

Addendum to: Phase II Environmental Site Assessment

5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario, July 15th, 2013, updated September 10th, 2014

Ref: BAE-1453

May 26th, 2015

Prepared For Alium Investments (Greely) Ltd.

Prepared By

BAE & Associates Environmental Inc.

18 Parkview Ave.,
Oro Medonte, ON LOL 2E0
Phone 705 715 1881
envsol@rogers.com

Providing Environmental Solutions Since 1997!

BAE & Associates Environmental Inc.

Providing Environmental Solutions Since 1997
18 Parkview Avenue, Oro Medonte, ON L0L2E0
Email envsol@rogers.com
Phone 705 715 1881

Alium Investments (Greely) Ltd.
3338 Dufferin Street
Toronto, ON, M6A 3A4
And,
MOECC Ottawa District Office
2430 Don Reid Drive
Ottawa, ON, K1H 1E1
Attention: Charles Goulet, P. Eng.
District Engineer

Addendum to: "Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario, July 15th, 2013, updated September 10th, 2014"

1.0 Introduction

BAE & Associates Environmental (BAE) was retained by Alium Investments (Greely) Ltd. to complete an Addendum to the "Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario, July 15th, 2013, updated September 10th, 2014". The Phase II ESA and previous Phase I ESA were prepared to support the redevelopment of the site. These reports and subsequent data completed were reviewed by the MOECC. Following several rounds of communications and recommendations, the MOECC, Alium Investments (Greely) Ltd. and BAE have come to an agreement to ensure all potential environmental concerns are addressed. As per MOECC recommendations, BAE installed additional monitoring wells and carried out supplemental onsite groundwater sampling and analyses on these and previously installed monitoring wells. This was done to analyse the onsite groundwater from which residential dwellings along the north side of Marco Street potentially draw potable water. Groundwater quality data was obtained from as close as possible to the three metre corridor contiguous to the south property line of the residences on the north side of Marcus Street. It should be noted that a Hydrogeological Assessment determined that the groundwater flows in a northwest direction, away from the Marcus Street toward Mitch Owens Road.

2.0 Phase II ESA (Summary)

The following is a summary of the previously submitted Phase II ESA.

BAE and Associates Environmental Inc. (BAE) were retained by Alium Investments Ltd.

to undertake a Phase II Environmental Site Assessment (ESA) at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario. These investigations were conducted to reveal current environmental conditions for the subject property. A Phase I ESA completed by BAE had determined that a significant amount of fill had been brought onsite and thus a Phase II ESA was recommended.

As there was no requirement for the filing of a Record of Site Condition, the current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. All analysis was performed in accordance with O. Reg. 153/04 and compared to Part XV.1 of the Environmental Protection Act — Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (July 2011) Criteria. The specific requirements for carrying out a Phase II ESA are set out in Part VIII of Ontario Regulation 153/04 - as amended by O. Reg. 511 (July, 2011).

The subject 13 hectare (32 acre) Site is located on an irregular parcel of land situated at the northern periphery of the Community of Greely, at the southwest corner of the intersection of Bank Street and Mitch Owens Road. The northern portion of the Site has an approximate frontage of 653m on the south side of Mitch Owens Road. The western portion of the Site has an approximate frontage of 200m on the east side of Old Prescott Road. The eastern portion of the Site has an approximate frontage of 150m on the west side of Bank Street. The southern portion of the Site has an approximate frontage of 35m on the north side of Marco Street and 720m backing onto the back of single family residential houses located along Marco Street.

The Site is currently vacant, and was previously utilized as a gravel pit (below water table in the central part of the site). It is understood and was verified by Gib Patterson that the gravel pit had been backfilled with native soil derived from pond excavations at a site near Airport Parkway and Hunt Club Road to the north. The backfilled area of the site has no significant environmental threat to neighbouring residential properties. The elevation of the onsite fill area averages 105 masl while the average elevation of the adjacent residential properties is 111 masl. This confirms that the fill area is 6+ metres below the residential properties as well as being an average of 60 metres north and away from the these properties. There are no significant environmental concerns from the current onsite operations.

The Phase II ESA was conducted to ascertain the surficial and subsurface conditions and to assess the need for further investigations and primarily to confirm that the imported fill was not impacted and that adjacent properties were not affected by the placement of this fill. Seven preliminary boreholes were advanced up to a depth of 15m below grade level (BGL) using a CME 75 mobile mounted drill rig with a 25cm diameter, hollow stem auger and split-spoon sampler. Following a recommendation by the MOE, six additional boreholes were advanced with sampling and analyses undertaken in August of 2014.

Representative samples were submitted for independent chemical analyses of the Metal, Petroleum Hydrocarbon (PHC), Sodium Adsorption Ratio (SAR) and Volatile Organic Compound (VOC) Parameters. All analysis results met applicable MOE/EPA Criteria.

As there was no requirement for the filing of a Record of Site Condition, the current investigation was conducted generally in accordance with Part XV.1 of the Environmental Protection Act and Ontario Regulation 153/04 (O. Reg. 153/04) - as amended. It is the opinion of BAE that the current environmental assessment performed

is consistent with and meets MOE/EPA Criteria. The Environmental Site Assessment results do not suggest any chemical contamination associated with the imported fill or current or historical activities at the subject property and has determined that there is no evidence of any offsite impaction, or is likely to impact in the future, any adjacent public Right of Ways at levels in excess of applicable criteria. No further environmental investigations are recommended at this time.

3.0 Additional Investigations March - May 2015

BAE obtained additional onsite groundwater samples on March 3rd, 2015, from five previously installed monitoring wells - MW1501, MW1502, MW1503, MW1504 and MW1505. To satisfy additional requirements presented by the MOECC, two supplementary monitoring wells were advanced and installed along the bottom of the steep south slope as close to the neighbouring properties as possible in May of 2015. Following development, the supplementary monitoring wells – MW1506 and MW1507 were developed and sampled on May 15th, 2015 with the groundwater samples submitted for independent chemical analysis. Following are the methodology and chemical analysis results.

4.0 Methodology

As recommended by the MOECC, additional representative chemical analysis was completed on the groundwater for the parameters of concern previously identified—Metals, F1-4 PHCs and VOCs. Two additional boreholes were advanced below the anticipated groundwater level on the accessible south portion of the site. Both of these boreholes were developed as groundwater monitoring wells.

Both additional boreholes were advanced to a minimum depth of 6.0mbgl below grade level (BGL) using a CME 75 mobile mounted drill rig with a 25cm diameter, hollow stem auger and split-spoon sampler. Downhole drilling equipment was decontaminated between boreholes and sampling equipment was decontaminated between sampling intervals. Soil samples were collected from each borehole for the purpose of subsurface characterisation and field screening. Continuous soil samples were obtained at 0.75m intervals and obtained from the split spoon. Each sample was logged with respect to nature, depth, thickness and evidence of impairment. The soil samples were placed in sterile polyethylene soil bags and labeled. The headspace vapours in each soil bag were tested for total petroleum hydrocarbon vapour concentrations using an RKI Eagle, One to Six Gas Portable Monitor and a MiniRae 3000 Portable Handheld VOC Monitor. BAE completed the final additional onsite sampling on May 15th, 2015. The locations of the previously installed and additional monitoring wells are shown below on Figure 1.

The monitoring wells were constructed using threaded 50 mm, Schedule 40 PVC pipe with slotted screen in the area of the groundwater (3.0-6.0 mbgl). Filter packs were positioned around the screen with a hydrated bentonite pellet seal located over the filter pack. Hydrated Bentonite pellets were used to fill the annular space. A bentonite seal was placed at 0.5 m below grade to the surface, surrounding the PVC well to prevent surface water from entering into the borehole. A locking well cap was installed above the surface with a lock in place.

During development and redevelopment of the monitoring wells, qualitative observations were made of watercolour, clarity, the presence or absence of any impairment indicators, hydrocarbon sheen or odours present. No concerns were identified. Following this the wells were developed by purging a minimum of ten times the standing volume of water (>20L) or until the wells were dry.

Representative groundwater samples were submitted to ALS Environmental Laboratory for independent laboratory chemical analysis of the Metals, F1-4 PHCs and VOCs parameters. Each sample was put into sterile, labelled laboratory supplied bottles. While under the care of BAE, the samples were maintained in ice-filled coolers following collection. Samples were submitted under chain-of-custody to ALS for independent chemical analysis.

All samples were completed and analyzed in accordance with the requirements of the MOE document Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, dated 9 March 2004 and amended on 1 July 2011, including the use of laboratory supplied and preserved vials for the collection of samples for analysis of F1 fraction PHC and VOC parameters.

5.0 Additional Investigations Laboratory Chemical Analysis Results

All laboratory analysis was completed by an independent, accredited lab, ALS Laboratory Group of Richmond Hill/ Waterloo, Ontario (ALS). ALS is a CAEAL Registered and Accredited laboratory according to O. Reg. 153/04 section 47 (1) and ALS used the analytical methods as described in Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (MOE 2004, O. Reg. 153/04 section 47 (2)) - as amended by O.Reg. 511 (JULY, 2011). All analysis was performed in accordance with O. Reg. 153/04 and as amended by O.Reg. 511 (JULY, 2011). The following tables present the analytical results for these samples. All analysis was performed in accordance with O. Reg. 511/11 and compared to Part XV.1 of the Environmental Protection Act - Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 11). As outlined above select groundwater samples were submitted for chemical analysis of the Metals, F1-F4 PHCs and VOCs parameters. As verified in the following tables and associated Certificates of Analysis included as Appendix II, all chemical analysis for all parameters meet applicable Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 11).

TABLE 1a: GROUNDWATER CHEMICAL ANALYSES - VOCs

PARAMETER	CRITERIA	MDL	MW1501	MW1502	MW1503	MW1504
Acetone	2700	30	<30	<30	<30	<30
Benzene	5	0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	16	2.0	<2.0	<2.0	<2.0	<2.0
Bromoform	25	5.0	<5.0	<5.0	<5.0	<5.0
Bromomethane	0.89	0.50	<0.50	<0.50	<0.50	<0.50
Carbon tetrachloride	0.79	0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	0.50	<0.50	<0.50	<0.50	<0.50
Dibromochloromethane	25	2.0	<2.0	<2.0	<2.0	<2.0
Chloroform	2.4	1.0	<1.0	<1.0	<1.0	<1.0

PARAMETER	CRITERIA	MDL	MW1501	MW1502	MW1503	MW1504
1,2-Dibromoethane	0.2	0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	3	0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	59	0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	1	0.50	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethan	590	2.0	<2.0	<2.0	<2.0	<2.0
е						
1,1-Dichloroethane	5	0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichloroethane	1.6	0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	1.6	0.50	<0.50	<0.50	<0.50	<0.50
cis-1,2-	1.6	0.50	<0.50	<0.50	<0.50	<0.50
Dichloroethylene						
trans-1,2-	1.6	0.50	<0.50	<0.50	<0.50	<0.50
Dichloroethylene						
1,3-Dichloropropene	0.5	0.50	<0.50	<0.50	<0.50	<0.50
(cis & trans)						
Methylene Chloride	50	5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	5	0.50	<0.50	<0.50	<0.50	<0.50
cis-1,3-Dichloropropene		0.30	<0.30	<0.30	<0.30	<0.30
trans-1,3-		0.30	<0.30	<0.30	<0.30	<0.30
Dichloropropene						
Ethyl Benzene	2.4	0.50	<0.50	<0.50	<0.50	<0.50
n-Hexane	51	0.50	<0.50	<0.50	<0.50	<0.50
Methyl Ethyl Ketone	1800	20	<20	<20	<20	<20
Methyl Isobutyl Ketone	640	20	<20	<20	<20	<20
MTBE	15	2.0	<2.0	<2.0	<2.0	<2.0
Styrene	5.4	0.50	<0.50	<0.50	<0.50	<0.50
1,1,1,2-	1.1	0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethane						
1,1,2,2-	1	0.50	<0.50	<0.50	<0.50	<0.50
Tetrachloroethane						
Tetrachloroethylene	1.6	0.50	<0.50	<0.50	<0.50	<0.50
Toluene	24	0.50	<0.50	<0.50	<0.50	<0.50
1,1,1-Trichloroethane	200	0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	4.7	0.50	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	1.6	0.50	<0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	150	5.0	<5.0	<5.0	<5.0	<5.0
Vinyl chloride	0.5	0.50	<0.50	<0.50	<0.50	<0.50
o-Xylene		0.50	<0.50	<0.50	<0.50	<0.50
m+p-Xylenes		0.50	<0.50	<0.50	<0.50	<0.50
Xylenes (Total)	300	0.71	<0.71	<0.71	<0.71	<0.71

All values in ug/I - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value. *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 1b: GROUNDWATER CHEMICAL ANALYSES - VOCs

TABLE 10. (
PARAMETER	CRITERIA	MDL	MW1505	MW1506	MW1507
Acetone	2700	30	<30	<30	<30
Benzene	5	0.50	<0.50	<0.50	<0.50
Bromodichloromethane	16	2.0	<2.0	<2.0	<2.0
Bromoform	25	5.0	<5.0	<5.0	<5.0
Bromomethane	0.89	0.50	<0.50	<0.50	<0.50
Carbon tetrachloride	0.79	0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	0.50	<0.50	<0.50	<0.50
Dibromochloromethane	25	2.0	<2.0	<2.0	<2.0
Chloroform	2.4	1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.2	0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene	3	0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	59	0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	1	0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	590	2.0	<2.0	<2.0	<2.0
1,1-Dichloroethane	5	0.50	<0.50	<0.50	<0.50
1,2-Dichloroethane	1.6	0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	1.6	0.50	<0.50	<0.50	<0.50
cis-1,2-Dichloroethylene	1.6	0.50	<0.50	<0.50	<0.50
trans-1,2-	1.6	0.50	<0.50	<0.50	<0.50
Dichloroethylene	1.0	0.00	10.00	40.00	10.00
1,3-Dichloropropene (cis	0.5	0.50	<0.50	<0.50	<0.50
& trans)	0.0	0.00	10.00	10.00	40.00
Methylene Chloride	50	5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	5	0.50	<0.50	<0.50	<0.50
cis-1,3-Dichloropropene		0.30	<0.30	<0.30	<0.30
trans-1,3-		0.30	<0.30	<0.30	<0.30
Dichloropropene		0.00	10.00	10.00	10.00
Ethyl Benzene	2.4	0.50	<0.50	<0.50	<0.50
n-Hexane	51	0.50	<0.50	<0.50	<0.50
Methyl Ethyl Ketone	1800	20	<20	<20	<20
Methyl Isobutyl Ketone	640	20	<20	<20	<20
MTBE	15	2.0	<2.0	<2.0	<2.0
Styrene	5.4	0.50	<0.50	<0.50	<0.50
1,1,1,2-	1.1	0.50	<0.50	<0.50	<0.50
Tetrachloroethane	1	0.00	<0.00	<0.00	VO.00
1,1,2,2-	1	0.50	<0.50	<0.50	<0.50
Tetrachloroethane	'	0.00	<0.00	<0.00	VO.00
Tetrachloroethylene	1.6	0.50	<0.50	<0.50	<0.50
Toluene	24	0.50	<0.50	<0.50	<0.50
1,1,1-Trichloroethane	200	0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	4.7	0.50	<0.50	<0.50	<0.50
Trichloroethylene	1.6	0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	150	5.0	<5.0	<5.0	<5.0
Vinyl chloride	0.5		<0.50	<0.50	<0.50
	0.0	0.50			
o-Xylene		0.50	<0.50	<0.50	<0.50
m+p-Xylenes	200	0.50	<0.50	<0.50	<0.50
Xylenes (Total)	300	0.71	<0.71	<0.71	<0.71

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value. *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 2: GROUNDWATER CHEMICAL ANALYSIS- TOTAL METALS

PARAMETER	CRITERIA	MW1501	MW1502	MW1503	MW1504	MW1505
Aluminum (Al)	N/V	0.119	0.680	0.108	0.190	0.093
Antimony (Sb)	0.006	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Arsenic (As)	0.025	0.0054	0.0190	0.0052	0.0043	0.0043
Barium (Ba)	1	0.0316	0.0870	0.0284	0.0196	0.0273
Beryllium (Be)	0.004	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	N/V	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Boron (B)	5	0.039	0.045	0.029	0.026	0.040
Cadmium (Cd)	0.0027	<0.000090	<0.000090	<0.000090	<0.000090	<0.000090
Calcium (Ca)	N/V	85.2	127	49.7	24.4	99.7
Chromium (Cr)	0.05	<0.00050	0.00158	<0.00050	<0.00050	<0.00050
Cobalt (Co)	0.0038	0.00078	0.00171	0.00055	<0.00050	0.00080
Copper (Cu)	0.087	0.0094	0.0175	0.0112	0.0198	0.0081
Iron (Fe)	N/V	29.4	105	29.9	23.2	21.8
Lead (Pb)	0.01	<0.00050	0.00086	<0.00050	<0.00050	<0.00050
Lithium (Li)	N/V	<0.10	<0.10	<0.10	<0.10	<0.10
Magnesium	N/V	23.9	34.5	13.9	6.50	27.7
(Mg)						
Manganese	N/V	0.147	0.249	0.0885	0.0480	0.172
(Mn)						
Molybdenum	0.07	0.00072	0.00215	0.00058	0.00062	0.00065
(Mo)						
Nickel (Ni)	0.1	0.0011	0.0027	<0.0010	<0.0010	0.0010
Phosphorus (P)	N/V	0.079	0.354	0.078	0.075	0.058
Potassium (K)	N/V	2.1	3.2	1.2	<1.0	2.6
Selenium (Se)	0.01	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Silicon (Si)	N/V	10.9	16.2	10.2	10.6	10.7
Silver (Ag)	0.0015	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Sodium (Na)	490	135	129	139	144	136
Strontium (Sr)	N/V	0.800	1.28	0.477	0.229	0.921
Thallium (TI)	0.002	<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030
Tin (Sn)	N/V	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Titanium (Ti)	N/V	0.0049	0.0288	0.0047	0.0063	0.0035
Tungsten (W)	N/V	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (Ù)	0.02	0.0016	0.0035	0.0012	<0.0010	0.0016
Vanadium (V)	0.0062	0.00118	0.00548	0.00114	0.00144	0.00096
Zinc (Zn)	1.1	0.0040	0.0069	0.0059	0.0048	0.0044
Zirconium (Zr)	N/V	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
			1			

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value. *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 3: GROUNDWATER CHEMICAL ANALYSIS- DISSOLVED METALS

PARAMETER	CRITERIA	MDL	MW1506	MW1507
Antimony (Sb)	6	0.50	<0.50	<0.50
Arsenic (As)	25	1.0	<1.0	<1.0
Barium (Ba)	1000	2.0	202	197
Beryllium (Be)	4	0.50	<0.50	<0.50
Boron (B)	5000	10	32	32
Cadmium (Cd)	2.7	0.10	<0.10	<0.10
Chromium (Cr)	50	0.50	<0.50	<0.50
Cobalt (Co)	3.8	0.50	<0.50	<0.50
Copper (Cu)	87	1.0	5.2	5.6
Lead (Pb)	10	1.0	<1.0	<1.0
Molybdenum (Mo)	70	0.50	<0.50	<0.50
Nickel (Ni)	100	1.0	<1.0	<1.0
Selenium (Se)	10	5.0	<5.0	<5.0
Silver (Ag)	1.5	0.10	<0.10	<0.10
Sodium (Na)	490000	500	33600	33100
Thallium (TI)	2	0.30	<0.30	<0.30
Uranium (U)	20	2.0	<2.0	<2.0
Vanadium (V)	6.2	0.50	<0.50	<0.50
Zinc (Zn)	1100	3.0	141	139

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011)

TABLE 4a: GROUNDWATER CHEMICAL ANALYSES –PETROLEUM HYDROCARBONS

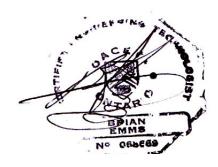
PARAMETER	CRITERIA	MDL	MW1501	MW1502	MW1503	MW1504
PHCs						
F1 (C6-C10)	750	25	<25	<25	<25	<25
F1-BTEX	750	25	<25	<25	<25	<25
F2 (C10-C16)	150	100	<100	<100	<100	<100
F3 (C16-C34)	500	250	<250	<250	<250	<250
F4 (C34-C50)	500	250	<250	<250	<250	<250
Total PHCs	N/V	370	<370	<370	<370	<370

All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value. *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

TABLE 4b: GROUNDWATER CHEMICAL ANALYSES –PETROLEUM HYDROCARBONS

PARAMETER	CRITERIA	MDL	MW1505	MW1506	MW1507	
PHCs						
F1 (C6-C10)	750	25	<25	<25	<25	
F1-BTEX	750	25	<25	<25	<25	
F2 (C10-C16)	150	100	<100	<100	<100	
F3 (C16-C34)	500	250	<250	<250	<250	

F4 (C34-C50)	500	250	<250	<250	<250	
Total PHCs	N/V	370	<370	<370	<370	


All values in ug/l - ppb - parts per billion MDL- Method Detection Limit, N/V - No Value. *Part XV.1 of the *Environmental Protection Act* – Table 2: Full Depth Generic Site Condition Standards in a Potable Groundwater Condition (July 2011).

6.0 Conclusions

It summary items identified during the MOECC review process have been appropriately fulfilled. BAE installed additional monitoring wells and carried out supplemental onsite groundwater sampling and analyses on these and previously installed monitoring wells. This was done to analyse the onsite groundwater from which the residential dwellings along the north side of Marco Street are potentially supplied. Groundwater quality data was obtained from as close as possible to the three metre corridor contiguous to the south property line of the residences on the north side of Marcus Street.

The additional investigations in conjunction with previous ESA investigations have verified that there are no environmental concerns on, in or under the lands adjacent to or downgrade of the neighbouring properties. It has also been determined that there are no environmental concerns on, in or under the area in the centre of the property where infilling was identified. No further environmental investigations are recommended or required at this time.

Respectfully Submitted, BAE & Associates Environmental Inc.

Brian A. Emms, C.E.T. Senior Env. Technologist

G. Jan Van Iterson, P. Eng. Associate

Figure 1: Groundwater Monitoring Well Sample Locations - 2015

Appendix I Laboratory Certificates of Analysis

8577382 Canada Inc. - BAE Environmental

ATTN: BRIAN EMMS RR 1 ORO STATION ORO STATION ON LOL 2E0 Date Received: 05-MAR-15

Report Date: 11-MAR-15 10:59 (MT)

Version: FINAL

Client Phone: 705-715-1881

Certificate of Analysis

Lab Work Order #: L1584186

Project P.O. #: NOT SUBMITTED

Job Reference: BAE-1453 GREELY

C of C Numbers: 66289

Legal Site Desc:

Comments: 11-MAR-15:

Total metals run instead of dissolved metals as bottle was not field filtered but preserved. Cannot

make comparison to Reg. 153/04 for the metal scan.

Mathumai Ganeshakumar Account Manager

 $[This \ report \ shall \ not \ be \ reproduced \ except \ in \ full \ without \ the \ written \ authority \ of \ the \ Laboratory.]$

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD | Part of the ALS Group | A Campbell Brothers Limited Company

Environmental 🔈

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1584186 CONTD.... Page 2 of 13

BAE-1453 GREELY	AINALTI	ICAL	GOID	LLIINL	KLPOK	. I	1	Page 2 1-MAR-15 1	of 13 0:59 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			ne Limits	
L1584186-1 BAE-MW1501									
Sampled By: CLIENT on 03-MAR-15 @ 09:00									
Matrix: WATER						#1	#2		
Total Metals									
Aluminum (AI)-Total	0.119		0.010	mg/L	09-MAR-15				
Antimony (Sb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.006	0.006		
Arsenic (As)-Total	0.0054		0.0010	mg/L	09-MAR-15	0.025	0.025		
Barium (Ba)-Total	0.0316		0.0020	mg/L	09-MAR-15	1	1		
Beryllium (Be)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.004	0.004		
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	09-MAR-15				
Boron (B)-Total	0.039		0.010	mg/L	09-MAR-15	5	5		
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	09-MAR-15	0.0027	0.0027		
Calcium (Ca)-Total	85.2		0.50	mg/L	09-MAR-15				
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.05	0.05		
Cobalt (Co)-Total	0.00078		0.00050	mg/L	09-MAR-15	0.0038	0.0038		
Copper (Cu)-Total	0.0094		0.0010	mg/L	09-MAR-15	0.087	0.087		
Iron (Fe)-Total	29.4		0.050	mg/L	09-MAR-15				
Lead (Pb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.01	0.01		
Lithium (Li)-Total	<0.10		0.10	mg/L	09-MAR-15				
Magnesium (Mg)-Total	23.9		0.50	mg/L	09-MAR-15				
Manganese (Mn)-Total	0.147		0.0010	mg/L	09-MAR-15				
Molybdenum (Mo)-Total	0.00072		0.00050	mg/L	09-MAR-15	0.07	0.07		
Nickel (Ni)-Total	0.0011		0.0010	mg/L	09-MAR-15	0.1	0.1		
Phosphorus (P)-Total	0.079		0.050	mg/L	09-MAR-15				
Potassium (K)-Total	2.1		1.0	mg/L	09-MAR-15				
Selenium (Se)-Total	<0.00040		0.00040	mg/L	09-MAR-15	0.01	0.01		
Silicon (Si)-Total	10.9 <0.00010		1.0	mg/L	09-MAR-15	0.0045	0.0045		
Silver (Ag)-Total		DIM	0.00010	mg/L	09-MAR-15	0.0015	0.0015		
Sodium (Na)-Total	135	DLM	5.0	mg/L	09-MAR-15	490	490		
Strontium (Sr)-Total Thallium (Tl)-Total	0.800 <0.00030		0.0010 0.00030	mg/L	09-MAR-15 09-MAR-15	0.000	0.000		
			0.00030	mg/L		0.002	0.002		
Tin (Sn)-Total Titanium (Ti)-Total	<0.0010 0.0049		0.0010	mg/L mg/L	09-MAR-15 09-MAR-15				
Tungsten (W)-Total	<0.010		0.0020	mg/L	09-MAR-15				
Uranium (U)-Total	0.0016		0.010	mg/L	09-MAR-15	0.02	0.02		
Vanadium (V)-Total	0.00118		0.00050	mg/L	09-MAR-15	0.0062	0.0062		
Zinc (Zn)-Total	0.0040		0.0030	mg/L	09-MAR-15	1.1	1.1		
Zirconium (Zr)-Total	<0.0040		0.0030	mg/L	09-MAR-15	1.1	1.1		
Volatile Organic Compounds	30.0040		0.0040	mg/L	53-WAIX-13				
Acetone	<30		30	ug/L	06-MAR-15	2700	2700		
Benzene	<0.50		0.50	ug/L ug/L	06-MAR-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L ug/L	06-MAR-15	5 16	16		
Bromoform Bromoform	<5.0 <5.0		5.0	ug/L ug/L	06-MAR-15	16 25			
Bromomethane	<0.50		0.50	ug/L ug/L	06-MAR-15		25		
Carbon tetrachloride	<0.50		0.50	_	06-MAR-15	0.89	0.89		
Carbon tetrachionde Chlorobenzene	<0.20		0.20	ug/L	06-MAR-15	0.79	5		
				ug/L		30	30		
Dibromochloromethane	<2.0		2.0	ug/L	06-MAR-15	25	25		
Chloroform	<1.0		1.0	ug/L	06-MAR-15	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	06-MAR-15	0.2	0.2		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 3 of 13

BAE-1453 GREELY							1	1-MAR-151	0:59 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1584186-1 BAE-MW1501									
Sampled By: CLIENT on 03-MAR-15 @ 09:00									
Matrix: WATER						#1	#2		
Volatile Organic Compounds									
1,2-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	3	3		
1,3-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	59	59		
1,4-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	06-MAR-15	590	590		
1,1-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	5	5		
1,2-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	1.6	5		
1,1-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	14		
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	06-MAR-15	1.6	17		
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	06-MAR-15	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	06-MAR-15	50	50		
1,2-Dichloropropane	<0.50		0.50	ug/L	06-MAR-15	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
Ethyl Benzene	<0.50		0.50	ug/L	06-MAR-15	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	06-MAR-15	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	06-MAR-15	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	06-MAR-15	640	640		
MTBE	<2.0		2.0	ug/L	06-MAR-15	15	15		
Styrene	<0.50		0.50	ug/L	06-MAR-15	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	06-MAR-15	1.1	1.1		
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L	06-MAR-15	1	1		
Tetrachloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
Toluene	<0.50		0.50	ug/L	06-MAR-15	24	24		
1,1,1-Trichloroethane	<0.50		0.50	ug/L	06-MAR-15	200	200		
1,1,2-Trichloroethane	<0.50		0.50	ug/L	06-MAR-15	4.7	5		
Trichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	06-MAR-15	150	150		
Vinyl chloride	<0.50		0.50	ug/L	06-MAR-15	0.5	1.7		
o-Xylene	<0.30		0.30	ug/L	06-MAR-15				
m+p-Xylenes Xylenes (Total)	<0.40 <0.50		0.40	ug/L	06-MAR-15	200	200		
Surrogate: 4-Bromofluorobenzene	96.5		0.50 70-130	ug/L %	06-MAR-15 06-MAR-15	300	300		
Surrogate: 1,4-Diffuorobenzene	101.3		70-130	%	06-MAR-15				
Hydrocarbons	101.5		10-130	/0	GO-IVI/AIX-13				
F1 (C6-C10)	<25		25	ug/L	06-MAR-15	750	750		
F1-BTEX	<25		25	ug/L	11-MAR-15	750	750 750		
F2 (C10-C16)	<100		100	ug/L	09-MAR-15	150	150		
F3 (C16-C34)	<250		250	ug/L	09-MAR-15	500	500		
F4 (C34-C50)	<250		250	ug/L	09-MAR-15	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	11-MAR-15	500	500		
Chrom. to baseline at nC50	YES			No Unit	09-MAR-15				
Surrogate: 2-Bromobenzotrifluoride	84.1		60-140	%	09-MAR-15				
Surrogate: 3,4-Dichlorotoluene	88.1		60-140	%	06-MAR-15				

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 4 of 13

AE-1453 GREELY	,, I I	.0712					1	Page 4 1-MAR-151	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1584186-2 BAE-MW1502									
Sampled By: CLIENT on 03-MAR-15 @ 10:3	30								
Matrix: WATER						#1	#2		
Total Metals									
Aluminum (Al)-Total	0.680		0.010	mg/L	09-MAR-15				
Antimony (Sb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.006	0.006		
Arsenic (As)-Total	0.0190		0.0010	mg/L	09-MAR-15	0.025	0.025		
Barium (Ba)-Total	0.0870		0.0020	mg/L	09-MAR-15	1	1		
Beryllium (Be)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.004	0.004		
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	09-MAR-15	0.004	0.004		
Boron (B)-Total	0.045		0.010	mg/L	09-MAR-15	5	5		
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	09-MAR-15	0.0027	0.0027		
Calcium (Ca)-Total	127		0.50	mg/L	09-MAR-15	0.0021	0.0021		
Chromium (Cr)-Total	0.00158		0.00050	mg/L	09-MAR-15	0.05	0.05		
Cobalt (Co)-Total	0.00171		0.00050	mg/L	09-MAR-15	0.0038	0.0038		
Copper (Cu)-Total	0.0175		0.00030	mg/L	09-MAR-15	0.0036	0.0038		
Iron (Fe)-Total	105	DLM	0.50	mg/L	09-MAR-15	0.001	0.001		
Lead (Pb)-Total	0.00086	DE	0.00050	mg/L	09-MAR-15	0.01	0.01		
Lithium (Li)-Total	<0.10		0.10	mg/L	09-MAR-15	0.01	0.01		
Magnesium (Mg)-Total	34.5		0.50	mg/L	09-MAR-15				
Manganese (Mn)-Total	0.249		0.0010	mg/L	09-MAR-15				
Molybdenum (Mo)-Total	0.00215		0.00050	mg/L	09-MAR-15	0.07	0.07		
Nickel (Ni)-Total	0.0027		0.0010	mg/L	09-MAR-15	0.1	0.1		
Phosphorus (P)-Total	0.354		0.050	mg/L	09-MAR-15				
Potassium (K)-Total	3.2		1.0	mg/L	09-MAR-15				
Selenium (Se)-Total	< 0.00040		0.00040	mg/L	09-MAR-15	0.01	0.01		
Silicon (Si)-Total	16.2		1.0	mg/L	09-MAR-15				
Silver (Ag)-Total	< 0.00010		0.00010	mg/L	09-MAR-15	0.0015	0.0015		
Sodium (Na)-Total	129	DLM	5.0	mg/L	09-MAR-15	490	490		
Strontium (Sr)-Total	1.28		0.0010	mg/L	09-MAR-15				
Thallium (TI)-Total	< 0.00030		0.00030	mg/L	09-MAR-15	0.002	0.002		
Tin (Sn)-Total	<0.0010		0.0010	mg/L	09-MAR-15				
Titanium (Ti)-Total	0.0288		0.0020	mg/L	09-MAR-15				
Tungsten (W)-Total	<0.010		0.010	mg/L	09-MAR-15				
Uranium (U)-Total	0.0035		0.0010	mg/L	09-MAR-15	0.02	0.02		
Vanadium (V)-Total	0.00548		0.00050	mg/L	09-MAR-15	0.0062	0.0062		
Zinc (Zn)-Total	0.0069		0.0030	mg/L	09-MAR-15	1.1	1.1		
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	09-MAR-15				
Volatile Organic Compounds Acetone	<30		30	uell	06-MAR-15	2700	2700		
				ug/L		2700	2700		
Benzene	<0.50		0.50	ug/L	06-MAR-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	06-MAR-15	16	16		
Bromoform	<5.0		5.0	ug/L	06-MAR-15	25	25		
Bromomethane	<0.50		0.50	ug/L	06-MAR-15	0.89	0.89		
Carbon tetrachloride	<0.20		0.20	ug/L	06-MAR-15	0.79	5		
Chlorobenzene	<0.50		0.50	ug/L	06-MAR-15	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	06-MAR-15	25	25		
Chloroform	<1.0		1.0	ug/L	06-MAR-15	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	06-MAR-15	0.2	0.2		
	1	1							

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 5 of 13

AE-1453 GREELY							1	1-MAR-15 1	0:59 (M
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
.1584186-2 BAE-MW1502									
Sampled By: CLIENT on 03-MAR-15 @ 10:30	미					#1	#2		
Matrix: WATER						#1	#2		
Volatile Organic Compounds									
1,2-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	3	3		
1,3-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	59	59		
1,4-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	06-MAR-15	590	590		
1,1-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	5	5		
1,2-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	1.6	5		
1,1-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	14		
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	06-MAR-15	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	06-MAR-15	50	50		
1,2-Dichloropropane	<0.50		0.50	ug/L	06-MAR-15	5	5		
cis-1,3-Dichloropropene	<0.30		0.30	ug/L	06-MAR-15				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
Ethyl Benzene	<0.50		0.50	ug/L	06-MAR-15	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	06-MAR-15	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	06-MAR-15	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	06-MAR-15	640	640		
MTBE	<2.0		2.0	ug/L	06-MAR-15	15	15		
Styrene	<0.50		0.50	ug/L	06-MAR-15	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	06-MAR-15	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	06-MAR-15	1	1		
Tetrachloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
Toluene	<0.50		0.50	ug/L	06-MAR-15	24	24		
1,1,1-Trichloroethane	<0.50		0.50	ug/L	06-MAR-15	200	200		
1,1,2-Trichloroethane	<0.50		0.50	ug/L	06-MAR-15	4.7	5		
Trichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	06-MAR-15	150	150		
Vinyl chloride	<0.50		0.50	ug/L	06-MAR-15	0.5	1.7		
o-Xylene	<0.30		0.30	ug/L	06-MAR-15				
m+p-Xylenes	<0.40		0.40	ug/L	06-MAR-15				
Xylenes (Total)	<0.50		0.50	ug/L	06-MAR-15	300	300		
Surrogate: 4-Bromofluorobenzene	96.0		70-130	%	06-MAR-15				
Surrogate: 1,4-Difluorobenzene	101.7		70-130	%	06-MAR-15				
lydrocarbons									
F1 (C6-C10)	<25		25	ug/L	06-MAR-15	750	750		
F1-BTEX	<25		25	ug/L	11-MAR-15	750	750		
F2 (C10-C16)	<100		100	ug/L	09-MAR-15	150	150		
F3 (C16-C34)	<250		250	ug/L	09-MAR-15	500	500		
F4 (C34-C50)	<250		250	ug/L	09-MAR-15	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	11-MAR-15				
Chrom. to baseline at nC50	YES			No Unit	09-MAR-15				
Surrogate: 2-Bromobenzotrifluoride	93.4		60-140	%	09-MAR-15				
Surrogate: 3,4-Dichlorotoluene	91.6		60-140	%	06-MAR-15				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 6 of 13

BAE-1453 GREELY							1	1-MAR-151	0:59 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			e Limits	
L1584186-3 BAE-MW1503									
Sampled By: CLIENT on 03-MAR-15 @ 12:00									
Matrix: WATER						#1	#2		
Total Metals									
Aluminum (Al)-Total	0.108		0.010	mg/L	09-MAR-15	0.000	0.000		
Antimony (Sb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.006	0.006		
Arsenic (As)-Total	0.0052		0.0010	mg/L	09-MAR-15	0.025	0.025		
Barium (Ba)-Total	0.0284		0.0020	mg/L	09-MAR-15	1	1		
Beryllium (Be)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.004	0.004		
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	09-MAR-15	_	_		
Boron (B)-Total	0.029		0.010	mg/L	09-MAR-15	5	5		
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	09-MAR-15	0.0027	0.0027		
Calcium (Ca)-Total	49.7		0.50	mg/L	09-MAR-15	0.05	0.05		
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.05	0.05		
Cobalt (Co)-Total	0.00055		0.00050	mg/L	09-MAR-15	0.0038	0.0038		
Copper (Cu)-Total	0.0112		0.0010	mg/L	09-MAR-15	0.087	0.087		
Iron (Fe)-Total	29.9		0.050	mg/L	09-MAR-15				
Lead (Pb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.01	0.01		
Lithium (Li)-Total	<0.10		0.10	mg/L	09-MAR-15				
Magnesium (Mg)-Total	13.9		0.50	mg/L	09-MAR-15				
Manganese (Mn)-Total	0.0885		0.0010	mg/L	09-MAR-15				
Molybdenum (Mo)-Total	0.00058		0.00050	mg/L	09-MAR-15	0.07	0.07		
Nickel (Ni)-Total	<0.0010		0.0010	mg/L	09-MAR-15	0.1	0.1		
Phosphorus (P)-Total	0.078 1.2		0.050 1.0	mg/L mg/L	09-MAR-15 09-MAR-15				
Potassium (K)-Total Selenium (Se)-Total	<0.00040		0.00040	mg/L	09-MAR-15	0.01	0.01		
Silicon (Si)-Total	10.2		1.0		09-MAR-15	0.01	0.01		
Silver (Aq)-Total	<0.00010		0.00010	mg/L mg/L	09-MAR-15	0.0015	0.0015		
Sodium (Na)-Total	139	DLM	5.0	mg/L	09-MAR-15	490	490		
Strontium (Sr)-Total	0.477	DLIVI	0.0010	mg/L	09-MAR-15	490	490		
Thallium (TI)-Total	<0.00030		0.00030	mg/L	09-MAR-15	0.002	0.002		
Tin (Sn)-Total	<0.0010		0.00030	mg/L	09-MAR-15	0.002	0.002		
Titanium (Ti)-Total	0.0010		0.0010	mg/L	09-MAR-15				
Tungsten (W)-Total	<0.010		0.0020	mg/L	09-MAR-15				
Uranium (U)-Total	0.0012		0.0010	mg/L	09-MAR-15	0.02	0.02		
Vanadium (V)-Total	0.00114		0.00050	mg/L	09-MAR-15	0.0062	0.0062		
Zinc (Zn)-Total	0.0059		0.0030	mg/L	09-MAR-15	1.1	1.1		
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	09-MAR-15		1.1		
Volatile Organic Compounds	-0.0040		0.0040	IIIg/L	03-W/AR-13				
Acetone	<30		30	ug/L	06-MAR-15	2700	2700		
Benzene	<0.50		0.50	ug/L	06-MAR-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L ug/L	06-MAR-15	16	16		
Bromoform	<5.0		5.0	ug/L	06-MAR-15	25	25		
Bromomethane	<0.50		0.50	ug/L	06-MAR-15	0.89	25 0.89		
Carbon tetrachloride	<0.50		0.50	ug/L ug/L	06-MAR-15	0.89	0.89 5		
	<0.50		0.50	_					
Chlorobenzene				ug/L	06-MAR-15	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	06-MAR-15	25	25		
Chloroform	<1.0		1.0	ug/L	06-MAR-15	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	06-MAR-15	0.2	0.2		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD....
Page 7 of 13

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
	Itesuit	Qualifier	D.L.	Office	Analyzeu		Odidelli	ic Lillito	
L1584186-3 BAE-MW1503									
Sampled By: CLIENT on 03-MAR-15 @ 12:00	'					#1	#2		
Matrix: WATER									
Volatile Organic Compounds									
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	06-MAR-15	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	06-MAR-15	59	59		
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	06-MAR-15	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	06-MAR-15	590	590		
1,1-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	5	5		
1,2-Dichloroethane	< 0.50		0.50	ug/L	06-MAR-15	1.6	5		
1,1-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	14		
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	06-MAR-15	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	06-MAR-15	50	50		
1,2-Dichloropropane	<0.50		0.50	ug/L	06-MAR-15	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
Ethyl Benzene	<0.50		0.50	ug/L	06-MAR-15	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	06-MAR-15	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	06-MAR-15	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	06-MAR-15	640	640		
MTBE	<2.0		2.0	ug/L	06-MAR-15	15	15		
Styrene	< 0.50		0.50	ug/L	06-MAR-15	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	06-MAR-15	1.1	1.1		
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L	06-MAR-15	1	1		
Tetrachloroethylene	< 0.50		0.50	ug/L	06-MAR-15	1.6	17		
Toluene	<0.50		0.50	ug/L	06-MAR-15	24	24		
1,1,1-Trichloroethane	< 0.50		0.50	ug/L	06-MAR-15	200	200		
1,1,2-Trichloroethane	< 0.50		0.50	ug/L	06-MAR-15	4.7	5		
Trichloroethylene	< 0.50		0.50	ug/L	06-MAR-15	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	06-MAR-15	150	150		
Vinyl chloride	< 0.50		0.50	ug/L	06-MAR-15	0.5	1.7		
o-Xylene	<0.30		0.30	ug/L	06-MAR-15				
m+p-Xylenes	<0.40		0.40	ug/L	06-MAR-15				
Xylenes (Total)	<0.50		0.50	ug/L	06-MAR-15	300	300		
Surrogate: 4-Bromofluorobenzene	95.9		70-130	%	06-MAR-15				
Surrogate: 1,4-Difluorobenzene	100.7		70-130	%	06-MAR-15				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	06-MAR-15	750	750		
F1-BTEX	<25		25	ug/L	11-MAR-15	750	750		
F2 (C10-C16)	<100		100	ug/L	09-MAR-15	150	150		
F3 (C16-C34)	<250		250	ug/L	09-MAR-15	500	500		
F4 (C34-C50)	<250		250	ug/L	09-MAR-15	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	11-MAR-15				
Chrom. to baseline at nC50	YES			No Unit	09-MAR-15				
Surrogate: 2-Bromobenzotrifluoride	82.6		60-140	%	09-MAR-15				
Surrogate: 3,4-Dichlorotoluene	83.1		60-140	%	06-MAR-15				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 8 of 13

BAE-1453 GREELY	ANALYI	ICAL	GUID	ELINE	REPUR	<u> </u>	1	Page 8 1-MAR-151	of 13 0:59 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1584186-4 BAE-MW1504									
Sampled By: CLIENT on 03-MAR-15 @ 13:30									
Matrix: WATER						#1	#2		
Total Metals									
Aluminum (Al)-Total	0.190		0.010	mg/L	09-MAR-15				
Antimony (Sb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.006	0.006		
Arsenic (As)-Total	0.0043		0.0010	mg/L	09-MAR-15	0.025	0.025		
Barium (Ba)-Total	0.0196		0.0020	mg/L	09-MAR-15	1	1		
Beryllium (Be)-Total	< 0.00050		0.00050	mg/L	09-MAR-15	0.004	0.004		
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	09-MAR-15	0.001			
Boron (B)-Total	0.026		0.010	mg/L	09-MAR-15	5	5		
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	09-MAR-15	0.0027	0.0027		
Calcium (Ca)-Total	24.4		0.50	mg/L	09-MAR-15				
Chromium (Cr)-Total	< 0.00050		0.00050	mg/L	09-MAR-15	0.05	0.05		
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.0038	0.0038		
Copper (Cu)-Total	0.0198		0.0010	mg/L	09-MAR-15	0.087	0.087		
Iron (Fe)-Total	23.2		0.050	mg/L	09-MAR-15				
Lead (Pb)-Total	< 0.00050		0.00050	mg/L	09-MAR-15	0.01	0.01		
Lithium (Li)-Total	<0.10		0.10	mg/L	09-MAR-15				
Magnesium (Mg)-Total	6.50		0.50	mg/L	09-MAR-15				
Manganese (Mn)-Total	0.0480		0.0010	mg/L	09-MAR-15				
Molybdenum (Mo)-Total	0.00062		0.00050	mg/L	09-MAR-15	0.07	0.07		
Nickel (Ni)-Total	<0.0010		0.0010	mg/L	09-MAR-15	0.1	0.1		
Phosphorus (P)-Total	0.075		0.050	mg/L	09-MAR-15				
Potassium (K)-Total	<1.0		1.0	mg/L	09-MAR-15				
Selenium (Se)-Total	<0.00040		0.00040	mg/L	09-MAR-15	0.01	0.01		
Silicon (Si)-Total	10.6		1.0	mg/L	09-MAR-15				
Silver (Ag)-Total	<0.00010		0.00010	mg/L	09-MAR-15	0.0015	0.0015		
Sodium (Na)-Total	144	DLM	5.0	mg/L	09-MAR-15	490	490		
Strontium (Sr)-Total	0.229		0.0010	mg/L	09-MAR-15				
Thallium (TI)-Total	<0.00030		0.00030	mg/L	09-MAR-15	0.002	0.002		
Tin (Sn)-Total	<0.0010		0.0010	mg/L	09-MAR-15				
Titanium (Ti)-Total	0.0063 <0.010		0.0020 0.010	mg/L	09-MAR-15				
Tungsten (W)-Total Uranium (U)-Total	<0.010		0.010	mg/L mg/L	09-MAR-15 09-MAR-15	0.02	0.02		
Vanadium (V)-Total	0.00144		0.00050	mg/L	09-MAR-15	0.02	0.02		
Zinc (Zn)-Total	0.00144		0.00030	mg/L	09-MAR-15	1.1	1.1		
Zirconium (Zr)-Total	<0.0040		0.0030	mg/L	09-MAR-15	1.1	1.1		
Volatile Organic Compounds	~0.0040		0.0040	IIIg/L	UB-IVIAIT-15				
Acetone	<30		30	ug/L	06-MAR-15	2700	2700		
Benzene	<0.50		0.50	ug/L ug/L	06-MAR-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L ug/L	06-MAR-15	16	16		
Bromoform	<5.0		5.0	ug/L	06-MAR-15				
Bromomethane	<0.50		0.50	ug/L ug/L	06-MAR-15	25 0.89	25 0.89		
Carbon tetrachloride	<0.50		0.50	ug/L ug/L	06-MAR-15	0.89	0.89		
Chlorobenzene	<0.50		0.50	ug/L ug/L	06-MAR-15	30	30		
Dibromochloromethane	<0.50 <2.0		2.0	ug/L ug/L	06-MAR-15	30 25	30 25		
Chloroform	<1.0		1.0	ug/L ug/L	06-MAR-15				
	<0.20		0.20		06-MAR-15	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	00-WAR-15	0.2	0.2		1

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 9 of 13 11-MAR-15 10:59 (MT)

AE-1453 GREELY							1	1-MAR-151	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
.1584186-4 BAE-MW1504									
Sampled By: CLIENT on 03-MAR-15 @ 13:30									
Matrix: WATER						#1	#2		
Volatile Organic Compounds									
1,2-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	3	3		
1,3-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	59	59		
1,4-Dichlorobenzene	<0.50		0.50	ug/L	06-MAR-15	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	06-MAR-15	590	590		
1,1-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	5	5		
1,2-Dichloroethane	<0.50		0.50	ug/L	06-MAR-15	1.6	5		
1,1-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	14		
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
1,3-Dichloropropene (cis & trans)	<0.50		0.50	ug/L	06-MAR-15	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	06-MAR-15	50	50		
1,2-Dichloropropane	<0.50		0.50	ug/L	06-MAR-15	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
trans-1,3-Dichloropropene	<0.30		0.30	ug/L	06-MAR-15				
Ethyl Benzene	<0.50		0.50	ug/L	06-MAR-15	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	06-MAR-15	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	06-MAR-15	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	06-MAR-15	640	640		
MTBE	<2.0		2.0	ug/L	06-MAR-15	15	15		
Styrene	<0.50		0.50	ug/L	06-MAR-15	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	06-MAR-15	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	06-MAR-15	1	1		
Tetrachloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
Toluene	<0.50		0.50	ug/L	06-MAR-15	24	24		
1,1,1-Trichloroethane	<0.50		0.50	ug/L	06-MAR-15	200	200		
1,1,2-Trichloroethane	<0.50		0.50	ug/L	06-MAR-15	4.7	5		
Trichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	5		
Trichlorofluoromethane	<5.0		5.0	ug/L	06-MAR-15	150	150		
Vinyl chloride	<0.50		0.50	ug/L	06-MAR-15	0.5	1.7		
o-Xylene	< 0.30		0.30	ug/L	06-MAR-15				
m+p-Xylenes	<0.40		0.40	ug/L	06-MAR-15				
Xylenes (Total)	<0.50		0.50	ug/L	06-MAR-15	300	300		
Surrogate: 4-Bromofluorobenzene	95.8		70-130	%	06-MAR-15				
Surrogate: 1,4-Difluorobenzene	100.8		70-130	%	06-MAR-15				
lydrocarbons									
F1 (C6-C10)	<25		25	ug/L	06-MAR-15	750	750		
F1-BTEX	<25		25	ug/L	11-MAR-15	750	750		
F2 (C10-C16)	<100		100	ug/L	09-MAR-15	150	150		
F3 (C16-C34)	<250		250	ug/L	09-MAR-15	500	500		
F4 (C34-C50)	<250		250	ug/L	09-MAR-15	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	11-MAR-15				
Chrom. to baseline at nC50	YES			No Unit	09-MAR-15				
Surrogate: 2-Bromobenzotrifluoride	96.9	1	60-140	%	09-MAR-15				
Surrogate: 3,4-Dichlorotoluene	90.4		60-140	%	06-MAR-15				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 10 of 13 11-MAR-15 10:59 (MT)

AE-1453 GREELY							1	1-MAR-15 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L1584186-5 BAE-MW1505									
Sampled By: CLIENT on 03-MAR-15 @ 15:00									
Matrix: WATER						#1	#2		
Tradition .									
Total Metals									
Aluminum (AI)-Total	0.093		0.010	mg/L	09-MAR-15				
Antimony (Sb)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.006	0.006		
Arsenic (As)-Total	0.0043		0.0010	mg/L	09-MAR-15	0.025	0.025		
Barium (Ba)-Total	0.0273		0.0020	mg/L	09-MAR-15	1	1		
Beryllium (Be)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.004	0.004		
Bismuth (Bi)-Total	< 0.0010		0.0010	mg/L	09-MAR-15				
Boron (B)-Total	0.040		0.010	mg/L	09-MAR-15	5	5		
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	09-MAR-15	0.0027	0.0027		
Calcium (Ca)-Total	99.7		0.50	mg/L	09-MAR-15				
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	09-MAR-15	0.05	0.05		
Cobalt (Co)-Total	0.00080		0.00050	mg/L	09-MAR-15	0.0038	0.0038		
Copper (Cu)-Total	0.0081		0.0010	mg/L	09-MAR-15	0.087	0.087		
Iron (Fe)-Total	21.8		0.050	mg/L	09-MAR-15				
Lead (Pb)-Total	< 0.00050		0.00050	mg/L	09-MAR-15	0.01	0.01		
Lithium (Li)-Total	<0.10		0.10	mg/L	09-MAR-15				
Magnesium (Mg)-Total	27.7		0.50	mg/L	09-MAR-15				
Manganese (Mn)-Total	0.172		0.0010	mg/L	09-MAR-15				
Molybdenum (Mo)-Total	0.00065		0.00050	mg/L	09-MAR-15	0.07	0.07		
Nickel (Ni)-Total	0.0010		0.0010	mg/L	09-MAR-15	0.1	0.1		
Phosphorus (P)-Total	0.058		0.050	mg/L	09-MAR-15				
Potassium (K)-Total	2.6		1.0	mg/L	09-MAR-15				
Selenium (Se)-Total	<0.00040		0.00040	mg/L	09-MAR-15	0.01	0.01		
Silicon (Si)-Total	10.7		1.0	mg/L	09-MAR-15				
Silver (Ag)-Total	<0.00010		0.00010	mg/L	09-MAR-15	0.0015	0.0015		
Sodium (Na)-Total	136	DLM	5.0	mg/L	09-MAR-15	490	490		
Strontium (Sr)-Total	0.921		0.0010	mg/L	09-MAR-15				
Thallium (TI)-Total	<0.00030		0.00030	mg/L	09-MAR-15	0.002	0.002		
Tin (Sn)-Total	<0.0010		0.0010	mg/L	09-MAR-15				
Titanium (Ti)-Total	0.0035		0.0020	mg/L	09-MAR-15				
Tungsten (W)-Total	<0.010		0.010	mg/L	09-MAR-15				
Uranium (U)-Total	0.0016		0.0010	mg/L	09-MAR-15	0.02	0.02		
Vanadium (V)-Total	0.00096		0.00050	mg/L	09-MAR-15	0.0062	0.0062		
Zinc (Zn)-Total	0.0044		0.0030	mg/L	09-MAR-15	1.1	1.1		
Zirconium (Zr)-Total	< 0.0040		0.0040	mg/L	09-MAR-15				
Volatile Organic Compounds				-					
Acetone	<30		30	ug/L	06-MAR-15	2700	2700		
Benzene	<0.50		0.50	ug/L	06-MAR-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	06-MAR-15	16	16		
Bromoform	<5.0		5.0	ug/L	06-MAR-15	25	25		
Bromomethane	<0.50		0.50	ug/L	06-MAR-15	0.89	0.89		
Carbon tetrachloride	<0.20		0.20	ug/L	06-MAR-15	0.79	5		
Chlorobenzene	<0.50		0.50	ug/L	06-MAR-15	30	30		
Dibromochloromethane	<2.0		2.0	_	06-MAR-15				
Chloroform	l			ug/L	1	25	25		
	<1.0		1.0	ug/L	06-MAR-15	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	06-MAR-15	0.2	0.2		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1584186 CONTD.... Page 11 of 13

Sample Detai Grouping	ls Analyte	Result	Qualifier	D.L.		Guideline Limits				
.1584186-5	BAE-MW1505	rtoodit		D.L.	Units	Analyzed		Guidoiii	io Eiiiito	
Sampled By:	CLIENT on 03-MAR-15 @ 15:00									
Matrix:	WATER						#1	#2		
_	nic Compounds									
1,2-Dichlo		<0.50		0.50	ug/L	06-MAR-15	3	3		
1,3-Dichlo		<0.50		0.50	ug/L	06-MAR-15	59	59		
1,4-Dichlo		<0.50		0.50	ug/L	06-MAR-15	1	1		
	fluoromethane	<2.0		2.0	ug/L	06-MAR-15	590	590		
1,1-Dichlo		<0.50		0.50	ug/L	06-MAR-15	5	5		
1,2-Dichlo		<0.50		0.50	ug/L	06-MAR-15	1.6	5		
1,1-Dichlo	roethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	14		
cis-1,2-Dic	thloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
trans-1,2-[Dichloroethylene	<0.50		0.50	ug/L	06-MAR-15	1.6	17		
1,3-Dichlo	ropropene (cis & trans)	< 0.50		0.50	ug/L	06-MAR-15	0.5	0.5		
Methylene	Chloride	<5.0		5.0	ug/L	06-MAR-15	50	50		
1,2-Dichlo	ropropane	< 0.50		0.50	ug/L	06-MAR-15	5	5		
cis-1,3-Dic	hloropropene	< 0.30		0.30	ug/L	06-MAR-15				
trans-1,3-[Dichloropropene	< 0.30		0.30	ug/L	06-MAR-15				
Ethyl Benz	tene	< 0.50		0.50	ug/L	06-MAR-15	2.4	2.4		
n-Hexane		< 0.50		0.50	ug/L	06-MAR-15	51	520		
Methyl Eth	yl Ketone	<20		20	ug/L	06-MAR-15	1800	1800		
Methyl Iso	butyl Ketone	<20		20	ug/L	06-MAR-15	640	640		
MTBE	-	<2.0		2.0	ug/L	06-MAR-15	15	15		
Styrene		< 0.50		0.50	ug/L	06-MAR-15	5.4	5.4		
-	trachloroethane	< 0.50		0.50	ug/L	06-MAR-15	1.1	1.1		
	trachloroethane	<0.50		0.50	ug/L	06-MAR-15	1	1		
Tetrachlor		<0.50		0.50	ug/L	06-MAR-15	1.6	17		
Toluene	ooy.one	<0.50		0.50	ug/L	06-MAR-15	24	24		
	loroethane	<0.50		0.50	ug/L	06-MAR-15	200	200		
	iloroethane	<0.50		0.50	ug/L	06-MAR-15	4.7	5		
Trichloroet		<0.50		0.50	ug/L	06-MAR-15	1.6	5		
	uoromethane	<5.0		5.0	ug/L	06-MAR-15	150	150		
Vinyl chlor		<0.50		0.50	ug/L ug/L	06-MAR-15	0.5			
-	ide				_	1 1	0.5	1.7		
o-Xylene	200	<0.30 <0.40		0.30 0.40	ug/L	06-MAR-15 06-MAR-15				
m+p-Xyler Xylenes (T	I	<0.40		0.40	ug/L ug/L	06-MAR-15	300	300		
	4-Bromofluorobenzene	95.4		70-130	wg/L %	06-MAR-15	300	300		
_	1,4-Difluorobenzene	101.0		70-130	%	06-MAR-15				
Surrogate. Hydrocarbon	-	101.0		70-130	/0	OU-MAIN-10				
F1 (C6-C1		<25		25	ug/L	06-MAR-15	750	750		
	0)			25 25	_	1 1	750	750		
F1-BTEX	16)	<25			ug/L	11-MAR-15	750	750		
F2 (C10-C	•	<100		100	ug/L	09-MAR-15	150	150		
F3 (C16-C		<250		250	ug/L	09-MAR-15	500	500		
F4 (C34-C	•	<250		250	ug/L	09-MAR-15	500	500		
-	ocarbons (C6-C50)	<370		370	ug/L	11-MAR-15				
	baseline at nC50	YES		00.446	No Unit	09-MAR-15				
_	2-Bromobenzotrifluoride	85.8		60-140	%	09-MAR-15				
Surrogate:	3,4-Dichlorotoluene	81.8		60-140	%	06-MAR-15				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

BAE-1453 GREELY

L1584186 CONTD.... Page 12 of 13 11-MAR-15 10:59 (MT)

Reference Information

Sample Parameter Qualifier key listed:

Qualifier	Description			
DLM	Detection Limit Adjust	ed due to sample matrix effects.		
Methods Listed	(if applicable):			-
ALS Test Code	Matrix	Test Description	Method Reference***	
F1-F4-511-CALC	C-WT Water	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC DEC-2000 - PUB# 1310-L	

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed , F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average
- Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
 Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-T-MS-WT Water Total Metals in Water by ICPMS EPA 200.8

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

VOC-1,3-DCP-CALC-WT Water SW8260B/SW8270C Regulation 153 VOCs VOC-511-HS-WT Water VOC by GCMS HS O.Reg SW846 8260 153/04 (July 2011)

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-Sum of Xylene Isomer CALCULATION WT Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

BAE-1453 GREELY

L1584186 CONTD.... Page 13 of 13 11-MAR-15 10:59 (MT)

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Phone: (519) 886-6910 Fax: (519) 886-9047 CANADA TOLL FREE: 1-800-668-9878	L.S.) Blote: all EAF Quoted material is in husloms, it stability holidays and weekends. TAT sample 2.000m or Saturday/Sunday begin the next dis	Va recury				Date requested	5 day (Re 3-4 day 7		led	2 (my TAT (50%) Next day TAT (100%) Same day TAT (200%) subscall softles Fallo Fill	(Den)
ALS ACCOUNTS 1905	CRITERIA Coltena on report (y/n)	+ +	7	7	7	ANALYSIS RE	QUEST	// /	12	PRESERVED (F/P)	IN(ED)
PROJECT MANAGER S. E.M. M. S. PROJECT & BAE. 1953 GREELY PHONE 705.715-1881 FAX. GUOTATION # BAMPLING INFORMATION Sample Date/Time Type MATRIX Owner Type MATRIX	Table 1 2 3 TCLP MISA PWOO	9 9 9 9 Authreen of Couragens	RATER VOCA	KKKK F12,3,4	RICK Metal Scan					SUBMISSION B LISS 4 1 8 EN ERRED DY AC DATE/TIME ENTERED: OS - Max EN E COMMENTS	C-15
CAMPLIC BY THE ARCHITECTS NOTES AND CONDITIONS NOTES AND CONDIT	SPECIAL INSTRUCTIONS/COMME Pacial instructions/comme Macalla Ma		/ _{PL}	5 R	4	CS- H	DR - 15	10:0	SS	SAMPLE COND PROJECT COND AMBIENT CONSTITION AND ENTROPE OF THE WAS RECEIPT FOR A	MEAN TEMP

8577382 Canada Inc. - BAE Environmental

ATTN: BRIAN EMMS RR 1 ORO STATION ORO STATION ON LOL 2E0 Date Received: 15-MAY-15

Report Date: 21-MAY-15 10:10 (MT)

Version: FINAL

Client Phone: 705-715-1881

Certificate of Analysis

 Lab Work Order #:
 L1612833

 Project P.O. #:
 NOT SUBMITTED

 Job Reference:
 BAE-1453

 C of C Numbers:
 154206

Legal Site Desc:

Mathumai Ganeshakumar Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062

ALS CANADA LTD | Part of the ALS Group | A Campbell Brothers Limited Company

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1612833 CONTD.... Page 2 of 7

AE-1453							2	1 age 2 1-MAY-15 1	0:10 (M
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1612833-1 BAE-MW1506									
Sampled By: CLIENT on 15-MAY-15 @ 07:0	0								
Matrix: WATER						#1	#2		
Dissolved Metals									
Dissolved Metals Filtration Location	FIELD			No Unit	19-MAY-15				
Antimony (Sb)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	6	6		
Arsenic (As)-Dissolved	<1.0		1.0	ug/L	20-MAY-15	25	25		
Barium (Ba)-Dissolved	202		2.0	ug/L	20-MAY-15	1000	1000		
Beryllium (Be)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	4	4		
Boron (B)-Dissolved	32		10	ug/L	20-MAY-15	5000	5000		
Cadmium (Cd)-Dissolved	< 0.10		0.10	ug/L	20-MAY-15	2.7	2.7		
Chromium (Cr)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	50	50		
Cobalt (Co)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	3.8	3.8		
Copper (Cu)-Dissolved	5.2		1.0	ug/L	20-MAY-15	87	87		
Lead (Pb)-Dissolved	<1.0		1.0	ug/L	20-MAY-15	10	10		
Molybdenum (Mo)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	70	70		
Nickel (Ni)-Dissolved	<1.0		1.0	ug/L	20-MAY-15	100	100		
Selenium (Se)-Dissolved	<5.0		5.0	ug/L	20-MAY-15	10	10		
Silver (Ag)-Dissolved	<0.10		0.10	ug/L	20-MAY-15	1.5	1.5		
Sodium (Na)-Dissolved	33600		500	ug/L	20-MAY-15	490000	490000		
Thallium (TI)-Dissolved	< 0.30		0.30	ug/L	20-MAY-15	2	2		
Uranium (U)-Dissolved	<2.0		2.0	ug/L	20-MAY-15	20	20		
Vanadium (V)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	6.2	6.2		
Zinc (Zn)-Dissolved	141		3.0	ug/L	20-MAY-15	1100	1100		
Volatile Organic Compounds									
Acetone	<30		30	ug/L	21-MAY-15	2700	2700		
Benzene	< 0.50		0.50	ug/L	21-MAY-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	21-MAY-15	16	16		
Bromoform	<5.0		5.0	ug/L	21-MAY-15	25	25		
Bromomethane	< 0.50		0.50	ug/L	21-MAY-15	0.89	0.89		
Carbon tetrachloride	<0.20		0.20	ug/L	21-MAY-15	0.79	5		
Chlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	21-MAY-15	25	25		
Chloroform	<1.0		1.0	ug/L	21-MAY-15	2.4	22		
1,2-Dibromoethane	<0.20		0.20	ug/L	21-MAY-15	0.2	0.2		
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	59	59		
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	21-MAY-15	590	590		
1,1-Dichloroethane	< 0.50		0.50	ug/L	21-MAY-15	5	5		
1,2-Dichloroethane	< 0.50		0.50	ug/L	21-MAY-15	1.6	5		
1,1-Dichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	14		
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	17		
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	17		
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	21-MAY-15	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	21-MAY-15	50	50		
1,2-Dichloropropane	< 0.50		0.50	ug/L	21-MAY-15	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	21-MAY-15				
	1	1 1		I	1	I	I	I	I

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

^{#1:} T2-Ground Water (Coarse Soil)-All Types of Property Use

L1612833 CONTD.... Page 3 of 7 1-MAY-15 10:10 (MT)

Sample Details Grouping Analyte Result Qualifier D.L. Units Analyzed Guideline Limits	
Matrix: WATER #1 #2 #2 #1 #2 #2 #2 #2 #2	
Matrix: WATER	
Volatile Organic Compounds trans-1,3-Dichloropropene	
trans-1_3-Dichloropropene	
trans-1_3-Dichloropropene	
Ethylbenzene	
N-Hexane	
Methyl Ethyl Ketone <20 20 ug/L 21-MAY-15 1800 1800 Methyl Isobutyl Ketone <20	
MTBE <2.0 ug/L 21-MAY-15 15 15 Styrene <0.50	
Styrene	
1,1,1,2-Tetrachloroethane	
1,1,1,2-Tetrachloroethane <0.50	
1,1,2,2-Tetrachloroethane <0.50	
Toluene	
Toluene	
1,1,1-Trichloroethane	
1,1,2-Trichloroethane	
Trichloroethylene <0.50	
Trichlorofluoromethane <5.0	
Vinyl chloride <0.50	
o-Xylene	
m+p-Xylenes <0.40	
Surrogate: 4-Bromofluorobenzene 92.1 70-130 % 21-MAY-15 Surrogate: 1,4-Difluorobenzene 98.3 70-130 % 21-MAY-15 Hydrocarbons F1 (C6-C10) <25	
Surrogate: 1,4-Difluorobenzene 98.3 70-130 % 21-MAY-15 Hydrocarbons F1 (C6-C10) <25 25 ug/L 21-MAY-15 750 750 F1-BTEX <25 25 ug/L 21-MAY-15 750 750 F2 (C10-C16) <100 100 ug/L 20-MAY-15 150 150 F3 (C16-C34) <250 250 ug/L 20-MAY-15 500 500 F4 (C34-C50) <250 250 ug/L 20-MAY-15 500 500 Total Hydrocarbons (C8-C50) <370 370 ug/L 21-MAY-15	
Hydrocarbons 25 25 ug/L 21-MAY-15 750 750 F1-BTEX <25	
F1 (C6-C10)	
F1-BTEX	
F2 (C10-C16)	
F3 (C16-C34)	
F4 (C34-C50)	
Total Hydrocarbons (C6-C50) <370 370 ug/L 21-MAY-15	
Chrom. to baseline at nC50 YES No Unit 20-MAY-15	
Surrogate: 2-Bromobenzotrifluoride 79.4 60-140 % 20-MAY-15	
Surrogate: 3,4-Dichlorotoluene 99.9 60-140 % 21-MAY-15	
.1612833-2 BAE-MW1507	
Sampled By: CLIENT on 15-MAY-15 @ 07:15	
Matrix: WATER #1 #2	
Dissolved Metals	
Dissolved Metals Filtration Location FIELD No Unit 19-MAY-15	
Antimony (Sb)-Dissolved <0.50 0.50 ug/L 20-MAY-15 6 6	
Arsenic (As)-Dissolved <1.0 1.0 ug/L 20-MAY-15 25 25	
Barium (Ba)-Dissolved 197 2.0 ug/L 20-MAY-15 1000 1000	
Beryllium (Be)-Dissolved <0.50 0.50 ug/L 20-MAY-15 4 4	
Boron (B)-Dissolved 32 10 ug/L 20-MAY-15 5000 5000	
Cadmium (Cd)-Dissolved <0.10 0.10 ug/L 20-MAY-15 2.7 2.7	
Chromium (Cr)-Dissolved <0.50 0.50 ug/L 20-MAY-15 50 50	
Cobalt (Co)-Dissolved <0.50 0.50 ug/L 20-MAY-15 3.8 3.8	

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1612833 CONTD.... Page 4 of 7

AE-1453	ANALII	IOAL	OOID	LLIIVL	IKEI OI		2	4 Page 1-MAY-15	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits	
L1612833-2 BAE-MW1507									
Sampled By: CLIENT on 15-MAY-15 @ 07:15	5								
Matrix: WATER						#1	#2		
Dissolved Metals									
Copper (Cu)-Dissolved	5.6		1.0	ug/L	20-MAY-15	87	87		
Lead (Pb)-Dissolved	<1.0		1.0	ug/L	20-MAY-15	10	10		
Molybdenum (Mo)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	70	70		
Nickel (Ni)-Dissolved	<1.0		1.0	ug/L	20-MAY-15	100	100		
Selenium (Se)-Dissolved	<5.0		5.0	ug/L	20-MAY-15	10	10		
Silver (Ag)-Dissolved	< 0.10		0.10	ug/L	20-MAY-15	1.5	1.5		
Sodium (Na)-Dissolved	33100		500	ug/L	20-MAY-15	490000	490000		
Thallium (TI)-Dissolved	< 0.30		0.30	ug/L	20-MAY-15	2	2		
Uranium (U)-Dissolved	<2.0		2.0	ug/L	20-MAY-15	20	20		
Vanadium (V)-Dissolved	< 0.50		0.50	ug/L	20-MAY-15	6.2	6.2		
Zinc (Zn)-Dissolved	139		3.0	ug/L	20-MAY-15	1100	1100		
Volatile Organic Compounds				_					
Acetone	<30		30	ug/L	21-MAY-15	2700	2700		
Benzene	< 0.50		0.50	ug/L	21-MAY-15	5	5		
Bromodichloromethane	<2.0		2.0	ug/L	21-MAY-15	16	16		
Bromoform	<5.0		5.0	ug/L	21-MAY-15	25	25		
Bromomethane	< 0.50		0.50	ug/L	21-MAY-15	0.89	0.89		
Carbon tetrachloride	< 0.20		0.20	ug/L	21-MAY-15	0.79	5		
Chlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	30	30		
Dibromochloromethane	<2.0		2.0	ug/L	21-MAY-15	25	25		
Chloroform	<1.0		1.0	ug/L	21-MAY-15	2.4	22		
1,2-Dibromoethane	< 0.20		0.20	ug/L	21-MAY-15	0.2	0.2		
1,2-Dichlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	3	3		
1,3-Dichlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	59	59		
1,4-Dichlorobenzene	< 0.50		0.50	ug/L	21-MAY-15	1	1		
Dichlorodifluoromethane	<2.0		2.0	ug/L	21-MAY-15	590	590		
1,1-Dichloroethane	< 0.50		0.50	ug/L	21-MAY-15	5	5		
1,2-Dichloroethane	< 0.50		0.50	ug/L	21-MAY-15	1.6	5		
1,1-Dichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	14		
cis-1,2-Dichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	17		
trans-1,2-Dichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	17		
1,3-Dichloropropene (cis & trans)	< 0.50		0.50	ug/L	21-MAY-15	0.5	0.5		
Methylene Chloride	<5.0		5.0	ug/L	21-MAY-15	50	50		
1,2-Dichloropropane	< 0.50		0.50	ug/L	21-MAY-15	5	5		
cis-1,3-Dichloropropene	< 0.30		0.30	ug/L	21-MAY-15				
trans-1,3-Dichloropropene	< 0.30		0.30	ug/L	21-MAY-15				
Ethylbenzene	< 0.50		0.50	ug/L	21-MAY-15	2.4	2.4		
n-Hexane	<0.50		0.50	ug/L	21-MAY-15	51	520		
Methyl Ethyl Ketone	<20		20	ug/L	21-MAY-15	1800	1800		
Methyl Isobutyl Ketone	<20		20	ug/L	21-MAY-15	640	640		
MTBE	<2.0		2.0	ug/L	21-MAY-15	15	15		
Styrene	<0.50		0.50	ug/L	21-MAY-15	5.4	5.4		
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L	21-MAY-15	1.1	1.1		
1,1,2,2-Tetrachloroethane	< 0.50		0.50	ug/L	21-MAY-15	1	1		

^{**}Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

L1612833 CONTD.... Page 5 of 7

AE-1453							21-MAY-15 10:10 (MT)			
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits		
1612833-2 BAE-MW1507										
Sampled By: CLIENT on 15-MAY-15 @ 07:15										
Matrix: WATER						#1	#2			
Volatile Organic Compounds										
Tetrachloroethylene	<0.50		0.50	ug/L	21-MAY-15	1.6	17			
Toluene	< 0.50		0.50	ug/L	21-MAY-15	24	24			
1,1,1-Trichloroethane	<0.50		0.50	ug/L	21-MAY-15	200	200			
1,1,2-Trichloroethane	<0.50		0.50	ug/L	21-MAY-15	4.7	5			
Trichloroethylene	< 0.50		0.50	ug/L	21-MAY-15	1.6	5			
Trichlorofluoromethane	<5.0		5.0	ug/L	21-MAY-15	150	150			
Vinyl chloride	< 0.50		0.50	ug/L	21-MAY-15	0.5	1.7			
o-Xylene	< 0.30		0.30	ug/L	21-MAY-15					
m+p-Xylenes	<0.40		0.40	ug/L	21-MAY-15					
Xylenes (Total)	<0.50		0.50	ug/L	21-MAY-15	300	300			
Surrogate: 4-Bromofluorobenzene	92.0		70-130	%	21-MAY-15					
Surrogate: 1,4-Difluorobenzene	98.4		70-130	%	21-MAY-15					
ydrocarbons										
F1 (C6-C10)	<25		25	ug/L	21-MAY-15	750	750			
F1-BTEX	<25		25	ug/L	21-MAY-15	750	750			
F2 (C10-C16)	<100		100	ug/L	20-MAY-15	150	150			
F3 (C16-C34)	<250		250	ug/L	20-MAY-15	500	500			
F4 (C34-C50)	<250		250	ug/L	20-MAY-15	500	500			
Total Hydrocarbons (C6-C50)	<370		370	ug/L	21-MAY-15					
Chrom. to baseline at nC50	YES			No Unit	20-MAY-15					
Surrogate: 2-Bromobenzotrifluoride	78.6 97.5		60-140 60-140	%	20-MAY-15					
Surrogate: 3,4-Dichlorotoluene	97.5		00-140	76	21-MAY-15					

[&]quot;Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T2-POTABLE-GROUNDWATER-ALL-TYPES-OF-PROPERTY-USE

#1: T2-Ground Water (Coarse Soil)-All Types of Property Use

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

BAE-1453

L1612833 CONTD Page 6 of 7 21-MAY-15 10:10 (MT)

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference***
F1-F4-511-CALC-WT	Water	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC DEC-2000 - PUB# 1310-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed , F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- All extraction and analysis holding times were met.
 Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by liquid/liquid extraction with a solvent. The solvent recovered from the extracted sample is dried and treated to remove polar material. The extract is then analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Diss. Metals in Water by ICPMS EPA 200.8 MET-D-UG/L-MS-WT Water

(ug/L)

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

VOC-1.3-DCP-CALC-WT Water Regulation 153 VOCs SW8260B/SW8270C VOC-511-HS-WT Water VOC by GCMS HS O.Reg 153/04 (July 2011) SW846 8260

Liquid samples are analyzed by headspace GC/MSD.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

XYLENES-SUM-CALC-CALCULATION Water Sum of Xylene Isomer

Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

154206

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

BAE-1453

L1612833 CONTD.... Page 7 of 7 21-MAY-15 10:10 (MT)

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Quality Control Report

Workorder: L1612833 Report Date: 21-MAY-15 Page 1 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Contact: BRIAN EMMS

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Water							
Batch R3193131								
WG2090185-4 DUP F1 (C6-C10)		WG2090185-3 <25	<25	RPD-NA	ug/L	N/A	30	21-MAY-15
WG2090185-1 LCS F1 (C6-C10)			97.9		%		80-120	21-MAY-15
WG2090185-2 MB F1 (C8-C10)			<25		ug/L		25	21-MAY-15
Surrogate: 3,4-Dichloroto	luene		105.9		%		60-140	21-MAY-15
WG2090185-5 MS F1 (C6-C10)		WG2090185-3	86.3		%		60-140	21-MAY-15
F2-F4-511-WT	Water							
Batch R3192932								
WG2091301-1 CVS								
F2 (C10-C16)			103.5		%		80-120	20-MAY-15
F3 (C16-C34)			104.0		%		80-120	20-MAY-15
F4 (C34-C50)			108.7		%		80-120	20-MAY-15
WG2091301-2 CVS F2 (C10-C16)			102.4		%		80-120	20-MAY-15
F3 (C16-C34)			103.3		%		80-120	20-MAY-15
F4 (C34-C50)			108.7		%		80-120	20-MAY-15
WG2090801-2 LCS							00 120	20 111111110
F2 (C10-C16)			92.7		%		65-135	20-MAY-15
F3 (C16-C34)			98.9		%		65-135	20-MAY-15
F4 (C34-C50)			100.6		%		65-135	20-MAY-15
WG2090801-3 LCSD F2 (C10-C16)		WG2090801-2 92.7	92.5		%	0.2	50	20-MAY-15
F3 (C16-C34)		98.9	105.0		%	6.0	50	20-MAY-15
F4 (C34-C50)		100.6	106.7		%	5.8	50	20-MAY-15
WG2090801-1 MB F2 (C10-C16)			<100		ug/L		100	20-MAY-15
F3 (C16-C34)			<250		ug/L		250	
F4 (C34-C50)			<250		ug/L		250	20-MAY-15
Surrogate: 2-Bromobenzo	strifluoride		79.2		ug/L %		60-140	20-MAY-15
ourrogate: 2-bromobenzo	Jumuoride		18.2		/0		00-140	20-MAY-15

Quality Control Report

Workorder: L1612833 Report Date: 21-MAY-15 Page 2 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Contact: BRIAN EMMS

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-W	T Water							
Batch R3	192329							
WG2090422-1 Antimony (Sb)-D	CVS Dissolved		99.6		%		80-120	19-MAY-15
Arsenic (As)-Dis			99.9		%		80-120	19-MAY-15
Barium (Ba)-Dis			101.6		%		80-120	19-MAY-15
Beryllium (Be)-D			103.6		%		80-120	19-MAY-15
Boron (B)-Disso			100.8		%		80-120	19-MAY-15
Cadmium (Cd)-I			101.4		%		80-120	19-MAY-15
Chromium (Cr)-I			99.7		%		80-120	19-MAY-15
Cobalt (Co)-Diss			102.2		%		80-120	19-MAY-15
Copper (Cu)-Dis			102.4		%		80-120	19-MAY-15
Lead (Pb)-Disso			100.5		%		80-120	19-MAY-15
Molybdenum (M			97.8		%		80-120	19-MAY-15
Nickel (Ni)-Disso	•		100.7		%		80-120	19-MAY-15
Selenium (Se)-D			98.8		%		80-120	19-MAY-15
Silver (Ag)-Disso	olved		102.2		%		80-120	19-MAY-15
Sodium (Na)-Dis			101.4		%		80-120	19-MAY-15
Thallium (TI)-Dis	ssolved		99.98		%		80-120	19-MAY-15
Uranium (U)-Dis	solved		101.5		%		80-120	19-MAY-15
Vanadium (V)-D	issolved		100.6		%		80-120	19-MAY-15
Zinc (Zn)-Dissol	ved		93.0		%		80-120	19-MAY-15
WG2090422-3	cvs							
Antimony (Sb)-D)issolved		98.7		%		80-120	20-MAY-15
Arsenic (As)-Dis	solved		103.6		%		80-120	20-MAY-15
Barium (Ba)-Dis	solved		106.4		%		80-120	20-MAY-15
Beryllium (Be)-D	issolved		104.3		%		80-120	20-MAY-15
Boron (B)-Disso	lved		100.6		%		80-120	20-MAY-15
Cadmium (Cd)-l	Dissolved		105.5		%		80-120	20-MAY-15
Chromium (Cr)-l	Dissolved		103.2		%		80-120	20-MAY-15
Cobalt (Co)-Diss	solved		103.9		%		80-120	20-MAY-15
Copper (Cu)-Dis	solved		102.0		%		80-120	20-MAY-15
Lead (Pb)-Disso	lved		100.8		%		80-120	20-MAY-15
Molybdenum (M	o)-Dissolved		95.2		%		80-120	20-MAY-15
Nickel (Ni)-Disso	olved		104.4		%		80-120	20-MAY-15
Selenium (Se)-D	Dissolved		99.6		%		80-120	20-MAY-15
Silver (Ag)-Disso	olved		103.0		%		80-120	20-MAY-15

Quality Control Report

Workorder: L1612833 Report Date: 21-MAY-15 Page 3 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2EO

Contact: BRIAN EMMS

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R3192	2329							
WG2090422-3 C Sodium (Na)-Disso			104.5		%		00.400	20.1417/45
Thallium (TI)-Disso			99.1		%		80-120	20-MAY-15
Uranium (U)-Dissol			99.5		%		80-120 80-120	20-MAY-15
Vanadium (V)-Diss			104.0		%		80-120	20-MAY-15 20-MAY-15
Zinc (Zn)-Dissolved			97.6		%		80-120	20-MAY-15
WG2090144-4 D		WG2090144			~		80-120	20-MAT-15
Antimony (Sb)-Diss		<0.50	<0.50	RPD-NA	ug/L	N/A	20	19-MAY-15
Arsenic (As)-Dissol	lved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	19-MAY-15
Barium (Ba)-Dissol	ved	43.7	44.4		ug/L	1.7	20	19-MAY-15
Beryllium (Be)-Diss	solved	<0.40	<0.40	RPD-NA	ug/L	N/A	20	19-MAY-15
Boron (B)-Dissolve	d	98	98		ug/L	0.1	20	19-MAY-15
Cadmium (Cd)-Dis	solved	<0.090	<0.090	RPD-NA	ug/L	N/A	20	19-MAY-15
Chromium (Cr)-Dis	solved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	19-MAY-15
Cobalt (Co)-Dissolv	ved	<0.30	< 0.30	RPD-NA	ug/L	N/A	20	19-MAY-15
Copper (Cu)-Dissol	lved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	19-MAY-15
Lead (Pb)-Dissolve	d	<0.50	<0.50	RPD-NA	ug/L	N/A	20	19-MAY-15
Molybdenum (Mo)-	Dissolved	0.61	0.55		ug/L	11	20	19-MAY-15
Nickel (Ni)-Dissolve	ed	1.5	1.4		ug/L	8.3	20	19-MAY-15
Selenium (Se)-Diss	solved	<0.40	< 0.40	RPD-NA	ug/L	N/A	20	20-MAY-15
Silver (Ag)-Dissolve	ed	0.18	<0.10	RPD-NA	ug/L	N/A	20	19-MAY-15
Sodium (Na)-Disso	lved	21700	21600		ug/L	0.5	20	19-MAY-15
Thallium (TI)-Disso	lved	<0.20	<0.20	RPD-NA	ug/L	N/A	20	19-MAY-15
Uranium (U)-Dissol	lved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	19-MAY-15
Vanadium (V)-Diss	olved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	19-MAY-15
Zinc (Zn)-Dissolved	i	<3.0	<3.0	RPD-NA	ug/L	N/A	20	19-MAY-15
WG2090144-2 L								
Antimony (Sb)-Diss			97.7		%		80-120	20-MAY-15
Arsenic (As)-Dissol			103.9		%		80-120	20-MAY-15
Barium (Ba)-Dissol			103.2		%		80-120	20-MAY-15
Beryllium (Be)-Diss			96.2		%		80-120	20-MAY-15
Boron (B)-Dissolve			94.0		%		80-120	20-MAY-15
Cadmium (Cd)-Dis			103.5		%		80-120	20-MAY-15
Chromium (Cr)-Dis	solved		102.8		%		80-120	20-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 4 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R31	92329							
WG2090144-2 Cobalt (Co)-Disso	LCS olved		104.3		%		80-120	20-MAY-15
Copper (Cu)-Diss			103.6		%		80-120	20-MAY-15
Lead (Pb)-Dissol			99.9		%		80-120	20-MAY-15
Molybdenum (Mo			95.4		%		80-120	20-MAY-15
Nickel (Ni)-Dissol	•		104.2		%		80-120	20-MAY-15
Selenium (Se)-Di			100.4		%		80-120	20-MAY-15
Silver (Ag)-Dissol			99.2		%		80-120	20-MAY-15
Sodium (Na)-Diss	solved		104.3		%		80-120	20-MAY-15
Thallium (TI)-Diss	solved		98.2		%		80-120	20-MAY-15
Uranium (U)-Diss	solved		98.8		%		80-120	20-MAY-15
Vanadium (V)-Dis	ssolved		105.1		%		80-120	20-MAY-15
Zinc (Zn)-Dissolv	ed		104.6		%		80-120	20-MAY-15
WG2090144-1	мв							
Antimony (Sb)-Di	ssolved		<0.50		ug/L		0.5	20-MAY-15
Arsenic (As)-Diss	solved		<1.0		ug/L		1	20-MAY-15
Barium (Ba)-Diss	olved		<2.0		ug/L		2	20-MAY-15
Beryllium (Be)-Di	ssolved		<0.40		ug/L		0.4	20-MAY-15
Boron (B)-Dissolv	ved		<10		ug/L		10	20-MAY-15
Cadmium (Cd)-D	issolved		<0.090		ug/L		0.09	20-MAY-15
Chromium (Cr)-D	issolved		<0.50		ug/L		0.5	20-MAY-15
Cobalt (Co)-Disso	olved		<0.30		ug/L		0.3	20-MAY-15
Copper (Cu)-Diss	solved		<1.0		ug/L		1	20-MAY-15
Lead (Pb)-Dissol	ved		<0.50		ug/L		0.5	20-MAY-15
Molybdenum (Mo)-Dissolved		<0.50		ug/L		0.5	20-MAY-15
Nickel (Ni)-Dissol	lved		<1.0		ug/L		1	20-MAY-15
Selenium (Se)-Di	ssolved		<0.40		ug/L		0.4	20-MAY-15
Silver (Ag)-Dissol	lved		<0.10		ug/L		0.1	20-MAY-15
Sodium (Na)-Diss	solved		<500		ug/L		500	20-MAY-15
Thallium (TI)-Diss	solved		<0.20		ug/L		0.2	20-MAY-15
Uranium (U)-Diss	solved		<1.0		ug/L		1	20-MAY-15
Vanadium (V)-Dis	ssolved		<0.50		ug/L		0.5	20-MAY-15
Zinc (Zn)-Dissolv	ed		<3.0		ug/L		3	20-MAY-15
WG2090144-5 Antimony (Sb)-Di	MS ssolved	WG2090144-3	84.4		%		70-130	19-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 5 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Test Mai	rix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT Wa	ter						
Batch R3192329							
WG2090144-5 MS Arsenic (As)-Dissolved	WG2090144			%		70.400	40.141.7.45
Barium (Ba)-Dissolved		94.0 82.0		%		70-130	19-MAY-15
Beryllium (Be)-Dissolved		90.1		%		70-130	19-MAY-15
Boron (B)-Dissolved		78.0		%		70-130	19-MAY-15
		90.0		%		70-130	19-MAY-15
Cadmium (Cd)-Dissolved						70-130	19-MAY-15
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved		88.2		%		70-130	19-MAY-15
		86.7 85.2		%		70-130	19-MAY-15
Copper (Cu)-Dissolved		86.1		%		70-130	19-MAY-15
Lead (Pb)-Dissolved						70-130	19-MAY-15
Molybdenum (Mo)-Dissolved		84.1		%		70-130	19-MAY-15
Nickel (Ni)-Dissolved		85.0		%		70-130	19-MAY-15
Sodium (Na)-Dissolved		N/A	MS-B	%		-	19-MAY-15
Thallium (TI)-Dissolved		85.6		%		70-130	19-MAY-15
Uranium (U)-Dissolved		90.7		%		70-130	19-MAY-15
Vanadium (V)-Dissolved		93.2		%		70-130	19-MAY-15
Zinc (Zn)-Dissolved		90.7		%		70-130	19-MAY-15
VOC-511-HS-WT Wa	ter						
Batch R3193131							
WG2090185-4 DUP 1,1,1,2-Tetrachloroethane	WG2090185 <0.50	-3 <0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,1,2,2-Tetrachloroethane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1.1.1-Trichloroethane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	
1.1.2-Trichloroethane	<0.50	<0.50		-			21-MAY-15
			RPD-NA	ug/L	N/A	30	21-MAY-15
1,1-Dichloroethane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,1-Dichloroethylene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,2-Dibromoethane	<0.20	<0.20	RPD-NA	ug/L	N/A	30	21-MAY-15
1,2-Dichlorobenzene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,2-Dichloroethane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,2-Dichloropropane	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,3-Dichlorobenzene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
1,4-Dichlorobenzene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
Acetone	<30	<30	RPD-NA	ug/L	N/A	30	21-MAY-15
Benzene	< 0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 6 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R31931	31							
WG2090185-4 DUI	•	WG2090185			_			
Bromodichlorometha	ne	<2.0	<2.0	RPD-NA	ug/L	N/A	30	21-MAY-15
Bromoform		<5.0	<5.0	RPD-NA	ug/L	N/A	30	21-MAY-15
Bromomethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
Carbon tetrachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	21-MAY-15
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	21-MAY-15
cis-1,2-Dichloroethyle	ene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
cis-1,3-Dichloroprope	ene	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	21-MAY-15
Dibromochlorometha	ne	<2.0	<2.0	RPD-NA	ug/L	N/A	30	21-MAY-15
Dichlorodifluorometh	ane	<2.0	<2.0	RPD-NA	ug/L	N/A	30	21-MAY-15
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
n-Hexane		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	21-MAY-15
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	21-MAY-15
Methyl Isobutyl Ketor	ne	<20	<20	RPD-NA	ug/L	N/A	30	21-MAY-15
Methylene Chloride		<5.0	<5.0	RPD-NA	ug/L	N/A	30	21-MAY-15
MTBE		<2.0	<2.0	RPD-NA	ug/L	N/A	30	21-MAY-15
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	21-MAY-15
Styrene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
Tetrachloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
Toluene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
trans-1,2-Dichloroeth	ylene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
trans-1,3-Dichloropro	pene	<0.30	< 0.30	RPD-NA	ug/L	N/A	30	21-MAY-15
Trichloroethylene		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
Trichlorofluorometha	ne	<5.0	<5.0	RPD-NA	ug/L	N/A	30	21-MAY-15
Vinyl chloride		<0.50	< 0.50	RPD-NA	ug/L	N/A	30	21-MAY-15
WG2090185-1 LCS	-		92.6		%		70-130	21-MAY-15
1,1,2,2-Tetrachloroet			94.4		%		70-130	21-MAY-15
1,1,1-Trichloroethane			93.1		%		70-130	21-MAY-15
1,1,2-Trichloroethane			100.2		%		70-130	21-MAY-15
1,1-Dichloroethane			95.0		%		70-130	21-MAY-15
1,1-Dichloroethylene			87.0		%		70-130	21-MAY-15
jiene					-			

Workorder: L1612833 Report Date: 21-MAY-15 Page 7 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

VOC-511-HS-WT Water	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG2090185-1 LCS 1.2-Dibromeethane 95.9 % 70-130 21-MAY-15 1.2-Dibromoethane 95.1 % 70-130 21-MAY-15 1.2-Dichloroperopane 99.2 % 70-130 21-MAY-15 1.3-Dichlorobenzene 91.4 % 70-130 21-MAY-15 1.4-Dichlorobenzene 94.2 % 70-130 21-MAY-15 Acetone 114.5 % 60-140 21-MAY-15 Benzene 99.0 % 70-130 21-MAY-15 Bromoform 93.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromoform 90.8 % 70-130 21-MAY-15 Bromoform 90.6 % 70-130 21-MAY-15 Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chlorodenzene 96.8 % 70-130 21-MAY-15	VOC-511-HS-WT	Water							
12-Dibromoethane 95.9 % 70-130 21-MAY-15 12-Dichlorobenzene 95.1 % 70-130 21-MAY-15 12-Dichlorobenzene 95.1 % 70-130 21-MAY-15 12-Dichloropenzene 99.4 % 70-130 21-MAY-15 13-Dichloropenzene 99.2 % 70-130 21-MAY-15 13-Dichlorobenzene 91.4 % 70-130 21-MAY-15 13-Dichlorobenzene 94.2 % 70-130 21-MAY-15 13-Dichlorobenzene 94.2 % 70-130 21-MAY-15 8enzene 99.0 % 70-130 21-MAY-15 Benzene 99.0 % 70-130 21-MAY-15 Bromodichloromethane 93.7 % 70-130 21-MAY-15 Bromomethane 93.7 % 70-130 21-MAY-15 Bromomethane 93.8 % 80-140 21-MAY-15 Carbon tetrachloride 90.8 % 70-130 21-MAY-15 Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chlorobenzene 90.8 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chloroformethane 90.8 % 70-130 21-MAY-15 Chloroformeth	Batch R3193131								
1.2-Dichlorobenzene 96.1 % 70-130 21-MAY-15 12-Dichloroperpane 99.4 % 70-130 21-MAY-15 12-Dichloroperpane 99.2 % 70-130 21-MAY-15 1.3-Dichloroperpane 99.2 % 70-130 21-MAY-15 1.3-Dichlorobenzene 91.4 % 70-130 21-MAY-15 1.3-Dichlorobenzene 94.2 % 70-130 21-MAY-15 Acetone 114.5 % 60-140 21-MAY-15 May-15 M				05.0		9/			
12-Dichloroethane	.,								21
1.2-Dichloropropane 1.2-Dichloropropane 90.2 % 70-130 21-MAY-15 1.3-Dichlorobenzene 91.4 % 70-130 21-MAY-15 1.4-Dichlorobenzene 94.2 % 70-130 21-MAY-15 Acetone 114.5 % 60-140 21-MAY-15 Benzene 99.0 % 70-130 21-MAY-15 Bromodichloromethane 93.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromomethane 93.8 % 70-130 21-MAY-15 Carbon tetrachloride 90.8 % 70-130 21-MAY-15 Chlorobenzene 98.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,2-Dichloropropene 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 90.8 % 70-130 21-MAY-15 Dichlorofiluoromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 90.9 % 70-130 21-MAY-15 Dichlorodifluoromethane 90.9 % 70-130 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 Dichlorodifluoromethane 90.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Ethyl Ketone 97.8 % 70-130 21-MAY-15 Methylene 98.8 % 70-130 21-MAY-15 Styrene 98.8 % 70-130 21-MAY-15									
1,3-Dichlorobenzene 91,4 % 70-130 21-MAY-15 1,4-Dichlorobenzene 94.2 % 70-130 21-MAY-15 Acetone 114.5 % 60-140 21-MAY-15 Benzene 99.0 % 70-130 21-MAY-15 Bromodichloromethane 93,7 % 70-130 21-MAY-15 Bromoform 90,7 % 70-130 21-MAY-15 Bromomethane 93,8 % 60-140 21-MAY-15 Carbon tetrachloride 90,8 % 70-130 21-MAY-15 Chlorobenzene 90,8 % 70-130 21-MAY-15 Chloroform 98,8 % 70-130 21-MAY-15 cis-1-2-Dichloroethylene 100,1 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 98,8 % 70-130 21-MAY-15 Dibromochloromethane 90,8 % 70-130 21-MAY-15 Dibromochloromethane 90,8 % 70-130 21-MAY-15 Dibromochloromethane 90,8 % 70-130 21-MAY-15 Ethylbenzene 97,7 % 70-130 21-MAY-15 Ethylbenzene 97,7 % 70-130 21-MAY-15 m+p-Xylenes 99,9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109,2 % 60-140 21-MAY-15 Methyl Ethyl Ketone 109,2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97,6 % 70-130 21-MAY-15 Methylene 10,3 % 70-130 21-MAY-15 Methylene 10,3 % 70-130 21-MAY-15 Methylene Chloride 97,1 % 70-130 21-MAY-15 Methylene 10,3 % 70-130 21-MAY-15 Methylene Chloride 97,1 % 70-130 21-MAY-15 Methylene 10,3 % 70-130 21-MAY-15 Methy									
1.4-Dichlorobenzene 94.2 % 70-130 21-MAY-15 Acetone 114.5 % 60-140 21-MAY-15 Benzene 99.0 % 70-130 21-MAY-15 Bromofichromethane 93.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromomethane 93.6 % 60-140 21-MAY-15 Carbon tetrachloride 90.8 % 70-130 21-MAY-15 Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 Chloroforethylene 100.1 % 70-130 21-MAY-15 dis-1_2-Dichloropropene 96.8 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dibriorodifluoromethane 72.1 % 60-140 21-MAY-15 Dibriorodifluoromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15									
Acetone 114.5 % 60.140 21-MAY-15 Benzene 99.0 % 70-130 21-MAY-15 Bromodichloromethane 93.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromomethane 93.6 % 60-140 21-MAY-15 Bromomethane 93.6 % 70-130 21-MAY-15 Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromodhloromethane 90.8 % 70-130 21-MAY-15 Dibromodhloromethane 90.8 % 70-130 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 Dichlorodifluoromethane 110.9 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m-p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 98.6 % 70-130 21-MAY-15 MtBE 95.3 % 70-130 21-MAY-15 MtBE 95.3 % 70-130 21-MAY-15 MtBE 95.3 % 70-130 21-MAY-15 Tollone 98.6 % 70-130 21-MAY-15 Tollone 98.6 % 70-130 21-MAY-15 Tollone 98.7 % 70-130 21-MAY-15 Tollone 98.8 % 70-130 21-MAY-15 Tollone 99.9 % 70-130 21-MAY-15 Tollone 99.0 % 70-130 21-MAY-15						-			
Benzene 99.0 % 70-130 21-MAY-15 Bromodichloromethane 93.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromomethane 93.8 % 60-140 21-MAY-15 Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chloroform 98.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 cis-1,2-Dichloropethylene 96.6 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibriorodifluoromethane 90.8 % 70-130 21-MAY-15 Dibriorodifluoromethane 72.1 % 80-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15									
Bromodichloromethane 93.7 % 70-130 21-MAY-15 Bromoform 90.7 % 70-130 21-MAY-15 Bromomethane 93.6 % 60-140 21-MAY-15 Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chlorobenzene 90.8 % 70-130 21-MAY-15 Chlorobenzene 90.8 % 70-130 21-MAY-15 Chlorobenzene 90.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 90.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Ethylbenzene 97.7 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 100.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.1 % 70-130 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 METHYL Ethyl Ketone 98.6 % 70-130 21-MAY-15 Totachloroethylene 90.8 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Totachloroethylene 93.0 % 70-130 21-MAY-15 Trichloroethylene 93.8 % 70-130 21-MAY-15 Trichloroethylene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15									
Bromoform 90.7 % 70-130 21-MAY-15 Bromomethane 93.6 % 60-140 21-MAY-15 Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 98.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Ethylbenzene 97.7 % 60-140 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 Methylene Chloride 98.8 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Tetrachloroethylene 93.8 % 70-130 21-MAY-15 Tetrachloroethylene 93.8 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 Trichloroethylene 93.8 % 70-130 21-MAY-15									
Bromomethane 93.6 % 60-140 21-MAY-15 Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dibromochloromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 60-140 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 Methylene Plane 98.8 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Tetrachloroethylene 93.8 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 Trichloroethylene 93.8 % 70-130 21-MAY-15 Trichloroethylene 93.7 % 70-130 21-MAY-15 Trichloroethylene 93.8 % 70-130 21-MAY-15									
Carbon tetrachloride 90.6 % 70-130 21-MAY-15 Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 72.1 % 80-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.1 % 70-130 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15								70-130	21-MAY-15
Chlorobenzene 96.8 % 70-130 21-MAY-15 Chloroform 98.6 % 70-130 21-MAY-15 cis-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 93.8 % 70-130 21-MAY-15 Tetrachloroethylene 93.8 % 70-130 21-MAY-15 Trachloroethylene 93.7 % 70-130 21-MAY-15 Trachloroethylene 93.8 % 70-130 21-MAY-15 Trachloroethylene 93.7 % 70-130 21-MAY-15 Trachloroethylene 93.7 % 70-130 21-MAY-15 Trachloroethylene 93.8 % 70-130 21-MAY-15 Trachloroethylene 93.8 % 70-130 21-MAY-15 Trachloroethylene 93.8 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15						%		60-140	21-MAY-15
Chloroform 98.6 % 70-130 21-MAY-15 ois-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 97.7 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 97.7 % 70-130 21-MAY-15 ois-1,3-Dichlorodifluoromethane 97.7 % 70-130 21-MAY-15 ois-1,3-Dichlorodifluoromethane 97.7 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 99.9 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 98.6 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 93.0 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 93.8 % 70-130 21-MAY-15 ois-1,3-Dichloropropene 93.7 %								70-130	21-MAY-15
cis-1,2-Dichloroethylene 100.1 % 70-130 21-MAY-15 cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 93.0 % 70-130 21-MAY-15				96.8				70-130	21-MAY-15
cis-1,3-Dichloropropene 96.6 % 70-130 21-MAY-15 Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15	Chloroform			98.6		%		70-130	21-MAY-15
Dibromochloromethane 90.8 % 70-130 21-MAY-15 Dichlorodifluoromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.7 % 70-130 21-MAY-15 trans-1,3-D	cis-1,2-Dichloroethylene	2		100.1		%		70-130	21-MAY-15
Dichlorodifluoromethane 72.1 % 60-140 21-MAY-15 Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichl	cis-1,3-Dichloropropene	•		96.6		%		70-130	21-MAY-15
Ethylbenzene 97.7 % 70-130 21-MAY-15 n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Dibromochloromethane			90.8		%		70-130	21-MAY-15
n-Hexane 110.9 % 70-130 21-MAY-15 m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 98.6 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Dichlorodifluoromethan	e		72.1		%		60-140	21-MAY-15
m+p-Xylenes 99.9 % 70-130 21-MAY-15 Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Ethylbenzene			97.7		%		70-130	21-MAY-15
Methyl Ethyl Ketone 109.2 % 60-140 21-MAY-15 Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	n-Hexane			110.9		%		70-130	21-MAY-15
Methyl Isobutyl Ketone 97.6 % 60-140 21-MAY-15 Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	m+p-Xylenes			99.9		%		70-130	21-MAY-15
Methylene Chloride 97.1 % 70-130 21-MAY-15 MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Methyl Ethyl Ketone			109.2		%		60-140	21-MAY-15
MTBE 95.3 % 70-130 21-MAY-15 o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Methyl Isobutyl Ketone			97.6		%		60-140	21-MAY-15
o-Xylene 98.6 % 70-130 21-MAY-15 Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Methylene Chloride			97.1		%		70-130	21-MAY-15
Styrene 98.6 % 70-130 21-MAY-15 Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	MTBE			95.3		%		70-130	21-MAY-15
Tetrachloroethylene 92.4 % 70-130 21-MAY-15 Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	o-Xylene			98.6		%		70-130	21-MAY-15
Toluene 93.0 % 70-130 21-MAY-15 trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Styrene			98.6		%		70-130	21-MAY-15
trans-1,2-Dichloroethylene 93.8 % 70-130 21-MAY-15 trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Tetrachloroethylene			92.4		%		70-130	21-MAY-15
trans-1,3-Dichloropropene 93.7 % 70-130 21-MAY-15 Trichloroethylene 90.8 % 70-130 21-MAY-15	Toluene			93.0		%		70-130	21-MAY-15
Trichloroethylene 90.8 % 70-130 21-MAY-15	trans-1,2-Dichloroethyle	ene		93.8		%		70-130	21-MAY-15
	trans-1,3-Dichloroprope	ne		93.7		%		70-130	21-MAY-15
	Trichloroethylene			90.8		%		70-130	21-MAY-15
	Trichlorofluoromethane			99.7		%		60-140	21-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 8 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R31931	31							
WG2090185-1 LC Vinyl chloride	s		99.9		%		60-140	21-MAY-15
WG2090185-2 MB 1,1,1,2-Tetrachloroe			<0.50		ug/L		0.5	21-MAY-15
1,1,2,2-Tetrachloroe	thane		<0.50		ug/L		0.5	21-MAY-15
1,1,1-Trichloroethan	e		<0.50		ug/L		0.5	21-MAY-15
1,1,2-Trichloroethan	e		<0.50		ug/L		0.5	21-MAY-15
1,1-Dichloroethane			<0.50		ug/L		0.5	21-MAY-15
1,1-Dichloroethylene			<0.50		ug/L		0.5	21-MAY-15
1,2-Dibromoethane			<0.20		ug/L		0.2	21-MAY-15
1,2-Dichlorobenzene			< 0.50		ug/L		0.5	21-MAY-15
1,2-Dichloroethane			<0.50		ug/L		0.5	21-MAY-15
1,2-Dichloropropane			<0.50		ug/L		0.5	21-MAY-15
1,3-Dichlorobenzene			<0.50		ug/L		0.5	21-MAY-15
1,4-Dichlorobenzene			<0.50		ug/L		0.5	21-MAY-15
Acetone			<30		ug/L		30	21-MAY-15
Benzene			<0.50		ug/L		0.5	21-MAY-15
Bromodichlorometha	ine		<2.0		ug/L		2	21-MAY-15
Bromoform			<5.0		ug/L		5	21-MAY-15
Bromomethane			<0.50		ug/L		0.5	21-MAY-15
Carbon tetrachloride			<0.20		ug/L		0.2	21-MAY-15
Chlorobenzene			<0.50		ug/L		0.5	21-MAY-15
Chloroform			<1.0		ug/L		1	21-MAY-15
cis-1,2-Dichloroethyl	ene		<0.50		ug/L		0.5	21-MAY-15
cis-1,3-Dichloroprop	ene		<0.30		ug/L		0.3	21-MAY-15
Dibromochlorometha	ine		<2.0		ug/L		2	21-MAY-15
Dichlorodifluorometh	ane		<2.0		ug/L		2	21-MAY-15
Ethylbenzene			<0.50		ug/L		0.5	21-MAY-15
n-Hexane			<0.50		ug/L		0.5	21-MAY-15
m+p-Xylenes			<0.40		ug/L		0.4	21-MAY-15
Methyl Ethyl Ketone			<20		ug/L		20	21-MAY-15
Methyl Isobutyl Ketor	ne		<20		ug/L		20	21-MAY-15
Methylene Chloride			<5.0		ug/L		5	21-MAY-15
MTBE			<2.0		ug/L		2	21-MAY-15
o-Xylene			<0.30		ug/L		0.3	21-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 8 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R31931	131							
WG2090185-1 LC	S							
Vinyl chloride			99.9		%		60-140	21-MAY-15
WG2090185-2 ME 1.1.1.2-Tetrachloroe	-		<0.50		ug/L		0.5	21-MAY-15
1.1.2.2-Tetrachloroe			<0.50		ug/L		0.5	21-MAY-15
1,1,1-Trichloroethan	e		<0.50		ug/L		0.5	21-MAY-15
1,1,2-Trichloroethan	e		<0.50		ug/L		0.5	21-MAY-15
1,1-Dichloroethane			<0.50		ug/L		0.5	21-MAY-15
1,1-Dichloroethylene			<0.50		ug/L		0.5	21-MAY-15
1,2-Dibromoethane			< 0.20		ug/L		0.2	21-MAY-15
1,2-Dichlorobenzene	•		< 0.50		ug/L		0.5	21-MAY-15
1,2-Dichloroethane			<0.50		ug/L		0.5	21-MAY-15
1,2-Dichloropropane	•		<0.50		ug/L		0.5	21-MAY-15
1,3-Dichlorobenzene	•		<0.50		ug/L		0.5	21-MAY-15
1,4-Dichlorobenzene	•		<0.50		ug/L		0.5	21-MAY-15
Acetone			<30		ug/L		30	21-MAY-15
Benzene			<0.50		ug/L		0.5	21-MAY-15
Bromodichlorometha	ane		<2.0		ug/L		2	21-MAY-15
Bromoform			<5.0		ug/L		5	21-MAY-15
Bromomethane			<0.50		ug/L		0.5	21-MAY-15
Carbon tetrachloride	:		<0.20		ug/L		0.2	21-MAY-15
Chlorobenzene			<0.50		ug/L		0.5	21-MAY-15
Chloroform			<1.0		ug/L		1	21-MAY-15
cis-1,2-Dichloroethyl	lene		<0.50		ug/L		0.5	21-MAY-15
cis-1,3-Dichloroprop	ene		<0.30		ug/L		0.3	21-MAY-15
Dibromochlorometha			<2.0		ug/L		2	21-MAY-15
Dichlorodifluorometh	nane		<2.0		ug/L		2	21-MAY-15
Ethylbenzene			<0.50		ug/L		0.5	21-MAY-15
n-Hexane			<0.50		ug/L		0.5	21-MAY-15
m+p-Xylenes			<0.40		ug/L		0.4	21-MAY-15
Methyl Ethyl Ketone			<20		ug/L		20	21-MAY-15
Methyl Isobutyl Keto	ne		<20		ug/L		20	21-MAY-15
Methylene Chloride			<5.0		ug/L		5	21-MAY-15
MTBE			<2.0		ug/L		2	21-MAY-15
o-Xylene			< 0.30		ug/L		0.3	21-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 9 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2E0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R31931:	31							
WG2090185-2 MB Styrene			<0.50		ug/L		0.5	21-MAY-15
Tetrachloroethylene			< 0.50		ug/L		0.5	21-MAY-15
Toluene			<0.50		ug/L		0.5	21-MAY-15
trans-1,2-Dichloroeth	ylene		<0.50		ug/L		0.5	21-MAY-15
trans-1,3-Dichloropro	pene		<0.30		ug/L		0.3	21-MAY-15
Trichloroethylene			<0.50		ug/L		0.5	21-MAY-15
Trichlorofluorometha	ne		<5.0		ug/L		5	21-MAY-15
Vinyl chloride			<0.50		ug/L		0.5	21-MAY-15
Surrogate: 1,4-Difluor	robenzene		98.9		%		70-130	21-MAY-15
Surrogate: 4-Bromofl	uorobenzene		93.6		%		70-130	21-MAY-15
WG2090185-5 MS		WG2090185-3						
1,1,1,2-Tetrachloroet			92.1		%		50-140	21-MAY-15
1,1,2,2-Tetrachloroet			95.7		%		50-140	21-MAY-15
1,1,1-Trichloroethane			97.5		%		50-140	21-MAY-15
1,1,2-Trichloroethane	•		99.1		%		50-140	21-MAY-15
1,1-Dichloroethane			99.8		%		50-140	21-MAY-15
1,1-Dichloroethylene			90.0		%		50-140	21-MAY-15
1,2-Dibromoethane			94.6		%		50-140	21-MAY-15
1,2-Dichlorobenzene			95.4		%		50-140	21-MAY-15
1,2-Dichloroethane			104.8		%		50-140	21-MAY-15
1,2-Dichloropropane			101.2		%		50-140	21-MAY-15
1,3-Dichlorobenzene			91.1		%		50-140	21-MAY-15
1,4-Dichlorobenzene			94.9		%		50-140	21-MAY-15
Acetone			123.3		%		50-140	21-MAY-15
Benzene			102.7		%		50-140	21-MAY-15
Bromodichlorometha	ne		98.5		%		50-140	21-MAY-15
Bromoform			91.4		%		50-140	21-MAY-15
Bromomethane			94.9		%		50-140	21-MAY-15
Carbon tetrachloride			95.5		%		50-140	21-MAY-15
Chlorobenzene			96.4		%		50-140	21-MAY-15
Chloroform			104.2		%		50-140	21-MAY-15
cis-1,2-Dichloroethyle	ene		103.6		%		50-140	21-MAY-15
cis-1,3-Dichloroprope	ene		92.7		%		50-140	21-MAY-15
Dibromochlorometha	ne		91.0		%		50-140	21-MAY-15

Workorder: L1612833 Report Date: 21-MAY-15 Page 10 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION ORO STATION ON LOL 2E0

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-511-HS-WT	Water							
Batch R319313	1							
WG2090185-5 MS		WG2090185	-					
Dichlorodifluorometha	ne		67.6		%		50-140	21-MAY-15
Ethylbenzene			90.7		%		50-140	21-MAY-15
n-Hexane			112.5		%		50-140	21-MAY-15
m+p-Xylenes			97.0		%		50-140	21-MAY-15
Methyl Ethyl Ketone			108.8		%		50-140	21-MAY-15
Methyl Isobutyl Ketone	•		89.3		%		50-140	21-MAY-15
Methylene Chloride			106.5		%		50-140	21-MAY-15
MTBE			95.7		%		50-140	21-MAY-15
o-Xylene			92.3		%		50-140	21-MAY-15
Styrene			91.7		%		50-140	21-MAY-15
Tetrachloroethylene			89.8		%		50-140	21-MAY-15
Toluene			87.4		%		50-140	21-MAY-15
trans-1,2-Dichloroethy	lene		96.7		%		50-140	21-MAY-15
trans-1,3-Dichloroprop	ene		83.2		%		50-140	21-MAY-15
Trichloroethylene			92.9		%		50-140	21-MAY-15
Trichlorofluoromethan	e		104.2		%		50-140	21-MAY-15
Vinyl chloride			98.8		%		50-140	21-MAY-15
-								

Workorder: L1612833 Report Date: 21-MAY-15

Page 11 of 11

Client: 8577382 Canada Inc. - BAE Environmental

RR 1 ORO STATION

ORO STATION ON LOL 2EO

Contact: BRIAN EMMS

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

MB Method Blank
IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard

LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

154206

			-							T	T									C of C # 0000	0
60 NORTHLAND		1						CHAIN OF CUSTOD	Y / AN	ALY	TICA	L SE	RVI	CES	REQ	UES	T F	ORM	l Pa	ige <u>/</u> of <u>/</u>	
Phone: (519) 886	6910		1		Δ.		Note: all TAT Quote	d material is in business days	which exc	lude		Sp	ecify da	ite	5	ervic	e requ	ueste	1	2 day TAT (50%)	
Fax: (519) 886-90	47		1	<u> </u>	LS)			and weekends. TAT samples re			pnt	r	equired	red 5 day (regular)					1	Next day TAT (100%)	Τ
Toll Free: 1-800-6	68-9878		1 -"	Oil Ci	inter	itai	or Saturday/Sunday	y begin the next day.						3-4 day (25%)					Same day TAT (200%)		
COMPANY NAME	BAE		-		_		CRITERIA	Criteria on report YES NO	_	Τ			ANA	LYSIS	REQU	EST			_	PLEASE INDICATE FILTER	.EO,
OFFICE	Oro St	'n.					Reg 153/04 (2) 2	Reg 511/09/01 4 5 6 7 8	9											PRESERVED OR BOTH < (F, P, F/P)	
PROJECT MANAGER B. E.				_			TCLP MISA PWQO ODWS OTHER				-									L16/78	33
PHONE 70 5-71 5-	1881	FAX			_		REPORT F												ENTERED BY:		
ACCOUNT # 190	ACCOUNT # 19051						EMAILF	AX BOTH DIGITAL BOTH	OF CONTAINERS		4									DATE/TIME ENTERED:	~~
QUOTATION #							SELECT: PDF DIGITAL BOTH BOTH BOTH			9	0,		~			·		ļ		15/5/15/9	.38
	SAMPLING INFORMATION Sample Date/Time TYPE MATE					X	EMAIL 2		12	~	₩	- <u>2</u>							Mary 19	SD	
Date (dd-mm-yy)	Time (24hr) (hh:mm)	COMP	GRAB	WATER	SOIL	OTHER	SAMPLE DESCRI	PTION TO APPEAR ON REPOR	NUMBER	>	J	W.	M							COMMENTS	LAB 1D
15-05-15	0700			ν			BAE-MW	11506	6	V	V		V			-					
15.05-15	1715			1			BAE-MW	1507	6	1	V		V								_ Z
,,,			⊢	\perp	\perp	<u> </u>				+-	₩	\vdash			ш			<u> </u>	_		
		_	┺	ļ	<u> </u>	╙					₩	-	_		\vdash	_	_	<u> </u>	_		
		⊢		<u> </u>	1-	-			\rightarrow	+	₩-		_	_	-			1	·		-
		├	├-	⊢	\vdash	₩				+-	+	\vdash	-					_	├		+-
	-	-	-	-	┼-	├—		- ####################################	· · · · · · · · · · · · · · · · · · ·		٠.	<u> </u>			\vdash		\vdash	-			+
		⊢	+-	⊢	+	\vdash			W Ha	HILL	188 mir		_	_	-	_	\vdash		\vdash		+
	 	₩	+-	-	+-	+-			THE 1 C MY 1845		ши		_	_		_		-	_	· · · · · · · · · · · · · · · · · · ·	+
	+	\vdash	+-	┼┈	┼-	+-		L1612833	COFC	1111	a bit		-	_			-	_	-		+-
	 	-	+-	-	┿	+-							├─				-		-		$\overline{}$
	+	-	+	1	\vdash	+			-, . г			- ,5									$\overline{}$
		1	+	1	\vdash	\vdash			\neg	1	T	Ť									
SPECI	AL INSTRUCTIO	NS/C	OMMEN	TS	-	_		THE QUESTIONS BELOW MUST	BE ANSWER	ED FO	WATE	SAMP	LES (C							SAMPLE CONDITI	
				-			Are any samples to	aken from a regulated DW Sys	stem?					Ye	s D N	ło 🕰				FROZEN COLD	MEAN
							. ,	ed drinking water COC MUST									/			COOLING SNITTATED	7.10
						led intended to be potable for	r human c	onsum	ption?				s 🔾 l					AMBIENT 🗆			
SAMPLED BY:					DATE & TIME RECEIVED BY TOUR OF Way 15					5/2	2010	DATE	7716	100	m		OBSERVATIONS Yes O No O	INIT			
RELINQUISHED BY:	THE	2	-				DATE ATIME RECEIVED AT LAB BY: DATE OF THE STORY OF THE S														
Notes	~ ~																				
1. Quote number must	be provided to	ensure	proper	pricin	9			endent on complexity of analysis a	ınd lab wor	cload at	time	of subm	ission.								ed on the
					Please contact the	Please contact the lab to confirm TATs. chain of custody in comments section.							istody	ia com							

Appendix II Borehole Records - May 2015

CLIENT: Alium LOCATION: Bank Street, Greely DATE: May13, 2015 PROJECT #: BAE-1453 Datum Elevation – 0 @ Grade

 $Groundwater\ Level-3.25mbgl$

Continual Split Spoon Sampling @ 0.6m intervals

ПЕРТН	EI		STR	нэп	ПЕРТН		SAMPL	ES	
TH (m)	ELEV(m)	STRATA DESCRIPTION	STRATA PLOT	I.FVFI	ΓΗ (f)	VAPOUR CONCENTRATION	TYPE	N-VALUE	WELL DATA
	m))T	<u> </u>	<u> </u>	⊚%LEL Δppm		LUE	
0		Field Grass/ Topsoil 50mm				© 20 40 60 80 100 200 300 400	S/S		
		Grey Clay with Sand and Silt, Moist, soft					1		Well Install 3.0m Screen – 3-6mbgl, 3m Riser- 0-3mbgl,
1		No Staining or Odours					2		Locking well cap in place
					5		3		
2	2.2						4		
		Grey Clay, Trace Sand/Silt/Clay Wet, soft					5		
3		No Staining or Odours			10		6		
4							7		
	4.2				15		0		
5							8 _		
6		BH terminated at 6m							
	<u> </u>	ndum to: <i>Phase II Environmental Site</i>	1		t 56.40	Rank Street 7707 Manage Street		itala Orus	Boad City of Ottown

Addendum to: Phase II Environmental Site Assessment at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario, July 15th, 2013, updated September 10th, 2014

MW1507

CLIENT: Alium LOCATION: Bank Street, Greely DATE: May 13, 2015 PROJECT #: BAE-1453

 $\begin{array}{c} \text{Datum Elevation} - 0 \ @ \ Grade \\ \text{Groundwater Level} - 3.24 mbgl \end{array}$

Continual Split Spoon Sampling @ 0.6m intervals

ПЕРТН	EI		STR	нэп	DEPTH		SAMPL	ES	
TH (m)	ELEV(m)	STRATA DESCRIPTION	STRATA PLOT	I.EVEI	TH (ft)	VAPOUR CONCENTRATION	TYPE	N-VALUE	WELL DATA
	m)		T	ii.	۷	⊚%LEL Дррт		LUE	
0		Field Grass/ Topsoil 50mm				20 40 60 80 100 200 300 400	S/S		
		Grey Clay with Sand and Silt - moist, soft					1		Well Install 3.0m Screen –
	_	No Staining or Odours							3-6mbgl, 3m Riser- 0-3mbgl,
1	0.75						2		Locking well cap in place
	_				5		3		
2							4		
							5		
3		Grey Clay trace			10				
		Sand/Silt/Gravel Wet, soft					6		
4	4.1	No Staining or Odours					7		
	4.1								
					15		_ 8 _		
5									
		BH terminated at 6m							
6	ļ	ndum to: Phase II Environmental Site			. 52 40			: (-1: ():	

Addendum to: Phase II Environmental Site Assessment at 5640 Bank Street, 7107 Marco Street, and 7041 Mitch Owens Road, City of Ottawa, Ontario, July 15th, 2013, updated September 10th, 2014