December 2015

REPORT ON

Phase Two Environmental Site Assessment Westgate Shopping Centre Ottawa, Ontario

Submitted to: RioCan Management Inc. RioCan Yonge Eglinton Centre 2300 Yonge Street, Suite 500 Toronto, Ontario M4P 1EP

REPORT

Report Number: 1522569-17000

Distribution:

1 e-copy -1 copy - RioCan Management Inc. Golder Associates Ltd.

Executive Summary

The Executive Summary highlights key points from the report only; for complete information and findings, as well as the limitations, the reader should examine the complete report.

Golder Associates Ltd. ("Golder") was retained by RioCan Management Inc. ("RioCan") to carry out a Phase Two Environmental Site Assessment ("ESA") of the Westgate Shopping Centre (mall address is 1309 Carling Avenue) in Ottawa, Ontario (hereinafter referred to as the "Site" and the "Phase Two Property"), as shown on Figure 1. There are 11 municipal addresses associated with the property. The legal description of the Site is: Part of Lot 33, Concession 10F of Part 1, 5, 7, 5R14579, T/W CR340247; S/T CR334034, Ottawa/Nepean.

It is understood that the Phase Two Property is to be redeveloped with residential and commercial properties and that this redevelopment is to occur in three separate stages. The first stage of redevelopment consists of a single residential building to be located in the southeast corner of the Site (as shown on Figure 2) (hereinafter referred to as the "area of first development").

Golder previously completed a Phase One ESA for the Site, the results of which were documented in Golder Report No. 1522569(17000) entitled, "*Phase One Environmental Site Assessment, Westgate Shopping Centre, Ottawa, Ontario*", dated September 2015. Based on the findings of the Phase One ESA, Golder completed this Phase Two ESA investigation for the property. This report provides the findings of the Phase Two ESA for the Site.

The analytical results from samples collected and submitted as part of this investigation indicate that volatile organic compounds in groundwater sample collected from the monitoring well at 15-03 do not meet the applicable Ministry of Environment Table 3 Standards under O. Reg. 153/04. All other parameters tested in soil and groundwater meet the Table 3 Standards.

Table of Contents

EXE	EXECUTIVE SUMMARYi					
1.0	INTRO	DUCTION	.1			
	1.1	Site Description	. 1			
	1.2	Property Ownership	. 1			
	1.3	Current and Proposed Future Uses	. 2			
	1.4	Applicable Site Condition Standard	. 2			
2.0	ВАСКС	BROUND INFORMATION	. 3			
	2.1	Physical Setting	. 3			
	2.2	Past Investigations	. 3			
	2.2.1	Phase One ESA	. 3			
3.0	SCOPE	OF THE INVESTIGATION	. 6			
	3.1	Overview of Site Investigation	. 6			
	3.2	Media Investigated	. 7			
	3.3	Phase One Conceptual Site Model	.7			
	3.4	Deviations from Sampling and Analysis Plan1	10			
	3.5	Impediments1	1			
4.0	INVEST	FIGATION METHOD1	12			
	4.1	General1	12			
	4.2	Drilling1	12			
	4.3	Soil: Sampling1	12			
	4.4	Field Screening Measurements1	13			
	4.5	Groundwater: Monitoring Well Installation1	14			
	4.6	Groundwater: Field Measurements for Water Quality Parameters1	14			
	4.7	Groundwater: Sampling1	15			
	4.8	Sediment: Sampling1	15			
	4.9	Analytical Testing1	15			
	4.10	Residue Management Procedures1	15			
	4.11	Elevation Surveying1	15			
	4.12	Quality Assurance and Quality Control Measures1	6			

5.0	REVIEV	REVIEW AND EVALUATION				
	5.1	Geology	18			
	5.2	Groundwater: Elevations and Flow Direction	18			
	5.3	Groundwater: Hydraulic Conductivity, Hydraulic Gradients and Velocity	19			
	5.3.1	Hydraulic Conductivity	19			
	5.3.2	Hydraulic Gradients	19			
	5.3.3	Groundwater Velocity	19			
	5.4	Coarse Soil Texture	19			
	5.5	Soil: Field Screening	20			
	5.6	Soil: Quality	20			
	5.7	Groundwater: Quality	21			
	5.8	Sediment: Quality	22			
	5.9	Quality Assurance and Quality Control Results	22			
	5.10	Phase Two Conceptual Site Model	24			
6.0	CONCL	USIONS AND RECOMMENDATIONS	31			
7.0	REFERENCES					
8.0	LIMITATIONS					
9.0	SIGNATURES					

TABLES

Table 1 – Monitoring Well Construction Details
Table 2 – Groundwater Elevations
Table 3 – Summary of Soil Samples Submitted for Laboratory Analysis
Table 4 – Summary of Groundwater Samples Submitted for Laboratory Analysis
Table 5A – Soil Analytical Results: Petroleum Hydrocarbon Fractions 1 to 4
Table 5B – Soil Analytical Results: Volatile Organic Compounds
Table 5C – Soil Analytical Results: Polycyclic Aromatic Hydrocarbons
Table 5D – Soil Analytical Results: Polychlorinated Biphenyls
Table 5E – Soil Analytical Results: Metals
Table 6A – Groundwater Analytical Results: Petroleum Hydrocarbon Fractions 1 to 4
Table 6B – Groundwater Analytical Results: Volatile Organic Compounds
Table 6C – Groundwater Analytical Results: Polycyclic Aromatic Hydrocarbons
Table 6D – Groundwater Analytical Results: Polychlorinated Biphenyls
Table 6E – Groundwater Analytical Results: Metals

FIGURES

Figure 1 – Key Plan

Figure 2 – Site Plan

Figure 3 – Groundwater Exceedances

Figure 4 – Groundwater Elevations and Interpreted Groundwater Flow Direction

Figure 5 – Geological Cross Section A – A'

Figure 6 – Geological Cross Section B – B'

APPENDICES

APPENDIX A (i) Sampling and Analysis Plan

APPENDIX A (ii) Field Logs

APPENDIX A (iii) Certificates of Analysis

1.0 INTRODUCTION

1.1 Site Description

Golder was retained by RioCan to conduct a Phase Two ESA of the following property:

	The Site is comprised of eleven municipal addresses in Ottawa, Ontario:			
Municipal Addresses	 1265 Carling Avenue 1271 Carling Avenue 1277 Carling Avenue 1277 Carling Avenue 1277A Carling Avenue 1285 Carling Avenue 1299 Carling Avenue 1299 Carling Avenue 1309 Carling Avenue 			
Property Identification Number	040250172			
Legal Description	Part of Lot 33, Concession 10F of Part 1, 5, 7, 5R14579, T/W CR340247; S/T CR334034, Ottawa/Nepean.			
Size of the Phase Two Property	3.96 hectares (ha)			

The Site location is provided on Figure 1. A Site plan is provided on Figure 2. A plan of survey for the Site was not available at the time this report was prepared. The boundaries of the Phase Two Property are provided in Figure 2.

It is understood that the Phase Two Property is to be redeveloped with residential and commercial properties and that this redevelopment is to occur in three separate stages. The first stage of redevelopment consists of a single residential building to be located in the southeast corner of the Site (as shown on Figure 2) (hereinafter referred to as the "area of first development").

1.2 Property Ownership

The contact information for the Phase Two Property owner is as follows:

Site Owner / Client	Address	Contact Information
RioCan Management Inc.	RioCan Yonge Eglinton Centre 2300 Yonge Street, Suite 500 Toronto, Ontario M4P 1EP	Melissa Cristofoli Office: (416) 643-6678 Email: mcristofoli@riocan.com

Authorization to proceed with this investigation was received from Stuart Craig of RioCan on October 2, 2015.

1.3 Current and Proposed Future Uses

The Phase Two Property is currently developed with two commercial buildings including the Westgate Shopping Centre and the Monkey Joe's Restaurant. The Phase Two Property was reportedly first developed around 1948 with an oil warehouse on the west side of the Site and was redeveloped as the Westgate Shopping Centre in 1955 with the addition of the Monkey Joe's building in the 1970's. The proposed future use of the Phase Two Property is mixed commercial and residential.

1.4 Applicable Site Condition Standard

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 3 Generic Site Condition Standards (residential property use, coarse textured soil) presented in the Ministry of Environment ("MOE") "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site and all other properties located, in whole or in part, within 250 metres of the Site are supplied by the City of Ottawa municipal drinking water system and have no wells installed;
- The Site is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water;
- Based on field observations and the results of grain size analyses presented in Appendix A (iii), the glacial till encountered at the Site is considered to be coarse textured and more than one third of the soil materials at the Site are considered to be coarse textured;
- The closest water body is the Ottawa River, located 2.2 kilometres ("km") north and northwest of the Phase Two Property;
- There are no features on the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41;
- The intended land use for the Phase Two Property is mixed residential and commercial; and,
- The overburden thickness is greater than 2 metres over more than one-third of the Phase Two Property.

2.0 BACKGROUND INFORMATION

This section presents the background conditions of the Phase Two Property including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site, and to develop the information necessary to complete a Record of Site Condition ("RSC") for the property. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Site; and,
- Conducting field sampling for all contaminants of concern ("COC") associated with all areas of potential environmental concern identified at the Site.

2.1 Physical Setting

The nearest surface water body is the Ottawa River, located 2.2 km north and northwest of the Phase Two Property. There are no identified areas of natural significance within the Phase One Study area. Land uses surrounding the Phase Two Property include parkland, residential, institutional and commercial and uses, as shown in Figure 2. The Phase Two Property is bordered by roadways on the north, south and east sides.

The topography of the Phase Two Property and surrounding areas is generally flat, with some sloping to the south, away from Highway 417, which is at a higher elevation than the Site. Highway 417 is elevated relative to the Site by means of fill. The Site is sloped to allow for drainage of surface water to on-Site stormwater catch basins.

2.2 Past Investigations

2.2.1 Phase One ESA

Golder recently conducted a Phase One ESA for the Site, the results of which were documented in Golder Report No. 1522569(17000) entitled, "*Phase One Environmental Site Assessment, Westgate Shopping Centre, Ottawa, Ontario*", dated September 2015, to assess the likelihood of soil and/or groundwater contamination resulting from historic or present activities at the Site and surrounding area. This included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. The APECs identified in the 2015 Phase One ESA are summarized in the following table:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
1. Fill (Site-wide)	Fill is reportedly present across the Site.	#30. Importation of Fill Material of Unknown Quality	On-Site	Metals, PAHs	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
2. On-Site and Off-Site Soil and Groundwater	It was reported by the Site Representative that there was previously oil storage USTs at the rear of the mall. It was reported that the clean-up and removal was completed by Pinchin, but no report was provided to Golder for review. Also, it was noted that there were hydrocarbon products stored on the Site in the 1925 (revised 1948) FIP in a defined area along the extreme southwestern part of the site. In addition there are off-Site PCAs that may contribute to APECs on-Site. ASTs were located at service stations/garages/industrial properties at six locations hydraulically down- and-cross gradient of the Site. Approximate addresses are: 1. 1376 Carling Avenue 2. 1354 Carling Avenue 3. 1330 Carling Avenue 4. 1331 Carling Avenue 5. 1316 Carling Avenue 6. 872 Merivale Road	#28. Gasoline and Associated Products in Fixed Tanks #10. Commercial Autobody Shops	On-Site and off- Site	PHCs F1-F4 (including BTEX), VOCs, PAHs	Soil and Groundwater
3. Transformer Room (on-Site, west end)	Basement of the Shopper's Drug Mart has a Hydro Ottawa transformer room.	#18. Electricity Generator, Transformation and Power Stations	On-Site	PHCs F1-F4, PCBs	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
4. On-Site and Off-Site Soil and Groundwater (south of the Site)	A dry cleaning facility was formerly located in the on-Site shopping centre. Another dry cleaning facility was identified within the Study Area; approximately 100 m south of the Site at 1317 Carling Avenue.	#37. Operation of Dry Cleaning Equipment (where chemicals are used)	On-Site and Off-Site	VOCs	Soil and Groundwater
5. Off-Site Soil and Groundwater (east of the Site)	Eastern part of the Site. APEC is located at the northeast corner of the intersection of Carling Avenue and Merivale Road. The address is 1275 Carling Avenue.	#18. Electricity Generator, Transformation and Power Stations	Off-Site	PHCs F1-F4 (including BTEX), PCBs	Soil and Groundwater
6. Off-Site Soil and Groundwater (north, east and south of the Site)	There were rail lines along two sides of the Site, along the Highway 417 corridor and along Merivale Road.	#46. Rail Yards, Tracks and Spurs	Off-Site	Metals, PHCs F1-F4 (including BTEX), PAHs, VOCs	Soil and Groundwater

Notes:

PCA # potentially contaminating activity as listed O.Reg. 153/04, Schedule D, Table 2

PHC petroleum hydrocarbon compound fractions

BTEX benzene, toluene, ethylbenzene, xylenes

VOC volatile organic compounds

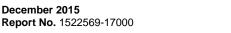
PAH polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyls

PCA potentially contaminating activity

This report was prepared by the Qualified Person and will be relied upon for the Phase Two investigation.

SCOPE OF THE INVESTIGATION 3.0


3.1 **Overview of Site Investigation**

The Phase Two ESA investigation activities were completed between November 24, 2014 and December 2, 2014 and included the following tasks:

- Health and Safety Plan: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site.
- Utility Clearances: Coordination of utility clearances with local utility companies along with retaining the services of a private locator to assess for possible services in the areas of the proposed test locations.
- Borehole Advancement and Monitoring Well Installation: The borehole drilling and monitoring well installation program included drilling of ten boreholes. Eight (8) of the ten (10) boreholes were completed as groundwater monitoring wells, all of which were used for groundwater sampling at the Site. The rationale for the selected location of the boreholes is provided in the Sampling and Analysis Plan provided in Appendix A(i). The location of the boreholes and monitoring wells are shown on Figures 2 and 3. The monitoring well construction details are presented in Table 1.
- Soil Sampling: Selected soil samples were collected on October 7, 8, 9 and 13, 2015 from the boreholes. Soil samples were submitted for chemical analysis of one or more of the following; petroleum hydrocarbons fraction 1 to fraction 4 ("PHCs F1-F4"), volatile organic compounds ("VOCs"), polycyclic aromatic hydrocarbons ("PAHs"), polychlorinated biphenyls ("PCBs") and/or metals (including mercury and chromium VI).
- Groundwater Monitoring and Sampling: Groundwater samples were collected on October 14, 2015. Groundwater samples were submitted for analysis of one or more of the following; PHCs F1-F4, VOCs, PAHs, PCBs and/or metals (including mercury and hexavalent chromium). Static groundwater levels were measured in the monitoring wells located across the Site on October 14, 2015 and November 9, 2015. However, the monitoring wells at 15-03, 15-04 and 15-06 could not accessed on November 9, 2015 and as such, the groundwater levels in these locations were not measured on this date.
- Surveying: An elevation survey for the boreholes and monitoring wells advanced as part of the Phase Two ESA investigation was completed on October 14, 2015.
- **Reporting:** Golder compiled and assessed the field and laboratory results from the above noted activities into this report.

The Phase Two investigation was carried out in general accordance with Golder's standard operating procedures, which conform to the requirements of O. Reg. 153/04. The data from the Phase Two ESA investigation completed by Golder at the Site were incorporated into a single Phase Two ESA report following the Phase Two ESA report format required under O. Reg. 153/04 (as amended).

There were no impediments or access limitations that would affect the conclusions of this Phase Two ESA report.

December 2015

3.2 Media Investigated

To address the potential environmental issues identified in the Phase One ESA, the Phase Two ESA field program included sampling of subsurface soil and of groundwater from wells screened within the overburden at the Site. No sediment was present at the Site and therefore no sediment sampling was completed. A summary of media investigated and the applicable contaminants of potential concern are provided in Tables 3 and 4. The sampling and analysis plan outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA.

3.3 Phase One Conceptual Site Model

The Phase One ESA Conceptual Site Model ("CSM"), described below, is based on the results of the September 2015 Phase One ESA investigation.

- The Site consisted of a 3.96 hectare irregularly shaped parcel of land developed with a two commercial buildings including the Westgate Shopping Centre and the Monkey Joe's Restaurant. The Westgate Shopping Centre is one to two-storey building that occupies approximately half of the footprint of the Site and the Money Joe's Restaurant is a one-storey building that occupies approximately two percent of the footprint of the Site;
- No water bodies or areas of natural significance were identified on or within the Phase One Study Area;
- Potable water in the vicinity of the Site is supplied by the City of Ottawa and is obtained from the Ottawa River. No potable water wells were identified within the Phase One Study Area;
- At the time of the Phase One ESA, the Phase One Property was developed with two commercial buildings including the Westgate Shopping Centre and the Monkey Joe's Restaurant. The Site has been developed as the Westgate Shopping Centre and associated parking areas since 1955, with the addition of the Monkey Joe's building in the 1970's. Historically, the Phase One Property was first developed as an oil storage facility between around 1951;

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	<i>Importation of Fill Material of Unknown</i> <i>Quality</i> – Fill was noted in a borehole record for the Site, as well as expected to have been brought to the Site during the construction of the Westgate Shopping Centre.	Previous EcoLog ERIS Report and Site Observations	The PCA is located on the Phase One Property and must be identified as an APEC.
Phase One Property	Gasoline and Associated Products Storage in Fixed Tanks It was reported by the Site Representative that there used to be heating oil storage USTs at the rear of the mall. The USTs were located at the north and northwest corner of the mall, near to the locations of the former boiler rooms. It was reported that the UST	Site Representative	The PCA is located on the Phase One Property and must be identified as an APEC.

The following PCAs (resulting in APECs on-Site) were identified within the Phase One Study Area:

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	clean-up and removal was completed by Pinchin in 2010, but no report was provided to Golder for review. Also, it was noted that there were hydrocarbon products stored on the Site in the 1925 (revised 1948) FIP in a defined area along the extreme southwestern part of the Site.		
	<i>Electricity Generator, Transformation</i> <i>and Power Stations</i> – There is a Hydro-Ottawa electrical vault in the basement of the Shopper's Drug Mart, which was not accessed during the Site visit due to accessibility restriction (Hydro Ottawa only). The Hydro vault has been in the building since approximately the construction of the mall. There is also a suspected additional decommissioned transformer room at the west side of the mall.	Site Observations	The PCA is located on the Phase One Property and is therefore identified as an APEC.
	Operation of Dry Cleaning Equipment – There has been a dry cleaner facility in the Westgate Shopping Centre. Based on a historic mall Site Plan and the extended construction of the Shopper's Drug Mart, the dry cleaners would have been in the area that is now adjacent to the Shopper's Drug Mart.	1965 FIP, aerial images, city directories	The PCA is located on the Phase One Property and is therefore identified as an APEC.
Phase One Study Area (excluding the	Railyards, Tracks and Spurs – A railway corridor was located in the path of the current Highway 417 (adjacent to the Site), as well as there was additional railway lines running along what is currently Merivale Road, east of the Site (adjacent).	Aerial photographs (1945)	Based on the up and cross gradient location of this PCA to the Site, as well as the close down-gradient proximity, and the nature of impacts associated with this PCA (which may migrate through groundwater) the presence of this PCA may impact the Phase One Property.
Phase One Property)	Railyards, Tracks and Spurs – A rail yard was located approximately 150 to 200 m southeast of the Site.	Aerial photographs (1945)	Given that this facility was separated from the Site by 150 m including Merivale Road and Carling Avenue and their underlying services, it is not considered to be a PCA that will result in an APEC on the Site.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	Operation of Dry Cleaning Equipment – A former dry cleaner facility was located south of the Site along Carling Avenue. It was located within 00 m of the Site.	City directories	Based on the up-gradient location of this PCA to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.
	<i>Electricity Generator, Transformation</i> <i>and Power Stations</i> – A Hydro Ottawa Sub-Station is located east of the Site, at the intersection of Merivale Road and Carling Avenue. The sub-station has been in operation since prior to 1945 and known to have contained PCBs and transformers. The power station is approximately 30 m east of the Site.	1965 FIP, Trow (1994), aerial images, Site Observations, Site Representative, city directories	Based on the cross gradient location of this PCA to the Site, as well as the close proximity, and the nature of impacts associated with this PCA (which may migrate through groundwater) the presence of this PCA may impact the Phase One Property.
	<i>Gasoline and Associated Products</i> <i>Storage in Fixed Tanks</i> – Review of historical documentation indicates that there were approximately six locations cross-to-down gradient of the Site, within 250 m, that had gasoline and/or associated products in fixed tanks (primarily USTs, some ASTs).	1965 FIP, Trow (1994), aerial images, Site Representative, city directories	Based on the down and cross-gradient location of these PCAs to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.
	Commercial Autobody Shops – There is a Second Chance Auto Sales building approximately 40 m southwest of the Site that has a garage at the rear of the building. There are also historical references to auto repair shops in the Study Area, including the former Department of Highways and the garage and service station at the intersection of Thames and Merivale.	1965 FIP, aerial images, Site Observations, city directories	Based on the up and cross-gradient location of these PCAs to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	<i>Industrial Land Use</i> – The Seven-Up Bottling Co. was located south of the Site and had a UST on the property. In addition, west of the Site the former Barrington Petroleum Products and Ontario Department of Highways facilities may have been considered industrial.	1965 FIP, aerial images, city directories	Based on the up and cross-gradient location of these PCAs to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.

- No formal utility drawings are available for the Site, however, utility locates undertaken at the Site have identified the location of all underground utilities. Given Golder's understanding of the Site, the absence of formal drawings does not represent a significant limitation to the Phase One ESA;
- The surficial soil at the Site consists primarily of glaciomarine and marine deposits of silt and clay (basin and quiet water deposits). The EcoLog ERIS Report indicated that the Site and Study Area are predominately silty clay and till. Bedrock in the Phase One Study Area is Middle Ordovician: limestone, dolostone, shale, arkose and sandstone. Records from the EcoLog ERIS report indicated that the Site and Phase One Study Area have limestone and shale bedrock. The borehole record identified nearest to the Site indicated that there is grey limestone bedrock at a depth of 13.7 metres below ground surface (mbgs); and,
- Local and regional groundwater flow is anticipated to flow in a northern direction toward the Ottawa River located approximately 2.2 km north and northwest of the Site. The Rideau Canal is also located approximately 2.3 km east of the Site. There are many subsurface utilities in the vicinity of the Site and groundwater flow direction may be affected.

3.4 Deviations from Sampling and Analysis Plan

A sampling and analysis plan is provided in Appendix A(i) which incorporates the 2015 investigation program. The sampling and analysis plan outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA. This plan was prepared prior to the October 2015 field investigation covers the activities undertaken during the Phase Two ESA. The procedures described in the Sampling and Analysis Plan were generally followed with the following exceptions:

- The borehole and monitoring well at 15-05 was could not be completed at its proposed location due to underlying utilities and as such it was completed to the west of its proposed location. The actual location of the borehole and monitoring well was not at an optimal location;
- The borehole and monitoring well at BH15-07 could not be drilled as access to this location was restricted to overhead utilities;

- During the field activities, it was difficult to determine the true water table in the clay and therefore, the monitoring wells were installed to straddle the inferred water table. However, the groundwater level measurements taken after well installation indicated that the water level monitoring wells those at 15-01, 15-04 and 15-05 rose to above the screen or sand pack. Given that PHCs were either non-detect or detected at low concentrations, the deviation of the sampling analysis plan with respect to well screen position is not considered to have caused an impediment to the Phase Two ESA; and,
- The soil sample submitted from BH15-02 was not analyzed for PCBs as outlined in the sampling and analysis plan. Given that no PCBs were detected in the groundwater sample collected from this location, the soil at this location is not inferred to have PCB impacts. As such, the absence of the PCB analysis from this soil sample is not considered to have caused an impediment to the Phase Two ESA.

No further material deviations from the sampling and analysis plan were identified in the course of the investigation.

3.5 Impediments

Overhead utilities restricted access to the location of BH15-07 and as such, the proposed borehole and monitoring well at this location could not be completed. Supplemental investigation is planned to drill at this location with equipment that does not restrict drilling access. No other physical impediments to the Phase Two ESA investigation were encountered.

4.0 INVESTIGATION METHOD

4.1 General

The following sections describe the pre-field work activities and field investigation methodology employed during the Phase Two ESA conducted at the Site. The field work was conducted between October 7, 2015 and October 14, 2015.

Prior to initiating the field work, Golder developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. A health and safety tail gate meeting was held with Golder's subcontractors each day prior to completion of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, Golder completed public and private utility clearances.

4.2 Drilling

Ten boreholes (identified as BH15-01 to BH15-06 and BH15-08 to BH15-11) were advanced at the Site. Borehole locations are provided in Figure 3. All boreholes were advanced by George Downing Estate Drilling Ltd. ("Downing") using a CME-75 truck-mounted drilling rig with the exception of BH15-04 and BH15-09. The overburden at BH15-04 was drilled using a GeoProbe 7822DT and the bedrock was cored at this location using a CME-75 truck-mounted drilling rig. BH15-09 was advanced into bedrock using a CME-75 truck-mounted drilling rig.

During borehole drilling activities with the GeoProbe 7822DT, overburden soil samples were recovered at regular depth intervals (0.75 m) using a 51 mm diameter PVC sleeve macro sampler.

During borehole drilling activities with the CME-75 truck-mounted drilling rig, overburden soil samples were collected using split spoon soil sampling equipment and augered using 200 mm outside diameter ("OD") solid stem augers. Continuous soil samples were collected using the following method:

Split-spoon: 0.61 m (2 foot) long, 5.08 cm (2 inch) diameter stainless steel split spoon sampling system at 0.76 m long intervals. Split-spoons were decontaminated between sample locations.

The boreholes (excluding BH15-04 and BH15-09 which were advanced into bedrock) were advanced to depths of 6.10 mbgs. Upon reaching bedrock at BH15-04 and BH15-09, diamond drilling using NQ sized core was used to reach the maximum drilling depths of 16.13 and 20.34 mbgs, respectively. Bedrock was encountered at a depth of 13.46 mbgs at BH15-04 and at a depth of 16.28 mbgs at BH15-09.

4.3 Soil: Sampling

Soil samples were split in the field into two components. One component of each sample was placed into laboratory supplied sample jars and stored in a cooler with ice for possible subsequent chemical analysis. The second component of the sample was placed inside a labelled plastic bag for subsequent field headspace screening. When handling all soil samples, a clean gloved hand was used and all equipment in contact with soils was decontaminated between sampling locations to minimize the potential for cross-contamination.

The subsurface soil conditions within the boreholes were described in terms of their texture, presence of staining, odour and debris, if any. Geologic descriptions of soil samples are presented in the Record of Borehole sheets (Appendix A(ii)).

All soil samples collected and submitted for chemical analysis were obtained from undisturbed soils, including fill materials and native overburden, from the Site by borehole drilling methods. Nitrile gloves were worn when handling soil samples and all equipment in contact with soils was washed between sample locations to prevent the potential of cross contamination. Two soil samples were submitted as part of this investigation for grain size analysis to support the use of the coarse textured soil site condition standard for use at the Site.

As per the sampling and analysis plan, provided in Appendix A(i), one soil sample was submitted from each test location with the exception of BH15-08 from which two soil samples were submitted.

Soil samples submitted for chemical analysis were based on visual (e.g., staining, discolouration and/or free product, if any) and/or olfactory (if any) observations obtained from borehole drilling activities. Otherwise, if no visual or olfactory observations were noted, the highest recorded field screening reading and/or depth horizons at which potential contamination was considered most likely to have occurred was used to determine which soil sample to submit for analysis from each test location.

Visual and olfactory observations and results of soil headspace measurements are presented on the Record of Borehole sheets provided in Appendix A(ii).

4.4 Field Screening Measurements

Field measurements of sample headspace concentration were made using the following equipment:

Equipment	Make and Model	Parameter s Detected	Detection Limits	Precision	Accuracy	Calibration Standard	Calibration Procedure
Photo- ionization detector (PID) MiniRae 3000 10.6 EV bulb	MiniRae 3000, Serial No. 592903395	Organic vapours	0 - 15,000 ppm	N/A	+/- 3%	100 ppm Isobutylene	By supplier prior to fieldwork & by Golder Associates field staff during work

The PID was used to provide an estimate of the relative concentrations of organic vapours in the headspace of each soil sample and was used to support selection of soil samples for submission for laboratory analysis. The selection of "worst case" soil samples submitted for laboratory analysis of the COCs was based on professional judgement which included a consideration of the highest organic vapour readings, visual and olfactory evidence of potential contamination (PHC odour, presence of debris) and the depths of the soil sample collection (depth horizons at which potential impact would most likely have occurred, such as from the upper fill layer or near the water table).

The results of soil headspace screening measurements are provided in the Record of Boreholes in Appendix A(ii).

4.5 Groundwater: Monitoring Well Installation

Groundwater monitoring wells were installed into eight of the ten boreholes (BH15-1 to BH15-6, BH15-8 and BH15-10) by Downing using threaded 32 mm diameter, schedule 40, polyvinyl chloride ("PVC") well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annulus surrounding the screened portion of the well and an approximately 0.3 m portion of the riser pipe above the slotted pipe was filled with silica filter sand. The monitoring well was completed with a flush mount style protective well casing set in concrete and sealed by bentonite from the top of the sand pack up to the base of the concrete around the protective well casing. The riser pipes were sealed with a protective cap.

Following drilling, the monitoring wells were developed on October 9 and 13, 2015 by removing up to ten well volumes or by removing groundwater until the well was purged three times dry, using dedicated Waterra® inertial pumps (polyethylene tubing with foot valves). During monitoring well development, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odours.

Monitoring well construction details are summarized in Table 1 and presented in the Record of Borehole sheets (Appendix A(ii)).

4.6 Groundwater: Field Measurements for Water Quality Parameters

Groundwater indicator parameters including temperature, pH, conductivity, oxidation-reduction potential ("ORP") and dissolved oxygen were measured prior to sampling to ensure adequate well development and purging. A Horiba U-52 water quality meter was used to measure groundwater quality during monitoring well development and groundwater sampling. The instrument was calibrated using factory supplied solutions for electrical conductivity (0.718 milliSiemens per centimetre (mS/cm). 5.0 mS/cm and 80.0 mS/cm), pH (4.01 pH and 7.01 pH), turbidity (0 nephelometric turbidity units (NTU) and 800 NTU), dissolved oxygen (0 milligram per litre (mg/L)), temperature (19.0 degrees Celsius (°C)) and ORP (240 millivolts (mV)) parameters. Specifications of the Hoiba U-52 for each parameter are outlined in the following table:

Parameter	Range	Resolution	Accuracy
рН	0.00 to 14.00 pH	0.01 pH	±0.1 pH
Conductivity	0.00 to 100 mS/cm	0.01 mS/cm	± 0.1%
Temperature	-5 to 55 ℃	0.01 °C	± (0.3 + 0.005*absolute value of temperature) °C
Dissolved Oxygen	0 to 50 mg/L	0.01 mg/L	± 0.1%
Oxidation-Reduction Potential	-2000 to +2000 ORP	0.1 mV	± 15 mV

4.7 Groundwater: Sampling

Prior to the groundwater sampling the wells were purged by using a peristaltic pump. During the well purging, qualitative observations were made of water colour, clarity, the presence or absence of any hydrocarbon sheen and any odours present. Free phase product, odour or sheen were not observed or detected with the oil/water interface probe in any the monitoring wells during the groundwater purging or sampling. Groundwater sampling was carried at the Site out using a peristaltic pump with dedicated Waterra[™] polyethylene tubing on October 14, 2015.

Samples were placed in laboratory-prepared containers and stored on ice, in a cooler until delivery to AGAT Laboratories ("AGAT"). Samples were analyzed for PHC F1, PHCs F2-F4, VOCs, PAHs, PCBs, and/or metals (including mercury and hexavalent chromium) following chain-of-custody procedures. Details of the parameters analyzed at each monitoring well are presented in Table 4.

4.8 Sediment: Sampling

No sediment samples were collected as part of this investigation.

4.9 Analytical Testing

Soil and groundwater analyses were conducted by AGAT. The contact information for the analytical laboratory is included below.

AGAT Laboratories

5835 Coopers Avenue Mississauga, Ontario, L4Z 1Y2 Laboratory Contact: Sandra Consulta 905-712-5106

The analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 (CALA) (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation or another accreditation body accepted by the MOECC.

4.10 Residue Management Procedures

All residues produced during the investigation (soil cuttings from drilling, groundwater from well development purging, wash water from equipment decontamination) were placed in sealed drums and temporarily stored on-Site. Upon receipt of analytical results, all residues were disposed of off-site.

4.11 Elevation Surveying

All boreholes and monitoring wells were surveyed on October 14, 2015 using a Trimble R8 to a geodetic benchmark. Borehole elevations are indicated on the Field Logs in Appendix A(ii).

Groundwater levels were monitored in all eight monitoring wells to determine groundwater flow direction and were measured relative to the elevation of the top of the PVC riser. An oil/water interface probe was used to investigate the potential presence of product in the monitoring wells.

A summary of recorded groundwater elevations is provided in Table 2.

4.12 Quality Assurance and Quality Control Measures

Golder's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities;
- All monitoring wells were developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling;
- Monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable;
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples;
- The collection of at least one trip blank and one trip spike for sampling events that include the analysis of volatile organic compounds in groundwater;
- The collection of one field blank;
- Initial calibration of field equipment was performed at the start of each field day, with a daily checks of calibration, as needed, using a standard of known concentration;
- Soil and groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the Ministry of the Environment (MOE) Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act, July 1, 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody;
- Dedicated sampling equipment (tubing and footvalves) and clean disposable NitrileTM gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment was: cleaned by mechanical means; washed with a laboratory-grade detergent (e.g., phosphate-free LiquiNox or AlcoNox) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water;
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses; and,
- The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

Below is a summary of the primary and duplicate samples collected between November and December 2014.

Date	Soil Samples Collected	Duplicates	Trip Blanks
October 7 - 13, 2015	BH15-01 SA1, BH15-01 SA2, BH15-01 SA3, BH15-01 SA4, BH15-01 SA5, BH15- 01 SA6, BH15-01 SA7, BH15-02 SA1, BH15-02 SA2, BH15-02 SA3, BH15-02 SA4, BH15-02 SA5, BH15-02 SA6, BH15- 02 SA7, BH15-02 SA8, BH15-02 SA9, BH15-03 SA1, BH15-03 SA2, BH15-03 SA3, BH15-03 SA4, BH15-03 SA5, BH15- 03 SA6, BH15-03 SA7, BH15-03 SA8, BH15-03 SA9, BH15-03 SA10, BH15-04 SA1, BH15-04 SA2, BH15-04 SA3, BH15- 04 SA4, BH15-04 SA5, BH15-04 SA6, BH15-04 SA7, BH15-04 SA8, BH15-04 SA9, BH15-04 SA10, BH15-05 SA1, BH15-05 SA2, BH15-05 SA3, BH15-05 SA4, BH15-06 SA1, BH15-05 SA6, BH15- 05 SA7, BH15-06 SA1, BH15-06 SA2, BH15-06 SA3, BH15-06 SA4, BH15-06 SA5, BH15-08 SA2, BH15-06 SA7, BH15- 08 SA1, BH15-08 SA2, BH15-08 SA3, BH15-08 SA4, BH15-08 SA5, BH15-08 SA6, BH15-08 SA7, BH15-09 SA3, BH15-09 SA4, BH15-09 SA5, BH15-09 SA6, BH15-09 SA7, BH15-09 SA3, BH15-10 SA3, BH15-10 SA4, BH15-10 SA5, BH15-11 SA1, BH15-11 SA2, BH15-11 SA3, BH15-11 SA4, BH15-11 SA5, BH15-11 SA6, BH15-11 SA7 (84)	DUP1 (duplicate of BH15-01 SA6), DUP2 (duplicate of BH15-02 SA3), DUP3 (duplicate of BH15-03 SA5), DUP4 (duplicate of BH15-05 SA10), DUP5 (duplicate of BH15-04 SA6), DUP6 (duplicate of BH15-06 SA6), DUP8 (duplicate of BH15-08 SA6), DUP10 (duplicate of BH15-10 SA6) (8)	NA
Date	Groundwater Samples Collected	Duplicates	Trip Blanks
October 14, 2015	15-01, 15-02, 15-03, 15-04, 15-05, 15-06, 15-08, 15-10, (7)	DUP3 (duplicate of 15-03), DUP8 (duplicate of 15-08) (2)	Trip blank

5.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, monitoring and sampling activities conducted as part of the Phase Two ESA.

5.1 Geology

The soil conditions encountered during the borehole drilling are presented in the Record of Borehole sheets and provided in Appendix A(ii), as well as in the cross sections presented in Figure 5 and 6, with the cross section location shown on Figure 3. The following presents a summary of the subsurface soil conditions encountered during the investigation.

In general, the subsurface stratigraphy within the area of the investigation consists of surficial fill materials (including fill associated with the parking lot pavement structure) overlying silty clay which is generally underlain by glacial till at depths of 3.7 to 6.1 mbgs. The two boreholes, BH15-04 and BH15-09, that penetrated through the till encountered limestone bedrock at depths ranging from 13.5 and 16.3 mbgs, respectively.

Based on the soil conditions encountered in the boreholes, the native silty clay and glacial till is not considered a significant water bearing formation at the Phase Two Property.

5.2 **Groundwater: Elevations and Flow Direction**

All monitoring wells were used in the interpretation of shallow groundwater contours and shallow groundwater flow direction. Any temporary fluctuation in water levels on the Phase Two Property is not anticipated to effect the conclusions of the Phase Two ESA.

The base of shallow groundwater monitoring well screen intervals were installed at elevations ranging from approximately 61.33 masl (12.75 mbgs) to 69.39 masl (6.1 mbgs). The location and depth of the screens were selected based on the issues being investigated, and were installed in an attempt to straddle the water table. A summary of the monitoring well construction details are presented in Table 1. Monitoring for free phase product using an interface probe was conducted on October 14, 2015. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed.

Static groundwater levels were measured in the monitoring wells located across the Site on October 14, 2015 and November 9, 2015. However, the monitoring wells at 15-03, 15-04 and 15-06 could not accessed on November 9, 2015 and as such, the groundwater levels in these locations were not measured on this date. Groundwater elevations at the Site ranged from 69.70 masl (BH15-08) to 73.64 masl (BH15-01) and were encountered at depths of 1.26 to 5.46 mbgs. Based on the interpreted groundwater elevation contours presented in Figure 4, the inferred direction of groundwater flow is to the northwest, towards Merivale Road. It is interpreted that the services in Merivale Road and Carling Avenue as well as the basements located on the northeast and southwest corner of the Westgate Shopping Centre are influencing the groundwater flow.

Based on the soil conditions encountered in the boreholes and the water level measurements, the native silty clay unit was inferred to act as an aquitard.

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified, however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

Underground utility information available for the Phase Two Property indicate that the Site is utility lines including telecommunication, municipal water, storm sewers, sanitary sewers and hydro connect the Site below ground from multiple locations. A sanitary sewer runs parallel to the western edge of the shopping centre and it located to the west of the monitoring well at 15-03. The only basements located on Site are two in the Westgate Shopping Centre; one which is located below the Shopper's Drug Mart unit and the other that is located at the rear of the east end of the mall. Given the close proximity of the westernmost sanitary sewer and basement on the western half to Site to the monitoring well at 15-03 and that the groundwater elevation in this monitoring well was measured to be 2.75 mbgs, the VOC contaminants present in groundwater in this location have migrated into the sanitary sewer trench and below the basement of the shopping centre. However, given that the depths to groundwater on the eastern half of the Site were 4.74 mbgs (at BH15-08) and 4.80 mbgs (at BH15-10), the subsurface utilities and structures on the eastern half of the Phase Two Property are not expected to act as preferential pathways promoting the migration of COCs as the water table is not inferred to intercept buried utilities and subsurface structures in this portion of the Phase Two Property. In addition, no COCs are present in groundwater on this portion of the Phase Two Property. In addition, standards.

5.3 Groundwater: Hydraulic Conductivity, Hydraulic Gradients and Velocity

5.3.1 Hydraulic Conductivity

Rising head test was completed in the monitoring wells at 15-05, 15-06 and 15-08 on October 14, 2015. Based on the results on the three rising head test, the average hydraulic conductivity was calculated to be approximately 2.37×10^{-7} m/s.

5.3.2 Hydraulic Gradients

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels collected on October 14, 2015 and November 9, 2015, and the inferred groundwater contours are presented on Figure 4. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be between 0.01 and 0.03 m/m. Variability in hydraulic gradients calculated at the Phase Two property may be related to the presence of foundations/buried structure, bedding materials, and buried services at the Site.

Vertical hydraulic gradients need to be confirmed at the Site as no nested pairs were available for evaluation.

5.3.3 Groundwater Velocity

Groundwater flow velocity was determined based on the average hydraulic conductivity and the horizontal gradients. The minimum groundwater flow velocity was calculated to be 2.37×10^{-9} m/s and the maximum groundwater flow velocity was calculated to be 7.10×10^{-9} m/s.

5.4 Coarse Soil Texture

Two representative soil samples (BH15-09 SA7 and BH15-09 SA12) were collected from native overburden materials and submitted to Golder's geotechnical laboratory for a 75 µm sieve wash test. The test results are provided in Appendix A(iii). The two samples were considered to be sufficient, given that native soil encountered during the Phase Two ESA was homogeneous across the Site.

Based on fieldwork observations, borehole stratigraphy and the sieve analysis results, more than 50% of particles (by mass) in the soil were greater than 75 μ m in mean diameter. Accordingly, the Site soil is considered to be coarse-textured.

5.5 Soil: Field Screening

Headspace vapour measurements were conducted on the soil samples collected from each borehole. Organic vapour measurements from non-detect to 4.5 ppm (highest reading measured at BH15-03 between 4.88 to 5.38 mbgs).

The results of headspace vapour measurements are presented on the Record of Borehole sheets in Appendix A(ii).

5.6 Soil: Quality

Table 3 provides a summary of the soil samples submitted for analysis and the associated test parameters. The analytical results of soil samples are presented in Tables 5A to 5E. Laboratory Certificates of Analysis for the soil samples are included in Appendix A(iii).

Golder completed soil sampling at the Site during borehole advancement between November 7 and 13, 2015. The soil samples were submitted to AGAT for analysis of one or more of the following parameters; PHCs, PAHs, VOCs, PCBs and/or metals.

A summary of the number of soil samples analyzed and the number of soil samples exceeding the MOE Table 3 Standards is provided below:

Parameter	Number of soil samples analysed	Number of soil samples exceeding the Table 3 Standards
VOCs	4 (including one duplicate soil sample)	0
PCBs	4 (including one duplicate soil sample)	0
PAHs	5 (including one duplicate soil sample)	0
Metals	5 (including one duplicate soil sample)	0
PHC F1/BTEX	12 (including one duplicate soil sample)	0
PHC F2-F4	12 (including one duplicate soil sample)	0

All soil samples submitted for analysis met the applicable Site condition standards for the parameters tested, including those submitted from the area of first development.

5.7 **Groundwater: Quality**

Monitoring well construction details are summarized in Table 1 and a list of groundwater samples submitted for laboratory analysis is provided in Table 4. The analytical results for groundwater samples are summarized in Tables 6A through 6E, along with the applicable MOE Table 3 Standards. Laboratory Certificates of Analysis for groundwater are provided in Appendix A(iii).

Golder completed sampling of monitoring wells at the Site on October 14, 2015. Groundwater samples were submitted to AGAT for analysis for one or more of the following parameters; PHCs, PAHs, VOCs, PCBs and/or metals.

A summary of the number of groundwater samples analysed and number of samples exceeding the MOE Table 3 Standards is provided below:

Parameter	Number of groundwater samples analysed	Number of groundwater samples exceeding the 2011 Table 3 Standards
VOCs	4 (including 1 duplicate groundwater sample)	2 (including 1 duplicate groundwater sample)
PCBs	6 (including 2 duplicate groundwater samples)	0
PAHs	2 (including 1 duplicate groundwater sample)	0
Metals	2 (including 1 duplicate groundwater sample)	0
PHC F1/BTEX	9 (including 2 duplicate groundwater samples)	0
PHC F2-F4	9 (including 2 duplicate groundwater samples)	0

The VOC groundwater exceedances compared to be MOE Table 3 Standards are shown in Figure 3 and the details of these exceedances are as follows:

- The reported concentrations of cis-1,2-dichloroethene in the original and duplicate groundwater samples collected from the monitoring well at 15-03 (samples 15-03 and DUP3) were 590 and 670 ug/l, respectively, compared to MOE Table 3 Standard of 1.6 ug/l;
- The reported concentrations of tetrachloroethylene in the original and duplicate groundwater samples collected from the monitoring well at 15-03 (samples 15-03 and DUP3) were 2700 and 2800 ug/l, respectively, compared to MOE Table 3 Standard of 1.6 ug/l;
- The reported concentrations of trans-1,2-dichloroethene in the original and duplicate groundwater samples collected from the monitoring well at 15-03 (samples 15-03 and DUP3) were 7.5 and 8.8 ug/l, respectively, compared to MOE Table 3 Standard of 1.6 ug/l; and,
- The reported concentrations of trans-1,2-dichloroethene in the original and duplicate groundwater samples collected from the monitoring well at 15-03 (samples 15-03 and DUP3) were both 52 ug/l compared to MOE Table 3 Standard of 0.5 ug/l.

The VOCs are inferred to be associated with the former dry cleaning facility that was located on the Site, likely from spillage of dry cleaning solvent . The monitoring well at 15-04 is the closest well to the north of the 15-03 and the monitoring well 15-02 is the closest well to the south of 15-03. The concentrations of VOCs in the groundwater samples collected these monitoring wells were either non-detect or below the applicable site standard. The closest monitoring wells to the west and east of the 15-03 are those located at 15-01 and 15-06, both of which are located greater than 50 m from 15-03. The groundwater samples from these two monitoring wells were not analyzed for VOCs. As such, further delineation is required to confirm the lateral extent of the VOC impacts and whether or not the VOC impacts extend into the groundwater in bedrock.

It is noted that the only monitoring well located on the area of first was the monitoring well location at 15-10. The groundwater sample collected from this monitoring well did not have any exceedances of the MOE Table 3 Standards.

In addition to numerical standards, the MOE Table 3 Standard sets out non-numerical (aesthetic) standards relating to the presence of free phase product and hydrocarbon sheen. Specifically, a property does not meet the site condition standards if there is evidence of free product, including but not limited to, visible petroleum hydrocarbon film or sheen present on groundwater, surface water or in any groundwater or surface water samples. Monitoring for free phase product using an interface probe was conducted on October 14, 2015. No evidence of free product or sheen in groundwater was observed.

5.8 Sediment: Quality

No sediment samples were collected as part of this investigation.

5.9 Quality Assurance and Quality Control Results

The quality assurance assessment of the field duplicate sample results was conducted according to the document entitled Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

To determine the precision of the analytical methods and field sampling procedures, blind duplicate samples were collected during soil and groundwater sampling. Precision is determined by the relative percent difference ("RPD") between the duplicate and original samples and was calculated as follows:

Where

 $RPD = \frac{|x_1 - x_2|}{x_m}$ x₁ initial sample results x₂ duplicate sample results x_m mean of x₁, x₂

RPDs are calculated only if the concentrations of a parameter are greater than the laboratory reported detection limit ("RDL") in both the duplicate and original samples. In addition, lower precision in the RPD calculation is expected when concentrations of the analytes are less than ten (10) times the RDL. Therefore, RPDs were calculated for the original and duplicate groundwater and soil samples only in cases where the measured concentrations of analytes in both samples were ten (10) times greater than the RDL.

The following RPD limits were considered reasonable and are based on Analytical Protocol: RPDs in soil, 30% for metals, 50% for VOCs, 30% for PHCs, 40% for PCBs and 40% for PAHs and in groundwater/surface water, 20% for metals, 30% for VOCs, 30% for PHCs, 30% for PCBs and 30% for PAHs.

The calculated RPDs for metals in the original and duplicate soil sample were less than 10% and considered within acceptable limits. RPDs could not be calculated for PHCs, PBCs, VOCs and PAHs in the original and duplicate sample, as these results were below the laboratory RDL or less that ten times greater than the RDL. The calculated RPDs for the original and duplicate groundwater sample were less than 8% for metals, 0% for PHCs and less than 21% for VOCs; all of which are considered to be within acceptable limits. RPDs could not be calculated for PCBs and PAHs in the original and duplicate sample, as these results were all below the laboratory RDL or less that ten times greater than the RDL.

One trip spike was submitted for analysis of VOCs, as part of the groundwater monitoring conducted at the Site. The trip spike was spiked with a known concentration of VOCs and then analyzed at the lab. The percent recovery (%R) for each parameter analyzed was calculated according the following equations:

$$\% R = \frac{x_2}{x_1} \times 100$$

Where, x_1 and x_2 are the spiked VOC concentration and the analyzed concentrations. The acceptable range for %R is between 50% and 140%. All parameters analyzed for the trip blank had the return %Rs within the acceptable range.

It is noted that the trip blank sample was found to have no detectable concentrations and that the field blank sample also had no detectable concentrations with the exception of chloroform which was detected at 1.7 ug/L, bromodichloromethane which was detected 0.51 ug/L and dibromochloromethane which was detected 0.51 ug/L. Although these parameters were detected in the field blank samples, they were non-detect in all groundwater samples analyzed for VOCs with the exception of chloroform that was detected at 0.35 ug/L in the groundwater sample from the monitoring well at 15-04. However, the detectable concentration of chloroform in the groundwater is considered to be a result of municipally treated water used for bedrock coring of BH15-04. As such, it is considered that the field QA/QC measures are acceptable and that the data obtained during investigation are reliable. The quality of the analytical results is further supported by AGAT's internal quality assurance program that includes laboratory blanks, spikes, surrogates and duplicate samples.

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix A(iii). The analytical laboratory did not qualify any of the analytical results.

Accordingly, the analytical data generated during the investigation are valid and representative and may be used in this Phase Two ESA without further qualification.

5.10 Phase Two Conceptual Site Model

The Phase Two conceptual site model is presented in the following sections.

POTENTIAL SOURCES OF CONTAMINATION

Potentially Contaminating Activities

Based on the information obtained as part of the Phase One ESA, the following potentially contaminating activities ("PCAs") were identified. The location of each PCA is provided on Figure 2:

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	Importation of Fill Material of Unknown Quality – Fill was noted in a borehole record for the Site, as well as expected to have been brought to the Site during the construction of the Westgate Shopping Centre.	Previous EcoLog ERIS Report and Site Observations	The PCA is located on the Phase One Property and must be identified as an APEC.
Phase One Property	Gasoline and Associated Products Storage in Fixed Tanks It was reported by the Site Representative that there used to be heating oil storage USTs at the rear of the mall. The USTs were located at the north and northwest corner of the mall, near to the locations of the former boiler rooms. It was reported that the UST clean-up and removal was completed by Pinchin in 2010, but no report was provided to Golder for review. Also, it was noted that there were hydrocarbon products stored on the Site in the 1925 (revised 1948) FIP in a defined area along the extreme southwestern part of the Site.	Site Representative	The PCA is located on the Phase One Property and must be identified as an APEC.
	<i>Electricity Generator,</i> <i>Transformation and Power</i> <i>Stations</i> – There is a Hydro- Ottawa electrical vault in the basement of the Shopper's Drug Mart, which was not accessed during the Site visit due to accessibility restriction (Hydro Ottawa only). The Hydro vault has been in the building since approximately the construction of the mall. There is also a suspected additional decommissioned transformer room at the west side of the mall.	Site Observations	The PCA is located on the Phase One Property and is therefore identified as an APEC.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	Operation of Dry Cleaning Equipment – There has been a dry cleaner facility in the Westgate Shopping Centre. Based on a historic mall Site Plan and the extended construction of the Shopper's Drug Mart, the dry cleaners would have been in the area that is now adjacent to the Shopper's Drug Mart.	1965 FIP, aerial images, city directories	The PCA is located on the Phase One Property and is therefore identified as an APEC.
Phase One Study Area (excluding the Phase One Property)	Railyards, Tracks and Spurs – A railway corridor was located in the path of the current Highway 417 (adjacent to the Site), as well as there was additional railway lines running along what is currently Merivale Road, east of the Site (adjacent).	Aerial photographs (1945)	Based on the up and cross gradient location of this PCA to the Site, as well as the close down-gradient proximity, and the nature of impacts associated with this PCA (which may migrate through groundwater) the presence of this PCA may impact the Phase One Property.
	Railyards, Tracks and Spurs – A and a rail yard was located approximately 150 to 200 m southeast of the Site.	Aerial photographs (1945)	Given that this facility was separated from the Site by 150 m including Merivale Road and Carling Avenue and their underlying services, it is not considered to be a PCA that will result in an APEC on the Site.
	Operation of Dry Cleaning Equipment – A former dry cleaner facility was located south of the Site along Carling Avenue. It was located within 00 m of the Site.	City directories	Based on the up-gradient location of this PCA to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.
	<i>Electricity Generator,</i> <i>Transformation and Power</i> <i>Stations</i> – A Hydro Ottawa Sub- Station is located east of the Site, at the intersection of Merivale Road and Carling Avenue. The sub-station has been in operation since prior to 1945 and known to have contained PCBs and transformers. The power station is approximately 30 m east of the Site.	1965 FIP, Trow (1994), aerial images, Site Observations, Site Representative, city directories	Based on the cross gradient location of this PCA to the Site, as well as the close proximity, and the nature of impacts associated with this PCA (which may migrate through groundwater) the presence of this PCA may impact the Phase One Property.

Location	Potentially Contaminating Activity	Information Source	Rationale for Potential Contribution of the PCA to an APEC
	Gasoline and Associated Products Storage in Fixed Tanks – Review of historical documentation indicates that there were approximately six locations cross-to-down gradient of the Site, within 250 m, that had gasoline and/or associated products in fixed tanks (primarily USTs, some ASTs).	1965 FIP, Trow (1994), aerial images, Site Representative, city directories	Based on the down and cross-gradient location of these PCAs to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.
	Commercial Autobody Shops – There is a Second Chance Auto Sales building approximately 40 m southwest of the Site that has a garage at the rear of the building. There are also historical references to auto repair shops in the Study Area, including the former Department of Highways and the garage and service station at the intersection of Thames and Merivale.	1965 FIP, aerial images, Site Observations, city directories	Based on the up and cross-gradient location of these PCAs to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.
	<i>Industrial Land Use</i> – The Seven-Up Bottling Co. was located south of the Site and had a UST on the property. In addition, west of the Site the former Barrington Petroleum Products and Ontario Department of Highways facilities may have been considered industrial.	1965 FIP, aerial images, city directories	Based on the up and cross-gradient location of these PCAs to the Site, and the nature of impacts associated with this PCA, which may migrate through groundwater, the presence of this PCA may impact the Phase One Property.

Areas of Potential Environmental Concern

The following APECs were identified on the Site:

- APEC 1 Fill is reportedly present across the Site.
- APEC 2 It was reported by the Site Representative that there was previously oil storage USTs at the rear of the mall. The USTs were located at the north and northwest corner of the mall, near to the locations of the former boiler rooms. It was reported that the clean-up and removal was completed by Pinchin, but no report was provided to Golder for review. Also, it was noted that there was hydrocarbon products stored on the Site in the 1925 (revised 1948) FIP in a defined area along the extreme southwestern part of the site. In addition, there are off-Site PCAs that may contribute to APECs on-Site. ASTs were located at service stations/garages/industrial properties at six locations hydraulically down-and-cross gradient of the Site. Approximate addresses are:
 - 1376 Carling Avenue
 - 1354 Carling Avenue
 - 1330 Carling Avenue
 - 1331 Carling Avenue
 - 1316 Carling Avenue
 - 872 Merivale Road
- APEC 3 Basement of the Shopper's Drug Mart has a Hydro Ottawa transformer room.
- APEC 4 A dry cleaning facility was formerly located in the on-Site shopping centre. Another dry cleaning facility was formerly located within the Study Area; approximately 100 m south of the Site at 1317 Carling Avenue.
- APEC 5 A Hydro Ottawa Sub-Station is located approximately 30 m east of the Site at the northeast corner of Merivale Road and Carling Avenue; and,
- APEC 6 There were rail lines along two sides of the Site, along the Highway 417 corridor and Merivale Road.

It is noted that only APECs 1, 2, 5 and 6 are located on the area of first development.

Subsurface Structures and Utilities

The Site and surrounding area are serviced with storm sewers, sanitary sewers, municipal water, natural gas and telecommunication. Utility lines including telecommunication, municipal water, storm sewers, sanitary sewers and hydro connect the Site below ground from multiple locations. It was noted that a sanitary sewer runs parallel to the western edge of the shopping centre and it located to the west of the monitoring well at 15-03. Given its close proximity to this monitoring well, the VOC contaminants present in the groundwater at this location may have entered into the sanitary sewer trench.

Building structures located on the Site are shown on Figures 2 and 3. The on-Site Monkey Joe's restaurant is constructed with slab-on grade floors, with no basement. The on-Site shopping centre is also constructed with slab-on grade floors; however, it has a basement located below the Shopper's Drug Mart unit and at the rear of the east end of the mall. The depth and location of building foundations and footings are unknown; however is

likely at frost depth of approximately 1.5 mbgs. In addition, the depths of the shopping centre basements are unknown; however, are likely at depths of approximately 3 to 4 mbgs. The monitoring well at 15-03 is located just east of the Shopper's Drug Mart unit and given that the groundwater level in this monitoring well was measured at 2.75 mbgs, it is likely that the basement below the Shopper's Drug Mart unit intercepts the groundwater table and is potentially receiving VOC groundwater contaminants found in the monitoring well at 15-03.

PHYSICAL SETTING

Stratigraphy

Representative geologic cross-sections of the Site are presented in Figures 5 and 6. Concrete (5 to 10 cm in thickness) was present at surface at all borehole locations. In general, the subsurface soil conditions beneath the concrete consisted of fill material overlying native silty clay which is generally underlain by glacial till. The upper portion of the fill material generally consisted of grey, granular pavement structure comprised predominantly of sand with varying amounts of gravel. In some boreholes, the lower portion of the fill consisted of grey brown to black silty clay. The presence of organic matter, wood pieces and glass fragments was occasionally observed in the silty clay fill. The fill extended to depths between 0.43 to 2.44 mbgs. With the exception of BH15-02, the pavement structure and fill were underlain silty clay that extended to depths ranging from about 3.66 to 6.10 mbgs. Glacial till was encountered below the silt clay unit. Where it was fully penetrated in BH15-04 and BH15-09, the glacial till had a thickness of 7.4 and 11.7 m, respectively, and extended to depths of about 13.46 to 16.28 mbgs. The two boreholes that were penetrated through the till (BH15-04 and BH15-09) encountered limestone bedrock beneath the glacial till.

Given that the average thickness of overburden at the Site is greater than 2 m, the Site is not considered to be a shallow soil property as defined by O. Reg 153/04 (as amended).

Hydrogeological Characteristics

The regional groundwater flow direction is expected to be towards the Ottawa River, located approximately 2.2 km to the north. The groundwater flow may be controlled locally by the sewers in Carling Avenue and Merivale Road and underlying utilities on the Site.

Static groundwater levels were measured in the monitoring wells located across the Site on October 14, 2015 and November 9, 2015. However, the monitoring wells at 15-03, 15-04 and 15-06 could not accessed on November 9, 2015 and as such, the groundwater levels in these locations were not measured on this date. Figure 4 shows the groundwater elevations measured on October 14, 2015 (for wells with no November 9th measurement) and November 9, 2015 (the remainder of wells). The interpreted groundwater flow direction is also shown on Figure 4. Groundwater elevations at the Site ranged from 69.70 (BH15-08) to 73.64 masl (BH15-01) and were encountered at depths of 1.26 to 5.46 mbgs. Shallow groundwater flow direction was inferred to be to the northwest, towards Merivale Road.

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels collected on October 14, 2015 and November 29, 2015, and the inferred groundwater contours as plotted on Figure 4. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be between 0.01 and 0.03 m/m.

Vertical hydraulic gradients need to be confirmed at the Site as no nested pairs were available for evaluation.

The following additional observations are provided:

- The groundwater table at the Site was encountered in the native silty clay and glacial till layers;
- The QP is not aware of any respect in which section 41 or 43.1 of the regulation applies to the property;
- Soil has not been brought from another property and placed on, in or under the Site as part of this Phase Two ESA;
- Underlying utilities and structure may intercept the groundwater at the Site; however, it needs to be confirmed whether they intercept groundwater originating from location BH15-03, which is the only location of groundwater contamination; and,
- Groundwater flow appears to be controlled by the services in Merivale Road, Carline Avenue and/or basements on the southwest and northeast portions of the Site.

DELINEATION OF CONTAMINANT IMPACTS

APECs Where Contaminants are Present at a Concentration Above the Applicable Site Condition Standard

APEC locations are provided in Figure 2. The APECs where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, along with the contaminants present in each environmental medium, are identified in the following table.

APEC Description	Contaminants of Concern
APEC 4 - A dry cleaning facility was formerly located in the on-Site shopping centre. Another dry cleaning facility was formerly located within the Study Area; approximately 100 m south of the Site at 1317 Carling Avenue.	Soil – None Groundwater – VOCs Sediment – NA

APEC 4 was not identified as an APEC for the area of first development. As such, no contaminants associated with the APECs on the area of first developed had concentrations greater the applicable site conditions standard. Further definition of this APEC 4 is required.

Contaminant Distribution

No contaminants were present in soil at a concentration greater than the applicable site condition standard and no sediment is present at the Phase Two Property. However, the groundwater in the monitoring well at 15-03 contained concentrations of VOCs (namely cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, trichloroethene and vinyl chloride) greater than the applicable site condition standard which is indicative of a VOC plume in this area of the Site. These contaminant concentrations were not in exceedance of the applicable site condition standard in the groundwater from the adjacent wells; however, vertical and horizontal delineation of the VOC plume has not been completed at the time of preparation of this report. A summary of the reported concentrations in groundwater is presented in Tables 6A to 6E.

Potential Reason for Discharge into the Environment at the Site

The reason for the discharge of contaminants present on, in or under the Phase Two property at a concentration greater than the applicable site condition standard is not known; however, given that a dry cleaning facility was historically located on the Site, it is likely that the groundwater impacts are associated with dry cleaning solvent spillage from the former dry cleaning facility.

Contaminant Migration

VOCs, more specifically cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, trichloroethene and vinyl chloride, were detected in the original and duplicate groundwater samples collected from the monitoring well at 15-03 at concentrations exceeding the applicable site condition standards. However, at the time of preparation of this report, the VOC plume in this area had not been delineated. Several underground utilities exist at the Phase Two Property including a sanitary sewer that runs parallel to the western edge of the shopping centre, just west of 15-03. In addition, the shopping centre has a basement below the Shopper's Drug Mart unit (located to the east of 15-03) and at the rear of the east end of the mall which may locally influence groundwater flow at the Site. Given the close proximity of the sanitary sewer and the basement to the monitoring well at 15-03, the VOC contaminants present in groundwater in this monitoring well have migrated into the sanitary sewer trench and below the basement of the shopping centre.

Meteorological and Climatic Considerations

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified, however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter. The entire site is paved and serviced by storm sewer catchments connected to the City storm sewer. As such, not much local recharge is anticipated.

Soil Vapour Intrusion Pathways

Although no volatile compounds in the soil were above the applicable site standards, concentrations of VOCs in the groundwater collected from the monitoring well at 15-03 exceeded the applicable site standard. The on-Site shopping centre is constructed with slab-on-grade floor, with a basement located on the east end of the mall and below the Shopper's Drug Mart unit which is located just east of the monitoring well at 15-03. As it is uncertain if the VOC contamination extends beneath the shopping centre, there is a potential for vapour intrusion to the on-Site shopping centre. Confirmation of vapour intrusion risks is required via delineation of the VOC plume and/or soil vapour testing.

CROSS-SECTIONS

Lateral and Vertical Distribution of Contaminants

Representative cross-sections of the Site are presented in Figures 5 and 6.

POTENTIAL EXPOSURE PATHWAYS AND RECEPTORS

Potential human receptors at the Site might include outdoor and indoor workers, construction workers, and visitors to the Site. Potential ecological receptors might include soil invertebrates. The exposure pathways for potential ecological receptors include direct/dermal contact and/or ingestion. Exposure pathways for potential human receptors include inhalation of indoor and outdoor air.

The above identified potential exposure pathways and receptors are based only on a preliminary evaluation and, as such, the release mechanisms, potential exposure pathways, and receptors may change upon a completion of a risk assessment for the Site. Evaluation of potential exposure pathways and receptors is beyond the scope of the Phase Two ESA work and, as such, it was not performed as part of this Phase Two ESA report.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Phase Two ESA investigated all APECs identified in the 2015 Phase One ESA with the exception of APEC 2 which was not completely investigated. The 2015 Phase One ESA indicated that an oil storage UST was formerly located at the rear of the eastern portion of the mall and was identified as an on-Site PCA that resulted in an APEC (part of APEC 2) on Site. As part of the Phase Two sampling and analysis plan, BH15-07 was to be completed with a monitoring well to access the soil and groundwater quality associated with the former oil UST. However, access to the borehole's proposed location was restricted due to overhead utilities and as such the borehole at monitoring well at 15-07 could not be completed. In addition, BH15-05 was completed with a monitoring well to assess potential contamination associated with the oil UST that was reportedly to have been formerly located on the northwest corner of the mall. The proposed location of BH15-05 was restricted due to underlying utilities and as such, it was not positioned in an optimal location.

The reported concentrations of the contaminants of potential concern in all analyzed soil and groundwater samples were below the applicable site condition standards as of the certification date (October 14, 2015), with the exception of VOCs, namely cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, trichloroethene and vinyl chloride, in both the original and duplicate groundwater samples collected form the monitoring well at 15-03.

Based on the finding of the Phase Two ESA, it is recommended investigations be undertaken at 15-07 and an optimal location of 15-05 in order to assess the soil and groundwater quality associated with the oil USTs that was formerly located, or reportedly to be formerly located, in the mall. In addition, it is recommended that the VOC in groundwater that was identified at 15-03 be laterally and vertically delineated. The completion of a risk assessment or remediation will then be required prior to the submission of a RSC.

It should be noted that the Phase Two ESA investigated all APECs identified on the area of first development and that the reported concentrations of potential concern in all soil and groundwater samples analyzed from this area were below the applicable site condition standard as of the certification date (October 14, 2015).

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT WESTGATE SHOPPING CENTRE

7.0 REFERENCES

- MOE. 2004. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (amended in July 2009 and effective as of July 1, 2011).
- MOE. 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 15, 2011
- MOE. 2011. Ontario Regulation 153/04, as amended, *Record of Site Condition Part XV.1 of the Environmental Protection Act*, amended October 31, 2011

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT WESTGATE SHOPPING CENTRE

8.0 LIMITATIONS

This report was prepared for the exclusive use of RioCan Management Inc. The report, which specifically includes all tables, figures and appendices, is based on data and information, collected during conducting the Phase Two ESA, and is based solely on the conditions of the property at the time of conducting investigations, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report.

The assessment of environmental conditions at this Site has been made using the results of field screening techniques and chemical analysis of soil and groundwater samples at a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at the sampling locations. Conditions may vary from these sample locations. Additional study, including further investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected. It is noted that the borehole and monitoring well 15-07 could not been completed and that the borehole and monitoring well at 15-05 was not positioned in an optimal location. As such, it was recommended that further investigations be undertaken to assess the soil and groundwater quality at 15-07 and an optimal location of 15-05.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The content of this report is based on information collected during the drilling, soil and groundwater sampling activities, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

The monitoring wells installed as part of this project have been constructed using licensed drilling/well contractors employing licensed well technicians. It is owner's responsibility to have a licensed well technician properly abandon all monitoring wells, if required.

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT WESTGATE SHOPPING CENTRE

9.0 SIGNATURES

The undersigned Qualified Person confirms that he/she was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust that you will find the contents of this report satisfactory for your current needs. Should you require clarification of the information provided, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Jillian Lackey, M.A.Sc., E.I.T. Environmental Consultant

GE A 0 60 ш 4 JAN 6 SAEBERA Berend Jan Velderman, M.Sc., P.Geo., QF PRACTISING MEMBER Principal 0

AT/JL/BJV/hw/md n:\active\2015\3 proj\1522569 riocan ph i and phii various\phase 17000 westgate\phase two esa\1522569-17000 - westgate phase two esa (reg 153).docx

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

Monitoring Well ID	Ground Surface Elevation (masl)	Top of Pipe Elevation (masl)	Borehole Depth (mbgs)	Borehole Depth (masl)	Screen Interval (masl)	Screened Media	Date of Completion
BH15-01	74.90	74.81	6.10	68.80	71.85 - 68.80	Silty clay and silty sand	09-Oct-15
BH15-02	74.07	73.95	6.10	67.97	71.02 - 67.97	Clayey sand and silty sand	08-Oct-15
BH15-03	73.99	73.92	6.10	67.89	70.94 - 67.89	Silty clay and clayey sand	07-Oct-15
BH15-04	74.08	73.99	16.13	57.95	64.38 - 61.33	Clayey sand and silty sand	13-Oct-15
BH15-05	73.93	73.81	6.10	67.83	70.88 - 67.83	Silty clay and clayey sand	07-Oct-15
BH15-06	73.96	73.87	6.10	67.86	72.44 - 69.39	Silty clay	07-Oct-15
BH15-08	74.33	74.25	6.10	68.23	71.28 - 68.23	Silty clay, clayey sand and silty sand	08-Oct-15
BH15-10	74.86	74.77	6.10	68.76	72.04 - 68.76	Silty clay and silty sand	08-Oct-15

Monitoring Well	Ground Surface Elevation (m)	Top of Pipe Elevation (m)	Depth to Groundwater (mbgs) (October 14, 2015)	Depth to Groundwater (mbgs) (November 9, 2015)	Groundwater Elevation (m)	Groundwater Elevation Date	Product Measurement (mm) (October 14, 2015)
BH15-01	74.90	74.81	1.32	1.26	73.63	09/11/2015	0.00
BH15-02	74.07	73.95	5.46	2.77	71.30	09/11/2015	0.00
BH15-03	73.99	73.92	2.75	NA	71.24	14/10/2015	0.00
BH15-04	74.08	73.99	2.79	NA	71.28	14/10/2015	0.00
BH15-05	73.93	73.81	2.09	2.76	71.17	09/11/2015	0.00
BH15-06	73.96	73.87	2.48	NA	71.48	14/10/2015	0.00
BH15-08	74.33	74.25	4.74	4.63	69.70	09/11/2015	0.00
BH15-10	74.86	74.77	4.80	4.78	70.08	09/11/2015	0.00

Borehole Location	Soil Samples Submitted for Analysis	Analytical Paramaters
BH15-01	SA7 (5.89 - 6.10 m)	Petroleum Hydrocabons (F1-F4)
BH15-02	SA8 (5.56 - 6.10 m)	Petroleum Hydrocabons (F1-F4) and Volatile Organic Compounds
BH15-03	SA5 (1.88 - 2.44 m) and DUP3 (duplicate of SA5)	Petroleum Hydrocabons (F1-F4), Volatile Organic Compounds, Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls and Metals
BH15-04	SA9 (4.88 - 6.10 m)	Petroleum Hydrocabons (F1-F4) and Volatile Organic Compounds
BH15-05	SA7 (5.94 - 6.10 m)	Petroleum Hydrocabons (F1-F4)
BH15-06	SA5 (3.66 - 4.88 m)	Petroleum Hydrocabons (F1-F4)
BH15-08	SA1 (0.10 - 0.43 m)	Petroleum Hydrocabons (F1-F4), Polycyclic Aromatic Hydrocarbons and Metals
BH15-08	SA6 (3.66 - 4.88 m)	Petroleum Hydrocabons (F1-F4) and Polychlorinated Biphenyls
BH15-09	SA2 (0.76 - 1.37 m)	Petroleum Hydrocabons (F1-F4), Polycyclic Aromatic Hydrocarbons and Metals
BH15-10	SA4 (3.66 - 4.88 m)	Petroleum Hydrocabons (F1-F4) and Polychlorinated Biphenyls
BH15-11	SA1 (0.10 - 0.25 m)	Petroleum Hydrocabons (F1-F4), Polycyclic Aromatic Hydrocarbons and Metals

Monitoring Well Location	Groundwater Samples Submitted for Analysis	Analytical Paramaters
15-01	15-01	Petroleum Hydrocabons (F1-F4)
15-02	15-02	Petroleum Hydrocabons (F1-F4), Polychlorinated Biphenyls and Volatile Organic Compounds
15-03	15-03 and DUP3 (duplicate of 15-03)	Petroleum Hydrocabons (F1-F4), Polychlorinated Biphenyls and Volatile Organic Compounds
15-04	15-04	Petroleum Hydrocabons (F1-F4) and Volatile Organic Compounds
15-05	15-05	Petroleum Hydrocabons (F1-F4)
15-06	15-06	Petroleum Hydrocabons (F1-F4)
		Petroleum Hydrocabons (F1-F4), Polycyclic Aromatic
15-08	15-08 and DUP8 (duplicate of 15-08)	Hydrocarbons, Polychlorinated Biphenyls and Metals
15-10	15-10	Polychlorinated Biphenyls

Golder Associates

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-09	15-10	15-11
			09-Oct-2015	08-Oct-2015	07-Oct-2015	07-Oct-2015	09-Oct-2015	07-Oct-2015	07-Oct-2015	08-Oct-2015	08-Oct-2015	13-Oct-2015	08-Oct-2015	07-Oct-2015
Parameter	Unit	MOE Table 3 Standard (R/P/I) ⁽¹⁾⁽²⁾	BH15-01 SA7	BH15-02 SA8	BH15-03 SA5	DUP3 (Field Duplicate)	BH15-04 SA9	BH15-05 SA7	BH15-06 SA5	BH15-08 SA1	BH15-08 SA6	BH15-09 SA2	BH15-10 SA4	BH15-11 SA1
Sample Depth	m		5.89 - 6.10	5.56 - 6.10	1.88 - 2.44	1.88 - 2.44	4.88 - 6.10	5.94 - 6.10	3.66 - 4.88	0.10 - 0.43	3.66 - 4.88	0.76 - 1.37	3.66 - 4.88	0.10 - 0.25
Petroleum Hydrocarbons														
Benzene	ug/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	ug/g	2.3	<0.08	< 0.05	< 0.05	<0.05	< 0.05	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ethylbenzene	ug/g	2	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
m,p-Xylenes	ug/g			< 0.05	< 0.05	<0.05	< 0.05							
o-Xylene	ug/g			< 0.05	< 0.05	<0.05	< 0.05							
Xylenes, Total	ug/g	3.1	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Petroleum Hydrocarbons - F1 (C6-C10)	ug/g	55	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F2 (C10-C16)	ug/g	98	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons - F3 (C16-C34)	ug/g	300	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons - F4 (C34-C50)	ug/g	2800	<50	<50	<50	<50	<50	<50	<50	<50	<50	120	<50	<50

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard (R/P/I)

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-09	15-10	15-11
			09-Oct-2015	08-Oct-2015	07-Oct-2015	07-Oct-2015	09-Oct-2015	07-Oct-2015	07-Oct-2015	08-Oct-2015	08-Oct-2015	13-Oct-2015	08-Oct-2015	07-Oct-2015
Parameter	Unit	MOE Table 3 Standard (R/P/I) ^{(1) (2)}	BH15-01 SA7	BH15-02 SA8	BH15-03 SA5	DUP3 (Field Duplicate)	BH15-04 SA9	BH15-05 SA7	BH15-06 SA5	BH15-08 SA1	BH15-08 SA6	BH15-09 SA2	BH15-10 SA4	BH15-11 SA1
Sample Depth	m		5.89 - 6.10	5.56 - 6.10	1.88 - 2.44	1.88 - 2.44	4.88 - 6.10	5.94 - 6.10	3.66 - 4.88	0.10 - 0.43	3.66 - 4.88	0.76 - 1.37	3.66 - 4.88	0.10 - 0.25
VOCs														
1.1.1.2-Tetrachloroethane	ug/g	0.058		< 0.04	< 0.04	< 0.04	< 0.04							
1,1,1-Trichloroethane	ug/g	0.38		< 0.05	< 0.05	< 0.05	< 0.05							
1,1,2,2-Tetrachloroethane	ug/g	0.05		< 0.05	< 0.05	< 0.05	< 0.05							
1,1,2-Trichloroethane	ug/g	0.05		< 0.04	< 0.04	< 0.04	< 0.04							
1,1-Dichloroethane	ug/g	3.5		< 0.02	< 0.02	< 0.02	< 0.02							
1,1-Dichloroethylene	ug/g	0.05		< 0.05	< 0.05	< 0.05	<0.05							
1,2-Dibromoethane	ug/g	0.05		< 0.04	< 0.04	< 0.04	< 0.04							
1,2-Dichlorobenzene	ug/g	3.4		< 0.05	< 0.05	< 0.05	< 0.05							
1,2-Dichloroethane	ug/g	0.05		< 0.03	< 0.03	< 0.03	<0.03							
1,2-Dichloropropane	ug/g	0.05		< 0.03	< 0.03	< 0.03	< 0.03							
1,3-Dichlorobenzene	ug/g	4.8		< 0.05	< 0.05	< 0.05	<0.05							
1,3-Dichloropropene, Total	ug/g	0.05		< 0.04	< 0.04	< 0.04	< 0.04							
1,4-Dichlorobenzene	ug/g	0.083		< 0.05	< 0.05	< 0.05	<0.05							
Methyl Ethyl Ketone	ug/g	16		< 0.50	< 0.50	< 0.50	<0.50							
4-Methyl-2-pentanone	ug/g	1.7		<0.50	<0.50	<0.50	<0.50							
Acetone	ug/g	16		<0.50	<0.50	<0.50	<0.50							
Bromodichloromethane	ug/g	13		< 0.05	<0.05	< 0.05	<0.05							
Bromoform	ug/g	0.27		< 0.05	<0.05	< 0.05	<0.05							
Bromomethane	ug/g	0.05		< 0.05	<0.05	< 0.05	< 0.05							
Carbon Tetrachloride	ug/g	0.05		<0.05	<0.05	< 0.05	<0.05							
Chlorobenzene	ug/g	2.4		<0.05	<0.05	< 0.05	<0.05							
Chloroform	ug/g	0.05		<0.04	<0.04	<0.04	<0.04							
cis-1,2-Dichloroethene	ug/g	3.4		<0.02	<0.02	<0.02	<0.02							
Dibromochloromethane	ug/g	9.4		< 0.05	< 0.05	< 0.05	<0.05							
Dichlorodifluoromethane	ug/g	16		< 0.05	<0.05	< 0.05	<0.05							
Methyl tert-Butyl Ether	ug/g	0.75		<0.05	<0.05	<0.05	<0.05							
Methylene Chloride	ug/g	0.1		<0.05	<0.05	< 0.05	<0.05							
n-Hexane	ug/g	2.8		<0.05	<0.05	<0.05	<0.05							
Styrene	ug/g	0.7		<0.05	<0.05	< 0.05	<0.05							
Tetrachloroethylene	ug/g	0.28		<0.05	<0.05	< 0.05	< 0.05							
trans-1,2-Dichloroethene	ug/g	0.084		<0.05	<0.05	< 0.05	<0.05							
Trichloroethene	ug/g	0.061		< 0.03	< 0.03	< 0.03	< 0.03							
Trichlorofluoromethane	ug/g	4		<0.05	<0.05	<0.05	<0.05							
Vinyl Chloride	ug/g	0.02		<0.02	<0.02	<0.02	<0.02							

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard (R/P/I)

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-09	15-10	15-11
			09-Oct-2015	08-Oct-2015	07-Oct-2015	07-Oct-2015	09-Oct-2015	07-Oct-2015	07-Oct-2015	08-Oct-2015	08-Oct-2015	13-Oct-2015	08-Oct-2015	07-Oct-2015
Parameter	Unit	MOE Table 3 Standard (R/P/I) ⁽¹⁾⁽²⁾	BH15-01 SA7	BH15-02 SA8	BH15-03 SA5	DUP3 (Field Duplicate)	BH15-04 SA9	BH15-05 SA7	BH15-06 SA5	BH15-08 SA1	BH15-08 SA6	BH15-09 SA2	BH15-10 SA4	BH15-11 SA1
Sample Depth	m		5.89 - 6.10	5.56 - 6.10	1.88 - 2.44	1.88 - 2.44	4.88 - 6.10	5.94 - 6.10	3.66 - 4.88	0.10 - 0.43	3.66 - 4.88	0.76 - 1.37	3.66 - 4.88	0.10 - 0.25
PAHs														
1-and 2-methyl Naphthalene	ug/g	0.99(3)			<0.05	<0.05				<0.05		<0.05		< 0.05
Acenaphthene	ug/g	7.9			<0.05	<0.05				<0.05		<0.05		< 0.05
Acenaphthylene	ug/g	0.15			<0.05	<0.05				<0.05		<0.05		< 0.05
Anthracene	ug/g	0.67			<0.05	<0.05				0.06		<0.05		< 0.05
Benzo[a]anthracene	ug/g	0.5			<0.05	<0.05				0.12		<0.05		< 0.05
Benzo[a]pyrene	ug/g	0.3			<0.05	<0.05				0.10		<0.05		< 0.05
Benzo[b]fluoranthene	ug/g	0.78			<0.05	<0.05				0.14		<0.05		< 0.05
Benzo[g,h,i]perylene	ug/g	6.6			<0.05	<0.05				<0.05		<0.05		< 0.05
Benzo[k]fluoranthene	ug/g	0.78			< 0.05	<0.05				0.06		<0.05		< 0.05
Chrysene	ug/g	7			<0.05	<0.05				0.12		<0.05		< 0.05
Dibenzo[a,h]anthracene	ug/g	0.1			<0.05	<0.05				<0.05		<0.05		<0.05
Fluoranthene	ug/g	0.69			0.06	0.09				0.31		<0.05		< 0.05
Fluorene	ug/g	62			<0.05	<0.05				<0.05		<0.05		< 0.05
Indeno[1,2,3-cd]pyrene	ug/g	0.38			<0.05	<0.05				<0.05		<0.05		< 0.05
Naphthalene	ug/g	0.6			<0.05	<0.05				<0.05		<0.05		< 0.05
Phenanthrene	ug/g	6.2			<0.05	<0.05				0.21		<0.05		< 0.05
Pyrene	ug/g	78			0.05	0.07				0.24		<0.05		< 0.05

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard (R/P/I)

(3) The methyl naphthalene standards are applicable to both 1-methyl naphthalene and 2-methyl naphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-09	15-10	15-11
		MOE Table 3	09-Oct-2015	08-Oct-2015	07-Oct-2015	07-Oct-2015	09-Oct-2015	07-Oct-2015	07-Oct-2015	08-Oct-2015	08-Oct-2015	13-Oct-2015	08-Oct-2015	07-Oct-2015
Parameter	Unit	Standard (R/P/I) ⁽¹⁾⁽²⁾	BH15-01 SA7	BH15-02 SA8	BH15-03 SA5	DUP3 (Field Duplicate)	BH15-04 SA9	BH15-05 SA7	BH15-06 SA5	BH15-08 SA1	BH15-08 SA6	BH15-09 SA2	BH15-10 SA4	BH15-11 SA1
Sample Depth	m		5.89 - 6.10	5.56 - 6.10	1.88 - 2.44	1.88 - 2.44	4.88 - 6.10	5.94 - 6.10	3.66 - 4.88	0.10 - 0.43	3.66 - 4.88	0.76 - 1.37	3.66 - 4.88	0.10 - 0.25
PCBs														
Aroclor 1242	ug/g				<0.1	<0.1					<0.1		<0.1	
Aroclor 1248	ug/g				<0.1	<0.1					<0.1		<0.1	
Aroclor 1254	ug/g				<0.1	<0.1					<0.1		<0.1	
Aroclor 1260	ug/g				<0.1	<0.1					<0.1		<0.1	
Polychlorinated Biphenyls	ug/g	0.35			<0.1	<0.1					<0.1		<0.1	

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard (R/P/I)

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-09	15-10	15-11
		MOE Table 3	09-Oct-2015	08-Oct-2015	07-Oct-2015	07-Oct-2015	09-Oct-2015	07-Oct-2015	07-Oct-2015	08-Oct-2015	08-Oct-2015	13-Oct-2015	08-Oct-2015	07-Oct-2015
Parameter	Unit	Standard (R/P/I) ^{(1) (2)}	BH15-01 SA7	BH15-02 SA8	BH15-03 SA5	DUP3 (Field Duplicate)	BH15-04 SA9	BH15-05 SA7	BH15-06 SA5	BH15-08 SA1	BH15-08 SA6	BH15-09 SA2	BH15-10 SA4	BH15-11 SA1
Sample Depth	m		5.89 - 6.10	5.56 - 6.10	1.88 - 2.44	1.88 - 2.44	4.88 - 6.10	5.94 - 6.10	3.66 - 4.88	0.10 - 0.43	3.66 - 4.88	0.76 - 1.37	3.66 - 4.88	0.10 - 0.25
Metals														
Antimony	ug/g	7.5			<0.8	<0.8				<0.8		<0.8		<0.8
Arsenic	ug/g	18			2	2				3		2		4
Barium	ug/g	390			115	120				365		262		142
Beryllium	ug/g	4			0.5	<0.5				<0.5		0.7		0.5
Boron	ug/g	120			6	6				6		5		10
Cadmium	ug/g	1.2			<0.5	<0.5				<0.5		<0.5		<0.5
Chromium	ug/g	160			33	36				20		79		40
Cobalt	ug/g	22			8.2	8.7				7.0		18.1		12.8
Copper	ug/g	140			20	22				16		32		27
Lead	ug/g	120			19	26				9		9		10
Molybdenum	ug/g	6.9			0.6	0.7				1.1		1.2		2.2
Nickel	ug/g	100			22	23				16		45		34
Selenium	ug/g	2.4			<0.4	<0.4				<0.4		<0.4		<0.4
Silver	ug/g	20			<0.2	<0.2				<0.2		<0.2		<0.2
Thallium	ug/g	1			<0.4	<0.4				<0.4		<0.4		<0.4
Uranium	ug/g	23			0.5	0.5				0.5		0.9		1.0
Vanadium	ug/g	86			32	33				23		80		44
Zinc	ug/g	340			71	72				29		98		52

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, Residenitial/Parkland/Institutional Property Use, Coarse Grained Soils

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard (R/P/I)

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-10
		MOFTUL	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015
Parameter	Unit	MOE Table 3 Standard ^{(1) (2)}	15-01	15-02	15-03	DUP 3 (Field Duplicate)	15-04	15-05	15-06	15-08	DUP 8 (Field Duplicate)	15-10
Petroleum Hydrocarbons												
Benzene	ug/l	44	<0.20	<0.20	<2.00	<2.00	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	ug/l	18000	<0.20	0.41	<2.00	<2.00	0.33	<0.20	<0.20	<0.20	<0.20	
Ethylbenzene	ug/l	2300	<0.10	<0.10	<1.00	<1.00	<0.10	<0.10	<0.10	<0.10	<0.10	
m,p-Xylenes	ug/l			<0.20	<2.00	<2.00	<0.20					
o-Xylene	ug/l			<0.10	<1.00	<1.00	<0.10					
Xylenes, Total	ug/l	4200	<0.20	<0.20	<2.00	<2.00	<0.20	<0.20	<0.20	<0.20	<0.20	
Petroleum Hydrocarbons - F1 (C6-C10)	ug/l	750	<25	<25	470	470	<25	<25	<25	<25	<25	
Petroleum Hydrocarbons - F2 (C10-C16)	ug/l	150	<100	<100	<100	<100	<100	<100	<100	<100	<100	
Petroleum Hydrocarbons - F3 (C16-C34)	ug/l	500	<100	<100	<100	<100	<100	<100	<100	<100	<100	
Petroleum Hydrocarbons - F4 (C34-C50)	ug/l	500	<100	<100	<100	<100	<100	<100	<100	<100	<100	

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, All Types of Property Use, Non-Potable Groundwater

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-10
			14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015
Parameter	Unit	MOE Table 3 Standard ^{(1) (2)}	15-01	15-02	15-03	DUP 3 (Field Duplicate)	15-04	15-05	15-06	15-08	DUP 8 (Field Duplicate)	15-10
VOCs	•											
1.1.1.2-Tetrachloroethane	ug/l	3.3		<0.10	<1.00	<1.00	<0.10					
1,1,1-Trichloroethane	ug/l	640		<0.30	<3.00	<3.00	< 0.30					
1,1,2,2-Tetrachloroethane	ug/l	3.2		<0.10	<1.00	<1.00	<0.10					
1,1,2-Trichloroethane	ug/l	4.7		<0.20	<2.00	<2.00	<0.20					
1,1-Dichloroethane	ug/l	320		<0.30	<3.00	<3.00	<0.30					
1,1-Dichloroethylene	ug/l	1.6		<0.30	<3.00	<3.00	<0.30					
1,2-Dibromoethane	ug/l	0.25		<0.10	<1.00	<1.00	<0.10					
1,2-Dichlorobenzene	ug/l	4600		<0.10	<1.00	<1.00	<0.10					
1,2-Dichloroethane	ug/l	1.6		<0.20	<2.00	<2.00	<0.20					
1,2-Dichloropropane	ug/l	16		<0.20	<2.00	<2.00	<0.20					
1,3-Dichlorobenzene	ug/l	9600		<0.10	<1.00	<1.00	<0.10					
1,3-Dichloropropene, Total	ug/l	5.2		<0.30	<3.00	<3.00	<0.30					
1,4-Dichlorobenzene	ug/l	8		<0.10	<1.00	<1.00	<0.10					
Methyl Ethyl Ketone	ug/l	470000		<1.0	<10.0	<10.0	<1.0					
4-Methyl-2-pentanone	ug/l	140000		<1.0	<10.0	<10.0	<1.0					
Acetone	ug/l	130000		<1.0	<10.0	<10.0	<1.0					
Bromodichloromethane	ug/l	85000		<0.20	<2.00	<2.00	<0.20					
Bromoform	ug/l	380		<0.10	<1.00	<1.00	<0.10					
Bromomethane	ug/l	5.6		<0.20	<2.00	<2.00	<0.20					
Carbon Tetrachloride	ug/l	0.79		<0.20	<2.00	<2.00	<0.20					
Chlorobenzene	ug/l	630		<0.10	<1.00	<1.00	<0.10					
Chloroform	ug/l	2.4		<0.20	<2.00	<2.00	0.35					
cis-1,2-Dichloroethene	ug/l	1.6		<0.20	590	670	<0.20					
Dibromochloromethane	ug/l	82000		<0.10	<1.00	<1.00	<0.10					
Dichlorodifluoromethane	ug/l	4400		<0.20	<2.00	<2.00	<0.20					
Methyl tert-Butyl Ether	ug/l	190		<0.20	<2.00	<2.00	<0.20					
Methylene Chloride	ug/l	610		<0.30	<3.00	<3.00	<0.30					
n-Hexane	ug/l	51		<0.20	<2.00	<2.00	<0.20					
Styrene	ug/l	1300		<0.10	<1.00	<1.00	<0.10					
Tetrachloroethylene	ug/l	1.6		<0.20	2700	2800	<0.20					
trans-1,2-Dichloroethene	ug/l	1.6		<0.20	7.5	8.8	<0.20					
Trichloroethene	ug/l	1.6		<0.20	440	540	<0.20					
Trichlorofluoromethane	ug/l	2500		<0.40	<4.00	<4.00	<0.40					
Vinyl Chloride	ug/l	0.5		<0.17	52	52	<0.17					

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, All Types of Property Use, Non-Potable Groundwater

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-10
			14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015
Parameter	Unit	MOE Table 3 Standard ^{(1) (2)}	15-01	15-02	15-03	DUP 3 (Field Duplicate)	15-04	15-05	15-06	15-08	DUP 8 (Field Duplicate)	15-10
PAHs												
2-and 1-methyl Naphthalene	ug/l	1800 ⁽³⁾								<0.20	<0.20	
Acenaphthene	ug/l	600								<0.20	<0.20	
Acenaphthylene	ug/l	1.8								<0.20	<0.20	
Anthracene	ug/l	2.4								<0.10	<0.10	
Benzo[a]anthracene	ug/l	4.7								<0.20	<0.20	
Benzo[a]pyrene	ug/l	0.81								<0.01	<0.01	
Benzo[b]fluoranthene	ug/l	0.75								<0.10	<0.10	
Benzo[g,h,i]perylene	ug/l	0.2								<0.20	<0.20	
Benzo[k]fluoranthene	ug/l	0.4								<0.10	<0.10	
Chrysene	ug/l	1								<0.10	<0.10	
Dibenzo[a,h]anthracene	ug/l	0.52								<0.20	<0.20	
Fluoranthene	ug/l	130								<0.20	<0.20	
Fluorene	ug/l	400								<0.20	<0.20	
Indeno[1,2,3-cd]pyrene	ug/l	0.2								<0.20	<0.20	
Naphthalene	ug/l	1400								<0.20	<0.20	
Phenanthrene	ug/l	580			-					<0.10	<0.10	
Pyrene	ug/l	68								<0.20	<0.20	

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, All Types of Property Use, Non-Potable Groundwater

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard

(3) The methyl naphthalene standards are applicable to both 1-methyl naphthalene and 2-methyl naphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-10
			14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015
Devenueter	11	MOE Table 3 Standard ^{(1) (2)}	15-01	15-02	15-03	DUP 3	15-04	15-05	15-06	15-08	DUP 8	15-10
Parameter PCBs	Unit	Standard				(Field Duplicate)					(Field Duplicate)	
Aroclor 1242	ug/l			<0.1	<0.1	<0.1				<0.1	<0.1	<0.1
Aroclor 1248	ug/l			<0.1	<0.1	<0.1				<0.1	<0.1	<0.1
Aroclor 1254	ug/l			<0.1	<0.1	<0.1				<0.1	<0.1	<0.1
Aroclor 1260	ug/l			<0.1	<0.1	<0.1				<0.1	<0.1	<0.1
Polychlorinated Biphenyls	ug/l	7.8		<0.1	<0.1	<0.1				<0.1	<0.1	<0.1

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

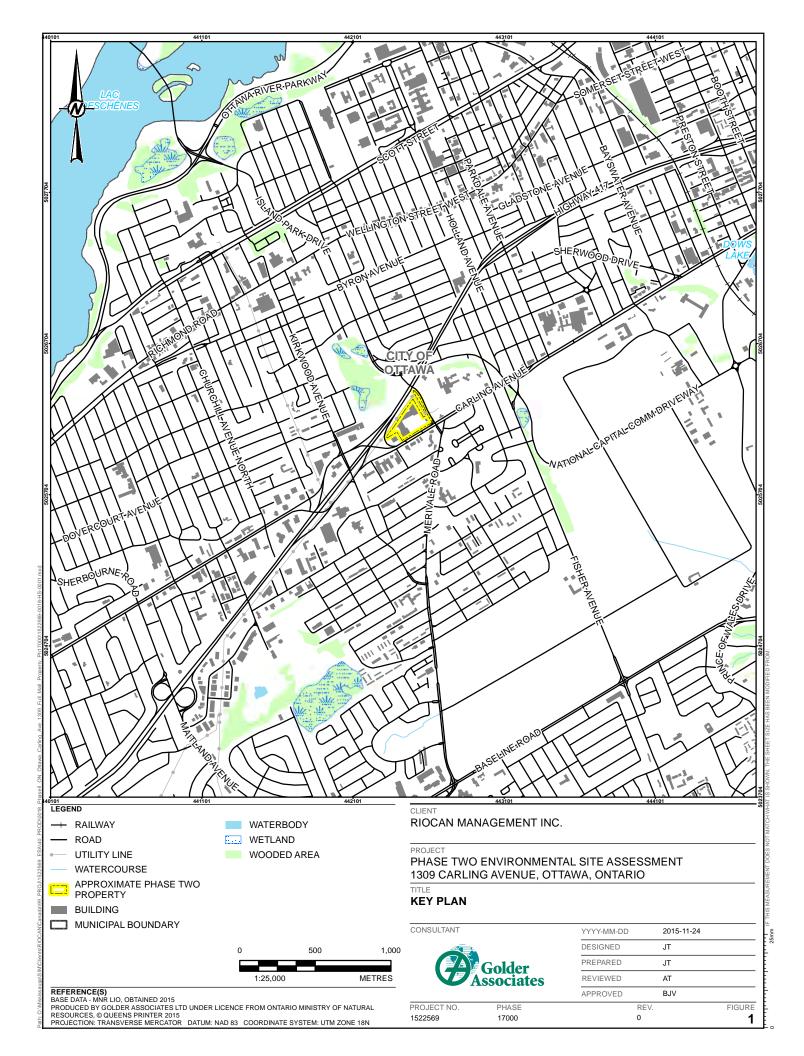
(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, All Types of Property Use, Non-Potable Groundwater

(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard

			15-01	15-02	15-03	15-03	15-04	15-05	15-06	15-08	15-08	15-10
			14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015	14-Oct-2015
Parameter	Unit	MOE Table 3 Standard ^{(1) (2)}	15-01	15-02	15-03	DUP 3 (Field Duplicate)	15-04	15-05	15-06	15-08	DUP 8 (Field Duplicate)	15-10
Metals												
Antimony	ug/l	20000								<0.5	<0.5	
Arsenic	ug/l	1900								6.5	6.7	
Barium	ug/l	29000								502	479	
Beryllium	ug/l	67								<0.5	<0.5	
Boron	ug/l	45000								75.8	71.2	
Cadmium	ug/l	2.7								<0.2	<0.2	
Chromium	ug/l	810								3.1	5.8	
Cobalt	ug/l	66								3.3	3.2	
Copper	ug/l	87								1.0	<1.0	
Hexavalent Chromium	ug/l	140								<5	<5	
Lead	ug/l	25								<0.5	<0.5	
Mercury	ug/l	0.29								<0.02	<0.02	
Molybdenum	ug/l	9200								5.6	5.3	
Nickel	ug/l	490								7.1	7.4	
Selenium	ug/l	63								1.4	2.8	
Silver	ug/l	1.5								<0.2	<0.2	
Thallium	ug/l	510								<0.3	<0.3	
Uranium	ug/l	420								3.9	3.9	
Vanadium	ug/l	250								6.4	6.2	
Zinc	ug/l	1100								5.4	<5.0	

Tables should be read in conjunction with the accompanying document.

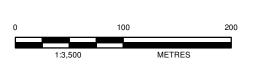
< value = Indicates parameter not detected above laboratory method detection limit.


> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

(1) Ontario Regulation 153/04 (2011) Table 3: Full Depth Generic Site Conditions in a Non-Potable Groundwater Condition, All Types of Property Use, Non-Potable Groundwater


(2) Bold Font = Parameter concentration greater than MOE Table 3 Standard

Note Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter) Note (arrive filter)
A Importance of FI Materials of Unknown Coulds or Crigin 30 B Electricity Generatization of Control Provide and Prevent 10 B Electricity Generatization of Control Provide and Prevent 10 C Statesen: Hydro Charactization of Control Provide and Space: Former (CPR rulp) of Vary data 20 B Statesen: Hydro Charactization of Produce and Provide and Space: Former (CPR rulp) of Vary data 20 C Statesen: Hydro Charactization Produces and Provide and Space: Former (CPR rulp) of Vary data 20 B Control Produces and Produces and Produces and Provide and Space: Former (CPR rulp) of Vary data 20 C Statesen: Hydro Charactization Produces and P
B Stations: Basement of the Shopper's Drug Mart has a 18 dr C Station Common mercine C Station Common mercine C Station and Associated Products In Fined Tanks: Former 29 D Rad Varia, Trades Statis Former C.P. Anghtodrway 46 E Station and Associated Products In Fined Tanks: Former 29 F Station and Associated Products In Fined Tanks: Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis In Former 29 C Common Calculation With the USTs of the Statis Common Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Statis Of the Calculation With the USTs of the Statis Of the Calculation With the USTs of the Statis Of the Statis Of the Calculation With the USTs of the Statis Of the
C Electricity Generatorice, Transformation and Power 18 D Ral Writes, Tirche and Spix:: Former CP.R. right of write 46 E Estator:: Hydro: Marka Sub-Station Product is in Fload Tanke:: Former 28 F Extensity: Hydro: Marka Sub-Station 28, 52 25 IF Products in Fload Tanke:: Former 28 29 G Gasoline and Associated Poducts in Fload Tanke:: Former 28 29 G Gasoline and Associated Poducts in Fload Tanke:: Former 28 29, 10 Itation: with two USTs 28, 10 28, 10 28, 10 Itation with two USTs 28, 10 28, 10 28, 10 Itation with two USTs Residue and Associated Poducts in Fload Tanke: Tormer 28 20, 10 Itation with two USTs Residue and Associated Poducts in Fload Tanke: Tormer 28, 10 28, 10 28, 10 Itation with two USTs and associate and Associated Poducts in Fload Tanke: Tormer 28, 10 37 37 C Checkloper Advisored Poducts in Fload Tanke: Tormer 28, 10 37 37 37 C
B and rail yard 40 E Stackine and Associated Products in Flood Tarks: Former 28 E Stackine and Associated Products in Flood Tarks: Former 28 F Match and Associated Products in Flood Tarks: Former 28 G Commercial Autobody Shops: Former gasoline and service tasks and the VSTs 28, 10 H Gasoline and Associated Products In Flood Tarks: Former 28 G Commercial Autobody Shops: Former gasoline and service tasks and the VSTs 28, 10 H Gasoline and Associated Products In Flood Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs 28, 10 I Gasoline and Associated Products In Flood Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autobody Shops: Former gasoline and service tasks and the VSTs and Tarks and Commercial Autob
Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation <
Bit P Casoline and Associated Products in Fixed Tarks: and the Match Products in Fixed Tarks and Sociated Products in Fixed Tarks and Commercial Autobody Shops: Former gasoline and service 28, 10 statom with work USTs 28, 10 statom with work USTs H Casoline and Associated Products in Fixed Tarks and Commercial Autobody Shops: Former gasoline and service 28, 10 statom with work USTs 28, 10 statom with work USTs J Commercial Autobody Shops: Former gasoline and service 28, 10 statom with work USTs 28, 10 statom with work USTs J Commercial Autobody Shops: Former gasoline and service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom with work USTs and a greasing area service 28, 10 statom service 28, 10 statom service 28, 10 statom with work USTs and a greasing area service 28, 10 statom service 28, 10 statom with work USTs and a greasing area service 28, 10 statom servi
F Industral land use as the Seven-Up Botting Co. with one US to interproperly. 28, 52 G Gasoline and Associated Products in Fixed Tanks and Commercial Autobody Shops: Former gasoline and sevice a station with two USTs 28, 10 H Gasoline and Associated Products in Fixed Tanks and Commercial Autobody Shops: Former gasoline and sevice a station with two USTs and special products in Fixed Tanks and Commercial Autobody Shops: Former gasoline and sevice a station with two USTs and special products in Fixed Tanks and Commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former gasoline and sevice a station with two USTs and a reasoning area commercial Autobody Shops: Former dasting a
G Commercial Autobody Shops: Former gasoline and service 28, 10 H Gasoline and Associated Products in Fixed Tanks: Former gasoline service station with thre USTs 28 I Commercial Autobody Shops: Former gasoline and service station with two USTs and a greasing area 28, 10 J Commercial Autobody Shops: Former gasoline and service station with two USTs and a greasing area 28, 10 J Commercial Autobody Shops: Former gasoline and service station with two USTs and a greasing area 28, 10 J Commercial Autobody Shops: Former dy colarins and greasing area score on the property 37 C Operation of Dry Clearing Equipment (where chemicals are used): Former dy clearing scolared Products in Fixed Tanks: and UST on the property 37 M Gasoline and Associated Products in Fixed Tanks: are UST on the property 28 N Gasoline and Associated Products in Fixed Tanks: are UST on the property 28 N Gasoline and Associated Products in Fixed Tanks: Former 28 37 Operation of Dry Clearing Equipment (where chemicals are used): Orbits e, duta is a two Best of Coducts in Fixed Tanks: Former 28 37 Gasoline and Associated Products in Fixed Tanks: Former 28 28
H Gasoline and Associated Products in Fixed Tarks: Former 28 H Gasoline and Associated Products in Fixed Tarks: and 28,10 I Commercial Autoody Shops: Former gasoline and service 28,10 Gasoline and Associated Products in Fixed Tarks and 28,10 J Commercial Autoody Shops: Former gasoline and service 28,10 Station with two USTs and a foreasing area 28,10 J Commercial Autoody Shops: Former gasoline and service 28,10 Station with two USTs and a foreasing area 28,10 J Commercial Autoody Shops: Former gasoline and service 28,10 Station with two USTs and a foreasing area 37 Coperation of Dry Clearing Equipment (where chemicals are used): Other groepry 37 Contret. Could not confirm whether historically cleaning was doe on the groepry 37 M Indicatinal land use as the Seven-Up Botting Co. with one 28 N Gasoline and Associated Products in Fixed Tarks: 28 N Gasoline and Associated Products in Fixed Tarks: 28 N Gasoline and Associated Products in Fixed Tarks: 28 N Gasoline and Associated Products in Fixed Tarks: 28 Operation of Dry Cleaning Equipment (where chemicals are used): Coll Station with property 28 M India and Associated Pr
Image: Bervice station with threu USTs 20 Image: Backine and Associated Products in Fixed Tarks and Commercial Autobody Shops: Former gasoline and service 28, 10 28, 10 Image: Backine and Associated Products in Fixed Tarks and Commercial Autobody Shops: Former gasoline and service station with two USTs and a 'greasing' area 28, 10 Image: Backine and Associated Products in Fixed Tarks and Commercial Autobody Shops: Former gasoline and service station with two USTs and a 'greasing' area 28, 10 Image: Backine and Associated Products in Fixed Tarks: and Commercial Autobody Shops: Former dy cleaner's in the Westgate Shopping Centre. Could ont confine whether historically cleaning supervised and service area in the Westgate Shopping Centre. Could ont confine whether historically cleaning Gaupiment (where chemicals are used): Off-site, south side of Caring Avenue area 37 Image: Backine and Associated Products in Fixed Tarks: Former 28 37 Image: Backine and Associated Products in Fixed Tarks: Former 28 38 Image: Backine and Associated Products in Fixed Tarks: Former 28 28 Image: Backine and Associated Products in Fixed Tarks: Former 28 28 Image: Backine and Associated Products in Fixed Tarks: Former 28 28
Station with two USTs and a 'greasing' area Gasoline and Associated Products in Fixed Tanks and Commercial Autobody Shops: Former gasoline and service station with two USTs and a 'greasing' area Commercial Autobody Shops: Former dry cleaner's in the Westgate Shopping Centre. Could not confirm whether historically cleaning say done on the property L Operation of Dry Cleaning Equipment (where chemicals are used): Christies, south side of Carling Avenue R Gasoline and Associated Products in Fixed Tanks: M Industrial land use as the Seven-Up Botting Co. with one UST on the groperty N Gasoline and Associated Products in Fixed Tanks: N Gasoline and Associated Products in Fixed T
J Gasoline and Associated Products in Fixed Tanks and Commercial Autobody Shops: Former gasoline and service station with two USTs and a greesing area 28, 10 K Operation of Dry Cleaning Equipment (where chemicals are used): Former dry cleaner's in the Westgate Shopping Centre. Could not confirm whether historically cleaning was done on the property 37 L Operation of Dry Cleaning Equipment (where chemicals are used): Off-Site, south side of Carling Avenue 37 M Houstrial land use as the Seven-Up Bottling Co. with one UST on the property 28 N Gasoline and Associated Products in Fixed Tanks: Industrial land use as the Seven-Up Bottling Co. with one UST on the property 28 N Gasoline and Associated Products in Fixed Tanks: Mains and Associated Products in Fixed Tanks: 28 28 O Gasoline and Associated Products in Fixed Tanks: 28 28
station with two USTs and a 'greasing' area Operation of Dry Cleaning Equipment (where chemicals are used): Former dry cleaner's in the Westgate Shopping Centre. Could not confirm whether historically cleaning was done on the property L are used): Off. Site, south side of Carling Avenue are used): Off. Site, south side of Carling Avenue Stasoline and Associated Products in Fixed Tanks: Industrial land use as the Seven-Up Bottling Co. with one UST on the property N Gasoline and Associated Products in Fixed Tanks: 28 O Gasoline and Associated Products in Fixed Tanks: Former 28
K are used): Former dry cleaner's in the Westgate Shopping Centre. Could not confirm whether historically cleaning was done on the property 37 L Operation of Dry Cleaning Equipment (where chemicals are used): Off-Site, south side of Carling Avenue are used): Off-Site, south side of Carling Avenue are used): Off-Site, south side of Carling Avenue 37 M Gasoline and Associated Products in Fixed Tanks: Industrial land use as the Seven-Up Botting Co. with one UST on the property 28 N Gasoline and Associated Products in Fixed Tanks: 28 28 O Gasoline and Associated Products in Fixed Tanks: Former 28
Image: Control of the property in the property
Image: Constraint of the second se
M Industrial land use as the Seven-Up Bottling Co. with one 28 UST on the property 2 N Gasoline and Associated Products in Fixed Tanks 28 Gasoline and Associated Products in Fixed Tanks: Former 28
Gasoline and Associated Products in Fixed Tanks: Former 28
Sun Oil Ltd. 20 D 15:07 : 1 15:08
PARKLAND WESTGATE D SHOPPING CENTRE C
PARKLAND
RESIDENTIAL RESIDENTIAL
CARLINGAVENUE CARLINGAVENUE
RESIDENTIAL
H COMMERCIAL G LAND
ESCIENCE STREET
TURNE RESIDENTIAL
AUT CRERAUE CRERAU
COLORED AND COLORED AN
44200 44200 44240 44260 44260 44260 44260

-	
LEGEN)
•	APPROXIMATE BOREHOLE LOCATION
•	APPROXIMATE BOREHOLE LOCATION NOT COMPLETED. (PLANNED AS PART OF FUTURE SUPPLEMENTAL PHASE II ESA)
A	POTENTIALLY CONTAMINATING ACTIVITY
2026600	AREA OF FIRST DEVELOPMENT
° <mark>()</mark>	APPROXIMATE PHASE TWO PROPERTY
AREAS	OF POTENTIAL ENVIRONMENTAL CONCERN
	APEC 1 (SITE WIDE)
	APEC 2
223	APEC 3
C	APEC 4
23	APEC 5
	APEC 6

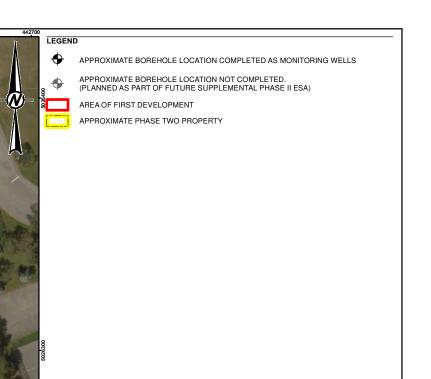
	Areas of Potential Environmental Concern ("APEC")	
APEC #	Detail	PCA#
1	Importation of Fill Material of Unknown Quality	30
2	Gasoline and Associated Products in Fixed Tanks, Storage, Maintenance, Fuelling and Repair of Equipment, Vehicles and Material Used to Maintain Transportation Systems, and Commercial Autobody Shops	28, 52, 10
3	Electricity Generator, Transformation and Power Stations (Transformer Room)	18
4	Operation of Dry Cleaning Equipment (where chemicals are used)	37
5	Electricity Generator, Transformation and Power Stations (Hydro Ottawa Sub-Station)	18
6	Rail Yards, Tracks and Spurs	46

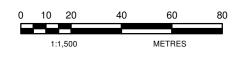
REFERENCE(S) BASE DATA - ATLAS OF CANADA, NATURAL RESOURCES CANADA, 2011. MNR LIO, OBTAINED 2015. SPRODUCED BY GOLDER ASSOCIATES LTD UNDER LICENCE FROM ONTARIO MINISTRY OF NATURAL RESOURCES, © QUEENS PRINTER 2015 BASE IMAGERY - MICROSOFT BING ©2015 MICROSOFT CORPORATION AND ITS DATA SUPPLIERS. PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 18N

CLIENT

RIOCAN MANAGEMENT INC.

PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 1309 CARLING AVENUE, OTTAWA, ONTARIO


TITLE


SITE PLAN

CONSULTANT		YYYY-MM-DD	2015-10-28	
		DESIGNED	JT	
	Golder	PREPARED	JT	
	Golder	REVIEWED	AT	
A 20255800		APPROVED	BJV	
PROJECT NO.	PHASE	RE	EV.	FIGURE
1522569	17000	0		2

				101
Parameter	Units	MOE Table 3	15-03	15-03
Farameter	Units	MOE Table 3	15-03	DUP 3 (Field Duplicate)
Metals				
cis-1,2-Dichloroethene	ug/L	1.6	590	670
Tetrachloroethylene	ug/L	1.6	2700	2800
trans-1,2-Dichloroethene	ug/L	1.6	7.5	8.8
Trichloroethene	ug/L	1.6	440	540
Vinyl Chloride	ug/L	0.5	52	52

NOTE(S) 1. MOE TABLE 3: ONTARIO REG 153/04 (2011) TABLE 3: FULL DEPTH GENERIC SITE CONDITIONS IN A NON-POTABLE GROUNDWATER CONDITION, ALL TYPES OF PROPERTY USE, NON-POTABLE GROUNDWATER 2. SHADED AND BOLD VALUES ARE EXCEEDANCES OF MOE TABLE 3

REFERENCE(S) BASE DATA - ATLAS OF CANADA, NATURAL RESOURCES CANADA, 2011. MNR LIO, OBTAINED 2015. PRODUCED BY GOLDER ASSOCIATES LTD UNDER LICENCE FROM ONTARIO MINISTRY OF NATURAL RESOURCES, © QUEENS PRINTER 2015 BASE IMAGERY - MICROSOFT BING ©2015 MICROSOFT CORPORATION AND ITS DATA SUPPLIERS. PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 18N

CLIENT

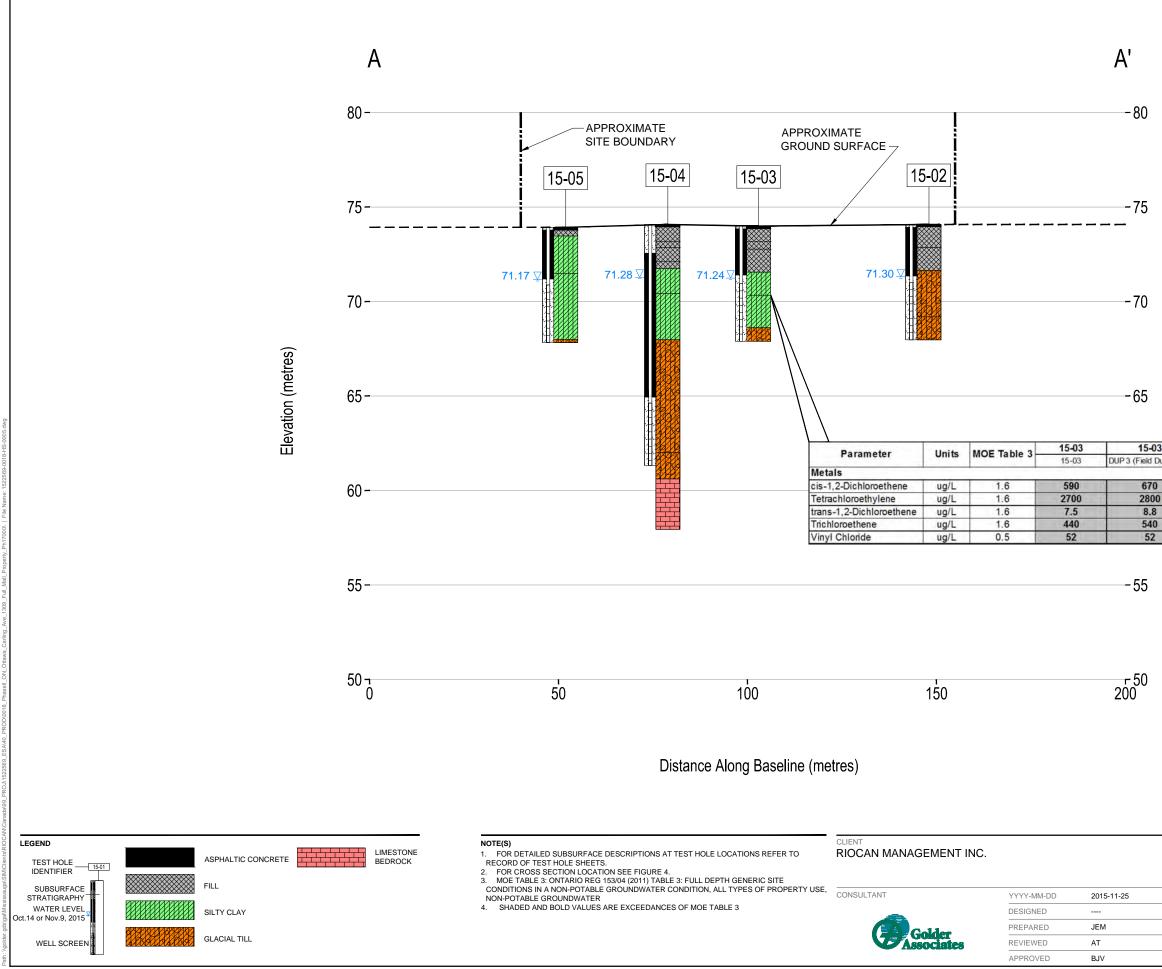
RIOCAN MANAGEMENT INC.

RO.IE

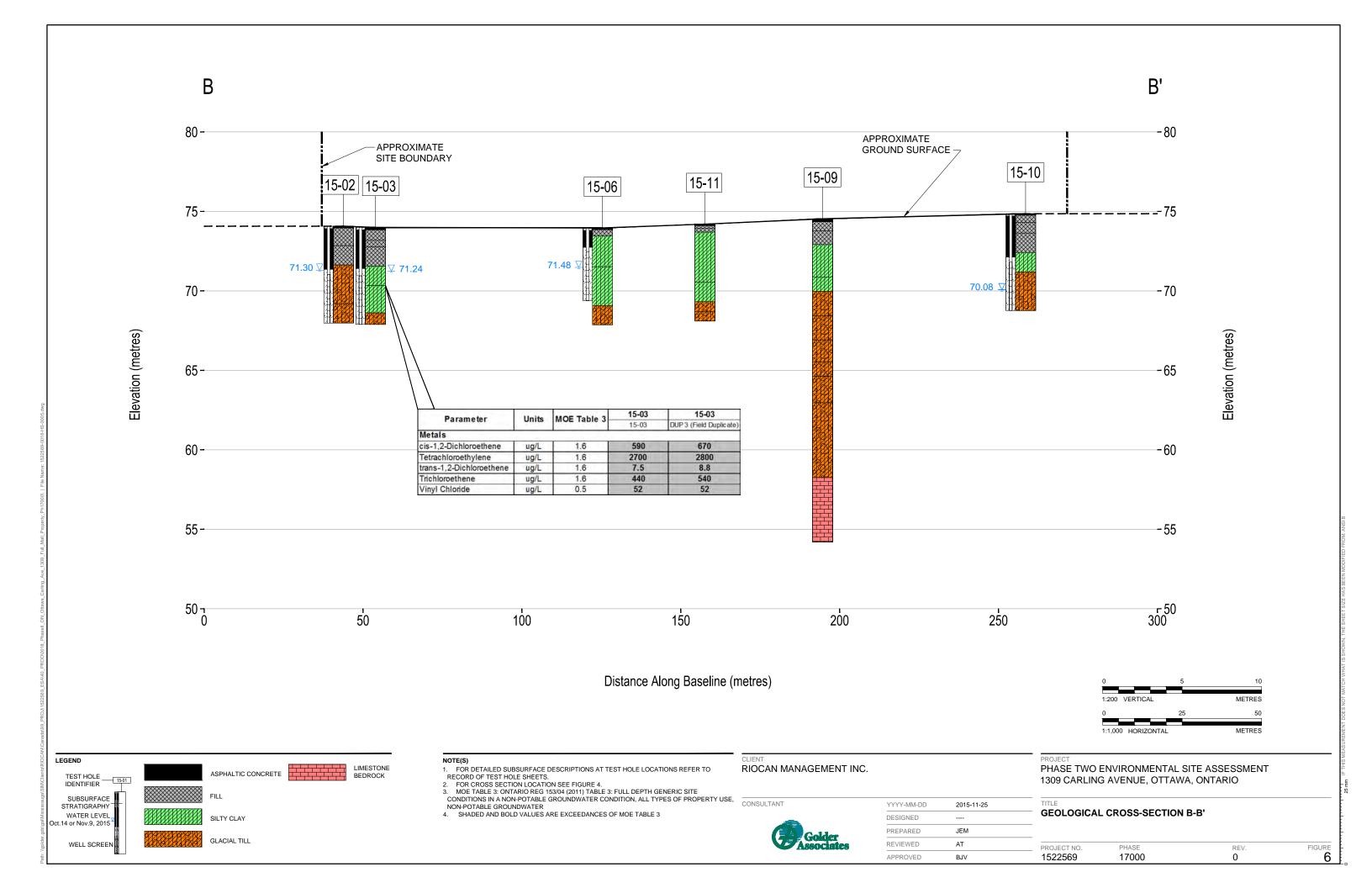
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 1309 CARLING AVENUE, OTTAWA, ONTARIO

GROUNDWATER EXCEEDANCES

CONSULTANT



YYYY-MM-DD		2015-10-28	
DESIGNED		JT	
PREPARED		JT	
REVIEWED		AT	
APPROVED		BJV	
	REV.		FIGURE
	0		3
			-


PHASE 17000

(metre			
Elevation (metres)			
_			
	0	5 10	
	1:200 VERTICAL 0	METRES 25 50	
	1:1,000 HORIZONTAL	METRES	
	O ENVIRONMENTA NG AVENUE, OTTA	L SITE ASSESSMENT WA, ONTARIO	
TITLE	AL CROSS-SECTIO	DN A-A'	

APPENDIX A (i)

Sampling and Analysis Plan

APPENDIX A Sampling and Analysis Plan

Area of Potential Environmental Concern	Borehole Location ID	Location	Rationale	Borehole Depth (mbgs)	Well to be Installed (Y/N)	Depth of Well	Soil Samples	Groundwater Samples	QA/QC Soil Samples	QA/QC Groundwater Samples					
	BH15-09	To be located in the parking lot near the middle of the Site	Borehole to assess the quality of fill on Site and for geotechnical investigation	20.34	N	NA	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX, PAHs and metals	NA							
	BH15-11	To be located near the northeast corner of the area of first development	Borehole to assess the quality of fill on Site	6.1	N	NA	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX, PAHs and metals	NA							
APEC 1 - Fill is reportedly present across the Site APEC 2 - It was reported by the Site Representative that there was previously oil storage USTs at the rear of the mall. The USTs were located at the north and northwest corner of the mall, near to the locations of the former boiler rooms. It was reported that the clean-up and removal was completed by Pinchin, but no report was provided to Golder for review. Also, it was noted that there was hydrocarbon products stored on the Site in the 1925 (revised 1948) FIP. In addition, there are off-Site PCAs that may contribute to APECs on-Site. ASTs were located at service stations/garages/industrial properties at six locations hydraulically down- and-cross gradient of the Site.	BH15-03	To the located on the west side of the shopping centre near the Shopper's Drug Mart and the former dry cleaning facility	Borehole to assess the quality of fill on Site. Borehole to be completed with a monitoring well to assess groundwater impacts associated with other APECs	6.1	Y	Bottom of screen (3 m screen) in all monitoring wells will be located such that the screen straddles the water table	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX, PAHs and metals	NA	One duplicate soil sample will be submitted for analysis of PHCs F1-F4/BTEX,	sample will be submitted for analysis of PHCs F1-F4/BTEX,	sample will be submitted for analysis of PHCs F1-F4/BTEX,	sample will be submitted for analysis of PHCs F1-F4/BTEX,	sample will be submitted for analysis of PHCs		One duplicate groundwa sample will be submitted for analysis of PHCs F1-
	BH15-08	To be located on the northeast portion of the Site to the west of Merivale Road	Borehole to assess the quality of fill on Site. Borehole to be completed with a monitoring well to assess groundwater impacts associated with other APECs	6.1	Y	Bottom of screen (3 m screen) in all monitoring wells will be located such that the screen straddles the water table	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX, PAHs and metals	NA						F4/BTEX, VOCs and PCE and another duplicate groundwater sample will b submitted for analysis of PHCs F1-F4/BTEX, PCBs PAHs and metals. In addition, one trip blank an one trip spike will be	
	BH15-01	To be located on the southwesternmost portion of the Site	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to a former off-Site gas station	6.1	Y		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX	PCBs and metals	one trip spike will be submitted for analysis VOCs and one field bla will be submitted for analysis of PHCs F1- F4/BTEX, VOCs, PCB PAHs and metals					
	BH15-02	To be located on the south corner of the Site, just north of Carling Avenue	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to a former off-Site gas station	6.1	Y	Y Bottom of screen (3 m screen) in all One sc monitoring wells be sub will be located such that the screen straddles the water		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX							
	BH15-03	To the located on the west side of the shopping centre near the Shopper's Drug Mart and the former dry cleaning facility	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to a former off-Site gas station	6.1	Y	table	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX							

APPENDIX A Sampling and Analysis Plan

Area of Potential Environmental Concern	Borehole Location ID	Location	Rationale	Borehole Depth (mbgs)	Well to be Installed (Y/N)	Depth of Well	Soil Samples	Groundwater Samples	QA/QC Soil Samples	QA/QC Groundwater Samples
	BH15-05	To be located on the western portion of the Site near the oil UST that was reportedly to have been formerly located on the northwest corner of the mall	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to a former oil UST that was reported to have been located on the northwest corner of the mall	6.1	Y		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX		
	BH15-06	To be located on the southern portion of the Site, north of Carling Avenue and east of the Shopper's Drug Mart	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to a former Seven-Up Bottling Co. with one UST on the property	6.1	Y		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX		
	BH15-07	To be located on the northern portion of the Site near the former oil UST that was located at the rear of the east end of the mall	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to an oil UST that was formerly present on at the rear of the east end of the mall	6.1	Y		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX		
APEC 3 - Basement of the Shopper's Drug Mart has a Hydro Ottawa transformer room	BH15-02	To be located on the south corner of the Site, just north of Carling Avenue	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the transformer room in the basement of the Shopper's Drug Mart	6.1	Y		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX and PCBs	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX and PCBs		
	BH15-03	To the located on the west side of the shopping centre near the Shopper's Drug Mart and the former dry cleaning facility	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the transformer room in the basement of the Shopper's Drug Mart	6.1	Y		One soil sample will be submitted for analysis of PHCs F1- F4/BTEX and PCBs	One soil sample will be submitted for analysis of PHCs F1- F4/BTEX and PCBs		
PEC 4 - A dry cleaning facility was prmerly located in the on-Site hopping centre. Another dry	BH15-02	To be located on the south corner of the Site, just north of Carling Avenue	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the former dry cleaning facility that located to the south of the Site	6.1	Y		One soil sample will be submitted for analysis of VOCs	One soil sample will be submitted for analysis of VOCs		
cleaning facility was formerly located within the Study Area; approximately 100 m south of the Site at 1317 Carling Avenue	BH15-03	To the located on the west side of the shopping centre near the Shopper's Drug Mart and the former dry cleaning facility	Borehole completed with a monitoring well to assess potential soil and groundwater impacts related to the dry cleaning facility that was formerly located in the shopping centre	6.1	Y		One soil sample will be submitted for analysis of VOCs	One soil sample will be submitted for analysis of VOCs		

APPENDIX A (ii)

Field Logs

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures, and in the text of the report are as follows:

I.	SAMPLE TYPE	III. SOIL I	DESCRIPTION	
AS	Auger sample	(a)	Cohesionless Soils	
BS	Block sample			
CS	Chunk sample	Density Index		Ν
DO or DP	Seamless open-ended, driven or pushed tube samplers	(Relative Density)		Blows/300 mm
DS	Denison type sample			Or Blows/ft.
FS	Foil sample	Very loose		0 to 4
RC	Rock core	Loose		4 to 10
SC	Soil core	Compact		10 to 30
SS	Split spoon sampler	Dense		30 to 50
ST	Slotted tube	Very dense		over 50
TO	Thin-walled, open			
TP	Thin-walled, piston	(b)	Cohesive Soils	
WS	Wash sample		C _u or S _u	
DT	Dual tube sample	Consistency		
DD	Diamond drilling		<u>kPa</u>	<u>Psf</u>
		Very soft	0 to 12	0 to 250
II.	PENETRATION RESISTANCE	Soft	12 to 25	250 to 500

Firm

Stiff

Μ

MH

MPC

SPC

Very stiff

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg. (140 lb.) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split spoon sampler for a distance of 300 mm (12 in.).

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb.) hammer dropped 760 mm (30 in.) to drive an uncased 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH:	Sampler advanced by hydraulic pressure
PM:	Sampler advanced by manual pressure
WH:	Sampler advanced by static weight of hammer

WR: Sampler advanced by weight of sampler and rod

Cone Penetration Test (CPT):

An electronic cone penetrometer with a 60° conical tip and a projected end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_t) , porewater pressure (u) and friction along a sleeve are recorded electronically at 25 mm penetration intervals.

Golder Associates

Hard	Over 200	Over 4,000
IV.	SOIL TESTS	
W	Water content	
w _p or PL	Plastic limited	
$w_1 \text{ or } LL$	Liquid limit	
С	Consolidaiton (oedometer) test	
CHEM	Chemical analysis (refer to text)	
CID	Consolidated isotropically draine	d triaxial test ¹
CIU	Consolidated isotropically undrai	ned triaxial test
	with porewater pressure measurer	ment ¹
D _R	Relative density	
DS	Direct shear test	
Gs	Specific gravity	

25 to 50

50 to 100

100 to 200

500 to 1,000

1,000 to 2,000

2,000 to 4,000

Sieve analysis for particle size

Modified Proctor compaction test

Standard Proctor compaction test

Combined sieve and hydrometer (H) analysis

1 Tests which are anisotropically consolidated prior Note: shear are shown as CAD, CAU.

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) Index F	Properties (continued)
π	3.1416	W	water content
ln x	natural logarithm of x	w ₁ or LL	liquid limit
	logarithm of x to base 10	w _p or PL	plastic limit
g	acceleration due to gravity	I _p or PI	plasticity Index = $(w_1 - w_p)$
t s	time	W _s	shrinkage limit
FOS	factor of safety	I _L	liquidity index = $(w - w_p) / I_p$
V	volume	I _c	consistency index = $(w_1 - w_p) / I_p$
Ŵ	weight	e _{max}	void ratio in loosest state
	worght	e _{min}	void ratio in densest state
II.	STRESS AND STRAIN	I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
		D	(formerly relative density)
γ	shear strain		
Δ	change in, e.g. in stress: $\Delta \sigma'$	(b) Hydrau	ilic Properties
3	linear strain		
ε _v	volumetric strain	h	hydraulic head or potential
η	coefficient of viscosity	q	rate of flow
ν	Poisson's ratio	v	velocity of flow
σ	total stress	i	hydraulic gradient
σ'	effective stress ($\sigma' = \sigma - u$)	k	hydraulic conductivity (coefficient of permeability)
σ'_{vo}	initial vertical effective overburden stress	j	seepage force per unit volume
$\sigma_1 \sigma_2 \sigma_3$	principal stresses (major, intermediate, minor)	5	
$\sigma_{\rm oct}$	mean stress or octahedral stress	(c) Consoli	idation (one-dimensional)
0.001	$= (\sigma_1 + \sigma_2 + \sigma_3) / 3$	(1)	()
τ	shear stress	C _c	compression index (normally consolidated range)
u	porewater pressure	C _c	recompression index (overconsolidated range)
E	modulus of deformation	C_r C_s	swelling index
G	shear modulus of deformation	C_s C_{α}	coefficient of secondary consolidation
K	bulk modulus of compressibility	e _α m _v	coefficient of volume change
IX .	buik modulus of compressionity	c _v	coefficient of consolidation (vertical direction)
III.	SOIL PROPERTIES	e _v T _v	time factor (vertical direction)
111.	Sole i Koi Ekries	U	degree of consolidation
(a) Index Pro	nerties	σ'_p	pre-consolidation stress
(u) much i io	perites	OCR	overconsolidation ratio = $\sigma'_p / \sigma'_{v_0}$
o(n)	bulk density (bulk unit weight)*	OCK	0 vertex is solution ratio = 0 p / 0 vo
ρ(γ)	dry density (dry unit weight)	(d) Shear S	Strongth
$\rho_d(\gamma_d)$		(u) Shear S	Sucigui
$\rho_{\rm w}(\gamma_{\rm w})$	density (unit weight) of water		work and essidual share strength
$\rho_{s}(\gamma_{s})$	density (unit weight) of solid particles	$\tau_p \text{ or } \tau_r$	peak and residual shear strength
γ'	unit weight of submerged soil ($\gamma' = \gamma - \gamma_w$)	φ' 2	effective angle of internal friction
D_R	relative density (specific gravity) of	δ	angle of interface friction
	solid particles ($D_R = \rho_s / \rho_w$) formerly (G_s)	μ	coefficient of friction = tan δ
e	void ratio	c'	effective cohesion
n	porosity	$c_u \text{ or } s_u$	undrained shear strength ($\phi = 0$ analysis)
S	degree of saturation	р	mean total stress $(\sigma_1 + \sigma_3) / 2$
		p'	mean effective stress $(\sigma'_1 + \sigma'_3) / 2$
*	Density symbol is ρ . Unit weight symbol is γ	q	$(\sigma_1 - \sigma_3) / 2 \text{ or } (\sigma'_1 - \sigma'_3) / 2$
	where $\gamma = \rho g$ (i.e. mass density multiplied by	q_u	compressive strength ($\sigma_1 - \sigma_3$)
	acceleration due to gravity)	\mathbf{S}_{t}	sensitivity
		Notes:	¹ $\tau = c' + \sigma' \tan \phi'$
		110105.	$t = t + 0$ tan ψ

 2 shear strength = (compressive strength) / 2

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERING STATE

Fresh: no visible sign of rock material weathering **Faintly Weathered**: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material. **Moderately weathered:** weathering extends throughout the rock mass but the rock material is not friable

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock texture and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very Thickly Bedded	> 2 m
Thickly Bedded	0.6 m to 2m
Medium Bedded	0.2 m to 0.6 m
Thinly Bedded	60 mm to 0.2 m
Very Thinly Bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly Laminated	< 6 mm

JOINT OR FOLIATION SPACING

Description	Spacing
Very Wide	> 3 m
Wide	1 – 3 m
Moderately Close	0.3 – 1 m
Close	50 – 300 mm
Very Close	< 50 mm

GRAIN SIZE

<u>Size*</u>
> 60 mm
2-60 mm
60 microns – 2mm
2-60 microns
< 2 microns

Note: *Grains > 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, recovered at full diameter, measured relative to the length of the total core run. RQD varies from 0% for completely broken core 100% for core in solid sticks.

DISCONTINUITY DATA

Fracture Index

A count of the number of discontinuities (physical separations) in the rock core, including naturally occurring fractures but not including mechanically induced breaks caused by drilling.

Dip with Respect to (W.R.T.) Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviated description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation ground or shattered core and mechanically separated bedding or foliation surfaces. Additional information concerning the nature information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations

BD -	Bedding	PY -	Pyrite
FO -	Foliation/Schistosity	Ca -	Calcite
CL -	Clean	PO -	Polished
SH -	Shear Plane/Zone	К -	Slickensided
VN -	Vein	SM -	Smooth
FLT -	Fault	RO -	Ridged/Rough
CO -	Contact	ST -	Stepped
JN -	Joint	PL -	Planar
FR -	Fracture	IR -	Irregular
MB -	Mechanical Break	UN -	Undulating
BR -	Broken Rock	CU -	Curved
BL -	Blast Induced	TCA -	To Core Axis
II -	Parallel To	STR -	Stress Induced
OR -	Orthogonal		

RECORD OF BOREHOLE: 15-01

BORING DATE: October 9, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026103.1 ;E 442358.0 SAMPLER HAMMER, 64kg; DROP, 760mm

4	ЦОН	SOIL PROFILE			SA	MPLE		DYNAMIC PENETRATION	HYDRAULIC CONDUCTIVITY, k, cm/s	Ę,	PIEZOMETER
DEPTH SCALE METRES	METH		LOT		с.		30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	IONA	OR
ET ET	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
ä	BOR		STRA	(m)	۲		BLOV	20 40 60 80	Wp	Γ ^Α Υ	
		GROUND SURFACE		74.90			-				
0		ASPHALTIC CONCRETE		0.05			+				Flush Mount Protective Casing
		FILL - (SW) gravelly SAND; grey, (PAVEMENT STRUCTURE)			1	50 DT	PH				
				74.14 0.76							
1		FILL - (CL) SILTY CLAY; grey brown to black, contains organic matter; cohesive,		73.68	2	50 DT	PH				~
		W>PL (CI/CH) SILTY CLAY; grey brown, (Weathered Crust); cohesive, w>PL		1.22							Bentonite Seal
		(Weathered Crust); cohesive, w>PL			3	50 DT	PH				
2						DT					
	(hsi										
	ect Pi										
3	Geoprobe Diam (Direct Push)				4	50 DT	PH				Silica Sand
	Ge										
	76 mm	(CI/CH) SILTY CLAY; grey; cohesive,		71.24 3.66	-						
4		w>PL									
					5	50 DT	PH				32 mm Diam. PVC
											#10 Slot Screen
5						1					
					6	50 DT	PH				
				69.01							
6		(SM) SILTY SAND, some gravel; grey, (GLACIAL TILL); non-cohesive, wet		5.89		50 DT	PH				
		End of Borehole		0.10							W.L. in Screen at Elev. 73.57 m on
											October 14, 2015 W.L. in Screen at
7											Elev. 73.64 m on November 9, 2015
8											
9											
10											
11											
12											
13											
14											
15											
	ртн	SCALE								10	OGGED: AT
νE		JUAL						Golder Associates		СН	

RECORD OF BOREHOLE: 15-02

BORING DATE: October 8, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026068.8 ;E 442427.2 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц		2 F	SOIL PROFILE	1.		SA			DYNAMIC PENETRATION HYDRAUL RESISTANCE, BLOWS/0.3m k,	cm/s	PIEZOMETER
METRES		BURING MELHUU	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 10 ⁴ SHEAR STRENGTH nat V. + Q - ● WATE Cu, kPa rem V. ⊕ U - ○ Wp ⊢ 20 40 60 80 20	10 ⁵ 10 ⁴ 10 ³ 10 ⁴ 10 ³ 10 ⁵ 10 ⁴ 10 ³ 10 ⁴ 10 ³ 10 ⁴ <td< th=""><th>OR STANDPIPE INSTALLATION</th></td<>	OR STANDPIPE INSTALLATION
0			GROUND SURFACE		74.07						
0			ASPHALTIC CONCRETE FILL - (SW) gravelly SAND; grey,		0.11						Flush Mount Protective Casing
1			(PAVEMENT STRUCTURE)		72.85	1	50 DT	PH			
2			FILL - (CL) SILTY CLAY; grey brown to black; cohesive, w>PL		1.22	2	50 DT	PH			Bentonite Seal
3	Geoprobe	Diam. (Direct Push)	(SC) CLAYEY SAND, some gravel; brown to grey, contains cobbles and boulders, (GLACIAL TILL); cohesive, w>PL		71.63 2.44	3	50 DT	PH			Silica Sand
4	Ge	76 mm Diar				4	50 DT	PH			
					69.19	5		PH			32 mm Diam. PVC #10 Slot Screen
5			(SM) SILTY SAND, some gravel; grey, (GLACIAL TILL); non-cohesive, moist		4.88	6 7 8	50 DT 50 DT 50 DT 50 DT	PH PH PH			Į Į
6			End of Borehole		67.97 6.10	9	50 DT	PH			W.L. in Screen at Elev. 68.61 m on October 14, 2015
7											W.L. in Screen at Elev. 71.30 m on November 9, 2015
8											
9											
Ū											
10											
11											
12											
13											
14											
15											
DE											

RECORD OF BOREHOLE: 15-03

BORING DATE: October 7, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026112.4 ;E 442412.5 SAMPLER HAMMER, 64kg; DROP, 760mm

ļ	ПОН	SOIL PROFILE	1.		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ξŕ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - C	wp wi	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
	ш	GROUND SURFACE	ى: ا				В	20 40 60 80	20 40 60 80		
0				73.99 0.00 0.15						_	Flush Mount
		FILL - (SW) gravelly SAND; brown, (PAVEMENT STRUCTURE)		0.15 73.18	1	50 DT	PH				Protective Casing
1		FILL - (SW) SAND, trace gravel; dark brown, contains organic matter; non-cohesive		0.81 72.77 1.22	2	50 DT 50 DT	PH				Bentonite Seal
		FILL - (CL) SILTY CLAY; grey brown, contains wood and glass fragments; cohesive, w>PL			4	DT 50 DT	PH PH				bentonne Sear
2				71.55	5	50 DT	PH				
3	Geoprobe	(CI/CH) SILTY CLAY; grey brown, (Weathered Crust); cohesive, w>PL		2.44	6	50 DT	PH				Silica Sand
	i Ö			70.33	7	50 DT	PH				, N., N., N., N.,
4	ľ	CI/CH) SILTY CLAY; grey; cohesive, w>PL		3.66	8	50 DT	PH				
											32 mm Diam. PVC #10 Slot Screen
5		(SC) CLAYEY SAND, some gravel; grey,		68.61 5.38	9	50 DT	PH				
6		(GLACIAL TILL); cohesive, w>PL		67.89	10	50 DT	PH				
		End of Borehole		6.10							W.L. in Screen at Elev. 71.24 m on October 14, 2015
7											
8											
9											
10											
11											
12											
13											
14											
15											
		<u> </u>									
DE		SCALE						Golder			DGGED: AT ECKED: NRL

RECORD OF BOREHOLE: 15-04

BORING DATE: October 9, 2015

SHEET 1 OF 3

DATUM: Geodetic

LOCATION: N 5026136.5 ;E 442406.0 SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

1			SOIL PROFILE			SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ÅL	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	ά		GROUND SURFACE	S.				BI	20 40 60 80	20 40 60 80		
0		\square	ASPHALTIC CONCRETE	××××	74.08 0.00 0.13							Flush Mount Protective Casing
			FILL - (SW) gravelly SAND; grey, (PAVEMENT STRUCTURE)		73.17	1		PH				Silica Sand
1			FILL - (CL) SILTY CLAY; grey brown; cohesive, w>PL		0.91 72.86 1.22	2	50 DT	PH				
			FILL - (SP) SAND, fine, some silt; grey; non-cohesive, dry		72.10	3		РН				
2			FILL - (SW) gravelly SAND to SAND; grey; non-cohesive		1.98 71.74	5		PH PH				
			(CI/CH) SILTY CLAY; grey brown, (Weathered Crust); cohesive, w>PL		2.34	6	50 DT 50 DT	PH				∇
3		(ush)				7	50	РН				<u>-</u> <u>Y</u>
	a	irect P										
	Geoprobe	mm Diam. (Direct Push)	(CI/CH) SILTY CLAY; grey; cohesive,		70.42 3.66							
4			w>PL			8	50 DT	РН				
		76				Ũ	דט	1				
5												
						9	50 DT	РН				Bentonite Seal
						5	DT					
6			(SC) CLAYEY SAND, some gravel; grey,		67.98 6.10							
			contains cobbles and boulders, (GLACIAL TILL); cohesive, w>PL			10	50 DT	РН				
7						10	DT					
	-	H										
8												
9		Stem)										
	Auger	(Hollow Stem)										Silica Sand
10	۳	200 mm Diam										
		200										
11												32 mm Diam. PVC
												#10 Slot Screen
12		\parallel	(SM) SILTY SAND, some gravel; grey, contains cobbles and boulders,		62.01 12.07							
			(GLACIAL TILL); non-cohesive			C1	NQ RC	DD				
13												W.L. in Screen at Elev. 71.28 m on
	Rotary Drill	Core	Eroph thinks to modium herded ded		60.62 13.46							October 14, 2015
	Rotar	ğ	Fresh, thinly to medium bedded, dark grey to black, strong to very strong, fine grained LIMESTONE BEDROCK, with		13.46	C2	NQ RC	DD				
14			thin to medium thick black slightly calcareous shale beds, occasional									
			nodular sections									
15	_	L				C3 — –	NQ RC	DD —		+++		
			CONTINUED NEXT PAGE									
DE	PTł	HS	CALE						Caldar		L	DGGED: AT
1:									Golder			ECKED: NRL

RECORD OF BOREHOLE: 15-04

BORING DATE: October 9, 2015

SHEET 2 OF 3

DATUM: Geodetic

LOCATION: N 5026136.5 ;E 442406.0 SAMPLER HAMMER, 64kg; DROP, 760mm

DEPTH SCALE METRES	ПОН	SOIL PROFILE		SAMPLES			DYNAMIC PENETRA RESISTANCE, BLOV	HYDRAULIC CONDUCTIVITY, k, cm/s			ĘĘ	PIEZOMETER		
	BORING METHOD	DESCRIPTION	STRATA PLOT		ц.		BLOWS/0.30m	20 40	60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³			ADDITIONAL LAB. TESTING	OR
			TΑF	ELEV. DEPTH	NUMBER	ТҮРЕ	VS/0.	SHEAR STRENGTH Cu, kPa	nat V. + Q - ● rem V. ⊕ U - ○		ER CONTENT	PERCENT	- 110 2011	STANDPIPE INSTALLATION
	BOR		TRA	(m)	₹		SLOV			Wp ⊢−−−⊖^W−−−1 WI			LAI	
	<u> </u>		S			\vdash	ш	20 40	60 80	20	40 6	80 80	+	
- 15		CONTINUED FROM PREVIOUS PAGE Fresh, thinly to medium bedded, dark	<u> </u>		<u> </u>									
	re ře	grey to black, strong to very strong, fine grained LIMESTONE BEDROCK, with thin to medium thick black slightly calcareous shale beds, occasional		1										
	Rotary Drill NQ Core	thin to medium thick black slightly			СЗ	NQ RC	DD							
- 16	8 z	calcareous shale beds, occasional nodular sections												
10		End of Borehole		57.95 16.13										
17														
18														
			1											
			1											
40			1											
19			1											
			1											
20			1											
21														
			1											
			1											
~~			1											
22														
			1											
23														
			1											
			1											
24			1											
			1											
25														
20			1											
			1											
26			1											
27			1											
27														
28			1											
-														
			1											
			1											
29														
			1											
· 29 · 30														
			1											
	I	I								I – – – –	1	I I		
DE	PTH S	SCALE					1	Cold	A #				LC	OGGED: AT
1:	75							Gold	inter				СН	ECKED: NRL

RECORD OF BOREHOLE: 15-05

BORING DATE: October 7, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026154.4 ;E 442383.3 SAMPLER HAMMER, 64kg; DROP, 760mm

, ALE	ПОП	SOIL PROFILE				SAMPLES		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp I → O ^W I WI	PIEZOMETER OR STANDPIPE INSTALLATION
	ă	GROUND SURFACE	ST				Ы	20 40 60 80	20 40 60 80	
0				73.93 0.00						Flush Mount
		FILL - (SW/GW) SAND and GRAVEL:		0.15 73.47	1	50 DT	PH			Protective Casing
		grey brown, contains silty clay pockets, (PAVEMENT STRUCTURE);	M	0.46		50				
1		\non-cohesive (CI/CH) SILTY CLAY; grey brown,			2	50 DT	PH			
		(CI/CH) SILTY CLAY; grey brown, (Weathered Crust); cohesive, w>PL								Bentonite Seal
					3	50 DT	РН			
2					5	DT				Σ
	(Hail	(CI/CH) SILTY CLAY; grey; cohesive,		71.49						
	Geoprobe 76 mm Diam (Direct Push)	w>PL		2.44						<u>₹</u>
3	soprot				4	50 DT	РН			Silica Sand
	0 lie									
	76 m									
4					-	50 DT				
					5	DT	PH			32 mm Diam. PVC #10 Slot Screen
										#10 Slot Screen
5										
					6	50 DT	PH			
6		(SC) CLAYEY SAND, some gravel; grey,		67.99 5.94	7	50 DT	PH			
		(GLACIAL TILL); cohesive, w>PL		6.10						w.L. in Screen at Elev. 71.84 m on
		End of Borehole								October 14, 2015
7										W.L. in Screen at Elev. 71.17 m on
										November 9, 2015
8										
9										
10										
10										
11										
12										
13										
14										
15										
.5										
						·				
DE	PTH	SCALE					- (Golder		LOGGED: AT

RECORD OF BOREHOLE: 15-06

BORING DATE: October 7, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026119.9 ;E 442491.6 SAMPLER HAMMER, 64kg; DROP, 760mm

BORING METHOD	DESCRIPTION GROUND SURFACE ASPHALTIC CONCRETE	STRATA PLOT	ELEV.	ER		.30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	TION/	PIEZOMETER OR
		Ĕ	DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.30m	SHEAR STRENGTH nat V. $+$ Q $-$ • rem V. \oplus U $-$ O	WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
		s	73.96			ш	20 40 60 80	20 40 60 80		
	FILL - (SW) gravelly SAND; dark brown		0.10	1	50 DT	РН				Flush Mount Protective Casing
	to black, (PAVEMENT STRUCTURE)	XXX	73.45		DT	РП				
	(CI/CH) SILTY CLAY; grey brown, (Weathered Crust); cohesive, w>PL			2	50 DT	РН				Bentonite Seal
					-					
										Silica Sand
				3	50 DT	PH				
(ha			71.52							∑_
ect Pus	(CI/CH) SILTY CLAY; grey; cohesive, w>PL		2.44							_ ¥(?) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
n. (Dire				4	50 DT	PH				32 mm Diam. PVC #10 Slot Screen
Diam										#10 Slot Screen
76 mm										
				5	50 DT	PH				
			69.08							W.L. in Screen at Elev. 71.48 m on
	(SC) CLAYEY SAND, some gravel; grey, (GLACIAL TILL); cohesive, w>PL		4.88							October 14, 2015
				6	50 DT	PH				
				7	50	ы				
-	End of Borehole		67.86 6.10	/	DT	r H				
		-								
TH S	CALE					(Golder			OGGED: AT
	26 mm Diam. (Direct Push)	(SC) CLAYEY SAND, some gravel; grey, (GLACIAL TILL); cohesive, w>PL End of Borehole	(SC) CLAYEY SAND, some gravel; grey, (GLACIAL TILL); cohesive, w>PL End of Borehole	(SC) CLAYEY SAND, some gravel; grey; 69.08 (GLACIAL TILL); cohesive, w>PL 67.86 End of Borehole 6.10	CUCCH) SILTY CLAY; grey; cohesive, W-PL (GLC) CLAYEY SAND, some gravel; grey, (GLC) CLAYEY S	and top C/I/CH) SILTY CLAY; grey; cohesive, 2.44 4 5 w>PL 60.08 6 50 (SC) CLAYEY SAND, some gravel; grey. 60.08 6 50 (GLACIAL TILL); cohesive, w>PL 60.08 7 50 End of Borehole 6.10 6 7 50 Image: Character of the strength of the strengt of the strength of the strength of the stre	Image: Chick Sill TY CLAY; grey; cohesive, 2:44 4 50 PH W>PL 5 50 PH (C) CLAYEY SAND, some gravel; grey; 60:08 6 50 PH (CLACIAL TILL); cohesive, w>PL 60:08 6 50 PH End of Borehole 6:10 6 6 60 6 Image: Chick Size Size Size Size Size Size Size Size	Image: Second	Clock(Ch) SLTY CLAY: grey, cohesive. 7.44 4 01 PH 6 01 PH 6 01 PH (SD) CLAYEV SAND, some gravet; grey, (CLACIAL TLL); cohesive, w-PL 6 01 PH 6 01 01 PH 6 01 PH 6 01 PH End of Borehole 6.10 7 01 PH	Clock SLTY CLAY: grey; cohesive. 24 0 01 PH Sc 00 PH 5 00 PH SC CLAYEY SAND, some gravef; grey; GLARAL TILL); cohesive, wPL 25 4.8 6 01 PH ISC) CLAYEY SAND, some gravef; grey; GLARAL TILL); cohesive, wPL 27.8 7 91 PH End of Borehole 0.0 7 91 PH 1 1

RECORD OF BOREHOLE: 15-08

BORING DATE: October 8, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026295.6 ;E 442562.0 SAMPLER HAMMER, 64kg; DROP, 760mm

u J			SOIL PROFILE		,	SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	귀 원 PIEZOM	ETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.30m	20 40 60 80 `` SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - ○	10 ⁶ 10 ^{.5} 10 ^{.4} 10 ^{.3} WATER CONTENT PERCENT Wp	PIEZOM PIEZOM OF STAND INSTALL	PIPE
i	BOB	ŝ		STR	(m)	ž		BLO	20 40 60 80	Wp H OW I WI 20 40 60 80		
0			GROUND SURFACE		74.33						Flush Mount	II. 1
			ASPHALTIC CONCRETE FILL - (SW/GW) SAND and GRAVEL;		0.10 73.90	1	50 DT	PH			Protective Casin)
			brown, (PAVEMENT STRUCTURE);		0.43		50					
1			(CL) SILTY CLAY; grey brown, with orange mottling; cohesive, w>PL		73.11	2	50 DT	PH				
		ŀ	(SM) SILTY SAND; grey; non-cohesive, moist		1.22						Bentonite Seal	
			moist			3	50 DT	PH				
2												
		(hsh)	(CI/CH) SILTY CLAY; grey brown, (Weathered Crust); cohesive, w>PL		71.89 2.44	4	50 DT	PH				
3	robe	Direct	(Weathered Crust); cohesive, w>PL				50				Silica Sand	
5	Geoprobe	Diam. (Direct Push)				5	50 DT	PH				10. NO
		ξ	(SC) CLAVEY SAND: grey contains		70.67							
4			(SC) CLAYEY SAND; grey, contains cobbles and boulders, (GLACIAL TILL); cohesive, w>PL		0.00							N. 272
						6	50 DT	PH			32 mm Diam P	
					69.45						32 mm Diam. P\ #10 Slot Screen	₹
5			(SM) SILTY SAND, some gravel; grey, contains cobbles and boulders,		4.88	7	50 DT	PH				200 X
			(GLACIAL TILL); non-cohesive, moist									10,000
6					68.23	8	50 DT	PH				20
			End of Borehole	-	6.10						W.L. in Screen a Elev. 69.60 m or	
											October 14, 201	
7											W.L. in Screen a Elev. 69.70 m or November 9, 20	15
8												
Ű												
9												
10												
10												
11												
12												
13												
14												
15												
.5												
	ידח											
υE	۲ I ŀ	150	CALE						Golder		LOGGED: AT	

RECORD OF BOREHOLE: 15-09

BORING DATE: October 13, 2015

SHEET 1 OF 3

DATUM: Geodetic

LOCATION: N 5026180.8 ;E 442535.7 SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Ш.			SOIL PROFILE	1.	ı —	SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	NG	PIEZOMETER
DEPTH SCALE METRES	BOPING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q -	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 WATER CONTENT PERCEN	<i>≌ i</i> ii	OR STANDPIPE INSTALLATION
				STRAT	DEPTH (m)	NUN	F	BLOW	Cu, kPa rem V. ⊕ U - C 20 40 60 80	Wp		
-			GROUND SURFACE		74.54				20 40 60 80	20 40 60 80		
0			ASPHALTIC CONCRETE FILL - (SW) gravelly SAND, some silt;	****	0.00							
			brown, (PAVEMENT STRUCTURE); non-cohesive, moist, compact			1	SS	16				
1			FILL - (CL) SILTY CLAY, some sand and		73.78 0.76							
·			gravel; grey brown, with red oxidation; cohesive, w>PL			2	SS	12				
			(CI/CH) SILTY CLAY; grey brown,		72.91	╞──						
2			(Weathered Crust); cohesive, w>PL, stiff to very stiff			3	SS	8		Φ		
						4	SS	11		0		
3						-						
					70.88	5	SS	2		0		
			(CI/CH) SILTY CLAY; grey; cohesive, w>PL, stiff		3.66		1		⊕ +			
4			_,									
			(SC) gravelly CLAYEY SAND: arev.		69.97 4.57	-	$\left \right $					
5		(m	(SC) gravelly CLAYEY SAND; grey, (GLACIAL TILL); cohesive, w>PL, stiff to very stiff			6	SS	12				
	5	ow Ste										
	Power Auger	Holl.				7	SS	9		0	м	
6	Powe	mm Diam. (Hollow Stem)	(ML) sandy SILT; some gravel; grey,		68.44 6.10		1					
		200 mn	contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet,			8	SS	8		0		
_			loose									
7						9	SS	5		0		
			(SM) SILTY SAND, some gravel; grey,		66.92 7.62							
8			(GLACIAL TILL); non-cohesive, wet,			10	SS	25		0		
			compact									
						11	SS	25		0		
9			(SM) gravelly SILTY SAND, some low to		65.55 8.99	 						
			none plastic fines; grey, contains cobbles and boulders, (GLACIAL TILL);			12	SS	37		0	м	
10					64.63							
10			(SW) SAND, some gravel, trace low to none plastic fines; grey, contains cobbles and boulders, (GLACIAL TILL);		9.91	13	SS	11		0		
			non-cohesive, wet, compact to dense									
11						14	ss	>30		0		
					62.96							
	H		(SM) SILTY SAND, some gravel; grey, contains cobbles and boulders,		11.58		1					
12			(GLACIAL TILL); non-cohesive, wet									
						C1	NQ RC	DD				
10	_											
13	Rotary Drill	NQ Core					$\left \right $					
	Rota	ğ										
14						C2	NQ RC	DD				
15	۴I	-		_K27X		<u>C</u> 3	NQ		+	┟──┝─┼──┝─┤		
			CONTINUED NEXT PAGE	1								
DE	PTI	нs	CALE						Coldon		LC	GGED: AT
1:	75								Golder			ECKED: NRL

RECORD OF BOREHOLE: 15-09

BORING DATE: October 13, 2015

SHEET 2 OF 3

DATUM: Geodetic

LOCATION: N 5026180.8 ;E 442535.7 SAMPLER HAMMER, 64kg; DROP, 760mm

ц Д	DOH-	SOIL PROFILE		1	SA	MPLE		DYNAMIC PENETRAT RESISTANCE, BLOW		Ì,	k, (C CONDUC cm/s		RGA	PIEZOMETER
DEP IN SUALE METRES	BORING METHOD		STRATA PLOT	ELEV.	ËR		BLOWS/0.30m	20 40		80	10 ⁻⁶		10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ΞΨ	SING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	WS/(SHEAR STRENGTH Cu, kPa	nat V. + rem V. ∉	• Q - ● • U - O	WATE Wp —		T PERCENT	AB. T	INSTALLATION
5	BOF		STR	(m)	ž		BLO			80	20 Wp		60 80		
		CONTINUED FROM PREVIOUS PAGE -					+				20	-10			
15		(SM) SILTY SAND, some gravel; grev.				RC	\neg								
		contains cobbles and boulders, (GLACIAL TILL); non-cohesive, wet			СЗ	NQ RC	DD								
					05	RC	00								
16				Ś											
		FRESH, thinly to medium bedded, dark		58.26											
		grey, strong to very strong, fine grained													
17		partings and occassional nodular			C4	NQ RC	DD							UCS= 104 MPa	
	_	sections		1										104 MPa	
	Z Dril	ND COR													
18	Rotary Drill	g													
10				-	C5	NQ RC	DD								
				1			-								
			臣	-											
19															
						NO									
			_ ₽₽	1	C6	NQ RC	DD								
20				54.20											
		End of Borehole		20.34		1									
21															
22															
23															
24															
25															
26															
27															
-1															
28															
29															
30															
DE	PTH	I SCALE						Golde	r					LC	GGED: AT

RECORD OF BOREHOLE: 15-10

BORING DATE: October 8, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026186.1 ;E 442607.2 SAMPLER HAMMER, 64kg; DROP, 760mm

4		员	SOIL PROFILE	_		SA	MPL		DYNAMIC PENETRATION \ HYD RESISTANCE, BLOWS/0.3m \	RAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
METRES		Ę		LOT		£		30m	20 40 60 80	k, cm/s 90 10 ⁸ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT WOLLSH 10 ⁴ 10 ⁴ Vp	OR
		ยื่	DESCRIPTION	TA P	ELEV.	NUMBER	TYPE	S/0.:	SHEAR STRENGTH nat V. + Q - •		STANDPIPE INSTALLATION
5		BORING METHOD		STRATA PLOT	DEPTH (m)	ÎN	+	BLOWS/0.30m			
	L	ш		Ś				ā	20 40 60 80	20 40 60 80	
0	L		GROUND SURFACE		74.86						Flush Mount
			FILL - (SW/GW) SAND and GRAVEL;		0.10						Protective Casing
			brown, (PAVEMENT STRUCTURE)	XXX	74.30 0.56						
			FILL - (CL) SILTY CLAY; grey to black; cohesive, w>PL		0.00	1	50 DT	РН			
1					73.64						
			FILL - (CL) SILTY CLAY, trace gravel; grey brown; cohesive, w>PL		1.22						Bentonite Seal
			g , ,			2	50 DT	PH			
2						2	DT	гп			
		<u> </u>			72.42						
		t Pus	(CI/CH) SILTY CLAY; grey; cohesive,		2.44						
	eqo	Direc	w>PL				50				Silica Sand
3	Geoprope	am.(3	50 DT	PH			
	^ن	76 mm Diam. (Direct Push)			71.20						
		76 m	(SM) SILTY SAND, some gravel; grey, contains cobbles and boulders		3.66						
4			contains cobbles and boulders (GLACIAL TILL); non-cohesive; moist								
						4	50 DT	PH			
											32 mm Diam. PVC #10 Slot Screen
5											#10 Slot Screen
5											
						5	50 DT	PH			
6	⊢		End of Borehole	6188£	68.76 6.10						
					0.10						W.L. in Screen at Elev. 70.06 m on
											October 14, 2015
7											W.L. in Screen at Elev. 70.08 m on
											November 9, 2015
~											
8											
9											
10											
11											
12											
13											
14											
15											
	1										1
DE	P	TH S	CALE							L	OGGED: AT
1:		-							Golder		ECKED: NRL

RECORD OF BOREHOLE: 15-11

BORING DATE: October 7, 2015

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: N 5026167.6 ;E 442500.3 SAMPLER HAMMER, 64kg; DROP, 760mm

Ц	4	员	SOIL PROFILE	-1		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	국 일 PIEZOMETE
DEPTH SCALE METRES		BORING METHOD		STRATA PLOT		Ř		BLOWS/0.30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	
ΞΨ		9	DESCRIPTION	TAP	ELEV.	NUMBER	TYPE	VS/0.	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	WATER CONTENT PERCENT	
7	ļ	^w OR		TRA	DEPTH (m)	N.	-	ЧO		Wp ├────────────────────────────────────	LAI
	ŀ			ò				В	20 40 60 80	20 40 60 80	
0	\vdash	+	GROUND SURFACE		74.20		$\left - \right $				
			FILL - (SW) gravelly SAND:	/###	0.10 0.25	1	50 DT	PH			
			(PAVEMENT STRUCTURE) FILL - (SW/GW) SAND and GRAVEL;		0.50						
1			dark brown. (PAVEMENT			2	50 DT	РН			
			STRUCTURE) (CI/CH) SILTY CLAY; grey brown,								
			(Weathered Crust); cohesive, w>PL								
						3	50 DT	РН			
2						-	וט				
		sh)									
		n Diam. (Direct Push)									
3	probe	(Dire				4	50 DT	PH			
	Geol	Jiam.				4	DT	r n			
		76 mm [70.54						
		76	(CI/CH) SILTY CLAY; grey; cohesive, w>PL		3.66						
4						5	50 DT				
						5	DT	PH			
	1				69.32						
5	1		(SC) CLAYEY SAND, some gravel; grey, contains cobbles and boulders,		4.88		50				
			(GLACIAL TILL); cohesive, stiff		68.71	6	50 DT	PH			
			(SM) SILTY SAND, some gravel; grey, contains cobbles and boulders,		5.49		50				
6			(GLACIAL TILL); non-cohesive, moist		68.10	7	50 DT	PH			
	1		End of Borehole		6.10						
7											
,											
	1										
	1										
8											
	1										
9											
10											
	1										
11	1										
	1										
12											
	1										
13											
	1										
14											
	1										
	1										
15											
DE	PT	TH S	CALE						Caldan		LOGGED: AT
	75								Golder		CHECKED: NRL

LO)C/		Г: 1522569-17000 N: N 5026136.5 ;E 442406.0 1ON: -90° AZIMUTH:		RE	cc	RD	[ORIL ORIL	LIN(L RI	g da G:	HC TE: (Octo	ber			04									HEET 3 OF 3 ATUM: Geodetic
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	JN - FLT - SHR- VN - CJ - REC TOTAL CORE 9 8898	Shear Vein Conju OVER	gate Y ID E %	C O	D- Bed D- Folia O- Con R- Orth L - Clea FRAC INDE PEF 0.25	tact ogon vage T. X B	al	UN ST IR DI: DIP V COI	kr.t. RE S	lating ied	K - S SM- S Ro - R MB- N DATA	lough	ided ical B	IYDR/ NDU0 K, cm	AULIC	E: For a viations reviations of the second of the second of the second o	iddition s refer ons &	nal to list	
			BEDROCK SURFACE (SM) SILTY SAND, some gravel; grey, contains cobbles and boulders,		62.01 12.07		0							$\parallel \mid$									╫			32 mm Diam. PVC
- 13			(GLACIAL TILL); non-cohesive			C1	00 50-100																			W.L. in Screen at Elev. 71.28 m on
- - - - - - - - - - - - - - - - - - -	Rotary Drill	NQ Core	Fresh, thinly to medium bedded, dark grey to black, strong to very strong, fine grained LIMESTONE BEDROCK, with thin to medium thick black slightly		60.62 13.46	C2A C2B	50-100 50-100					-														October 14, 2015
- - - - - - - - - - - - - - - - - - -	Rot	NO	calcareous shale beds, occasional nodular sections			СЗ	100 5					-														
16			End of Drillhole		<u>57.95</u> 16.13																					
- 17 - 18 - 19 - 20 - 21																										
22																										
26																										
DE 1:			CALE	<u> </u>	<u>I</u>			Ĵ		G		ler			111							<u> </u>				DGGED: AT ECKED: NRL

LO	CATIC	T: 1522569-17000 DN: N 5026180.8 ;E 442535.7 TION: -90° AZIMUTH:		RE	CC	RD	0	DR DR	RILLI RILL	NG RIG	DAT :	HC TE: T	Oct	ober	13)								HEET 3 OF 3 ATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SHF VN CJ RE TOT, CORE	- Joi - Fau R- She - Vei - Col ECOV	ear in njuga 'ERY SOLID CORE '	R.9	Q.D. %	FRAC	tact nogo avag CT. EX R	nal		ST - St R - Irr	ndulating epped egular ONTINUI	K SM Ro MB	kensio ooth gh	al Br HY CON	eak	NOTE: abbrev of abbr symbol ULIC TIVIT sec	Diam Point Ind	dditiona refer t ns & netral Load dex Pa)	al to list	
12		BEDROCK SURFACE (SM) SILTY SAND, some gravel; grey, contains cobbles and bouders, (GLACIAL TILL); non-cohesive, wet		62.96 11.58	C1	100																				
- 14					C2	100																				
- 15 - 15 - 16	Rotary Drill NQ Core			58.26	C3 C4A	100																				
17		FRESH, thinly to medium bedded, dark grey, strong to very strong, fine grained LIMESTONE BEDROCK, with shale partings and occassional nodular sections		16.28	C4B	100																				
- 18 - 18 - 19					C5	<u>6</u>																				
- - - - - - - - - - - - - - - - - - -		End of Drillhole		54.20 20.34	C6	100																				
21																										
23 MBC 617																										
23 24 26 26 26 26 26 26 26 26 26 26																										
		SCALE			• 1		Ć			Go	bld	ler	te	5												DGGED: AT ECKED: NRL

APPENDIX A (iii)

Certificates of Analysis

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 1522569/17000

AGAT WORK ORDER: 15Z029766

SOIL ANALYSIS REVIEWED BY: Elizabeth Polakowska, MSc (Animal Sci), PhD (Agri Sci), Inorganic Lab Supervisor

TRACE ORGANICS REVIEWED BY: Gyulhan Yalamova, Report Reviewer

DATE REPORTED: Oct 23, 2015

PAGES (INCLUDING COVER): 19

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 19

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

			0.11			compronone			
DATE RECEIVED: 2015-10-13									DATE REPORTED: 2015-10-23
		SAMPLE DESC	RIPTION:	BH15-03 SA5	BH15-08 SA1	BH15-09 SA2	BH15-11 SA1	DUP3	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
l		DATE S	AMPLED:	10/7/2015	10/8/2015	10/13/2015	10/7/2015	10/7/2015	
Parameter	Unit	G/S	RDL	7083453	7083466	7083471	7083479	7083482	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	2	3	2	4	2	
Boron	µg/g	120	5	6	6	5	10	6	
Barium	µg/g	390	2	115	365	262	142	120	
Beryllium	µg/g	4	0.5	0.5	<0.5	0.7	0.5	<0.5	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	160	2	33	20	79	40	36	
Cobalt	µg/g	22	0.5	8.2	7.0	18.1	12.8	8.7	
Copper	µg/g	140	1	20	16	32	27	22	
Lead	µg/g	120	1	19	9	9	10	26	
Molybdenum	µg/g	6.9	0.5	0.6	1.1	1.2	2.2	0.7	
Nickel	µg/g	100	1	22	16	45	34	23	
Selenium	µg/g	2.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Silver	µg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Uranium	µg/g	23	0.5	0.5	0.5	0.9	1.0	0.5	
Vanadium	µg/g	86	1	32	23	80	44	33	
Zinc	µg/g	340	5	71	29	98	52	72	

O. Reg. 153(511) - Metals (Comprehensive) (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Certified By:

Elizabeth Rolakowska

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

O. Reg. 153(511) - PAHs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

DATE RECEIVED: 2015-10-13									DATE REPORTED: 2015-10-23
		SAMPLE DESC	RIPTION:	BH15-03 SA5	BH15-08 SA1	BH15-09 SA2	BH15-11 SA1	DUP3	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	10/7/2015	10/8/2015	10/13/2015	10/7/2015	10/7/2015	
Parameter	Unit	G/S	RDL	7083453	7083466	7083471	7083479	7083482	
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2	0.05	<0.05	0.21	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.67	0.05	<0.05	0.06	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	0.06	0.31	<0.05	<0.05	0.09	
Pyrene	µg/g	78	0.05	0.05	0.24	<0.05	<0.05	0.07	
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	0.12	<0.05	<0.05	<0.05	
Chrysene	µg/g	7	0.05	<0.05	0.12	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	0.14	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	0.06	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	0.10	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	24.2	12.2	11.8	6.2	26.0	
Surrogate	Unit	Acceptable	Limits						
Chrysene-d12	%	50-14	10	86	107	75	91	78	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083453-7083482 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Certified By:

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

O[,] Alvssa Troke

DATE REPORTED: 2015-10-23

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2015-10-13

		SAMPLE DESC	RIPTION:	BH15-03 SA5	DUP3	BH15-10 SA4	BH15-08 SA6	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	10/7/2015	10/7/2015	10/8/2015	10/8/2015	
Parameter	Unit	G/S	RDL	7083453	7083482	7097332	7097550	
Aroclor 1242	µg/g		0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1248	µg/g		0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1254	µg/g		0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1260	µg/g		0.1	<0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	µg/g	0.35	0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptable	Limits					
Decachlorobiphenyl	%	60-14	40	72	68	128	81	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083453-7097550 Results are based on the dry weight of soil extracted.

Certified By:

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2015-10-13

		SAMPLE DESC	CRIPTION:	BH15-02 SA8	BH15-04 SA9
l		SAM	PLE TYPE:	Soil	Soil
		DATE S	SAMPLED:	10/8/2015	10/9/2015
Parameter	Unit	G/S	RDL	7083451	7083455
F1 (C6 to C10)	µg/g		5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10
F3 (C16 to C34)	µg/g	300	50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA
Moisture Content	%		0.1	8.8	25.6
Surrogate	Unit	Acceptabl	e Limits		
Terphenyl	%	60-1	40	96	61

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083451-7083455 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

DATE REPORTED: 2015-10-23

Certified By:

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

SAMPLED BY: Alyssa Troke

ATTENTION TO: Alyssa Troke

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2015-10-13									DATE REPORTED: 2015-10-23
		SAMPLE DESC	RIPTION:	BH15-01 SA7	BH15-05 SA7	BH15-06 SA5	BH15-10 SA4	BH15-08 SA6	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	10/9/2015	10/7/2015	10/7/2015	10/8/2015	10/8/2015	
Parameter	Unit	G / S	RDL	7083432	7083457	7083459	7097332	7097550	
Benzene	µg/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	2.3	0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
Ethylbenzene	µg/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylene Mixture	µg/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
F1 (C6 to C10)	µg/g		5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	<50	<50	
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	10.4	24.0	24.5	8.8	17.6	
Surrogate	Unit	Acceptable	Limits						
Terphenyl	%	60-1 [,]	40	124	101	91	110	98	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083432-7097550 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Quality Control Data is available upon request.

DATE DEDODTED ANALE IN AN

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:Alyssa Troke O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2015-10-13

		SAMPLE DES	CRIPTION:	BH15-03 SA5	DUP3
		SAM	PLE TYPE:	Soil	Soil
		DATES	SAMPLED:	10/7/2015	10/7/2015
Parameter	Unit	G / S	RDL	7083453	7083482
F1 (C6 to C10)	µg/g		5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10
F2 (C10 to C16) minus Naphthalene	µg/g	98	10	<10	<10
F3 (C16 to C34)	µg/g	300	50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g	300	50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA
Moisture Content	%		0.1	24.2	26.0
Surrogate	Unit	Acceptabl	e Limits		
Terphenyl	%	60-1	140	78	75

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083453-7083482 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

DATE REPORTED: 2015-10-23

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2015-10-13

		SAMPLE DES	CRIPTION:	BH15-08 SA1	BH15-09 SA2	BH15-11 SA1	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	10/8/2015	10/13/2015	10/7/2015	
Parameter	Unit	G/S	RDL	7083466	7083471	7083479	
Benzene	µg/g	0.21	0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	2.3	0.08	<0.08	<0.08	<0.08	
Ethylbenzene	µg/g	2	0.05	<0.05	<0.05	<0.05	
Xylene Mixture	µg/g	3.1	0.05	<0.05	<0.05	<0.05	
F1 (C6 to C10)	µg/g		5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	µg/g	98	10	<10	<10	<10	
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	µg/g	300	50	<50	<50	<50	
F4 (C34 to C50)	µg/g	2800	50	<50	120	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA	NA	NA	
Moisture Content	%		0.1	12.2	11.8	6.2	
Surrogate	Unit	Acceptabl	e Limits				
Terphenyl	%	60-1	140	103	100	100	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083466-7083479 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

DATE REPORTED: 2015-10-23

Certified By:

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

O. Reg. 153(511) - VOCs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:Alyssa Troke

DATE RECEIVED: 2015-10-13							DATE REPORTED: 2015-10-23
		SAMPLE DESCRIPTION		BH15-03 SA5	BH15-04 SA9	DUP3	
		SAMPLE TY		Soil	Soil	Soil	
		DATE SAMPL		10/7/2015	10/9/2015	10/7/2015	
Parameter	Unit	G/S RDI		7083453	7083455	7083482	
Dichlorodifluoromethane	µg/g	16 0.0		<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02 0.02		<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05 0.05		<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4 0.0		<0.05	<0.05	<0.05	
Acetone	ug/g	16 0.50		<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1 0.0	<0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084 0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75 0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5 0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16 0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4 0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.05 0.04	<0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05 0.03	<0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38 0.0	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05 0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.21 0.02	<0.02	<0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05 0.03	<0.03	<0.03	<0.03	<0.03	
Trichloroethylene	ug/g	0.061 0.03	<0.03	<0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13 0.0	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7 0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05 0.04	<0.04	<0.04	<0.04	<0.04	
Toluene	ug/g	2.3 0.05	<0.05	<0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	9.4 0.0	<0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05 0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28 0.0	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058 0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4 0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2 0.05	< 0.05	<0.05	<0.05	<0.05	
m & p-Xylene	ug/g	0.0	<0.05	<0.05	<0.05	<0.05	

Certified By:

AGAT WORK ORDER: 15Z029766 PROJECT: 1522569/17000

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

DATE RECEIVED: 2015-10-1	3							DATE REPORTED: 2015-10-23
	:	SAMPLE DES	CRIPTION:	BH15-02 SA8	BH15-03 SA5	BH15-04 SA9	DUP3	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	10/8/2015	10/7/2015	10/9/2015	10/7/2015	
Parameter	Unit	G / S	RDL	7083451	7083453	7083455	7083482	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05	
Surrogate	Unit	Acceptabl	e Limits					
Toluene-d8	% Recovery	50-	140	93	99	94	92	
4-Bromofluorobenzene	% Recovery	50-	140	96	98	92	99	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils

7083451-7083482 The sample was analysed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Certified By:

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/17000

SAMPLING SITE:

AGAT WORK ORDER: 15Z029766 ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke

Soil Analysis

Recovery	RIX SPI Acce	
1 1		
		nits
	Lower	Upper
107%	70%	130%
95%	70%	130%
95%	70%	130%
101%	70%	130%
99%	70%	130%
103%	70%	130%
108%	70%	130%
99%	70%	130%
89%	70%	130%
89%	70%	130%
106%	70%	130%
95%	70%	130%
107%	70%	130%
102%	70%	130%
93%	70%	130%
98%	70%	130%
103%	70%	130%
102%	70%	130%
	103% 108% 99% 89% 106% 95% 107% 102% 93% 98% 103%	103% 70% 108% 70% 99% 70% 89% 70% 106% 70% 106% 70% 102% 70% 93% 70% 98% 70% 103% 70%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Elizabeth Rotokowska

Page 11 of 19

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/17000

SAMPLING SITE:

1,2-Dichloropropane

Bromodichloromethane

Methyl Isobutyl Ketone

Dibromochloromethane

Ethylene Dibromide

Tetrachloroethylene

1.1.1.2-Tetrachloroethane

1,1,2-Trichloroethane

Toluene

Trichloroethylene

AGAT WORK ORDER: 15Z029766 ATTENTION TO: Alyssa Troke SAMPLED BY: Alyssa Troke

Trace Organics Analysis

			nuo		junio	57410	1,9010								
RPT Date: Oct 23, 2015	F Date: Oct 23, 2015						REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F4	4 (Soil)														
Benzene	7099135		< 0.02	< 0.02	NA	< 0.02	92%	60%	130%	123%	60%	130%	119%	60%	1309
Toluene	7099135		< 0.08	< 0.08	NA	< 0.08	87%	60%	130%	104%	60%	130%	106%	60%	130
Ethylbenzene	7099135		< 0.05	< 0.05	NA	< 0.05	92%	60%	130%	107%	60%	130%	106%	60%	130
Kylene Mixture	7099135		< 0.05	< 0.05	NA	< 0.05	94%	60%	130%	113%	60%	130%	108%	60%	130
⁻¹ (C6 to C10)	7099135		< 5	< 5	NA	< 5	100%	60%	130%	89%	85%	115%	77%	70%	130
F2 (C10 to C16)	7071444		< 10	< 10	NA	< 10	100%	60%	130%	107%	80%	120%	84%	70%	130
F3 (C16 to C34)	7071444		< 50	< 50	NA	< 50	104%	60%	130%	106%	80%	120%	90%	70%	130
F4 (C34 to C50)	7071444		< 50	< 50	NA	< 50	92%	60%	130%	103%	80%	120%	85%	70%	130
Comments: If the RPD value is N/	A, the results of	the duplic	ates are u	nder 5X the	e RDL an	d will not b	e calculate	ed.							
D. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	101%	50%	140%	96%	50%	140
/inyl Chloride	7083482 7	083482	< 0.02	< 0.02	NA	< 0.02	123%	50%	140%	114%	50%	140%	95%	50%	140
Bromomethane	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	78%	50%	140%	89%	50%	140
Frichlorofluoromethane	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	86%	50%	140%	95%	50%	140
Acetone	7083482 7	083482	< 0.50	< 0.50	NA	< 0.50	102%	50%	140%	85%	50%	140%	124%	50%	140
1,1-Dichloroethylene	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	88%	60%	130%	97%	50%	140
Methylene Chloride	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	96%	60%	130%	117%	50%	140
Trans- 1,2-Dichloroethylene	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	71%	50%	140%	76%	60%	130%	80%	50%	140
Methyl tert-butyl Ether	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	71%	60%	130%	72%	50%	140
,1-Dichloroethane	7083482 7	083482	< 0.02	< 0.02	NA	< 0.02	94%	50%	140%	76%	60%	130%	75%	50%	140
Methyl Ethyl Ketone	7083482 7	083482	< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	91%	50%	140%	101%	50%	140
Cis- 1,2-Dichloroethylene	7083482 7	083482	< 0.02	< 0.02	NA	< 0.02	76%	50%	140%	82%	60%	130%	99%	50%	140
Chloroform	7083482 7	083482	< 0.04	< 0.04	NA	< 0.04	70%	50%	140%	80%	60%	130%	103%	50%	140
,2-Dichloroethane	7083482 7	083482	< 0.03	< 0.03	NA	< 0.03	81%	50%	140%	86%	60%	130%	129%	50%	140
1,1,1-Trichloroethane	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	70%	50%	140%	75%	60%	130%	91%	50%	140
Carbon Tetrachloride	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	70%	50%	140%	71%	60%	130%	78%	50%	140
Benzene	7083482 7	083482	< 0.02	< 0.02	NA	< 0.02	100%	50%	140%	111%	60%	130%	102%	50%	140

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

7083482 7083482

< 0.03

< 0.03

< 0.05

< 0.50

< 0.04

< 0.05

< 0.05

< 0.04

< 0.05

< 0.04

< 0.03

< 0.03

< 0.05

< 0.50

< 0.04

< 0.05

< 0.05

< 0.04

< 0.05

< 0.04

NA

< 0.03

< 0.03

< 0.05

< 0.50

< 0.04

< 0.05

< 0.05

< 0.04

< 0.05

< 0.04

99%

82%

75%

103%

96%

83%

74%

91%

83%

50%

50%

50%

50%

50%

50%

50%

50%

50%

50%

140%

140%

140%

140%

140%

140%

140%

140%

140%

140%

50% 140%

106%

96%

74%

88%

87%

93%

72%

80%

91%

71%

91%

60%

60%

60%

50%

60%

60%

60%

60%

60%

60%

60%

130%

130%

130%

140%

130%

130%

130%

130%

130%

130%

130%

128%

107%

95%

116%

107%

104%

78%

98%

91%

75%

99%

50%

50%

50%

50%

50%

50%

50%

50%

50%

140%

140%

140%

140%

140%

140%

140%

140%

140%

Page 12 of 19

50% 140%

50% 140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/17000

SAMPLING SITE:

AGAT WORK ORDER: 15Z029766 ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke

Trace Organics Analysis (Continued)

RPT Date: Oct 23, 2015			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery		ptable nits
		ld					Value	Lower Upper		,	Lower	Upper	,	Lower	Upper
Ethylbenzene	7083482 7	7083482	< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	90%	60%	130%	100%	50%	140%
m & p-Xylene	7083482 7	7083482	< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	92%	60%	130%	99%	50%	140%
Bromoform	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	70%	60%	130%	73%	50%	140%
Styrene	7083482 7	7083482	< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	88%	60%	130%	98%	50%	140%
1,1,2,2-Tetrachloroethane	7083482 7	7083482	< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	91%	60%	130%	115%	50%	140%
o-Xylene	7083482 7	7083482	< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	92%	60%	130%	102%	50%	140%
1,3-Dichlorobenzene	7083482 7	7083482	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	87%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	88%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	87%	60%	130%	97%	50%	140%
1,3-Dichloropropene	7083482 7	7083482	< 0.04	< 0.04	NA	< 0.04	97%	50%	140%	86%	60%	130%	92%	50%	140%
n-Hexane	7083482 7	083482	< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	126%	60%	130%	82%	50%	140%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - PCBs (Soil)													
Aroclor 1242	7090301	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	7090301	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	7090301	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	7090301	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	7090301	< 0.1	< 0.1	NA	< 0.1	84%	60%	140%	68%	60%	140%	102%	60%	140%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - PAHs (Soil)														
Naphthalene	7083552	< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	72%	50%	140%	100%	50%	140%
Acenaphthylene	7083552	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	86%	50%	140%	99%	50%	140%
Acenaphthene	7083552	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	83%	50%	140%	88%	50%	140%
Fluorene	7083552	< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	88%	50%	140%	100%	50%	140%
Phenanthrene	7083552	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	90%	50%	140%	100%	50%	140%
Anthracene	7083552	< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	89%	50%	140%	100%	50%	140%
Fluoranthene	7083552	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	87%	50%	140%	98%	50%	140%
Pyrene	7083552	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	50%	140%	98%	50%	140%
Benz(a)anthracene	7083552	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	87%	50%	140%	97%	50%	140%
Chrysene	7083552	< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	84%	50%	140%	99%	50%	140%
Benzo(b)fluoranthene	7083552	< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	83%	50%	140%	63%	50%	140%
Benzo(k)fluoranthene	7083552	< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	81%	50%	140%	87%	50%	140%
Benzo(a)pyrene	7083552	< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	85%	50%	140%	98%	50%	140%
Indeno(1,2,3-cd)pyrene	7083552	< 0.05	< 0.05	NA	< 0.05	127%	50%	140%	90%	50%	140%	87%	50%	140%
Dibenz(a,h)anthracene	7083552	< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	90%	50%	140%	99%	50%	140%
Benzo(g,h,i)perylene	7083552	< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	87%	50%	140%	86%	50%	140%
2-and 1-methyl Naphthalene	7083552	< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	79%	50%	140%	99%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/17000

SAMPLING SITE:

AGAT WORK ORDER: 15Z029766

ATTENTION TO: Alyssa Troke

SAMPLED BY: Alyssa Troke

	Т	race	Orga	nics	Analy	/sis (Contii	nue	d)						
RPT Date: Oct 23, 2015			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim		Recoverv		ptable nits	Recoverv		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 14 of 19

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 1522569/17000

AGAT WORK ORDER: 15Z029766 ATTENTION TO: Alyssa Troke

SAMPLING SITE:		SAMPLED BY:AI	yssa Troke
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			1
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/17000

SAMPLING SITE:

AGAT WORK ORDER: 15Z029766 ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke

SAMPLING SITE:		SAMPLED BY:Aly	/ssa Iroke
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270	GC/MS
Moisture Content		MOE E3139	BALANCE
Aroclor 1242	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1248	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1254	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Aroclor 1260	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Polychlorinated Biphenyls	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P &T GC / FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&TGC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	GRAVIMETRIC ANALYSIS
	VOE-91-5009	CCME Tier 1 Method, SW846	GRAVINE I RIC ANAL I SIS
Moisture Content	VOL-91-5009	5035,8015	BALANCE
Terphenyl	VOL-91-5009		GC/FID
Benzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Toluene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Ethylbenzene	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
Xylene Mixture	VOL-91-5009	EPA SW-846 5035 & 8260	P & T GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	P & T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method, EPA SW846 8015	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method	GC / FID

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569/17000

SAMPLING SITE:

AGAT WORK ORDER: 15Z029766 ATTENTION TO: Alyssa Troke SAMPLED BY:Alyssa Troke

SAMPLING SITE:		SAMPLED BY: Alys	SSA TTORE
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method	GC / FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC / FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	CCME Tier 1 Method	GC / FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260	(P&T)GC/MS

			Lat	ora	aboratories SL2	d ag	Missis Ph: 905.712.5 www.agatlabs.com	5835 Coopers Avenue Mississauga, Ontario L42 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 gattabs.com webearth.agattabs.com	s Avenue L4Z 1Y2 12.5122 labs.com	Lab Work Coole	Laboratory Work Order #: Cooler Quantity:	Laboratory Use Only Work Order #: 15 20 Cooler Quantity:	029766	1 1
Chain of Custody Record		f this is a Dri	nking Water se	ample, plea	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption)	y Form (pot	able water inten	ded for human co	nsumption)	Arrive	Arrival Temperatures:	Ires:		1
Report Information:	ation: Colden Ascurates Ltd.	í p			Regulatory Requirements:		No Reg	No Regulatory Requirement	Jirement	Custod Notes:	Custody Seal Intact: Notes:	lot: Tyes	DN0 DN/A	
	Trake / Keith	4 tolon	Suc		04	Sewer Use	_	Regulation 558	58	L	- pulloa	Turnaround Time (TAT) Required:	equired:	
Address: 1921 Rol	Roberton Road	pa			- Table Indicate One	Sanitary	-	CCME		Regu	Regular TAT	S to 7	A 5 to 7 Business Davs	
-		- Fax:			Kes/Park	Storm		Prov. Water Quality Ohiectives (PWOO)	Quality	Rush	TAT (Rush S	RUSH TAT (Rush Surcharges Apply)		
Reports to be sent to: 1. Email:	attake a glder con				Soil Texture (check one) Region.	Indicate Ond	L	Other			3 Business Davs	s Davs	ness 1 Business Dav	
2. Email: Khaliwas	Khulines egolder, com	£			Fine		-	Indicate One	e					
Project Information:					Is this submission for a		Repo	Report Guideline on	0 un		OR Date	tequired (Kush St	OR Date Required (Kush Surcharges May Apply):	
Project: 1522569 /17000	VI7000				KI YAS TI NO			Ceruncate or Analysis X Yes 7 No	No		Please *TAT is ext	provide prior not	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays	
Nineco	Tueto					1	3							
4-9 #	Pose note: If quotation number is not provided, client will be billed full price for analysis.	PO: ded, client will be	oilled full price for a	4月4月45	Sample Matrix Legend		(Che	(Check Applicable)	Y318					
Invoice Information:		Bill	Bill To Same: Yes	N N	8		°ON/ -N	NX) '1					
Company:	Goldur Associates							os L	₽¥ !		-			
	Truke] Cl. sje	on∕€o °HN	1 4 0		_			
Address: 1931 R	Robertson F	Road					steM SteM		t İ ar	9				
Email:	atrike agolder com				SD Sediment SW Surface Water	_	Eormin B-HM Dustom		Fractior	slonahqq	nitoldoci Netals/I	əsu		
Sample Identification	Date Sampled	Time	# of Containers	Sample Matrix	Comments/ Special Instructions	listeM	Cljeut	Nutrie ∎ NO ₃	PAHs CCME			Sewer		
RHIG-01 SAT	51/6/01	1	2	S					×					
C0-	11/1/11	1	0	-				×	×					1
1.00	21/1/01	1	24		Supmitted 250 m Line	×	-	×	X					T
BHIS-04 SHO	10/9/51	١	d		tor metals		-	×	\times					1
BH 15 - 05 SA7	2117101	1	2	-			-		\times					1
BH15-06 SAS	10/7/15	1	3	N	Connelled metals		-		X					T
BH15 -08 5A1	10/8/15	ł	19		-Concelled PCBS	X			X	X				1
CAS PO-21HA	10/13/15	1	3 2	_		×			X					T
BHIS 10 SA3	10/A/15	۱	α		HoLD	N			X	×				
BH15-10 SAH	10/0/15	I	0		Do not do metals analysis	fla.	-		X	X				T
BH15 - 11 SAI	SV/L 191	1	М	4	,	X			×					
Samples Attinguand By Print Name and Signit			Date Oct. 16/15	/15 11: "	Samples Received By (Print Name and Sign):	and Sign):			Date		Time	Page	ie / of 2	
Samples Relinquished By (Print Name and Sign):			Date	Time	Samples Received By (Print Name and Sign)	and Sign);			Date		Time	No:	011333	
Bopument 10: 0/v-79-2513,009				-				Pink C	opy - Client	Yellow Co	py - AGAT	Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT	Date Interest	SIL

									L				
	500	, [-				5835 (Mississauga, C	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2	Work	Laboratory Work Order #:	Laboratory Use Only Work Order #:	•	
フこ	5		Laborato	atories	-	Ph: 905.712. www.agatlabs.com	.712.5100 Fax. .com webeart	Ph: 905.712.5100 Fax: 909.712.5122 gatlabs.com webearth.agatlabs.com	Cool	Cooler Quantity:		-	1
Chain of Custody Record		a Drinking Wat	er sample, p	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption)	chain of Custody F	orm (potable wa	ter intended for hu	ıman consumption)	Arriv	Arrival Temperatures:	les:		
Report Information:	Resonances Ltd			Regulatory (Please check all applic	Regulatory Requirements: (Please check all applicable boxes)		o Regulatory	No Regulatory Requirement		Custody Seal Intact: Notes:	ct: 🗌 Yes	°N D	A/A
Alusso	Keith	Holmes	1	Regulation 153/04	_	Sewer Use	Regul	Regulation 558	Turn	around .	ime (TAT)	Turnaround Time (TAT) Required:	
Address: 14-51 hover 15en	NODA MODA			Indicate One		□ Sanitary			Reg	Regular TAT	X 5 to	X 5 to 7 Business Days	
Phone: 613-542-9600	000 Fax:			Agriculture			Objec	Objectives (PWQO)		Clushs	larges Apl		2) Iciness
	dericom			Soil Texture (check One)	One) Kegion	Indicate One	Other			3 Business Days		Days	Day
2. Email: Kholmes & O	0 golder.com			Fine	-	-	4	Indicate One	_	OR Date	Required (Rush	OR Date Required (Rush Surcharges May Apply):	ply):
Project Information:	~~~~			Is this sub Record of S	Is this submission for a Record of Site Condition?		Report Guideline on Certificate of Analysis	deline on of Analysis		Please	provide prior (Please provide prior notification for rush TAT	TAT
Project:	000			K Yes	°N D		K Yes	°N П	_	*TAT is ex	lusive of week	*TAT is exclusive of weekends and statutory holidays	olidays
Complete Bur All Sec. Tarke	a					-							
AGAT Quote #: 600.00	DO CO CO A	will be billed full pric	e for analysis.	Sample Matrix Legend	atrix		(Check Applicable)						
laucice Information:		Bill To Same: Yes K					NB NO ³	MHT [
5	Associates Ltd			o Oil	later	S							
SERVE					soin	letəN	-10 [] -10 [] -10 []	18 🗆		-			
Address: A31 Robarton Email: atroke@ gold	Road.	Ottauna	2		sgroni t	n A gnimre	40 ³ □ H [®] □ H [®] 3-HM2 3-HM2		slone	lorine P als/Inoi	Ð		
)				SW Surrace water	lier	eo2 I De Fo	N 18:	tilles: E Fra	tobµe	цэоц	er Us		
Sample Identification	Date Time Sampled Sampled	# o Contai	Sample Matrix	-		Meta	0 68	6loV	bCBi CHIO	Orge	was		
2417	V	Ø	3 S	mitted 2	at for metal	X		XX	X		1		
σ	10/13/13	-	S	- Run Pitts and alt	T Same Jor	X			X	+	101		
8 SA6	- 51/8/0	a	S					×					
14									-				
			-										
19			-										
Somplea Relitiquisted By (Print Name and Sign):		Date	-	Time Sumples Re	samples Recoived By (Print Name and Sign)	d Sign);		Date		Time		Page Q of 🔌	4
CULUNDER Development of the second states and states in the second states of the second states and		Date	Date	3	Samples Roceived By (Print Name and Sign)	大司のカ		Date		Time	å	011	.329
		-						Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT	It Yellow	topy - AGAT	White Copy-	AGAT Date limit	ad; Jan 6, 2015

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Troke

PROJECT: 1522569

AGAT WORK ORDER: 15Z030915

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

DATE REPORTED: Oct 23, 2015

PAGES (INCLUDING COVER): 25

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) Page 1 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

DATE RECEIVED: 2015-10-15							DATE REPORTED: 2015-10-23
		SAMPLE DES	CRIPTION:	15-08	DUP 8	Field Blank	
		SAM	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	10/14/2015	10/14/2015	10/14/2015	
Parameter	Unit	G/S	RDL	7094721	7094768	7094809	
Naphthalene	µg/L	1400	0.20	<0.20	<0.20	<0.20	
Acenaphthylene	µg/L	1.8	0.20	<0.20	<0.20	<0.20	
Acenaphthene	µg/L	600	0.20	<0.20	<0.20	<0.20	
Fluorene	µg/L	400	0.20	<0.20	<0.20	<0.20	
Phenanthrene	µg/L	580	0.10	<0.10	<0.10	<0.10	
Anthracene	µg/L	2.4	0.10	<0.10	<0.10	<0.10	
Fluoranthene	µg/L	130	0.20	<0.20	<0.20	<0.20	
Pyrene	µg/L	68	0.20	<0.20	<0.20	<0.20	
Benz(a)anthracene	µg/L	4.7	0.20	<0.20	<0.20	<0.20	
Chrysene	µg/L	1	0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	µg/L	0.52	0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Naphthalene	µg/L	1800	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptabl	e Limits				
Chrysene-d12	%	50-1	140	78	65	59	

O. Reg. 153(511) - PAHs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

7094721-7094809 Note: The result for Benzo(b)Flouranthene is the total of the Benzo(b)&(j)Flouranthene isomers because the isomers co-elute on the GC column.

Certified By:

teurs

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

				O. Reg	. 153(511) -	PCBs (Wate	er)				
DATE RECEIVED: 2015-10-15								[DATE REPORT	ED: 2015-10-23	
			CRIPTION: PLE TYPE: SAMPLED:	15-02 Water 10/14/2015	15-03 Water 10/14/2015	15-08 Water 10/14/2015	15-10 Water 10/14/2015	DUP 3 Water 10/14/2015	DUP 8 Water 10/14/2015	Field Blank Water 10/14/2015	
Parameter	Unit	G/S	RDL	7094678	7094689	7094721	7094750	7094754	7094768	7094809	
Aroclor 1242	µg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
vroclor 1248	µg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
roclor 1254	µg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
roclor 1260	µg/L		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	µg/L	7.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptabl	e Limits								
Decachlorobiphenyl	%	60-1	140	68	90	79	89	76	78	64	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Certified By:

teurs

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2015-10-15

		SAMPLE DESC	CRIPTION:	15-02	15-03	15-04	DUP 3
		SAMF	PLE TYPE:	Water	Water	Water	Water
		DATE S	SAMPLED:	10/14/2015	10/14/2015	10/14/2015	10/14/2015
Parameter	Unit	G/S	RDL	7094678	7094689	7094697	7094754
F1 (C6 to C10)	µg/L		25	<25	470	<25	470
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	470	<25	470
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA	NA	NA	NA
Surrogate	Unit	Acceptable	e Limits				
Terphenyl	%	60-1	40	86	108	83	107

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

7094678-7094754 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

DATE REPORTED: 2015-10-23

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

DATE RECEIVED: 2015-10-15 DATE REPORTED: 2015-10-23 SAMPLE DESCRIPTION: 15-01 15-05 15-06 SAMPLE TYPE: Water Water Water DATE SAMPLED: 10/14/2015 10/14/2015 10/14/2015 RDL 7094669 7094705 7094712 Parameter Unit G/S Benzene µg/L 44 0.20 < 0.20 <0.20 <0.20 Toluene µg/L 18000 0.20 <0.20 <0.20 <0.20 Ethylbenzene µg/L 2300 0.10 <0.10 <0.10 < 0.10 µg/L 0.20 <0.20 <0.20 Xylene Mixture 4200 < 0.20 F1 (C6 to C10) µg/L 25 <25 <25 <25 <25 <25 F1 (C6 to C10) minus BTEX µg/L 750 25 <25 F2 (C10 to C16) µg/L 150 100 <100 <100 <100 F3 (C16 to C34) µg/L 500 100 <100 <100 <100 F4 (C34 to C50) 500 100 <100 <100 <100 µg/L Gravimetric Heavy Hydrocarbons µg/L 500 500 NA NA NA Surrogate Unit Acceptable Limits % Terphenyl 60-140 84 97 106

O. Reg. 153(511) - PHCs F1 - F4 (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

7094669-7094712 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client. NA = Not Applicable

Certified By:

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2015-10-15

		SAMPLE DESC	CRIPTION:	15-08	DUP 8	Field Blank
		SAME	PLE TYPE:	Water	Water	Water
		DATE S	SAMPLED:	10/14/2015	10/14/2015	10/14/2015
Parameter	Unit	G/S	RDL	7094721	7094768	7094809
Benzene	µg/L	44	0.20	<0.20	<0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20	<0.20	<0.20
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10	<0.10
Xylene Mixture	µg/L	4200	0.20	<0.20	<0.20	<0.20
F1 (C6 to C10)	µg/L		25	<25	<25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	µg/L	150	100	<100	<100	<100
F3 (C16 to C34)	µg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	µg/L	500	100	<100	<100	<100
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA	NA	NA
Surrogate	Unit	Acceptable	e Limits			
Terphenyl	%	60-1	40	100	94	79

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

7094721-7094809 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 $\,$ nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

DATE REPORTED: 2015-10-23

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

				O. Reg.	153(511) -	- VOCs (Wate	r)				
DATE RECEIVED: 2015-10-15								DA	TE REPORT	ED: 2015-10-23	
_		DATE S	PLE TYPE: SAMPLED:	15-02 Water 10/14/2015		15-03 Water 10/14/2015		15-04 Water 10/14/2015		DUP 3 Water 10/14/2015	
Parameter	Unit	G/S	RDL	7094678	RDL	7094689	RDL	7094697	RDL	7094754	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	1.70	52	0.17	<0.17	1.70	52	
Bromomethane	µg/L	5.6	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	4.00	<4.00	0.40	<0.40	4.00	<4.00	
Acetone	µg/L	130000	1.0	<1.0	10.0	<10.0	1.0	<1.0	10.0	<10.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	3.00	<3.00	0.30	<0.30	3.00	<3.00	
Methylene Chloride	µg/L	610	0.30	<0.30	3.00	<3.00	0.30	<0.30	3.00	<3.00	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	2.00	7.5	0.20	<0.20	2.00	8.8	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	3.00	<3.00	0.30	<0.30	3.00	<3.00	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	10.0	<10.0	1.0	<1.0	10.0	<10.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	2.00	590	0.20	<0.20	2.00	670	
Chloroform	µg/L	2.4	0.20	<0.20	2.00	<2.00	0.20	0.35	2.00	<2.00	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	3.00	<3.00	0.30	<0.30	3.00	<3.00	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Benzene	µg/L	44	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Trichloroethylene	µg/L	1.6	0.20	<0.20	2.00	440	0.20	<0.20	2.00	540	
Bromodichloromethane	µg/L	85000	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	10.0	<10.0	1.0	<1.0	10.0	<10.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Toluene	μg/L	18000	0.20	0.41	2.00	<2.00	0.20	0.33	2.00	<2.00	
Dibromochloromethane	μg/L	82000	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	2.00	2700	0.20	<0.20	2.00	2800	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
Chlorobenzene	μg/L	630	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
Ethylbenzene	μg/L	2300	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
m & p-Xylene	μg/L		0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	

teurs

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)											
DATE RECEIVED: 2015-10-15								DATE REPORTED: 2015-10-23			
Parameter		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL			15-03 Water 10/14/2015 RDL 7094689 RDL			15-04 Water 10/14/2015 7094697	DUP 3 Water 10/14/2015 RDL 7094754		
Bromoform	μg/L	380	0.10	7094678 <0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
Styrene	μg/L	1300	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
o-Xylene	µg/L		0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	1.00	<1.00	0.10	<0.10	1.00	<1.00	
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30	3.00	<3.00	0.30	<0.30	3.00	<3.00	
Xylene Mixture	μg/L	4200	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
n-Hexane	μg/L	51	0.20	<0.20	2.00	<2.00	0.20	<0.20	2.00	<2.00	
Surrogate	Unit	Acceptable Limits									
Toluene-d8	% Recovery	50-140		102		104		106		100	
4-Bromofluorobenzene	% Recovery	very 50-140		97		92		97		91	

Certified By:

teurs

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water) DATE RECEIVED: 2015-10-15 DATE REPORTED: 2015-10-23 SAMPLE DESCRIPTION: Trip Blank Field Blank SAMPLE TYPE: Water Water DATE SAMPLED: 10/14/2015 10/14/2015 G/S RDL 7094797 7094809 Parameter Unit Dichlorodifluoromethane µg/L 4400 0.20 < 0.20 < 0.20 <0.17 Vinyl Chloride µg/L 0.5 0.17 < 0.17 <0.20 Bromomethane µg/L 5.6 0.20 <0.20 Trichlorofluoromethane µg/L 2500 0.40 < 0.40 < 0.40 Acetone µg/L 130000 1.0 <1.0 <1.0 0.30 < 0.30 1,1-Dichloroethylene µg/L 1.6 < 0.30 Methylene Chloride µg/L 610 0.30 < 0.30 < 0.30 < 0.20 trans- 1,2-Dichloroethylene µg/L 1.6 0.20 <0.20 Methyl tert-butyl ether µg/L 190 0.20 <0.20 <0.20 1,1-Dichloroethane µg/L 320 0.30 < 0.30 < 0.30 Methyl Ethyl Ketone µg/L 470000 1.0 <1.0 <1.0 cis- 1,2-Dichloroethylene µg/L 1.6 0.20 <0.20 <0.20 Chloroform 0.20 <0.20 1.7 µg/L 2.4 µg/L 1.6 0.20 < 0.20 < 0.20 1.2-Dichloroethane 1,1,1-Trichloroethane µg/L 640 0.30 < 0.30 < 0.30 Carbon Tetrachloride µg/L 0.79 0.20 <0.20 <0.20 Benzene µg/L 44 0.20 <0.20 <0.20 1,2-Dichloropropane µg/L 16 0.20 <0.20 < 0.20 <0.20 Trichloroethylene µg/L 1.6 0.20 < 0.20 85000 Bromodichloromethane µg/L 0.20 <0.20 0.51 Methyl Isobutyl Ketone µg/L 140000 1.0 <1.0 <1.0 4.7 0.20 <0.20 1,1,2-Trichloroethane µg/L <0.20 Toluene µg/L 18000 0.20 <0.20 <0.20 Dibromochloromethane µg/L 82000 0.10 < 0.10 0.20 Ethylene Dibromide µg/L 0.25 0.10 < 0.10 < 0.10 Tetrachloroethylene µg/L 1.6 0.20 <0.20 < 0.20 1,1,1,2-Tetrachloroethane µg/L 3.3 0.10 < 0.10 <0.10 Chlorobenzene µg/L 630 0.10 < 0.10 < 0.10 2300 < 0.10 Ethylbenzene µg/L 0.10 < 0.10 0.20 <0.20 <0.20 m & p-Xylene µg/L

Certified By:

trus

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Alyssa Troke

SAMPLED BY:

				0.1.09	. 100(011)	
DATE RECEIVED: 2015-10-15						DATE REPORTED: 2015-10-23
	S	AMPLE DES	CRIPTION:	Trip Blank	Field Blank	
		SAM	PLE TYPE:	Water	Water	
		DATES	SAMPLED:	10/14/2015	10/14/2015	
Parameter	Unit	G/S	RDL	7094797	7094809	
Bromoform	µg/L	380	0.10	<0.10	<0.10	
Styrene	µg/L	1300	0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	<0.10	
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	<0.10	
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30	
Xylene Mixture	µg/L	4200	0.20	<0.20	<0.20	
n-Hexane	µg/L	51	0.20	<0.20	<0.20	
Surrogate	Unit	Acceptabl	le Limits			
Toluene-d8	% Recovery	50-	140	120	105	
4-Bromofluorobenzene	% Recovery	50-	140	97	101	
Toluene-d8 4-Bromofluorobenzene	,	50-	140			

O. Reg. 153(511) - VOCs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

7094689 Dilution factor=10

The sample was diluted to keep the target compounds in the calibration range of the instrument and avoid contaminating the Purge and Trap system. The reporting detection limit has been corrected for the dilution factor used.

7094754 Dilution factor=10

The sample was diluted to keep the target compounds in the calibration range of the instrument and avoid contaminating the Purge and Trap system. The reporting detection limit has been corrected for the dilution factor used.

Certified By:

teurs

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water) Trip Spike

DATE RECEIVED: 2015-10-15

DATE RECEIVED: 2015-10-1	5			DATE REPORTED: 2015-10-23
	SA	MPLE DESCRIPTION:	Trip Spike	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	10/14/2015	
Parameter	Unit	G/S RDL	7094780	
Dichlorodifluoromethane	% Recovery		98	
Vinyl Chloride	% Recovery		101	
Bromomethane	% Recovery		92	
Trichlorofluoromethane	% Recovery		103	
Acetone	% Recovery		98	
1,1-Dichloroethylene	% Recovery		110	
Methylene Chloride	% Recovery		75	
trans- 1,2-Dichloroethylene	% Recovery		118	
Methyl tert-butyl ether	% Recovery		75	
1,1-Dichloroethane	% Recovery		73	
Methyl Ethyl Ketone	% Recovery		81	
cis- 1,2-Dichloroethylene	% Recovery		73	
Chloroform	% Recovery		75	
1,2-Dichloroethane	% Recovery		71	
1,1,1-Trichloroethane	% Recovery		84	
Carbon Tetrachloride	% Recovery		75	
Benzene	% Recovery		85	
1,2-Dichloropropane	% Recovery		109	
Trichloroethylene	% Recovery		87	
Bromodichloromethane	% Recovery		102	
Methyl Isobutyl Ketone	% Recovery		100	
1,1,2-Trichloroethane	% Recovery		122	
Toluene	% Recovery		108	
Dibromochloromethane	% Recovery		105	
Ethylene Dibromide	% Recovery		110	
Tetrachloroethylene	% Recovery		96	
1,1,1,2-Tetrachloroethane	% Recovery		119	
Chlorobenzene	% Recovery		106	
Ethylbenzene	% Recovery		99	
m & p-Xylene	% Recovery		102	

Certified By:

teurs

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water) Trip Spike

DATE RECEIVED: 2015-10-15

DATE RECEIVED: 2015-10-1	15			DATE REPORTED: 2015-10-23
	SA	MPLE DESCRIPTION:	Trip Spike	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	10/14/2015	
Parameter	Unit	G/S RDL	7094780	
Bromoform	% Recovery		107	
Styrene	% Recovery		93	
1,1,2,2-Tetrachloroethane	% Recovery		122	
o-Xylene	% Recovery		103	
1,3-Dichlorobenzene	% Recovery		97	
1,4-Dichlorobenzene	% Recovery		100	
1,2-Dichlorobenzene	% Recovery		102	
1,3-Dichloropropene	% Recovery		85	
Xylene Mixture	% Recovery		103	
n-Hexane	% Recovery		84	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	105	
4-Bromofluorobenzene	% Recovery	50-140	103	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

teur

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - Metals (Comprehensive) (Water)

DATE RECEIVED: 2015-10-15

DATE RECEIVED: 2015-10-15						DATE REPORTED: 2015-10-23
		SAMPLE DESCRIPTION	15-08	DUP 8	Field Blank	
		SAMPLE TYPE	Water	Water	Water	
		DATE SAMPLED	10/14/2015	10/14/2015	10/14/2015	
Parameter	Unit	G/S RDL	7094721	7094768	7094809	
Antimony	µg/L	20000 0.5	<0.5	<0.5	<0.5	
Arsenic	µg/L	1900 1.0	6.5	6.7	<1.0	
Barium	µg/L	29000 2.0	502	479	<2.0	
Beryllium	µg/L	67 0.5	<0.5	<0.5	<0.5	
Boron	µg/L	45000 10.0	75.8	71.2	<10.0	
Cadmium	µg/L	2.7 0.2	<0.2	<0.2	<0.2	
Chromium	µg/L	810 2.0	3.1	5.8	<2.0	
Cobalt	µg/L	66 0.5	3.3	3.2	<0.5	
Copper	µg/L	87 1.0	1.0	<1.0	<1.0	
Lead	µg/L	25 0.5	<0.5	<0.5	<0.5	
Molybdenum	µg/L	9200 0.5	5.6	5.3	<0.5	
Nickel	µg/L	490 1.0	7.1	7.4	<1.0	
Selenium	µg/L	63 1.0	1.4	2.8	<1.0	
Silver	µg/L	1.5 0.2	<0.2	<0.2	<0.2	
Thallium	µg/L	510 0.3	<0.3	<0.3	<0.3	
Uranium	µg/L	420 0.5	3.9	3.9	<0.5	
Vanadium	µg/L	250 0.4	6.4	6.2	<0.4	
Zinc	µg/L	1100 5.0	5.4	<5.0	<5.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

DATE REPORTED: 2015-10-23

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - ORPs (Water) CrVI

DATE RECEIVED: 2015-10-15			
	SAMPLE DESCRIPTION:	Field Blank	
	SAMPLE TYPE:	Water	

		SAM	PLE TYPE:	Water
		DATE S	SAMPLED:	10/14/2015
Parameter	Unit	G/S	RDL	7094809
Chromium VI	µg/L	140	E	< F

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

http://www.agatlabs.com

DATE REPORTED: 2015-10-23

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Troke

SAMPLED BY:

O. Reg. 153(511) - (ORPs (Water) Hg,	CrV
----------------------	------------------	-----

DATE RECEIVED: 2015-10-15						DATE REPORTED: 2015-10-23
		SAMPLE DESC	RIPTION:	15-08	DUP 8	
		SAMP	LE TYPE:	Water	Water	
		DATE S	AMPLED:	10/14/2015	10/14/2015	
Parameter	Unit	G/S	RDL	7094721	7094768	
Mercury	µg/L	0.29	0.02	<0.02	<0.02	
Chromium VI	µg/L	140	5	<5	<5	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

http://www.agatlabs.com

Guideline Violation

AGAT WORK ORDER: 15Z030915 PROJECT: 1522569

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Troke

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
7094689	15-03	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Tetrachloroethylene	1.6	2700
7094689	15-03	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Trichloroethylene	1.6	440
7094689	15-03	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Vinyl Chloride	0.5	52
7094689	15-03	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	cis- 1,2-Dichloroethylene	1.6	590
7094689	15-03	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	trans- 1,2-Dichloroethylene	1.6	7.5
7094754	DUP 3	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Tetrachloroethylene	1.6	2800
7094754	DUP 3	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Trichloroethylene	1.6	540
7094754	DUP 3	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	Vinyl Chloride	0.5	52
7094754	DUP 3	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	cis- 1,2-Dichloroethylene	1.6	670
7094754	DUP 3	ON T3 NPGW CT	O. Reg. 153(511) - VOCs (Water)	trans- 1,2-Dichloroethylene	1.6	8.8

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569

SAMPLING SITE:

AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke

SAMPLED BY:

Trace Organics Analysis

			nac	eOrg	Janic	S Ana	iiysis								
RPT Date: Oct 23, 2015 DUPLICATE							REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		lu					value	Lower	Upper	_	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (\	Nater)														
Benzene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	92%	60%	130%	99%	50%	140%
Toluene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	96%	60%	130%	104%	50%	140%
Ethylbenzene	7094809 7	7094809	< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	97%	60%	130%	105%	50%	140%
Xylene Mixture	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	92%	50%	140%	101%	60%	130%	101%	50%	140%
F1 (C6 to C10)	7094809 7	7094809	< 25	< 25	NA	< 25	104%	60%	140%	90%	60%	140%	89%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	96%	60%	140%	69%	60%	140%	76%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	100%	60%	140%	79%	60%	140%	104%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	98%	60%	140%	90%	60%	140%	81%	60%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	125%	50%	140%	95%	50%	140%	81%	50%	140%
Vinyl Chloride	7094809 7		< 0.17	< 0.17	NA	< 0.17	117%	50%	140%	87%	50%	140%	81%	50%	140%
Bromomethane	7094809 7		< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	88%	50%	140%	80%	50%	140%
Trichlorofluoromethane	7094809 7		< 0.40	< 0.40	NA	< 0.40	109%	50%	140%	95%	50%	140%	79%	50%	140%
Acetone	7094809 7		< 1.0	< 1.0	NA	< 1.0	103%	50%	140%	93%	50%	140%	94%	50%	140%
1,1-Dichloroethylene	7094809 7	7094809	< 0.30	< 0.30	NA	< 0.30	72%	50%	140%	88%	60%	130%	85%	50%	140%
Methylene Chloride	7094809 7	7094809	< 0.30	< 0.30	NA	< 0.30	103%	50%	140%	116%	60%	130%	83%	50%	140%
trans- 1,2-Dichloroethylene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	81%	50%	140%	86%	60%	130%	82%	50%	140%
Methyl tert-butyl ether	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	93%	60%	130%	83%	50%	140%
1,1-Dichloroethane	7094809 7	7094809	< 0.30	< 0.30	NA	< 0.30	92%	50%	140%	87%	60%	130%	84%	50%	140%
Methyl Ethyl Ketone	7094809 7	7094809	< 1.0	< 1.0	NA	< 1.0	106%	50%	140%	100%	50%	140%	83%	50%	140%
cis- 1,2-Dichloroethylene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	90%	60%	130%	82%	50%	140%
Chloroform	7094809 7	7094809	1.7	1.9	11.1%	< 0.20	95%	50%	140%	87%	60%	130%	80%	50%	140%
1,2-Dichloroethane	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	99%	60%	130%	91%	50%	140%
1,1,1-Trichloroethane	7094809 7	7094809	< 0.30	< 0.30	NA	< 0.30	92%	50%	140%	87%	60%	130%	90%	50%	140%
Carbon Tetrachloride	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	81%	60%	130%	75%	50%	140%
Benzene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	98%	60%	130%	108%	50%	140%
1,2-Dichloropropane	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	119%	50%	140%	100%	60%	130%	103%	50%	140%
Trichloroethylene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	99%	60%	130%	94%	50%	140%
Bromodichloromethane	7094809 7	7094809	0.51	0.47	NA	< 0.20	109%	50%	140%	103%	60%	130%	99%	50%	140%
Methyl Isobutyl Ketone	7094809 7	7094809	< 1.0	< 1.0	NA	< 1.0	109%	50%	140%	119%	50%	140%	95%	50%	140%
1,1,2-Trichloroethane	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	77%	50%	140%	122%	60%	130%	116%	50%	140%
Toluene	7094809 7	7094809	< 0.20	<0.20	NA	< 0.20	113%	50%	140%	119%	60%	130%	119%	50%	140%
Dibromochloromethane	7094809 7	7094809	0.20	0.20	NA	< 0.10	120%	50%	140%	109%	60%	130%	99%	50%	140%
Ethylene Dibromide	7094809 7	7094809	< 0.10	< 0.10	NA	< 0.10	124%	50%	140%	109%	60%	130%	99%	50%	140%
Tetrachloroethylene	7094809 7	7094809	< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	115%	60%	130%	107%	50%	140%
1,1,1,2-Tetrachloroethane	7094809 7	7094809	< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	108%	60%	130%	102%	50%	140%
Chlorobenzene	7094809 7	7094809	< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	116%	60%	130%	106%	50%	140%
Ethylbenzene	7094809 7	7094809	< 0.10	< 0.10	NA	< 0.10	122%	50%	140%	110%	60%	130%	104%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569

SAMPLING SITE:

AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke SAMPLED BY:

SAMPLING SITE:							5	SAMP	LED B.	Y:					
		Trace	Orga	anics /	Analy	ysis (Conti	nue	d)						
RPT Date: Oct 23, 2015			DUPLICATE			REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lin	ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
m & p-Xylene	7094809	7094809	< 0.20	< 0.20	NA	< 0.20	121%	50%	140%	114%	60%	130%	106%	50%	140%
Bromoform	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	104%	60%	130%	95%	50%	140%
Styrene	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	111%	50%	140%	102%	60%	130%	94%	50%	140%
1,1,2,2-Tetrachloroethane	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	124%	60%	130%	110%	50%	140%
o-Xylene	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	121%	50%	140%	115%	60%	130%	106%	50%	140%
1,3-Dichlorobenzene	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	113%	50%	140%	108%	60%	130%	101%	50%	140%
1,4-Dichlorobenzene	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	121%	50%	140%	115%	60%	130%	106%	50%	140%
1,2-Dichlorobenzene	7094809	7094809	< 0.10	< 0.10	NA	< 0.10	111%	50%	140%	110%	60%	130%	101%	50%	140%
1,3-Dichloropropene	7094809	7094809	< 0.30	< 0.30	NA	< 0.30	112%	50%	140%	103%	60%	130%	101%	50%	140%
n-Hexane	7094809	7094809	< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	107%	60%	130%	115%	50%	140%
O. Reg. 153(511) - PCBs (Water)															
Aroclor 1242		TW	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248		TW	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254		TW	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260		TW	< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls		TW	< 0.1	< 0.1	NA	< 0.1	89%	60%	140%	63%	60%	140%	99%	60%	140%
O. Reg. 153(511) - PAHs (Water)															
Naphthalene		TW	< 0.20	< 0.20	NA	< 0.20	77%	50%	140%	62%	50%	140%	74%	50%	140%
Acenaphthylene		TW	< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	81%	50%	140%	92%	50%	140%
Acenaphthene		TW	< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	78%	50%	140%	88%	50%	140%
Fluorene		TW	< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	89%	50%	140%	95%	50%	140%
Phenanthrene		TW	< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	96%	50%	140%	102%	50%	140%
Anthracene		TW	< 0.10	< 0.10	NA	< 0.10	88%	50%	140%	95%	50%	140%	100%	50%	140%
Fluoranthene		TW	< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	95%	50%	140%	105%	50%	140%
Pyrene		TW	< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	98%	50%	140%	106%	50%	140%
Benz(a)anthracene		TW	< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	93%	50%	140%	103%	50%	140%
Chrysene		TW	< 0.10	< 0.10	NA	< 0.10	81%	50%	140%	88%	50%	140%	99%	50%	140%
Benzo(b)fluoranthene		TW	< 0.10	< 0.10	NA	< 0.10	92%	50%	140%	89%	50%	140%	82%	50%	140%
Benzo(k)fluoranthene		TW	< 0.10	< 0.10	NA	< 0.10	91%	50%	140%	84%	50%	140%	93%	50%	140%
Benzo(a)pyrene		TW	< 0.01	< 0.01	NA	< 0.01	94%	50%	140%	93%	50%	140%	99%	50%	140%
Indeno(1,2,3-cd)pyrene		TW	< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	98%	50%	140%	98%	50%	140%
Dibenz(a,h)anthracene		TW	< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	100%	50%	140%	99%	50%	140%
Benzo(g,h,i)perylene		TW	< 0.20	< 0.20	NA	< 0.20	101%	50%	140%	91%	50%	140%	90%	50%	140%
2-and 1-methyl Naphthalene		TW	< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	69%	50%	140%	81%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable(NA). TW: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569

SAMPLING SITE:

AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke

SAMPLED BY:

	Trace Organics Analysis (Continued)														
RPT Date: Oct 23, 2015	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

Certified By:

fours

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 19 of 25

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569

SAMPLING SITE:

AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke

SAMPLED BY:

Water Analysis															
RPT Date: Oct 23, 2015 DUPLICATE					E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acce Lin	ptable nits	Recovery		ptable nits
		iù					Value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
O. Reg. 153(511) - Metals (Compre	hensive) (W	/ater)													
Antimony	7095134		<0.5	<0.5	NA	< 0.5	102%	70%	130%	103%	80%	120%	100%	70%	130%
Arsenic	7095134		<1.0	<1.0	NA	< 1.0	105%	70%	130%	103%	80%	120%	118%	70%	130%
Barium	7095134		52.9	53.1	0.4%	< 2.0	101%	70%	130%	101%	80%	120%	91%	70%	130%
Beryllium	7095134		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%
Boron	7095134		23.1	22.6	NA	< 10.0	104%	70%	130%	102%	80%	120%	87%	70%	130%
Cadmium	7095134		<0.2	<0.2	NA	< 0.2	101%	70%	130%	106%	80%	120%	103%	70%	130%
Chromium	7095134		<2.0	<2.0	NA	< 2.0	103%	70%	130%	102%	80%	120%	107%	70%	130%
Cobalt	7095134		<0.5	<0.5	NA	< 0.5	104%	70%	130%	108%	80%	120%	103%	70%	130%
Copper	7095134		1.2	1.1	NA	< 1.0	104%	70%	130%	105%	80%	120%	101%	70%	130%
Lead	7095134		<0.5	<0.5	NA	< 0.5	103%	70%	130%	106%	80%	120%	95%	70%	130%
Molybdenum	7095134		0.6	0.6	NA	< 0.5	101%	70%	130%	100%	80%	120%	100%	70%	130%
Nickel	7095134		<1.0	<1.0	NA	< 1.0	109%	70%	130%	107%	80%	120%	106%	70%	130%
Selenium	7095134		<1.0	<1.0	NA	< 1.0	103%	70%	130%	97%	80%	120%	125%	70%	130%
Silver	7095134		<0.2	<0.2	NA	< 0.2	99%	70%	130%	109%	80%	120%	102%	70%	130%
Thallium	7095134		<0.3	<0.3	NA	< 0.3	102%	70%	130%	104%	80%	120%	93%	70%	130%
Uranium	7095134		<0.5	<0.5	NA	< 0.5	108%	70%	130%	109%	80%	120%	101%	70%	130%
Vanadium	7095134		<0.4	<0.4	NA	< 0.4	97%	70%	130%	102%	80%	120%	101%	70%	130%
Zinc	7095134		<5.0	<5.0	NA	< 5.0	110%	70%	130%	114%	80%	120%	103%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL (Reporting Limit), the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

O. Reg. 153(511) - ORPs (Water) Hg, CrVI														
Mercury	7095498	<0.02	<0.02	NA	< 0.02	98%	70%	130%	98%	80%	120%	95%	70%	130%
Chromium VI	7093722	<5	<5	NA	< 5	107%	70%	130%	109%	80%	120%	110%	70%	130%

Page 20 of 25

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569

AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke

	SAMPLED BY:	
AGAT S O P		ANALYTICAL TECHNIQUE
		,
ORG-91-5105	EPA SW-846 3510 & 8270	GC/MS
		GC/ECD
		(P&T)GC/FID
		(P&T)GC/FID
		GC / FID
		GC / FID
		GC / FID
		BALANCE
		GC/FID
	MOE PHC-E3421	(P&T)GC/FID
		GC/FID
		GC/FID
		GC/FID
		BALANCE
		(P&T)GC/MS
		(P&T)GC/MS
		(P&T)GC/MS (P&T)GC/MS
		(P&T)GC/MS (P&T)GC/MS
		GC/FID
		GC/FID GC/FID
		GC/FID GC/FID
VOL-91-5010 VOL-91-5010	MOE PHC E3421 MOE PHC E3421	GC/FID GC/FID
	AGAT S.O.P ORG-91-5105 ORG-91-5112 ORG-91-5112 ORG-91-5112 ORG-91-5112 ORG-91-5112 ORG-91-5112 ORG-91-5112 ORG-91-5112 ORG-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5	ORG-91-5105 EPA SW-846 3510 & 8270 ORG-91-5112 EPA SW-846 3510 & 8022 ORG-91-5112 EPA SW-846 3510 & 8082 ORG-91-5112 EPA SW-846 3510 & 8082 <td< td=""></td<>

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 1522569

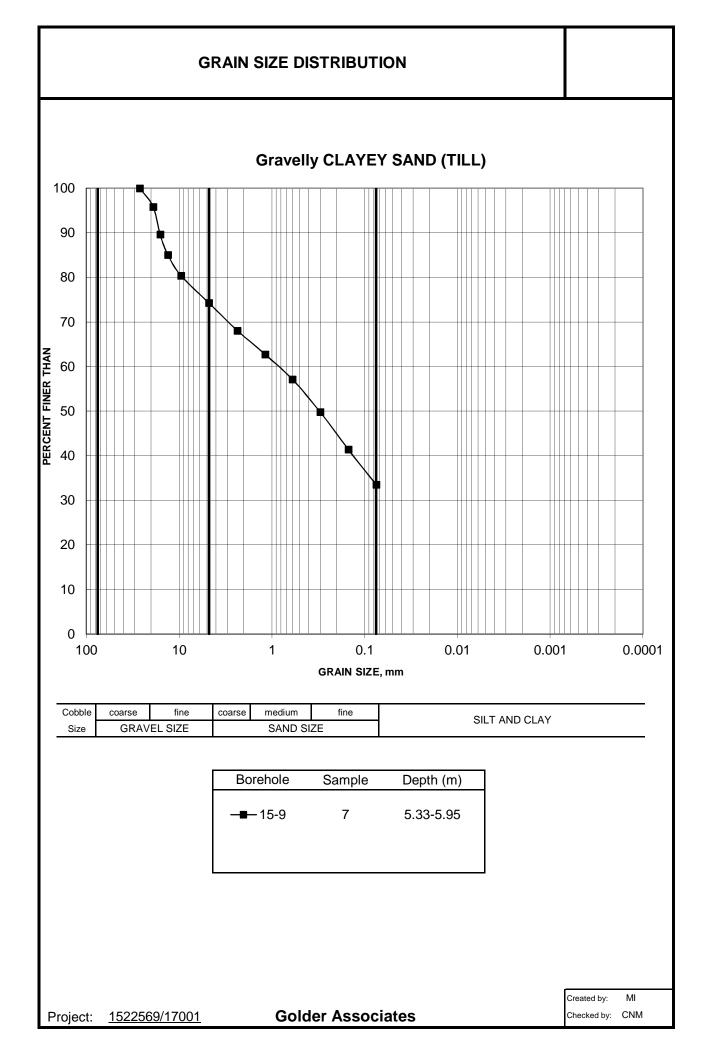
SAMPLING SITE:

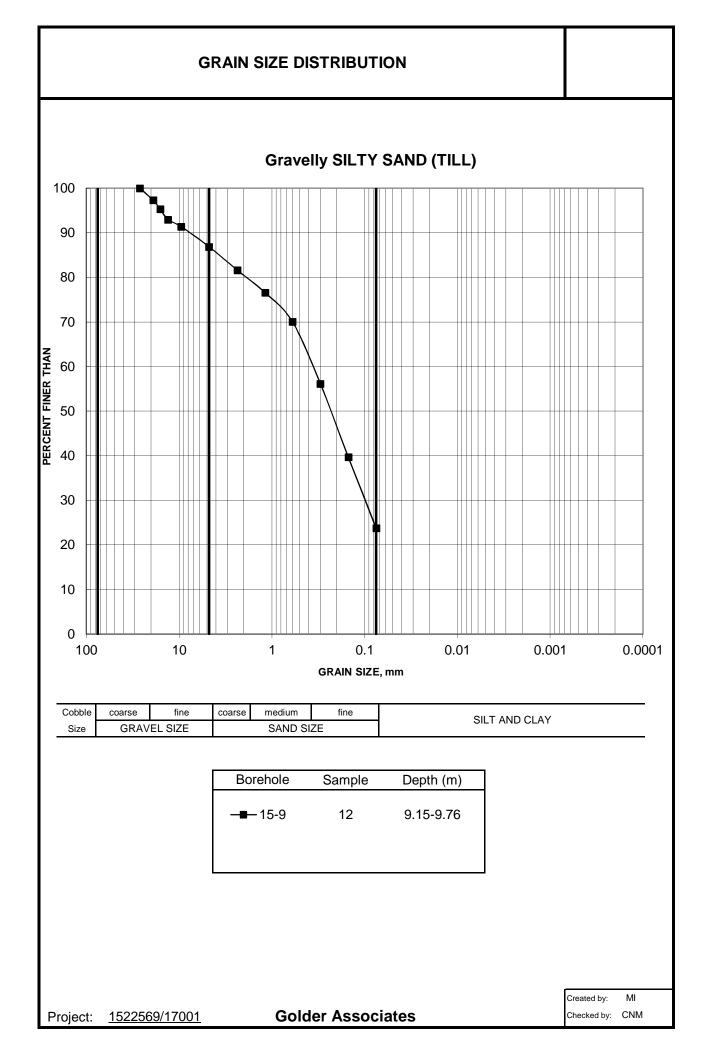
AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F4 (C34 to C50)	VOL -91- 5010	MOE PHC- E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030 & 8260	(P&T)GC/MS
			· · · · ·

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD


PROJECT: 1522569


AGAT WORK ORDER: 15Z030915 ATTENTION TO: Alyssa Troke

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis		1	1
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
√anadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER
Mercury	MET-93-6100	EPA SW-846 7470 & 245.1	CVAAS

s Avenue L4Z 1Y2 L4Z 1Y2 Aork Order #: S2COSO 915 abs.com cooler Quantity: S2COSO 915 abs.com Arrival Temperatures: S255533	Custody Seal Intaction Custody Seal Intaction 58 Turmaround Time (TAT) Required: 78 Turmaround Time (TAT) Requires: 78 Turmaround Time (Tat) Rucharges May Apply): 78 OR Date Required (Rush Surcharges May Apply):	s cophenols * 14 Pesticides * 15 Pesticides * 16 Pesticides * 17 Pesticides * 16 Pesticides * 17 Pesticides * 17 Pesticides * 16 Pesticides * 16 Pesticides * 16 Pesticides * 16 Pesticides * 16 Pesticides * 17 Pest	Karakan K				SOCA-IS TIME Page of C
5835 Coopers Avenue 5835 Coopers Avenue 5835 Coopers Avenue Mississeuga, Ontario L42 172 Ph: 905,712,5100 Fax: 905,712,5122 webearth.agattabs.com If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption)	Regulatory Requirements: No Regulatory Requirement Reserved all application 153/04 Sewer Use Regulation 558 Regulation 153/04 Sewer Use Regulation 558 Restriction Solition Come Solition Restriction Come Solition Region Solition Solition Region Solition Record of Site Condition Certificate of Analysis	al Scan, incl. Hg + Cr LE	Instructions Weta Hydri		unel metals analyses # V	voc only 5	5' OU [Somutis Received by Petin farme and Sup! Samues Received by Petin farme and Sup!
	50 der 592-9600 Fax be 5 gelder con Kholmes Ogoldera nd. le. H. Ggelder.	lien number is not any used and will to Same: Yes	miled containers Matrix	20 0 00 00 00 00 00 00 00 00 00 00 00 00	-10-	- 20 C 2	2014 15, 15 Time 2014 15, 15 Time 5are
Chain of Custody Record	tr Information:	Project: Site Location: Sampled By: AGAT Quote #: AGAT Quote #: Please noue: If our Please noue: If our Pl	Sample Identification		15 - 05 15 - 06 15 - 10	Dup 3 Dup 8 Irrp spille	Samples Second stred By (Phin 'amb and Sign' C iv 7 C Y C Y C Y Samples Relindusted By (Print Name and Sign):

Laboratory Use Only	Work Order #: ISTOSOSIS Cooler Quantity:	Arrival Temperatures: 5-0 00 10	Custody Seal Intact: Tytes No UN/A Notes:	Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT 5 to 7 Business Days Rush TAT 2 Business 3 Business 2 Business Days Days	OR Date Required (Rush Surcharges May Apply). Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays	Chlorophenols Chlorophenols CELP Metals/Inorganics Sewer Use Sewer Use	List Copy - Client 1 Yellow Copy - AGAT 1 While Copy - AGAT 1 While Copy - AGAT 1 While Copy - AGAT
	 b835 Coopers Avenue Mississauga, Ontanio L4Z 1Y2 Ph: 906,712.5100 Fax: 905,712.5122 www.agatlabs.com 	Custody Form (potable water intended for human consumption)	irements: 🛛 No Regulatory Requirement	Sewer Use Regulation 558 Santary CCME Starm CCME Starm Objectives (PWQO) Region Indicate one	n for a Report Guideline on nittion? Certificate of Analysis No M Yes No	Metal Scan Ketals and Inorganics Metal Scan Koc Dats Metal Scan Koc Dats Mutherts: TP Orabia Come Fractions 1 to 4 Orabia Come Fractions 1 to 4	By finant harme and Signit. Def Print, Name and Signit. Def Print, Name and Signit. Def Print, Name and Signit. Def Print, Coopy - Client, I
	Laboratories	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption)	Regulatory Requirements:	Image: Solid Transmission Image: Solid Transmission Image: Solid Texture Solid Texture Solid Texture Concert one Image: Solid Texture Concert one	Is this submission for a Record of Site Condition?	Antiped at the solution of th	Date Time Sentities Freenwas By Prin Bate Time Sentitica Received By Prin
		Chain of Custody Record Merisson	Report Information:	Contact: Address: Phone: Reports to be sent (1. Email: 2. Email:	Project Information: Project: Site Location:	Sampled By: AGAT Quote #:	Samules freingulutesa Sy (April Azime and Sign). Samules Reingulstad Sy (April Azime and Sign): Samules Reingulstad Sy (Printhame and Sign):

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Asia Australasia Europe

+ 27 11 254 4800 + 86 21 6258 5522

+ 61 3 8862 3500

North America + 1 800 275 3281

+ 44 1628 851851

South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. 1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada T: +1 (613) 592 9600

