

Hydrogeological Assessment

811 Gladstone Avenue Complex Ottawa, Ontario

Ottawa Community Housing Corporation

Executive Summary

GHD was retained by Ottawa Community Housing Corporation (OCHC or Client) represented by Mr. Meyerhoffer and Mr. MacNeil to complete a Hydrogeological Assessment for the proposed residential development to be located at 811 Gladstone Avenue in Ottawa, Ontario (Site or Property).

GHD has previously prepared the following reports for the Site:

- Geotechnical Investigation (Reference No: 11140575-RPT-1, dated May 1, 2019)
- Phase One Environmental Site Assessment (Phase One ESA) (Ref No: 11140575-RPT-2, dated August 25, 2017)
- Phase Two ESA for the Site (GHD, Report No. 11140575-RPT-3, dated December 11, 2017).

The previous investigations included the advancement of eight boreholes, the installation of three groundwater monitoring wells, and water quality analysis. The information collected in these previous investigations has been included in this investigation.

Based on GHD's understanding of the Site, the Owner is proposing to develop the Site with the following excavations:

- Excavation A | The northwest and northeast quarters of the Site will be developed with two
 multi-level townhouse buildings. These two buildings will have partially sunken basements,
 requiring excavations to approximately 64.4/65.1 metres above sea level (masl). It is not
 anticipated that these excavations will penetrate the local water table. There is a common
 service trench that connects the center points of the two buildings which extends to
 approximately 62.8 masl. This 2.0 metre (m) x 49 m trench excavation is anticipated to penetrate
 the local bedrock water table.
- Excavation B | The south half of the Site will be developed with a single multi-level building, consisting of six levels of residential occupancy above grade. While the east third of the structure will have no basement level (65.7 masl), the west two-thirds of the building will be equipped with underground parking (62.0 masl). The 50 m x 27 m west portion of the excavation is anticipated to penetrate the local bedrock water table.
- Excavation C | There will be a local subgrade storm water storage chamber on-Site that will extend to approximately 64.1 masl. This 17 m x 7.0 m excavation is anticipated to penetrate the local bedrock water table.

Groundwater elevations, measured in April 2019, revealed the groundwater table in the limestone bedrock to range from over 65.0 masl in the east portion of the Site, to less than 62.0 masl in the southwest corner of the Site. Accordingly, the proposed construction will require dewatering.

Based on the observed Site conditions, assuming simultaneous flow into all three excavations, and assuming no interference from the other open excavations, groundwater flows could approach 156,300 L/day. The initial flows from the excavation will be approximately two to three times greater than the steady state, or near 350,000 L/day.

These values do not include rainfall events and the associated accumulation into an open excavation nor surface sheet flow if exterior surface grades are such to allow inflow into an open excavation. For example, 1.0 cm of precipitation falling directly into three open excavations would contribute an additional 15,670 L/day. The effect of groundwater falling within the radius of influence was not included, as the vast majority of this water will fall on hardened surfaces (rooftops, paved streets, sidewalks, paved parking areas) and so be diverted to the municipal storm water collection system prior to entering the groundwater table.

Owners and contractors should account for large swings in the pumping requirements. Assuming a moderate safety factor, this report suggests that 400,000 Litres/day is an appropriate upset limit for the construction dewatering for the purposes of construction planning and filing of an Environmental Activity Site Registry (EASR) application under the Ontario Regulations.

Laboratory analysis of groundwater samples collected at the Site during this initial study suggest that the chemistry water quality, when compared to Ottawa Sewer Use Bylaw 2003-514, the groundwater is generally compliant with the City of Ottawa Sanitary Sewer criteria. However, the water quality is not compliant with City of Ottawa Storm Sewer criteria due to an exceedance in Total Suspended Solids, and possibly Ethylbenzene and Xylenes. Additional water testing is recommended during construction. The Client will be required to obtain a City of Ottawa Discharge Permit prior to discharging to the municipal sewer system and contractors will be responsible during construction to maintain adequate discharge water quality, including sediment control measures.

The following report suggests that there will be no adverse impact to surface water, existing groundwater use, or to proximate structures as a result of the proposed water taking.

Table of Contents

1.	Introd	Juction	. 1
	1.1	Background	2
	1.2	Regional Geology	3
	1.3	Construction Methodology and Water Takings	3
2.	Inves	tigative Activities	4
	2.1	Borehole/Monitoring Well Installations	5
	2.2	Groundwater Level Monitoring	5
	2.3	Hydraulic Testing	5
	2.4	Groundwater Chemistry	6
	2.5	Desktop Well Record Survey	7
3.	Geolo	ogy and Hydrogeology	7
	3.1	Overburden Materials	7
	3.2	Bedrock Materials	8
	3.3	Aquifers/Aquitards	8
	3.4	Groundwater Quality in Unconfined Aquitard	9
4.	Wate	r Taking Evaluation 1	10
5.	Impa	ct Assessment1	12
	5.1	Private Wells 1	13
	5.2	Surface Water Features1	13
	5.3	Geotechnical Impacts	13
	5.4	Dewatering Discharge	13
6.	Monit	toring and Contingency Plan1	14
7.	Sumr	nary and Conclusions	14

Figure Index

Figure 1	Site Location Map
Figure 2a	Borehole LocationPlan
Figure 2b	Static Water Table 25 April 2019

- Figure 2c Static Water Table 2 May 2019
- Figure 3 MECP Water Wells
- Figure 4 Quaternary Geology
- Figure 5 Bedrock Geology
- Figure 6 Cross Section

Table Index

Table 1.1	Summary of Construction Details	4
Table 2.1	Summary of Monitoring Well Observations	6
Table 4.1	Assumed Hydrogeologic Details for Dewatering	10

Appendix Index

Appendix A	Provided Documents
Appendix B	Borehole Logs
Appendix C	Single Well Response Testing
Appendix D	Ontario Water Well Records
Appendix E	Groundwater Quality
Appendix F	Flow Calculations

1. Introduction

GHD was retained by Ottawa Community Housing Corporation (OCHC, or Owner) to prepare this hydrogeological assessment in support of the proposed planning of a development at 811 Gladstone Avenue and the associated dewatering during the proposed construction excavation.

The proposed residential development is located in the City of Ottawa, Ontario, and bears the Civic Address of 811 Gladstone Avenue, Ottawa, Ontario (Site, or Property). The Property is a generally square shaped block of land, spanning approximately 0.47 hectares, bounded by Balsam Street to the north, an institutional development to the east, Gladstone Avenue to the south, and Rochester Street to the west. The attached Figure 1 and Figure 2 show the location of the Site.

Presently, the Property is in an area that has been developed since approximately 1889 and devoted primarily to residential development with some institutional use from 1918 to 1964. Municipal water and sewer services are present in the area. There are no natural surface water bodies on-Site. The nearest surface water body is Dows Lake which is located approximately 950 metres (m) to the southeast, with the Ottawa River being approximately 1.1 kilometres (km) north of the Site. The existing Site topography slopes down approximately 1 to 2 m from north to south and from east to west of the Site, regionally the Site is on a gentle slope down towards the southwest.

The Owner is proposing to develop the north half of the Site with two multi-level townhouse buildings, which will have raised/partially exposed basements requiring excavations of about 1 to 2 metres below existing grades (mbg), or above the local water table. These two buildings are connected by a mechanical service trench planned at approximately 1.5 m below the basement slabs. This service trench excavation (Excavation A, 2.0 m x 49 m, to 62.8 metres aboce sea level [masl]) is anticipated to penetrate the local bedrock water table.

The south half of the Site is to be developed with a residential apartment, consisting of six levels of residential occupancy above grade. The east third of the building will not be equipped with a basement, and is not anticipated to penetrate the local groundwater table. The west two-thirds of the building is to be developed with underground parking. This excavation (Excavation B, 50 m x 27 m, to 62.0 masl) is anticipated to penetrate the local bedrock water table. There will be an elevator pit, excavated 1.75 m below the floor slab in the basement portion of the building, the base of the elevator pit will be at approximately 60.25 masl.

Between Excavation A and Excavation B, there will a local subgrade storm water storage chamber constructed near the east portion of the Site. This excavation (Excavation C, 17 m x 7.0 m, to 64.1 masl) is anticipated to penetrate the local bedrock water table.

There will also be associated service trenches, surface parking areas, access roads, and landscaped areas.

Accordingly, the proposed construction will require dewatering.

Temporary sump and pump techniques are anticipated during construction and conventional permanent sumps will be placed in the basement. Both systems will be in the base of the excavation to passively collect water and then be discharged to the Ottawa Municipal Sewer System.

This report provides a description of the Site, anticipated construction methods, regional environmental setting, and the field activities and methodologies used to determine potential impacts associated with the undertaking. A summary of the geology and hydrogeology is presented, along with a hydrogeological impact assessment with respect to potential impacts on groundwater users and surface water, based on review of completed geotechnical studies and supporting field investigations. An outline of the monitoring and mitigation plans for the proposed construction water takings is also presented.

The elevations of the boreholes were determined by GHD field staff using a laser level; and related to a manhole for which GHD had a geodetic elevation, from a client provided survey plan. Therefore, all elevations presented in this report are geodetic.

1.1 Background

In January 2017, GHD completed a Phase One Environmental Site Assessment (Phase One ESA) for the Site (GHD Report No. 11140575-RPT-2). That report described a number of potentially contaminating activities (PCAs) on the Site and surrounding area, and identified the Contaminants of Concern (CoC) for on-Site areas of potential environmental concern (APECs) to include Metals, PHCs, VOCs, and PAHs. The report concluded "Following the completion of the Phase One ESA for the subject Property, it is our opinion that a Phase Two Environmental Site Assessment is required for the Site."

GHD has also prepared a geotechnical report for the Site (GHD Report No. 11140575-RPT-1).

Concurrent with the geotechnical investigation, GHD conducted a Phase Two Environmental Site Assessment (Phase Two ESA) for the Site (GHD Report No. 11140575-RPT-3) to investigate soil and groundwater quality at the property.

- The investigation involved the advancement of eight boreholes which were sampled for environmental and/or geotechnical purposes. Three of the boreholes were completed with groundwater monitoring well screens set within the unconfined upper aquifer, in the upper fractured layers of the limestone bedrock.
- Groundwater elevations collected in the monitoring wells identified that the water table was found in the upper surface of the bedrock, flowing towards the southwest.
- The boreholes identified that the overburden at the Site was mainly fill. Bedrock at the Site was encountered between 0.6 and 1.1 mbg, except at the southwest corner of the Site where a previous excavation extended to 2.6 mbg.
- Laboratory analysis of four soil samples for Metals, PHCs, VOCs, PAHs, and pH identified
 O. Reg. 153/04 Table 7 (residential land use, coarse soil texture) criteria exceedances in two of the four submitted soil samples, plus a duplicate QA/QC soil sample.
- Laboratory analysis of five groundwater samples plus a duplicate QA/QC sample for Metals, PHCs, VOCs, PAHs, and pH did not identify O. Reg. 153/03 Table 7 exceedances in the analysed groundwater samples.

Based on the results of the 2017 Phase Two ESA, the groundwater table was anticipated to be located within the shallow bedrock at the Site. While the Phase Two ESA groundwater testing did

not include all parameters listed in the Municipal sewer by-laws, all analysed parameters were in compliance with the City of Ottawa Sanitary Sewer Criteria.

1.2 Regional Geology

The following section presents a description of the geology and hydrogeology of the Site, based on surficial mapping of the study area, the GHD geotechnical report (11140575-RPT-1), the GHD Phase One ESA (11140575-RPT-2) and the GHD Phase Two ESA (11140575-RPT-3) which contains Site-specific stratigraphic information, and borehole logs (Appendix B).

A Topographic map was reviewed from the Ontario Ministry of Natural Resources and Forestry, and is provided in Figure 1. The mapping shows the Site is on relatively flat terrain, with general topography sloping towards the southwest. The nearest surface water body indicated on the mapping is Dows Lake which is located approximately 950 m to the southeast, with the Ottawa River being approximately 1.1 km north of the Site.

According to the information obtained from the Geological Survey of Canada Map 1425A titled 'Surficial Materials and Terrain features Ottawa-Hull' the natural soil conditions in the region appear to consist of "Pre-Champlain Sea Deposits consisting of glacial deposits of till; heterogeneous mixture of material ranging from clay to large boulders, generally sandy, grades downwards into unmodified till; surface is generally modified by wave or river action and the topography is flat to hummocky". The thickness of overburden is expected to be approximately 1.0 m and the bedrock in the general area of the Site is expected to be limestone. Similarly, the MNRF NRVIS map (attached as Figure 4) describes the area as consisting of till (glacial), predominantly sandy silt to silt matrix, commonly rich in clasts, often high in total matrix carbonate content.

According to the information obtained from the Ontario Geologic Survey Map P.2716 titled 'Paleozoic Geology Ottawa Area', the bedrock in the Study Area is described as the Middle Ordovician, Verulam Formation, consisting of interbedded bioclastic limestone, sublithographic to fine crystalline limestone, and shale. Similarly, the MNRF NRVIS mapping identifies the Site as being located in the Georgian Bay Formation (Blue Mountain or Billings Formation, Collingwood or Eastview Member), described as shales, limestones, dolostones, and siltstones, as attached in Figure 5.

1.3 Construction Methodology and Water Takings

Construction of the proposed excavation is recommended in the geotechnical report to be carried out by using shored excavation techniques where overburden or highly weathered rock are present, followed by excavation to allow construction of the building foundations and basement. Where sound rock is present, it may be excavated near vertically.

Bedrock elevations ranged from 64.7 masl (BH8) to 68.4 masl (BH5/MW3). Accordingly, bedrock excavation is expected for the foundations of the proposed buildings, based on the founding depth of foundations for the structures. The excavation of the bedrock is expected to extend to an approximate minimum elevation of 60.25 masl (6.0 mbg) and may require the use of line drilling in combination with pneumatic or hydraulic breakers such as hoe rams or heavy excavation equipment equipped for rock excavation.

Based on these observations, the excavations will extend below the water table, and will require dewatering to remove groundwater seepage as well as surface water runoff and precipitation to ensure safe and dry working conditions.

A summary of the relevant depths and corresponding elevations is provided as follows:

		Excavation A	Excavation B	Excavation C
Grade (masl)		66.2 - 67.1	65.3 - 66.5	66.0 - 66.5
Unconfined Water table	(masl)	63.5 - 64.5 (64.5)	61.5 - 64.5 (64.0)	64.5 - 65.5 (65.2)
Bedrock Elevation	(masl)	65.3 - 66.4	62.8 - 65.7	65.5
Bottom of Excavation	(masl)	62.8	62.0	64.1
Bottom Excavation (Base of Sump)	(masl)	62.2	60.25	63.5
Lowermost Dewatering	(masl)	62.6	60.25	64.0
Potential Water Table Drawdown	(m)	1.9 m	2.2 m	1.2 m
Excavation Dimensions (m)		2.0 m x 49 m	50 m x 27 m	17 m x 7.0 m
Note: Elevations are geodetic				

Table 1.1 Summary of Construction Details

Under steady state conditions, the construction water takings will be expected to handle peak dewatering volumes during excavation and following precipitation events. Volumes are discussed in Section 4 of this report.

This report is not intended to be considered for use as a dewatering plan for the construction contractor, as the water takings are based on conservative calculations for the purposes of the regulatory submissions.

2. Investigative Activities

Investigative activities undertaken to study the hydrogeologic conditions at the Site and assess potential impacts of the construction dewatering include the following:

- Review existing borehole/and monitoring well installations, and advance additional monitoring wells
- Groundwater level monitoring
- Hydraulic testing (single well response tests)
- Groundwater chemistry testing
- Desktop study of MOE well records

The details of these investigations are summarized in the following sections.

2.1 Borehole/Monitoring Well Installations

The 2017 Phase Two ESA included the advancement of eight boreholes, with three of the boreholes being equipped with groundwater monitoring wells (MW1-17, MW2-17, MW3-17). The 2019 Hydrogeological investigation included the advancement of three additional groundwater monitoring wells.

The locations of the boreholes and monitoring wells advanced by GHD in 2017 and 2019 are shown in Figure 2, and the details of the monitoring wells are provided on Table 2.1. The Monitoring Well and Borehole Stratigraphic and Instrumentation Logs for all boreholes and wells are presented in Appendix B.

All boreholes were advanced to the bedrock surface with an 8" auger. Diamond coring in MW1-17, MW2-17, MW3-17 was conducted with a HQ barrel, while MW4-19, MW5-19, and MW6-19 was conducted with a NQ barrel.

Monitoring wells MW1-17, MW2-17, MW3-17 were constructed with 51 mm diameter PVC screen and riser whereas monitoring wells MW4-19, MW5-19, and MW6-19 were constructed with 32 mm diameter PVC screen and riser. All monitoring wells were installed with silica sand pack, bentonite seal, and flush mount style protective casings.

2.2 Groundwater Level Monitoring

Groundwater static levels were measured on September 8, 2017, April 25, 2019 and, May 2, 2019.

The measured elevations of the water table are detailed in Table 2.1, and illustrated in Figures 2b and 2c.

The groundwater levels measured in MW1-17, MW2-17, MW3-17, MW4-19, MW5-19 and, MW6-19 range between elevations 61.69 masl to 66.91 masl, indicating the ground water level is within the bedrock and is unconfined.

2.3 Hydraulic Testing

On April 25, 2019, Single Well Response Tests (SWRT) were completed on monitoring wells MW1-17, MW4-19, and MW6-19 (all of which were advanced to the depth of the excavations) and MW5-19 (which was advanced below the base of the proposed excavations).

The tests consisted of inducing a measurable change to the water level in the monitoring well and measuring the rate at which the water level recovers. In this case, the monitoring wells were pumped dry, or near dry, and then recovery measured. The rising head responses were measured over time, collected manually using water level meters until recovery of 90 percent or more, except for the case of MW1-17 which had slow recharge demonstrating only 24 percent recovery over a 260-minute period.

		MW1-17 (Bedrock)	MW2-17 (Bedrock)	MW3-17 (Bedrock)	MW4-19 (Bedrock)	MW5-19 (Bedrock)	MW6-19 (Bedrock)
Surface Grade	(masl)	66.0	66.21	67.06	65.66	66.06	66.54
Bedrock Surface	(masl)	65.6	65.6	66.4	64.8	64.8	65.5
Sand Pack elevations	(masl)	59.85 - 64.73	59.99 - 64.86	61.19 – 65.97	60.53 - 63.88	56.08 - 60.04	61.41 - 64.76
Groundwater elevation Sep. 8, 2017 Apr. 25, 2019	(masl)	64.01 65.08	63.51	64.86	62.46	61.45	65.40
May 2, 2019		64.54	64.12	64.45	62.35	61.42	65.21
K (cm/s)	(cm/s)	0.366x10 ⁻⁴	-	-	1.02x10 ⁻⁴	2.01x10 ⁻⁴	0.655x10 ⁻⁴
Note:							

Table 2.1 Summary of Monitoring Well Observations

MW2-17 and MW3-17 advanced 2017 P2ESA were noted in 2019 to be damaged during works at the Site. These wells could not be used for SWRT, but water level measurements could be collected.

It is noted that the hydraulic conductivities in MW1-17 and MW6-19 were nearly a magnitude lower than those calculated in MW4-19 and MW5-19. However, the combined sand pack elevations were similar (59.85 - 64.76 masl vs 56.08 - 63.88 masl, respectively). Accordingly, it is assumed that the hydraulic conductivities varies across the Site.

The results of the SWRT are discussed in Section 3, and are presented in Appendix C.

2.4 **Groundwater Chemistry**

As part of the 2017 Phase Two ESA, on September 8 and 12, 2017, groundwater samples were collected from MW1-17, MW2-17, MW3-17, a duplicate, and an existing monitoring well at the northwest corner of the Site which was formerly referred to as MW4 during the Phase Two ESA investigation. MW1-17, MW2-17, MW3-17, and the duplicate were analysed for PHC, VOCs, PAHs, metals and pH. The groundwater sample taken from the former MW4, was analysed for VOCs. The results were initially compared to O. Reg. 153/04 criteria, but have been reviewed and compared to City of Ottawa By law 2003-514 for this report. These results (Paracel Reports 1737017, 1737231, and summary Table A) are attached in Appendix E.

On April 25, 2019, groundwater samples were collected from MW4-19 and MW5-19 as part of the hydrogeological assessment. The sample was submitted to Paracel Laboratories in Ottawa, Ontario under Chain of Custody No. 47665, for analysis of metals and mercury, General Inorganics, oil and grease, VOCs, SVOCs, PAH, formaldehyde, Nonylphenols, Ethoxylates, Hexachlorobenzene (OC pesticides), microbiological (E. coli), and PCBs. The results were compared to criteria described in City of Ottawa By Law 2003-514, which addresses discharge to the Municipal sewage system. A laboratory error led to the resampling of MW4-19 and MW5-19 on May 2, 2019 for the microbiological (E. coli) parameter. These samples were submitted under COC No. 47973, for analysis of microbiological (E. coli). Analytical results (Paracel Reports 1917649 and 1918483, and summary Table B) are attached in Appendix E.

2.5 Desktop Well Record Survey

The MECP Ontario Water Well Record database maintains an inventory of water supply wells, observation wells, and monitoring wells. Within 500 meters of the Site limits, the database of identifies one water supply well, 13 observation wells, 33 test holes, 15 monitoring and test holes. Also identified are one abandoned water supply well, 13 abandoned 'other' wells, and nine abandoned 'unknown' wells. The locations of the registered boreholes and monitoring wells in the region are illustrated in Figure 3, and summary well details included in Appendix D. A review of the wells described in the database suggests that:

- North of the Site, limestone bedrock was typically encountered within 1.0 mbg
- East or southeast of the Site, limestone bedrock was typically encountered within 2.0 mbg
- South of the Site, limestone bedrock was typically encountered within 2.5 mbg within 250 m of the Site limits, but at greater depths (5.0 9.0 mbg) towards the southwest
- West of the Site, limestone bedrock was typically encountered within 1.5 mbg within 250 m of the Site, but at greater depths (<11 mbg) farther to the west.

The reviewed well and borehole records indicate that conditions in the Study area is typically a thin layer of overburden, resting on limestone bedrock. This is in agreement with the regional geology anticipated in the Study area as described previously in Section 1.2.

There was only a single water supply well located within 500 m of the Site:

Water Supply Well 1508877 is located approximately 330 m south of the Site. Advanced in 1963 as a supply of cooling water for an air conditioning system, the well advancement was described as 0.0 m < fill < 1.2 m < sand and gravel < 7.0 m < limestone < 94.5 m < EOH. Sulphur water was encountered between 24.4 - 94.5 mbg, with a static water table at 3.7 mbg.

A review of the well record suggests that this well draws from a separate (deeper) aquifer than the proposed Site excavations, and that this deeper aquifer is semi-confined. This information, combined with the separation distance, suggests that this well will not be adversely impacted by the proposed excavation dewatering activities.

3. Geology and Hydrogeology

3.1 Overburden Materials

Notes on boreholes are provided in Appendix B. Boreholes advanced on the Site reveal that in general, soils consisted of:

- Boreholes BH1, BH2, BH3, BH4 and BH5 were drilled in a paved area which had an asphaltic concrete surface approximately 90 mm thick at the borehole locations and was followed by a base course crushed limestone fill material. Boreholes BH5, BH6, BH7, and BH8 were located in a grass covered landscaped area of the Site. The grass was supported by a very thin topsoil layer.
- A layer of fill, which ranged from 0.5 to 2.6 m thick consisting of a silty sand with noted presence of clay and gravel. Groundwater was not encountered in this layer.

• In some locations, the fill layer overlays a native glacial till, silty sand or sandy gravel deposit transitioning to a sandy silt ranging from 0.1 to 0.6 m thick above bedrock. Groundwater was not encountered in this layer.

This is in agreement with the regional geology as described previously in Section 2.1.

3.2 Bedrock Materials

- Horizontally bedded Limestone bedrock underlays the fill and native material. This is in agreement with the regional geology as described previously in Section 2.1.
- Groundwater was found in the limestone bedrock.
- The bedrock was highly weathered and fractured at the borehole locations. The quality of this rock was very poor with moulded RQDs of 29 to 50 within the upper of the bedrock, becoming excellent (RQD of above 90) below a depth of approximately 1.28 m (BH3) to approximately 4.55 m (BH1).

3.3 Aquifers/Aquitards

Review of the water level measurements obtained in September 2017, and April and May 2019, and a review of well descriptions in the Ontario Water Well Database suggest that there are two separate water bearing layers present on-Site:

- An upper unconfined aquitard, located in the upper layers of the bedrock. This aquitard was subjected to SWRT in four monitoring wells as described previously in Section 2.3:
 - SWRT of MW1-17 and MW6-19 suggest a hydraulic conductivity (k) of (3.7 - 6.6) x 10-5 cm/s
 - SWRT of MW4-19 and MW5-19 suggest a hydraulic conductivity (k) of (1.0 - 2.0) x 10-4 cm/s
 - The water table measured in the monitoring wells at the Site slopes towards the southwest, with a hydraulic gradient of 15 percent. The static water table has been illustrated in Figures 2b and 2c. It should be noted that the elevation of this unconfined water table varies over time in response to precipitation.
- A deeper (semi) confined aquifer was suggested in the Ontario Water Well Records (as evidenced by Water Supply Well 1508877). This well encountered sulphur groundwater between 24.4 94.5 mbg (between 31.1 meters <u>below</u> sea level, to 39 masl), with a static water table at 3.7 mbg. At the time of construction, this well maintained a pumping rate of 50 Litres/minutes (L/min) for an 8-hour test period, and the recommended pump rate was 50 L/min. Data is not available as to the stability of this semi-confined water table. As the deepest excavation at the Site will be advanced to 60 masl, and given the confined nature of this basal aquifer, the contribution from this deep aquifer has not been considered in this investigation.

For the purposes of this evaluation, it was assumed that the excavations will be completed in the uppermost unconfined aquitard; therefore low water takings are anticipated. As the hydraulic gradient approaches 15 percent towards the southwest, the saturated aquifer static depth will vary between excavations. The base of this aquitard is estimated at 55.5 masl, and the more conservative hydraulic conductivity value of 2.0×10^{-4} cm/sec was applied in all calculations.

3.4 Groundwater Quality in Unconfined Aquitard

Groundwater samples collected from the (upper) unconfined aquitard that will be accessed by the excavations in both the 2017 Phase Two ESA, and samples collected in 2019 were compared to the City of Ottawa By Law 2003-514, which addresses discharge to the municipal sewer system. This comparison is summarized in Tables A and B, included in Appendix E.

When the analytical results are compared to the criteria listed in Schedule A Table 1 (Discharge to Sanitary or Combined Sewers), it is noted that:

• In 2017, all tested parameters collected from MW1-17, MW2-17, MW3-17, and MW4-17 were in compliance with the combined/sanitary sewer criteria.

Note that the 2017 sampling event was undertaken as part of the Phase Two ESA, with comparison to the identified Contaminants of Concern for the Site. Accordingly, the reported results of metals represent dissolved metals (a filtered groundwater sample) and laboratory reporting was in the appropriate units for comparison to O. Reg. 153/04, not for comparison to By-Law 2003-514. In addition, some of the parameters included in the sewer use by-law were not analysed as part of that sampling event, including CBOD, cyanide (total), fluoride, pH, phenolics, total phosphorus, sulphate, sulphide, TKN, TSS, Total PAH, a number of the Semi-VOCs, Dioxins & Furans (total), Formaldehyde, N-Nitrosodimethylamine (NDMA), Nonylphenols & Ethoxylates, and Hexachlorobenzene (OC Pesticides).

• In 2019, all tested parameters from MW4-19 and MW5-19, are in compliance with the combined/sanitary sewer criteria.

Note that analysis of the parameters Dioxins & Furans (total), Formaldehyde, N-Nitrosodimethylamine (NDMA), and Nonylphenols & Ethoxylates were not requested for analysis. As noted previously, a laboratory error led to the resampling of MW4-19 and MW5-19 on May 2, 2019 for the microbiological (E. coli) parameter.

Based on these observations, the sediment filtered discharge from the excavation to the municipal Sanitary/Combined sewers could be considered, pending approval from the City of Ottawa. The discharge would be a combination of groundwater, surface water runoff and precipitation into the excavation and would require further assessment to verify its quality. City of Ottawa approval, sewer-use discharge permit and pre-treatment will be required prior to discharge to the sewer.

When the analytical results are compared to the criteria listed in Schedule A Table 2 (Discharge to Storm Sewers), it is noted that:

 In 2017, both Ethylbenzene and Total Xylene was reported in excess of Storm Sewer Criteria in the duplicate sample of MW3-17.

Note that the 2017 sampling event was undertaken as part of the Phase Two ESA, with comparison to the identified Contaminants of Concern for the Site. Accordingly, the reported results of metals represent dissolved metals (a filtered groundwater sample) and laboratory reporting was in the appropriate units for comparison to O. Reg. 153/04, not for comparison to By-Law 2003-514. In addition, some of the parameters included in the sewer use by-law were not analysed as part of that sampling event, including the parameters E.coli, cyanide (total),

TSS, phenolics, total phosphorus, oil/grease, Total PAH, PCBs, Nonylphenols & Ethoxylates, and Hexachlorobenzene (OC Pesticides).

• In 2019, TSS was reported in excess of the Storm Sewer Criteria in MW4-19 and MW5-19.

Note that the parameters Nonylphenols & Ethoxylates were not included in the analysis.

In the event that water takings are required during development construction activities, the untreated groundwater discharge is not anticipated to meet the storm sewer use criteria.

All discharge from the proposed excavations would be a combination of groundwater, surface water runoff and precipitation into the excavation and would require further assessment to verify its quality. City of Ottawa approval, a sewer-use discharge permit, and pre-treatment will be required prior to discharge to the sewer.

4. Water Taking Evaluation

The Site specific borehole drilling data, results of the hydraulic testing (i.e., single well response tests) and groundwater water monitoring were utilized to determine the aquifer hydraulic properties (hydraulic conductivity) and conditions to provide the basis for estimating the construction water taking rates and area of influence. The water takings and area of influence were determined using the field test results and by employing analytical modelling methods, as presented below.

The projected drawdown was calculated as a partially penetrating excavation in an unconfined aquifer with the following conditions:

		Excavation A	Excavation B	Excavation C
Excavation Type		Trench	Well	Trench
Base of Aquifer	(masl)	55.5	55.5	55.5
Initial				
Groundwater elevation	(masl)	64.5	64.0	65.2
Groundwater Water Column	(m)	9.0	8.5	9.7
Target				
Groundwater elevation	(masl)	62.6	60.25	64.0
Groundwater Water Column	(m)	7.1	4.75	8.5
Water Table Drawdown	(m)	1.9	2.2	1.2
Excavation	(m)	2.0 x 49	50 x 27 (radius 20.8)	17 x 7.0
Base of Sump	(masl)	62.2	60.25	63.5
K (cm/s)	(cm/s)	2.0 x 10 ⁻⁴	2.0 x 10 ⁻⁴	2.0 x 10 ⁻⁴
Radius of influence	(m)	5.6	36.6	8.6
Estimated Q	(m ³ /day)	36.1	47.4	20.7
(no safety factor)				
Estimated Q	(m ³ /day)	54.2	71.0	31.1
(safety factor = 1.5)				

Table 4.1 Assumed Hydrogeologic Details for Dewatering

These 'worst case' parameters have been used in the flow calculations, included in Appendix F.

The radius of influence (R_o) was estimated using an empirical relationship developed by Sichardt and Kryieleis that gives R_o as a function of drawdown and hydraulic conductivity (Powers et al., 2007). It is important to note that this equation gives a conservative estimate of R_o .

$$R_o = 3000(H - h)\sqrt{K}$$
 (For circular source)
 $R_o = 1750(H - h)\sqrt{K}$ (For line source)

Steady state dewatering (Q) into Excavation A and C have been estimated using empirical relationships developed by Sichardt and Kryieleis that gives R_o as a function of drawdown and hydraulic conductivity (Powers et al., 2007 & Sichardt and Kryieleis, 1930):

$$Q = \frac{\pi K (H^2 - h^2)}{\ln R_0 / r_w} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right]$$
(For steady state infiltration into a trench)
$$r_w = \frac{a + b}{\pi}$$

There are a number of assumptions to this method, including:

- Homogeneous material
- Steady state
- Initial horizontal potentiometric surface
- Unconfined aquifer
- Partially penetrating well
- Gravity flow
- Semi-circular source
- Effect of a large rectangular excavation is equivalent to circular excavation of same area

Similarly, the steady state dewatering (Q) into Excavation B was estimated using:

$$Q = \frac{\pi K \left(H^2 - h_w^2 \right)}{\ln R_0 / r_w}$$

 $r_w = \sqrt{\frac{ab}{\pi}}$

(For steady state into a semi-penetrating shaft)

A safety factor of 1.5 was applied to the estimated infiltration rates. Based on the above assumptions, assuming simultaneous flow into all three excavations, and assuming no interference from the other open excavations, groundwater flows could approach 156,300 L/day. The initial flows from the excavation will be approximately two to three times greater than the steady state, or near 350,000 L/day.

The effect of precipitation falling directly into three open excavations would contribute an additional 15,670 L/1.0 cm of precipitation. The effect of groundwater falling within the radius of influence was

not included, as the vast majority of this water will fall on hardened surfaces (rooftops, paved streets, sidewalks, paved parking areas) and so be diverted to the municipal storm water collection system prior to entering the groundwater table.

It is important to note that these values are conservative and represent 'worst case' volumes during the construction period. In reality, the actual flows are anticipated to be significantly less than those described;

- The calculations have assumed simultaneous dewatering of all excavations on the Site. In actuality, the excavations will likely be staged across the Site.
- As evidenced in Figure 2c of this report, the hydraulic gradient in the observed groundwater table was 15 percent. The 'worst case' calculations used to generate the flow estimates have utilized the highest water table elevations measured in each excavation (in the northeast corner), while the water tables in the southwest corners of each excavation are anticipated to be substantially lower. Additionally, the water table measurements were collected during the spring, when unconfined water tables are at seasonal maximum.
- The calculations have not included the additive effect of dewatering multiple excavations in close proximity; as groundwater is removed from one excavation the radius of influence will intrude on the adjacent excavations, decreasing the starting water table elevations in those locations.
- The calculations have utilized the highest hydraulic conductivity of the completed SWRT completed at the Site. As indicated previously (in Section 2.2 of this report) the SWRT identified that the hydraulic conductivity ranges nearly a full magnitude across the Site.
- A safety factor of 1.5 has been applied to the calculated flow estimates.

Accordingly, the Owner should be aware of the limitations associated with the flow volume estimate contained in this report before utilizing the flow estimates for any use beyond their intended purpose (the generation of worst case estimates to assess the need for a Permit To Take Water or an EASR application for construction).

Based on the above assumptions, we suggest that that the Client should:

- Submit an EASR application to remove water from the Site, allowing for a water taking volume of 400,000 Litres/day (L/day) for the purposes of the submission.
- Obtain a City Ottawa Discharge Permit to allow discharge to the local municipal sewer system. Note that this application may have volume discharge restrictions placed on the Site by the municipality, based on the volumetric capacity of the surrounding City of Ottawa sewer systems.

5. Impact Assessment

This section provides an impact assessment with respect to the identified receptors of concern relevant to this PTTW submission. Construction methods will also be employed to reduce or eliminate the need for water takings where possible.

5.1 Private Wells

As illustrated in Figure 3, there is one water supply well identified within 500 metres of the Site. There are 15 observation wells, 15 monitoring and test holes, and nine unknown wells registered with the MECP for properties within approximately 500 m of the Site.

There is one well used as a groundwater supply well to supply water for an industrial air conditioning system, located 330 m to the south of the Site limits, in a separate aquifer. Given that the Site is located in an urban area within the City of Ottawa and that municipally treated water is available, it is not suspected that there are any active potable water wells remaining within the study area.

There will be no impact on groundwater use from the proposed water taking.

5.2 Surface Water Features

The nearest surface water body indicated on the mapping is Dows Lake which is located approximately 950 m to the southeast, with the Ottawa River being approximately 1.1 km north of the Site.

Due to the distance of the Site from these water bodies, and the volumes of the river and lake, there will be no impact to surface water from the proposed water taking.

5.3 Geotechnical Impacts

The boreholes encountered a thin layer of surficial fill, underlain in some locations by a native Glacial Till, Silty Sand or Sandy Gravel deposits followed by Limestone bedrock with a water table near 1.5 - 4.5 m below surface.

The Site is surrounded by existing buildings, it is assumed that these buildings are founded directly on the bedrock. A survey of the adjacent buildings has not been mandated to GHD as of the date of publishing of this report.

Geotechnical impacts are not anticipated, as buildings in the area are founded on shallow bedrock, and infrastructure is founded on unsaturated soils.

5.4 Dewatering Discharge

The construction water takings will require sediment filtration prior to discharge.

The sediment treated water will be directed to the municipal sewer system, pending approval from the City of Ottawa in the form of a Discharge Permit.

The Owner must be aware that the City of Ottawa may impose a daily volume cap on dewatering activities, to prevent the possible overloading of the municipal sewer system. This volume cap may require the Owner to stage the excavations to minimize dewatering.

6. Monitoring and Contingency Plan

Although no effects on private wells, surface water features or geotechnical issues are anticipated, the following section presents the monitoring and contingency plan that will be in place throughout the duration of the construction.

- 1. The volume and rate of the water takings will be recorded daily for each sump, and measured using a flow meter or other acceptable method.
- 2. The daily groundwater discharge shall be maintained below the limits identified in both the MECP permit, and the City of Ottawa Discharge Permit.
- 3. Based on water samples collected on April 25, and May 2, 2019, the discharge water chemical concentrations generally comply with the City of Ottawa Sewer By-Law (Sanitary/Combined Sewer). A sediment filter bag will be placed between the pump and the discharge to the municipal sanitary sewer, to prevent sediment from the excavation from overloading the municipal sanitary sewer. The contractor will ensure discharge water quality meets meet applicable limits as required in the City of Ottawa Discharge Permit.
- 4. During excavation, if the contractor observes that influent groundwater is washing aggregate into the excavation, the contractor will halt excavation. The excavation will immediately be reviewed to minimize the risk of possible settling of the adjoining streets, in a manner approved by the geotechnical engineer.
- 5. Discharge Water Quality will be monitored as required in the City of Ottawa Discharge Permit.
- 6. Similarly, if the contractor encounters a layer of bedrock that is presenting a very high rate of groundwater seepage, GHD should be contacted to determine if mitigation measures are required.

7. Summary and Conclusions

GHD requests on behalf of the Client that the MECP consider this hydrogeological assessment in support of an EASR submission for construction water takings anticipated to exceed 50,000 L/day and for a period of greater than 30 days.

It is assumed that temporary water takings are required for duration of one year.

The construction groundwater takings are estimated to be a maximum of 400,000 L/day for the purposes of submission, with typical water takings anticipated to be less than 100,000 L/day, based on construction mitigation methods that will be employed to reduce the water takings.

The upset limit of 400,000 L/day for this temporary water taking provides a conservative estimate of groundwater takings, allows for contingency takings to dewater quickly in the event of flooding due to a significant precipitation event, and provides a moderate safety factor.

It is proposed that three excavations will be advanced below the local water table; a 49 m x 2.0 m service trench, a 50 m x 27 m excavation for an underground parking garage equipped with an elevator pit, and a 17 m x 7.0 m excavation for an on-Site storm water storage chamber. Sumps will

be placed in the base of each excavation to passively collect water at various locations in the excavation. The water in these sumps will then be pumped through a filter bag that will reduce sediments. The discharge from the filter bag will be directed to the Ottawa Sewer System.

Based on the results of the hydrogeological study in support of the Ottawa Community Housing Corporation EASR Submission, the following conclusions are provided:

- 1. The proposed excavation construction is anticipated to fully penetrate the overburden, and extend into the bedrock.
- 2. The maximum water table drawdown required in the excavation for construction purposes ranges between 1.2 2.2 m, to ensure safe, dry working conditions.
- 3. The steady state water takings are estimated to be 156,300 L/day. Prior to achieving steady state, the initial flows could be expected to be two to three times steady state values, or up to 350,000 L/day. Using the analytical model, a water taking of this magnitude is predicted to result in an area of influence up to 37 m from the centreline excavations at steady state.
- 4. Where construction mitigation methods are employed, the maximum water taking (400 m³/day) allows for quickly lowering groundwater levels to the invert elevation or removal of precipitation and surface water runoff into the excavation, as may be needed. (A 1.0 cm precipitation event falling directly into the 1567 m² excavations would add 15,670 L to the daily dewatering volumes.)
- 5. There will be no impact of the construction dewatering to surface water features, given the distance to the nearest surface water body (Dows Lake which is located approximately 950 m to the southeast, with the Ottawa River being approximately 1.1 km north of the Site). No discharge water will be directed to surface water bodies.
- 6. There will be no impact of the construction dewatering to wells, given the municipal water use in the proposed area of influence, and the single groundwater well in the Ontario Water Well Records database being described as 330 m distant and in the confined deep aquifer. In the unlikely event of a well interference complaint, the issue will be investigated and verified, and mitigated as needed.
- 7. Geotechnical impacts to surrounding buildings are not anticipated, due to the shallow bedrock found at the Site.
- 8. During excavation, if the contractor observes that influent groundwater is washing aggregate into the excavation, the contractor will halt excavation and backfill to prevent further washout erosion. The excavation will immediately be reviewed to minimize the risk of possible settling of the adjoining area under the supervision of the geotechnical engineer.
- 9. During excavation, if the contractor observes water bearing layers of bedrock that is presenting a very high rate of groundwater seepage, GHD should be contacted to determine if mitigation measures are required.
- 10. Although no effects on private wells, surface water features or geotechnical issues are anticipated, monitoring water takings will be implemented throughout the duration of the construction to assess the area of influence. The monitoring program will assess and verify effects during the construction, and will be used to support mitigation if necessary.

We trust that this report meets with your requirements. Please do not hesitate to contact us, should any questions arise.

All of Which is Respectfully Submitted,

GHD

0

Scott Wallis, B.Sc.

0 _

Philip Smart, P. Geo

Source: MNRF NRVIS, 2015. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2019 Coordinate System: NAD 1983 UTM Zone 18N

OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE, OTTAWA, ON HYDROGEOLOGICAL ASSESSMENT 11140575-E3 May 1, 2019

SITE LOCATION MAP

FIGURE 1

osoft Corporation, July 2013

OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE, OTTAWA, ON HYDROGEOLOGICAL ASSESSMENT

BOREHOLE LOCATION PLAN

11140575-E3 May 6, 2019

FIGURE 2a

OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE, OTTAWA, ON HYDROGEOLOGICAL ASSESSMENT

STATIC WATER TABLE 25 APRIL 2019

FIGURE 2b

11140575-E3 May 13, 2019

OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE, OTTAWA, ON HYDROGEOLOGICAL ASSESSMENT

STATIC WATER TABLE 2 MAY 2019

FIGURE 2c

11140575-E3 May 13, 2019

FIGURE 3

Coordinate System NAD 1983 UTM Zone 18N (N)

FIGURE 4

QUATERNARY GEOLOGY

FIGURE 5

11140575-E3 May 1, 2019

CENTRETOWN (CENTRE-VILLE) 55b 4th Ave THE GLEBE Ath Ave Ella St Wilton Lan Findlay Colonel B

11140575-E3 May 1, 2019

FIGURE 6

GHD | Hydrogeological Assessment | 11140575 (5)

Appendix A Provided Documents

811 GLADSTONE AVE.

G LOGEMENT COMMUNAUTAIRE D'OTTAWA

HOBIN

1×

SERVICE CRAWL SPACE-WEST TOWNHOUSE

sca**l**e 1:75 FEB 22, 2019

811 GLADSTONE AVE.

SERVICE CRAWL SPACE-EAST TOWNHOUSE

scale 1:75 FEB 22, 2019

None

 \Box

			LOGEMENT COMMUNAUTAIRE D'OTTAWA	
				-
				-
3	MAR 28, 2019 FEB 22, 2019		PA RESPONSE 2	-
1 no.	DEC 21, 2018 date	ISSUED FOR SE	CHEMATIC DESIGN REVIEW	_
con sior or All per Do This con	ntractor to omissions contractor tinent cod not scale s drawing	check and and report to the arch s must com es and by-l drawings. may not be until signed.	ply with all aws.	-
	ANO manufacture	NIN	CLERA DSIN DBIN Manual Contraction	
1	lobin Archite ncorporated			
	53 Pamilla Stre Ottawa, Ontario Canada K1S 3K)		
F	:: 613-238-7200 :: 613-235-2008 :: mail@hobinar :: mail@hobinar	5 c.com		
	OJECT/LOC	CATION:]]~
,	AFFOR		HOUSING	010
DR/	AWING TIT	LE:		0 T C
		RKING L LOOR F 6 STOR	PLAN	-
DR/ LE	AWN BY:	DATE: DEC 12, 2018	SCALE: 1:100	
			PROJECT: 1818	7177
<			DRAWING NO.:	07

 \vdash

A2.01

Appendix B Borehole Logs
REFER	ENCE NO	o.:	11140575-E3									ENCLC	SURE	No.:			1	
		G		BORE	EHOLE No.B	-11-17	/M	W1-17	7				BOF	REH	OLE	E L(OG	ì
				ELEV	ATION:	66.0	00	m					Page	: 1	0	of	<u> </u>	
CLIE	ENT: Ot	tawa C	Community Housing Corp	oration											GEND	2		
PRC	JECT:	Geote	chnical Investigation									SS 💽			le			
LOC	ATION:	811 (Gladstone Avenue, Ottaw	va, Ontario								ST 🖉	Shelb	y Tube				
			R. Vandentillaa									₹ o		r Level r conter	nt (%)			
DAT	E (STAR	T):	22 August 2017	•			2	22 Augu	ist 201	17		⊷ • N	Atterb	erg lim tration l	its (%)		on	
SC	ALE	~	STRATIGRAPHY		MONITOR WELL			SAN				• N	Split S Penet	Spoon stration limit Cor	sample ndex ba	e ased c		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State	Type and Number	Recovery	OVC	Penetration Index / RQD		Shea Shea Sensi Shea Pocke	r Streng r Streng tivity Va r Streng et Pene	oth bas oth bas alue of oth bas tromete	ed on ed on Soil ed on ed on	Lab	Vane
meters	66.00		GROUND SURF					_	%	ppm	Ν	50 10	SCALE	FOR 100kPa 40	TEST F 150k 50 60	RESU Pa <u>) 70</u>	LTS 200kF <u>80</u>	'a 90
	65.9	\times	ASPHALT(Approximat	ely 0.1	0.05 -	Π		Auger SS1	5/15							\square		
0.5	65.6 65.5		FILL-Gravelly sand, de	ense,	0.66 —		Ħ									\rightarrow		
E 1.0			grey, damp. SAND AND GRAVEL-	Loose.	0.66 = Bentonite			RC1	86/41		60					+	_	
E			brown, damp. *Auger refusal at 0.475		1.27 —			NOT			00					-		
- 1.5			continued with rock con	ring	1.48 WL 1.50											-		
2.0			LIMESTONE-Grey, we and fractured, fair qual	ty.	05/02/2019											+		
E			Water level : 1.89 mbg *Becoming good	S				RC2	60/60		82							
2.5																\rightarrow		
- 3.0					Sand —											+		
3.5																-		
					Screen			RC3	57/60		89					-		
- 4.0																+		
4.5																		
			*Becoming excellent													\square	_	
5.0																+		
- 5.5								RC4	60/60		93					-		
E					0.05											-		
	59.9		Borehole ended		6.05 — 6.15 -	<u>, , , , , , , , , , , , , , , , , , , </u>										+		
6.5			approximately 6.15 limestone	5 m in														
E 7.0																\rightarrow		
														_		+		
														_	+	+	+	_
															+	+	+	
5.5 6.0 6.5 7.0 7.5 8.0 7.5 8.0 9.0 9.5 9.0 9.5 10.0 10.0 10.5 NOTES																_		_
9.0													+		+	+	+	_
																\pm		
9.5															\square	\square		
ة <u>ا</u> 10.0															+	-+	_	_
10.5															+	+	+	_
	:																	
HOLE																		
BOR																		

REFER		o.:	11140575-E3									ENCLC	SUR	= No.:			2		_
		G		BOR	EHOLE No. <u>BH</u>	12-17	/M	W2-17	,				BOF	REH	OL	ΕL	.00	•	
				ELEV	ATION:	66.2	21	m					Page	e: <u>1</u>		of _	1		
CLIE	ENT: Ot	tawa (Community Housing Corp	oration									0.111		GEN	D			
PRC	JECT:	Geote	chnical Investigation									🔀 ss							
LOC	ATION:	811 (Gladstone Avenue, Ottaw	va, Ontario								🖉 ѕт							
			R. Vandentillaa									₹ o		r Level r conte					
DAT	E (STAR	T):	25 August 2017	•				25 Augu	ist 201	17		⊷ • N		berg lin tration			lon		
sc	ALE	>	STRATIGRAPHY		MONITOR WELL			SAN		DATA	- 0	• N	Split Pene	Spoon tration mic Co	sampl Index I	e based			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State	Type and Number	Recovery	OVC	Penetration Index / RQD	□ Cu S ▲	Shea Pock	r Stren itivity V r Stren et Pene	gth ba alue c gth ba etrome	sed o of Soil sed o eter	n Lab n	Vane	e
meters	66.21		GROUND SURF	-					%	ppm	Ν	50 10	SCALE	= FOR 100kPa <u>40</u>	1EST 150 50 6	RESU 0kPa <u>50 7</u> 0	JLTS 200k <u>) 8</u> 0	Pa 90	
E	66.1 65.8	\bigotimes	<pre>ASPHALT(Approximat _\m thick)</pre>	ely 0.1	0.05 — Sand —	ΠĨ	M	SS1	12/20		9	_			_		_		
0.5	65.6		FILL-Gravelly sand, logrey, damp.	ose,			Ĥ	001	12/20								_	_	
= 1.0			SILTY SAND-Some gra compact, grey with	avel,	Bentonite 🗕			RC1	23/23		65						-		
_ 1.5			reddish-brown staining *Auger refusal at 0.6 m	, damp.	1.35 — Riser — 1.55 —														
2.0			continued with rock cor	ring				RC2	60/60		88						_	_	
E			LIMESTONE-Grey, we and fractured, fair qual	ity.	WL 2.10														
2.5			*Water was whiteish at transitioning to grey.																
3.0			Water level : 2.74 mbg *Becoming good	5	Sand —												_		
3.5			*Becoming excellent					RC3	58/58		98				_				
					Screen														
4.0															_				
4.5																	_	_	
5.0								RC4	52/52		100								
- 5 5																			
								RC5	28/28		100				_		_	_	
6.0	60.0		Developerate and a	-	6.13- 6.22		L								_		-	-	
6.5			Borehole ended approximately 6.2		0.22														
7.0			limestone																
7/11																	_		
5.5 6.0 6.5 7.0 7.5 8.0 7.5 8.0 9.0 9.5 9.0 9.5 10.0																			-
																	+	+	
9.0																			
95																	-	-	
																	-	-	
10.0																	+	+	
10.5																			-
BOKEHOLE LOG 11140675-53-BH LOGS (BVI 1185-52, SOL (BVI 1175-119 8.0 9.0 9.5 10.0 10.0 NOTES	:																		

REFER	ENCE N	o.:	11140575-E3	-						ENCLO	DSUF	RE No	o.: _		3		
				BOREHOLE No.:	BH3	-17		_			BO	RF	но	IF	LOC	Ĵ	
		C	Ð	ELEVATION:													
													EGE				
			Community Housing Corp							🖂 ss		t Spoo	on				
	-		chnical Investigation Gladstone Avenue, Ottaw	va Ontaria						📳 G:							
		-		rt CHECKED BY:						I I I I I I I I I I I I I I I I I I I		ter Lev					
				DATE (FINISH):						° H			ntent (% limits				
	ALE	/		ATIGRAPHY			SAMPLE			• N	Per	etratio		ex base	əd on		
30		>	311			```				• N	Per	etratic	on Inde	, x base ample			
Depth	tion	raph	DES	SCRIPTION OF	1	and		0	ROD	∆ Ըւ □ Ըւ	u She	ear Str	ength	based	on Fie on Lat	ld Vai Van	ne e
BGS	Elevation (m)	Stratigraphy		AND BEDROCK	ċ	Type and	Recovery	ovc	Penetration Index / RQD	S ▲	Ser She	sitivity ar Str	/Value	e of So based	il		-
		St				<u> </u>			-				enetro				
meters	65.80 65.7		GR ¬ ASPHALT (Approximat	OUND SURFACE		a	%	ppm	Ν	10 5	0kPa	100k	Pa 50	150kPa 60	SULTS 2004 70 80	kPa <u>) 90</u>)
E	65.4		FILL- Gravelly sand, lo			ss	1 11/2	5	9		_						
0.5	65.0		SILTY SAND-some gra	avel, compact, grey, moist.			1 11/2	1	3		_				+		
- 1.0	05.0			m, continued with rock coring athered and fractured, fair	/	RC	1 22/2	2	64		-				+	-	
			quality. *Becoming excellent		-												
_ 1.5 _			Becoming excellent														
2.0						RC	2 57/5	1	93								
2.5															+		
- 2.0	63.1		Borehole ended at a	pproximately 2.7 m in limestor		L					_				+		
= 3.0															+		
3.5																	
E																	
- 4.0																	
4.5															\square		
5.0											_						
5.0											_				+		
- 5.5											_						
6.0																	
E																	
6.5																	
7.0											_				+		
											_				+		
[≈] 7.5											_						
											+						-
8.5																	
9.0											_				+		_
9.5											+	$\left \right $		_	+	-+	_
											-	\vdash			+		_
10.0															+	+	
10.5																	
	S:																

REFER	ENCE N	o.:	11140575-E3	_						ENCLO	SUR	RE No	o.: _		4		
				BOREHOLE No.:	BH4	-17					BO	RF	но	LE I		3	
		G	HD	ELEVATION:	65.80) m								of			
													EGE				
			Community Housing Corp	oration						🔀 ss		t Spoo	on				
	-			a, Ontario						GS C ST							
				rt CHECKED BY:						⊻ 		er Lev					
				DATE (FINISH):						°			ntent (% limits	'			
	ALE	/		ATIGRAPHY			AMPLE			• N	Pen Spli	etration t Spoo	on Inde on sam	ex base			
	c	दे				_			c Q	• N	Dyn	amic (Cone s	x base ample			
Depth BGS	Elevation (m)	Stratigraphy		SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	□ Cu S ▲	She Sen She Poc	ar Str sitivity ar Str ket Pe	ength / Value ength enetro		on Lat il on	o Van	ne
meters	65.80		GR	OUND SURFACE			%	ppm	Ν	10	SCAL	_E FO	R TES	ST RES 150kPa 60		kPa	
	65.7	$\times\!\!\times$	ASPHALT(Approximat			SS1	10/16		19								·
0.5	65.4 65.3		FILL-Gravelly sand, co	mpact, grey, damp. gravel, loose, greyish brown,	/		10/10	,	19								
E	65.1		damp.	, continued with rock coring	h	RC1	27/27		78						$\left \right $		
- 1.0				athered and fractured, good	/	_									$\left \right $		
- 1.5			quality. Mudseam: 2.38 to 2.4n	-											$\left - \right $		
2.0						RC1	60/60)	85						$\left \right $		
Ear																	
- 2.5	63.1		Porcholo andod at a	pproximately 2.7 m in limeston											\square		
3.0			Borenole ended at a	pproximately 2.7 m in inneston	le										$\left \right $		
3.5															+		
E															\square		
4.0																	
4.5																	
5.0															\vdash		
															\vdash		
5.5																	
6.0																	
E															\square		
6.5															+		
															$\left \right $	-	
7.5																	
8.5 9.0 9.5													-	_	$\left \right $		
													+	_	$\left \right $	-+	
8.5																	
9.0													\bot		\square		
9.5															$\left - \right $	-	
												\vdash	_		$\left - \right $	\dashv	
10.0												\vdash	+		\square	\dashv	
10.5																	
NOTES	3:																
3																	

REFER	ENCE N	o.:	11140575-E3	_								ENCLO	DSURI	E No.:			5	
		C		BOR	EHOLE No.E	BH5-17/	'M\	N3-17	,				BOF	REH	OLI	ΕL	OG	ì
		CI.		ELEV	ATION:	67.0	6 r	n					Page	e: <u>1</u>	_ (of	1	
CLIE	ENT: O	ttawa (Community Housing Corr	oration											GEN	D		
			chnical Investigation									🔀 ss						
LOC	ATION:	811 (Gladstone Avenue, Ottav									ST						
DES	CRIBED	BY:	R. Vandentillaa	rt	CHECKED BY	′:		S. Wa	allis			₹ o		r Level r conter				
DAT	E (STAR	RT):	28 August 2017	,	DATE (FINISH	I):	2	8 Augu	st 201	17		\square	Atter	berg lin	nits (%)			
SC	ALE		STRATIGRAPHY		MONITO WELL	R		SAM	IPLE I			• N • N	Split Pene	tration Spoon tration I	sample Index b	e ased o		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State	Type and Number	Recovery	OVC	Penetration Index / RQD		Shea Shea Sens Shea Pock	itivity V Ir Stren et Pene	gth bas gth bas alue of gth bas etrome	sed or sed or Soil Sed or ter	١	
meters	67.06		GROUND SURF						%	ppm	Ν	50 10	SCALI ^{0kPa} 20 30	E FOR 100kPa 40	TEST 150 50 6	RESU ^{kPa} 0 70	200kF 80	°a 90
0.5	67.0 66.8		TOPSOIL-Silty sand, b loose, moist. (Approxin m thick)		0.05-	$\left\ \right\ $	X	SS1	7/24		15	•						
- 1.0	66.4		FILL-Sand and gravel, loose, damp. Mudseam : 0.9 to 0.91		Bentonite		Í											
_ 1.5			LIMESTONE-Grey, we and fractured, poor qua	athered ality.	1.09 — Riser 1.30 —			RC1	60/60		50					_	_	
2.0			Water level : 2.17 mbg	S														
- 2.5			*Becoming good		WL 2.60 —	X	Ī	RC2	30/30		80							
3.0			*Becoming excellent		05/02/2019 Sand —												-	
3.5					Screen —	×		RC3	45/45		92						_	
<u> </u>																		
4.5								RC4	27/27		100							
5.0								RC5	47/47		100							
6.0	61.2		Borehole ended		5.87—		I											
6.5			approximately 5.87 limestone	' m in												-	-	
BOREHOLE LOG 11140575-E3-BH LOGS GPU INSPEC_SOL.GDT 7/5/19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																		
10.0																_	_	
10.5													+		+		+	_
NOTES	:	1			1		1				1	I				[
DREHC																		
M																		

REFER	ENCE N	o.:	11140575-E3	-							ENCLO	DSUR	E No	o.:		6	
				BOREHOLE No.:	BH6	-17						BO	RE	ноі	EI	_0(3
		G		ELEVATION:	66.42	2 m								1			
CUE	=NT· Of	tawa (Community Housing Corp	oration										EGEI	<u>ND</u>		
				oration							🔀 St						
	-		Gladstone Avenue, Ottaw	o Ontorio													
				rt CHECKED BY:							Ţ	Wat	er Lev	vel			
DAT	E (STAR	T):	28 August 2017	DATE (FINISH):		28 A	Augus	st 201	17		°	Atte	rberg	tent (% limits ('	%)		
SC	ALE		STF	ATIGRAPHY		1	SAM	IPLE [ΟΑΤΑ			Split Pene	: Spoo etratio	on Inde on sam n Index	ble based		
Depth BGS	Elevation (m)	Stratigraphy		SCRIPTION OF AND BEDROCK	ċ	State Type and	Ňumber	Recovery	OVC	Penetration Index / RQD		u She u She Sen She Pocl	ar Stre ar Stre sitivity ar Stre ket Pe	ength b Value ength b enetrom	ased of ased of of Soi ased of leter	on Lab I on	ld Vane Vane
meters	66.42		GRO	OUND SURFACE				%	ppm	Ν	10 5	SCAL	E FO 100k	R TES Pa 1 50	T RES	ULTS 2001 70 80	(Pa) 90
0.5	66.2		dark brown, moist. (App	th organics (grass), very loose proximately 0.18 m thick) prganics, loose, dark brown,	, /	s	S1	7/24		4	•		_			\square	
E			moist.	Sigariles, 100se, dark brown,	Ī	a s	S2 :	5/20		22		•					
1.0	65.3		¬*Auger refusal at 1.1 m	, continued with rock coring	Æ	T T											
- 1.5			LIMESTONE-Grey, we quality.	athered and fractured, poor		R	C1 2	25/25		30			_		_	\square	
2.0			*Becoming excellent														
2.5						R	C2 4	17/47		96						\square	
3.0	63.5		Borehole ended at a	pproximately 2.9 m in limeston	e												
3.5																	
4.0																	_
4.5																	
5.0																	
5.5																	
6.0																\square	
6.5																\square	
																\square	
7.0 7.5 8.0 8.5 9.0 9.5 10.0																	
8.0																\vdash	
8.5																	
<u>5</u> 9.0																\square	
9.5													_			\vdash	
													-			$\left \right $	
													-			\square	
= 10.5 NOTES	6:																

REFER		o.:	11140575-E3	_							ENCLO	DSUR	E No	o.:		_7	
				BOREHOLE No.:	BH7	7-1	7					во	RE	ноі	E I	_0(3
		G		ELEVATION:	66.3	88	m							1			
CU		tawa (Community Housing Corp	poration										EGE	ND		
											🔀 ss 🚺 Gs						
	-		Gladstone Avenue, Ottaw								С (С) (С) ST						
DES	SCRIBED	BY:	R. Vandentillaa	rt CHECKED BY:							⊥ ⊙		er Lev		、 、		
DAT	ΓΕ (STAR	T):	29 August 2017	DATE (FINISH):		2	29 Augu	ist 20	17		<u>н</u>	Atte	rberg	tent (% limits (%)		
so	CALE		STE	RATIGRAPHY			SAM	MPLE	DATA		• N • N	Split Pen	t Spoc etratio	on Inde on sam n Inde Cone sa	ole base		
Depth BGS	Elevation (m)	Stratigraphy		SCRIPTION OF AND BEDROCK		State	Type and Number	Recovery	OVC	Penetration Index / RQD		She She Sen She Poc	ar Stro ar Stro sitivity ar Stro ket Pe	ength b ength b v Value ength b enetrom	ased of Soi ased neter	on Lab I on	ld Vane v Vane
meters	66.38		GR	OUND SURFACE				%	ppm	Ν	5 10	SCAL 0kPa 20 3	E FO 100k 0 40	R TES Pa 1 50	T RES	ULTS 2004 70 8((Pa) 90
E	66.3		TOPSOIL- Silty sand w	ith organics (grass), very loose proximately 0.1 m thick)	∋, _	М	SS1	12/20		10	•						
0.5	65.7	\bigotimes	FILL-Sand some grave	el, loose, light brown, moist.													
E 1.0				m, continued with rock coring athered and fractured, poor	/		RC1	14/19		29				_	_	$\left \right $	
E			quality.				RC2	15/15		40							
- 1.5			*Becoming excellent														
2.0																	
2.5							RC3	57/56	j	93							
E	00.4															\square	—
= 3.0	63.4		Borehole ended at a	pproximately 2.9 m in limestor	ne												
3.5																	
4.0																	
4.5																	
5.0																	
5.5																	
6.0															_	\vdash	+
6.5																	
<u>ه</u> 7.0												+	-			$\left \right $	—
7.5																	
																\square	
																	_
													+			$\left \right $	—
BOREHOLE LOG 111406275-53-BH LOGS GPU INSPEC. SOL GDT 71/111111106215-53-BH LOGS GPU INSPEC. SOL GDT 71/11111111111111111111111111111111111												$\left \right $	-			$\left \right $	+
																	_
÷	 S:																
BORE																	

REFEF		o.:	11140575-E3	_						ENC	LOS	URE N	lo.:			8	
				BOREHOLE No.:	BH8	-17		_			В	ORE	=на	OI F	= 1 (OG	
		G	HD	ELEVATION:	65.37	7 m		_				Page:					
		town												ENE			
			Community Housing Corr									Split Sp					
	-		Gladstone Avenue, Ottav	va. Ontario								Auger S Shelby ⁻		e			
				rt CHECKED BY:		S. \	Vallis			Ţ	١	Nater L	evel				
				DATE (FINISH):						° H		Nater co Atterber		• •			
SC	CALE		STI	RATIGRAPHY		S	AMPLE	DATA	1	•	N I	Penetra Split Sp Penetrat	oon s ion In	ample Idex ba	ased o		
Depth BGS	Elevation (m)	Stratigraphy		SCRIPTION OF AND BEDROCK		State Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu S Cu S	Dynamic Shear S Shear S Sensitiv Shear S Pocket I	treng treng ity Va treng Penet	th bas th bas lue of th bas	ed on ed on Soil ed on er	Lab	Vane
meters	65.37		GR	OUND SURFACE			%	ppm	Ν	10	50kP	CALE F a 10	OR T OkPa	EST F 150k	RESUI	LTS 200kF 80	°a 90
_	65.2	$\times \frac{1}{2}$	TOPSOIL- Silty sand w \brown, moist. (Approxi	ith organics (grass), loose, da	rk	SS1	10/24		4								
- 0.5		\bigotimes		loose, dark brown, moist.	— / [10/2-		4						\square		
	04.0	\bigotimes				ss2	6/24		10						\rightarrow	_	
	64.3		FILL-Gravel some san greyish brown, damp.	d trace silt and clay, loose,	(_				+	+	
- 1.5		\bigotimes	greyish brown, damp.			K ss3	3/24		34			•			-	+	
= 2.0		\bigotimes			Ŕ		3/18				-				+		
Ē	63.1		CONCRETE		{	334 ∎	5/10										
2.5	62.8			athered and fractured, poor		RC1	12/24	1	25								
- 3.0			quality. *Becoming good		-										\perp	_	
Ear			Becoming good			RC2	39/39	•	82		_				+	_	
- 3.5															+	+	
- 4.0	61.5		Borehole ended at a	pproximately 3.9 m in limestor	ne						-				+	+	
4.5															+		
5.0																	
5.5															\rightarrow		
E															+	_	
6.0																-	
6.5																	
1111002563-BH LOGS (BV) INSPEC_SOL (BV1 78/19 0.0 2.6 0.7 2.7 2.7 0.0 2.7 2.7 2.7 0.0 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7										$\left - \right $	+	_			+	+	_
															—	_	—
8.0																	
BOREHOLE LOG 11140575-E3 BH LOGS GPJ NUSPEC SOL GDT 7/5/19 11111111111111111111111111111111111											-	_			_	-	
8:6b7																	
9.5															\square		
9.5 10.0															_	+	_
												_			—	+	—
- 9 − 10.5 10.5 − 10.5	 S:																
SORET																	
ш																	

REFER	RENCE NO	o.:	11140575-E3									ENCLO	JSUF	RE N	0.: _		9		
				BOR	EHOLE No.:	MW	4- ′	19					во	RE	но	LE	LO	G	
		G	HD	ELE\	ATION:	65.6	6	m							1				
															EGE				
			Community Housing Corp									🔀 se		t Spo	on				
	-		chnical Investigation Gladstone Avenue, Ottav									📳 G:							
			R. Vandentillaa					J. Ben	nett			⊻ I		ter Le					
			16 April 2019									°			ntent (9 limits	,			
	ALE		STRATIGRAPHY		MONITOR					DATA		• N • N	Per Spli	etrati t Spo	on Inde on san	ex bas			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State	Type and Number	Recovery	OVC	Penetration Index / RQD		Dyr J She J She Ser She Poo	amic ear Str ear Str sitivit ear Str ket P	Cone s rength rength y Value rength enetro	ample based based e of So based meter	on Fi on La oil on		
meters	65.66		GROUND SURF	ACE					%	ppm	Ν	5 10	SCA ^{0kPa} 20	LE FC 1001	R TES	ST RE 150kPa 60	SULT: 200 70 8	S)kPa 30 9	0
		\bigotimes	FILL- Sand, brown, me *Becoming Sand and g	oist Iravel	0.12-	T													
0.5		\bigotimes	grey																
E - 1.0	64.8		*Auger refusal at 0.86		Bontonito	P1000		RC1	100		56		_						
			LIMESTONE - shale laminations, grey, wear	thered	Bentonite								_				-		
- 1.5			and fractured, poor to f	air									-			_	+		
2.0			quality, medium strong moderately close, close	, close to ed to	1.78- Riser- 2.08-			RC2	100		48								
E			gapped joints, some fossiliferous beds throu	ighout	2.00-														
2.5			10 mm thick infilled sea mbgs	am at 1.4	Sand —														
3.0			*Becoming good qualit	у	Cana												_		
					WL 3.30 -	Y		RC3	100		80		-			_	-		
- 3.5					05/02/2019 Screen												-		
- 4.0																	-		
4.5																			
– – – – –								RC4	100		87								
5.0	60.5		Developed and a	-1	5.13-														
5.5			Borehole ended approximately 5.1																
			limestone										_				_		
6.0																_	+		
6.5																			
7.0																_			
BOREHOLE LOG 1140575-E3-BH LOGS.GPU INSPEC_SOL.GDT 7/5/19 0																			
9.5																			
8.0 8.0													_			_			
10.0 E																_		-	
0.01 140575-E3-BHI													+		+				
	S:	I			1				1		I						1	I	
EHOL																			
BOR																			

REFER	ENCE N	0.:	11140575-E3								ENCL	JSUF	LE NC).:		10	
				BORI	EHOLE No.:	MW	5-19					во	RE	HO	LEI		G
		G		ELEV	ATION:	66.0)6 m							1			-
CLIF	=NT· Of	tawa (Community Housing Corp	oration										EGE	ND		
											🔀 SS 📘 GS	S Spli					
			Gladstone Avenue, Ottaw									T She					
			R. Vandentillaa				J.	Benne	t		Ţ	Wat	er Lev	vel			
DAT	E (STAR	T):	16 April 2019		DATE (FINISH):		16	April 20	19		°	Atte	rberg	tent (% limits (%)		
sc	ALE		STRATIGRAPHY		MONITOR WELL			SAMPL	E DATA		• N	Spli	t Spoo	on Inde on sam n Inde:	ple		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State Type and	Number Recovery	OVC	Penetration Index / RQD	∆ Ci □ Ci S	Dyn U She Sen She Poc	amic C ar Stre ar Stre sitivity ar Stre ket Pe	Cone s ength I ength I Value ength I enetror	ample based based of Soi based neter	on Fie on Lat il on	eld Vane b Vane
meters	66.06		GROUND SURF	-				%	ppm	N	10 E	SCAI 50kPa 20 3	_E FO 100ki 0 40	R IES Pa 1 <u>50</u>	1 RES 50kPa 60	0LTS 2001 70 8	(Pa 0 90
- 0.5			FILL- Sand, brown, mo	pist	0.15 — 0.30 —												_
E																	
= 1.0	64.8		*Becoming Sand and g grey, damp	ravel,								_					
- 1.5			*Auger refusal at 1.22 continued with rock con		Riser 🗕 💌										_	$\left \right $	
2.0			LIMESTONE - shale				R	C1 9		66		_				$\left - \right $	+
2.0			laminations, grey, weat and fractured, fair qual	ty,													
2.5			medium strong, close t moderatly close, close	o d to													
= 3.0			gapped joints, some fossiliferous beds starti			E											
E			mbgs	-	Bentonite 🗕		R			76		_					
- 3.5			*Becoming good quality	y				2 10	0	/0					_	$\left \right $	
4.0																\vdash	+
			*Becoming excellent qu	uality			Ī										
4.5					WL 4.60	⊻ ⊟											
5.0							R	23 10	0	98							
E 55																	
			*Becoming good qualit	v												\square	
6.0					6.02 — Sand — 6.32 —										_	$\left \right $	
6.5					6.32 -		R	24 10	о	83					_	\vdash	
																\square	-
			*Pocoming eventions a	uolity (
[€] - 7.5			*Becoming excellent qu	lailty													
							R	25 10	0	97		_			_	$\left - \right $	
					Screen — 🗲							_			_	\vdash	+
8.5																	
9.0		НJ										1			+	$ \uparrow $	-
							R	26 10	o	94							
H 9.5		H														\square	\square
<u>الم</u>	56.1		Borehole ended	at	9.98 —							_			_	$\left - \right $	
5.5 6.0 6.5 7.0 7.5 8.0 7.5 8.0 9.0 9.5 9.0 9.5 10.0			approximately 10.0 limestone									_			_	$\left - \right $	+
	6:																
оркенноге составляется измесс 201 //201 8.0 8.5 9.0 9.0 9.5 10.0 10.0 NOTES																	
POK																	

REFER	RENCE N	o.:	11140575-E3									ENCLC	SUR	EN	o.: _		11		
				BORI	EHOLE No.:	MW	6-1	9					BO	RE	но	LEI	LOC	G	
		G	HD	ELEV		66.5	4 r	n							1				
		towo	Community Housing Corr	oration											EGE				
			connical Investigation									🔀 ss							
	-		Gladstone Avenue, Ottaw									I GS I ST							
			R. Vandentillaa					J. Ben	nett			Ţ	Wate	er Lev	vel				
DAT	ΓΕ (STAR	T): _	16 April 2019		DATE (FINISH):			16 Apri	201	9		°	Atter	rberg	ntent (% limits	%)			
so	CALE		STRATIGRAPHY		MONITOR WELL			SAM	1PLE	DATA		• N • N	Split Pene	Spoc	on Inde on sam on Inde	ple x base			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State	Type and Number	Recovery	OVC	Penetration Index / RQD	△ Cu □ Cu S ▲	Shea Shea Sens Shea Pock	ar Str ar Str sitivity ar Str ket Pe	/ Value ength enetro	based based of So based neter	il on		
meters	66.54		GROUND SURF	-					%	ppm	Ν	50 1 <u>0</u>	SCAL ^{0kPa}	E FO 100k	R TES	T RES 50kPa 60	ULTS 2001 70 8	; kPa <u>0 9</u> 0	3
0.5	65.5		FILL- Sand, brown, mo *Becoming Sand and g grey, damp ~ *Auger refusal at 1.1 m	ravel,	0.10 - 5 0.30 - 5 Bentonite - 5														
1.5			continued with rock con LIMESTONE - shale laminations, grey, weat and fractured, poor to f	hered	WL 1.30 - 05/02/2019 1.78 - Riser	¥ 		RC1	100		56								
2.0			quality, medium strong moderately close, close gapped joints Sub-horizontal bedding	, close to ed to	2.08-														
3.0			to 2.4 mbgs *Becoming good qualit		Sand —			RC2	100		86								
- 3.5 - 4.0					Screen														
4.5								RC3	100		73								
5.0	61.4		Borehole ended	at	5.13 —		I												
5.5			approximately 5.1 limestone	m in															
6.0																			
7.0																			
01/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/																			
														-	+	_	+	-+	
														+	+		$\left \right $	+	
LILL																			
													\square	\square				-	
														-	-+	_	$\left \right $	_	
²⁴ 10.5														+	+		$\left \right $	\rightarrow	
BOREHOLE LOG 11140675-E3-BH LOGS GPJ INSPEC_SOL.GDT 7/5/19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<u> </u> 5:	<u> </u>			<u> </u>									[<u> </u>		

Appendix C Single Well Response Testing

Appendix D Ontario Water Well Records

MECP Water Well Record - Formation Report

Well ID: 1508877	County / To	Aurophine OTTANALA C		
Concession (Lot): ()	-	ownship: OTTAWA-C		
	Northing) [RC]: 18 (444540.7,5027902) [5]	Primary Use:	Commerical	
Depth to bedrock (m)		Secondary Use:		
Elevation (masl): 63		Final Status:	Water Supp	lv
				-
Layer Colour	Description FILL		тор - Боц 0	om Depth (m) 1.22
			0	1.22
	MEDIUM SAND GRAVEL		1.22	7.01
	LIMESTONE		7.01	94.49
Well ID: 1535493	-	ownship: OTTAWA-C		
Concession (Lot): ()		Completion Date		:00 AM
	Northing) [RC]: 18 (444239,5028200) [4]	Primary Use:	<null></null>	
Depth to bedrock (m		Secondary Use: Final Status:	<null> Test Hole</null>	
Elevation (masl): 59		Final Status.		
Layer Colour	Description		-	om Depth (m)
BROWN	SAND GRAVEL FILL		0	1.4
BROWN	SAND FILL CLAY		1.4	1.7
GREY	BOULDERS SAND GRAVEL		1.7	4.65
Well ID: 1536268	County / To	ownship: OTTAWA-C		
Concession (Lot): (Completion Date	: 11/10/2005	12:00 AM
	Northing) [RC]: 18 (444554,5027934) [3]	Primary Use:	<null></null>	
Depth to bedrock (m)		Secondary Use:		
Elevation (masl): 64	.73571	Final Status:	Test Hole	
Layer Colour	Description		Top - Bott	om Depth (m)
BROWN	SAND		0	2.41
			2.41	5.44
Well ID: 1536545	County / To	ownship: OTTAWA-C	ARLETON / C	
	-	ownship: OTTAWA-C		
Concession (Lot): ()	ownship: OTTAWA-C. Completion Date Primary Use:		
Concession (Lot): (UTM Zone (Easting,) Northing) [RC]: 18 (444047,5027957) [3]	Completion Date	: 6/12/2006 1 <null></null>	
Well ID: 1536545 Concession (Lot): (UTM Zone (Easting, Depth to bedrock (m Elevation (masl): 69) Northing) [RC]: 18 (444047,5027957) [3]):	Completion Date Primary Use:	: 6/12/2006 1 <null></null>	2:00 AM
Concession (Lot): (UTM Zone (Easting, Depth to bedrock (m)) Northing) [RC]: 18 (444047,5027957) [3]):	Completion Date Primary Use: Secondary Use:	: 6/12/2006 1 <null> <null> Observation</null></null>	2:00 AM

Page 1 of 18

BROWN	TILL		0.5	1.2
BROWN	TILL		1.2	4.9
Well ID: 1536781	County	/ Township: OTTAWA-C	ARLETON /	OTTAWA CIT
Concession (Lot): A	(036)	Completion Date	: 8/10/2006	12:00 AM
	Northing) [RC]: 18 (444456,5027907) [3]	Primary Use:	<null></null>	
Depth to bedrock (m)		Secondary Use:		
Elevation (masl): 63	.524879	Final Status:	Observatio	n Wells
Layer Colour	Description		Top - Bo	ottom Depth (m
BROWN	SAND BOULDERS		0	9.27
GREY	LIMESTONE ROCK		9.27	17
Well ID: 7108782	County	/ Township: OTTAWA-C	ARLETON /	OTTAWA CIT
Concession (Lot): ()		Completion Date	: 7/2/2008 1	2:00 AM
UTM Zone (Easting,	Northing) [RC]: 18 (444101,5028624) [3]	Primary Use:	Not Used	
Depth to bedrock (m)):	Secondary Use:	<null></null>	
Elevation (masl): 59	.697109	Final Status:	Abandone	d-Other
Layer Colour	Description		Top - Bo	ottom Depth (m
			0	9.6
			9.6	6
			6	6.4
			6.4	10
			10	10
			10	7.5
Well ID: 7122535	County	/ Township: OTTAWA-C	ARLETON /	OTTAWA CIT
Concession (Lot): ()		Completion Date	: 3/10/2009	12:00 AM
UTM Zone (Easting,	Northing) [RC]: 18 (444773,5027850) [3]	Primary Use:	Monitoring	
Depth to bedrock (m)):	Secondary Use:	<null></null>	
	.971084	Final Status:	Test Hole	
Elevation (masl): 65			Top - Bo	ottom Depth (m
Elevation (masl): 65 Layer Colour	Description			
	Description SAND TOPSOIL		0	0.6

GREY LIMESTONE ROCK

Page 2 of 18

8.8

4.2

Well ID: 7123330 Concession (Lot): () UTM Zone (Easting, Depth to bedrock (m Elevation (masl): 64	Northing) [RC]: 18 (444505,502)):	-	nship: OTTAWA-C. Completion Date Primary Use: Secondary Use: Final Status:	: 7/9/2008 12:0 Monitoring	
Layer Colour	Description			Top - Bottor	n Depth (m)
BROWN	TILL			0	4.88
				4.88	7.8
BROWN	TILL			0	4.88
				4.88	7.8
BROWN	TILL			0	4.88
				4.88	7.8

Concess UTM Zo Depth to	7127876 sion (Lot): () one (Easting, I o bedrock (m) n (masl): 66.		·	nship: OTTAWA-C/ Completion Date: Primary Use: Secondary Use: Final Status:	: 4/27/2009 12:0 Monitoring	
Layer	Colour BROWN	Description FILL SAND LOOSE			Top - Bottor 0	n Depth (m) 0.91
	GREY	LIMESTONE FRACTURED			0.91	4.57
	BROWN	FILL SAND LOOSE			0	0.91
	GREY	LIMESTONE FRACTURED			0.91	4.57
	BROWN	FILL SAND LOOSE			0	0.91
	GREY	LIMESTONE FRACTURED			0.91	4.57
	BROWN	FILL SAND LOOSE			0	0.91
	GREY	LIMESTONE FRACTURED			0.91	4.57
	BROWN	FILL SAND LOOSE			0	0.91
	GREY	LIMESTONE FRACTURED			0.91	4.57
	BROWN	FILL SAND LOOSE			0	0.91

Page 3 of 18

	GREY	LIMESTONE FRACTURED		0.91	4.57
	BROWN	FILL SAND LOOSE		0	0.91
	GREY	LIMESTONE FRACTURED		0.91	4.57
	7130103	-	ownship: OTTAWA-C		
	sion (Lot): (,	Completion Date		
		Northing) [RC]: 18 (444730,5027834) [4]	Primary Use:	-	and Test Hole
-	bedrock (m	-	Secondary Use:		
Elevatio	on (masl): 65	5.919372	Final Status:	Monitoring a	ind Test Hole
Layer	Colour	Description		Top - Bott	om Depth (m
	GREY	GRAVEL FILL LOOSE		0	0.61
	GREY	ROCK LIMESTONE HARD		0.61	7.62
Concess UTM Zo Depth to	7130105 sion (Lot): (one (Easting, o bedrock (m on (masl): 64) Northing) [RC]: 18 (444643,5027871) [4] n):	ownship: OTTAWA-C Completion Date Primary Use: Secondary Use: Final Status:	: 8/14/2009 1 Monitoring a	
Laver	Colour	Description		Top - Bott	om Depth (m
,	BROWN	GRAVEL FILL LOOSE		0	1.22
	GREY	LIMESTONE ROCK		1.22	7.62
	7139615 sion (Lot): (-	ownship: OTTAWA-C Completion Date		
		/ Northing) [RC]: 18 (444645,5028741) [4]	Primary Use:	Test Hole	2.007.00
	bedrock (m		Secondary Use:		
-	on (masl): 76	-	Final Status:	Test Hole	
	Colour	Description		Top - Bott	om Depth (m
Layer	Coloui	OTHER		0	0.02
	BROWN	FILL SAND SILTY		0.02	0.63
	GREY	LIMESTONE ROCK		0.63	2.05
				2.05	<null></null>

Well ID: 7143933 County / Township: OTTAWA-CARLETON / OTTAWA CITY Completion Date: 4/21/2010 12:00 AM Concession (Lot): () UTM Zone (Easting, Northing) [RC]: 18 (444645,5028741) [3] Primary Use: <null> Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: <null> Top - Bottom Depth (m) Layer Colour Description 0 0.02 BROWN SILT SILTY SAND 0.02 0.63 GREY LIMESTONE ROCK 0.63 2.05 Well ID: 7169258 County / Township: OTTAWA-CARLETON / OTTAWA CITY Completion Date: Concession (Lot): () UTM Zone (Easting, Northing) [RC]: 18 (444483,5028485) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Final Status: **Observation Wells** Elevation (masl): <null> Layer Colour Description Top - Bottom Depth (m) BROWN CLAY GRAVEL PACKED 0 0.61 GREY LIMESTONE CLAY LAYERED 0.61 10.67 Well ID: 7174650 County / Township: OTTAWA-CARLETON / OTTAWA CITY Concession (Lot): () Completion Date: 11/17/2011 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444078,5028061) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Monitoring and Test Hole Layer Colour Description Top - Bottom Depth (m) GRAVEL SAND HARD 0 BROWN 3.1 BROWN SAND SILT CLAY 3.1 4.27 GREY CLAY SILT SOFT 4.27 5.18 Well ID: 7174651 County / Township: OTTAWA-CARLETON / OTTAWA CITY Concession (Lot): () Completion Date: 11/17/2011 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444077,5028061) [4] Primary Use: Monitoring and Test Hole Secondary Use: <null> Depth to bedrock (m): Final Status: Elevation (masl): <null> Monitoring and Test Hole Layer Colour Description Top - Bottom Depth (m) FILL HARD DRY 0 BROWN 2.74 BROWN CLAY FILL HARD 2.74 4.57 GREY CLAY FINE SAND WATER-BEARING 4.57 5.49 Page 5 of 18

Well ID: 7174652 County / Township: OTTAWA-CARLETON / OTTAWA CITY Concession (Lot): () Completion Date: 11/17/2011 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444055,5028051) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> **Final Status:** Monitoring and Test Hole Layer Colour Description Top - Bottom Depth (m) BROWN GRAVEL SAND FILL 0 2.44 GREY SILT SAND CLAY 2.44 4.57 Well ID: 7174653 County / Township: OTTAWA-CARLETON / OTTAWA CITY Concession (Lot): () Completion Date: 11/17/2011 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444037,5028050) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Monitoring and Test Hole Layer Colour Description Top - Bottom Depth (m) 0 BROWN FILL HARD 3.66 BROWN SAND SILT SOFT 3.66 4.27 GRFY SILT FINE SAND SOFT 4.27 4.88 Well ID: 7183728 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 6/11/2012 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444079,5028047) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Test Hole Top - Bottom Depth (m) Layer Colour Description BROWN FILL GRAVEL PACKED 0 1.83 GREY CLAY SAND SOFT 1.83 2.74 GREY CLAY SAND SOFT 2.74 4.57 Well ID: 7183729 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 6/11/2012 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444099,5028058) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Test Hole Description Layer Colour Top - Bottom Depth (m) BROWN FILL GRAVEL PACKED 0 1.5 GREY CLAY SILTY GRAVEL 2.74 1.5

Page 6 of 18

	GREY	CLAY SAND SOFT			2.74	4.27
	7183730		County / Township:			
			County / Township.			
	sion (Lot): (COOO 44) [4]	Completion Date		
		Northing) [RC]: 18 (444077	,5028041) [4]	Primary Use:	-	and Test Hole
-	bedrock (m			Secondary Use:		
Elevatio	n (masl): <r< td=""><td>null></td><td></td><td>Final Status:</td><td>Test Hole</td><td></td></r<>	null>		Final Status:	Test Hole	
Layer	Colour	Description			Top - Bot	tom Depth (m)
	BROWN	SAND GRAVEL PACKED)		0	0.91
	BROWN	TILL HARD			0.91	2.13
	GREY	CLAY SAND SOFT			2.13	5.18
Well ID:	7183731		County / Township:	OTTAWA-CARLET	ON / NEPEA	N TOWNSHIF
Concess	sion (Lot): ()		Completion Date	: 6/11/2012 1	2:00 AM
UTM Zo	ne (Easting,	Northing) [RC]: 18 (444081	,5028037) [4]	Primary Use:	Monitoring a	and Test Hole
Depth to	bedrock (m	n):		Secondary Use:	<null></null>	
Elevatio	n (masl): <r< td=""><td>null></td><td></td><td>Final Status:</td><td>Test Hole</td><td></td></r<>	null>		Final Status:	Test Hole	
Lovor	Colour	Description			Top Bot	tom Depth (m)
Layer	BROWN	SAND GRAVEL PACKED)		тор - вос 0	1.22
	BRUWN	SAND GRAVEL PACKED)		U	1.22
	GREY	CLAY SAND SOFT			1.22	2.44
	GREY	CLAY SAND SOFT			2.44	5.18
Well ID:	7183732		County / Township:	OTTAWA-CARLET	ON / NEPEA	N TOWNSHIP
Concess	sion (Lot): ()		Completion Date	: 6/11/2012 1	2:00 AM
UTM Zo	ne (Easting,	Northing) [RC]: 18 (444100),5028061) [4]	Primary Use:	Monitoring a	and Test Hole
Depth to	bedrock (m	n):		Secondary Use:	<null></null>	
Elevatio	n (masl): <r< td=""><td>null></td><td></td><td>Final Status:</td><td><null></null></td><td></td></r<>	null>		Final Status:	<null></null>	
Laver	Colour	Description			Ton - Bot	tom Depth (m)
Layor	BROWN	FILL GRAVEL PACKED			0	1.83
	BROWN				0	1.00
	BROWN	FILL GRAVEL PACKED			1.83	3.1
	GREY	CLAY SAND SOFT			3.1	4.88
Well ID:	7188016		County / Township:	OTTAWA-CARLET	ON / NEPEA	N TOWNSHIF
Concess	sion (Lot): ()		Completion Date		
		, Northing) [RC]: 18 (444069	9,5028064) [4]	Primary Use:		and Test Hole
	bedrock (m		. , , , , ,	Secondary Use:	-	
-	n (masl): <r< td=""><td></td><td></td><td>Final Status:</td><td>Test Hole</td><td></td></r<>			Final Status:	Test Hole	
Layer	Colour	Description			-	tom Depth (m)
					0	4.1

Page 7 of 18

Well ID: 719	92749	County / Townsh	ip: OTTAWA-CARLET		
Concession	(Lot): ()		Completion Date	: 11/8/2012 ′	12:00 AM
UTM Zone (I	Easting,	Northing) [RC]: 18 (444521,5028754) [4]	Primary Use:	Monitoring	and Test Hole
Depth to bec	drock (m):	Secondary Use:	<null></null>	
Elevation (m	nasl): <n< th=""><th>ull></th><th>Final Status:</th><th>Monitoring</th><th>and Test Hole</th></n<>	ull>	Final Status:	Monitoring	and Test Hole
Layer Col	lour	Description		Top - Bot	ttom Depth (m)
BL	ACK	GRAVEL LOOSE		0	0.31
BR	OWN	SAND GRAVEL SOFT		0.31	1.5
BR	OWN	SAND SILT SOFT		1.5	2.74
BR	OWN	SAND CLAY SOFT		2.74	3.91
Well ID: 719	92750	County / T	ownship: OTTAWA-C	ARLETON /	OTTAWA CITY
Concession	(Lot): ()	- -	Completion Date	: 11/8/2012	12:00 AM
UTM Zone (Easting,	Northing) [RC]: 18 (444507,5028744) [4]	Primary Use:	Monitoring	and Test Hole
Depth to bec	drock (m):	Secondary Use:	<null></null>	
Elevation (m	nasl): <n< td=""><td>ull></td><td>Final Status:</td><td>Monitoring</td><td>and Test Hole</td></n<>	ull>	Final Status:	Monitoring	and Test Hole
Layer Col	lour	Description		Top - Bot	ttom Depth (m)
-	ACK	GRAVEL LOOSE		0	0.31
BR	OWN	SAND GRAVEL LOOSE		0.31	1.5
BR	OWN	SAND SILT SOFT		1.5	2.74
BR	OWN	SAND CLAY SOFT		2.74	3.86
Well ID: 719	92751	County / Townsh	ip: OTTAWA-CARLET	ON / NEPE	AN TOWNSHIP
Concession	(Lot): ()		Completion Date	: 11/8/2012 ⁻	12:00 AM
UTM Zone (Easting,	Northing) [RC]: 18 (444534,5028738) [4]	Primary Use:	Monitoring	and Test Hole
Depth to bec	drock (m):	Secondary Use:	<null></null>	
Elevation (m	nasl): <n< td=""><td>ull></td><td>Final Status:</td><td>Monitoring</td><td>and Test Hole</td></n<>	ull>	Final Status:	Monitoring	and Test Hole
Layer Col	lour	Description		Top - Bot	ttom Depth (m)
	ACK	GRAVEL HARD		0	0.31
BR	OWN	SAND GRAVEL LOOSE		0.31	1.5
BR	OWN	SAND SILT SOFT		1.5	2.74
BR	OWN	SAND CLAY SOFT		2.74	3.96

Conces	: 7192752 sion (Lot): ()) Northing) [RC]: 18 (444523	-	nship: OTTAWA-C. Completion Date Primary Use:	: 11/9/2012	
Depth to bedrock (m):			,30207+7)[7]	Secondary Use:	-	
Elevation (masl): <null></null>				Final Status:		and Test Hole
Layer	Colour	Description			Top - Bo	ottom Depth (m)
	BLACK	GRAVEL HARD			0	0.31
	BROWN	SAND GRAVEL SOFT			0.31	1.5
	BROWN	SAND SILT SOFT			1.5	2.74
	BROWN	SAND CLAY SOFT			2.74	4.11
Well ID:	7192753		County / Township:	OTTAWA-CARLET	ON / NEPE	AN TOWNSHIF
	sion (Lot): ()			Completion Date		
	one (Easting, o bedrock (m	Northing) [RC]: 18 (444522	2,5028738) [4]	Primary Use: Secondary Use:	-	and Test Hole
	on (masl): <n< td=""><td>·</td><td></td><td>Final Status:</td><td></td><td>and Test Hole</td></n<>	·		Final Status:		and Test Hole
	Colour	Description			Top - Bo	ottom Depth (m)
	BROWN	SAND GRAVEL LOOSE			0	1.5
	BROWN	SAND SILT SOFT			1.5	2.79
	BROWN	SAND CLAY SOFT			2.79	4.11
	7192754		County / Township:			
	sion (Lot): ()			Completion Date		
	o bedrock (m	Northing) [RC]: 18 (444515	5,5028733) [4]	Primary Use: Secondary Use:	<pre>vionitoring <null></null></pre>	and Test Hole
•	on (masl): <n< td=""><td>·</td><td></td><td>Final Status:</td><td></td><td>and Test Hole</td></n<>	·		Final Status:		and Test Hole
Layer	Colour	Description			Top - Bo	ottom Depth (m)
Ĩ	BROWN	SAND GRAVEL LOOSE			0	1.5
	BROWN	SAND SILT SOFT			1.5	3.1
	7192755		County / Township:			
	sion (Lot): ()) Northing) [RC]: 18 (444534	1 5028762) [4]	Completion Date Primary Use:		and Test Hole
	o bedrock (m	•··· ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Secondary Use:	<null></null>	
	on (masl): <n< td=""><td></td><td></td><td>Final Status:</td><td></td><td>and Test Hole</td></n<>			Final Status:		and Test Hole
Layer	Colour	Description			Top - Bo	ottom Depth (m)
-	BLACK	GRAVEL HARD			0	0.31
	BROWN	SAND GRAVEL SOFT			0.31	1.5
						Page 9 of 18

Page 9 of 18

BROWN	SAND SILT SOFT	1.5	2.74
BROWN	SAND CLAY SOFT	2.74	3.81

Well ID: 7192756 Concession (Lot): ()		County / Township: (OTTAWA-CARLET Completion Date		
	Northing) [RC]: 18 (44453	8,5028744) [4]	Primary Use: Secondary Use:	Monitoring an	
Elevation (masl): <n< td=""><td>ull></td><td></td><td>Final Status:</td><td>Monitoring an</td><td>d Test Hole</td></n<>	ull>		Final Status:	Monitoring an	d Test Hole
Layer Colour	Description			Top - Bottor	m Depth (m)
BLACK	GRAVEL HARD			0	0.31
BROWN	SAND GRAVEL SOFT			0.31	1.5
BROWN	SAND SILT SOFT			1.5	2.74
BROWN	SAND CLAY SOFT			2.74	4.11

Well ID: 7197903	(County / Township: (OTTAWA-CARLET	ON / NEPEAN	TOWNSHIP
Concession (Lot): ()			Completion Date	: 7/26/2012 12:	00 AM
UTM Zone (Easting,	Northing) [RC]: 18 (444504,	5028344) [4]	Primary Use:	Monitoring	
Depth to bedrock (m)):		Secondary Use:	<null></null>	
Elevation (masl): <n< td=""><td>ull></td><td></td><td>Final Status:</td><td>Observation V</td><td>Vells</td></n<>	ull>		Final Status:	Observation V	Vells
Layer Colour	Description			Top - Bottor	m Depth (m)
				0	0.02
BROWN	SAND GRAVEL FILL			0.02	0.85
GREY	LIMESTONE DRY			0.85	1.3
GREY	LIMESTONE			1.3	5.7

Well ID: 7203874		County / Township: C	OTTAWA-CARLET	ON / NEPEAN	TOWNSHIP
Concession (Lot): ()			Completion Date:	5/2/2013 12:00) AM
UTM Zone (Easting, I	Northing) [RC]: 18 (444442,	,5028661) [4]	Primary Use:	Monitoring	
Depth to bedrock (m)	:		Secondary Use:	<null></null>	
Elevation (masl): <nu< th=""><th>/ll></th><th></th><th>Final Status:</th><th>Observation W</th><th>/ells</th></nu<>	/ll>		Final Status:	Observation W	/ells
Layer Colour	Description			Top - Botton	n Depth (m)
				0	<null></null>
BROWN	SILT SAND GRAVEL			<null></null>	1.91
GREY	ROCK			1.91	7.72

Page 10 of 18

Well ID: 7204253 County / Township: OTTAWA-CARLETON / OTTAWA CITY Concession (Lot): () Completion Date: 5/22/2013 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444433,5028334) [4] Monitoring and Test Hole Primary Use: Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: **Observation Wells** Layer Colour Description Top - Bottom Depth (m) FILL BROWN 0 0.31 GREY LIMESTONE 0.31 2.74 GREY LIMESTONE 2.74 4.88 Well ID: 7204254 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Completion Date: 5/26/2013 12:00 AM Concession (Lot): () UTM Zone (Easting, Northing) [RC]: 18 (444433,5028334) [4] Monitoring and Test Hole Primary Use: Depth to bedrock (m): Secondary Use: <null> Final Status: Test Hole Elevation (masl): <null> Layer Colour Description Top - Bottom Depth (m) GREY LIMESTONE 0 4.57 Well ID: 7204404 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 6/4/2013 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444513,5028147) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Final Status: Elevation (masl): <null> Test Hole Layer Colour Description Top - Bottom Depth (m) BROWN TOPSOIL LOOSE 0 0.31 BROWN CLAY SAND SOFT 0.31 2.44 GREY LIMESTONE LAYERED HARD 2.44 15.24 Well ID: 7204405 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 6/4/2013 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444348,5028383) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Final Status: Elevation (masl): <null> Test Hole Layer Colour Top - Bottom Depth (m) Description BROWN TOPSOIL SOFT 0 0.31 0.31 1.22 BROWN CLAY STONES SOFT GREY LIMESTONE LAYERED HARD 1.22 15.24

Page 11 of 18

Well ID: 7205166 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 7/5/2013 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444988,5028293) [4] Primary Use: Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Test Hole Layer Colour Top - Bottom Depth (m) Description GRAVEL LOOSE BLACK 0 0.09 BROWN SAND GRAVEL SOFT 0.09 0.37 GREY LIMESTONE LAYERED 0.37 2.32 Well ID: 7213479 County / Township: OTTAWA-CARLETON / OTTAWA CITY Concession (Lot): () Completion Date: 10/23/2013 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444548,5028732) [3] Monitoring and Test Hole Primary Use: Depth to bedrock (m): Secondary Use: <null> Final Status: Test Hole Elevation (masl): <null> Layer Colour Top - Bottom Depth (m) Description BLACK HARDPAN 0 0.09 BROWN SAND GRAVEL SOFT 0.09 0.56 GREY LIMESTONE HARD 0.56 1.86 Well ID: 7213480 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 10/23/2013 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444512,5028721) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Test Hole Top - Bottom Depth (m) Laver Colour Description BROWN GRAVEL HARD 0 0.31 BROWN SAND GRAVEL SOFT 0.31 2.44 BROWN SAND SOFT 2.44 3.35 Well ID: 7213481 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Completion Date: 10/23/2013 12:00 AM Concession (Lot): () UTM Zone (Easting, Northing) [RC]: 18 (444531,5028730) [4] Primary Use: Monitoring and Test Hole Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: Test Hole Laver Colour Description Top - Bottom Depth (m) BLACK HARD 0 0.09 0.09 BROWN SAND GRAVEL SOFT 0.74 Page 12 of 18

GREY LIMESTONE HARD

Well ID: 721348	2	County / Tow	nship: OTTAWA-CARLET	ON / NEPE	AN TOWNSHI
Concession (Lot)	: ()		Completion Date	: 10/24/2013	3 12:00 AM
UTM Zone (East	ing, Northing) [RC]	: 18 (444510,5028707) [4]	Primary Use:	Monitoring	and Test Hole
Depth to bedrock	x (m):		Secondary Use:	<null></null>	
Elevation (masl):	<null></null>		Final Status:	Test Hole	
Layer Colour	Description			Top - Bo	ttom Depth (m)
BLACK	-	RD		0	0.31
BROWI	SAND GRA	/EL SOFT		0.31	0.96
GREY	SAND SILT	GRAVEL		0.96	5.18
GREY	LIMESTONE	SHALE LAYERED		5.18	12.19
Well ID: 722654		County / Tow	nship: OTTAWA-CARLET		
Concession (Lot)	: ()		Completion Date	: 5/20/2014	12:00 AM
UTM Zone (East	ing, Northing) [RC]	: 18 (444921,5028405) [4]	Primary Use:	Monitoring	
Depth to bedrock	x (m):		Secondary Use:	<null></null>	
Elevation (masl):	<null></null>		Final Status:	Observatio	n Wells
Layer Colour Description				Top - Bo	ttom Depth (m
.,				0	0.1
GREY	GRAVEL			0.1	0.4
BLUE	SILT SAND			0.4	1.5
GREY	LIMESTONE	GRAVEL DRY		1.5	4.6
Well ID: 722654	4	County / Tow	nship: OTTAWA-CARLET	ON / NEPE	AN TOWNSHI
Concession (Lot)	: ()		Completion Date	: 5/13/2014	12:00 AM
UTM Zone (East	ing, Northing) [RC]	: 18 (444950,5028404) [4]	Primary Use:	Monitoring	
Depth to bedrock	x (m):		Secondary Use:	<null></null>	
Elevation (masl):	<null></null>		Final Status:	Observatio	n Wells
Layer Colour	Description			Ton - Bo	ttom Depth (m
	Description			тор - Во 0	0.05
GREY	GRAVEL			0.05	0.45
BLUE	SILT SAND			0.45	1.45

Page 13 of 18

Well ID: 7226545 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 5/13/2014 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444926,5028396) [4] Primary Use: Monitoring Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: **Observation Wells** Layer Colour Top - Bottom Depth (m) Description GRAVEL GREY 0 0.95 BROWN SILT GRAVEL DRY 0.95 1.45 BLACK LIMESTONE 1.45 4.6 Well ID: 7226546 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 5/12/2014 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444916,5028411) [4] Primary Use: Monitoring Depth to bedrock (m): Secondary Use: <null> Final Status: **Observation Wells** Elevation (masl): <null> Layer Colour Description Top - Bottom Depth (m) GREY GRAVEL 0 0.15 BROWN SILT GRAVEL CLAY 0.15 1.05 GREY LIMESTONE 1.05 4.6 Well ID: 7226547 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Concession (Lot): () Completion Date: 5/13/2014 12:00 AM UTM Zone (Easting, Northing) [RC]: 18 (444933,5028417) [4] Primary Use: Monitoring Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: **Observation Wells** Top - Bottom Depth (m) Laver Colour Description GREY GRAVEL 0 0.1 BROWN SILT SAND DRY 0.1 1.45 GREY LIMESTONE 1.45 4.6 Well ID: 7226548 County / Township: OTTAWA-CARLETON / NEPEAN TOWNSHIP Completion Date: 5/12/2014 12:00 AM Concession (Lot): () UTM Zone (Easting, Northing) [RC]: 18 (444940,5028440) [4] Primary Use: Monitoring Depth to bedrock (m): Secondary Use: <null> Elevation (masl): <null> Final Status: **Observation Wells** Laver Colour Description Top - Bottom Depth (m) 0 0.05 0.05 BROWN SILT GRAVEL DRY 1.4 Page 14 of 18

GREY	LIMESTONE
UNLI	LINEOTONE

	7226959	-	ip: OTTAWA-CARLET			
Concession (Lot): ()			Completion Date: 7/25/2014 12:00 A			
UTM Zone (Easting, Northing) [RC]: 18 (444655,5028163) [4] Depth to bedrock (m): Elevation (masl): <null></null>		Primary Use:	-	and Test Hole		
		-	Secondary Use:	<null></null>		
		ll>	Final Status:	Test Hole		
Layer	Colour	Description		Top - Bot	tom Depth (m	
	BLACK	GRAVEL SOFT		0	0.31	
	BROWN	FILL GRAVEL SOFT		0.31	1.5	
	GREY	SHALE HARD		1.5	5.49	
Well ID:	7226960	County / Townshi	ip: OTTAWA-CARLET	ON / NEPE	AN TOWNSHI	
Conces	sion (Lot): ()	Completion Date	: 7/25/2014 ⁻	12:00 AM	
UTM Zo	one (Easting,	Northing) [RC]: 18 (444653,5028179) [4]	Primary Use:	Monitoring	and Test Hole	
Depth to	o bedrock (m	n):	Secondary Use:	<null></null>		
Elevatio	on (masl): <r< td=""><td>null></td><td>Final Status:</td><td>Test Hole</td><td></td></r<>	null>	Final Status:	Test Hole		
Laver	Colour	Description		Top - Boi	tom Depth (m	
Layor	BLACK	GRAVEL SOFT		0	0.31	
	BROWN	FILL GRAVEL SOFT		0.31	1.5	
	GREY	SHALE HARD		1.5	4.88	
	7230092	-	ownship: OTTAWA-C			
	sion (Lot): (-	Completion Date		12:00 AM	
		Northing) [RC]: 18 (444198,5028425) [4]	Primary Use:	Monitoring		
•	bedrock (m		Secondary Use:			
Elevatio	on (masl): <r< td=""><td>null></td><td>Final Status:</td><td>Observation</td><td>n Wells</td></r<>	null>	Final Status:	Observation	n Wells	
Layer	Colour	Description		Top - Bot	tom Depth (m	
		OTHER		0	0.05	
	BROWN	FILL LIMESTONE SAND		0.05	1.01	
	BROWN	SILT SAND FILL		1.01	1.6	
	BROWN	SILT SAND		1.6	3.9	
	RED	SAND FINE GRAVEL		3.9	7.2	
				7.2	8.5	

Page 15 of 18

Well ID: 7230093	-	ship: OTTAWA-CARLET			
Concession (Lot): (Completion Date		12:00 AM	
	, Northing) [RC]: 18 (444213,5028401) [4]	Primary Use:			
Depth to bedrock (m		Secondary Use:			
Elevation (masl): <	>	Final Status:	Observation Wells		
Layer Colour	Description		Тор - Во	ttom Depth (m)	
	OTHER		0	0.05	
GREY	FILL LIMESTONE SAND		0.05	0.6	
BROWN	SILT SAND FILL		0.6	1.6	
BROWN	SILT SAND TILL		1.6	3.9	
BROWN	SAND GRAVEL BOULDERS		3.9	10.9	
Concession (Lot): (
Depth to bedrock (m	, Northing) [RC]: 18 (444526,5028736) [4] n):	Completion Date Primary Use: Secondary Use: Final Status:	Monitoring	and Test Hole	
Depth to bedrock (m Elevation (masl): <	, Northing) [RC]: 18 (444526,5028736) [4] n): null>	Primary Use: Secondary Use:	Monitoring <null> <null></null></null>	and Test Hole	
Depth to bedrock (m	, Northing) [RC]: 18 (444526,5028736) [4] n):	Primary Use: Secondary Use:	Monitoring <null> <null></null></null>	and Test Hole	
Depth to bedrock (m Elevation (masl): <r Layer Colour</r 	, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description	Primary Use: Secondary Use:	Monitoring <null> <null> Top - Bo</null></null>	and Test Hole ttom Depth (m)	
Depth to bedrock (m Elevation (masl): <r Layer Colour <i>BLACK</i></r 	, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i>	Primary Use: Secondary Use:	Monitoring <null> <null> Top - Bo 0</null></null>	and Test Hole ttom Depth (m 0.31 3.96	
Depth to bedrock (m Elevation (masl): <r Layer Colour <i>BLACK</i> <i>BROWN</i> <i>GREY</i> Well ID: 7236604 Concession (Lot): (UTM Zone (Easting Depth to bedrock (m</r 	, Northing) [RC]: 18 (444526,5028736) [4] h): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> () , Northing) [RC]: 18 (444431,5027765) [4] h):	Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use: Secondary Use:	Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE : 5/24/2013 Monitoring <null></null></null></null>	and Test Hole ttom Depth (m 0.31 3.96 19.80999 AN TOWNSHII	
Depth to bedrock (m Elevation (masl): <n Layer Colour <i>BLACK</i> <i>BROWN</i> <i>GREY</i> Well ID: 7236604 Concession (Lot): (UTM Zone (Easting Depth to bedrock (m Elevation (masl): <n< td=""><td>, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> County / Town () , Northing) [RC]: 18 (444431,5027765) [4] n): null></td><td>Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use:</td><td>Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE. 5/24/2013 Monitoring <null> <null></null></null></null></null></td><td>and Test Hole ttom Depth (m 0.31 3.96 19.80999 AN TOWNSHI 12:00 AM</td></n<></n 	, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> County / Town () , Northing) [RC]: 18 (444431,5027765) [4] n): null>	Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use:	Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE. 5/24/2013 Monitoring <null> <null></null></null></null></null>	and Test Hole ttom Depth (m 0.31 3.96 19.80999 AN TOWNSHI 12:00 AM	
Depth to bedrock (m Elevation (masl): <r Layer Colour <i>BLACK</i> <i>BROWN</i> <i>GREY</i> Well ID: 7236604 Concession (Lot): (UTM Zone (Easting Depth to bedrock (m Elevation (masl): <r Layer Colour</r </r 	, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> County / Town () , Northing) [RC]: 18 (444431,5027765) [4] n): null> Description	Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use: Secondary Use:	Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE 5/24/2013 Monitoring <null> <null> Top - Bo</null></null></null></null>	and Test Hole ttom Depth (m 0.31 3.96 19.80999 AN TOWNSHI 12:00 AM	
Depth to bedrock (m Elevation (masl): <n Layer Colour <i>BLACK</i> <i>BROWN</i> <i>GREY</i> Well ID: 7236604 Concession (Lot): (UTM Zone (Easting Depth to bedrock (m Elevation (masl): <n< td=""><td>, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> County / Town () , Northing) [RC]: 18 (444431,5027765) [4] n): null></td><td>Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use: Secondary Use:</td><td>Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE. 5/24/2013 Monitoring <null> <null></null></null></null></null></td><td>and Test Hole ttom Depth (m 0.31 3.96 19.80999 AN TOWNSHI 12:00 AM</td></n<></n 	, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> County / Town () , Northing) [RC]: 18 (444431,5027765) [4] n): null>	Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use: Secondary Use:	Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE. 5/24/2013 Monitoring <null> <null></null></null></null></null>	and Test Hole ttom Depth (m 0.31 3.96 19.80999 AN TOWNSHI 12:00 AM	
Depth to bedrock (m Elevation (masl): <r Layer Colour <i>BLACK</i> <i>BROWN</i> <i>GREY</i> Well ID: 7236604 Concession (Lot): (UTM Zone (Easting Depth to bedrock (m Elevation (masl): <r Layer Colour</r </r 	, Northing) [RC]: 18 (444526,5028736) [4] n): null> Description <i>GRAVEL</i> <i>SAND GRAVEL</i> <i>LIMESTONE LAYERED</i> County / Town () , Northing) [RC]: 18 (444431,5027765) [4] n): null> Description	Primary Use: Secondary Use: Final Status: ship: OTTAWA-CARLET Completion Date Primary Use: Secondary Use:	Monitoring <null> <null> Top - Bo 0 0.31 3.96 ON / NEPE 5/24/2013 Monitoring <null> <null> Top - Bo</null></null></null></null>	and Test Hole ttom Depth (m) 0.31 3.96 19.809999 AN TOWNSHII 12:00 AM	

Well ID: 7239791	C	County / Town	ship: OTTAWA-C	ARLETON / C	TTAWA CITY
Concession (Lot): ()			Completion Date: 3/20/2015 12:00 AM		
UTM Zone (Easting,	Northing) [RC]: 18 (444665,502820	1) [4]	Primary Use:	Test Hole	
Depth to bedrock (m):		Secondary Use:	Monitoring	
Elevation (masl): <n< td=""><td>ull></td><td></td><td>Final Status:</td><td>Test Hole</td><td></td></n<>	ull>		Final Status:	Test Hole	
Layer Colour	Description			Top - Botte	om Depth (m)
BLACK	GRAVEL DENSE			0	0.31
				_	

Page 16 of 18

	BROWN	SAND FILL SOFT		0.31	1.52
	GREY	LIMESTONE SHALE LAYERED		1.52	9.14
	7239792 sion (Lot): ()	-	p: OTTAWA-CARLET Completion Date		
UTM Zo Depth to	. , .	Northing) [RC]: 18 (444646,5028206) [4]):	Primary Use: Secondary Use: Final Status:	Test Hole	
Layer	Colour <i>BROWN</i>	Description SAND GRAVEL LOOSE		Top - Bott 0	om Depth (m 1.52
	GREY	LIMESTONE SHALE LAYERED		1.52	5.48
	7239793	-	ownship: OTTAWA-C		
	sion (Lot): ()		Completion Date		2:00 AM
	· -	Northing) [RC]: 18 (444647,5028187) [4]	Primary Use:	Test Hole	
	bedrock (m)		Secondary Use:	-	
Elevatio	n (masl): <n< td=""><td>ull></td><td>Final Status:</td><td>Test Hole</td><td></td></n<>	ull>	Final Status:	Test Hole	
Layer	Colour	Description		Top - Bott	om Depth (m
5	BLACK	GRAVEL DENSE		0	0.31
	BROWN	SAND FILL SOFT		0.31	1.52
	GREY	LIMESTONE SHALE LAYERED		1.52	5.48
	7261916	-	p: OTTAWA-CARLET		
Concess	sion (Lot): ()		Completion Date	: 4/8/2016 12:	00 AM
	ne (Easting, bedrock (m)	Northing) [RC]: 18 (444511,5028567) [4]):	Primary Use: Secondary Use:	Monitoring <null></null>	
Elevatio	n (masl): <n< td=""><td>ull></td><td>Final Status:</td><td>Monitoring a</td><td>nd Test Hole</td></n<>	ull>	Final Status:	Monitoring a	nd Test Hole
Lovor	Colour	Description		Top Bott	om Depth (m
Layer	BROWN	Description SAND GRAVEL SOFT		0	1.22
	GREY	SILT SAND WATER-BEARING		1.22	2.13
	GREY	LIMESTONE		2.13	4.88
Well ID:	7261917	County / Townshi	p: OTTAWA-CARLET	ON / NEPEA	N TOWNSHI
Conces	sion (Lot): ()		Completion Date	: 4/8/2016 12:	00 AM
UTM Zo	ne (Easting,	Northing) [RC]: 18 (444520,5028555) [4]	Primary Use:	Monitoring	
Depth to	bedrock (m)):	Secondary Use:	<null></null>	
-	n (masl): <n< td=""><td></td><td>Final Status:</td><td></td><td>nd Test Hole</td></n<>		Final Status:		nd Test Hole
	Colour	Description			om Depth (m
				F	Page 17 of 18

Page 17 of 18

BROWN	SAND GRAVEL		0	1.5	
GREY	LIMESTONE FRACTURED		1.5	4.88	
Well ID: 7261920	County / Townshi	ip: OTTAWA-CARLET	ON / NEPE	AN TOWNSHIF	
Concession (Lot): ())	Completion Date	Completion Date: 4/8/2016 12:00 AM		
UTM Zone (Easting,	Northing) [RC]: 18 (444513,5028564) [4]	Primary Use:	Monitoring		
Depth to bedrock (m):	Secondary Use:	<null></null>		
Elevation (masl): <r< td=""><td>null></td><td>Final Status:</td><td>Observatio</td><td>n Wells</td></r<>	null>	Final Status:	Observatio	n Wells	
Layer Colour	Description		Top - Bo	ttom Depth (m)	
BROWN	SAND GRAVEL SOFT		0	1.5	
GREY	LIMESTONE		1.5	4.88	
Appendix E Groundwater Quality

Table A Summary Of Groundwater Analysis September 2017 811 Gladstone Complex, Ottawa, ON

	Unito	MDL	Begulation	Degulation							
	Units	WIDL	Regulation	Regulation				Dup			
Parameter			Sewer Use By-Law,	Sewer Use By-Law,	BH1/MW1	BH2/MW2	BH5/MW3	(BH5/MW3)	Trip Blank	MW4	Trip Blank
Sample Date (m/d/y)			Ottawa Storm	Ottawa Sanitary/Combined	9/8/2017	9/8/2017	9/8/2017	9/8/2017	9/7/2017	9/12/2017	9/11/2017
General Inorganics			otonii	Ganitary/Gombined							
рН	pH Units	0.1			8.0	8.3	7.3	7.3	N/A	N/A	N/A
<i>Metals</i> Antimony	ug/L	0.5		5 mg/L (5000 ug/L)	ND (0.5)	ND (0.5)	0.7	0.7	N/A	N/A	N/A
Arsenic	ug/L	1	0.02 mg/L (20 ug/L)	1 mg/L (1000 ug/L)	ND (0.3)	2	ND (1)	ND (1)	N/A N/A	N/A N/A	N/A N/A
Barium	ug/L	1			65	43	75	71	N/A	N/A	N/A
Beryllium	ug/L	0.5		25	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	N/A	N/A	N/A
Boron Cadmium	ug/L ug/L	10 0.1	0.008 mg/L (8 ug/L)	25 mg/L (25000 ug/L) 0.02 mg/L (20 ug/L)	394 ND (0.1)	454 ND (0.1)	117 ND (0.1)	97 ND (0.1)	N/A N/A	N/A N/A	N/A N/A
Chromium	ug/L	1	0.08 mg/L (80 ug/L)	5 mg/L (5000 ug/L)	ND (1)	ND (1)	ND (1)	ND (1)	N/A	N/A	N/A
Cobalt	ug/L	0.5		5 mg/L (5000 ug/L)	ND (0.5)	ND (0.5)	0.6	ND (0.5)	N/A	N/A	N/A
Copper Lead	ug/L ug/L	0.5	0.04 mg/L (40 ug/L) 0.12 mg/L (120 ug/L)	3 mg/L (3000 ug/L) 5 mg/L (5000 ug/L)	1.5 0.3	2.7 0.1	2.3 ND (0.1)	5.8 ND (0.1)	N/A N/A	N/A N/A	N/A N/A
Molybdenum	ug/L	0.5	0.12 mg/t (120 ug/t)	5 mg/L (5000 ug/L)	4.9	39.9	3.9	1.5	N/A	N/A	N/A
Nickel	ug/L	1	0.08 mg/L (80 ug/L)	3 mg/L (3000 ug/L)	ND (1)	2	2	2	N/A	N/A	N/A
Selenium Citure	ug/L	1	0.02 mg/L (20 ug/L)	5 mg/L (5000 ug/L)	ND (1)	ND (1)	ND (1)	ND (1)	N/A	N/A	N/A
Silver Sodium	ug/L ug/L	0.1 200	0.12 mg/L (120 ug/L)	5 mg/L (5000 ug/L)	ND (0.1) 329000	ND (0.1) 257000	ND (0.1) 87200	ND (0.1) 50000	N/A N/A	N/A N/A	N/A N/A
Thallium	ug/L	0.1			ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	N/A	N/A	N/A
Uranium	ug/L	0.1			1.8	1.9	1.0	0.7	N/A	N/A	N/A
Vanadium	ug/L	0.5	0.04	5 mg/L (5000 ug/L)	ND (0.5)	0.6	ND (0.5)	ND (0.5)	N/A	N/A	N/A
Zinc Volatiles	ug/L	5	0.04 mg/L (40 ug/L)	3 mg/L (3000 ug/L)	ND (5)	ND (5)	16	6	N/A	N/A	N/A
Acetone	ug/L	5.0			ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Benzene	ug/L	0.5	0.002 mg/L (2 ug/L)	0.01 mg/L (10 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromodichloromethane	ug/L	0.5		0.35 mg/L (350 ug/L)	ND (0.5)	ND (0.5)	2.9	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromonethane	ug/L	0.5		0.63 mg/L (630 ug/L)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Bromomethane Carbon Tetrachloride	ug/L ug/L	0.5		0.11 mg/L (110 ug/L) 0.057 mg/L (57 ug/L)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)
Chlorobenzene	ug/L	0.5		0.057 mg/L (57 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chloroform	ug/L	0.5	0.002 mg/L (2 ug/L)	0.08 mg/L (80 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Dibromochloromethane	ug/L	0.5		0.057 mg/L (57 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Dichlorodifluoromethane 1,2-Dichlorobenzene	ug/L ug/L	1.0	0.0056 mg/L (5.6 ug/L)	0.088 mg/L (88 ug/L)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)
1,3-Dichlorobenzene	ug/L	0.5	0.0030 mg/L (3.0 dg/L)	0.036 mg/L (36 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,4-Dichlorobenzene	ug/L	0.5	0.0068 mg/L (6.8 ug/L)	0.017 mg/L (17 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Dichloroethane	ug/L	0.5		0.2 mg/L (200 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,2-Dichloroethane	ug/L	0.5		0.21 mg/L (210 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ug/L ug/L	0.5	0.0056 mg/L (5.6 ug/L)	0.04 mg/L (40 ug/L) 0.2 mg/L (200 ug/L)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
trans-1,2-Dichloroethylene	ug/L	0.5		0.2 mg/L (200 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,2-Dichloropropane	ug/L	0.5		0.85 mg/L (850 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,3-Dichloropropylene	ug/L	0.5		0.07 mg/L (70 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
trans-1,3-Dichloropropylene 1,3-Dichloropropene, total	ug/L ug/L	0.5	0.0056 mg/L (5.6 ug/L)	0.07 mg/L (70 ug/L)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Ethylbenzene	ug/L	0.5	0.002 mg/L (2 ug/L)	0.057 mg/L (57 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	3.5	ND (0.5)	ND (0.5)	ND (0.5)
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2		0.028 mg/L (28 ug/L)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Hexane	ug/L	1.0			ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	ug/L	5.0 5.0			ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)
Methyl tert-butyl ether	ug/L ug/L	2.0			ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)
Methylene Chloride	ug/L	5.0	0.0052 mg/L (5.2 ug/L)	0.211 mg/L (211 ug/L)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Styrene	ug/L	0.5		0.04 mg/L (40 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,1,2-Tetrachloroethane	ug/L	0.5	0.017	0.04	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,2,2-Tetrachloroethane Tetrachloroethylene	ug/L ug/L	0.5	0.017 mg/L (17 ug/L) 0.0044 mg/L (4.4 ug/L)	0.04 mg/L (40 ug/L) 0.05 mg/L (50 ug/L)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Toluene	ug/L	0.5	0.002 mg/L (2 ug/L)	0.08 mg/L (80 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,1-Trichloroethane	ug/L	0.5		0.054 mg/L (54 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,2-Trichloroethane	ug/L	0.5		0.8 mg/L (800 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	0.5	0.0076 mg/L (7.6 ug/L)	0.054 mg/L (54 ug/L) 0.02 mg/L (20 ug/L)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)
Vinyl Chloride	ug/L	0.5		0.4 mg/L (400 ug/L)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
m/p-Xylene	ug/L	0.5			ND (0.5)	ND (0.5)	ND (0.5)	13.6	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	ug/L	0.5			ND (0.5)	ND (0.5)	ND (0.5)	3.5	ND (0.5)	ND (0.5)	ND (0.5)
Xylenes, total Hydrocarbons	ug/L	0.5	0.0044 mg/L (4.4 ug/L)	0.32 mg/L (320 ug/L)	ND (0.5)	ND (0.5)	ND (0.5)	17.1	ND (0.5)	ND (0.5)	ND (0.5)
Hyarocarbons F1 PHCs (C6-C10)	ug/L	25			ND (25)	ND (25)	ND (25)	ND (25)	N/A	N/A	N/A
F2 PHCs (C10-C16)	ug/L	100			ND (100)	ND (100)	ND (100)	ND (100)	N/A	N/A	N/A
F3 PHCs (C16-C34)	ug/L	100			ND (100)	ND (100)	203	ND (100)	N/A	N/A	N/A
F4 PHCs (C34-C50)	ug/L	100			ND (100)	ND (100)	ND (100)	ND (100)	N/A	N/A	N/A
<i>Semi-Volatiles</i> Acenaphthene	ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Acenaphthylene	ug/L ug/L	0.05			ND (0.05) ND (0.05)	ND (0.10) ND (0.10)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Anthracene	ug/L	0.01			ND (0.01)	ND (0.02)	ND (0.01)	ND (0.01)	N/A	N/A	, N/A
Benzo[a]anthracene	ug/L	0.01			ND (0.01)	ND (0.02)	ND (0.01)	ND (0.01)	N/A	N/A	N/A
Benzo[a]pyrene	ug/L	0.01			ND (0.01)	ND (0.02)	ND (0.01)	ND (0.01)	N/A	N/A	N/A
Benzo[b]fluoranthene Benzo[g,h,i]perylene	ug/L ug/L	0.05			ND (0.05) ND (0.05)	ND (0.10) ND (0.10)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Benzo[k]fluoranthene	ug/L ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.03)	N/A	N/A	N/A
Chrysene	ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Dibenzo[a,h]anthracene	ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Fluoranthene	ug/L	0.01			ND (0.01)	0.12	ND (0.01)	ND (0.01)	N/A	N/A	N/A

Dibenzo[a,h]anthracene	ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Fluoranthene	ug/L	0.01			ND (0.01)	0.12	ND (0.01)	ND (0.01)	N/A	N/A	N/A
Fluorene	ug/L	0.05		0.059 mg/L (59 ug/L)	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Indeno[1,2,3-cd]pyrene	ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1-Methylnaphthalene	ug/L	0.05		0.032 mg/L (32 ug/L)	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
2-Methylnaphthalene	ug/L	0.05		0.022 mg/L (22 ug/L)	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Methylnaphthalene (1&2)	ug/L	0.10			ND (0.10)	ND (0.20)	ND (0.10)	ND (0.10)	N/A	N/A	N/A
Naphthalene	ug/L	0.05	0.0064 mg/L (6.4 ug/L)	0.059 mg/L (59 ug/L)	ND (0.05)	0.16	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Phenanthrene	ug/L	0.05			ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Pyrene	ug/L	0.01			ND (0.01)	0.10	ND (0.01)	ND (0.01)	N/A	N/A	N/A
					8Sep2017	8Sep2017	8Sep2017	8Sep2017	7Sep2017	12Sep2017	11Sep2017
				1737017-01	1737017-02	1737017-03	1737017-04	1737017-05	1737231-01	1737231-02	

Table B Summary Of Groundwater Analysis April and May, 2019 811 Gladstone Complex, Ottawa, ON

	Units	MDL	Regulation	Regulation				
Parameter			Sewer Use By-Law, Ottawa	Sewer Use By-Law, Ottawa	GW-MW4-04- 25-2019	GW-MW5-04- 25-2019	GW-MW4-05- 02-2019	GW-MW5-05- 02-2019
Sample Date (m/d/y) Microbiological Parameters			Storm	Sanitary/Combined				
E. Coli	CFU/100 mL	1	CTS/100 mL (200 CFU/100	mL)	2	2	<10	<10
General Inorganics CBOD	mg/L	2			3	ND (2)	N/A N/A	N/A N/A
Cyanide, total	mg/L	0.01	0.02 mg/L	2 mg/L	ND (0.01)	ND (0.01)	N/A	N/A
pH Phenolics	pH Units mg/L	0.1	0.008 mg/L	1 mg/L	7.7 ND (0.001)	8.2 ND (0.001)	N/A N/A	N/A N/A
Phosphorus, total Total Suspended Solids	mg/L mg/L	0.01	0.4 mg/L 15 mg/L	10 mg/L 350 mg/L	0.07 90	0.09	N/A N/A	N/A N/A
Sulphide	mg/L	0.02	15 mg/L	2 mg/L	ND (0.02)	ND (0.02)	N/A N/A	N/A
Total Kjeldahl Nitrogen Anions	mg/L	0.1		100 mg/L	0.6	1.0	N/A	N/A
Fluoride	mg/L	0.1		10 mg/L	ND (0.1)	0.3	N/A	N/A
Sulphate Metals - Total	mg/L	1		1500 mg/L	244	220	N/A	N/A
Aluminum	mg/L	0.01		50 mg/L	ND (0.01)	ND (0.01)	N/A	N/A
Antimony Arsenic	mg/L mg/L	0.001	0.02 mg/L	5 mg/L 1 mg/L	0.001 ND (0.01)	0.001 ND (0.01)	N/A N/A	N/A N/A
Bismuth	mg/L	0.005	0.02	5 mg/L	ND (0.005)	ND (0.005)	N/A	N/A
Boron Cadmium	mg/L mg/L	0.05	0.008 mg/L	25 mg/L 0.02 mg/L	0.1 ND (0.001)	0.2 ND (0.001)	N/A N/A	N/A N/A
Chromium	mg/L	0.05	0.08 mg/L	5 mg/L	ND (0.05)	ND (0.05)	N/A	N/A
Cobalt Copper	mg/L mg/L	0.001 0.005	0.04 mg/L	5 mg/L 3 mg/L	ND (0.001) ND (0.005)	ND (0.001) ND (0.005)	N/A N/A	N/A N/A
Lead	mg/L	0.001	0.12 mg/L	5 mg/L	ND (0.001)	ND (0.001)	N/A	N/A
Manganese Mercury	mg/L mg/L	0.05	0.05 mg/L 0.0004 mg/L	5 mg/L 0.001 mg/L	ND (0.05) ND (0.0001)	ND (0.05) ND (0.0001)	N/A N/A	N/A N/A
Molybdenum	mg/L	0.005	0.00 //	5 mg/L	0.010	0.011	N/A	N/A
Nickel Selenium	mg/L mg/L	0.005	0.08 mg/L 0.02 mg/L	3 mg/L 5 mg/L	ND (0.005) ND (0.005)	ND (0.005) ND (0.005)	N/A N/A	N/A N/A
Silver	mg/L	0.001	0.12 mg/L	5 mg/L	ND (0.001)	ND (0.001)	N/A N/A	N/A
Tin Titanium	mg/L mg/L	0.01		5 mg/L 5 mg/L	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	N/A N/A	N/A N/A
Vanadium Zinc	mg/L	0.001	0.04 mg/l	5 mg/L	ND (0.001)	ND (0.001)	N/A N/A	N/A N/A
Zinc Volatiles	mg/L	0.02	0.04 mg/L	3 mg/L	ND (0.02)	ND (0.02)	N/A	
Benzene Bromodichloromethane	mg/L mg/L	0.0005	0.002 mg/L	0.01 mg/L 0.35 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
Bromoform	mg/L	0.0005		0.63 mg/L	ND (0.0005)	ND (0.0005)	N/A N/A	N/A
Bromomethane Carbon Tetrachloride	mg/L mg/L	0.0005		0.11 mg/L 0.057 mg/L	ND (0.0005) ND (0.0002)	ND (0.0005) ND (0.0002)	N/A N/A	N/A N/A
Chlorobenzene	mg/L	0.0005		0.057 mg/L	ND (0.0005)	ND (0.0005)	N/A	N/A
Chloroethane Chloroform	mg/L mg/L	0.0010	0.002 mg/L	0.27 mg/L 0.08 mg/L	ND (0.0010) ND (0.0005)	ND (0.0010) ND (0.0005)	N/A N/A	N/A N/A
Chloromethane	mg/L	0.0030		0.19 mg/L	ND (0.0030)	ND (0.0030)	N/A	N/A
Dibromochloromethane Ethylene dibromide (dibromoethane, 1,	mg/L 2 mg/L	0.0005		0.057 mg/L 0.028 mg/L	ND (0.0005) ND (0.0002)	ND (0.0005) ND (0.0002)	N/A N/A	N/A N/A
1,2-Dichlorobenzene	mg/L	0.0005	0.0056 mg/L	0.088 mg/L	ND (0.0005)	ND (0.0005)	N/A	N/A
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	0.0005	0.0068 mg/L	0.036 mg/L 0.017 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
1,1-Dichloroethane	mg/L	0.0005		0.2 mg/L	ND (0.0005)	ND (0.0005)	N/A	N/A
1,2-Dichloroethane 1,1-Dichloroethylene	mg/L mg/L	0.0005		0.21 mg/L 0.04 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
cis-1,2-Dichloroethylene	mg/L	0.0005	0.0056 mg/L	0.2 mg/L	ND (0.0005)	ND (0.0005)	N/A	N/A
trans-1,2-Dichloroethylene 1,2-Dichloropropane	mg/L mg/L	0.0005		0.2 mg/L 0.85 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
cis-1,3-Dichloropropylene	mg/L	0.0005	0.0056 mg/l	0.07 mg/L	ND (0.0005)	ND (0.0005) ND (0.0005)	N/A	N/A
trans-1,3-Dichloropropylene Ethylbenzene	mg/L mg/L	0.0005	0.0056 mg/L 0.002 mg/L	0.07 mg/L 0.057 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
Methylene Chloride	mg/L	0.0050	0.0052 mg/L	0.211 mg/L 0.04 mg/L	ND (0.0050) ND (0.0005)	ND (0.0050) ND (0.0005)	N/A N/A	N/A
Styrene 1,1,2,2-Tetrachloroethane	mg/L mg/L	0.0005	0.017 mg/L	0.04 mg/L	ND (0.0003) ND (0.0005)	ND (0.0005)	N/A N/A	N/A N/A
Tetrachloroethylene Toluene	mg/L mg/L	0.0005	0.0044 mg/L 0.002 mg/L	0.05 mg/L 0.08 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
1,1,1-Trichloroethane	mg/L	0.0005	0.002 mg/L	0.054 mg/L	ND (0.0005)	ND (0.0005)	N/A N/A	N/A N/A
1,1,2-Trichloroethane Trichloroethylene	mg/L mg/L	0.0005	0.0076 mg/L	0.8 mg/L 0.054 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
Trichlorofluoromethane	mg/L	0.0010	0.0070 mg/L	0.02 mg/L	ND (0.0003) ND (0.0010)	ND (0.0003) ND (0.0010)	N/A N/A	N/A N/A
1,3,5-Trimethylbenzene Vinyl Chloride	mg/L mg/L	0.0005		0.003 mg/L 0.4 mg/L	ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
Xylenes, total	mg/L	0.0005	0.0044 mg/L	0.32 mg/L	ND (0.0005)	ND (0.0005)	N/A	N/A
<i>Hydrocarbons</i> Oil & Grease, animal/vegetable	mg/L	0.5		150 mg/L	ND (0.5)	ND (0.5)	N/A	N/A
Oil & Grease, mineral/synthetic	mg/L	0.5		15 mg/L	ND (0.5)	ND (0.5)	N/A	N/A
Oil & Grease, total Semi-Volatiles	mg/L	0.5			ND (0.5)	ND (0.5)	N/A	N/A
7H-Dibenzo[c,g]carbazole	mg/L	0.0005			ND (0.0005)	ND (0.0005)	N/A	N/A
Benzo[e]pyrene Benzo[j]fluoranthene	mg/L mg/L	0.0005			ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
Dibenzo[a,i]pyrene	mg/L	0.0005			ND (0.0005)	ND (0.0005)	N/A	N/A
Dibenzo [a,j] acradine Perylene	mg/L mg/L	0.0005			ND (0.0005) ND (0.0005)	ND (0.0005) ND (0.0005)	N/A N/A	N/A N/A
1-Methylnaphthalene	mg/L	0.00005		0.032 mg/L	ND (0.00005) ND (0.00005)	0.00005 ND (0.00005)	N/A	N/A
2-Methylnaphthalene Anthracene	mg/L mg/L	0.00005		0.022 mg/L	ND (0.00001)	ND (0.00001)	N/A N/A	N/A N/A
Benzo[a]anthracene Benzo[a]nyrene	mg/L	0.00001			ND (0.00001) ND (0.00001)	ND (0.00001) ND (0.00001)	N/A N/A	N/A N/A
Benzo[a]pyrene Benzo[b]fluoranthene	mg/L mg/L	0.00005			ND (0.00005)	ND (0.00005)	N/A	N/A
Benzo[g,h,i]perylene Benzo[k]fluoranthene	mg/L mg/L	0.00005			ND (0.00005) ND (0.00005)	ND (0.00005) ND (0.00005)	N/A N/A	N/A N/A
1,1-Biphenyl	mg/L	0.00005			ND (0.00005)	ND (0.00005)	N/A	N/A
Chrysene Dibenzo[a,h]anthracene	mg/L mg/L	0.00005			ND (0.00005) ND (0.00005)	ND (0.00005) ND (0.00005)	N/A N/A	N/A N/A
Fluoranthene	mg/L	0.00001			ND (0.00001)	ND (0.00001)	N/A	N/A
Fluorene Indeno[1,2,3-cd]pyrene	mg/L mg/L	0.00005		0.059 mg/L	ND (0.00005) ND (0.00005)	ND (0.00005) ND (0.00005)	N/A N/A	N/A N/A
Naphthalene	mg/L	0.00005	0.0064 mg/L	0.059 mg/L	ND (0.00005)	ND (0.00005)	N/A	N/A
Phenanthrene Pyrene	mg/L mg/L	0.00005			ND (0.00005) ND (0.00001)	ND (0.00005) ND (0.00001)	N/A N/A	N/A N/A
PAHs, total	mg/L	0.00340	0.006 mg/L	0.015 mg/L	ND (0.00340)	ND (0.00340)	N/A	N/A
Benzylbutylphthalate BIS(2-Chloroethoxy)methane	mg/L mg/L	0.001		0.017 mg/L 0.036 mg/L	ND (0.001) ND (0.001)	ND (0.001) ND (0.001)	N/A N/A	N/A N/A
Bis(2-ethylhexyl)phthalate	mg/L	0.001		0.28 mg/L	ND (0.001)	ND (0.001)	N/A	N/A
Diethylphthalate Di-n-butylphthalate	mg/L mg/L	0.001		0.2 mg/L 0.057 mg/L	ND (0.001) ND (0.001)	ND (0.001) ND (0.001)	N/A N/A	N/A N/A
Di-n-octylphthalate	mg/L	0.001		0.03 mg/L	ND (0.001)	ND (0.001)	N/A	N/A
Indole 2,4-Dichlorophenol	mg/L mg/L	0.001		0.05 mg/L 0.044 mg/L	ND (0.001) ND (0.001)	ND (0.001) ND (0.001)	N/A N/A	N/A N/A
Pesticides, OC								
Hexachlorobenzene PCBs	mg/L	0.00001			ND (0.00001)	ND (0.00001)	N/A	N/A
PCBs, total Sample Date	ug/L	0.05	0.0004 mg/L (0.4 ug/L)	0.001 mg/L (1 ug/L)	ND (0.05) 25apr2019	ND (0.05) 25apr2019	N/A 2may2019	N/A 2may2019

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 112293

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Order #: 1737017

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1737017-01	BH1/MW1
1737017-02	BH2/MW2
1737017-03	BH5/MW3
1737017-04	Dup
1737017-05	Trip Blank

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	12-Sep-17	12-Sep-17
рН	EPA 150.1 - pH probe @25 °C	12-Sep-17	12-Sep-17
PHC F1	CWS Tier 1 - P&T GC-FID	12-Sep-17	13-Sep-17
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	12-Sep-17	12-Sep-17
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	12-Sep-17	12-Sep-17
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	12-Sep-17	13-Sep-17

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

	Client ID: Sample Date: Sample ID: MDL/Units	BH1/MW1 08-Sep-17 1737017-01 Water	BH2/MW2 08-Sep-17 1737017-02 Water	BH5/MW3 08-Sep-17 1737017-03 Water	Dup 08-Sep-17 1737017-04 Water
General Inorganics					
рН	0.1 pH Units	8.0	8.3	7.3	7.3
Metals					
Antimony	0.5 ug/L	<0.5	<0.5	0.7	0.7
Arsenic	1 ug/L	<1	2	<1	<1
Barium	1 ug/L	65	43	75	71
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	394	454	117	97
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1	<1
Cobalt	0.5 ug/L	<0.5	<0.5	0.6	<0.5
Copper	0.5 ug/L	1.5	2.7	2.3	5.8
Lead	0.1 ug/L	0.3	0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	4.9	39.9	3.9	1.5
Nickel	1 ug/L	<1	2	2	2
Selenium	1 ug/L	<1	<1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Sodium	200 ug/L	329000	257000	87200	50000
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Uranium	0.1 ug/L	1.8	1.9	1.0	0.7
Vanadium	0.5 ug/L	<0.5	0.6	<0.5	<0.5
Zinc	5 ug/L	<5	<5	16	6
Volatiles				•	
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	2.9	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

[Client ID: Sample Date: Sample ID: MDL/Units	BH1/MW1 08-Sep-17 1737017-01 Water	BH2/MW2 08-Sep-17 1737017-02 Water	BH5/MW3 08-Sep-17 1737017-03 Water	Dup 08-Sep-17 1737017-04 Water
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	3.5
Ethylene dibromide (dibromoetha	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	13.6
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	3.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	17.1
4-Bromofluorobenzene	Surrogate	102%	103%	104%	103%
Dibromofluoromethane	Surrogate	79.3%	93.6%	119%	96.2%
Toluene-d8	Surrogate	85.2%	85.4%	85.7%	83.8%
Hydrocarbons	25 110/				
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	203	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

	Client ID: Sample Date:	BH1/MW1 08-Sep-17	BH2/MW2 08-Sep-17	BH5/MW3 08-Sep-17	Dup 08-Sep-17
	Sample ID:	1737017-01	1737017-02	1737017-03	1737017-04
	MDL/Units	Water	Water	Water	Water
Semi-Volatiles				•	•
Acenaphthene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Anthracene	0.01 ug/L	<0.01	<0.02 [2]	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.02 [2]	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.02 [2]	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Chrysene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Fluoranthene	0.01 ug/L	<0.01	0.12 [2]	<0.01	<0.01
Fluorene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.20 [2]	<0.10	<0.10
Naphthalene	0.05 ug/L	<0.05	0.16 [2]	<0.05	<0.05
Phenanthrene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Pyrene	0.01 ug/L	<0.01	0.10 [2]	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	94.4%	82.3% [2]	106%	99.2%
Terphenyl-d14	Surrogate	111%	112% [2]	107%	119%

Order #: 1737017

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

	Client ID:	Trip Blank	-	-	- 1
	Sample Date:	07-Sep-17 1737017-05	-	-	-
Г	Sample ID: MDL/Units	Water	-	-	-
Volatiles	WDE/Onits				
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

	Client ID:	Trip Blank	-	-	-
	Sample Date:	07-Sep-17	-	-	-
	Sample ID:	1737017-05	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	104%	-	-	-
Dibromofluoromethane	Surrogate	114%	-	-	-
Toluene-d8	Surrogate	84.7%	-	-	-

Order #: 1737017

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals		-	J.						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles			-						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.03	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	17.3		ug/L		86.4	50-140			
Surrogate: Terphenyl-d14	19.6		ug/L		97.8	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
		-	5						

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	85.6		ug/L		107	50-140			
Surrogate: Dibromofluoromethane	80.7		ug/L		101	50-140			
Surrogate: Toluene-d8	72.9		ug/L		91.2	50-140			

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
рН	7.4	0.1	pH Units	7.3			2.5	10	
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals	ne.	20	ug/L					00	
Antimony	ND	0.5	ug/l	ND			0.0	20	
Arisenic	ND	0.5	ug/L ug/L	ND			0.0	20 20	
Barium	ND	1	ug/L	ND			0.0	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	ND	10	ug/L	ND			0.0	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	ND	0.5	ug/L	ND				20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	ND	0.5	ug/L	ND			0.0	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium Silver	ND ND	1 0.1	ug/L	ND ND			0.0 0.0	20 20	
Sodium	ND	200	ug/L ug/L	ND			0.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	
Volatiles			0						
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30 30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	0.5 0.5	ug/L ug/L	ND ND				30 30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30 30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane Methyl Ethyl Ketene (2 Butenene)	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	ND ND	5.0 5.0	ug/L ug/L	ND ND				30 30	
Methyl tert-butyl ether	ND	5.0 2.0	ug/L ug/L	ND				30 30	
Methylene Chloride	ND	2.0 5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	

Order #: 1737017

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Project Description: 11140575-E2

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	81.3		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	87.4		ug/L		109	50-140			
Surrogate: Toluene-d8	68.3		ug/L		85.4	50-140			

Method Quality Control: Spike

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Hydrocarbons - F1 PHCs (CPC-T0) 2010 25 ug/L 100 68-117 F2 PHCs (CPC-T6) 380 100 ug/L 104 60-140 F3 PHCs (CPC-T6) 280 100 ug/L 104 60-140 HCS (CPC-T6) 2400 100 ug/L ND 86.8 60-120 Arsenic 43.3 ug/L ND 86.7 80-120 Barum 47.6 ug/L ND 95.2 80-120 Barum 47.6 ug/L ND 95.2 80-120 Cadmium 47.6 ug/L ND 95.9 80-120 Cadmium 47.6 ug/L ND 93.9 80-120 Cadmium 47.6 ug/L ND 93.9 80-120 Cadmium 47.6 ug/L ND 80.120 100 80-120 Cadmium 47.6 ug/L ND 83.7 80-120 100 100 100	Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
F2 PHCs (C10-C16) 1950 100 ugl. 104 60-140 F3 PHCs (C16-C34) 3600 100 ugl. 96.8 60-140 Metal S ugl. ND 95.2 80-120 Arsenic 43.3 ugl. ND 95.2 80-120 Beryllun 45.5 ugl. ND 95.2 80-120 Cadmiun 47.6 ugl. ND 95.2 80-120 Cadmiun 47.6 ugl. ND 95.2 80-120 Cadmiun 47.0 ugl. ND 93.9 80-120 Cadmiun 40.0 ugl. ND 91.2 80-120 Cobalt 49.0 ugl. ND 91.2 80-120 Cadmiun 46.6 ugl. ND 91.2 80-120 Silver 44.8 ugl. ND 91.2 80-120 Silver 44.8 ugl. ND 91.2 80-120 Silver										
F3 PHCs (C16-C34) 380 100 ug/L 96.8 60-140 HetCs (C34-C50) 2400 100 ug/L 96.8 60-140 Antimony 43.3 ug/L ND 86.6 80-120 Arsenic 49.3 ug/L ND 95.7 80-120 Barium 47.6 ug/L ND 98.8 80-120 Cadmium 47.6 ug/L ND 88.8 80-120 Cadmium 47.0 ug/L ND 88.8 80-120 Cadmium 47.0 ug/L ND 80.120 80-120 Copper 45.6 ug/L ND 91.9 80-120 Cobalt 49.0 ug/L ND 81.8 80-120 Laad 46.6 ug/L ND 83.1 80-120 Stivar 44.8 ug/L ND 83.1 80-120 Stivar 44.8 ug/L ND 83.1 80-120 Storar 49.9 ug/L ND 83.1 80-120 Stodum	F1 PHCs (C6-C10)	2010	25	ug/L		100	68-117			
F4 PHCs (C34-C50) 2400 100 ugl. 96.8 60-140 Metals	· · · · · · · · · · · · · · · · · · ·			ug/L						
Metals ugL ND 86.6 80.120 Antimory 43.3 ugL ND 98.7 80.120 Barium 47.6 ugL ND 98.2 80.120 Barium 47.6 ugL ND 98.2 80.120 Boron 46 ugL ND 88.8 80.120 Cadmium 47.0 ugL ND 80.3 80.120 Cobait 43.0 ugL ND 90.4 80.120 Cobait 43.0 ugL ND 91.2 80.120 Cobait 49.0 ugL ND 91.2 80.120 Cobait 49.0 ugL ND 80.120 80.120 Nickel 46.6 ugL ND 80.120 80.120 Soldum 1040 ugL ND 80.120 80.120 Soldum 1040 ugL ND 91.2 80.120 Soldum 1040 ugL		3880					60-140			
Antimony 43.3 ug/L ND 86.6 80-120 Barium 47.6 ug/L ND 95.2 80-120 Beryllium 48.5 ug/L ND 95.2 80-120 Beryllium 48.5 ug/L ND 98.8 80-120 Cadmium 47.0 ug/L ND 93.9 80-120 Chromium 50.4 ug/L ND 91.0 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Lead 46.6 ug/L ND 83.1 80-120 Nickel 46.6 ug/L ND 89.5 80-120 Solum 49.9 ug/L ND 89.5 80-120 Thallium 45.6 ug/L ND 89.5 80-120 Uranium 46.6 ug/L ND 89.5 80-120 Uranium <t< td=""><td>F4 PHCs (C34-C50)</td><td>2400</td><td>100</td><td>ug/L</td><td></td><td>96.8</td><td>60-140</td><td></td><td></td><td></td></t<>	F4 PHCs (C34-C50)	2400	100	ug/L		96.8	60-140			
Arsenio ¹ 49.3 ug/L ND 98.7 80-120 Barium 47.6 ug/L ND 96.3 80-120 Boron 46 ug/L ND 98.8 80-120 Catmium 47.0 ug/L ND 98.8 80-120 Chromium 50.4 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Lead 46.6 ug/L ND 97.9 80-120 Silver 44.8 ug/L ND 99.7 80-120 Solum 49.9 ug/L ND 99.7 80-120 Silver 44.8 ug/L ND 99.7 80-120 Solum 1040 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Vanadium 50.6	Metals									
Barium 47.6 ug/L ND 95.2 80-120 Beryllium 48.5 ug/L ND 98.9 80-120 Cadmium 47.0 ug/L ND 88.8 80-120 Cadmium 50.4 ug/L ND 100 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Lead 46.0 ug/L ND 92.0 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Selenium 1040 ug/L ND 89.5 80-120 Sodium 1040 ug/L ND 91.2 80-120 Uranium 66.6 ug/L ND 91.2 80-120 Uranium 48.6 ug/L ND 91.2 80-120 Uranium 49.	Antimony	43.3		ug/L	ND	86.6	80-120			
Berolium 48.5 ug/L ND 96.9 80-120 Boron 46 ug/L ND 93.9 80-120 Cadmium 50.4 ug/L ND 93.9 80-120 Chromium 50.4 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 93.1 80-120 Molydenum 44.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Soleinium 49.9 ug/L ND 93.1 80-120 Sodium 1040 ug/L ND 93.2 80-120 Vanadum 45.6 ug/L ND 93.2 80-120 Vanadum 46.6 ug/L ND 93.2 80-120 Vanadum 46.6 ug/L ND 93.1 80-120 Vanadum 46.6 ug/L ND 93.2 80-120 Vanadum 45.6 </td <td>Arsenic</td> <td>49.3</td> <td></td> <td>ug/L</td> <td>ND</td> <td>98.7</td> <td>80-120</td> <td></td> <td></td> <td></td>	Arsenic	49.3		ug/L	ND	98.7	80-120			
Borion 46 ug/L ND 88.8 80-120 Cadmium 50.4 ug/L ND 100 80-120 Cobalt 49.0 ug/L ND 93.9 80-120 Cobalt 49.0 ug/L ND 97.9 80-120 Cobalt 46.0 ug/L ND 92.0 80-120 Lead 46.0 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Solium 1040 ug/L ND 93.2 80-120 Thallium 46.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 93.2 80-120 Vanadium 46.6 ug/L ND 93.2 80-120 Vanadium 46.6 ug/L ND 93.2 80-120 Vanadium 46.6	Barium	47.6		ug/L	ND	95.2	80-120			
Cadmium 47.0 ug/L ND 93.9 80-120 Chromium 50.4 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Molydonum 44.6 ug/L ND 93.1 80-120 Molydonum 44.6 ug/L ND 93.7 80-120 Silver 44.8 ug/L ND 93.7 80-120 Sodium 1040 ug/L ND 93.1 80-120 Silver 44.8 ug/L ND 93.2 80-120 Vanadium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc ug/L ND 91.2 80-120 Zinc ug/L ND 91.2 80-120 Zonadium 50.6 ug/L ND 91.2 80-120 Zonadium 50.6 ug/L ND <td>Beryllium</td> <td>48.5</td> <td></td> <td>ug/L</td> <td>ND</td> <td>96.9</td> <td>80-120</td> <td></td> <td></td> <td></td>	Beryllium	48.5		ug/L	ND	96.9	80-120			
Chromium 50.4 ug/L ND 97.9 80-120 Cobait 49.0 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 91.2 80-120 Lead 46.0 ug/L ND 91.2 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 99.7 80-120 Selenium 49.8 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 91.2 80-120 Vanadium 46.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 91.3 80-120 Zinc 49 ug/L ND 91.3 80-120 Accanaphthene 3.03 0.05 ug/L ND 91.4 86.5 Accanaphthylene 3.93 0.05 ug/L 78.5 50-140	Boron	46		ug/L	ND	88.8	80-120			
Cobait 49.0 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 92.0 80-120 Molydenum 44.6 ug/L ND 93.1 80-120 Molydenum 44.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.7 80-120 Silver 44.8 ug/L ND 93.7 80-120 Sodium 1040 ug/L ND 93.2 80-120 Thailium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 97.3 80-120 Zinc 49 ug/L ND 97.3 80-120 Zinc 49 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Acenaphthylene 3.93 0.05 ug/L ND 97.5 50-140 <	Cadmium	47.0		ug/L	ND	93.9	80-120			
Copper 45.6 ug/L ND 91.2 80-120 Lead 46.0 ug/L ND 92.0 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Nickel 49.8 ug/L ND 93.1 80-120 Silver 44.8 ug/L ND 99.5 80-120 Sodium 1040 ug/L ND 91.2 80-120 Sodium 1040 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Acenaphthylene 3.93 0.05 ug/L ND 97.3 80-120 Acenaphthylene 3.73 0.01 ug/L 84.2 50-140 Benzo [a] anthracene 4.21 0.01 ug/L 84.2 <	Chromium				ND	100				
Lead 46.0 ug/L ND 92.0 80-120 Molybdenum 44.6 ug/L ND 89.1 80-120 Nickel 46.6 ug/L ND 99.1 80-120 Selenium 49.9 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 91.2 80-120 Uranium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 101 80-120 Acenaphthyle 3.93 0.05 ug/L ND 97.3 80-120 Anthracene 4.13 0.01 ug/L ND 18.5 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 121	Cobalt				ND		80-120			
Motyodenum 44.6 ug/L ND 89.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Silver 44.8 ug/L ND 89.7 80-120 Silver 44.8 ug/L ND 89.7 80-120 Sodium 1040 ug/L ND 89.12 80-120 Thallum 45.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 93.2 80-120 Zinc 49 ug/L ND 93.2 80-120 Accenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Accenaphthylene 3.83 0.05 ug/L ND 97.3 80-120 Accenaphthylene 4.33 0.01 ug/L 86.5 50-140 Benzo [a] anthracene 4.33 0.01 ug/L 86.5 50-140 Benzo [a] anthracene 4.52 0.05 ug/L	Copper				ND					
Nickel 46.6 ug/L ND 9.1 80-120 Selenium 49.9 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 91.2 80-120 Thallium 45.6 ug/L ND 93.2 80-120 Vanadum 50.6 ug/L ND 93.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles					ND	92.0	80-120			
Selenium 49.9 ug/L ND 99.7 80-120 Silver 44.8 ug/L ND 89.5 80-120 Sodium 1040 ug/L ND 91.2 80-120 Thallium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L 78.5 50-140 Acenaphthylene 3.33 0.05 ug/L 78.5 50-140 Benzo [a] pyrene 4.13 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.05 ug/L 74.6 50-140 Benzo [a], hij perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [a], hij perylene 4.32 0.05 ug/L 86.5 50-140 Diberzo [a], hij perylene 4.52 0.5 ug/L <	Molybdenum			ug/L	ND		80-120			
Silver 44.8 ug/L ND 89.5 80-120 Sodium 1040 ug/L ND 10.3 80-120 Thallium 45.6 ug/L ND 91.2 80-120 Vanadium 60.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 93.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles	Nickel				ND					
Sodium 1040 ug/L ND 103 80-120 Thallum 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 91.2 80-120 Semi-Volatiles ND 101 80-120 80-120 Acenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthene 4.13 0.01 ug/L 78.5 50-140 Benzo [a] anthracene 6.27 0.05 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 85.5 50-140 Benzo [k] hurranthene 6.06 0.05 ug/L 85.5 50-140 Chrysene 4.33 0.05 ug/L 83.5					ND	99.7				
Thallium 45.6 ug/L ND 91.2 80-120 Uranium 46.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 91.3 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles Acenaphthene 4.30 0.05 ug/L 78.5 50-140 Anthracene 3.93 0.01 ug/L 82.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 74.6 50-140 Benzo [g] huranthene 6.27 0.05 ug/L 86.5 50-140 Benzo [g],h.] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [g],h.] anthracene 4.32 0.05 ug/L 86.5 50-140 Dibenzo [a,h.] anthracene 4.52 0.05 ug/L 80.9 50-140 Fluoranthene 4.62 0.05 ug/L 80.9 50-140					ND					
Uranium 46.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 101 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.01 ug/L 74.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [a] huranthene 6.27 0.05 ug/L 85.5 50-140 Benzo [a],hi] perylene 4.32 0.05 ug/L 86.6 50-140 Benzo [a],hi] partylene 4.33 0.05 ug/L 80.5 50-140 Dibenzo [a,hi] anthracene 4.52 0.05 ug/L 80.9 50-140 Iberao [a,hi] perylene 4.52 0.05 ug/	Sodium				ND	103				
Vanadium 50.6 ug/L ND 101 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles	Thallium			ug/L	ND	91.2	80-120			
Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles	Uranium			ug/L	ND	93.2				
Semi-Volatiles Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 78.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 121 50-140 Benzo [g], h.] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [a], h] anthracene 4.33 0.05 ug/L 90.4 50-140 Chrysene 4.33 0.05 ug/L 90.4 50-140 Fluoranthene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.86 0.05 ug/L 75.5 50-140	Vanadium			ug/L	ND		80-120			
Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 78.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.6 50-140 Benzo [g,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 80.9 50-140 Fluoranthene 4.06 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 76.7 50-140	Zinc	49		ug/L	ND	97.3	80-120			
Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 78.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.6 50-140 Benzo [g,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 80.9 50-140 Fluoranthene 4.06 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 76.7 50-140	Semi-Volatiles									
Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 82.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [g, h,i] perylene 4.32 0.05 ug/L 125 50-140 Benzo [g, h,i] perylene 4.32 0.05 ug/L 121 50-140 Benzo [g, h,i] perylene 4.32 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.5 50-140 Dibenzo [a, h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 Pyrene 3.84 0.05 ug/L 76.4 50-140 Pyrene		4.30	0.05	ug/L		85.9	50-140			
Anthracene 4.13 0.01 ug/L 82.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 86.6 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.77 0.05 ug/L 76.7 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 P	•	3.93				78.5	50-140			
Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 86.6 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 80.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.05 0.05 ug/L 90.4 50-140 I-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 79.9 50-140 Surrogate: 2-Fluorobiphenyl <td></td> <td>4.13</td> <td></td> <td>-</td> <td></td> <td>82.6</td> <td>50-140</td> <td></td> <td></td> <td></td>		4.13		-		82.6	50-140			
Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] peylene 4.32 0.05 ug/L 121 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 83.5 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.82 0.05 ug/L 76.4 50-140 Pyrene 3.82 0.05 ug/L 76.4 50-140 Surgate: 2-Fluorobiphenyl	Benzo [a] anthracene	3.73				74.6	50-140			
Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Fluoranthene 4.52 0.05 ug/L 83.5 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.1 ug/L 76.9 50-140 Surrogate: 2-Fluorobiphenyl		4.21				84.2	50-140			
Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 81.9 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.82 0.05 ug/L 76.7 50-140 Pyrene 4.30 0.01 ug/L 76.7 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 76.7 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Benzene 62.0 50.	Benzo [b] fluoranthene	6.27	0.05			125	50-140			
Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 76.4 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L<	Benzo [g,h,i] perylene	4.32	0.05	-		86.5	50-140			
Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 Pyrene 3.82 0.05 ug/L 76.4 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L 91.6 60-130 Bromodichloromethane 49.0 0.5 ug	Benzo [k] fluoranthene	6.06	0.05			121	50-140			
Dibenzo [a,h] anthracene4.520.05ug/L90.450-140Fluoranthene4.180.01ug/L83.550-140Fluorene4.050.05ug/L80.950-140Indeno [1,2,3-cd] pyrene4.620.05ug/L92.450-1401-Methylnaphthalene3.770.05ug/L75.550-1402-Methylnaphthalene4.090.05ug/L81.950-140Naphthalene3.840.05ug/L76.750-140Phenanthrene3.820.05ug/L76.450-140Pyrene4.300.01ug/L85.950-140Surrogate: 2-Fluorobiphenyl16.0ug/L79.950-140VolatilesAcetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L11260-130Bromoform47.40.5ug/L11960-130	Chrysene	4.33	0.05			86.6	50-140			
Fluoranthene4.180.01ug/L83.550-140Fluorene4.050.05ug/L80.950-140Indeno [1,2,3-cd] pyrene4.620.05ug/L92.450-1401-Methylnaphthalene3.770.05ug/L75.550-1402-Methylnaphthalene3.840.05ug/L81.950-140Naphthalene3.840.05ug/L76.750-140Phenanthrene3.820.05ug/L76.450-140Pyrene4.300.01ug/L85.950-140Surrogate: 2-Fluorobiphenyl16.0ug/L79.950-140VolatilesAcetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130		4.52	0.05			90.4	50-140			
Fluorene4.050.05ug/L80.950-140Indeno [1,2,3-cd] pyrene4.620.05ug/L92.450-1401-Methylnaphthalene3.770.05ug/L75.550-1402-Methylnaphthalene4.090.05ug/L81.950-140Naphthalene3.840.05ug/L76.750-140Phenanthrene3.820.05ug/L76.450-140Pyrene4.300.01ug/L85.950-140Surrogate: 2-Fluorobiphenyl16.0ug/L79.950-140VOlatilesAcetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130	Fluoranthene	4.18	0.01			83.5	50-140			
Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 4.09 0.05 ug/L 81.9 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Acetone 62.0 5.0 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L 91.6 60-130 Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130	Fluorene	4.05	0.05			80.9	50-140			
1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 4.09 0.05 ug/L 81.9 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Acetone 62.0 5.0 ug/L 62.0 50-140 Benzene 36.7 0.5 ug/L 91.6 60-130 Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130	Indeno [1,2,3-cd] pyrene	4.62	0.05			92.4	50-140			
2-Methylnaphthalene 4.09 0.05 ug/L 81.9 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 3.82 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles 4.30 0.01 ug/L 79.9 50-140 Volatiles 79.9 50-140 50-140 Benzene 62.0 5.0 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 91.6 60-130 Bromoform 47.4 0.5 ug/L 119 60-130		3.77	0.05			75.5	50-140			
Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Volatiles Surrogate: Solution Solution Acetone 62.0 5.0 ug/L 62.0 50-140 Benzene 36.7 0.5 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 62.0 50-140 Bromoform 47.4 0.5 ug/L 122 60-130		4.09	0.05			81.9	50-140			
Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Volatiles 50-140 50-140 50-140 Benzene 62.0 5.0 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 62.0 50-140 Bromoform 47.4 0.5 ug/L 119 60-130	Naphthalene	3.84	0.05			76.7	50-140			
Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles strong 62.0 5.0 ug/L 62.0 50-140 Benzene 36.7 0.5 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130	Phenanthrene	3.82	0.05	-		76.4	50-140			
Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles	Pyrene	4.30	0.01			85.9	50-140			
Acetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130	Surrogate: 2-Fluorobiphenyl	16.0				79.9	50-140			
Acetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130	Volatiles									
Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130		62.0	5.0	ua/l		62.0	50-140			
Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130				-						
Bromoform 47.4 0.5 ug/L 119 60-130				-						
0				-						
Carbon Tetrachloride 51.3 0.2 ug/L 128 60-130				-						

Method Quality Control: Spike

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chlorobenzene	34.4	0.5	ug/L		86.0	60-130			
Chloroform	40.1	0.5	ug/L		100	60-130			
Dibromochloromethane	48.9	0.5	ug/L		122	60-130			
Dichlorodifluoromethane	35.8	1.0	ug/L		89.6	50-140			
1,2-Dichlorobenzene	34.8	0.5	ug/L		87.0	60-130			
1,3-Dichlorobenzene	36.0	0.5	ug/L		90.0	60-130			
1,4-Dichlorobenzene	34.6	0.5	ug/L		86.6	60-130			
1,1-Dichloroethane	38.5	0.5	ug/L		96.2	60-130			
1,2-Dichloroethane	37.9	0.5	ug/L		94.7	60-130			
1,1-Dichloroethylene	38.5	0.5	ug/L		96.2	60-130			
cis-1,2-Dichloroethylene	41.5	0.5	ug/L		104	60-130			
trans-1,2-Dichloroethylene	37.3	0.5	ug/L		93.3	60-130			
1,2-Dichloropropane	42.2	0.5	ug/L		106	60-130			
cis-1,3-Dichloropropylene	51.0	0.5	ug/L		128	60-130			
trans-1,3-Dichloropropylene	50.2	0.5	ug/L		126	60-130			
Ethylbenzene	41.4	0.5	ug/L		104	60-130			
Ethylene dibromide (dibromoethane	35.4	0.2	ug/L		88.4	60-130			
Hexane	31.7	1.0	ug/L		79.2	60-130			
Methyl Ethyl Ketone (2-Butanone)	93.5	5.0	ug/L		93.5	50-140			
Methyl Isobutyl Ketone	116	5.0	ug/L		116	50-140			
Methyl tert-butyl ether	100	2.0	ug/L		100	50-140			
Methylene Chloride	28.6	5.0	ug/L		71.5	60-130			
Styrene	47.6	0.5	ug/L		119	60-130			
1,1,1,2-Tetrachloroethane	48.5	0.5	ug/L		121	60-130			
1,1,2,2-Tetrachloroethane	32.5	0.5	ug/L		81.2	60-130			
Tetrachloroethylene	33.4	0.5	ug/L		83.6	60-130			
Toluene	35.3	0.5	ug/L		88.2	60-130			
1,1,1-Trichloroethane	42.6	0.5	ug/L		106	60-130			
1,1,2-Trichloroethane	42.5	0.5	ug/L		106	60-130			
Trichloroethylene	45.5	0.5	ug/L		114	60-130			
Trichlorofluoromethane	37.0	1.0	ug/L		92.5	60-130			
Vinyl chloride	48.6	0.5	ug/L		122	50-140			
m,p-Xylenes	80.2	0.5	ug/L		100	60-130			
o-Xylene	39.5	0.5	ug/L		98.8	60-130			

Sample Qualifiers :

2: Elevated Reporting Limits due to limited sample volume.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	RELIABI	SIVE .	Parac			aracellabs.com	(L	n of Custody ab Use Ouly) L12293
Client Name: 6H-1) Lingto Contact Name: Like Lopers Address: 179 (clohnode load Telephone: 613-325-204y Criteria: XO. Reg. 153/04 (As Amended) Table Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)		Quote # PO # 73%/8 Emuil Address: L 58/00 = PWQO = C	Ke lopen (list CME I SUB (S	nf- (0 m	UB (Sanitary) M	lunicipality:	□ 1 Day □ 2 Day Date Require	e of iround Time:
Paracel Order Number: 1737017 Sample ID/Location Name 1 BH1/Aw1 2 BH2/Aw2 3 BH5/Aw3 4 DUP 5 Try Block 6 7 LOW VOLUME received in 8 9	GW D	Sample Sample Date Containers Containe	Taken Xalue+4-1-4 SHal Time 13:30 13:30 X 14:00 X 15:00 X 3 QXO 3	K X X X VOCS	The second secon	X X X		
10 Comments: All netel samples filtered on s Relinquished By (Sign): W Var tall Relinquished By (Print): Rya-Vada Milan Date/Time: Sept 8,207	GHE ONL Received by Driver Date/Time: Temperature:	Extra both 1 Trip Blo Depot:	le receive wK vial re Reveived at Date/Time: Temperature	ceived Collect		Verifier		r Delivere Waltin 7 9:55an

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-G2 Custody: 38677

Report Date: 18-Sep-2017 Order Date: 12-Sep-2017

Order #: 1737231

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1737231-01	MW4
1737231-02	Trip Blank

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1737231

Report Date: 18-Sep-2017 Order Date: 12-Sep-2017

Project Description: 11140575-G2

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	15-Sep-17	16-Sep-17

Order #: 1737231

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

	Client ID:	MW4	Trip Blank	-	-
	Sample Date:	12-Sep-17	11-Sep-17	-	-
Г	Sample ID: MDL/Units	1737231-01 Water	1737231-02 Water	-	-
Volatiles	WDL/OTHIS	Water	Water		<u> </u>
Acetone	5.0 ug/L	<5.0	<5.0	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylene dibromide (dibromoethan	0.2 ug/L	<0.2	<0.2	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-

Order #: 1737231

Report Date: 18-Sep-2017 Order Date: 12-Sep-2017

	Client ID: Sample Date: Sample ID: MDL/Units	MW4 12-Sep-17 1737231-01 Water	Trip Blank 11-Sep-17 1737231-02 Water	- - -	- - -
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	102%	104%	-	-
Dibromofluoromethane	Surrogate	78.7%	98.0%	-	-
Toluene-d8	Surrogate	99.9%	98.7%	-	-

Order #: 1737231

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

Project Description: 11140575-G2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	2.0 5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5							
Trichlorofluoromethane	ND	1.0	ug/L ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5 0.5	ug/L ug/L						
o-Xylene	ND	0.5	ug/L						
,	ND	0.5 0.5	ug/L ug/L						
Xylenes, total		0.5			100	E0 1 10			
Surrogate: 4-Bromofluorobenzene	82.2		ug/L		103	50-140			
Surrogate: Dibromofluoromethane	72.3		ug/L		90.3	50-140			
Surrogate: Toluene-d8	81.2		ug/L		102	50-140			

Order #: 1737231

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

Project Description: 11140575-G2

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	1.35	0.5	ug/L	1.26			6.9	30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	11.3	0.5	ug/L	10.8			4.0	30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND			0.0	30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	4.37	0.5	ug/L	4.79			9.2	30	
Toluene	5.51	0.5	ug/L	5.73			3.9	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND	00.0	E0 140		30	
Surrogate: 4-Bromofluorobenzene	71.5		ug/L		89.3	50-140			
Surrogate: Dibromofluoromethane	72.6		ug/L		90.7	50-140			
Surrogate: Toluene-d8	80.4		ug/L		101	50-140			

Method Quality Control: Spike

Order	#:	173723
-------	----	--------

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	80.9	5.0	ug/L	ND	80.9	50-140			
Benzene	37.1	0.5	ug/L	ND	92.8	50-140			
Bromodichloromethane	41.9	0.5	ug/L	3.60	95.7	50-140			
Bromoform	33.0	0.5	ug/L	ND	82.5	50-140			
Bromomethane	33.9	0.5	ug/L	ND	84.8	50-140			
Carbon Tetrachloride	34.9	0.2	ug/L	ND	87.3	50-140			
Chlorobenzene	35.5	0.5	ug/L	ND	88.7	50-140			
Chloroform	40.4	0.5	ug/L	7.57	82.1	50-140			
Dibromochloromethane	34.6	0.5	ug/L	2.30	80.7	50-140			
Dichlorodifluoromethane	30.8	1.0	ug/L	ND	76.9	50-140			
1,2-Dichlorobenzene	28.2	0.5	ug/L	ND	70.4	50-140			
1,3-Dichlorobenzene	26.4	0.5	ug/L	ND	66.0	50-140			
1,4-Dichlorobenzene	27.8	0.5	ug/L	ND	69.6	50-140			
1,1-Dichloroethane	38.6	0.5	ug/L	ND	96.5	50-140			
1,2-Dichloroethane	35.7	0.5	ug/L	ND	89.2	50-140			
1,1-Dichloroethylene	34.6	0.5	ug/L	ND	86.4	50-140			
cis-1,2-Dichloroethylene	42.6	0.5	ug/L	ND	106	50-140			
trans-1,2-Dichloroethylene	36.1	0.5	ug/L	ND	90.3	50-140			
1,2-Dichloropropane	41.7	0.5	ug/L	ND	104	50-140			
cis-1,3-Dichloropropylene	38.7	0.5	ug/L	ND	96.8	50-140			
trans-1,3-Dichloropropylene	36.6	0.5	ug/L	ND	91.5	50-140			
Ethylbenzene	36.3	0.5	ug/L	ND	90.8	50-140			
Ethylene dibromide (dibromoethane	35.3	0.2	ug/L	ND	88.2	50-140			
Hexane	39.6	1.0	ug/L	ND	99.0	50-140			
Methyl Ethyl Ketone (2-Butanone)	97.1	5.0	ug/L	ND	97.1	50-140			
Methyl Isobutyl Ketone	89.4	5.0	ug/L	ND	89.4	50-140			
Methyl tert-butyl ether	103	2.0	ug/L	ND	103	50-140			
Methylene Chloride	33.5	5.0	ug/L	ND	83.8	50-140			
Styrene	31.0	0.5	ug/L	ND	77.6	50-140			
1,1,1,2-Tetrachloroethane	32.2	0.5	ug/L	ND	80.6	50-140			
1,1,2,2-Tetrachloroethane	32.5	0.5	ug/L	ND	81.3	50-140			
Tetrachloroethylene	34.4	0.5	ug/L	ND	85.9	50-140			
Toluene	34.0	0.5	ug/L	ND	85.1	50-140			
1,1,1-Trichloroethane	32.6	0.5	ug/L	ND	81.6	50-140			
1,1,2-Trichloroethane	38.2	0.5	ug/L	ND	95.6	50-140			
Trichloroethylene	40.6	0.5	ug/L	ND	102	50-140			
Trichlorofluoromethane	30.8	1.0	ug/L	ND	77.0	50-140			
Vinyl chloride	33.5	0.5	ug/L	ND	83.7	50-140			
m,p-Xylenes	69.2	0.5	ug/L	ND	86.5	50-140			
o-Xylene	33.7	0.5	ug/L	ND	84.2	50-140			
Surrogate: 4-Bromofluorobenzene	85.0		ug/L		106	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

GPARACEL	RE		ED. NSIN					warr			of Custor b Use Ouly) 3867	
										Page	of	
ent Name: GHO Limited				Reference: 111405	75-62						round Tir	
tact Name: Like Lope-)			Quote #						🗆 I Day	1	Ο.	3 Day
ress				73508783					D 2 Day	Y		Regular
179 Ceknadi lod			Email A	ddress: Luke.L	opers Rephil-	um			Date Re	quired:		
phone: 613-325-2094	nco tilian	0.0			9		🗆 SUB (Sanitary)	Munic	pality:		Other:	
CARGEN IN COLOR									ired Ana	lyses		
trix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water	SS (Storm Sa	nitary Set	wer) P (F	Paint) A (Air) O (Ot	her)			T				
Sample ID/Location Name	Matrix	Air Volume	# of Containers	Sample	Time	VOCS						
1 MWY	GW		2	Sept12	13:30	X		-			_	
2 Frip Alugk	GW		2	Septe		X		-				
3				Sept 11				-		-		
4								-	+ +			
5								+		-		
6							_	-	+ +	-	-	
7		-						-	-			
8								-	-			
9	-		-					+	-			
10										M	ethod of Delive	ny .
onunents:											Mal	Ri
elinquished By (Sign) WWWW	Receive	ed by Dri	iver/Depo	M.	Recei	ved at ab	of	1	Verified I	Ca	E.	- Alian
elinquished By (Print): Ryon Vada Milgar	Date/T	ime:			Date		ept 12	157	Date/Tim	e: ied [] By:	MA	17.00
Date Time: SRA+ 12, 2017	Tempe	rature:	_	°C	Temp	oernture: 25 -	11 2.0	$\alpha \rho$	pri venti	ral I ph		

Chain of Custody (Blank) - Rev 0.4 Feb 2016

RELIABLE.

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 37955

Report Date: 31-Oct-2017 Order Date: 30-Oct-2017

Order #: 1744078

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1744078-01 BH5 1744078-02 BH6

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Order #: 1744078

Report Date: 31-Oct-2017 Order Date: 30-Oct-2017

Project Description: 11140575-E2

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Ar	nalysis Date
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	31-Oct-17	31-Oct-17

Sample and QC Qualifiers Notes

1- LG-SMPSample - One or more parameter received past hold time - pH

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Sample Results

pH Sample Date: 29-4					
Paracel ID	Client ID	Units	MDL	Result	
1744078-01	BH5	pH Units	0.05	7.36	
1744078-02	BH6	pH Units	0.05	7.38	

Laboratory Internal QA/QC

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Matrix Duplicate									
рН	7.92	0.05	pH Units	7.94			0.3	10	

GPARACEL LABORATORIES LTI		RUST ESPC				Head (D: 17440)	78			ain of C (Lab Use C 37!	July)
Client Name: Late L GHD			Project	Reference: 11/40	525_m					naround	
Contact Name: Luke Loors			Quote	ff.				d'II	Dav		🗆 3 Day
179 Colonnade Road,	othewa,	, on	PO # Email	73508783 Address	}			- 21	Č.		□ Regular
Telephone 613-288-1723			luc	ke.lopis	@ GHD				Require		
Criteria: 00. Reg. 153/04 (As Amended) Table	CIRSC Filing	0.1	Reg 55	8/00 🗆 PWQO	CCME DS	SUB (Storm)	SUB (Sanitary) Mu	nicipality:		🗆 Oth	ar
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Wat	ar) SS (Storm Sa	nitary Se	wer) P (Paint) A (Air) O (O	ther)		Re	quired A	nalyses		
Paracel Order Number: 1744078	Matrix	Air Volume	of Containers	Sample	Taken	(10					
Sample ID/Location Name		Ņ	#	Date	Time	X		0	FLA.		
1 BHS	5		1	Aug 29/17		5		- 7	50m	1-	
2 BH6	-			Aug 29/17		7		-	V	-	++
4	-							-		-	+++
5										+	
6											
7											
8											
9	_							_			
10		_								1.1.1.00	
Comments: Samples received	1 past	hol	$d + 2 \leq 1$	the for	PH. KN				P	Hothod or D	1
telinquished By (Sign)	Received	w. Janis and		Frank		ed at Lab:	N DEKM	Vention	I BY	7	
elinquished By (Print Luke Lapors	Date/Tir		0/	0/17 3	the second		pent of a		the the	30	125
Date Time: October 30, 2017 / 2:00 PM	Tempera		7		24	ature 9.4			ified By	and the second sec	117-

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K0A 2W0 Attn: Steven Wheeler

Client PO: 73515533 Project: 11140575-E3 Custody: 47665

Report Date: 3-May-2019 Order Date: 25-Apr-2019

Order #: 1917649

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 1917649-01 GW-MW4-04-25-2019

1917649-02 GW-MW5-04-25-2019

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	30-Apr-19	30-Apr-19
CBOD	SM 5210B - DO Probe	26-Apr-19	1-May-19
Cyanide, total	MOE E3015 - Auto Colour	29-Apr-19	29-Apr-19
E. coli	MOE E3407	26-Apr-19	30-Apr-19
Hexachlorobenzene	EPA 8081B - GC-ECD	2-May-19	2-May-19
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	29-Apr-19	29-Apr-19
Metals, ICP-MS	EPA 200.8 - ICP-MS	29-Apr-19	29-Apr-19
Oil & Grease, mineral/synthetic	SM5520F - Gravimetric	29-Apr-19	1-May-19
Oil & Grease, total	SM5520B - Gravimetric, hexane soluble	1-May-19	1-May-19
Ottawa - San/Comb: O&G AV/MS	SM5520 - Gravimetric	1-May-19	1-May-19
Ottawa - San/Comn: SVOCs w/o PAHs	EPA 625	29-Apr-19	30-Apr-19
PAHs by GC-MS, SU Addnl	based on EPA 8270 - GC-MS, extraction	29-Apr-19	1-May-19
PAHs by GC-MS, Sewer Use	based on EPA 8270 - GC-MS, extraction	29-Apr-19	1-May-19
PCBs, total	EPA 608 - GC-ECD	2-May-19	2-May-19
рН	EPA 150.1 - pH probe @25 °C	1-May-19	1-May-19
Phenolics	EPA 420.2 - Auto Colour, 4AAP	30-Apr-19	30-Apr-19
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	30-Apr-19	30-Apr-19
Sulphide	SM 4500SE - Colourimetric	30-Apr-19	30-Apr-19
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	30-Apr-19	30-Apr-19
Total Suspended Solids	SM 2540D - Gravimetric	29-Apr-19	1-May-19
VOCs, Sewer Use	EPA 624 - P&T GC-MS	29-Apr-19	30-Apr-19

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Project Description: 11140575-E3

	Client ID:	GW-MW4-04-25-2019	GW-MW5-04-25-20	-	-
			19 04/25/2019 15:00		
	Sample Date: Sample ID:	04/25/2019 14:00 1917649-01	1917649-02	-	-
	MDL/Units	Water	Water	-	-
Microbiological Parameters					
E. coli	1 CFU/100 mL	2 [1] [4]	2 [1] [4]	-	-
General Inorganics					
CBOD	2 mg/L	3	<2	-	-
Cyanide, total	0.01 mg/L	<0.01	<0.01	-	-
рН	0.1 pH Units	7.7	8.2	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-
Phosphorus, total	0.01 mg/L	0.07	0.09	-	-
Total Suspended Solids	2 mg/L	90	133	-	-
Sulphide	0.02 mg/L	<0.02	<0.02	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.6	1.0	-	-
Anions					
Fluoride	0.1 mg/L	<0.1	0.3	-	-
Sulphate	1 mg/L	244	220	-	-
Metals - Total					
Aluminum	0.01 mg/L	<0.01	<0.01	-	-
Antimony	0.001 mg/L	0.001	0.001	-	-
Arsenic	0.01 mg/L	<0.01	<0.01	-	-
Bismuth	0.005 mg/L	<0.005	<0.005	-	-
Boron	0.05 mg/L	0.1	0.2	-	-
Cadmium	0.001 mg/L	<0.001	<0.001	-	-
Chromium	0.05 mg/L	<0.05	<0.05	-	-
Cobalt	0.001 mg/L	<0.001	<0.001	-	-
Copper	0.005 mg/L	<0.005	<0.005	-	-
Lead	0.001 mg/L	<0.001	<0.001	-	-
Manganese	0.05 mg/L	<0.05	<0.05	-	-
Mercury	0.0001 mg/L	<0.0001	<0.0001	-	-
Molybdenum	0.005 mg/L	0.010	0.011	-	-
Nickel	0.005 mg/L	<0.005	<0.005	-	-
Selenium	0.005 mg/L	<0.005	<0.005	-	-
Silver	0.001 mg/L	<0.001	<0.001	-	-
Tin	0.01 mg/L	<0.01	<0.01	-	-
Titanium	0.01 mg/L	<0.01	<0.01	-	-
Vanadium	0.001 mg/L	<0.001	<0.001	-	-
Zinc	0.02 mg/L	<0.02	<0.02	-	-
Volatiles	I		<u>ا</u>		

OTTAWA · CALGARY · MISSISSAUGA · KINGSTON · LONDON · NIAGARA · WINDSOR 1-800-749-1947 • www.paracellabs.com

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

	Client ID:	GW-MW4-04-25-2019	GW-MW5-04-25-20	-	-
	Sample Date:	04/25/2019 14:00	19 04/25/2019 15:00	-	-
	Sample ID:	1917649-01	1917649-02	-	-
	MDL/Units	Water	Water	-	-
Benzene	0.0005 mg/L	<0.0005	<0.0005	-	-
Bromodichloromethane	0.0005 mg/L	<0.0005	<0.0005	-	-
Bromoform	0.0005 mg/L	<0.0005	<0.0005	-	-
Bromomethane	0.0005 mg/L	<0.0005	<0.0005	-	-
Carbon Tetrachloride	0.0002 mg/L	<0.0002	<0.0002	-	-
Chlorobenzene	0.0005 mg/L	<0.0005	<0.0005	-	-
Chloroethane	0.0010 mg/L	<0.0010	<0.0010	-	-
Chloroform	0.0005 mg/L	<0.0005	<0.0005	-	-
Chloromethane	0.0030 mg/L	<0.0030	<0.0030	-	-
Dibromochloromethane	0.0005 mg/L	<0.0005	<0.0005	-	-
1,2-Dibromoethane	0.0002 mg/L	<0.0002	<0.0002	-	-
1,2-Dichlorobenzene	0.0005 mg/L	<0.0005	<0.0005	-	-
1,3-Dichlorobenzene	0.0005 mg/L	<0.0005	<0.0005	-	-
1,4-Dichlorobenzene	0.0005 mg/L	<0.0005	<0.0005	-	-
1,1-Dichloroethane	0.0005 mg/L	<0.0005	<0.0005	-	-
1,2-Dichloroethane	0.0005 mg/L	<0.0005	<0.0005	-	-
1,1-Dichloroethylene	0.0005 mg/L	<0.0005	<0.0005	-	-
cis-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	<0.0005	-	-
trans-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	<0.0005	-	-
1,2-Dichloropropane	0.0005 mg/L	<0.0005	<0.0005	-	-
cis-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	<0.0005	-	-
trans-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	<0.0005	-	-
Ethylbenzene	0.0005 mg/L	<0.0005	<0.0005	-	-
Methylene Chloride	0.0050 mg/L	<0.0050	<0.0050	-	-
Styrene	0.0005 mg/L	<0.0005	<0.0005	-	-
1,1,2,2-Tetrachloroethane	0.0005 mg/L	<0.0005	<0.0005	-	-
Tetrachloroethylene	0.0005 mg/L	<0.0005	<0.0005	-	-
Toluene	0.0005 mg/L	<0.0005	<0.0005	-	-
1,1,1-Trichloroethane	0.0005 mg/L	<0.0005	<0.0005	-	-
1,1,2-Trichloroethane	0.0005 mg/L	<0.0005	<0.0005	-	-
Trichloroethylene	0.0005 mg/L	<0.0005	<0.0005	-	-
Trichlorofluoromethane	0.0010 mg/L	<0.0010	<0.0010	-	-
1,3,5-Trimethylbenzene	0.0005 mg/L	<0.0005	<0.0005	-	-
Vinyl chloride	0.0005 mg/L	<0.0005	<0.0005	-	-
Xylenes, total	0.0005 mg/L	<0.0005	<0.0005		-

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

	Client ID:	GW-MW4-04-25-2019	GW-MW5-04-25-20	-	-
	Sample Date:	04/25/2019 14:00	19 04/25/2019 15:00	-	-
	Sample ID:	1917649-01	1917649-02	-	-
	MDL/Units	Water	Water	-	-
4-Bromofluorobenzene	Surrogate	92.7%	97.6%	-	-
Dibromofluoromethane	Surrogate	118%	122%	-	-
Toluene-d8	Surrogate	101%	97.3%	-	-
Hydrocarbons	0.5 mm m/l				
Oil & Grease, Animal/Vegetable	0.5 mg/L	<0.5	<0.5	-	-
Oil & Grease, mineral/synthetic	0.5 mg/L	<0.5	<0.5	-	-
Oil & Grease, total	0.5 mg/L	<0.5	<0.5	-	-
Semi-Volatiles					
1-Methylnaphthalene	0.00005 mg/L	<0.00005	0.00005	-	-
2-Methylnaphthalene	0.00005 mg/L	<0.00005	<0.00005	-	-
7H-Dibenzo[c,g]carbazole	0.0005 mg/L	<0.0005	<0.0005	-	-
Anthracene	0.00001 mg/L	<0.00001	<0.00001	-	-
Benzo [a] anthracene	0.00001 mg/L	<0.00001	<0.00001	-	-
Benzo [a] pyrene	0.00001 mg/L	<0.00001	<0.00001	-	-
Benzo [b] fluoranthene	0.00005 mg/L	<0.00005	<0.00005	-	-
Benzo [e] pyrene	0.0005 mg/L	<0.0005	<0.0005	-	-
Benzo [g,h,i] perylene	0.00005 mg/L	<0.00005	<0.00005	-	-
Benzo [j] fluoranthene	0.0005 mg/L	<0.0005	<0.0005	-	-
Benzo [k] fluoranthene	0.00005 mg/L	<0.00005	<0.00005	-	-
Biphenyl	0.00005 mg/L	<0.00005	<0.00005	-	-
Chrysene	0.00005 mg/L	<0.00005	<0.00005	-	-
Dibenzo [a,h] anthracene	0.00005 mg/L	<0.00005	<0.00005	-	-
Dibenzo [a,i] pyrene	0.0005 mg/L	<0.0005	<0.0005	-	-
Dibenzo [a,j] acridine	0.0005 mg/L	<0.0005	<0.0005	-	-
Fluoranthene	0.00001 mg/L	<0.00001	<0.00001	-	-
Fluorene	0.00005 mg/L	<0.00005	<0.00005	-	-
Indeno [1,2,3-cd] pyrene	0.00005 mg/L	<0.00005	<0.00005	-	-
Naphthalene	0.00005 mg/L	<0.00005	<0.00005	-	-
Perylene	0.0005 mg/L	<0.0005	<0.0005	-	-
Phenanthrene	0.00005 mg/L	<0.00005	<0.00005	-	-
Pyrene	0.00001 mg/L	<0.00001	<0.00001	-	-
PAHs, Total	0.00340 mg/L	<0.00340	<0.00340	-	-
2-Fluorobiphenyl	Surrogate	82.8%	109%	-	-
Terphenyl-d14	Surrogate	119%	119%	-	-
Benzylbutylphthalate	0.001 mg/L	<0.001	<0.001	-	-
bis(2-Chloroethoxy)methane	0.001 mg/L	<0.001	<0.001	-	-

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

	Client ID:	GW-MW4-04-25-2019	GW-MW5-04-25-20	_	-
	Client ID.	Gvv-Ivivv4-04-25-2018	19	-	-
	Sample Date:	04/25/2019 14:00	04/25/2019 15:00	-	-
	Sample ID:	1917649-01	1917649-02	-	-
	MDL/Units	Water	Water	-	-
Bis(2-ethylhexyl)phthalate	0.001 mg/L	<0.001	<0.001	-	-
Diethylphthalate	0.001 mg/L	<0.001	<0.001	-	-
Di-n-butylphthalate	0.001 mg/L	<0.001	<0.001	-	-
Di-n-octylphthalate	0.001 mg/L	<0.001	<0.001	-	-
Indole	0.001 mg/L	<0.001	<0.001	-	-
2,4-Dichlorophenol	0.001 mg/L	<0.001	<0.001	-	-
2-Fluorobiphenyl	Surrogate	84%	65% [3]	-	-
Nitrobenzene-d5	Surrogate	96%	94%	-	-
Terphenyl-d14	Surrogate	86%	75%	-	-
2,4,6-Tribromophenol	Surrogate	96%	89%	-	-
2-Fluorophenol	Surrogate	23%	30%	-	-
Phenol-d6	Surrogate	11%	15%	-	-
Pesticides, OC					
Hexachlorobenzene	0.00001 mg/L	<0.00001	<0.00001	-	-
Decachlorobiphenyl	Surrogate	79.0%	92.0%	-	-
PCBs					
PCBs, total	0.05 ug/L	<0.05	<0.05	-	-
Decachlorobiphenyl	Surrogate	87.5%	94.4%	-	-

Method Quality Control: Blank

Report Date: 03-May-2019 Order Date: 25-Apr-2019

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Fluoride	ND	0.1	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
CBOD	ND	2	mg/L						
Cyanide, total	ND	0.01	mg/L						
Phenolics Phosphorus, total	ND ND	0.001 0.01	mg/L mg/L						
Total Suspended Solids	ND	2	mg/L						
Sulphide	ND	0.02	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Hydrocarbons									
Oil & Grease, mineral/synthetic	ND	0.5	mg/L						
Oil & Grease, total	ND	0.5	mg/L						
Metals - Total		0.04	ma ^{//}						
Aluminum Antimony	ND ND	0.01 0.001	mg/L mg/L						
Arsenic	ND	0.01	mg/L						
Bismuth	ND	0.005	mg/L						
Boron	ND	0.05	mg/L						
Cadmium Chromium	ND ND	0.001 0.05	mg/L mg/L						
Cobalt	ND	0.001	mg/L						
Copper	ND	0.005	mg/L						
Lead	ND	0.001	mg/L						
Mercury	ND	0.0001	mg/L						
Manganese Molybdenum	ND ND	0.05 0.005	mg/L mg/L						
Nickel	ND	0.005	mg/L						
Selenium	ND	0.005	mg/L						
Silver	ND	0.001	mg/L						
Tin	ND	0.01	mg/L						
Titanium Vanadium	ND ND	0.01 0.001	mg/L mg/L						
Zinc	ND	0.02	mg/L						
Microbiological Parameters			-						
E. coli	ND	1	CFU/100 mL						Z-01
PCBs									
PCBs, total	ND	0.05	ug/L						
Surrogate: Decachlorobiphenyl	0.443		ug/L		88.6	60-140			
Pesticides, OC									
Hexachlorobenzene	ND	0.00001	mg/L		00.0	50 4 40			
Surrogate: Decachlorobiphenyl	1.00044		mg/L		88.0	50-140			
Semi-Volatiles		0 00005							
1-Methylnaphthalene 2-Methylnaphthalene	ND ND	0.00005 0.00005	mg/L mg/L						
7H-Dibenzo[c,g]carbazole	ND	0.0005	mg/L						
Anthracene	ND	0.00001	mg/L						
Benzo [a] anthracene	ND	0.00001	mg/L						
Benzo [a] pyrene Benzo [b] fluoranthene	ND ND	0.00001 0.00005	mg/L mg/L						
Benzo [b] huoranthene Benzo [e] pyrene	ND	0.00005	mg/L						
Benzo [g,h,i] perylene	ND	0.00005	mg/L						
Benzo [j] fluoranthene	ND	0.0005	mg/L						
Benzo [k] fluoranthene	ND	0.00005	mg/L						
Biphenyl Chrysene	ND ND	0.00005 0.00005	mg/L mg/L						
		0.00000	g/L						

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Project Description: 11140575-E3

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Dibenzo [a,h] anthracene	ND	0.00005	mg/L						
Dibenzo [a,i] pyrene	ND	0.0005	mg/L						
Dibenzo [a,j] acridine	ND	0.0005	mg/L						
Fluoranthene	ND	0.00001	mg/L						
Fluorene	ND	0.00005	mg/L						
Indeno [1,2,3-cd] pyrene	ND	0.00005	mg/L						
Naphthalene	ND	0.00005	mg/L						
Perylene	ND	0.0005	mg/L						
Phenanthrene	ND	0.00005	mg/L						
Pyrene	ND	0.00001	mg/L						
Surrogate: 2-Fluorobiphenyl	0.0245		mg/L		122	76-125			
Surrogate: Terphenyl-d14	0.0237		mg/L		119	70-125			

Method Quality Control: Duplicate

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Fluoride	ND	0.1	mg/L	ND				10	
Sulphate	5.34	1	mg/L	5.35			0.1	10	
General Inorganics									
CBOD	704	2	mg/L	730			3.6	20	
Cyanide, total	ND	0.01	mg/L	ND			0.0	11	
pH	7.1	0.1	pH Units	7.1			0.0	10	
Phenolics	ND	0.001	mg/L	ND				10	
Phosphorus, total	4.82	0.10	mg/L	4.48			7.4	15	
Total Suspended Solids	12.0	2	mg/L	11.0			8.7	10	
Sulphide	0.02	0.02	mg/L	0.02			8.7	10	
Total Kjeldahl Nitrogen	27.2	1.0	mg/L	24.0			12.6	16	
Hydrocarbons									
Oil & Grease, mineral/synthetic	ND	0.5	mg/L	ND				30	
Oil & Grease, total	ND	0.5	mg/L	ND				30	
Metals - Total			5						
Aluminum	0.05	0.01	mg/L	0.06			12.8	20	
Antimony	0.004	0.001	mg/L	0.004			8.2	20	
Arsenic	ND	0.001	mg/L	ND			0.0	20	
Bismuth	ND	0.005	mg/L	ND			0.0	20	
Boron	0.1	0.05	mg/L	0.1			3.6	20	
Cadmium	ND	0.001	mg/L	ND			0.0	20	
Chromium	ND	0.05	mg/L	ND			0.0	20	
Cobalt	0.004	0.001	mg/L	0.004			6.0	20	
Copper	0.007	0.005	mg/L	0.007			0.7	20	
Lead	ND	0.001	mg/L	ND			0.0	20	
Mercury	ND	0.0001	mg/L	ND			0.0	20	
Manganese	1.68	0.05	mg/L	1.65			1.8 6.0	20	
Molybdenum Nickel	0.014 0.013	0.005 0.005	mg/L	0.013 0.012			0.0 0.8	20 20	
Selenium	ND	0.005	mg/L mg/L	ND			0.0	20	
Silver	ND	0.000	mg/L	ND			0.0	20	
Tin	ND	0.01	mg/L	ND			0.0	20	
Titanium	ND	0.01	mg/L	ND			0.0	20	
Vanadium	ND	0.001	mg/L	ND			0.0	20	
Zinc	ND	0.02	mg/L	ND			0.0	20	
Volatiles			-						
Benzene	ND	0.0005	mg/L	ND				30	
Bromodichloromethane	ND	0.0005	mg/L	ND				30	
Bromoform	ND	0.0005	mg/L	ND				30	
Bromomethane	ND	0.0005	mg/L	ND				30	
Carbon Tetrachloride	ND	0.0002	mg/L	ND				30	
Chlorobenzene	ND	0.0005	mg/L	ND				30	
Chloroethane	ND	0.0010	mg/L	ND				30	
Chloroform	ND	0.0005	mg/L	ND				30	
Chloromethane Dibromochloromethane	ND ND	0.0030 0.0005	mg/L mg/L	ND ND				30 30	
1,2-Dibromoethane	ND	0.0005	mg/L	ND				30 30	
1,2-Dichlorobenzene	ND	0.0002	mg/L	ND				30	
1,3-Dichlorobenzene	ND	0.0005	mg/L	ND				30	
1,4-Dichlorobenzene	ND	0.0005	mg/L	ND				30	
1,1-Dichloroethane	ND	0.0005	mg/L	ND				30	
1,2-Dichloroethane	ND	0.0005	mg/L	ND				30	
1,1-Dichloroethylene	ND	0.0005	mg/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.0005	mg/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.0005	mg/L	ND				30	
1,2-Dichloropropane	ND	0.0005	mg/L	ND				30	

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Project Description: 11140575-E3

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,3-Dichloropropylene	ND	0.0005	mg/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.0005	mg/L	ND				30	
Ethylbenzene	ND	0.0005	mg/L	ND				30	
Methylene Chloride	ND	0.0050	mg/L	ND				30	
Styrene	ND	0.0005	mg/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L	ND				30	
Tetrachloroethylene	ND	0.0005	mg/L	ND				30	
Toluene	ND	0.0005	mg/L	ND				30	
1,1,1-Trichloroethane	ND	0.0005	mg/L	ND				30	
1,1,2-Trichloroethane	ND	0.0005	mg/L	ND				30	
Trichloroethylene	ND	0.0005	mg/L	ND				30	
Trichlorofluoromethane	ND	0.0010	mg/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.0005	mg/L	ND				30	
Vinyl chloride	ND	0.0005	mg/L	ND				30	
m,p-Xylenes	ND	0.0005	mg/L	ND				30	
o-Xylene	ND	0.0005	mg/L	ND				30	
Surrogate: 4-Bromofluorobenzene	0.0892		mg/L		111	50-140			
Surrogate: Dibromofluoromethane	0.0819		mg/L		102	50-140			
Surrogate: Toluene-d8	0.0777		mg/L		97.1	50-140			

Method Quality Control: Spike

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit Notes
Anions								
Fluoride	0.83	0.1	mg/L	ND	83.1	79-121		
Sulphate	15.4	1	mg/L	5.35	100	74-126		
General Inorganics								
CBOD	125		mg/L		62.5	62-129		
Cyanide, total	0.086	0.01	mg/L	ND	85.9	53-130		
Phenolics	0.023	0.001	mg/L	ND	90.2	69-132		
Phosphorus, total	0.448	0.01	mg/L		89.6	80-120		
Total Suspended Solids	21.0	2	mg/L		105	75-125		
Sulphide	0.56	0.02	mg/L	0.02	107	79-115		
Total Kjeldahl Nitrogen	2.00	0.1	mg/L		100	81-126		
Hydrocarbons								
Oil & Grease, mineral/synthetic	7.25	0.5	mg/L		72.5	65-110		
Oil & Grease, total	18.8	0.5	mg/L		94.0	85-110		
Metals - Total			0					
Aluminum	52.2		ug/L	6.13	92.1	80-120		
Antimony	40.1		ug/L	0.379	79.5	80-120		QM-07
Arsenic	47.2		ug/L	0.345	93.8	80-120		
Bismuth	39.1		ug/L	0.266	77.7	80-120		QM-07
Boron	49.5		ug/L	11.5	76.0	80-120		QM-07
Cadmium	43.2		ug/L	0.015	86.3	80-120		
Chromium	49.7		ug/L	0.230	98.9	80-120		
Cobalt	47.2		ug/L	0.357	93.7	80-120		
Copper	47.0		ug/L	0.692	92.7	80-120		
Lead	42.0		ug/L	0.060	83.9	80-120		
Mercury	0.0029	0.0001	mg/L	ND	97.7	70-130		
Manganese	217		ug/L	165	103	80-120		
Molybdenum	47.7		ug/L	1.32	92.7	80-120		
Nickel	45.6		ug/L	1.24	88.7	80-120		
Selenium	43.8		ug/L	0.097	87.3	80-120		
Silver	43.7		ug/L	0.024	87.4	80-120		
Tin	44.7		ug/L	0.173	89.0	80-120		
Titanium	53.9		ug/L	0.215	107	80-120		
Vanadium	50.7		ug/L	0.079	101	80-120		
Zinc	42.9		ug/L	0.823	84.1	80-120		
PCBs								
PCBs, total	0.620	0.05	ug/L		62.0	60-140		
Surrogate: Decachlorobiphenyl	0.470		ug/L		94.0	60-140		
Pesticides, OC								
Hexachlorobenzene	0.00047	0.00001	mg/L		94.0	50-140		
Semi-Volatiles								
1-Methylnaphthalene	0.00344	0.00005	mg/L		68.8	25-127		
2-Methylnaphthalene	0.00384	0.00005	mg/L		76.7	21-119		
7H-Dibenzo[c,g]carbazole	0.00577	0.0005	mg/L		115	30-130		
Anthracene	0.00355	0.00001	mg/L		70.9	29-126		
Benzo [a] anthracene	0.00368	0.00001	mg/L		73.6	29-126		
Benzo [a] pyrene	0.00358	0.00001	mg/L		71.5	29-111		
Benzo [b] fluoranthene	0.00528	0.00005	mg/L		106	26-111		
Benzo [e] pyrene	0.00375	0.0005	mg/L		75.0	30-130		
Benzo [g,h,i] perylene	0.00374	0.00005	mg/L		74.9	23-128		
Benzo [g,n,ı] perylene	0.00374	0.00005	mg/L		74.9	23-128		

Order #: 1917649

Report Date: 03-May-2019 Order Date: 25-Apr-2019

Project Description: 11140575-E3

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [j] fluoranthene	0.00569	0.0005	mg/L		114	30-130			
Benzo [k] fluoranthene	0.00510	0.00005	mg/L		102	23-135			
Biphenyl	0.00326	0.00005	mg/L		65.2	50-140			
Chrysene	0.00425	0.00005	mg/L		85.0	29-137			
Dibenzo [a,h] anthracene	0.00425	0.00005	mg/L		84.9	20-131			
Dibenzo [a,i] pyrene	0.00568	0.0005	mg/L		114	30-130			
Dibenzo [a,j] acridine	0.00605	0.0005	mg/L		121	30-130			
Fluoranthene	0.00386	0.00001	mg/L		77.3	24-131			
Fluorene	0.00362	0.00005	mg/L		72.3	28-123			
Indeno [1,2,3-cd] pyrene	0.00420	0.00005	mg/L		84.0	20-128			
Naphthalene	0.00389	0.00005	mg/L		77.9	29-118			
Perylene	0.00420	0.0005	mg/L		84.0	30-130			
Phenanthrene	0.00352	0.00005	mg/L		70.3	34-108			
Pyrene	0.00386	0.00001	mg/L		77.2	29-131			

Qualifier Notes:

Sample Qualifiers :

- 1: Confluent background colonies on filter: may interfere with target reactions and the analysts' ability to count E. coli & Total Coliform. The target colonies may be under-represented.
- 3: Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
- 4: Bacteria plates were read outside of the allowed timeframe. Data is suspect and should not be used for comparison against any Regulation.

QC Qualifiers :

- QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- S-GC: Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

GPARACEL LABORATORIES LTI	이번 이상화) BLL							lvd. J8 .com				f Cust ise Ouly 471	1000	×
Client Name: GHD Lin Hed Contact Name: Steven Wheeler Address: 179 Colonnade Road, Ottawa, O Telephone: G13-219-7426-			Quote PO# Email Scot	nddress: Steve 4, Wallis; @6	, wheeles HD.com	-061	_				_	Tu Day Day Requir	red:	X	-	ır
Criteria: 0. Reg. 153/04 (As Amended) Table Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Wat						SCB (20		STIL O	enilary)		uired A			Other:		
Paracel Order Number: 1917649	Matrix	Air Volume	of Containers		- Taken	Metals + H	Sieren	1165-2926	Voc+ succ	PAH	Formalehyte	Nonyi Prevols	machlane -	E coli)	PCBG -	
Sample ID/Location Name GW-MW4-04-39-2019	Z GW	<	# 19	Date 04/25/2019	Time	Ì	SP	N N	×	V	LE X	520	X	38	X	
2 660-1005-04-25-2019 3 4	GrW		1	04/25/2019		X	X	×	X	X	×	X	×	Ê.	X	
6			-			+	-		-	\vdash						
7 8 9																
10 Conuments: Comparig	Suto	b	oti sc	•	mt.			ary	IPS	er	Vert	100	Method	of Delive	Kj	n
Relinquished By (Sign) State Wheele Relinquished By (Print): Steves Wheele	Received Date Tin	K	HA	19 4.5	butter	ine Al	ipon Nati	N 2019		1. MA . 35		SC	e	A	119	,
Date Time:	Tempera	ture:	2.8	e	Temps	rature:9,	L	C			pH Ver	inout	by:	SC		

RELIABLE.

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K0A 2W0 Attn: Steven Wheeler Client PO: Project: 11140575-E3 Custody: 47973

Report Date: 3-May-2019 Order Date: 2-May-2019

Order #: 1918483

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1918483-01 GW-MW4-05-02-2019 1918483-02 GW-MW5-05-02-2019

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Project Description: 11140575-E3

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date An	alysis Date
E. coli	MOE E3407	2-May-19	2-May-19

Sample and QC Qualifiers Notes

1- BAC13 : Please note that bacteria reporting limits are raised due to dilutions (expected elevated concentrations based on source of water sample).

2- BAC14 : A2C - Background counts greater than 200

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Sample Results

E. coli			Sampl	Matrix: Water e Date: 02-May-19
Paracel ID	Client ID	Units	MDL	Result
1918483-01	GW-MW4-05-02-2019	CFU/100 mL	1	<10 [1] [2]
1918483-02	GW-MW5-05-02-2019	CFU/100 mL	1	<10 [1] [2]

Laboratory Internal QA/QC

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Matrix Blank									
E. coli	ND	10	CFU/100 mL						

GPARACEL				Paracel ID: 1918483 Wa, Ontario K1G 800-749-1947 aracel@paracellat							of Custody Use Only) 47973	
Client Name 21 11 -		_	Dealar	Polymon I.			/			Page	of	
Client Name: GHO Ltd.			Project Reference: 11140575-E3						Turnaround Time:			
Contact Name: Steven Wheeler Address			PO II						D I Da	у	🗆 3 Day	
179 Colonna de Road, Ottang ON/ Telephone 6 13 - 219-7426			Email Address						- 2 Da	y	🕱 Regul	ar
Telephone: 6 13 - 2/9-7426			Steven. Wheelor @ GHD.com						Date Required:			
Criteria: El O. Reg. 153/04 (As Amended) Table	C RSC Filing	0.0	Reg 55	8/00 DPWQO	D CCME D	SUB (Stor	m) 🗆 SUB (S	anitary) Munic	ipality:		J Other:	-
Tatrix Type: S (Suil Sed.) GW (Ground Water) SW (Surface W	tter) SS (Storm Sa	mitary Se	wer) P (Paint) A (Air) O (0	Juher)			Requ	ired Ana	lyses		
Paracel Order Number:			12							-	1 1	Γ
1918483	rix	Air Volume	of Containers	Sample Taken		Microbia CE. coli						
Sample ID/Location Name	Matrix	Air	# 01	Date	Time	20						
1 GW-MW4-05-02-2019	GW		1	05/02/19	9:35	1						
2 GW-MW5-05-02-2019	GW		1	11	9:45	l						
3												
4												
5												
7												
8		-				+	-			_		_
9		_				+				_		_
10		-										_
oniments:										Method	of Delivery	
haguished By (Sign) Hever Weeler	Received	-	/	Secure	6	ed at Lab:	PORN	ROUMAI	Venified By	ha	() and	
tinquished By (Print) Steven wheeler	Date/Tim	0,	2/0	5/19 1	1-10 Date Ti	me MA	112,2019	1 12.40	Date/Time	2Ma	49 13	0
ature 5/2/2019 / atur of Custody (Blank) - Rev 0.4 Feb 2016	Temperat	ure:	"(AH. Temper	niure 1,	0 °d		pH Verified	By;		

Appendix F Flow Calculations

Flow to a Trench for a Unconfined Aquifer

Additional Information:

Ν

Figure 4.2 (Driscoll, 1986)

trench.

Flow to a Shaft in an Unconfined Aquifer

Additional Information:

Figure 22.2. The circle shown in (a) consists of a series of shallow wells that produce a drawdown similar to the drawdown obtainable by a single, deep well. Dewatering of the rectangular area in (b) can be accomplished by a series of wells placed on a circle or on the perimeter of the rectangle.

Figure 1.2 (Driscoll, 1986)

input

input (optional)

output

To zoom in or out: Hold down the Ctrl key while scrolling with the mouse.

Flow to a Trench for a Unconfined Aquifer

Additional Information:

Ν

Figure 4.2 (Driscoll, 1986)

trench.

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Scott Wallis Scott. Wallis@ghd.com 613.389.9812

Philip Smart Philip.Smart@ghd.com 647.227.8335

www.ghd.com