

MONARCH CORPORATION

SITE SERVICING REPORT STORMWATER SITE MANAGEMENT PLAN AND EROSION AND SEDIMENT CONTROL PLAN STONEBRIDGE DEVELOPMENTS PHASE 11 - BLOCKS 331, 332 & 333

Project 25099-5.2.2

AUGUST 2010

TABLE OF CONTENTS

1.		.1
2.	WATER DISTRIBUTION	.1
3.	WASTEWATER SYSTEM (SANITARY SEWERS)	.2
4.	STORMWATER SYSTEM	.2
5.	SOURCE CONTROLS	.5
5.1	General	. 5
5.2	Lot Grading	. 5
5.3	Roof Leaders	. 5
5.4	Vegetation	. 5
5.5	Groundwater Recharge	. 5
6.	CONVEYANCE CONTROLS	.6
6.1	General	. 6
6.2	Flat Vegetated Swales	. 6
6.3	Catchbasin and Maintenance Hole Sumps	. 6
6.4	Pervious Rearyard Drainage	. 6
7.	SEDIMENT AND EROSION CONTROL PLAN	.6
7.1	General	. 6
7.2	Trench Dewatering	. 7
7.3	Bulkhead Barriers	. 7
7.4	Seepage Barriers	. 7
7.5	Surface Structure Filters	. 7
7.6	Stockpile Management	. 8
8.	CONCLUSIONS	.9

TABLE OF CONTENTS (CONT'D)

APPENDICIES:

Appendix A:

25099-501	Sanitary Drainage Are Plan – Phase 11
	Sanitary Sewer Design Sheet

Appendix B:

25099-400	Ponding Plan – Phase 11
25099-500	Storm Drainage Area Plan – Phase 11
	Storm Sewer Design Sheet
	Storm Sewer Design Sheet – Temporary Outlet
	HGL Calculations
	Figure SK-1
	SYMHYMO Output
	Major System Outlet Flow Calculations

Appendix C:

25099-900	Erosion and Sediment Control Plan – Phase 11
	Detail S8

1. INTRODUCTION

Design of the site has been undertaken in accordance with the following reports:

- Barrhaven South Master Servicing Study prepared by Stantec Consulting, June 2007.
- Jockvale Servicing Study South Nepean Urban Area (Official Plan Area 12A) prepared by Cumming Cockburn, March 1999.
- Corrigan Stormwater Management Facility Stormwater Management Report and Design Brief prepared by IBI Group, July 2008.
- Site Servicing Study Stonebridge Development, Phase 10S Recreation Center/School/Park/Fire Station Complex prepared by IBI Group, August 2009.
- Site Servicing Report, Stormwater Site Management Plan and Erosion and Sediment Control Plan, Stonebridge Developments, Phase 11 & 12.

Phase 11 and 12 of the Stonebridge subdivision is located south of Cambrian Road and east of Greenbank Road as shown on the Key Plan. The site consists primarily of single family lots with street and private townhouse units which are the last remaining phases of the Stonebridge development south of Cambrian Road. Phase 11 covers approximately 17.2 hectares including the private sites while Phase 12 covers approximately 14.5 hectares. Block 331 is a 11 unit freehold townhouse site fronting onto Dundonald Drive. Block 332 and 333 is a 109 unit private townhouse site backed on the east and west sides of Blackleaf Drive. Sanitary, storm and water for the two phases will be connected to existing infrastructure constructed in previous phases.

This report deals with the townhouse blocks 331, 332 and 333 which are located in Phase 11. Design of these blocks have been incorporated into the design of Phase 11 and 12.

2. WATER DISTRIBUTION

The site is provided by existing watermains located on Blackleaf Drive, Cheyenne Way, Dundonald Drive, Kilbirnie Drive and Kilmarnock Way. Watermain pipe sizes have been determined through hydraulic analysis to ensure peak demand pressures and fire flow requirements are met. Results of the analysis are included in the Water Distribution Plan for Phases 11 and 12 which is a separate report.

Water service for Block 331 is provided by the proposed watermain on Dundonald Drive while water service for Blocks 332 and 333 is provided by the proposed watermain on Blackleaf Drive.

3. WASTEWATER SYSTEM (SANITARY SEWERS)

The sanitary sewer outlet for Phase 11 is through the existing 300 mm sanitary sewer located at Blackleaf Drive and Cheyenne Way while Phase 12 drains to the existing 300 mm sanitary sewer at Kilbirnie Drive and Kilmarnock Way. Phase 11 also includes the extension of Cheyenne Way and the extension of the existing sanitary sewer stub at Cheyenne Way adjacent to Decona Terrace. Block 331 is serviced from the proposed sanitary sewer on Dundonald Drive while Blocks 332 and 333 drain to the proposed sanitary sewer on Blackleaf Drive.

All sanitary sewers within the Stonebridge development are designed in accordance with current City of Ottawa criteria, including the following:

•	Average Residential Rate	350 L/capita/day
•	Population Density	Single Family – 3.4 ppu Townhouse – 2.7 ppu Stacked Townhouse – 2.3 ppu
•	Residential Peaking Factor	Harmon Formula
•	Infiltration Allowance	0.28 l/s/ha
•	Average Non-Residential Rate* (Commercial, Industrial, School)	0.578 l/s/ha (50,000 l/day/ha)
•	Non-Residential Peaking Factor	1.5
•	Minimum Velocity	0.60 m/s

* As noted in Appendix E of the Barrhaven South Master Servicing Study.

Sanitary drainage from Phases 11 and 12 have been incorporated in previous phases of the Stonebridge Subdivision which outlets directly into the South Nepean collector sewer on the east side of Jockvale Road and west of the Jock River Crossing. There are no external sanitary drainage areas draining through Phases 11 and 12 as these phases represent the limit of the Stonebridge development south of Cambrian Road.

Appendix A contains the sanitary drainage area plans and sanitary sewer design sheets. On the Sanitary Sewer Design Sheet, the actual depth of flow is indicated for all pipes larger than 200 mm to demonstrate that the flow depth is greater than 30% of the diameter.

4. STORMWATER SYSTEM

Storm drainage from Phase 12 is tributary to Phase 11 which outlets to the future trunk storm sewer on Greenbank Road as outlined in the Corrigan Stormwater Management Report. A temporary outlet is available through the adjacent Phase 10S lands to the north that will service Phase 11 and 12 on an interim basis should the construction of the Greenbank trunk sewer be delayed. The temporary storm sewer will eventually become the permanent storm sewer for the proposed recreation center/school/park/fire station complex planned for the Phase 10S lands, as described in the Site Servicing Study. The temporary sewer is sized to service all the tributary Phase 11 lands, including Blocks 331, 332 and 333, except for the south leg of Sunita Crescent, which is downstream of the temporary connection, and all of the Phase 12 lands. A section of the storm sewer linking Sunita Crescent and the park complex will be removed once the connection to the Greenbank trunk sewer is completed.

A section of Cheyenne Way from Decona Terrace to the bend drains back to Decona and is tributary to the Jockvale Stormwater Management Facility in accordance with the Phase 6 design. The areas tributary to the Jockvale Stormwater Management Facility are identified on the drainage area plan and design sheets.

There are no external storm drainage areas tributary to Phase 11 and 12. Drainage from an existing residence fronting onto Greenbank Road picked up on Blackleaf Drive south of Sunita in Phase 11. South of Phase 12 there is an area of existing drainage (Area B1 in the Corrigan Stormwater Management Report) that is tributary to Greenbank Road. In advance of the storm sewer construction on Greenbank Road, it is proposed to temporary intercept the flow in a temporary ditch inlet catchbasin in the Greenbank Road ditch south of Kilbirnie Drive. A total temporary external drainage area of 3.69 hectares is shown on the storm drainage area plan and the rational method flow has been added to the storm sewer design sheet.

At the outlet to the Greenbank trunk storm sewer, a hydraulic grade line elevation of 92.2 m is provided in the Corrigan Stormwater Management Report. The HGL has been extended back into the Phase 11 storm sewers until it meets to sewer obvert. Calculations are included in Appendix B and the HGL elevations are shown on the drawings where it is higher than the sewer obvert. In Block 333, the HGL of the storm sewers on Blackleaf Drive has been extended into the block. In Blocks 331 and 332, the HGL does not extend above pipe obvert. All underside of footing elevations have been set a minimum of 0.3 m above the higher of the HGL or sewer obvert. The minimum underside of footing elevations are shown on the Grading Plan. A check of the HGL for the temporary storm sewer was undertaken using the HGL elevation of 91.30 at Cambrian Road from the Corrigan Stormwater Management Report, as the temporary HGL at Sunita is lower than the permanent HGL from Greenbank, the permanent will be used.

Storm sewers are sized to convey a 5 year storm using City of Ottawa IDF curves and to convey the capture rate of 85 I/s/ha except for the portion of Cheyenne Way which is tributary to the Jockvale Stormwater Management Facility and has a capture rate of 70/l/s/ha. Due to the shape of the development, the capture rate produces a higher flow than the rationale method at the downstream end of the system and is used to size the pipe. To ensure that the design flows are not exceeded, inlet control devices (ICD's) are used in every inlet to the storm sewers and some pairs of street catchbasins are interconnected to reduce the total number of inlets. Standard IPEX/Pedro Plastic ICD's are used with the following release rates at the standard 1.22 m head.

Type A – 20.0 l/s
Type B – 28.4 l/s
Type C – 37.0 l/s
Type X – 13.4 l/s

The Type X ICD's are used exclusively in rear yard catchbasins. The location of the ICD's and interconnected catchbasins are shown on the project drawings.

Major system overland flow routes are provided with a maximum level of ponding of 0.3 m for rear yards and local streets and 0.25 m on collector roads. High points between road sags are set to provide a minimum 0.1% longitudinal slope. The major system route for Phase 12 outlets to the Stonebridge golf course through a dedicated block on Centerra Court. Kinloch Court and Dundonald Drive in Phase 11 also outlets to the golf course on Dundonald. The remainder of Phase

11 and portions of Phase 6 and 7B outlets through a dedicated block on Sunita Crescent to the Phase 10S park complex and into a future major system retention area as outlined in the Corrigan Stormwater Management Report.

Major system peak flows at the three major system outlets and for Block 321 have been determined by the SWMHYMO computer model. At these locations, the depth of flow and velocity has been calculated to ensure that the product of velocity and depth (VXD) do not exceed 0.6. Calculations and model output are included in Appendix B and summarized as follows:

Location	Major System Flow (m²/s)	VXD
Block 335 Sunita	3.2	0.47
Block 329 Centerra	1.4	0.28
Dundonald at golf course	0.5	0.11
Block 321 Chenoa	0.2	0.07

As demonstrated, the product of velocity and depth is less than 0.6 at all locations.

In the Corrigan Stormwater Management Report, a storage rate of 42 m³/ha is required for the lands which make up Phases 11 and 12. Storage is provided in the roadway sags which are indicated on the ponding plans. The total volume of street ponding available in the 26 ponding areas identified on the ponding plans, including 4 ponding areas on Block 332 and 333, are 1,282.4 m³. The total storm drainage area for Phase 11 and 12 including Blocks 331, 332 and 333 is 27.11 hectares giving a storage rate of 47.3 m³/ha which exceeds the required rate of 42 m³/ha.

Storm drainage area plans, ponding plans, storm sewer design sheets and the hydraulic grade line calculations are included in Appendix B.

5. SOURCE CONTROLS

5.1 General

Since an end of pipe treatment facility is provided for this development, stormwater management will focus on site level or source control management of runoff. Such controls or mitigative measures are proposed for the development not only for final development but also during construction and build out. Some of these measures are:

- flat lot grading;
- split lot drainage;
- pre-installation of roof leader splash pads; and
- vegetation planting.
- groundwater recharge

5.2 Lot Grading

All lots and townhouse blocks within the development will make use of the split drainage runoff concept. In accordance with local municipal standards, all lot grading will be between two and seven percent. All front yard drainage will be directed over landscaped front yards to the roadway system and all rearyard drainage will be directed to a swale drainage system. Typically swales will have slopes of 1.5%. These measures all serve to encourage individual lot infiltration.

5.3 Roof Leaders

The development will consist of single family lots and townhouse units. It is proposed that roof leaders from these units be constructed such that runoff is directed to grassed areas adjacent to the units. This will promote water quality treatment through settling, absorption, filtration and infiltration and a slow release rate to the conveyance network.

5.4 Vegetation

As with most subdivision agreements, the developer will be required to complete a vegetation and planting program. Vegetation throughout the development, including roadside planting, provide opportunities to re-create lost natural habitat.

5.5 Groundwater Recharge

With regard to the existing hydrologic regime in the Stonebridge Development, seepage barriers made of impervious clay dykes will be constructed in the municipal service trenches at regular intervals to reduce ground water lowering at the site. Appropriately placed, these seepage barriers help to re-establish and maintain the historic ground water regime after construction of the development. Detail drawing S8 is attached for reference in Appendix C.

6. CONVEYANCE CONTROLS

6.1 General

Besides source controls, the development also proposes to use several conveyance control measures to improve runoff quality. These will include:

- flat vegetated swales
- pervious rearyard drainage
- catchbasin sumps

6.2 Flat Vegetated Swales

All rearyards within the Stonebridge Development make use of relatively flat vegetated swales. These swales generally employ saw-toothing at regular intervals. These swales encourage infiltration and runoff treatment.

6.3 Catchbasin and Maintenance Hole Sumps

All catchbasins within the development, either rear yard or street, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both rear yard and street catchbasins will be to OPSD 705.02. All storm sewer maintenance holes serving local sewers less than 900 mm shall be constructed with a 300 mm sump per City of Ottawa Stardards.

6.4 Pervious Rearyard Drainage

Some of the rearyard swales make use of a filter wrapper perforated drainage pipe constructed immediately below rearyard swales. This perforated pipe system is designed to provide some groundwater recharge and generally reduce both volumetric and pollutant loadings that enter the minor pipe system. Typically, a 250 mm Ø perforated pipe wrapped in a filter sock is constructed in a crushed stone surround at an invert elevation about 1.0 metre below grade. These pipes are in turn directly connected to rearyard catchbasins at regular intervals.

7. SEDIMENT AND EROSION CONTROL PLAN

7.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches;
- filter cloths will remain on open surface structure such as manholes; catchbasins until these structures are commissioned and put into use; and
- silt fence on the site perimeter.

7.2 Trench Dewatering

Although little groundwater is expected during construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

7.3 Bulkhead Barriers

Although the storm sewers eventually outlet into a sediment forebay, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer to reduce sediment loadings during construction. This bulkhead will trap any sediment carrying flows thus preventing any construction-related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

7.4 Seepage Barriers

In order to further reduce sediment loading to the stormwater management facility, seepage barriers will be installed on any surface water courses at appropriate locations that may become evident during construction. These barriers will be similar to either the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110. They are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

7.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures should be covered in some fashion to prevent sediment from entering the minor storm sewer system. Until rearyards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be constructed with a geotextile filter fabric located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

7.6 Stockpile Management

During construction of any development similar to the Stonebridge Development both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed. Street catchbasins are installed at the time of roadway construction and rearyard catchbasins are usually installed after base course asphalt is placed.

Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern. These materials are quickly used and the mitigative measures stated previously, especially the ½ diameter sewer bulkheads and filter fabric in catchbasins and manholes help to manage these concerns.

Roadway granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination. Lot grading sometimes generates stockpiles of native materials. However, this is only a temporary event since the materials are quickly moved off site.

8. CONCLUSIONS

As demonstrated in this report, the water, wastewater and stormwater systems are designed in conformance with the City of Ottawa standards.

The use of the lot level controls, conveyance controls and the end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the sediment and erosion control plan during construction will minimize harmful impacts on surface water.

Prepared by:

Lance Erion, P. Eng. Associate

J:\25099-StnbrPh11\5.2 Reports\5.2.2 Civil\2010-08-03\CTR_StormwaterMngmtPlanErosion_2010-08-03.docx

APPENDIX A

IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

SANITARY SEWER DESIGN SHEET

PROJECT: STONEBRIDGE PHASE 11 DEVELOPER: MONARCH CORPORATION

STREET	FROM MH	TO MH	F Snale	RESID. UNIT	S	RES.				PEAK	INCR.	CUM.		DESIGN					1.000
	МН	мн	Snale	T		100 (100 C C C C C C C C C C C C C C C C C C											1		VEL.
			ongia	Iowns	Stacked	AREA	POP.	POP.	PEAK	FLOW	AREA	AREA	FLOW	FLOW	CAP.	PIPE	LGTH.	SLOPE	(full)
				Semis	Towns	(Ha)			FACT.	(l/s)	(Ha)	(Ha)	(l/s)	(l/s)	l/s	(mm)	(m)	%	m/s
DI 11																			
Phase 11	440 4		40				01.0		1.00				0.00				07.0		
Kinlock Court	140 A	141 A	18			1.41	61.2	61	4.00	1.00	1.41	1.41	0.39	1.40	26.49	200	97.0	0.60	0.8
Kinlock Court	141 A	142 A	11			0.76	37.4	99	4.00	1.62	0.76	2.1/	0.61	2.22	26.49	200	66.4	0.60	0.8
KINIOCK COUR	142 A	144 A	2			0.21	6.8	105	4.00	1.73	0.21	2.38	0.67	2.39	26.49	200	36.7	0.60	0.8
Dundonald Drive	142 0	144 0		6		0.27	16.2	16	4.00	0.27	0.07	0.07	0.00	0.24	40.20	200	25.5	2.00	14
Dunuonalu Drive	145 A	144 /		0		0.27	10.2	10	4.00	0.27	0.27	0.27	0.06	0.34	40.30	200	33.3	2.00	1.4
Dundonald Drive	144 A	146 A		5		0.29	13.5	135	4.00	2.22	0.20	2.04	0.82	3.04	10 36	200	80.6	0.32	0.6
	144 74	140 /1		-		0.20	10.0	100	4.00	2.22	0.25	2.34	0.02	5.04	13.50	200	00.0	0.02	0.0
Blackleaf Drive	146 A	147 A	8			0.60	27.2	162	4 00	2.66	0.60	3.54	0.99	3.65	19.36	200	64.1	0.32	0.6
Blackleaf Drive	147 A	148 A	1			0.18	3.4	166	4.00	2.72	0.18	3.72	1.04	3.76	19.36	200	41.2	0.32	0.6
Blackleaf Drive	148 A	153 A						166	4.00	2.72	0.00	3.72	1.04	3.76	19.36	200	16.7	0.32	0.6
Cheyenne Way	149 A	150 A	3			0.33	10.2	10	4.00	0.17	0.33	0.33	0.09	0.26	44.62	200	25.5	1.70	1.3
Cheyenne Way	150 A	153 A	14			0.98	47.6	58	4.00	0.95	0.98	1.31	0.37	1.31	39.76	200	117.4	1.35	1.2
Block 332 Kennacraig Pr.	175 A	151 A		5		0.17	13.5	14	4.00	0.22	0.17	0.17	0.05	0.27	27.60	200	42.4	0.65	0.8
Block 332 Kennacraig Pr.	151 A	152 A		7		0.23	18.9	32	4.00	0.53	0.23	0.40	0.11	0.64	24.19	200	53.1	0.50	0.7
Block 332 Kennacraig Pr.	152 A	153 A		20		0.62	54.0	86	4.00	1.42	0.62	1.02	0.29	1.70	44.62	200	83.6	1.70	1.3
Blackleaf Drive	153 A	155 A	1			0.17	3.4	313	4.00	5.14	0.17	6.22	1.74	6.88	31.01	250	62.7	0.25	0.6
Block 332 Kennacraig Pr.	154 A	155 A		24		0.75	64.8	65	4.00	1.06	0.75	0.75	0.21	1.27	45.92	200	92.5	1.80	1.42
	455 4	101 1				0.40			100										-
Blackleaf Drive	155 A	161 A	0			0.42	20.4	399	4.00	6.54	0.42	7.39	2.07	8.60	31.01	250	75.0	0.25	0.6
Plack 222 Domplone Dr	150 4	157 4				0.10	10.0		4.00	0.40	0.40	0.40	0.05			000	04.0	1.45	
Block 333 Pampiona Pr.	150 A	157 A		4		0.19	10.8	11	4.00	0.18	0.19	0.19	0.05	0.23	35.58	200	21.0	1.15	1.1.
Block 333 Pampiona Pr	158 A	160 A		2		0.07	8.1	24	4.00	0.27	0.07	0.20	0.07	0.34	30.00	200	20.5	1.15	1.1.
block 555 r ampiona r r.	100 A	100 A		J		0.00	0.1	24	4.00	0.40	0.00	0.34	0.10	0.49	30.00	200	20.5	1.15	1.1.
Block 333 Pamplona Pr	159 A	160 A		16		0.41	43.2	43	4.00	0.71	0.41	0.41	0.11	0.82	30.61	200	56.5	0.80	0.9
block ddd i unpiona i i.	100 11	100 11		10		0.41	40.2		4.00	0.71	0.41	0.41	0.11	0.02	50.01	200	50.5	0.00	0.5
Block 333 Treadway Pr.	160 A	161 A		9		0.26	24.3	92	4.00	1.51	0.26	1.01	0.28	1.79	24.19	200	77.3	0.50	0.7
Blackleaf Drive	161 A	166 A	2			0.23	6.8	497	3.98	8.10	0.23	8.63	2.42	10.52	45.09	300	66.5	0.20	0.6
Block 333 Rannoch Pr.	162 A	166 A		16		0.50	43.2	43	4.00	0.71	0.50	0.50	0.14	0.85	24.19	200	93.4	0.50	0.7
Sunita Crescent	163 A	164 A	6			0.52	20.4	20	4.00	0.33	0.52	0.52	0.15	0.48	27.60	200	117.5	0.65	0.8
Sunita Crescent	164 A	165 A	1			0.07	3.4	24	4.00	0.39	0.07	0.59	0.17	0.56	27.60	200	12.1	0.65	0.8
Sunita Crescent	165 A	166 A	11			0.68	37.4	61	4.00	1.00	0.68	1.27	0.36	1.36	44.62	200	83.9	1.70	1.3
	400 4	407 4				0.00			0.00	0.00									
Blackleaf Drive	166 A	167 A	2			0.26	6.8	608	3.93	9.80	0.26	10.66	2.98	12.78	45.09	300	70.7	0.20	0.6
Blackleaf Drive	107 A	108 A	2			0.27	0.8	615	3.93	9.90	0.27	10.93	3.06	12.96	45.09	300	15.2	0.20	0.6
Blacklear Drive	100 A	170 A	0			0.50	20.4	030	3.92	10.21	0.50	11.43	3.20	13.41	45.09	300	53.1	0.20	0.0
Sunita Crescent	173 A	172 A	10			0.68	34.0	34	4.00	0.56	0.68	0.68	0.10	0.75	27.60	200	65.0	0.65	0.8
Sunita Crescent	172 A	171 B	12			0.00	40.8	75	4.00	1 23	0.00	1.42	0.19	1.62	21.00	200	82.0	0.03	0.0
Sunita Crescent	171 B	171 A	2			0.25	6.8	82	4.00	1.20	0.74	1.42	0.40	1.02	19 36	200	12.0	0.30	0.6
Sunita Crescent	171 A	170 A	5			0.43	17.0	99	4.00	1.62	0.43	2 10	0.59	2.21	19.36	200	84.2	0.32	0.0
			-			0.10			1.00	1.02	0.10	2.10	0.00	L.L.I	10.00	200	04.2	0.02	0.0
Blackleaf Drive	170 A	Ex. Stub	5			0.49	17.0	751	3.88	11.94	0.49	14.02	3.93	15.86	55.24	300	74.5	0.30	0.7
																			1
														1					
		l																	
Where Q = average daily per ca I = Unit of peak extran	apita flow (350 eous flow (0.2) I/cap.d.) or (0. 28 I/sec/ha)	.00411/sec./c	cap)	() 5)) wher		in thousands												
opulation Density = 3.4 per single commercial, Office Space and Sc	e family, 2.7 p hool - Averag	er semi-detach e flow 50,000 l	ed and row /day/ha (0.5	townhouse 78 l/s/ha) w	units and 2.	3 per stacked to Factor = 1.5	wnhouse unit												

JOB #: 25099-5.7 DATE PRINTED: 05-Aug-10 DESIGN: LE

~

		FLOW	DEPTH
AVAIL.	AVAIL.	Flow	Depth
CAP.	CAP.	qa/Qa	da/Df
(I/s)	(%)	(%)	(%)
25.10	95%		
24.27	92%		
24.10	91%		
48.04	99%		
16.32	84%		
15.71	81%		
15.60	81%		
15.60	81%		
44.36	99%		
38.44	97%		
27.33	99%		
23.55	97%		
42.92	96%		
24.13	78%	22%	32%
44.65	97%		
22.41	72%	28%	36%
36.45	99%		
36.34	99%		
36.18	99%		
29.79	97%		
00.40	000/		
22.40	93%		
24.67	770/	000/	220/
34.57	11%	23%	33%
22.24	060/		
23.34	90%		
27 12	0.00/		
27.12	90 %		
13.26	07%		
45.20	51 /0		
32 31	72%	28%	38%
32 13	71%	29%	38%
31.68	70%	30%	38%
26.85	97%		
22.57	93%		
17.55	91%		
17.16	89%		
39.37	71%	29%	38%

APPENDIX B

IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

LOCATION			1			AR	EA (Ha))				RATIO	ONAL DES	GIGN FLO	N	1	LEVEL O	F SERVICE		1		ICI	DRESTRICT	ED FLOW			SE	WER DAT	A		AVAIL. C	AP. (%)
STREET	FROM MH	TO MH	C= 0.20	C= 0.30	C= 0.45	C= 0.55	C= 0.60	C= 0.90	INDIV.	ACCUM.	INLET (min.)	TIME IN PIPE	TOTAL (min.)	l (mm/Hr)	PEAK FLOW (L/s)	AR INDIV.	EA (ha) ACCUM.	FLOV	V (L/s) ACCUM.	-	IN 13.4	LET (L 20.0	./s) 28.4 37.0	INDIV. FLOW (L/s)	ACCUM. FLOW (L/s)	CAP. (L/s)	LENGTH (M)	PIPE (mm)	SLOPE (%)	VEL. (M/s)	RATIONAL 5 YEAR	ICD REST. FLOW
Erom Dhoop 12										01.60			00.51				12.00		1 190 15						1 102 00							
From Phase 12										21.02			20.31				13.99		1,109.15	<mark>/</mark>					1,102.00							
Phase 11																																
Kinloch Court	140	141			1.08				1.35	22.97	26.51	0.96	27.48	58.58	1,345.65	1.08	15.07	91.80	1,280.95	5	1	2		53.40	1,236.20	1,560.63	101.0	1050	0.30	1.746	13.78%	20.79%
Kinloch Court	141	142			0.22				0.28	23.25	27.48	0.82	28.30	57.21	1,330.09	0.22	15.29	18.70	1,299.65		1			13.40	1,249.60	1,574.90	66.5	1200	0.15	1.349	15.54%	20.66%
Kinioch Court	142	144			0.42				0.53	23.78	28.30	0.43	28.73	56.09	1,333.85	0.42	15.71	35.70	1,335.35	<u> </u>		2		40.00	1,209.00	1,574.90	35.1	1200	0.15	1.549	15.5176	10.1270
Dundonald Way	143	144					0.56		0.93	0.93	15.00	0.62	15.62	83.56	77.71	0.56	0.56	47.60	47.60		2	1		46.80	46.80	100.91	51.0	300	1.00	1.383	22.99%	53.62%
Dundonald Way	144	146					0.25		0.42	25.13	28.73	0.99	29.72	55.52	1,395.25	0.25	16.52	21.25	5 1,404.20			1		20.00	1,356.40	1,574.90	80.0	1200	0.15	1.349	11.41%	13.87%
Dundonald Way	145	146					0.25		0.42	0.42	10.00	0.48	10.48	104.19	43.76	0.25	0.25	21.25	5 21.25	5		1		20.00	20.00	87.71	49.5	250	2.00	1.731	50.11%	77.20%
Blackleaf Drive	146	147					0.46		0.77	26.32	29.72	0.92	30.64	54.27	1,428.38	0.46	17.23	39.10	1,464.55	5		2		40.00	1,416.40	1,761.25	65.6	1350	0.10	1.192	18.90%	19.58%
Blackleaf Drive	147	148			0.15		0.12		0.39	26.71	30.64	0.57	31.20	53.16	1,419.99	0.27	17.50	22.95	5 1,487.50)	2			26.80	1,443.20	1,761.25	40.4	1350	0.10	1.192	19.38%	18.06%
Blackleaf Drive	148	153							0.00	26.71	31.20	0.25	31.45	52.51	1,402.43	0.00	17.50	0.00	1,487.50	<u> </u>				0.00	1,443.20	1,761.25	17.9	1350	0.10	1.192	20.37%	18.06%
Chovenne Way	140	150			0.20		0.22		0.95	0.95	15.00	0.34	15.24	92.56	71.02	0.61	0.61	51.84	5 51 85		1	1		33.40	33.40	87 34	24.5	300	0.75	1 197	18 68%	61 76%
Chevenne Way	149	153	l		0.39		0.22		1.00	1.85	15.00	2 01	17.35	82 47	152.57	0.01	1.39	66.30	118.15	5	1	1		33.40	66.80	162.86	119.4	450	0.30	0.992	6.32%	58.98%
	100	100			0.71		0.07		1.00	1.00	10.04	2.01	17.00	02.47	102.07	0.70	1.00	00.00	1 110.11	1	<u> </u>	<u> </u>		00.10								
Block 332 Kennacraig Private	175	151					0.55		0.92	0.92	15.00	0.79	15.79	83.56	76.87	0.55	0.55	46.75	46.75	5	1	1		33.40	33.40	100.21	41.4	375	0.30	0.879	23.29%	66.67%
Block 332 Kennacraig Private	151	152					0.07		0.12	1.04	15.79	0.97	16.76	81.10	84.35	0.07	0.62	5.95	5 52.70		1			13.40	46.80	100.21	51.3	375	0.30	0.879	15.83%	53.30%
Block 332 Kennacraig Private	152	153					0.31		0.52	1.56	16.76	1.26	18.02	78.28	122.11	0.31	0.93	26.35	5 79.05	5		1		20.00	66.80	175.99	80.9	450	0.35	1.072	30.62%	62.04%
Blackleaf Drive	153	155			0.26				0.33	30.45	31.45	0.83	32.29	52.22	1,590.12	0.26	20.08	22.10	1,706.80		1	2		53.40	1,630.20	2,331.26	63.8	1500	0.10	1.278	31.79%	30.07%
Block 332 Kennacraig Private	154	155					0.61		1.02	1.02	15.00	1.80	16.80	83.56	85.23	0.61	0.61	51.85	5 51.85	5	1	2		53.40	53.40	100.21	95.0	375	0.30	0.879	14.95%	46.71%
Blackleaf Drive	155	161			0.29		0.02		0.40	31.87	32.29	0.94	33.23	51.30	1,634.82	0.31	21.00	26.3	5 1,785.00		1	1		33.40	1,717.00	2,331.26	72.1	1500	0.10	1.278	29.87%	26.35%
Plack 222 Pamplana Privata	156	157					0.07		0.12	0.12	15.00	0.41	15.41	02 56	10.02	0.07	0.07	5.05	5.05		1			13.40	13.40	13.88	21.5	250	0.50	0.866	77 15%	69 46%
Block 333 Pampiona Private	157	158					0.07		0.00	0.12	15.00	0.41	15.41	82.24	9.87	0.00	0.07	0.00	5.95	5	<u> </u>			0.00	13.40	43.88	12.0	250	0.50	0.866	77.51%	69.46%
Block 333 Pamplona Private	158	160							0.00	0.12	15.65	0.38	16.02	81.53	9.78	0.00	0.07	0.00	5.95	5				0.00	13.40	43.88	19.5	250	0.50	0.866	77.70%	69.46%
τ.																																
Block 333 Pamplona Private	159	160					0.22		0.37	0.37	10.00	1.08	11.08	104.19	38.55	0.22	0.22	18.70	18.70)		1		20.00	20.00	100.21	57.0	375	0.30	0.879	61.53%	80.04%
Block 333 Treadway Private	160	161					0.30		0.50	0.99	15.00	1.54	16.54	83.56	82.72	0.30	0.59	25.50	50.15	5		2		40.00	73.40	100.21	81.0	375	0.30	0.879	17.46%	26.76%
Blackleaf Drive	161	166			0.61				0.76	33.62	33.23	0.87	34.09	50.29	1,690.91	0.61	22.20	51.85	5 1,887.00)		1	2	94.00	1,884.40	2,331.26	66.5	1500	0.10	1.278	27.47%	19.17%
Block 333 Rannoch Private	162	166					0.51		0.85	0.85	10.00	1.82	11.82	104.19	88.56	0.51	0.51	43.35	5 43.35	5	1	3		73.40	73.40	100.21	96.0	375	0.30	0.879	11.63%	26.76%
Sunita Crescent	163	164			0.33				0.41	0.41	10.00	2.43	12.43	104.19	42.72	0.33	0.33	28.05	5 28.05	5		1		20.00	20.00	91.44	117.1	375	0.25	0.802	53.28%	78.13%
Sunita Crescent	164	165			0.06				0.08	0.49	15.00	0.28	15.28	83.56	40.94	0.06	0.39	5.10	33.15	5	1			13.40	33.40	91.44	13.4	375	0.25	0.802	55.22%	63.47%
Sunita Crescent	165	166			0.42				0.53	1.02	15.28	1.69	16.97	82.67	84.32	0.42	0.81	35.70	68.85	5		1		20.00	53.40	132.98	82.3	450	0.20	0.810	36.59%	59.84%
Blackleaf Drive	166	167			0.71		0.16		1 16	36.65	34.00	0.05	35.05	10 /1	1 810 84	0.87	24 30	73.04	5 2 073 14		2	2		66.80	2 078 00	2 331 26	73 1	1500	0.10	1 278	22.32%	10.86%
Blackleaf Drive	167	168			0.25		0.10		0.31	36.96	35.05	0.22	35.27	48.47	1,791.61	0.25	24.64	21.25	5 2,094.40	5	1	-		13.40	2,091.40	2,331.26	17.1	1500	0.10	1.278	23.15%	10.29%
Blackleaf Drive	168	170							0.00	36.96	35.27	0.75	36.02	48.26	1,783.74	0.00	24.64	0.00	2,094.40					0.00	2,091.40	2,331.26	57.6	1500	0.10	1.278	23.49%	10.29%
Blackleaf Drive	169	170			0.29				0.36	0.36	10.00	1.25	11.25	104.19	37.51	0.29	0.29	24.65	5 24.65	5		1		20.00	20.00	100.21	66.0	375	0.30	0.879	62.57%	80.04%
0.11.0	4=0	4=+			0.00					0			07.07						0.000	_	-			F0. (0	0.404.00	0.004.00		4500	0.40	1 070	22.400/	7 4 40/
Sunita Crescent	170	171			0.57				0.71	38.03	36.02	1.20	37.22	47.56	1,808.66	0.57	25.50	48.4	2,167.50	1	1	2	2	53.40	2,164.80	2,331.26	92.2	1500	0.10	1.278	30 56%	25 21%
Sunita Crescent	172	172			0.82				1.00	40 12	38.32	1.10	39.62	40.40	1,010.93	0.82	20.33	69.70	2,239.7	5	1	2	2	53.40	2,240.40	3.006.23	105.5	1650	0.10	1.362	39.23%	23.43%
					0.02				1.00	40.12	00.02	1.20	00.02	40.04	1,020.00	0.02	27.17	00.10		-	<u> </u>	-		00.10	2,001100							
																				1												
					Refer t	o Phas	e 12 Sto	orm Sew	er Desig	n Sheet																						
Designed: LME																																
											Q = 2.78A Q = Peak	IC, where Flow in Li	: tres per Se	econd (I/s)		Level of	Service=	85.00) L/s/Ha	Assur	med CE	B Head	= <u>1.22 </u> m [1	:5 yr]			Mann	ings Coeffi	cient (n) =	0.013		
Checked:											A = Area	n Hectare	s (ha.)	, ,						1								12152	CA			
											I = Rainfa	II Intensity	in Millime	ters per H	our (mm/hr)					1							120	and and the		A.		
			Re	vision					Date		[1=998.	071/((TC+	6.053)^0.	814]						1							ANA	7/		1		
Dwg. Reference:		File Ref:			Da	ate:			Sheet No):										1							126	and the second	1	2		
25099-500	2	5099-5.7			04/08	3/2010			1 of 1							1				1						1. <u>5</u>	a /	(10 B		
																										8		L LA. ER	ICA	5.1		

STORM SEWER DESIGN SHEET

PROJECT: Stonebridge Phase 11 LOCATION: City of Ottawa CLIENT: Monarch Corporation

0 50

IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

Picture Pic	LOCATION			1			AR	EA (Ha)							RATIONAL D	ESIGN FLOW	v		1	LEVEL O	F SERVICE			SE	WER DAT	A		AVAIL. C	AP. (%)
Im Im<	STREET	FROM	TO	C=	C=	C=	C=	C=	C=	INDIV.	ACCUM.	INLET	TIME	TOTAL	I (5 year)	I (10 year)	PEAK	TOTAL PEAK	AR	EA (ha)	FLOW	/ (L/s)	CAP.	LENGTH	PIPE	SLOPE	VEL.	RATIONAL	LEVEL OF
Subscription:		MH	MH	0.20	0.30	0.45	0.70	0.60	0.80	2.78AC	2.78AC	(min.)	IN PIPE	(min.)	(mm/Hr)	(mm/Hr)	FLOW (L/s)	FLOW (L/s)	INDIV.	ACCUM.	INDIV.	ACCUM.	(L/s)	(M)	(mm)	(%)	(M/s)	5 YEAR	SERVICE
Image: Discription of the image: Discri	TEMPORARY OUTLET THROU																												
Bit Decomposition Solution Solutica Solution Solution Solutica Solutica Solutica Solutica Solutica S	TEMPORARI OUTLET THROU	GHPAR	LANDS																					<u> </u>			- 20		
Some length Some length <	Sunita Crescent (see Storm																												
Similary int	Sewer Design Sheet																												
Prime Prim Prime Prime Prime Prime	Stonebridge Phase 11 & 12)	170	171	1							38.03	37.22	1.20	38.42	46.48		1,767.69	1,767.69	0.00	25.50	0.00	2,167.50	2,331.26	92.2	1500	0.10	1.278	24.17%	7.02%
State																													
name bit </td <td>Temporary Outlet Block 335</td> <td>171</td> <td>300A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>38.03</td> <td>38.42</td> <td>0.57</td> <td>38.99</td> <td>45.46</td> <td></td> <td>1,728.71</td> <td>1,728.71</td> <td>0.00</td> <td>25.50</td> <td>0.00</td> <td>2,167.50</td> <td>2,226.68</td> <td>51.3</td> <td>1350</td> <td>0.16</td> <td>1.507</td> <td>22.36%</td> <td>2.66%</td>	Temporary Outlet Block 335	171	300A							0.00	38.03	38.42	0.57	38.99	45.46		1,728.71	1,728.71	0.00	25.50	0.00	2,167.50	2,226.68	51.3	1350	0.16	1.507	22.36%	2.66%
Park Park <																													
Path Det </td <td>Park</td> <td>300A</td> <td>300</td> <td><u> </u></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>0.00</td> <td>38.03</td> <td>38.99</td> <td>0.24</td> <td>39.23</td> <td>44.99</td> <td></td> <td>1,710.97</td> <td>1,710.97</td> <td>0.00</td> <td>25.50</td> <td>0.00</td> <td>2,167.50</td> <td>2,226.68</td> <td>21.7</td> <td>1350</td> <td>0.16</td> <td>1.507</td> <td>23.16%</td> <td>2.66%</td>	Park	300A	300	<u> </u>			<u> </u>			0.00	38.03	38.99	0.24	39.23	44.99		1,710.97	1,710.97	0.00	25.50	0.00	2,167.50	2,226.68	21.7	1350	0.16	1.507	23.16%	2.66%
conv	D _1			<u> </u>					0.70	0.54							4 000 00	1 000 00	0.04	00.44	0.40.00	0.447.40	0 400 00	100 5	1250	0.00	1 005	24.029/	2 00%
net 1 1 1 1 1 1 1 10 100 <	Park	300	301		2.18				0.76	3.51	41.54	38.99	1.01	40.00	44.99		1,868.89	1,868.89	2.94	28.44	249.90	2,417.40	2,489.69	102.5	1350	0.20	1.000	24.93%	2.90%
cond	Pade	201	2014							0.00	41 54	40.00	0.22	40.22	44.10		4 095 22	1 095 22	0.00	29.44	0.00	2 567 40	2 783 72	37.0	1350	0.25	1 884	28 68%	7 77%
Pak Div <td>Faik</td> <td>301</td> <td>JUIA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>41.04</td> <td>40.00</td> <td>0.55</td> <td>40.55</td> <td>44.10</td> <td></td> <td>1,505.52</td> <td>1,503.32</td> <td>0.00</td> <td>20.44</td> <td>0.00</td> <td>2,507.40</td> <td>2,703.72</td> <td>01.0</td> <td>1000</td> <td>0.20</td> <td>1.004</td> <td>20.0070</td> <td>1.1170</td>	Faik	301	JUIA							0.00	41.04	40.00	0.55	40.55	44.10		1,505.52	1,503.32	0.00	20.44	0.00	2,507.40	2,703.72	01.0	1000	0.20	1.004	20.0070	1.1170
method mod mod <t< td=""><td>Park</td><td>301A</td><td>302</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td>0.00</td><td>41.54</td><td>40.33</td><td>0.58</td><td>40.91</td><td>43.93</td><td></td><td>1,974,79</td><td>1,974,79</td><td>0.00</td><td>28.44</td><td>0.00</td><td>2,567,40</td><td>2,783,72</td><td>65.0</td><td>1350</td><td>0.25</td><td>1.884</td><td>29.06%</td><td>7.77%</td></t<>	Park	301A	302				<u> </u>			0.00	41.54	40.33	0.58	40.91	43.93		1,974,79	1,974,79	0.00	28.44	0.00	2,567,40	2,783,72	65.0	1350	0.25	1.884	29.06%	7.77%
Part	- unit	001/1	002							0.00			0.00		10.00		.,		0.00										
And A	Park	302	303					2.43	2.74	10.15	51.69	40.33	0.67	41.00	43.93		2,420.66	2,420.66	5.17	33.61	439.45	3,006.85	3,761.39	82.9	1500	0.26	2.062	35.64%	20.06%
Camber near <																													
A N <th< td=""><td>Cambrian Road</td><td>303</td><td>304</td><td></td><td></td><td></td><td>0.73</td><td></td><td></td><td>1.42</td><td>1.42</td><td>41.00</td><td>1.27</td><td>42.27</td><td></td><td>50.70</td><td>71.99</td><td></td><td>0.73</td><td>0.73</td><td>175.20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Cambrian Road	303	304				0.73			1.42	1.42	41.00	1.27	42.27		50.70	71.99		0.73	0.73	175.20								
And Ex N <					0.73						51.69	41.00			43.42		2,394.31	2,466.30	0.73	34.34	62.05	3,244.10	3,793.06	110.0	1800	0.10	1.444	34.98%	14.47%
Camber an Rad Sofe E. 17 I																													
Image: Properties of the set of th	Cambrian Road	304	Ex. 177								1.42	42.27	1.19	43.46		49.60	70.43		0.00	0.73	0.00				1000	0.40		00.000/	44.470/
Image: Market				<u> </u>			l				51.69	42.27			42.49		2,346.17	2,416.61	0.00	34.34	0.00	3,244.10	3,793.06	103.2	1800	0.10	1.444	36.29%	14.47%
Image: market in the state in the						<u> </u>																							
Image: Sector				<u> </u>																									
Image: state																													
Image: state																													
Image: Sector Secto																			<u> </u>										
Image: Sector																													
Image: Sector																							1						
Image: Second																													
Image: Sector																													
Image: Sector																													
Image: Properties of the state of the s																													
Image: state in the state i																													
Image: series of the series of t																													
																									1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																													
Image: Constraint of the constr																													
Image: Constraint of the constr																													
Image: Constraint of the relation of the rela																													
Image: Construct of the																													
Designed: Level of Service= Level of Service= Mannings Coefficient (n) = 0.013 $2 = 2.78$ AIC, where: $2 = 2.78$ AIC, where: 5 Year 85.00 L/s/Ha 10 Year 240.00 L/s/Ha 150 I/s added for major system retention area release flow Checked: I = Rainfall Intensity in Millimeters per Hour (mm/hr) 150 I/s added for major system retention area release flow Dwg. Reference: File Ref: Date: Sheet No: $25099 - 5.7$ $04/08/2010$ 1 of 1																													
Line Line Line Line Line Stream Stream Stream Stream Stream Mannings Coefficient (n) = 0.013 Line Image: Stream Image: Stream Image: Stream Image: Stream Stream Stream Stream Stream Stream Stream Stream Image: Stream <td< td=""><td>Designed:</td><td></td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td><td>Level of</td><td>Service=</td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td></td<>	Designed:						L									l			Level of	Service=		1		1	1	1	1	1	
Image: Control with the set of t	LME LME			-								0 = 2.79							Loveror	5 Year	85.00	I /s/Ha		Mann	ings Coeff	icient (n) =	0.013		
Checked: Check												Q = 2.78	Flow in Lit	ros por C	econd (I/e)				1	10 Year	240.00	L/s/Ha		Wall	inga obelli	(ii) -	0.010		
Image: Second	Checked:											A = Area	in Hectare	s (ha)	000110 (115)				1	.0 1001	240.00	210/110			150 l/s ad	ded for m	ajor syste	m retention ar	ea
Image: Non-state Date Date Date [I=998.071//(TC+6.053)^0.814] Dwg. Reference: File Ref: Date: Sheet No: [I=998.071//(TC+6.053)^0.814] [I=998.071//(TC+6.053)^0.814]												I = Rainf	all Intensity	in Millime	ters ner Hou	r (mm/hr)			1						release fl	ow	,,		
Dwg. Reference: File Ref: Date: Sheet No: 25099-5.7 04/08/2010 1 of 1				Pr	vision					Date		[=998	.071/(/TC+	6.053)^0	814]	()			1										
25099- 5.7 04/08/2010 1 of 1	Dwg. Reference:		File Ref:	110		De	ate:			Sheet No	D:	1000							1				1						
		2	5099- 5.7			04/08	8/2010			1 of 1																			

STORM SEWER DESIGN SHEET

PROJECT: Stonebridge Phase 11 & 12 Temporary Outlet LOCATION: City of Ottawa CLIENT: Monarch Corporation

STONEBRIDGE PHASE 11 HGL CALCULATION - 100 YEAR

IFRICTION LOSS	FROM	TO	PIPE	MANNING	3 FORMU	ILA - FLOI	VING FUL	.L	
SUNITA CRESCENT	МН	MH	ID .						
	173	172							
INVERT ELEVATION (m)	90.261	90.366							
DIAMETER (mm)			1650	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			105.5	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	91.937	92.042		1.676	2.21	5.26	0.42	1.36	2998.49
FLOW (I/s)			2,309.5						
HGL (m)	92.200	92.262							
	L								
MANHOLE LOSS (m)		0.010							
	J								
TOTAL HGL (m)		92.272							
MAX. SURCHARGE (mm)		229			·····				
FRICTION LOSS	FROM	TO	PIPE						
SUNITA CRESCENT	MH	MH	ID						
	172	171							
INVERTELEVATION (m)	90.366	90.456	4050		1000	00004			
			1650	DIA (m)	AREA	PERIM.	HYD.R.	VEL. (m/a)	
		00.400	90.1		(1VIZ)	(0)	0.40	(100	(115)
OBVERT ELEVATION (m)	92.042	92.132	0.000.0	1.070	2.21	5.20	0.42	1.30	3004.50
	00.070	02 2221	2,239.8						
HGL (m)	92.272	92.322							
	 	0 000							
MANNOLE LOSS (III)		0.009							
TOTAL HGL (m)	1	92 331							
MAX, SURCHARGE (mm)		199							
	<u></u>								
FRICTIONLOSS	FROM	TO	PIPE						
SUNITA CRESCENT	MH	мн	ID						
	171	170							
INVERT ELEVATION (m)	90.608	90.700							
DIAMETER (mm)			1500	DiA	ARCA	PERIM	HYDR		
			1000			t uni critti	111 00 11 44	VEL.	<u>v</u>
LENGHT (m)			92.2	(m)	(M2)	(m)	(m)	VEL. (m/s)	(I/s)
LENGHT (m) OBVERT ELEVATION (m)	92.132	92.224	92.2	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(l/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)	92.132	92.224	92.2	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(l/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)	92.132	92.224 92.411	92.2	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(l/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)	92.132 92.331	92.224	92.2	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(i/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.132	92.224 92.411 0.010	92.2	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(i/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.132	92.224 92.411 0.010	2,167.5	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(i/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m)	92.132	92.224 92.411 0.010 92.421	92.2	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.132	92.224 92.411 0.010 92.421 197	2,167.5	(m) 1.524	(M2) 1.82	(m) 4,79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.132	92.224 92.411 0.010 92.421 197	2,167.5	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.132 92.331	92.224 92.411 0.010 92.421 197 TO	92.2 2,167.5 PIPE	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.132 92.331	92.224 92.411 0.010 92.421 197 TO MH	92.2 2,167.5 PIPE ID	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.132 92.331 92.331	92.224 92.411 0.010 92.421 197 TO MH	92.2 2,167.5 PIPE ID	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.132 92.331 92.331 FROM MH	92.224 92.411 0.010 92.421 197 TO MH 169 92.100	92.2 2,167.5 PIPE ID	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.132 92.331 92.331 FROM MH 170 91.903	92.224 92.411 0.010 92.421 197 TO MH 169 92.100	92.2 2,167.5 PIPE ID	(m) 1.524	(M2) 1.82	(m) 4.79	(m) 0.38	VEL. (m/s) 1.28	(I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm)	92.132 92.331 92.331 FROM MH 170 91.903	92.224 92.411 0.010 92.421 197 TO MH 169 92.100	92.2 2,167.5 PIPE ID	(m) 1.524	(M2) 1.82 AREA (M2)	(m) (7) (7) (7) (7) (7)	(m) 0.38	VEL. (m/s) 1.28	Q (I/s) 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)	92.132 92.331 92.331 92.331 91.903 91.903	92.224 92.411 0.010 92.421 197 TO MH 169 92.100	92.2 2,167.5 PIPE ID 375 66.0	(m) 1.524	AREA (M2)	(m) (79 (79) (79) (79) (70) (70) (70) (70) (70) (70) (70) (70	(m) 0.38 HYD.R. (m)	VEL. (m/s) 1.28 VEL. (m/s)	Q (I/s) 2328.82 2328.82
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)	92.132 92.331 92.331 92.331 92.331 92.284	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481	92.2 2,167.5 PIPE ID 375 66.0	(m) 1.524 DiA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 (m) 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 (I/s) 99.88
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s)	92.132 92.331 92.331 92.331 92.331 92.331 92.284 92.284	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481	92.2 2,167.5 2,167.5 PIPE ID 375 66.0 28.4	(m) 1.524 DiA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 (m) 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 2328.82 2328.82 2328.82 (I/s) 99.88
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)	92.132 92.331 92.331 92.331 92.331 92.331 92.284 92.284 92.421	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481 92.481	92.2 2,167.5 2,167.5 PIPE ID 375 66.0 28.4	(m) 1.524 DiA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 (m) 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 2328.82 2328.82 2328.82 (I/s) 99.88
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m)	92.132 92.331 92.331 92.331 92.331 92.331 92.331 92.284 92.421	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481 92.481	92.2 92.2 2,167.5 PIPE ID 375 66.0 28.4	(m) 1.524 DiA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 2328.82 2328.82 2328.82 (I/s) 99.88
LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.132 92.331 92.331 92.331 92.331 92.331 92.331 92.284 92.421	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481 92.437	92.2 92.2 2,167.5 PIPE ID 375 66.0 28.4	(m) 1.524 DiA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 2328.82 2328.82 2328.82 (I/s) 99.88
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m)	92.132 92.331 92.331 	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481 92.437	92.2 2,167.5 PIPE ID 375 66.0 28.4	(m) 1.524 DiA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 (m) 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 2328.82 2328.82 99.88
LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (l/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.132 92.331 92.331 	92.224 92.411 0.010 92.421 197 TO MH 169 92.100 92.481 92.437 92.437 -44	92.2 2,167.5 2,167.5 PIPE ID 375 66.0 28.4	(m) 1.524 DIA (m) 0.381	AREA (M2) 1.82	(m) 4.79 4.79 1.20	(m) 0.38 0.38 HYD.R. (m) 0.10	VEL. (m/s) 1.28 VEL. (m/s) 0.88	Q (I/s) 2328.82 2328.82 2328.82 2328.82 99.88

									1
FRICTION LOSS	FROM	то	PIPE						
BLACKLEAF DRIVE	MH	MH	ID						
	170	168							
INVERT ELEVATION (m)	90.760	90.818							
	00.700		1500			DEDIM	HYDRI		
			1500				/m)	- <u>vc</u>	(1/a)
LENGHT (m)	L		0.00	<u>(m)</u>	(IVIZ)	(in)	(11)	(11/5)	(15)
OBVERT ELEVATION (m)	92.284	92.342		1.524	1.82	4.79	0.38	1.29	2360.12
FLOW (I/s)			2,094.4						
HGI (m)	92.421	92,467							
		0.010							
MANHOLE LOSS (III)		0.010							1
TOTAL HGL (m)		92.477							
MAX. SURCHARGE (mm)		135							
FRICTION LOSS	FROM	TO	PIPE						
BLACKLEAF DRIVE	МН	мн	ID						
BEROKEERI DRIVE			1.00						
	00 000								
INVERTELEVATION (m)	90.838	90.855				·····			
DIAMETER (mm)			1500	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			17.1	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT FLEVATION (m)	92,362	92.379		1,524	1.82	4.79	0.38	1.28	2326.06
			2 094 4						
	02 477	02.401	2,007.7						
Ingr (m)	92.477	92.491							
	I								
MANHOLE LOSS (m)		0.010							
	[
TOTAL HGL (m)		92.501							
MAX, SURCHARGE (mm)		122							
L	<u>1</u>								
	E COM	TOT	DIDE						
FRICTION LOSS	PROM								
BLACKLEAF DRIVE	MH	ivin	U I						
	167	166							
INVERT ELEVATION (m)	90.885	90.958							
		*-	1500	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
			73.1	(m)	(M2)	(m)	(m)		(i/s)
				(111)				(m/s)	(n = 7)
	00 100	00 100		4 504	1 02	4 70	0.20	(m/s)	2220 61
	92.409	92.482		1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s)	92.409	92.482	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m)	92.409 92.501	92.482 92.559	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m)	92.409 92.501	92.482 92.559	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.409	92.482 92.559 0.009	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.409	92.482 92.559 0.009	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.409	92.482 92.559 0.009	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.409	92.482 92.559 0.009 92.568 86	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.409	92.482 92.559 0.009 92.568 86	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.409	92.482 92.559 0.009 92.568 86	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm)	92.409 92.501	92.482 92.559 0.009 92.568 86 TO	2,073.2	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.409 92.501 FROM MH	92.482 92.559 0.009 92.568 86 TO MH	2,073.2 PIPE ID	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.409 92.501 FROM MH	92.482 92.559 0.009 92.568 86 TO MH	2,073.2 2,073.2 PIPE ID	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.409 92.501 FROM MH	92.482 92.559 0.009 92.568 86 TO MH 161	2,073.2 2,073.2 PIPE ID	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.409 92.501 92.501 FROM MH 166 00.058	92.482 92.559 0.009 92.568 86 TO MH 161 91.025	2,073.2 PIPE ID	1.524	1.82	4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE	92.409 92.501 	92.482 92.559 0.009 92.568 86 TO MH 161 91.025	2,073.2 PIPE ID	1.524	1.82	4.79 4.79	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm)	92.409 92.501 	92.482 92.559 0.009 92.568 86 TO MH 161 91.025	2,073.2 PIPE ID	1.524	4REA	PERIM.	0.38	(m/s) 1.28	2328.61
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m)	92.409 92.501 	92.482 92.559 0.009 92.568 86 TO MH 161 91.025	2,073.2 PIPE ID 1500 66.5	1.524	AREA (M2)	PERIM. (m)	0.38	(m/s) 1.28 VEL. (m/s)	2328.61 Q (l/s)
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m)	92.409 92.501 FROM MH 166 90.958 92.482	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549	2,073.2 PIPE ID 1500 66.5	1.524	AREA (M2) 1.82	PERIM. (m) 4.79	HYD.R. (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (l/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s)	92.409 92.501 92.501 FROM MH 166 90.958 92.482	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524 DIA (m) 1.524	AREA (M2) 1.82	PERIM. (m) 4.79	HYD.R. (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (l/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)	92.409 92.501 92.501 FROM MH 166 90.958 92.482 92.568	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549 92.612	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524 DIA (m) 1.524	AREA (M2) 1.82	PERIM. (m) 4.79	HYD.R. (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (I/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)	92.409 92.501 92.501 FROM MH 166 90.958 92.482 92.568	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549 92.612	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524	AREA (M2) 1.82	PERIM. (m) 4.79	(19) 0.38 0.38 (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (l/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m)	92.409 92.501 92.501 FROM MH 166 90.958 92.482 92.568	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549 92.612	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524 DIA (m) 1.524	AREA (M2) 1.82	PERIM. (m) 4.79	HYD.R. (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (I/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.409 92.501 	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549 92.612 0.008	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524 DIA (m) 1.524	AREA (M2) 1.82	PERIM. (m) 4.79	() 0.38 0.38 (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (I/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m)	92.409 92.501 92.501 FROM MH 166 90.958 92.482 92.568	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549 92.612 0.008	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524 DIA (m) 1.524	AREA (M2) 1.82	PERIM. (m) 4.79	HYD.R. (m) 0.38	(m/s) 1.28 1.28 VEL. (m/s) 1.28	2328.61 Q (l/s) 2339.24
FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS BLACKLEAF DRIVE INVERT ELEVATION (m) DIAMETER (mm) LENGHT (m) OBVERT ELEVATION (m) FLOW (I/s) HGL (m) MANHOLE LOSS (m) TOTAL HGL (m)	92.409 92.501 92.501 	92.482 92.559 0.009 92.568 86 TO MH 161 91.025 92.549 92.612 0.008 92.620	2,073.2 PIPE ID 1500 66.5 1,904.6	1.524	AREA (M2) 1.82	PERIM. (m) 4.79	HYD.R. (m) 0.38	(m/s) 1.28 VEL. (m/s) 1.28	Q (l/s) 2339.24

FRICTION LOSS	FROM	то	PIPE						
BI ACKLEAF DRIVE	мн	MH	ID						
	161	155							
INVERT ELEVATION (m)	91.025	91.097							
DIAMETER (mm)	i		1500	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			72.1	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	92.549	92.621		1.524	1.82	4.79	0.38	1.28	2328.90
FLOW (I/s)	l		1,785.9						
HGL (m)	92.620	92.662							
	······								1
MANHOLE LOSS (m)		0.007							
TOTAL HGL (m)		92.669							
MAX. SURCHARGE (mm)		48							
FRICTION LOSS	FROM	TO	PIPE						
BLACKLEAF DRIVE	МН	MH	ID						
	155	154							
INVERT ELEVATION (m)	91.124	91.188							
DIAMETER (mm)			1500	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			63.8	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	92.648	92.712		1.524	1.82	4.79	0.38	1.28	2334.49
FLOW (I/s)			1,706.8						
HGL (m)	92.669	92.704							
MANHOLE LOSS (m)	l	0.000							
TOTAL HGL (m)		92.704							
MAX. SURCHARGE (mm)		-8							

STONEBRIDGE PHASE 11 - BLOCK 333 HGL CALCULATION - 100 YEAR

FRICTION LOSS	FROM	то	PIPE	MANNING	FORMU	LA - FLOV	/ING FULL		
RANNOCK PRIVATE	мн	MH	D						
	<u> </u>								
	166	162]					
INVERT ELEVATION (m)	92.100	92.388							
DIAMETER (mm)			375	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			96.0	(m)	(M2)	(m)	(m)	(m/s)	<u>(/s)</u>
OBVERT ELEVATION (m)	92.481	92.769		0.381	0.11	1.20	0.10	0.88	100.12
FLOW (I/s)			72.9						
HGL (m)	92.570	92.723							
MANHOLE LOSS (m)									
TOTAL HGL (m)		92.723							
MAX. SURCHARGE (mm)	L	-46				·····	<u></u>		
FRICTION LOSS	FROM	то	PIPE						
PARK	мн	мн	D						
	161	160							
INVERT ELEVATION (m)	92.168	92.411							
DIAMETER (mm)			375	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)		,	81.0	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	92.549	92.792		0.381	0.11	1.20	0.10	0.88	100.12
FLOW (I/s)			57.0						
HGL (m)	92.620	92.699							-
MANHOLE LOSS (m)									
	 	92 699							
MAX. SURCHARGE (mm)		-93							

STONEBRIDGE PHASE 10S - TEMPORARY OUTLET HGL CALCULATION - 100 YEAR

FRICTION LOSS	FROM	TO	PIPE	MANNING	FORMU	LA - FLOV	VING FULI	_	
PARK	MH	мн	ID						
	<u> </u>								
	303	302							
INVERT ELEVATION (m)	89.605	89.824							
DIAMETER (mm)			1500	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			82.9	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	91.129	91.348		1.524	1.82	4.79	0.38	2.08	3788.64
FLOW (I/s)			3,006.0						
HGL (m)	91.300	91.438							
MANHOLE LOSS (m)		0.022							
]								
TOTAL HGL (m)		91.460							
MAX. SURCHARGE (mm)		112							
FRICTION LOSS	FROM	то	PIPE						
PARK	MH	MH	ID						
				J					
	302	301A							
INVERT ELEVATION (m)	89.976	90.139							
DIAMETER (mm)			1350	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			65.0	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	91.348	91.511		1.372	1.48	4.31	0.34	1.89	2786.96
FLOW (I/s)			2,566.6						
HGL (m)	91.460	91.598		1					
MANHOLE LOSS (m)		0.023							
				J					
TOTAL HGL (m)		91.621							
MAX. SURCHARGE (mm)		111							
FRICTION LOSS	FROM	TO	PIPE						
PARK	MH	MH	ID						
				J					
	301A	301)					
INVERT ELEVATION (m)	90.139	90.231							
DIAMETER (mm)			1350	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			37.0	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	91.511	91.603		1.372	1.48	4.31	0.34	1.88	2775.15
FLOW (I/s)			2,566.6						
HGL (m)	91.621	91.700							
MANHOLE LOSS (m)		0.022							
TOTAL HGL (m)	1	91.722		1					
MAX. SURCHARGE (mm)		119							
]					
FRICTION LOSS	FROM	TO	PIPE	1					
PARK	МН	мн	ID						
	301	300		l					
INVERT ELEVATION (m)	90.231	90.436							
DIAMETER (mm)	1		1350	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			102.5	(m)	(M2)	(m)	(m)	(m/s)	(l/s)
OBVERT ELEVATION (m)	91.603	91.808		1.372	1.48	4.31	0.34	1.69	2488.90
ELOW (1/s)			2 416 6				4		
HGL (m)	91 722	91 915	E, 410.0						
	01,126	0.010							
MANHOLE LOSS (m)		0.018							
	J			1					
TOTAL HGL (m)		91,933							
TOTAL HGL (m) MAX. SURCHARGE (mm)		91.933 126							

FRICTION LOSS	FROM	TO	PIPE						
PARK	мн	MH	D						
	300	171							
INVERT ELEVATION (m)	90.436	90.551							
DIAMETER (mm)			1350	DIA	AREA	PERIM.	HYD.R.	VEL.	Q
LENGHT (m)			71.9	(m)	(M2)	(m)	(m)	(m/s)	(I/s)
OBVERT ELEVATION (m)	91.808	91.923		1.372	1.48	4.31	0.34	1.51	2225.29
FLOW (I/s)			2,166.7		*****				*******
HGL (m)	91.933	92.042							
MANHOLE LOSS (m)		0.000							
TOTAL HGL (m)		92.042							
MAX. SURCHARGE (mm)		120							

(D:\...MRCsub01.out)

000015	xxx = = = = = = = = = = = = = = = = = =
00002>	
00003>	SSSSS W W M M H H Y Y M M OOO 999 999 =======
000000	S WWW MM MM H H Y Y MM MM O O 9 9 9 9
00005>	SSSSS WWW M M M HHHHH Y M M M O O ## 9 9 9 9 Ver. 4.02
00006>	S W W M M H H Y M M O O 9999 9999 July 1999
000007>	
00008>	9 9 9 9 # 3699242
000002	StormWater Management HYdrologic Model 999 999 ========
00010>	
00011>	*****
00012>	**************************************
00012>	****** A single event and continuous hydrologic simulation model *******
00014>	******* based on the principles of HYMO and its successors ******
00015>	**************************************
00016>	***************************************
00017>	****** Distributed by: J.F. Sabourin and Associates Inc.
00018>	******** Ottawa, Ontario: (613) 727-5199 *******
00019>	******* Gatinean, Ouebec: (819) 243-6858 ******
00020>	****** E-Mail: swmbymo@ifsa.Com ******
00020>	***************************************
000212	
000222	<u>┺╫╙╢┿╫┿╋╋╪╁┟╪╪╪╪╪╪╪╋┧╄┽╢╪┿╋╪╄╪╃╢╢╪╪┿╋╆╪┼┠╊╋╪╋╋╢┾┠╢┼╫╪┼╋┾╋┿╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋</u>
000232	+++++++ Licensed user: Cumming Cockburn Limited ++++++
00025>	Attack Serial Seria
00025>	
00020>	
000272	******
00029>	****** ++++++ PROGRAM ARRAY DIMENSIONS ++++++ ******
00030>	******* Maximum value for ID numbers : 10 *******
00031>	******* Max. number of rainfall points: 15000 *******
00032>	******* Max. number of flow points : 15000 *******
00033>	*****
00034>	
00035>	
00036>	**************************************
00037>	******************************
00038>	* DATE: 2010-06-15 TIME: 15:52:02 RUN COUNTER: 004270 *
00039>	***************************************
00040>	* Input filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\MRCsub01.dat *
00041>	* Output filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\MRCsub01.out *
00042>	* Summary filename: D:\MYDOCU~1\l3931C~1\SWMHYMO\JUNE20~1\MRCsub01.sum *
00043>	* User comments: *
00044>	* 1:*
00045>	* 2:*
00046>	* 3:*
00047>	*******************
00048>	
00049>	***************************************
00050>	001:0001
00051>	*#*************************************
00052>	*# Project Name: Corrigan SWM Facility
00053>	*# Project Number: 13931
00054>	*# Date :
00055>	*# Modeller :
00056>	*# Company : Cumming Cockburn Limited
00057>	*# License # : 3699242
00058>	*#*************************************
00059>	*
00060>	*
00061>	
00062>	START Project dir.: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\
00063>	Rainfall dir.: D:\MYDOCU~l\l3931C~l\SWMHYMO\JUNE20~l
00064>	TZERO = .00 hrs on 0
00065>	METOUT= 2 (output = METRIC)
00066>	NRUN = 001

Cumming Cockburn Limited

Page 1

.

00067> NSTORM= 0 00068> -----00069> 001:0002------00070> * 00071> *# 2010-06 MAJOR FLOW - STONEBRIDGE PHASES 11 AND 12 00072> *# PARAMETERS REVISED TO REFLECT DETAILED DESIGN 00073> * 00074> * 00077> *# 100 YEAR 3 HOUR CHICAGO STORM - 10 MIN TIME STEP * <08000 00081> -----00081>| READ STORM|Filename: D:\MYDOCU~1\13931C~1\SWMHYMO\JUNE20~1\CH00083> | Ptotal=71.68 mm|Comments: CHICAGO 3 HOUR 10 MIN 100 YEAR STORM 00084> -----
 TIME
 RAIN
 Instant
 TIME RAIN 00085> 00086> 00087> <88000 00089> 00090> .83 40.760 | 1.67 13.730 | 2.50 6.340 | 00091> 00092> 00093> -----00094> 001:0003-----00095> * 00097> *# AREA B2 (RESIDENTIAL) 00098> *# MH 136/315 00099> *# Note: Overflow to external drainage area 00101> * 00102> ------00103> | CALIB STANDHYD | Area (ha)= 12.40 00104> | 01:000210 DT= 2.00 | Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00 00105> -----IMPERVIOUS PERVIOUS (i) 00106> IMPERVIOUSPERVIOUSSurface Area(ha) =4.967.44Dep. Storage(mm) =.801.50Average Slope(\$) =.502.00Length(m) =394.0040.00Mannings n=.013.25000107> 00108> 00109> 00110> 00111> 00112> Max.eff.Inten.(mm/hr)=178.5665.59over (min)6.0014.00Storage Coeff. (min)=5.68 (ii)14.03 (ii)Unit Hyd. Tpeak (min)=6.0014.00Unit Hyd. peak (cms)=.19.08 00113> 00114 >00115> 00116> 00117> * TOTALS * 00118>

 PEAK FLOW
 (cms) =
 1.96
 .84

 TIME TO PEAK
 (hrs) =
 1.03
 1.20

 RUNOFF VOLUME
 (mm) =
 70.88
 33.72

 TOTAL RAINFALL
 (mm) =
 71.68
 71.68

 BUNOFE COFFEICLENT
 =
 99
 .47

 2.446 (iii) 00119> 1.033 00120> 48.583 00121> 71.677 00122> RUNOFF COEFFICIENT = .99 . 47 . 678 00123> 00124> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00125> $CN^* = 77.0$ Ia = Dep. Storage (Above) 00126> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00127> THAN THE STORAGE COEFFICIENT. 00128> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00129> 00130> ______ 00131> ------00132> 001:0004-----

Cumming Cockburn Limited

00133> * 00134> * 00135> -----Requested routing time step = 1.0 min. 00136> | ROUTE RESERVOIR | 00137> | IN>01:(000210) | ----- OUTLFOW STORAGE TABLE -----00138> | OUT<07:(000110) | OUTFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.) 00139> -----(cms) 00140>.000 .0000E+00 | 1.064 .5400E-01 1.054 .1000E-03 | .000 .0000E+00 00141> 00142> 00143>ROUTING RESULTSAREAQPEAKTPEAKR.V.(ha)(cms)(hrs)(mm)INFLOW >01:(000210)12.402.4461.03348.583OUTFLOW<07:</td>(000110)10.851.0641.06748.583OVERFLOW<09:</td>(000106)1.551.3581.06748.583 00144> 00145> 00146> 00147> OVERFLOW<09: (000106) 00148> 00149> TOTAL NUMBER OF SIMULATED OVERFLOWS2CUMULATIVE TIME OF OVERFLOWS (hours)=.32PERCENTAGE OF TIME OVERFLOWING (%)=5.49 00150> 00151> 00152> 00153> 00154> PEAK FLOW REDUCTION (Qout/Qin)(\$) = 43.514TIME SHIFT OF PEAK FLOW (min) = 2.0000155> 00156> MAXIMUM STORAGE USED (ha.m.)=.5377E-01 00157> 00158> 00159> ------00160> 001:0005-----00161> * 00162> -----00163> | DIVERT HYD | 00164> | INID=09 (000106) | 00165> _____ 00166> Outflow / Inflow Relationships Flow 01 + Flow 04 = Total00167> (cms) (cms) (cms) .000 .000 .000 00168> 00169> .197 1.161 1.358 00170> 00171> NHYD AREA QPEAK TpeakDate_hh:mm R.V. NFE WetHrs 00172> 00173> (ha) (cms) 00174> 1Din = 09:000106 1.55 1.358 (cms) (nm) (hrs) 1.358 No date 1:04 48.583 2 0. 00175> 00176> 00176>IDout=01:000101.23.197No_date1:0448.58320.00177>IDout=04:0001021.331.161No_date1:0448.58320. 00178> -----00179> 001:0006------00180> * 00181> * 00182> * 00184> *# AREA B3 (RESIDENTIAL) 00185> *# MH 141/333 00186> *# Note: Overflow to external drainage area 00188> * 00189> ------00190> | CALIB STANDHYD | Area (ha)= 4.11 00191> | 01:000210 DT= 2.00 | Total Imp(%)= 40.00 Dir. Conn.(%)= 40.00 00192> -----IMPERVIOUS PERVIOUS (i) 00193>

 Surface Area
 (ha) =
 1.64
 2.47

 Dep. Storage
 (mm) =
 .80
 1.50

 Average Slope
 (%) =
 .50
 2.00

 Length
 (m) =
 350.00
 40.00

 Mannings n
 =
 .013
 .250

 00194> 00195> 00196> 00197> 00198>

Cumming Cockburn Limited

Page 3

00199> Max.eff.Inten.(mm/hr)=178.5665.59over (min)6.0014.00Storage Coeff. (min)=5.29 (ii)13.64 (ii)Unit Hyd. Tpeak (min)=6.0014.00Unit Hyd. peak (cms)=.20.08 00200> 00201> 00202> 00203> 00204> *TOTALS* 00205>
 00206>
 PEAK FLOW (cms) =
 .66
 .28

 00207>
 TIME TO PEAK (hrs) =
 1.03
 1.20

 00208>
 RUNOFF VOLUME (mm) =
 70.88
 33.72

 00209>
 TOTAL RAINFALL (mm) =
 71.68
 71.68

 00210>
 RUNOFF COEFFICIENT =
 .99
 .47
 .826 (iii) 1.033 48.583 71.677 . 678 0.0211>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00212> CN* = 77.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00213> 00214> 00215> THAN THE STORAGE COEFFICIENT. 00216> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00217> 00218> _____ 00219> 001:0007-----00220> * 00221> * 00222> _____ 00223> | ROUTE RESERVOIR | Requested routing time step = 1.0 min. 00224> | IN>01:(000210) 1 00225> | OUT<04:(000110) | _____ OUTLFOW STORAGE TABLE _____ OUTFLOW STORAGE | OUTFLOW STORAGE 00226> -----(cms) (ha.m.) | (cms) .000 .0000E+00 | .352 00227> (cms) (ha.m.) .000 .0000E+00 | .352 .2572E-01 .349 .1000E-03 | .000 .0000E+00 00228> 00229> 00230>
 AREA
 QPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)

 4.11
 .826
 1.033

 3.74
 .252
 1.117
 00231> ROUTING RESULTS R.V. (mm) 00232> 00233> INFLOW >01: (000210) OUTFLOW<04: (000110) 48.583 OVERFLOW<04: (000110) OVERFLOW<08: (000106) 3.74.3521.11748.583.37.3661.11748.583 00234> 00235> TOTAL NUMBER OF SIMULATED OVERFLOWS = 2 CUMULATIVE TIME OF OVERFLOWS (hours) = .27 .27 TIME OVERFLOWING (%) = 4.91 00236> 00237> 00238> 00239> 00240> 00241> PEAK FLOW REDUCTION [Qout/Qin](%)= 42.630 00242> TIME SHIFT OF PEAK FLOW (min)= 5.00 00243> MAXIMUM STORAGE USED (ha.m.)=.2565E-01 00244> 00245> 00246> -----00247> 001:0008------00248> * 00249> -----00250> | DIVERT HYD | 00251> | INID=08 (000106) | 00252> -----00253> Outflow / Inflow Relationships Flow 01 + Flow 10 = Total 00254>
 (cms)
 (cms)
 (cms)

 .000
 .000
 .000

 .142
 .224
 .366
 00255> 00256> 00257> 00258>
 00259>
 NHYD
 AREA
 QPEAK
 TpeakDate_hh:mm
 R.V.
 NFE
 WetHrs

 00260>
 (ha)
 (cms)
 (mm)
 (hrs)

 00261>
 IDin = 08:000106
 .37
 .366
 No_date
 1:07
 48.583
 2
 0.
 00262> 00263>IDout= 01:000101.14.142No date1:0748.58320.00264>IDout= 10:000102.23.224No date1:0748.58320. 0.

Cumming Cockburn Limited

Page 4

(D:\...MRCsub01.out)

00265> _____ 00266> 001:0009-----00267> * 00269> *# ADDING OVERFLOW FROM B2 00271> * 00272> -----

 00273> | ADD HYD (000107) | ID: NHYD
 AREA
 QPEAK
 TPEAK
 R.V.

 00274> ----- (ha)
 (cms)
 (hrs)
 (mm)

 00275>
 ID1 01:000101
 .14
 .142
 1.12
 48.58

 00276>
 +ID2 09:000106
 1.55
 1.358
 1.07
 48.58

 DWF
 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 .14
 .142
 1.12
 48.58
 .000

 1.55
 1.358
 1.07
 48.58
 .000
 00277> SUM 08:000107 1.70 1.358 1.07 48.58 .000 00278> 00279> 00280> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00281> 00282> -----00283> 001:0010-----00284> * 00285> * 00286> * 00288> *# EXTERNAL LANDS (STONEBRIDGE) 00289> *# Note: Minor and overflow to external area 00290> *# (minor tributary to Jockvale SWM Facility) 00292> * 00293> -----00294> | CALIB STANDHYD | Area (ha)= 2.23 Area (ha)= 2.23 Total Imp(%)= 54.00 Dir. Conn.(%)= 41.00 00295> | 01:000210 DT= 2.00 | 00296> _____ IMPERVIOUSPERVIOUS (i)Surface Area(ha) =1.201.03Dep. Storage(mm) =.801.50Average Slope(%) =.502.00Length(m) =223.0040.00Mannings n=.013.250 00297> 00298> 00299> 00300> Length Mannings n 00301> 00302> 00303> Max.eff.Inten.(mm/hr)=178.56118.07over (min)4.0010.00Storage Coeff. (min)=4.04 (ii)10.64 (ii)Unit Hyd. Tpeak (min)=4.0010.00Unit Hyd. peak (cms)=.28.11 00304> 00305> 00306> 00307> 00308> *TOTALS* 00309>

 PEAK FLOW
 (cms) =
 .41
 .20

 TIME TO PEAK
 (hrs) =
 1.00
 1.13

 RUNOFF VOLUME
 (mm) =
 70.88
 38.34

 TOTAL RAINFALL
 (mm) =
 71.68
 71.68

 RUNOFF COEFFICIENT
 .99
 .53

 .546 (iii) 00310> 00311> 1 000 51.680 00312> 71.677 00313> .721 RUNOFF COEFFICIENT = 00314> 00315> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00316> $CN^* = 77.0$ Ia = Dep. Storage (Above) 00317> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00318> 00319> THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00320> 00321> 00322> _____ 00323> 001:0011------00324> * 00325> * 00326> _____ 00327> | ROUTE RESERVOIR | Requested routing time step = 1.0 min. 00328> | IN>01:(000210) | 00329> | OUT<02: (000110) | OUTLFOW STORAGE TABLE 00330>----- OUTFLOW STORAGE | OUTFLOW STORAGE

(cms) (ha.m.) | (cms) (ha.m.) .000 .0000E+00 | .180 .2480E-02 .178 .1000E-03 | .000 .0000E+00 (cms) 00331> 00332> 00333> 00334> AREAQPEAKTPEAK(ha)(cms)(hrs)2.23.5461.0001.64.180.933.59.3651.017 R.V. ROUTING RESULTS AREA 00335> 00336> (mm) 51.680 INFLOW >01: (000210) 00337> OUTFLOW<02: (000110) 51.680 00338> 1.017 OVERFLOW<09: (000106) 51.680 00339> 00340> TOTAL NUMBER OF SIMULATED OVERFLOWS2CUMULATIVE TIME OF OVERFLOWS (hours) =.45PERCENTAGE OF TIME OVERFLOWING (%) =9.41 00341> 00342> 00343> 00344> 00345> PEAK FLOW REDUCTION [Qout/Qin] (%)= 32.991 TIME SHIFT OF PEAK FLOW (min)= -4.00 00346> 00347> (ha.m.) = .2460E - 02MAXIMUM STORAGE USED 00348> 00349> 00350> ------00351> 001:0012------00352> * 00354> *# ADDING OVERFLOW FROM B3, EXTERNAL LANDS 00356> * 00357> -----
 O0358> | ADD HYD (000107) | ID: NHYD
 AREA
 QPEAK
 TPEAK
 R.V.
 DWF

 00359> ----- (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 00360>
 ID1 10:000102
 .23
 .224
 1.12
 48.58
 .000

 00361>
 +ID2 09:000106
 .59
 .365
 1.02
 51.68
 .000
 00362> SUM 01:000107 .82 .462 1.12 50.82 .000 00363> 00364> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00365> 00366> 00367> ---00368> 001:0013-----00369> * 00371> *# ADDING MINOR FLOW FROM B2, B3 00373> * 00374> -----
 O0374>
 IADD HYD (000107) | ID: NHYD
 AREA
 QPEAK
 TPEAK
 R.V.
 DWF

 00376>
 ----- (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 00377>
 ID1
 04:000110
 3.74
 .352
 1.12
 48.58
 .000

 00378>
 +ID2
 07:000110
 10.85
 1.064
 1.07
 48.58
 .000
 .000 00379> SUM 10:000107 14.59 1.416 1.12 48.58 .000 00380> 00381> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00382> 00383> 00384> -----00385> 001:0014-----00386> * 00388> *# AREA B4A (RESIDENTIAL) 00389> *# MH 155/340 00390> *# Note: Overflow routed to B6B 00392> * 00393> -----00394> + CALIB STANDHYD | Area (ha)= 5.80 00395> | 01:000210 DT= 2.00 | Total Imp(%)= 49.00 Dir. Conn.(%)= 49.00 00396> -----Cumming Cockburn Limited

(D:\...MRCsub01.out)

00397>			IMPERVIOUS	PERVIOUS (i)		
00398>	Surface Area	(ha)=	2.84	2.96		
00399>	Dep. Storage	(mm) ==	.80	1.50		
00400>	Average Slope	(%)=	.50	2.00		
00401>	Length	(m) =	263.00	40.00		
00402>	Mannings n		.013	.250		
00403>	-					
00404>	Max.eff.Inten.(mm/hr)=	178.56	71.11		
00405>	over	(min)	4.00	12.00		
00406>	Storage Coeff.	(min)=	4.46 (i	i) 12.54 (ii)		
00407>	Unit Hyd. Tpea}	(min)=	4.00	12.00		
00408>	Unit Hyd. peak	(cms) =	.26	.09		
00409>					*TOTALS*	
00410>	PEAK FLOW	(cms)=	1.25	.36	1.441 (iii)	
00411>	TIME TO PEAK	(hrs) =	1.00	1.17	1.000	
00412>	RUNOFF VOLUME	(mm) ⇒	70.88	33.72	51,927	
00413>	TOTAL RAINFALL	(mm) =	71.68	71.68	71.677	
00414>	RUNOFF COEFFICI	ENT -	.99	. 47	.724	
00415>						
00416>	(I) ON PROCE	HRE SELEC	TED FOR PERV	TOUS LOSSES:		
004175	(1) ON 2 HOUSE		= Dep. Stora	ge (Above)		
004185	(ii) TIME STEL	> (DT) SHC	NULD BE SMALL	ER OR EQUAL		
004102	THAN THE	STORAGE C	ORFRICIENT			
004205	(iii) PEAK FLOW	DOES NOT	TNCLUDE BAS	EFLOW IF ANY.		
004202	(22.2) 10000 1000		11000000 010			
004212						
004222	001.0015					
004232	*					
004242	*					
004252						
004202	I DONTE DESERVOIR	I Rece	ested routin	a time step = 1	0 min	
004295	$+$ $N > 01 \cdot (000210)$	1 1000	leoced houch	à cruc ocob "		
004202	+ 007 < 0.4 + (000110)		ALTIO CHILE	OW STORAGE TABLE	and and the out and has been plut the	
004292	1 001<04.(000110)	OH'RE		GE L OUTFLOW	STORAGE	
004302		·· 001e	mel (bam	$) \qquad (cms)$	(ham)	
004332		10	000 000011	00 1 498	1957E-01	
004322			AQA 1000E-	03 1 000	00008+00	
004332		•	494 .10005	03 .000	.00001100	
004342	DOUTTING DECIL P		ADEA	ODEAK PPEAK	R V	
004332	ROOTING RESOLT.	> 	(ba)	(cme) (bre)	(mm)	
004362		000100	(1)d) 6 0/1	1 441 1 000	51 027	
004372	INFLOW 201: (00	0210)	J.80 A 66	1.491 1.000	S1 927	
004382	0012100202: 00	201061	1 1 4	934 1 017	61 927	
004392	OVERSTON<08: (0)	101.001	1.1.4	.954 1.017	.3 4 - 92 1	
00440>	,		DED OF STMUT	TED AVEDELONG	2	
004412		TUMPE NUME	MAK OF SINGLA	PEIONS (bours)~	27	
00442>	(JOHOLATIVE	LINE OF OVE	DELOWING (NULS)=		
00443>	1	TERCENTAGE	S OF TIME OVE	NETOM THO (2) =	0.20	
00444>						
00445>		100 A.F. 107 1		N (000+/05-1/9)-	34 570	
00446>		TEAN PLC	W KEDUCIIC	nv (QOUC/QIN)(%)≃ tar (∞i≏)	-1 00	
00447>		FIME SHIFT	OF PEAK FLU	(iii.iii) ==	-1.00	
00448>	ſ	MUMIAAP	STORAGE USE	ua.m.) ייי	.19406-01	
00449>						
00450>						
00451>	001:0016					
00452>	*					
00453>	*					
00454>	*					
00455>	* (כה היו במווד נ			
00456>	*# ADDING MINOR FLO	N FROM B2,	B3, B4A			
00457>	* #					
00458>	*					
00459>		.n				
00460>	ADD HYD (000107)	ID: NHYI	D AREA	QPEAK TPEAK	R.V. DWF	
00461>		-	(ha)	(cms) (hrs)	(mm) (cms)	
00462>	ID	1 10:00010)7 14.59	1.416 1.12	48.58 .000	
Cumming	Cockburn Limited					P

Page 7

(D:\...MRCsub01.out)

IBI Group

+ID2 04:000110 4.66 .498 .98 51.93 .000 00463> 00464> SUM 01:000107 19.25 1.914 1.12 49.39 .000 00465> 00466> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00467> 0.0468 >00470> 001:0017-----00471> * 00473> *# AREA B4B (RESIDENTIAL) 00474> *# MH 171 00475> *# Note: Overflow routed to B6B 00477> * 00478> -----00479> | CALIB STANDHYD | Area (ha)= 5.08 00480> | 04:000210 DT= 2.00 | Total Imp(%)= 39.00 Dir. Conn.(%)= 39.00 00481> -----IMPERVIOUS PERVIOUS (i) 00482>

 Surface Area
 (ha)=
 1.98
 3.10

 Dep. Storage
 (mm)=
 .80
 1.50

 Average Slope
 (%)=
 .50
 2.00

 Length
 (m)=
 307.00
 40.00

 Mannings n
 =
 .013
 .250

 00483> 00484> 00485> 00486> 00487> 00488> Max.eff.Inten.(mm/hr)= 178.56 65.59 over (min) 4.00 14.00 Storage Coeff. (min)= 4.89 (ii) 13.24 (ii) Unit Hyd. Tpeak (min)= 4.00 14.00 Unit Hyd. peak (cms)= .24 .08 00489> 00490> 00491> 00492> Unit Hyd. peak (cms)= .24 .08 00493>

 PEAK FLOW
 (cms)=
 .85
 .36

 TIME TO PEAK
 (hrs)=
 1.00
 1.20

 RUNOFF VOLUME
 (mm)=
 70.88
 33.72

 TOTAL RAINFALL
 (mm)=
 71.68
 71.68

 RUNOFF COEFFICIENT
 =
 .99
 .47

 TOTALS 00494> 1.014 (iii) 00495> 1.000 00496> 48.211 00497> 71.677 00498> .673 00499> 00500> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00501> CN* = 77.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00502> 00503> THAN THE STORAGE COEFFICIENT. 00504> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00505> 00506> 00507> ------00508> 001:0018-----00509> * 00510> * 00511> -----00512> | ROUTE RESERVOIR | Requested routing time step = 1.0 min. 00513> | IN>04:(000210) | ----- OUTLFOW STORAGE TABLE ------00514> | OUT<10:(000110) |
 TFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 .0000E+00
 .436
 .1848E-01
 00515> -----OUTFLOW (cms) 00516> .000 .0000E+00 | .436 .1848E-01 .432 .1000E-03 | .000 .0000E+00 00517> 00518> 00519> 00520> 00521> 00522> 00523> OVERFLOW<07: (000106) 00524> 00525> TOTAL NUMBER OF SIMULATED OVERFLOWS = 1 00526> TOTAL NUMBER OF SIMULATED OVERFLOWS = 1 CUMULATIVE TIME OF OVERFLOWS (hours) = .33 00527> PERCENTAGE OF TIME OVERFLOWING (%)= 6.15 Page 8 00528>

Cumming Cockburn Limited

 00 * * * * *)1:0019				, ,	ha.m.)=	.1842E-0	1
OC * * * * *)1:0019							
* * * #								
* * # * #								
* # * #								
* #					-			
- 4 A	ADDING	MINOR FLOW	FROM B2, B3	, В4А, В41 	3			
 ★								
ł	ADD HYD	(000107)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF (cmc)
		TD1	10-000110	(na) 4 39	(CmS) 436	(nrs) 1.03	48 21	.000
		+ID2	01:000107	19.25	1.914	1.12	49.39	.000
		****			2000 no na co co co co co			
		SUM	04:000107	23.63	2.351	1.12	49.17	.000
	NOTE	PEAK FLOWS	DO NOT INCL	UDE BASEF	LOWS IF A	ANY.		
	NOID.	L DAILO L DOILO	00 1101 11102	0.0.00				
*								
0(01:0020							
*								
*	ADDING	FLOW FROM F	31, Al-A7 TO	FLOW FRO	M B2-B4			
*			2 711 111 111 111 111 111 111 111 111 111 111 111 111 111		22 III 22 III AN AN AN AN AN AN AN			
*								
1	ADD HYD	(000107)	TD: NHYD	AREA	OPEAK	TPEAK	R.V.	DWF
				(ha)	(cms)	(hrs)	(mm)	(cms)
		ID1	04:000107	23.63	2.351	1.12	49.17	.000
		+ID2	02:000110	1.64	.180	.93	51.68	.000
		SUM	01:000107	25.27	2.530	1.12	49.34	.000
	NOTE:	PEAK FLOWS	DO NOT INCL	UDE BASEF	LOWS IF /	ANY.		
0	01:0021							
*								
*	#=======							
* 1	# ADDING	MAJOR FLOW	EROM B4A, E	5415				
* †	Π							
1	ADD HYD	(000107)	ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF
			08.000106	(na) 1 14	(CMS) QRA	(nrs) 1 02	(1000) 51 93	(cms) 000
		101 +102	07:000106	. 69	. 574	1.03	48.21	.000

		SUM	05:000107	1.84	1.489	1.03	50.52	.000
			NO 1107 TYPE	050 53095	1060 TP	ANV		
	NOTE:	PEAK FLOWS	DO NOT INCI	JUDE BASEF	LOWS IF	/AIN1.		
				· ·· ··				
0	01:0022							~~~~~
*								
*								
.a.	# LATERN/	AP PUND2 (2)	TOMPDKTDGP)					
*	# Noto	Worflow ro	uted to RAP	minor r	ow to ev	fernal		

Page 9

(D:\...MRCsub01.out)

00596> * 00597> -----00598> | CALIB STANDHYD | Area (ha)= 32.30 00599> | 10:000210 DT= 2.00 | Total Imp(%)= 54.00 Dir. Conn.(%)= 41.00 00600> -----IMPERVIOUS PERVIOUS (i) 00601>

 Surface Area
 (ha) =
 17.44
 14.86

 Dep. Storage
 (mm) =
 .80
 1.50

 Average Slope
 (%) =
 .50
 2.00

 Length
 (m) =
 607.00
 40.00

 Mannings n
 =
 .013
 .250

 00602> 00603> 00604> 00605> 00606> 00607> Max.eff.Inten.(mm/hr)=178.5697.60over (min)8.0014.00Storage Coeff. (min)=7.36 (ii)14.49 (ii)Unit Hyd. Tpeak (min)=8.0014.00Unit Hyd. peak (cms)=.15.08 <80000 00609> 00610> 00611> 00612> *TOTALS* 00613> PEAK FLOW(cms) =4.642.45TIME TO PEAK(hrs) =1.071.20RUNOFF VOLUME(mm) =70.8838.34TOTAL RAINFALL(mm) =71.6871.68RUNOFF COEFFICIENT=.99.53 6.444 (iii) 00614> 1.100 00615> 51.680 00616> 71.677 00617> .721 00618> 00619> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00620> 00621> $CN^* = 77.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00622> 00623> THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00624> 00625> 00626> -----00627> 001:0023-----00628> * 00629> * 00630> -----00631> | ROUTE RESERVOIR | Requested routing time step = 1.0 min.
 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 .0000E+00
 2.284
 .1357E+00

 2.261
 .1000E-03
 .000
 .0000E+00
 00635> 00636> 00637> 00638> ROUTING RESULTSAREAQPEAKTPEAKR.V.(ha)(cms)(hrs)(mm)INFLOW >10:(000210)32.306.4441.10051.680OUTFLOW<02:</td>(000110)25.402.2841.06751.441OVERFLOW<04:</td>(000106)6.904.1601.10051.680 00639> 00640> 00641> 00642> 00643> 00644> TOTAL NUMBER OF SIMULATED OVERFLOWS = 2 00645> . 47 CUMULATIVE TIME OF OVERFLOWS (hours) = 00646> PERCENTAGE OF TIME OVERFLOWING (%) = 13.66 00647> 00648> 00649> PEAK FLOW REDUCTION [Qout/Qin](%)= 35.444 00650> TIME SHIFT OF PEAK FLOW (min) = -2.00 00651> MAXIMUM STORAGE USED (ha.m.) = .1354E+0000652> 00653> 00654> _____ 00655> 001:0024-----00656> * 00658> *# MAJOR FLOW TO BLACKLEAF DITCH 00660> * Cumming Cockburn Limited

Outi	flow / Inflo	ow Relatio	onships				
Flow	v 08 + Flov	v 07 = Tot	tal				
(cr	ns) (cr	ns) (c	cms)				
<u> </u>	.000 .0		000				
۷.	.000 2.7	200 4.4	200				
	NHYD	AREA	OPEAK	TpeakDate	hh:mm	R.V.	NFE
	101112	(ha)	(cms)	"hoowpage"		(mm)	
IDin =	04:000106	6.90	4.160	No_date	1:06	51.680	2
IDout≕	08:000101	3.28	1,981	No date	1:06	51.680	2
IDout=	07:000102	3.61	2.179	No_date	1:06	51.680	2

001:0025							
*							
*#======							
	MARKAD THE ALL		ה המידי היות	470 10410			
*# ADDING	MAJOR FLOW	ON BLACKL	EAF TO B	4A, B4B			
*# ADDING *#====================================	MAJOR FLOW	ON BLACKL	EAF TO B ===	4A, B4B			
*# ADDING *####################################	MAJOR FLOW	ON BLACKLI	EAF TO B	4A, B4B			
*# ADDING *#====================================	MAJOR FLOW	ON BLACKLI	EAF TO B === AREA	4A, B4B QPEAK	ТРЕАК	R.V.	DW E
*# ADDING *#====================================	MAJOR FLOW	ON BLACKL	EAF TO B === AREA (ha)	4A, B4B QPEAK (cms)	TPEAK (hrs)	R.V. (mm)	DWE (cms)
*# ADDING *#========= * ADD HYD	MAJOR FLOW (000107) ID1	ON BLACKLI ID: NHYD 05:000107	EAF TO B === AREA (ha) 1.8	44A, B4B QPEAK (cms) 4 1.489	TPEAK (hrs) 1.03	R.V. (mm) 50.52	DWE (cms) .000
*# ADDING *#====================================	MAJOR FLOW (000107) ID1 +ID2	ON BLACKLI ID: NHYD 05:000107 08:000101	EAF TO B === AREA (ha) 1.8 3.2	44A, B4B QPEAK (cms) 4 1.489 8 1.981	TPEAK (hrs) 1.03 1.10	R.V. (mm) 50.52 51.68	DWE (cms) .000
*# ADDING *#====================================	MAJOR FLOW (000107) ID1 +ID2	ON BLACKLI ID: NHYD 05:000107 08:000101	EAF TO B AREA (ha) 1.8 3.2	44A, B4B QPEAK (cms) 4 1.489 8 1.981	TPEAK (hrs) 1.03 1.10	R.V. (mm) 50.52 51.68	DWE (cms) .000 .000
*# ADDING *#========= * ADD HYD	MAJOR FLOW (000107) ID1 +ID2 SUM	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107	EAF TO B AREA (ha) 1.8 3.2 5.1	44A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168	TPEAK (hrs) 1.03 1.10 1.07	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000
*# ADDING *#========= * ADD HYD	MAJOR FLOW (000107) ID1 +ID2 SUM	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107	EAF TO B AREA (ha) 1.8 3.2 5.1	QPEAK (cms) 4 1.489 8 1.981 2 3.168	TPEAK (hrs) 1.03 1.10 1.07	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000
* # ADDING * #======= * ADD HYD NOTE:	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	AREA (ha) 1.8 3.2 5.1 CLUDE BA	4A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 SEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DWE (cms) .000 .000
*# ADDING *#======= * ADD HYD NOTE:	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	AREA (ha) 1.8 3.2 5.1 CLUDE BA	4A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 SEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000
*# ADDING *#========= * ADD HYD NOTE: 001:0026=	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	AREA (ha) 1.8 3.2 5.1 CLUDE BA	4A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 SEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DWE (cms) .000 .000
*# ADDING *#========= ADD HYD NOTE: 0001:0026-	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	AREA (ha) 1.8 3.2 5.1 CLUDE BA	44A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 SEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000
*# ADDING *#======== ADD HYD NOTE: 001:0026- *	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	EAF TO B AREA (ha) 1.8 3.2 5.1 CLUDE BA	44A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 ASEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68	DW I (cms) .000 .000
*# ADDING *#========= ADD HYD ADD HYD ODTE: 001:0026- * FIN	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS ISH	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	AREA (ha) 1.8 3.2 5.1 CLUDE BA	4A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 SEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68	DW I (cms) .000 .000
*# ADDING *#====================================	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS ISH	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN	AREA (ha) 1.8 3.2 5.1 CLUDE BA	4A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 ASEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000
* # ADDING * # ADDING * # ADD HYD NOTE: 001:0026- * FIN ********** WARN	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS ISH ISH	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN DO NOT IN RS / NOTES	AREA (ha) 1.8 3.2 5.1 CLUDE BA	4A, B4B QPEAK (cms) 4 1.489 8 1.981 2 3.168 SEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000
* # ADDING * # ADDING * # ADD HYD NOTE: 001:0026- * FIN * * * * * * * * * * * *	MAJOR FLOW (000107) ID1 +ID2 SUM PEAK FLOWS ISH ISH	ON BLACKLI ID: NHYD 05:000107 08:000101 04:000107 DO NOT IN DO NOT IN RS / NOTES	AREA (ha) 1.8 3.2 5.1 CLUDE BA	QPEAK (cms) 4 1.489 8 1.981 2 3.168 ASEFLOWS IF	TPEAK (hrs) 1.03 1.10 1.07 ANY.	R.V. (mm) 50.52 51.68 51.26	DW E (cms) .000 .000

APPENDIX C

