


# **Geotechnical Investigation**

811 Gladstone Avenue Ottawa, Ontario

# Ottawa Community Housing Corporation



Y



# **Table of Contents**

| 1. | Introd | duction                              |                                                                                            | 1        |  |  |  |  |  |  |  |  |
|----|--------|--------------------------------------|--------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|
| 2. | Site a | and Project                          | Description                                                                                | 1        |  |  |  |  |  |  |  |  |
| 3. | Field  | Investigati                          | on                                                                                         | 2        |  |  |  |  |  |  |  |  |
|    | 3.1    | Laborator                            | ry testing                                                                                 | 3        |  |  |  |  |  |  |  |  |
| 4. | Subs   | urface Cor                           | nditions                                                                                   | 3        |  |  |  |  |  |  |  |  |
|    | 4.1    | Surface C                            | Covers                                                                                     | 3        |  |  |  |  |  |  |  |  |
|    | 4.2    | Surficial F                          | Surficial Fill                                                                             |          |  |  |  |  |  |  |  |  |
|    | 4.3    | Buried Co                            | oncrete Structure                                                                          | 3        |  |  |  |  |  |  |  |  |
|    | 4.4    | Sand and                             | I Gravel                                                                                   | 3        |  |  |  |  |  |  |  |  |
|    | 4.5    | Bedrock.                             |                                                                                            | 4        |  |  |  |  |  |  |  |  |
| 5. | Grou   | ndwater                              |                                                                                            | 4        |  |  |  |  |  |  |  |  |
| 6. | Discu  | ussion and                           | Recommendations                                                                            | 4        |  |  |  |  |  |  |  |  |
|    | 6.1    | Site Prep                            | aration                                                                                    | 6        |  |  |  |  |  |  |  |  |
|    | 6.2    | Excavatio                            | on and Dewatering                                                                          | 6        |  |  |  |  |  |  |  |  |
|    | 6.3    | Foundatio                            | ons                                                                                        | 8        |  |  |  |  |  |  |  |  |
|    | 6.4    | Frost Protection                     |                                                                                            |          |  |  |  |  |  |  |  |  |
|    | 6.5    | Seismic S                            | Site Classification                                                                        | 9        |  |  |  |  |  |  |  |  |
|    | 6.6    | Permane                              | nt Drainage                                                                                | 10       |  |  |  |  |  |  |  |  |
|    |        | 6.6.1<br>6.6.2                       | Townhouse Buildings<br>Six-Storey Building                                                 |          |  |  |  |  |  |  |  |  |
|    | 6.7    | Floor Sla                            | bs                                                                                         | 11       |  |  |  |  |  |  |  |  |
|    | 6.8    | Corrosior                            | Potential of Soils                                                                         | 11       |  |  |  |  |  |  |  |  |
|    | 6.9    | Building E                           | Backfill                                                                                   | 12       |  |  |  |  |  |  |  |  |
|    |        | 6.9.1<br>6.9.2<br>6.9.2.1<br>6.9.2.2 | Engineered Fill.<br>Exterior Foundation Wall Backfill<br>Townhouses<br>Six-Storey Building | 13<br>13 |  |  |  |  |  |  |  |  |
|    | 6.10   | Lateral Ea                           | arth Pressure                                                                              | 13       |  |  |  |  |  |  |  |  |
|    |        | 6.10.1<br>6.10.2<br>6.10.3           | Static Conditions<br>Lateral Rock Pressures<br>Dynamic Condition                           | 14       |  |  |  |  |  |  |  |  |
|    | 6.11   | Undergro                             | und Services                                                                               | 15       |  |  |  |  |  |  |  |  |
|    |        | 6.11.1<br>6.11.2                     | Bedding and Cover<br>Service Trench Backfill                                               |          |  |  |  |  |  |  |  |  |
|    | 6.12   | Pavemen                              | t Sections                                                                                 | 16       |  |  |  |  |  |  |  |  |
|    | 6.13   | Construct                            | tion Field Review                                                                          | 17       |  |  |  |  |  |  |  |  |



|  | 7. | Limitation of the Investigation | 17 |
|--|----|---------------------------------|----|
|--|----|---------------------------------|----|

# **Figure Index**

- Figure 1 Site Location Plan
- Figure 2 Borehole Location Plan

# Table Index

| Table 5.1 | Groundwater Observations                        | 4  |
|-----------|-------------------------------------------------|----|
| Table 6.1 | Corrosion Parameter Results                     | 11 |
| Table 6.2 | Classes of Exposure                             | 12 |
| Table 6.3 | Soil Parameters and Earth Pressure Coefficients | 14 |
| Table 6.4 | Recommended Pavement Structure                  | 16 |

# **Appendix Index**

| Appendix A | Borehole Logs and Notes on Boreholes |
|------------|--------------------------------------|
| Appendix B | MASW Test Results                    |



# 1. Introduction

GHD was retained by Mr. Meyerhoffer and Mr. MacNeil of Ottawa Community Housing Corporation (OCHC or Client) to undertake a geotechnical investigation for a proposed new residential development hereafter referred to as the Site, located at 811 Gladstone Avenue, in Ottawa, Ontario.

The purpose of the investigation was to complete an evaluation of the subsurface stratigraphy on the proposed development site in order to summarize the subsurface conditions found at borehole locations, and based upon the data, provide recommendations concerning foundation type and associated bearing capacity, drainage requirements, as well as comment on excavation, backfill, pavement design and construction field review.

This report has been prepared with the understanding that the design will be as described in Section 2 and will be carried out in accordance with all applicable codes and standards. Any changes to the project described herein will require that GHD be retained to assess the impact of the changes on the report recommendations provided herein.

The scope of work for GHD consisted of the following activities:

- Underground Service Clearances
- Fieldwork | The proposed scope included advancement of a total of 11 boreholes within the property and installation of six monitoring wells to measure ground water level.
- Lab Testing | One chemical testing of groundwater for corrosion assessment for ductile iron and concrete.
- Reporting | Preparation of this Geotechnical Report which summarizes the findings of the fieldwork programs and presents recommendations for the design and construction of the structure.

# 2. Site and Project Description

The site at the time of the original investigation in August 2017 was developed with residential townhouses and associated access road and parking area. At the time of the additional fieldwork in April 2019, the townhouses had been demolished and the excavations backfilled with sand. The site is bounded by Balsam Street on the north, Rochester Street on the west, Gladstone Avenue on the south and by an Institutional property on the east. The site topography slopes down approximately 1.0 m from north to south as well as west to east.

We understand that two of the former buildings on the property had partial basement levels used for the mechanical utility rooms that supply services to all three buildings on the property. It is unknown at this time if the buildings, on adjacent sites, have basements.

It is our understanding that the proposed new development will consist of a new 6-storey residential building with a full basement for car parking garage and storage. The basement will be limited to the west 2/3 of the building and other 1/3 will be no basement. The depth of excavation to underside of footing required will be approximately 4 m below existing grades or elevation 62.2 m.



There will also be two 3-storey townhouses along the north portion of the property, that will have raised first floors and basement beneath. This design results in excavations of about 1.5 to 2 m below existing grades (underside of footing near 65.2 m). A mechanical corridor is located along the east- west centre line of the building and has foundations planned at approximately 1.5 m below the basement slab, or approximately 3 m below grade.

In addition to the three buildings, there will be a local subgrade storm water storage chamber on site and will require an excavation of about 2 m below existing grades or elevation 64 m at the deepest.

There will be associated surface parking areas, access roads and landscaped areas.

GHD has not been informed of any special slab on grade floor loading requirements for this residential development and therefore we are assuming 24 kPa floor loading for slab on grade for the residential buildings and a concrete floor in the car parking garage.

The location of the Site is shown on the Site Location Plan attached as Figure 1.

# 3. Field Investigation

The original fieldwork component in August, 2017 of this Geotechnical Investigation consisted of the advancement of eight boreholes BH1 to BH8, three of which were outfitted with wells. Three additional boreholes (MW4-19, MW5-19, and MW6-19) with wells were installed in April 2019 for hydrogeological testing purposes. Boreholes were advanced to depths varying between 2.6 to 10 m below the existing surface grade. A total of six monitoring wells were installed at locations BH1/MW1-17, BH2/MW2-17, BH5/MW3-17, MW4-19, MW5-19, and MW6-19. All monitoring wells were sealed within the bedrock. The location of the boreholes are shown in the Borehole Location Plan attached as Figure 2 at the end of this report.

The original borehole drilling fieldwork program was undertaken on August 22, 25, 28 and 29, 2017. The additional drilling for 3 wells was conducted on April 16, 2019. All drilling was performed with a truck mounted drill rig, as well as a specialized manual drill rig adapted for soil sampling and diamond coring of bedrock, under the supervision of GHD field staff. Boreholes were advanced into the overburden using Standard Penetration Tests (SPTs) at regular intervals using a 50 mm diameter split-spoon sampler and a 31.8 kg hammer for the manual drill rig and a 63.5 kg hammer for a truck mounted drill rig, free falling from a distance of 760 mm, to collect soil samples. The number of drops required to drive the sampler 0.3 m in manual drilling is corrected for a hammer weight of 63.5 kg and recorded on the borehole logs as "N" value. All boreholes were advanced into bedrock using HQ diamond coring equipment, in order to confirm the existence of bedrock and comment on rock quality (ASTM D2113). Boreholes without monitoring wells were backfilled with bentonite to the top of bedrock and then with silica sand and auger cuttings to the surface upon drilling completion.

The elevations of the boreholes were determined by GHD field staff using a laser level; and related to a benchmark provided on Architectural drawing No. A1.01 by Hobin Architecture, provided by the client. The benchmark was a catch basin at the northwest corner of the site within the eastbound lane of Balsam Street, and had a geodetic elevation of 66.20 m.



# 3.1 Laboratory testing

Analytical testing was carried out on a groundwater sample collected to determine corrosion potential within the subsurface to new ductile iron and buried concrete soils at the site. The results of the chemical analyses are discussed in Section 6.10.

# 4. Subsurface Conditions

In general, soils encountered at the borehole locations consisted of a grassed landscape or asphalt paved surface (fill material) followed by a layer of silty sand and gravel, underlain by limestone bedrock.

General descriptions of the subsurface conditions are summarized in the following sections, with a graphical representation of each borehole on the Borehole Logs. Notes on Boreholes are provided in Appendix A, at the end of this report.

## 4.1 Surface Covers

Boreholes BH1, BH2, BH3, BH4 and BH5 were drilled in a paved area which had an asphaltic concrete surface approximately 90 mm thick at the borehole locations and was followed by a basecourse crushed limestone fill material.

Boreholes BH5, BH6, BH7 and BH8 were located in a grass covered landscaped area of the Site. The grass was supported by a very thin topsoil layer.

Boreholes MW-4, MW-5, and MW-6 had a sand fill cover that was placed as part of the demolition of the previous buildings on the site.

## 4.2 Surficial Fill

A surficial fill material was observed in BH8 beneath the cover materials. The fill material was observed to have a thickness of approximately 2.1 m. The fill material was found to consist of sand and gravel. Fill material was loose in compactness condition and was recovered in moist condition.

### 4.3 Buried Concrete Structure

A buried concrete layer was found within the diamond coring sample beneath the fill material in borehole BH8 location. The concrete structure was found to be in direct contact with bedrock within the cored samples. The thickness of the concrete was found to be approximately 0.3 m.

### 4.4 Sand and Gravel

In all boreholes, except BH8, MW-4, MW-5, and MW-6, a layer of native silty sand and gravel underlay the surface cover. The layer was observed to have a thickness of approximately 0.1 to 0.9 m. The native material was loose to compact in compactness and was recovered in a damp to moist condition.



## 4.5 Bedrock

Practical refusal to auger advancement was encountered in all boreholes at shallow depths on bedrock, as confirmed by diamond coring methods. The depth to auger refusal ranged between 0.5 m at BH1 to 2.6 m at BH8. The bedrock deposit was a grey sedimentary rock (Limestone) at the borehole locations. The quality of this rock was generally weathered and fractured, very poor within the upper approximately 0.5 to 1.5 m of the bedrock, with measured Rock Quality Designation (RQD) values of 29 to 50. The quality improves becoming what is considered as good to excellent rock based upon higher RQD values.

# 5. Groundwater

Six monitoring wells were installed as part of the scope of work. Groundwater levels were measured on September 8, 2017, at the monitoring wells BH1, BH2, and BH5. Groundwater levels at the additional well locations, MW-4, MW-5, and MW-6, as well as BH1, were measured on April 25, 2019. BH2 and BH5 were not usable following the demolition work at the site. The following Table 5.1 shows the measured water levels.

| Borehole<br>Location | Depth of Water<br>Below Existing<br>Grade (m)<br>(Sept. 8, 2017) | Depth of Water<br>Below Existing<br>Grade (m)<br>(Apr. 25, 2019) | Depth of Water<br>Below Existing<br>Grade (m)<br>(May 2, 2019) | Water Table<br>Elevation (m)<br>(May 2, 2019) |
|----------------------|------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|
| BH1/MW-1             | 1.9                                                              | 0.9                                                              | 1.5                                                            | 64.5                                          |
| BH2/MW-2             | 2.7                                                              | -                                                                | 2.1                                                            | 64.1                                          |
| BH5/MW-3             | 2.2                                                              | -                                                                | 2.6                                                            | 64.5                                          |
| MW-4                 | -                                                                | 3.2                                                              | 3.3                                                            | 62.4                                          |
| MW-5                 | -                                                                | 4.6                                                              | 4.6                                                            | 61.4                                          |
| MW-6                 | -                                                                | 1.1                                                              | 1.3                                                            | 65.2                                          |

#### Table 5.1 Groundwater Observations

It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within the fill materials or the very poor bedrock, especially during and following periods of precipitation and in the spring and fall or other wet seasonal periods. Further discussion of groundwater is presented in an associated hydrogeological report reported under separate cover by GHD which should be referenced.

# 6. Discussion and Recommendations

The recommendations in this report are based on GHD's understanding of the proposed development, which is outlined as follows:

• 6-storey Building - The proposed structure will consist of a 6-storey residential building, located along the southern portion of the site and will have one underground level for basement or underground parking within the west 2/3 of the building, and expected excavations in the order



of 4 to 5 m below existing grades. For practical design purposes, groundwater table is assumed to be elevation 65 m and therefore will be penetrated with the basement excavation.

- Townhouses Two 3-storey townhouses located at the northeast and northwest portions of the site with a raised first floor and a basement level. A founding depth for the foundations of about 1.5 to 2 m below current ground surface or elevation 64.4 to 65.16 m. A partial crawl space for the mechanical room will be located along the east-west centre line of the buildings. The foundation depth for the mechanical room at about 1.5 m below the basement slab or elevation approximately 62.9 m at the West Townhouse and 63.6 m at the East Townhouse.
- The storm water retention tank will have inverts near elevation 64 to 65 m.
- No information is available regarding the foundation depth/elevation of the previous buildings or of the off-site adjacent structures but designers and contractors should be aware of these.

Based on our understanding of the proposed structure, the subsurface conditions encountered in the boreholes, and assuming them to be representative of the subsurface conditions across the Site, the following recommendations are provided. The most important geotechnical considerations for the design of the proposed buildings are the following:

- Bedrock Excavation | Based on the proposed founding depth of foundations for the structures, bedrock excavation is expected. The upper 0.5 to 1.5 m of bedrock was found to be weathered and fractured; The bedrock becomes good to excellent quality with depth.
- Existing and Buried Structures | It is important to note that no information was provided regarding the founding depth of the previous building's. All foundations and buried structures associated with the previous buildings must be removed from the footprint of the proposed new buildings. Buried concrete was found in borehole BH8 location at about 2.3 m below existing grade. Deep fill layers and further buried structures may exist on site. Contractors and the designers should include some allowance regarding the removal of unknown buried structures or removal of fill materials.
- Frost Susceptibility of the Bedrock | Upper layers of the bedrock were found to be highly
  fractured and with the shallow groundwater the bedrock may be susceptible to frost action (frost
  heaving) and requires the same as typical 'soil' frost cover depths and protection. Should
  construction take place during winter, the exposed surfaces to support foundations must be
  protected by Contractors against freezing and foundations on bedrock should have adequate
  soil cover.
- Adjacent Structures Construction Activity Induced Vibrations | The excavation operations of bedrock will impart vibrations affecting the nearby below grade and above grade structures. The client, designers and contractors should implement measures to reduce risk and severity of vibrations and damage to adjacent structures.

Adjacent Structures - Excavation and Dewatering Influences | The presence of the shallow depths to bedrock and type of bedrock, will result in no off-site impact to adjacent buildings due to dewatering effects due to the new building as existing buildings are assumed to be founded on Bedrock. The excavation faces through the overburden depth will need to be adequately shored. Upper levels of weathered bedrock should be planned to be back sloped at 1:1. The underlying more sound bedrock should be able to be cut at near vertical.



• Pre-Construction surveys should be carried out and contractors should incorporate excavation methods to minimize damage to the adjacent structures. This is of particular importance for the institutional building to the east.

## 6.1 Site Preparation

Site preparation within the new building footprints will involve the removal or any foundations and buried structures associated with the previous buildings, removal of existing vegetation, topsoil and any existing fill materials to expose the bedrock.

In the proposed landscape and pavement areas the site preparation will involve removal of existing topsoil and asphaltic concrete. The environmental assessments completed for the site indicate that contaminated soils are present and will require removal. This is documented in other published reports. Following the required removals, if soils (fills or native) remain then these may be reviewed by the geotechnical Engineer to determine if they are suitable to remain in place for re-use for the particular area on site. Field verifications should be carried out by qualified geotechnical personnel during construction.

Bedrock removal is expected for underground services, tanks, basements and footing excavations. The excavation operations of bedrock is expected to impart vibrations. Contractors must use techniques and methods to prevent settlement of adjacent ground, structural damage to adjacent buildings and minimize aesthetic impacts (e.g., paint/drywall cracks, pavement cracking). It is recommended that the specifications require that pre-condition surveys of the adjacent structures be completed. Specifications and Tenders submitted by contractors of their proposed methods of excavations, blasting, vibration monitoring, and soil and groundwater management plans in the form of written plans are recommended to be requested by the owner's design consultant team prior to construction to allow adequate time for review and discussion.

## 6.2 Excavation and Dewatering

All excavations should be completed and maintained in accordance with the Occupational Health and Safety Act (OHSA) requirements. The following recommendations for excavations should be considered to be a supplement to, not a replacement of, the OHSA requirements.

Based on the results of the investigation, overburden soil material within excavation would be considered as 'Type 3 Soils', as defined by the OHSA Regulations for Construction.

Bedrock removal is expected since footing excavations are expected to penetrate to at least 1.5 to 3 m for the Townhouses, approximately 2 to 3 m for the Stormwater Storage chamber, and 4 to 5 m for the 6-storey building's basement.

The soil overburdens and some heavily weathered bedrock are considered to be type 3 Soils as per the Occupational Health and Safety Act and should be sloped back at 1:1 or supported by a shoring system. The less weathered rock may either be shored and contractors may take some risk but as a minimum the weathered rock should be planned to be cut back at a 30 degree from vertical and/or required support by shoring or a rock protection system of rock bolts-mesh-shotcrete.

Sound rock may be planned to be excavated at near vertical.



Alternatives to sloped or cut back overburden and weathered bedrock is the use of shoring. Shoring methods would be expected to vary from combinations and use of Soil Nailing, Shotcrete and rock bolts.

The more sound bedrock would be excavated at near vertical due to its quality and type of rock. However, other factors may require coverage of the rock face. For example, as excavations proceed local fractures, shear zones or weathered areas may require treatments ranging from rock bolting to rock bolting with mesh and shotcrete. The Tender and Specifications should allow for unit price submissions from contractors during the Tender and have allowances in the contract.

The excavation of the bedrock will require the use of line drilling in combination with pneumatic or hydraulic breakers such as hoe rams or heavy excavation equipment equipped for rock excavation. Excavation that may involve controlled blasting techniques and/or line drilling. Local by-laws should be confirmed that this will be allowed. Line drilling on a closely spaced pattern may also be an option to assist excavation methods and prevent over breakage issues, especially around the perimeter or to create local excavations for elevator pits, footings, etc. The use of cutter heads with assist is doing final "shaving" of the rock in areas that would be beneficial to have a smooth face.

Excavations must be planned in advance to ensure the foundations of the adjacent structures, and roadways are not undermined during excavation. Any excavation methodology is subject to the laws and blasting restrictions that are in effect for the area.

The excavation operations of bedrock will impart vibrations affecting the surrounding buildings. It is recommended that the specifications require pre-condition surveys as well as submittal of plans for excavations, blasting, vibration monitoring, and soil and groundwater management plans.

It is recommended that the client's design team include in the specification package, requirements for the successful contractor to submit written Plans for Excavation as well as Soil and Groundwater Management for review by the client design team.

Water quantities expected to enter open excavations during construction are discussed in a separate report submission and will depend on seasonal conditions, depth of excavations, and the duration that excavations are left open.

The excavation of the weathered bedrock may require pneumatic or hydraulic breakers such as hoe rams or heavy excavation equipment equipped for rock excavation. Excavation of more sound rock will require more rigorous methods that may involve controlled blasting techniques and/or line drilling. Line drilling on a closely spaced pattern in combination with the use of hoe ram or other breaking type equipment may also be an option. Any excavation methodology is subject to the laws and blasting restrictions that are in effect for the area.

The client's design team should provide vibration limits for the adjacent off-site residential and institutional buildings and underground structures. The contractors plan should include methodology for how they will control vibrations and adjust their excavation methodology in the event of vibration exceedances. Local municipal guidelines should act as a minimum standard but designers should determine if the standard's criteria is sufficient to protect the buildings.

Surface water and groundwater seepage is expected in the excavated areas, especially within the overburden and weathered rock. Water quantities will depend on seasonal conditions, depth of



excavations, and the duration that excavations are left open. Conventional construction dewatering techniques should be taken during construction, such as pumping from sumps and or ditches. Contractors will need to use techniques and methods to minimize disturbance to soils.

GHD completed a hydrogeological assessment of this site as part of the scope of work in April 2019. For details regarding the extent of dewatering activities and whether a Permit to take water (PTTW) or submission on the Ontario Environmental Activity and Site Registry (EASR) is required, refer to the Hydrogeological Investigation report.

## 6.3 Foundations

The Ontario Building Code (OBC 2012) requires buildings to be designed using Limit States Design values (LSD) of Serviceability Limit States (SLS) and Ultimate Limit States (ULS). It is expected that the foundation of the proposed residential building will be bearing on bedrock and will be supported by conventional spread footings.

Based on the recorded conditions within the boreholes, it is recommended that for the Townhouse buildings with partial basement, that the shallow pad and strip footings are expected to be set within the limestone bedrock. The recommended bearing pressures are 500 kPa under factored ULS conditions.

For the 6-story building, due to the deeper excavation and better bedrock conditions, higher bearing values for footings set within the sound bedrock are available. The recommended factored ULS value is 2000 kPa. The factored ULS value includes the geotechnical resistance factor ( $\Phi$ ) of 0.5. For the west end of the building that will have no basement and therefore foundations will near the bedrock interface, the same bearing pressure of 2000 kPa may be used provided the footings are set at least 0.75 m into bedrock based upon the bedrock quality.

For all footings set on bedrock, there is no corresponding SLS value, as settlement is considered to be nil for the footings founded on bedrock.

The minimum founding sizes should be 0.75 m for pad footings and 0.5 m widths for strip footings on bedrock using the bearing pressures noted above for the both the low rise and 6-story buildings.

Based on the existence of mud seam recorded in the coring of the bedrock, it is our recommendation that rock probing be completed at the time of construction to evaluate the bedrock for mud seams within the footing areas for the 6-storey building. The concern of the impact of mud seams is less of a concern for the foundations for the Townhouse complex due to the lower bearing pressure but should still be verified during construction by rock probing. One mud seam was found in borehole BH4. Mud seams can be inherent in the sedimentary type limestone depths. Based on the existence of mud seam layers in bedrock, it is our recommendation that rock probing be completed at the time of construction to evaluate the bedrock beneath footing subgrade for mud seams. This "probing" may consist of contractors being required to drill a 50 mm diameter hole, 1.5 m below the base of the footing subgrade. These probe holes should then be assessed by the Geotechnical Engineer to confirm the absence/presence of mud seams. If mud seams are verified then remedial options may include deepening the footings down to the underside of the mud seam if the mud seam is deemed significant by the Geotechnical Engineer. Structural engineers should determine the remedial approach for foundation support if this over excavation is required. Remedial approach options may include replacing the excavated rock with bulk concrete backfill, or extending



the foundation walls or piers or other structural solutions. Designers/Owners should account for this work and unit rates for over excavation and remedial approach in the Tender and Specification documents. If the mud seam are greater than 1 m below underside of footing level and/or thin enough then the Geotechnical assessment during construction may allow the mud seam to be left in-place.

Excavations for footings and other adjacent structures (sump pits, storm water tank, sewer trenches, etc.) set within bedrock at various levels, including step footings, should be positioned such that they do not encroach within the 1V:1H zone of influence of an adjacent footing. Step footings should be designed in a manner that the average slope of the benching is no steeper than 1V:2H along the length and the height of the bench is less than 0.3 m.

## 6.4 Frost Protection

The bedrock is a sedimentary rock with fracture and the water table is close to the surface therefore, the bedrock may be susceptible to frost action and frost heave. All exterior footings associated with the heated building must be provided with at least 1.5 m of soil cover or its equivalent in insulation, in order to provide adequate protection against detrimental frost action. This cover depth requirement must be increased to 1.8 m for footings for unheated or isolated structures such as signs, entrance canopy, or piers.

Should construction take place during winter, the subgrade surfaces must receive adequate temperature protection by Contractors to protect against freezing for the duration of the construction period.

## 6.5 Seismic Site Classification

In accordance with OBC-2012, the building and its structural elements must be designed to resist a minimum earthquake force. In order to provide a site class, a geophysical (MASW) testing program was performed that included the generation of dispersion curves, inversion of the obtained dispersion curves, and development of one dimensional (1-D) shear wave velocity profiles using SurfSeis<sup>®</sup> version 2.05. The dispersion curves, obtained from active data using short and long arrays along each investigation line, were investigated and integrated to obtain a combined dispersion curve.

In accordance with the requirements of OBC-2012, the variation of the measured shear wave velocity versus depth from 1.5 m below existing grade up to 31.5 m below existing ground elevation was obtained and results are summarized in the Seismic Site Classification attached as Appendix B, at the end of this report. The average shear wave velocity along each line was obtained utilizing the averaging scheme shown in sentence 4.1.8.4 (2) of Commentary J of National Building Code (NBC-2015) User's Guide.

Based upon the results of the geophysical testing program, the building can to be designed using a Seismic Site Class 'A' with respect to Table 4.1.8.4.A of the OBC-2012 subject to code requirements.

The results of the MASW data interpretation are provided in Appendix B.



In addition to the above geophysical testing program, it should be noted that no soil deposit with a thickness of 3.0 m or more, was found within the borehole locations which would be considered as "soft soils" as defined in Table 4.1.8.4.A of OBC-2012. In order to be considered as "soft soils" all of the following criteria must be satisfied:

- Plastic Index: Ip > 20 percent
- Moisture Content: w ≥ 40 percent
- Undrained Shear: Strength Su < 25 kPa

## 6.6 Permanent Drainage

Under floor and perimeter drains are considered necessary for all structures proposed, i.e., both townhouse and the 6-storey structure.

The drains should be connected to a frost-free outlets for year round drainage.

Elevator pits should have drainage weepers and waterproofing design measures. If drainage weepers are not practical then the pits will need to be designed to resist hydraulic buoyancy pressures.

If elevator pistons are used then the designers of these shafts and installations will need to also consider buoyancy issues. Installation of these will also need to consider groundwater control and buoyancy during installation. This may need additional investigation as the GHD mandate did not include deep enough boreholes to address the elevator piston shaft installation.

#### 6.6.1 Townhouse Buildings

Both perimeter and under floor drainage is considered necessary for this structure with underground levels unless the building is treated to create a waterproofed "bathtub" in which case additional review and recommendations are required.

### 6.6.2 Six-Storey Building

It is recommended that Composite Drainage Blanket (CDB) or geodrain is used for the perimeter walls. There are several commercially available product liens available. The CDB should be connected by a collection piping system and drained to a frost-free outlet for year round drainage. The perimeter system should not be connected to the interior under-floor drainage system.

Underfloor drainage network is also recommended and should be connected to a frost free sump (separated from the perimeter drainage system and sump) with discharge to the municipal sewerage system.

As portions of the structure may be below the water table, it is also recommended that the exterior walls be protected with a waterproofing membrane applied to the wall in addition to the CDB.



## 6.7 Floor Slabs

Conventional slab-on-grade construction is considered suitable for the proposed building. We are assuming that the building will have light floor loadings only, i.e., considered to be less than 24 kPa. Higher loading requirements will require additional consultation and analysis.

Preparation of the subgrade as discussed in Section 6.1 and 6.2 would include removal of unsuitable overburden materials to expose suitable subgrade and/or the design subgrade level. The subgrade surface may need to be compacted following excavation. Any local weakened areas should be excavated and replaced with suitable fill and compacted. Field verification should be carried out by geotechnical personnel during construction.

A layer consisting of Granular 'A' at least 200 mm thick should be placed immediately below the floor slabs to support the slab-on-grade. This layer should be compacted to 100 percent of its SPMDD and placed on approved subgrade surfaces.

For the Townhouse structures slab-on-grades should an underfloor weeping tile and vapour barrier to be incorporated beneath the slab and should be specified by the architect.

For the 6-storey building with basement, a heavy duty vapor or waterproofing membrane should be incorporated as well as rigorous underfloor weeping tile network.

Underfloor weeping networks should be connected to dedicated sumps that are separate from perimeter weeping tile systems.

Floor toppings may also be impacted by curing and moisture conditions of the concrete. Floor finish manufacturer's specifications and requirements should be consulted and procedures outlined in the specifications should be followed.

Designers should consider concrete slab crack control measures and whether the slabs should be tied into the foundation walls. The designers and contractors must carefully plan the placement of construction and control joints in the concrete and should be in accordance with generally accepted practice.

## 6.8 Corrosion Potential of Soils

Analytical testing was carried out on a groundwater sample collected to determine corrosion potential of the subsurface soils at each site. The selected soil sample was tested for pH, resistivity, chlorides, and sulphides, sulphates, and redox potential. The test results are summarized in the following table.

| Sample ID            | Pre-Existing Well |
|----------------------|-------------------|
| рН                   | 8.27              |
| Resistivity (ohm-cm) | 610               |
| Sulphate (µg/L)      | 143               |
| Chloride (µg/g)      | 163               |

#### Table 6.1 Corrosion Parameter Results



The American Water Works Association (AWWA) publication 'Polyethylene Encasement for Ductile-Iron Pipe Systems' ANSI/AWWA C105/A21.5-10 dated October 1, 2010 assigns points based on the results of the above tests. Soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. Based on the results obtained for the sample submitted, the Site soils are considered to be potentially corrosive to cast iron pipe. Therefore protective measures, such as sacrificial cathode protection should be considered.

Table 3 of the Canadian Standards Association (CSA) document A23.1-04/A23.2-04 'Concrete Materials and Methods of Concrete Construction/Methods of Test and Standard Practices for Concrete' divides the degree of exposure into the following three classes:

| · · · · ·                  |                                        |
|----------------------------|----------------------------------------|
| Degree (Class) of Exposure | Water Soluble (SO4) in Soil Sample (%) |
| Very Severe (S-1)          | >2.0                                   |
| Severe (S-2)               | 0.20 - 2.0                             |
| Moderate (S-3)             | 0.10 - 0.20                            |

## Table 6.2 Classes of Exposure

A review of the analytical test results shows the sulphate content in the tested samples was found to be less than 0.02 percent. Based upon the test results, the degree of exposure of the subsurface concrete structures to sulphate attack is low. Therefore, normal General Use (GU) hydraulic cement can be used for the below grade concrete structures.

# 6.9 Building Backfill

The placement and compaction of the materials that will support the floor slabs, pavement or any interior backfill must be treated as Engineered Fill.

### 6.9.1 Engineered Fill

The fill operations for Engineered Fill must satisfy the following criteria:

- Engineered Fill must be placed under the continuous supervision of the Geotechnical Engineer.
- Prior to placing any Engineered Fill, all unsuitable fill materials must be removed, and the subgrade proof rolled, and approved. Any deficient areas should be repaired.
- Prior to the placement of Engineered Fill, the source or borrow areas for the Engineered Fill must be evaluated for its suitability. Samples of proposed fill material must be provided to the Geotechnical Engineer and tested in the geotechnical laboratory for Standard Proctor Maximum Dry Density (SPMDD) and grain size, prior to approval of the material for use as Engineered Fill. The Engineered Fill must consist of environmentally suitable soils (as per industry standard procedures of federal or provincial guidelines/regulations), free of organics and other deleterious material (building debris such as wood, bricks, metal, and the like), compactable, and of suitable moisture content so that it is within -2 to +0.5 percent of the Optimum Moisture as determined by the Standard Proctor test. Imported granular soils meeting the requirements of Granular 'A', or Type II OPSS 1010 criteria would be suitable.
- The Engineered Fill must be placed in maximum loose lift thicknesses of 0.2 m. Each lift of Engineered Fill must be compacted with a heavy roller to 100 percent SPMDD.



 Field density tests must be taken by the Geotechnical Engineer, on each lift of Engineered Fill. Any Engineered Fill, which is tested and found to not meet the specifications, shall be either removed or re-compacted and retested.

### 6.9.2 Exterior Foundation Wall Backfill

#### 6.9.2.1 Townhouses

Conventional residential backfilling requirements are recommended for the Townhouse buildings. Any backfill placed against the foundation walls should be free draining granular materials meeting the grading requirements of OPSS 1010 for Granular 'B' Type I specifications up to within 0.3 m of the ground surface. The upper 0.3 m should be a low permeable soil to reduce surface water infiltration. Foundation backfill should be placed and compacted as outlined below.

- Free-draining granular backfill should be used for the foundation wall.
- Backfill should not be placed in a frozen condition, or placed on a frozen subgrade.
- Backfill should be placed and compacted in uniform lift thickness compatible with the selected construction equipment, but not thicker than 0.2 m. Backfill should be placed uniformly on both sides of the foundation walls to avoid build-up of unbalanced lateral pressures.
- At exterior flush door openings the underside of sidewalks should be insulated, or the sidewalk should be placed on frost walls to prevent heaving. Granular backfill should be used and extended laterally beneath the entire area of the entrance slab. The entrance slab should slope away from the building.
- For backfill that would underlie paved areas, sidewalks or exterior slabs-on-grade, each lift should be uniformly compacted to at least 98 percent of its SPMDD.
- For backfill on the building exterior that would underlie landscaped areas, each lift should be uniformly compacted to at least 95 percent of its SPMDD.
- In areas on the building exterior where an asphalt or concrete pavement will not be present adjacent to the foundation wall, the upper 0.3 m of the exterior foundation wall backfill should be a low permeable soil to reduce surface water infiltration.
- Exterior grades should be sloped away from the foundation wall, and roof drainage downspouts should be placed so that water flows away from the foundation wall.

#### 6.9.2.2 Six-Storey Building

The client and designers have the option to pour the foundation walls against shoring or bedrock faces or alternatively allow for an offset or space sufficient to place backfill as outlined in Section 6.9.2.1.

## 6.10 Lateral Earth Pressure

Permanent basement/underground parking walls are to be considered as retaining walls and should be designed to withstand lateral earth pressures. It is assumed that hydraulic pressures are not applicable as drainage systems are proposed. If this changes the client and designers should seek



further advice from GHD. There may also be retaining walls at grade changes with adjacent properties. The walls should be designed for lateral pressures resulting from the following sources:

- Unit weight of the backfilled soil
- Temporary and permanent vertical loads on the completed ground surface

#### 6.10.1 Static Conditions

The following soil parameters can be used for designing of the retaining walls for lateral earth pressures within the depth of any soil overburdens or if excavations result in the requirement to use soil/granular backfills to be placed. The weathered bedrock (i.e., top  $\sim 1$  m) should be considered as part of the soil overburden when considering lateral earth pressures

| Soil                                                                                | Density 'γ'<br>(kN/m <sup>(3)</sup> ) | Angle of<br>internal<br>Friction | Rankin Earth Pressure<br>Coefficients <sup>(1)(2)</sup> |      |     |  |  |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|---------------------------------------------------------|------|-----|--|--|--|--|
|                                                                                     |                                       | φ                                | Ka                                                      | Ко   | Кр  |  |  |  |  |
| Compacted granular backfill such as<br>an OPSS "Granular BI or BII" type<br>product | 21                                    | 32                               | 0.31                                                    | 0.47 | 3.3 |  |  |  |  |
| Notes:                                                                              |                                       |                                  |                                                         |      |     |  |  |  |  |

#### Table 6.3 Soil Parameters and Earth Pressure Coefficients

<sup>(1)</sup> Assumes level/flat backfill surface

<sup>(2)</sup> If temporary soil support shoring is required, designers should refer to the CFEM for design assistance and to Section 6.7.3.

- For yielding walls the active earth pressure coefficients Ka is recommended to be used.
- For non-yielding wall the at-rest Ko should be used.

The resultant of the applicable static or at-rest force is assumed to act at 1/3H above the base of the wall where H is the height of the wall for the permanent wall with free drain backfill material.

It is noted that for the temporary shoring system that will support the existing fill and upper weather bedrock Section 26.10.3 of CFEM 2006 should be used by designers regarding the distribution of the forces. The soils encountered in the boreholes consist mainly of granular soils. If the shoring must support existing structures then the stiffness of the shoring system must be addressed by the designers and Ko is recommended. The contractor must also ensure installation procedures minimize risk of lateral movements especially where structures are being supported by the shoring system.

These statements are based on the assumption that there is a perimeter drainage system installed at the base of the retaining walls draining under gravity to a frost free outlet, to prevent the build-up of hydrostatic pressure behind the wall; hydrostatic pressures may not be included in the design.

#### 6.10.2 Lateral Rock Pressures

The weathered bedrock (i.e., top  $\sim$ 1 m) should be considered as part of the soil overburden when considering lateral earth pressures.



The sound bedrock is predominantly sound limestone deposit with some shale interbeds. Typically the rock is expected to be fairly sound, competent bedrock below the upper weathered zone.

The sound bedrock would be able to be cut at near vertical and should stay stable. There was no reported fault or shear zones noted in the borehole logs.

The bedrock will be able to be cut near vertical.

The minimal depth into rock, it is typically considered that any in-situ stresses are released a short time following excavation. There will be nil to minimal pressures from the rock on the permanent walls for such shallow excavations into the bedrock. For this site and project as described above, regarding the pressure exerted on basement walls within the bedrock depth, it is recommended that K=0 (i.e., rock is self-supporting)

During construction, in spite of the quality of rock found within the boreholes, there may be local fissures and fractures oriented in such a way to create conditions of possible block failure. Some allowance should be included with the Project Specifications and Tender documents to allow for design and contractor installation of rock bolts for temporary excavation stability concerns during construction.

#### 6.10.3 Dynamic Condition

These pressures are not considered for the structures under Part 9 of the Ontario Building, i.e., the Townhouse structures.

Also it is expected that the 6-storey structure will have basement walls, but will have not granular backfill and therefore these dynamic forces are not applicable. If backfill is used between the basement walls and bedrock, then GHD should be consulted for further advice and recommendations.

## 6.11 Underground Services

#### 6.11.1 Bedding and Cover

The following are recommendations for service trench bedding and cover materials that may be associated with the development.

- Bedding for buried utilities should be OPSS Granular 'A', and placed in accordance with City of Ottawa specifications.
- The cover material should be a sand material or Granular 'A' and the dimensions should comply with City of Ottawa standards.
- The bedding material and cover materials should be compacted as per City of Ottawa standards and to at least 95 percent of its SPMDD.
- Compaction equipment should be used in such a way that the utility pipes are not damaged during construction.



#### 6.11.2 Service Trench Backfill

Backfill above the cover for buried utilities should be in accordance with the following recommendations:

- For service trenches under pavement areas, the backfill should be placed and compacted in uniform thickness compatible with the selected compaction equipment and not thicker than 200 mm. Each lift should be compacted to a minimum of 95 percent SPMDD.
- The backfill placed in the upper 300 mm below a pavement subgrade elevation should be compacted to a minimum of 100 percent SPMDD.
- To reduce the potential for differential settlement and frost heave the excavation sides should have frost tapers as per OPSD 800 series which essentially indicates that there should be a back slope of 10:1 (H:V) within the frost zone below finished grade.

### 6.12 Pavement Sections

Access driveways and parking areas are expected to be constructed over existing fill or bedrock. In order to prepare the site for the pavement area, it is necessary that the area be stripped of any existing cover materials such as surficial topsoil and associated root-mat other deleterious materials deemed unsuitable by geotechnical personnel to expose a suitable subgrade. The exposed subgrade should be proof rolled in the presence of a Geotechnical Engineer. Any areas where "soft spots", rutting, local anomalies, or appreciable deflection are noted should be excavated and replaced with suitable fill, and use of geotextiles may be warranted for strength improvement. The fill should be compacted to at least 95 percent of its SPMDD.

The pavement sections described in the table below are recommended for areas subjected to parking lot and heavy truck traffic. Pavement materials and workmanship should conform to the appropriate Ontario Provincial Standard Specifications (OPSS).

| Pavement Layer                           | Minimum Thickness | Heavy Duty (Access Roads) |
|------------------------------------------|-------------------|---------------------------|
| HL3 Asphalt                              | 50 mm             | 40 mm                     |
| HL8 Asphalt                              | n/r               | 50 mm                     |
| Granular 'A' Base Course                 | 150 mm            | 150 mm                    |
| Granular 'B', Type II<br>Sub-Base Course | 300 mm            | 450 mm                    |

#### Table 6.4 Recommended Pavement Structure

In order to accommodate the recommended thicknesses, designers will need to review grades and determine where stripping or filling is necessary. Pavement materials and workmanship should conform to the appropriate OPSS.

Minimum Performance Grade (PG) at 58 – 34 should be used at this site.

Drainage of the pavement layers is important. The subgrade surface and each layer of the pavement section should be provided with a suitable cross fall (approximately 2 percent) to prevent water from ponding on the pavement surface and beneath the pavement layers. Surface runoff should be directed to storm sewers, or allowed to flow into ditches.



Where the new pavement abuts existing and the subgrade levels vary between the two areas, then a frost transition should be integrated into the subgrade with a 10:1 slope in the subgrade. Sufficient field-testing should be carried out during construction to assess compaction of each lift of the pavement layers. This should be accompanied by laboratory testing of the granular and asphalt materials. All granular base course materials should be compacted to 100 percent of its SPMDD.

Annual or regular maintenance will be required to achieve maximum life expectancy. Generally, the asphalt pavement maintenance will involve crack sealing and repair of local distress.

It should be noted that the pavement sections described within this report represent end-use conditions only, which includes light vehicular traffic and occasional garbage or service trucks. It may be necessary that these sections be temporarily over-built during the construction phase to withstand larger construction loadings such as loaded dump trucks or concrete trucks.

## 6.13 Construction Field Review

The recommendations provided in this report are based on an adequate level of construction monitoring being conducted during construction phase of the proposed building. GHD requests to be retained to review the drawings and specifications, once complete, to verify that the recommendations within this report have been adhered to, and to look for other geotechnical problems. Due to the nature of the proposed development, an adequate level of construction monitoring is considered to be as follows:

- It is recommended that GHD be retained to review design drawings and specifications prior to the tender to ensure our recommendations have been interpreted and that there are no additional geotechnical recommendations required.
- Prior to construction of footings, the exposed foundation subgrade should be examined by a Geotechnical Engineer or a qualified Technologist acting under the supervision of a Geotechnical Engineer, to assess whether the subgrade conditions correspond to those encountered in the boreholes, and the recommendations provided in this report have been implemented.
- A qualified Technologist acting under the supervision of a Geotechnical Engineer should monitor placement of Engineered Fill underlying floor slabs.
- Backfilling operations should be conducted in the presence of a qualified Technologist on a part time basis, to ensure that proper material is employed and specified compaction is achieved.
- Placement of concrete should be periodically tested to ensure that job specifications are being achieved.

# 7. Limitation of the Investigation

This report is intended solely for Ottawa Community Housing Corporation (OCHC) and other party explicitly identified in the report and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. Client shall defend, indemnify and hold GHD



harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of Geotechnical Engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

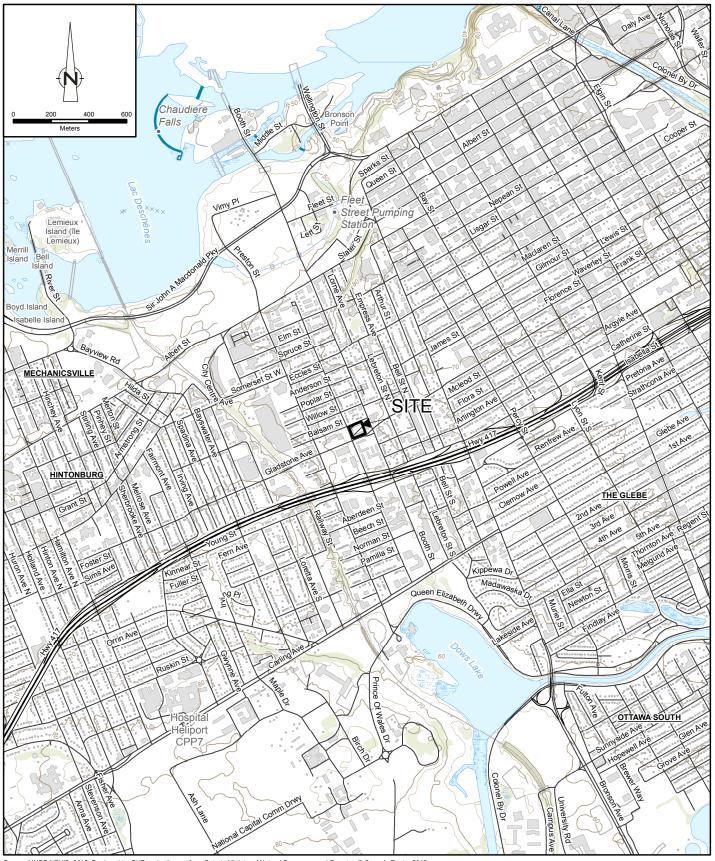
All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

By issuing this report, GHD is the Geotechnical Engineer of record. It is recommended that GHD be retained during construction of all foundations and during earthwork operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the 11 test hole locations only. The subsurface conditions confirmed at these eleven test locations may vary at other locations. Soil and groundwater conditions between and beyond the test locations may vary at other locations. Soil overtically from those encountered at the test locations and conditions may become apparent during construction, which could not be detected or anticipated at the time of our investigation. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD is completed.



All of Which is Respectfully Submitted,


GHD

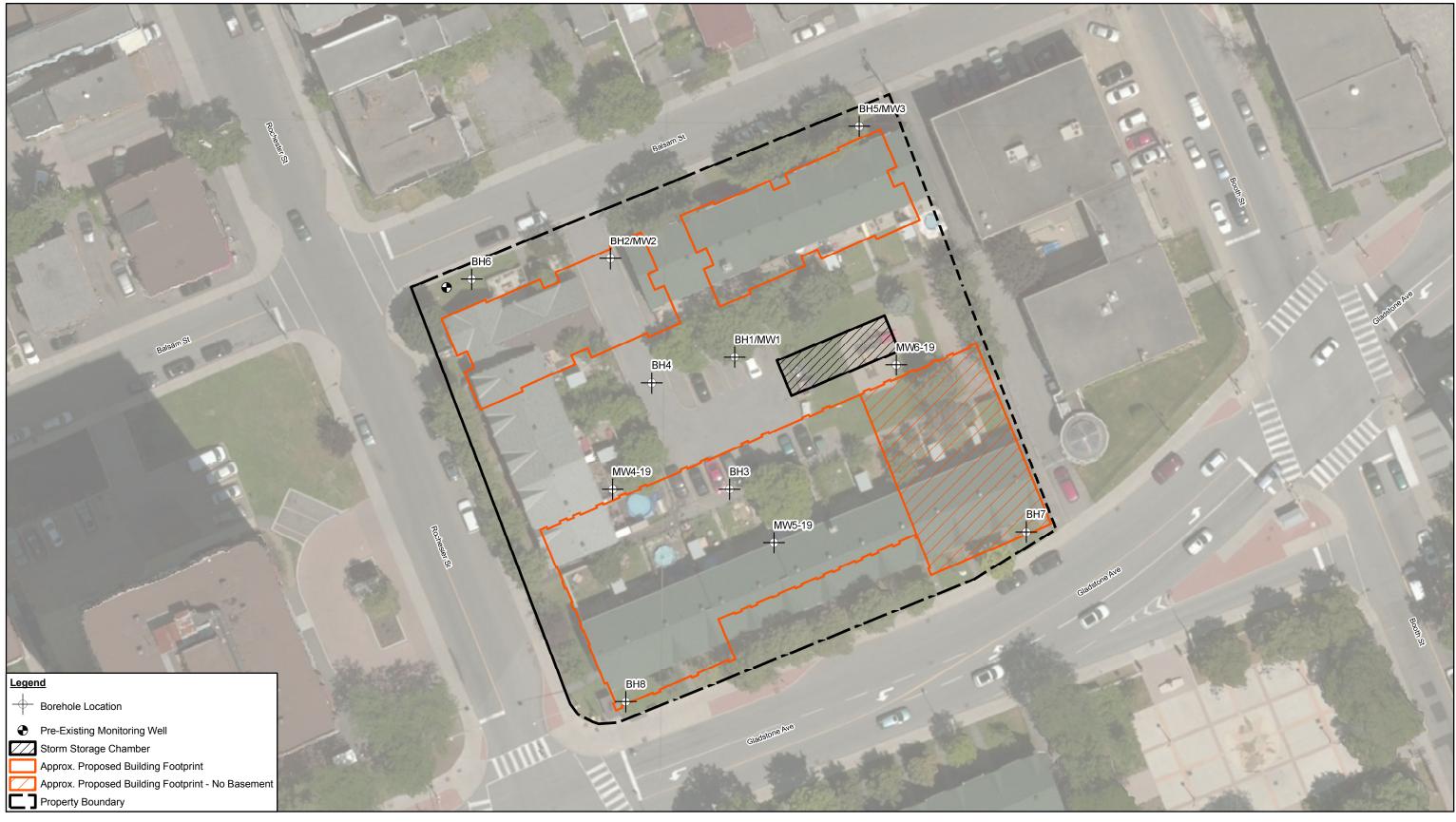
Ryan Vanden Tillaart, EIT

B

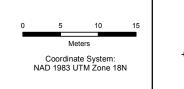
Joseph B. Bennett, P. Eng.






Source: MNRF NRVIS, 2015. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2019 Coordinate System: NAD 1983 UTM Zone 18N




OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE, OTTAWA, ON GEOTECHNICAL INVESTIGATION 11140575-A1 Apr 30, 2019

# SITE LOCATION MAP

FIGURE 1



osoft Corporation, July 2013





OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE, OTTAWA, ON GEOTECHNICAL INVESTIGATION

BOREHOLE LOCATION PLAN

# FIGURE 2

11140575-A1 May 6, 2019



GHD | Geotechnical Investigation | 11140575 (1)

# Appendix A Borehole Logs and Notes on Boreholes

| REFER                                                                                                                                          | REFERENCE No.:11140575-E3 |              |                                             |                               |                  |               |                    |              |       |                            |       |          | SURE          | : No.:              |                     |                            | 1                            |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------------------------------------|-------------------------------|------------------|---------------|--------------------|--------------|-------|----------------------------|-------|----------|---------------|---------------------|---------------------|----------------------------|------------------------------|-----------------|
|                                                                                                                                                |                           | C            |                                             | BORE                          | EHOLE No.B       | <b>-11-17</b> | /M                 | W1-17        | 7     |                            |       |          | BOF           | REH                 | OL                  | ΕL                         | 00                           | 6               |
|                                                                                                                                                |                           |              |                                             | ELEV                          | ATION:           | 66.0          | 00                 | m            |       |                            |       |          | Page          | : _1                | _ (                 | of _                       | 1                            |                 |
| CLIE                                                                                                                                           | ENT: Ot                   | tawa (       | Community Housing Corp                      | oration                       |                  |               |                    |              |       |                            |       |          | 0.11          |                     | GEN                 | D                          |                              |                 |
| PRC                                                                                                                                            | JECT:                     | Geote        | chnical Investigation                       |                               |                  |               |                    |              |       |                            |       | SS 💽     |               |                     |                     |                            |                              |                 |
| LOC                                                                                                                                            | ATION:                    | 811 0        | Gladstone Avenue, Ottaw                     | a, Ontario                    |                  |               |                    |              |       |                            |       | ST 🖉     | Shelt         | y Tube              | 9                   |                            |                              |                 |
|                                                                                                                                                |                           |              |                                             | t CHECKED BY: S. Wallis       |                  |               |                    |              |       | ₹<br>o                     |       | r Level  |               |                     |                     |                            |                              |                 |
| DAT                                                                                                                                            | E (STAR                   | T):          | 22 August 2017                              | DATE (FINISH): 22 August 2017 |                  |               |                    |              |       | ⊷<br>• N                   | Atter | erg lim  | nits (%)      |                     | lon                 |                            |                              |                 |
| SC                                                                                                                                             | SCALE STRATIGRAPHY        |              |                                             |                               | MONITOR<br>WELL  |               |                    | SAN          |       |                            |       | • N      | Split<br>Pene | Spoon :<br>ration I | sample<br>ndex b    | e<br>based                 |                              |                 |
| Depth<br>BGS                                                                                                                                   | Elevation<br>(m)          | Stratigraphy | DESCRIPTION<br>SOIL AND BEDR                |                               |                  | State         | Type and<br>Number | Recovery     | OVC   | Penetration<br>Index / RQD |       |          |               |                     |                     |                            | Vane                         |                 |
| meters                                                                                                                                         | 66.00                     |              | GROUND SURF                                 |                               |                  |               |                    | _            | %     | ppm                        | Ν     | 50<br>10 | SCALE         | FOR<br>100kPa<br>40 | TEST<br>150<br>50 6 | RESU<br>kPa<br><u>0 7(</u> | JLTS<br>200ki<br>) <u>80</u> | Pa<br><u>90</u> |
|                                                                                                                                                | 65.9                      | $\bigotimes$ | ASPHALT(Approximat                          | ely 0.1                       | 0.05 -           | П             | M                  | Auger<br>SS1 | 5/15  |                            |       |          |               |                     |                     |                            |                              |                 |
| 0.5                                                                                                                                            | 65.6<br>65.5              |              | FILL-Gravelly sand, de                      | ense,                         | 0.66 —           |               | Ħ                  |              |       |                            |       |          |               | _                   |                     |                            |                              |                 |
| E 1.0                                                                                                                                          |                           |              | grey, damp.<br>SAND AND GRAVEL-             | _oose,                        | 0.66 =           |               |                    | RC1          | 36/41 |                            | 60    |          |               |                     |                     |                            | _                            |                 |
|                                                                                                                                                |                           |              | brown, damp.<br>*Auger refusal at 0.475     | .                             | 1.27 —           |               |                    | NOT          |       |                            | 00    |          |               |                     |                     |                            |                              |                 |
| - 1.5                                                                                                                                          |                           |              | continued with rock con                     | ing                           | 1.48<br>WL 1.50  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| 2.0                                                                                                                                            |                           |              | LIMESTONE-Grey, we and fractured, fair qual | ty.                           | 05/02/2019       |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
|                                                                                                                                                |                           |              | Water level : 1.89 mbg<br>*Becoming good    | 6                             |                  |               |                    | RC2          | 60/60 |                            | 82    |          |               |                     |                     |                            |                              |                 |
| 2.5                                                                                                                                            |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| - 3.0                                                                                                                                          |                           |              |                                             |                               | Sand —           |               |                    |              |       |                            |       |          |               | _                   |                     |                            |                              |                 |
| 3.5                                                                                                                                            |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
|                                                                                                                                                |                           |              |                                             |                               | Screen —         |               |                    | RC3          | 57/60 |                            | 89    |          |               |                     |                     |                            |                              |                 |
| = 4.0                                                                                                                                          |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| 4.5                                                                                                                                            |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
|                                                                                                                                                |                           |              | *Becoming excellent                         |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| 5.0                                                                                                                                            |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| - 5.5                                                                                                                                          |                           |              |                                             |                               |                  |               |                    | RC4          | 60/60 |                            | 93    |          |               | _                   |                     |                            |                              |                 |
| Eeo                                                                                                                                            |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| _ 0.0                                                                                                                                          | 59.9                      |              | Borehole ended                              | at                            | 6.05 —<br>6.15 ⁄ |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| 6.5                                                                                                                                            |                           |              | approximately 6.15<br>limestone             | m in                          |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| = 7.0                                                                                                                                          |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| 2/19                                                                                                                                           |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
|                                                                                                                                                |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          | +             |                     |                     |                            | _                            |                 |
|                                                                                                                                                |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          | +             |                     |                     |                            |                              |                 |
| 5.5<br>6.0<br>6.5<br>7.0<br>6.5<br>7.0<br>7.5<br>8.0<br>8.5<br>8.0<br>9.0<br>9.5<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10 |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| ≝⊨<br>⊒ – 9.0                                                                                                                                  |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          | +             | _                   |                     |                            | -                            |                 |
|                                                                                                                                                |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| H 9.5                                                                                                                                          |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
|                                                                                                                                                |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| <sup>8</sup><br>10.5                                                                                                                           |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            | _                            |                 |
| NOTES                                                                                                                                          | 5:                        |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| HOLE                                                                                                                                           |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
| BORE                                                                                                                                           |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |
|                                                                                                                                                |                           |              |                                             |                               |                  |               |                    |              |       |                            |       |          |               |                     |                     |                            |                              |                 |

|                                                                     | EFERENCE No.:11140575-E3 |              |                                                    |                 |                              |       |                    |          |       |                            |                | ENCLC                      |                              |                       |                     |                              | 2                         |                 |  |  |
|---------------------------------------------------------------------|--------------------------|--------------|----------------------------------------------------|-----------------|------------------------------|-------|--------------------|----------|-------|----------------------------|----------------|----------------------------|------------------------------|-----------------------|---------------------|------------------------------|---------------------------|-----------------|--|--|
|                                                                     |                          | G            |                                                    | BORI            | EHOLE No.BH                  | 12-17 | /M                 | W2-17    | 7     |                            |                | BOREHOLE LOG               |                              |                       |                     |                              |                           |                 |  |  |
|                                                                     |                          |              |                                                    | ELEV            | ATION:                       | 66.2  | 21                 | m        |       |                            |                | Page: <u>1</u> of <u>1</u> |                              |                       |                     |                              |                           |                 |  |  |
| CLIE                                                                | ENT: Ot                  | tawa (       | Community Housing Corr                             | oration         |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| PRO                                                                 | JECT:                    | Geote        | chnical Investigation                              |                 |                              |       |                    |          |       |                            |                | SS 💽 GS                    |                              |                       |                     |                              |                           |                 |  |  |
| LOC                                                                 | ATION:                   | 811 (        | Gladstone Avenue, Ottaw                            | va, Ontario     |                              |       |                    |          |       |                            |                | 🖾 sт                       |                              |                       |                     |                              |                           |                 |  |  |
|                                                                     |                          |              | R. Vandentillaa                                    |                 |                              |       |                    |          |       |                            |                | ₹<br>o                     |                              | r Level<br>r contei   |                     |                              |                           |                 |  |  |
| DAT                                                                 | E (STAR                  | T):          | 25 August 2017                                     |                 | DATE (FINISH):25 August 2017 |       |                    |          |       |                            | • N            | Atter                      | berg lin                     | nits (%               |                     | lon                          |                           |                 |  |  |
| SCALE STRATIGRAPHY                                                  |                          |              |                                                    | MONITOR<br>WELL |                              |       | SAI                |          | DATA  |                            | • N            | Split<br>Pene              | Spoon<br>tration I<br>mic Co | sampl<br>Index I      | e<br>based          |                              |                           |                 |  |  |
| Depth<br>BGS                                                        | Elevation<br>(m)         | Stratigraphy | DESCRIPTION<br>SOIL AND BEDR                       |                 |                              | State | Type and<br>Number | Recovery | ovc   | Penetration<br>Index / RQD | □ Cu<br>S<br>▲ | n Lab<br>n                 | d Vane<br>Vane               |                       |                     |                              |                           |                 |  |  |
| meters                                                              | 66.21                    |              | GROUND SURF                                        | -               |                              |       |                    |          | %     | ppm                        | Ν              | 50<br>10                   | SCALI<br>0kPa<br>20 30       | E FOR<br>100kPa<br>40 | TEST<br>150<br>50 6 | RESU<br>)kPa<br><u>30 7(</u> | JLTS<br>200k<br><u>80</u> | Pa<br><u>90</u> |  |  |
| È                                                                   | 66.1<br>65.8             | $\bigotimes$ | <pre>ASPHALT(Approximat _\m thick)</pre>           | ely 0.1         | 0.05 -                       | ΠĨ    | M                  | SS1      | 12/20 |                            | 9              |                            |                              |                       |                     |                              |                           |                 |  |  |
| 0.5                                                                 | 65.6                     |              | FILL-Gravelly sand, logrey, damp.                  | ose,            | Sand —<br>0.61 —             |       | μ                  | 001      |       |                            |                |                            |                              |                       |                     |                              | _                         |                 |  |  |
| E 1.0                                                               |                          |              | SILTY SAND-Some gra                                | avel,           | Bentonite                    |       |                    | RC1      | 23/23 |                            | 65             |                            |                              |                       |                     |                              | -                         |                 |  |  |
|                                                                     |                          |              | compact, grey with reddish-brown staining          | damp.           | 1.35 —<br>Riser<br>1.55 —    |       |                    |          |       |                            |                |                            |                              |                       |                     |                              | +                         |                 |  |  |
| - 1.5                                                               |                          |              | *Auger refusal at 0.6 m<br>continued with rock cor | ,               | 1.55 —                       |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 2.0                                                                 |                          |              | LIMESTONE-Grey, we                                 | athered         | WL 2.10 -                    | Y     |                    | RC2      | 60/60 |                            | 88             |                            |                              |                       |                     |                              |                           |                 |  |  |
| 2.5                                                                 |                          |              | and fractured, fair qual<br>*Water was whiteish at |                 | 05/02/2019                   |       |                    |          |       |                            |                |                            |                              |                       |                     |                              | _                         |                 |  |  |
|                                                                     |                          |              | transitioning to grey.<br>Water level : 2.74 mbg   | 6               |                              |       | H                  |          |       |                            |                |                            |                              |                       | _                   |                              | _                         |                 |  |  |
| 3.0                                                                 |                          |              | *Becoming good<br>*Becoming excellent              |                 | Sand —                       |       |                    |          |       |                            |                |                            |                              |                       |                     |                              | _                         |                 |  |  |
| - 3.5                                                               |                          |              | Decoming excellent                                 |                 |                              |       |                    | RC3      | 58/58 |                            | 98             |                            |                              |                       |                     |                              | -                         |                 |  |  |
| E                                                                   |                          |              |                                                    |                 | Screen                       |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 4.0                                                                 |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 4.5                                                                 |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       | _                   |                              | _                         |                 |  |  |
| 5.0                                                                 |                          |              |                                                    |                 |                              |       |                    | RC4      | 52/52 |                            | 100            |                            |                              |                       |                     |                              | _                         |                 |  |  |
| -                                                                   |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              | -                         |                 |  |  |
| 5.5                                                                 |                          |              |                                                    |                 |                              |       | H                  |          |       |                            |                |                            |                              |                       | _                   |                              | _                         |                 |  |  |
| E 6.0                                                               |                          |              |                                                    |                 |                              |       |                    | RC5      | 28/28 |                            | 100            |                            |                              |                       |                     |                              |                           |                 |  |  |
|                                                                     | 60.0                     |              | Borehole ended                                     | at              | 6.13 — 🔤<br>6.22 🗸           |       | ⊢∎                 |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 6.5                                                                 |                          |              | approximately 6.2<br>limestone                     | m in            |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 7.0                                                                 |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       | _                   |                              | _                         |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              | -                         |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            | +                            |                       |                     |                              | +                         |                 |  |  |
| 5.5<br>6.0<br>6.5<br>7.0<br>7.5<br>8.0<br>8.5<br>9.0<br>9.5<br>10.0 |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       | _                   |                              | _                         |                 |  |  |
| 9.0  <br>                                                           |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       | _                   |                              | -+                        |                 |  |  |
| 9.5                                                                 |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            | +                            | _                     |                     |                              | +                         |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            | +                            |                       |                     |                              | +                         |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            | +                            |                       |                     |                              | +                         |                 |  |  |
| 10.5                                                                |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 7.5<br>8.0<br>9.0<br>9.5<br>10.0<br>NOTES                           | :                        |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
|                                                                     |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |
| 3                                                                   |                          |              |                                                    |                 |                              |       |                    |          |       |                            |                |                            |                              |                       |                     |                              |                           |                 |  |  |

| REFER            | ENCE N           | o.:          | 11140575-E3                                      | -                                                            |   |          |          |     |                            |                | ENCLOSURE No.: 3           |                      |                 |                      |                        |                    |         |  |
|------------------|------------------|--------------|--------------------------------------------------|--------------------------------------------------------------|---|----------|----------|-----|----------------------------|----------------|----------------------------|----------------------|-----------------|----------------------|------------------------|--------------------|---------|--|
|                  |                  |              |                                                  | BOREHOLE No.: BH3-17                                         |   |          |          |     |                            |                | BOREHOLE LOG               |                      |                 |                      |                        |                    |         |  |
|                  |                  | C            | Ð                                                | ELEVATION:                                                   |   |          |          |     |                            |                | Page: <u>1</u> of <u>1</u> |                      |                 |                      |                        |                    |         |  |
|                  |                  |              |                                                  |                                                              |   |          |          |     |                            | LEGEND         |                            |                      |                 |                      |                        |                    |         |  |
|                  |                  |              | Community Housing Corp                           |                                                              |   |          |          |     |                            | 🖂 se           |                            | it Spoo              | on              |                      |                        |                    |         |  |
|                  | -                |              | chnical Investigation<br>Gladstone Avenue, Ottaw |                                                              |   |          |          |     |                            |                | GS Auger Sample            |                      |                 |                      |                        |                    |         |  |
|                  |                  | -            |                                                  | rt CHECKED BY:                                               |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
|                  |                  |              |                                                  | DATE (FINISH):                                               |   |          |          |     |                            | °<br>H         |                            | ter cor<br>erberg    |                 |                      |                        |                    |         |  |
|                  | ALE              | /            |                                                  | ATIGRAPHY                                                    |   |          | SAMPLE   |     |                            | • N            | Per                        |                      | on Ind          | ex bas               | ed on                  |                    |         |  |
| 30               |                  | >            | 311                                              |                                                              |   |          |          |     |                            | • N            | Per                        | netratio             | on Inde         | ,<br>x base<br>ample |                        |                    |         |  |
| Depth            | tion             | raph         | DES                                              | SCRIPTION OF                                                 | 1 | and      |          | 0   | RQD                        | _ ∆ Cı<br>□ Cı | u She                      | ear Str              | ength           | based                | on Fie<br>on Lat       | ld Van             | ne<br>e |  |
| BGS              | Elevation<br>(m) | Stratigraphy |                                                  | AND BEDROCK                                                  | ċ | Type and | Recovery | OVC | Penetration<br>Index / RQD | S<br>▲         | Ser<br>She                 | nsitivity<br>ear Str | y Valu<br>ength | e of So<br>based     | oil                    |                    |         |  |
|                  |                  | St           |                                                  |                                                              |   | <u> </u> |          |     |                            |                |                            | ket Pe               |                 |                      |                        |                    |         |  |
| meters           | 65.80            |              |                                                  | OUND SURFACE                                                 |   | a        | %        | ppm | N                          | 10             | 0kPa                       | 100k                 | Pa<br>) 50      | 150kPa<br>60         | SULTS<br>2004<br>70 80 | kPa<br><u>) 90</u> |         |  |
| E                | 65.7<br>65.4     |              | ASPHALT(Approximat<br>FILL-Gravelly sand, lo     |                                                              |   | ss       | 1 11/2   | 5   | 9                          |                |                            |                      |                 |                      | +                      |                    |         |  |
| 0.5              | 65.0             |              | SILTY SAND-some gra                              | avel, compact, grey, moist.                                  |   |          | 1 11/2   |     | 5                          |                |                            |                      |                 |                      | ++                     |                    |         |  |
| - 1.0            | 05.0             |              |                                                  | m, continued with rock coring<br>athered and fractured, fair | / | RC       | 1 22/2   | 2   | 64                         |                |                            |                      |                 |                      | +                      | -                  |         |  |
|                  |                  |              | quality.<br>*Becoming excellent                  |                                                              | - |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| _ 1.5<br>_       |                  |              | Becoming excellent                               |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| 2.0              |                  |              |                                                  |                                                              |   | RC       | 2 57/5   | 7   | 93                         |                |                            |                      |                 |                      |                        |                    |         |  |
| 2.5              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | ++                     |                    |         |  |
|                  | 63.1             |              | Borehole ended at a                              | pproximately 2.7 m in limestor                               |   | L        |          |     |                            |                |                            |                      |                 |                      | ++                     |                    |         |  |
| = 3.0            |                  |              |                                                  |                                                              |   |          |          |     |                            |                | _                          |                      | _               |                      | +                      | _                  |         |  |
| 3.5              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | +                      |                    |         |  |
| E                |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| - 4.0            |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| 4.5              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | $\square$              |                    |         |  |
| 5.0              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | +                      |                    |         |  |
| 5.0              |                  |              |                                                  |                                                              |   |          |          |     |                            |                | _                          |                      |                 |                      | +                      |                    | _       |  |
| - 5.5            |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | +                      |                    |         |  |
| 6.0              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| E                |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| 6.5              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | $\square$              |                    |         |  |
| 7.0              |                  |              |                                                  |                                                              |   |          |          |     |                            |                | _                          |                      |                 |                      | +                      |                    |         |  |
|                  |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | +                      |                    |         |  |
| <sup>≈</sup> 7.5 |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | +                      |                    |         |  |
|                  |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      | +               |                      | +                      | +                  |         |  |
| 8.5              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| -                |                  |              |                                                  |                                                              |   |          |          |     |                            |                | _                          |                      |                 |                      |                        |                    |         |  |
| 9.0              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      | _               |                      | +                      | _                  |         |  |
| 9.5              |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      | +                      |                    | _       |  |
|                  |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      | $\rightarrow$   |                      | +                      | +                  | -       |  |
| 10.0             |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      | +               |                      | +                      | +                  |         |  |
| 10.5             |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
|                  | S:               |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
|                  |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |
| 3                |                  |              |                                                  |                                                              |   |          |          |     |                            |                |                            |                      |                 |                      |                        |                    |         |  |

| REFER           | ENCE N           | o.:          | 11140575-E3                                     |                                                     |       |                    |          |     |                            | ENCLO             | SURE                                                  | No.:                                                     |                                                        |                                                     | 4                    |      |
|-----------------|------------------|--------------|-------------------------------------------------|-----------------------------------------------------|-------|--------------------|----------|-----|----------------------------|-------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|----------------------|------|
|                 |                  |              |                                                 | BOREHOLE No.:                                       | BH4-  | 17                 |          |     |                            |                   | BOR                                                   | FH                                                       |                                                        | FI                                                  | 00                   |      |
|                 |                  | G            | HD                                              | ELEVATION:                                          | 65.80 | m                  |          |     |                            | •                 | Page:                                                 |                                                          |                                                        |                                                     |                      | •    |
|                 |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       | LEG                                                      |                                                        |                                                     |                      |      |
|                 |                  |              | Community Housing Corp<br>chnical Investigation |                                                     |       |                    |          |     |                            |                   | Split Sp                                              | boon                                                     |                                                        |                                                     |                      |      |
|                 | -                |              |                                                 | a, Ontario                                          |       |                    |          |     |                            |                   | Auger Shelby                                          |                                                          | е                                                      |                                                     |                      |      |
|                 |                  |              |                                                 | rt CHECKED BY: _                                    |       |                    |          |     |                            | v<br>∑ u          | Water                                                 |                                                          |                                                        |                                                     |                      |      |
|                 |                  |              |                                                 | DATE (FINISH):                                      |       |                    |          |     |                            | °                 | Water of Atterbe                                      |                                                          |                                                        | )                                                   |                      |      |
|                 | ALE              |              |                                                 | RATIGRAPHY                                          |       |                    | MPLE     |     |                            | • N<br>• N        | Penetra<br>Split Sp                                   | ation Ir                                                 | ndex l<br>ample                                        | based<br>e                                          |                      |      |
| Depth<br>BGS    | Elevation<br>(m) | Stratigraphy |                                                 | SCRIPTION OF<br>AND BEDROCK                         | State | Type and<br>Number | Recovery | ovc | Penetration<br>Index / RQD | △ Cu<br>□ Cu<br>S | Dynam<br>Shear<br>Shear<br>Sensiti<br>Shear<br>Pocket | ic Con<br>Streng<br>Streng<br>vity Va<br>Streng<br>Penet | e sam<br>th bas<br>th bas<br>lue of<br>th bas<br>trome | iple<br>sed or<br>sed or<br>f Soil<br>sed or<br>ter | n Fiel<br>n Lab<br>n | Vane |
| meters          | 65.80            |              | GR                                              | OUND SURFACE                                        |       |                    | %        | ppm | Ν                          | 50<br>10          | SCALE<br>kPa 1<br>20 30                               | FOR T                                                    | EST<br>150                                             |                                                     | JLTS<br>200k         | Pa   |
| =               | 65.7             | $\times$     | ASPHALT(Approximat                              |                                                     | /M    | SS1                | 10/10    |     | 19                         |                   |                                                       | 40 0                                                     |                                                        |                                                     |                      | - 90 |
| 0.5             | 65.4<br>65.3     |              | FILL-Gravelly sand, co                          | mpact, grey, damp.<br>gravel, loose, greyish brown, | -/    | 331                | 10/16    |     | 19                         |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| E ,             | 65.1             |              | damp.                                           | , continued with rock coring                        |       | RC1                | 27/27    |     | 78                         |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| - 1.0           |                  |              |                                                 | athered and fractured, good                         | /     |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| - 1.5           |                  |              | quality.<br>Mudseam: 2.38 to 2.4n               | 1                                                   |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     | _                    |      |
| 2.0             |                  |              |                                                 |                                                     |       | RC1                | 60/60    | 1   | 85                         |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 2.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       | _                                                        |                                                        |                                                     |                      |      |
| E               | 63.1             |              | Borehole ended at a                             | pproximately 2.7 m in limeston                      | e     |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 3.0             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| - 3.5           |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| E 4.0           |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 4.0             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 4.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 5.0             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       | _                                                        |                                                        |                                                     |                      |      |
|                 |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     | _                    |      |
| 5.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 6.0             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| =               |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 6.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       | _                                                        |                                                        |                                                     |                      |      |
| 7.0             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     | -                    | _    |
| 7.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
|                 |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| .)⊢ I           |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 8.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| •               |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   | $\left  \right $                                      | -                                                        |                                                        | -+                                                  | +                    |      |
| ŝE              |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        | $\neg$                                              | +                    |      |
| 9.5             |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| 10.0            |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
|                 |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       | _                                                        |                                                        |                                                     |                      |      |
| = 10.5<br>NOTES | <u>.</u>         |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
|                 |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
|                 |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |
| ۵ 🔔 🛁           |                  |              |                                                 |                                                     |       |                    |          |     |                            |                   |                                                       |                                                          |                                                        |                                                     |                      |      |

| REFER                                                                                                 | ENCE N           | o.:          | 11140575-E3                                                            | _       |                             |        |          |          |      |                            | ENCLC      | SURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.: _                              |                                                        | 5                |    |
|-------------------------------------------------------------------------------------------------------|------------------|--------------|------------------------------------------------------------------------|---------|-----------------------------|--------|----------|----------|------|----------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|------------------|----|
|                                                                                                       |                  | G            | HD                                                                     | BORI    | EHOLE No.B                  | H5-17/ | MW3-     | 17       | -    |                            |            | BOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EHO                                 | LEL                                                    | -00              | 6  |
|                                                                                                       |                  |              |                                                                        | ELEV    | ATION:                      | 67.0   | 6 m      |          | -    |                            |            | Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _1                                  | of _                                                   | 1                |    |
| CLIE                                                                                                  | ENT: O           | ttawa (      | Community Housing Corr                                                 | oration |                             |        |          |          |      |                            | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEGE                                | IND                                                    |                  |    |
|                                                                                                       |                  |              | echnical Investigation                                                 |         |                             |        |          |          |      |                            |            | Split |                                     |                                                        |                  |    |
|                                                                                                       |                  |              | Gladstone Avenue, Ottav                                                |         |                             |        |          |          |      |                            |            | Shelby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                        |                  |    |
|                                                                                                       |                  |              | R. Vandentillaa                                                        |         |                             | _      | S.       | Wallis   |      |                            | Ţ          | Water I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _evel                               |                                                        |                  |    |
|                                                                                                       |                  |              | 28 August 2017                                                         |         |                             |        |          |          |      |                            | °          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | content (<br>rg limits              | ,                                                      |                  |    |
| SC                                                                                                    | ALE              |              | STRATIGRAPHY                                                           |         | MONITOR<br>WELL             | 2      |          | SAMPLE   | DATA | •                          | • N<br>• N | Split Sp<br>Penetra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation Ind<br>boon sar<br>ation Inde | nple<br>ex basec                                       |                  |    |
| Depth<br>BGS                                                                                          | Elevation<br>(m) | Stratigraphy | DESCRIPTION<br>SOIL AND BEDR                                           |         |                             | i      | Type and | Recovery | ovc  | Penetration<br>Index / RQD |            | Shear<br>Shear<br>Sensiti<br>Shear<br>Pocket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vity Valu<br>Strength<br>Penetro    | based of<br>based of<br>e of Soil<br>based of<br>meter | l<br>on          |    |
| meters                                                                                                | 67.06            |              | GROUND SURF                                                            | ACE     | -                           |        |          | %        | ppm  | Ν                          | 50<br>10   | SCALE  <br>0kPa 10<br>20 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FOR TE                              | ST RES                                                 | ULTS<br>200kl    | Pa |
| - 0.5                                                                                                 | 67.0<br>66.8     |              | TOPSOIL-Silty sand, b<br>loose, moist. (Approxin<br>m thick)           |         | 0.05 -                      | Π      | ss       | 1 7/24   |      | 15                         | •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 30                               |                                                        |                  |    |
| - 1.0                                                                                                 | 66.4             |              | FILL-Sand and gravel,<br>loose, damp.                                  | 1       | 0.61 —<br>Bentonite —       |        | Ĩ        |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| _ 1.5                                                                                                 |                  |              | Mudseam : 0.9 to 0.91<br>LIMESTONE-Grey, we<br>and fractured, poor qua | athered | 1.09 —<br>Riser —<br>1.30 — |        | RC       | 1 60/60  | 5    | 50                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 2.0                                                                                                   |                  |              | Water level : 2.17 mbg                                                 | S       |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 2.5                                                                                                   |                  |              | *Becoming good                                                         |         | WL 2.60 —                   | X      | RC       | 2 30/30  | 5    | 80                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 3.0                                                                                                   |                  |              | *Becoming excellent                                                    |         | 05/02/2019<br>Sand —        |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 3.5                                                                                                   |                  |              |                                                                        |         | Screen —                    |        | RC       | 3 45/4   | 5    | 92                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 4.0                                                                                                   |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 4.5                                                                                                   |                  |              |                                                                        |         |                             |        |          | 4 27/27  |      | 100                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 5.0                                                                                                   |                  |              |                                                                        |         |                             |        | RC       | 5 47/47  | 7    | 100                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 6.0                                                                                                   | 61.2             |              | Borehole ended                                                         | at      | 5.87 —                      |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 6.5                                                                                                   |                  |              | approximately 5.87<br>limestone                                        | ' m in  |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| <b>7.0</b>                                                                                            |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| DI 1/2/1<br>11/11/17.5                                                                                |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
|                                                                                                       |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
|                                                                                                       |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| BOREHOLE LOG 11140575-E3-BH LOGS GPJ INSPEC_SOL.GDT 7/5/19<br>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                   |                                                        | $\left  \right $ |    |
|                                                                                                       |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        | $\square$        |    |
| 0.01                                                                                                  |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                   | +                                                      | $\left  \right $ |    |
|                                                                                                       | ·.               |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| 의 NOTES<br>피아                                                                                         | ).               |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| BORE                                                                                                  |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |
| -                                                                                                     |                  |              |                                                                        |         |                             |        |          |          |      |                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                        |                  |    |

| REFER             | ENCE N           | o.:          | 11140575-E3                                     |                                                               |       |                    |          |     |                            | ENCLO          | DSUF                                       | RE N                                                            | o.: _                                                    |                                                       | 6                            |       |   |
|-------------------|------------------|--------------|-------------------------------------------------|---------------------------------------------------------------|-------|--------------------|----------|-----|----------------------------|----------------|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------|-------|---|
|                   |                  |              |                                                 | BOREHOLE No.:                                                 | BH6-  | 17                 |          |     |                            |                | BO                                         | RF                                                              | но                                                       | LEI                                                   | 0                            | ì     |   |
|                   |                  | C            | HD                                              | ELEVATION:6                                                   | 6.42  | m                  |          |     |                            |                |                                            |                                                                 |                                                          | of                                                    |                              |       |   |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 | EGE                                                      |                                                       |                              |       |   |
|                   |                  |              | Community Housing Corp<br>chnical Investigation | oration                                                       |       |                    |          |     |                            | 🖂 ss           |                                            | it Spo                                                          | on                                                       |                                                       |                              |       |   |
|                   | -                |              |                                                 | a, Ontario                                                    |       |                    |          |     |                            | 📳 G:           |                                            |                                                                 |                                                          |                                                       |                              |       |   |
|                   |                  |              |                                                 | rt CHECKED BY:                                                |       |                    |          |     |                            | ₹              |                                            | ter Le                                                          |                                                          |                                                       |                              |       |   |
|                   |                  |              |                                                 | DATE (FINISH):                                                |       |                    |          |     |                            | °              |                                            |                                                                 | ntent (°<br>limits                                       | ,                                                     |                              |       |   |
|                   | ALE              |              |                                                 | ATIGRAPHY                                                     |       |                    | MPLE     |     |                            | • N<br>• N     | Per<br>Spl                                 | netratio                                                        | on Ind<br>on sar                                         | ex base                                               |                              |       |   |
| Depth<br>BGS      | Elevation<br>(m) | Stratigraphy |                                                 | SCRIPTION OF<br>AND BEDROCK                                   | State | Type and<br>Number | Recovery | OVC | Penetration<br>Index / RQD | □ Cu<br>S<br>▲ | Dyr<br>J She<br>J She<br>Ser<br>She<br>Poo | ear Str<br>ear Str<br>ear Str<br>sitivity<br>ear Str<br>cket Po | Cone s<br>rength<br>rength<br>y Valu<br>rength<br>enetro | sample<br>based<br>based<br>e of So<br>based<br>meter | on Fie<br>on Lat<br>il<br>on | o Van | e |
| meters            | 66.42            |              | GR                                              | OUND SURFACE                                                  |       |                    | %        | ppm | Ν                          | 10 5           | SCA                                        | LE FC                                                           |                                                          | ST RES<br>150kPa<br>60                                | ULTS                         | Pa    |   |
| _                 | 66.2             |              | TOPSOIL-Silty sand w                            | th organics (grass), very loose,<br>proximately 0.18 m thick) | Ā     | SS1                | 7/24     |     | 4                          |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 0.5               |                  |              |                                                 | organics, loose, dark brown,                                  |       | SS1                | 5/20     |     | 4<br>22                    | •              |                                            |                                                                 |                                                          |                                                       | $\left  \right $             |       |   |
| = 1.0             | 65.3             | ¥XX          | <sup>_</sup> ∖*Auger refusal at 1.1 m           | , continued with rock coring                                  |       | 332                | 5/20     |     | 22                         |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| - 1.5             |                  |              |                                                 | athered and fractured, poor                                   |       | RC1                | 25/25    | 5   | 30                         |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 2.0               |                  |              | *Becoming excellent                             |                                                               |       | -                  |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| - 2.5             |                  |              |                                                 |                                                               |       | RC2                | 47/47    |     | 96                         |                | _                                          |                                                                 |                                                          |                                                       | $\square$                    |       |   |
| 3.0               | 63.5             |              | Developerated at a                              |                                                               |       | _                  |          |     |                            |                |                                            |                                                                 |                                                          |                                                       | $\square$                    |       |   |
| 3.5               |                  |              | Borenole ended at a                             | pproximately 2.9 m in limestone                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       | $\square$                    |       |   |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       | _ |
| - 4.0             |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 4.5               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| Ē                 |                  |              |                                                 |                                                               |       |                    |          |     |                            |                | _                                          |                                                                 |                                                          |                                                       | $\square$                    |       |   |
| - 5.0             |                  |              |                                                 |                                                               |       |                    |          |     |                            |                | _                                          |                                                                 |                                                          |                                                       | $\vdash$                     |       |   |
| 5.5               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 6.0               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| =                 |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 6.5               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                | _                                          |                                                                 |                                                          |                                                       | $\vdash$                     |       |   |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       | $\vdash$                     |       |   |
| 7.5               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 8.5<br>9.0<br>9.5 |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       | $\left  \right $             |       |   |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       | _ |
| 8.5               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| 9.0               |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            | $\left  \right $                                                | _                                                        | _                                                     | $\left  - \right $           | -+    | _ |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            | $\left  \right $                                                |                                                          | +                                                     | $\left  \right $             | -     | _ |
| 10.0              |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 | +                                                        | $\top$                                                | $\square$                    | +     | _ |
| _ 10.5            |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
|                   | 5:               |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
|                   |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |
| б                 |                  |              |                                                 |                                                               |       |                    |          |     |                            |                |                                            |                                                                 |                                                          |                                                       |                              |       |   |

| REFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | o.:          | 11140575-E3                                     | -                                                            |      |       |                    |          |     |                            | ENCLO      | DSUR          | E No.                  | :                         |                    | 7             |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------------------------------------------------|--------------------------------------------------------------|------|-------|--------------------|----------|-----|----------------------------|------------|---------------|------------------------|---------------------------|--------------------|---------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 | BOREHOLE No.:                                                | BH7  | -17   |                    |          |     |                            |            | BOI           | REF                    | IOL                       | EL                 | OG            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | G            | HD                                              | ELEVATION:                                                   | 66.3 | 8 m   |                    |          |     |                            |            |               |                        | 1                         |                    |               | ,              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        | GEN                       |                    |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              | Community Housing Corp<br>chnical Investigation |                                                              |      |       |                    |          |     |                            | 🔀 ss       |               | Spoor                  | 1                         | -                  |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               |              | Gladstone Avenue, Ottaw                         |                                                              |      |       |                    |          |     |                            | 🚺 GS       |               |                        |                           |                    |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 | rt CHECKED BY:                                               |      |       |                    |          |     |                            | ⊻<br>      |               | er Leve                |                           |                    |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 | DATE (FINISH):                                               |      |       |                    |          |     |                            | °          |               |                        | ent (%)<br>mits (%        | .)                 |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CALE            |              |                                                 | RATIGRAPHY                                                   |      |       |                    | /IPLE I  |     |                            | • N<br>• N | Pene<br>Split | etratior<br>Spoor      | Index<br>sampl<br>Index I | based<br>e         |               |                |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | levation<br>(m) | aphy         | DES                                             | SCRIPTION OF                                                 |      | 0     | and<br>oer         | 'ery     | 0   | ation<br>RQD               | Δ Cι       | Dyna<br>Shea  | amic Co<br>ar Strei    | one san                   | nple<br>ised or    | n Field       | d Vane         |
| BGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eleva<br>(m     | Stratigraphy |                                                 | AND BEDROCK                                                  | ė    | State | Type and<br>Number | Recovery | OVC | Penetration<br>Index / RQD | S<br>▲     | Sens<br>Shea  | sitivity '<br>ar Strei | Value o<br>ngth ba        | of Soil<br>ised or |               | vane           |
| meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66.38           |              | GRO                                             | OUND SURFACE                                                 |      |       |                    | %        | ppm | N                          | 5<br>10    | SCAL          | E FOR                  | TEST<br>a 150<br>50 6     | RESU               | LTS<br>200kF  | <sup>2</sup> a |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.3            |              | TOPSOIL-Silty sand w                            | ith organics (grass), very loose<br>proximately 0.1 m thick) | э, г |       | SS1                | 12/20    | 1   | 10                         |            | 20 30         |                        | 50 6                      |                    |               |                |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.7            |              | FILL-Sand some grave                            | el. loose, light brown, moist.                               | /    |       |                    | ,        |     |                            |            |               |                        |                           |                    |               |                |
| E 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03.7            |              |                                                 | n, continued with rock coring<br>athered and fractured, poor | _/T  | F     | RC1                | 14/19    | 1   | 29                         |            |               | _                      | _                         |                    | $\rightarrow$ |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              | quality.                                        | allered and fractured, poor                                  | ŀ    | H F   | RC2                | 15/15    |     | 40                         |            |               | _                      |                           | $\left  - \right $ | +             |                |
| - 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              | *Becoming excellent                             |                                                              | ŀ    |       |                    |          |     |                            |            |               | +                      |                           |                    | +             |                |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | +             |                |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      | F     | RC3                | 57/56    | i   | 93                         |            |               |                        |                           |                    |               |                |
| - 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               | _                      |                           |                    | _             |                |
| - 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63.4            |              | Borehole ended at a                             | pproximately 2.9 m in limestor                               | ne   |       |                    |          |     |                            |            |               | +                      | _                         |                    | -             |                |
| - 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | _             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               | _                      |                           | $\square$          | _             |                |
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               | -                      |                           |                    | _             |                |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | _             |                |
| 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | _             | _              |
| 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           | $\square$          | _             |                |
| 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               | _                      |                           | $\square$          | _             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | _             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               | _              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | _             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    | _             |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| BOREHOLE LOG 111406775-E3-BH LOGS.GPJ INSPEC_SOL.GDT 775/19<br>0.0 11140775-E3-BH LOGS.GPJ INSPEC_SOL.GDT 775/19<br>0.0 1140775-E3-BH LOGS.GPJ INSP |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            | +             | _                      | _                         | $\left  \right $   | +             | +              |
| <sup>10.5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| S NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S:              |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| REHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |
| BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |                                                 |                                                              |      |       |                    |          |     |                            |            |               |                        |                           |                    |               |                |

| REFEF                                                                                                 | RENCE No         | o.:                  | 11140575-E3                                          | _                                |                |                    |          |      |                            | ENC                | LOS               | URE N                                                            | lo.:                                       |                                                |                                       | 8                  |         |
|-------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------------------------------------------|----------------------------------|----------------|--------------------|----------|------|----------------------------|--------------------|-------------------|------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------|--------------------|---------|
|                                                                                                       |                  |                      |                                                      | BOREHOLE No.:                    | BH8            | -17                |          |      |                            |                    | В                 | ORE                                                              | ΞНα                                        | OI F                                           | = 1 (                                 | OG                 |         |
|                                                                                                       |                  | G                    | HD                                                   | ELEVATION:                       | 65.37          | 7 m                |          |      |                            |                    |                   | Page:                                                            |                                            |                                                |                                       |                    |         |
|                                                                                                       |                  | town                 |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            | END                                            |                                       |                    |         |
|                                                                                                       |                  |                      | Community Housing Corr                               |                                  |                |                    |          |      |                            |                    |                   | Split Sp                                                         |                                            |                                                |                                       |                    |         |
|                                                                                                       | -                |                      | Gladstone Avenue, Ottav                              | va. Ontario                      |                |                    |          |      |                            |                    |                   | Auger S<br>Shelby T                                              |                                            | 9                                              |                                       |                    |         |
|                                                                                                       |                  |                      |                                                      | rt CHECKED BY:                   |                | S. V               | Vallis   |      |                            | Ţ                  | ١                 | Nater L                                                          | evel                                       |                                                |                                       |                    |         |
|                                                                                                       |                  |                      |                                                      | DATE (FINISH):                   |                |                    |          |      |                            | °<br>H             |                   | Nater co<br>Atterber                                             |                                            | • •                                            |                                       |                    |         |
| SC                                                                                                    | CALE             |                      | STI                                                  | RATIGRAPHY                       |                | SA                 | MPLE     | DATA |                            | •                  | S<br>N F          | Penetra<br>Split Sp<br>Penetrat                                  | oon s<br>ion In                            | ample<br>dex ba                                | ased o                                |                    |         |
| Depth<br>BGS                                                                                          | Elevation<br>(m) | Stratigraphy         |                                                      | SCRIPTION OF<br>AND BEDROCK      | Ctoto<br>Ctoto | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ∆<br>□<br>S        | Cu S<br>Cu S<br>F | Dynamic<br>Shear S<br>Shear S<br>Sensitiv<br>Shear S<br>Pocket F | treng<br>treng<br>ity Va<br>treng<br>Penet | th bas<br>th bas<br>lue of<br>th bas<br>romete | ed on<br>ed on<br>Soil<br>ed on<br>er | Lab '              | Vane    |
| meters                                                                                                | 65.37            |                      | GR                                                   | OUND SURFACE                     |                |                    | %        | ppm  | Ν                          | 10                 | 50kP              | CALE F<br>a 10<br><u>30</u>                                      | OR T<br>DkPa                               | EST F<br>150k                                  | RESUL                                 | _TS<br>200kP<br>80 | a<br>90 |
| _                                                                                                     | 65.2             | $\times \frac{1}{2}$ | <b>TOPSOIL-</b> Silty sand w \brown, moist. (Approxi | ith organics (grass), loose, dat | rk             | SS1                | 10/24    |      | 4                          |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| - 0.5                                                                                                 |                  | $\bigotimes$         |                                                      | loose, dark brown, moist.        | — / [          |                    | 10/24    |      | 4                          |                    |                   |                                                                  |                                            |                                                | $\square$                             |                    | _       |
| E<br>1.0                                                                                              | 04.0             | $\bigotimes$         |                                                      |                                  |                | ss2                | 6/24     |      | 10                         |                    |                   |                                                                  |                                            |                                                | _                                     | _                  |         |
|                                                                                                       | 64.3             |                      | FILL-Gravel some san<br>greyish brown, damp.         | d trace silt and clay, loose,    | /              |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | +                                     | _                  |         |
| = 1.5                                                                                                 |                  | $\bigotimes$         | greyish brown, damp.                                 |                                  |                | SS3                | 3/24     |      | 34                         |                    |                   | •                                                                |                                            |                                                |                                       | +                  |         |
| = 2.0                                                                                                 |                  | $\bigotimes$         |                                                      |                                  | ĥ              | ss4                | 3/18     |      |                            |                    |                   |                                                                  |                                            |                                                | -                                     |                    |         |
| Ē                                                                                                     | 63.1             |                      | CONCRETE                                             |                                  | — K            | 334                | 5/10     |      |                            |                    |                   |                                                                  |                                            |                                                |                                       | 1                  |         |
| 2.5                                                                                                   | 62.8             |                      |                                                      | athered and fractured, poor      |                | RC1                | 12/24    |      | 25                         |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| - 3.0                                                                                                 |                  |                      | quality.<br>*Becoming good                           |                                  | -              |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | $\square$                             |                    |         |
| Ê                                                                                                     |                  |                      | Becoming good                                        |                                  |                | RC2                | 39/39    | •    | 82                         |                    |                   | _                                                                |                                            |                                                | +                                     | _                  | _       |
| - 3.5                                                                                                 |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   | _                                                                |                                            |                                                | +                                     | +                  | _       |
| - 4.0                                                                                                 | 61.5             |                      | Borehole ended at a                                  | pproximately 3.9 m in limestor   | ne             |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | -                                     | +                  |         |
| 4.5                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| E                                                                                                     |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| 5.0                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| 5.5                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | $\rightarrow$                         |                    | _       |
| E                                                                                                     |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | _                                     | _                  |         |
| 6.0                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       | +                  |         |
| 6.5                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| 1111002563-BH LOGS (BN INSPEC SOL (BT 7/6/19<br>0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7               |                  |                      |                                                      |                                  |                |                    |          |      |                            | $\left  - \right $ | _                 |                                                                  |                                            |                                                | +                                     | +                  | +       |
| BOREHOLE LOG 11140575-E3-BH LOGS GPJ INSPEC_SOL GDT 7/5/19<br>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | $\mp$                                 | +                  | $\mp$   |
| 8.0                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
|                                                                                                       |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | _                                     | -                  | _       |
| 8:69<br>9.0                                                                                           |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    | +       |
| 9.5                                                                                                   |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   | _                                                                |                                            |                                                | $\square$                             |                    | _       |
|                                                                                                       |                  |                      |                                                      |                                  |                |                    |          |      |                            | $\left  - \right $ |                   |                                                                  |                                            |                                                | +                                     | +                  |         |
|                                                                                                       |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                | $\mp$                                 | +                  | 1       |
| -<br>9 − 10.5<br>10.5                                                                                 | <br>S:           |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
|                                                                                                       | -                |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| BORE                                                                                                  |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |
| ш <b>с</b>                                                                                            |                  |                      |                                                      |                                  |                |                    |          |      |                            |                    |                   |                                                                  |                                            |                                                |                                       |                    |         |

| REFERENC                                                                                              | E No.: _            | 11140575-E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                     |      |             |                    |          |      |                            | ENCLC        | SUR                             | REN                                              | 0.: _                                           |                                             |                                    |                             |   |
|-------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|------|-------------|--------------------|----------|------|----------------------------|--------------|---------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------|-----------------------------|---|
|                                                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOR                | EHOLE No.:                          | MW   | <b>4-</b> 1 | 9                  |          |      |                            |              | во                              | RE                                               | но                                              | LE                                          | LO                                 | G                           |   |
|                                                                                                       | G                   | HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ELEV               | ATION:                              | 65.6 | 6 I         | m                  |          |      |                            |              |                                 |                                                  |                                                 |                                             | _1                                 |                             |   |
|                                                                                                       | Ottown              | Community Housing Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  | EGE                                             |                                             |                                    |                             |   |
|                                                                                                       |                     | technical Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                     |      |             |                    |          |      |                            | 🔀 ss         |                                 |                                                  |                                                 |                                             |                                    |                             |   |
|                                                                                                       |                     | Gladstone Avenue, Ottav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                     |      |             |                    |          |      |                            | I GS<br>I ST |                                 |                                                  |                                                 |                                             |                                    |                             |   |
|                                                                                                       |                     | R. Vandentillaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             | J. Ben             | nett     |      |                            | ₹<br>°       |                                 | er Le                                            |                                                 |                                             |                                    |                             |   |
| DATE (S                                                                                               | TART):              | 16 April 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | _ DATE (FINISH):                    |      |             | 16 Apri            | 201      | 9    |                            | $\square$    | Atte                            | rberg                                            | ntent (9<br>limits                              | (%)                                         |                                    |                             |   |
| SCALE                                                                                                 |                     | STRATIGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | MONITOR<br>WELL                     |      |             | SAM                | 1PLE     | DATA |                            | • N<br>• N   | Spli <sup>.</sup><br>Pen        | t Spoo<br>etratio                                | on Inde<br>on san<br>on Inde<br>Cone s          | nple<br>ex base                             | ed on                              |                             |   |
| Depth<br>BGS<br>BGS                                                                                   | (m)<br>Stratigraphy | DESCRIPTION<br>SOIL AND BEDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                     |      | State       | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | S<br>▲       | She<br>She<br>Sen<br>She<br>Poc | ar Str<br>ar Str<br>sitivity<br>ar Str<br>ket Pe | rength<br>rength<br>y Value<br>rength<br>enetro | based<br>based<br>e of So<br>based<br>meter | l on Fie<br>l on La<br>bil<br>l on |                             |   |
| meters 65.                                                                                            | 66                  | GROUND SURF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                     |      |             |                    | %        | ppm  | Ν                          | 50<br>10     | SCAL<br>0kPa<br>20 3            | _E FC<br>100                                     | OR TES                                          | ST RE<br>150kPa<br>60                       | SULTS<br>200<br>70 8               | S<br>ikPa<br>1 <u>0 9</u> i | 0 |
| 0.5                                                                                                   |                     | FILL- Sand, brown, me<br>*Becoming Sand and g<br>grey<br>*Auger refusal at 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gravel,            | 0.12-0.30-                          |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | <u> </u>                           |                             |   |
| 1.0                                                                                                   | .8 42               | continued with rock contin | ring               | Bentonite +                         |      |             | RC1                | 100      |      | 56                         |              |                                 |                                                  |                                                 |                                             | <u> </u>                           |                             |   |
| - 1.5                                                                                                 |                     | and fractured, poor to f<br>quality, medium strong<br>moderately close, close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fair<br>, close to | 1.78 —<br>Riser —                   |      |             | RC2                | 100      |      | 48                         |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
| 2.0<br>2.5                                                                                            |                     | gapped joints, some<br>fossiliferous beds throu<br>10 mm thick infilled sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ughout             | 2.08-                               |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| 3.0                                                                                                   |                     | mbgs<br>*Becoming good qualit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Sand —                              |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| 3.5                                                                                                   |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | WL 3.30 —<br>05/02/2019<br>Screen — | Y    |             | RC3                | 100      |      | 80                         |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
| 4.0                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| 4.5                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             | RC4                | 100      |      | 87                         |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| 5.0 60                                                                                                | .5                  | Borehole ended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lat                | 5.13 -                              |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | <u> </u>                           |                             |   |
| 5.5                                                                                                   |                     | approximately 5.1<br>limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
| 5.5<br>6.0                                                                                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
| 6.5                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| .0 ₽                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
|                                                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | -                                  |                             |   |
| BOREHOLE LOG 11140575-E3-BH LOGS GPU INSPEC_SOL.GDT 7/5/19<br>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| 0⊔<br>8.5<br>≅                                                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
| 9.0                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| 9.5                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | +                                  |                             |   |
|                                                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 | $\vdash$                                         |                                                 |                                             | +                                  |                             |   |
| 9.5<br>1114022-63-63-61<br>10.0<br>10.5                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             | $\mp$                              |                             |   |
| 00 NOTES:                                                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| EHOLE                                                                                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |
| BOR                                                                                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |      |             |                    |          |      |                            |              |                                 |                                                  |                                                 |                                             |                                    |                             |   |

| REFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | o.:          | 11140575-E3                                                                   |           |                            |      |           |                    |          |      |                            | ENCLO                  | DSUF                              | RE N                                                      | 0.: _                                                  |                                                  | 1                                     | 10                       |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------------------------------------------------------------------------|-----------|----------------------------|------|-----------|--------------------|----------|------|----------------------------|------------------------|-----------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                               | BORI      | EHOLE No.:                 | MW   | 5-19      | )                  |          |      |                            |                        | во                                | RE                                                        | HC                                                     | LE                                               | EL(                                   | DG                       | i       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | G            |                                                                               | ELEV      | ATION:                     | 66.0 | )6 m      |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | f _1                                  |                          |         |
| CLIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | tawa (       | Community Housing Corp                                                        | oration   |                            |      |           |                    |          |      |                            |                        |                                   |                                                           | EG                                                     | END                                              | ,                                     |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                               |           |                            |      |           |                    |          |      |                            | Steel Steel            |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |              | Gladstone Avenue, Ottaw                                                       |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | R. Vandentillaa                                                               |           |                            |      |           | J. Ber             | nnett    |      |                            | Ţ                      | Wa                                | ter Le                                                    | vel                                                    |                                                  |                                       |                          |         |
| DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E (STAR          | T):          | 16 April 2019                                                                 |           | DATE (FINISH):             |      | 1         | 6 Apri             | il 201   | 9    |                            | °                      | Atte                              | erberg                                                    | ntent (<br>limits                                      | (%)                                              |                                       |                          |         |
| SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALE              |              | STRATIGRAPHY                                                                  |           | MONITOR<br>WELL            |      |           | SAM                | MPLE     | DATA |                            | • N<br>• N             | Spli                              | t Spo                                                     | on sa                                                  | mple                                             | ased o                                |                          |         |
| Depth<br>BGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elevation<br>(m) | Stratigraphy | DESCRIPTION<br>SOIL AND BEDR                                                  |           |                            |      | State     | Type and<br>Number | Recovery | OVC  | Penetration<br>Index / RQD | ≙ Ըւ<br>□ Ըւ<br>Տ<br>▲ | Dyr<br>J She<br>Ser<br>She<br>Poo | amic<br>ear Str<br>ear Str<br>sitivit<br>ear Str<br>ket P | Cone<br>rength<br>rength<br>y Valu<br>rength<br>enetro | samp<br>base<br>base<br>e of \$<br>base<br>omete | ed on<br>ed on<br>Soil<br>ed on<br>er | Field<br>Lab \           |         |
| meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.06            |              | GROUND SURF                                                                   | -         |                            |      |           |                    | %        | ppm  | Ν                          | 10<br>5                | SCA<br><sup>j0kPa</sup>           | LE FC<br>100                                              | DR IE<br>kPa<br><u>0 5</u> 0                           | 150kF<br>60                                      | 2801                                  | 15<br>200kP<br><u>80</u> | a<br>90 |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | FILL- Sand, brown, mo                                                         | bist      | 0.15—<br>0.30—             |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       | _                        |         |
| - 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64.8             |              | *Becoming Sand and g<br>grey, damp<br>\*Auger refusal at 1.22 i               | Г         |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       | +                        |         |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | LIMESTONE - shale<br>laminations, grey, weat                                  | ing       | Riser — 💌                  |      |           | RC1                | 91       |      | 66                         |                        | -                                 |                                                           |                                                        |                                                  | +                                     | +                        |         |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | and fractured, fair qual<br>medium strong, close t<br>moderatly close, closed | ity,<br>o |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | _                                     | +                        |         |
| 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | gapped joints, some<br>fossiliferous beds starti<br>mbgs                      |           | Bentonite                  |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | _                                     | +                        |         |
| 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | *Becoming good quality                                                        | У         |                            |      |           | RC2                | 100      |      | 76                         |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                                                                               |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | *Becoming excellent qu                                                        | uality    |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | _                                     | +                        |         |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                                                                               |           | WL 4.60 —<br>05/02/2019    |      |           | RC3                | 100      |      | 98                         |                        |                                   |                                                           |                                                        |                                                  | _                                     |                          |         |
| 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                                                                               |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | _                                     | +                        | _       |
| 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | *Becoming good qualit                                                         | y         | 6.02 —<br>Sand —<br>6.32 — |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | _                                     | _                        |         |
| 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                                                                               |           |                            |      |           | RC4                | 100      |      | 83                         |                        |                                   |                                                           |                                                        |                                                  |                                       | _                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | *Becoming excellent qu                                                        | uality    |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        | +                                                | -                                     | +                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                               |           | Screen                     |      |           | RC5                | 100      |      | 97                         |                        |                                   |                                                           |                                                        |                                                  | _                                     | +                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                               |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        | +                                                | +                                     | +                        | +       |
| 5.5<br>6.0<br>6.5<br>7.0<br>6.5<br>7.0<br>7.5<br>8.0<br>8.5<br>8.5<br>9.0<br>9.5<br>9.0<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |              |                                                                               |           |                            |      |           | RC6                | 100      |      | 94                         |                        |                                   |                                                           |                                                        |                                                  | +                                     | +                        | +       |
| 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              |                                                                               |           |                            |      |           |                    | .00      |      | 54                         |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.1             |              | Borehole ended                                                                | at        | 9.98 —                     |      | <b> ∎</b> |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  | $\square$                             | $\square$                |         |
| <sup>8</sup><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |              | approximately 10.0<br>limestone                                               |           |                            |      |           |                    |          |      |                            |                        | _                                 |                                                           |                                                        |                                                  | +                                     | +                        | _       |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S:               |              | intestone                                                                     |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
| RIGHT T.5<br>RIGHT T.5 |                  |              |                                                                               |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                               |           |                            |      |           |                    |          |      |                            |                        |                                   |                                                           |                                                        |                                                  |                                       |                          |         |

| BOREHOLE No:       MW6-19<br>(ELVATION:       BOREHOLE No:       MW6-19<br>(a.5.4 m)       BOREHOLE LOS         CUENT:       Ottawa Gommuthy Housing Corporation       G.5.4 m       Page: I all Good Apple Struck (Struck ( | REFER                 | RENCE N          | o.:          | 11140575-E3                                                                       |                     |                               |      |       |                    |          |     |                            | ENCLC            | SUR                             | E N                                              | o.: _                                     |                                             | 11                           |                          |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|--------------|-----------------------------------------------------------------------------------|---------------------|-------------------------------|------|-------|--------------------|----------|-----|----------------------------|------------------|---------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------|--------------------------|---|
| ELEVATION:         66.54 m         Page:         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                  |              |                                                                                   | BORI                | EHOLE No.:                    | MW   | 6-1   | 9                  |          |     |                            |                  | во                              | RE                                               | но                                        | LE                                          | LO                           | G                        |   |
| CLIENT:       Ottawa Community Housing Corporation         PROJECT:       Geotechnical Investigation         LOCATION:       B11 Gladstone Avenue, Ottawa, Ontario         DESCRIBED BY:       R. Vandentillaart         CHERKTART:       16 April 2019         DATE (STRAT):       16 April 2019         Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  | G            |                                                                                   | ELEV                | ATION:                        | 66.5 | 4 r   | n                  |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| PROJECT:       Geotechnical Investigation         LOCATION:       B11 Gladstone Avenue, Ottawa, Ontario         DESCRIBED BY:       R. Vandentillaart       CHECKED BY:       J. Bennett         DATE (START):       16 April 2019       DATE (FINISH):       16 April 2019         SCALE       STRATIGRAPHY       MONITOR       SAMELE DATA         Depth              § © © © © © © © © © © © © ©                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                  | towo         |                                                                                   | oration             |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| LOCATION:       811 Gladstone Avenue; Ottawa, Ontario         DESCRIBED BY:       R. Vandentiliaar       CHECKED BY:       J. Bennett         DATE (START):       16 April 2019       DATE (FINISH):       16 April 2019         SCALE       STRATIGRAPHY       MMINICR       SAMPLE DATA         Depth       50/200       500       DESCRIPTION OF         BGS       500       DESCRIPTION OF       SOIL AND BEDROCK         THL-Sand, brown, moist       DESCRIPTION OF       SOIL AND BEDROCK         Besoming Sand and gravel, grey, damp       0.10       56         1.0       65.5       'Auger refusal at 1.1 m, grey, damp         1.0       65.5       'Auger refusal at 1.1 m, grey, damp         3.0       'Auger refusal at 1.1 m, grey, damp       Scale for the damp         3.0       'State for the damp       Scale for the damp         3.0       'State for the damp       Scale for the damp         3.0       'State for the damp       Scale for the damp         3.0       'State for the damp       Scale for the damp         3.0       'State for the damp       Scale for the damp         3.0       'State for the damp       Scale for the damp         3.0       'State for the damp       Scale for the damp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                  |              | · · · ·                                                                           |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| DESCRIBED BY:       R. Vandentillaart       CHECKED BY:       J. Bennett         DATE (START):       16 April 2019       DATE (FINISH):       16 April 2019         SCALE       STRATIGRAPHY       MONITOR       SAMPLE DATA         Depth       50/2 (E)       0       50/2 (E)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| DATE (START):         16 April 2019         DATE (FINISH):         16 April 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                  |              |                                                                                   |                     |                               |      |       | J. Ben             | nett     |     |                            | Ţ                | Wat                             | er Le                                            | vel                                       |                                             |                              |                          |   |
| SCALE     STRATIGRAPHY     MONITOR<br>WELL     SAMPLE DATA     Split Spon sample       Depth     50<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAT                   | TE (STAR         | T): _        | 16 April 2019                                                                     |                     | DATE (FINISH):                |      |       | 16 Apri            | 201      | 9   |                            | <b>—</b>         | Atte                            | rberg                                            | limits                                    | (%)                                         |                              |                          |   |
| Depth<br>BGS         B<br>B<br>BC         DESCRIPTION OF<br>SOIL AND BEDROCK         DESCRIPTION OF<br>SOIL AND BEDROCK         Accusses<br>Beam         Accusses<br>Beam<                                                                                                                                                                                                                                                                                                | SC                    | CALE             |              | STRATIGRAPHY                                                                      |                     |                               |      |       | SAM                | 1PLE     |     |                            |                  | Split<br>Pen                    | t Spor<br>etratio                                | on san<br>on Inde                         | nple<br>ex base                             | ed on                        |                          |   |
| 0.5       FIL-Sand, brown, moist         98coming Sand and gravel, grey, damp         1.0       65.5         *Auger refusal at 1.1 m, ontinued with rock coring         1.5       LIMESTONE - shale laminations, grey, weathered and fractured, poor to fair quality, medium strong, close to moderately close, closed to gapped joints         3.0       Sub-horizontal bedding from 2.0         3.0       Sub-horizontal bedding from 2.0         4.0       Screen         4.0       Screen         4.0       Borehole ended at approximately 5.1 m in limestone         6.0       6.5         7.0       Borehole ended at approximately 5.1 m in limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Elevation<br>(m) | Stratigraphy |                                                                                   |                     |                               |      | State | Type and<br>Number | Recovery | OVC | Penetration<br>Index / RQD | S<br>▲           | She<br>She<br>Sen<br>She<br>Poc | ar Str<br>ar Str<br>sitivity<br>ar Str<br>ket Pe | ength<br>ength<br>Valu<br>ength<br>enetro | based<br>based<br>e of So<br>based<br>meter | on Fie<br>on La<br>oil<br>on |                          |   |
| 0.5       FIL-Sand, brown, moist         98coming Sand and gravel, grey, damp         1.0       65.5         *Auger refusal at 1.1 m, ontinued with rock coring         1.5       LIMESTONE - shale laminations, grey, weathered and fractured, poor to fair quality, medium strong, close to moderately close, closed to gapped joints         3.0       Sub-horizontal bedding from 2.0         3.0       Sub-horizontal bedding from 2.0         4.0       Screen         4.0       Screen         4.0       Borehole ended at approximately 5.1 m in limestone         6.0       6.5         7.0       Borehole ended at approximately 5.1 m in limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | meters                | 66.54            |              |                                                                                   | -                   |                               |      |       |                    | %        | ppm | Ν                          | 50<br>1 <u>0</u> | SCAL<br><sup>)kPa</sup> 20 3    | E FC<br>1004                                     | R TE:                                     | ST RE<br>150kPa<br><u>60</u>                | SULTS<br>200<br>70 8         | S<br>lkPa<br>1 <u>09</u> | 0 |
| 1.5       LIMESTONE - shale         1.5       LIMESTONE - shale         1.6       Iminations, grey, weathered         and fractured, poor to fair       1.78         quality, medium strong, close to       moderately close, closed to         gapped joints       Sub-horizontal bedding from 2.0         3.0       Becoming good quality         3.5       Screen         4.0       Screen         4.5       Screen         5.0       61.4         Borehole ended at         approximately 5.1 m in         limestone         6.0         6.5         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                     | 65.5             |              | *Becoming Sand and g<br>grey, damp<br>^ *Auger refusal at 1.1 m                   | ravel,              |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 2.5       gaped joints         3.0       Sub-horizontal bedding from 2.0         3.5       Becoming good quality         3.5       Screen         4.0       Screen         4.5       Screen         5.0       61.4         Borehole ended at approximately 5.1 m in limestone         6.0       Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                  |              | LIMESTONE - shale<br>laminations, grey, weat<br>and fractured, poor to f          | hered               | 05/02/2019<br>1.78 —<br>Riser |      |       | RC1                | 100      |     | 56                         |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 3.5       4.0         4.5       5.0         61.4       Borehole ended at approximately 5.1 m in limestone         6.0       6.5         7.0       6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                  |              | moderately close, close<br>gapped joints<br>Sub-horizontal bedding<br>to 2.4 mbgs | ed to<br>1 from 2.0 |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 4.5       5.0       61.4       Borehole ended at approximately 5.1 m in limestone       5.13-       RC3       100       73       73       73       73       73       73       73       73       73       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 <t< td=""><td>E</td><td></td><td></td><td>Doorning good quant</td><td>,</td><td>Screen</td><td></td><td></td><td>RC2</td><td>100</td><td></td><td>86</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                     |                  |              | Doorning good quant                                                               | ,                   | Screen                        |      |       | RC2                | 100      |     | 86                         |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 5.0       61.4         Borehole ended at approximately 5.1 m in limestone         6.0         6.5         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 5.5     approximately 5.1 m in limestone       6.0       6.5       7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 61.4             |              |                                                                                   |                     | 5 13-                         |      |       | RC3                | 100      |     | 73                         |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 6.0       6.5       7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                   | 0111             |              | approximately 5.1                                                                 |                     | 0.10                          |      |       |                    |          |     | -                          |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.0                   |                  |              | limestone                                                                         |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5                   |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           | +                                           | +                            |                          |   |
| 8.0     8.5     9.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 8.5<br>9.0<br>9.5<br>10.0<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
| 9.0<br>9.5<br>9.5<br>10.0<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  | $\left  \right $                |                                                  | -+                                        | +                                           | +                            |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S.GP                  |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             |                              |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  |                                           |                                             | $\perp$                      |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5<br>9.5            |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  | _                                         | +                                           | -                            |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                  |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            | _                | $\left  \right $                |                                                  | -+                                        | +                                           | +                            |                          |   |
| Ōluozzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E 10.5                |                  |              |                                                                                   |                     |                               |      |       |                    |          |     |                            |                  |                                 |                                                  | +                                         | +                                           | +                            |                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NOTES<br>BOREHOLE LOC | 3:               |              |                                                                                   |                     |                               | 1    |       |                    |          |     | ·                          |                  |                                 |                                                  | 1                                         |                                             |                              |                          |   |



# Notes on Borehole and Test Pit Reports

#### Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

| Clay                                                              | Classification<br>< 0.002 mm | (Unified system)                                   |                                                                           | Termino                          | logy                                         |                 |
|-------------------------------------------------------------------|------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|----------------------------------------------|-----------------|
| Silt                                                              | 0.002 to 0.075 mm            |                                                    |                                                                           | "trace"                          | 1-10%                                        |                 |
| Sand                                                              | 0.075 to 4.75 mm             | fine 0.075 to 4.25 mm                              |                                                                           | "some"                           | 10-20%                                       |                 |
|                                                                   |                              | medium 0.425 to 2.0 mm                             |                                                                           | adjective (silty, sand           | •                                            |                 |
|                                                                   |                              | coarse 2.0 to 4.75 mm                              |                                                                           | "and"                            | 35-50%                                       |                 |
| Gravel                                                            | 4.75 to 75 mm                | fine 4.75 to 19 mm coarse 19 to 75 mm              |                                                                           |                                  |                                              |                 |
| Cobbles<br>Boulders                                               | 75 to 300 mm<br>>300 mm      |                                                    |                                                                           |                                  |                                              |                 |
|                                                                   | ve density of<br>nular soils | Standard penetration<br>index "N" value            |                                                                           | Consistency of<br>cohesive soils | Undraine<br>strengt                          |                 |
|                                                                   |                              | (BLOWS/ft - 300 mm)                                |                                                                           |                                  | (P.S.F)                                      | (kPa)           |
|                                                                   |                              |                                                    |                                                                           | Very soft                        | <250                                         | <12             |
| V                                                                 | ery loose                    | 0-4                                                |                                                                           | Soft                             | 250-500                                      | 12-25           |
|                                                                   | Loose                        | 4-10                                               |                                                                           | Firm                             | 500-1000                                     | 25-50           |
| 0                                                                 | Compact                      | 10-30                                              |                                                                           | Stiff                            | 1000-2000                                    | 50-100          |
|                                                                   | Dense                        | 30-50                                              |                                                                           | Very stiff                       | 2000-4000                                    | 100-200         |
| Ve                                                                | ery dense                    | >50                                                |                                                                           | Hard                             | >4000                                        | >200            |
|                                                                   | Rock quality                 | designation                                        | ] [                                                                       | STRATIGRAP                       | HIC LEGEND                                   |                 |
| "RQI                                                              | D" (%) Value                 | Quality                                            |                                                                           |                                  |                                              | <u>п т п</u>    |
|                                                                   | <25                          | Very poor                                          |                                                                           |                                  | 00                                           |                 |
|                                                                   | 25-50                        | Poor                                               | <u>10000</u>                                                              |                                  | Cobbles& boulders                            |                 |
|                                                                   | 50-75                        | Fair                                               | Sa                                                                        | nd Clavel                        | Cobbiesa boulders                            | Bedrock         |
|                                                                   | 75-90                        | Good                                               |                                                                           |                                  | $\sim \sim$                                  | ×××××           |
|                                                                   | >90                          | Excellent                                          |                                                                           |                                  |                                              |                 |
|                                                                   |                              |                                                    | S                                                                         | ilt Clay                         | Organic soil                                 | Fill            |
| SS: Split spoon<br>SSE, GSE, AGE<br>Recovery                      | nple recovered is shown o    |                                                    | nelby tube<br>ston sample (Osterberg)                                     | A<br>R<br>G                      | G: Auger<br>IC: Rock core<br>IS: Grab sample |                 |
| RQD                                                               |                              |                                                    |                                                                           | ·····                            |                                              |                 |
|                                                                   | lity Designation" or "RQD    | " value, expressed as percentage, is th            | ne ratio of the total length of                                           | f all core fragments of 4 inche  | es (10 cm) or more to th                     | ne total length |
| IN-SITU TEST                                                      | TS:                          |                                                    |                                                                           |                                  |                                              |                 |
| N: Standard per<br>R: Refusal to pe                               |                              |                                                    | N <sub>c</sub> : Dynamic cone pen<br>Cu: Undrained shea<br>Pr: Pressure r | ar strength                      | k: Permeat<br>ABS: Absorption (F             |                 |
| LABORATOR                                                         | RY TESTS:                    |                                                    |                                                                           |                                  |                                              |                 |
| I · Plasticity inde                                               | <b>a</b> v                   | H: Hydrometer analysis                             | A: Atterberg limits                                                       | C: Consolidat                    | ion                                          | O.V.: Organio   |
| I <sub>p</sub> : Plasticity inde<br>W <sub>I</sub> : Liquid limit | 5                            | H: Hydrometer analysis<br>GSA: Grain size analysis | A: Atterberg limits<br>w: Water content                                   | CS: Swedish                      |                                              | vapor           |
| Wp: Plastic limit                                                 | t                            | Co. a oran oleo unuiyolo                           | γ: Unit weight                                                            | CHEM: Chem                       |                                              |                 |
|                                                                   |                              |                                                    | , -0-                                                                     |                                  |                                              |                 |

GHD PS-020.01-IA- Notes on Borehole and Test Pit Reports - Rev. 0 - 07/01/2015

Appendix B MASW Test Results

#### Apendix B

# GHD

#### Summary of Shear Wave Velocity Measurements Seismic Site Class Determination Biomethane Processing Facility Enbridge Gas Distribution Inc. 35 Vanley Crescent, Toronto, Ontario

|          |            |        | Line 1        |             |                                  |           |            |        | Line 2        |             |                                  |
|----------|------------|--------|---------------|-------------|----------------------------------|-----------|------------|--------|---------------|-------------|----------------------------------|
| ayer No. | Depth (r   | n bgs) | Thickness     | Vs          | d <sub>i</sub> /V <sub>si</sub>  | Layer No. | Depth (r   | n bgs) | Thickness     | Vs          | d <sub>i</sub> /V <sub>si</sub>  |
| ayer NO. | From       | То     | m             | m/s         | u <sub>i</sub> / v <sub>si</sub> | Layer NO. | From       | То     | m             | m/s         | u <sub>i</sub> / v <sub>si</sub> |
| 1        | 1.5        | 1.6    | 0.1           | 1194        | 0.0001                           | 1         | 1.5        | 1.6    | 0.1           | 1321        | 0.0000                           |
| 2        | 1.6        | 3.7    | 2.1           | 1943        | 0.0011                           | 2         | 1.6        | 3.5    | 1.9           | 1746        | 0.0011                           |
| 3        | 3.7        | 6.3    | 2.6           | 2066        | 0.0012                           | 3         | 3.5        | 5.9    | 2.4           | 2126        | 0.0011                           |
| 4        | 6.3        | 9.5    | 3.2           | 1875        | 0.0017                           | 4         | 5.9        | 9.0    | 3.0           | 1941        | 0.0016                           |
| 5        | 9.5        | 13.5   | 4.0           | 895         | 0.0045                           | 5         | 9.0        | 12.7   | 3.8           | 931         | 0.0041                           |
| 6        | 13.5       | 18.5   | 5.0           | 2033        | 0.0025                           | 6         | 12.7       | 17.5   | 4.7           | 1247        | 0.0038                           |
| 7        | 18.5       | 24.7   | 6.3           | 2767        | 0.0023                           | 7         | 17.5       | 23.4   | 5.9           | 2762        | 0.0021                           |
| 8        | 24.7       | 31.5   | 6.8           | 3180        | 0.0021                           | 8         | 23.4       | 30.8   | 7.4           | 3520        | 0.0021                           |
|          |            |        |               |             |                                  | 9         | 30.8       | 31.5   | 0.7           | 3917        | 0.0002                           |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          |            |        |               |             |                                  |           |            |        |               |             |                                  |
|          | Total      |        | 30.0          |             | 0.0155                           |           | Total      |        | 30.0          |             | 0.0162                           |
| Avera    | no Shoar W |        | ity Along the | l ine (m/s) | 1941                             | Δυστο     | no Shoar W |        | ity Along the | ino $(m/c)$ | 1857                             |

Average VS<sub>30</sub> =

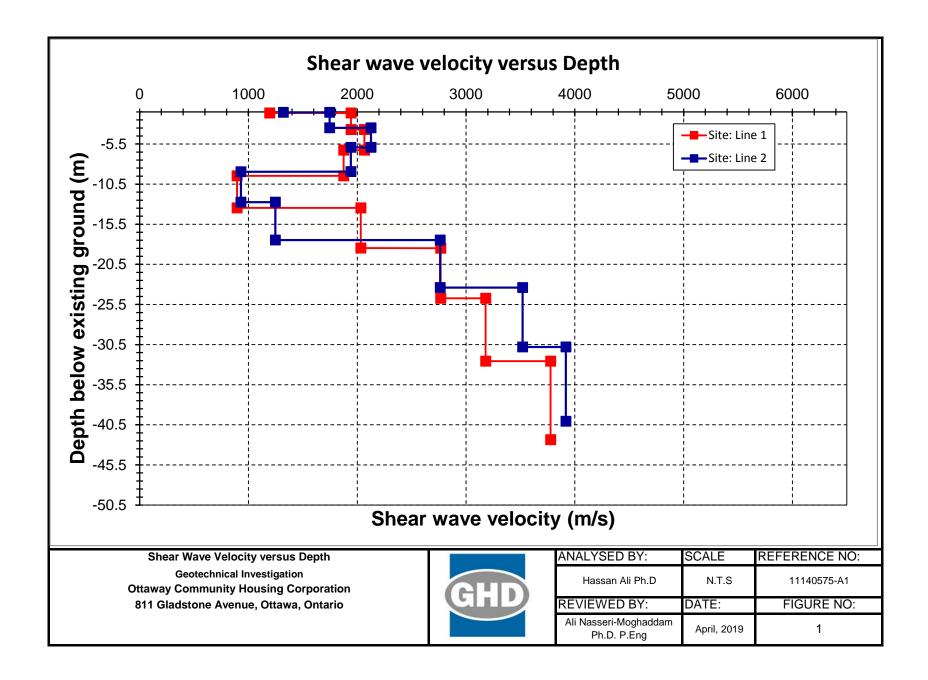
Recommended Site Class:

Subjected to Code requirements

m/s

1899

Α


Notes:

1 - The Seismic Site class is recommended in accordance to Table 4.1.8.4.A of the National Building code of Canada 2010 and based on the lowest measured average shear wave velocity measured along the investigated lines.

2 - VS30 is calculated based on the average shear wave velocity below the proposed founding elevation.

3 - Site Classes A and B are only applicable if footings are founded on bedrock or there is no more than 3.0 m of soil between founding elevation and bedrock.

4 - The recommended site class is only applicable if site conditions for Site Class F (liquefiable soil/soft soil layers more than 3.0 m thick) are not applicable.





# about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Ryan Vanden Tillaart Ryan.VandenTillaart@ghd.com 613.727.0510

Joseph Bennett Joseph.B.Bennett@ghd.com 613.727.0510

www.ghd.com