18 McArthur Avenue Ottawa Assessment of Adequacy of Public Services

Project # CW-04-16 Prepared for: Takyan Consulting By:

Arch-Nova Design Inc.

April 2016

Table of Contents

1. Intr	oduction	2
2. Pul	blic Services Capacity	2
2.1	Water Supply	3
2.2	Sanitary Sewer	5
3. Sto	rmwater	6
3.1	Existing Site Stormwater Services	6
3.2	Proposed Development	6
4. Co	nclusion and Recommendation	8
4.1	Water Supply	8
4.2	Sanitary Sewer	8
4.3	Stormwater	8

Appendix A: Calculations Appendix B: Correspondence

1. Introduction

The subject property is located at 18 McArthur Avenue, Ottawa. The proposed work comprises of a 3-storey+basement apartment building. For the purpose of this report the site is considered to run east-west.

Currently the property is used as a parking lot. A small grass area is located on the south side of the property. Adjacent properties are residential.

The area is serviced by municipal water, sanitary and storm water systems.

18 McArthur Avenue, Ottawa: Location

2. Public Services Capacity

This section of the report will analyze existing municipal services and the potential impact of the proposed building at 18 McArthur Avenue on the existing service capacity.

2.1 Water Supply

¹The following are boundary conditions, HGL, for a hydraulic analysis at 18 McArthur Avenue, connecting to the 152 mm watermain:

Max Day + FF = 108 m assuming a fire flow of 95 L/s

Minimum HGL = 109.6 m

Maximum HGL = 118.4 m, the estimated ground elevation is 56.10 m, the maximum pressure is estimated to be 80.3 psi which is more than 80 psi.

Table 1 presents the City of Ottawa design criteria based on MOE Guidelines.

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Residential Average Daily Demand	350 L/d/P
² Residential Maximum Daily Demand	2.5 x Average Daily
Residential Maximum Hourly	2.2 x Maximum Daily
Commercial Demand	2.5 L / m2 /d
Commercial Maximum Daily Demand	1.5 x Average Daily
Commercial Maximum Hourly	1.8 x Maximum Daily
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
During Peak Hourly Demand operating pressure must remain within	275kPa and 552kPa (40-80 psi; 28-56m)
During fire flow operating pressure must not drop below	140kPa (20 psi; 14 m)

Table 1:	Water	Supply	Design	Criteria
----------	-------	--------	--------	----------

The consumption is expected to be **116.38 I/min (1.93 L/sec)** for peak period. The fire flow for residential spaces was estimated to be 9,000 I/min

¹ City of Ottawa boundary condition information is based on current operation of the city water distribution system (also see Appendix A for complete correspondence information)

² Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.

(150 l/sec)³ however, the Fire Underwriters Survey (FUS) calculation⁴ provided the following:

a. fire flow: 12,000 l/min

b. available fire flow⁵ is 5,700 l/min (95 l/sec) which will require additional fire protection measures including fire separation structures, Siamese fire connection and/or fire extinguishers on each floor.

The table below summarizes the pressure for the designed parameters:

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² (m)
Average Daily Demand	8.17	118.4
Max Day + Fire Flow	5,777.58	109.6
Peak Hour	116.38	

 Table 2: Water Demand and Boundary Conditions

³ OBC SectionA.3.2.5.7, Table 2.

⁴ See Appendix A: Calculations

⁵ City of Ottawa: Boundary Conditions, April 2016

2.2 Sanitary Sewer

The estimated outflow for the new building is **0.54 l/sec** (peak flow+wet weather).

Design Parameter	Value ⁶
Residential Average Apartment	1.8 P/unit
Average Daily Demand	350 L/d/per
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0
Commercial Space	5L/m2/day
Infiltration and Inflow Allowance	0.28L/s/ha
Sanitary sewers are to be sized employing the Manning's Equation	Q =(1/n)AR ^{2/3} S ^{1/2}
Minimum Sewer Size	200mm diameter
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5m from crown of sewer to grade
Minimum Full Flowing Velocity	0.6m/s
Maximum Full Flowing Velocity	3.0m/s

Existing municipal sewer 450 mm has a capacity of 54.1 l/sec for 0.45% slope and 30% full or 270 l/sec for 80% full.

Detailed calculation of pre and post development flow is presented in Appendix A.

⁶ Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2004.

3. Stormwater

3.1 Existing Site Stormwater Services

Current parking lot is draining toward north and to the street. Small portion of grassed area also drains in the same direction. No other storm water services (i.e. storage, ponds) are on the property.

Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)
Bus Stop	A1	0.00275	6.8%	0.95	0.003
Parking	A2	0.03047	74.9%	0.95	0.029
Green area	A3	0.00746	18.3%	0.70	0.005
TOTAL		0.0407	100.0%		0.037
Weighted C =					0.50

Table 4: Current Drainage Areas

Entire site drains uncontrolled over surface to McArthur Predevelopment C=0.5 is used for the calculation for the post development calculation.

A municipal stormwater service 600 mm is provided on McArthurt Avenue and has capacity of 135 l/sec for slope of 0.6% and 30% full and 671 l/sec for 80% full.

3.2 Proposed Development

The proposed 3-storey building will cover the main part of the property however the flat roof storage is expected to compensate for the pervious areas so the balance between pre and post development run-off is not significantly changed. Also, the main drainage routes, such as the roof drains to the front (McArthur Avenue.) will remain unchanged. There is an increase in impervious surfaces in the area where the existing green area is.

For the purpose of managing the 5 year predevelopment runoff, the uncontrolled postdevelopment runoff was used to determine the controlled runoff from the roof storage. The uncontrolled runoff is calculated to be 2.96 l/sec which leaves 2.93 l/sec for the controlled runoff. The excess of water will be stored on the roof and release under this condition.

Predevelopment Runoff:						
Uncontrolled Runoff						
5-year	5.89	l/sec				
100-year 12.63 l/sec						
Controlled Runoff:						
5-year 0.00 l/sec						
100-year 0.00 l/sec						

Postdevelopment Runoff:							
Uncontrolled Runoff							
5-year	2.96	l/sec					
100-year 5.08 l/sec							
Controlled Runoff:							
5-year	6.41	l/sec					
100-year 10.98 l/sec							

Controlled allowable runoff						
Controlled Runoff:						
5-year	2.93	l/sec				
100-year	7.55	l/sec				

Table 5: Uncontrolled and Controlled Runoff Summary

The calculation was based on 10 minutes concentration times For both calculations the runoff coefficient is C=0.5. The roof stage-storage calculation is provided in Appendix A.

The drainage system comprises of weeping tiles around the building and a connection to the storm trunk at McArthur Avenue. Details are presented in the Grading and Site Services Plan.

The patio and green space at the back will be graded to route stormwater toward the fron of the property at McArthur Avenue.

4. Conclusion and Recommendation

4.1 Water Supply

The water supply demand calculation is based on the fire flow requirement for residential buildings; it is 12,000 l/min (200 l/sec). The City personnel provided information that only 5,700 l/min is available under condition of residual 20psi. and calculated a pressure of 109.6 m, FUS calculation requires 12,000 l/min which which will require additional fire protection means such as a separation fire walls, Siamese connections and fire extinguishers at each floor.

4.2 Sanitary Sewer

The existing sanitary sewer 450 mm under 0.45% is expected to provide a flow of of 54.1 l/sec for 0.45% slope and 30% full or 270 l/sec for 80% full. Flow from the new building in rate of 0.54 l/sec for the peak wet weather flow will not overload the pipe. The connection from the site will be by gravity (as presented on the plan).

4.3 Stormwater

The stormwater system (weeping system) of the property will be connected to the existing 600 mm pipe. A municipal stormwater service 600 mm is provided at McArthur Avenue and has capacity of 135 l/sec for slope of 0.6% and 30% full and 671 l/sec for 80% full.

There will be no increase in runoff flow as the onsite storage (roof) is proposed.

Drainage area and a storm calculation sheets (pre and post-development) are shown in Appendix A⁷.

⁷ Post Development calculation:

There will be an increased volume of 5.31 m³ which is a result of increased imperviousness. This amount of water will be stored on the roof and released under the predevelopment conditions.

Details are presented in Appendix A.

Based on the information provided by the City of Ottawa, the existing municipal services are adequate and will not be overloaded after the construction of the buildings at 18 McArthur.

Prepared by:

Zoran Mrdja, P.Eng.

Authorized by Professional Engineers of Ontario to provide professional services to public Appendix A: Calculations

Project Number: C	W-04-16					18 McArthu	r Ave., Ottaw	a	ARCH DESIGN Architect Engineer Consultin	H-NOVA INC. ture tung as	
RE-DEVELOPME	<u>NT</u>									2	
			The pre-deve	lopment ti	me of conc	entration is	10 m	inutes			
		where:	9	008 071 / /	(Tc + 6.053	0.814	1 - 17	235 688 / (Tc -	+ 6 014) ⁰	.820	
			l ₅ =	104.2	mm/hr)	$I_{100} = I_{1}$ $I_{100} =$	178.6 mm	/hr		
Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)]					
Bus Stop	A1	0.00275	6.8%	0.95	0.003						
Parking	A2	0.03047	74.9%	0.95	0.029						
Green area	A3	0.00746	18.3%	0.70	0.005		$Q_{5pre} = (2$.78)*(C)*(I₅)₊(A	4)		
							Q _{5pre} = Q _{5pre} =	2.78 x 5.89 L/s	0.50	104.2	x 0.0407
						-	Q _{100pre} = (2	.78)*(C)*(I ₁₀₀)	•(A)	179.6	× 0.0407
						-	Q _{100pre} = Q _{100pre} =	12.63 L/s	0.0.2	170.0	X 0.0407
TOTAL		0.0407	100.0%		0.037						
Weighted C =					0.50	0.904141					
OST-DEVELOPM	C=0.5 used	for predevelopm	nent calculation	(City of Ottav	wa requiremer	nt)					
		T	he post-deve	lopment ti	me of conc	entration is	10 m	inutes			
		where:									

 $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_5 = 104.2 \text{ mm/hr}$

Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)
Landscape	A1	0.0006	3.3%	0.95	0.001
Landscape	A2	0.0004	2.4%	0.40	0.000
Walkway	A3	0.0029	16.9%	0.70	0.002
Building	A4	0.0000	0.0%	0.00	0.000
Walkway	A5	0.0024	14.1%	0.70	0.002
Walkway	A6	0.0011	6.1%	0.70	0.001
Patio+Bike Rack	A7	0.0024	14.1%	0.70	0.002
Dump Covered	A8	0.0010	5.7%	0.95	0.001
Green area	A9	0.0055	31.9%	0.30	0.002
Walkway	A10	0.0010	5.6%	0.70	0.001
TOTAL		0.0173	100.0%		0.010
Weighted C =					0.59

I₁₀₀ = 1735.688 / (Tc + 6.014) ^{0.820} I₁₀₀ = **178.6 mm/hr**

$Q_{5post} = (2.78)$	8)*(C)*(I ₅) _* (A	A)		
Q _{5post} =	2.78 x	0.58	104.2	x 0.0173
Q _{5post} =	2.96 L/s			

Q _{100post} = (2.78)*(C)*(I ₁₀₀)*((A)		
Q _{100post} =	2.78 x	0.5	178.6	x 0.0173
Q _{100post} =	5.08 L/s			

Project Number:	CW-04-1	16			18 McArth	ur Ave., Ottawa		Architectur Engineering	₩0 ₩ ₽ ₩6. \$	
PRE-DEVELOP	MENT							Consulting	6	
			The pre-devel	opment tir	ne of concentration is	10 mir	nutes			
		where:	I ₅ = 9	98.071 / (Tc + 6.053) ^{0.814}	I ₁₀₀ = 173	35.688 / (Tc +	6.014) ^{∪.8}	20	
			I ₅ =	104.2	mm/hr	I ₁₀₀ =	178.6 mm/l	nr		
Surface Type	ID	Area (ha)	Percent of total Area	с	A X C (ha)					
Bus Stop	A1	0.00000	0.0%	0.95	0.000					
Parking	A2	0.00000	0.0%	0.95	0.000	0 - (2)	79*(^*(\ (A	`		
Green area	Ap	0.00000	0.0%	0.70	0.000	$Q_{5pre} = (2.$	2 78 v	0.59	104.2	× 0.0000
						Q _{5pre} =	2.70 x	0.5%	104.2	X 0.0000
						Spre	0.00 20			
						$0_{111} = (2)^{11}$	78)*(C)*(L).(Ά)		
						$Q_{100pre} = Q_{100pre}$	2 78 x	0.59	178 6	x 0.0000
						$Q_{100pre} =$	0.00 L/s	0.04	110.0	X 0.0000
						- Toople				
TOTAL		0.0000	0.0%		0.000					
Weighted C =					0.50					
(C=0.5 used	for predevelopm	nent calculation (City of Ottaw	/a requirement)					
			,	,	, ,					
POST-DEVELO										
		OONTROLL								
		Т	he post-devel	opment tir	me of concentration is	10 mir	nutes			
		where:								
			I ₅ = 9	98.071 / (Tc + 6.053) ^{0.814}	I ₁₀₀ = 173	35.688 / (Tc +	6.014) ^{0.8}	20	
			I ₅ =	104.2	mm/hr	I ₁₀₀ =	178.6 mm/l	٦r		

ID	Area (ha)	Percent of total Area	С	A X C (ha)
A1	0.0000	0.0%	0.95	0.000
A2	0.0000	0.0%	0.40	0.000
A3	0.0000	0.0%	0.70	0.000
A4	0.0233	100.0%	0.95	0.022
A5	0.0000	0.0%	0.70	0.000
A6	0.0000	0.0%	0.70	0.000
A7	0.0000	0.0%	0.70	0.000
A8	0.0000	0.0%	0.95	0.000
A9	0.0000	0.0%	0.30	0.000
A10	0.0000	0.0%	0.70	0.000
	0.0233	100.0%		0.022
				0.95
	ID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10	ID Area (ha) A1 0.0000 A2 0.0000 A3 0.0000 A4 0.0233 A5 0.0000 A6 0.0000 A7 0.0000 A8 0.0000 A9 0.0000 A10 0.00233	ID Area (ha) Percent of total Area A1 0.0000 0.0% A2 0.0000 0.0% A3 0.0000 0.0% A4 0.0233 100.0% A5 0.0000 0.0% A6 0.0000 0.0% A7 0.0000 0.0% A9 0.0000 0.0% A10 0.0000 0.0% A10 0.0000 0.0%	ID Area (ha) Percent of total Area (ha) C A1 0.0000 0.0% 0.95 A2 0.0000 0.0% 0.40 A3 0.0000 0.0% 0.70 A4 0.0233 100.0% 0.95 A5 0.0000 0.0% 0.70 A6 0.0000 0.0% 0.70 A7 0.0000 0.0% 0.95 A9 0.0000 0.0% 0.30 A10 0.0000 0.0% 0.70 A9 0.0000 0.0% 0.70 A10 0.0233 100.0% 0.70

 $Q_{5post} = (2.78)^*(C)^*(I_5)_*(A)$

Q _{5post} =	2.78 x	0.95	104.2	x 0.0233
Q _{5post} =	6.41 L/s			

Г

$Q_{100post} = (2.78)^*(C)^*(I_{100})^*(A)$

Q _{100post} =	2.78 x	0.95	178.6	x 0.0233
Q _{100post} =	10.98 L/s			

ALLOWABLE RUNOFF

Predevelopment Runoff:							
Uncontrolled Runoff							
5-year	5.89	l/sec					
100-year	12.63	l/sec					
Controlled R	Controlled Runoff:						
5-year	0.00	l/sec					
100-year	0.00	l/sec					

ARCH-NOVA	- she
Architecture	
Engineering Consulting	

Postdevelopment Runoff:						
Uncontrolled Runoff						
5-year	2.96	l/sec				
100-year	5.08	l/sec				
Controlled Ru	noff:					
5-year	6.41	l/sec				
100-year	10.98	l/sec				

Controlled allowable runoff

Controlled R	ontrolled Runoff:				
5-year	2.93	l/sec			
100-year	7.55	l/sec			

Comment:

Storage Volumes (5-Year Storm)						Storage Volumes (100-Year Storm)						
Project: 18 M	cArthur Ave	enue										
	Tc =	10	(mins)					Tc =	10	(mins)		
	$C_{AVG} =$	0.95	(dimmensionle	ess)			$C_{AVG} = 0.95$ (dimmensionless)					
	Area =	0.0233	(hectares)			Area = 0.0233 (hectares)						
	Storm =	5	(year)					Storm =	100	(year)		
R	elease Rate =	2.93	(L/sec)				R	elease Rate =	2.93	(L/sec)		
Ti	me Interval =	terval = 5 (mins) Time Interval = 5 (mins)										
	Rainfall							Rainfall				
Duration	Intensity	Peak Flow	Release Rate	Storage Rate	Storage	Durat	ion	Intensity	Peak Flow	Release Rate	Storage Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^3)	(mir	1)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^3)
1	204	1.3	2.93	(. ,	1	/	351	2.2	2.93	(
6	132	4.9	2.93	1.92	0.69	6		226	8.3	2.93	5.40	1.95
11	99	6.1	2.93	3.17	2.09	11		170	10.4	2.93	7.51	4.96
16	80	4.9	2.93	2.01	1.93	16		138	8.5	2.93	5.52	5.30
21	68	4.2	2.93	1.26	1.58	21		116	7.1	2.93	4.22	5.31
26	59	3.6	2.93	0.72	1.12	26		101	6.2	2.93	3.29	5.13
31	53	3.2	2.93	0.31	0.58	31		90	5.5	2.93	2.59	4.82
36	48	2.9	2.93	-0.01	-0.01	36		81	5.0	2.93	2.05	4.42
41	43	2.7	2.93	-0.26	-0.65	41		74	4.5	2.93	1.61	3.95
46	40	2.5	2.93	-0.47	-1.31	46		68	4.2	2.93	1.25	3.44
51	37	2.3	2.93	-0.65	-1.99	51		63	3.9	2.93	0.94	2.89
56	35	2.1	2.93	-0.80	-2.69	56		59	3.6	2.93	0.69	2.30
61	33	2.0	2.93	-0.93	-3.41	61		55	3.4	2.93	0.46	1.69
66	31	1.9	2.93	-1.04	-4.14	66		52	3.2	2.93	0.27	1.06
71	29	1.8	2.93	-1.14	-4.88	71		49	3.0	2.93	0.10	0.41
76	28	1.7	2.93	-1.23	-5.63	76		47	2.9	2.93	-0.06	-0.25
81	26	1.6	2.93	-1.31	-6.39	81		45	2.7	2.93	-0.19	-0.93
86	25	1.5	2.93	-1.39	-7.15	86		43	2.6	2.93	-0.31	-1.62
91	24	1.5	2.93	-1.45	-7.92	91		41	2.5	2.93	-0.43	-2.32
96	23	1.4	2.93	-1.51	-8.70	96		39	2.4	2.93	-0.53	-3.03
101	22	1.4	2.93	-1.56	-9.48	101	1	38	2.3	2.93	-0.62	-3.75
106	21	1.3	2.93	-1.61	-10.27	106	6	36	2.2	2.93	-0.70	-4.48
111	21	1.3	2.93	-1.66	-11.06	111	1	35	2.1	2.93	-0.78	-5.21
116	20	1.2	2.93	-1.70	-11.85	116	6	34	2.1	2.93	-0.86	-5.95
121	19	1.2	2.93	-1.74	-12.65	121	1	33	2.0	2.93	-0.92	-6.70
126	19	1.2	2.93	-1.78	-13.45	126	6	32	1.9	2.93	-0.99	-7.45
131	18	1.1	2.93	-1.81	-14.25	131	1	31	1.9	2.93	-1.04	-8.20
136	18	1.1	2.93	-1.85	-15.06	136	6	30	1.8	2.93	-1.10	-8.96
Notes 1) For a storm du of 2.78CIA and th	uration that is les e ratio of the sto	s than the time of rm duration to the	f concentration the e time of concentrat	peak flow is equal to	o the product	Notes 1) For a s of 2.78CIA	torm du A and th	ration that is les e ratio of the sto	s than the time or the time of	of concentration the le time of concentra	e peak flow is equal ation.	to the produc

2) Rainfall Intensity, I = 998.071 / (Tc + 6.053)^0.814 (5 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc) 4) Peak Flow = 2.78 x C x I x A (Duration > Tc) 5) Storage = Duration x Storage Rate

2) Rainfall Intensity, I = 1735.688 / (Tc + 6.014)^0.820 (100 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc) 4) Peak Flow = 2.78 x C x I x A (Duration > Tc)

5) Storage = Duration x Storage Rate

ARCH-NOVA DESIGN INC.	
Architecture Engineering Consulting	

18 McARTHUR AVE. SWM PREDEVELOPMENT

45 Banner Road NEPEAN ON K2H 8X5 613-829-5722 contact@archnova.ca

SWM POSTDEVELOPMENT

45 Banner Road NEPEAN ON K2H 8X5 613-829-5722 contact@archnova.ca

FUS Fire Flow Calculations

Project: 18 McArthur Avenue , Ottawa

Calculations Based on 1999 Publication "Water Supply for Public

Fire Protection " by Fire Underwriters' Survey (FUS) Project Name: 18 McArthur Avenue, Ottawa

Fire Flow Calculation #: 1

Date: March 29, 2016

Building Type/Description/Name:Apartment Building

Data input by: Zoran Mrdja, P.Eng. Table A: Fire Underwriters Survey Determination of Required Fire Flow - Long Method

		,						
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
				Framing Mater	ial			
		Coefficient related to	Wood Frame	1.50				
1	Choose Frame Used	type of construction	Ordinary construction	1.00				
	for Construction of Unit	(C)	Non-combustible construction	0.80	Ordinary Construction			
			Fire resistive construction (< 2 hrs)	0.70				
			Fire resistive construction (> 2 hrs)	0.60		1.00	m	
	Choose Type of			Floor Space Ar	ea			
2	Housing (if TH, Enter		Single Family	1				
	Number of Units Per		Townhouse - indicate # of units	1	Other (Comm, ind)	1	Units	
	TH BIOCK)	Type of Housing	Other (Comm, Ind, etc.)	1				
2.2	# of Storeys	Number of Floors/ St	oreys in the Unit (do not include basement):		1	1	Storeys	
		Enter Ground Floor A	Area (A) of One Unit Only :				Aroa in	
3	Enter Ground Floor	Management	Square Feet (ft2)	0.093		971	'1 Area in Square Meters (m ₂)	
	Area of One Unit	weasurement	Square Metres (m2)	1	Square Metres (m2)	0.1	Meters (m ₂)	
		Units	Hectares (ha)	10000			Meters (III2)	
4	Obtain Required Fire Flow without Reductions	Required Fire Fl	ow(without reductions or increases	per FUS) (F = 220	* C * √A) Round to near	est 1000L/	min	6,855
5	Apply Factors Affecting Burning	Reductions/Incre	eases Due to Factors Affecting Burn	ing				
		Occupancy content	Non-combustible	-0.25				
	Choose Combustibility	hazard reduction or	Limited combustible	-0.15				
5.1	of Building Contents	surcharge	Combustible	0	Combustible		N/A	
	ů,		Free burning	0.15		0.00		0
	Choose Reduction Due	Casialdas saduatias	Rapid burning	0.25		0.00		0
52	to Presence of	Sprinkler reduction	Protoction	-0.3	None	0.00	N/A	0
5.2	Sprinklers		None	-0.5	None	0.00	19/5	0
			North Side	20.1-30 m	0.10			
5.0	Choose Separation		East Side	3.1-10.0 m	0.20	0.70		
5.3	Distance Between	Exposure Distance	South Side	3.1-10.0 m	0.20	0.70	m	
	Units	Between Units	West Side	3.1-10.0 m	0.20			4,799
		Total Required F	Fire Flow, rounded to nearest 1000 L	/min, with max/min	limits applied:			12,000
6	Obtain Required Fire Flow, Duration	Total Required Fire Flow (above) in L/s:						200
	& Volume	Required Duration of Fire Flow (hrs)						
		Required Volum	e of Fire Flow (m ³)					1440
Note: The r	most current FUS docum	ent should be referen	ced before design to ensure that the above fig	ures are consistent with	the intent of the Guideline			
		Legend		1				
	Drop down menu - choo	ose option, or enter va	lue.					

No Information, No input required.

Note:

The most current FUS document should be referenced before design to ensure that the above figures are consistent with the intent of the Guideline. The basement of the building will be used as a gathering/dining area and it is recommended to be equiped with sprinkler system

Water Supply Design Criteria

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Residential Average Daily Demand	350 L/d/P
Residential Maximum Daily Demand	9.5 x Average Daily *
Residential Maximum Hourly	1.5 x Maximum Daily *
Commercial Demand	2.5 L / m2 /d
Commercial Maximum Daily Demand	1.5 x Average Daily
Commercial Maximum Hourly	1.8 x Maximum Daily
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
must remain within	275kPa and 552kPa (40-80 psi; 28-56m)
During fire flow operating pressure must not drop	
below	140kPa (20 psi; 14 m)
* Residential Max. Daily and Max. Hourly peaking fa Table 3-3 for 0 to 500 persons.	ctors per MOE Guidelines for Drinking-Water Systems

18 McArthur Avenue, Ottawa New Development

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4	0	0
2 Bedroom	2.1	0	0
3 Bedroom	3.1		0
4 Bedroom	4.2	8	34

	Рор	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	34	11.76	8.17	111.72	77.58	167.58	116.38

Institutional / Commercial / Industrial Demand

				Avg. [Daily	Max	Day	Peak	Hour
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m2/d	0	0.00	0.00	0.00	0.00	0.00	0.00
Office	75.0	L/9.3m2/d							
Restaurant*	125.0	L/seat/d							
Industrial -Light	35,000.0	L/gross ha/d							
Industrial -Heavy	55,000.0	L/gross ha/d							
		Total I/	C/I Demand	0.00	0.00	0.00	0.00	0.00	0.00

	Total Demand	11.76	8.17	111.72	77.58	167.58	116.38
* Estimated number of seats at 1seat per 9.3m ²							

18 McArthur Avenue, Ottawa New Development

Water Demand and Boundary Conditions

Proposed Conditions

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Condition ² (kPa)				
Average Daily Demand	8.17					
Max Day + Fire Flow	5,777.58	108				
Peak Hour	116.38	108.3				
¹⁾ Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations.						
²⁾ Boundary conditions supplied by the City of Ottawa. See Appendix B for						

correspondence with the City.

Wastewater Design Criteria

Design Parameter	Value			
Residential Average Apartment	1.8 P/unit			
Average Daily Demand	350 L/d/per			
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0			
Commercial Space	5L/m2/day			
Infiltration and Inflow Allowance	0.28L/s/ha			
Sanitary sewers are to be sized employing the Manning's	$Q = (4/r) A D^{2/3} C^{1/2}$			
Equation	Q = (1/n)AR S			
Minimum Sewer Size	200mm diameter			
Minimum Manning's 'n'	0.013			
Minimum Depth of Cover	2.5m from crown of sewer to grade			
Minimum Full Flowing Velocity	0.6m/s			
Maximum Full Flowing Velocity	3.0m/s			
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2004.				

18 McArthur Avenue, Ottawa New Development

Sanitary Sewer Post Development Outflow

Site Area			0.0405 ha			
Extraneous Flow Allowances						
1	nfiltration / In	flow	0.01134 L/s			
Domestic Contributions						
Unit Type	Unit Rate	Units	Рор			
Single Family	3.4		0			
Semi-detached and duplex	2.7		0			
Duplex	2.3		0			
Townhouse	2.7		0			
Apartment						
Bachelor	1.4		0			
1 Bedroom	1.4		0			
2 Bedroom	2.1		0			
3 Bedroom	3.1		0			
4 Bedroom	4.2	8	33.6			
	Tota	al Population	33.6			
	0.14 L/s					
	4.00					
	Peak Do	mestic Flow	0.54 L/s			

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space	5 L/m2/d		0
Hospitals	900 L/bed/d		
School	70 L/student/d		
Industrial - Light	35,000 L/gross ha/d		
Industrial - Heavy	55,000 L/gross ha/d		
	Ave	erage I/C/I Flow	0
	Peak Institutional / Co	mmercial Flow	
		Peak I/C/I Flow	

Total Estimated Average Dry Weather Flow Rate	0.14
Total Estimated Peak Dry Weather Flow Rate	0.54
Total Estimated Peak Wet Weather Flow Rate	0.56

Arch-Nova Desing Inc.

Appendix B: Correspondence

From: Wu, John <John.Wu@ottawa.ca> Sent: April 6, 2016 9:52 AM To: gordana@archnova Subject: RE: 18 McArthur: Boundary Conditions Attachments: 18 McArthur April 2016.pdf

Here is the result: The following are boundary conditions, HGL, for hydraulic analysis at 18 McArthur (zone 1E) assumed to be connected to the 152mm on McArthur (see attached PDF for location). Minimum HGL = 109.6m Maximum HGL = 118.4m; the maximum pressure is estimated to be more than 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required. Available flow = 95 L/s assuming a residual of 20 psi and a ground elevation of 56.1m

These are for current conditions and are based on computer model simulation. Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

```
John
```

From: gordana@archnova [mailto:gordana@archnova.ca] Sent: Friday, April 01, 2016 12:13 PM To: Wu, John Cc: zoran@archnova.ca Subject: RE: 18 McArthur: Boundary Conditions

Hi John,

Could you please be more specific? With our other projects it is maximum a week.

Thanks,

Gordana Mrdja, B.Sc.Arch. Arch-Nova Design Inc. 45 Banner Road Nepean, ON, K2H 8X5 613-829-5722 gordana@archnova.ca

From: Wu, John [mailto:John.Wu@ottawa.ca] Sent: Friday, April 1, 2016 11:46 AM To: gordana@archnova <gordana@archnova.ca> Subject: RE: 18 McArthur: Boundary Conditions I don't know. Maybe in two weeks.

From: gordana@archnova [mailto:gordana@archnova.ca] Sent: Friday, April 01, 2016 11:44 AM To: Wu, John Cc: zoran@archnova.ca Subject: RE: 18 McArthur: Boundary Conditions

Thank you John on prompt response!

When can we expect it back? Regards,

Gordana Mrdja, B.Sc.Arch. Arch-Nova Design Inc. 45 Banner Road Nepean, ON, K2H 8X5 613-829-5722 gordana@archnova.ca

From: Wu, John [mailto:John.Wu@ottawa.ca] Sent: Friday, April 1, 2016 11:16 AM To: gordana@archnova <gordana@archnova.ca> Subject: RE: 18 McArthur: Boundary Conditions

I was on sick leave, just back today. I will send it out.

John

From: gordana@archnova [mailto:gordana@archnova.ca] Sent: Friday, April 01, 2016 11:11 AM To: Wu, John Cc: zoran@archnova.ca Subject: FW: 18 McArthur: Boundary Conditions

Good morning John,

Would you please advise when can we expect boundary conditions for the 18 McArthur. I am forwarding you again attached documents and an email that our engineer Zoran Mrdja has sent to you few days ago (please see below).

I would appreciate a timeline as we need it for project planning. If you need anything else from us in order to provide us with the boundary conditions, please advise.

Kind regards,

Gordana Mrdja, B.Sc.Arch.

Arch-Nova Design Inc. 45 Banner Road Nepean, ON, K2H 8X5 613-829-5722 gordana@archnova.ca

From: zoran@archnova [mailto:zoran@archnova.ca] Sent: March 29, 2016 11:12 PM To: 'Wu, John' <John.Wu@ottawa.ca> Subject: 18 McArthur: Boundary Conditions

Hello John,

Please could you provide the boundary conditions for the location of 18 McArthur Avenue. The owner is planning to construct a new apartment building at this location. Attached are the water and sewer calculations, FUS fire flow calculation and the site plan for proposed development.

Type of development: apartment building (basement + 3 story) Average daily demand: 0.14 l/s Maximum daily demand: 1.29 l/s. Maximum hourly daily demand: 1.94 l/s. Fire flow: 200 l/sec

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

