
Phase Two Environmental Site Assessment

Part of 1910 St. Laurent Boulevard, Ottawa Elmvale Acres Shopping Centre

Submitted to:

RioCan Management Inc.

RioCan Yonge Eglinton Centre 2300 Yonge Street, Suite 500 Toronto, Ontario M4P 1E4

Distribution List

1 e-copy - RioCan Management Inc.

1 e-copy - Golder Associates Ltd

Table of Contents

1.0	INTRO	INTRODUCTION1				
	1.1	Site Ownership and Description	1			
	1.2	Overview	1			
	1.1	Physical Settings	2			
	1.3	Phase One ESA Conceptual Site Model	2			
	1.2	Applicable Site Condition Standards	5			
2.0	SCOF	PE OF THE PHASE TWO ESA INVESTIGATION	5			
	2.1	Overview of Site Investigation	5			
	2.2	Media Investigated	6			
	2.3	Deviations from Sampling and Analysis Plan	6			
	2.4	Impediments	6			
3.0	PHAS	E TWO INVESTIGATION METHOD	6			
	3.1	General	6			
	3.2	Drilling	7			
	3.3	Soil: Sampling	7			
	3.4	Field Screening Measurements	7			
	3.5	Groundwater: Monitoring Well Installation	8			
	3.6	Groundwater: Water Level Measurement and Sampling	8			
	3.7	Sediment: Sampling	9			
	3.8	Analytical Testing	9			
	3.9	Quality Assurance and Quality Control Measures	9			
4.0	REVII	EW AND EVALUATION	.10			
	4.1	Geological Conditions	.10			
	4.2	Physical Hydrogeology	.10			
	4.3	Findings of the Phase Two ESA with respect to the APECs	.11			
	4.4	Summary of Current Site Condition	.13			

6.0	SIGN	ATURE	.15
5.0	CONC	CLUSIONS	.15
	4.8	Soil Vapour Intrusion	.14
	4.7	Contaminant Release and Migration Mechanism	.14
	4.6	Potential Exposure Pathways and Receptor	.14
	4.5	Meteorological and Climatic Considerations	.14

TABLES

- Table 1: Groundwater Monitoring Well Construction Details
- Table 2: Groundwater Levels and Elevations
- Table 3: Summary of Soil Samples Submitted for Analysis
- Table 4: Summary of Groundwater Samples Submitted for Analysis
- Table 5: Summary of Soil Analytical Results
- Table 6: Summary of Groundwater Analytical Results

FIGURES

- Figure 1: Site Plan and Areas of Potential Environmental Concern (APEC)
- Figure 2: Groundwater Elevations, Interpreted Groundwater Flow and Cross Section Locations
- Figure 3: Soil Analysis and Exceedances
- Figure 4: Groundwater Analysis and Exceedances
- Figure 5: Cross Sections
- Figure 6: Plan of Survey
- Figure 7: Conceptual Site Model Potential Receptor Pathways

APPENDIX

Appendix A: Record of Boreholes

Appendix B: Laboratory Analytical Reports

1.0 INTRODUCTION

The following Phase Two Environmental Site Assessment (ESA) report has been prepared for a part of the property located at 1910 St. Laurent Boulevard in Ottawa (the "Subject Property"). The part of the Subject property covered by this Phase Two ESA includes a 2.0055-acre "L" shaped parcel of land located on the northern portion of the Subject Property, hereafter referred to as the "Site", "Phase Two Property" or "RSC Property", as shown on Figure 1.

1.1 Site Ownership and Description

The RSC Property information is as follows:

Municipal Address	Part of 1910 St. Laurent Boulevard, Ottawa
Property Identification Number	Part 1 of PIN 041720204
Legal Description	Part 1 Part of Block E of Registered Plan 643, City of Ottawa

The contact information for the Site is:

Site Owner/Client	Address	Contact Information
	RioCan Yonge Eglinton Centre	Clayton Reynolds, Director
2058280 Ontario Limited	2300 Yonge Street, Suite 500	Environmental Compliance
(RioCan Real Estate Inv Trust)	Toronto, Ontario	Office: (416) 866-7324
	M4P 1EP	Email: Creynolds@riocan.com

1.2 Overview

The Phase Two Property, which includes of the RSC Property, consists of a 2.0055-acre "L" shaped parcel of land located 30 m southwest of the intersection between Smyth Road and St. Laurent Boulevard. The RSC Property is located on the northern portion of the Subject Property (occupied by Elmvale Acres Shopping Centre with municipal address 1910 St. Laurent Boulevard) with a single-storey commercial building occupied by Kelsey's Original Roadhouse restaurant (the "Site Building") and associated asphalt paved parking areas. In addition, asphalt paved driveways off Smyth Road and Othello Avenue provide access to the Site, from the north and west portions respectively. Another asphalt paved driveway, off St. Laurent Boulevard, provides access to the RSC Property from east side of the Site. The surrounding properties to the Site include primarily of residential and commercial activities with some community land uses.

Given that the Site will be redeveloped for residential purposes with two multi-tenant residential buildings, a change in land use from less sensitive (commercial) to more sensitive (residential) entails a mandatory requirement for filing of a Record of Site Condition (RSC) for this property pursuant to Ontario Regulation 153/04 – Records of Site Condition – Part XV.1 of the Act, made under the Environmental Protection Act. Golder understands that this Phase Two ESA, completed in accordance with the requirements of Schedule E of O.Reg. 153/04 (as amended), will be used for filing of an RSC application in response to address comments from Ontario Ministry of Environment, Conservation and Parks (MECP) on the initial Phase One ESA based RSC filing in 2018 (RSC File# 19-350). As such, the boundaries of the property for which the RSC will be filed, and the Phase Two Property are the same.

1.1 Physical Settings

The RSC Property, addressed 1910 St. Laurent Boulevard and located southwest of the intersection between Smyth Road and St. Laurent Boulevard, is located on the northern portion of the Subject Property. The RSC Property, with approximately 2-acre area, consists primarily of asphalt paved parking and driveways as well as a single storied commercial restaurant building on the northeast portion of the Site as shown on Figure 1. The surrounding properties include residential and commercial buildings with some community land uses, as illustrated on Figure 2.

- North: Bounded by Smyth Road followed by commercial properties including health services and Smyth Medical Centre at 1929 Russell Road as well as Bank of Montreal at 945 Smyth Road. Further away from the Site, land uses include residential homes/buildings, Alda Burt Park and other commercial land uses. A vacant land located immediately north of the Site (across Smyth Road) was previously a gas station.
- East: A multi-tenant commercial building followed by St. Laurent Boulevard. High density residential development (cooperative housing and high-rise apartment buildings) east of St. Laurent Boulevard with Russell Road and other commercial land uses further away from the RSC Property.
- South: Adjacent land uses include commercial properties occupied by Elmvale Acres Shopping Centre and a strip mall with associated parking areas (on the Subject Property). Commercial activities include banks, clinics and retail stores along with associated parking lots.
- West: Bounded by Othello Avenue followed by primarily residential homes in the Elmvale Acres
 neighbourhood; however, few community and commercial activities include St. Aidan's Church and Kiwanis
 Music Festival.

1.3 Phase One ESA Conceptual Site Model

A Phase One ESA in accordance with Ontario Regulation 153/04 (O.Reg. 153/04) (as amended) was completed for the Subject Property by Golder titled "Phase One Environmental Site Assessment Part of 1910 St. Laurent Boulevard, Ottawa, ON" in November 2018 (the "2018 Phase One ESA"). The Phase One ESA included a review of previous historical reports, including previous Phase Two ESA programs associated with larger Subject Property but which included relevant information for the Phase One Property. Golder has incorporated additional discussion based on the MECP review comments on the Phase One ESA RSC submission.

The following describes the Phase One ESA Conception Site Model (CSM) for the RSC Property based on the information obtained and reviewed as part of the 2018 Phase One ESA and from the MECP comments on the Phase One ESA submission:

- At the time of the Site visit on August 20, 2018, the RSC Property was occupied primarily by asphalt paved areas (driveway and parking lots) and a single storey commercial building occupied by Kelsey's Original Roadhouse restaurant on the northeast portion of the Site. As per the MECP comments, the historical and current use as a parking lot, may have included the application of de-icing agents.
- No water bodies were identified on the Phase One Property. The Ramsay Creek is located approximately 1.8 km east of the Site. No areas of natural significance were identified on or within the Phase One Study Area.
- According to ERIS report, only one WWIS record existed for the Site which indicated a test hole was drilled to 3.66 mbgs into overburden that consisted of sand, gravel pavement structure underlain by grey clay.

However, ERIS report also mentioned a combination of observation wells and historical potable wells records in the surrounding area which indicate that the stratigraphy in the vicinity of Phase One Property is generally brown sand and gravel underlain by silty clay and limestone or shale bedrock. The static water level is between 3 and 10.4 mbgs.

- Individual land with farm buildings on the northern portion whereas the southern portion was undeveloped and likely used as agricultural fields. The RSC Property was redeveloped for commercial purposes with the construction of Elmvale Acres Shopping Centre sometime between 1958 and 1965. The RSC Property only consisted of parking areas and driveways associated with shopping mall from 1965 till 1996, when the current Site Building was constructed on the northeast corner. There is no indication that the Phase One Property was consisted of an on-site storage or use of chemicals. There are no indications that the Phase One Property was used for an industrial use or any of the following commercial uses: vehicle garage, dry cleaning facility and/or or bulk liquid dispensing facility. As per the MECP comments on the Phase One ESA, although not known, the past agricultural use may have included the application of pesticides (PCA #40) prior the redevelopment of the Site in 1958.
- No piles of fill were observed on the Site at the time of the Site visit and previous boreholes on the Subject Property, including the Site, did not indicate the presence of fill deposits beyond engineered pavement structure. As a conservative approach the pavement structure was considered as imported fill of unknown quality and origin (i.e. PCA #30), although likely was sourced from licensed pit or quarry.
- The surrounding properties to the Site consisted of generally mixed land uses including commercial properties to the north and south, and primarily residential with some community land uses to the west and east. There are indications that surrounding properties to the north and south historically consisted of commercial uses including vehicle garage, bulk liquid dispensing facility, or dry-cleaning facility, these activities were off-Site PCAs and are considered as not having resulted in an APEC to the Site. The dry cleaner (PCA#37) 150 metres to the south of the Phase One Property was located on the larger Subject Property (i.e. the Elmvale Shopping Centre). Although this was not considered as a PCA that has resulted in an APEC in the Phase One ESA as the impacts are well defined and off-Site, it was carried as a PCA that has resulted in an APEC based on the MECP review comments on the Phase One ESA RSC submission
- The following roads were located within the Phase One Study Area at the time of the Site visit:
 - Lancaster Road, Russell Road, St. Laurent Boulevard, Othello Avenue, Gladwin Crescent, Hamlet Road, Wingate Drive, Olympia Crescent, and Chapman Boulevard.
- Local groundwater is anticipated to flow east (with localized variations caused by underground utilities in the vicinity of the Site) towards the nearest waterbody, Ramsay Creek, which is located 1.8 km east of the Site.

The following table summarizes all the PCAs considered to have resulted in an APEC on the RSC Property as identified in the Phase One ESA as wells as those identified by the MECP following review of the initial Phase One ESA based RSC filing in 2018. Figure 1 shows the locations of the identified APECs and their associated PCAs.

Phase Two ESA Findings with respect to the PCAs resulting in APECs to the Site.

Areas of Potential Environmental Concern (APECs)	Location of APEC at the Site	Potentially Contaminating Activity (PCA)	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
1. Presence of engineered fill materials used to grade the Site for parking areas at the time of construction (APEC 1)	Site-wide	#30. Importation of Fill Material of Unknown Quality	On-Site	PHCs F1-F4, BTEX, PAHs and metals	Soil
2. Use of pesticides associated with historical agricultural activities. (APEC 2)	Site-wide	#40. Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site	Pesticides (organochlorine)	Soil
3. Salt application, for de- icing purposes, to parking areas on RSC Property (APEC 3)	Site-wide	No PCA# assigned	On-Site	Electrical Conductivity (EC) and SAR (Sodium Adsorption Ratio)	Soil and groundwater
4. Known off-Site VOC plume in groundwater associated with former dry-cleaning operations located off-Site in the main Elmvale Acres Shopping Centre building, located south of the RSC Property (APEC 4)	Site-wide	#37. Operation of Dry-Cleaning Equipment (where chemicals are used)	Off-Site	VOCs	Soil and groundwater

1.2 Applicable Site Condition Standards

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (Residential/Parkland/Institutional Property Use, coarse textured soil) presented in the Ministry of Environment, Conservation and Parks ("MECP") "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site and all other properties located, in whole or in part, within 250 metres of the Site are supplied by the City of Ottawa municipal drinking water system and there are no water supply wells which are in use;
- The Site is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water;
- Coarse soil texture was considered applicable for the Site (conservative approach) and as such, no grain size analysis was performed as part of the Phase Two ESA.
- There are no water bodies on the Site. The closest water body is located approximately 1.8 km east of the Site;
- There are no features on the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41 of O.Reg.153/04 as amended. Based on the data obtained from previous reports, soil pH ranged from 7.26 to 8.63, which is within MOECC's acceptable pH range of 5 to 9.
- The intended land use for the Phase Two Property is mixed residential and commercial, as such the more sensitive land use (residential) is considered to be applicable for the Site; and,
- The overburden thickness is greater than 2 metres over more than one-third of the Phase Two Property.

2.0 SCOPE OF THE PHASE TWO ESA INVESTIGATION

The primary objectives of this Phase Two ESA were to assess the absence or presence of the contaminants of concern in relation to the potential environmental concerns identified in the Phase One ESA completed by Golder and further expanded by the MECP following their review of the RSC submission based on the Phase One ESA. The Phase Two ESA was also used to characterize the subsurface conditions at the Phase Two Property and to determine if soil and groundwater quality at the Site meet the applicable site condition standards. In addition, to delineate the horizontal and vertical extent of the subsurface impacts in soil and groundwater (if present) at the Site during the Phase Two ESA. To achieve the objectives of the Phase Two ESA, the location of the boreholes and monitoring wells and the parameters for chemical analysis of soil and groundwater samples were selected to assess the quality of soil and groundwater at the Site in relation to the APECs and PCAs identified in the Phase One ESA completed by Golder.

2.1 Overview of Site Investigation

The Phase Two ESA included completion of three boreholes in 2019 (19-01,19-02 and 19-03) installed with monitoring wells, to evaluate soil and groundwater quality at the Site. Monitoring well 19-03 was not sampled as it was adjacent to existing monitoring well 15-03 and not required.

In addition, existing monitoring wells (15-01A (deep), 15-01B (shallow), 15-02 and 15-03) on-Site, completed as part of previous environmental investigation at the Subject Property, were resampled for groundwater quality. Furthermore, soil samples from a geotechnical investigation in 2018 (BH18-1, BH18-2 and BH18-3) were used to supplement the Phase Two ESA to further evaluate the vertical distribution of salt related impacts into the glacial till at the Site.

2.2 Media Investigated

To address the APECs identified in the Phase One ESA, the Phase Two ESA field program included sampling of subsurface and surface soil from the three boreholes completed in 2019 and sampling of groundwater from the five shallow monitoring wells installed in the silty clay (included three existing 2015 wells and two new 2019 wells) and one deep existing well screened within the glacial till. No sediment was present at the Site and therefore no sediment sampling was completed. A summary of the samples collected from each media investigated (soil and groundwater) and submitted for laboratory analysis of the COCs is provided in Tables 3 and 4 following the text of this report.

The locations of the boreholes and monitoring wells are shown on Figure 1.

2.3 Deviations from Sampling and Analysis Plan

A sampling and analysis plan which outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA was prepared at the initiation of the Phase Two ESA. The procedures described in the Sampling and Analysis Plan were followed and there were no deviations from the SAP with the exception the addition of additional soil samples from geotechnical boreholes previously drilled after completion of the Phase Two ESA analysis to add vertical delineation of salt related impacts at greater depth that the samples available in the Phase Two ESA boreholes.

2.4 Impediments

No impediments to the Phase Two ESA investigation were encountered.

3.0 PHASE TWO INVESTIGATION METHOD

3.1 General

The following sections describe the pre-field work activities and field investigation methodology employed during the Phase Two ESA conducted at the Phase Two Property. The field investigation methods were carried out in accordance with Golder's Quality Assurance Program and the SOPs. The current Phase Two ESA fieldwork was completed in April 2019.

Prior to initiating the field work, Golder developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. A health and safety tail gate meeting was held with Golder's subcontractors each day prior to completion of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, Golder retained USL-1 Inc. of Ottawa, Ontario to coordinate utility clearances with the local utility companies and to clear boreholes locations.

The previous 2015 groundwater sampling results presented in this Phase Two ESA were collected completed in November of 2015 and the geotechnical boreholes used to supplement the EC soil analytical results were completed in September 2018. Both of these field programs are discussed in separate reports, the information from these reports has been incorporated into the Phase Two ESA, where applicable.

3.2 Drilling

Three boreholes (BH19-01m BH19-02 and BH19-03) were advanced at the Site. Borehole locations are provided in Figure 1. All boreholes were advanced using a geoprobe drilling rig. The borehole drilling and monitoring well installation activities were monitored in the field by an experienced Golder technician. During borehole drilling, overburden soil samples were collected continuously at using a push tube sampler with dedicated plastic sampling sleeves for each sampling run.

3.3 Soil: Sampling

Soil samples were split in the field into two components. One component of each sample was placed into laboratory supplied sample jars and stored in a cooler with ice for possible subsequent chemical analysis. The second component of the sample was placed inside a labelled plastic bag for subsequent field headspace screening. When handling all soil samples, a clean gloved hand was used and all equipment in contact with soils was decontaminated between sampling locations to minimize the potential for cross-contamination.

The subsurface soil conditions within the boreholes were described in terms of their texture, presence of staining, odour and debris, if any. Geologic descriptions of soil samples are presented in the Record of Borehole sheets (Appendix A).

All soil samples collected and submitted for chemical analysis were obtained from undisturbed soils, including fill materials (if present) and native overburden, from the Site by borehole drilling methods. Nitrile gloves were worn when handling soil samples and all equipment in contact with soils was washed between sample locations to prevent the potential of cross contamination.

Soil samples submitted for chemical analysis were based on visual or olfactory observations (e.g., staining, discolouration, free product, and/or odour, if any), from representative soil layers, and/or from depth horizons at which potential impact would most likely have occurred, such as near the water table. Otherwise, if no visual or olfactory observations were noted, the highest recorded field screening reading and/or depth horizons at which potential contamination was considered most likely to have occurred was used to determine which soil sample to submit for analysis from each test location.

3.4 Field Screening Measurements

Field measurements of sample headspace concentration were made using the following equipment:

Equipment	Make and Model	Parameters Detected	Detection Limits	Precision	Accuracy	Calibration Standard	Calibration Procedure
Photo-ionization detector (PID) MiniRae 3000 10.6 EV bulb	MiniRae 3000, Serial No. 592-909267	Organic vapours	0 - 15,000 ppm	N/A	+/- 3%	100 ppm Isobutylene	By supplier prior to fieldwork & by Golder Associates field staff during work

The PIDs were used to provide an estimate of the relative concentrations of organic vapours in the headspace of each soil sample and was used to support selection of soil samples for submission for laboratory analysis. The selection of "worst case" soil samples submitted for laboratory analysis of the COCs is based on professional judgement which included a consideration of the highest organic vapour readings, visual and olfactory evidence of potential contamination and the depths of the soil sample collection (depth horizons at which potential impact would most likely have occurred, such as from the upper fill layer or near the water table).

In this instance, there were no measurable organic vapours in the soil samples.

3.5 Groundwater: Monitoring Well Installation

Following the completion of drilling and soil sampling at the three (3) borehole locations (19-01, 19-02 and 19-03) were completed with monitoring wells. As previously indicated the previous monitoring well 15-03, adjacent to 19-03 was sampled in place of 19-03 which was therefore not included in the Phase Two ESA groundwater program. Each new monitoring well was screened in the upper soils near the groundwater table.

Previous monitoring wells used in the Phase Two ESA included three monitoring wells in the upper silty clay (15-01B, 15-02 and 15-03) and one deeper well 15-01A installed in the glacial till.

All monitoring wells were installed by using threaded 32 mm diameter, schedule 40, polyvinyl chloride ("PVC") well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annulus surrounding the screened portion of the well and an approximately 0.2 to 0.7 m portion of the riser pipe above the slotted pipe was filled with silica filter sand. A bentonite seal was placed above the sand filter pack with a minimum thickness of 0.3 m. The monitoring wells were completed with a flush mount protective well casing set in concrete and the riser pipes were sealed with a protective cap.

The monitoring wells were developed following the drilling by removing up to ten well volumes or by removing groundwater until the well was purged three times dry, using dedicated Waterra® inertial pumps (polyethylene tubing with foot valves). During monitoring well development, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odours.

Monitoring well construction details are summarized in Table 1 and presented in the Record of Borehole sheets (Appendix A).

3.6 Groundwater: Water Level Measurement and Sampling

Prior to the groundwater sampling, the water levels were recorded on November 12, 2015 (Previous Results) and on April 12 and 24th, 2019 (Existing 2015 wells and 2019 Phase Two ESA wells). The water level measurements and the groundwater sampling were completed more than 24 hours after the well development was completed. The water level measurements were taken from the top of the PVC riser and are summarized in Table 2 following the text of this report. Groundwater was measured between 0.9 and 2.3 metres depth.

Following the water level measurement and prior to the groundwater sampling the wells were purged and sampled using the dedicated tubing and gravity samplers. Following purging, groundwater samples were collected into the laboratory provided sample bottles, placed in a cooler on ice and delivered under chain-of-custody procedures to AGAT. The groundwater samples were analyzed for one or more of the following parameters: VOCs, sodium and chloride following chain-of-custody procedures. Details of the parameters analyzed at each monitoring well are presented in Table 4.

3.7 Sediment: Sampling

There is no sediment on the Site and as such, no sediment samples were collected as part of this investigation.

3.8 Analytical Testing

Soil and groundwater analyses were conducted by AGAT. The contact information for the analytical laboratory is included below.

AGAT Laboratories

5835 Coopers Avenue Mississauga, Ontario, L4Z 1Y2 Laboratory Contact: Sandra Consulta 905-712-5106

The analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 (CALA) (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation or another accreditation body accepted by the MECP.

3.9 Quality Assurance and Quality Control Measures

Golder's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities;
- All monitoring wells were developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling;
- Monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable;
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples;
- Submission of one trip blank for laboratory analysis of VOCs during each of the groundwater sampling events. The trip blanks were supplied and sealed by the laboratory, were brought to the Site and then shipped back to the laboratory unopened for analysis of VOCs.
- Initial calibration of field equipment was performed at the start of each field day, with daily checks of calibration, as needed, using a standard of known concentration;
- Soil and groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the Ministry of the Environment (MOE) Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act, July 1, 2011.
 Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody;

Dedicated sampling equipment (tubing and foot valves) and clean disposable Nitrile™ gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment was: cleaned by mechanical means; washed with a laboratory-grade detergent (e.g., phosphate-free LiquiNox or AlcoNox) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water;

- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses; and,
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

4.0 REVIEW AND EVALUATION

4.1 Geological Conditions

The soil conditions encountered during drilling program are presented in the Record of Borehole sheets (included in the Phase Two ESA Report), as well as in the cross sections presented in Figure 5 with the cross-section location and orientation shown on Figure 2.

The subsurface stratigraphy within the area of the investigation consists of pavement structure comprised of gravelly sand (associated with the parking lot pavement structure) overlying silty clay which is underlain by glacial till and shale bedrock. The silty clay layer extents up to 11 mbgs and is underlain by glacial till extending to between 14.6 and 23.7 mbgs where shale bedrock surface was encountered. The silty clay layer is inferred to represent an aquitard that limits the potential for downward migration of potential groundwater impacts at the Site. The underlying glacial till between 14.6 and 23.7 mbgs is inferred to represent the deeper confined hydrostratigraphy unit.

4.2 Physical Hydrogeology

Groundwater Levels and Flow Directions

As part of a previous environmental investigation at the Site, static groundwater levels were measured from three monitoring wells at the Site in 2015. Recent groundwater sampling event from April 2019, measured static groundwater levels for BH15-01A, BH15-02, BH19-01 and BH19-02 on April 12, 2019, and, for BH15-01B and BH19-03 on April 24, 2019. The water levels on April 12, 2019 were measured between 1.48 and 2.29 mbgs, whereas the water levels on April 24, 2019 was measured between 0.58 and 1.38 mbgs. Water levels measured on November 12, 2015 from BH15-01A, BH15-01B, BH15-03, and BH15-03 were between 1.81 and 2.15 mbgs. The interpreted shallow groundwater flow direction based on groundwater level events in 2015 and on April 12, 2019 was calculated to be to the southeast (as shown on Figures 2). Seasonal fluctuations in water levels on the Site are anticipated.

Horizontal and Vertical Hydraulic Gradients

The average horizontal hydraulic gradient was calculated based on the water level contours presented in Figure 2. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be approximately 0.01 m/m. Variability in hydraulic gradients may be present at the Phase Two property related to the presence of foundations/buried structure, bedding materials, and buried services at the Site.

The vertical hydraulic gradient was estimated based on the water level elevations measured in the monitoring well pairs (shallow and deeper) located within the silty clay (shallow) and the glacial till (deeper) on April 12, 2019 at MW15-01A and B. The vertical hydraulic gradients at all monitoring well pairs were determined to be downward (or recharging).

Groundwater Hydraulic Conductivity

Groundwater flow velocity was determined based on the hydraulic conductivity of 1.0 x 10^{-9} m/s for silty clay, a porosity of 50%, and the horizontal gradient. The groundwater flow velocity within silty clay was calculated to be 6.3 x 10^{-4} m/year. Note that actual groundwater velocity may vary significantly not only because of variability of the hydraulic gradient, but also because of variability of the hydraulic conductivity within the silty clay.

4.3 Findings of the Phase Two ESA with respect to the APECs

To address the APECs and PCAs identified at the Site, soil and groundwater sampling and analysis for potential COCs were completed as part of this Phase Two ESA. MECP Table 3 Standards (April 15, 2011) in a non-potable groundwater condition for residential/parkland/institutional property use for coarse-textured soil were used to compare the soil and groundwater analytical results. A summary of the findings from the Phase Two ESA with respect to the APECs and associated PCAs with respect to the Site is provided in the table below.

Phase Two ESA Investigation Results for each APEC

APEC	PCA	Summary of Phase Two ESA Program	Summary of Exceedances
#1	#30 Importation of Fill Material of Unknown Quality (Soil only)	Fill quality analysis in boreholes BH19-01, BH19-02 and BH19-03 included analysis of three samples as well as a field duplicate of BH19-01 SA3 for each of these parameters- PHCs F1-F4, BTEX, PAHs and metals. All of the fill is located above the groundwater table.	No exceedances

APEC	PCA	Summary of Phase Two ESA Program	Summary of Exceedances
#2	#40. Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications (Soil only)	A total of three soil samples near the interface between the imported fill and native soil (BH19-01 SA3, BH19-02 SA2 and BH19-03 SA2) and a field duplicate of BH19-01 SA3 were analyzed for Pesticides (organochlorine). The fill native interface is located above the groundwater table.	No exceedances
#3	Salt application, for de-icing purposes, to parking areas on RSC Property (Soil and groundwater)	A total of 12 soil samples including three from fill layer, six from silty clay (native) layer, and three from glacial till layer at the Site were analyzed for EC and SAR. Three fill samples were from boreholes completed in 2019 (BH19-01 SA1, BH19-02 SA1, BH19-03 SA1). Six native soil samples as well as a field duplicate of BH19-01 SA3 were analyzed for salt impacts. Three glacial till samples, collected as part of a geotechnical investigation in September 2018, were also analyzed for vertical delineation purposes. A total of seven groundwater samples in 2019 were analyzed for sodium and chloride including a field duplicate of BH15-03.	EC exceedance in all soil samples except for one silty clay and two glacial till samples. SAR exceedance in two fill samples (BH19-01 SA1 and BH19-03 SA1). Chloride exceedance in three well locations (15-01B, 15-03 and 1-01).
#4	#37. Operation of Dry-Cleaning Equipment (where chemicals are used) (Soil and groundwater)	Three clay (soil) samples (BH19-01 SA3, BH19-02 SA4 and BH19-03 SA5) and a field duplicate of BH19-01 SA3 were analyzed for VOCs. A total of five groundwater samples in 2019 (BH19-01, BH19-02, BH15-01B, BH15-02, BH15-03) were analyzed for VOCs. In addition, four samples (BH15-01A, BH15-01B, BH15-02, BH15-03) were analyzed in 2015 for VOCs and did not identify any exceedances.	No exceedances

4.4 Summary of Current Site Condition

The summary of the soil and groundwater conditions at the Site based on the results of this Phase Two ESA, by stratigraphic layer and media, is presented below:

- Fill (pavement structure) The fill layer at the Site, extending to depths ranging between 0.56 mbgs and 1.04 mbgs, consisted of parking lot pavement structure. A total of three fill samples were analyzed for PHCs F1-F4, BTEX, PAHs, and, metals and inorganics. All fill samples exceeded EC concentrations and two of the three fill samples exceeded SAR concentrations, above applicable MECP Table 3 standards. No other fill related exceedances over the applicable site condition standards were identified.
- Silty Clay (soil)- The clay at the Site extended up to 11 mbgs. Five silty clay samples (BH19-01 SA3, BH19-02 SA2, BH19-02 SA4, BH19-03 SA2 and BH19-03 SA5) as well as a field duplicate of BH19-01 SA3 were analyzed for VOCs, pesticides, and/or inorganics. In addition, three silty clay samples (BH18-01 SA7, BH18-02 SA7, BH18-03 SA7- collected from previous geotechnical investigations in 2018) were analyzed for EC and SAR.
 - All silty clay samples analyzed for VOCs and pesticides satisfied the applicable MECP Table 3 standards for residential use.
 - All silty clay samples, except sample BH18-02 SA7, exceeded EC concentrations compared to applicable MECP Table 3 standards; however, no silty clay samples analyzed exceeded applicable SAR concentrations.
 - Three samples (BH18-1 SA7, BH18-2 SA7 and BH18-3 SA7), collected during previous geotechnical samples at depths between 4.57 and 5.18 mbgs, were analysed for EC and SAR with no exceedances identified for SAR. However, two of these samples exceeded applicable concentrations for EC.
- Glacial Till (soil)- The glacial till at the Site consisted of sandy silt to clayey silt starting at depths of about 11 mbgs. Three glacial till soil samples (BH18-1 SA10, BH18-2 SA10 and BH18-3 SA11) from the Site, collected at depths between 8.38 and 9.75 mbgs, were analyzed for EC and SAR for delineation purposes due to identified exceedances in the overlying fill and clay samples for these parameters. Only one sample (BH18-2 SA10) had EC concentrations above MECP Table 3 standards for residential uses.
- Groundwater- Groundwater quality assessment at the Site consisted of groundwater sampling events in 2015 and 2019. All groundwater samples in 2015 and 2019 were analyzed for VOCs whereas sodium and chloride was included in the 2019 program in response to MECP comments. There were no exceedances of the applicable site condition standards identified for VOCs or sodium in any of the groundwater samples. Chloride exceedances were observed in three of the six groundwater samples and a field duplicate (collected from 15-03) sample.
 - One of the samples, from monitoring well (15-01A) screened in glacial till layer, was analyzed for sodium and chloride for delineation purposes related to salt impacts in the overlying shallow clay wells. This deeper well in the glacial till did not exceed the site condition standards for either chloride or sodium.

Based on the identified exceedances of EC and SAR in soil and of chloride in groundwater at the Site, a remediation and/or risk assessment will be required to obtain an RSC. EC exceedances which extend through the clay into the glacial till without a correspondingly elevated SAR are inferred to be the result of naturally elevated EC in the soils resulting from marine clay deposits in the Ottawa area. The impacts associated with the

application of de-icing agents (i.e. where both EC and SAR) are considered limited to the fill. Salt impacts (i.e. chloride) has impacted the upper groundwater table and is not present in the deeper glacial till. Naturally elevated EC in soil is delineated to the bedrock surface as a conservative approach.

4.5 Meteorological and Climatic Considerations

Seasonal fluctuations in groundwater levels are expected at the Site. Based on the information obtained from the Phase Two ESA, the depth to the water table is between 0.58 and 2.29 mbgs, and, was located primarily in the silty clay layer (0.5 to 11 mbgs). Seasonal fluctuation in water levels on the Site should be expected; however, given the limited number of monitoring events seasonal trends could not be identified. Majority of the RSC Property is paved and serviced by storm sewer catchments connected to the City storm sewer. As such, temporal fluctuations in the groundwater levels due to variable effects of climatic or meteorological conditions would likely not influence the distribution and migration of contaminants on the Site and as such there is limited interaction with respect to meteorological conditions and the presence salt related exceedance at the Site, beyond the continued seasonal addition of de-icing agents on the Site and adjacent roadways.

4.6 Potential Exposure Pathways and Receptor

The only exceedances at the Site are elevated EC and SAR in soil and chloride in groundwater resulting from the application of de-icing agents on the Site and adjacent roadways. The Site does not use the groundwater as a potable resource and the EC and SAR in soil are only a risk to ecological receptors including terrestrial plants via root/direct uptake and chloride impacts to aquatic receptors through the pathway of groundwater to surface water. The closest waterbody is more than a kilometre from the Site and therefore not considered a viable receptor.

Given that the current use as a paved parking area and the future use of the Site will be building or paved parking, there are no complete pathways or applicable receptors at the Site.

4.7 Contaminant Release and Migration Mechanism

Based on the information obtained during the Phase Two ESA, the fill and upper clay at the Site has been impacted by historical and on-going salt-application, on-Site and from adjacent roadways north and west of the RSC Property. In addition, there may also be some additive impacts with respect to naturally elevated EC associated with the salt in the native soil present at the Site. The upper lower permeable clay has limited the downward migration of salt impacts to the upper soil and hydrogeological unit with no chloride exceedances present in the deeper glacial till monitoring well. On-going contribution from the Site activities and surrounding roadways will continue to add salt to the Site soils and regional groundwater.

Potential for migration of VOC-plume in groundwater, from the historical dry cleaning operations south of the RSC Property, towards the RSC Property is not considered a potential as it has been delineated off-Site on the Subject Property and is not in an upgradient location. This has been confirmed by the lack of detectable VOCs on the RSC Property.

4.8 Soil Vapour Intrusion

EC and SAR in soil and chloride in groundwater were identified in exceedance of application MECP site condition standards; however, these parameters do no present a vapour intrusion concern for current and future buildings at the Site.

5.0 CONCLUSIONS

Following the completion of the Phase Two ESA described herein the soil and groundwater satisfied the applicable site condition standard, certified as of April 24, 2019 with the only exception being EC and SAR in soils and chloride exceedances in shallow groundwater as a result of the application of de-icing agents (salt) to the Site and from surrounding roadways. There are no exceedances associated with any of the other APECs investigated.

Remediation or risk assessment will be required to obtain a RSC due to the presence of salt related impacts. It is noted that most of the soil impacts will be removed during redevelopment due to the excavation of basement parking and pavement subgrade.

6.0 SIGNATURE

The undersigned Qualified Person confirms that he was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust that you will find the contents of this report satisfactory for your current needs. Should you require clarification of the information provided, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Shihan Chowdhury, MEnvSc, EIT Environmental Consultant Keith Holmes, MSc, PGeo., QPESA Geoscientist/Associate

SAC/KPH/hw

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/104890/project files/6 deliverables/csm/19118198- rev0 ph ii esa_site plan elmvale.docx

TABLES

Monitoring Well	Ground Surface Elevation (mASL)	Top of Pipe Elevation (mASL)	Borehole Depth (mbgs)	Borehole Depth (masl)	Screen Interval (masl)	Screened Media	Date of well Completion
15-01A	78.61	78.51	26.72	51.89	69.64 - 66.59	Sandy clayey silt (glacial till)	04-Nov-15
15-01B	78.61	78.54	26.72	51.89	77.09 - 74.04	Silty clay to clay	02-Nov-15
15-02	78.34	78.14	18.37	59.97	76.13 - 73.08	Silty clay to clay	03-Nov-15
15-03	77.70	77.69	6.71	70.99	75.57 - 72.52	Silty clay to clay	03-Nov-15
19-01	78.35	78.27	3.0	75.35	76.95 - 75.45	Silty clay to clay	15-Mar-15
19-02	78.57	78.49	3.0	75.357	77.17 - 75.67	Silty clay to clay	15-Mar-15

Notes:

mASL- metres above sea level mbgs-metres below ground surface

No evidence of free product was observed during elevation or sampling events.

Monitoring Well	Top of Pipe Elevation (mASL)	Depth to Groundwater in 2015 (mbgs)	Groundwater Elevation in 2019 (mASL)	Date of Measurement	Depth to Groundwater (mbgs)	Groundwater Elevation in 2019 (mASL)	Date of Measurement
15-01A	78.51	2.150	76.36	12-Nov-15	1.810	76.70	12-Apr-19
15-01B	78.54	1.850	76.69	12-Nov-15	0.584	77.96	24-Apr-19
15-02	78.14	1.810	76.33	12-Nov-15	2.030	76.11	12-Apr-19
15-03	77.69	2.040	75.65	12-Nov-15	1.385	76.31	24-Apr-19
19-01	78.27	n/a	n/a	n/a	2.290	75.98	12-Apr-19
19-02	78.49	n/a	n/a	n/a	1.480	77.01	12-Apr-19

mbgs- metres below ground surface mASL- metres above sea level

n/a - water levels not measured

Elevations are metres above sea level based on the geodetic datum CGVD 1928 No evidence of free product was observed during any elevation or sampling events.

Location	Soil Samples Collected	Soil Samples Analyzed	Paramaters Analyzed	MECP Table 3 Exceedances ⁽¹⁾
BH 18-01	BH18-01 SA7 and \ BH18-01 SA10	BH18-01 SA7 (4.57 - 5.18) and BH18-01 SA10 (8.38 - 8.99)	EC and SAR	EC
BH 18-02	BH18-02 SA7 and BH18-02 SA10	BH18-02 SA7 (4.42 - 5.03) and BH18-02 SA10 (8.99 - 9.60)	EC and SAR	EC
BH 18-03	BH18-03 SA7 and BH18-03 SA11	BH18-03 SA7 (4.57 - 5.18) and BH18-03 SA11 9.14 - 9.75)	EC and SAR	EC
BH19-01	BH19-01 SA1, BH19-01 SA2, BH19-01 SA3, BH19-01 SA4, BH19-01 SA5	BH19-01 SA1 (0.43 - 1.04), BH19-01 SA3 (1.22 - 1.83)	PHCs, PAHs, VOCs, Metals and Inorganics, EC, SAR, and/or Pesticides (organochlorine)	EC and SAR
BH19-02	BH19-02 SA1, BH19-02 SA2, BH19-02 SA3, BH19-02 SA4, BH19-02 SA5	BH19-02 SA1 (0.15 - 0.59), BH19-02 SA2 (0.59 - 1.22), BH19-02 SA4 (1.82 - 2.44)	PHCs, PAHs, VOCs, Metals and Inorganics, EC, SAR, and/or Pesticides (organochlorine)	EC
BH 19-03	BH19-03 SA1, BH19-03 SA2, BH19-03 SA3, BH19-03 SA4, BH19-03 SA5	BH19-03 SA1 (0.18 - 0.56), BH19-03 SA2 (0.56 - 1.22), BH19-03 SA5 (2.44 - 3.3)	PHCs, PAHs, VOCs, Metals and Inorganics, EC, SAR, and/or Pesticides (organochlorine)	EC and SAR

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

PHCs: Petroleum Hydrocabons (F1-F4)

BTEX: Benzene, Toluene, Ethylbenzene and Xylenes

VOCs: Volatile Organic Compounds

PAHs: Polycyclic Aromatic Hydrocarbons

EC: Electrical Conductivity

SAR: Sodium Adsorption Ratio

Monitoring Well ID	Screened Interval (mbgs); Stratigraphy	Groundwater Samples Submitted for Analysis	Analytical Paramaters	MECP Table 3 Exceedances ⁽¹⁾
BH15-01A	8.97 - 12.02; sandy clayey silt (glacial till)	15-01A	Sodium, Chloride	None
BH15-01B	1.52 - 4.57; silty clay to clay	15-01B	VOCs, Sodium, Chloride	Chloride
BH15-02	2.21 - 5.26; silty clay to clay	15-02	VOCs, Sodium, Chloride	None
BH15-03	2.13 - 5.18; silty clay to clay	15-03	VOCs, Sodium, Chloride	Chloride
BH19-01	2.21 - 5.26; silty clay to clay	19-01	VOCs, Sodium, Chloride	Chloride
BH19-02	2.13 - 5.18; silty clay to clay	19-02	VOCs, Sodium, Chloride	None

⁽¹⁾ Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

VOCs- Volatile Organic Compounds

Borehole Location			19-01	19-02	19-03
Sample Date	Unit	MECP Table 3	15-Mar-2019	15-Mar-2019	15-Mar-2019
Sample ID	Ollit	Standard (R/P/I) (1)	BH19-01 SA1	BH19-02 SA1	BH19-03 SA1
Sample Depth (mbgs)		, ,	0.43 - 1.04	0.15 - 0.59	0.18 - 0.56
Petroleum Hydrocarbons					
Benzene	μg/g	0.21	< 0.02	< 0.02	< 0.02
Toluene	μg/g	2.3	< 0.05	< 0.05	0.1
Ethylbenzene	μg/g	2	< 0.05	< 0.05	< 0.05
Xylenes, Total	μg/g	3.1	< 0.05	< 0.05	0.1
Petroleum Hydrocarbons - F1 (C6-C10)	μg/g	55	<5	<5	12
Petroleum Hydrocarbons - F2 (C10-C16)	μg/g	98	<10	<10	<10
Petroleum Hydrocarbons - F3 (C16-C34)	μg/g	300	<50	100	<50
Petroleum Hydrocarbons - F4 (C34-C50)	μg/g	2800	<50	250	<50

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

Borehole Location			19-	-01	19-02	19-03
Sample Date	11!4	MECP Table 3	15-Mar-2019 15-Mar-2019		15-Mar-2019	15-Mar-2019
Sample ID	Unit	Standard (R/P/I) (1)	BH19-01 SA3	DUP-1	BH19-02 SA4	BH19-03 SA5
Sample Depth (mbgs)			1.22 - 1.83	1.22 - 1.83	1.82 - 2.44	2.44 - 3.3
Volatile Organic Compounds						
Dichlorodifluoromethane	μg/g	16	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	μg/g	0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	μg/g	0.05	<0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	μg/g	4	< 0.05	<0.05	< 0.05	< 0.05
Acetone	μg/g	16	<0.50	<0.50	<0.50	< 0.50
1,1-Dichloroethylene	μg/g	0.05	<0.05	< 0.05	<0.05	< 0.05
Methylene Chloride	μg/g	0.1	< 0.05	< 0.05	< 0.05	< 0.05
Trans- 1,2-Dichloroethylene	μg/g	0.084	<0.05	< 0.05	<0.05	< 0.05
Methyl tert-butyl Ether	μg/g	0.75	<0.05	< 0.05	<0.05	<0.05
1,1-Dichloroethane	μg/g	3.5	< 0.02	< 0.02	< 0.02	< 0.02
Methyl Ethyl Ketone	μg/g	16	<0.50	<0.50	<0.50	< 0.50
Cis- 1,2-Dichloroethylene	μg/g	3.4	<0.02	<0.02	<0.02	<0.02
Chloroform	μg/g	0.05	< 0.04	< 0.04	<0.04	< 0.04
1,2-Dichloroethane	μg/g	0.05	< 0.03	< 0.03	< 0.03	< 0.03
1,1,1-Trichloroethane	μg/g	0.38	<0.05	< 0.05	<0.05	< 0.05
Carbon Tetrachloride	μg/g	0.05	<0.05	< 0.05	< 0.05	< 0.05
Benzene	μg/g	0.21	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	μg/g	0.05	< 0.03	< 0.03	< 0.03	< 0.03
Trichloroethylene	μg/g	0.061	< 0.03	< 0.03	< 0.03	< 0.03
Bromodichloromethane	μg/g	13	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Isobutyl Ketone	μg/g	1.7	< 0.50	<0.50	< 0.50	< 0.50
1,1,2-Trichloroethane	μg/g	0.05	< 0.04	< 0.04	<0.04	< 0.04
Toluene	μg/g	2.3	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	μg/g	9.4	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene Dibromide	μg/g	0.05	< 0.04	< 0.04	<0.04	< 0.04
Tetrachloroethylene	μg/g	0.28	< 0.05	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.058	< 0.04	<0.04	< 0.04	< 0.04
Chlorobenzene	μg/g	2.4	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	μg/g	2	< 0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	μg/g	n/a	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	μg/g	0.27	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	μg/g	0.7	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	μg/g	n/a	<0.05	< 0.05	<0.05	< 0.05
1,3-Dichlorobenzene	μg/g	4.8	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.083	<0.05	< 0.05	<0.05	< 0.05
1,2-Dichlorobenzene	μg/g	3.4	<0.05	< 0.05	<0.05	< 0.05
Xylene Mixture	μg/g	3.1	< 0.05	<0.05	<0.05	< 0.05
1,3-Dichloropropene	μg/g	0.05	< 0.04	<0.04	<0.04	<0.04
n-Hexane	μg/g	2.8	<0.05	<0.05	<0.05	< 0.05

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

Borehole Location			19-01	19-02	19-03
Sample Date	Unit	MECP Table 3 Standard	15-Mar-2019	15-Mar-2019	15-Mar-2019
Sample ID	Unit	(R/P/I) ⁽¹⁾	BH19-01 SA1	BH19-02 SA1	BH19-03 SA1
Sample Depth (mbgs)		,	0.43 - 1.04	0.15 - 0.59	0.18 - 0.56
PAHs					
Naphthalene	μg/g	0.6	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/g	0.15	< 0.05	< 0.05	< 0.05
Acenaphthene	μg/g	7.9	< 0.05	< 0.05	< 0.05
Fluorene	μg/g	62	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	6.2	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.67	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/g	0.69	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	78	< 0.05	< 0.05	< 0.05
Benz(a)anthracene	μg/g	0.5	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	7	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	μg/g	0.78	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	μg/g	0.78	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.3	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.38	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	μg/g	0.1	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	μg/g	6.6	<0.05	<0.05	<0.05
2-and 1-methyl Naphthalene (2)	μg/g	0.99	<0.05	<0.05	<0.05

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.
- n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

- (1) MECP Table 3 Standards: Table 3- Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils; as per Ontario Regulation 153/04 (2011) under the Environmental Protection Act of the Ministry of the Environment, Conservation and Parks (MECP)
- (2) The methyl naphthalene standards are applicable to both 1-methyl naphthalene and 2-methyl naphthalene, with the provision that if both are detected the sum of the two

Borehole Location			19-01	19-02	19-03
Sample Date	Unit	MECP Table 3 Standard	15-Mar-2019	15-Mar-2019	15-Mar-2019
Sample ID	Oilit	(R/P/I) ⁽¹⁾	BH19-01 SA1	BH19-02 SA1	BH19-03 SA1
Sample Depth (mbgs)		-	0.43 - 1.04	0.15 - 0.59	0.18 - 0.56
Metals					
Antimony	μg/g	7.5	<0.8	<0.8	<0.8
Arsenic	μg/g	18	3	4	3
Barium	μg/g	390	328	157	176
Beryllium	μg/g	4	0.8	<0.5	<0.5
Boron	μg/g	120	<5	8	7
Boron (Hot Water Soluble)	μg/g	1.5	0.15	0.3	0.43
Cadmium	μg/g	1.2	<0.5	<0.5	<0.5
Chromium	μg/g	160	87	13	50
Cobalt	μg/g	22	18.3	5.3	10.3
Copper	μg/g	140	43	7	22
Lead	μg/g	120	12	9	5
Molybdenum	μg/g	6.9	2.4	2.4	<0.5
Nickel	μg/g	100	50	16	32
Selenium	μg/g	2.4	<0.4	<0.4	<0.4
Silver	μg/g	20	<0.2	<0.2	<0.2
Thallium	μg/g	1	0.4	<0.4	<0.4
Uranium	μg/g	23	0.9	<0.5	<0.5
Vanadium	μg/g	86	78	16	43
Zinc	μg/g	340	97	18	51
Chromium VI	μg/g	8	<0.2	<0.2	<0.2
Cyanide	μg/g	0.051	< 0.040	<0.040	< 0.040
Mercury	μg/g	0.27	<0.10	<0.10	<0.10

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

Borehole Location		MECP Table 3		19-01		19	-02	19-	-03	18-	01 ⁽³⁾	18-	02 ⁽²⁾	18-	03 ⁽²⁾
Sample Date	Unit	Standard	15-Mar-2019	12-Sep-2018	12-Sep-2018	17-Sep-2018	17-Sep-2018	10-Sep-2018	10-Sep-2018						
Sample ID	Ullit	(R/P/I) ⁽¹⁾	BH19-01 SA1	BH19-01 SA3	DUP-1	BH19-02 SA1	BH19-02 SA4	BH19-03 SA1	BH19-03 SA5	BH18-01 SA7	BH18-01 SA10	BH18-02 SA7	BH18-02 SA10	BH18-03 SA7	BH18-03 SA11
Sample Depth (mbgs)		(R/P/I) · /	0.43 - 1.04	1.22 - 1.83	1.22 - 1.83	0.15 - 0.59	1.82 - 2.44	0.18 - 0.56	2.44 - 3.3	4.57 - 5.18	8.38 - 8.99	4.42 - 5.03	8.99 - 9.60	4.57 - 5.18	9.14 - 9.75
Inorganics															
Electrical Conductivity	mS/cm	0.7	3.55	1.41	1.32	0.769	1.21	4.01	2.81	1.17	0.301	0.499	0.885	1.19	0.351
Sodium Adsorption Ratio	NA	5	7.59	0.808	0.986	2.14	4.2	5.11	1.72	1.59	1.35	1.36	0.386	0.901	2.67
рН	pH units	n/a	7.27	n/a	n/a	7.53	n/a	7.71	7.12	n/a	n/a	n/a	n/a	n/a	n/a
Moisture Content	%	n/a	25.1	n/a	n/a	4.5	n/a	5	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

(1) MECP Table 3 Standards: Table 3- Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils; as per Ontario Regulation 153/04 (2011) under the Environmental Protection Act of the Ministry of the Environment, Conservation and Parks (MECP)

(2) Soil samples, collected from geotechnical boreholes completed in September 2018, analyzed for EC and SAR delineation purposes.

Borehole Location			19 -0 1	1	19-02	19-03
Sample Date	Unit	MECP Table 3	15-Mar-2019	15-Mar-2019	15-Mar-2019	15-Mar-2019
Sample ID	Ollit	Standard (R/P/I) (1)	BH19-01 SA3	DUP-1	BH19-02 SA2	BH19-03 SA2
Sample Depth (mbgs)		, ,	1.22 - 1.83	1.22 - 1.83	0.59 - 1.22	0.56 - 1.22
Organichlorine Pesticides						
Hexachloroethane	μg/g	0.089	<0.01	<0.01	< 0.01	<0.01
Gamma-Hexachlorocyclohexane	μg/g	0.056	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor	μg/g	0.15	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin	μg/g	0.05	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor Epoxide	μg/g	0.05	< 0.005	< 0.005	< 0.005	< 0.005
Endosulfan	μg/g	0.04	< 0.005	< 0.005	< 0.005	< 0.005
Chlordane	μg/g	0.05	< 0.007	< 0.007	< 0.007	< 0.007
DDE	μg/g	0.26	< 0.007	< 0.007	< 0.007	< 0.007
DDD	μg/g	3.3	< 0.007	< 0.007	< 0.007	< 0.007
DDT	μg/g	1.4	< 0.007	< 0.007	< 0.007	< 0.007
Dieldrin	μg/g	0.05	< 0.005	< 0.005	< 0.005	< 0.005
Endrin	μg/g	0.04	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor	μg/g	0.13	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene	μg/g	0.52	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobutadiene	μg/g	0.012	<0.01	<0.01	<0.01	<0.01

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

Sample ID			15-01A	15-	01B	15	-02		15-03	
Sample Date		MECP Table 3	12-Nov-2015	12-Nov-2015	20-Mar-2019	12-Nov-2015	12-Apr-2019	12-Nov-2015	28-Feb-2019	28-Feb-2019*
Water Levels (mbgs)	Unit	Standard (1)	2.2	1.9	2.2	1.8	2.03	2.0	2.0	2.0
Dichlorodifluoromethane	μg/l	4400	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride	μg/l	0.5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/l	5.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/l	2500	< 0.40	< 0.40	<0.40	< 0.40	< 0.40	<0.40	<0.40	< 0.40
Acetone	μg/l	130000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/l	1.6	<0.30	< 0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30
Methylene Chloride	μg/l	610	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/l	1.6	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/l	190	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/l	320	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methyl Ethyl Ketone	μg/l	470000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/l	1.6	< 0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
Chloroform	μg/l	2.4	0.73	0.57	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/l	1.6	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/l	640	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/l	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/l	44	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/l	16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/l	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/l	85000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/l	140000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/l	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/l	18000	< 0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
Dibromochloromethane	μg/l	82000	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/l	0.25	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/l	1.6	0.43	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/l	3.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/l	630	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/l	2300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	μg/l	n/a	< 0.20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
Bromoform	μg/l	380	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/l	1300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/l	3.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/l	n/a	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	μg/l	9600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/l	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/l	4600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/l	5.2	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Xylene Mixture	μg/l	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	μg/l	51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.

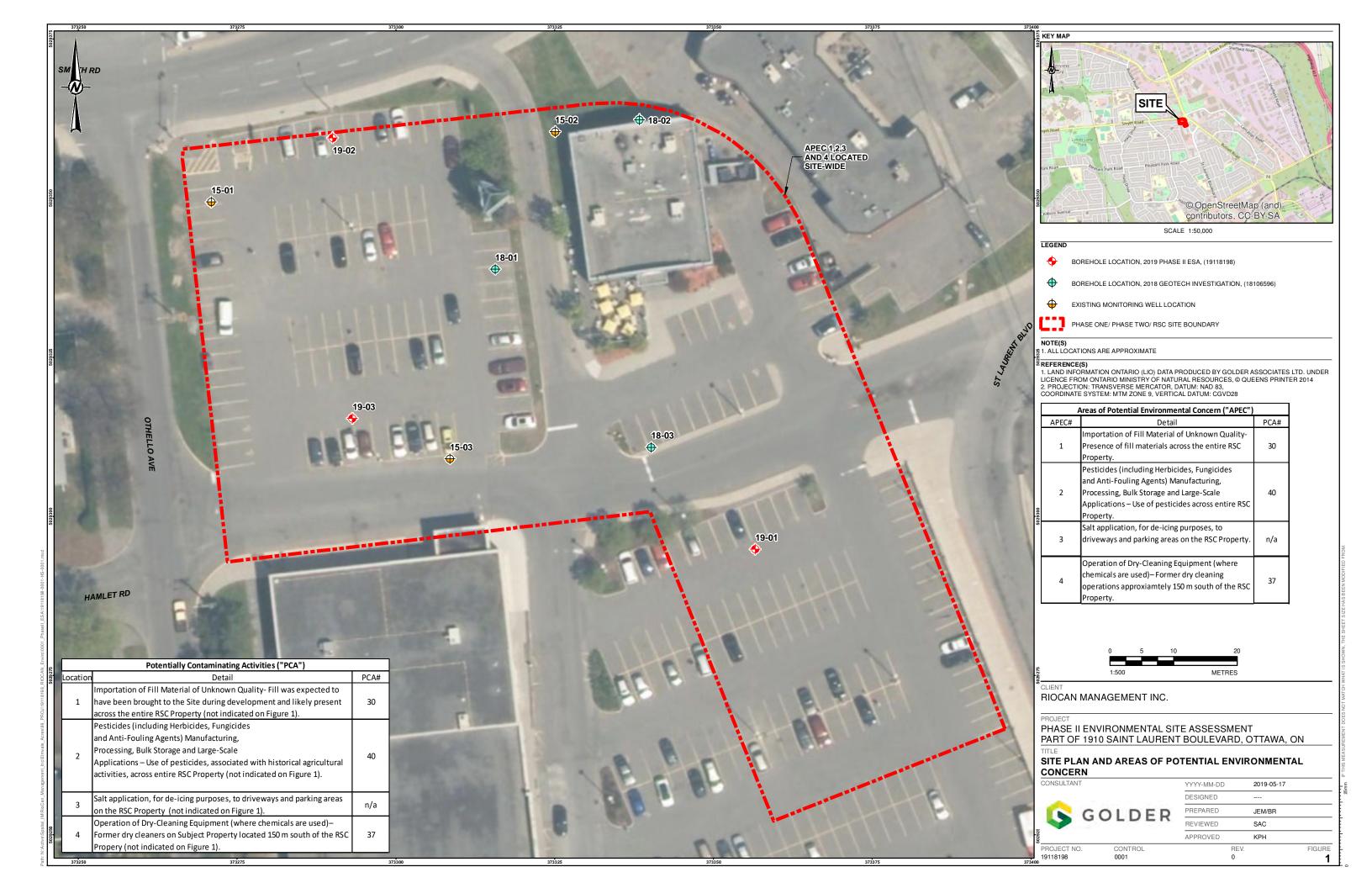
Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

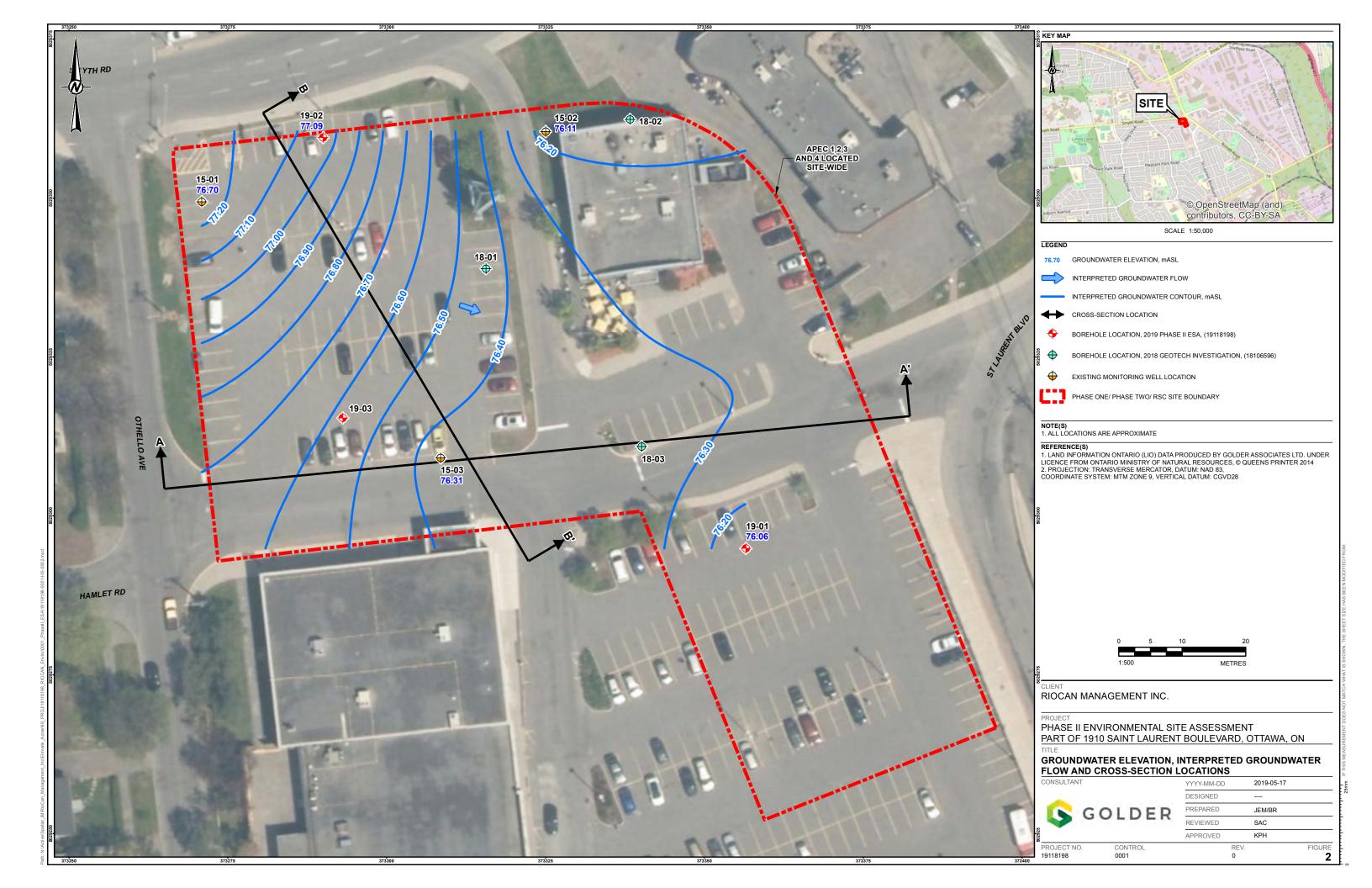
na = Chemical not analyzed or criteria not defined.

^{*}Field duplicate (DUP-1) of 15-03 collected on February 28, 2019

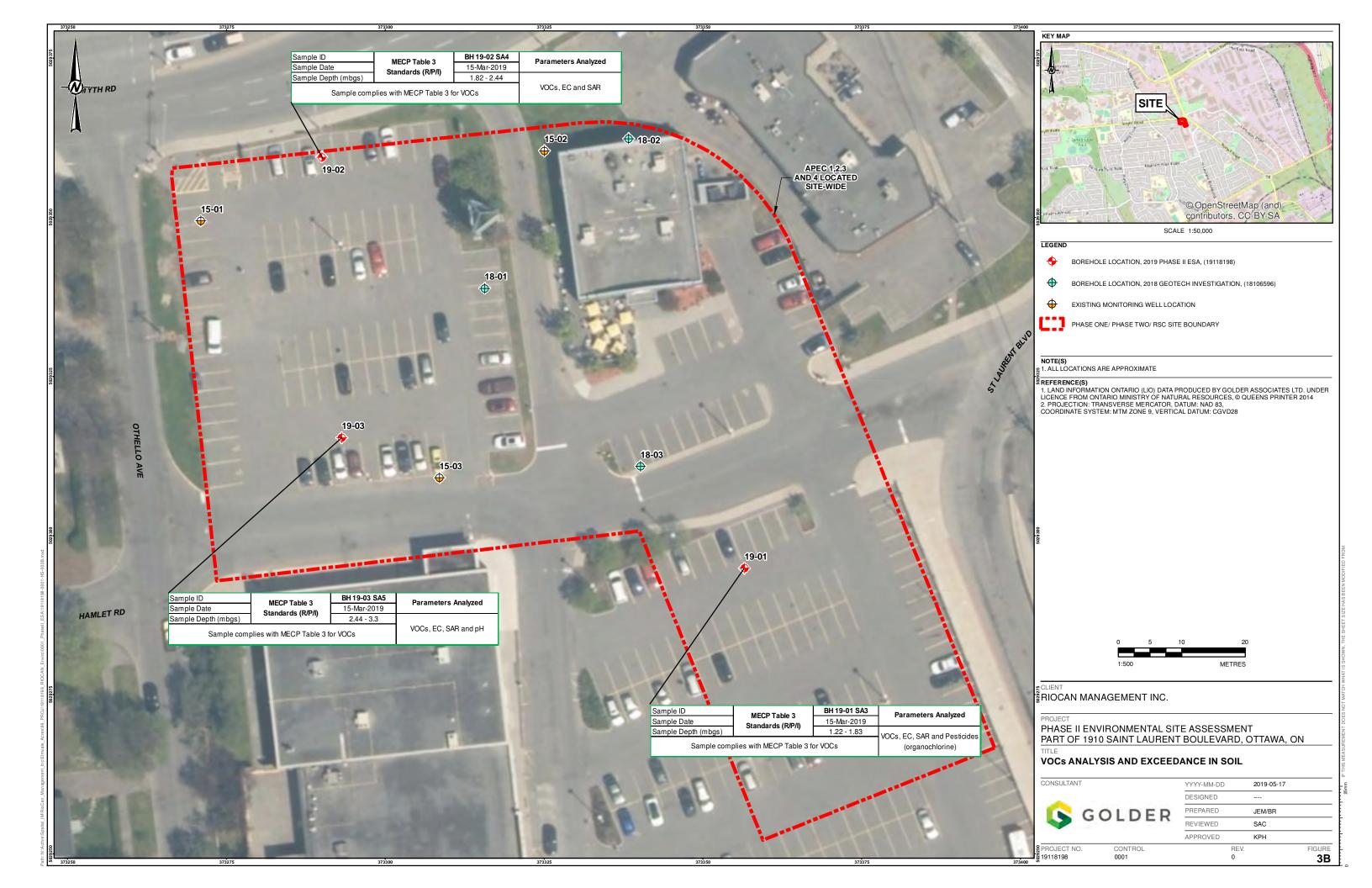
Sample ID			15-01A	15-0	01B	15-02	15-03**	19-01	19-02
Sample Date		MECP Table 3	12-Apr-2019	20-Mar-2019*	24-Apr-2019	12-Apr-2019	24-Apr-2019	12-Apr-2019	12-Apr-2019
Water Levels (mbgs)	Unit	Standard (1)	1.81	2.20	1.85	2.03	1.39	2.29	1.48
Sodium	μg/l	2,300,000	1,690	2,000,000	1,340,000	40,200	1,750,000	416,000	388,000
Chloride	μg/l	2,300,000	6,980	6,400,000	4,100,000	60,200	3,230,000	2,860,000	1,230,000
рН	pH units		n/a	7.70	n/a	n/a	n/a	n/a	n/a

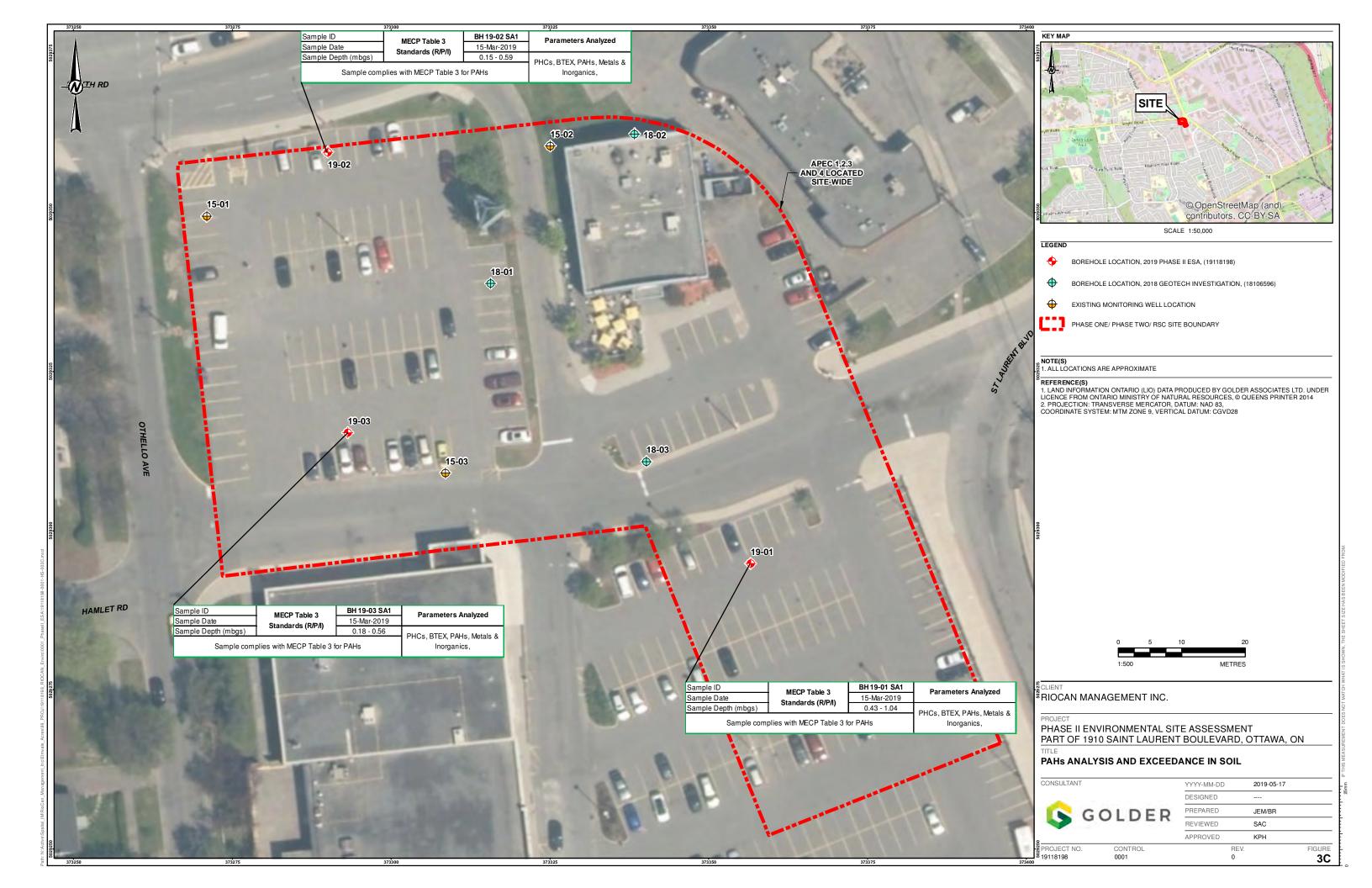
Tables should be read in conjunction with the accompanying document.

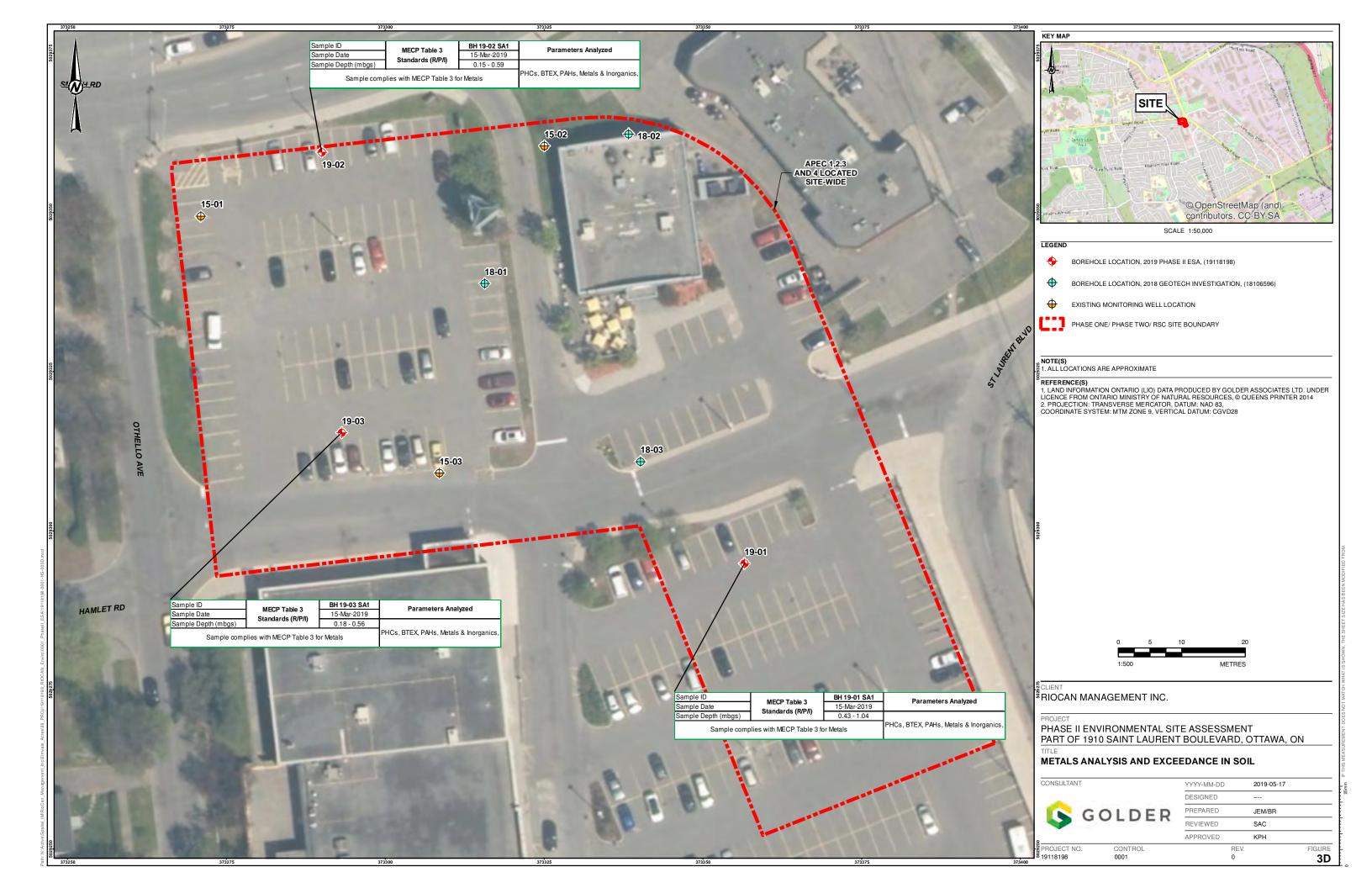

- < value = Indicates parameter not detected above laboratory method detection limit
- > value = Indicates parameter detected above equipment analytical range
- na = Chemical not analyzed or criteria not defined.

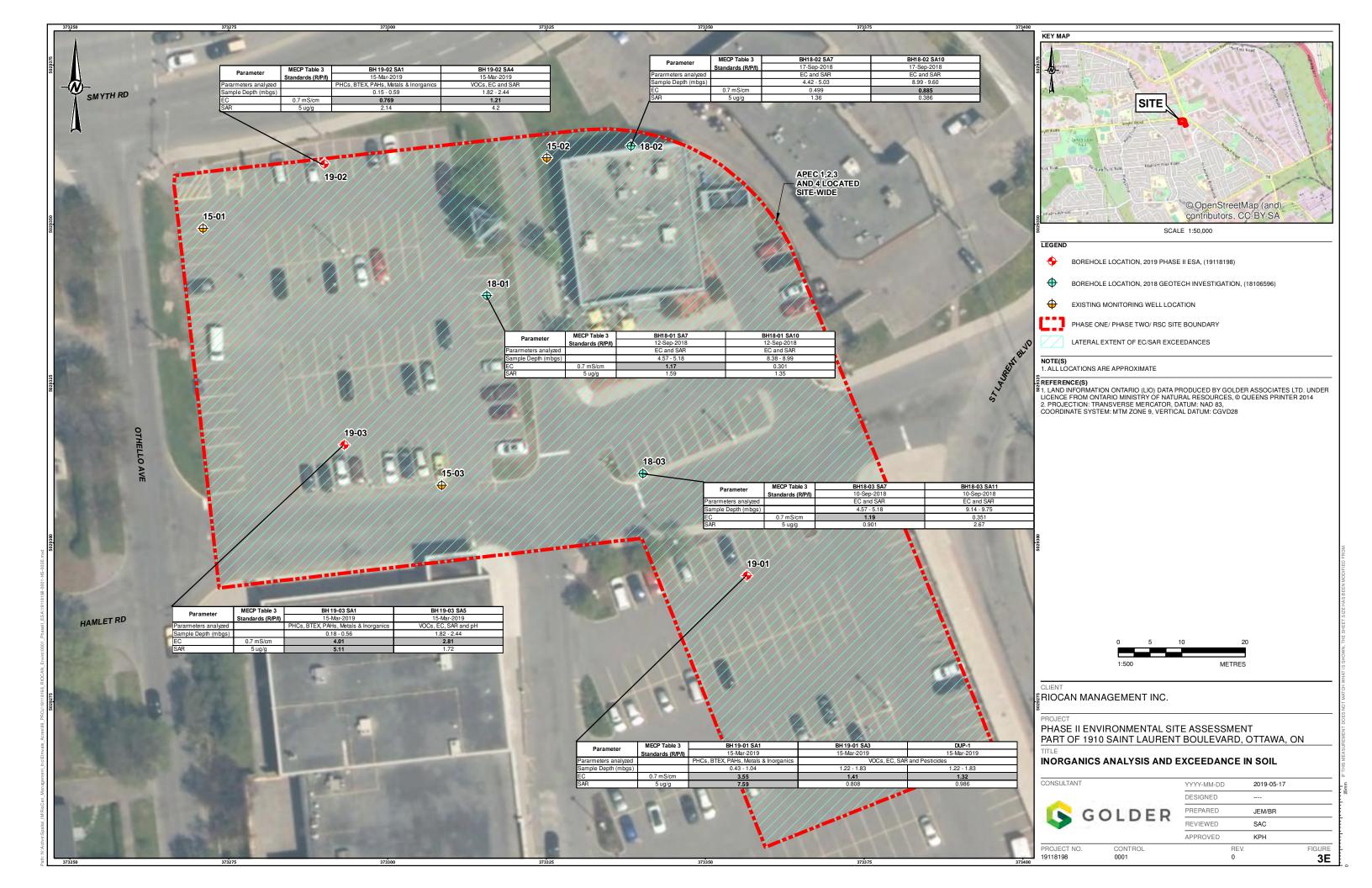

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

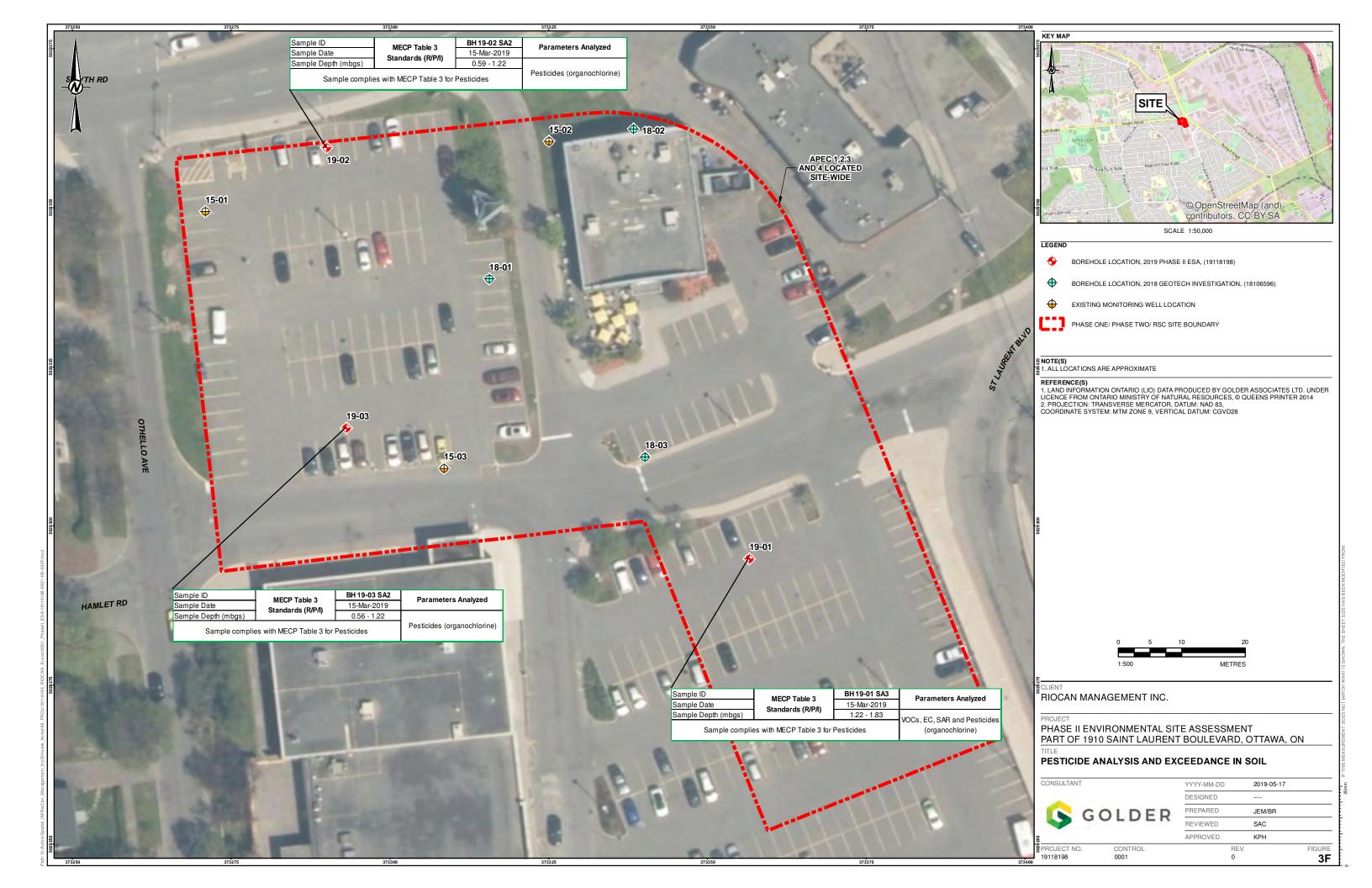
- * Groundwater sample for Sodium was not filtered
- **Field duplicate (DUP-1) of 15-03 collected on February 28, 2019 was not field filtered for sodium and hence not included in this table.

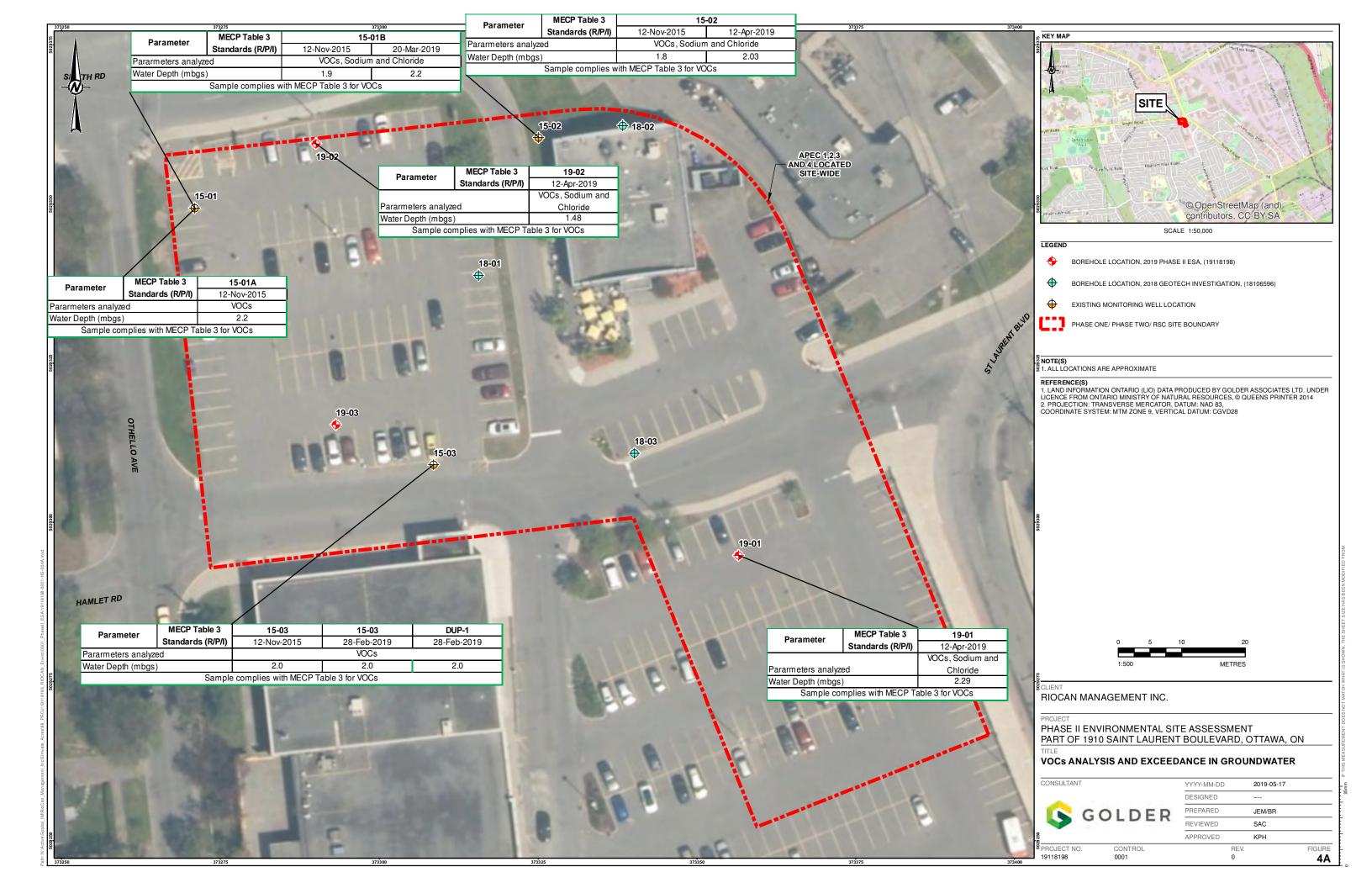


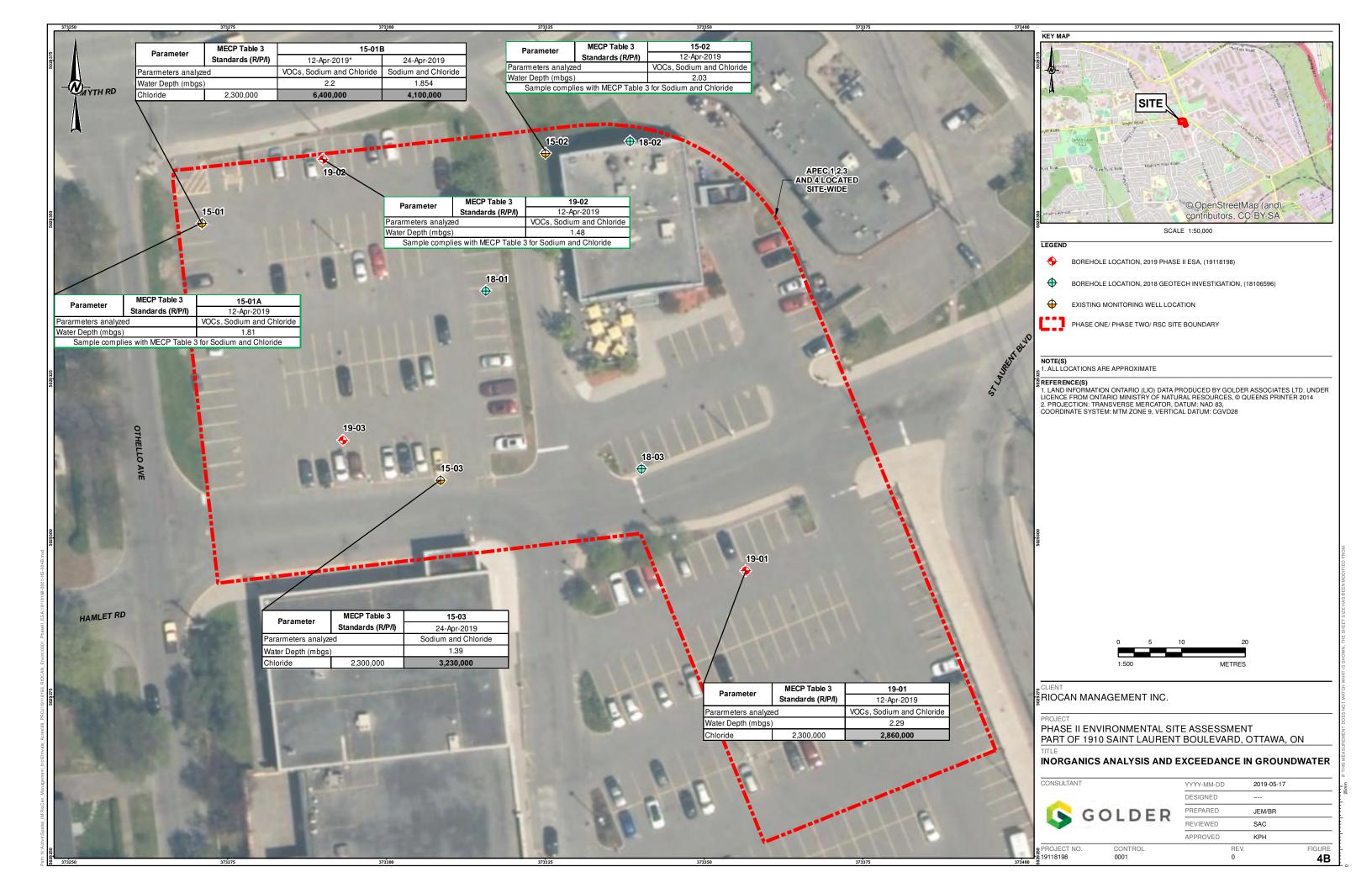

FIGURES

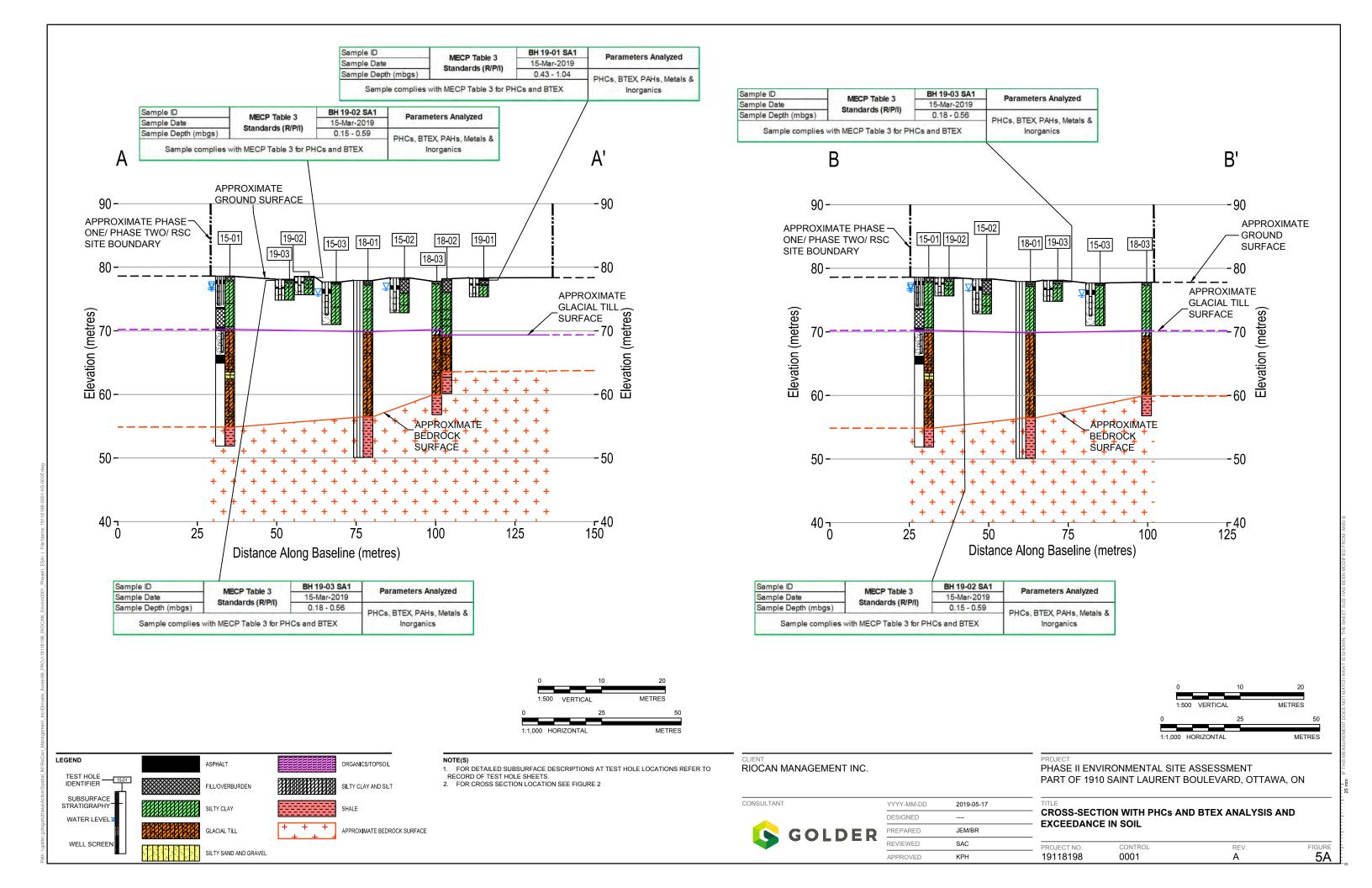


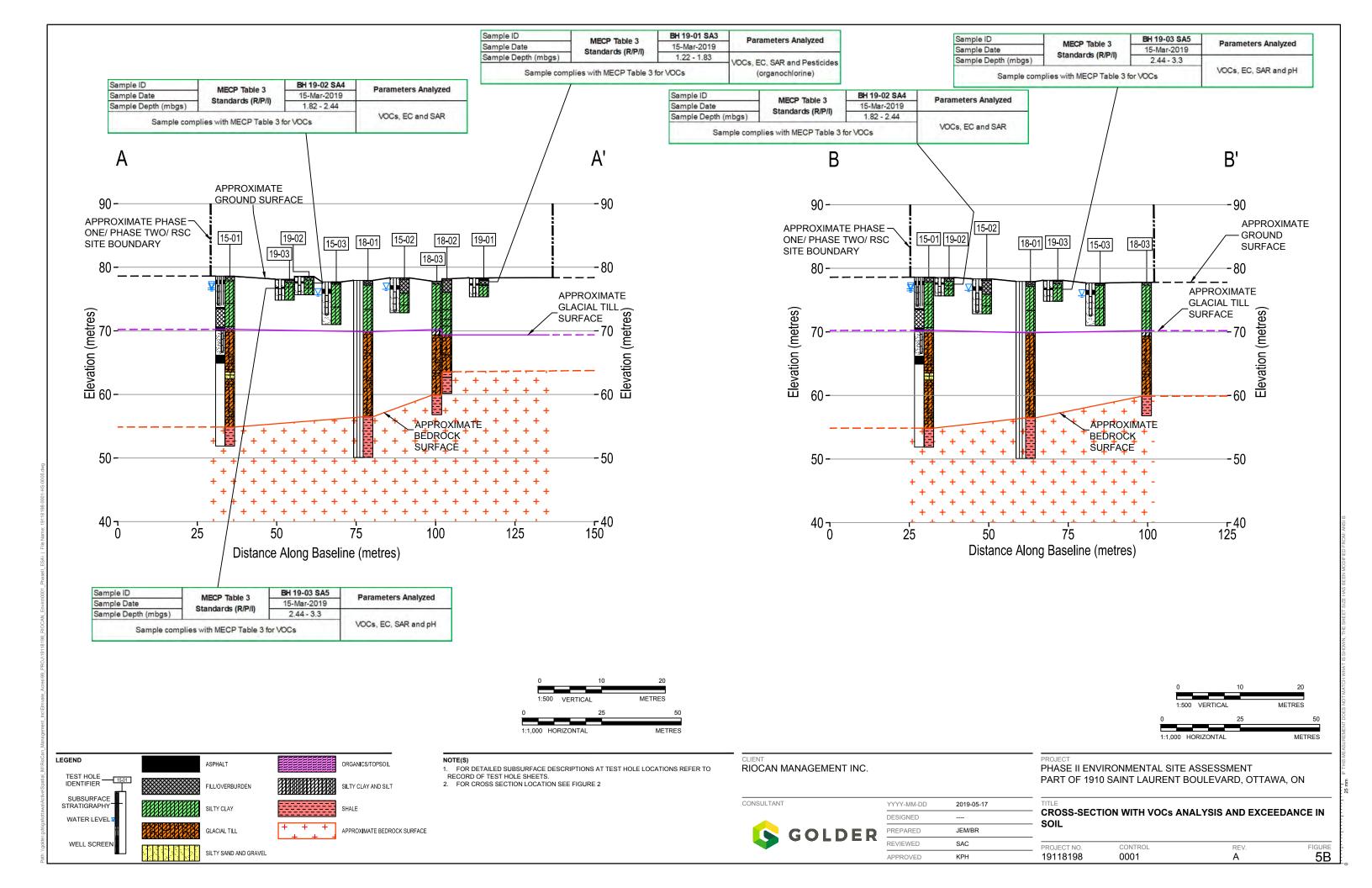


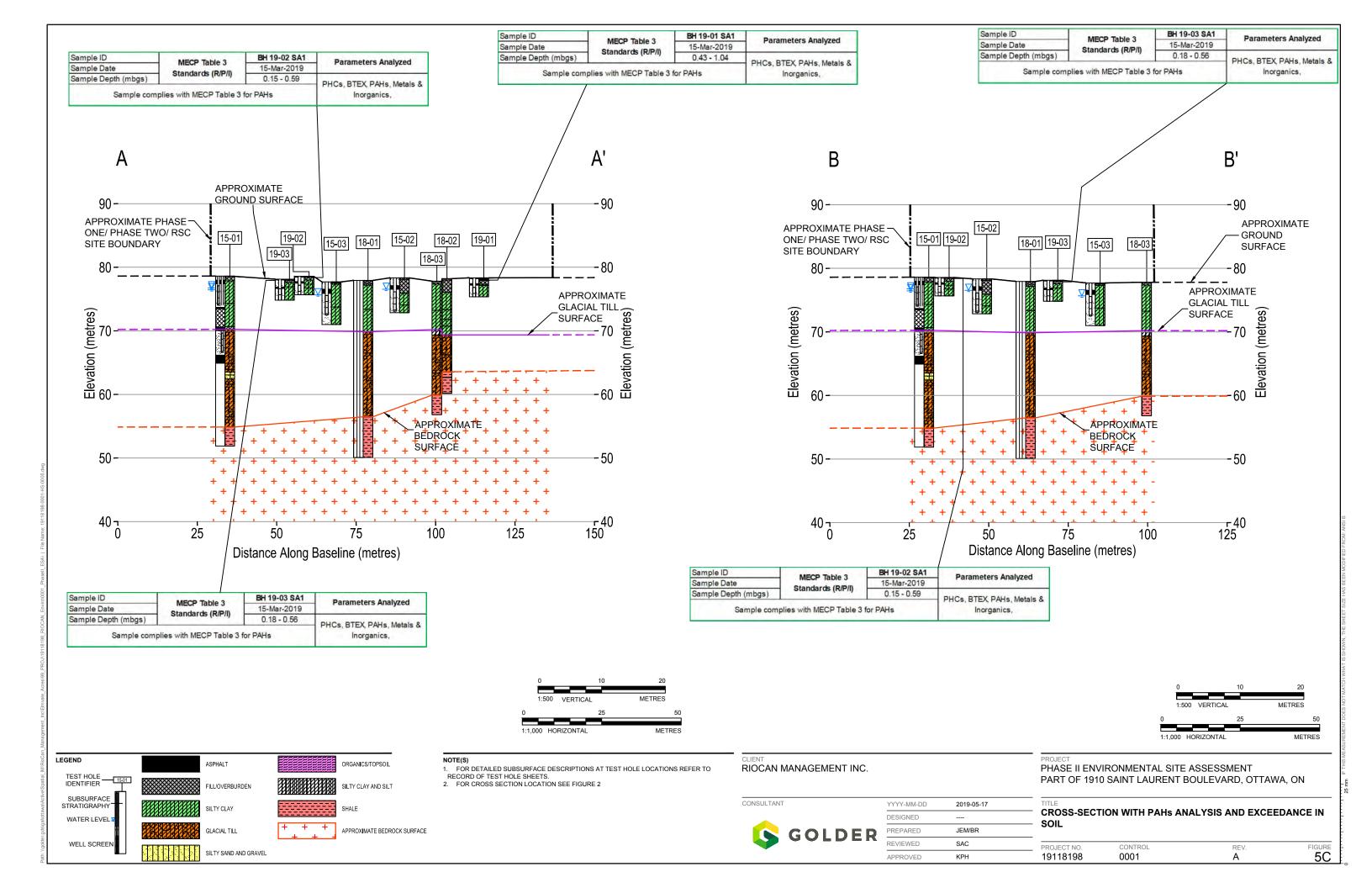


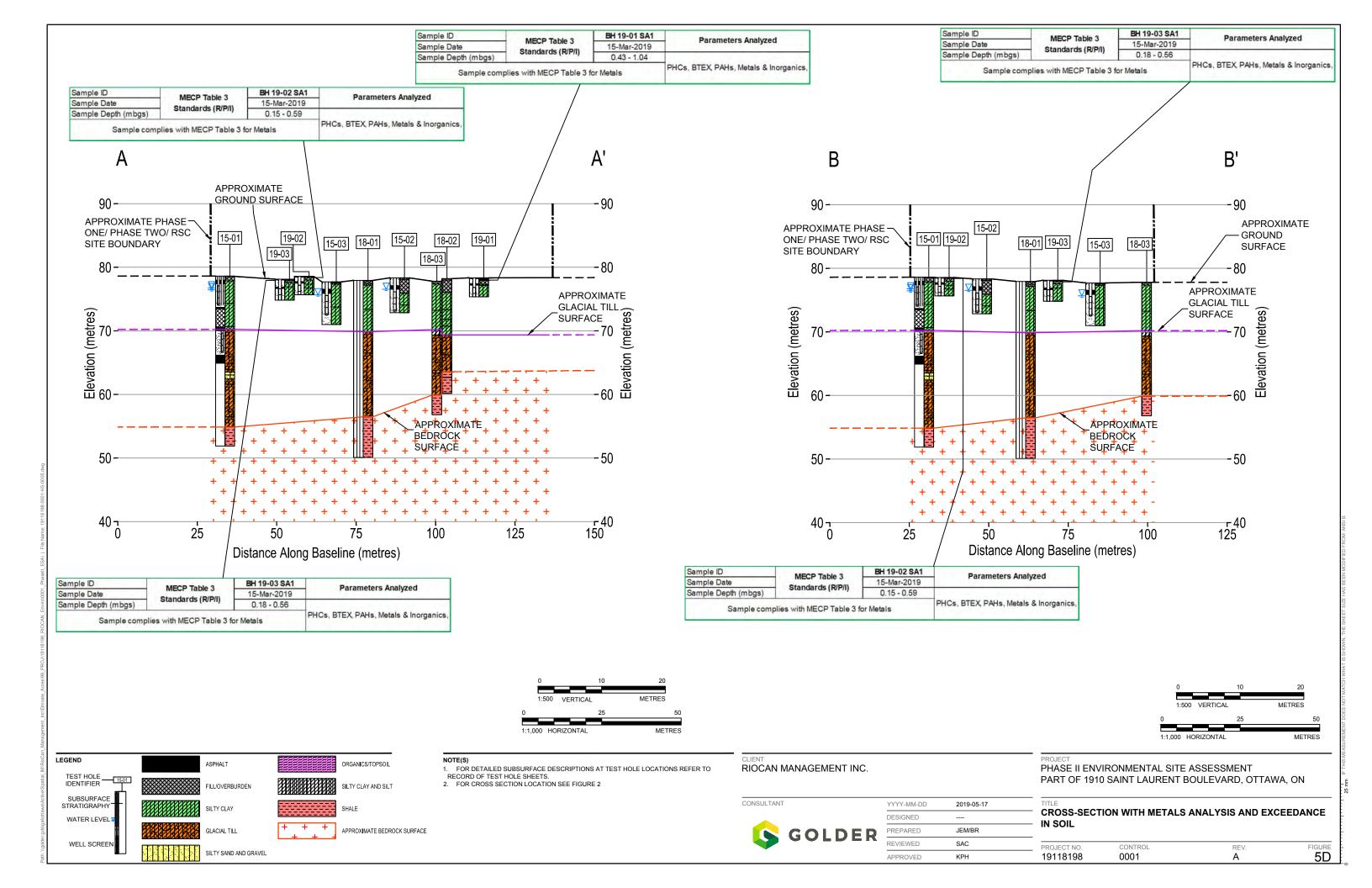


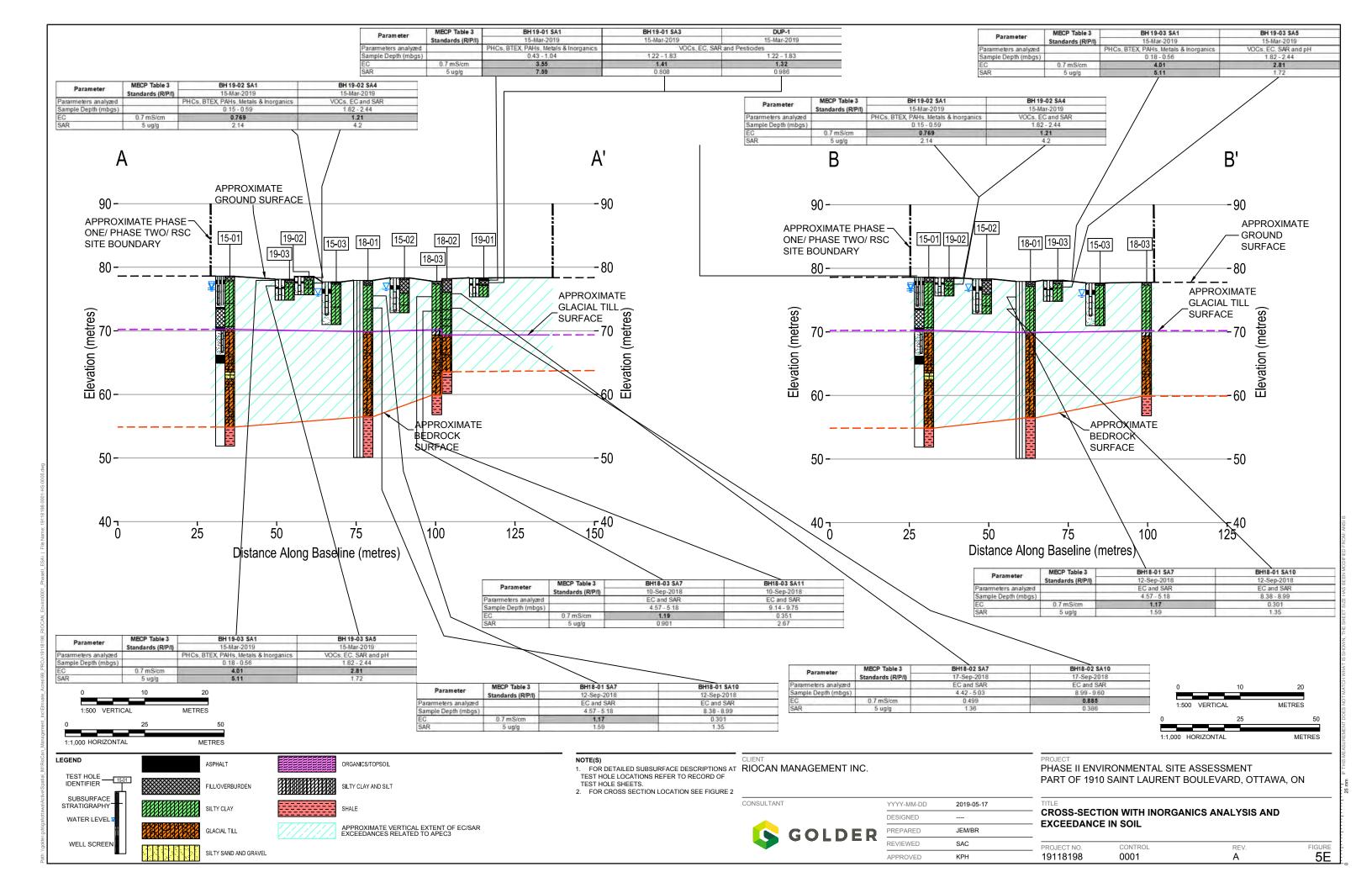


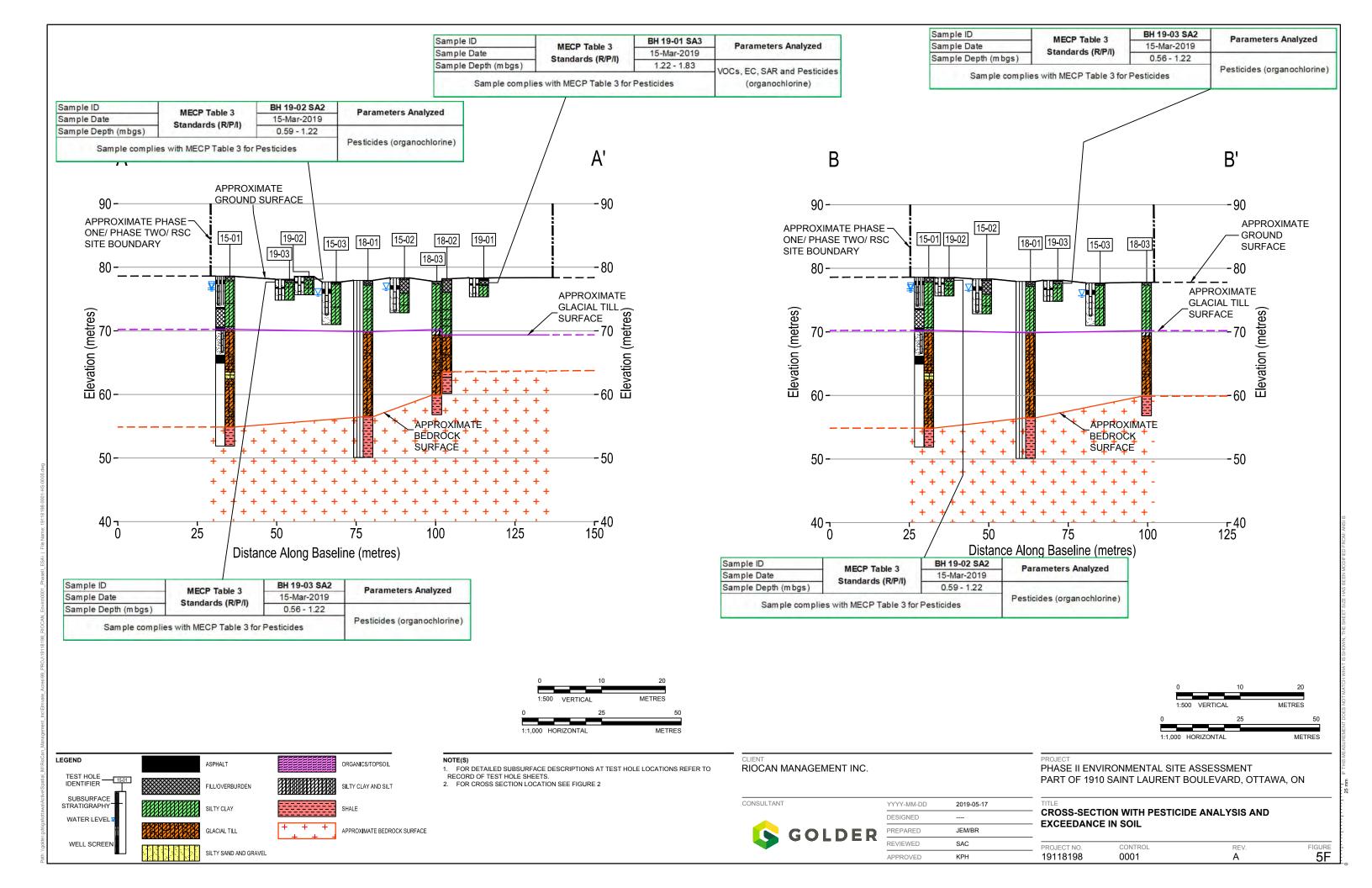


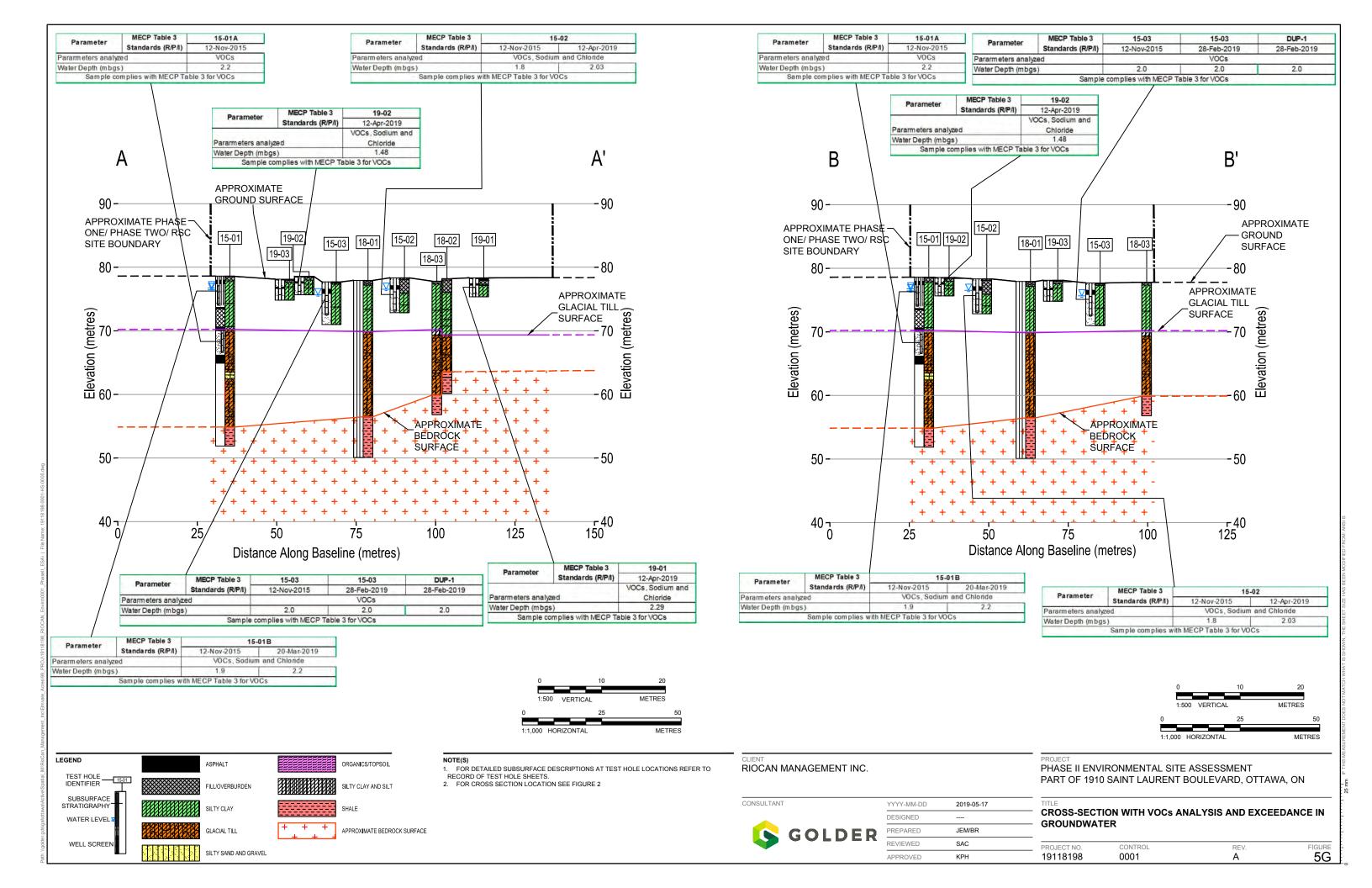


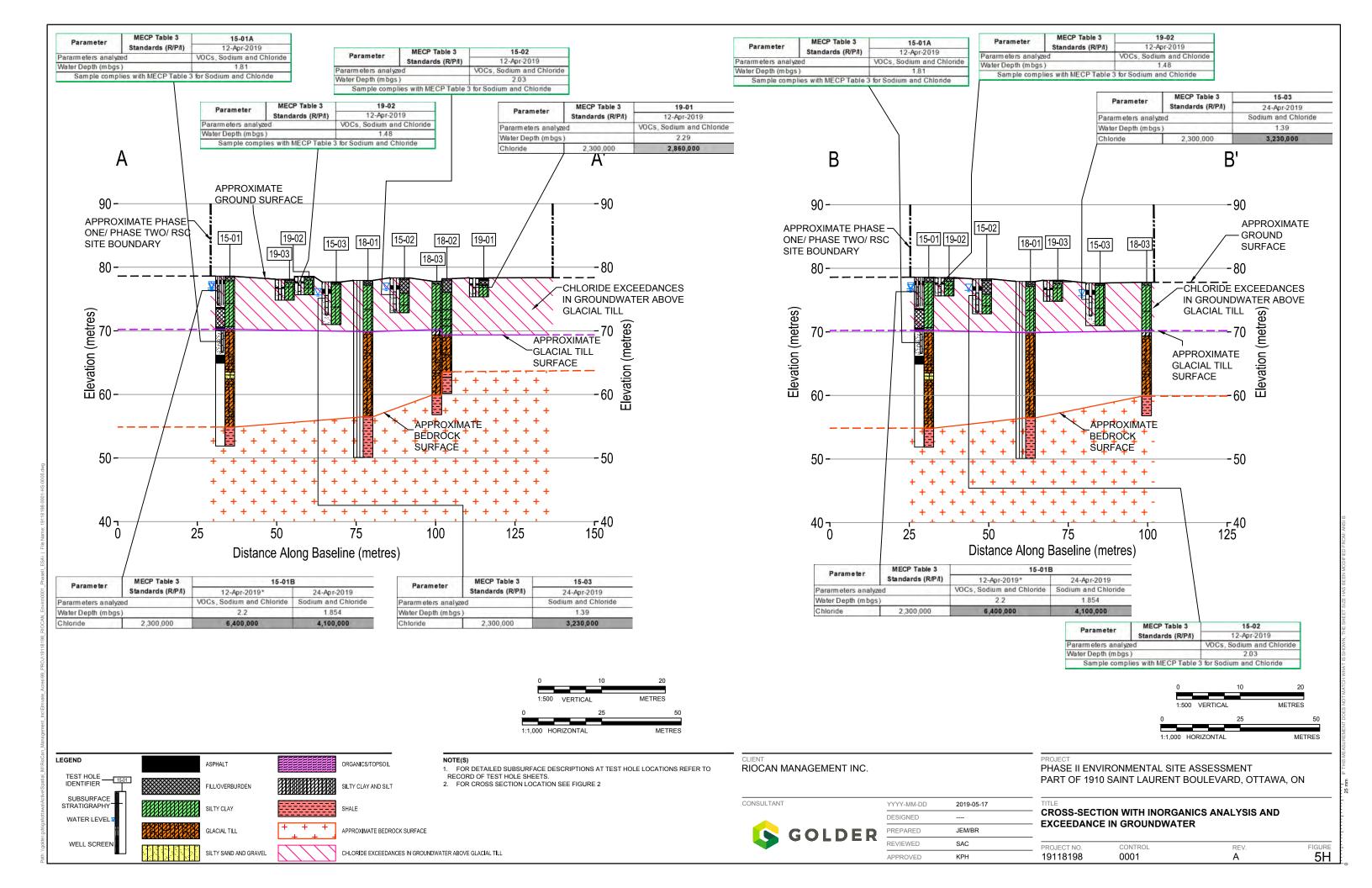


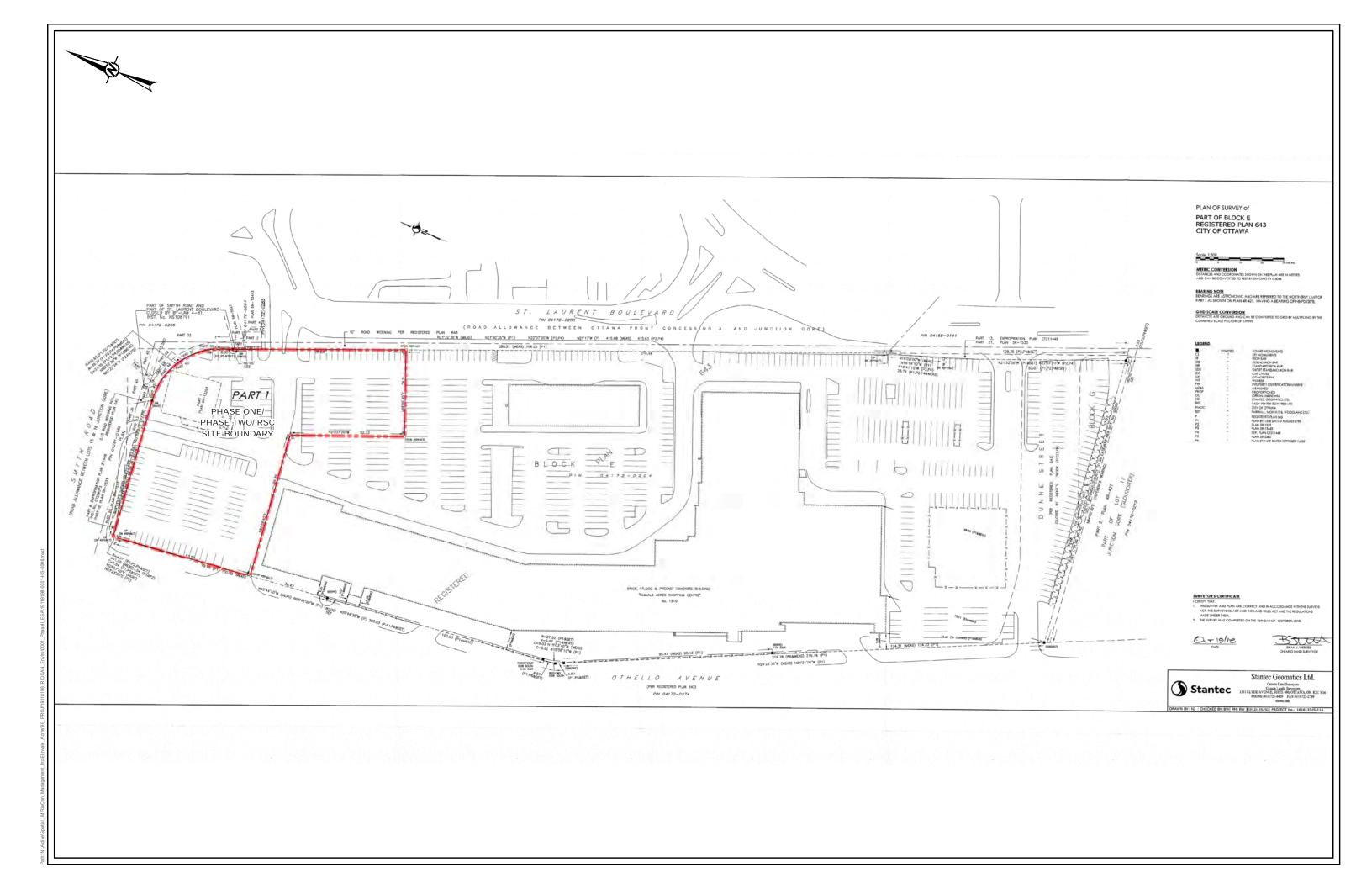




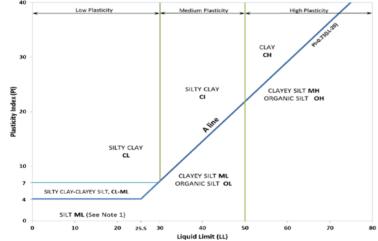








May 2019 19118198


APPENDIX A

Record of Boreholes

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name		
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	≥3		GP	GRAVEL		
(ss)	5 75 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL		
by me	SOILS an 0.07	GRA 50% by parse f	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL		
INORGANIC (Organic Content <30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	(> o	(by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL		
INOR	SE-GR ISS is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or ≩	≥3	-0070	SP	SAND		
rganic	COAR by ma	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND		
0	(>50%	SAI 50% by oarse f	Sands with >12%	Below A Line			n/a				SM	SILTY SAND		
		sms	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND		
Organic	Soil			Laboratory			ield Indic	ators		Organic	USCS Group	Primary		
or Inorganic	Group	Type of Soil		oup Type of Soil		Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name
		L plot	5	Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT		
(ss)	75 mm	and L	city low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT		
INORGANIC (Organic Content <30% by mass)	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	SILTS Non-Plastic or Pl and LL plot	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT		
INORGANIC	FINE-GRAINED SOILS mass is smaller than 0.	n-Plast	8 º P	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT		
INORC	-GRAII	ON)	2	≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT		
ganic (FINE by mas	plot	e on	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY		
O.	>20%	CLAYS	above A-Line on Plasticity Chart below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY		
		C (Pla	above Plast	Liquid Limit ≥50	None	High	Shiny	<1 mm High		(see Note 2)	СН	CLAY		
ALY ANIC LS	anic >30% ass)		mineral soil tures							30% to 75%		SILTY PEAT, SANDY PEAT		
HIGHLY ORGANIC SOILS	Content >30% by mass)	may con mineral so	nantly peat, stain some oil, fibrous or nous peat				_	Dual Sum		75% to 100%	PT tue symbols	PEAT		

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)						
BOULDERS	Not Applicable	>300	>12						
COBBLES	Not Applicable	75 to 300	3 to 12						
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75						
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)						
SILT/CLAY	Classified by plasticity	<0.075	< (200)						

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier										
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)										
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable										
> 5 to 12	some										
≤ 5	trace										

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_i), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); N_d : The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

Term

Very Soft

Soft

Firm

Stiff

Very Stiff

Hard

w	water content
PL, w _p	plastic limit
LL, w _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
M	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS Consistency

Undrained Shear SPT 'N'1,2 Strength (kPa) (blows/0.3m) <12 0 to 2 12 to 25 2 to 4 25 to 50 4 to 8 50 to 100 8 to 15

15 to 30

>30 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

100 to 200

>200

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

l.	GENERAL	(a)	Index Properties (continued) water content
	3.1416	w w _i or LL	liquid limit
π In x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	l _p or PI	plasticity index = $(w_l - w_p)$
	acceleration due to gravity	NP	non-plastic
g t	time	Ws	shrinkage limit
•		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_1 - w) / I_p$
		e max	void ratio in loosest state
		e min	void ratio in densest state
		ΙD	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\stackrel{\prime}{\Delta}$	change in, e.g. in stress: $\Delta \sigma$	h ´	hydraulic head or potential
3	linear strain	q	rate of flow
ε _V	volumetric strain	v	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	J	ocopago forco per armit volumo
σ_{V_0} $\sigma_{1}, \sigma_{2}, \sigma_{3}$			
01, 02, 03	minor)	(c)	Consolidation (one-dimensional)
	- ,	C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
3001	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
Ē	modulus of deformation	Cα	secondary compression index
Ġ	shear modulus of deformation	m _v	coefficient of volume change
K	bulk modulus of compressibility	C _V	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		T _v	time factor (vertical direction)
III.	SOIL PROPERTIES	Ü	degree of consolidation
		σ′p	pre-consolidation stress
(a)	Index Properties	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ)	bulk density (bulk unit weight)*		5 p , 5 %
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
$\rho_{\rm w}(\gamma_{\rm w})$	density (unit weight) of water	τ _p , τ _r	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ′ δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	C'	effective cohesion
	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
е	void ratio	p	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
-	 	q qu	compressive strength ($\sigma_1 - \sigma_3$)
		S _t	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	$\rho = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)		
	J ,,		

RECORD OF BOREHOLE: 15-01

SHEET 1 OF 2 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5027658.3 ;E 451048.9

BORING DATE: October 30 & November 2, 2015

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

		SOIL PROFILE		SA	AMPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m				HYDRAULIC CONDUCTIVITY, k, cm/s					PIEZOMETER	
METRES	BORING METHOD		STRATA PLOT	ELEV.	띪	ш	BLOWS/0.30m	20 40	6			10			10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	RING	DESCRIPTION	3ATA	DEPTH	NUMBER	TYPE)/S//C	SHEAR STRENG Cu, kPa	i'H n	at V. + em V. ⊕	Q - • U - O	W, Wp		ONTENT PE	RCENT WI	ADDI:	INSTALLATION
	BC		STF	(m)			BLC	20 40	6	0 8	0		0 4		80	1	
0	_	GROUND SURFACE ASPHALTIC CONCRETE		78.61	_											-	Flush Mount
		FILL - (SW) gravelly SAND, angular; grey, (PAVEMENT STRUCTURE)		0.08													Protective Casing Silica Sand
				77.85 0.76	1	-											2
1		(CI/CH) SILTY CLAY to CLAY; grey brown, highly fissured, (WEATHERED CRUST); cohesive, w>PL, very stiff				SS	9										Bentonite Seal
		(in the state of			2	SS	13						0				Silica Sand
2																	
					3	SS	9							0			4
					4	ss	8							5			
3																	32 mm Diam. PVC #10 Slot Screen 'B'
					5	SS	7							0			
	Stem)				6	ss	5						0			СНЕМ	
4	ger Illow St	(OVOL) SILTVOLAVA- OLAVA-		74.34 4.27		33	٥)			CHEW	
	Power Auger mm Diam. (Hollow	(CI/CH) SILTY CLAY to CLAY; grey, contains shells; cohesive, w>PL, stiff		4.21	7 & 8	ss	3										Silica Sand
5	Pov nm Dia																Bentonite Seal
	200 r				9	SS	-	Φ	+					0			
					10	SS	1										
6						1											
					11	SS	-	Φ	-	+				0			Native Backfill and Bentonite
7					12	ss	РМ	Ψ		Т				ei			
						1											
				70.68	13	SS	-	Φ	+				C)			
8		(CI/CH-ML) SILTY CLAY to CLAYEY SILT, trace to some sand and gravel;		7.93	14	ss	2	Φ	+			0					Bentonite Seal
		grey; cohesive, w>PL, very stiff (ML) sandy CLAYEY SILT, some gravel:		70.23 8.38	<u> </u>		-										Demonite Seal
9		dark brown, presence of cobbles inferred from auger refusal (GLACIAL TILL):			15	ss	13					0					Silica Sand
		non-cohesive, w>PL, very stiff			16	SS	>50										
10						-											
					17	ss	21					0					32 mm Diam. PVC #10 Slot Screen 'A'
,,					18	ss	19										S S S S S S S S S S S S S S S S S S S
11					L'°	33	19										\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	_ _				19	ss	15					0				мн	l Š
12	Rotary Drill NW Casing				-	1_											
	Rota				20	SS	10										Silica Sand
					21	ss	17										
13						1											Bentonite Seal
				64.89	22	SS	14										
14		(SM) SILTY SAND, trace gravel; dark brown, (GLACIAL TILL); non-cohesive,		13.72	23	ss	41										
		wet, dense to compact			<u> </u>	-											Bentonite and Cement Grout
				63.93 14.68	24	SS	28					0					
15	_ L		_12/12/8	1	-	†-	-	+							-+	-	
\Box			1	<u> </u>													L

RECORD OF BOREHOLE: 15-01

SHEET 2 OF 2

LOCATION: N 5027658.3 ;E 451048.9

BORING DATE: October 30 & November 2, 2015

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CALE	=THOD	SOIL PROFILE	10	l		AMPL		DYNAMIC PENETRA RESISTANCE, BLOV 20 40	VS/0.3m	80	HYDRAU k 10 ⁻⁶	LIC CON , cm/s 10 ⁻⁵	DUCTIVI	ΓΥ, 10 ⁻³	NAL	PIEZOMETER OR	ł
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	-1 =	TYPE	BLOWS/0.30m	SHEAR STRENGTH Cu, kPa		- Q - •	WAT	ER CON	TENT PE		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION	
	ă	CONTINUED FROM PREVIOUS PAGE	+	(111)			В	20 40	60	80	20	40	60	80			_
15		(ML) sandy CLAYEY SILT, some gravel; dark brown, (GLACIAL TILL);		15:05	1 20	SS	50										
		\non-cohesive, wet, compact \((SM) SILTY SAND, fine; dark brown; \non-cohesive, wet, very dense		63.06 15.55	26	SS	78										
16		(SM/GP) gravelly SILTY SAND, medium to coarse, to sandy GRAVEL, fine; dark brown; non-cohesive, wet, very dense	/872	62.45 16.16	5	-	28										
		(ML) sandy CLAYEY SILT, some gravel; dark brown, (GLACIAL TILL); cohesive,		61.61		1	>50										
17		w>PL, hard		17.00		NQ RC	DD										
40		(GLACIAL TILL); non-cohesive, moist, dense to very dense			30	ss	>50										
18					31	ss	>50										
19					32	NQ RC	DD										
	Rotary Drill				33	ss	>50									Bentonite and Cement Grout	
20	∝ z				34	NQ RC	DD										
21																	
					35	NQ RC	DD										
22		(ML) sandy CLAYEY SILT, some gravel; dark brown, (GLACIAL TILL); cohesive,		56.48 22.13		-											
		dark brown, (GLACIAL TILL); cohesive, w>PL			36	NQ RC	DD										
23						RC											
		BOREHOLE CONTINUED ON		54.87 23.74		NQ RC	DD										
24		RECORD OF DRILLHOLE 15-01															
25																	
25																	
- 26																	
27																	
- 28																	
- 29																	
30																	
DF	РТН	SCALE		1		1				1					۱۲	DGGED: RI	_
1:							(Gold	er iates							ECKED: WAM	

End of Drillhole

RECORD OF DRILLHOLE: 15-01 PROJECT: 1522569-16000 SHEET 1 OF 1 LOCATION: N 5027658.3 ;E 451048.9 DRILLING DATE: October 30 & November 2, 2015 DATUM: Geodetic DRILL RIG: CME-55 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Downing Drilling PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PO- Polished
K - Slickensided
SM- Smooth
Ro - Rough
MB- Mechanical Break

BR - Broken Rock
NOTE: For additional abbreviations refer to list of abbreviations & symbols. JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ELEV. DESCRIPTION FRACT. R.Q.D. INDEX PER 0.25 m 86848 45248 RUN HYDRAULIC CONDUCTIVITY K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) DIP w.r.t. CORE AXIS (m) TOTAL SOLID CORE % 0000 8848 BEDROCK SURFACE 54.87 Fresh, laminated, dark grey to black, fine grained, porous, weak SHALE BEDROCK, with thin to medium beds of 23.74 24 limestone C1 25 Rotary Drill NQ Core Bentonite and Cement Grout C2 26

Golder

WL in Screen 'A' at Elev. 76.46 m on Nov. 12, 2015

WL in Screen 'B' at Elev. 76.76 m on Nov. 12, 2015

DEPTH SCALE

35

36

37

38

MIS-RCK 004 1522569-16000.GPJ GAL-MISS.GDT 03/10/16 JEM/JM

RECORD OF BOREHOLE: 15-02

SHEET 1 OF 1

LOCATION: N 5027677.8 ;E 451107.8

BORING DATE: November 3, 2015

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

L L	Ę		SOIL PROFILE	1 -		SA	AMPL	_	DYNAMIC PE RESISTANC	E, BLOV	VS/0.3m)		k, cm/s		IVITY,		NG AF	PIEZOMETER
DEPTH SCALE METRES	BOBING METHOD	2	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	20 SHEAR STR Cu, kPa	40 ENGTH	nat V.	80 + Q - ●		TER C	ONTENT	PERCE	10 ⁻³ L ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	a			STRAI	DEPTH (m)	Ž	1	BLOW	Cu, kPa 20	40	rem V.	⊕ U-O 80	Wp 20		OW.		WI 80	AP	
0			GROUND SURFACE	0,	78.34				20	40	- 60	80	20	, 4	0 (00		
U			FILL/TOPSOIL - (ML) sandy SILT, trace gravel; dark brown to black		0.00 0.25														Flush Mount Protective Casing
			gravel; dark brown to black FILL - (CL) SILTY CLAY, some sand, trace gravel; grey brown, contains silty sand seams, organic matter, and glass;																Silica Sand
1			sand seams, organic matter, and glass; cohesive, w>PL																
																			Bentonite Seal
2		î.																	Silica Sand
	L.	ow Stem)			75.90														Silica Salid
	Power Auger	n. (Holle	(CI/CH) SILTY CLAY to CLAY; grey brown, highly fissured, (Weathered Crust); cohesive, w>PL, very stiff		2.44														
3	Powe	m Dian	Crust); cohesive, w>PL, very stiff																
		200 m																	32 mm Diam. PVC
4																			#10 Slot Screen
			(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, very stiff		74.07 4.27														
			cohesive, w>PL, very stiff																
5																			[2]
		4	End of Borehole	1888	72.8 <u>5</u> 5.49	-													Silica Sand
6			Note:																WL in Screen at Elev. 76.53 m on
			1. Soil stratigraphy inferred from Record of Borehole 15-02A.																Nov. 12, 2015
																			
7																			
8																			
9																			
J																			
10																			
11																			
12																			
13																			
4.4																			
14																			
15																			
DE	PTI	H S	CALE					(old	er <u>iates</u>							L	OGGED: RI
1:	75								V JAS	SOC	iates	3						CH	IECKED: WAM

RECORD OF BOREHOLE: 15-02A

SHEET 1 OF 2 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5027677.8 ;E 451107.8

BORING DATE: November 4 & 5, 2015

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا ررا	된	SOIL PROFILE	SA	SAMPLES		IAMIC PENETF SISTANCE, BLO	DWS/0.3m	,	k	LIC CON , cm/s		I [™] NG	PIEZOMETER			
METRES	BORING METHOD	B=2050515	STRATA PLOT	ELEV.	BER	TYPE	9 91	20 40 EAR STRENGT	60 H nat V	80 + O - ■	10 ⁻⁶	10 ⁻⁵ ER CON	10 ⁻⁴ TENT PE	10 ⁻³ RCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	ORINC	DESCRIPTION	RATA	DEPTH	NUMBER	TYPE	Cu,	kPa	rem V.	+ Q- ● ⊕ U- ○	Wp F		⊖W →W	WI	ADD.	INSTALLATION
	ĕ	and the control of	ST	(m)	_	ì	4	20 40	60	80	20	40	60	80	$+\bar{+}$	
0	\dashv	GROUND SURFACE TOPSOIL/FILL - (ML) sandy SILT, trace	EEE	78.34 0.00			+								+	
		gravel; dark brown to black; \non-cohesive	\\	0.25	1	ss	9									
		FILL - (CL) SILTY CLAY, some sand, trace gravel; grey brown, contains silty			2	SS	,									
1		sand seams, organic matter, and glass; cohesive, w>PL			2	33	<u>'</u>									
					3	ss	3									
2																
				75.90	4	SS 1	1									
		(CI/CH) SILTY CLAY to CLAY; grey brown, highly fissured, (WEATHERED		2.44	5	ss	3									
3		CRUST); cohesive, w>PL, very stiff														
					6	SS	5									
4					7	ss	5									
*		(CI/CH) SII TV CI AV to CI AV: gray.		74.07 4.27	·											
		(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, very stiff			8	ss	3									
5					9	TP F	н			+						
										>96+						
6					10	TP F	н ⊕		+				0			
	=				11	ss	. 0		+							
7	Power Auger 200 mm Diam. (Hollow Stem)						0		+							
	Power Auger Diam. (Hollo						•	'	+							
	Power Diam.															
8	00 mm				12	SS	2									
	2						0		+							
9							€	.	-	-						
		(ML) sandy CLAYEY SILT, some gravel;		69.19 9.15												
		dark brown (GLACIAL TILL); cohesive, w>PL, firm to stiff			13	SS	'									
10																
					14	SS 1	0									
11		(ATI) = = + C(A)/(E)/(C)(E =		67.06 11.28	14	55 1	۱									
		(ML) sandy CLAYEY SILT, some gravel; dark brown, contains silty sand seams, (GLACIAL TILL); cohesive, w>PL, very		11.20												
12		stiff														
					45	00										
				1	15	SS 2	٥									
13				1												
				24.00												
14		(ML/SM) gravelly sandy SILT; dark brown, (GLACIAL TILL); non-cohesive,		64.62 13.72	40											
1-4		moist, very dense			16	SS 1	8									
15	-L		_R134						-+	-	-	- + -	-	$- \downarrow -$	- -	
		CONTINUED NEXT PAGE														
		CALE						Gol Asso							1.00	GED: RI

RECORD OF BOREHOLE: 15-02A

SHEET 2 OF 2

LOCATION: N 5027677.8 ;E 451107.8

BORING DATE: November 4 & 5, 2015

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.30m NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH −OW Wp ⊢ (m) --- CONTINUED FROM PREVIOUS PAGE ---15 (ML/SM) gravelly sandy SILT; dark brown, (GLACIAL TILL); non-cohesive, moist, very dense 17 SS >50 Power Auger m Diam. (Hollow Stem) 16 - presence of cobbles inferred from auger resistance from 15.24 m to 18.37 18 SS >50 17 200 18 59.97 19 SS >50 End of Borehole 19 20 21 22 23 24 25 26 1522569-16000.GPJ GAL-MIS.GDT 03/10/16 JEM/JM 27 28 30 MIS-BHS 001

Golder

DEPTH SCALE 1:75

LOGGED: RI CHECKED: WAM

1:75

RECORD OF BOREHOLE: 15-03

SHEET 1 OF 1

CHECKED: WAM

LOCATION: N 5027617.7 ;E 451091.3

BORING DATE: November 3, 2015

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F - wi (m) GROUND SURFACE 77.70 Flush Mount Protective Casing ASPHALTIC CONCRETE 0.00 FILL - (SW) gravelly SAND, angular; grey, (PAVEMENT STRUCTURE) A GRAB 0.38 (CI/CH) SILTY CLAY to CLAY; grey brown, highly fissured, (WEATHERED CRUST); cohesive, w>PL, stiff to very Silica Sand 7 SS Bentonite Seal 2 SS 10 Silica Sand SS 7 4 SS 5 Power Auger n Diam. (Hollow 3 5 SS 3 32 mm Diam. PVC #10 Slot Screen 73.74 3.96 (CI/CH) SILTY CLAY to CLAY; grey, with black organic mottling; cohesive, w>PL, 6 SS Ф 8.8 SS 9 SS \oplus + \circ Ф 10 SS Silica Sand 70.99 \oplus End of Borehole 6.71 WL in Screen at Elev. 75.66 m on Nov. 12, 2015 10 11 1522569-16000.GPJ GAL-MIS.GDT 03/10/16 JEM/JM 12 13 15 MIS-BHS 001 DEPTH SCALE LOGGED: RI Golder

1:50

RECORD OF BOREHOLE: 18-01

SHEET 1 OF 4

CHECKED: KM

LOCATION: N 5029338.9 ;E 373315.6

BORING DATE: September 12-14, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp ⊢ (m) GROUND SURFACE 77.94 ASPHALTIC CONCRETE 0.08 FILL - (SW/GW) SAND and GRAVEL, angular (PAVEMENT STRUCTURE) SS 31 1 FILL - (SM) SILTY SAND, fine to medium; brown (PAVEMENT STRUCTURE) (CI/CH) SILTY CLAY to CLAY, trace sand; grey brown, slightly to highly fissured, contains silt seams SS 9 (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 12 2 SS SS SS 73.37 4.57 (CI/CL) SILTY CLAY; grey, contains silt seams and shells; cohesive, w>PL, stiff to firm Power Auger n Diam. (Hollow SS 2 Ю 63.5 mm Diam. VSP Pipe 8 \oplus Ф SS \oplus 0 SS 5 69.87 18106596.GPJ GAL-MIS.GDT 11/08/18 ZS (SM/ML) SAND and SILT, some gravel; grey brown to dark grey brown (GLACIAL TILL); non-cohesive, wet, loose to very loose 10 SS 9 11 SS 7 12 SS CONTINUED NEXT PAGE MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: DJG

RECORD OF BOREHOLE: 18-01

SHEET 2 OF 4

LOCATION: N 5029338.9 ;E 373315.6

BORING DATE: September 12-14, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp -(m) --- CONTINUED FROM PREVIOUS PAGE --(SM/ML) SAND and SILT, some gravel; grey brown to dark grey brown (GLACIAL TILL); non-cohesive, wet, 0 МН 12 SS loose to very loose ss wh 13 11 (SM) SILTY SAND, some gravel to gravelly; dark grey brown, contains cobbles and boulders (GLACIAL TILL); 14 ss wh non-cohesive, wet, very loose to very dense 12 ss wh 15 13 0 16 SS 4 МН 14 17 SS 41 18 SS 20 63.5 mm Diam. VSP Pipe 19 SS |>50 8 20 RC DD 16 21 RC DD 22 SS >50 17 RC DD 23 18 18106596.GPJ GAL-MIS.GDT 11/08/18 ZS 19 RC DD 24 20 CONTINUED NEXT PAGE MIS-BHS 001

RECORD OF BOREHOLE: 18-01

SHEET 3 OF 4

LOCATION: N 5029338.9 ;E 373315.6

BORING DATE: September 12-14, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ш	do	SOIL PROFILE	SA	MPL	.ES	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m					HYDRAULIC CONDUCTIVITY, k, cm/s				٥٦				
DEPTH SCALE METRES BORING METHOD					œ		30m		20 40 60 80			10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³					ADDITIONAL LAB. TESTING	PIEZOMETER OR	
PTH	ING I	DESCRIPTION		ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAF	SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○			WATER CONTENT PERCENT					B. TE	STANDPIPE INSTALLATION	
B	BOR		STRATA PLOT	(m)	⊋	_	BLOV					80					WI BO	LA A	
		CONTINUED FROM PREVIOUS PAGE												.0 -2		1]		
- 20 - -		(SM) SILTY SAND, some gravel to																	
-	Power Auger 200 mm Diam. (Hollow Stem)	gravelly; dark grey brown, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet, very loose to very																	
Ė	uger	dense																	
-	Power Auger Diam. (Hollov				25	RC	DD												
— 21 -	M M																		
-	200																		
_		Borehole continued on RECORD OF		56.48 21.46															
_		DRILLHOLE 18-01]
- - 22																			4
]
-																			1
Ē]
- - 23																			
_																			1
-]
-																			1
_ 24]
Ė																			=
-																			1
25 - -]
-																			_
_]
E																			1
26 -																			
I.																			
																			1
]
— 27 -																			-
_]
																			_
Ė																			=
28 																			=
F																			
E]
-																			
- 29																			
ţ																			
Ė]
F																			
- 30																			-
					<u></u>														
DE	PTH:	SCALE							GO	L[ÞΕ	R						LC	DGGED: DJG

MIS-BHS 001 18106596.GPJ GAL-MIS.GDT 11/08/18 ZS

RECORD OF DRILLHOLE: 18-01

SHEET 4 OF 4

LOCATION: N 5029338.9 ;E 373315.6 DRILLING DATE: September 12-14, 2018 DATUM: Geodetic DRILL RIG: D-50 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: Forage Grenville BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished BR - Broken Rock K - Slickensided SM- Smooth Ro- Rough MB- Mechanical Break symbols. JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ģ ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.25 m DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. (m) TOTAL SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 8848 BEDROCK SURFACE Fresh, laminated, dark grey to black, fine grained, porous, weak SHALE, with thin to medium beds of limestone 21.46 22 80 23 2 24 Rotary Drill 63.5 mm Diam. VSP Pipe 25 26 27 End of Drillhole 28 29 MIS-RCK 004 18106596.GPJ GAL-MISS.GDT 11/08/18 ZS 30 31

CHECKED: KM

MIS-BHS 001

1:50

RECORD OF BOREHOLE: 18-02

SHEET 1 OF 3

CHECKED: KM

LOCATION: N 5029362.4 ;E 373338.3

BORING DATE: September 17, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp ⊢ (m) GROUND SURFACE 78.20 TOPSOIL - (SM) SILTY SAND; dark 0.00 77.97 brown; moist 0.23 SS 11 FILL - (CL) sandy SILTY CLAY, some gravel; grey brown, contains organic matter; cohesive, moist SS 6 3 SS 11 (CI/CH) SILTY CLAY to CLAY; grey brown, highly fissured (WEATHERED CRUST); cohesive, w~PL, very stiff SS 10 0 5 SS 10 6 SS 5 SS 3 0 (CI/CH) SILTY CLAY to CLAY; grey, with black mottling; cohesive, w >PL, very >96+ 8 >96-8 SS 2 0 (CI/CH) SILTY CLAY to CLAY; grey, with black mottling; cohesive, w>PL, stiff \oplus (CI/CL) SILTY CLAY to CLAY; grey, contains clayey silt seams/layers; cohesive, w>PL, very stiff SS 18106596.GPJ GAL-MIS.GDT 11/08/18 ZS >96->96+ (ML) sandy SILT, low plasticity fines, some gravel; dark grey to black, shaley (GLACIAL TILL); wet, compact SS 10 12 11 SS 10 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: PAH

GOLDER

RECORD OF BOREHOLE: 18-02

SHEET 2 OF 3

LOCATION: N 5029362.4 ;E 373338.3

BORING DATE: September 17, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 10⁻⁵ NUMBER STANDPIPE INSTALLATION ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---10 (ML) sandy SILT, low plasticity fines, SS 11 10 some gravel; dark grey to black, shaley (GLACIAL TILL); wet, compact 12 SS 12 11 13 SS 10 (SM) gravelly SILTY SAND to SILTY SAND, some gravel; grey, contains cobbles and sandy seams/layers (GLACIAL TILL); non-cohesive, wet, compact to very dense 12 SS 24 200 13 SS 47 15 16 SS 90 14 17 SS >50 Borehole continued on RECORD OF DRILLHOLE 18-02 15 16 17 18 18106596.GPJ GAL-MIS.GDT 11/08/18 ZS 19 20 MIS-BHS 001

LOCATION: N 5029362.4 ;E 373338.3

AZIMUTH: ---

INCLINATION: -90°

MIS-RCK 004 18106596.GPJ GAL-MISS.GDT 11/08/18 ZS

1:50

RECORD OF DRILLHOLE: 18-02

DRILLING DATE: September 17, 2018

DRILL RIG: D-50

DRILLING CONTRACTOR: Forage Grenville

BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished BR - Broken Rock K - Slickensided SM- Smooth Ro- Rough MB- Mechanical Break symbols. JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG ģ ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.25 m DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. (m) TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 0000 BEDROCK SURFACE 63.56 Weathered SHALE 100 15 100 2 62.70 15.50 Fresh, laminated, dark grey to black, fine grained, porous, weak SHALE, with thin to medium beds of limestone 100 16 Rotary Drill 100 17 100 5 60.18 18.02 18 End of Drillhole 19 20 21 22 23 24 DEPTH SCALE LOGGED: PAH

GOLDER

SHEET 3 OF 3

DATUM: Geodetic

RECORD OF BOREHOLE: 18-03

SHEET 1 OF 3

LOCATION: N 5029310.9 ;E 373340.2

BORING DATE: September 10-11, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

S	ТНОГ	SOIL PROFILE	<u> </u>	s	AMPL	_	RESISTAI		DWS/0.3	3m (*	c, cm/s	DUCTIVIT		ING ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	.v. H	씶	BLOWS/0.30m	20 SHEAR S	40 TRENGT	60 H nat	80 V. + Q - ●	10 ⁻⁶		10 ⁻⁴ TENT PEF	10 ⁻³ RCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
ΪĀ	ORIN	DESCRIPTION	TRATA (m		TYPE	OWS	Cu, kPa		rem	V. + Q - ● V. ⊕ U - C	Wpi	TER CON		→ WI	ADC LAB.	INSTALLATION
	m	ODOLIND OLIDE COE	ST ST	<u>'</u>		ᆸ	20	40	60	80	20		60	80	++	
0		GROUND SURFACE ASPHALTIC CONCRETE	77		+	-		\perp			+	_			++	
		ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, angular gravel; grey brown (PAVEMENT STRUCTURE)	′∭ °	.05												
			77	.37	SS	24										
		(CI/CH) SILTY CLAY to CLAY, trace	'IIII "	.45	-											
		sand; grey brown, slightly fissured (WEATHERED CRUST); cohesive,			1											
1		w>PL, very stiff to stiff		2	SS	10										
2				3	SS	9										
2					-											
				4	SS	7										
3				-												
				5	SS	5										
4																
				6	SS	4										
	Stem	(CI/CH) SILTY CLAY to CLAY; grey with	73	.25	-											
	Power Auger 200 mm Diam. (Hollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey with black mottling, contains silt seams; cohesive, w>PL, stiff		7	SS	2										
5	Power Auger Diam. (Hollov															
	JA ME															
	200						0		+							
							Φ			+						
6																
							Φ		+							
				8	SS	1										
7							0		+							
							⊕		+							
			70	.20												
		(CL/CI/ML) SILTY CLAY and SILT; grey, contains silt layers; cohesive, w <pl, stiff<="" td=""><td></td><td>.62</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		.62												
8		, ,		9	SS	4										
					-											
		(01411) 0115	69	.32						-	<u> </u>					
		(SM/ML) SAND and SILT, gravelly to some gravel; dark grey brown (GLACIAL TILL); non-cohesive, wet, loose to	8	.50												
		TILL); non-cohesive, wet, loose to compact		10	SS	9					0				MH	
9		· .														
				11	SS	10										
10	_L	<u> </u>	_1994 _	12	_ss	10	- + -		-+-		+	+-		-+	- -	
		CONTINUED NEXT PAGE														
DE	PTH S	SCALE			1		G	ΟI	D	ΕR					LOC	GGED: DJG

RECORD OF BOREHOLE: 18-03

SHEET 2 OF 3

LOCATION: N 5029310.9 ;E 373340.2

BORING DATE: September 10-11, 2018

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---10 (SM/ML) SAND and SILT, gravelly to some gravel; dark grey brown (GLACIAL TILL); non-cohesive, wet, loose to 12 SS 10 compact SS 8 13 11 SS 10 14 12 SS 15 15 13 0 16 SS 11 МН Power Auger 14 17 SS 23 (SM) gravelly SILTY SAND; dark grey brown, contains sandy silt seams, cobbles and weathered shale fragments SS 59 18 (GLACIAL TILL); non-cohesive, wet, 15 very dense SS 85 19 16 SS >50 20 21 SS >50 17 22 SS >50 Borehole continued on RECORD OF DRILLHOLE 18-03 18 18106596.GPJ GAL-MIS.GDT 11/08/18 ZS 19 20 MIS-BHS 001 LOGGED: DJG

GOLDER

INCLINATION: -90°

RECORD OF DRILLHOLE: 18-03

SHEET 3 OF 3

DATUM: Geodetic

LOCATION: N 5029310.9 ;E 373340.2

AZIMUTH: ---

DRILLING DATE: September 10-11, 2018

DRILL RIG: D-50

DRILLING CONTRACTOR: Forage Grenville

DEPTH SCALE METRES	RECORD	DESCRIPTION	<u> </u>		ELEV.	No.	COLOUR % RETURN	C	1 - C	oint ault shear ein onjug		E F	BD- FO- CO- OR- CL-	Bedo Folia Cont Ortho	ling tion		ST - S IR - Ir	lanar Curved Indulatin Stepped regular	ng	PO- Po K - SI SM- Sr Ro - Ro MB- M	ickens	sided		NO abb	: - Br TE: Fo reviation bbreviation bols.	r addit ons ref ations	ional er to li &	st	
DEPTH	DRILLING RECORD	+	GO O I OI DAMAN	SYMBOL	()	5	HSU.	TOTA CORE		SOLID ORE %	9	Q.D. %	FRA IND PE 0.25 60:25	CT. EX R m	DIP w COR AXI:	v.r.t. RE IS	DISC	ONTINU PE AND SI DESCRIP	JITY D.	ATA	Jcon	Jr Ja	HYI CONI K,	DRAI DUC , cm/s	ULIC TIVITO sec	Dian Point In: (M	netral Load dex Pa)	RMC -Q' AVG.	
18	Rotary Drill	BEDROCK SURFACE Slightly weathered to fresh, lar dark grey to black, fine grained weak SHALE, with thin calcite - Broken core from 18.12 m to	- 1		59.89 17.93	1	08																						
20	Rota	ON THE PROPERTY OF THE PROPERT				2	100																						
21		End of Drillhole			56.82 21.00																								
23																													
24																													
25																													
27																													
DEI		SCALE								III G	 	Ш С	L	. I	Ш Э	E	R												DGGED: DJG ECKED: KM

RECORD OF BOREHOLE: 19-01

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: See Site Plan

BORING DATE: March 15, 2019

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

4	2	2	SOIL PROFILE			SA	MPL		HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ⊕	HYDRAULIC CONDUCTIVITY, k, cm/s	O PIEZOMETER
DEPTH SCALE METRES	CIAIGO	BORING MEI HOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detected	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp I W W 1 W 20 40 60 80	PIEZOMETER OR STANDPIPE INSTALLATION
- 0			GROUND SURFACE	0,	78.35				20 40 60 80	20 40 60 80	
			ASPHALTIC CONCRETE FILL - (SW) gravelly SAND; brown		77.92 0.43	1	ss	- (•		Silica Sand
1			(CI/CH) SILTY CLAY to CLAY; brown		77.31 1.04 77.13	2	ss	- 6	•		Bentonite Seal
	GeoProbe	Direct Push	grey; cohesive, w~PL, stiff (CI/CH) SILTY CLAY to CLAY; grey; cohesive, w~PL, very stiff		1.22	3	SS	- 6	₽		Silica Sand
2						4	ss	- (⊕		Well Screen
. 3					75.35	5	SS	- 6	•		
			End of Borehole		3.00						
4											
5											
6											
7											
. 8											
9											
10											
DE	PT	H S	CALE	1	ı				GOLDER		LOGGED: RM

RECORD OF BOREHOLE: 19-02

SHEET 1 OF 1

BORING DATE: March 15, 2019 LOCATION: See Site Plan DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا ا			SOIL PROFILE	1.		SA	MPL		HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected	HYDRAULIC CONDUCTIVITY, k, cm/s	NG NG	PIEZOMETER
METRES	1	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	BER	TYPE	BLOWS/0.30m	ND = Not Detected 20 40 60 80 HEADSPACE COMBUSTIBLE	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ H H H H H H H H H H H H H H H H H H H	ADDITIONAL LAB. TESTING	OR STANDPIPE
] []			DESCRIPTION	RAT/	DEPTH (m)	NUMBER	Ξ	-ows	VAPOUR CONCENTRATIONS [PPM] ☐ ND = Not Detected	Wp	ADC LAB.	INSTALLATION
	<u> </u>	<u> </u>	GROUND SURFACE	SI				B	20 40 60 80	20 40 60 80		
0	\vdash	Н	ASPHALTIC CONCRETE		78.57 0.00							
			FILL - (SW) gravelly SAND; brown		0.15 77.98	1	SS	- 6				Silica Sand
			(CI-CH) SILTY CLAY to CLAY; brown grey; cohesive, w~PL, stiff		0.59	2	ss	- 6				Postonito Soal
1		£	(CLCU) SILTY CLAV to CLAV: gravi		77.35 1.22							Bentonite Seal Silica Sand
	GeoProb	Direct Push	(CI-CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, very stiff		76.75	3	ss	- €	⊕			<u>0</u> 0.20
2			(CI-CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, stiff		1.82	4	ss	- 6	₽			Well Screen
					75.67	5	ss	- 6	⊕			(A) (A) (A) (A)
3			End of Borehole	T V V V	2.90							<u> </u>
4												
٠												
5												
6												
7												
8												
9												
10												
	рт	Ής	CALE	1				Ţ.	GOLDER		1.	DGGED: RM
	50		<u> </u>						GOLDER			ECKED: SC

RECORD OF BOREHOLE: 19-03

SHEET 1 OF 1

BORING DATE: March 15, 2019 LOCATION: See Site Plan DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SCALE (ES	ETHOD	SOIL PROFILE	TO.			MPL		HEADSPACE OR CONCENTRATIOND = Not Detected 20 40	GANIC ' NS [PPI d 60			HYDRAULI k, (C CONDI cm/s 10 ⁻⁵	JCTIVIT	ΓΥ, 10 ⁻³	ONAL	PIEZOME OR	
DEP IN SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE CC VAPOUR CONCE ND = Not Detecte 20 40	MBUST ENTRAT d	BLE ONS [PF			R CONTE		RCENT WI	170	STANDP INSTALLA	
0		GROUND SURFACE ASPHALTIC CONCRETE	0)	78.13 77.95				20 40	60	80		20	40	60	80			
		FILL - (SW) gravelly SAND; brown		0.18		ss	- 1	₽										
1		(CI-CH) SILTY CLAY to CLAY, trace sand; brown grey; cohesive, w~PL, stiff		77.57 0.56	2	ss	_ 6	₽									Silica Sand	<u> </u>
	GeoProbe	(CI-CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, stiff		76.91 1.22	3	ss	- 6	Ð									Bentonite Seal	
2	Ge	Direction			4	ss	- 6	Ð										
3					5	ss	- 6	Ð									Well Screen	
		End of Borehole		74.83 3.30		-												Œ
4																		
5																		
6																		
7																		
•																		
8																		
9																		
10																		
DE	рт⊔	SCALE			<u> </u>		└ !										LOGGED: RM	
1:						<	1	GO	LD	Ė	K						HECKED: SC	

May 2019 19118198

APPENDIX B

Laboratory Reports of Analysis

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Shihan Chowdhury; Keith Holmes

PROJECT: Elmvale Acres (Riocan) Phase II ESA

AGAT WORK ORDER: 19Z442376

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Mar 11, 2019

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 12

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 19Z442376

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLED BY:

			O. Reg. 1	53(511) - VOCs (Water)
DATE RECEIVED: 2019-03-01				DATE REPORTED: 2019-03-11
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	Trip Spike Water 2019-02-28 9934705	
Dichlorodifluoromethane	%		111	
Vinyl Chloride	%		107	
Bromomethane	%		86	
Trichlorofluoromethane	%		103	
Acetone	%		94	
1,1-Dichloroethylene	%		83	
Methylene Chloride	%		103	
trans- 1,2-Dichloroethylene	%		79	
Methyl tert-butyl ether	%		105	
1,1-Dichloroethane	%		94	
Methyl Ethyl Ketone	%		102	
cis- 1,2-Dichloroethylene	%		83	
Chloroform	%		81	
1,2-Dichloroethane	%		87	
1,1,1-Trichloroethane	%		80	
Carbon Tetrachloride	%		80	
Benzene	%		87	
1,2-Dichloropropane	%		78	
Trichloroethylene	%		89	
Bromodichloromethane	%		85	
Methyl Isobutyl Ketone	%		94	
1,1,2-Trichloroethane	%		103	
Toluene	%		107	
Dibromochloromethane	%		85	
Ethylene Dibromide	%		95	
Tetrachloroethylene	%		104	
1,1,1,2-Tetrachloroethane	%		81	
Chlorobenzene	%		106	
Ethylbenzene	%		105	
m & p-Xylene	%		106	

AGAT WORK ORDER: 19Z442376

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLING SITE: SAMPLED BY:

			O. Reg.	153(511) - VOCs (Water)
DATE RECEIVED: 2019-03-01				DATE REPORTED: 2019-03-11
Parameter	SA Unit	MPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	Trip Spike Water 2019-02-28 9934705	
Bromoform	%		76	
Styrene	%		101	
1,1,2,2-Tetrachloroethane	%		101	
o-Xylene	%		107	
1,3-Dichlorobenzene	%		102	
1,4-Dichlorobenzene	%		118	
1,2-Dichlorobenzene	%		118	
1,3-Dichloropropene	%		84	
Xylene Mixture	%		107	
n-Hexane	%		110	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	101	
4-Bromofluorobenzene	% Recovery	50-140	108	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9934705 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 19Z442376

O Reg. 153(511) - VOCs (Water)

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLING SITE: SAMPLED BY:

 	1000 (11410.)	

DATE RECEIVED: 2019-03-01							DATE REPORTED: 2019-03-11
		SAMPLE DESCRI	IPTION:	BH15-3	DUP-1	Trip Blank	
		SAMPLE	E TYPE:	Water	Water	Water	
		DATE SAM	MPLED:	2019-02-28	2019-02-28	2019-02-28	
Parameter	Unit	G/S	RDL	9934690	9934703	9934704	
Dichlorodifluoromethane	μg/L	4400	0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	< 0.40	<0.40	< 0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	< 0.30	< 0.30	
Methylene Chloride	μg/L	610	0.30	< 0.30	< 0.30	< 0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	< 0.30	< 0.30	< 0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	< 0.30	< 0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	

Certified By:

NPoprukolof

AGAT WORK ORDER: 19Z442376

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLED BY:

O. Reg. 153(511) -	· vocs (water)	
--------------------	----------------	--

DATE RECEIVED: 2019-03-01							DATE REPORTED: 2019-03-11
	S	AMPLE DES	CRIPTION:	BH15-3	DUP-1	Trip Blank	
		SAMI	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	2019-02-28	2019-02-28	2019-02-28	
Parameter	Unit	G/S	RDL	9934690	9934703	9934704	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	< 0.30	< 0.30	< 0.30	
Xylene Mixture	μg/L	4200	0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	% Recovery	50-1	40	100	103	103	
4-Bromofluorobenzene	% Recovery	50-1	40	94	93	92	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9934690-9934704 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 19Z442376

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLED BY:

•	• • •	;	J	,	 ٠,	• • • • • • • • • • • • • • • • • • • •	٠,	 ,					

DATE RECEIVED: 2019-03-01						DATE REPORTED: 2019-03-11
	;	SAMPLE DESC	CRIPTION:	BH15-3	DUP-1	
		SAME	PLE TYPE:	Water	Water	
		DATE S	AMPLED:	2019-02-28	2019-02-28	
Parameter	Unit	G/S	RDL	9934690	9934703	
Sodium	μg/L	2300000	25000	2900000	2850000	
Chloride	μg/L	2300000	20000	6210000	6390000	
рН	pH Units		NA	7.86	7.86	

O. Reg. 153(511) - ORPs (Water)

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9934690-9934703 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 19Z442376

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9934690	BH15-3	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	µg/L	2300000	6210000
9934690	BH15-3	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Sodium	μg/L	2300000	2900000
9934703	DUP-1	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	6390000
9934703	DUP-1	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Sodium	μg/L	2300000	2850000

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: Elmvale Acres (Riocan) Phase II ESA

SAMPLING SITE:

SAMPLED BY:

AGAT WORK ORDER: 19Z442376

ATTENTION TO: Shihan Chowdhury; Keith Holmes

				ce Org	gain	.	, 0	. •							
RPT Date: Mar 11, 2019			С	UPLICATI			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery		eptable mits
TANAMETER	Buton	ld	Dup " !	Bup #2	5		Value	Lower	Upper	110001019	Lower	Upper	necovery	Lower	Upper
O. Reg. 153(511) - VOCs (Water)						•		•			•				
Dichlorodifluoromethane	9940053		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	106%	50%	140%	103%	50%	140%
Vinyl Chloride	9940053		< 0.17	< 0.17	NA	< 0.17	102%	50%	140%	111%	50%	140%	100%	50%	140%
Bromomethane	9940053		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	93%	50%	140%	83%	50%	140%
Trichlorofluoromethane	9940053		< 0.40	< 0.40	NA	< 0.40	102%	50%	140%	104%	50%	140%	93%	50%	140%
Acetone	9940053		< 1.0	< 1.0	NA	< 1.0	112%	50%	140%	90%	50%	140%	94%	50%	140%
1,1-Dichloroethylene	9940053		< 0.30	< 0.30	NA	< 0.30	109%	50%	140%	76%	60%	130%	78%	50%	140%
Methylene Chloride	9940053		< 0.30	< 0.30	NA	< 0.30	112%	50%	140%	107%	60%	130%	105%	50%	140%
trans- 1,2-Dichloroethylene	9940053		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	80%	60%	130%	80%	50%	140%
Methyl tert-butyl ether	9940053		< 0.20	< 0.20	NA	< 0.20	101%	50%	140%	112%	60%	130%	107%	50%	140%
1,1-Dichloroethane	9940053		< 0.30	< 0.30	NA	< 0.30	84%	50%	140%	76%	60%	130%	76%	50%	140%
Methyl Ethyl Ketone	9940053		< 1.0	< 1.0	NA	< 1.0	108%	50%	140%	110%	50%	140%	94%	50%	140%
cis- 1,2-Dichloroethylene	9940053		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	81%	60%	130%	88%	50%	140%
Chloroform	9940053		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	77%	60%	130%	84%	50%	140%
1,2-Dichloroethane	9940053		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	80%	60%	130%	93%	50%	140%
1,1,1-Trichloroethane	9940053		< 0.30	< 0.30	NA	< 0.30	77%	50%	140%	76%	60%	130%	75%	50%	140%
Carbon Tetrachloride	9940053		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	76%	60%	130%	79%	50%	140%
Benzene	9940053		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	85%	60%	130%	90%	50%	140%
1,2-Dichloropropane	9940053		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	88%	60%	130%	80%	50%	140%
Trichloroethylene	9940053		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	82%	60%	130%	93%	50%	140%
Bromodichloromethane	9940053		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	91%	60%	130%	78%	50%	140%
Methyl Isobutyl Ketone	9940053		< 1.0	< 1.0	NA	< 1.0	91%	50%	140%	98%	50%	140%	96%	50%	140%
1,1,2-Trichloroethane	9940053		< 0.20	< 0.20	NA	< 0.20	92%	50%	140%	99%	60%	130%	106%	50%	140%
Toluene	9940053		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	109%	60%	130%	113%	50%	140%
Dibromochloromethane	9940053		< 0.10	< 0.10	NA	< 0.10	77%	50%	140%	80%	60%	130%	84%	50%	140%
Ethylene Dibromide	9940053		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	92%	60%	130%	100%	50%	140%
Tetrachloroethylene	9940053		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	108%	60%	130%	111%	50%	140%
1,1,1,2-Tetrachloroethane	9940053		< 0.10	< 0.10	NA	< 0.10	97%	50%	140%	84%	60%	130%	85%	50%	140%
Chlorobenzene	9940053		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	106%	60%	130%	113%	50%	140%
Ethylbenzene	9940053		< 0.10	< 0.10	NA	< 0.10	93%	50%	140%	110%	60%	130%	111%	50%	140%
m & p-Xylene	9940053		< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	102%	60%	130%	113%	50%	140%
Bromoform	9940053		< 0.10	< 0.10	NA	< 0.10	78%	50%	140%	82%	60%	130%	83%	50%	140%
Styrene	9940053		< 0.10	< 0.10	NA	< 0.10	83%	50%	140%	102%	60%	130%	107%	50%	
1,1,2,2-Tetrachloroethane	9940053		< 0.10	< 0.10	NA	< 0.10	84%	50%	140%	107%	60%	130%	102%	50%	140%
o-Xylene	9940053		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	108%	60%	130%	114%	50%	140%
1,3-Dichlorobenzene	9940053		< 0.10	< 0.10	NA	< 0.10	89%		140%	107%		130%	111%		140%
1,4-Dichlorobenzene	9940053		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	82%	60%	130%	83%	50%	140%
1,2-Dichlorobenzene	9940053		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	100%		130%	111%	50%	140%
1,3-Dichloropropene	9940053		< 0.30	< 0.30	NA	< 0.30	88%	50%	140%	87%	60%	130%	80%	50%	140%
n-Hexane	9940053		< 0.20	< 0.20	NA	< 0.20	104%		140%	97%		130%	116%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 19Z442376

PROJECT: Elmvale Acres (Riocan) Phase II ESA ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLING SITE: SAMPLED BY:

	7	race	Orga	anics	Ana	lysis	(Cor	ntin	ued	l)					
RPT Date: Mar 11, 2019			С	UPLICAT	Έ		REFEREN	NCE MAT	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptable Limits		Recovery		ptable nits
		ld		.,			Value	Lower	Upper	,	Lower	Upper		Lower	Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury; Keith Holmes

AGAT WORK ORDER: 19Z442376

SAMPLING SITE:

SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Mar 11, 2019		DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Lin	ptable nits
. /		ld					Value	Lower	Upper	,	Lower Upper		,		Upper
O. Reg. 153(511) - ORPs (Water)															
Sodium	9940871		730000	705000	3.5%	< 500	98%	70%	130%	98%	80%	120%	84%	70%	130%
Chloride	9939844		11900	11900	0.0%	< 100	94%	70%	130%	100%	70%	130%	105%	70%	130%
рН	9934690 99	934690	7.86	7.85	0.1%	NA	99%	90%	110%						

Comments: NA signifies Not Applicable.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: Elmvale Acres (Riocan) Phase II ESA

SAMPLING SITE:

ATTENTION TO: Shihan Chowdhury; Keith Holmes

AGAT WORK ORDER: 19Z442376

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Water Analysis			
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

webearth.agatlabs.com

Laboratory Use Only

Work Order #: 197442376

								webearth	agatlab	s.com	+5	Co	oler Q	uantit	y:	(OV	e		~	1 0	
Chain of Custody Recor	d If this is a	a Drinking Wa	ter sample, p	lease us	e Drinklng Water Chain of Custody Form	potable	water c	onsumed by hur	ians)			Ar.	rival Te	mper	ature	es:	5	51	1/2	712	0
Report Information: Company: Company: Children Charles	OCIATES	S LTD	į.		Regulatory Requirements:	<u> </u>	No R	egulatory F	equir	eme	nt		stody otes:_		ntact:		☐Yes		UN □N		□N/A
contact: Shinan Chow Address: 1931 Roberts	son Rd				Regulation 153/04 Sew	er Use		Regulat	on 558			Tu	rnar	ound	l Tir	me (TAT)	Req	uired	:	
OHawa, Ont 613-592-960	١,				Ind/Com			CCME				Re	gulaı	TAT		è	5 5 t	o 7 Bu:	siness D)ays	
Phone: 613-542-9600 Reports to be sent to:	Fax:	Saralala	- 0000		Agriculture	rm		Prov. Wa				Rus	sh TA	T (Rust	Surch	narges A	(pply)				
1. Email: Shihan_chow 2. Email: Keith_holmo	odnury e	golde	1 CUTY	' —	Soil Texture (Check One) Region	ate One		Other						Busir ays	ess		□ 2 E Da	Busines iys	3S [□ Next Day	Business
2. Email: Keth_noime	se gula	er cor	n	=	☐Fine ☐MISA		Į,		ate One	_			C	R Dat	e Red	quired	l (Rush	ı Surch	arges N	/lay Apply	/):
Project Information:	5 (Rìocal	n) Phas	eTF	sall	Is this submission for a Record of Site Condition?			port Guide					9	Plea	se pr	rovide	prior	notifica	ation for	r rush TA	T
Project: Elmyale Acres Site Location: 910 St. Laurer	of Blud	7)171013	دل کر ت		¥ Yes □ No			Yes												utory holi	-
Sampled By: Rounelle Mohr	æw	911819		- -			T	0. Reg 153			_		ror Sa	ime D	ay a	naiys		ase col	ntact yo	our AGAT	Tell
AGAT Quote #: Please note: If quotation number of	PO: is not provided, client w	ill be billed full pric	e for analysis.		Sample Matrix Legend Biota	Hg, CrVI		l se	Ü								PCBs				
Invoice Information: Company: Contact: Address: Email:		Bill To Same:	Yes X No		GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg,	Metals and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (incl. Hydride Metals □ 153 Metals (incl. Hydride Metals □ 154 Metals (incl. Hydrides) □ Cre*□ DE □ PCO□ He		Regulation/Custom Metals	Nutrients: ☐ TP ☐ NH ₃ ☐ TKN ☐ NO ₃ ☐ NO ₂ ☐ NO ₃ +NO ₂	S: X VOC BTEX DTHM	1 - F4	The state of the s	Total Aroclors	ıΨ	TCLP:□M&I □ VOCs □ABNs □ B(a)P		codium, Na		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sampl Matri		Y/N	Metals	☐ All Met ☐ Hydride ☐ RCFs: ☐	Full Metals	Regulat	Nutrien No.	Volatiles:	PHCs F1 - F4	ABNS	PCBs: Total	Organo	TCLP:	Sewer Use	8		
BH 15-3	28/02/19		5	Gu		N		X	T			X				N.			X		
DIP-1	28/02/19	200	5	qu)	N	8	×	10			X						2	X		
Trip blank Trip spike												X									
11.7																H					
									81											N III	
							9							-	+	+	1.0	-			
																					in l
															V 3						
Samples Relinquished By (Print Name and Sign): Rochelle Mothew Samples Relinquished By (Print Name and Sign):	alten	Ol / C	3/19	12	46 Sampler Received by (Print Name and Sign):	,92	De	Sul	> 10)-(13-	01	Tier	46	S	2			1		
Samples Religious and Style Print Name and Style	10	7-03-	-01	lohi	Samples Received By (Print Name and Start):	7_			9/	Date	1/2		Tim	e / /	21			Page_		of	
Services relinquistred by (1 thre reline diversity)		J-51(0.	140		acting as the state of the stat											N	۷°: T	3 1	345	16	V

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Shihan Chowdhury

PROJECT: 19118198

AGAT WORK ORDER: 19Z447875

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Mar 26, 2019

PAGES (INCLUDING COVER): 19

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES
VERSION 2: Revised report with EC and SAR results, issued on March 28, 2019.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE: 1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

O, O O												
				O. Reg	. 153(511) -	EC/SAR (So	pil)					
DATE RECEIVED: 2019-03-18							DATE REPORTED: 2019-03-26					
	S	AMPLE DES	CRIPTION:	DUP-1	19-02 SA4	19-03 SA5						
		SAM	PLE TYPE:	Soil	Soil	Soil						
		DATE	SAMPLED:	2019-03-15	2019-03-15	2019-03-15						
Parameter	Unit	G/S	RDL	9977624	9977627	9977630						
Electrical Conductivity	mS/cm		0.005	1.32	1.21	2.81						
Sodium Adsorption Ratio	NA		NA	0.986	4.20	1.72						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9977624-9977630 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil).

Analysis performed at AGAT Toronto (unless marked by *)

manjot Bhells Amanjor Bhels CHEMIST

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

			Ο.	Reg. 153(5	511) - Metal:	s & Inorgan	ics (Soil)
DATE RECEIVED: 2019-03-18							DATE REPORTED: 2019-03-26
Parameter	Unit	_	CRIPTION: PLE TYPE: SAMPLED: RDL	19-01 SA1 Soil 2019-03-15 9977621	19-02 SA1 Soil 2019-03-15 9977625	19-03 SA1 Soil 2019-03-15 9977628	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	3	4	3	
Barium	μg/g	390	2	328	157	176	
Beryllium	μg/g	4	0.5	0.8	<0.5	<0.5	
Boron	μg/g	120	5	<5	8	7	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.15	0.30	0.43	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	2	87	13	50	
Cobalt	μg/g	22	0.5	18.3	5.3	10.3	
Copper	μg/g	140	1	43	7	22	
Lead	μg/g	120	1	12	9	5	
Molybdenum	μg/g	6.9	0.5	2.4	2.4	<0.5	
Nickel	μg/g	100	1	50	16	32	
Selenium	μg/g	2.4	0.4	<0.4	<0.4	<0.4	
Silver	μg/g	20	0.2	<0.2	<0.2	<0.2	
Thallium	μg/g	1	0.4	0.4	<0.4	<0.4	
Uranium	μg/g	23	0.5	0.9	<0.5	<0.5	
Vanadium	μg/g	86	1	78	16	43	
Zinc	μg/g	340	5	97	18	51	
Chromium VI	μg/g	8	0.2	<0.2	<0.2	<0.2	
Cyanide	μg/g	0.051	0.040	< 0.040	<0.040	< 0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	
Electrical Conductivity	mS/cm	0.7	0.005	3.55	0.769	4.01	
Sodium Adsorption Ratio	NA	5	NA	7.59	2.14	5.11	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.27	7.53	7.71	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9977621-9977628 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2019-03-18 DATE REPORTED: 2019-03-26

SAMPLE DESCRIPTION: 19-03 SA5
SAMPLE TYPE: Soil
DATE SAMPLED: 2019-03-15

 Parameter
 Unit
 G / S
 RDL
 9977630

 pH, 2:1 CaCl2 Extraction
 pH Units
 NA
 7.12

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9977630 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhells AMANJOT BHELA O CHEMIST

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE: 1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

AMILENG STE. 1910 St. Laurent Bivd.											
				O. Reg. 15	53(511) - OC	Pesticides	(Soil)				
DATE RECEIVED: 2019-03-18								DATE REPORTED: 2019-03-26			
		SAMPLE DES	CRIPTION:	19-01 SA3	DUP-1	19-02 SA2	19-03 SA2				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2019-03-15	2019-03-15	2019-03-15	2019-03-15				
Parameter	Unit	G/S	RDL	9977623	9977624	9977626	9977629				
Hexachloroethane	μg/g	0.089	0.01	<0.01	<0.01	<0.01	<0.01				
Gamma-Hexachlorocyclohexane	μg/g	0.056	0.005	< 0.005	< 0.005	< 0.005	< 0.005				
Heptachlor	μg/g	0.15	0.005	<0.005	< 0.005	< 0.005	< 0.005				
Aldrin	μg/g	0.05	0.005	<0.005	< 0.005	<0.005	< 0.005				
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	< 0.005				
Endosulfan	μg/g	0.04	0.005	<0.005	< 0.005	<0.005	< 0.005				
Chlordane	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007				
DDE	μg/g	0.26	0.007	<0.007	<0.007	<0.007	<0.007				
DDD	μg/g	3.3	0.007	<0.007	<0.007	<0.007	< 0.007				
DDT	μg/g	1.4	0.007	< 0.007	< 0.007	< 0.007	<0.007				
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005				
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005				
Methoxychlor	μg/g	0.13	0.005	<0.005	< 0.005	< 0.005	< 0.005				
Hexachlorobenzene	μg/g	0.52	0.005	<0.005	<0.005	< 0.005	<0.005				
Hexachlorobutadiene	μg/g	0.012	0.01	<0.01	<0.01	<0.01	<0.01				
Moisture Content	%		0.1	17.8	27.3	27.9	26.6				
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-	140	93	67	92	64				
Decachlorobiphenyl	%	60-	130	102	89	112	95				

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9977623-9977629 Results are based on the dry weight of the soil.

DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: 1910 St. Laurent Blvd.

Certificate of Analysis

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

				O. Re	g. 153(511)	- PAHs (Soi	1)
DATE RECEIVED: 2019-03-18							DATE REPORTED: 2019-03-26
		SAMPLE DESC	CRIPTION:	19-01 SA1	19-02 SA1	19-03 SA1	
		SAME	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2019-03-15	2019-03-15	2019-03-15	
Parameter	Unit	G/S	RDL	9977621	9977625	9977628	
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.15	0.05	<0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	7.9	0.05	< 0.05	< 0.05	< 0.05	
Fluorene	μg/g	62	0.05	< 0.05	< 0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	<0.05	< 0.05	<0.05	
Anthracene	μg/g	0.67	0.05	<0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.69	0.05	<0.05	< 0.05	<0.05	
Pyrene	μg/g	78	0.05	<0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.5	0.05	<0.05	< 0.05	<0.05	
Chrysene	μg/g	7	0.05	<0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	<0.05	< 0.05	<0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	<0.05	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	< 0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	< 0.05	< 0.05	
2-and 1-methyl Naphthalene	μg/g	0.99	0.05	<0.05	< 0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits				
Chrysene-d12	%	50-1	40	100	80	85	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9977621-9977628 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

		O. Re	eg. 153(511) - PHCs F1	- F4 (with	n PAHs) (Soil)
						DATE REPORTED: 2019-03-26
	SAMPLE DESC	RIPTION:	19-01 SA1	19-02 SA1	19-03 SA1	
	SAMP	LE TYPE:	Soil	Soil	Soil	
	DATE S	AMPLED:	2019-03-15	2019-03-15	2019-03-15	
Unit	G/S	RDL	9977621	9977625	9977628	
μg/g	0.21	0.02	<0.02	<0.02	< 0.02	
μg/g	2.3	0.05	< 0.05	< 0.05	0.10	
μg/g	2	0.05	< 0.05	< 0.05	< 0.05	
μg/g	3.1	0.05	< 0.05	< 0.05	0.10	
μg/g	55	5	<5	<5	12	
μg/g	55	5	<5	<5	12	
μg/g	98	10	<10	<10	<10	
μg/g		10	<10	<10	<10	
μg/g	300	50	<50	100	<50	
μg/g		50	<50	100	<50	
μg/g	2800	50	<50	250	<50	
μg/g	2800	50	NA	NA	NA	
%		0.1	25.1	4.5	5.0	
Unit	Acceptabl	e Limits				
%	60-1	40	84	82	86	
	Unit µ9/9 µ0/9 µ0/9	SAMP DATE S Unit G / S µg/g 0.21 µg/g 2.3 µg/g 2 µg/g 3.1 µg/g 55 µg/g 55 µg/g 98 µg/g 300 µg/g µg/g 2800 µg/g Unit Acceptable	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL µg/g 0.21 0.02 µg/g 2.3 0.05 µg/g 2 0.05 µg/g 3.1 0.05 µg/g 55 5 µg/g 55 5 µg/g 98 10 µg/g 300 50 µg/g 50 µg/g 2800 50 µg/g 2800 50 % 0.1 Unit Acceptable Limits	SAMPLE DESCRIPTION: 19-01 SA1 SAMPLE TYPE: Soil DATE SAMPLED: 2019-03-15 Unit G/S RDL 9977621 µg/g 0.21 0.02 <0.02 µg/g 2.3 0.05 <0.05 µg/g 2 0.05 <0.05 µg/g 3.1 0.05 <0.05 µg/g 55 5 <5 µg/g 98 10 <10 µg/g 98 10 <10 µg/g 300 50 <50 µg/g 2800 50 NA % 0.1 25.1 Unit Acceptable Limits	SAMPLE DESCRIPTION: 19-01 SA1 19-02 SA1 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2019-03-15 2019-03-15 Unit G / S RDL 9977621 9977625 µg/g 0.21 0.02 <0.02 <0.02 µg/g 2.3 0.05 <0.05 <0.05 µg/g 2 0.05 <0.05 <0.05 µg/g 3.1 0.05 <0.05 <0.05 µg/g 55 5 <5 <5 µg/g 55 5 <5 <5 µg/g 98 10 <10 <10 <10 µg/g 10 <10 µg/g 300 50 <50 100 µg/g 50 <50 100 µg/g 50 <50 250 µg/g 50 250 100 µg/g 50 30 50 <50 250 µg/g 2800 50 NA NA % 0.1 25.1 4.5 Unit Acceptable Limits	SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2019-03-15 2019-03-15 2019-03-15 Unit G / S RDL 9977621 9977625 9977628 μg/g 0.21 0.02 <0.02

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2019-03-18 DATE REPORTED: 2019-03-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9977621-9977628 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopnikolof

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

Ortivii Elitto OffE. 1310 Ot. Edd	TOTIL BIVA.						O/ (WII EED D	1.Noonene matriew
				O. Re	g. 153(511)	- VOCs (So	il)	
DATE RECEIVED: 2019-03-18								DATE REPORTED: 2019-03-26
		SAMPLE DESCR	RIPTION:	19-01 SA3	DUP-1	19-02 SA4	19-03 SA5	
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	
		DATE SA	MPLED:	2019-03-15	2019-03-15	2019-03-15	2019-03-15	
Parameter	Unit	G/S	RDL	9977623	9977624	9977627	9977630	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	< 0.05	< 0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	< 0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	< 0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	< 0.04	< 0.04	<0.04	
Toluene	ug/g	2.3	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	< 0.05	<0.05	< 0.05	<0.05	
m & p-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	<0.05	

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE: 1910 St. Laurent Blvd.

ATTENTION TO: Shihan Chowdhury SAMPLED BY:Rochelle Mathew

				O. Re	g. 153(511)	- VOCs (So	il)	
DATE RECEIVED: 2019-03-18								DATE REPORTED: 2019-03-26
	S.	AMPLE DESC	CRIPTION:	19-01 SA3	DUP-1	19-02 SA4	19-03 SA5	
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2019-03-15	2019-03-15	2019-03-15	2019-03-15	
Parameter	Unit	G/S	RDL	9977623	9977624	9977627	9977630	
Bromoform	ug/g	0.27	0.05	<0.05	< 0.05	< 0.05	<0.05	
Styrene	ug/g	0.7	0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	<0.05	< 0.05	
1,3-Dichloropropene	μg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	
n-Hexane	μg/g	2.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	17.8	27.3	17.7	18.0	
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	50-1	40	98	100	103	99	
4-Bromofluorobenzene	% Recovery	50-1	40	90	92	90	89	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9977623-9977630 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD ATTENTION TO: Shihan Chowdhury

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9977621	19-01 SA1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	mS/cm	0.7	3.55
9977621	19-01 SA1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	7.59
9977625	19-02 SA1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	mS/cm	0.7	0.769
9977628	19-03 SA1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	mS/cm	0.7	4.01
9977628	19-03 SA1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	5.11

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:1910 St. Laurent Blvd.

PROJECT: 19118198

AGAT WORK ORDER: 19Z447875
ATTENTION TO: Shihan Chowdhury
SAMPLED BY:Rochelle Mathew

Soil Analysis														
RPT Date: Mar 26, 2019			DUPLICATE	<u> </u>		REFEREN		NCE MATERIAL		METHOD BLANK SPIKE			RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	ptable nits	Recovery		ptable nits
	l la		.			Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inc	organics (Soil)													
Antimony	9977055	2.2	1.9	NA	< 0.8	106%	70%	130%	99%	80%	120%	73%	70%	130%
Arsenic	9977055	4	4	NA	< 1	97%	70%	130%	93%	80%	120%	95%	70%	130%
Barium	9977055	95	89	6.5%	< 2	105%	70%	130%	100%	80%	120%	104%	70%	130%
Beryllium	9977055	<0.5	< 0.5	NA	< 0.5	107%	70%	130%	99%	80%	120%	101%	70%	130%
Boron	9977055	15	15	NA	< 5	75%	70%	130%	103%	80%	120%	94%	70%	130%
Boron (Hot Water Soluble)	9977281	0.43	0.40	NA	< 0.10	111%	60%	140%	101%	70%	130%	100%	60%	140%
Cadmium	9977055	0.5	0.5	NA	< 0.5	100%	70%	130%	100%	80%	120%	102%	70%	130%
Chromium	9977055	30	29	3.4%	< 2	81%	70%	130%	96%	80%	120%	96%	70%	130%
Cobalt	9977055	4.9	4.3	13.0%	< 0.5	95%	70%	130%	93%	80%	120%	90%	70%	130%
Copper	9977055	47	48	2.1%	< 1	98%	70%	130%	99%	80%	120%	86%	70%	130%
Lead	9977055	68	64	6.1%	< 1	102%	70%	130%	101%	80%	120%	101%	70%	130%
Molybdenum	9977055	4.4	3.4	25.6%	< 0.5	99%	70%	130%	99%	80%	120%	98%	70%	130%
Nickel	9977055	45	39	14.3%	< 1	98%	70%	130%	92%	80%	120%	86%	70%	130%
Selenium	9977055	8.0	2.1	NA	< 0.4	101%	70%	130%	98%	80%	120%	103%	70%	130%
Silver	9977055	<0.2	<0.2	NA	< 0.2	94%	70%	130%	86%	80%	120%	92%	70%	130%
Thallium	9977055	<0.4	<0.4	NA	< 0.4	98%	70%	130%	98%	80%	120%	93%	70%	130%
Uranium	9977055	0.5	<0.5	NA	< 0.5	98%	70%	130%	98%	80%	120%	101%	70%	130%
Vanadium	9977055	16	15	6.5%	< 1	98%	70%	130%	94%	80%	120%	96%	70%	130%
Zinc	9977055	570	505	12.1%	< 5	96%	70%	130%	100%	80%	120%	109%	70%	130%
Chromium VI	9984236	<0.2	<0.2	NA	< 0.2	106%	70%	130%	95%	80%	120%	100%	70%	130%
Cyanide	9984236	<0.040	<0.040	NA	< 0.040	90%	70%	130%	101%	80%	120%	92%	70%	130%
Mercury	9977055	0.13	0.11	NA	< 0.10	108%	70%	130%	98%	80%	120%	89%	70%	130%
Electrical Conductivity	9979536	0.431	0.447	3.6%	< 0.005	107%	90%	110%						
Sodium Adsorption Ratio	9979536	0.353	0.354	0.3%	NA									
pH, 2:1 CaCl2 Extraction	9977621 9977621	7.27	7.31	0.5%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

O. Reg. 153(511) - EC/SAR (Soil)

Electrical Conductivity 9986875 3.38 3.51 3.8% < 0.005 103% 90% 110% NA NA Sodium Adsorption Ratio 9986875 64.3 67.8 5.3% NA NA

Comments: NA signifies Not Applicable.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V2)

Page 12 of 19

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19118198 SAMPLING SITE:1910 St. Laurent Blvd. AGAT WORK ORDER: 19Z447875
ATTENTION TO: Shihan Chowdhury
SAMPLED BY:Rochelle Mathew

Trace Organics Analysis															
RPT Date: Mar 26, 2019				UPLICATI	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
FARAWETER	Batch	ld	Dup #1	Dup #2	KFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)	•			•					•			•	
Benzene	9964028		< 0.02	< 0.02	NA	< 0.02	85%	60%	130%	97%	60%	130%	83%	60%	130%
Toluene	9964028		< 0.05	< 0.05	NA	< 0.05	107%	60%	130%	103%	60%	130%	84%	60%	130%
Ethylbenzene	9964028		< 0.05	< 0.05	NA	< 0.05	112%	60%	130%	102%	60%	130%	83%	60%	130%
Xylene Mixture	9964028		< 0.05	< 0.05	NA	< 0.05	113%	60%	130%	101%	60%	130%	89%	60%	130%
F1 (C6 to C10)	9964028		< 5	< 5	NA	< 5	105%	60%	130%	94%	85%	115%	83%	70%	130%
F2 (C10 to C16)	9968898		< 10	< 10	NA	< 10	95%	60%	130%	90%	80%	120%	81%	70%	130%
F3 (C16 to C34)	9968898		< 50	< 50	NA	< 50	98%	60%	130%	91%	80%	120%	83%	70%	130%
F4 (C34 to C50)	9968898		< 50	< 50	NA	< 50	92%	60%	130%	101%	80%	120%	93%	70%	130%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	9968985		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	90%	50%	140%	79%	50%	140%
Acenaphthylene	9968985		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	99%	50%	140%	89%	50%	140%
Acenaphthene	9968985		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	92%	50%	140%	82%	50%	140%
Fluorene	9968985		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	98%	50%	140%	94%	50%	140%
Phenanthrene	9968985		< 0.05			< 0.05		50%	140%	97%	50%	140%	93%	50%	140%
Friendiumene	9900900		< 0.03	< 0.05	NA	< 0.03	105%	30%	14076	9176	30%	140%	93%	30%	140%
Anthracene	9968985		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	97%	50%	140%	94%	50%	140%
Fluoranthene	9968985		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	99%	50%	140%	89%	50%	140%
Pyrene	9968985		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	94%	50%	140%	94%	50%	140%
Benz(a)anthracene	9968985		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	96%	50%	140%	95%	50%	140%
Chrysene	9968985		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	94%	50%	140%	93%	50%	140%
Benzo(b)fluoranthene	9968985		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	101%	50%	140%	80%	50%	140%
Benzo(k)fluoranthene	9968985		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	85%	50%	140%	75%	50%	140%
Benzo(a)pyrene	9968985		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	79%	50%	140%	81%	50%	140%
Indeno(1,2,3-cd)pyrene	9968985		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	81%	50%	140%	76%	50%	140%
Dibenz(a,h)anthracene	9968985		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	72%	50%	140%	79%	50%	140%
Benzo(g,h,i)perylene	9968985		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	99%	50%	140%	89%	50%	140%
2-and 1-methyl Naphthalene	9968985		< 0.05	< 0.05	NA	< 0.05	92%		140%	97%		140%	87%	50%	140%
O. Day 450(544) - 1/00- (0-11)															
O. Reg. 153(511) - VOCs (Soil)	0004000		0.05	0.05	N.1.0	0.05	0.40/	500 /	4.400/	000/	500 /	4.400/	000/	500 /	4.400/
Dichlorodifluoromethane	9981863		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	96%	50%	140%	83%	50%	140%
Vinyl Chloride	9981863		< 0.02	< 0.02	NA	< 0.02	87%		140%	82%	50%	140%	81%	50%	140%
Bromomethane	9981863		< 0.05	< 0.05	NA	< 0.05	116%		140%	107%		140%	111%	50%	
Trichlorofluoromethane	9981863		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	119%		140%	91%	50%	140%
Acetone	9981863		< 0.50	< 0.50	NA	< 0.50	113%	50%	140%	113%	50%	140%	87%	50%	140%
1,1-Dichloroethylene	9981863		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	95%	60%	130%	77%	50%	140%
Methylene Chloride	9981863		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	111%	60%	130%	78%	50%	140%
Trans- 1,2-Dichloroethylene	9981863		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	109%	60%	130%	79%	50%	140%
Methyl tert-butyl Ether	9981863		< 0.05	< 0.05	NA	< 0.05	112%		140%	103%	60%	130%	113%	50%	140%
1,1-Dichloroethane	9981863		< 0.02	< 0.02	NA	< 0.02	119%		140%	109%		130%	80%	50%	140%
Methyl Ethyl Ketone	9981863		< 0.50	< 0.50	NA	< 0.50	115%	50%	140%	118%	50%	140%	88%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 13 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19118198 SAMPLING SITE:1910 St. Laurent Blvd. AGAT WORK ORDER: 19Z447875
ATTENTION TO: Shihan Chowdhury
SAMPLED BY:Rochelle Mathew

	Trace Organics Analysis (Continued)														
RPT Date: Mar 26, 2019			С	DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	ptable	Recovery		eptable nits	Recovery	Lir	eptable nits
								Lower	Upper		l	Upper		Lower	Upper
Cis- 1,2-Dichloroethylene	9981863		< 0.02	< 0.02	NA	< 0.02	103%		140%	96%	60%	130%	78%	50%	140%
Chloroform	9981863		< 0.04	< 0.04	NA	< 0.04	107%	50%	140%	105%	60%	130%	77%	50%	140% 140%
1,2-Dichloroethane 1,1,1-Trichloroethane	9981863 9981863		< 0.03 < 0.05	< 0.03 < 0.05	NA NA	< 0.03 < 0.05	90% 115%	50% 50%	140% 140%	98% 111%	60% 60%	130% 130%	80% 79%	50% 50%	140%
Carbon Tetrachloride	9981863		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	100%	60%	130%	79%	50%	140%
Benzene	9981863		< 0.02	< 0.02	NA	< 0.02	103%	50%	140%	89%	60%	130%	80%	50%	140%
1,2-Dichloropropane	9981863		< 0.03	< 0.03	NA	< 0.03	110%	50%	140%	111%	60%	130%	77%	50%	140%
Trichloroethylene	9981863		< 0.03	< 0.03	NA	< 0.03	107%	50%	140%	107%	60%	130%	93%	50%	140%
Bromodichloromethane	9981863		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	111%	60%	130%	95%	50%	140%
Methyl Isobutyl Ketone	9981863		< 0.50	< 0.50	NA	< 0.50	101%	50%	140%	111%	50%	140%	100%	50%	140%
1,1,2-Trichloroethane	9981863		< 0.04	< 0.04	NA	< 0.04	104%	50%	140%	112%	60%	130%	98%	50%	140%
Toluene	9981863		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	110%	60%	130%	90%	50%	140%
Dibromochloromethane	9981863		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	112%	60%	130%	107%	50%	140%
Ethylene Dibromide	9981863		< 0.04	< 0.04	NA	< 0.04	110%	50%	140%	107%	60%	130%	114%	50%	140%
Tetrachloroethylene	9981863		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	107%	60%	130%	85%	50%	140%
1,1,1,2-Tetrachloroethane	9981863		< 0.04	< 0.04	NA	< 0.04	106%	50%	140%	106%	60%	130%	112%	50%	140%
Chlorobenzene	9981863		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	116%	60%	130%	96%	50%	140%
Ethylbenzene	9981863		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	110%	60%	130%	90%	50%	140%
m & p-Xylene	9981863		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	104%	60%	130%	90%	50%	140%
Bromoform	9981863		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	105%	60%	130%	102%	50%	140%
Styrene	9981863		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	110%	60%	130%	113%	50%	140%
1,1,2,2-Tetrachloroethane	9981863		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	102%	60%	130%	109%	50%	140%
o-Xylene	9981863		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	113%	60%	130%	94%	50%	140%
1,3-Dichlorobenzene	9981863		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	106%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene	9981863		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	112%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	9981863		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	109%	60%	130%	93%	50%	140%
1,3-Dichloropropene	9981863		< 0.04	< 0.04	NA	< 0.04	81%	50%	140%	112%	60%	130%	86%	50%	140%
n-Hexane	9981863		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	95%	60%	130%	86%	50%	140%
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	9965242		< 0.01	< 0.01	NA	< 0.01	102%	50%	140%	100%	50%	140%	96%	50%	140%
Gamma-Hexachlorocyclohexane	9965242		< 0.005	< 0.005	NA	< 0.005	91%	50%	140%	92%	50%	140%	89%	50%	140%
Heptachlor	9965242		< 0.005	< 0.005	NA	< 0.005	90%		140%	87%	50%	140%	86%	50%	
Aldrin	9965242		< 0.005	< 0.005	NA	< 0.005	98%		140%	100%		140%	94%	50%	
Heptachlor Epoxide	9965242		< 0.005	< 0.005	NA	< 0.005	103%	50%	140%	100%	50%	140%	100%	50%	140%
Endosulfan	9965242		< 0.005	< 0.005	NA	< 0.005	102%		140%	106%		140%	83%		140%
Chlordane	9965242		< 0.007	< 0.007	NA	< 0.007	97%	50%	140%	104%	50%	140%	102%	50%	140%
DDE	9965242		< 0.007	< 0.007	NA	< 0.007	103%		140%	105%	50%	140%	108%	50%	140%
DDD	9965242		< 0.007	< 0.007	NA	< 0.007	98%		140%	101%		140%	100%	50%	
DDT	9965242		< 0.007	< 0.007	NA	< 0.007	83%	50%	140%	88%	50%	140%	92%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 14 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19118198 SAMPLING SITE:1910 St. Laurent Blvd. AGAT WORK ORDER: 19Z447875
ATTENTION TO: Shihan Chowdhury
SAMPLED BY:Rochelle Mathew

o, o o a a a							6, 225 5 : to o o a o								
Trace Organics Analysis (Continued)															
RPT Date: Mar 26, 2019			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		ld	·	·			value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
Dieldrin	9965242		< 0.005	< 0.005	NA	< 0.005	91%	50%	140%	103%	50%	140%	96%	50%	140%
Endrin	9965242		< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	89%	50%	140%	80%	50%	140%
Methoxychlor	9965242		< 0.005	< 0.005	NA	< 0.005	80%	50%	140%	80%	50%	140%	97%	50%	140%
Hexachlorobenzene	9965242		< 0.005	< 0.005	NA	< 0.005	102%	50%	140%	104%	50%	140%	94%	50%	140%
Hexachlorobutadiene	9965242		< 0.01	< 0.01	NA	< 0.01	97%	50%	140%	91%	50%	140%	96%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

5835 COOPERS AVENUE http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: 1910 St. Laurent Blvd.

PROJECT: 19118198

AGAT WORK ORDER: 19Z447875 ATTENTION TO: Shihan Chowdhury SAMPLED BY: Rochelle Mathew

O 2 O 2 O 2 2	2.7 4.		***************************************
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	1	-	
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-84 6010C	⁶ ICP/OES
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	pH METER

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE:1910 St. Laurent Blvd.

SAMPLED BY:Rochelle Mathew

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Hexachloroethane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Gamma-Hexachlorocyclohexane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Aldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Heptachlor Epoxide	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endosulfan	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Chlordane	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDE	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDD	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
DDT	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Dieldrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Endrin	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Methoxychlor	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobenzene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Hexachlorobutadiene	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
TCMX	ORG-91-5112	EPA SW-846 3541,3620 & 8081	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P&T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P&T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P&T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P&T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z447875

PROJECT: 19118198

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE:1910 St. Laurent Blvd.

SAMPLED BY:Rochelle Mathew

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Terphenyl	VOL-91-5009		GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Moisture Content	VOL-91-5002	MOE E3139	BALANCE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only

Work Order #: 192447875

Chain	of	Custody	Record
VIIGIII	VI.	UUSLUUY	Necuru

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)													Cooler Quantity:								-321
Report Information: Company: GOLDE ASSOCIATES Contact: Address: Phone: Reports to be sent to: 1. Email: Shipan - chow dhouse Golder. cons. Project: Site Location: Sampled By: AGAT Quote #: Please note: If quotation number is not provided, client will be billed full price for analysis.					Regulatory Requirements: No. No.									Arrival Temperatures: S. 1 8 1 8 0 Custody Seal Intact: Yes No Notes: Yes Notes: Solution (TAT) Required: Regular TAT Solution 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business Days Next Business Days OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays							
					Sample Matrix Legend	CrVI		0. Reg 153				For 'Same Day' analysis, please contact your AGAT CPM									
Invoice Information: Company: Contact: Address: Email:				B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water		Metals and Inorganics	: ☐ 153 Metals (excl. Hydrides) letals ☐ 153 Metals (Incl. Hydrides)	ORPS: BHWS DCI DCN: DCF MEC DFOC DHg DPH MSAR	Regulation/Custom Metals	☐ TP ☐ NH, ☐ TKN	XVOC THIM	F4 + BIEX		tal Aroclors	rine Pesticides	□ VOCs □ ABNs □ B(a)P	Ju la				
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample		Field Filtered - Metals, Hg.	letais ar	☐ All Metals ☐ 15 ☐ Hydride Metals [RPs: □	Regulation/	Nutrlents: DTP [DNO, DNO, DI	Volatiles:	PHCs F1 - F4	ABNS	PCBs: 🗆 Total	Organochlorine	TCLP: [] M&I	Sewer Use			
19-01 SA 1	15/3/19	0915		3						2 8	ź	% ***	_			ō	고 2	Se			-17
19-01 SA3		0920		1	HOLD EC/SAR	+	X	1	3	-		蓍	X	X	`					-	76
DUP - 1		0920			HOLD EC/SAR			_	X	+	-	X	_		_	X				m u r	
19-02 SAJ		0955					×	-	X			×	.,	-		×					
19-02 SA2		1000			1000		^		老			a.	×	×							
19-02 SA4		1004		1 8	HOUS EC/SAR			-	X				-		+	X					
19-03 SAJ		1050					X		2			X		-							
19-03 SA2		1059					^	-	-	-			X	X	-						
19-03 SAS	不	1057		*	HOLD EC/SAR				X			×				X		×			
SHIHAO CLOWN HORY SHIHAO CLOWN HORY SHIHAO CLOWN HORY Amples Relinquished By (Print Name and Sign): SHIHAO CLOWN HORY SHIPPING SHIPPIN	Lucz	Date Date Page Page	8/4 Time	1657 pho(Samples Received By (Print Name and Sign):	9	27	rej	2 19/	/ Date	ma	19	Time	651)	Nº:	_	age	1 of 261	<u>1</u>	

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Shihan Chowdhury

PROJECT: Elmvale Acres (Riocan) Phase II ESA

AGAT WORK ORDER: 19Z449116

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Mar 27, 2019

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any	y information regarding	j this analysis p	please contact your	client services rep	presentative at (905	o) /12-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

CANNI ENTO OTTE.					
				O. Reg	g. 153(511) - VOCs (Water)
DATE RECEIVED: 2019-03-21					DATE REPORTED: 2019-03-26
		SAMPLE DESCRI	PTION: M	IW15-01B	
		SAMPLE	TYPE:	Water	
		DATE SAM	MPLED: 20	019-03-20	
Parameter	Unit	G/S I	RDL 9	9985526	
Dichlorodifluoromethane	μg/L	4400	0.20	<0.20	
/inyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	
richlorofluoromethane	μg/L	2500	0.40	< 0.40	
Acetone	μg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	
Methylene Chloride	μg/L	610	0.30	< 0.30	
rans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	
,1-Dichloroethane	μg/L	320	0.30	< 0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	
I,1,1-Trichloroethane	μg/L	640	0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	
,2-Dichloropropane	μg/L	16	0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	
I,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
I,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	μg/L	(0.20	<0.20	

Certificate of Analysis

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O. Reg. 153(511) - VOCs (Water)

				O. Neg.	100(011) - VOCS (Water)
DATE RECEIVED: 2019-03-21					DATE REPORTED: 2019-03-26
	S/	AMPLE DES	CRIPTION:	MW15-01B	
		SAME	PLE TYPE:	Water	
		DATE S	SAMPLED:	2019-03-20	
Parameter	Unit	G/S	RDL	9985526	
Bromoform	μg/L	380	0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	< 0.30	
Xylene Mixture	μg/L	4200	0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	100	
4-Bromofluorobenzene	% Recovery	50-1	40	98	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9985526 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLED BY:

O. Reg. 153(511) - ORPs (Water)

DATE RECEIVED: 2019-03-21 **DATE REPORTED: 2019-03-25**

	S	AMPLE DESC	CRIPTION:	MW15-01B
		SAMF	LE TYPE:	Water
		DATE S	AMPLED:	2019-03-20
Parameter	Unit	G/S	RDL	9985526
Chloride	μg/L	2300000	20000	6400000
Н	pH Units		NA	7.70

Comments: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9985526 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Sodium (Water)

DATE RECEIVED: 2019-03-21 DATE REPORTED: 2019-03-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

9985526 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Sodium

Guideline Violation

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Shihan Chowdhury

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9985526	MW15-01B	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	6400000

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE: SAMPLED BY:

			Trac	e Or	gani	cs Ar	nalys	is								
RPT Date:			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	RIX SPIKE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	ptable nits Upper	Recovery	l 1 is	ptable nits Upper	Recovery		ptable nits Upper	
O. Reg. 153(511) - VOCs (Water)								201101	орро.		201101	орро.		201101	орро.	
Dichlorodifluoromethane	9975904		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	109%	50%	140%	102%	50%	140%	
Vinyl Chloride	9975904		< 0.17	< 0.17	NA	< 0.17	95%	50%	140%	108%	50%	140%	115%	50%	140%	
Bromomethane	9975904		< 0.20	< 0.20	NA	< 0.20	113%	50%	140%	119%	50%	140%	117%	50%	140%	
Trichlorofluoromethane	9975904		< 0.40	< 0.40	NA	< 0.40	117%	50%	140%	109%	50%	140%	109%	50%	140%	
Acetone	9975904		< 1.0	< 1.0	NA	< 1.0	96%	50%	140%	106%	50%	140%	104%	50%	140%	
1,1-Dichloroethylene	9975904		< 0.30	< 0.30	NA	< 0.30	110%	50%	140%	103%	60%	130%	107%	50%	140%	
Methylene Chloride	9975904		< 0.30	< 0.30	NA	< 0.30	99%	50%	140%	95%	60%	130%	90%	50%	140%	
trans- 1,2-Dichloroethylene	9975904		< 0.20	< 0.20	NA	< 0.20	96%	50%	140%	94%	60%	130%	95%	50%	140%	
Methyl tert-butyl ether	9975904		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	102%	60%	130%	86%	50%	140%	
1,1-Dichloroethane	9975904		< 0.30	< 0.30	NA	< 0.30	85%	50%	140%	97%	60%	130%	87%	50%	140%	
Methyl Ethyl Ketone	9975904		< 1.0	< 1.0	NA	< 1.0	80%	50%	140%	88%	50%	140%	84%	50%	140%	
cis- 1,2-Dichloroethylene	9975904		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	92%	60%	130%	94%	50%	140%	
Chloroform	9975904		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	92%	60%	130%	94%	50%	140%	
1,2-Dichloroethane	9975904		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	82%	60%	130%	97%	50%	140%	
1,1,1-Trichloroethane	9975904		< 0.30	< 0.30	NA	< 0.30	94%	50%	140%	109%	60%	130%	88%	50%	140%	
Carbon Tetrachloride	9975904		< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	95%	60%	130%	93%	50%	140%	
Benzene	9975904		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	97%	60%	130%	98%	50%	140%	
1,2-Dichloropropane	9975904		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	90%	60%	130%	83%	50%	140%	
Trichloroethylene	9975904		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	89%	60%	130%	92%	50%	140%	
Bromodichloromethane	9975904		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	78%	60%	130%	77%	50%	140%	
Methyl Isobutyl Ketone	9975904		< 1.0	< 1.0	NA	< 1.0	101%	50%	140%	88%	50%	140%	83%	50%	140%	
1,1,2-Trichloroethane	9975904		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	109%	60%	130%	107%	50%	140%	
Toluene	9975904		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	102%	60%	130%	116%	50%	140%	
Dibromochloromethane	9975904		< 0.10	< 0.10	NA	< 0.10	78%	50%	140%	85%	60%	130%	77%	50%	140%	
Ethylene Dibromide	9975904		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	104%	60%	130%	95%	50%	140%	
Tetrachloroethylene	9975904		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	115%	60%	130%	111%	50%	140%	
1,1,1,2-Tetrachloroethane	9975904		< 0.10	< 0.10	NA	< 0.10	98%	50%	140%	100%	60%	130%	88%	50%	140%	
Chlorobenzene	9975904		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	115%	60%	130%	111%	50%	140%	
Ethylbenzene	9975904		< 0.10	< 0.10	NA	< 0.10	97%	50%	140%	115%	60%	130%	111%	50%	140%	
m & p-Xylene	9975904		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	116%	60%	130%	112%	50%	140%	
Bromoform	9975904		< 0.10	< 0.10	NA	< 0.10	81%	50%	140%	84%	60%	130%	75%	50%	140%	
Styrene	9975904		< 0.10	< 0.10	NA	< 0.10	77%	50%		102%	60%	130%	97%	50%	140%	
1,1,2,2-Tetrachloroethane	9975904		< 0.10	< 0.10	NA	< 0.10	103%	50%		107%	60%		104%	50%	140%	
o-Xylene	9975904		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	118%	60%		115%		140%	
1,3-Dichlorobenzene	9975904		< 0.10	< 0.10	NA	< 0.10	94%	50%	140%	105%	60%	130%	100%	50%	140%	
1,4-Dichlorobenzene	9975904		< 0.10	< 0.10	NA	< 0.10	101%		140%	109%		130%	103%	50%	140%	
1,2-Dichlorobenzene	9975904		< 0.10	< 0.10	NA	< 0.10	93%		140%	103%	60%		99%	50%	140%	
1,3-Dichloropropene	9975904		< 0.30	< 0.30	NA	< 0.30	82%		140%	85%	60%		81%	50%	140%	
n-Hexane	9975904		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	91%	60%	130%	100%	50%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE: SAMPLED BY:

	T	race	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date:				UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	Batch	Sample				Measured			Recovery	Lin	ptable nits	Recovery	Lim	ptable nits	
		ld	- '	.,			Value	Lower	Upper	,	Lower	Upper	, , ,	Lower	Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jata

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: Elmvale Acres (Riocan) Phase II ESA

AGAT WORK ORDER: 19Z449116
ATTENTION TO: Shihan Chowdhury

SAMPLING SITE: SAMPLED BY:

				Wat	er Ar	nalys	is										
RPT Date: DUPLICA					.ICATE		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	KE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			easured Lin		Recovery	Lie	ptable nits	Recovery	Lie	ptable nits
. /		ld	''	''			Value	Lower	Upper			Upper		Lower	Upper		
O. Reg. 153(511) - ORPs (Water	.)		•				•					•					
Chloride	9984315		68200	67800	0.6%	< 100	98%	70%	130%	107%	70%	130%	113%	70%	130%		
рН	9985484		7.97	7.90	0.9%	NA	100%	90%	110%								
O. Reg. 153(511) - Sodium (Wa	er)																
Sodium	9985227		7730	7770	0.6%	< 500	98%	70%	130%	100%	80%	120%	106%	70%	130%		

Certified By:

Iris Verástegui

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z449116

PROJECT: Elmvale Acres (Riocan) Phase II ESA

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE: SAMPLED BY:

Or titil Elito Off E.		O/ WIII EED D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	<u> </u>		
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Water Analysis			
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE
Sodium	MET-93-6105	EPA SW 846-6010C & 200.7	ICP/OES

ISM

	Fax: 905.712.5122
we	bearth.agatlabs.cor

Laboratory Use Only

Work Order #: 192449116

							we	bearth.ag	atlabs	.com		Cool	er Qu	antity	:			-on	100	>
Chain of Custody Recor	d If this is	a Drinking Wa	ter sample, p	olease use	Water Chain of Custody Form (potable	water	consume	d by humar	s)			Arriv	al Ter	npera	tures		0.5		ا حا،	6.6
Report Information: Company: Contact: Address: Address: Contact: Address: Contact: Address: Contact: Address: Contact: Address: Contact: Address: Contact: Address: Add	udhuru on Rd	D.		—II.	ation 153/04 Sewer Use	No F		Regulation		men		Note	aro	und		o ne (T				7°2-
Phone: 613-592-96000 Reports to be sent to: 5hihan_chowo 1. Email: Keith_holmes	Inury@g	older-a ler-cor	om n		/Park culture re (Check One) rse MISA Storm	-	(Prov. Water Objectives Other Indicate	(PWQ			Rush	3 E Day	Busine ys	ess	rges App	oly) 2 Bu Days	usiness		Next Busines Day
Project Information: Project: Floware According: Site Location: 910 St. Lauren Sampled By:		an) fh		ESA 	is submission for a d of Site Condition?	Cei				s		Fo	*TA	T is ex	clusiv	e of w	veeker , pleas	otification nds and s se contac	tatutory .	
AGAT Quote #: Please note: If quotation number Invoice Information: Company: Contact: Address: Email:	is not provided, client w		e for analysis.	=1	e Matrix Legend ota bund Water int ii diment rface Water	and Inorganics	☐ All Metals ☐ 153 Metals (excl. Hydrides) ☐ Hydride Metals ☐ 153 Metals (incl. Hydrides)	□ CN·	Full Metals Scan	Regulation/Custom Metals	NO. ONO.+NO.	:: X VOC □BTEX □THM	+		Total	sticides	TCLP: ☐ M&I ☐ VOCs ☐ ABNs ☐ B(a)P ☐ PCBs	um, Na		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample	Comments/ Special Instructions	Metals	☐ All Meta	ORPS: [Full Met	Regulati	J No.	Volatiles: X	ABNS	PAHs	PCBs: 🗆 Total	Organoc	CLP:	Sewer Use		
@ MW15-01B	03/20/19	i230	5	GW	N	-		×				×						×		
Samples Relinquished By (Print Name and Sign):	'And His or	Date	NIA TIE	1000	ngles Received By (Print Name and Signal		2			Date			Time							
Pochelle Mathew # Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	Acther	19 Date	Tire	bno	iples Bacolved By (Print Name and Sign):				le	Date 19	13/	22	Tierre	5h		Nº:		age 1	_of_	
ocument (D: DIV 78 1511 015								Pink C	onv -	Client	I Vell	nw Coi	ον - ΔΟ	ΣΔT I	Whit	e Con	V- AGA	T P	alia issumah	March 46, 2018

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Shihan Chowdhury

PROJECT: 19118198

AGAT WORK ORDER: 19Z453968

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor

DATE REPORTED: Apr 09, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 19Z453968

PROJECT: 19118198

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Shihan Chowdhury

SAMPLED BY:

	O. Reg. 153(511) - ORPs (Soil)													
DATE RECEIVED: 2019-04-05 DATE REPORTED: 2019-04-09														
SAMPLE DESCRIPTION: 18-01 SA7 18-01 SA10 18-02 SA7 18-02 SA10 18-02 SA7 18-03 SA11														
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil					
		DATE	SAMPLED:	2018-09-12	2018-09-12	2018-09-17	2018-09-17	2018-09-10	2018-09-10					
Parameter	Unit	G/S	RDL	114698	114705	114706	114707	114708	114709					
Electrical Conductivity	mS/cm		0.005	1.17	0.301	0.499	0.885	1.19	0.351					
Sodium Adsorption Ratio	NA		NA	1.59	1.35	1.36	0.386	0.901	2.67					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

114698-114709 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil).

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhelly Amanjor Bhela & CHEMIST

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z453968

PROJECT: 19118198

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE: SAMPLED BY:

	Soil Analysis														
RPT Date: Apr 09, 2019			D	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptable Limits		Recovery	Acceptable Limits		
		Ia					Value	Lower	Upper		Lower	Upper	1 1	Lower	Upper
O. Reg. 153(511) - ORPs (Soil)															
Electrical Conductivity	118827		0.146	0.142	2.8%	< 0.005	103%	90%	110%	NA			NA		
Sodium Adsorption Ratio	118827		0.558	0.565	1.2%	NA	NA			NA			NA		

Comments: NA signifies Not Applicable.

manjot Bhells Amanot Bhells CHEMIST

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z453968

PROJECT: 19118198

ATTENTION TO: Shihan Chowdhury

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Electrical Conductivity		McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES

AGAT Laboratories

5835 Coopers Avenue Mississauga, ON

www.agatlabs.com · webearth.agatlabs.com

L4Z 1Y2

Laboratory Use Uniy
Arrival Temperature: 8.6(83/8.3.
AGAT WO #: 192463968
Lab Temperature: 768 \$12

Regulation Requirements	Chain of Custody	Record					P: 905.712.5100 · F: 905.712.5122 Notes: Ohice																		
Contact:	Client Information		TIE		Reg	ulatory Require	ments								-	Tui	nar	rour	nd Ti	ime I	Requi	red ((TAT)	Regulr	ed*
Invoice To Same: Yes No Same: Yes	Contact: Address: 1931 Page Phone: 1918198 AGAT Quotation #: Please note, if quota	Contact: Address: 1931 Pascerton Port Phone: Project: AGAT Quotation #: Please note, if quotation number is not provided, client will be billed full price for analysis. Invoice To Same: Yes No				Fax:				Region CCM Oth			CCME Other (specify) Prov. Water Quality Objectives (PWQ0) None				5 to 7 Working Days Rush TAT (please provide prior notification) Rush Surcharges Apply 3 Working Days 2 Working Days 1 Working Day OR								
Report Information - reports to be sent to: Sw Surface Water P Paint Shiphan - choudhung e garden can Shiphan -	Company:	No l		le water intended for huma	n consumption)	ls ·	this su	bmis				Condit	on?								days				
Report Information - reports to be sent to: Sw Surface Water P Paint Sp Sediment S Soil	Address:				— Drin							Z Z	<u>م</u>											4	
18-01 SA7 12/09/18 10/5 HDS S 1 IGNORE HOLDTINE X 18-01 SA10 12/09/18 10/9/18 5 1 18-07 SA7 17/09/18 093544 S 1 18-02 SA10 17/09/18 093944 S 1 18-03 SA7 10/09/18 1021445 S 1	GW Ground Water O Oil SW Surface Water P Paint SD Sediment S Soil 1. Name: Shilkan - Cho				to word	O WDHORY				rorining metals	- S	NH I	C THM D	1 to 4		henots		thlorine Pesticides	etals/Inorganics	es				Drug	
18-01 SAT 12/09/18 10/5 HDS S 1 IGNORE HOLDTINE X 18-07 SAT 17/09/18 09/35/11 S 1 18-02 SAT 10/09/18 09/29/11 S 1 18-03 SAT 10/09/18 10/21/11 S 1	Sample Identification			The second second			100000000000000000000000000000000000000	Metals	Metal S	Cliont	ORPs: [Nutrient	VOC:	CCME F	ABNS	Chloropl	PCBs	Organoc	TCLP Me	Sewer U					
18-07 SA7 1764/18 09354 5 1 18-02 SA10 1769/18 09294 5 1 18-03 SA7 10/09/18 10214x 5 1	18-01 SA7	12/09/18	1015 HOS	3	1	IGNORE H	BUDTINE						N			ne di		M				- 10			1,0120
18-02 SA10 PHO9/18 692914 S 1 18-03 SA7 10/09/18 102144 S 1	18-01 SA16	12/09/18	101940	5	1			bo	12		X	4	1,7					- 1				163		div	
18-03 SA7 10/09/18 102144 S 1 X	18-07 517	17/09/18	09354	, 5	1						X				11.			H							
	18-02 SA10		09291L	1	1																				11,
18-63 SA 11 1000 18 1027 HRS S 1 X X X X X X X X X X X X X X X X X	18-03 SA7		102144	5							_	1	15	Ш						6					1600
	18-03 SA 11	10/09/18	1027+149	5	J		4				×		- 20						Į.						
													-			-20-	_	1						199	
																-///	1								
		-				- N								\vdash			-				-		-		
														H			+								10-7

Samples Relinquished By (Print Name and Sign):

SHAHAN CHOWN 34-VEY

Samples Relinquished By (Print Name and Sign):

Shamples Relinquished By (Print Name and Sign):

Date/Time

Apr. 5, 20/9

Date/Time

Samples Received By (Print Name and Sign):

Date/Time

Date/Time

Apr. 5, 20/9

Date/Time

Date/Time

Date/Time

Apr. 5, 20/9

Date/Time

Date/Time

Date/Time

Apr. 5, 20/9

Date/Time

Pink Copy - Client
Yellow Copy - AGAT
White Copy- AGAT
No:

31329

USION to Fedex

1-04-65 6400 Sima

Page 5 of 5

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Keith Holmes

PROJECT: 1918198 - Elmvale

AGAT WORK ORDER: 19Z456865

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Apr 22, 2019

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 19Z456865

PROJECT: 1918198 - Elmvale

ATTENTION TO: Keith Holmes

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O Reg. 153(511) - VOCs (Water)

				O. Reg	. 153(511) -	VOCs (Wate	er)
DATE RECEIVED: 2019-04-15							DATE REPORTED: 2019-04-22
		DATE S	LE TYPE: AMPLED:	MW15-2 Water 2019-04-12	MW19-1 Water 2019-04-12	MW19-2 Water 2019-04-12	
Parameter	Unit	G/S	RDL	132381	132382	132383	
Dichlorodifluoromethane	μg/L	4400	0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	1.7	0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	56	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	17	0.30	< 0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	5500	0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	1400	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	3100	0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	μg/L	1500000	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	22	0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	12	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	6700	0.30	< 0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	8.4	0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	430	0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	140	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	580000	1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	30	0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.83	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	28	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 19Z456865

PROJECT: 1918198 - Elmvale

SAMPLED BY:

ATTENTION TO: Keith Holmes

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-04-15							DATE REPORTED: 2019-04-22
	S	AMPLE DESC	RIPTION:	MW15-2	MW19-1	MW19-2	
		SAMP	LE TYPE:	Water	Water	Water	
		DATE S	AMPLED:	2019-04-12	2019-04-12	2019-04-12	
Parameter	Unit	G/S	RDL	132381	132382	132383	
Bromoform	μg/L	770	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	9100	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	15	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	67	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	45	0.30	< 0.30	< 0.30	< 0.30	
Xylene Mixture	μg/L	4200	0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	520	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptabl	e Limits				
Toluene-d8	% Recovery	50-1	40	94	95	95	
4-Bromofluorobenzene	% Recovery	50-1	40	86	87	87	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Comments: Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

132381-132383 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 19Z456865

PROJECT: 1918198 - Elmvale

ATTENTION TO: Keith Holmes

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

\cap	Rea	153(511)	- ORPs	(Water)
U .	IXCU.	10000111	- OIN 3	IVValor,

				O. rtog.	. 100(011)	OIN 5 (Wat	C1 <i>)</i>		
DATE RECEIVED: 2019-04-15								DA	TE REPORTED: 2019-04-22
		SAMPLE DESC	RIPTION:	MW15-2		MW19-1		MW19-2	
		SAMP	LE TYPE:	Water		Water		Water	
		DATE S	AMPLED:	2019-04-12		2019-04-12		2019-04-12	
Parameter	Unit	G/S	RDL	132381	RDL	132382	RDL	132383	
Sodium	μg/L	2300000	500	40200	5000	416000	500	388000	
Chloride	μg/L	2300000	500	60200	5000	2860000	2000	1230000	

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

132381-132383 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument. Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 19Z456865 PROJECT: 1918198 - Elmvale 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
132382	MW19-1	ON T3 NPGW MFT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	2860000

AGAT WORK ORDER: 19Z456865

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1918198 - Elmvale ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

			Trac	ce Or	gani	cs Ar	nalys	IS							
RPT Date:			С	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	LANK SPIKE MA		TRIX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	<u> </u>		Recovery		ptable nits	Recovery		ptable nits
								Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	135151		< 0.20	< 0.20	NA	< 0.20	75%	50%	140%	112%	50%	140%	108%	50%	140%
Vinyl Chloride	135151		< 0.17	< 0.17	NA	< 0.17	107%	50%	140%	101%	50%	140%	98%	50%	140%
Bromomethane	135151		< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	94%	50%	140%	104%	50%	140%
Trichlorofluoromethane	135151		< 0.40	< 0.40	NA	< 0.40	84%	50%	140%	109%	50%	140%	111%	50%	140%
Acetone	135151		< 1.0	< 1.0	NA	< 1.0	98%	50%	140%	111%	50%	140%	91%	50%	140%
1,1-Dichloroethylene	135151		< 0.30	< 0.30	NA	< 0.30	103%	50%	140%	105%	60%	130%	91%	50%	140%
Methylene Chloride	135151		< 0.30	< 0.30	NA	< 0.30	113%	50%	140%	95%	60%	130%	100%	50%	140%
trans- 1,2-Dichloroethylene	135151		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	103%	60%	130%	80%	50%	140%
Methyl tert-butyl ether	135151		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	92%	60%	130%	100%	50%	140%
1,1-Dichloroethane	135151		< 0.30	< 0.30	NA	< 0.30	102%	50%	140%	90%	60%	130%	117%	50%	140%
Methyl Ethyl Ketone	135151		< 1.0	< 1.0	NA	< 1.0	112%	50%	140%	87%	50%	140%	90%	50%	140%
cis- 1,2-Dichloroethylene	135151		< 0.20	< 0.20	NA	< 0.20	118%	50%	140%	98%	60%	130%	97%	50%	140%
Chloroform	135151		< 0.20	< 0.20	NA	< 0.20	96%	50%	140%	96%	60%	130%	115%	50%	140%
1,2-Dichloroethane	135151		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	94%	60%	130%	97%	50%	140%
1,1,1-Trichloroethane	135151		< 0.30	< 0.30	NA	< 0.30	114%	50%	140%	91%	60%	130%	95%	50%	140%
Carbon Tetrachloride	135151		< 0.20	< 0.20	NA	< 0.20	113%	50%	140%	94%	60%	130%	105%	50%	140%
Benzene	135151		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	103%	60%	130%	114%	50%	140%
1,2-Dichloropropane	135151		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	90%	60%	130%	97%	50%	140%
Trichloroethylene	135151		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	100%	60%	130%	103%	50%	140%
Bromodichloromethane	135151		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	91%	60%	130%	110%	50%	140%
Methyl Isobutyl Ketone	135151		< 1.0	< 1.0	NA	< 1.0	107%	50%	140%	89%	50%	140%	108%	50%	140%
1,1,2-Trichloroethane	135151		< 0.20	< 0.20	NA	< 0.20	110%	50%	140%	116%	60%	130%	94%	50%	140%
Toluene	135151		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	113%	60%	130%	85%	50%	140%
Dibromochloromethane	135151		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	80%	60%	130%	88%	50%	140%
Ethylene Dibromide	135151		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	102%	60%	130%	115%	50%	140%
Tatrachlaraethulana	405454		. 0. 00	. 0. 00	NIA	. 0. 00	000/	F00/	4.400/	4000/	000/	4000/	070/	F00/	140%
Tetrachloroethylene 1,1,1,2-Tetrachloroethane	135151		< 0.20	< 0.20	NA	< 0.20	99% 95%	50%	140%	102% 95%	60% 60%	130% 130%	97%	50% 50%	140%
Chlorobenzene	135151		< 0.10	< 0.10	NA	< 0.10		50%	140%				94%		140%
Ethylbenzene	135151		< 0.10	< 0.10	NA NA	< 0.10	112% 114%	50% 50%	140% 140%	102%	60% 60%	130%	93%	50% 50%	140%
m & p-Xylene	135151 135151		< 0.10 < 0.20	< 0.10 < 0.20	NA NA	< 0.10 < 0.20	111%	50%	140%	107% 108%	60%	130% 130%	99% 108%	50%	140%
D (4.400
Bromoform Styrono	135151		< 0.10	< 0.10	NA NA	< 0.10	99%		140%	73%		130%	80%		140%
Styrene 1,1,2,2-Tetrachloroethane	135151		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	108%	60%	130%	118%		140%
	135151		< 0.10	< 0.10	NA	< 0.10	96%	50%	140% 140%	115%		130%	107%		140% 140%
o-Xylene 1,3-Dichlorobenzene	135151 135151		< 0.10 < 0.10	< 0.10 < 0.10	NA NA	< 0.10 < 0.10	114% 98%		140%	100% 106%		130% 130%	87% 102%		140%
1,4-Dichlorobenzene	135151		< 0.10	< 0.10	NA	< 0.10	85%		140%	112%		130%	111%		140%
1,2-Dichlorobenzene	135151		< 0.10	< 0.10	NA	< 0.10	107%		140%	114%		130%	88%		140%
1,3-Dichloropropene	135151		< 0.30	< 0.30	NA	< 0.30	87%	50%	140%	81%	60%	130%	83%	50%	140%
n-Hexane	135151		< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	84%	60%	130%	102%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1918198 - Elmvale

AGAT WORK ORDER: 19Z456865 ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE										KE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		ld	- 1	., =			Value	Lower	Upper			Upper			Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

AGAT WORK ORDER: 19Z456865

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1918198 - Elmvale ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

5 <u></u>															
				Wat	er Ar	nalys	is								
RPT Date:			[UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	TRIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	eptable mits	Recovery	Lie	eptable mits
		ld					Value	Lower	Upper	, , ,	Lower Upper		1 1		Upper
O. Reg. 153(511) - ORPs (Wa	ter)														
Sodium	133790		15900	15900	0.1%	< 500	97%	70%	130%	97%	80%	120%	100%	70%	130%
Chloride	137172		977	784	NA	< 100	101%	70%	130%	106%	70%	130%	105%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z456865

PROJECT: 1918198 - Elmvale

ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED BT.				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Trace Organics Analysis	,					
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Water Analysis						
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES			
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH			

ILG Red

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 **Laboratory Use Only**

Work Order #: 192456865

Ph: 905.712.5100 Fax: 905.712.5122

							We	ebearth.ag	atlabs	.com		oler Qu					16.1	5	14.2
Report Information: Company: Golden Association			ter sample, ple	Regulatory Rec	uirements:					ment	Cu	rival Terustody States:	Seal In	tact:	=		- 0		16' □N/A
Contact: Keith Holm Address: 1931 Robert	es Ron R	d		Regulation 153/04 Table 3	☐ Sewe			Regulation CCME	558		Tu	rnaro	und		e (T/		equir		
Phone: 613-592-91 Reports to be sent to:				☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	□Stor	m		Prov. Wate Objectives				gular sh TA	(Rush			ly)		ess Days	
1. Email: Kholmes egolds con 2. Email:			□ Coarse □ Fine	☐Coarse Indicate One						OR Date Required (Rush Surcharges May Apply):									
Project Information: Project: 19/18/98- Site Location: Sampled By:	Elmva	le		Is this submiss Record of Site C			Report Certifica			is			AT is ex	se prov xclusiv	e of w	rior not veekend	ds and s		sh TAT y holidays AGAT CPM
AGAT Quote #: Please note: If quotation number is Invoice Information: Company:	PO:not provided, client	will be billed full price		O Oil	egend	Aetals, Hg, CrVI		eg 153		tals	X □THM			ırs		3Ns □ B(a)P □PCBs			
Contact: Address: Email:	•			P Paint S Soil SD Sediment SW Surface Water		Field Filtered - Metals,	Metals and Inorganics □ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (inc. Hydrides)	ORPs: □BHWS □C: □CN □CN □CP □ □C □ □FOC □Hg	Full Metals Scan	Regulation/Custom Metals Nutrients: DTP DNH	les: Noc BTEX	PHCs F1 - F4		PCBs: ☐ Total ☐ Aroclors	Organochlorine Pesticides	TCLP: ☐ M&I ☐ VOCs ☐ ABNs	dium	blorido	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Comm Matrix Special In:		Y/N	Metals a	ORPS	Full N	Regul Nutrie	Volatiles:	PHCs	PAHs	PCBs	Organ	TCLP:	Sig	V	
MW5-2	Apr. 121.	14		GW					H							_	X		
mw19-1' mw19-2	J			6W							X						X	X	
											1							78	100
6 :																			
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	in white	Date Date	15/19 Time	10:00 CPO (Sumples Received B)	(Print Name and Sign): (Print Name and Sign):	2	الم	19	19	Date Date Date	15	Time	10	OE	Nº:		nge	of_	22

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Shihan Chowdhury; Keith Holmes

PROJECT: 19118198 - Elmvale

AGAT WORK ORDER: 19Z459700

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Apr 25, 2019

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 6

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 19Z459700 PROJECT: 19118198 - Elmvale 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLED BY: Robyn Chatwin-Davies

	O. Re	g. 153(511)	- ORPS (Water)
DATE RECEIVED: 2019-04-24			DATE REPORTED: 2019-04-25
SAMPLE DESCRIPT	ION: 15-1B	15-03	
SAMPLE TY	/PE: Water	Water	
DATE SAMPL	ED: 2019-04-24	2019-04-24	

O Dog 450/544\ ODDo (\Motor)

		SAIVIE	LE ITPE.	vvalei	water
		DATE S	AMPLED:	2019-04-24	2019-04-24
Parameter	Unit	G/S	RDL	151167	151168
Sodium	μg/L	2300000	10000	1340000	1750000
Chloride	μg/L	2300000	10000	4100000	3230000

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

151167-151168 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument. Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 19Z459700 PROJECT: 19118198 - Elmvale 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
151167	15-1B	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	4100000
151168	15-03	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	3230000

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z459700

PROJECT: 19118198 - Elmvale

SAMPLING SITE:

ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLED BY: Robyn Chatwin-Davies

Water Analysis															
RPT Date:				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	eptable mits
		ld		·			Value	Lower	Upper	,	Lower Upper		ĺ	Lower	Upper
O. Reg. 153(511) - ORPs (Water)															
Sodium	144614		721	681	NA	< 500	100%	70%	130%	100%	80%	120%	98%	70%	130%
Chloride	147671		229000	226000	1.3%	< 100	93%	70%	130%	105%	70%	130%	102%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Inis Verastegui

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 19Z459700

PROJECT: 19118198 - Elmvale ATTENTION TO: Shihan Chowdhury; Keith Holmes

SAMPLING SITE: SAMPLED BY:Robyn Chatwin-Davies

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH

Laboratory Use Only

Work Order #: 192 US9700

Chain of Custody Record If this is a Drinking Water samp	please use Drinking Water Cha	in of Custody Form (po	otable wat	er consume	d by human	s)			ooler Qu rival Ter			0		13.0	13	2
Report Information: Company:	Regulatory Re	equirements:	□ No	Regula	tory Red	uiren	ent		ustody S otes:		,	C	Sc es	15		□N/A
Contact: ALYSSA WHITEDUCK Address: 1931 ROBERTSON RD	Regulation 153/0	04 Sewer □Sanita		Regulation 558			Turnaround Time (TAT) Required:									
Phone: Reports to be sent to: Shihan—Chowdhury & golder.	Res/Park	Storm			Prov. Water Objectives Other			Rus				ges Apply)	5 to 7 E 2 Busin Days	Business I	Next B	Business
2. Email: Kholmes agolder.com Project Information: Project: 19118198 - Elmvale Site Location: Sampled By: RODAN Chatwin - Davies	Is this submis Record of Site		C	Report of Sertification	te of An	e on				Pleas T is ex	4- se prov sclusive	ride prio	T or notifi ekends	AT cation fo and stat	May Apply): r rush TAT utory holida	ays
AGAT Quote #: Po: Please note: If quotation number is not provided, client will be billed full price for analysis Invoice Information: Company: Contact: Address: Email:	Sample Matrix B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	r	Field Filtered - Metals, Hg, CrVI	Metals and Inorganics □ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (incl. Hydrides)	DC: DCN	Full Metals Scan	Nutrients: © TP ONH, OTKN	s: □voc □BTEX □THM	1-F4] Total □ Aroclors	Organochlorine Pesticides		Sodium		
Sample Identification Date Time # of Sampled Sampled Contain		iments/ Instructions	Y/N	Metals and	ORPs: (Full Mei	Nutrient No. 1	Volatiles:	PHCs F1 - F4	PAHs	PCBs: ☐ Total	Organo TCLP:	Sewer Use	Sod		
15-1B Apr24/19 13:00 2 15-03 II:00 2	GW sodium-f	Rield fi itered												**		
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Date Date Date Date	14:40 Ubert Samples Received	By (Print Name and Sign): By (Print Name and Sign): By (Print Name and Sign):		<i>N</i>	19/4	/25	ate	1	O Time			Nº:	U	781	of 1 59 i	26, 2018

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 1522569/16000

AGAT WORK ORDER: 15T042566

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Nov 20, 2015

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta

(APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 12

Certificate of Analysis

AGAT WORK ORDER: 15T042566

PROJECT: 1522569/16000

ATTENTION TO: Alyssa Troke

FAX (905)712-5122 http://www.agatlabs.com

TEL (905)712-5100

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:

S SITE: SAMPLED BY:Alyssa Troke

			O. R	eg. 153(51	1) - PHCs F	1 - F4 (-BTE	X) (Water)			
DATE RECEIVED: 2015-11-13								Γ	DATE REPORTE	D: 2015-11-20
		SAMPLE DESC	CRIPTION:	15-01A	15-01B	15-02	15-03	DUP1	Field Blank	
		SAMP	PLE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE S	AMPLED:	11/12/2015	11/12/2015	11/12/2015	11/12/2015	11/12/2015	11/12/2015	
Parameter	Unit	G/S	RDL	7196528	7196533	7196538	7196543	7196548	7196553	
F1 (C6 to C10)	μg/L		25	<25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	500	NA	NA	NA	NA	NA	NA	
Surrogate	Unit	Acceptabl	e Limits							
Terphenyl	%	60-1	40	103	125	100	114	124	128	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Types of Property Uses - Coarse Textured Soils

7196528-7196553 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPoprikolof

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T042566

PROJECT: 1522569/16000

ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (Water)

				O. Reg	. 153(511) -	vocs (wat	er)				
DATE RECEIVED: 2015-11-13								Γ	DATE REPORTE	ED: 2015-11-20	
Parameter	Unit		CRIPTION: LE TYPE: AMPLED: RDL	15-01A Water 11/12/2015 7196528	15-01B Water 11/12/2015 7196533	15-02 Water 11/12/2015 7196538	15-03 Water 11/12/2015 7196543	DUP1 Water 11/12/2015 7196548	Field Blank Water 11/12/2015 7196553	Trip Blank Water 11/12/2015 7196558	
Dichlorodifluoromethane	μg/L	4400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	0.73	0.57	<0.20	<0.20	0.54	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	0.43	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	

Certified By:

NPopukolof

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T042566

PROJECT: 1522569/16000

ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (Water)

				O. rtog	. 100(011)	1000 (11at	01)				
DATE RECEIVED: 2015-11-13								[DATE REPORTE	ED: 2015-11-20	
	S		CRIPTION: PLE TYPE: SAMPLED:	15-01A Water 11/12/2015	15-01B Water 11/12/2015	15-02 Water 11/12/2015	15-03 Water 11/12/2015	DUP1 Water 11/12/2015	Field Blank Water 11/12/2015	Trip Blank Water 11/12/2015	
Parameter	Unit	G/S	RDL	7196528	7196533	7196538	7196543	7196548	7196553	7196558	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Xylene Mixture	μg/L	4200	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	140	85	84	85	85	88	86	81	-
4-Bromofluorobenzene	% Recovery	50-1	140	91	92	94	98	95	92	87	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Certified By:

NPopukolof

Certificate of Analysis

AGAT WORK ORDER: 15T042566

PROJECT: 1522569/16000

PHCs BTEX (Water)(TS)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke

DATE RECEIVED: 2015-11-13		DATE REPORTED: 2015-11-20
SAMPLE DESCRIPTION:	Trip Spike	

		SAM	PLE TYPE:	Water
		DATE	SAMPLED:	11/12/2015
Parameter	Unit	G/S	RDL	7196561
Benzene	%			85
Toluene	%			81
Ethylbenzene	%			76
m & p - Xylene	%			73
o - Xylene	%			83
Xylene Mixture	%			76

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7196561 The C6-C10 fraction is calculated using Toluene response factor.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Certified By:

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 15T042566

PROJECT: 1522569/16000

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals (Comprehensive) (Water)

DATE RECEIVED: 2015-11-13									DATE REPORTED:	2015-11-20
B/(12 ((2021) 22) 2010 11 10		OAMBI E DEO	DIDTION	45.044	45.04D	45.00	45.00			2010 11 20
		SAMPLE DESC		15-01A	15-01B	15-02	15-03	DUP1	Field Blank	
			PLE TYPE:	Water	Water	Water	Water	Water	Water	
_			SAMPLED:	11/12/2015	11/12/2015	11/12/2015	11/12/2015	11/12/2015	11/12/2015	
Parameter	Unit	G/S	RDL	7196528	7196533	7196538	7196543	7196548	7196553	
Antimony	μg/L	20000	0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	μg/L	1900	1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	
Barium	μg/L	29000	2.0	349	343	136	216	352	<2.0	
Beryllium	μg/L	67	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Boron	μg/L	45000	10.0	97.3	75.5	75.3	97.4	63.4	<10.0	
Cadmium	μg/L	2.7	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Chromium	μg/L	810	2.0	5.3	3.6	4.8	7.1	7.6	<2.0	
Cobalt	μg/L	66	0.5	2.3	2.6	1.8	4.7	2.9	<0.5	
Copper	μg/L	87	1.0	3.8	3.6	2.5	6.1	4.2	<1.0	
Lead	μg/L	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Molybdenum	μg/L	9200	0.5	14.6	2.9	13.6	7.2	2.7	<0.5	
Nickel	μg/L	490	1.0	10.8	7.1	5.7	17.9	16.0	<1.0	
Selenium	μg/L	63	1.0	3.6	3.7	1.9	4.6	3.0	<1.0	
Silver	μg/L	1.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	μg/L	510	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Uranium	μg/L	420	0.5	1.3	3.0	3.4	4.7	3.0	<0.5	
Vanadium	μg/L	250	0.4	<0.4	<0.4	3.0	<0.4	<0.4	<0.4	
Zinc	μg/L	1100	5.0	12.5	11.6	8.8	10.3	9.3	<5.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Certified By:

Amanjot Bhela

AGAT WORK ORDER: 15T042566

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/16000 ATTENTION TO: Alyssa Troke SAMPLING SITE: SAMPLED BY:Alyssa Troke

Trace Organics Analysis															
RPT Date: Nov 20, 2015			С	UPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
FAINAMETER	Batch	ld	Dup #1	Dup #2	KFD		Value	Lower Upper		Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	7193330		< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	86%	50%	140%	98%	50%	140%
Vinyl Chloride	7193330		< 0.17	< 0.17	NA	< 0.17	110%	50%	140%	85%	50%	140%	91%	50%	140%
Bromomethane	7193330		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	82%	50%	140%	84%	50%	140%
Trichlorofluoromethane	7193330		< 0.40	< 0.40	NA	< 0.40	106%	50%	140%	99%	50%	140%	108%	50%	140%
Acetone	7193330		< 1.0	< 1.0	NA	< 1.0	117%	50%	140%	109%	50%	140%	115%	50%	140%
1,1-Dichloroethylene	7193330		< 0.30	< 0.30	NA	< 0.30	74%	50%	140%	80%	60%	130%	81%	50%	140%
Methylene Chloride	7193330		< 0.30	< 0.30	NA	< 0.30	89%	50%	140%	94%	60%	130%	81%	50%	140%
trans- 1,2-Dichloroethylene	7193330		< 0.20	< 0.20	NA	< 0.20	75%	50%	140%	85%	60%	130%	76%	50%	140%
Methyl tert-butyl ether	7193330		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	75%	60%	130%	79%	50%	140%
1,1-Dichloroethane	7193330		< 0.30	< 0.30	NA	< 0.30	78%	50%	140%	85%	60%	130%	97%	50%	140%
Methyl Ethyl Ketone	7193330		< 1.0	< 1.0	NA	< 1.0	99%	50%	140%	94%	50%	140%	92%	50%	140%
cis- 1,2-Dichloroethylene	7193330		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	95%	60%	130%	106%	50%	140%
Chloroform	7193330		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	112%	60%	130%	112%	50%	140%
1,2-Dichloroethane	7193330		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	113%	60%	130%	121%	50%	140%
1,1,1-Trichloroethane	7193330		< 0.30	< 0.30	NA	< 0.30	90%	50%	140%	102%	60%	130%	88%	50%	140%
Carbon Tetrachloride	7193330		< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	100%	60%	130%	95%	50%	140%
Benzene	7193330		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	94%	60%	130%	96%	50%	140%
1,2-Dichloropropane	7193330		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	106%	60%	130%	114%	50%	140%
Trichloroethylene	7193330		< 0.20	< 0.20	NA	< 0.20	104%	50%	140%	105%	60%	130%	104%	50%	140%
Bromodichloromethane	7193330		< 0.20	< 0.20	NA	< 0.20	119%	50%	140%	118%	60%	130%	119%	50%	140%
Methyl Isobutyl Ketone	7193330		< 1.0	< 1.0	NA	< 1.0	103%	50%	140%	85%	50%	140%	89%	50%	140%
1,1,2-Trichloroethane	7193330		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	111%	60%	130%	104%	50%	140%
Toluene	7193330		< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	92%	60%	130%	82%	50%	140%
Dibromochloromethane	7193330		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	102%	60%	130%	102%	50%	140%
Ethylene Dibromide	7193330		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	109%	60%	130%	103%	50%	140%
Tetrachloroethylene	7193330		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	95%	60%	130%	85%	50%	140%
1,1,1,2-Tetrachloroethane	7193330		< 0.10	< 0.10	NA	< 0.10	124%	50%	140%	105%	60%	130%	101%	50%	140%
Chlorobenzene	7193330		< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	102%	60%	130%	98%	50%	140%
Ethylbenzene	7193330		< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	93%	60%	130%	88%	50%	140%
m & p-Xylene	7193330		< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	94%	60%	130%	87%	50%	140%
Bromoform	7193330		< 0.10	< 0.10	NA	< 0.10	124%	50%	140%	102%	60%	130%	113%	50%	140%
Styrene	7193330		< 0.10	< 0.10	NA	< 0.10	90%		140%	87%	60%	130%	88%	50%	140%
1,1,2,2-Tetrachloroethane	7193330		< 0.10	< 0.10	NA	< 0.10	115%		140%	118%		130%	126%		140%
o-Xylene	7193330		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	97%		130%	97%		140%
1,3-Dichlorobenzene	7193330		< 0.10	< 0.10	NA	< 0.10	102%	50%	140%	99%	60%	130%	101%	50%	140%
1,4-Dichlorobenzene	7193330		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	105%	60%	130%	106%	50%	140%
1,2-Dichlorobenzene	7193330		< 0.10	< 0.10	NA	< 0.10	109%		140%	103%			105%		140%
1,3-Dichloropropene	7193330		< 0.30	< 0.30	NA	< 0.30	96%		140%	85%		130%	102%	50%	
n-Hexane	7193330		< 0.20	< 0.20	NA	< 0.20	77%	50%	140%	90%	60%	130%	73%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

AGAT WORK ORDER: 15T042566

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/16000 ATTENTION TO: Alyssa Troke SAMPLING SITE: SAMPLED BY:Alyssa Troke

							7			,					
	٦	Ггасе	Orga	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Nov 20, 2015			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	منا ا	ptable nits
TANAMETER		ld					Value	Lower	Upper		Lower	Upper	ĺ	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	1 (-BTEX) (Wa	iter)													
F1 (C6 to C10)	7193310		< 25	< 25	NA	< 25	79%	60%	140%	85%	60%	140%	82%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	95%	60%	140%	69%	60%	140%	65%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	92%	60%	140%	95%	60%	140%	89%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	84%	60%	140%	91%	60%	140%	90%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/16000 SAMPLING SITE: AGAT WORK ORDER: 15T042566
ATTENTION TO: Alyssa Troke
SAMPLED BY:Alyssa Troke

				Wate	er An	alys	is								
RPT Date: Nov 20, 2015			D	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ceptable imits Recove		منا ا	ptable nits	Recovery		ptable nits
		Id	·				value	Lower	Upper		Lower	Upper	•	Lower	Upper
O. Reg. 153(511) - Metals (Com	prehensive) (Water)													
Antimony	7196528	7196528	0.6	0.6	NA	< 0.5	102%	70%	130%	101%	80%	120%	103%	70%	130%
Arsenic	7196528	7196528	< 1.0	< 1.0	0.0%	< 1.0	107%	70%	130%	105%	80%	120%	114%	70%	130%
Barium	7196528	7196528	349	350	0.3%	< 2.0	102%	70%	130%	97%	80%	120%	99%	70%	130%
Beryllium	7196528	7196528	< 0.5	< 0.5	0.0%	< 0.5	108%	70%	130%	102%	80%	120%	102%	70%	130%
Boron	7196528	7196528	97.3	87.5	10.6%	< 10.0	96%	70%	130%	93%	80%	120%	84%	70%	130%
Cadmium	7196528	7196528	< 0.2	< 0.2	0.0%	< 0.2	101%	70%	130%	106%	80%	120%	111%	70%	130%
Chromium	7196528	7196528	5.3	6.7	NA	< 2.0	106%	70%	130%	110%	80%	120%	113%	70%	130%
Cobalt	7196528	7196528	2.3	2.2	NA	< 0.5	106%	70%	130%	109%	80%	120%	105%	70%	130%
Copper	7196528	7196528	3.8	4.2	NA	< 1.0	99%	70%	130%	106%	80%	120%	92%	70%	130%
Lead	7196528	7196528	< 0.5	< 0.5	0.0%	< 0.5	100%	70%	130%	97%	80%	120%	86%	70%	130%
Molybdenum	7196528	7196528	14.6	14.5	0.7%	< 0.5	101%	70%	130%	99%	80%	120%	113%	70%	130%
Nickel	7196528	7196528	10.8	11.9	9.7%	< 1.0	108%	70%	130%	107%	80%	120%	100%	70%	130%
Selenium	7196528	7196528	3.6	2.8	NA	< 1.0	100%	70%	130%	108%	80%	120%	118%	70%	130%
Silver	7196528	7196528	< 0.2	< 0.2	0.0%	< 0.2	104%	70%	130%	109%	80%	120%	113%	70%	130%
Thallium	7196528	7196528	< 0.3	< 0.3	0.0%	< 0.3	104%	70%	130%	107%	80%	120%	96%	70%	130%
Uranium	7196528	7196528	1.3	1.2	NA	< 0.5	99%	70%	130%	91%	80%	120%	88%	70%	130%
Vanadium	7196528	7196528	< 0.4	< 0.4	0.0%	< 0.4	106%	70%	130%	109%	80%	120%	118%	70%	130%
Zinc	7196528	7196528	12.5	12.1	NA	< 5.0	97%	70%	130%	99%	80%	120%	91%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 15T042566 PROJECT: 1522569/16000 ATTENTION TO: Alyssa Troke SAMPLING SITE: SAMPLED BY: Alyssa Troke

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	7.6711 6.6.1	ETTEROTIONE THE EXCITOR	/III/ETTIONE TESTINGSE
F1 (C6 to C10)	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010 VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010 VOL-91-5010	MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010 VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010 VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010	MOET TIO ESTAT	GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS (P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260 EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS (P&T)GC/MS
Chloroform	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1.2-Dichloroethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	
Benzene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS (P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS (P&T)GC/MS
1,3-Dichloropropene			(P&T)GC/MS
Xylene Mixture	•		(P&T)GC/MS (P&T)GC/MS
n-Hexane	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001 VOL-91-5001	EPA SW-846 5030 & 8260	
4-DIOIIIUIIUUIDDEIIZEIIE	VOL-81-0001	LI'A 377-040 3030 & 0200	(P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 15T042566

PROJECT: 1522569/16000

ATTENTION TO: Alyssa Troke

SAMPLED BY:Alyssa Troke

			,
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
Toluene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
Ethylbenzene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
m & p - Xylene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
o - Xylene	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
Xylene Mixture	VOL-91-5010	MOE PHC-E3421	(P&T)GC/FID
Water Analysis			
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

5835 Coopers Avenue	
Mississauga, Ontario L4Z 1Y2	
Ph: 905.712.5100 Fax: 905.712.5122	
w.agatlabs.com webearth.agatlabs.com	

	. 1		
Cooler Quantity:	2	0	
Arrival Temperatures:	7.	7.0	
		<u> </u>	
Custody Seal Intact: Notes	□Yes	□No	

Chain of Custody Record If this is a Drinking Water sample, pleas				sample, please	use Drinking Water Chain of	Custody Fo	rm (p	otable	water i	intended	for hun	nan co	nsumpt	ion)	A	rrival	Tem	pera	tures:	7.	1	7.0															
Report Information: Company: Golder	Associat	les			Regulatory Requ	uiremen	ts:		No R	egula	tory l	Requ	uirem	ent	Custody Seal Intact:					□Yes		□N	0	□N/													
		Table 3							Regulation 558					Turnaround Time (TAT) Required:																							
	2-9600 Fax:				2 -9600 Fax:				□Ind/Com Res/Park □Agriculture		Sanit Storr			□Р	rov. Wa					egul ush			Surcharg	5 to	7 Bus	siness	Days										
	DI C a L																		Region	Indicate	e One	-		ther	ate Oni					3 B Day	usine s	ess	☐ 2 E	Busines ys	3S [□ 1 Bu Day	ısiness
Project Information:	9/11/2000				Is this submissi					port (Guide	line	on				OR	Date	e Requi	red (Rus	n Surci	narges	Мау Арр	oly):													
Project: Site Location: Sampled By: Alussa	10				⊠ Yes □	l No				Yes													f or rush 1 utory holi														
AGAT Quote #: See pr	eligius s	ulomissir ot provided, client will be		y analysis.	Sample Matrix Legend				(1	Check A	Applica	ble)	BTE.																								
Invoice Information: Company: Contact: Address: Email: Please note: If quotation number is not provided, client will be billed full price for an allegales. Bill To Same: Yes \(\mathbb{Z}\) No \(\mathbb{D}\) Company: Contact: Address: Email:		Somotos roke - Robertson Road		ssa Troke 31 193- Robertson Road oke Ogolder.com				Troke Troke Trobertan Road			B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	s and Inorganics	Scan	Hydride Forming Metals	stom N	FOC D PH	Nutrients: ☐ TP ☐ NH₃ ☐ TKN ☐ NO₃ ☐ NO₂ ☐ NO₃/NO₂	les: X voc ☐ BTEX ☐ THM	CCME Fractions 1 to 4, :nc/.		Chlorophenols		Organochlorine Pesticides	TCLP Metals/Inorganics	Use												
Sample Identification	Date Sample		# of Containers	Sample Matrix	Comments/ Special Instructions	etal	Metal	Hydrid	Client (Cortal N	Nutrie	Volatiles:	CCME	PAHs	Chloro	PCBs	Organ	TCLP I	Sewer				W.														
15-01A	Nbv. 12	15 -	5	GW			X		112			X	X									Ш															
15-01B			5				X					X	X																								
15-02			5				X			NE PER		-	X		100																						
15-03			5				X					X	X																								
DUPI			5				X					\times	X		3																						
Field Blank		-	5				X					X	X	-								4-4															
Trip Blank			3									X										4															

15-01A	Nbv.12/15 -	5 GW		X	XX	
15-01A 15-01B 15-02 15-03		5		X	$\times \times$	
15-02		5		X	XX	
15-03		5		X	XX	
DUPI		5		X	XX	
Field Blank		5		X	\times \times	
Trip Blank		3			\times	
Trip Blank Trip Spike	· · · · · ·	3	L R.C. III		X	
			in the wiley to the little			
			The state of the s			

Samples Relinquished By (Print Name and Sign):	Date
alessa Joke	Nbv 13/15
Samples Relinquished By (Print Name and Sign):	Date

~
e and Sign):

Time //:00

Date
Date

10100

Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGA

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 18106596 - Elmvale

AGAT WORK ORDER: 19Z456867

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Apr 22, 2019

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 19Z456867

PROJECT: 18106596 - Elmvale

SAMPLED BY:

ATTENTION TO: Alyssa Troke

Ottawa Sanitary and Combined Sewer Use By-law - BNAEs/Total PAHs

			, o , o			
DATE RECEIVED: 2019-04-15						DATE REPORTED: 2019-04-18
			SAMPLE DE	SCRIPTION:	MW15-1A	
			SAM	MPLE TYPE:	Water	
			DATE	SAMPLED:	2019-04-12	
Parameter	Unit	G / S: A	G / S: B	RDL	132415	
Bis(2-Chloroethoxy)methane	mg/L	0.036		0.0005	<0.0005	
2,4-Dichlorophenol	mg/L	0.044		0.0005	< 0.0005	
Naphthalene	mg/L	0.059	0.0064	0.0003	< 0.0003	
2-Methylnaphthalene	mg/L	0.022		0.0002	< 0.0002	
1-Methylnaphthalene	mg/L	0.032		0.0002	< 0.0002	
Fluorene	mg/L	0.059		0.0002	< 0.0002	
Diethyl phthalate	mg/L	0.2		0.0005	< 0.0005	
Bis(2-Ethylhexyl)phthalate	mg/L	0.28		0.0005	0.0029[<a]< td=""><td></td></a]<>	
Di-n-butyl phthalate	mg/L	0.057		0.0005	< 0.0005	
Butyl benzyl phthalate	mg/L	0.017		0.0005	< 0.0005	
Di-n-octyl phthalate	mg/L	0.03		0.0005	< 0.0005	
Indole	mg/L	0.05		0.0005	<0.0005	
Total PAHs	mg/L	0.015	0.006	0.0003	< 0.0003	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Limits for Sanitary and Combined Sewer Discharge - City of Ottawa - By-Law No. 2003-514, B Refers to Limits for Storm Sewer Discharge - City of Ottawa - By-Law No. 2003-514

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 19Z456867 PROJECT: 18106596 - Elmvale 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke SAMPLED BY:

OAW	LLD

					Total PCBs (water)				
DATE RECEIVED: 2019-04-15 DATE REPORTED: 2019-04-18									
		SAMPLE DESC	CRIPTION:	MW15-1A					
		SAMF	PLE TYPE:	Water					
		DATE S	SAMPLED:	2019-04-12					
Parameter	Unit	G/S	RDL	132415					
PCBs	μg/L		0.1	<0.1					
Surrogate	Unit	Acceptabl	le Limits						
Decachlorobiphenyl	%	60-1	30	95					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 19Z456867 PROJECT: 18106596 - Elmvale 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Troke

SAMPLING SITE: SAMPLED BY:

		Otta	va Sanita	ry and Co	ombined Sewer	Use By-law - I	Inorganics		
DATE RECEIVED: 2019-04-15	5							DATE REPORTED: 2019-04-22	
			SAMPLE DE	SCRIPTION:	MW15-1A				
			SA	MPLE TYPE:	Water				
			DATE	SAMPLED:	2019-04-12				
Parameter	Unit	G / S: A	G / S: B	RDL	132415				
Total Suspended Solids	mg/L	350	15	10	94[B-A]				
Total Kjeldahl Nitrogen	mg/L	100		0.10	<0.10				
Chloride	mg/L			10	6980				
Sodium	mg/L			2.5	1690				
Total Aluminum	mg/L	50		0.020	4.20[<a]< td=""><td></td><td></td><td></td><td></td></a]<>				
Total Antimony	mg/L	5		0.020	<0.020				
Total Arsenic	mg/L	1	0.02	0.015	0.027[B-A]				
Total Bismuth	mg/L	5		0.010	<0.010				
Total Boron	mg/L	25		0.050	0.051[<a]< td=""><td></td><td></td><td></td><td></td></a]<>				
Total Cadmium	mg/L	0.02	0.008	0.010	<0.010				
Total Chromium	mg/L	5	0.08	0.020	<0.020				
Total Cobalt	mg/L	5		0.020	<0.020				
Total Copper	mg/L	3	0.04	0.020	<0.020				
Total Lead	mg/L	5	0.12	0.020	<0.020				
Total Manganese	mg/L	5	0.05	0.020	2.57[B-A]				
Total Molybdenum	mg/L	5		0.020	<0.020				
Total Nickel	mg/L	3	0.08	0.030	<0.030				
Total Selenium	mg/L	5	0.02	0.020	<0.020				
Total Silver	mg/L	5	0.12	0.020	<0.020				
Total Tin	mg/L	5		0.020	<0.020				
Total Titanium	mg/L	5		0.020	0.295[<a]< td=""><td></td><td></td><td></td><td></td></a]<>				
Total Vanadium	mg/L	5		0.020	<0.020				
Total Zinc	mg/L	3	0.04	0.020	0.029[<b]< td=""><td></td><td></td><td></td><td></td></b]<>				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to Limits for Sanitary and Combined Sewer Discharge - City of Ottawa - By-Law No. 2003-514, B Refers to Limits for Storm Sewer Discharge - City of Ottawa - By-Law No. 2003-514

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

132415 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Iris Verastegui

Guideline Violation

AGAT WORK ORDER: 19Z456867

PROJECT: 18106596 - Elmvale

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Troke

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
132415	MW15-1A	ON Ottawa Storm	Ottawa Sanitary and Combined Sewer Use By-law - Inorganics	Total Arsenic	mg/L	0.02	0.027
132415	MW15-1A	ON Ottawa Storm	Ottawa Sanitary and Combined Sewer Use By-law - Inorganics	Total Manganese	mg/L	0.05	2.57
132415	MW15-1A	ON Ottawa Storm	Ottawa Sanitary and Combined Sewer Use By-law - Inorganics	Total Suspended Solids	mg/L	15	94

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 18106596 - Elmvale

ATES LTD AGAT WORK ORDER: 19Z456867
ATTENTION TO: Alyssa Troke

SAMPLING SITE: SAMPLED BY:

	Trace Organics Analysis														
RPT Date:				DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	l lie	ptable nits	Recovery	منا ا	ptable nits
		ld	'	'			Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
Ottawa Sanitary and Combined Se	ewer Use B	y-law - B	NAEs/Tot	al PAHs											
Bis(2-Chloroethoxy)methane		TW	< 0.0005	< 0.0005	NA	< 0.0005	79%	60%	140%	96%	60%	140%	97%	60%	140%
2,4-Dichlorophenol		TW	< 0.0005	< 0.0005	NA	< 0.0005	105%	60%	140%	111%	60%	140%	114%	60%	140%
Naphthalene		TW	< 0.0003	< 0.0003	NA	< 0.0003	99%	60%	140%	105%	60%	140%	106%	60%	140%
2-Methylnaphthalene		TW	< 0.0002	< 0.0002	NA	< 0.0002	100%	60%	130%	94%	60%	130%	103%	60%	130%
1-Methylnaphthalene		TW	< 0.0002	< 0.0002	NA	< 0.0002	104%	60%	130%	107%	60%	130%	99%	60%	130%
Fluorene		TW	< 0.0002	< 0.0002	NA	< 0.0002	96%	60%	140%	90%	60%	140%	99%	60%	140%
Diethyl phthalate		TW	< 0.0005	< 0.0005	NA	< 0.0005	98%	60%	130%	97%	60%	130%	90%	60%	130%
Bis(2-Ethylhexyl)phthalate		TW	< 0.0005	< 0.0005	NA	< 0.0005	104%	60%	130%	95%	60%	130%	85%	60%	130%
Di-n-butyl phthalate		TW	< 0.0005	< 0.0005	NA	< 0.0005	101%	60%	130%	100%	60%	130%	97%	60%	130%
Butyl benzyl phthalate		TW	< 0.0005	< 0.0005	NA	< 0.0005	106%	60%	130%	87%	60%	130%	89%	60%	130%
Di-n-octyl phthalate		TW	< 0.0005	< 0.0005	NA	< 0.0005	105%	60%	130%	89%	60%	130%	87%	60%	130%
Indole		TW	< 0.0005	< 0.0005	NA	< 0.0005	103%	60%	130%	97%	60%	130%	94%	60%	130%
Total PAHs		TW	< 0.0003	< 0.0003	NA	< 0.0003	101%	60%	130%	85%	60%	130%	101%	60%	130%
Total PCBs (water)															
PCBs		TW	< 0.1	< 0.1	NA	< 0.1	105%	60%	140%	104%	60%	140%	94%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jenez

AGAT WORK ORDER: 19Z456867

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 18106596 - Elmvale ATTENTION TO: Alyssa Troke

SAMPLING SITE: SAMPLED BY:

Water Analysis															
RPT Date:			С	UPLICATI		REFERE		NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accer Lim	otable nits	Recovery		ptable nits	Recovery		ptable nits
		Ia	.,				Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
Ottawa Sanitary and Combined S	Ottawa Sanitary and Combined Sewer Use By-law - Inorganics														
Total Suspended Solids	134772		<10	<10	NA	< 10	98%	80%	120%						
Total Kjeldahl Nitrogen	141048		149	152	2.0%	< 0.10	105%	80%	120%	107%	80%	120%	107%	70%	130%
Chloride	141640		36.5	36.9	1.1%	< 0.10	104%	90%	110%	101%	90%	110%	106%	80%	120%
Sodium	129152		4.00	3.98	0.5%	< 0.05	97%	90%	110%	97%	90%	110%	103%	70%	130%
Total Aluminum	135077		<0.020	0.026	NA	< 0.020	106%	90%	110%	99%	80%	120%	100%	70%	130%
Total Antimony	135077		<0.020	<0.020	NA	< 0.020	104%	90%	110%	101%	80%	120%	103%	70%	130%
Total Arsenic	135077		<0.015	< 0.015	NA	< 0.015	103%	90%	110%	103%	80%	120%	105%	70%	130%
Total Bismuth	135077		<0.010	<0.010	NA	< 0.010	103%	90%	110%	106%	80%	120%	107%	70%	130%
Total Boron	135077		< 0.050	< 0.050	NA	< 0.050	101%	90%	110%	99%	80%	120%	102%	70%	130%
Total Cadmium	135077		<0.010	<0.010	NA	< 0.010	95%	90%	110%	93%	80%	120%	120%	70%	130%
Total Chromium	135077		<0.020	<0.020	NA	< 0.020	103%	90%	110%	104%	80%	120%	107%	70%	130%
Total Cobalt	135077		<0.020	< 0.020	NA	< 0.020	100%	90%	110%	101%	80%	120%	101%	70%	130%
Total Copper	135077		<0.020	< 0.020	NA	< 0.020	101%	90%	110%	104%	80%	120%	105%	70%	130%
Total Lead	135077		<0.020	< 0.020	NA	< 0.020	101%	90%	110%	103%	80%	120%	103%	70%	130%
Total Manganese	135077		0.125	0.128	2.4%	< 0.020	103%	90%	110%	105%	80%	120%	106%	70%	130%
Total Molybdenum	135077		<0.020	<0.020	NA	< 0.020	96%	90%	110%	94%	80%	120%	101%	70%	130%
Total Nickel	135077		<0.030	< 0.030	NA	< 0.030	104%	90%	110%	105%	80%	120%	106%	70%	130%
Total Selenium	135077		<0.020	< 0.020	NA	< 0.020	102%	90%	110%	96%	80%	120%	97%	70%	130%
Total Silver	135077		<0.020	< 0.020	NA	< 0.020	97%	90%	110%	105%	80%	120%	111%	70%	130%
Total Tin	135077		<0.020	<0.020	NA	< 0.020	93%	90%	110%	91%	80%	120%	99%	70%	130%
Total Titanium	135077		<0.020	<0.020	NA	< 0.020	96%	90%	110%	94%	80%	120%	101%	70%	130%
Total Vanadium	135077		<0.020	< 0.020	NA	< 0.020	96%	90%	110%	95%	80%	120%	100%	70%	130%
Total Zinc	135077		<0.020	<0.020	NA	< 0.020	102%	90%	110%	100%	80%	120%	103%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Iris Verástegui

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 19Z456867

PROJECT: 18106596 - Elmvale

ATTENTION TO: Alyssa Troke

SAMPLING SITE: SAMPLED BY:

SAMI LING SITE.		O/ (WII EED D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	•		•
Bis(2-Chloroethoxy)methane	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
2,4-Dichlorophenol	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Naphthalene	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
2-Methylnaphthalene	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
1-Methylnaphthalene	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Fluorene	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Diethyl phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Di-n-butyl phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Butyl benzyl phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Di-n-octyl phthalate	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Indole	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
Total PAHs	ORG-91-5114	EPA SW-846 3510C & 8270E	GC/MS
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Water Analysis			
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Total Aluminum	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Antimony	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Arsenic	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Bismuth	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Boron	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Cadmium	MET -93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Chromium	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Cobalt	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Copper	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Lead	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Manganese	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Molybdenum	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Nickel	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Selenium	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Silver	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS
Total Tin	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Titanium	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Vanadium	MET-93-6103	EPA SW-846 3010A & 6020A	ICP-MS
Total Zinc	MET-93-6003	EPA SW-846 3010A & 6020A	ICP-MS

Laboratories 1 La Red

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 **Laboratory Use Only**

Work Order #: 197456867

Ph: 905.712.5100 Fax: 905.712.5122

wehearth agatlahs com

	Woodal anagatiaos.com	Cooler Quantity:
Chain of Custody Record If this is a Drinking Water sample, please of	se Drinking Water Chain of Custody Form (potable water consumed by humans)	Arrival Temperatures: 5.4 5.0 5.0 5.0 5.0 5.0
Report Information: Company: Golden Associates Contact: Alussa Whiteduck	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Regulation 153/04 Sewer Use Regulation 558	Custody Seal Intact:,
Address: 1931 Roberton Rd Ottawa	Table	Turnaround Time (TAT) Required: Regular TAT
Phone: 1013 - 592-9600 Fax: Reports to be sent to: 1. Email: awhiteduce agolder con	Res/Park Agriculture Soil Texture (Check One) Coarse Storm Prov. Water Quality Objectives (PWQO) Cother	Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Business Days Days Day
2. Email:	Fine MISA Indicate One	OR Date Required (Rush Surcharges May Apply):
Project Information: Project: 18/06596 - Elmuale Site Location: Sampled By:	Is this submission for a Report Guideline on Certificate of Analysis ☐ Yes ► No	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM
AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Bill To Same: Yes No Company: Contact: Address: Email:	SW Surface Water	
Sample Identification Date Time # of Containers Mail	Nutrients:	
MW15-1A Apr.12/19 - G1	take sochium + X chlorate from another botifie	
Samples Relinquished By (Print Name and Sign): Als Sacrobatta Luck / Olympia Whitelest Apr. 15/19 / C Samples Relinquished By (Print Name and Sign): Time Total Time Date Time Time	Samplus Roceived By (Print Name and Sign): Date OC Samples Received By (Print Name and Sign): Date 19 / 4 / 16 Samples Received By (Print Name and Sign): Date 19 / 4 / 16	Time

golder.com