (TI)	< 0.30	SFPL	0.30	ug/L	12-DEC-12	2	2		
Uranium (U)	2.5	SFPL	2.0	ug/L	12-DEC-12	20	20		
Vanadium (V)	0.94	SFPL	0.50	ug/L	12-DEC-12	6.2	6.2		
Zinc (Zn)	<3.0	SFPL	3.0	ug/L	12-DEC-12	1100	1100		
Volatile Organic Compounds									
Acetone	<30		30	ug/L	13-DEC-12	2700	2700		
Benzene	<0.50		0.50	ug/L	13-DEC-12	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	13-DEC-12	16	16		
Bromoform	<5.0		5.0	ug/L	13-DEC-12	25	25		
Bromomethane	<0.50		0.50	ug/L	13-DEC-12	0.89	0.89		
Carbon tetrachloride	<0.20		0.20	ug/L	13-DEC-12	0.79	5		
Chlorobenzene	<0.50		0.50	ug/L	13-DEC-12	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	13-DEC-12	25	25		
Chloroform	<1.0		1.0	ug/L	13-DEC-12	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	13-DEC-12	0.2	0.2		
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	59	59		
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	13-DEC-12	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	13-DEC-12	590	590		
1.1-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12	5	5		
1,2-Dichloroethane	<0.50		0.50	ug/L	13-DEC-12	1.6	5		
1,1-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	14		
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	13-DEC-12	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	13-DEC-12	50	50		
1,2-Dichloropropane	<0.50		0.50	ug/L	13-DEC-12	5	5		
cis-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12	J	3		
trans-1,3-Dichloropropene	<0.30		0.30	ug/L	13-DEC-12				
Ethyl Benzene	<0.50		0.50	ug/L	13-DEC-12	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	13-DEC-12	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	13-DEC-12	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	13-DEC-12	640	640		
MTBE	<2.0		2.0	ug/L	13-DEC-12	15	15		
Styrene	<0.50		0.50	ug/L	13-DEC-12	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	13-DEC-12	1.1	1.1		
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L	13-DEC-12	1	1		
Tetrachloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	17		
Toluene	<0.50		0.50	ug/L	13-DEC-12	24	24		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD....
Page 6 of 11

STA-002 Sample Details			140440				15-JUL-13 07:47 (M			
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits		
.1248030-3 MW3										
Sampled By: CLIENT on 11-DEC-12 @ 12:00										
Matrix: WATER						#1	#2			
Volatile Organic Compounds										
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	13-DEC-12	200	200			
1,1,2-Trichloroethane	<0.50		0.50	ug/L	13-DEC-12	4.7	5			
Trichloroethylene	<0.50		0.50	ug/L	13-DEC-12	1.6	5			
Trichlorofluoromethane	<5.0		5.0	ug/L	13-DEC-12	150	150			
Vinyl chloride	<0.50		0.50	ug/L	13-DEC-12	0.5	1.7			
o-Xylene	<0.35		0.35	ug/L	13-DEC-12	0.5	1.7			
m+p-Xylenes	<0.35		0.35	ug/L	13-DEC-12					
Xylenes (Total)	<0.50		0.50	ug/L	13-DEC-12	300	300			
Surrogate: 4-Bromofluorobenzene	83.0		70-130	%	13-DEC-12	300	300			
Surrogate: 4-Bromonuorobenzene Surrogate: 1,4-Difluorobenzene	93.5		70-130	%	13-DEC-12 13-DEC-12					
Hydrocarbons	93.3		70-130	70	13-020-12					
Physical region (Victoria)	05		25		10 050 10					
F1 (C6-C10)	<25		25	ug/L	13-DEC-12	750	750			
F1-BTEX	<25		25	ug/L	13-DEC-12	750	750			
Surrogate: 3,4-Dichlorotoluene	77.6		60-140	%	13-DEC-12					
_1248030-4 BH3 - 1.5										
Sampled By: CLIENT on 11-DEC-12 @ 12:00										
Matrix: SOIL						#1	#2			
Physical Tests										
% Moisture	17.9		0.10	%	11-DEC-12					
Saturated Paste Extractables			58.54568							
SAR	0.87		0.10	SAR	12-DEC-12					
Calcium (Ca)	18.4		0.10	mg/L	12-DEC-12					
Magnesium (Mg)	1.62		0.10	mg/L	12-DEC-12					
Sodium (Na)	14.4		0.10	mg/L	12-DEC-12	490	490			
Metals										
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12					
Arsenic (As)	2.2		1.0	ug/g	12-DEC-12					
Barium (Ba)	62.2		1.0	ug/g	12-DEC-12					
Beryllium (Be)	0.52		0.50	ug/g	12-DEC-12					
Boron (B)	8.0		5.0	ug/g	12-DEC-12					
Cadmium (Cd)	<0.50		0.50	ug/g	12-DEC-12					
Chromium (Cr)	21.3		1.0	ug/g	12-DEC-12					
Cobalt (Co)	8.1		1.0	ug/g	12-DEC-12					
Copper (Cu)	18.7		1.0	ug/g	12-DEC-12					
Lead (Pb)	16.0		1.0	ug/g	12-DEC-12					
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12					
Nickel (Ni)	19.0		1.0	ug/g	12-DEC-12					
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12					
Silver (Ag)	<0.20		0.20	ug/g	12-DEC-12					
Thallium (TI)	<0.50		0.50	ug/g	12-DEC-12					
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12					
Vanadium (V)	31.0		1.0	ug/g	12-DEC-12					
Zinc (Zn)	53.8		5.0	ug/g	12-DEC-12					
Hydrocarbons										
F2 (C10-C16)	<10		10	ug/g	14-DEC-12					
,				00				1		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD.... Page 7 of 11

STA-002 Sample Details								15-JUL-13 07:47 (M		
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits		
L1248030-4 BH3 - 1.5										
Sampled By: CLIENT on 11-DEC-12 @ 12:00										
Matrix: SOIL						#1	#2			
Hydrocarbons										
F3 (C16-C34)	<50		50	ug/g	14-DEC-12					
F4 (C34-C50)	57		50	ug/g	14-DEC-12					
Chrom. to baseline at nC50	YES			No Unit	14-DEC-12					
Surrogate: 2-Bromobenzotrifluoride	73.4		60-140	%	14-DEC-12					
Surrogate: Octacosane	100.9		60-140	%	14-DEC-12					
L1248030-5 BH4 - 1.5										
Sampled By: CLIENT on 11-DEC-12 @ 12:00										
Matrix: SOIL						#1	#2			
Saturated Paste Extractables										
SAR	0.41		0.10	SAR	12-DEC-12					
Calcium (Ca)	9.91		0.10	mg/L	12-DEC-12 12-DEC-12					
Magnesium (Mg)	0.84		0.10	mg/L	12-DEC-12					
Sodium (Na)	5.02		0.10	mg/L	12-DEC-12	490	490			
Metals	0.02		0.10	mg/L	12 020 12	430	430			
Antimony (Sb)	<1.0		1.0	ug/g	12-DEC-12					
Arsenic (As)	3.6		1.0	ug/g	12-DEC-12					
Barium (Ba)	96.7		1.0	ug/g	12-DEC-12					
Beryllium (Be)	0.67		0.50	ug/g	12-DEC-12					
Boron (B)	8.3		5.0	ug/g	12-DEC-12					
Cadmium (Cd)	< 0.50		0.50	ug/g	12-DEC-12					
Chromium (Cr)	27.0		1.0	ug/g	12-DEC-12					
Cobalt (Co)	8.6		1.0	ug/g	12-DEC-12					
Copper (Cu)	17.7		1.0	ug/g	12-DEC-12					
Lead (Pb)	10.3		1.0	ug/g	12-DEC-12					
Molybdenum (Mo)	<1.0		1.0	ug/g	12-DEC-12					
Nickel (Ni)	20.7		1.0	ug/g	12-DEC-12					
Selenium (Se)	<1.0		1.0	ug/g	12-DEC-12					
Silver (Ag)	<0.20		0.20	ug/g	12-DEC-12					
Thallium (TI)	<0.50		0.50	ug/g	12-DEC-12					
Uranium (U)	<1.0		1.0	ug/g	12-DEC-12					
Vanadium (V) Zinc (Zn)	41.5 45.7		1.0 5.0	ug/g ug/g	12-DEC-12 12-DEC-12					
	70.7		0.0	ug/g	12-010-12					
L1248030-6 BH5 - 1.5										
Sampled By: CLIENT on 11-DEC-12 @ 13:00 Matrix: SOIL						#1	#2			
Physical Tests										
% Moisture	14.8		0.10	%	11-DEC-12					
Volatile Organic Compounds	17.0		0.10	/0	11-020-12					
Acetone	<0.50		0.50	ug/g	13-DEC-12					
Benzene	<0.020		0.020	ug/g	13-DEC-12					
Bromodichloromethane	< 0.050		0.050	ug/g	13-DEC-12					
Bromoform	< 0.050		0.050	ug/g	13-DEC-12					
Bromomethane	< 0.050		0.050	ug/g	13-DEC-12					
Carbon tetrachloride	< 0.050		0.050	ug/g	13-DEC-12					
Chlorobenzene	< 0.050		0.050	ug/g	13-DEC-12					

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD.... Page 8 of 11 15-JUL-13 07:47 (MT)

5 - 1.5 ENT on 11-DEC-12 @ 13:00 IL Compounds methane	<0.050 <0.050		0.050			#1	#2		
IL Compounds methane			0.050			#1	#2		
IL Compounds methane			0.050			#1	#2		
methane			0.050						
methane			0.050						
				and the	40 DEC 40				
nane	<0.050	1	120000000000000000000000000000000000000	ug/g	13-DEC-12				
nane			0.050	ug/g	13-DEC-12				
	<0.050		0.050	ug/g	13-DEC-12				
nzene	<0.050		0.050	ug/g	13-DEC-12				
nzene	< 0.050		0.050	ug/g	13-DEC-12				
nzene	<0.050		0.050	ug/g	13-DEC-12				
omethane	<0.050		0.050	ug/g	13-DEC-12				
			2000						
			53366	345	State of the state				
• 10000000			250000000000000000000000000000000000000						
			0.0000000000000000000000000000000000000						
			50.000						
				1 TO SHOW STOKES					
2)									
7 7				V = (V = V)					
oropropene			57.44.55.445.50		San Control of the Co				
			201000000000000000000000000000000000000	100	The second secon				
35					10 25 1 A 10 10 10 10 10 10 10 10 10 10 10 10 10				
etone			4.00	ug/g					
Ketone				ug/g					
			200200000	ug/g					
				ug/g					
loroethane			0.050	ug/g	13-DEC-12	1			
loroethane	< 0.050		0.050	ug/g	13-DEC-12				
lene	< 0.050		0.050	ug/g	13-DEC-12				
	<0.20		0.20	ug/g	13-DEC-12				
ethane	< 0.050		0.050	ug/g	13-DEC-12				
ethane	< 0.050		0.050	ug/g	13-DEC-12				
ne	< 0.050		0.050	ug/g	13-DEC-12				
nethane	< 0.050		0.050	ug/g	13-DEC-12				
	< 0.020		0.020	ug/g	13-DEC-12				
	< 0.020		0.020	ug/g	13-DEC-12				
	< 0.030		0.030	ug/g	13-DEC-12				
	< 0.050		0.050	ug/g	13-DEC-12				
romofluorobenzene	76.2		70-130	%	13-DEC-12				
Difluorobenzene	87.9		70-130	%	13-DEC-12				
	<5.0		5.0	ug/g	13-DEC-12				
Dichlorotoluene	91.3		60-140	%	13-DEC-12				
	ane ane ane ane ane ane ane ylene bethylene brocethylene spene (cis & trans) bride spane bropropene bropropene detone Ketone loroethane loroethane loroethane ethane ethane bromofluorobenzene Dichlorotoluene	ane	ane	Section Sect	Section Sect	Section Sect	Section Sect	Section Sect	Section Sect

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

L1248030 CONTD.... Page 9 of 11 15-JUL-13 07:47 (MT)

Reference Information

Sample Param	neter Qualifier key listed:
Qualifier	Description
SFPL	Sample was Filtered and Preserved at the laboratory

Methods Listed (if appl	icable):		
ALS Test Code	Matrix	Test Description	Method Reference***
CA-DIS-WT	Water	Calcium (Ca) - Dissolved	EPA 200.8
ETL-SAR-CALC-WT	Water	Sodium Adsorption Ratio	Calculation
F1-F4-511-CALC-WT	Water	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC DEC-2000 - PUB# 1310-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

F1-F4 Hydrocarbon Calculated CCME CWS-PHC DEC-2000 - PUB# 1310-S

Parameters
Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
 Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

F1-O.Reg 153/04 (July 2011) Water E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

52

September 10th, 2014

CSTA-002

L1248030 CONTD.... Page 10 of 11 15-JUL-13 07:47 (MT)

Reference Information

F2-F4-511-WT F2-F4-O Reg 153/04 (July 2011) MOF DECPH-F3398/CCMF TIFR 1 Water

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-R511-WT Metals (O. Reg 153/04, 511 **EPA 200.8**

Amendments)
Ground water samples are filtered and preserved and analyzed by ICP/MS

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-UG/G-CCMS-WT Metal Scan Collision Cell ICPMS EPA 200.2/6020A

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MG-DIS-WT Water Magnesium (Mg) - Dissolved EPA 200.8

MOISTURE-WT Soil % Moisture Gravimetric: Oven Dried

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

VOC-1,3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C VOC-1,3-DCP-CALC-WT Soil Regulation 153 VOCs SW8260B/SW8270C VOC-511-HS-WT Water VOC by GCMS HS O.Reg SW846 8260

153/04 (July 2011) Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT VOC-O.Reg 153/04 (July 2011) SW846 8260

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-511-HS-WT VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

131054

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

September 10th, 2014 Page 53

CSTA-002

L1248030 CONTD.... Page 11 of 11 15-JUL-13 07:47 (MT)

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than. D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

BAL	

						C of C # 00000	
60 NORTHLAND ROAD, UNIT 1		CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM	VALYTICAL	SERVICES	REQUEST FORM	Page / of /	
WATERLOO, ON NZV 288				Conseille dute	Service requested	2 day TAT (50%)	
Phone: (519) 886-6910	Note: all TAT Quo	Note: all TAT Quoted material is in business days which exclude	cclude	specify date	5 day (regular)	Next day TAT (100%)	
Fax: (519) 856-904/ Toll Free: 1-800-668-9878		statutory nondays and weekends. 141 sumples received poor Saturday/Sunday begin the next day.	1	4 19 12	3-4 day (25%)	Same day TAT (200%)	
COMPANY NAME 18 11 - 1 - 1	CRITERIA	Criteria on report YES NO		ANALYSIS	ANALYSIS REQUEST	PLEASE INDICATE FILTERED,	D,
Des	Reg	Reg 511/09 W				(F, P, F/P)	
ANAGER 8	TCLP	PWQ0				SUBMISSION #:	9
1		REPORT FORMAT/DISTRIBUTION	1.	AF		ENTERED BY: HGA	P
ACCOUNT # 19051		ВОТН	J /	15-6		DATE/TIME ENTERED:	,
QUOTATION # PO #	SELECT: PDF	DIGITAL BOTH	5	2		2	
NG INFORMATION	EMAIL 2	mar of a series) () () ()	13-			
TYPE	× яз	T	C.5	t=l		COMMENTS	LAB ID
Date (dd·mm·yy) (hh.mm) CO CRA	SOUTH SAMPLE DESC	SAMPLE DESCRIPTION TO APPEAR ON REPORT	VON	V			- 1
11-12-12 12:00 V	J		73	+			-2-
	CAN NO	410	410	1			23
1	3 5	1.5	7	Z			7 (
2	13114	5./	7	Z			0
1800	645	7.5	7				9
CORCUM INCTOLICATIONS/COMMENTS		THE QUESTIONS BELOW MUST BE ANSWERED FORWATER SAMPLES (CHECK Yes OR No.)	ERED FORWATER S	AMPLES (CHECK	Yes OR No.)	SAMPLE CONF	-
7 3	Are any samples If yes, an author Is the water sam	Are any samples taken from a regulated DW System? If yes, an authorized drinking water COC MUST be used for this submission. Is the water sampled intended to be potable for human consumption?	for this submiss consumption?		Yes □ No 🖈	FROZEN COLD COOLING INITIATED AMBIENT	S'S
Man of the state o		RECEIVED BV:			DATE & TIME	OBSERVATIONS Yes I No A	NIT I
RELINQUISHED BY:	DATE & TIME	RECEIVED AT 128 13.			8年で12-12 14:15		010
Notes 1. Quedes number enject to available to ansure proper pricing	7 TAT entrangements	2 TAX more referenced for complexity of analysis and lab workload at time of submission. 3. Any known of suspected hazards relating to a sample must be noted on the	sekload at time of s	ubmission. 3. Au	v known or suspected hazar	ds relating to a sample must be no	ted on the

5040 Bank Street, / 107 Marco Street, and 7041 Millon Owens Road, City of Ottawa, Ontario

8577382 Canada Inc. - BAE Environmental ATTN: BRIAN EMMS RR 1 ORO STATION ORO STATION ON LOL 2E0 Date Received: 02-SEP-14

Report Date: 09-SEP-14 15:50 (MT)

Version: FINAL

Client Phone: 705-715-1881

Certificate of Analysis

Lab Work Order #: L1511032

Project P.O. #: NOT SUBMITTED

Job Reference: BAE1453 GREELY

C of C Numbers: 154439

Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8052

ALS CANADA LTD | Part of the ALS Group | A Campbell Brothers Limited Company

Environmental 🧦

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTIES

L1511032 CONTD Page 2 of 12

BAE1453 GREELY							(9-SEP-14 1	5:50 (MT)_
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits	
L1511032-1 BH5103									
Sampled By: CLIENT on 28-AUG-14 @ 08:0	00								
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	7.31		0.10	%	03-SEP-14				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	04-SEP-14	40	50	7.5	7.5
Arsenic (As)	1.0		1.0	ug/g	04-SEP-14	18	18	18	18
Barlum (Ba)	17.1		1.0	ug/g	04-SEP-14	670	670	390	390
Beryllium (Be)	<0.50		0.50	ug/g	04-SEP-14	8	10	4	5
Boron (B)	<5.0		5.0	ug/g	04-SEP-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	04-SEP-14	1.9	1.9	1.2	1.2
Chromlum (Cr)	8.3		1.0	ug/g	04-SEP-14	160	160	160	160
Cobalt (Co)	3.6		1.0	ug/g	04-SEP-14	80	100	22	22
Copper (Cu)	8.0		1.0	ug/g	04-SEP-14	230	300	140	180
Lead (Pb)	2.6		1.0	ug/g	04-SEP-14	120	120	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	04-SEP-14	40	40	6.9	6.9
Nickel (NI)	6.5		1.0	ug/g	04-SEP-14	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	04-SEP-14	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	04-SEP-14	40	50	20	25
Thailium (TI)	<0.50		0.50	ug/g	04-SEP-14	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	04-SEP-14	33	33	23	23
Vanadlum (V)	17.5		1.0	ug/g	04-SEP-14	86	86	86	86
Zinc (Zn)	8.7		5.0	ug/g	04-SEP-14	340	340	340	340
Volatile Organic Compounds									
Acetone	<0.50		0.50	ug/g	04-SEP-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	04-SEP-14	0.32	0.4	0.21	0.17
Bromodichioromethane	<0.050		0.050	ug/g	04-SEP-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	04-SEP-14	0.61	1.7	0.27	0.26
Bromomethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
Carbon tetrachloride	<0.050		0.050	ug/g	04-SEP-14	0.21	0.71	0.05	0.12
Chlorobenzene	<0.050		0.050	ug/g	04-SEP-14	2.4	2.7	2.4	2.7
Dibromochioromethane	<0.050		0.050	ug/g	04-SEP-14	2.3	2.9	2.3	2.9
Chloroform	<0.050		0.050	ug/g	04-SEP-14	0.47	0.18	0.05	0.17
1,2-Dibromoethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
1,2-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	1.2	1.7	1.2	1.7
1,3-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	9.6	12	4.8	6
1,4-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	0.2	0.57	0.083	0.097
Dichlorodifluoromethane	<0.050		0.050	ug/g	04-SEP-14	16	25	16	25
1,1-Dichloroethane	<0.050		0.050	ug/g	04-SEP-14	0.47	0.6	0.47	0.6
1,2-Dichloroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
1,1-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	0.064	0.48	0.05	0.05
cls-1,2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.3	2.5	0.084	0.75
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	04-SEP-14	0.059	0.081	0.05	0.081
Methylene Chloride	<0.050		0.050	ug/g	04-SEP-14	1.6	2	0.1	0.96
1,2-Dichloropropane	<0.050		0.050	ug/g	04-SEP-14	0.16	0.68	0.05	0.085
cls-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

** Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soll-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soll-Res/Park/Inst. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L1511032 CONTD Page 3 of 12

BAE1453 GREELY								9-SEP-14 1	5:50 (MT)_
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits	
L1511032-1 BH5103									
Sampled By: CLIENT on 28-AUG-14 @ 08:00									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
trans-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14				
Ethyl Benzene	<0.050		0.050	ug/g	04-SEP-14	1.1	1.6	1.1	1.6
n-Hexane	<0.050		0.050	ug/g	04-SEP-14	46	88	2.8	34
Methyl Ethyl Ketone	<0.50		0.50	ug/g	04-SEP-14	70	88	16	44
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	04-SEP-14	31	210	1.7	4.3
MTBE	<0.050		0.050	ug/g	04-SEP-14	1.6	2.3	0.75	1.4
Styrene	<0.050		0.050	ug/g	04-SEP-14	34	43	0.7	2.2
1,1,1,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.087	0.11	0.058	0.05
1.1.2.2-Tetrachloroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.094	0.05	0.05
Tetrachloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	0.28	2.3
Toluene	<0.20		0.20	ug/g	04-SEP-14	6.4	9	2.3	6
1,1,1-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	6.1	12	0.38	3.4
1.1.2-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.11	0.05	0.05
Trichioroethylene	<0.050		0.050		04-SEP-14	0.55	0.61	0.051	0.52
Trichiorofluoromethane	<0.050		0.050	ug/g	04-SEP-14				
Vinvi chloride	<0.030		0.030	ug/g	04-SEP-14	4	5.8	4	5.8
	<0.020		0.020	ug/g	04-SEP-14	0.032	0.25	0.02	0.022
o-Xylene mun Yylener	<0.020 <0.030		0.020	ug/g	04-SEP-14				
m+p-Xylenes Xylenes (Total)	<0.050		0.050	ug/g ug/g	04-SEP-14	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	111.9		70-130	- wary - %	04-SEP-14	20	30	3.1	25
Surrogate: 1,4-Diffuorobenzene	100.2		70-130	%	04-SEP-14				
Hydrocarbons	100.2		70-130	^	04-3EF-14				
F1 (C6-C10)	<5.0		5.0	unin	04-SEP-14				
F1-BTEX	<5.0		5.0	ug/g	09-SEP-14	55	65	55	65
	<10		10	ug/g	09-SEP-14	55	65	55	65
F2 (C10-C16)				ug/g		230	250	98	150
F3 (C16-C34)	<50		50	ug/g	09-SEP-14	1700	2500	300	1300
F4 (C34-C50)	<50		50	ug/g	09-SEP-14	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	09-SEP-14 09-SEP-14				
Chrom. to baseline at nC50	YES 73.5		50-140	No Unit	09-SEP-14				
Surrogate: 2-Bromobenzotrifluoride Surrogate: 3,4-Dichlorotoluene	75.5 76.8		60-140	%	04-SEP-14				
•	70.0	_	60-140	76	04-SEP-14				
L1511032-2 BH5104									
Sampled By: CLIENT on 28-AUG-14 @ 08:00						#1	#2	#3	#4
Matrix: SOIL						#1	#2	#N	#4
Physical Tests									
% Moisture	4.62		0.10	%	03-SEP-14				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	04-SEP-14	40	50	7.5	7.5
Arsenic (As)	<1.0		1.0	ug/g	04-SEP-14	18	18	18	18
Barlum (Ba)	16.7		1.0	ug/g	04-SEP-14	670	670	390	390
Beryllium (Be)	<0.50		0.50	ug/g	04-SEP-14	8	10	4	5
Boron (B)	<5.0		5.0	ug/g	04-SEP-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	04-SEP-14	1.9	1.9	1.2	1.2
Chromium (Cr)	7.3		1.0	ug/g	04-SEP-14	160	160	160	160
* *									

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soll-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soll-Res/Park/Inst. Property Use (Fine)

L1511032 CONTD Page 4 of 12

AE1453 GREELY	711471211	10712			. ILLI OI			Page 4 09-SEP-14 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits	
L1511032-2 BH5104									
Sampled By: CLIENT on 28-AUG-14 @ 08:0	0								
Matrix: SOIL						#1	#2	#3	#4
Metals									
Cobalt (Co)	3.1		1.0	ug/g	04-SEP-14	80	100	22	22
Copper (Cu)	6.7		1.0	ug/g	04-SEP-14	230	300	140	180
Lead (Pb)	1.5		1.0	ug/g	04-SEP-14	120	120	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	04-SEP-14	40	40	6.9	6.9
Nickel (NI)	4.2		1.0	ug/g	04-SEP-14	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	04-SEP-14	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	04-SEP-14	40	50	20	25
Thaillum (TI)	<0.50		0.50	ug/g	04-SEP-14	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	04-SEP-14	33	33	23	23
Vanadlum (V)	21.4		1.0	ug/g	04-SEP-14	86	86	86	86
Zinc (Zn)	6.9		5.0	ug/g	04-SEP-14	340	340	340	340
Volatile Organic Compounds									
Acetone	<0.50		0.50	ug/g	04-SEP-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	04-SEP-14	0.32	0.4	0.21	0.17
Bromodichioromethane	<0.050		0.050	ug/g	04-SEP-14	1.5	1.9	1.5	1.9
Bromoform	< 0.050		0.050	ug/g	04-SEP-14	0.61	1.7	0.27	0.26
Bromomethane	< 0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
Carbon tetrachioride	<0.050		0.050	ug/g	04-SEP-14	0.21	0.71	0.05	0.12
Chlorobenzene	<0.050		0.050	ug/g	04-SEP-14	2.4	2.7	2.4	2.7
Dibromochioromethane	<0.050		0.050	ug/g	04-SEP-14	2.3	2.9	2.3	2.9
Chloroform	<0.050		0.050	ug/g	04-SEP-14	0.47	0.18	0.05	0.17
1,2-Dibromoethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
1,2-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	1.2	1.7	1.2	1.7
1,3-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	9.6	12	4.8	6
1,4-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	0.2	0.57	0.083	0.097
Dichlorodifluoromethane	<0.050		0.050	ug/g	04-SEP-14	16	25	16	25
1,1-Dichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.47	0.6	0.47	0.6
1,2-Dichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
1,1-Dichioroethylene	<0.050		0.050	ug/g	04-SEP-14	0.064	0.48	0.05	0.05
cls-1,2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	1.9	2.5
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.3	2.5	0.084	0.75
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	04-SEP-14	0.059	0.081	0.05	0.081
Methylene Chloride	<0.050		0.050	ug/g	04-SEP-14	1.6	2	0.1	0.96
1,2-Dichloropropane	<0.050		0.050	ug/g	04-SEP-14	0.16	0.68	0.05	0.085
cls-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14 04-SEP-14				
trans-1,3-Dichloropropene Ethyl Benzene	<0.030 <0.050		0.030	ug/g ug/g	04-SEP-14 04-SEP-14	1.1	1.6	1.1	1.6
n-Hexane	<0.050		0.050		04-SEP-14	46	88	2.8	34
Methyl Ethyl Ketone	<0.50		0.050	ug/g ug/g	04-SEP-14	70	88	16	44
Methyl Isobutyl Ketone	<0.50		0.50		04-SEP-14	31	210	1.7	4.3
MTBE	<0.050		0.050	ug/g	04-SEP-14	1.6	2.3	0.75	1.4
Styrene	<0.050		0.050	ug/g ug/g	04-SEP-14	34	43	0.75	2.2
1,1,1,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.087	0.11	0.058	0.05
1,1,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.067	0.11	0.05	0.05
1, 1,2,2" I CHAMINIONEUIDHE	~0.000	1	0.000	ugiy	04-3CP-14	0.05	0.094	0.05	0.05

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soll-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soll-Res/Park/Inst. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L1511032 CONTD Page 5 of 12

BAE1453 GREELY							(9-SEP-14 1	5:50 (MT)_
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits	
L1511032-2 BH5104									
Sampled By: CLIENT on 28-AUG-14 @ 08:00									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
Tetrachloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	0.28	2.3
Toluene	<0.20		0.20	ug/g	04-SEP-14	6.4	9	2.3	6
1,1,1-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	6.1	12	0.38	3.4
1,1,2-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.11	0.05	0.05
Trichioroethylene	<0.050		0.050	ug/g	04-SEP-14	0.55	0.61	0.061	0.52
Trichiorofluoromethane	<0.050		0.050	ug/g	04-SEP-14	4	5.8	4	5.8
Vinyl chloride	<0.020		0.020	ug/g	04-SEP-14	0.032	0.25	0.02	0.022
o-Xylene	<0.020		0.020	ug/g	04-SEP-14				
m+p-Xylenes	<0.030		0.030	ug/g	04-SEP-14				
Xylenes (Total)	<0.050		0.050	ug/g	04-SEP-14	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	109.5		70-130	%	04-SEP-14				
Surrogate: 1,4-Difluorobenzene	99.9		70-130	%	04-SEP-14				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	04-SEP-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	09-SEP-14	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	09-SEP-14	230	250	98	150
F3 (C16-C34)	<50		50	ug/g	09-SEP-14	1700	2500	300	1300
F4 (C34-C50)	<50		50	ug/g	09-SEP-14	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	09-SEP-14				
Chrom. to baseline at nC50	YES			No Unit	09-SEP-14				
Surrogate: 2-Bromobenzotrifluoride	85.0		50-140	%	09-SEP-14				
Surrogate: 3,4-Dichlorotoluene	78.9		60-140	%	04-SEP-14				
L1511032-3 BH5105									
Sampled By: CLIENT on 28-AUG-14 @ 08:00						#1	#2	#3	#4
Matrix: SOIL						#1	#Z	TN3	#4
Physical Tests									
% Moisture	24.4		0.10	%	03-SEP-14				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	04-SEP-14	40	50	7.5	7.5
Arsenic (As)	3.4		1.0	ug/g	04-SEP-14	18	18	18	18
Barlum (Ba)	198		1.0	ug/g	04-SEP-14	670	670	390	390
Beryllum (Be)	<0.50		0.50	ug/g	04-SEP-14	8	10	4	5
Boron (B)	7.8		5.0	ug/g	04-SEP-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	04-SEP-14	1.9	1.9	1.2	1.2
Chromium (Cr)	27.9		1.0	ug/g	04-SEP-14	160	160	160	160
Cobalt (Co)	9.8		1.0	ug/g	04-SEP-14	80	100	22	22
Copper (Cu)	27.2		1.0	ug/g	04-SEP-14	230	300	140	180
Lead (Pb)	9.3		1.0	ug/g	04-SEP-14	120	120	120	120
Molybdenum (Mo)	1.8		1.0	ug/g	04-SEP-14	40	40	6.9	6.9
Nickel (NI)	21.1		1.0	ug/g	04-SEP-14	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	04-SEP-14	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	04-SEP-14	40	50	20	25
Thallum (TI)	<0.50		0.50	ug/g	04-SEP-14	3.3	3.3	1	1
Uranium (U)	1.7		1.0	ug/g	04-SEP-14	33	33	23	23

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soll-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soll-Res/Park/Inst. Property Use (Fine)

L1511032 CONTD.... Page 6 of 12 09-SEP-14 15:50 (MT)

E1453 GREELY	ANALY						(9-SEP-14 1	of 12 5:50 (M)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelin	e Limits	
1511032-3 BH5105									
ampled By: CLIENT on 28-AUG-14 @ 08:00									
latrix: SOIL						#1	#2	#3	#4
Metals									
Vanadium (V)	40.8		1.0	ug/g	04-SEP-14	86	86	86	86
Zinc (Zn)	43.9		5.0	ug/g	04-SEP-14	340	340	340	340
/olatile Organic Compounds	40.5		3.0	ugry	04-3EF-14	340	340	340	340
Acetone	<0.50		0.50	p/gu	04-SEP-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	04-SEP-14	0.32	0.4	0.21	0.1
Bromodichioromethane	<0.020		0.050	ug/g	04-SEP-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	04-SEP-14	0.61	1.7	0.27	0.2
Bromomethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.27	0.0
Carbon tetrachloride	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.0
Chlorobenzene	<0.050		0.050	ug/g	04-SEP-14	2.4	2.7	2.4	2.7
Dibromochioromethane	<0.050		0.050	ug/g	04-SEP-14	2.4	2.7	2.4	2.0
Chloroform	<0.050		0.050	ug/g	04-SEP-14	0.47		0.05	
1,2-Dibromoethane	<0.050		0.050	ug/g	04-SEP-14	0.47	0.18 0.05	0.05	0.1
1,2-Dichiorobenzene	<0.050		0.050	ug/g	04-SEP-14	1.2	1.7	1.2	1.3
1.3-Dichlorobenzene	<0.050		0.050		04-SEP-14	9.6	1.7	4.8	6
1.4-Dichiorobenzene	<0.050		0.050	ug/g	04-SEP-14	0.2	0.57	0.083	0.0
1,4-Dichlorobenzene Dichlorodifluoromethane	<0.050		0.050	ug/g	04-SEP-14	16	u.57 25		0.0
1.1-Dichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.47	0.6	16 0.47	0.6
	<0.050		0.050	ug/g	04-SEP-14	0.47	0.05	0.47	0.0
1,2-Dichloroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05		0.0
1,1-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14			0.05	
cls-1,2-Dichioroethylene trans-1,2-Dichioroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	1.9	2.5
	<0.050		0.030	ug/g	04-SEP-14	1.3	2.5	0.084	0.7
1,3-Dichioropropene (cis & trans)	<0.042		0.042	ug/g	04-SEP-14	0.059	0.081	0.05	0.0
Methylene Chloride	<0.050		0.050	ug/g	04-SEP-14	1.6	2	0.1	0.9
1,2-Dichioropropane cis-1.3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14	0.16	0.68	0.05	0.0
trans-1.3-Dichioropropene	<0.030		0.030	ug/g ug/q	04-SEP-14				
Ethyl Benzene	<0.050		0.050	ug/g	04-SEP-14	1.1	1.6	1.1	1.0
n-Hexane	<0.050		0.050	ug/g	04-SEP-14	46	88	2.8	34
Methyl Ethyl Ketone	<0.50		0.50	ug/g	04-SEP-14	70	88	16	44
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	04-SEP-14	31	210	1.7	4.3
MTBE	<0.050		0.050	ug/g	04-SEP-14	1.6	2.3	0.75	1.4
Styrene	<0.050		0.050	ug/g	04-SEP-14	34	43	0.73	2
1,1,1,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.087	0.11	0.058	0.0
1,1,2,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.094	0.05	0.0
Tetrachioroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	0.03	2
Toluene	<0.20		0.20	ug/g	04-SEP-14	6.4	9	2.3	6
1.1.1-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	6.1	12	0.38	3.4
1.1.2-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.11	0.05	0.0
Trichioroethylene	<0.050		0.050	ug/g	04-SEP-14	0.05	0.11	0.051	0.5
Trichiorofluoromethane	<0.050		0.050	ug/g	04-SEP-14	4	5.8	4	5.5
Vinyl chloride	<0.020		0.020	ug/g	04-SEP-14	0.032	0.25	0.02	0.0
•	<0.020		0.020	ug/g	04-SEP-14	0.032	0.25	0.02	0.0.
o-Xviene									

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soll-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soll-Ind/Com/Commu Property Use (Fine)

#4: T2-Soll-Res/Park/Inst. Property Use (Fine)

^{#3:} T2-Soil-Res/Park/Inst. Property Use (Coarse)

L1511032 CONTD Page 7 of 12

BAE1453 GREELY							(9-SEP-14 1	5:50 (MT)_
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	e Limits	
L1511032-3 BH5105									
Sampled By: CLIENT on 28-AUG-14 @ 08:00									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
Xylenes (Total)	<0.050		0.050	ug/g	04-SEP-14	26	30		25
Surrogate: 4-Bromofluorobenzene	115.4		70-130	- wg/g - %	04-SEP-14	20	30	3.1	25
Surrogate: 1,4-Diffuorobenzene	102.0		70-130	%	04-SEP-14				
Hydrocarbons					3.02.1.				
F1 (C6-C10)	<5.0		5.0	ug/gu	04-SEP-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	09-SEP-14	55	65	55	65
F2 (C10-C16)	16		10	ug/g	09-SEP-14	230	250	98	150
F3 (C16-C34)	83		50	ug/g	09-SEP-14	1700	2500	300	1300
F4 (C34-C50)	<50		50	ug/g	09-SEP-14	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	98		72	ug/g	09-SEP-14				
Chrom. to baseline at nC50	YES			No Unit	09-SEP-14				
Surrogate: 2-Bromobenzotrffluoride	82.2		50-140	%	09-SEP-14				
Surrogate: 3,4-Dichlorotoluene	71.7		60-140	%	04-SEP-14				
L1511032-4 BH5112									
Sampled By: CLIENT on 28-AUG-14 @ 08:00									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	2.52		0.10	%	03-SEP-14				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	04-SEP-14	40	50	7.5	7.5
Arsenic (As)	1.7		1.0	ug/g	04-SEP-14	18	18	18	18
Barlum (Ba)	30.5		1.0	ug/g	04-SEP-14	670	670	390	390
Beryllium (Be)	<0.50		0.50	ug/g	04-SEP-14	8	10	4	5
Boron (B)	<5.0		5.0	ug/g	04-SEP-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	04-SEP-14	1.9	1.9	1.2	1.2
Chromium (Cr)	8.3		1.0	ug/g	04-SEP-14	160	160	160	160
Cobalt (Co)	4.3		1.0	ug/g	04-SEP-14	80	100	22	22
Copper (Cu)	9.5		1.0	ug/g	04-SEP-14	230	300	140	180
Lead (Pb)	4.3		1.0	ug/g	04-SEP-14	120	120	120	120
Molybdenum (Mo)	<1.0		1.0	ug/g	04-SEP-14	40	40	6.9	6.9
Nickel (NI)	7.8 <1.0		1.0	ug/g	04-SEP-14 04-SEP-14	270	340	100	130
Selenium (Se)	<0.20		1.0 0.20	ug/g	04-SEP-14 04-SEP-14	5.5	5.5	2.4	2.4
Silver (Ag) Thailium (Ti)	<0.20		0.50	ug/g ug/q	04-SEP-14	40 3.3	50 3.3	20	25 1
Uranium (U)	<1.0		1.0		04-SEP-14	3.3	3.3	1 23	1 23
Vanadium (V)	18.5		1.0	ug/g	04-SEP-14 04-SEP-14	33 86	33 86	23 86	23 86
Vanadium (V) Zinc (Zn)	14.6		5.0	ug/g	04-SEP-14	340	340	340	340
Volatile Organic Compounds	14.0		5.0	ug/g	04-3EP-14	340	340	340	340
Acetone	<0.50		0.50	p/pu	04-SEP-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	04-SEP-14	0.32	0.4	0.21	0.17
Bromodichioromethane	<0.020		0.020	ug/g	04-SEP-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	04-SEP-14	0.61	1.7	0.27	0.26
Bromomethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
and a second second	-0.000		0.000	-yy	J- 027-14	0.00	0.00	5.00	0.00

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soll-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soll-Res/Park/Inst. Property Use (Fine)

L1511032 CONTD.... Page 8 of 12 09-SEP-14 15:50 (MT)

ANALYTICAL GUIDELINE REPORT Page 8 of 12 BAE1453 GREELY 09-SEP-14 15:50 (MT) Sample Details											
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits			
L1511032-4 BH5112											
Sampled By: CLIENT on 28-AUG-14 @ 08:0	0										
Matrix: SOIL						#1	#2	#3	#4		
Volatile Organic Compounds											
Carbon tetrachioride	<0.050		0.050	ug/g	04-SEP-14	0.21	0.71	0.05	0.12		
Chlorobenzene	<0.050		0.050	ug/g	04-SEP-14	2.4	2.7	2.4	2.7		
Dibromochioromethane	<0.050		0.050	ug/g	04-SEP-14	2.3	2.9	2.3	2.9		
Chloroform	<0.050		0.050	ug/g	04-SEP-14	0.47	0.18	0.05	0.17		
1.2-Dibromoethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05		
1.2-Dichiorobenzene	<0.050		0.050	ug/g	04-SEP-14	1.2	1.7	1.2	1.7		
1.3-Dichiorobenzene	<0.050		0.050	ug/g	04-SEP-14	9.6	12	4.8	6		
1.4-Dichiorobenzene	<0.050		0.050	ug/g	04-SEP-14	0.2	0.57	0.083	0.097		
Dichlorodifluoromethane	<0.050		0.050	ug/g	04-SEP-14	16	25	16	25		
1.1-Dichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.47	0.6	0.47	0.6		
1.2-Dichloroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05		
1.1-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	0.064	0.48	0.05	0.05		
cls-1,2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	1.9	2.5		
trans-1,2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.3	2.5	0.084	0.75		
1,3-Dichloropropene (cis & trans)	<0.042		0.042	ug/g	04-SEP-14	0.059	0.081	0.05	0.08		
Methylene Chloride	<0.050		0.050	ug/g	04-SEP-14	1.6	2	0.1	0.96		
1,2-Dichloropropane	<0.050		0.050	ug/g	04-SEP-14	0.16	0.68	0.05	0.08		
cls-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14	U. 16	U.00	0.05	0.06		
trans-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14						
Ethyl Benzene	<0.050		0.050	ug/g	04-SEP-14	1.1	1.6	1.1	1.6		
n-Hexane	<0.050		0.050	ug/g	04-SEP-14	46	88	2.8	34		
Methyl Ethyl Ketone	<0.50		0.50	ug/g	04-SEP-14	70	88	16	44		
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	04-SEP-14	31	210	1.7	4.3		
MTBE	<0.050		0.050	ug/g	04-SEP-14	1.6	2.3	0.75	1.4		
Styrene	<0.050		0.050	ug/g	04-SEP-14	34	43	0.7	22		
1,1,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.087	0.11	0.058	0.05		
1,1,2,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.094	0.05	0.05		
Tetrachioroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	0.28	2.3		
Toluene	<0.20		0.20	ug/g	04-SEP-14	6.4	9	2.3	6		
1.1.1-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	6.1	12	0.38	3.4		
1.1.2-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.11	0.05	0.05		
Trichioroethylene	<0.050		0.050	ug/g	04-SEP-14	0.55	0.61	0.061	0.52		
Trichiorofiuoromethane	<0.050		0.050	ug/g	04-SEP-14	4	5.8	4	5.8		
Vinyl chloride	<0.020		0.030	ug/g	04-SEP-14	0.032	0.25	0.02	0.02		
o-Xylene	<0.020		0.020	ug/g	04-SEP-14	0.002	0.20	0.02	0.02		
m+p-Xylenes	<0.030		0.020	ug/g	04-SEP-14						
Xylenes (Total)	<0.050		0.050	ug/g	04-SEP-14	26	30	3.1	25		
Surrogate: 4-Bromofluorobenzene	111.4		70-130	%	04-SEP-14						
Surrogate: 1,4-Difluorobenzene	99.4		70-130	%	04-SEP-14						
Hydrocarbons	1										
F1 (C6-C10)	<5.0		5.0	ug/g	04-SEP-14	55	65	55	65		
F1-BTEX	<5.0		5.0	ug/g	09-SEP-14	55	65	55	65		
F2 (C10-C16)	<10		10	ug/g	09-SEP-14	230	250	98	150		
F3 (C16-C34)	<50		50	ug/g	09-SEP-14	1700	2500	300	1300		
,	1			-3-3							

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

country representation to the control of the contro

#2: T2-Soll-Ind/Com/Commu Property Use (Fine)

#4: T2-Soil-Res/Park/Inst. Property Use (Fine)

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#3:} T2-Soil-Res/Park/Inst. Property Use (Coarse)

ANALYTICAL GUIDELINE REPORT

L1511032 CONTD.... Page 9 of 12

BAE1453 GREELY							()9-SEP-14 1	5:50 (MT)_
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits	
L1511032-4 BH5112									
Sampled By: CLIENT on 28-AUG-14 @ 08:00									
Matrix: SOIL						#1	#2	#3	#4
Hydrocarbons									
F4 (C34-C50)	<50		50	ug/g	09-SEP-14	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	09-SEP-14				
Chrom. to baseline at nC50	YES			No Unit	09-SEP-14				
Surrogate: 2-Bromobenzotrffluoride	82.4		50-140	%	09-SEP-14				
Surrogate: 3,4-Dichlorotoluene	77.9		60-140	%	04-SEP-14				
L1511032-5 BH5123									
Sampled By: CLIENT on 28-AUG-14 @ 13:00									
Matrix: SOIL						#1	#2	#3	#4
Physical Tests									
% Moisture	6.12		0.10	%	03-SEP-14				
Metals									
Antimony (Sb)	<1.0		1.0	ug/gu	04-SEP-14	40	50	7.5	7.5
Arsenic (As)	3.5		1.0	ug/g	04-SEP-14	18	18	18	18
Barlum (Ba)	41.8		1.0	ug/g	04-SEP-14	670	670	390	390
Beryllum (Be)	<0.50		0.50	ug/g	04-SEP-14	8	10	4	5
Boron (B)	7.7		5.0	ug/g	04-SEP-14	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	04-SEP-14	1.9	1.9	1.2	1.2
Chromlum (Cr)	12.8		1.0	ug/g	04-SEP-14	160	160	160	160
Cobalt (Co)	6.4		1.0	ug/g	04-SEP-14	80	100	22	22
Copper (Cu)	15.3		1.0	ug/g	04-SEP-14	230	300	140	180
Lead (Pb)	9.0		1.0	ug/g	04-SEP-14	120	120	120	120
Molybdenum (Mo)	2.0		1.0	ug/g	04-SEP-14	40	40	6.9	6.9
Nickel (NI)	10.8		1.0	ug/g	04-SEP-14	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	04-SEP-14	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	04-SEP-14	40	50	20	25
Thaillum (TI)	<0.50		0.50	ug/g	04-SEP-14	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	04-SEP-14	33	33	23	23
Vanadium (V)	24.8		1.0	ug/g	04-SEP-14	86	86	86	86
Zinc (Zn)	22.0		5.0	ug/g	04-SEP-14	340	340	340	340
Volatile Organic Compounds									
Acetone	<0.50		0.50	ug/g	04-SEP-14	16	28	16	28
Benzene	<0.020		0.020	ug/g	04-SEP-14	0.32	0.4	0.21	0.17
Bromodichioromethane	<0.050		0.050	ug/g	04-SEP-14	1.5	1.9	1.5	1.9
Bromoform	<0.050		0.050	ug/g	04-SEP-14	0.61	1.7	0.27	0.26
Bromomethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
Carbon tetrachloride	<0.050		0.050	ug/g	04-SEP-14	0.21	0.71	0.05	0.12
Chlorobenzene	<0.050		0.050	ug/g	04-SEP-14	2.4	2.7	2.4	2.7
Dibromochioromethane	<0.050		0.050	ug/g	04-SEP-14	2.3	2.9	2.3	2.9
Chloroform	<0.050		0.050	ug/g	04-SEP-14	0.47	0.18	0.05	0.17
1,2-Dibromoethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
1,2-Dichlorobenzene	<0.050		0.050	ug/g	04-SEP-14	1.2	1.7	1.2	1.7
1,3-Dichlorobenzene 1,4-Dichlorobenzene	<0.050 <0.050		0.050	ug/g	04-SEP-14 04-SEP-14	9.6	12	4.8	6
1,4-Lichioropenzene	<0.050		0.050	ug/g	04-SEP-14	0.2	0.57	0.083	0.097

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soil-Res/Park/Inst. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L1511032 CONTD Page 10 of 12

AE1453 GREELY							(09-SEP-14 1	5:50 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guldelir	ne Limits	
L1511032-5 BH5123									
Sampled By: CLIENT on 28-AUG-14 @ 13:00									
Matrix: SOIL						#1	#2	#3	#4
Volatile Organic Compounds									
Dichiorodifluoromethane	<0.050		0.050	ug/g	04-SEP-14	16	25	16	25
1.1-Dichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.47	0.6	0.47	0.6
1.2-Dichloroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.05	0.05	0.05
1,1-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	0.064	0.48	0.05	0.05
cis-1.2-Dichloroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	1.9	2.5
trans-1,2-Dichioroethylene	<0.050		0.050	ug/g	04-SEP-14	1.3	2.5	0.084	0.75
1,3-Dichioropropene (cis & trans)	<0.042		0.042	ug/g	04-SEP-14	0.059	0.081	0.05	0.081
Methylene Chloride	<0.050		0.050	ug/g	04-SEP-14	1.6	2	0.1	0.96
1.2-Dichioropropane	<0.050		0.050	ug/g	04-SEP-14	0.16	0.68	0.05	0.085
cls-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14	0.10	0.00	0.00	0.000
trans-1,3-Dichioropropene	<0.030		0.030	ug/g	04-SEP-14				
Ethyl Benzene	<0.050		0.050	ug/g	04-SEP-14	1.1	1.6	1.1	1.6
n-Hexane	<0.050		0.050	ug/g	04-SEP-14	46	88	2.8	34
Methyl Ethyl Ketone	<0.50		0.50	ug/g	04-SEP-14	70	88	16	44
Methyl Isobutyl Ketone	<0.50		0.50	ug/g	04-SEP-14	31	210	1.7	4.3
MTBE	<0.050		0.050	ug/g	04-SEP-14	1.6	2.3	0.75	1.4
Styrene	<0.050		0.050	ug/g	04-SEP-14	34	43	0.7	22
1.1.1.2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.087	0.11	0.058	0.05
1,1,2,2-Tetrachioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.094	0.05	0.05
Tetrachioroethylene	<0.050		0.050	ug/g	04-SEP-14	1.9	2.5	0.28	2.3
Toluene	<0.20		0.20	ug/g	04-SEP-14	6.4	9	2.3	6
1,1,1-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	6.1	12	0.38	3.4
1,1,2-Trichioroethane	<0.050		0.050	ug/g	04-SEP-14	0.05	0.11	0.05	0.05
Trichioroethylene	<0.050		0.050	ug/g	04-SEP-14	0.55	0.61	0.051	0.52
Trichiorofluoromethane	<0.050		0.050	ug/g	04-SEP-14	4	5.8	4	5.8
Vinyl chloride	<0.020		0.020	ug/g	04-SEP-14	0.032	0.25	0.02	0.02
o-Xylene	<0.020		0.020	ug/g	04-SEP-14	0.032	0.25	0.02	0.022
m+p-Xylenes	<0.030		0.030	ug/g	04-SEP-14				
Xylenes (Total)	<0.050		0.050	ug/g	04-SEP-14	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	109.1		70-130	%	04-SEP-14				
Surrogate: 1.4-Difluorobenzene	99.2		70-130	%	04-SEP-14				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	04-SEP-14	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	09-SEP-14	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	09-SEP-14	230	250	98	150
F3 (C16-C34)	<50		50	ug/g	09-SEP-14	1700	2500	300	1300
F4 (C34-C50)	<50		50	ug/g	09-SEP-14	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<72		72	ug/g	09-SEP-14				
Chrom. to baseline at nC50	YES			No Unit	09-SEP-14				
Surrogate: 2-Bromobenzotrifluoride	76.1		50-140	%	09-SEP-14				
Surrogate: 3,4-Dichlorotoluene	78.9		60-140	%	04-SEP-14				
				L					

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Soll-Ind/Com/Commu Property Use (Coarse)

^{#2:} T2-Soll-Ind/Com/Commu Property Use (Fine)

^{#3:} T2-Soll-Res/Park/Inst. Property Use (Coarse)

^{#4:} T2-Soll-Res/Park/Inst. Property Use (Fine)

L1511032 CONTD Page 11 of 12 09-SEP-14 15:50 (MT)

Reference Information

Qualiflers for Sample Submission Listed:

Qualifier	Description		
CINT	Cooling Initiated.	Samples were received packed	with ice or ice packs and were sampled the same day as received.
Methods Listed (If ap	plicable):		
ALS Test Code	Matrix	Test Description	Method Reference***
F1-F4-511-CALC-WT	Soll	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC DEC-2000 - PUB# 1310-S

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracen Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3. ne, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene,

- Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

 1. All extraction and analysis holding times were met.

 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges: 1. All extraction and analysis holding times were met.

- Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
 Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- Linearity of diesel or motor oil response within 15% throughout the calibration range.
- F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS Soll

Fraction F1 is determined by extracting a soil or sediment sample as received with methanoi, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG

Metal Scan Collision Cell ICPMS EPA 200.2/6020A MET-UG/G-CCMS-WT

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT Soll % Moisture Gravimetric: Oven Dried Regulation 153 VOCs VOC-1.3-DCP-CALC-WT Soil SW8260B/SW8270C VOC-O.Reg 153/04 (July 2011) SW846 8260 (511)

Soil and sediment samples are extracted in methanol and analyzed by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-Soll Sum of Xylene Isomer CALCULATION Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

^{***} ALS test methods may incorporate modifications from specified reference methods to improve performance.

September 10th, 2014 Page 66

BAE1453 GREELY

L1511032 CONTD.... Page 12 of 12 09-SEP-14 15:50 (MT)

Reference Information

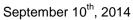
Chain of Custody numbers:

The last two letters of the above test code(s) Indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.


mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg wt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

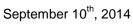
N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Quality Control Report

Workorder: L1511032 Report Date: 09-SEP-14 Page 1 of 13


Client: 8577382 Canada Inc. - BAE Environmental

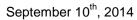
RR 1 ORO STATION

ORO STATION ON LOL 2ED

Contact: BRIAN EMMS

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
Batch WG1942580-1 F1 (C6-C10)	R2938061 I CVS			80.7		%		80-120	04-SEP-14
WG1942583-3 F1 (C6-C10)			WG1942583- <5.0		RPD-NA	ug/g	N/A	50	04-SEP-14
WG1942583-2 F1 (C6-C10)				102.2		%		80-120	04-SEP-14
WG1942583-1 F1 (C6-C10)				<5.0		ug/g		5	04-SEP-14
Surrogate: 3,	4-Dichlorot	oluene		76.9		%		60-140	04-SEP-14
WG1942583-7 F1 (C6-C10)	7 MS		WG1942583-	6 87.1		%		60-140	04-SEP-14
F2-F4-511-WT		Soil							
	R2942532								
WG1944623-4 F2 (C10-C16			ALS PHC2 IF	RM 92.1		%		70-130	09-SEP-14
F3 (C16-C34)			106.4		%		70-130	09-SEP-14
F4 (C34-C50)			114.8		%		70-130	09-SEP-14
WG1947625-1 F2 (C10-C16				90.2		%		80-120	09-SEP-14
F3 (C16-C34)			100.9		%		80-120	09-SEP-14
F4 (C34-C50)			103.5		%		80-120	09-SEP-14
WG1944623-5 F2 (C10-C16			L1511032-1 <10	<10	RPD-NA	ug/g	N/A	40	09-SEP-14
F3 (C16-C34)		<50	<50	RPD-NA	ug/g	N/A	40	09-SEP-14
F4 (C34-C50	•		<50	<50	RPD-NA	ug/g	N/A	40	09-SEP-14
WG1944623-2 F2 (C10-C16				87.9		%		80-120	09-SEP-14
F3 (C16-C34)			99.7		%		80-120	09-SEP-14
F4 (C34-C50)			100.8		%		80-120	09-SEP-14
WG1944623-3 F2 (C10-C16			WG1944623- 87.9	2 93.4		%	6.1	50	09-SEP-14
F3 (C16-C34)		99.7	109.1		%	9.0	50	09-SEP-14
F4 (C34-C50)		100.8	133.9		%	28	50	09-SEP-14
WG1944623-1 F2 (C10-C16				<10		ug/g		10	09-SEP-14
F3 (C16-C34	•			<50		ug/g		50	09-SEP-14
•									22 021 14

Quality Control Report


Workorder: L1511032 Report Date: 09-SEP-14 Page 2 of 13

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2ED

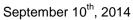
Contact: BRIAN EMMS

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT	Soil							
Batch R2942532 WG1944623-1 MB F4 (C34-C50)			< 50		ug/g		50	09-SEP-14
Surrogate: 2-Bromoben	zoirtfluoride		76.7		%		50-140	09-SEP-14
WG1944623-10 MS	Localidoride	L1511032-1	70.7		~		00-140	U9-3EF-14
F2 (C10-C16)		L1311032-1	87.6		%		60-140	09-SEP-14
F3 (C16-C34)			99.4		%		60-140	09-SEP-14
F4 (C34-C50)			111.5		%		60-140	09-SEP-14
MET-UG/G-CCMS-WT	Soil							
Batch R2938936								
WG1944231-2 CVS								
Antimony (Sb)			99.8		%		70-130	04-SEP-14
Arsenic (As)			97.9		%		70-130	04-SEP-14
Barlum (Ba)			97.2		%		70-130	04-SEP-14
Beryllum (Be)			93.0		%		70-130	04-SEP-14
Boron (B)			97.5		%		70-130	04-SEP-14
Cadmium (Cd)			99.5		%		70-130	04-SEP-14
Chromium (Cr)			97.5		%		70-130	04-SEP-14
Cobalt (Co)			99.7		%		70-130	04-SEP-14
Copper (Cu)			98.0		%		70-130	04-SEP-14
Lead (Pb)			104.8		%		70-130	04-SEP-14
Molybdenum (Mo)			95.8		%		70-130	04-SEP-14
Nickel (NI)			98.3		%		70-130	04-SEP-14
Selenium (Se)			100.5		%		70-130	04-SEP-14
Sliver (Ag)			100.9		%		70-130	04-SEP-14
Thallum (TI)			93.5		%		70-130	04-SEP-14
Uranium (U)			87.0		%		70-130	04-SEP-14
Vanadium (V)			98.1		%		70-130	04-SEP-14
Zinc (Zn)			81.3		%		70-130	04-SEP-14
WG1944171-6 DUP Antimony (Sb)		WG1944171-5 <1.0	<1.0	RPD-NA	ug/g	N/A	30	04-SEP-14
Arsenic (As)		2.5	2.46		ug/g	2.3	30	04-SEP-14
Barlum (Ba)		77.5	75.0		ug/g	3.3	40	04-SEP-14
Beryllum (Be)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	04-SEP-14
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	04-SEP-14
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	04-SEP-14

Quality Control Report

Workorder: L1511032 Report Date: 09-SEP-14

Page 3 of 13


Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2ED

Contact: BRIAN EMMS

5.9 3.0 2.8 7.6	30 30 30	04-SEP-14
3.0 2.8	30	
3.0 2.8	30	
2.8		
	30	04-SEP-14
7.6	-	04-SEP-14
	40	04-SEP-14
N/A	40	04-SEP-14
1.3	30	04-SEP-14
N/A	30	04-SEP-14
N/A	40	04-SEP-14
N/A	30	04-SEP-14
N/A	30	04-SEP-14
0.3	30	04-SEP-14
3.0	30	04-SEP-14
	70-130	04-SEP-14
		04-SEP-14
		04-SEP-14
	70-130	04-SEP-14
	1.1-3.1	04-SEP-14
		04-SEP-14
	70-130	04-SEP-14
	80-120	04-SEP-14
		70-130 70-130 70-130 70-130 70-130 70-130 70-130

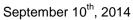
Quality Control Report

Workorder: L1511032

Report Date: 09-SEP-14

Page 4 of 13

Client:


8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2ED

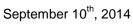
Contact: BRIAN EMMS

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2938936								
WG1944171-3 LCS Arsenic (As)			94.5		%			
Barlum (Ba)			98.8		%		80-120	04-SEP-14
			92.3		%		80-120	04-SEP-14
Beryllium (Be) Boron (B)			98.2		%		80-120	04-SEP-14
			98.1		%		80-120	04-SEP-14
Cadmium (Cd)					%		80-120	04-SEP-14
Chromium (Cr) Cobalt (Co)			97.7		%		80-120	04-SEP-14
			95.9 96.4		%		80-120	04-SEP-14
Copper (Cu)							80-120	04-SEP-14
Lead (Pb)			95.1		%		80-120	04-SEP-14
Molybdenum (Mo)			96.5				80-120	04-SEP-14
Nickel (NI)			95.8		%		80-120	04-SEP-14
Selenium (Se)			103.3		%		80-120	04-SEP-14
Silver (Ag)			97.8		%		80-120	04-SEP-14
Thailum (TI)			100.1		%		80-120	04-SEP-14
Uranium (U)			94.8		%		80-120	04-SEP-14
Vanadium (V)			98.8		%		80-120	04-SEP-14
Zinc (Zn)			83.2		%		80-120	04-SEP-14
WG1944171-1 MB			<1.0				1	
Antimony (Sb)			<1.0 <0.20		ug/g		0.2	04-SEP-14
Arsenic (As)					ug/g			04-SEP-14
Barlum (Ba)			<1.0		ug/g		1	04-SEP-14
Beryllum (Be)			<0.50		ug/g		0.5	04-SEP-14
Boron (B)			<5.0		ug/g		5	04-SEP-14
Cadmium (Cd)			<0.50		ug/g		0.5	04-SEP-14
Chromium (Cr)			<1.0		ug/g		1	04-SEP-14
Cobalt (Co)			<1.0		ug/g		1	04-SEP-14
Copper (Cu)			<1.0		ug/g		1	04-SEP-14
Lead (Pb)			<1.0		ug/g		1	04-SEP-14
Molybdenum (Mo)			<1.0		ug/g		1	04-SEP-14
Nickel (NI)			<1.0		ug/g		1	04-SEP-14
Selenium (Se)			<1.0		ug/g		1	04-SEP-14
Silver (Ag)			<0.20		ug/g		0.2	04-SEP-14
Thallum (TI)			<0.50		ug/g		0.5	04-SEP-14
Uranium (U)			<1.0		ug/g		1	04-SEP-14
Uranium (U)			<1.0		ug/g		1	04-SEP-14

Quality Control Report

Workorder: L1511032

Report Date: 09-SEP-14


Page 5 of 13

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2ED

Contact: **BRIAN EMMS**

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2938936 WG1944171-1 MB Vanadium (V)			<1.0		ug/g		1	04-SEP-14
Zinc (Zn)			<5.0		ug/g		5	04-SEP-14 04-SEP-14
WG1944171-7 MS		WG1944171-			%			
Antimony (Sb)			N/A		%		70-130	04-SEP-14
Arsenic (As) Barlum (Ba)			N/A	MS-B MS-B	%		-	04-SEP-14
			108.3	M9-D	%		-	04-SEP-14
Beryllum (Be)			127.3		%		70-130	04-SEP-14
Boron (B)			106.5		%		70-130	04-SEP-14
Cadmium (Cd)			N/A	No.5	%		70-130	04-SEP-14
Chromium (Cr)			N/A	MS-B	-		-	04-SEP-14
Cobalt (Co)				MS-B	%		-	04-SEP-14
Copper (Cu)			N/A	MS-B	%		-	04-SEP-14
Lead (Pb)			N/A	MS-B	%		-	04-SEP-14
Molybdenum (Mo)			118.2		%		70-130	04-SEP-14
Nickel (NI)			N/A	MS-B	%		-	04-SEP-14
Selenium (Se)			114.6		%		70-130	04-SEP-14
Silver (Ag)			106.9		%		70-130	04-SEP-14
Thallum (TI)			99.7		%		70-130	04-SEP-14
Uranium (U)			109.5		%		70-130	04-SEP-14
Vanadium (V)			N/A	MS-B	%		-	04-SEP-14
Zinc (Zn)			N/A	MS-B	%		-	04-SEP-14
MOISTURE-WT	Soil							
Batch R2935835								
WG1943201-3 DUP % Moisture		L1508948-2 2.59	2.57		%	1.0	30	03-SEP-14
WG1943201-2 LCS % Moisture			109.4		%		70-130	03-SEP-14
WG1943201-1 MB % Moisture			<0.10		%		0.1	03-SEP-14
VOC-511-HS-WT	Soil							
Batch R2938061								
WG1942580-1 CVS								
1,1,1,2-Tetrachioroetha			97.5		%		75-125	04-SEP-14
1,1,2,2-Tetrachioroetha	ne		96.3		%		75-125	04-SEP-14

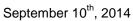
Quality Control Report

Workorder: L1511032

Report Date: 09-SEP-14

Page 6 of 13

Client:

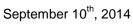

Contact:

8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2ED

BRIAN EMMS

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OC-511-HS-WT	Soil							
Batch R2938061								
WG1942580-1 CVS 1.1.1-Trichloroethane			86.8		%		75-125	04.050.44
1.1.2-Trichioroethane			99.2		%		75-125	04-SEP-14 04-SEP-14
1.1-Dichioroethane			86.9		%			
1,1-Dichloroethylene			75.8		%		75-125	04-SEP-14
1,2-Dibromoethane			95.3		%		70-130 75-125	04-SEP-14 04-SEP-14
1,2-Dichlorobenzene			96.6		%		75-125	04-SEP-14
1,2-Dichloroethane			91.2		%		75-125 75-125	
1,2-Dichloropropane			91.5		%		75-125 75-125	04-SEP-14
1,3-Dichlorobenzene			94.0		%		75-125 70-130	04-SEP-14 04-SEP-14
1,3-Dichlorobenzene			94.0		%		70-130 75-125	
Acetone			94.2 89.9		%		75-125 70-130	04-SEP-14 04-SEP-14
Benzene			87.9		%		70-130 75-125	04-SEP-14 04-SEP-14
Bromodichioromethane			85.6		%			
Bromodichioromethane			96.0		%		75-125 70-130	04-SEP-14
Bromomethane			80.3		%		70-130 70-130	04-SEP-14 04-SEP-14
Carbon tetrachloride			84.9		%			
Chlorobenzene			97.2		%		75-125 75-125	04-SEP-14
Chloroform			91.0		%		75-125 75-125	04-SEP-14 04-SEP-14
cls-1,2-Dichloroethylene			88.1		%		75-125 75-125	04-SEP-14
cis-1,3-Dichloropropene			95.3		%			
Dibromochioromethane			98.2		%		75-125 75-125	04-SEP-14 04-SEP-14
Dichlorodifluoromethane			75.3		%		75-125 60-140	04-SEP-14
Ethyl Benzene			99.4		%			
n-Hexane			99.4 86.4		%		75-125 75-125	04-SEP-14
Methylene Chloride			86.9		%		75-125 75-125	04-SEP-14 04-SEP-14
MTBE			88.6		%			
m+p-Xylenes			91.8		%		75-125 70-130	04-SEP-14
			84.8		%			04-SEP-14
Methyl Ethyl Ketone			97.0		%		70-130	04-SEP-14
Methyl Isobutyl Ketone o-Xylene			101.0		%		70-130	04-SEP-14
			100.2		%		75-125	04-SEP-14
Styrene			97.4		%		75-125	04-SEP-14
Tetrachioroethylene Teluopo							75-125	04-SEP-14
Toluene			89.0		%		75-125	04-SEP-14

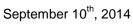

Quality Control Report

Workorder: L1511032 Report Date: 09-SEP-14 Page 7 of 13

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2ED

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R2938061	ı							
WG1942580-1 CVS trans-1,2-Dichloroethyl	ono		83.3		%		75-125	
trans-1,3-Dichloroprop			83.9		%		75-125	04-SEP-14 04-SEP-14
Trichioroethylene	ciic		88.6		%		70-120	04-SEP-14
Trichiorofluoromethane			86.0		%		70-130	04-SEP-14
Vinyl chloride			86.3		%		70-130	04-SEP-14
WG1942583-3 DUP		WG1942583-					10 100	04 0E1 14
1,1,1,2-Tetrachioroetha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,1,2,2-Tetrachioroetha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,1,1-Trichioroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,1,2-Trichioroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,1-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,1-Dichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Acetone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	04-SEP-14
Benzene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	04-SEP-14
Bromodichioromethane	2	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Bromoform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Bromomethane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Carbon tetrachloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Chlorobenzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Chloroform		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
cls-1,2-Dichloroethylen	e	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
cls-1,3-Dichloropropen	e	<0.030	<0.030	RPD-NA	ug/g	N/A	40	04-SEP-14
Dibromochioromethane	2	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Dichlorodifluoromethan	ne	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Ethyl Benzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
n-Hexane		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Methylene Chloride		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14

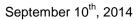

Quality Control Report

Workorder: L1511032 Report Date: 09-SEP-14 Page 8 of 13

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2ED

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R29380	061							
WG1942583-3 DU MTBE	IP	WG1942583- <0.050	5 <0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	04-SEP-14
Methyl Ethyl Ketone		<0.50	<0.50	RPD-NA	ug/g	N/A	40	04-SEP-14
Methyl Isobutyl Ketor	ne	<0.50	<0.50	RPD-NA	ug/g	N/A	40	04-SEP-14
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	04-SEP-14
Styrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Tetrachioroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Toluene		<0.20	<0.20	RPD-NA	ug/g	N/A	40	04-SEP-14
trans-1,2-Dichloroett	hylene	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
trans-1,3-Dichloropro	opene	<0.030	<0.030	RPD-NA	ug/g	N/A	40	04-SEP-14
Trichloroethylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Trichiorofluorometha	ane	<0.050	<0.050	RPD-NA	ug/g	N/A	40	04-SEP-14
Vinyl chloride		<0.020	<0.020	RPD-NA	ug/g	N/A	40	04-SEP-14
WG1942583-2 LC	s							
1,1,1,2-Tetrachioroe	thane		95.2		%		60-130	04-SEP-14
1,1,2,2-Tetrachioroe	thane		82.8		%		60-130	04-SEP-14
1,1,1-Trichioroethan	e		99.7		%		60-130	04-SEP-14
1,1,2-Trichloroethan	e		89.6		%		60-130	04-SEP-14
1,1-Dichloroethane			96.0		%		60-130	04-SEP-14
1,1-Dichloroethylene	•		90.0		%		60-130	04-SEP-14
1,2-Dibromoethane			83.5		%		70-130	04-SEP-14
1,2-Dichlorobenzene	2		95.6		%		70-130	04-SEP-14
1,2-Dichloroethane			88.7		%		60-130	04-SEP-14
1,2-Dichioropropane			89.7		%		70-130	04-SEP-14
1,3-Dichiorobenzene	2		97.8		%		70-130	04-SEP-14
1,4-Dichlorobenzene	2		96.7		%		70-130	04-SEP-14
Acetone			87.8		%		60-140	04-SEP-14
Benzene			92.3		%		70-130	04-SEP-14
Bromodichiorometha	ane		86.7		%		50-140	04-SEP-14
Bromoform			85.3		%		70-130	04-SEP-14
Bromomethane			89.2		%		50-140	04-SEP-14
Carbon tetrachioride	!		100.2		%		70-130	04-SEP-14
Chlorobenzene			96.0		%		70-130	04-SEP-14


Quality Control Report

Workorder: L1511032 Report Date: 09-SEP-14 Page 9 of 13

Client: 8577382 Canada Inc. - BAE Environmental

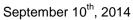
RR 1 ORO STATION ORO STATION ON LOL 2ED

Balch R238061 Wich1942552 LC5 Chloroform 98.3 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 91.4 % 70-130 04-SEP-14 dis-1_2-Dichloroptopene 95.0 % 70-130 04-SEP-14 dis-1_2-Dichloroptopene 95.0 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 91.9 % 60-130 04-SEP-14 dis-1_2-Dichloroethylene 91.9 % 60-130 04-SEP-14 dis-1_2-Dichloroethylene 93.8 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 93.8 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 91.1 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 91.1 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 93.8 % 70-130 04-SEP-14 dis-1_2-Dichloroethylene 70-1_30 04-SEP-14 dis-1_3-Dichloroethylene 70-1_30 70-SEP-14 d	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG1342583-2 LCS Chloroform 98.3 % 70-130 04-SEP-14 cis-1,2-Dichloroethylene 91.4 % 70-130 04-SEP-14 cis-1,3-Dichloropropene 95.0 % 70-130 04-SEP-14 cls-1,3-Dichloropropene 91.9 % 60-130 04-SEP-14 Dichlorodfluoromethane 82.6 % 50-140 04-SEP-14 Dichlorodfluoromethane 82.6 % 50-140 04-SEP-14 Ethyl Benzene 93.8 % 70-130 04-SEP-14 n-Hexane 99.8 % 70-130 04-SEP-14 Methylene Chloride 91.1 % 70-130 04-SEP-14 MtTBE 89.2 % 70-130 04-SEP-14 MtHyl Isobutyl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 60-140 04-SEP-14 Siyrene 97.7 % 70-130 04-SEP-14 Siyrene 97.7 %	VOC-511-HS-WT	Soil							
Chicroform 98.3	Batch R2938061								
cis-1,2-Dichloroethylene 91.4 % 70-130 04-SEP-14 cis-1,3-Dichloropropene 95.0 % 70-130 04-SEP-14 Dibromochioromethane 91.9 % 60-130 04-SEP-14 Dichlorodifloromethane 82.6 % 50-140 04-SEP-14 Elthyl Benzene 93.8 % 70-130 04-SEP-14 n-Hexane 99.8 % 70-130 04-SEP-14 Methylene Chloride 91.1 % 70-130 04-SEP-14 MTBE 89.2 % 70-130 04-SEP-14 MTBE 89.2 % 70-130 04-SEP-14 Methyl Eitryl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 70-130 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 70-130 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 70-130 04-SEP-14				98.3		%		70-130	04-SEP-14
cis-1,3-Dichloropropene 95.0 % 70-130 04-SEP-14 Dibromochioromethane 91.9 % 60-130 04-SEP-14 Dichlorodfluoromethane 82.6 % 50-140 04-SEP-14 Elthy Benzene 93.8 % 70-130 04-SEP-14 I-Hexane 99.8 % 70-130 04-SEP-14 Methylene Chloride 91.1 % 70-130 04-SEP-14 MTBE 89.2 % 70-130 04-SEP-14 MED 89.2 % 70-130 04-SEP-14 Methyl Elbyl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 70-130 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 70-130 04-SEP-14 Styrene 92.5 % 70-130 04-SEP-14 Styrene 87.7 % 70-130 04-SEP-14 Trans-1,2-Dichloroethylene 103.8 % 60-130 04-SEP-14 tr	cls-1,2-Dichloroethylen	e		91.4		%			
Ditormochioromethane				95.0		%		70-130	
Dichlorodifluoromethane 82.6 % \$0.140 04-SEP-14				91.9		%			
The Restance	Dichlorodifluoromethan	e		82.6		%			
Methylene Chloride 91.1 % 70-130 04-SEP-14 MTBE 89.2 % 70-130 04-SEP-14 MTBE 89.2 % 70-130 04-SEP-14 M+p-Xylenes 90.8 % 70-130 04-SEP-14 Methyl Ethyl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 60-140 04-SEP-14 O-Xylene 92.5 % 70-130 04-SEP-14 Syrene 87.7 % 70-130 04-SEP-14 Tetrachioroethylene 103.8 % 60-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 Trans-1,2-Dichioroethylene 93.7 % 60-130 04-SEP-14 Trans-1,2-Dichioroethylene 77.7 % 70-130 04-SEP-14 Trans-1,3-Dichioropropene 77.7 % 70-130 04-SEP-14 Trichioroethylene 94.7 % 60-130 04-SEP-14 Trichioroethylene 95.1 % 70-130 04-SEP-14 WG1942583-1 MB 1,1,1,2-Tetrachioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Tetrachioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Trichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Trichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Trichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Tichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Tichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1,2-Tichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1-Dichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1-Dichioroethane 40.050 ug/g 0.05 04-SEP-14 1,1-Dichioroethane 40.050 ug/g 0.05 04-SEP-14 1,2-Dichioroethane 40.050 ug/g 0.05 04-SEP-14	Ethyl Benzene			93.8		%		70-130	04-SEP-14
MTBE 88.2 % 70-130 04-SEP-14 m+p-Xylenes 90.8 % 70-130 04-SEP-14 Methyl Ethyl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 60-140 04-SEP-14 o-Xylene 92.5 % 70-130 04-SEP-14 Styrene 87.7 % 70-130 04-SEP-14 Tetrachloroethylene 103.8 % 70-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichloroethylene 95.1 % 70-130 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 Vin	n-Hexane			99.8		%		70-130	04-SEP-14
m+p-Xylenes 90.8 % 70-130 04-SEP-14 Methyl Ethyl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 60-140 04-SEP-14 o-Xylene 92.5 % 70-130 04-SEP-14 Styrene 87.7 % 70-130 04-SEP-14 Tetrachloroethylene 103.8 % 60-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,2-Dichloropropene 77.7 % 70-130 04-SEP-14 trans-1,2-Dichloropropene 77.7 % 60-130 04-SEP-14 trans-1,2-Dichloropropene 77.7 % 60-130 04-SEP-14 trans-1,2-Dichloropropene 77.7 % 60-130 04-SEP-14 Trichloropropene 94.7 % 60-130 04-SEP-14 Trichloropropene 10.19 % 50-140 04-SEP-14<	Methylene Chloride			91.1		%		70-130	04-SEP-14
Methyl Ethyl Ketone 73.0 % 60-140 04-SEP-14 Methyl Isobutyl Ketone 78.0 % 60-140 04-SEP-14 o-Xylene 92.5 % 70-130 04-SEP-14 Styrene 87.7 % 70-130 04-SEP-14 Tetrachloroethylene 103.8 % 60-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 Trichlorothylene 94.7 % 60-130 04-SEP-14 Trichlorothoromethane 101.9 % 60-130 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14	MTBE			89.2		%		70-130	04-SEP-14
Methyl isobutyl Ketone 78.0 % 60-140 04-SEP-14 o-Xylene 92.5 % 70-130 04-SEP-14 Styrene 87.7 % 70-130 04-SEP-14 Styrene 103.8 % 60-130 04-SEP-14 Tetrachioroethylene 103.8 % 70-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 Trichioroethylene 94.7 % 60-130 04-SEP-14 Trichioroethylene 94.7 % 60-130 04-SEP-14 Vinyl chloride 95.1 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 1,1,	m+p-Xylenes			90.8		%		70-130	04-SEP-14
o-Xylene 92.5 % 70-130 04-SEP-14 Styrene 67.7 % 70-130 04-SEP-14 Tetrachloroethylene 103.8 % 60-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichlorofluoromethane 101.9 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 1,1,2-Zertarachloroethane <0.050	Methyl Ethyl Ketone			73.0		%		60-140	04-SEP-14
Styrene 87.7 % 70-130 04-SEP-14 Tetrachloroethylene 103.8 % 60-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichloroethylene 95.1 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 Vinyl chloride 90.05 04-SEP-14 0.050 0.09g 0.05	Methyl Isobutyl Ketone			78.0		%		60-140	04-SEP-14
Tetrachloroethylene 103.8 % 60-130 04-SEP-14 Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 trans-1,3-Dichloropropene 94.7 % 60-130 04-SEP-14 Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichlorofluoromethane 101.9 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 WG1942583-1 MB 1,1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,1-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,1-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethylene <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethylene <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,3-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,3-Dichloroethane <0.050 ug/g 0.05 04-SEP-14	o-Xylene			92.5		%		70-130	04-SEP-14
Toluene 82.8 % 70-130 04-SEP-14 trans-1,2-Dichioroethylene 93.7 % 60-130 04-SEP-14 trans-1,2-Dichioroethylene 77.7 % 70-130 04-SEP-14 trans-1,3-Dichioropropene 77.7 % 70-130 04-SEP-14 Trichioroethylene 94.7 % 60-130 04-SEP-14 Trichiorofluoromethane 101.9 % 50-140 04-SEP-14 Vinyl chioride 95.1 % 70-130 04-SEP-14 Vinyl chioride 95.1 % 70-130 04-SEP-14 Vinyl chioride 95.1 % 70-130 04-SEP-14 Unit chioride 95.1 %	Styrene			87.7		%		70-130	04-SEP-14
trans-1,2-Dichloroethylene 93.7 % 60-130 04-SEP-14 trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 trans-1,3-Dichloropropene 94.7 % 60-130 04-SEP-14 Trichloroethylene 94.7 % 50-140 04-SEP-14 Trichlorofluoromethane 101.9 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,2-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,3-Dichloroethane <0.050 u	Tetrachloroethylene			103.8		%		60-130	04-SEP-14
trans-1,3-Dichloropropene 77.7 % 70-130 04-SEP-14 Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichloroethylene 101.9 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 WG1942583-1 MB 1,1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,1-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,2-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,1-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichlorobenzene <0.050 ug/g 0.05 04-SEP-14 1,2-Dichlorobenzene <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloropenae <0.050 ug/g 0.05 04-SEP-14	Toluene			82.8		%		70-130	04-SEP-14
Trichloroethylene 94.7 % 60-130 04-SEP-14 Trichlorofluoromethane 101.9 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 WG1942583-1 MB	trans-1,2-Dichloroethyle	ene		93.7		%		60-130	04-SEP-14
Trichlorofluoromethane 101.9 % 50-140 04-SEP-14 Vinyl chloride 95.1 % 70-130 04-SEP-14 WG1942583-1 MB <th< td=""><td>trans-1,3-Dichloroprope</td><td>ene</td><td></td><td>77.7</td><td></td><td>%</td><td></td><td>70-130</td><td>04-SEP-14</td></th<>	trans-1,3-Dichloroprope	ene		77.7		%		70-130	04-SEP-14
Vinyl chloride 95.1 % 70-130 04-SEP-14 WG1942583-1 MB 1,1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,2-Tetrachloroethane <0.050 ug/g 0.05 04-SEP-14 1,1,1-Trichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethane <0.050 ug/g 0.05 04-SEP-14 1,1-Dichloroethylene <0.050 ug/g 0.05 04-SEP-14 1,2-Dibromoethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichlorobenzene <0.050 ug/g 0.05 04-SEP-14 1,2-Dichloropethane <0.050 ug/g 0.05 04-SEP-14 1,2-Dichl	Trichloroethylene			94.7		%		60-130	04-SEP-14
WG1942583-1 MB 1,1,1,2-Tetrachloroethane <0.050	Trichiorofluoromethane			101.9		%		50-140	04-SEP-14
1,1,1,2-Tetrachioroethane <0.050	Vinyl chloride			95.1		%		70-130	04-SEP-14
1,1,2,2-Tetrachioroethane <0.050	WG1942583-1 MB								
1,1,1-Trichloroethane <0.050	1,1,1,2-Tetrachioroetha	ine		<0.050		ug/g		0.05	04-SEP-14
1,1,2-Trichloroethane <0.050	1,1,2,2-Tetrachioroetha	ine		<0.050		ug/g		0.05	04-SEP-14
1,1-Dichloroethane <0.050	1,1,1-Trichloroethane			<0.050		ug/g		0.05	04-SEP-14
1,1-Dichloroethylene <0.050	1,1,2-Trichloroethane			<0.050		ug/g		0.05	04-SEP-14
1,2-Oibromoethane <0.050	1,1-Dichloroethane			<0.050		ug/g		0.05	04-SEP-14
1,2-Dichlorobenzene <0.050	1,1-Dichloroethylene			<0.050		ug/g		0.05	04-SEP-14
1,2-Dichloroethane <0.050	1,2-Dibromoethane			<0.050		ug/g		0.05	04-SEP-14
1,2-Dichloropropane <0.050	1,2-Dichlorobenzene			<0.050		ug/g		0.05	04-SEP-14
1,3-Dichlorobenzene <0.050 ug/g 0.05 04-SEP-14	1,2-Dichloroethane			<0.050		ug/g		0.05	04-SEP-14
-55	1,2-Dichioropropane			<0.050		ug/g		0.05	04-SEP-14
1,4-Dichlorobenzene <0.050 ug/g 0.05 04-SEP-14	1,3-Dichlorobenzene			<0.050		ug/g		0.05	04-SEP-14
	1,4-Dichlorobenzene			<0.050		ug/g		0.05	04-SEP-14

Quality Control Report

Workorder: L1511032

Report Date: 09-SEP-14


Page 10 of 13

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2ED

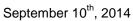
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R2938061								
WG1942583-1 MB Acetone			<0.50		ug/g		0.5	04-SEP-14
Benzene			<0.020		ug/g		0.02	04-SEP-14 04-SEP-14
Bromodichioromethane			<0.050		ug/g		0.05	04-SEP-14
Bromoform			<0.050		ug/g		0.05	04-SEP-14
Bromomethane			<0.050		ug/g		0.05	04-SEP-14
Carbon tetrachioride			<0.050		ug/g		0.05	04-SEP-14
Chlorobenzene			<0.050		ug/g		0.05	04-SEP-14
Chioroform			<0.050		ug/g		0.05	04-SEP-14
cls-1,2-Dichloroethylene			<0.050		ug/g		0.05	04-SEP-14
cis-1,3-Dichioropropene			<0.030		ug/g		0.03	04-SEP-14
Dibromochioromethane			<0.050		ug/g		0.05	04-SEP-14
Dichiorodifluoromethane			<0.050		ug/g		0.05	04-SEP-14
Ethyl Benzene			<0.050		ug/g		0.05	04-SEP-14
n-Hexane			<0.050		ug/g		0.05	04-SEP-14
Methylene Chloride			<0.050		ug/g		0.05	04-SEP-14
MTBE			<0.050		ug/g		0.05	04-SEP-14
m+p-Xylenes			<0.030		ug/g		0.03	04-SEP-14
Methyl Ethyl Ketone			<0.50		ug/g		0.5	04-SEP-14
Methyl Isobutyl Ketone			<0.50		ug/g		0.5	04-SEP-14
o-Xylene			<0.020		ug/g		0.02	04-SEP-14
Styrene			<0.050		ug/g		0.05	04-SEP-14
Tetrachioroethylene			<0.050		ug/g		0.05	04-SEP-14
Toluene			<0.20		ug/g		0.2	04-SEP-14
trans-1,2-Dichloroethylene	2		<0.050		ug/g		0.05	04-SEP-14
trans-1,3-Dichloropropene	•		<0.030		ug/g		0.03	04-SEP-14
Trichloroethylene			<0.050		ug/g		0.05	04-SEP-14
Trichlorofluoromethane			<0.050		ug/g		0.05	04-SEP-14
Vinyl chloride			<0.020		ug/g		0.02	04-SEP-14
Surrogate: 1,4-Difluorober	nzene		103.2		%		70-130	04-SEP-14
Surrogate: 4-Bromofluoro	benzene		116.6		%		70-130	04-SEP-14
WG1942583-4 MS		WG1942583-5			_			
1,1,1,2-Tetrachioroethane			104.5		%		50-140	04-SEP-14
1,1,2,2-Tetrachioroethane	!		89.4		%		50-140	04-SEP-14
1,1,1-Trichioroethane			108.4		%		50-140	04-SEP-14

Quality Control Report

Workorder: L1511032

Report Date: 09-SEP-14

Page 11 of 13


Client:

8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2ED

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Soil							
Batch R2938061								
WG1942583-4 MS		WG1942583-5						
1,1,2-Trichioroethane			97.8		%		50-140	04-SEP-14
1,1-Dichloroethane			104.7		%		50-140	04-SEP-14
1,1-Dichloroethylene			98.1		%		50-140	04-SEP-14
1,2-Dibromoethane			91.3		%		50-140	04-SEP-14
1,2-Dichlorobenzene			105.0		%		50-140	04-SEP-14
1,2-Dichloroethane			95.9		%		50-140	04-SEP-14
1,2-Dichioropropane			97.8		%		50-140	04-SEP-14
1,3-Dichlorobenzene			107.6		%		50-140	04-SEP-14
1,4-Dichlorobenzene			106.2		%		50-140	04-SEP-14
Acetone			93.7		%		50-140	04-SEP-14
Benzene			100.8		%		50-140	04-SEP-14
Bromodichioromethane	!		93.7		%		50-140	04-SEP-14
Bromoform			92.8		%		50-140	04-SEP-14
Bromomethane			95.6		%		50-140	04-SEP-14
Carbon tetrachloride			109.3		%		50-140	04-SEP-14
Chlorobenzene			105.6		%		50-140	04-SEP-14
Chloroform			106.6		%		50-140	04-SEP-14
cls-1,2-Dichloroethylene			99.1		%		50-140	04-SEP-14
cls-1,3-Dichloropropene			100.2		%		50-140	04-SEP-14
Dibromochloromethane			100.1		%		50-140	04-SEP-14
Dichlorodifluoromethan	e		89.2		%		50-140	04-SEP-14
Ethyl Benzene			104.0		%		50-140	04-SEP-14
n-Hexane			109.7		%		50-140	04-SEP-14
Methylene Chloride			98.9		%		50-140	04-SEP-14
MTBE			96.4		%		50-140	04-SEP-14
m+p-Xylenes			100.4		%		50-140	04-SEP-14
Methyl Ethyl Ketone			83.0		%		50-140	04-SEP-14
Methyl Isobutyl Ketone			84.0		%		50-140	04-SEP-14
o-Xylene			102.2		%		50-140	04-SEP-14
Styrene			96.7		%		50-140	04-SEP-14
Tetrachioroethylene			114.3		%		50-140	04-SEP-14
Toluene			92.0		%		50-140	04-SEP-14
trans-1,2-Dichloroethyle	ene		101.5		%		50-140	04-SEP-14

Quality Control Report

Workorder: L1511032

Report Date: 09-SEP-14

Page 12 of 13

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2ED

Test Ma	atrix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT So	pil						
Batch R2938061 WG1942583-4 MS trans-1,3-Dichloropropene	WG1942583-	5 81.1		%		50-140	04-SEP-14
Trichioroethylene		102.9		%		50-140	04-SEP-14
Trichiorofluoromethane		111.5		%		50-140	04-SEP-14
Vinyl chloride		104.7		%		50-140	04-SEP-14

September 10th, 2014 Page 79

Quality Control Report

Page 13 of 13

Workorder: L1511032 Report Date: 09-SEP-14

8577382 Canada Inc. - BAE Environmental Client:

RR 1 ORO STATION

ORO STATION ON LOL 2ED

Contact: **BRIAN EMMS**

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP

Duplicate Relative Percent Difference RPD

Not Available N/A

Laboratory Control Sample Standard Reference Material LCS SRM

Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank Internal Reference Material Certified Reference Material IRM CRM Continuing Calibration Verification Calibration Verification Standard CCV CVS LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this

154439 (infer a 2000)	TLEASE IN TICKED. EARWIND OS FOTT	ENTERTING FRESHER 2 SEATH P. II BINTO 599		FEGURE CONGITION FEGURE COS ING ATTOTTO AND THE CONGITION AND THE CONGITION AND THE CONGITION THE CONTROL OF THE CONGITION THE CONGITION THE CONTROL OF THE CONGITION THE CONGITION THE CONTROL OF THE CONGITION THE CONGITION THE CONTROL OF THE CONGITION THE C
AL SERVICES REQUEST FORM Town follow Town	ANALYSIS REQUEST			TRESAMPLES CHECK YES OR ROLL WAS UN NO. WAS UN NO. WAS UN NO. WAS UN NO. WAS UNINESSED AS A NO. WAS NOT THE WAS UNINESSED AS A NO. WAS NOT THE WAS UNINESSED AS A NO. WAS NOT THE WAS NOT THE WAS UNINESSED AS A NO. WAS NOT THE WAS NOT THE WAS UNINESSED AS A NO. WAS NOT THE WAS NOT THE WAS UNINESSED AS A NO. WAS NOT THE
CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM Page Vold, 301 (34) Suction required in 30 manuals above which example Vold, 301 (34) Suction required in 30 manuals above which example Vold (34) Suction required in 30 manuals above a	10	REPORT FORMAL/DISTRIBUTION All CANA CITY AND STREET STREE	5103 1114 1112 1123 1123	Are any samples used from a regulated DN System? It yet 10324 X/FC It yet and samples used from a regulated DN System? It yets an authorized direkting water COC MUST be used for this cleanission. It has water samples unempted to be potable for the cleanission. It has water samples unempted to be potable for the cleanission. It has water samples unempted to be potable for the cleanission. It has water samples unempted to be potable for the cleanission. It has water samples unempted to be potable for the cleanission. It has a sample coverable for the constitution of a factor of the cleaning for sample for the control of the cleaning for sample for the control of the
60 NORTHLAND ROAD, UNIT WATERLOO, ON N.2 V.288 Water (5) 9, 856-6910 Mar. 501 74 Mar. 501 74	Sta	1	10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Are any sam Are any sam By the water By t

APPENDIX II Field Screening Apparatus

Environmental Protection Development September 2001 Agency Washington, DC 20460

Innovative Technology Verification Report

Field Measurement
Technologies for Total
Petroleum Hydrocarbons in Soil
Dexsil® Corporation
PetroFLAG™ System

EPA/600/R-01/092 September 2001

Innovative Technology Verification Report

Dexsil® Corporation PetroFLAG™ System

Prepared by
Tetra Tech EM Inc.
200 East Randolph Drive, Suite 4700
Chicago, Illinois 60601
Contract No. 68-C5-0037
Dr. Stephen Billets
Characterization and Monitoring Branch
Environmental Sciences Division
Las Vegas, Nevada 89193-3478
National Exposure Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Office of Research and Development Washington, DC 20460

ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM VERIFICATION STATEMENT

TECHNOLOGY TYPE: **FIELD MEASUREMENT DEVICE**APPLICATION: **MEASUREMENT OF TOTAL PETROLEUM HYDROCARBONS**

TECHNOLOGY NAME: PetroFLAGTM SYSTEM COMPANY: DEXSIL® CORPORATION ADDRESS: ONE HAMDEN PARK DRIVE

HAMDEN, CT 06517 WEB SITE: http://www.dexsil.com TELEPHONE: (203) 288-3509

VERIFICATION PROGRAM DESCRIPTION

The U.S. Environmental Protection Agency (EPA) created the Superfund Innovative Technology Evaluation (SITE) and Environmental Technology Verification (ETV) Programs to facilitate deployment of innovative technologies through performance verification and information dissemination. The goal of these programs is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. These programs assist and inform those involved in design, distribution, permitting, and purchase of environmental technologies. This document summarizes results of a demonstration of the PetroFLAGTM System developed by Dexsil® Corporation (Dexsil).

PROGRAM OPERATION

Under the SITE and ETV Programs, with the full participation of the technology developers, the EPA evaluates and documents the performance of innovative technologies by developing demonstration plans, conducting field tests, collecting and analyzing demonstration data, and preparing reports. The technologies are evaluated under rigorous quality assurance (QA) protocols to produce well-documented data of known quality. The EPA National Exposure Research Laboratory, which demonstrates field sampling, monitoring, and measurement technologies, selected Tetra Tech EM Inc. as the verification organization to assist in field testing seven field measurement devices for total petroleum hydrocarbons (TPH) in soil. This demonstration was funded by the SITE Program.

DEMONSTRATION DESCRIPTION

In June 2000, the EPA conducted a field demonstration of the PetroFLAGTM System and six other field measurement devices for TPH in soil. This verification statement focuses on the PetroFLAGTM System; a similar statement has been prepared for each of the other six devices. The performance and cost of the PetroFLAGTM System were compared to those of an off-site laboratory reference method, "Test Methods for Evaluating Solid Waste" (SW-846) Method 8015B (modified). To verify a wide range of performance attributes, the demonstration had both primary and secondary objectives. The primary objectives included (1) determining the method detection limit, (2) evaluating the accuracy and precision of TPH measurement, (3) evaluating the effect of interferents, and (4) evaluating the effect of moisture content on TPH measurement for each device. Additional primary objectives were to measure sample throughput and estimate TPH measurement costs. Secondary objectives included (1) documenting the skills and training

required to properly operate the device, (2) documenting the portability of the device, (3) evaluating the device's durability, and (4) documenting the availability of the device and associated spare parts.

The PetroFLAGTM System was demonstrated by using it to analyze 66 soil environmental samples, 79 soil performance evaluation (PE) samples, and 36 liquid PE samples. In addition to these 181 samples, 10 extract duplicates prepared using the environmental samples were analyzed. The environmental samples were collected in four areas contaminated with gasoline, diesel, or other petroleum products, and the PE samples were obtained from a commercial provider. Dexsil chose not to analyze soil samples collected in a fifth area because Dexsil believed that the natural organic material in the area would adversely impact the PetroFLAGTM System's ability to accurately measure TPH. In addition, Dexsil chose not to analyze low- and medium-concentration-range weathered gasoline soil PE samples because according to Dexsil, the PetroFLAGTM System was not sensitive to weathered gasoline concentrations of less than 1,000 milligrams per kilogram. Collectively, the environmental and PE samples provided the different matrix types and the different levels and types of petroleum hydrocarbon contamination needed to perform a comprehensive evaluation of the PetroFLAGTM System. A complete description of the demonstration and a summary of its results are available in the "Innovative Technology Verification Report: Field Measurement Devices for Total Petroleum Hydrocarbons in Soil—Dexsil® Corporation.

TECHNOLOGY DESCRIPTION

The PetroFLAGTM System manufactured by Dexsil is based on emulsion turbidimetry, which involves measurement of the light scattered by an emulsion. With the PetroFLAGTM System, a proprietary, nonpolar, organic solvent mixture composed of alcohols, primarily methanol, is used to extract petroleum hydrocarbons from soil samples. A proprietary developer solution that is polar in nature and that acts as an emulsifier is added to a sample extract in order to precipitate the aromatic and aliphatic hydrocarbons and form uniformly sized micelles. Light at a wavelength of 585 nanometers is passed through the emulsion, and the amount of light scattered by the emulsion at a 90-degree angle is measured using a turbidimeter. The TPH concentration in the emulsion is then determined by comparing the turbidity reading for the emulsion to that for a reference standard or to a standard calibration curve. According to Dexsil, the TPH concentration thus measured is a function of the mean molecular weight of the hydrocarbons present in the sample. During the demonstration, extraction of petroleum hydrocarbons in a given soil sample was typically completed by adding 10 milliliters (mL) of proprietary methanol mixture extraction solvent to 10 grams of the sample. To form an emulsion, 2 mL of sample extract was then decanted into a vial containing 4 mL of developer solution. The emulsion was analyzed using the PetroFLAGTM Analyzer (turbidimeter) to obtain a direct measurement of the TPH concentration in the soil sample.

VERIFICATION OF PERFORMANCE

To ensure data usability, data quality indicators for accuracy, precision, representativeness, completeness, and comparability were assessed for the reference method based on project-specific QA objectives. Although the reference method results generally exhibited a negative bias, based on the results for the data quality indicators, the reference method results were considered to be of adequate quality. The bias was considered to be significant primarily for low- and medium concentration- range soil samples containing diesel, which made up only 13 percent of the total number of samples analyzed during the demonstration. The reference method recoveries observed during the demonstration were typical of the

recoveries obtained by most organic analytical methods for environmental samples. In general, the user should exercise caution when evaluating the accuracy of a field measurement device by comparing it to reference methods because the reference methods themselves may have limitations. Key demonstration findings are summarized below for the primary objectives.

Method Detection Limit: Based on the TPH results for seven low-concentration-range diesel soil PE samples, the method detection limits were determined to be 20 and 6.32 milligrams per kilogram for the PetroFLAGTM System and reference method, respectively.

Accuracy and Precision: Seventy-one of 97 PetroFLAGTM System results (73 percent) used to draw conclusions regarding whether the TPH concentration in a given sampling area or sample type exceeded a specified action level agreed with those of the reference method; 26 PetroFLAGTM System conclusions were false positives. There were no false negatives. Of 91 PetroFLAGTM System results used to assess measurement bias, 11 were within 30 percent, 9 were within 30 to 50 percent, and 71 were not within 50 percent of the reference method results; 82 PetroFLAG™ System results were biased high, and 9 were biased low. For soil environmental samples, the PetroFLAGTM System results were statistically (1) the same as the reference method results for one of the four sampling areas and (2) different from the reference method results for three of the sampling areas. For soil PE samples, the PetroFLAGTM System results were statistically (1) the same as the reference method results for high concentration- range diesel samples and (2) different from the reference method results for blank samples, high-concentration range weathered gasoline samples, and low- and medium-concentration-range diesel samples. For liquid PE samples, the PetroFLAGTM System results were statistically different from the reference method results for both weathered gasoline and diesel samples. The PetroFLAGTM System results correlated highly with the reference method results for one of the four sampling areas and diesel soil PE samples (the square of the correlation coefficient [R2] values were greater than 0.90, and F-test probability values were less than 5 percent). The PetroFLAGTM System results correlated moderately with the reference method results for two of the four sampling areas (R2 values were 0.84 and 0.86, and F-test probability values were less than 5 percent). The PetroFLAGTM System results correlated weakly with the reference method results for one of the four sampling areas and weathered gasoline soil PE samples (R2 values were 0.42 and 0.10, respectively, and F-test probability values were greater than 5 percent). Comparison of the PetroFLAGTM System and reference method median relative standard deviations (RSD) showed that the PetroFLAGTM System and the reference method exhibited similar overall precision. Specifically, the median RSD ranges were 6 to 19 percent and 5.5 to 16 percent for the PetroFLAGTM System and reference method, respectively. The analytical precision was about the same for the PetroFLAGTM System (a median relative percent difference of 5) and reference method (a median relative percent difference of 4).

Effect of Interferents: The PetroFLAGTM System showed a mean response of less than 5 percent for neat methyl-tert-butyl ether (MTBE) and tetrachloroethene (PCE) and for soil spiked with humic acid. The device's mean responses for neat Stoddard solvent; turpentine; and 1,2,4-trichlorobenzene were 42.5, 103, and 16 percent, respectively. The reference method showed varying mean responses for MTBE (39 percent); PCE (17.5 percent); Stoddard solvent (85 percent); turpentine (52 percent); 1,2,4-trichlorobenzene (50 percent); and humic acid (0 percent). For the demonstration, MTBE and Stoddard solvent were included in the definition of TPH.

Effect of Moisture Content: The PetroFLAGTM System showed a statistically significant decrease (17 percent) in TPH results when the soil moisture content was increased from 9 to 16 percent for weathered gasoline soil PE samples; the reference method TPH results were unaffected. Both PetroFLAGTM System and reference method TPH results were unaffected when the soil moisture content was increased from less than 1 to 9 percent for diesel soil PE samples.

Measurement Time: From the time of sample receipt, Dexsil required 50 hours, 40 minutes, to prepare a draft data package containing TPH results for 181 samples and 10 extract duplicates compared to 30 days for the reference method, which was used to analyze 199 samples and 13 extract duplicates.

Key demonstration findings are summarized below for the secondary objectives.

Skill and Training Requirements: The PetroFLAGTM System can be operated by one person with basic wet chemistry skills. The sample analysis procedure for the device can be learned in the field with a few practice attempts.

Portability: The PetroFLAGTM System is battery-operated and requires no alternating current power source. The device can be easily moved between sampling areas in the field, if necessary.

Durability and Availability of the Device: All items in the PetroFLAGTM System are available from Dexsil. During a 6-month warranty period, Dexsil will supply replacement parts for the device by overnight courier service at no cost. During the demonstration, none of the device's reusable items malfunctioned or was damaged.

In summary, during the demonstration, the PetroFLAGTM System exhibited the following desirable characteristics of a field TPH measurement device: (1) good precision, (2) lack of sensitivity to interferents that are not petroleum hydrocarbons (PCE and humic acid), (3) low measurement costs, and (4) ease of use. In addition, the PetroFLAGTM System exhibited moderate sample throughput. Based on action level conclusions and statistical correlations, the PetroFLAGTM System TPH results compared well with those of the reference method; however, the device exhibited a high bias, and its TPH results were determined to be statistically different from those of the reference method. In addition, turpentine and 1,2,4-trichlorobenzene biased the device's TPH results high. Moreover, an increase in soil moisture content biased the device's TPH results low for weathered gasoline soil PE samples. Collectively, the demonstration findings indicated that the user should exercise caution when considering the device for a specific field TPH measurement application.

Original signed by

Gary J. Foley, Ph.D.
Director
National Exposure Research Laboratory
Office of Research and Development

P001-0102

ONE TO SIX GAS PORTABLE MONITOR

Gas Detection For Life

EAGLE™ Model

Features

- Simultaneous detection of up to 6 different gases
- Over 250 gas monitoring configurations
- Widest range of gas sensors available
- PPM / LEL hydrocarbon detection
- Powerful long-life pump with 125' range
- Low flow pump shut off and alarm
- Methane elimination switch for
- environmental use
- Security "Adjustment Lockout Switch"
- Up to 30 hours of continuous operation
- IR Sensors available for CO2, % LEL CH₄, and 0-100% volume CH₄
- Transformer testing version available
- Alkaline or Ni-Cad capability
- Ergonomic RFI/EMI/Chemical resistant case
- **Datalogging option**
- Autocalibration
- Intrinsically safe design, CSA/NRTL & **UL Classified (most versions)**

RKI is proud to produce the most versatile portable gas detector on the market. The EAGLE is a powerful instrument that does more than offer standard confined space protection. The EAGLE also provides detection combinations never before offered in a portable gas monitor featuring the industry's widest selection of high quality, long life and field proven sensors.

The EAGLE's ergonomic design offers easy access to controls such as autocalibration, alarm silence, demand zero, peak hold and a wide variety of other features. Each channel has 2 alarm levels plus TWA and STEL alarms for toxic channels. Alarm levels are adjustable and can be latching or self resetting.

Standard features on the EAGLE are not available on other competitive units. These features include PPM/LEL hydrocarbon detection and a methane elimination switch for environmental applications. For quick response and recovery, the EAGLE has a strong internal pump which can draw samples from over 125 feet. The EAGLE will continuously operate for over 30 hours on alkaline batteries or 18 hours on Ni-Cads. Many accessories such as long hoses, special probes, datalogging, continuous operation adapters, remote alarms and strobes, dilution fittings, internal hydrophobic filter, etc, are available to help satisfy almost any application. Rugged, weatherproof, easy to operate and maintain, the EAGLE is the industry's answer to portable gas detection.

RKI Instruments, Inc. • 1855 Whipple Rd. Hayward, CA 94544 • Phone (800) 754-5165 • (510) 441-5656 • Fax (510) 441-5650

World Leader In Gas Detection & Sensor Technology www.rkiinstruments.com

EAGLE™ Model

Weatherproof, chemical resistant, RFI/EMI coated high impact polycarbonate-polyester blend. Can be set in rain or into 2.5" of wate without damage. Ergonomically balanced with rugged top mounted

Dimensions 10.5" L x 5.9" W 7" H

Weight 5 lbs

Operating Hours

Cads

Catalytic combustion, electrochemical cell, galvanic cell, and infrared. Detection Principle

2 years under normal conditions. Sensor Life

Powerful, long-life pump (over 6,000 hours) can draw samples over Sampling 125 feet. Flow rate approximately 2.0 SCFH. Method

4 x 20 LCD readout with backlighting. Viewed through window in case top. Displays readings & status of all channels simultaneously. 2 alarms per channel plus TWA and STEL alarms. Fully adjustable

Alarms for levels, latching or self reset and silenceable

Alarm Method Buzzer 85dB at 30 cm, dual high intensity LED's, and flashing display.

6 external push buttons for operation, demand zero, and autocalibration. Buttons also access LEL/ppm, alarm silence, peak hold, TWA /

STEL values, battery status and many other features. 30 hours minimum using alkaline batteries, or 18 hours using Ni-Continuous

Size D batteries, 4 alkaline or Ni-Cad. Charger has alkaline recogni-**Power Source** tion to prevent battery damage if charging is attempted with alkalines.

Operating Temp. & Humidity -10°C to 40°C (14°F to 104°F), 0 to 95% RH, non-condensing.

Indication Maximum variance +/- 5% of full scale Accuracy 30 seconds to 90% (for most gases).

Response Time

Intrinsically Safe, Class I, Division 1, Groups A, B, C and D. Safety Design CSA / NRTL & UL Classified (most versions).

Standard Shoulder strap, alkaline batteries, hydrophobic probe and 5 foot hose Accessories (for special toxic gas versions, shorter teflon hose used without

• Datalogging of up to 4 gases (No datalogging possible on 5 or 6 Optional gas versions or versions with more than 2 toxic sensors).

Remote alarm

Dilution fitting (50/50)

Ni-Cad batteries

Battery charger, 115 VAC, 220 VAC, or 12 VDC

Continous Operation Adapter, 115 VAC or 12 VDC

· Extension Probes

Internal Hydrophobic Filter (strongly recommended)

Gases & Detectable Range

Gases & Detectat	ole Ranges
Standard Confined S	pace Gases
Hydrocarbons (CH ₄ , std)	0 - 100% LEL 0 - 50,000 ppm
Oxygen (O ₂)	0 - 40% Vol.
Carbon Monoxide (CO)	0 - 500 ppm
Hydrogen Sulfide (H ₂ S)	0 - 100 ppm
Super Toxics and O	ther Gases
Ammonia (NH ₃)	0 - 75 ppm
Arsine (AsH ₃)	0 - 1 ppm 0 - 200 ppb
Carbon Dioxide (CO ₂) (I R Sensor)	0 - 5,000 ppm 0 - 10,000 ppm 0 - 5% Vol. 0 - 20% Vol. 0 - 50% Vol.
Chlorine (Cl ₂)	0 - 3 ppm
Fluorine (F ₂)	0 - 5 ppm
Hydrogen Fluoride (HF)	0 - 9 ppm
Hydrogen Chloride (HCI)	0 - 5 ppm
Hydrogen Cyanide (HCN)	0 - 30 ppm
Methane (CH ₄) (IR Sensor)	0 - 100% LEL 0 - 100% Vol.
Nitrogen Dioxide (NO ₂)	0 - 15 ppm
Nitric Oxide (NO)	0 - 100 ppm
Ozone (O ₃)	0 - 1 ppm
Phosphine (PH ₃)	0 - 1 ppm
Silane (SiH ₄)	0 - 15 ppm
Sulfur Dioxide (SO ₂)	0 - 30 ppm
The EAOLE be	- d

The EAGLE can be provided with up to 6 gas sensors (2 Toxics maximum from "super toxics" list). Please specify gas combination when ordering

Special Features

- Low Flow alarm shuts pump off to avoid damage to instrument.
- Hydrophobic filter disc in probe.
 Internal dust filter (or optional internal
- hydrophobic filter). Quick autocalibration using 4 in 1
- calibration gas standard. Single gas calibration capability.
- Methane elimination switch for environmental applications
- "Adjustment Lockout Switch" for added security.
 Confirmation beep (silenceable).
- Backlight, automatic for alarms and by demand with adjustable time.
- Meets EPA Method 21 protocol for fugitive emissions testing.

Warranty One year material and workmanship.

RKI Instruments, Inc.

1855 Whipple Road Hayward, CA 94544

Toll Free: (800) 754-5165 (510) 441-5656 Phone: Fax: (510) 441-5650

mail4rki@rkiinstruments.com www.rkiinstruments.com

Authorized Distributor:

MiniRAE 3000

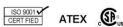
Portable Handheld VOC Monitor

The MiniRAE 3000 is the most advanced handheld volatile organic compound (VOC) monitor on the market. Its photoionization detector's (PID) extended range of 0 to 15,000 ppm makes it an ideal instrument for applications from industrial hygiene to leak detection and HazMat.

The RF modem allows real-time data transmissions with a base controller located up to 500 feet away from the MiniRAE 3000 (or two miles with optional RAELink3 portable modem). A personal computer can be used as the base station for a MiniRAE 3000 system. The standard ProRAE Remote software is capable of monitoring the input of up to 64 remotely located monitors, including MiniRAE 3000, AreaRAE, etc.

Key Features

- · Proven PID technology The patented sensor provides the following unique features:
- 3-second response time
- Extended range up to 15,000 ppm with improved linearity
- Humidity compensation with integral humidity and temperature sensors
- · Real-time wireless data transmission with built-in RF modem or Bluetooth
- · Designed for simple service Easy access to lamp and sensor in seconds without tools
- Big graphic display for easy overview of gas type, Correction Factor and concentration
- · Field-interchangeable battery pack replaced in seconds without tools
- · Integrated flashlight for better view in dark conditions
- · User-friendly screens, including dataplot chart view
- Integrated RAE Systems Correction Factors list for more than 200 compounds to measure more chemicals than any other PID
- Multi-language support with 12 languages encoded
- · Rugged housing withstands use in harsh environments
- IP67 waterproof design for easy cleaning and decontamination in water
- Strong protective removable rubber boot


Additional Advantages

- · View real-time sensor data and alarm status at headquarters or command center
- · Automatic lamp type recognition
- . Duty-cycling™ lamp and sensor autocleaning technology
- Tough, flexible inlet Flexi-Probe™
- 3 large keys operable with 3 layers of gloves
- · Strong, built-in sample pump draws up to 100 feet (30m) horizontally or vertically
- · Loud, 95dB audible alarm
- · Bright red flashing visual alarm
- · Interchangeable drop-in Lithium-Ion and alkaline battery packs
- · Charging cradle doubles as an external battery charger
- Compatible with AutoRAE™ calibration
- · ProRAE Remote software simultaneously controls and displays readings for up to 64 remote detectors
- License-free, ISM band RF transmission with communication range up to 500 feet (2 miles with optional RAELink3 modem)
- Optional RAELink3 modem provides GPS capability to track and display readings from remote detectors and provide up to 2 miles' long-distance transmission
- Datalogging with up to 6 months of data at one-minute intervals
- · 3-year 10.6 eV lamp warranty

Wireless

www.raesystems.com

MiniRAE 3000

Specifications*

Detector Specifications

Size	10" L x 3.0" W x 2.5" H (25.5 cm x 7.6 cm x 6.4 cm)
Weight	26 oz (738 g)
Sensors	Photoionization sensor with standard 10.6 eV or optional 9.8 eV or 11.7 eV lamps
Battery	Rechargeable, external field-replaceable Lithium-lon battery pack
	Alkaline battery adapter
Operating Hours	16 hours of operation (12 hours with alkaline battery)
Display Graphic	4 lines, 28 x 43 mm, with LED backlight for enhanced display readability
Keypad	1 operation and 2 programming keys, 1 flashlight on/off
Direct Readout	Instantaneous reading VOCs as ppm by volume High values STEL and TWA Battery and shutdown voltage Date, time, temperature
Alarms	95dB at 12" (30 cm) buzzer and flashing red LED to indicate exceeded preset limits + High: 3 beeps and flashes per second + Low: 2 beeps and flashes per second - STEL and TWA: 1 beep and flash per second - Alarms latching with manual override or automatic reset - Additional diagnostic alarm and display message for low battery and pump stall
EMI/RFI	Highly resistant to EMI/RFI. Compliant with EMC directive (2004/108/EC); R & TTE directive (1999/5/EC)
IP Rating	IP67 unit off and without flexible probe IP65 unit running
Datalogging	Standard 6 months at one-minute intervals
Calibration	Two-point or three-point calibration for zero and span. Calibration memory for 8 calibration gases, alarm limits, span values and calibration dates
Sampling Pump	Internal, integrated flow rate at 500 cc/mn Sample from 100' (30m) horizontally and vertically
Low Flow Alarm	Auto pump shutoff at low-flow condition
Communication	Download data and upload instrument set-up from PC through charging cradle or optional Bluetooth™ Wireless data transmission through built-in RF modem
Frequency	902 to 928 MHz (license-free), 2.400 to 2.4835 GHz (license-free), 433 MHz, 869 MHz
RF Range	Up to 500' (152m; 900 MHz, 433 Mhz, 869 Mhz), extendable with RAELink3 Repeater to 2 miles (3.2km)
Hazard Area Approval	US and Canada:
Temperature	-4° to 122° F (-20° to 50° C)
Humidity	0% to 95% relative humidity (non-condensing)
Attachments	Durable bright yellow rubber boot
Warranty	3 years for 10.6 eV lamp, 1 year for pump, battery, sensor and instrument

Sensor Specifications

Gas Monitor	Range	Resolution	Response Time T90
VOCs	0 to 999.9 ppm 1000 to 15,000 ppm	0.1 ppm 1 ppm	<3s

Monitor only includes:

- MiniRAE 3000 Monitor, Model PGM-7320
- Wireless communication module built in, as specified
- . Datalogging with ProRAE Studio Package for Windows™ 98, 2000, NT, ME & XP
- · Charging/download adapter
- · RAE UV lamp, as specified
- Flex-I-Probe™
- External filter
- Rubber boot
- · Alkaline battery adapter
- Lamp-cleaning kit
- Tool kit
- Operation CD-ROM
- · Operation & Maintenance manual
- Soft leather case

Monitor with accessories kit adds:

- · Hard transport case with pre-cut foam padding
- · Charging/download cradle
- 5 Porous metal filters and O-rings
- · Organic vapor zeroing kit
- · Gas outlet port adapter and tubing

Optional calibration kit adds:

- 100 ppm isobutylene calibration gas, 34L
- · Calibration regulator and flow controller

Optional Guaranteed Cost of Ownership Program:

- 4-year repair and replacement guarantee
- · Annual maintenance service

RAE Systems Inc. 3775 North First Street San Jose, CA 95134 USA raesales@raesystems.com

USA/Canada Europe/Russia +45 8652 5155 Middle East/Australia +971 4 3639 427

China +86 10 58858788 Asia +852 2669 0828

www.raesystems.com

DS-1018-02

Solinst

Interface Meter

Model 122 Data Sheet

Interface Meter

Model 122

Solinst Oil/Water Interface Meters give clear and accurate measurements of product level and thickness in wells and tanks

Determination of both light (floating) non-aqueous phase liquids (LNAPL) and dense (sinking) non-aqueous phase liquids (DNAPL) is quick and easy. The factory-sealed probes are pressure proof and tapes are available in a range of lengths from $65 \cdot 1000$ ft ($20 \cdot 300$ m).

The 5/8" (16 mm) diameter P1 Probe allows easy access through tight spaces and into narrow wells. The Probe is designed for use in various monitoring applications.

Hazardous Locations Use

The Model 122 Interface Meter has been approved by the Canadian Standards Association (CSA) for use in explosive environments. It is suitable for use in hazardous locations Class I, Groups C&D.

The grounding strap is a safety essential when the meter is used in potentially explosive environments. It also ensures that the electronics are properly protected.

Operating Principles

 $\label{eq:product} \textbf{Product} \ (\mbox{Non-conductive liquid}) = \mbox{Steady light and tone}$

Water (Conductive liquid) = Intermittent light and tone

To detect liquids, Solinst Interface Meters use an infra-red beam and detector. When the probe enters a liquid the beam is refracted away from the detector which activates an audible tone and light. If the liquid is a non-conductive

oil/product the signals are steady. If the liquid is water (conductive liquid greater than 50 µS/cm), the conductivity of the water completes a conductivity circuit. This overrides the infra-red circuit, and the tone and light are intermittent.

Both sensors use exactly the same zero point, giving accuracy as good as 1/200 ft or 1.0 mm. The high accuracy enables the sensors to detect the slightest sheen of oil on the surface of the water; this is indicated by a rapid intermittent tone.

Accurate, Reliable, Robust

- · Designed for rugged field use
- Stable electronics with automatic circuitry testing
- · Tape uses stranded stainless steel conductors:
 - non-stretch; does not corrode
 - resists kinking and breaks
 - easy to repair and splice
- · Sturdy free-standing reel with carrying handle

High Quality Design

The state-of-the-art electronics include automatic circuitry testing when the 'On' button is used; $120\ \text{hours}$ of on-time battery life; clear signals; and high accuracy.

Infra-red refraction is used to detect liquids and conductivity to distinguish water. Both optical and electronic sensors are precisely aligned at the same zero point. A steady light and tone indicate product. Water is indicated by intermittent signals.

The factory sealed probe does not need to be accessed by the user. An integral stainless steel shield protects the sensors. It is set permanently into place, yet allows for easy cleaning.

The circuits are powered by 2 standard 9V batteries which are housed in easy-access drawers in the faceplate of the reel.

Features

- Sensor accuracy to 1/200 ft or 1.0 mm
- · Certified intrinsically safe
- 5/8" (16 mm) diameter probe
- · Easy access batteries: minimum 120 hours of life
- · Automatic shut off after 10 minutes
- · Inexpensive, simple repairs
- 3 year warranty

 $^{\odot}$ Solinst is a registered trademark of Solinst Canada Ltd.

₱ Model 122 & 122M are CSA approved for use in hazardous locations Class I, Groups C&D

High Quality Groundwater and Surface Water Monitoring Instrumentation

Interface Meter

The 122 Mini is a convenient small version of the Solinst Interface Meter, small enough to fit in a backpack. A custom carrying bag is also an option. The Mini is available in 65 ft or 20 m lengths.

The 5/8" (16 mm) diameter probe is attached to narrow 1/4" (6 mm) tape, which is accurately marked each 1/100 ft or millimeter. Enhanced electronics allow operation for up to 300 hours of on-time, using one 9V battery.

Obtaining Product Measurements

To measure the thickness of a product layer, lower the probe into the well until the signals activate. If there is an oil/product layer on the top of the water (LNAPL), the light and tone will be steady, indicating an air/product interface.

Read the depth off the permanently marked tape. Lower the probe further into the water, where the signals become intermittent, then pull back up and take a reading at the product/water interface. The thickness of the product layer is then determined by subtracting the first reading from the

If there is only water in the well and no product, there will only be intermittent (water) signals.

The presence or absence of dense (sinking) non-aqueous layers (DNAPL) is determined by continuing to lower the probe to the bottom of the well.

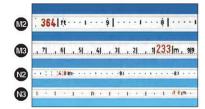
If the steady tone and light return, this indicates a non-conductive liquid.

Measure the depth and continue lowering the probe until it touches bottom and the tape goes slack.

To determine the thickness of the DNAPL layer, subtract the first reading from the bottom depth.

Model 122 P1 and 122M Probes

Probes


122 P1: 5/8" diameter (16 mm) stainless steel. The beam is emitted from within a cone-shaped tip made from rigid polyurethane. The tip is protected by an integral stainless steel shield. This probe is excellent for the vast majority of product monitoring situations.

122M Probe: 5/8" diameter (16 mm) stainless steel. Similar to the P1 but shorter.

Tape

The easy-to-read markings on the tape are permanently heat-stamped into the tape. The dog bone shaped tape avoids adherence to wet surfaces in wells. It is resistant to most chemicals, and the smooth surface of the tape is easy to decontaminate, and easy to handle.

M2 Feet and tenths: with markings every 1/100 ft. M3 Meters and centimeters: with markings every mm. N2 and N3 As above, but on the narrow 1/4" (6 mm) tape for the 122 Mini Interface Meter.

Standard Equipment

Each standard meter is provided with a grounding clip, cleaning brush, a convenient carrying bag with shoulder strap, and a tape guide/datum.

The tape guide may be used to provide support for the reel on the well casing. It acts as a datum allowing repeatably accurate measurements; ensures that the probe hangs in the centre of the well; and protects the tape from damage.

It is essential to use the grounding clip to ensure safety and proper function of the electronics in all applications.

Printed in Canada

For further information contact: Solinst Canada Ltd.
Fax: +1 (905) 873-1992; (800) 516-9081 Tel: +1 (905) 873-2255; (800) 661-2023
35 Todd Road, Georgetown, Ontario Canada L7G 4R8

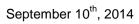
APPENDIX III Project Photographs

Borehole #1

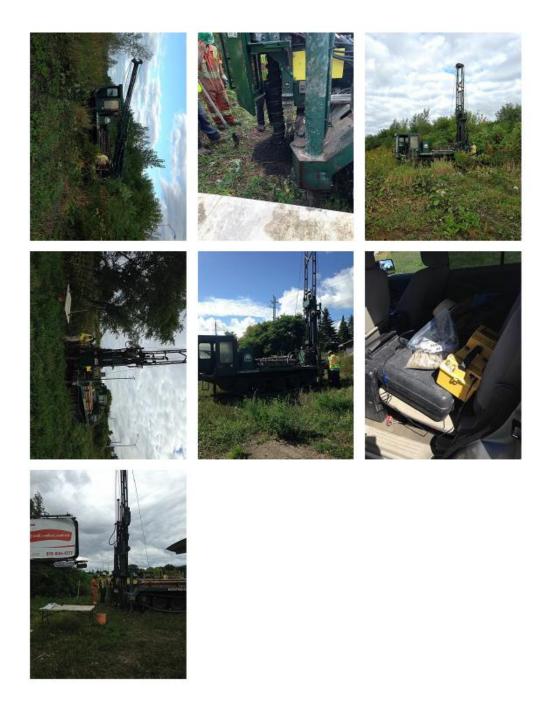
Test Pit #1

Borehole #4

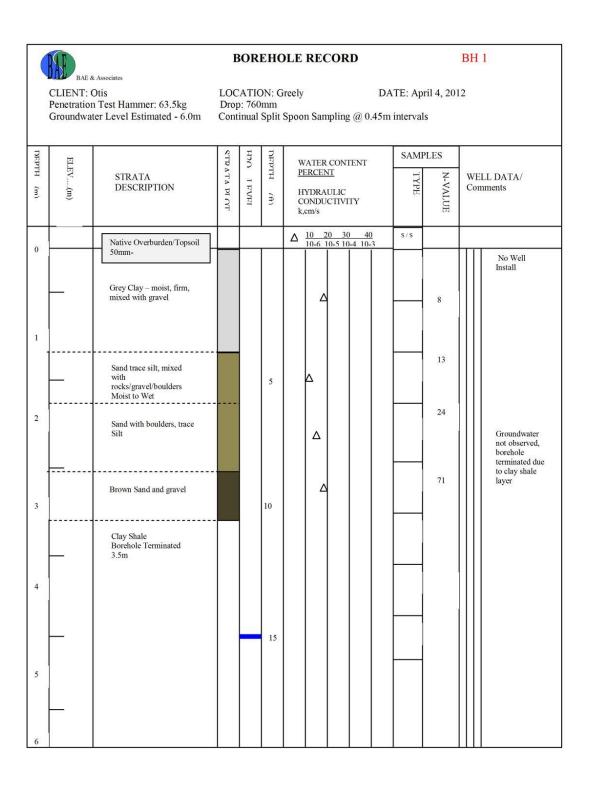
Borehole #3


Borehole #6

Monitoring Well #1

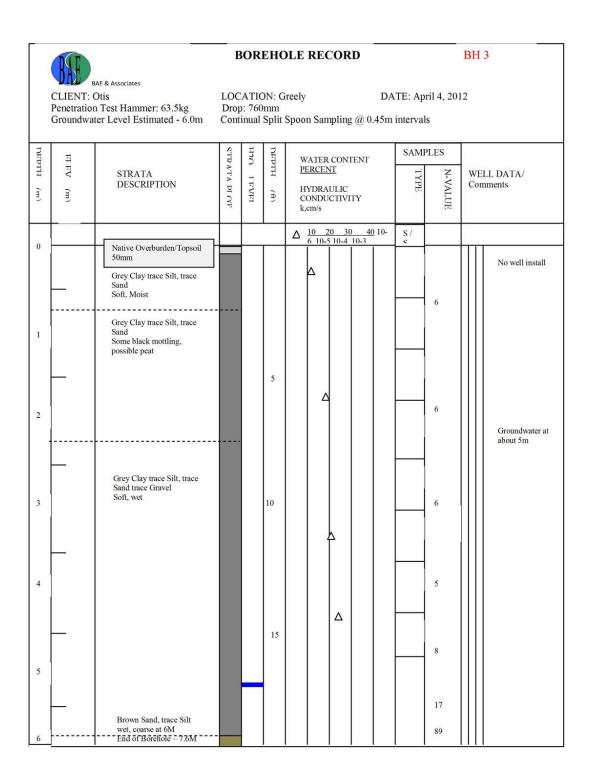


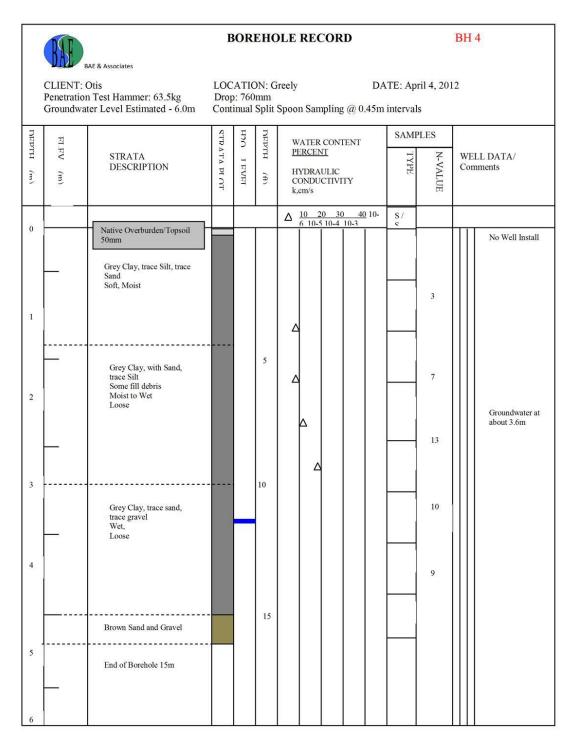
Borehole #7



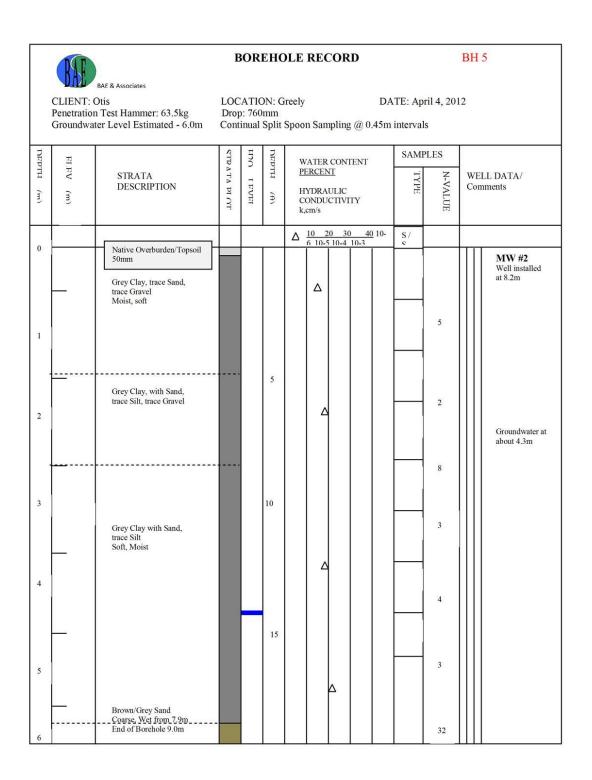
APPENDIX IV

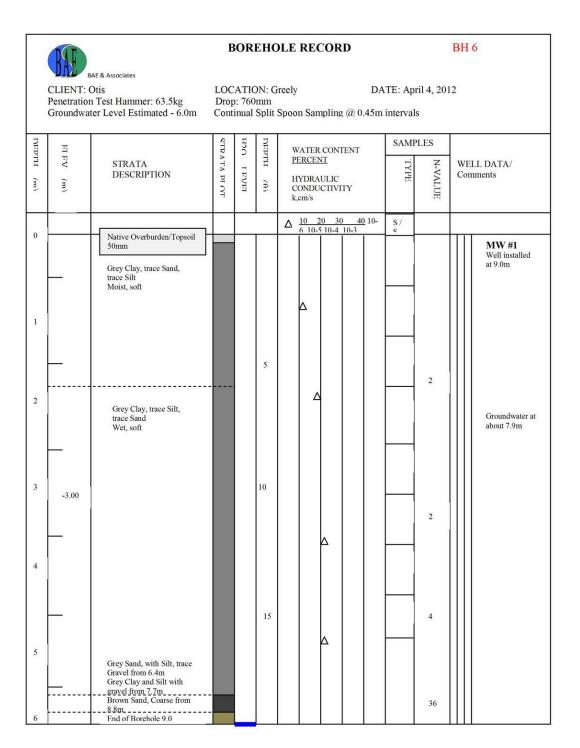
Borehole Records

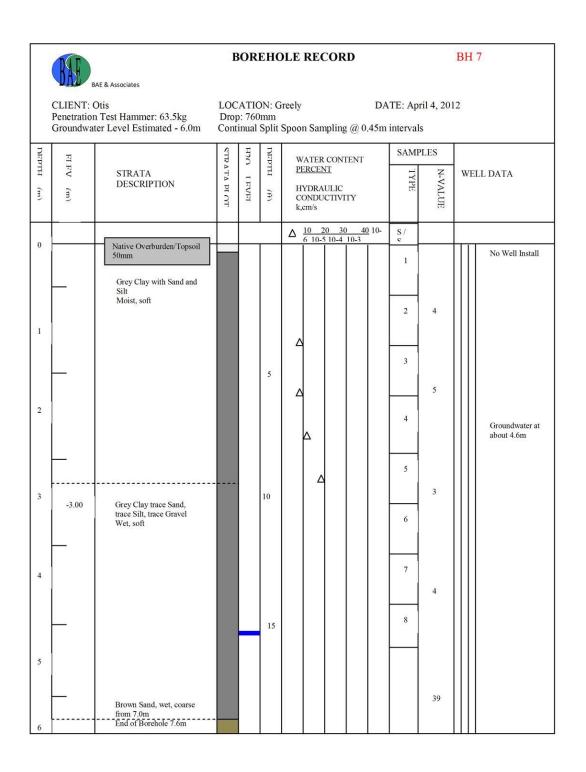


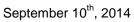


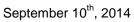
	RIF		Е	BOR	EHC	DLE RECORD				ВН	12
	CLIENT: 0 Penetration	& Associates Otis n Test Hammer: 63.5kg ter Level Estimated - 6.0m	Drop	: 760	mm	Greely Spoon Sampling @			oril 4, 201 ls	2	
DEPTH (m)	ELEV(m)	STRATA DESCRIPTION	STRATA PI OT	IAVA I OCH	DEPTH (#)	WATER CONTEN- PERCENT HYDRAULIC CONDUCTIVITY k,cm/s	Γ	SAMI HAYI	PLES N-VALUE		ELL DATA/ mments
						Δ 10 20 30 6 10-5 10-4 10-3	<u>40</u> 10-	S/			
0		Native Overburden/Topsoil 50mm Clay with Silt and Sand				Δ			5		MW #3 Well installed at 20ft
1		Grey Clay trace sand, trace silt Moist				Δ			5		
2		Becoming Wet			5				7		Groundwater at about 5.8m
3					10	Δ			6		
4		Grey Clay Some Sand and Gravel							-		
-		Grey Clay and Silt with Sand			15				4		
5									2		
6		Brown Sand and Gravel End of Borehole 7.6m							156		

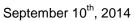






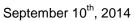




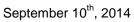


B)		
_		th	

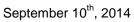
CLI	DJECT: Proposed Greely Commercial Co ENT: OTIS GROUP OF COMPANIES CATION: 5640 Bank Street and 701 Mitcl NETRATION TEST HAMMER: 63.3kg, D	h Owe	ns Road		RD	OF	BOREHOLI	E BH15	-51	03	F	DAT BHE		BOR		ER: 140208 3: August 28, 2014								
	SOIL PROFILE			8.4	MPL	E8	UNDIAT AUGAD	***************************************	Γ,	YNA				Τ	Т									
DEPTH SCALE (meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3m	UNDIST. SHEAR S 2 Cu, kPa 20 40 6 REM. SHEAR ST 6 Cu, kPa 20 40 6	RENGTH		PEN blow	ENETRATION TEST lows/300 mm		ENETRATION TEST lows/300 mm		NAMIC CONE ENETRATION TEST IOWE/300 mm		ATION T 0 mm		RATION :8T 300 mm		TRATION TEST 5/300 mm		LAB TESTING	PIEZOMETER OR 8TANDPIPE INSTALLATION
0	Ground Surface	<u></u>	104.70					$\overline{}$						F	7									
	Topsoil (FILL) Red brown silty sand, some topsoil (FILL)																							
1			102.87																					
2	Grey brown SILTY SAND		1.83													Serobolo dos								
1 5 5																Borehole dry on August 28, 2014.								
4																								
5			99.52 5.18	1	88	19																		
-6	End of Borehole		3.10																					
7																								
8																								
-	DEPTH &CALE: 1 to 50 BORING METHOD: Power Auger		Œ		Engin	cers	d Associates	l	<u> </u>): DT											



			REC	0	RD	OF	BOR	ЕН	OLE	В	H13	-51	104	4					
LOG	DJECT: Proposed Greely Commercial Ce ENT: OTIS GROUP OF COMPANIES CATION: 5640 Bank Street and 701 Mitch	n Owe		ı											DA 8H	TE	OF I	BORIN	BER: 140208 IG: August 28, 2014
PE	NETRATION TEST HAMMER: 63.5kg, Dr	ор, и	./emm		MPL							_			UA	LIUI	м.		
9	SOIL PROFILE				MPL	ES	UNDIS							AMI					
DEPTH SCALE (meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3m	20 REM.	SHE	AR ST u, kPa	RENG	ю [*]		blo	NETI TE	8T 800	mm	,	ADDITIONAL LAB TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	Ground Surface		110.68																
ا "ا	Topsoil (FILL)	-:	0.00									Ш			Н				
ŧ I	Grey brown SILTY SAND											Ш			Н				
<u> </u>												Ш	Ш						
<u> </u>												Ш	Ш						
⊦ ₁												Щ	Ш	4	Ш	\perp	Ш	Į Į	
<u> </u>						l						Ш	Ш						
ţ l															П				
ţ l															П				
-						l						Ш	Ш						
١,						l						Ш	Ш		Ш	\perp	Ш	Į Į	
- 1												Ш	Ш						
<u> </u>						l						Ш	Ш						
-						l						Ш	Ш						Borehole dry
-						l						Ш	Ш						on August 28,
Ŀ, I						l						Ш						J	2014.
E 1						l									П				
E												Ш	Ш						
ĿΙ												Ш	Ш						
Εl						l						Ш	Ш						
Ŀ.						l						Ш	Ш		Ш		Ш	Į Į	
⊦												Ш	Ш						
Εl												Ш	Ш						
E												Ш	Ш						
E												Ш	Ш						
ا ۽ E				1	88	27						Ш						J I	
E*			105.50				1					П	П		П	Т	П	1	
F	End of Borehole		5.18			l						Ш	Ш						
Εl															П				
E															П				
ا ج																			
1 3 3 5 6 6 7													П		П	Τ			
Εl															П				
ĿΙ												Ш			П		П		
Εl															П				
Ŀ.,												\Box			Ш			Į Į	
Ł'															Π	Γ			
Εl															П				
E															П				
E															П				
E.												Ш							
- s															П	Τ			
ĿΙ															П				
Εl															П				
8															П				
F								- 1	I		I	브			Ш		Ш	{	
	DEPTH 8CALE: 1 to 50		Œ)	Kol	laar	d Asso	ocia	tes			_		LOC	205	n-	n=		
					Engin														
'	BORING METHOD: Power Auger			Al	JGER	TYP	E: 200 mm	1 Holk	ow Ste	m				CHE	ECK	ŒD	:80	•	


R)		
_	_	th	

OC	DIECT: Proposed Greely Commercial C ENT: OTIS GROUP OF COMPANIES ATION: 5640 Bank Street and 701 Mits IETRATION TEST HAMMER: 63.5kg, D	th Owe											ET)FE	ORIN	ER: 140208 G: August 28, 2014
П	SOIL PROFILE			8,4	MPL	E8			_							
(meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3m	UNDIST. SHEAR STRENG Cu, kPa 20 40 50 8i REM. SHEAR STRENGT Cu, kPa 20 40 60 8i	TH _e	F	PEN	AMIC IETR TES WE/3	ATI ET DO n	on nm		ADDITIONAL LAB TESTING	PIEZOMETER OR 8TANDPIPE INSTALLATION
.	Ground Surface		110.30													
П	Topsoil (FILL)		190.90						П		П	Τ	П	Т	П	
	Red brown silty sand, some topsoil (FILL)	- 11	0.20]					Ш				П			
	0 122)	П											П			
													П			
1		-11	109.24					ŀ	H	4	++	+	H	+		
-	Grey brown silty clay (FILL)	-11	1.06										П			
-			:										П			
													П			
-		-11											П			
١		-11							H		+	+	H	+		
-		11.							Ш				П			
-		11.							Ш				П			
-		- 11:							Ш				П			Borehole dry
		41							Ш				П			on August 28, 2014.
١		30						i	П		\forall	\top	П		i I	
- 1		Эr.	:						Ш				П			
- 1		11.	:						Ш				П			
١		-11	:						Ш				П			
. 1		-27	:					Ļ	Ш		Ш		Ц			
1		11.	:						Ш				Ш			
١		-14.	:						Ш				П			
١		11	:	⊢	_	<u> </u>			Ш				Ш			
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			:	١.		_			Ш				П			
;		311	:	1	88	5			Н	-		+	Н	+		
ŀ	End of Borehole	111	105.12	\vdash	\vdash	\vdash			Ш				П			
١	End of Borefole	1							Ш				П			
		1											П			
		1											П			
		1						- H	\forall	+	+	+	H	+		
		1											П			
		1											П			
		1											П			
		1														
		1						Ī	П		\prod	T		Т		
		1											П			
		1											П			
- 1		1											П			
IJ		1						Ĺ	Ш		Ш	\perp	Ц	L		
١,																
		1											П			
		1											П			
		1											П			
\perp				L	L	<u> </u>	1 1 1 1			_		_	_	_		
			(K				d Associates									


R			
_		th	

CLI	OJECT: Proposed Greely Commercial C ENT: OTIS GROUP OF COMPANIES CATION: 5640 Bank Street and 701 Mitc NETRATION TEST HAMMER: 63.5kg, D	h Owe		ı					BORIN	ER: 140208 G: August 26, 2014
	SOIL PROFILE			8,4	MPL	E8	UNDIST. SHEAR STRENGTH	DYNAMIC CONE		
(meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3m	CU, NPa 2 20 40 60 80 REM. SHEAR STRENGTH CU, NPa 9 20 40 60 80	PENETRATION TEST blows/300 mm	ADDITIONAL LAB TESTING	PIEZOMETER OR 8TANDPIPE INSTALLATION
0	Ground Surface	/= 10	104.70						\Box	
	Topsoil (FILL) Grey brown silty clay, trace to some sand, gravel (FILL)		:	1	88	10				
1				2	88	8				
2				3	88	2				
				4	88	3				
.3		በመርያ የኒያን የመነበር አመድ ነው የሚያ ጽሚያ አዲያ አዲያ አዲያ አዲያ አዲያ የሚያ የሚያ የመንድ ያለተው ያለተው ያለሚያ ጽሚያ ጽሚያ አዲያ አዲያ አዲያ አዲያ የ የሚያ ጽዲያ አዲያ አመርያ የመንድ የመንድ የመንድ የመንድ የመንድ የመንድ የሚያ አዲያ አመርያ አመርያ አመርያ የመንድ የመንድ የመንድ የመንድ የመንድ የመንድ የመንድ የመንድ		5	88	1				
4				6	88	4				₩ater
5				7	88	3				observed in borehole at about 3.8 metres below the existing
	Grey brown fine to coarse SAND, trace to some gravel and cobbles		98.96 5.74	8	88	20				ground surface, August 26, 2014
-6			98.00	9	88	44				
-7	End of Borehole, Practical refusal on large boulder		6.70							

CLI	DJECT: Proposed Greely Commercial Ce ENT: OTIS GROUP OF COMPANIES CATION: 5640 Bank Street and 701 Mitch NETRATION TEST HAMMER: 63.5kg, Dr	Owe									DAT SHIE		FB 1 of	ORIN	ER: 140208 G: August 26, 2014
(meters)	SOIL PROFILE DESCRIPTION		ELEV. DEPTH (M)	æ	JAN 1	BLOWS/0.3m es	UNDIST. SHEAR STRENGTH 2. Cu, MPa 2. 20 40 60 80 REM. SHEAR STRENGTH 4. Cu, MPa 4. 20 40 60 80	ı	PEN	AMIC ETR TES	ATI ET DO II	on		ADDITIONAL LAB TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	Ground Surface	STRATA PLOT	105.27	┝	⊢	-	<u> </u>	Ĭ,	~	50			~	_	
0	Topsoll (FILL) Grey brown silty clay, trace to some sand, gravel and topsoll(FILL)		0.00	1	88	8									
1				2	88	3									
2		 		3	88	WH									
				4	88	WH									
-3				5	88	WH									
4				6	88	WH									
5		1		7	88	3									
1 -2 -3 -4 -5 -6 -7		#		8	88	WH									
-6				9	88	WH									Water observed in
7	Grey fine to medium SAND		98.03 97.81	10	88	5									borehole at about 3.8 metres below the existing ground
8	End of Borehole		7.46												surface, August 27, 2014

х	ENT: OTIS GROUP OF COMPANIES ATION: 5640 Bank Street and 701 Mitc IETRATION TEST HAMMER: 63.5kg, D			ı				DATE OF B SHEET 1 of DATUM:		9: August 27, 2014
٦	SOIL PROFILE		8AMPLE				UNDIST. SHEAR STRENGTH	DYNAMIC CONE		
(meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3m	Cu, kPa 2 20 40 60 80 REM. SHEAR STRENGTH Cu, kPa 9 20 40 60 80	PENETRATION TEST blows/300 mm 10 30 50 70 90	ADDITIONAL LAB TESTING	PIEZOMETER OF 8TANDPIPE INSTALLATION
1	Ground Surface		103.78							
Ì	Topsoil (FILL) Grey brown silty clay, trace to some	16	0.00	1	ss	4				7 7 7
-	sand and gravel (FILL)	16								L1 II
١		畜		2	88	2				[- = [-]
-		7								ΗΉ
ŀ	Yellow brown silty sand, some gravel,	<u>~ 1,2,4</u>	101.95	3	88	18				11 11
	cobbies and boulders, trace clay	بلد	101.95 1.83 101.50 2.28							11 11
	(FILL) Grey brown silty clay, trace to some	Щ.	. 2.20	4	88	7				1 H
١	sand, gravel and topsoil (FILL)	11.	:							
		11.	:	5	88	2				14 14
1		11		=						Π≡Π
۱		41		6	88	5				:
1		44	:	H						:
١		41		7	88	9				
١		(14). (34)								:
		24		8	88	5				:
۱		<u>#</u>	:							
-		11.		9	88	5				:
		34		H						
0 1		-11	96.49	10	88	WH				
	Grey fine to medium SAND		125	H						II≣II
۱			95.55	11	88	4				:
ł	End of Borehole	П	8.23	Н	\vdash	\vdash				<u> </u>
-										
۱										Water level
										measured in
۰										borehole at about 3.8
1										metres below
										existing groun surface, Augu
1										27, 2014. Wat level measure
										in standpipe a
										about 0.0 metres below
2										existing groun
										surface, September 12
2										2014.
1										