

File: 119351 - 5.2.2

Design Brief Bank Street Development 4836 Bank Street

ΙΒΙ

Prepared for Leitrim Home Hardware by IBI Group APRIL 2019 REVISED APRIL 2020

Table of Contents

1	INTRO	NTRODUCTION 1	
	1.1	Scope	
	1.2	Subjec	t Site1
	1.3	Previou	us Studies1
	1.4	Pre-Co	nsultation1
	1.5	Geoteo	hnical Investigation2
2	2 WATER SUPPLY		
	2.1	Existing	g Conditions 3
	2.2	Design	Criteria 3
		2.2.1	Water Demands
		2.2.2	System Pressure
		2.2.3	Fire Flow Rates
		2.2.4	Boundary Conditions
		2.2.5	Hydraulic Model
	2.3	Propos	ed Water Plan4
		2.3.1	Modelling Results4
		2.3.2	Watermain Layout
3	WAST	EWATE	R DISPOSAL
	3.1	Existing	g Conditions
	3.2	Design	Criteria
	3.3	Recom	mended Wastewater Plan6
4	SITE S	TORMV	VATER MANAGEMENT
	4.1	Existing	g Conditions7
	4.2	Phasin	g7
	4.3	Design	Criteria7
	4.4	Propos	ed Minor System

Table of Contents (continued)

	4.5	Stormwater Management	
	4.6	Inlet Controls	
	4.7	On-Site Detention	
		.7.1 Site Inlet Control	
		.7.2 Roof Inlet Controls	
		.7.3 Overall Release Rate	
5	SEDIM	NT AND EROSION CONTROL PLAN11	
	5.1	Seneral	
	5.2	rench Dewatering	
	5.3	ulkhead Barriers 11	
	5.4	eepage Barriers	
	5.5	Surface Structure Filters	
6	APRO\	LS AND CITY REQUIREMENTS 13	
	6.1	City of Ottawa 13	
	6.2	Province of Ontario	
	6.3	Conservation Authority	
	6.4	ederal Government	
7	CONCI	ISIONS & RECOMMENDATIONS 14	
	7.1	Conclusions	
	7.2	Recommendations	

Table of Contents (continued)

List of Figures

Figure 1.1Site LocationFigure 1.2Site PlanFigure 4.1Phasing Plan

Table of Contents (continued)

List of Appendices

Appendix A	City Pre-Consultation Meeting Notes (October 24, 2018 e-mail) April 15, 2019 e-mail from the South Nation Conservation
Appendix B	Figure 2.2, Preferred Water Distribution Plan, 2016 Updated Serviceability Report Correspondence from the City of Ottawa Watermain Demand Calculation Sheets FUS Calculation Hydraulic Model Out
Appendix C	Pathways Phase 1 Sanitary Sewer Design Sheet Drawing 33956-501A – Pathways Phase 1 Sanitary Drainage Area Plan Sanitary Sewer Design Sheet Drawing 119351-400 – Sanitary Drainage Area Plan
Appendix D	Pathways Phase 1 Storm Sewer Design Sheet Drawing 33956-500A – Pathways Phase 1 Storm Drainage Area Plan Drawing 33956-700 – DDSWMM Schematic from Pathways Phase 1 Excerpts from <i>Design Brief Pathways at Findlay Creek 4800 Bank Street</i> (<i>Remer Lands</i>) Phase 1 Leitrim Development Area (IBI Group, August 2017) Storm Sewer Design Sheet Drawing 119351-500 – Storm Drainage Area Plan Manufacturer's information for ICDs
Appendix E	Stormwater Management Calculations
Appendix F	Drawing 119351-001 – Site Servicing Plan Drawing 119351-010 – Details and Notes Drawing 119351-200 – Site Grading Plan Drawing 119351-600 – Ponding Plan Drawing 119351-900 – Erosion and Sedimentation Control Plan

1 INTRODUCTION

1.1 Scope

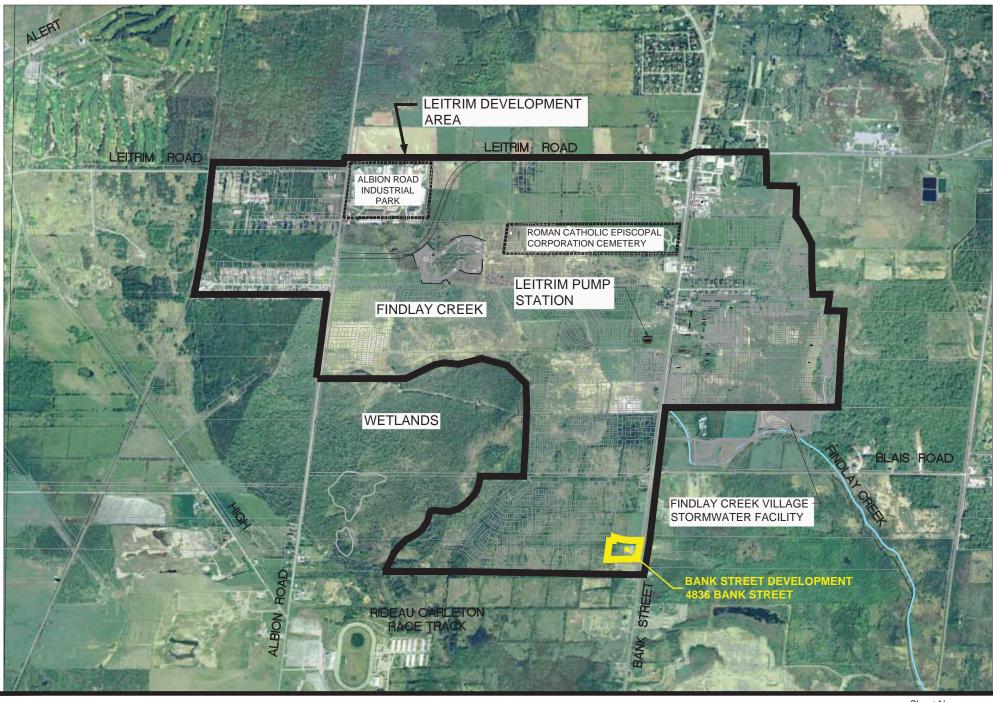
IBI Group has been retained by Leitrim Home Hardware to prepare the necessary engineering plans, specifications and documents to support a proposed Site Plan Application for the subject lands in accordance with the policies set out by the Planning and Development Branch of the City of Ottawa. This Brief will present a detailed servicing scheme to support development of the property, and will include sections that will review water supply, wastewater disposal, minor and major stormwater management along with erosion and sediment control.

1.2 Subject Site

The Leitrim Home Hardware site is located at the southwest corner of the Bank Street and Dun Skipper Drive intersection. The proposed development is approximately 2.5 hectares in size and is also bounded by the Idone subdivision to the south and east. Please refer to **Figure 1.1** for more information regarding the site location.

The subject property is presently improved with a Home Hardware retail outlet and associated out buildings. The proposed re-development of the site will include a new Home Hardware building; three other buildings; two vehicular accesses; dedicated parking spaces and landscaping areas. A current concept of the envisioned development is shown on **Figure 1.2**.

1.3 Previous Studies


Design of this project has been undertaken in accordance with the following reports:

- 2016 Updated Serviceability Report (Class EA OPA 76 Areas 8a, 9a & 9b) Leitrim Development Area (IBI Group, September 2016) – The report is an update to an earlier servicing report completed in 2007. The updated report was needed to review the impacts on existing major infrastructure by developing an additional 87 ha in the LDA. IN 2012, under OPA 76, the City of Ottawa increased its urban envelope by over 900 ha including expansion areas 8a, 9a, and 9b in the LDA. The subject site is included in the OPA 76 Expansion Area. The report included a high level review of the development requirements of the subject site. The design of the subject site is based on the report recommendations.
- Design Brief Pathways at Findlay Creek 4800 Bank Street (Remer Lands) Phase 1 (IBI Group July 2017) The report provides detail design criteria for adjacent developments including the subject site and identifies capacity for a water supply and both storm and sanitary sewers for the subject site.

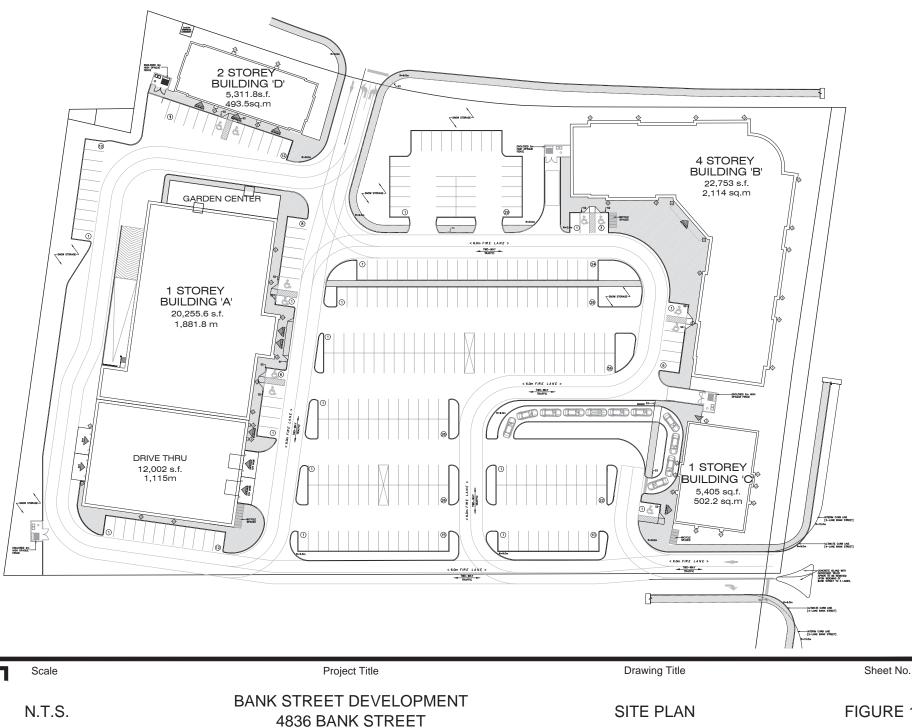
1.4 Pre-Consultation

A pre-consultation meeting with the Owner and City Staff was held on October 18, 2018. Attached in **Appendix A** is an October 24, 2018 e-mail which includes some meeting notes from that meeting. Some of the items discussed during the meeting dealt with the following subjects:

- Policies
- Engineering
- Planning
- Transportation
- Forestry
- SNCA
- Required Plans and Studies

Project Title

BANK STREET DEVELOPMENT


4836 BANK STREET

Drawing Title

SITE LOCATION

Sheet No.

FIGURE 1.1

B

FIGURE 1.2

There is a small drainage ditch on the subject property which outlets to the Bank Street side road ditch. That ditch will need to be filled to support the proposed development. The South Nation Conservation (SNC) was contacted to confirm if a permit was needed to fill the ditch. In an April 15, 2019 e-mail, the SNC confirmed that a permit from that agency would not be required to fill the on-site ditch. A copy of that e-mail is included in **Appendix A**.

1.5 Geotechnical Investigation

A geotechnical report entitled "Geotechnical Investigation, Proposed Commercial Development, 4836 Bank Street, Ottawa, Ontario" by Paterson Group has been prepared for the subject site.

The objective of the investigation report include:

- Determination of the subsoil and groundwater conditions;
- Provision of geotechnical recommendations pertaining to the design and development of the subject site including construction considerations.

Among other items, the report comments on the following:

- Site grading and grade raises;
- Foundation design;
- Pavement structure;
- Infrastructure construction;
- Groundwater control;
- Contamination/corrosive environment.

2 WATER SUPPLY

2.1 **Existing Conditions**

As previously noted, the 2.5 hectare Home Hardware site is located west of Bank Street and south of Dun Skipper Drive. The subject site is flanked on both the north and east sides by existing watermains. Existing 400 diameter watermains are included in both Bank Street and Dun Skipper Drive. Both watermains fall within the City of Ottawa's pressure district Zone 4C which will provide the water supply to the site.

2.2 Design Criteria

2.2.1 Water Demands

Water demands have been calculated for the development using consumption rates from Table 4.2 of the Ottawa Design Guidelines – Water Distribution. Buildings A, C and D are one or two storey retail buildings while Building B is a 4 storey hotel with an estimated 500 beds. A summary of the water consumption rates is as follows:

Basic Demand:

Shopping Centre (Retail)Hotels	2500 l/1000m²/day 225 l/bed/day
Maximum Daily Demand:	1.5 x Basic Day
Maximum Hourly Demand:	1.8 x Maximum Day

A watermain demand calculation sheet is included in Appendix B and the total water demands are summarized as follows:

•	Average Day	1.41 l/s
•	Maximum Day	2.12 l/s
•	Peak Hour	3.83 l/s

2.2.2 System Pressure

The Ottawa Design Guidelines - Water Distribution (WDG001), July 2010, City of Ottawa, Clause 4.2.2 states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 480 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in Clause 4.2.2 of the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi)
Fire Flow	During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.
Maximum Pressure	In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls will be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rates

The subject site plan will contain 4 commercial building pads. Calculations using the Fire Underwritera Survey (FUS) method were conducted to determine the fire flow requirement for the site for the two largest Buildings 'A' and 'B'. The FUS method considers building floor area, type of building construction, type of occupancy, availability of sprinkler systems and separations from adjacent buildings. Without detailed architectural drawings for the buildings, the building construction is assumed to be non-combustible as defined by the FUS. As we do not have details of the sprinkler systems at this time, a reduction of 30% has been assumed in accordance with the FUS. No reduction or increase has been required for the occupancy as is common with commercial buildings. Results of the calculations show a fire demand of 11,000 l/min (183.3 l/s) for Building 'A' and 13,000 l/min for Building 'B'. A copy of the FUS calculations is included in **Appendix B**.

2.2.4 Boundary Conditions

The City of Ottawa has provided hydraulic boundary conditions at two locations, one at the existing main on Dun Skipper Drive at the entrance to the site and the other is on the existing Bank Street main at the Bank Street entrance. Boundary conditions have been supplied for the 2019 existing conditions and for the future SUC zone reconfiguration in which the HGL will be reduced. Therefore the existing condition Max HGL is used for the basic day analysis to determine the maximum pressure as it represents the highest HGL elevation. For the peak hour and max day plus fire analysis the SUC zone reconfiguration is used in the analysis as these represent the lowest HGL elevations. The boundary conditions are included in Appendix B and are summarized as follows;

SCENARIO	CONDITION 1 DUN SKIPPER DRIVE	CONDITION 2 BANK STREET
Max HGL (Basic Day)	155.6m	155.6m
Peak Hour	145.1m	145.1m
Max Day + Fire (11,000 I/min)	139.6m	139.6m
Max Day + Fire (13,000 I/min)	137.8m	137.9m

2.2.5 Hydraulic Model

A computer model for the site has been developed using the Infowater 12.4 program by Innovyze. The model includes the propsed and existing watermains on Bank Street and Dun Skipper Drive and the boundary conditions provided by thr City.

2.3 Proposed Water Plan

2.3.1 Modelling Results

The site will be serviced by two connections to the existing 400 mm watermains on Dun Skipper Drive and Bank Street. All watermains are 200 mm diameter except for a 150 mm diameter stub which services Buildings 'A' and 'D'. There are four fire hydrants proposed, nodes TH-010 to TH-040 in the model. Nodes TH-010 and TH-030 are adjacent to Buildings 'A' and 'D' with a fire demand of 11,000 l/min per Section 2.3.3. Nodes TH-020 and TH-040 are adjacent to Buildings 'B' and 'C' with a fire demand of 13,000 l/min. An existing hydrant on Dun Skipper Drive also

provides fire protection to Building 'B' and is represented by Node S15-300 in the water model.Results of the hydraulic analysis for the Site is included in **Appendix B** and is summarized as follows:

SCENARIO	
Basic Day (Max HGL) Pressure (kPa)	530.3 – 539.0
Basic Day Water Age (hrs.)	1.0 – 7.5
Peak Hour Pressure (kPa)	417.4 – 436.0
Design Fire flow @ 140 kPa Residual Pressure (I/s) - Retail (183.3 I/s) - Hotel (216.7 I/s)	434.0 & 686.0 425.4 – 486.4

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure	Under Basic Day there are no nodes in which the pressure exceeds 552 kPa (80 psi), thus no pressure reducing control is required. There is also no area where the pressure exceeds the maximum level of 689 kPa (100 psi) in unoccupied areas.
Water Age	The water age under basic day conditions has been calculated for the site. The water age is calculated from the boundary. The highest water age is 7.5 hours from the boundary conditions. While the water age is adequate under basic day conditions, the age may be a concern during the early stage of construction due to low demand. Should water quality become a concern an automatic flushing unit in accordance with City Detail W3.2 can be installed on the water system in order to increase circulation.
Minimum Pressure	The lowest minimum pressure during peak hour conditions is 417.4 kPa which exceeds the minimum 276 kPa (40 psi) requirement.
Fire Flow	The minimum design fire flow under maximum day conditions with minimum system pressure of 140 kPa (20 psi) is 434.0 l/s for retail which exceeds the requirement of 183.3 l/s (11,000 l/min) from Section 2.3.3. For the hotel, the minimum fire flow is 425.4 l/s which practically meets the 216.7 l/s (13,000 l/min) requirement.

2.3.2 Watermain Layout

In order to provide additional reliability to the system in case of a watermain break, two connections to the City's watermain system are proposed. One proposed connection is to the existing 400 mm watermain within the Dun Skipper Drive right of way and the other proposed connection is to the 400 mm watermain in Bank Street. The proposed water plan is shown on Drawing 119351-001, the Site Servicing Plan, a copy of which is included in **Appendix F**. An accompanying Drawing 010, Details and Notes is also included in **Appendix F**. The proposed fire hydrant layout also includes an unobstructed path of no more than 45m between the hydrant and Siamese connections as required by the Ontario Building Code.

3 WASTEWATER DISPOSAL

3.1 Existing Conditions

The Leitrim Home Hardware site at 4836 Bank Street is located within the Leitrim Development Area where sanitary flows ultimately outlet to the Leitrim Sanitary Pumping Station. As part of the adjacent downstream developments, the outlet sanitary sewer system for the subject site was completed. Those sewers were installed as per the recommendations of the 2016 Updated Serviceability Report. In particular, a 200 mm diameter sanitary sewer in Dun Skipper Drive was constructed as part of the Pathways Phase 1 project. That sewer (at MH1A) was also sized for the upstream Idone commercial lands. A highlighted copy of the sanitary sewer design sheet from the Pathways Phase 1 design, together with the related Sanitary Drainage Area Plan (drawing 33956-501A) are included in **Appendix C**.

3.2 Design Criteria

The sanitary sewers for the subject site will be based on the City of Ottawa design criteria. It should be noted that the sanitary sewer design for this study incorporates the latest City of Ottawa design parameters identified in Technical Bulletin ISTB-2018-01. Some of the key criteria will include the following:

•	Commercial/Institutional flow	28,000 I/ha/d
•	Peaking factor	1.5 if ICI in contributing area >20%1.0 if ICI in contributing area <20%
•	Infiltration allowance	0.33 l/s/ha
•	Velocities	0.60 m/s min. to 3.0 m/s max.

3.3 Recommended Wastewater Plan

The on-site sanitary system will consist of a network of 200mm PVC sewers installed at normal depth and slope and will provide a single service connection to each commercial building. The sewers have been designed using the criteria noted above in Section 3.2 and outlet via a connection to the sanitary sewer within the Dun Skipper Drive right of way. A copy of the sanitary drainage area plan 119351-400 and the sanitary sewer design sheet can be found in **Appendix C**. Please refer to the site servicing plan 119351-001 for further details. No off site construction or sewer improvements are needed for the subject site. As noted previously, the proposed wastewater plan includes capacity at MH 1A for the upstream Idone commercial property.

4 SITE STORMWATER MANAGEMENT

4.1 Existing Conditions

The 2016 Updated Serviceability Report recommended that the subject site and the upstream Idone commercial site be serviced with a 1350 mm diameter minor storm sewer. That sewer was constructed in 2017 as part of the downstream Pathway Phase 1 development and is presently terminated near the north-east corner on the subject site. It is noted that the 1350 mm diameter storm sewer was also sized to provide a minor storm outlet for a portion of the future Earl Armstrong Road. The City of Ottawa requested the latter capacity in the event that the future road was located adjacent to the Idone commercial property. For reference, a highlighted copy of the Pathways Phase 1 storm sewer design sheet together with a copy of Drawing 33956-500A, Pathways Phase 1 Storm Drainage Area Plan are included in **Appendix D**.

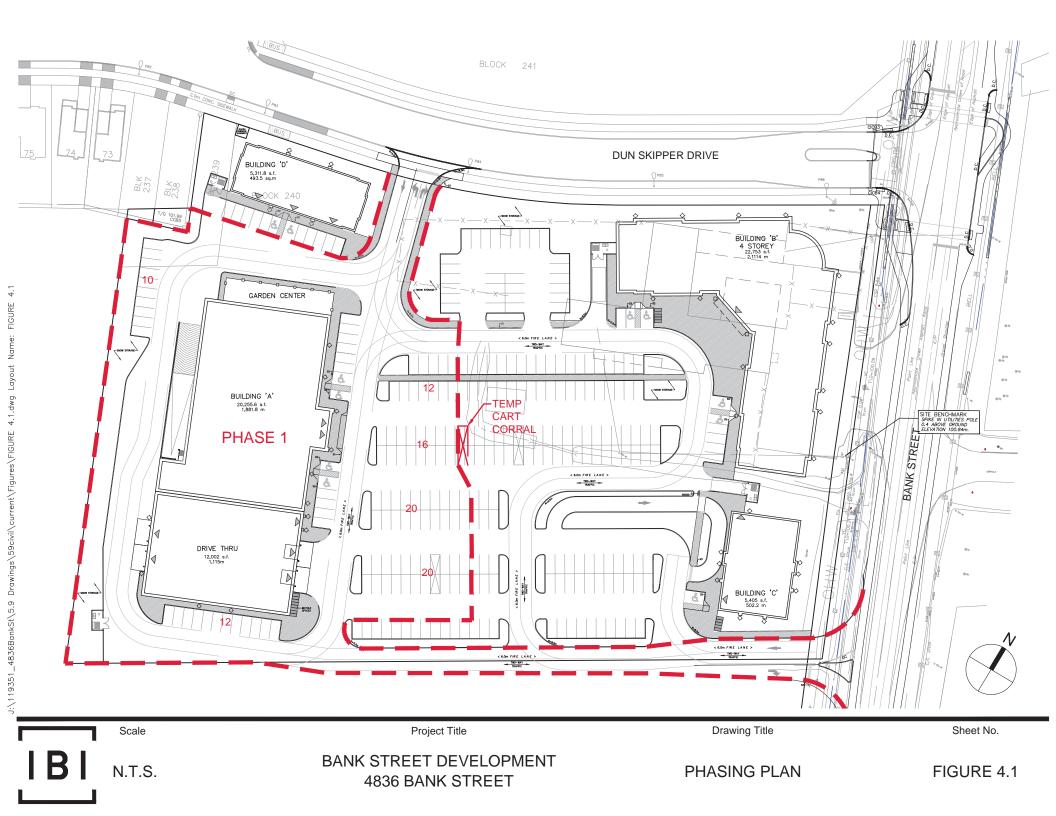
The City of Ottawa is presently undertaking the Earl Armstrong Road Environmental Assessment and the preferred location of the road at Bank Street is not adjacent to the Idone property but about 200 m south of that location. Therefore the development of the subject site, as well as the adjacent Idone commercial property, will no longer need to provide a minor storm outlet for the future Earl Armstrong Road.

4.2 Phasing

Although the subject site will eventually include four buildings, the property owner plans to phase the site development. The first phase will include only Building A, associated parking, and vehicular connection to both Bank Street and Dun Skipper Drive. **Figure 4.1** shows the approximate limits for Phase 1. The existing Home Hardware retail outlet will remain open while the new store is under construction. As a consequence of this development plan, the existing 1350 mm diameter storm sewer, which is presently terminated behind Building B near Dun Skipper Drive, can no longer be the minor storm outlet for the commercial site. Instead, it is now proposed to service the site with a new 750 mm diameter storm sewer under the Don Skipper Drive driveway access location.

4.3 Design Criteria

IBI Group recently completed the municipal infrastructure design for the Pathways Phase 1 development. That design included a review of the allowable flow from the subject site including the adjacent Idone commercial property. The "Pathways" design assumed that the allowable minor storm release rate for the two commercial sites was 760 I/s and that the 1:100 year storm event would be self-contained with no overflow to adjacent properties. The emergency overflow for events greater than the 1:100 year event (stress test) would be to Bank Street. A copy of drawing 33956-700 DDSWMM Schematic from the former report along with an excerpt from the report identifying the previously mentioned release rate are included in **Appendix D**. The subject site and adjacent commercial property are outlined in the red and identified as area EXT4.


The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

- Design Storm
- Rational Method Sewer Sizing
- Initial Time of Concentration
- Runoff Coefficients
- Pipe Velocities

1:2 year return (Ottawa) 1:2 year return (Ottawa) 10 minutes

0.80 m/s to 6.0 m/s

4.4 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated Storm Sewer Drainage Area plan (drawing 119351-500) are both included in **Appendix D**. The Site Servicing Plan, depicting all on-site storm sewers can be found in **Appendix G**.

The proposed minor storm sewer will range in size between 200 mm diameter and 750 mm diameter. Catchbasin lead pipes will mostly be 200 mm diameter with some 250 mm diameter exceptions. The minor storm sewer outlet will be via the 750 mm diameter pipe which is proposed to connect to the existing 1350 mm diameter storm sewer in Dun Skipper Drive. The existing 1350 mm diameter storm sewer behind building B will be terminated with a manhole and will receive some minor storm flow from the landscaped areas behind Building B. The proposed design has also provided minor storm sewer capacity for the future Idone commercial site near MH1.

The 1350 mm diameter storm sewer in Dun Skipper Drive ultimatly outlets to the Findlay Creek Village SWMF. This facility provides 80% TSS removal, as such no additional on-site stormwater quality control is required within the subject lands.

4.5 Stormwater Management

The subject site will be limited to a release rate established using the criteria described in section 4.2. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations and surface storage.

Flows generated that are in excess of the site's allowable release rate will be stored on site in strategic surface storage areas or by the use of roof top storage and gradually released into the minor system so as not to exceed the site's allocation.

The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100 year event as shown on the ponding and grading plans located in **Appendix G**.

Overland flow routes will be provided in the grading to permit emergency overland flow, in excess of the 100 year event, from the site.

At a single location within the site, west of building D, the opportunity to store runoff is limited due to grading constraints and building geometry, this area will flow uncontrolled to the Dun Skipper right-of-way. This uncontrolled areas – 0.01 hectares in total, have an average C value of 0.6250. Based on 1:100 year storm uncontrolled flows, the uncontrolled areas generate 3.10 l/s runoff (refer to Section 4.6 for the calculation).

The site grading and ponding has been designed to control water generated during the 1:100-year event, with no overflow leaving the site. Please refer to the SWM calculations in **Appendix E**.

4.6 Inlet Controls

The allowable release rate for the 2.49 Ha site can be calculated as follows:

Qallowable= 760 L/s as per IBI Pathways Phase 1 Report – EXT 4 drainage areaArea Total EXT4= 4.04 HaSubject lands share = 62% of EXT4 release rate (2.5 Ha / 4.04 Ha = 0.62)Qsubject Lands= 468.42 L/s

As noted in Section 4.5, a small portion of the site just west of Building D will be left to discharge to the Dun Skipper Drive boulevard at an uncontrolled rate.

Based on a 1:100 year event, the flow from the 0.01 Ha uncontrolled areas can be determined as:

Quncontrolled	= 2.78 x C x i _{100yr} x A where:
С	= Average runoff coefficient of uncontrolled area = 0.625
İ100yr	= Intensity of 100-year storm event (mm/hr)
	= 1735.688 x (T _c + 6.014) ^{0.820} = 178.56 mm/hr; where T _c = 10 minutes
Α	= Uncontrolled Area = 0.01 Ha

Therefore, the uncontrolled release rate can be determined as:

Quncontrolled	$= 2.78 \times C \times i_{100yr} \times A$
	= 2.78 x 0.625 x 178.56 x 0.01
	= 3.10 L/s

The maximum allowable release rate from the remainder of the site can then be determined as:

Q max allowable	= Qrestricted - Quncontrolled
	= 468.42 L/s – 3.10 L/s
	= 465.31 L/s

Based on the flow allowance at the various inlet locations, a combination of various sizes of inlet control devices (ICDs) were chosen for the design. The design of the inlet control devices is unique to each drainage area and is determined based on a number of factors, including hydraulic head and allowable release rate. The inlet control devices were sized according to the manufacturer's design charts. The restrictions will cause the on-site catchbasins and manholes to surcharge, generating surface ponding in the parking and landscaped areas. Ponding locations and elevations are summarized on drawing 119351-600, Ponding Plan 119351-600 which is included in **Appendix G**.

4.7 On-Site Detention

Any excess storm water up to the 100-year event is to be stored on-site in order to not surcharge the downstream municipal storm sewer system. Detention will be provided in parking and landscape areas and building rooftops, where feasible. As previously noted, the volume of storage is dependent on the characteristics of each individual drainage area and the ICD's were chosen accordingly. It should be noted that 0.30m of vertical separation has been provided from all maximum ponding elevations to lowest building openings.

4.7.1 Site Inlet Control

The following Table summarizes the on-site storage requirements during both the 1:5-year and 1:100-year events.

DRAINAGE	TRIBUTARY	AVAILABLE	100-YEAR STORM		5-YEAR S	STORM	
AREA(s)	AREA	STORAGE (M³)	RESTRICTE D FLOW (L/S)	REQUIRED STORAGE (M ³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)	
MH9/MH9B	0.14	20.64	10	44.84	10	13.85	
CB1	0.17	50.59	16	38.68	16	10.47	
CB16	0.01	0.31	6	1.56	6	0.48	
CB17	0.09	0.84	9	25.47	9	8.90	
CB15	0.09	66.27	6	28.06	6	8.73	
CBMH3	0.02	4.17	6	1.52	6	0.42	
CB11	0.03	0.93	15	1.65	15	0.02	
CB12/13/14	0.33	54.36	73	54.70	73	13.07	
CB10	0.13	6.81	45	13.23	45	1.73	
CBMH2	0.08	6.21	20	11.83	20	2.53	
CB7	0.08	6.97	30	7.30	30	0.79	
CB6	0.07	13.66	20	9.01	20	2.53	
CB5	0.06	3.41	15	8.87	15	1.89	
CB8	0.17	24.90	47	22.66	47	4.29	
CB4	0.03	10.62	6	5.42	6	1.40	
CBMH1	0.08	0.00	20	11.83	20	2.53	
CB9	0.15	10.83	43	19.23	43	0.00	
CB18	0.16	13.76	15	3.65	15	0.19	
TOTAL	1.89	295.28	402	309.51	402	73.82	

In all instances within the parking lot areas the required storage is met with surface ponds and underground in structure/pipe storage which retain the stormwater and discharge at the restricted flow rate to the sewer system. Additionally, available storage in the landscaped area at CB18 has been calculated including the volume capacity of the perforated pipe subdrain as well as the City standard S29 clear stone trench. Refer to the SWM calculations in **Appendix E** for storage information and Drawing 119351-600, Ponding Plan located in **Appendix G**.

4.7.2 Roof Inlet Controls

The proposed buildings will have roof ICD's that help to control the amount of stormwater being released into the system. The restricted flow rate for the proposed building is shown below.

ICD	TRIBUTARY	100-YEAR STORM		5-YEAR S	TORM
AREA	AREA	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)
Bldg A	0.30	27.0	89.56	27.0	32.15
Bldg B	0.22	20.0	65.35	20.0	23.40
Bldg C	0.05	8.0	10.68	8.0	3.13
Bldg D	0.05	8.0	10.68	8.0	3.13
TOTAL	0.62	63.0	176.27	63.0	61.81

4.7.3 Overall Release Rate

As noted above, the site uses ICDs to restrict the 100 year storm event to the criteria approved by the City of Ottawa. Restricted stormwater will be contained onsite by utilizing surface ponding, in structure/pipe and rooftop storage. In the 100 year event, there will be no off-site overflow.

The sum of restrictions on the site, rooftops and uncontrolled flows is 468.10 l/s + 63.00 l/s + 3.10 L/S), which is less than the allowable release of 468.42 l/s noted in section 4.6.

5 SEDIMENT AND EROSION CONTROL PLAN

5.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to possibly introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These may include:

- Until the local storm sewer is constructed, groundwater in trenches will be pumped into a filter mechanism prior to release to the environment. One half diameter bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewers.
- Seepage barriers will be constructed in any temporary drainage ditches (where applicable);
- Sediment capture filter socks will remain on open surface structures such as maintenance holes and catchbasins until these structures are commissioned and put into use.
- Silt fence on the site perimeter will be installed.

5.2 Trench Dewatering

Any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed, including sediment removal and disposal and material replacement as needed. It should be noted that that the contractor will be responsible for the design and management of the trap(s).

5.3 Bulkhead Barriers

To further reduce downstream sediment loading, ½ diameter bulkheads will be constructed over the lower half of the outletting sewers during construction. These bulkheads will trap any sediment laden flows, thus preventing any construction-related contamination into existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

5.4 Seepage Barriers

In order to further reduce sediment loading to the surrounding area such as the Bank Street roadside ditch, seepage barriers will be installed on any surface water courses at appropriate locations that may become evident during construction. These barriers will be Light Duty Straw Bale Barriers per OPSD 219.100 and Heavy Duty Silt Fence Barriers per OPSD 219.130; locations are shown on the Erosion and Sedimentation Control Plan included in **Appendix G**. They are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

5.5 Surface Structure Filters

All catchbasins, and to a lesser degree, manholes, convey surface water to sewers. Until streets are asphalted and curbed, all catchbasins and manholes will be constructed with sediment capture inserts or equivalent located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

6 APROVALS AND CITY REQUIREMENTS

6.1 City of Ottawa

The City of Ottawa reviews all development documents including this report and working drawings. Upon completion, the City will approve the local watermains under Permit No. 008-202, submit the sewer ECA application to the province, and eventually issue a Commence Work Notification.

6.2 Province of Ontario

The Ministry of Environment, Conservation and Parks (MECP) will approve the local sewers under Section 53 of the Ontario Water Resources Act and issue an Environmental Compliance Approval. The Ministry will also issue a Permit to Take Water.

6.3 Conservation Authority

The South Nation Conservation has confirmed no permits are required from the agency. Email correspondence with SNC is included in **Appendix A**.

6.4 Federal Government

There are no required permits, authorizations or approvals needed expressly for this development from the federal government.

7 CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions

This report and the accompanying working drawings clearly indicate that the proposed development meets the requirements of the stakeholder regulators, including the City of Ottawa, provincial MECP and SNC. The proposed development is in general conformance with the recommendations of both the 2016 Updated Serviceability Report and the Pathways Phase 1 design.

There is a reliable water supply available adjacent to the proposed development; a wastewater outlet is available adjacent to the site, local storm sewers have been installed adjacent to the site and an expansion to the existing Findlay Creek Village Stormwater Facility has been constructed to collect and treat runoff from the subject site.

7.2 Recommendations

It is recommended that the regulators review this submission with an aim of providing the requisite approvals to permit the owners to proceed to the construction stage of the subject site.

"J:\119351_4836BankSt\5.2 Reports\5.2.2 Civil\3rd Submission\CTR-Design Brief-2020-04-20.docx"

APPENDIX A

- City Pre-Consultation Meeting Notes (October 24, 2018 email)
- April 15, 2019 e-mail from the South Nation Conservation

From:	Walker, Max		
To:	Nico Church		
Cc:	Brian Casagrande		
Subject:	4836 Bank Street - Comments		
Date:	October-24-18 3:07:35 PM		
Attachments:	Pre-application Consultation Servicing Memo (2).pdf 4836_Plans and Study list.pdf		

Nico,

-

As a follow-up to our meeting on October 18, 2018, please find below information regarding the development of the noted site. I have identified the plans and studies required for an application for a <u>Site Plan Control</u> (Manager Approval, Public Consultation) and a <u>Zoning By-law</u> amendment. Should the proposed development/use change, another pre-consultation should be scheduled to discuss.

-

Policies/designations of the site:

- Official Plan designated <u>Developing Community (Expansion Area)</u> and <u>General Urban Area</u>
 - Official Plan <u>Amendment 150</u> was adopted by Council in December 2013. The application will be reviewed under the Official Plan with regard for the Council approved amendments contained within Official Plan Amendment (OPA) 150. An annotated version of the Official Plan, showing the proposed changes within the context of existing policies, can be found <u>here</u>.
- Please consider section 4.8.6 Land-Use Constraints Due to Airport and Aircraft
 Operations
- Leitrim Community Design Plan
- Building Better and Smarter Suburbs
- Urban Design Guidelines for Large-Format Retail

Engineering Comments:

-

As per the pre-application memo, attached.

Planning Comments:

Buildings should be oriented to front, face, and feature public streets, especially with buildings at corners, as shown on the concept plan.

Building façades along the public streets should be articulated with colour, material variations, windows, and other treatments of the wall plane to provide a high quality of design, detail, and variety. The design treatment of flanking façades visible from the street should be similar to that of the front facade.

Building fronts should be treated as pedestrian areas and public spaces.

The side and rear of buildings abutting low to medium density residential properties should be of similar height as the residential dwellings or should be stepped above 4 storeys to maintain an appropriate scale in relation to adjacent residential uses.

- E.g., where the building height is greater than 4 storeys the second, third or fourth storey could be stepped back a further 2.5 metres from the front wall of the storey below.
- Locate loading areas away from adjacent sensitive uses, such as residential and outdoor amenity areas, to reduce the impacts of noise and pollution that could be caused by such uses. Use landscaping and fencing to help buffer potential impacts.

Orient the front façade to face the public street and locate front doors to be visible, and directly accessible, from the public street.

Please consider adjustments to the building center building with a view on orienting it towards the streets to re-inforce the street edge with active frontages and entrances directly from ROW and parking located behind the building.

Base new development on an internal circulation pattern that allows logical movement throughout the site that will accommodate, and not preclude, intensification over time. Design the internal circulation pattern with direct connections to the surrounding streets.

- The subject property does not have access to Dunskipper Dr. Please outline the framework that will facilitate the proposed access, e.g. easement.
 - Consider locating the access over the future services for the most efficient and effective use of space.
- The proposed access to Bank Street overlaps with the lands to the south. Please clarify how this access will be built, e.g., agreements, if any, between the Owner of the subject site and of the abutting lands.

Design the site circulation to minimize the conflicts between pedestrians and vehicles. This can be achieved by orienting car parking spaces to minimize the number of traffic aisles that pedestrians must cross. Overall, the development should

be designed for pedestrians and the public realm first, vehicles second.

Divide large parking areas into smaller and well-defined sections using soft and hard landscaping in order to minimize the amount of paved areas

Enclose all utility equipment within buildings or screen it from both the public street and private properties to the rear and ensure that noise is attenuated. This includes utility boxes, garbage and recycling container storage, loading docks and ramps and air conditioner compressors

Outdoor loading and refuse collection - incorporating all building services, including disposal bins, into the architectural fabric of the building

- Ensure that the wall height is sufficient to completely conceal garbage dumpsters in order to avoid conflict of uses. We find that the Ecoloxia refuse bins meets this objective.
- o Consider Molak and/or Earthbins.

The site has approximately 300 parking spaces, whereas the By-law requires only 176 parking space @ a rate of 3.4 per 100 m2 of GFA for retail. Shopping Centre is 3.6 per 100 m2 of GFA. Please provide a strong rational for the excessive parking spaces.

Provide opportunities for pedestrian connections between the subject site and remainder of the Idone lands. Section 4.11 (c) of the Official Plan states that we should pursue opportunities to reduce parking requirements and promote increased usage of walking, cycling and transit, where appropriate. We are creating a connected development which works in favor of permeability and improved opportunities for active transportation. Disconnected neighborhoods with isolated land uses result in longer trip distances, which favor vehicular mode choices.

With respect to the turning movements, the applicant should demonstrate that all operational characteristics of the site could be self-contained.

The site is outside of the area envisioned for the mixed-use centre designation per the Leitrim Community Design Plan. It is suggested to make a case for why the expansion of the mixed-use area further south is reasonable and why this property should be analogous to the other mixed use areas.

Section 3.13 -Developing Community Expansions Area- of the Official Plan requires a Plan of Subdivision to determine how the land will be serviced and developed. Because the Owner is not party to the plan of subdivision for the surrounding lands, a site plan application, together with a zoning amendment application, is required to the identify distribution of land uses, how the site is to be serviced and how traffic will be addressed.

The site is located within the Ottawa Airport Operating Influence Zone. The

landscape plan should not include plants known to be attractive to birds. The landscape plan should conform to Transport Canada's TP 11500 table c4 'Ornamental Trees and Shrubs Attractive to Birds'.

Transportation Comments:

A Transportation Impact Assessment (TIA) would be required in support of the Zoning By-law application. The TIA should be in accordance to the City's TIA Guidelines.

Bank Street is an urban arterial road in this section with a ROW protection of 44.5m per the City OP. Road widening will be required to achieve the ROW width, i.e. 22.25m from the existing centreline of the road to the property line.

There is a plan to improve the Intersection of Bank Street and Dunskipper Drive. This will include turning lanes and traffic signals. The intersection is currently in the 2014 DC By-law, subject to approval by Council.

Note that per the transportation impact study completed for the subdivision to the north, the traffic signals are not warranted for the intersection until 2025.

Ensure that Dunskipper access on Bank Street is reviewed for safety if road modifications are not in place or keep this access closed until intersection modifications and signalization can be completed.

A 5X5 sight triangle will be required at the Dunskipper Drive access

New TIA guidelines:

The TIA (Transportation Impact Assessment) Guidelines (2017) were approved by Transportation Committee and City Council on June 14, 2017. The new version of the TIA Guidelines (2017) that are posted on the web are now to be used for the TIA Submission for development applications.

The following list highlights the significant changes to the 2006 TIA Guidelines

 A recent revisit of all steps in the TIA Guidelines has retained the first three steps as required for our review and or sign off. Only step 4, which is the strategy report, is optional. You may or may not forward the strategy report to staff for review and can move on to assemble all documentation (including strategy report) into step 5 for submission of the application.

Please provide 3 copies of the Traffic Impact Assessment, if required.

Forestry Comments:

• A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City; an approved TCR is a requirement of Site Plan approval.

• Any removal of privately-owned trees 10cm or larger in diameter requires a tree permit issued under the Urban Tree Conservation Bylaw; the permit is based on the approved TCR.

• The removal of City-owned trees will require the permission of Forestry Services who will also review the submitted TCR.

• In this case, the TCR may be combined with the Environmental Impact Statement.

o TCR shall addresses butternut trees.

• The TCR must list all trees on site by species, diameter and health condition – separate stands of trees may be combined using averages.

• The TCR must address all trees with a critical root zone that extends into the developable area – all trees that could be impacted by the construction that are outside the developable area need to be addressed.

• Trees with a trunk that crosses/touches a property line are considered coowned by both property owners; permission from the adjoining property owner must be obtained prior to the removal of co-owned trees.

If trees are to be removed, the TCR must clearly show where they are, and document the reason they can not be retained – please provide a plan showing retained and removed treed areas.

• All retained trees must be shown and all retained trees within the area impacted by the development process must be protected as per City guidelines listed on Ottawa.ca.

• The City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.

• Please ensure all planted trees have a sufficient soil volume to support them at maturity. Please ensure salt tolerant trees are planted in high salt areas.

• For more information on the process or help with tree retention options, contact Mark Richardson <u>mark.richardson@ottawa.ca</u>.

SNCA Comments:

SNC recommends a storm water report, or an update to an existing report. It should demonstrate that storm water runoff post development will equal pre development for the 2 or 5 and the 100 year storm event. Treatment should achieve a 80% TSS removal. The following plans should also be provided: storm water, drainage and grading, sediment and erosion control.

GeoOttawa shows roadside ditches and a watercourse that starts on the property flowing east into the ditch. These features should be been confirmed.

Note that any interference with a watercourse may require a permit under Ontario Regulation 170/06 and restrictions may apply. The applicant should contact South Nation Conservation before commencing any work that may interfere with a watercourse.

-

Required plans and studies:

As per the Study and Plan identification List

For information and guidance on preparing required studies and plans refer to http://ottawa.ca/en/city-hall/planning-and-development/how-developproperty/development-application-review-process-2/guide-preparing-studies-andplans

<u>Fees</u>

The fees are detailed in Table 1 and 2, below. Please note that where two or more planning applications are submitted at the same time for the same property, the planning fee imposed for such applications shall be reduced by 10%.

Manager Approval, Public	\$ 21,508.66
Consultation Fee:	
Includes:	Planning Fee: \$ 18,478
	On-Site Sign Fee: \$576.30
	Legal Fee: \$2,454.36 (\$2,172 + \$282.36 HST)
Plus	
Initial Engineering Design Review	\$10,000 (includes HST) (value of Hard

Table 1: Site Plan Fees

and Inspection Fee:	and Soft Servicing >\$300,000)
Plus	
Conservation Authority Fee:	\$975

Table 2: Zoning Amendment Fees

Zoning By-Law Amendments		
Major Zoning Amendment: \$16,545.30		
Includes: Planning Fee: \$15,969		
On-Site Sign Fee: \$576.30 (incl. HST)		

Prior to making a complete submission, I also encourage you to discuss the proposal with the area Councillor and local community associations. Please note that these preconsultation comments are valid for one year. If you submit a development application after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change.

If you have any questions regarding the foregoing, please do not hesitate to contact me.

Regards,

-Max

Max Walker, RPP

Planner I | Urbaniste I Development Review (South Services) | Examen des projets d'aménagement (services sud) Planning, Infrastructure and Economic Development | Services de planification, d'infrastructure et de développement économique City of Ottawa | Ville d'Ottawa To 613.580.2424 ext./poste 23947 ottawa.ca/planning_/ ottawa.ca/urbanisme

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Legend: S indicates that the study or plan is required with application submission.

A indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

S/A	Number of copies	ENGINEERING		S/A	Number of copies
S	5	1. Site Servicing Plan	2. Assessment of Adequacy of Public Services / Site Servicing Study / Brief	S	3
S	5	3. Grade Control and Drainage Plan	4. Geotechnical Study	S	3
		5. Composite Utility Plan	6. Groundwater Impact Study		
		7. Servicing Options Report	8. Wellhead Protection Study		,
S	9	9. Transportation Impact Brief	10. Erosion and Sediment Control Plan / Brief	S	3
S	3	11.Storm water Management Report / Brief	12.Hydro geological and Terrain Analysis		
S	3	13. Hydraulic Water main Analysis	14.Noise / Vibration Study	S	3
		15.Roadway Modification Design Plan	16.Confederation Line Proximity Study		

S/A	Number of copies	PLANNING / DESIGN / SURVEY		S/A	Number of copies
		17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage		
		19.Draft Plan of Condominium	20.Planning Rationale/ Design Brief	S	2
S	10	21.Site Plan	22.Minimum Distance Separation (MDS)		
	10	23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study		
		25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement		
S	10	27.Landscape Plan	28.Archaeological Resource Assessment Requirements: S (site plan) A (subdivision, condo)	ŝ	2
S	1	29.Survey Plan	30.Shadow Analysis		
s	3	31.Architectural Building Elevation Drawings (dimensioned)	32.Design Brief		
		33.Wind Analysis			

S/A	Number of copies	ENV	IRONMENTAL	S/A	Number of copies
S	3	34.Phase 1 Environmental Site Assessment of Adjacent Waste Disposal/Former Landfill Site			
Α	3	36.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1) 37.Assessment of Landform Features			
		38.Record of Site Condition	39.Mineral Resource Impact Assessment		
S	3	40. Tree Conservation Report	41.Environmental Impact Statement / Impact Assessment of Endangered Species		
		42.Mine Hazard Study / Abandoned Pit or Quarry Study			

S/A	Number of copies	ADDITIONAL REQUIREMENTS		S/A	Number of copies
S	1	43. Electronic Copy of All reports/drawings	44.		

Meeting Date: October 18, 2018 File Lead (Assigned Planner): Max Walker City Architect:

Application Type: Site Plan Control / Zoning Amendment Infrastructure Approvals Project Manager: Natasha Baird Transportation Project Manager: Amira Shehata

Site Address 4836 Bank Street

*Preliminary Assessment: $1\sqrt{2}$ 3 4 5

*One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning and Growth Management Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the Planning and Growth Management Department.

 110 Laurier Avenue West, Ottawa ON K1P 1J1
 Mail code: 01-14
 Visit us: Ottawa.ca/planning

 110, av. Laurier Ouest, Ottawa (Ontario) K1P 1J1
 Courrier interne : 01-14
 Visitez-nous : Ottawa.ca/urbanisme

MEMO

Date:

To / Destinataire	Max Walker, Planner				
From / Expéditeur	Natasha Baird, Project Manager, Infrastructure Approvals				
Subject / Objet	Pre-Application Consultation 4836 Bank and Ward No. 22,	File No. PC2018-0257			

Please note the following information regarding the engineering design submission for the above noted site:

- 1. The Servicing Study Guidelines for Development Applications are available at the following address: <u>http://ottawa.ca/en/development-application-review-process-</u> O/servicing-study-guidelines-development-applications
- 2. Servicing and site works shall be in accordance with the following documents:
 - ⇒ Ottawa Sewer Design Guidelines (October 2012)
 - ⇔ Ottawa Design Guidelines Water Distribution (2010)
 - ➡ Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (January, 2016)
 - ⇔ City of Ottawa Park and Pathway Development Manual (2012)
 - ⇔ City of Ottawa Accessibility Design Standards (2012)
 - → Ottawa Standard Tender Documents (latest version)
 - ⇒ Ontario Provincial Standards for Roads & Public Works (2013)

- Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- The Stormwater Management Criteria, for the subject site, is based on the total allowable minor system outflow of 760L/s for 1:100 year storm. For further information please refer to the approved Design Brief, Pathways at Findlay Creek, 4800 Bank Street, Phase 1, prepared by IBI, revised August 2017.
- 5. Deep Services (Storm, Sanitary & Water Supply)
 - i. The monitoring manhole should be located in an accessible location on private property near the property line (ie. Not in a parking area).

Sewer connections to be made above the springline of the sewermain as per:

- a. Std Dwg S11.1 for flexible main sewers connections made using approved tee or wye fittings.
- b. Std Dwg S11 (For rigid main sewers) lateral must be less that 50% the diameter of the sewermain,
- c. Std Dwg S11.2 (for rigid main sewers using bell end insert method) for larger diameter laterals where manufactured inserts are not available; lateral must be less that 50% the diameter of the sewermain,
- d. Connections to manholes permitted when the connection is to rigid main sewers where the lateral exceeds 50% the diameter of the sewermain. Connect obvert to obvert with the outlet pipe unless pipes are a similar size.
- e. No submerged outlet connections.
- 6. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service

- ii. Type of development and the amount of fire flow required (as per FUS, 1999).
- iii. Average daily demand: ____ l/s.
- iv. Maximum daily demand: ____l/s.
- v. Maximum hourly daily demand: ____ l/s.
- 7. Provide a geotechnical report for the proposed development.
- 8. MOECC ECA Requirements

An MOECC Environmental Compliance Approval might be required for the proposed development. Please contact Ontario Ministry of the Environment and Climate Change, Ottawa District Office to arrange a pre-submission consultation:

For I/C/I applications: Emily Diamond (613) 521-3450, ext. 238 Emily.Diamond@ontario.ca

- 9. Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04.
- 10. Location of Fire Hydrant:

If the proposed buildings will be sprinkled, an unobstructed path of 45 meters between the hydrant and siamese connection as required by the Ontario Building Code.

11. Noise Study Requirements:

Since the proposed site is within 100m from an arterial road, a noise study will be required.

12. Exterior Site Lighting:

If the exterior Site Lighting is used, provide a certification and plan by a qualified engineer confirming the design complies with the following criteria needs to be provided:

- i. It must be designed using only fixtures that meet the criteria for Full Cut-Off (Sharp cut-off) Classification, as recognized by the Illuminating Engineering Society of North America (IESNA or IES), and;
- ii. It must result in minimal light spillage onto adjacent properties. As a guideline,0.5 foot-candle is normally the maximum allowable spillage.
- iii. The location of the fixtures, fixture types as in make, model and part number and the mounting heights must be shown on one of the approved plans.

Should you have any questions or require additional information, please contact me directly at (613) 580-2424, x 27995 or by email at natasha.baird@ottawa.ca.

Jim Moffatt

From: Sent: To: Subject: Samantha Labadie Monday, April 15, 2019 9:45 AM Jim Moffatt FW: 4836 Bank Street - Ditch

From: Geoff Owens [mailto:GOwens@nation.on.ca] Sent: Monday, April 15, 2019 8:28 AM To: Samantha Labadie <Samantha.Labadie@ibigroup.com> Subject: RE: 4836 Bank Street - Ditch

Good morning Samantha,

It does not appear to be something SNC's Regulations would consider requires a permit. However, it should be understood that drainage is a big issue in the area and current drainage patterns/flows should be maintained and no changes that impact any surrounding properties including the City of Ottawa should be made as this may constitute an issue under common law drainage.

Regards, Geoff

From: Samantha Labadie <Samantha.Labadie@ibigroup.com> Sent: April 2, 2019 10:12 AM To: Geoff Owens <GOwens@nation.on.ca> Subject: 4836 Bank Street - Ditch

Hi Geoff,

The Home Hardware property at 4836 Bank Street is proposed to be redeveloped and there is an existing ditch that would need to be filled in (sketch attached).

The existing ditch starts on the property and drains to a roadside ditch along Bank Street.

Would you be able to let us know if we need a permit to fill this ditch in?

Thank you,

Samantha Labadie

IBI GROUP Suite 400, 333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64062 fax +1 613 225 9868

1

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message. NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

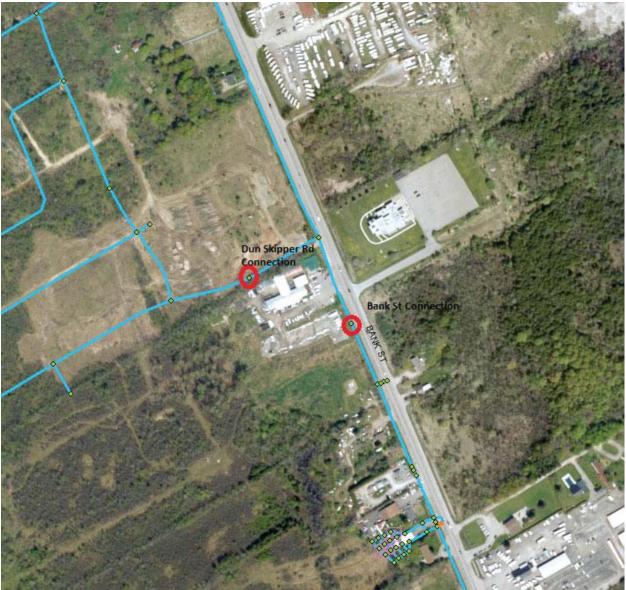
Geoff Owens | Regulations Officer

38 Victoria Street, P. O. Box 29, Finch, ON K0C 1K0
Tel: 613-984-2948 or 1-877-984-2948 ext. 613) 984-2948 x.240 Fax:
613-984- 2872
www.nation.on.ca

Book a Meeting Room Réservez une salle de réunion

APPENDIX B

- Boundary Conditions from the City of Ottawa
- Watermain Demand Calculation Sheets
- FUS Calculation
- Water model schematic and results


Boundary Conditions for 4836 Bank St

Information Provided:

Date provided: December 2019

	Demand				
Scenario	L/min	L/s			
Average Daily Demand	84.6	1.41			
Maximum Daily Demand	127.2	2.12			
Peak Hour	229.8	3.83			
Fire Flow Demand #1	11000	183.3			
Fire Flow Demand #2	13000	216.67			

Location:

Results: 2019 Existing Conditions

Connection 1 - Dun Skipper Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	155.6	79.7
Peak Hour	145.9	65.9
Max Day plus Fire (11,000 l/min)	146.0	66.0
Max Day plus Fire (13,000 L/min)	143.1	61.9

¹ Ground Elevation = 99.53m

Connection 2 - Bank St.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	155.6	80.2
Peak Hour	145.9	66.4
Max Day plus Fire (11,000 l/min)	144.7	66.5
Max Day plus Fire (13,000 L/min)	143.1	62.4

¹ Ground Elevation = 99.19m

Results: SUC Zone Reconfiguration

Connection 1 - Dun Skipper Dr.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	146.9	67.3
Peak Hour	145.1	64.8
Max Day plus Fire (11,000 l/min)	139.6	56.9
Max Day plus Fire (13,000 L/min)	137.8	54.5

¹ Ground Elevation = 99.53m

Connection 2 - Bank St.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	146.8	67.7
Peak Hour	145.1	65.3
Max Day plus Fire (11,000 l/min)	139.6	57.4
Max Day plus Fire (13,000 L/min)	137.9	55.0

¹ Ground Elevation = 99.19m

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:

- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing values to be installed immediately downstream of the isolation value in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account. IBI

IBI GROUP

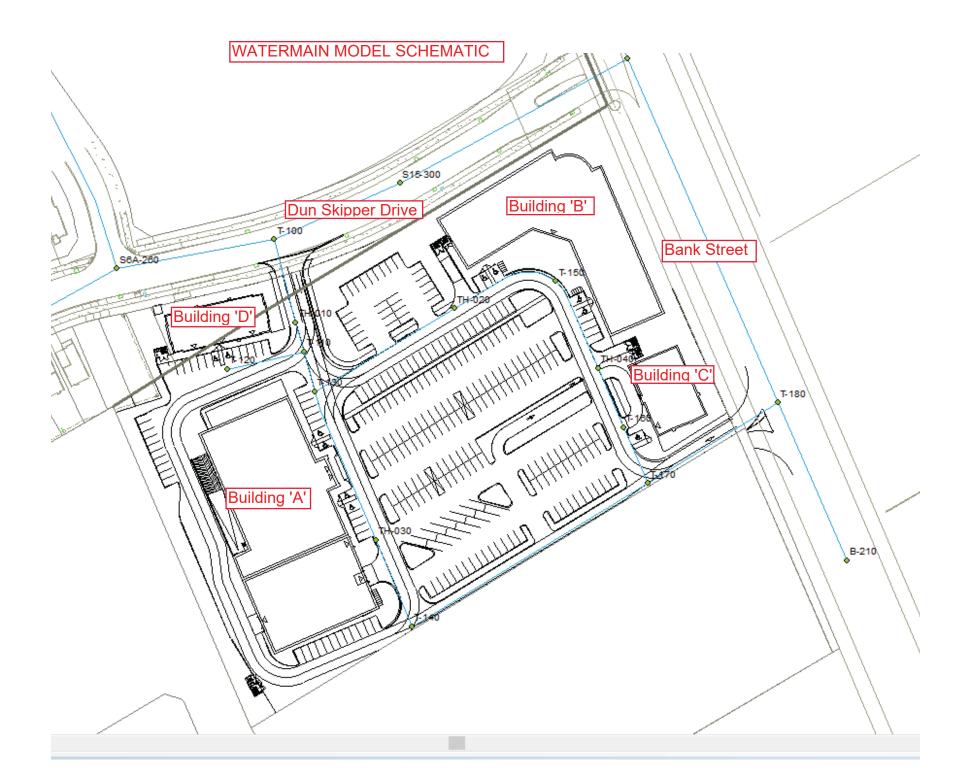
333 PRESTON STREET OTTAWA, ON K1S 5N4 WATERMAIN DEMAND CALCULATION SHEET

	FILE:	119351.5.7.3
4836 Bank Street	DATE PRINTED:	16-Apr-19
Leitrim Development Area - City of Ottawa	DESIGN:	LME
Leitrim Home Hardware	PAGE :	1 OF 1
	Leitrim Development Area - City of Ottawa	4836 Bank Street DATE PRINTED: Leitrim Development Area - City of Ottawa DESIGN:

		RESID	ENTIAL		NON	-RESIDEI	NTIAL		VERAGE D			XIMUM DA		MAX	KIMUM HOL	JRLY	FIRE
NODE		UNITS		HOTEL	INDTRL	INST.	RETAIL	1	DEMAND	(l/s)	D	EMAND (I	/s)		`		DEMAND
	SF	APT	ST	BEDS	(ha.)	(ha.)	(m ²)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
T-120																	
(Building A and D)							3,490	0.00	0.10	0.10	0.00	0.15	0.15	0.00	0.27	0.27	
T-150																	
(Building B)				500				1.30	0.00	1.30	1.95	0.00	1.95	3.52	0.00	3.52	
T-160																	
(Building C)							502	0.00	0.01	0.01	0.00	0.02	0.02	0.00	0.04	0.04	
Fire Nodes																	
Fire Nodes																	
TH-110, TH-030																	11,000
TH-020, TH-040																	13,000

		ASSUMPTIONS			
RESIDENTIAL DENSITIES		AVG. DAILY DEMAND		MAX. HOURLY DEMAND	
- Single Family (SF)	<u>3.4</u> p / p / u	- Hotel (Table 4.2)	225 I / cap / day	- Hotel (Table 4.2)	608 I / cap / day
		- Retail (Shopping Centre)	2,500 I / 1000m ² / day	- Retail (Shopping Centre)	6,750 I / 1000m ² / day
- Hotel Beds average	<u>1.8</u> p/p/u				
- Stacked Townhouse (ST)	<u>2.3</u> p / p / u	MAX. DAILY DEMAND		FIRE FLOW	
		- Hotel (Table 4.2)	338 I / cap / day	- Hotel	13,000 I / min
		- Retail (Shopping Centre)	3,750 I / 1000m² / day	- Retail	11,000 I / min

Fire Flow Requirement from Fire Underwriters Survey


Building 'A' & Drive Thru- 1 Sto	rey Retail	I
Building Floor Area	2,997 m	1 ²
Fire Flow		
F = 220C√A		
C 0.8 A 2,997 m ² F 9,635 l/min Use 10,000 l/min	C =	1.5 wood frame1.0 ordinary0.8 non-combustile0.6 fire-resistive
Occupancy AdjustmentUse0%Adjustment0 l/rFire flow10,000 l/r		 -25% non-combustile -15% limited combustile 0% combustile +15% free burning +25% rapid burning
<u>Sprinkler Adjustment</u> Use -30%		-30% system conforming to NFPA 13 -50% complete automatic system
Adjustment -3000 l/r	nin	
Exposure Adjustment		Separation Charge
Building FaceSeparationClnorth23east> 45south20west20	harge 10% 0% 15% 15%	0 to 3m +25% 3.1 to 10m +20% 10.1 to 20m +15% 20.1 to 30m +10% 30.1 to 45m +5%
Total	40%	
Adjustment	4,000 l/n	min
Required Fire Flow		
	<u>1,000</u> l/n 11,000 l/n 11,000 l/r 183.3 l/s	min min

Fire Flow Requirement from Fire Underwriters Survey

Building 'B' - 5 Storey Hotel Building

Building Floor Area (2 largest adjoining floors plus 50% of floors above up to eight)

	Floor 1 & 2 50% Floors 3 to 5 Total	4,318 m ² <u>3,238</u> m ² 7,556 m ²	, ²	
Fire Flow	<u>/</u>			
F = 2200	C√A			
C A	0.8 7,556 m ²	C =	1.5 wood frame 1.0 ordinary 0.8 non-combustile	
F Use	15,299 l/min 15,000 l/min		0.6 fire-resistive	
<u>Occupan</u> Use	icy Adjustment 0%		-25% non-combustile -15% limited combustile 0% combustile	
Adjustme Fire flow		I/min I/min	+15% free burning +25% rapid burning	
<u>Sprinkler</u>	Adjustment		-30% system conforming to NFPA 1 -50% complete automatic system	3
Use	-30%			
Adjustme	ent -4500	l/min		
Exposure	e Adjustment		Separation Charge 0 to 3m +25%	,
Building	Face Separation	Charge	3.1 to 10m +20% 10.1 to 20m +15%	, D
north east south west	> 45 > 45 12 > 45	0% 0% 15% 0%	20.1 to 30m +10% 30.1 to 45m +5%	
Total		15%		
Adjustme	ent	2,250 l/n	min	
<u>Requirec</u>	I Fire Flow			
Total adj Fire flow Use	ustments	(2,250) l/n 12,750 l/n 13,000 l/n 216.7 l/s	min min	

Basic Day (Max HGL) - Junction Report

	 Stion Ropon					
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	B-200	0.68	99.25	155.60	552.18	4.69
2	S15-300	2.34	100.00	155.60	544.84	3.78
3	T-100	0.00	101.50	155.60	530.14	1.00
4	T-110	0.00	102.10	155.60	524.26	3.00
5	T-120	0.10	102.25	155.60	522.79	4.43
6	T-130	0.00	102.50	155.60	520.34	6.21
7	T-140	0.00	102.50	155.60	520.34	6.13
8	T-150	1.30	100.60	155.60	538.95	6.40
9	T-160	0.01	101.00	155.60	535.04	3.00
10	T-170	0.00	100.80	155.60	537.00	2.00
11	T-180	0.00	101.10	155.60	534.06	1.00
12	TH-010	0.00	101.90	155.60	526.22	2.00
13	TH-020	0.00	100.70	155.60	537.97	7.21
14	TH-030	0.00	100.90	155.60	536.02	7.54
15	TH-040	0.00	100.70	155.60	537.97	4.00

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	B-200	1.02	99.25	145.10	449.29	0.00
2	S15-300	6.31	100.00	145.10	441.94	0.00
3	T-100	0.00	101.50	145.10	427.24	0.00
4	T-110	0.00	102.10	145.10	421.36	0.00
5	T-120	0.27	102.25	145.10	419.89	0.00
6	T-130	0.00	102.50	145.10	417.44	0.00
7	T-140	0.00	102.50	145.10	417.44	0.00
8	T-150	3.52	100.60	145.10	436.03	0.00
9	T-160	0.04	101.00	145.10	432.13	0.00
10	T-170	0.00	100.80	145.10	434.10	0.00
11	T-180	0.00	101.10	145.10	431.16	0.00
12	TH-010	0.00	101.90	145.10	423.32	0.00
13	TH-020	0.00	100.70	145.10	435.06	0.00
14	TH-030	0.00	100.90	145.10	433.12	0.00
15	TH-040	0.00	100.70	145.10	435.06	0.00

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	2107	S15-300	B-200	84.75	393.00	120.00	-1.70	0.01	0.00	0.00	Open	0
2	791	B-200	T-180	127.53	393.00	120.00	-2.72	0.02	0.00	0.00	Open	0
3	P13	T-100	TH-010	25.45	204.00	110.00	1.24	0.04	0.00	0.02	Open	0
4	P15	TH-010	T-110	10.56	204.00	110.00	1.24	0.04	0.00	0.02	Open	0
5	P17	T-110	T-120	27.22	155.00	100.00	0.27	0.01	0.00	0.00	Open	0
6	P19	T-130	T-110	14.44	204.00	110.00	-0.97	0.03	0.00	0.01	Open	0
7	P21	T-130	TH-020	56.42	204.00	110.00	1.54	0.05	0.00	0.03	Open	0
8	P23	T-130	TH-030	55.80	204.00	110.00	-0.57	0.02	0.00	0.00	Open	0
9	P25	TH-030	T-140	32.64	204.00	110.00	-0.57	0.02	0.00	0.00	Open	0
10	P27	TH-020	T-150	39.62	204.00	110.00	1.54	0.05	0.00	0.03	Open	0
11	P29	TH-040	T-150	33.83	204.00	110.00	1.98	0.06	0.00	0.04	Open	0
12	P31	TH-040	T-160	22.30	204.00	110.00	-1.98	0.06	0.00	0.04	Open	0
13	P33	T-160	T-170	21.12	204.00	110.00	-2.02	0.06	0.00	0.04	Open	0
14	P35	T-140	T-170	95.88	204.00	110.00	-0.57	0.02	0.00	0.00	Open	0
15	P39	T-170	T-180	1.00	204.00	110.00	-2.59	0.08	0.00	0.07	Open	0
16	P41	T-100	S15-300	54.54	393.00	120.00	4.61	0.04	0.00	0.01	Open	0
17	P43	C2	T-180	1.00	204.00	110.00	5.32	0.16	0.00	0.25	Open	0
18	P45	C1	T-100	1.00	204.00	110.00	5.84	0.18	0.00	0.30	Open	0

Max Day + Fire (11,000 l/min) - Fireflow Design Report

	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	TH-010	183.33	686.03	TH-010	139.96	116.18	686.04	139.96	139.96
2	TH-030	183.33	434.04	TH-030	139.96	115.18	434.04	139.96	139.96

Max Day + Fire (13,000 l/min) - Fireflow Design Report

	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	S15-300	220.18	2,284.11	S15-300	139.98	114.28	2,284.21	139.96	139.96
2	TH-020	216.67	425.54	TH-020	139.96	114.98	425.54	139.96	139.96
3	TH-040	216.67	486.43	TH-040	139.96	114.98	486.43	139.96	139.96

APPENDIX C

- Pathways Phase 1 Sanitary Sewer Design Sheet
- Drawing 33956-501A Pathways Phase 1 External Sanitary Drainage Area Plan
- Sanitary Sewer Design Sheet
- Drawing 119351-400 Sanitary Drainage Area Plan

J\33956-RemerLands\5 7 Calculations\5 7.1 Sewers & Grading\PHASE 1\CCS_sanitary_2017-08-02

	City Submission No. 3 Updated Street Name for MOE Submission Date: 2017-05-10	City Submission No. 3 Updated Street Name for MOE Submi	City Submission No. 3 Updated Street Name for MOE Sut	City Submiss Updated Street Name to	Ci Updated Stre			20		File Reference:		501, 501A		Dwg. Reference:				0.20 USINA 2005)) ands	= 1+(14/(4- tion in thou	Harmonic anovance, Hesidential Peaking Factor Harmon Formula = 1+(14((4+P^0.5))) where P = population in thousands	t. Residential F Hatta Hatta W	Chart	50,000 L/Ha/day 50,000 L/Ha/day 35,000 L/Ha/day 17000 L/Ha/day	INST 50, COM 50, IND 35, 17	APT 1.9 p/p/u APT 1.9 p/p/u Other 60 p/p/Ha
	No. 1. 2. 3. City Submission No. 1 City Submission No. 2 City Submission No. 2 City Submission No. 2							3.	2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	» ?? <mark> N</mark> .			WL NL	Designed: Checked:		0 L/day	30	0.013 350 L/day 0.28 L/s/Ha	-	I flicient (n) = capita): wance:	lotes: 1. Mannings co 2. Demand (pe 3. Infiltration all	actor	ICI Areas		Paramet lesidentii 3.2
	2.55 7.08 0.00 8.36 0.28 75.56 21.16	7.08 0.00 8.36 0.28 75.56	7.08 0.00 8.36 0.28 75.56	7.08 0.00 8.36 0.28 75.56	7.08 0.00 8.36 0.28	7.08 0.00 8.36	7.08 0.00	7.08			2.55		49.05	3.38	3587.6	12.0			5		0.28	EX. MH742A	EX. MH647A		Kelly Farm Drive
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2.55 7.08 0.00 8.36 0.60 27.03 7.57 2.55 7.08 0.00 8.36 0.00 27.03 7.57	7.08 0.00 8.36 0.60 27.03 7.08 0.00 8.36 0.00 27.03	7.08 0.00 8.36 0.60 27.03 7.08 0.00 8.36 0.00 27.03	7.08 0.00 8.36 0.60 27.03 7.08 0.00 8.36 0.00 27.03	7.08 0.00 8.36 0.60 7.08 0.00 8.36 0.00	7.08 0.00 8.36 7.08 0.00 8.36	7.08 0.00	7.08			2.55 2.55		18.08 18.08	3.75 3.75	1190.0 1190.0	36.0 0.0			15		0.60	MH6105B EX. MH647A	MH6104A MH6105B	6104A	Miikana Road Miikana Road
	2.55 0.00 0.00 2.21 2.55 2.55 0.71	0.00 0.00 2.21 2.55 2.55	0.00 0.00 2.21 2.55 2.55	0.00 0.00 2.21 2.55 2.55	0.00 0.00 2.21 2.55	0.00 0.00 2.21	0.00	0.00			2.55	+	┿┼	4.00	0.0	0.0	1		+			MH6104A	BLK6104AS	INST	Block 450
	0.00 7.08 0.00 6.15 0.23 23.22 6.50 0.00 7.08 0.00 6.15 0.66 23.88 6.69	7.08 0.00 6.15 0.23 23.22 7.08 0.00 6.15 0.66 23.88	7.08 0.00 6.15 0.23 23.22 7.08 0.00 6.15 0.66 23.88	7.08 0.00 6.15 0.23 23.22 7.08 0.00 6.15 0.66 23.88	7.08 0.00 6.15 0.23 7.08 0.00 6.15 0.66	7.08 0.00 6.15 7.08 0.00 6.15	7.08 0.00 7.08 0.00	7.08			88	00	16.96 17.57	3.77 3.76	1110.8 1154.0	14.4 43.2			18		0.23	MH6103A MH6104A	MH6102A MH6103A	6102A 6103A	Miikana Road Miikana Road
	0.00 0.00 0.00 0.04 0.94 0.26	0.00 0.00 0.94 0.94	0.00 0.00 0.94 0.94	0.00 0.00 0.94 0.94	0.00 0.00 0.94	0.00 0.00 0.00	0.00	0.00			8		1.87	4.00	115.2	115.2					0.94	MH6102A	BLK6102AS	HD2	Block 436
	0.00 7.08 0.00 6.15 0.45 22.05 6.17	7.08 0.00 6.15 0.45 22.05	7.08 0.00 6.15 0.45 22.05	7.08 0.00 6.15 0.45 22.05	7.08 0.00 6.15 0.45	7.08 0.00 6.15	7.08 0.00	7.08			8	0	15.13	3.81	981.2	26.4			=		0.45	MH6102A	MH6101A	6101A	Miikana Road
MARAD FROM MARA MARA <t< td=""><td>0.00 7.08 0.00 6.15 0.61 21.60 6.05</td><td>7.08 0.00 6.15 0.61 21.60</td><td>7.08 0.00 6.15 0.61 21.60</td><td>7.08 0.00 6.15 0.61 21.60</td><td>7.08 0.00 6.15 0.61</td><td>7.08 0.00 6.15</td><td>7.08 0.00</td><td>7.08</td><td></td><td></td><td>00</td><td></td><td>14.75</td><td>3.81</td><td>954.8</td><td>43.2</td><td></td><td></td><td>18</td><td></td><td>0.61</td><td>MH6101A</td><td>MH6115A</td><td>6115A</td><td>Cedar Creek Drive</td></t<>	0.00 7.08 0.00 6.15 0.61 21.60 6.05	7.08 0.00 6.15 0.61 21.60	7.08 0.00 6.15 0.61 21.60	7.08 0.00 6.15 0.61 21.60	7.08 0.00 6.15 0.61	7.08 0.00 6.15	7.08 0.00	7.08			00		14.75	3.81	954.8	43.2			18		0.61	MH6101A	MH6115A	6115A	Cedar Creek Drive
MREAD FROM INF MR	0.00 0.00 0.00 0.00 0.13 1.89 0.53	0.00 0.00 0.13 1.89	0.00 0.00 0.13 1.89	0.00 0.00 0.13 1.89	0.00 0.00 0.13	0.00 0.00	0.00	0.00			8	-	0.74	4.00	45.6	0.0					0.13	MH6115A	MH6154A	6154A	Salamander Way
ABEA ID FROM IN FROM IN IN VINT IVEE (M) INIT IVEE (M) INIT IVEE (M) INIT IVEE (M) INIT I	0.00 0.00 0.00 0.03 1.76 0.49	0.00 0.00 0.03 1.76	0.00 0.00 0.03 1.76	0.00 0.00 0.03 1.76	0.00 0.00 0.00	0.00 0.00	0.00 0.00	0.00			0.00		0.74	4.00	45.6	0.0					0.03	MH6154A	MH6153A	6153A	Salamander Way
NUM FIN TO VUNT VINT VIN	0.00 0.00 0.00 0.83 0.83 0.23	0.00 0.00 0.83 0.83	0.00 0.00 0.83 0.83	0.00 0.00 0.83 0.83	0.00 0.00 0.83	0.00 0.00 0.00	0.00 0.00	0.00			.00		0.00	4.00	0.0	0.0	0.83					MH6153A	BLK6153C	PARK	Block 436
NORTICINAL FROM TO MARA UNIT TIPE MARA IDDILITION REAL DIDILITION REAL REAL </td <td>0.00 0.00 0.00 0.29 0.29 0.08 0.00 0.00 0.00 0.07 0.36 0.10 0.00 0.00 0.00 0.07 0.36 0.10 0.00 0.00 0.00 0.54 0.90 0.25</td> <td>0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.54 0.90</td> <td>0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.54 0.90</td> <td>0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.54 0.90</td> <td>0.00 0.00 0.29 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.54</td> <td>0.00 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>0.00 0.</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.16 0.19 0.74</td> <td>4.00 4.00</td> <td>9.6 12.0 45.6</td> <td>9.6 2.4 33.6</td> <td></td> <td></td> <td>14 1</td> <td>ω</td> <td>0.29 0.07 0.54</td> <td>MH6157A MH6158A MH6153A</td> <td>MH6156A MH6157A MH6158A</td> <td>6156Aa 6157A 6158A</td> <td>Salamander Way Salamander Way Salamander Way</td>	0.00 0.00 0.00 0.29 0.29 0.08 0.00 0.00 0.00 0.07 0.36 0.10 0.00 0.00 0.00 0.07 0.36 0.10 0.00 0.00 0.00 0.54 0.90 0.25	0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.54 0.90	0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.54 0.90	0.00 0.00 0.29 0.29 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.07 0.36 0.00 0.00 0.00 0.54 0.90	0.00 0.00 0.29 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.54	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.	0.00			0.00		0.16 0.19 0.74	4.00 4.00	9.6 12.0 45.6	9.6 2.4 33.6			14 1	ω	0.29 0.07 0.54	MH6157A MH6158A MH6153A	MH6156A MH6157A MH6158A	6156Aa 6157A 6158A	Salamander Way Salamander Way Salamander Way
NAMEA FIOM MH MH WHINK UNIT VIE AREA DOPLLATION REA REA </td <td>0.00 7.08 0.00 6.15 0.55 18.58 5.20 0.00 7.08 0.00 6.15 0.52 19.10 5.35</td> <td>7.08 0.00 6.15 0.55 18.58 7.08 0.00 6.15 0.32 19.10</td> <td>7.08 0.00 6.15 0.55 18.58 7.08 0.00 6.15 0.32 19.10</td> <td>7.08 0.00 6.15 0.55 18.58 7.08 0.00 6.15 0.32 19.10</td> <td>7.08 0.00 6.15 0.55 7.08 0.00 6.15 0.52</td> <td>7.08 0.00 6.15 7.08 0.00 6.15</td> <td>7.08 0.00</td> <td>7.08</td> <td></td> <td></td> <td>0.00</td> <td>_</td> <td>12.88 13.47</td> <td>3.85 3.84</td> <td>825.2 866.0</td> <td>40.8 40.8</td> <td></td> <td></td> <td>17</td> <td></td> <td>0.55</td> <td>MH6116A MH6115A</td> <td>MH6117A MH6116A</td> <td>6117A 6116A</td> <td>Cedar Creek Drive Cedar Creek Drive</td>	0.00 7.08 0.00 6.15 0.55 18.58 5.20 0.00 7.08 0.00 6.15 0.52 19.10 5.35	7.08 0.00 6.15 0.55 18.58 7.08 0.00 6.15 0.32 19.10	7.08 0.00 6.15 0.55 18.58 7.08 0.00 6.15 0.32 19.10	7.08 0.00 6.15 0.55 18.58 7.08 0.00 6.15 0.32 19.10	7.08 0.00 6.15 0.55 7.08 0.00 6.15 0.52	7.08 0.00 6.15 7.08 0.00 6.15	7.08 0.00	7.08			0.00	_	12.88 13.47	3.85 3.84	825.2 866.0	40.8 40.8			17		0.55	MH6116A MH6115A	MH6117A MH6116A	6117A 6116A	Cedar Creek Drive Cedar Creek Drive
NAREA FROM TO WINT SP SD TH APE WINT FVES AREA DOPULATION FRAM CON FRAM Wolnik SP TH AP Wolnik ND CUM FRAM Wolnik ND CUM FACTOR FLATION FEAR BLACTOR FLATION FEAR MUN CUM FACTOR FLATION	0.00 0.00 0.00 1.03 1.03 0.29	0.00 0.00 1.03 1.03	0.00 0.00 1.03 1.03	0.00 0.00 1.03 1.03	0.00 0.00 1.03	0.00 0.00 0.00	0.00	0.00			0.00		2.10	4.00	129.6	129.6					1.03	MH6117A	BLK6117AW	HD1	Block 443
AREA IVI TO WLINIS AREA DOPLIATION PEAK POPLIATION PEAK	0.00 7.08 0.00 6.15 0.05 16.93 4.74 0.00 7.08 0.00 6.15 0.07 17.00 4.76	7.08 0.00 6.15 0.05 16.93 7.08 0.00 6.15 0.07 17.00	7.08 0.00 6.15 0.05 16.93 7.08 0.00 6.15 0.07 17.00	7.08 0.00 6.15 0.05 16.93 7.08 0.00 6.15 0.07 17.00	7.08 0.00 6.15 0.05 7.08 0.00 6.15 0.07	7.08 0.00 6.15 7.08 0.00 6.15	7.08 0.00 7.08 0.00	7.08			0.00		10.37 10.37	3.91 3.91	654.8 654.8	0.0					0.05	MH6118A MH6117A	MH6119A MH6118A	6119A 6118A	Cedar Creek Drive Cedar Creek Drive
AREA TO MH MH MH KEA UNIT TYES AREA POPULATION PEAK POPULATION PEAK POPULATION PEAK POPULATION PEAK POPULATION PEAK PEAK PEAK PEAK PEAK PEAK PEAK POPULATION PEAK	0.00 3.01 3.01 0.00 2.61 3.01 3.01 0.84	3.01 3.01 0.00 2.61 3.01 3.01	3.01 3.01 0.00 2.61 3.01 3.01	3.01 3.01 0.00 2.61 3.01 3.01	3.01 3.01 0.00 2.51 3.01	3.01 3.01 0.00 2.61	3.01 3.01 0.00	3.01 3.01	3.01	3.01	0.00		0.00	4.00	0.0	0.0						MH6119A	BLK6119AE	COM	Block 429
AREA ID INH TO (He) TO (He) TO (He) IND (He) IND (He) IND (He) OPULATION (He) PEAK (He) OPULATION (He) PEAK (He) OPULATION (He) PEAK (He) OPULATION (He) PEAK (He) OPULATION (He) PEAK (He) OPULATION PEAK (He) PEAK (He) OPULATION PEAK (He) PEAK (He) POULATION PEAK (He) PEAK (He) PEAK (He) PEAK (He) POULATION PEAK (He) POULATION PEAK (He)	0.00 0.00 0.00 0.00 0.25 0.25 0.07 0.00 0.00 0.00 0.00 0.25 0.25 0.07 0.00 0.00 0.00 0.00 0.02 0.13 0.13 0.00 0.00 0.00 0.00 0.62 1.09 0.31 0.00 0.00 0.00 0.62 1.53 0.43 0.43 0.00 0.00 0.00 0.00 0.44 1.53 0.43 0.00 0.00 0.00 0.40 1.93 0.54 1.54	0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.22 0.47 0.00 0.00 0.00 0.62 1.63 0.00 0.00 0.00 0.44 1.53 0.00 0.00 0.00 0.40 1.93	0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.22 0.47 0.00 0.00 0.00 0.62 1.63 0.00 0.00 0.00 0.44 1.53 0.00 0.00 0.00 0.40 1.93	0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.22 0.47 0.00 0.00 0.00 0.62 1.63 0.00 0.00 0.00 0.44 1.53 0.00 0.00 0.00 0.40 1.93	0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.44						0.00 0.00		0.16 0.31 1.04 1.50 1.93	4.00 4.00	9.6 19.2 64.0 92.8 119.2	9.6 9.6 44.8 28.8 26.4			11 12	14 ω ω	0.25 0.22 0.62 0.44 0.40	MH6161A MH6162A MH6163A MH6163A MH6119A	MH6132A MH6161A MH6162A MH6163A MH6164A	6132Ab 6161A 6162A 6163A 6164A	Pingwi Place Pingwi Place Pingwi Place Pingwi Place Pingwi Place
AREA ID FROM MH TO MH W Units (Ha) SF SD TH APT Working (Ha) POPULATION (Ha) PEAR PEAT 6132Aa MH6132A MH6133A 0.64 10 10 APT MH APT W/ Units SP TH APT Working IND CUM PEATOR FLOW EXT2 SE MH6133A 0.64 10 DRAFT 2016 UPDA FED SERVICEABILITY REPORT 2.88 172.8 1.00 0.52 2.80	0.00 4.07 0.00 3.53 0.04 11.81 3.31 0.00 4.07 0.00 3.53 0.03 11.84 3.32 0.00 4.07 0.00 3.53 0.03 11.84 3.32 0.00 4.07 0.00 3.53 0.10 11.94 3.34	4.07 0.00 3.53 0.04 11.81 4.07 0.00 3.53 0.03 11.84 4.07 0.00 3.53 0.03 11.84 4.07 0.00 3.53 0.10 11.94	4.07 0.00 3.53 0.04 11.81 4.07 0.00 3.53 0.03 11.84 4.07 0.00 3.53 0.03 11.84 4.07 0.00 3.53 0.10 11.94	4.07 0.00 3.53 0.04 11.81 4.07 0.00 3.53 0.03 11.84 4.07 0.00 3.53 0.03 11.84 4.07 0.00 3.53 0.10 11.94	4.07 0.00 3.53 0.04 4.07 0.00 3.53 0.03 4.07 0.00 3.53 0.03 4.07 0.00 3.53 0.10	4.07 0.00 3.53 4.07 0.00 3.53 4.07 0.00 3.53 4.07 0.00 3.53	4.07 0.00 4.07 0.00 4.07 0.00	4.07			0.00		8.59 8.59	3.96 3.96	535.6 535.6 535.6	0.0				+	0.04	MH6121A MH6120A MH6119A	MH6136A MH6121A MH6120A	6136A 6121A 6120A	Cedar Creek Drive Cedar Creek Drive Cedar Creek Drive
AREA ID FROM MH TO MH Wu nits (Ha) SF SD TH APT Wo nits (Ha) AREA (Ha) DOPULATION MV onits PEAK PEAK <td>0.00 4.07 4.07 0.00 3.53 4.07 4.07 1.14 0.00 4.07 0.00 3.53 0.08 4.15 1.16 0.00 4.07 0.00 3.53 0.08 4.15 1.16 0.00 4.07 0.00 3.53 0.10 4.25 1.19</td> <td>4.07 4.07 0.00 3.53 4.07 4.07 4.07 0.00 3.53 0.08 4.15 4.07 0.00 3.53 0.10 4.25</td> <td>4.07 4.07 0.00 3.53 4.07 4.07 4.07 0.00 3.53 0.08 4.15 4.07 0.00 3.53 0.10 4.25</td> <td>4.07 4.07 0.00 3.53 4.07 4.07 4.07 0.00 3.53 0.08 4.15 4.07 0.00 3.53 0.10 4.25</td> <td>4.07 4.07 0.00 3.53 4.07 4.07 0.00 3.53 0.08 4.07 0.00 3.53 0.10</td> <td>4.07 4.07 0.00 3.53 4.07 4.07 0.00 3.53 4.07 0.00 3.53</td> <td>4.07 4.07 0.00 4.07 0.00 4.07 0.00 4.07</td> <td>4.07 4.07 4.07 4.07</td> <td>4.07</td> <td>4.07</td> <td>0.00 0.00</td> <td></td> <td>0.00</td> <td>4.00 4.00</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td>0.08</td> <td>MH6138A MH6137A MH6136A</td> <td>MH6138A MH6138A MH6137A</td> <td>EX14 6138A 6137A</td> <td>Dun Skipper Road Dun Skipper Road</td>	0.00 4.07 4.07 0.00 3.53 4.07 4.07 1.14 0.00 4.07 0.00 3.53 0.08 4.15 1.16 0.00 4.07 0.00 3.53 0.08 4.15 1.16 0.00 4.07 0.00 3.53 0.10 4.25 1.19	4.07 4.07 0.00 3.53 4.07 4.07 4.07 0.00 3.53 0.08 4.15 4.07 0.00 3.53 0.10 4.25	4.07 4.07 0.00 3.53 4.07 4.07 4.07 0.00 3.53 0.08 4.15 4.07 0.00 3.53 0.10 4.25	4.07 4.07 0.00 3.53 4.07 4.07 4.07 0.00 3.53 0.08 4.15 4.07 0.00 3.53 0.10 4.25	4.07 4.07 0.00 3.53 4.07 4.07 0.00 3.53 0.08 4.07 0.00 3.53 0.10	4.07 4.07 0.00 3.53 4.07 4.07 0.00 3.53 4.07 0.00 3.53	4.07 4.07 0.00 4.07 0.00 4.07 0.00 4.07	4.07 4.07 4.07 4.07	4.07	4.07	0.00 0.00		0.00	4.00 4.00	0.0	0.0					0.08	MH6138A MH6137A MH6136A	MH6138A MH6138A MH6137A	EX14 6138A 6137A	Dun Skipper Road Dun Skipper Road
AREA ID FROM MH TO MH VIIIT YPES AREA (Ha) UNIT YPES AREA (Ha) DOPLIATION (Ha) PEAK PEAK POPLIATION FROM (Ha) PEAK PEAK<							+										/ REPORT	RVICEABILITY	I IPDATED SE	DRAFT 2016 U					
AREA UNIT TYPES AREA POPULATION PEAK PEAK <td>0.00 0.00 0.00 0.00 2.50 2.50 0.70 0.00 0.00 0.00 0.00 2.50 0.70 0.70</td> <td>0.00 0.00 2.50 2.50 0.00 0.00 0.00 2.50 2.50</td> <td>0.00 0.00 2.50 2.50 0.00 0.00 0.00 2.50 2.50</td> <td>0.00 0.00 2.50 2.50 0.00 0.00 0.00 2.50 2.50</td> <td>0.00 0.00 2.50 0.00 0.00 0.00 2.50</td> <td>0.00 0.00 0.00</td> <td>0.00 0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td>4.06</td> <td>4.00</td> <td>250.8 250.8</td> <td>250.8 0.0</td> <td>1 REPORT</td> <td>RVICEABILITY</td> <td>JPDATED SE</td> <td>DRAFT 2016 U</td> <td></td> <td>MH6146A MH6136A</td> <td>BLK6145A MH6146A</td> <td>EXT3</td> <td>Easement</td>	0.00 0.00 0.00 0.00 2.50 2.50 0.70 0.00 0.00 0.00 0.00 2.50 0.70 0.70	0.00 0.00 2.50 2.50 0.00 0.00 0.00 2.50 2.50	0.00 0.00 2.50 2.50 0.00 0.00 0.00 2.50 2.50	0.00 0.00 2.50 2.50 0.00 0.00 0.00 2.50 2.50	0.00 0.00 2.50 0.00 0.00 0.00 2.50	0.00 0.00 0.00	0.00 0.00	0.00			0.00		4.06	4.00	250.8 250.8	250.8 0.0	1 REPORT	RVICEABILITY	JPDATED SE	DRAFT 2016 U		MH6146A MH6136A	BLK6145A MH6146A	EXT3	Easement
AREA ID FROM MH TO MH AREA WI Units UNIT TYPES AREA Wo Units OPULATION Wo Units PEAK FACTOR (Ls) 6132Aa MH6132A MH6133A 0.64 10 TH APT Wo Units (Ha) 32.0 32.0 4.00 0.52 EXT2 EXT2 BLK6133AS 0.07 DRAFT 2016 UPDATED SERVICEABILITY REPORT 2.88 172.8 172.8 4.00 2.80 6133Ab BLK6133AS MH6133A 0.07 DRAFT 2016 UPDATED SERVICEABILITY REPORT 2.88 172.8 4.00 2.80	0.00 0.00 0.00 0.00 0.58 4.17 1.17 0.00 0.00 0.00 0.00 0.66 4.83 1.35 0.00 0.00 0.00 0.00 0.19 5.02 1.41	0.00 0.00 0.00 0.58 4.17 0.00 0.00 0.00 0.66 4.83 0.00 0.00 0.00 0.19 5.02	0.00 0.00 0.00 0.58 4.17 0.00 0.00 0.00 0.66 4.83 0.00 0.00 0.00 0.19 5.02	0.00 0.00 0.00 0.58 4.17 0.00 0.00 0.00 0.66 4.83 0.00 0.00 0.00 0.19 5.02	0.00 0.00 0.00 0.58 0.00 0.00 0.58 0.00 0.00	0.00 00.0 00.0 00.0 00.0 00.0 00.0 00.	0.00 0.00 0.00	0.00			0.00		3.84 4.46 4.61	4.00	236.8 275.2 284.8	32.0 9.6				312	0.58 0.66 0.19	MH6134A MH6135A MH6136A	MH6133A MH6134A MH6135A	6133Aa 6134A 6135A	Dun Skipper Road Dun Skipper Road Dun Skipper Road
AREA ID FROM TO W/ Units SF SD TH APT WO Units IND CUM FACTOR FLOW (L/s) 6132Aa MH6132A MH6133A 0.64 10 10 32.0 32.0 32.0 4.00 0.52	0.00 0.00 0.00 0.00 2.86 2.88 0.81 0.00 0.00 0.00 0.00 2.95 0.83 1	0.00 0.00 2.86 2.86 0.00 0.00 0.00 0.07 2.95	0.00 0.00 2.86 2.86 0.00 0.00 0.00 0.07 2.95	0.00 0.00 2.86 2.86 0.00 0.00 0.00 0.07 2.95	0.00 0.00 2.86 0.00 0.00 0.00 0.07	0.00 0.00 0.00	0.00 0.00	0.00			0.00		2.80	4.00	172.8 172.8	172.8 0.0	7 REPORT 2.88					BLK6133AS MH6133A	BLK6133AS	EXT2 6133Ab	Street No. 7 Street No. 7
AREA ID FROM TO W Units SF SD TH APT (Ha) IND CUM FACTOR FLOW (Us)	0.00 0.00 0.00 0.64 0.64 0.18	0.00 0.00 0.64 0.64	0.00 0.00 0.64 0.64	0.00 0.00 0.64 0.64	0.00 0.00 0.64	0.00 0.00	0.00	0.00			0.00		0.52	4.00	32.0	32.0					0.64	MH6133A	MH6132A	6132Aa	Dun Skipper Road
	AREA (Ha) PEAK AREA (Ha) FLOW FIXED FLOW (L/S) NAL COMMERCIAL INDUSTRIAL FLOW IND CUM (L/S) IND CUM	AREA (Ha) PEAK AREA (Ha) FLOW IND CUM IND CUM (L/s) IND CUM (L/s)	AREA (Ha) PEAK AREA (Ha) FLOW IND CUM IND CUM (L/s) IND CUM (L/s)	AREA (Ha) PEAK COMMERCIAL INDUSTRIAL FLOW IND CUM IND CUM (L/s)	AREA (Ha) PEAK COMMERCIAL INDUSTRIAL FLOW IND CUM IND CUM (L/s)	AREA (Ha) PEAK COMMERCIAL INDUSTRIAL FLOW IND CUM IND CUM (L/s)	AREA (Ha) COMMERCIAL INDUSTRIAL IND CUM IND CUM	AREA (Ha) COMMERCIAL IND CUM	AREA (Ha) COMMERCIAL IND CUM	AREA COMME IND	NAL	INSTITUTIONAL		ACTOR			AREA w/o Units (Ha)				AREA w/ Units (Ha)	MH	$\left \right $	AREA ID	STREET

LEGEND Red text High level sanitary sewer

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S SN4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Sheet No: 2 of 2

SANITARY
SEWER
DESIGN
SHEET

34.01 34.01 24,23 24,96 4.76 4.76 5.00 5.81 6.02
 0.23
 56.22
 77.03
 200
 2.70
 1.734
 56.00
 99.60%

 0.44
 24.19
 11.41
 200
 0.56
 0.74
 18.97%

 1.34
 20.24
 74.88
 200
 0.55
 0.624
 18.90
 93.87%

 1.93
 20.24
 74.88
 200
 0.35
 0.624
 18.31
 90.47%

 2.47
 29.63
 86.29
 200
 0.75
 0.914
 27.16
 91.68%
 26.94 1.23 3.63 29.61 30.40 4.67 4.72 TOTAL FLOW (L/s) 78.57 2.13 0.23
 21.26
 45.12
 28.01

 21.28
 45.12
 33.76
 27.45 0,24 0,30 3.46 2.93 1.27 2,39
 15.43
 20.24
 28.03
 200

 15.44
 20.24
 12.97
 200

 15.47
 20.24
 53.29
 200
 0.70 CAPACITY LENGTH (L/s) (m) 31.55 74.63 34,22 12.28 56.22 106.46 37.48 72.14 28.63 72.09 28.63 24.81 20.24 101.84 80.31 59.68 114.40 45.12 8.00 59.68 41.44 59.68 120.00 45.12 75.05 59.68 67.16
 20.24
 20.00
 200

 20.24
 32.25
 200

 20.24
 44.44
 200
 21.64 22.70 21.64 46.46 28,63 10,53 24.19 13.25 24.19 44.00 20.24 59,68 87,15 45,12 20.24 59.68 24,19 43.28 20.00 91.17 20.00 20.00 82.00 20.00 76.18 200 300 200 200
 PROPOSED SEWER DESIGN

 DIA
 SLOPE
 VELOCITY

 (mm)
 (%)
 (rull)

 (m/s)
 (%)
 (n/s)
 300 300 300 200 375 300 200 300 200 200 200 200 200 200 300 200 30 200 0.35 0.31
 0.35
 0.818
 25.68
 43.02%

 0.20
 0.618
 11.11
 24.63%

 0.35
 0.624
 4.81
 23.78%

 0.35
 0.624
 4.81
 23.74%

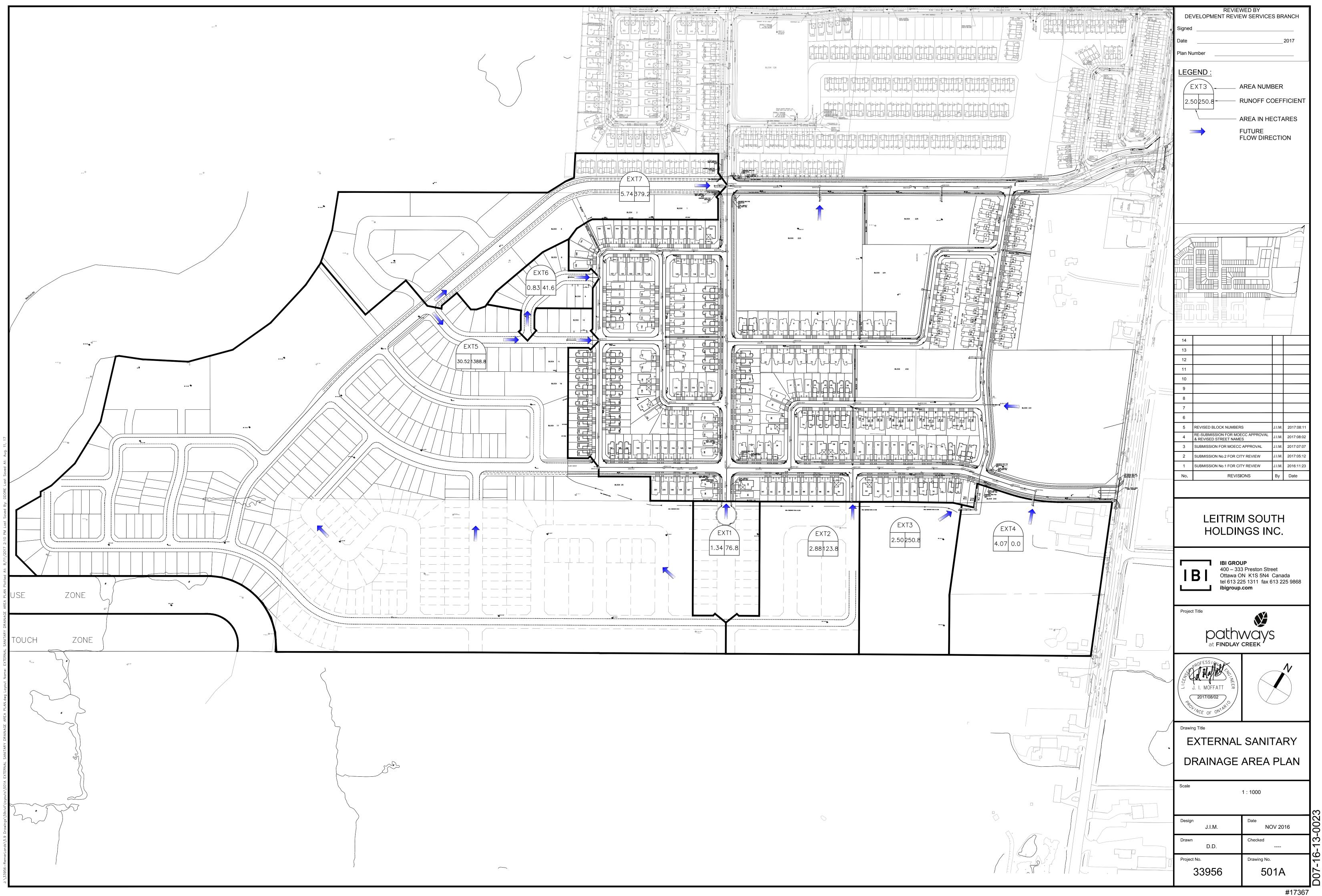
 0.35
 0.624
 4.81
 23.76%

 0.35
 0.624
 4.78
 23.60%
 0.35 0.818 0.35 0.818
 0.85
 0.973
 31.31
 99.25%

 1.00
 1.055
 33.92
 99.14%

 2.70
 1.734
 55.23
 98.24%
 0.35 0.20 0.35 0.35 0.35 0.35 0.35 0.70 0.50 0.20 0.40 0.50 0.20 0.618 23.86 52.88% 0.20 0.618 23.84 52.83% 1.20 0.70 0.70 0.50 1.60 Remer Lands Phase 1 City of ottawa Leitrim South Holdings Inc. (Regional Group) Date 2016-11-23 2017-05-12 2017-07-05 2017-08-03 0.883 0.746 0.618 41.66
 0.624
 15.57
 76.92%

 0.624
 15.55
 76.81%

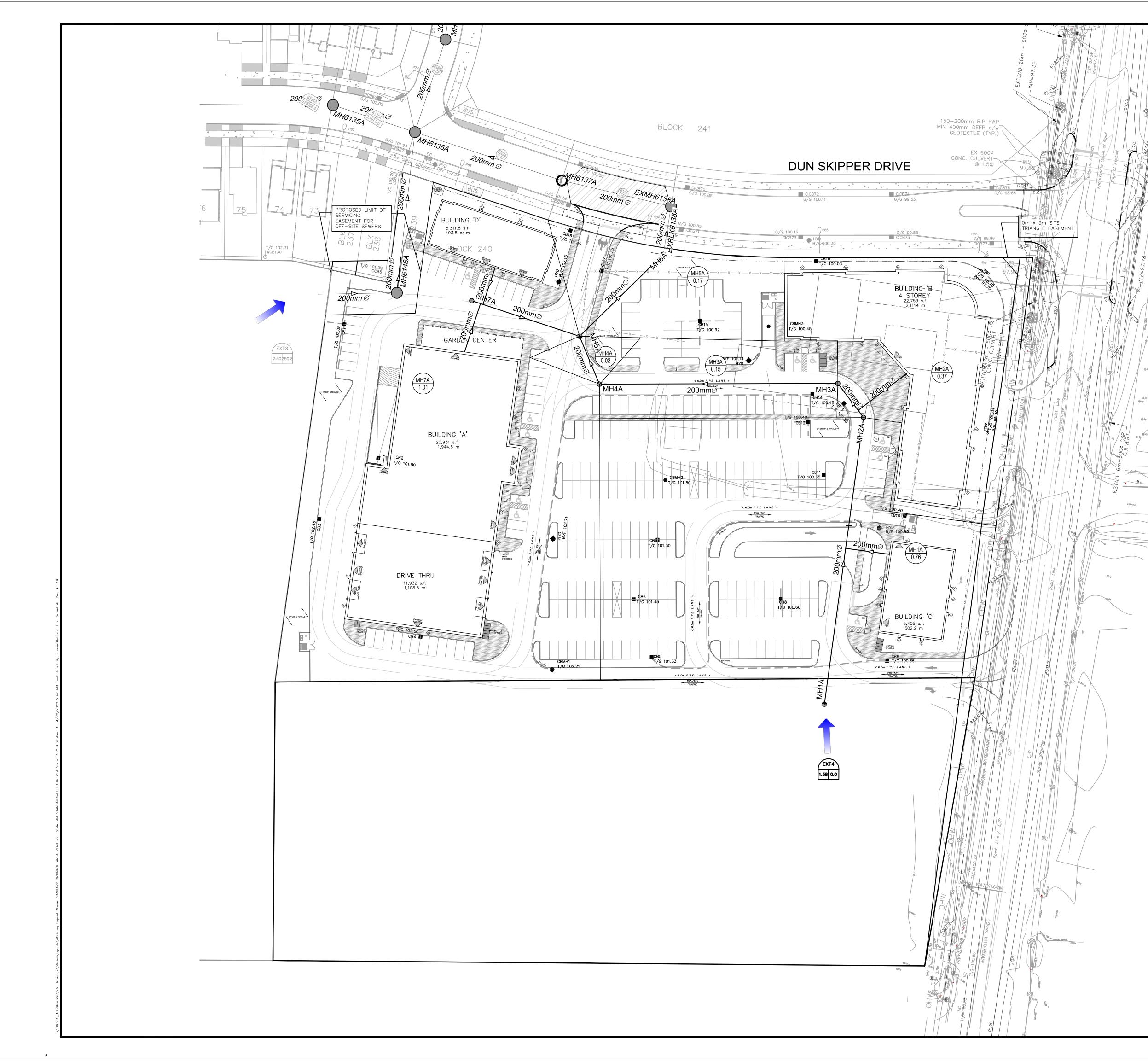

 0.624
 15.52
 76.67%

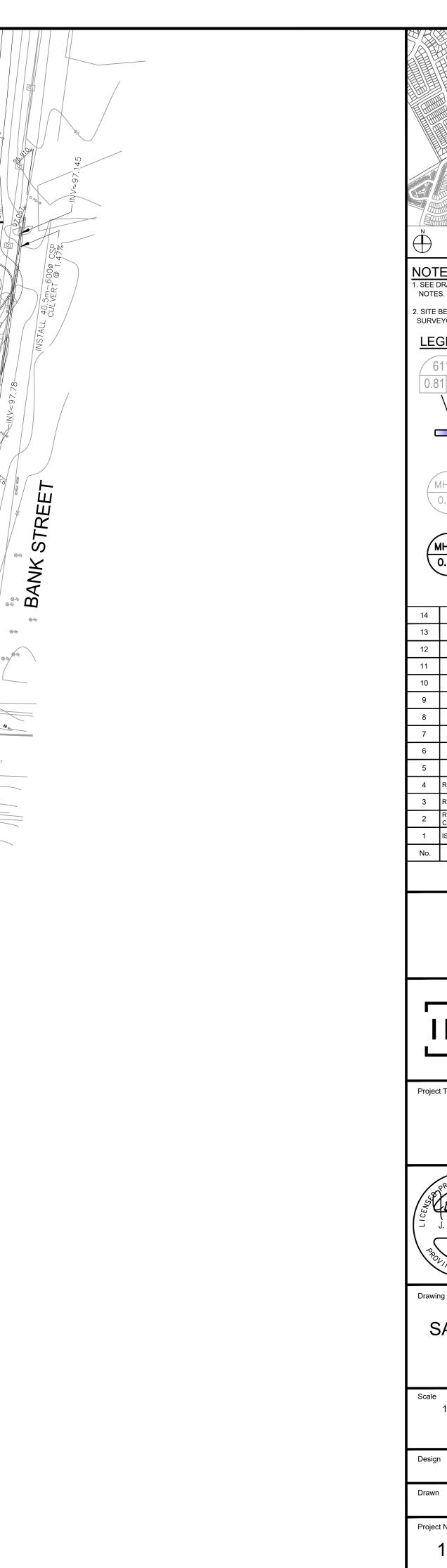
 1.156
 32.48
 86.65%

 0.883
 22.82
 79.70%

 0.883
 22.61
 78.97%
 0.893 0.624 0.746
 0.618
 20.89
 46.30%

 0.818
 34.72
 58.17%
 0.746 20.57 85.01% 0.624 0.818 0.818 0.624 0.667 16.88 77.99% 0.667 16.88 77.99% 1.335 23.27 22,93 94.76% 27.40 95.70% 17.32 85.54% 30.07 50.38% 29.28 49.06% 32.24 32.74 54.86% 17.85 42.58 98.39% 18.11 23.96 AVAILABLE CAPACITY L/s (%) 54.01% 99.04% 89.48% 22.85% 88.20% 92.34%

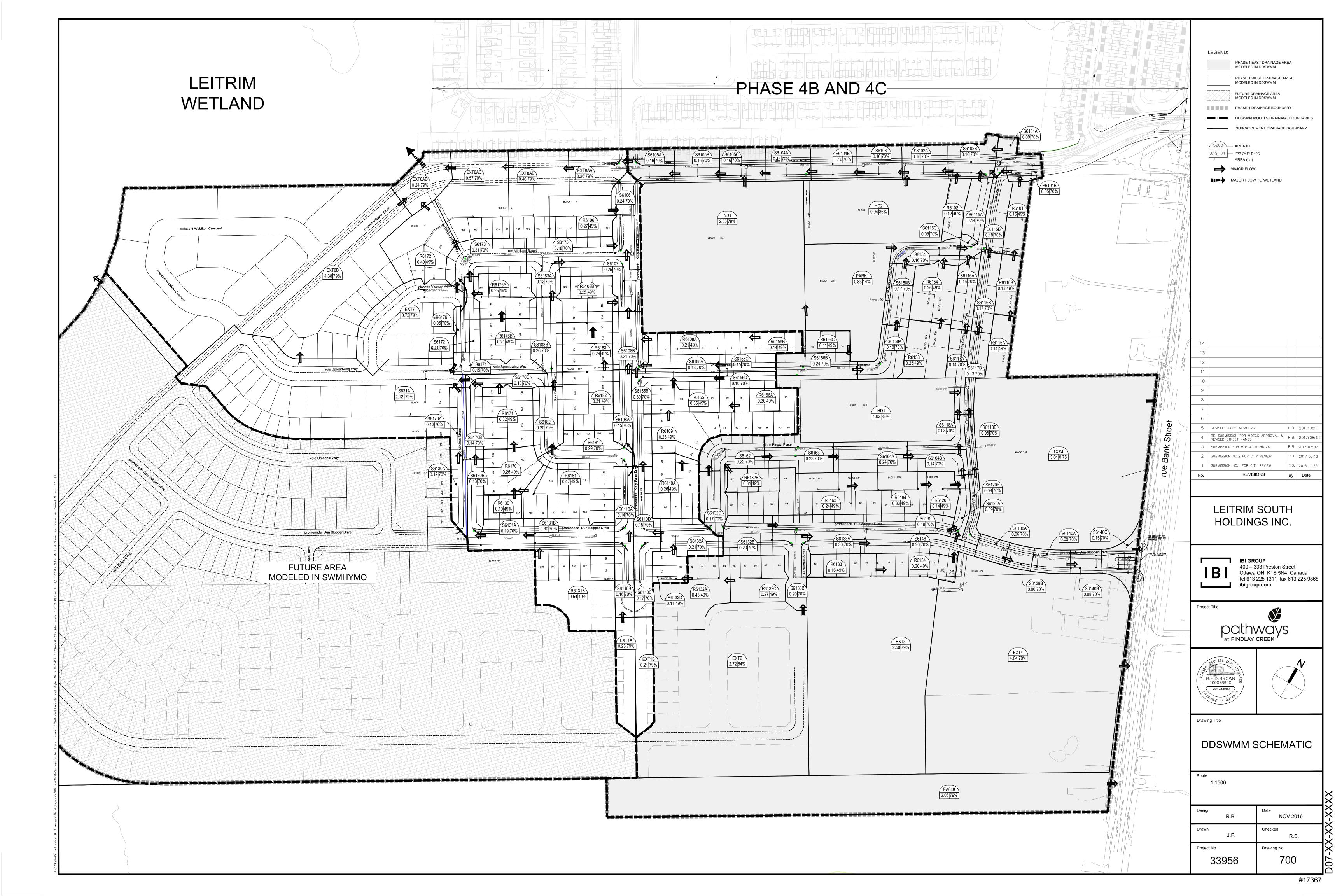



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

								RESID	ENTIAL					-		ICI A	REAS			INFILT	RATION ALLO	OWANCE			TOTAL	1		PROPC	SED SEWER	RDESIGN		
	LOC	CATION		AREA		UNIT	T TYPES		AREA	POPU	JLATION	RES	PEAK			A (Ha)		ICI	PEAK	ARE	A (Ha)	FLOW	FIXED F	LOW (L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
STREET	ARE	AID FROM	ТО МН	w/ Units (Ha)	SF	SD	тн	APT	w/o Units (Ha)	IND	CUM	PEAK FACTOR	FLOW (L/s)	INSTITUTIONAL IND CUM		IERCIÁL CUM	INDUSTRIAL IND CUM	PEAK FACTOR	FLOW (L/s)	IND	СЛМ	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAP L/s	ACITY (%)
		BLDG D								0.0	0.0	3.80	0.00		0.05	0.05		1.50	0.02	0.05	0.05	0.02	0.00	0.00	0.04	34.22	11.10	200	1.00	1.055	34.18	99.88%
		BLDG A								0.0	0.0	3.80	0.00		0.30	0.30		1.50	0.15	0.30	0.30	0.10	0.00	0.00	0.24	34.22	14.61	200	1.00	1.055	33.97	99.28%
		MH7A	MH5A							0.0	0.0	3.80	0.00		1.01	1.01		1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	27.59	32.62	200	0.65	0.851	26.76	97.01%
		BLDG C	MH1A-MH2A							0.0	0.0	3.80	0.00		0.06	0.06		1.50	0.03	0.06	0.06	0.02	0.00	0.00	0.05	34.22	12.70	200	1.00	1.055	34.17	99.86%
Idone Commercial		MH1A	MH2A						-	0.0	0.0	3.80	0.00		2.35	2.35		1.50	1.14	2.35	2.35	0.02	0.00	0.00	1.92	20.24	83.16	200	0.35	0.624	18.32	90.53%
Idone Commercial		BLDG B	MH2A-MH3A							0.0	0.0	3.80	0.00		0.22	0.22		1.50	0.11	0.22	0.22	0.07	0.00	0.00	0.18	34.22	17.46	200	1.00	1.055	34.04	99.48%
		MH2A	MH3A						-	0.0	0.0	3.80	0.00		0.37	2.72		1.50	1.32	0.37	2.72	0.90	0.00	0.00	2.22	20.24	12.25	200	0.35	0.624	18.02	89.03%
		MH3A	MH4A						-	0.0	0.0	3.80	0.00		0.15	2.87		1.50	1.40	0.15	2.87	0.95	0.00	0.00	2.34	20.24	68.50	200	0.35	0.624	17.90	88.43%
		MH4A	MH5A							0.0	0.0	3.80	0.00		0.02	2.89		1.50	1.40	0.02	2.89	0.95	0.00	0.00	2.36	20.24	14.90	200	0.35	0.624	17.88	88.35%
		MH5A	MH6A							0.0	0.0	3.80	0.00		0.17	4.07		1.50	1.98	0.17	4.07	1.34	0.00	0.00	3.32	20.24	33.69	200	0.35	0.624	16.92	83.59%
Design Parameters:				Notes:								Designed:				Ne					L,	Revision								Date		
•				1. Manning	s coefficien			0.013				Designea:		SEL		No. 1.		Report Nam	e (Master Se	ervicing Stud			rices, Servicir	ng Brief, ect) ·	- Submission	No. 1				2019-03-30		
Residential		ICI Areas			l (per capita			0 L/day	200	L/day																						
SF 3.4 p/p/u				3. Infiltratio			0.3	3 L/s/Ha				Checked:		JIM																		
TH/SD 2.7 p/p/u APT 1.8 p/p/u	INST COM	28,000 L/Ha/day 28,000 L/Ha/day		4. Residen	Harmon F	Formula = 1	+(14/(4+(P/1	1000)^0.5))0	.8																							
Other 60 p/p/Ha	IND	35,000 L/Ha/day	MOE Chart			= 0.8 Correc						Dwg. Refe	rence:	119351-501																		
		17000 L/Ha/day				titutional Pea 20%, other	ak Factors b wise 1.0	ased on tota	al area,			_					le Reference: 119351.5.7.1						Date: 2019-03-3	0						Sheet No: 1 of 1		

SANITARY SEWER DESIGN SHEET

4836 Bank Street CITY OF OTTAWA Home Hardware



		PONP	AISROAD
		B	LAIS
		si	JBJECT
			REA
DUN SUPER DR	WE ENGLY		
BUN-			\
NOTES: 1. SEE DRAWING C-010 FOR ADD	ITIONAL DETAIL	S ANE)
NOTES. 2. SITE BENCHMARK TO BE OBTA SURVEYOR H.A. KEN SHIPMAN			
LEGEND :			
6115A N	XISTING AI UMBER XISTING P(
E	XISTING A	REA	
F	UTURE		DN
E	XISTING AI	REA	
0.37 N	UMBER XISTING AI	REA	
\frown			
	REA NUME REA IN HE		RES
14 13			
12 11			
10 9			
8			
6			
5 4 REVISED AS PER CITY COI	MMENTS	JIM	2020:04:20
3 REVISED AS PER CITY COI 2 REVISED AS PER NEW SITICITY COMMENTS		JIM JIM	2019:12:09 2019:10:11
1 ISSUED FOR SPA No. REVISION	ONS	JIM By	2019:04:15 Date
IBI GRO	DUP 33 Preston Si	treet	
R Ottawa	ON K1S 5N4 225 1311 fax	l Ca	
ibigiou	p.com		
Project Title BANK S	TDEE	т	
DEVELC		-	
4836 BAN	K STREET		
J. I. MOFFATT			N
J. I. MOFFATT			
2020/04/20 PROLINCE OF ONTARIO			/
Drawing Title			
SANITARY	DRAIN	JA	GE
AREA		-	
Scale			
1 : 500			
Design	Date		
SEL		B. 20	19
DPS		JIN	1
Project No. 119351	Drawing No.	00	
	I I	- $ -$	

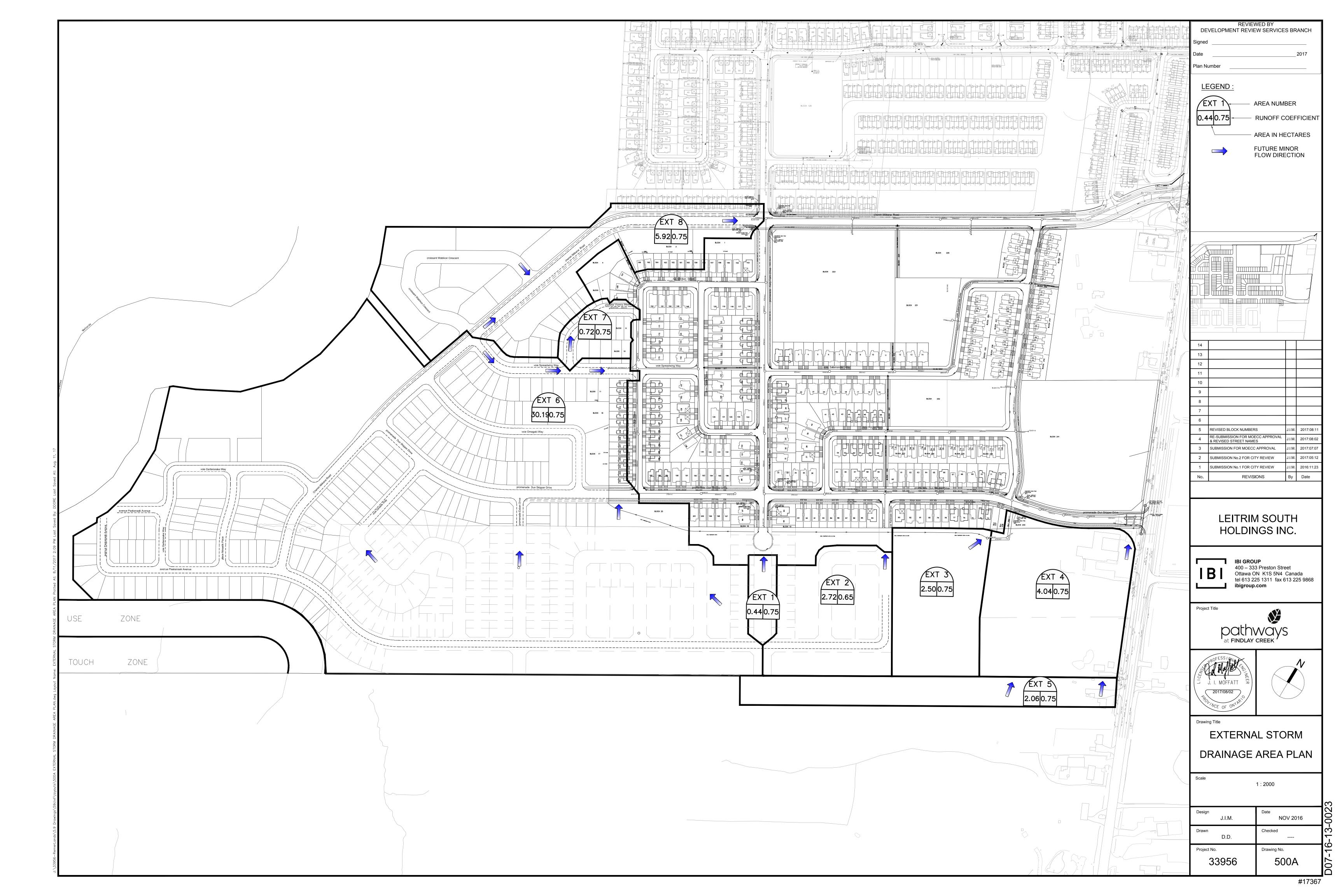
#17977

APPENDIX D

- Pathways Phase 1 Storm Sewer Design Sheet
- Drawing 33956-500A Pathways Phase 1 External Storm Drainage Area Plan
- Drawing 33956-700 DDSWMM Schematic from Pathways Phase 1
- Excerpts from Design Brief Pathways at Findlay Creek 4800 Bank Street (Remer Lands) Phase 1 Leitrim Development Area (IBI Group, August 2017)
- Storm Sewer Design Sheet
- Drawing 119351-500 Storm Drainage Area Plan

L'S	
395	
6-R	
B	
La la	
nds.	
15.7	
ŝ	
licul	
atio	
ns/5	
57	
ŝ	
BWB	
ŝ	
ଜୁ	
đin	
ng\P	
HAS	
m̃.	
8	
čć.	
ton	
1	
017	
8	
Ŕ	

(i = 1174.184 / (TC+6.0 [i = 1735.688 / (TC+6.0	A = Area in Hectares (Ha) i = Rainfall intensity in millimeters per hour (π [i = 998.071 / (TC+6.053)^0.814]	Definitions: Q = 2.78CiA, where: Q = Peak Flow in Litres per Second (L/s)	Dun Skipper culvert	Miikana Road Miikana Road	Cedar Creek Drive Cedar Creek Drive	Salamander Way Salamander Way	Block 438 (Park)	Salamander Way Salamander Way	Salamander Way	Cedar Creek Drive	Cedar Creek Drive	Block AA3	Cedar Creek Drive	Block 429	Pingwi Place Pingwi Place Pingwi Place	Pingwi Place Pingwi Place	Cedar Creek Drive		Cedar Creek Drive	Easement	Temp Ditch	Dun Skipper Road	Uun Skipper Hoad		Dun Skipper Road			Dun Skipper Road Dun Skipper Road	\square	bad	Street No. 7	STREET	
	Ţ,	r Second (L∕s)		S6101A-B,R6101	S6115	S6154, R6154	PARK1	S6158A-B, R6158	S6156B, R6156C	S6116, R6116A-B	S6117	5	S6118	COM	S6163, R6163 S6164A-B, R6164	S6132C, R6132B	S6120, R6120		4	EXT 3 S6146			36138	30139	S6140A-C	EXT 4		R6134 S6135	S6133A, R6133	S6132B, R6132A, R6132C	EXT 2 S6133B	AREA ID	LOCATION
10 YEAR 100 YEAR	hr) 5 YEAR			MH6101 BLK6101 MH6101 BLK6101	MH6115 MH6101 MH6115 MH6101	MH6153 MH6154 MH6154 MH6115	┥┼┼	MH6157 MH6158 MH6158 MH6153			MH6117 MH6116	++	MH6119 BEND6118 BEND6118 MH6117 MH6119 BEND6118 MH6119 BEND6118	BLK6119 MH6119	MH6162 MH6163 MH6163 MH6164 MH6164 MH6119	MH6132 MH6161 MH6161 MH6162	MH6120 MH6119 MH6120 MH6119	BEND6121 MH6120 MH6136 BEND6121 BEND6121 MH6120		BLK6145 MH6146 MH6146 MH6136	DI 1 BLK6145	MH6137 MH6136	MH6138 MH6137 MH6138 MH6137	++	-+-+-			MH6134 MH6135 MH6135 MH6136			BLK6133S MH6133	FROM TO	
		Notes: 1. Mannings coefficient (n)	31.15	2 2	99	54	0.83		57	5 5 6	6		118 17 17	9			0				45 6.71	66 6	54			5 5 5		65	4	3	DRA	C= C= 0.15 0.30	
		fficient (n) = 0.013		0.15		0.26		0.25	0.11 0.24	0.27					0.24 0.33	0.34 0.17	0.14			DRAFT 2016 UPDATED S							FT 2016 UPDATED S	0.20 0.18	-+-+	0.70 0.20	FT 2016 UPDATED SI	C= C= C= C= 0.40 0.54 0.61 0.65	
				0.14	0.33	0.16		0.35		0.34	0.27		0.14		0.23		0.17			ERVICEABILITY			0.08	0.00	0.22		DRAFT 2016 UPDATED SERVICEABILITY REPORT					C= C= C= 0.65 0.69 0.71	
											20,1	┽┯┼		3.01						2.50						4.04 2.06	ORT					C= C= 0.75 0.80	
Dwg	Chec	Designed:	12.99 12.99 92	0.49 151.62 30 0.00 4.30 30	0.63 52.76 19 0.00 4.30 19	0.00 2.31 11 0.70 3.01 11	0.69	0,57	0,57	4 30 49 12 4 30	0.52 48.06 19		0.27 45.27 18 0.00 45.27 18 0.00 4.30 18	6.28	0.36 1.15 10 0.80 1.96 12 1.22 3.18 13	0.80	4 <u>30</u>	0.00 35.01 18 0.00 4.30 17 0.00 4.30 18	35 01	5.21 9.51 12 0.36 9.86 12	5.60 5.60 49	0.00 17.15 17 0.00 4.30 17	4.30		16.84 4.30	2 16,42		0.30 7.69 13 0.31 8.00 14	7.39	9 1.39	0.34 5.25 12	2.78AC 2.78AC (n	
Dwg. Reference: 50	Checked: J.M.		.20 0.39	30.13 0.23 30.13 0.23	19.97 0.51 19.96 0.52	0.13	0.16	10.93 0.15 11.08 0.67		19.05 0.50 19.56 0.41 19.56 0.40	++	┼┼	18.60 0.19 18.79 0.26 18.60 0.19 18.79 0.26	-++	+++	0.64 0.12	18.08 0.52 18.08 0.52	18.08 0.12 17.84 0.23 18.08 0.12		12.00 0.26 12.26 0.52	49.35 0.01	17.39 0.46 17.39 0.46	┼┼╴	$\left \right $	15.90 0.73 15.90 0.73			13.61 0.52 14.13 0.20	0.40	1.04	12.88 0.33	(min) IN PIPE] "
500, 500A	<i>A</i> .	×	92.59 23.84	30.36 53.77 30.36 53.77	20.48 70.32 20.48 70.33	11.88 95.76 12.75 95.20	$\left \right $	11.08 99.50 11.75 98.80			12.30 94.70 19.56 72.41	╂╂	18.79 73.49 19.05 73.03 18.79 73.49 19.05 73.03 19.05 73.03		12.14 100.35 13.36 94.08 14.22 89.27	$\left\{ \right\}$	18.60 74.77 18.60 74.77	18.08 74.77 18.08 75.37 18.09 74.77	++	12.26 94.70 12.77 93.61	49.36 38.01	17.84 76.56 17.84 76.56	++	20	╈			14.13 88.32 14.33 86.47			12.88 13.21 91.10	(min) (mm/hr)) (E
	<mark>.</mark> φ	No.	27.80 40.35	62.86 91.59 62.86 91.59	82.30 120.08 82.30 120.08	112.22 163.98 111.55 163.00	╞┼┼	116.62 170.45 115.79 169.23	++	84,74 123,66 83,36 121,64 83,36 121,64	110.96 162.13 84.74 123.66	┼┼	86.01 125.53 85.48 124.74 86.01 125.53 86.01 125.74 85.48 124.74	110.96 162.13	┼┼┼	122.14 178.56 118.32 172.94	87.52 127.74 87.52 127.74	+++	++	110.96 162.13 109.68 160.25	44.39 64.57	89.62 130.82 89.62 130.82	90.83 132.59 90.83 132.59	1 <mark>34</mark>				103.45 151.12 101.28 147.93	+		106.72 155.91	i (10) i (100) (mm/hr) (mm/hr)	arl Armstrong Road) RATIONAL DESIGN FL
File Reference: 33956.5.7.1		The second se	309.73	8,151.91	3,710.31) 221.31		56.93 159.94	++	+++	3.479.86	++	3 3,327.09 3 3,306.54 3 36	594,30	2 115.89 184,05 283,94	$\left\{ + \right\}$	1 2,658.16 37	2,630,60 2,618,06 37	┿╋	923,30	212.72	1,313.04	╂╌╋╴	╂╋				679.48 691.68	++	+	478.64	5yr PEAK FLOW (L/s)	
	Upda			80.02	3.50	_				33,97 38,04			99.43 17.14				75,93	78,93 75,93				34,93	90,11	95:44)6.17)8,58						10yr PEAK 100yr PEAK FIXED FLOW (L/s) FLOW (L/s) FLOW (L/s)	
	City Submission No. 3 ated Street Name for MOE S	Revision City submission No. 1 City Submission No. 2	309.73	8,421.89 8,421.89	4,063.81	221.31 286.37	68.66	56.93 159.94	59.61	3,843,83 3,856,77 3,856,77	214.82	, of 0.0	3,696.53 3,673.69 3,673.69 3,673.69	594.30	115.89 184.05 283.94	83.22	3,034.08 3,034.08	2,993,99 3,017,79	00.020	900.33	212.72	1,697.97 1,697.97	1,720.72 1,720.72	1,732,10	1,766,55 1,766,55	1,742,7		679.48 691.68	663.99	144.83	478.64	FIXED DESIGN -LOW (L/s) FLOW (L/s)	
Date: 2017-05-10	No. 3 <mark>10E Submission</mark>	No. 1	452,94	12,912,88 12,912.88	5,214,57 5,214,57	248.85 452.94		100.88 300.55		4,362,82 5,214.57 5,014.57	4.362.28	4,000,10	4,039.18 4,039.18 4,039.18	844.60	200.65 265.43 388.55	101.94 182.91	3,297.98 3,297.98	3,297.98 3,297.98 3,297.98	2007 00 CC.V02.1	1,280.55	448.66	2,156.55 2,156.55	2,156.55 2,156,55	2,156,55	2,156.55	2,490.17 2,490.17		1,580.10 1,580.10	1.640.43	149.72	1,296.87	A CAPACITY LE	
			36.00 600	38.34 2400 38.34 2400	88.17 1500 88.50 1500	11,90 450 80.33 600		12.31 300 105.99 375	+	72.31 1500 69.61 1500		Š	25.02 1500 35.20 1500 25.02 1500 25.02 1500	17.00 900	74.71 525 86.36 525 90.57 525	3.86 55	56.40 1500 56.40 1500	23.33 1900 13.56 1500 25.33 1500		25.77 975 51.42 975	1.00 525	39.90 1350 39.90 1350	3.26	$\left \right $	┼┼╌			74.61 900 28.36 900	1.48	+	47.00 825	(m) DIA	
																																PIPE SIZE (mm) W H S	SEWER D/
ŝ	20	20 20	0.50	0.25	0.50	0.70	1.00	1.00		0.50	++	0.00	0.30	0.20	0.20 0.35 0.75	\square	0.20	0.20	0.40	0.30	1.00	0.15	0.15 0.15	0.15	0.15	0.20		0.70	++	0.67	0.75	LOPE (%)	Leitrim Sou
Sheet No: 2 of 2	017-07-06 117-08-03	Date 2016-11-23 2017-05-12	1.552 14	2.765 444 2.765 444	2.859 111 2.859 111	1.516 2 1.552 16	1.383	1.383 4 2.636 14	++	2.859 13		++		1.286 28	0.898 8 1.188 8 1.739 10	\vdash	1.808 26 1.808 26	1.808 28 1.808 30 2.808 28	++	1.662 38	2.008 23	1.460 45 1.460 45		1.460 42 1.460 42				2.406 90 2.406 88	++	++	2.350 8	VELOCITY / (m/s) (th Holdings In
			143,21 31.62%	4490.99 34.78% 4490.99 34.78%	1150.76 22.07% 1150.76 22.07%	27.54 11.07% 166.57 36.78%	32,22 31,94%	43,95 43,57% 140,61 46,78%		518.99 11.90% 1357.80 26.04%		++	342.66 8.48% 365.50 9.05% 342.66 8.48%	250.30 29.64%	84.76 42.24% 81.37 30.66% 104.60 26.92%		263.90 8.00% 263.90 8.00%	280.19 8.50% 280.19 8.50% 280.19 8.50%	++	380.22 29.69%	235.93 52.59%	458.57 21.26% 458.57 21.26%		\vdash	390.00 18.08% 390.00 18.08%			900.63 57.00% 888.43 56.23%		+	818.23 63.09%	AVAIL CAP (5yr) (L/s) (%)	City of Ottawa Leitrim South Holdings Inc. (Regional Group)


_____] **IBI GROUP** 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

Black text 2 LEGEND

2	
Ξ.	
9	
\$	
÷.	
4	
ц.	
2	
ŝ	

STORM SEWER DESIGN SHEET

Pathways at FINDLAY CREEK

REPORT Project: 33956-5.2.2

DESIGN BRIEF PATHWAYS AT FINDLAY CREEK 4800 BANK STREET (REMER LANDS) PHASE 1 LEITRIM DEVELOPMENT AREA

Prepared for LEITRIM SOUTH HOLDINGS INC. by IBI GROUP

REVISED: AUGUST, 2017

was not accounted for as available on-site storage. Inlet restriction was also proposed for rear yards and overflow from the rear yards cascades to a major system street segment via swales.

Major System Storage Attenuation and Routing (Double Routing)

For street segments, the cascading overflow to the next segment or low point, utilizes the static storage available plus an additional amount of storage equivalent to the depth required for the flow to carry over the high point. The attenuation in street sags was evaluated to account for static storage and, if overflow occurs, dynamic storage. Within this report it is referred to as double routing.

The DDSWMM model does not have a direct way of coding double routing since it does not allow the user to code dynamic storage over the high point. For this analysis, an alternative method was employed where the overflow from a street segment (regular static storage at a sag) is conveyed to a dummy segment. In other words, a regular low point segment was provided with a downstream dummy segment for further flow attenuation to account for the dynamic ponding during overflow.

The dummy segment does not have any drainage area attributes associated with it since it is a segment for routing. In addition, there is no inflow to the minor system from these dummy segments. The overflow hydrograph from the upstream catchment is routed in the dummy segment to the next "real" downstream segment. The dummy segments have specific characteristics which are noted below:

- Segment Length equivalent to length of maximum static storage from the street segment contributing to it.
- Road Type equivalent to appropriate right-of-way characteristics from the segment contributing to it, and with a minimum longitudinal slope of 0.01% (0.0001 m/m).

The double routing method noted above applied to DDSWMM, is a feasible method outlined in the February 2014 Technical Bulletin ISDTB 2014-01.

The dummy segments for major system routing were applied to the analysis of the subject site. The segments are referenced as D1, D2, D3, etc. within the DDSWMM modelling file. The DDSWMM schematic presented in **Drawing 700** does not show the dummy segments, but DDSWMM computer output file shows the dummy segments immediately following the corresponding major segment which cascades into that dummy segment.

Future Lands

In addition to the above noted assumptions with respect to Phase 1 Pathways at Findlay Creek, the following assumptions were used to model the minor and major system flow from the future areas which are tributary to and contribute flow (minor and major) to the subject site. A summary of the areas, storages, inflows and parameter assumptions are provided in **Table 4.4**.

• Commercial Sites (DDSWMM ID: COM and EXT4)

These commercial areas were assumed to be restricted to the 5 year modeled flow. It was also assumed that full on-site storage will be provided in both sites (all major flow contained on-site up to and including the 100 year event). Emergency overflow for both sites will be routed to Bank Street (DDSWMM ID BANK).

† Pathways at Findlay Creek Phase 1 West modeled flow is from the DDSWMM output file 33956-PH1W-3CHI2.out, 33956-PH1W-3CHI5.out and 33956-PH1W-3CHI100.out which are all presented on the CD in **Appendix E**.

The assigned size of the inlet control devices (ICDs) for the subject site was optimized using DDSWMM. ICDs are incorporated into the stormwater management design to protect the minor system from surcharge during major storm events. The ICDs used for Phase 1 are provided on **Drawing 010**. It should be noted that due to the increased minor system capture at low points flow, there were a few instances where the flow restriction into the minor system was the capacity of the CB inlet. These include one CB on S6115B, one CB on S6183A, one CB on S6107 (indicated in bold in **Table 4.4**). Calculations demonstrating the capacity of the CBs within a road sag is presented in **Appendix E**. In addition, there are two instances where the CB lead is the restriction for the inflow to the minor system. These include S6115B and S6155B. Calculations supporting the lead size for the inflow restriction are provided in **Appendix E**.

For those areas within Phase 1 which will require a separate site stormwater design and analysis, the following table summarizes the assumed inflow rate and minimum on-site storage required for their design.

Drainage	e Area				
Segment ID	Area (ha)	Land Use	IMP Ratio (%)	Minimum On-Site Storage Required (m³)*	Minor System Inflow Rate (I/s)
EXT3	2.50	High Density	79	125.00	469
HD1	1.02	High Density	86	100.00	206
PARK1	0.83	Park	14	150.00	38
HD2	0.94	High Density	86	115.00	190
INST	2.55	School	79	290.00	476
EXT4	4.06	Commercial	79	462.00	760
COM	3.01	Commercial	79	345.00	562

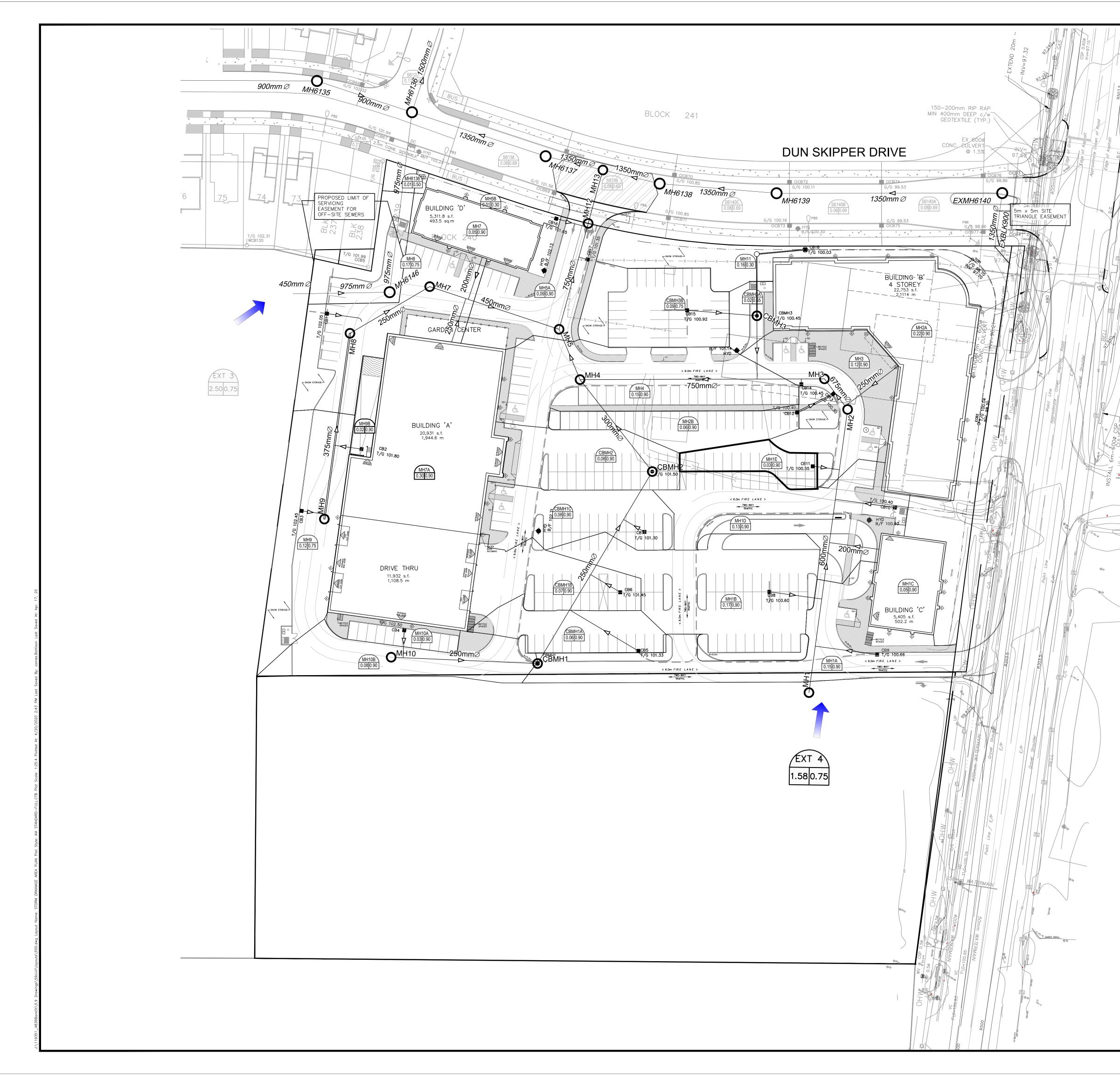
Table 4.5Summary of Minimum On-Site Storage and Minor System Inflow Rate for
External Development Lands to Phase 1

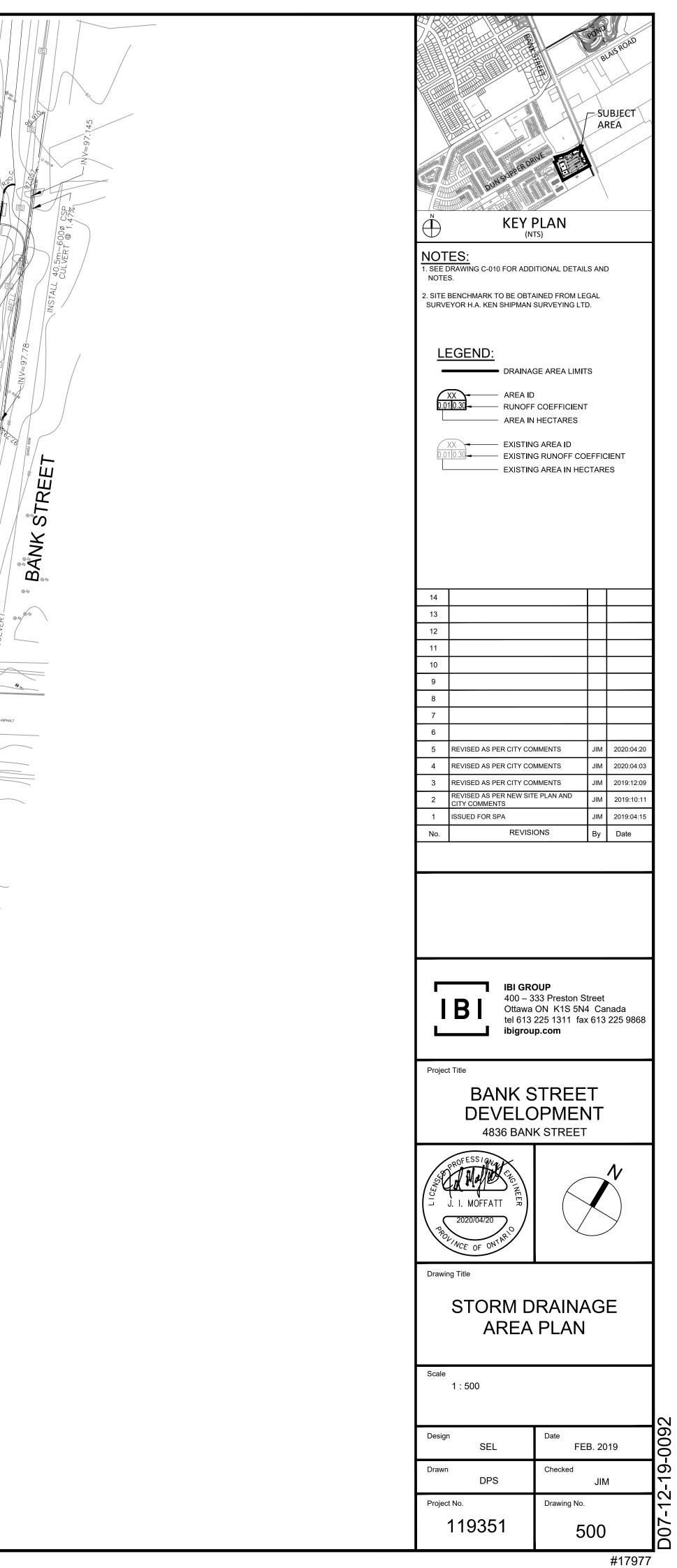
* The on-site storage noted was used to evaluate Phase 1. As a minimum this on-site storage should be provided.

4.9.3 Simulation Results

Minor system hydrographs generated in DDSWMM were downloaded to the XPSWMM model for hydraulic grade line analysis (refer to **Section 4.10**).

The storage available on-site and its maximum depth and the results of the DDSWMM evaluation for the subject site are presented in **Table 4.6**. Also included in **Table 4.6**, is the duration of ponding and depth of ponding for the 2 year, 5 year, 100 year and July 1, 1979 historical storm events. The ponding plan for the subject site is presented on **Drawing 751**. The DDSWMM output files are presented in **Appendix E**.




IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

	LOCATION				AREA (Ha)										R	ATIONAL D	ESIGN FLC	W								S	EWER DATA				1
STREET	AREA ID FROI	л то		C= C=					IND	CUM	INLET	TIME	TOTAL		i (5)	i (10)	i (100)	2yr PEAK	5yr PEAK	10yr PEAK	100yr PEAK FIXED	DESIGN	CAPACITY	LENGTH		E SIZE (mi		SLOPE V		AVAIL CA	
			0.20 0.30	0.40 0.5	0 0.55 0.65	5 0.70	0.75	0.90 1.0	0 2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s) FLOW (L/	s) FLOW (L/s)	(L/s)	(m)	DIA	w	н	(%)	(m/s)	(L/s)	(%)
	CB3	MH9-MH8					0.12		0.25	0.25	10.00	0.11	10.11	76.81	104.19	122.14	178.56	19.22	26.07	30.56	44.68	19.22	34.22	6.73	200			1.00	1.055	15.00	43.84%
	CB2							0.02		0.05		0.12	10.12	76.81	104.19	122.14	178.56		5.21	6.11	8.94	3.84	34.22	7.69	200			1.00	1.055		88.77%
	MH9	MH8								0.30	10.12	0.64	10.76		103.56	121.39	177.46		31.09	36.45	53.28	22.92		53.17	375			0.75	1.389	135.48	85.53%
	CB1	MH8-MH7					0.17		0.35		10.00	0.17	10.17	76.81	104.19	122.14			36.93	43.29	63.29	27.22	34.22	10.80	200			1.00	1.055		20.44%
	MH8									0.65	10.76	0.41	11.17		100.35	117.61	171.90		65.70	77.00	112.54	48.45	53.73		250			0.75	1.060	5.28	9.82%
	BLDG							0.05	0.13		10.00	0.20	10.20	76.81	104.19	122.14	178.56		13.03	15.28	22.34	9.61	34.22	12.60	200			1.00	1.055		71.92%
	BLDG MH7							0.30	0.75	0.75	10.00 11.17	0.18	10.18		104.19	122.14	178.56 168.52		78.21	91.68 176.46	134.03 257.90	57.65 111.08	62.04	12.97 38.63	250			1.00 0.60	1.224 1.403	4.39 119.31	7.07%
	MH7	MH5				_			0.00	1.53	11.17	0.40	11.03	72.58	98.39	115.31	108.52	111.08	150.57	176.46	257.90	111.08	230.39	38.03	450			0.60	1.403	119.31	51.79%
	CB4	MH10-CBMH1						0.03	0.08	0.08	10.00	0.12	10.12	76.81	104.19	122.14	178.56	5.76	7.82	9.17	13.40	5.76	34.22	7.78	200			1.00	1.055	28.45	83.15%
	MH1							0.00		0.08	10.12	0.73	10.85	76.34	103.55	121.38	177.44	5.73	7.77	9.11	13.32	5.73	48.06	41.57	250			0.60	0.948		88.08%
	CB5	CBMH1-CBMH2						0.06	0.15	0.15	10.00	0.36	10.36	76.81	104.19	122.14	178.56	11.53	15.64	18.34	26.81	11.53	34.22	22.72	200			1.00	1.055		66.30%
	CB6	CBMH1-CBMH2						0.07		0.18	10.00	0.15	10.15	76.81	104.19	122.14	178.56	13.45	18.25	21.39	31.27	13.45	34.22	9.78	200			1.00	1.055		60.69%
	CB7							0.08	0.20	0.20 0.80	10.00		10.15		104.19	122.14			20.86	24.45	35.74	15.37	34.22	9.59	200			1.00	1.055		55.07%
	CBMH	1 CBMH2						0.08	0.20	0.80	10.85	0.80	11.66	73.68	99.89	117.07	171.12	58.99	79.98	93.73	137.00	58.99	66.53	63.40	250			1.15	1.313	7.54	11.33%
	CBMH	2 MH4		+					0.00	0.90	11.66	0.69	12.22	70.98	96.18	112.71	164 70	56.83	77.01	90.24	131.87	56.83	50.69	33.14	300			0.35	0.818	2.86	4.79%
++	CBMH	Z MH4		+					0.00	0.80	00.11	0.00	12.33	10.98	90.18	112.71	104.70	00.03	11.01	90.24	131.07	00.83	59.66	33.14	300			0.30	U.010	∠.00	4.19%
				+ +														+				+	1	1	+ +						
	CB9	MH1-MH2						0.15	0.38	0.38	10.00	0.28	10.28	76.81	104.19	122.14	178.56	28.82	39.10	45.84	67.01	28.82	34.22	17.68	200			1.00	1.055	5.39	15.76%
	CB8							0.15	0.43		10.00	0.24	10.24	76.81	104.19	122.14	178.56		44.32	51.95	75.95	32.67	34.22	14.99	200			1.00	1.055	1.55	4.53%
	BLDG	C MH1-MH2						0.05	0.13	0.13	10.00	0.22	10.22	76.81	104.19	122.14	178.56	9.61	13.03	15.28	22.34	9.61	34.22	14.20	200			1.00	1.055	24.61	71.92%
	CB10	MH1-MH2						0.13	0.33	0.33	10.00	0.27	10.27	76.81	104.19	122.14	178.56	24.98	33.89	39.73	58.08	24.98	34.22	17.04	200			1.00	1.055	9.23	26.99%
	CB11							0.03		0.08	10.00	0.11	10.11		104.19	122.14	178.56		7.82	9.17	13.40	5.76	34.22	6.75	200			1.00	1.055		83.15%
	CB12	CB13						0.06	0.15	0.15	10.00	0.18	10.18	76.81	104.19	122.14	178.56	11.53	15.64	18.34	26.81	11.53	34.22	11.50	200			1.00	1.055	22.69	66.30%
Ideas Oserranial							4.50		2.00	4 77	40.00	0.07	44.45	75 75	400.74	100.40	470.05	004.00	400.40	574.51	839.82	361.36	452.94	01.01	600			0.50	4.550	04.50	20.22%
Idone Commercial	MH1 CB13						1.58	0.10	0.45	4.77 0.45	10.28	0.87	11.15 10.01	75.75 76.81	102.74 104.19	120.43 122.14	176.05 178.56	361.36 34.59	490.12 46.92	55.01	839.82	361.36	452.94	81.04 1.00	600 200			0.50	1.552	91.59 5.90	20.22%
	BLDG							0.18		0.45	10.00	0.01	10.01		104.19	122.14		42.28	57.35	67.23	98.29	42.28	62.04		250			1.40	1.240		31.85%
	MH2							0.22		5.77	11.15	0.20	11.29	72.66	98.49	115.42	168.69		568.41	666.14	973.56	419.32	480.32		675			0.30	1.300		12.70%
	CB14							0.15		0.38				76.81			178.56		39.10	45.84	67.01	28.82	34.22		200			1.00	1.055		15.76%
	CB15	CBMH3					0.09		0.19	0.19	10.00	0.31	10.31	76.81	104.19	122.14	178.56	14.41	19.55	22.92	33.51	14.41	34.22	19.85	200			1.00	1.055	19.80	57.88%
	CB1		0.16							0.13	10.00	0.27	10.27	76.81	104.19	122.14	178.56	10.25	13.90	16.30	23.83	10.25	27.59	13.80	200			0.65	0.851		62.85%
	MH1	CBMH3							0.00	0.13	10.27	0.34	10.61	75.78	102.79	120.48	176.12	10.11	13.72	16.08	23.50	10.11	27.59	17.50	200			0.65	0.851	17.47	63.34%
	СВМН	3 MH3-MH4			0.02				0.04	0.36	10.31	0.35	10.67	75.62	102.57	120.22	175.74	27.01	36.64	42.95	62.78	27.01	27.59	17.94	200			0.65	0.851	0.57	2.07%
	MH3				0.02					6.50		0.35	12.30			120.22	167.58		636.36	745.75	1,089.88	469.49	519.40		750			0.65	1.139		9.61%
	IVINS	WIH4							0.00	0.50	11.29	1.01	12.30	12.19	57.04	114.00	107.50	409.49	030.30	745.75	1,009.00	409.49	519.40	09.51	750			0.20	1.139	49.91	9.0170
	MH4	MH5							0.00	7.30	12.30	0.20	12.51	68.96	93.42	109.46	159.93	503.74	682.38	799.52	1,168.19	503.74	580.71	15.46	750			0.25	1.273	76.96	13.25%
	CB17							0.09		0.23	10.00	0.04	10.04	76.81	104.19	122.14	178.56	17.29	23.46	27.50	40.21	17.29	34.22	2.55	200			1.00	1.055		49.45%
	CB16		0.01							0.01	10.00	0.14	10.14		104.19	122.14			0.87	1.02	1.49	0.64	34.22		200			1.00	1.055		98.13%
	MH5								0.00		12.51	0.34	12.85	68.36	92.59	108.48	158.49		839.64	983.73	1,437.28	619.90		31.13	750			0.35	1.507		9.78%
	MH1:	EX 1350 SEWER							0.00	9.07	12.85	0.17	13.02	67.36	91.21	106.86	156.12	610.81	827.17	969.05	1,415.73	610.81	687.10	15.71	750			0.35	1.507	76.29	11.10%
				+					_						-			-			<u> </u>										
				+ +											1		+	+				+		1							
																		1				1	1								
															1								1								
Definitions:		•	Notes:			l	I				Designed:		JEB				No.				· · · · · · · · · · · · · · · · · · ·	Revision							Date		
Q = 2.78CiA, where:			1. Mannings	coefficient (n)	= 0.013												1.					ssion No. 1							019-03-30		
Q = Peak Flow in Litres										ļ							2.				Revised per	City Comments						2	020-04-20		
A = Area in Hectares (I											Checked:		JIM																		
	millimeters per hour (mm/hr)																														
[i = 732.951 / (TC+6) [i = 998.071 / (TC+6)											Dura Data		110251 50	0			l														
[i = 998.071 / (TC+6.											Dwg. Refei	ence:	119351-50	U				Filo Po	ference:				Date:						Sheet No:		
[i = 1735.688 / (TC+																			51.5.7.1				2019-03-30						1 of 1		
[· · · · · · · · · · · · · · · · · · ·			1															11330				2	0								

STORM SEWER DESIGN SHEET

4836 Bank Street City of Ottawa Home Hardware

6.0 5.0 4.0 3.0 2.0 1.0 0.0

Chart 3: HF & MHF Preset Flow Curves

Flow Q (Lps)

100

120

140

160

80

60

0

40

20

IPEX

9

APPENDIX E

Stormwater Management Calculations

Restricted Flowrate

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4

STORMWATER MANAGEMENT

Formulas and Descriptions

 i_{2yr} = 1:2 year Intensity = 732.951 / $(T_c+6.199)^{0.810}$ $i_{5yr} = 1.5$ year Intensity = 998.071 / $(T_c+6.053)^{0.814}$ $i_{100yr} = 1:100$ year Intensity = 1735.688 / $(T_c+6.014)^{0.820}$ T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)Maximum Allowable Release Rate

Taken from City of Ottawa approved Design Brief "Pathways at Findlay Creek" (D07-16-13-0023) drainage area EXT 4

EX	T 4 Release Rate	760.00 L/s	
Aı	rea EXT 4 _{TOTAL} =	4.04 Ha	
A	rea Subject Lands	2.49	
Perscentage Sha	are of release rate	62%	
	Q _{TOTAL} =	468.42 L/s	

Uncontrolled Release (Q uncontrolled = 2.78*C*i 100yr *A uncontrolled)

C =	0.625
$T_c =$	10 min
i _{100yr} =	178.56 mm/hr
$A_{uncontrolled} =$	0.01 Ha
$Q_{uncontrolled} =$	3.10 L/s

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

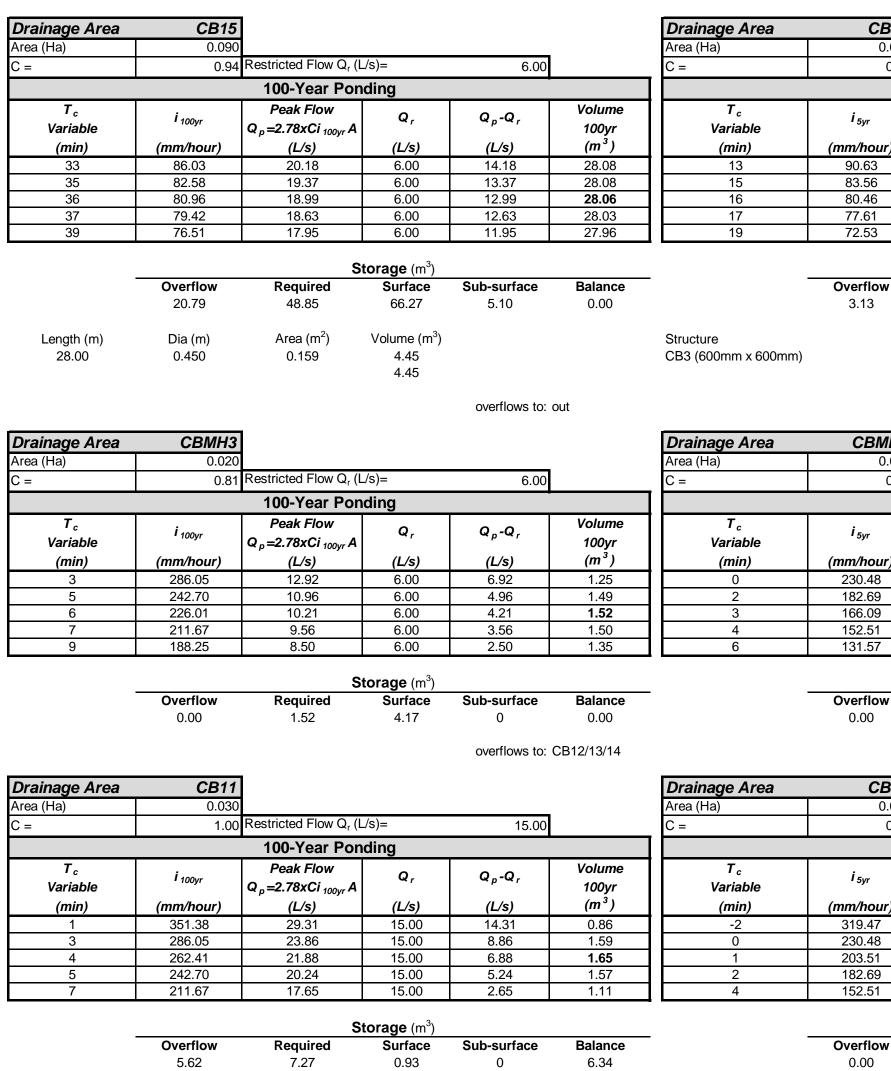
 $Q_{max allowable} =$ 465.31 L/s

MODIFIED RATIONAL METHOD (100-Year & 5-Year Ponding)

Drainage Area Area (Ha)	MH9/MH9B 0.14					Drainage Area Area (Ha)	MH9/MH9B					Drainage Area Area (Ha)	MH9/MH9B 0.140				
C =		Restricted Flow Q _r (I	L/s)=	10.00		C =		Restricted Flow Q _r ((L/s)=	10.00		C =		Restricted Flow Q _r (L	./s)=	10.00	
		100-Year Por	nding					5-Year Ponding	J				•	2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
30	91.87	34.86	10.00	24.86	44.75	13	90.63	27.51	10.00	17.51	13.66	10	76.81	23.32	10.00	13.32	7.99
32	87.89	33.35	10.00	23.35	44.83	15	83.56	25.37	10.00	15.37	13.83	11	73.17	22.21	10.00	12.21	8.06
33	86.03	32.65	10.00	22.65	44.84	16	80.46	24.43	10.00	14.43	13.85	12	69.89	21.22	10.00	11.22	8.08
34	84.27	31.98	10.00	21.98	44.83	17	77.61	23.56	10.00	13.56	13.83	13	66.93	20.32	10.00	10.32	8.05
36	80.96	30.72	10.00	20.72	44.76	19	72.53	22.02	10.00	12.02	13.70	15	61.77	18.75	10.00	8.75	7.88
		S	storage (m ³)					Sto	rage (m ³)					Sto	orage (m ³)		
	Overflow 0.00	Required 44.84	Surface 20.64	Sub-surface 10.07	Balance 14.13		Overflow 0.00	Required 13.85	Surface 20.64	Sub-surface 10.07	Balance 0.00		Overflow 0.00	Required 8.08	Surface 20.64	Sub-surface 10.07	Balance 0.00
Length (m)	Dia (m)	Area (m ²)	Volume (m ³)			Structure		Depth	Area (m²)	Volume (m ³)							
54.91	0.375	0.110	6.06			CB3 (600mm x 600mm)		1.80	0.36	0.65							
6.73	0.200	0.031	0.21			CB2 (600mm x 600mm)		1.80	0.36	0.65							
7.69	0.200	0.031	0.24			CBMH10 (1200mm round)		2.00	1.13	2.26							
			6.51							3.56							

			Storage (m ³)			
	Overflow	Required	Surface	Sub-surface	Balance	_
	0.00	44.84	20.64	10.07	14.13	
Length (m)	Dia (m)	Area (m ²)	Volume (m ³)			Structure
54.91	0.375	0.110	6.06			CB3 (600mm x 600mm)
6.73	0.200	0.031	0.21			CB2 (600mm x 600mm)
7.69	0.200	0.031	0.24			CBMH10 (1200mm rour
			6.51			·

overflows to: CB1


PROJECT: 4836 Bank St DATE: 2019-10-08 FILE: 119351.5.7 REV #: DESIGNED BY: JEB CHECKED BY: JM

overflows to: CB1

overflows to: CB1

Drainage Area	CB1	1				Drainage Area	CB1]				Drainage Area	CB1				
Area (Ha)	0.1					Area (Ha)	0.17				1	Area (Ha)	0.165				
C =	0.8	8 Restricted Flow Q_r (16.00		C =	0.70	Restricted Flow Q _r (16.00		C =	0.70	Restricted Flow Q _r (-	16.00	
	-	100-Year Por	nding					5-Year Ponding	1	-				2-Year Pondi	ng		
T _c	i _{100yr}	Peak Flow	Qr	$Q_p - Q_r$	Volume	<i>T</i> _c	i _{5yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		$Q_p = 2.78 \times Ci_{100yr} A$			100yr (m ³)	Variable	-	$Q_{p} = 2.78 \times Ci_{5yr} A$	(1.6)		5yr (m ³)	Variable		$Q_p = 2.78 \times Ci_{2yr} A$	(1.6)		2yr (m ³)
(min) 19	(<i>mm/hour</i>) 123.87	(L/s) 49.72	(L/s) 16.00	(L/s) 33.72	38.44	(min) 7	(<i>mm/hour)</i> 123.30	(L/s) 39.59	(L/s) 16.00	(L/s) 23.59	9.91	(min) 4	(mm/hour) 111.72	(L/s) 35.87	(L/s) 16.00	(L/s) 19.87	4.77
21	116.30	46.68	16.00	30.68	38.65	9	109.79	35.25	16.00	19.25	10.40	6	96.64	31.03	16.00	15.03	5.41
22	112.88	45.31	16.00	29.31	38.68	10	104.19	33.46	16.00	17.46	10.47	7	90.66	29.11	16.00	13.11	5.51
23 25	109.68 103.85	44.02 41.68	16.00 16.00	28.02 25.68	38.67 38.52	11 13	99.19 90.63	31.85 29.10	16.00 16.00	15.85 13.10	10.46 10.22	<u>8</u> 10	85.46 76.81	27.44 24.66	16.00 16.00	11.44 8.66	5.49 5.20
25	103.65	41.00	16.00	23.00	36.32	13	90.63	29.10	16.00	13.10	10.22	10	70.01	24.00	10.00	0.00	5.20
		S	Storage (m ³)					Sto	rage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	14.13	52.82	50.59	5.58	0.00		0.00	10.47	50.59	5.58	0.00		0.00	5.51	50.59	5.58	0.00
Longth (m)	Dia (m)	Area (m ²)	Volume (m ³)			Structure		Depth	Area (m ²)	Volume (m ³)							
Length (m) 31.00	0.450	0.159	4.93			CB3 (600mm x 600mm)		1.80	0.36	0.65							
			4.93			,				0.65							
				overflows to:	CB17					overflows to:	CB17					overflows to:	CB17
Ducinous Auco						Dreinene Aree	0040					Ducine Auce	0040	1			
Drainage Area Area (Ha)	0.01					Drainage Area Area (Ha)	CB16 0.010					Drainage Area Area (Ha)	CB16				
C =		8 Restricted Flow Q _r ((L/s)=	6.00		C =		Restricted Flow Q _r ((L/s)=	6.00		C =		Restricted Flow Q _r (L/s)=	6.00	
<u> </u>	0.0	100-Year Por		0.00			0.00	5-Year Ponding		0.00		0 -	0.00	2-Year Pondi	-	0.00	
Τ _c	1	Peak Flow			Volume	T _c		Peak Flow		1	Volume	T _c		Peak Flow		T T	Volume
Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100 \text{vr}} A$	Q _r	$Q_p - Q_r$	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q _r	Q _p - Q _r	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q _r	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^{3})	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)
-6	57497.20	599.41	16.00	583.41	-210.03	-6	10904.38	90.94	6.00	84.94	-30.58	-7	#NUM!	#NUM!	6.00	#NUM!	#NUM!
-4	977.56	10.19	16.00	-5.81	1.39	-4	555.75	4.63	6.00	-1.37	0.33	-5	632.75	5.28	6.00	-0.72	0.22
-3 -2	702.38 555.31	7.32 5.79	16.00 16.00	-8.68 -10.21	1.56 1.23	-3 -2	402.34 319.47	3.36 2.66	6.00 6.00	-2.64 -3.34	0.48 0.40	-4 -3	387.14 285.77	3.23 2.38	6.00 6.00	-2.77 -3.62	0.67 0.65
0	398.62	4.16	16.00	-11.84	0.00	0	230.48	1.92	6.00	-4.08	0.40	-1	192.83	1.61	6.00	-4.39	0.26
			•					4	4	4						•	
			Storage (m ³)						rage (m ³)						orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	1.56	0.31	0.00	1.25		0.00	0.48	0.31	0.00	0.17		0.00	0.67	0.31	0.00	0.36
				overflows to:	CB17					overflows to:	CB17					overflows to:	CB17
Drainage Area	CB17	7				Drainage Area	CB17					Drainage Area	CB17				
Area (Ha)	0.09					Area (Ha)	0.090					Area (Ha)	0.090				
C =	1.0	$_{\rm 0}$ Restricted Flow Q _r (9.00		C =	0.90	Restricted Flow Q _r (9.00		C =	0.90	Restricted Flow Q_r (-	9.00	
	1	100-Year Por	nding					5-Year Ponding	1	1				2-Year Pondi	ng	· · ·	
T _c	i _{100yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume		i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume		i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		$Q_p = 2.78 \times Ci_{100yr} A$			100yr (m ³)	Variable		$Q_p = 2.78 \times Ci_{5yr} A$			5yr (m³)	Variable		$Q_p = 2.78 \times Ci_{2yr} A$	(1/2)		2yr (m ³)
(min) 22	(<i>mm/hour</i>) 112.88	(L/s) 28.24	(L/s) 9.00	<i>(L/s)</i> 19.24	25.40	(min) 10	<i>(mm/hour)</i> 104.19	(L/s) 23.46	(L/s) 9.00	<i>(L/s)</i> 14.46	(<i>m</i>) 8.68	(min) 7	(<i>mm/hour)</i> 90.66	(L/s) 20.42	(L/s) 9.00	(L/s) 11.42	(<i>m</i>) 4.79
24	106.68	26.69	9.00	17.69	25.40	12	94.70	21.32	9.00	12.32	8.87	9	80.87	18.21	9.00	9.21	4.97
25	103.85	25.98	9.00	16.98	25.47	13	90.63	20.41	9.00	11.41	8.90	10	76.81	17.29	9.00	8.29	4.98
26	101.18	25.32	9.00	16.32	25.45	14	86.93	19.58	9.00	10.58	8.88	11	73.17	16.48	9.00	7.48	4.93
28	96.27	24.09	9.00	15.09	25.35	16	80.46	18.12	9.00	9.12	8.75	13	66.93	15.07	9.00	6.07	4.74
		S	Storage (m ³)					Sto	rage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	1.25	26.73	0.84	5.10	20.79		0.17	9.06	0.84	5.10	3.13		0.00	4.98	0.84	5.10	0.00
		A) (-h			01		D <i>i</i>	A	Mala 23							
Length (m) 28.00	Dia (m) 0.450	Area (m ²) 0.159	Volume (m ³) 4.45			Structure CB3 (600mm x 600mm)		Depth 1.80	Area (m ²) 0.36	Volume (m ³) 0.65							
20.00	0.400	0.109	4.45 4.45					1.00	0.00	0.65							
				overflows to:	CB15					overflows to:	CB15					overflows to:	CB15

J:\119351_4836BankSt\5.7 Calculations\5.7.1 Sewers & Grading\2nd Submission\CCS_swm_2019-10-08

overflows to: CB12/CB13/CB14

	-									
CB15					Drainage Area	CB15				
0.090		1 (-)			Area (Ha)	0.090	Destricted Flow O (I	(-)		
0.75	Restricted Flow Q _r (6.00		C =	0.75	Restricted Flow Q _r (L		6.00	
	5-Year Ponding						2-Year Pondi	ng		
i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	\boldsymbol{Q}_r	$Q_p - Q_r$	Volume
	$Q_p = 2.78 \times Ci_{5yr} A$			5yr	Variable		$Q_p = 2.78 \times Ci_{2yr} A$			2yr
nm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
90.63	17.01	6.00	11.01	8.59	9	80.87	15.18	6.00	9.18	4.95
83.56	15.68	6.00	9.68	8.71	11	73.17	13.73	6.00	7.73	5.10
80.46	15.10	6.00	9.10	8.73	12	69.89	13.12	6.00	7.12	5.12
77.61 72.53	14.56 13.61	6.00 6.00	8.56 7.61	8.73 8.67	<u>13</u> 15	66.93 61.77	12.56 11.59	6.00 6.00	6.56 5.59	5.12 5.03
72.00	13.01	0.00	7.01	0.07	15	01.77	11.59	0.00	5.59	5.05
	Sto	rage (m ³)					Sto	orage (m ³)		
verflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
3.13	11.86	66.27	5.10	0.00		0.00	5.12	66.27	5.10	0.00
	Depth	Area (m ²)	Volume (m ³)							
	1.80	0.36	0.65 0.65							
			overflows to:	out					overflows to: o	ut
СВМНЗ	1				Drainage Area	СВМНЗ				
0.020					Area (Ha)	0.020				
	Restricted Flow Q _r (L/s)=	6.00		C =		Restricted Flow Q _r (L	/s)=	6.00	
0.90			0.00			0.90			0.00	
	5-Year Ponding		1		·		2-Year Pondi	ig	1	
i _{5yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume
	$Q_p = 2.78 \times Ci_{5yr} A$			5yr	Variable		$Q_p = 2.78 \times Ci_{2yr} A$	<i></i>		2yr
n/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
30.48	11.53	6.00	5.53	0.00	-2	229.26	11.47	6.00	5.47	-0.66
82.69	9.14	6.00	3.14	0.38	0	167.22	8.37	6.00	2.37	0.00
66.09	8.31	6.00	2.31	0.42	1	148.14	7.41	6.00	1.41	0.08
52.51 31.57	7.63 6.58	6.00 6.00	1.63 0.58	0.39 0.21	2 4	<u>133.33</u> 111.72	6.67 5.59	6.00 6.00	0.67 -0.41	0.08-0.10
51.57	0.30	0.00	0.30	0.21	4	111.72	5.55	0.00	-0.41	-0.10
	Sto	rage (m ³)					Sto	orage (m ³)		
erflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
							noquirou			
	0.42	4.17	0.00	0.00		0.00	0.08	4.17	0.00	0.00
	0.42		0.00 overflows to: (•		0.00 overflows to: C	
0.00						0.00	•			
0.00 CB11]				Drainage Area	0.00 CB11	•			
0.00 CB11 0.030]	4.17	overflows to: (Area (Ha)	0.00 CB11 0.030	0.08	4.17	overflows to: C	
0.00 CB11 0.030	Restricted Flow Q _r (4.17 L/s)=				0.00 CB11 0.030	0.08 Restricted Flow Q _r (L	4.17 _/s)=		
0.00 CB11 0.030	Restricted Flow Q _r (5-Year Ponding	4.17 L/s)=	overflows to: (CB12/13/14	Area (Ha) C =	0.00 CB11 0.030	0.08 Restricted Flow Q _r (L 2-Year Pondi	4.17 _/s)=	overflows to: C	CB12/13/14
0.00 CB11 0.030 0.90	Restricted Flow Q _r (5-Year Ponding Peak Flow	4.17 L/s)=	overflows to: (CB12/13/14 Volume	Area (Ha) C = T _c	0.00 CB11 0.030	0.08 Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i>	4.17 _/s)=	overflows to: C	00000000000000000000000000000000000000
0.00 CB11 0.030 0.90 <i>i</i> _{5yr}	Restricted Flow Q_r (5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78 x Ci_{5yr} A$	4.17 L/s)= Q _r	overflows to: $($ 15.00	CB12/13/14 Volume 5yr	Area (Ha) C = T _c Variable	0.00 CB11 0.030 0.90 <i>i</i> _{2yr}	0.08 Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78 x Ci_{2yr} A$	4.17 _/s)= ng 	overflows to: C	CB12/13/14 Volume 2yr
0.00 CB11 0.030 0.90 i ₅yr n/hour)	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s)	4.17 L/s)= Q _r (L/s)	overflows to: $($ 15.00 $Q_p - Q_r$ (L/s)	CB12/13/14 Volume 5yr (m ³)	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i>	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} (mm/hour)	0.08 Restricted Flow Q_r (L 2-Year Pondi <i>Peak Flow</i> $Q_p = 2.78xCi_{2yr} A$ (L/s)	4.17 _/s)= ng 	overflows to: C 15.00 Q _p -Q _r (L/s)	Volume (m ³)
0.00 CB11 0.030 0.90 i₅yr n/hour) 19.47	Restricted Flow Q_r (5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 23.98	4.17 L/s)= Q _r (L/s) 15.00	overflows to: (15.00 Q _p -Q _r (L/s) 8.98	CB12/13/14 Volume 5yr (m ³) -1.08	Area (Ha) C = T _c Variable (min) -4	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} <u>(mm/hour)</u> 387.14	0.08 Restricted Flow Q_r (L 2-Year Pondi <i>Peak Flow</i> $Q_p = 2.78xCi_{2yr}A$ (L/s) 29.06	4.17 /s)= ng Q, (L/s) 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06	Volume 2yr (m ³) -3.37
0.00 CB11 0.030 0.90 <i>i</i> ₅yr <i>i</i> ₅yr <i>n/hour)</i> 19.47 30.48	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 23.98 17.30	4.17 L/s)= Q , (L/s) 15.00 15.00	overflows to: (15.00 Q _p -Q _r (L/s) 8.98 2.30	Volume 5yr (m ³) -1.08 0.00	Area (Ha) C = <i>T</i> _c <i>Variable</i> <i>(min)</i> -4 -2	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} <i>(mm/hour)</i> 387.14 229.26	0.08 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 29.06 17.21	4.17 /s)= ng Q, (L/s) 15.00 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06 2.21	Volume 2yr (m ³) -3.37 -0.26
0.00 CB11 0.030 0.90 <i>i</i> ₅yr <i>n/hour)</i> 19.47 30.48 03.51	Restricted Flow Q _r (5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 23.98 17.30 15.28	4.17 L/s)= Q _r (L/s) 15.00 15.00 15.00	overflows to: 0 15.00 Q _p -Q _r (L/s) 8.98 2.30 0.28	Volume 5yr (m ³) -1.08 0.00 0.02	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} <i>(mm/hour)</i> 387.14 229.26 192.83	0.08 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 29.06 17.21 14.47	4.17 /s)= Q r (L/s) 15.00 15.00 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06 2.21 -0.53	Volume 2yr (m ³) -3.37 -0.26 0.03
0.00 CB11 0.030 0.90 <i>i</i> _{5yr} <i>m/hour)</i> 319.47 230.48 203.51 182.69	Restricted Flow Q _r (5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 23.98 17.30 15.28 13.71	4.17 L/s)= Q _r (L/s) 15.00 15.00 15.00	overflows to: 0 15.00 Q _p -Q _r (L/s) 8.98 2.30 0.28 -1.29	Volume 5yr (m ³) -1.08 0.00 0.02 -0.15	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22	0.08 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 29.06 17.21 14.47 12.55	4.17 /s)= ng Q, (L/s) 15.00 15.00 15.00 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06 2.21 -0.53 -2.45	Volume 2yr (m ³) -3.37 -0.26 0.03 0.00
0.00 CB11 0.030 0.90 i _{5yr} m/hour) 19.47 230.48 203.51 82.69	Restricted Flow Q _r (5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 23.98 17.30 15.28	4.17 L/s)= Q _r (L/s) 15.00 15.00 15.00	overflows to: 0 15.00 Q _p -Q _r (L/s) 8.98 2.30 0.28	Volume 5yr (m ³) -1.08 0.00 0.02	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} <i>(mm/hour)</i> 387.14 229.26 192.83	0.08 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 29.06 17.21 14.47	4.17 /s)= Q r (L/s) 15.00 15.00 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06 2.21 -0.53	Volume 2yr (m ³) -3.37 -0.26 0.03
0.00 CB11 0.030 0.90 i _{5yr} m/hour) 19.47 230.48 203.51 82.69	Restricted Flow Q _r (5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 23.98 17.30 15.28 13.71 11.45	4.17 L/s)= Q _r (L/s) 15.00 15.00 15.00 15.00	overflows to: 0 15.00 Q _p -Q _r (L/s) 8.98 2.30 0.28 -1.29	Volume 5yr (m ³) -1.08 0.00 0.02 -0.15	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22	0.08 Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 29.06 17.21 14.47 12.55 10.01	4.17 /s)= ng Q, (L/s) 15.00 15.00 15.00 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06 2.21 -0.53 -2.45	Volume 2yr (m ³) -3.37 -0.26 0.03 0.00
0.00 CB11 0.030 0.90	Restricted Flow Q _r (5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 23.98 17.30 15.28 13.71 11.45	4.17 L/s)= Q _r (L/s) 15.00 15.00 15.00	overflows to: 0 15.00 Q _p -Q _r (L/s) 8.98 2.30 0.28 -1.29	Volume 5yr (m ³) -1.08 0.00 0.02 -0.15	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	0.00 CB11 0.030 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22	0.08 Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 29.06 17.21 14.47 12.55 10.01	4.17 /s)= ng Q, (L/s) 15.00 15.00 15.00 15.00	overflows to: C 15.00 Q _p -Q _r (L/s) 14.06 2.21 -0.53 -2.45	Volume 2yr (m ³) -3.37 -0.26 0.03 0.00

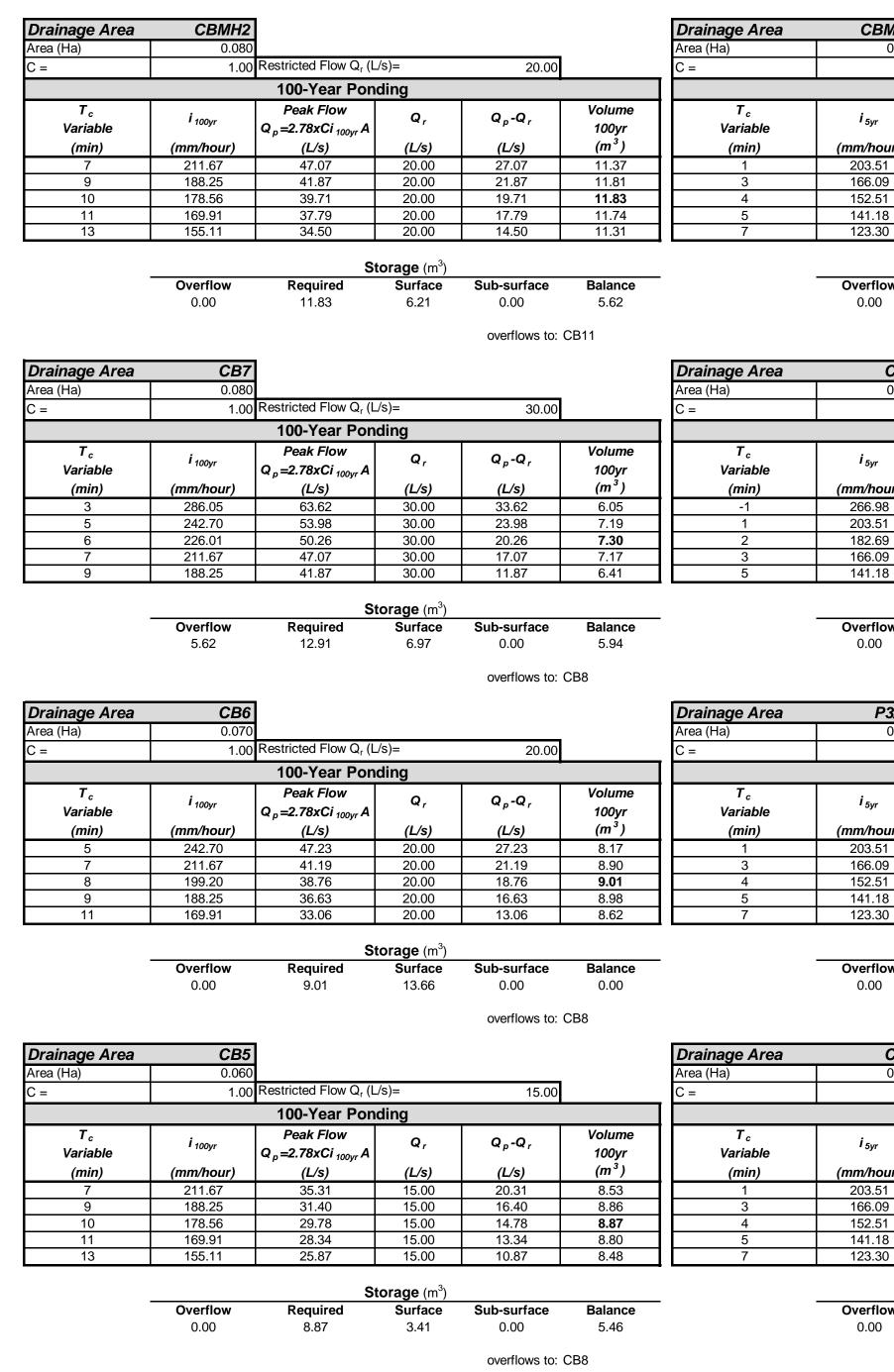
overflows to: CB12/CB13/CB14

overflows to: CB12/CB13/CB14

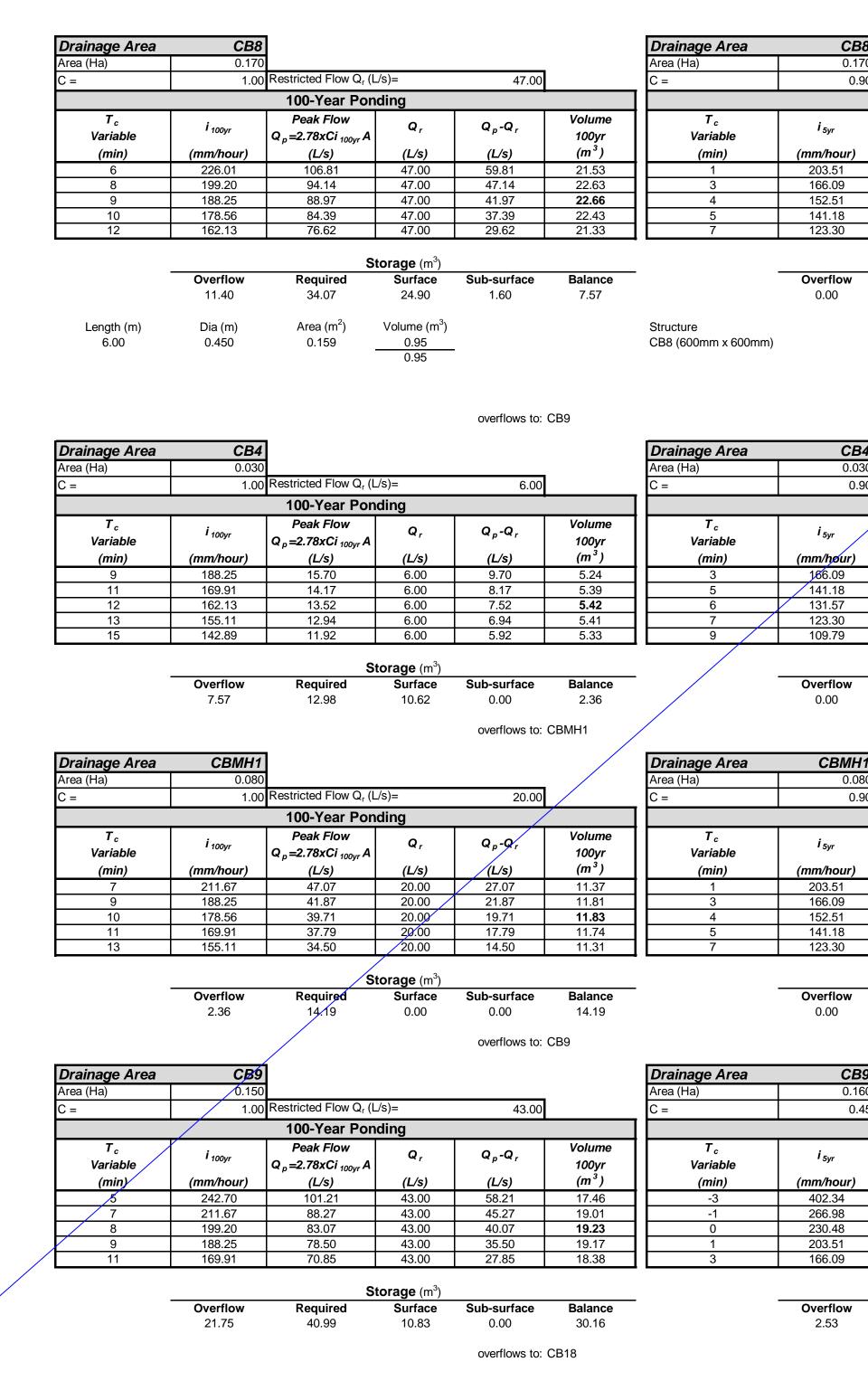
Drainaga Araa	CB42/	CB13/CB14	т			Drainaga Araa	CB42/	CB13/CB14				Drainage Area	2/0042/0044				
Drainage Area			1			Drainage Area Area (Ha)							-				
Area (Ha)	0.330	0 0 Restricted Flow Q _r (1/c)-	70.00			0.33		(c)_	72.00		Area (Ha) C =	0.330) Restricted Flow Q _r (/c)-	70.00	
C =	1.00	-		73.00		C =	0.9	-	,	73.00		C =	0.90		•	73.00	
		100-Year Por	nding	Г — Г				5-Year Ponding		1				2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q _r	Q _p - Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q _r	Q _p - Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
9	188.25	172.70	73.00	99.70	53.84	2	182.69	150.84	73.00	77.84	9.34	0	167.22	138.07	73.00	65.07	0.00
10	178.56	163.81	73.00	90.81	54.49	4	152.51	125.92	73.00	52.92	12.70	2	133.33	110.09	73.00	37.09	4.45
11	169.91	155.87	73.00	82.87	54.70	5	141.18	116.57	73.00	43.57	13.07	3	121.46	100.29	73.00	27.29	4.91
12	162.13	148.74	73.00	75.74	54.53	6	131.57	108.63	73.00	35.63	12.83	4	111.72	92.25	73.00	19.25	4.62
14	148.72	136.44	73.00	63.44	53.29	8	116.11	95.87	73.00	22.87	10.98	6	96.64	79.79	73.00	6.79	2.44
		S	Storage (m ³)					Sto	rage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	6.34	61.03	54.36	5.07	1.60		0.00	13.07	54.36	5.07	0.00		0.00	4.91	54.36	5.07	0.00
														-			
Length (m)	Dia (m)	Area (m ²)	Volume (m ³)			Structure		Depth	Area (m ²)	Volume (m ³)							
11.07	0.375	0.110	1.22			CB12 (600mm x 600mm)		1.80	0.36	0.65							
12.00	0.450	0.159	1.91			CB13 (600mm x 600mm)		1.80	0.36	0.65							
						CB14 (600mm x 600mm)		1.80	0.36	0.65							
			3.13	-		· · · · · ·				1.94							
				overflows to:	CB10					overflows to:	CB10					overflows to:	CB10
rainage Area	CB10	2				Drainage Area	CB10	ח				Drainage Area	CB10	7			
rea (Ha)	0.130					Area (Ha)	0.130					Area (Ha)	0.130				
=	1.00	0 Restricted Flow Q _r (L/s)=	45.00		C =	0.90	Restricted Flow Q _r (L/s)=	45.00		C =	0.90	0 Restricted Flow Q _r (_/s)=	45.00	
		100-Year Por	nding					5-Year Ponding	ļ					2-Year Pondi	ng		
T _c	;	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	;	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable	I _{100yr}	Q _p =2.78xCi _{100yr} A	e,	α _p -α _r	100yr	Variable	i _{5yr}	Q _p =2.78xCi _{5yr} A	Q r	$\mathbf{v}_p \cdot \mathbf{v}_r$	5yr	Variable	I _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q r	æ _p -æ _r	2yr
(min)	(mm/hour)		(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)		(L/s)	(L/s)	(m^{3})
5	242.70	87.71	45.00	42.71	12.81	-1	266.98	86.84	45.00	41.84	-2.51	-2	229.26	74.57	45.00	29.57	-3.55
6	226.01	81.68	45.00	36.68	13.20	1	203.51	66.19	45.00	21.19	1.27	0	167.22	54.39	45.00	9.39	0.00
7	211.67	76.50	45.00	31.50	13.23	2	182.69	59.42	45.00	14.42	1.73	1	148.14	48.19	45.00	3.19	0.19
8	199.20	71.99	45.00	26.99	12.96	3	166.09	54.02	45.00	9.02	1.62	2	133.33	43.37	45.00	-1.63	-0.20
10	178.56	64.53	45.00	19.53	11.72	5	141.18	45.92	45.00	0.92	0.28	4	111.72	36.34	45.00	-8.66	-2.08
			Storage (m ³)					Sta	rage (m³)						orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	5.62	18.85	6.81	0.00	12.04		0.00	1.73	6.81	0.00	0.00		Balance	#VALUE!	6.81	0.00	#VALUE!
				overflows to:						overflows to:	CD40					overflows to:	2040

	Overflow	Required	Surface	Sub-surface	Balance	_
	6.34	61.03	54.36	5.07	1.60	
Length (m)	Dia (m)	Area (m ²)	Volume (m ³)			Structure
11.07	0.375	0.110	1.22			CB12 (600mm
12.00	0.450	0.159	1.91			CB13 (600mm
						CB14 (600mm

Drainage Area	CB10					Drainage Area	
Area (Ha)	0.130				_	Area (Ha)	
C =	1.00	Restricted Flow Q _r (L/	/s)=	45.00		C =	
	•	100-Year Pond	ding				
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	
5	242.70	87.71	45.00	42.71	12.81	-1	
6	226.01	81.68	45.00	36.68	13.20	1	
7	211.67	76.50	45.00	31.50	13.23	2	
8	199.20	71.99	45.00	26.99	12.96	3	
10	178.56	64.53	45.00	19.53	11.72	5	


	ę	Storage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance
5.62	18.85	6.81	0.00	12.04

overflows to: CB18


J:\119351_4836BankSt\5.7 Calculations\5.7.1 Sewers & Grading\2nd Submission\CCS_swm_2019-10-08

overflows to: CB18

overflows to: CB18

CBMH2					Drainage Area	CBMH2				
0.080					Area (Ha)	0.080				
	Restricted Flow Q _r (L	_/s)=	20.00		C =		Restricted Flow Q _r (L	_/s)=	20.00	
	5-Year Ponding						2-Year Pondi	ng	- -	
i.	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i.	Peak Flow	Q,	$Q_p - Q_r$	Volume
i _{5yr}	Q _p =2.78xCi _{5yr} A	æ _r	Q _p -Q _r	5yr	Variable	i _{2yr}	Q _p =2.78xCi _{2yr} A	α _r	Q _p -Q _r	2yr
nm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
203.51	40.73	20.00	20.73	1.24	-1	192.83	38.60	20.00	18.60	-1.12
166.09 152.51	33.24 30.53	20.00 20.00	13.24 10.53	2.38 2.53	2	148.14 133.33	29.65 26.69	20.00 20.00	9.65 6.69	0.58 0.80
141.18	28.26	20.00	8.26	2.48	3	121.46	24.31	20.00	4.31	0.78
123.30	24.68	20.00	4.68	1.97	5	103.57	20.73	20.00	0.73	0.22
		2					_	2		
		rage (m ³)	0.1	Delever		0()		orage (m ³)	0.1	Dalaasa
Overflow 0.00	Required 2.53	Surface 6.21	Sub-surface 0.00	Balance 0.00		Overflow 0.00	Required 0.80	Surface 6.21	Sub-surface 0.00	Balance 0.00
CB7					Drainage Area	CB7				
0.080		/ >			Area (Ha)	0.080				
0.90	Restricted Flow Q _r (L		30.00		C =	0.90	Restricted Flow Q _r (L	·	30.00	
	5-Year Ponding		1				2-Year Pondi	ng		
i _{5yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume
	$Q_p = 2.78 \times Ci_{5yr} A$			5yr (m³)	Variable		$Q_p = 2.78 \times Ci_{2yr} A$			2yr (m ³)
1<i>m/hour)</i> 266.98	(L/s) 53.44	<i>(L/s)</i> 30.00	(L/s) 23.44	(<i>m⁺</i>) -1.41	<u>(min)</u> -3	(<i>mm/hour)</i> 285.77	(L/s) 57.20	<i>(L/s)</i> 30.00	(L/s) 27.20	(<i>m</i> ⁻) -4.90
266.98 203.51	53.44 40.73	30.00	10.73	0.64	-3 -1		38.60	30.00	8.60	-4.90 -0.52
182.69	36.57	30.00	6.57	0.0 4	0	167.22	33.47	30.00	3.47	0.02
166.09	33.24	30.00	3.24	0.58	1	148.14	29.65	30.00	-0.35	-0.02
141.18	28.26	30.00	-1.74	-0.52	3	121.46	24.31	30.00	-5.69	-1.02
	Stor	1 1 1 1 1 1 1 1 1 1					64	10000 (m ³)		
verflow	Required	rage (m ³) Surface	Sub-surface	Balance		Overflow	Required	orage (m ³) Surface	Sub-surface	Balance
	0.79	6.97	0.00	0.00		0.00	0.00	6.97	0.00	0.00
0.00	0.75	0.0.	0.00	0.00		0.00	0.00	0.07	0.00	
0.00	0.75							0.01		
0.00	0.15		overflows to: (0.01	overflows to: 0	CB8
	0.75				Drainage Area			0.07		CB8
0.00 P3/L3 0.160	0.15				Drainage Area Area (Ha)	CB6 0.070		0.07		CB8
P3/L3 0.160	Restricted Flow Q _r (L					CB6 0.070	Restricted Flow Q _r (L			CB8
P3/L3 0.160		_/s)=	overflows to: (Area (Ha)	CB6 0.070		/s)=	overflows to: 0	CB8
P3/L3 0.160 0.45	Restricted Flow Q _r (L	_/S)=	overflows to: (20.00		Area (Ha) C =	CB6 0.070 0.45	Restricted Flow Q _r (L	_/s)= ng	overflows to: (20.00	CB8 Volume
P3/L3 0.160 0.45	Restricted Flow Q _r (L 5-Year Ponding	_/s)=	overflows to: (CB8 Volume 5yr	Area (Ha)	CB6 0.070	Restricted Flow Q _r (L 2-Year Pondi	/s)=	overflows to: 0	
P3/L3 0.160 0.45 i _{5yr}	Restricted Flow Q _r (L 5-Year Ponding Peak Flow	_/S)=	overflows to: (20.00	CB8 Volume	Area (Ha) C = T _c	CB6 0.070 0.45	Restricted Flow Q _r (L 2-Year Pondi n <i>Peak Flow</i>	_/s)= ng	overflows to: (20.00	Volume
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅ _{yr} <i>m/hour)</i> 203.51	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q</i> _p =2.78xCi _{5yr} A	_/S)= 	overflows to: (20.00 $Q_{p}-Q_{r}$	CB8 Volume 5yr	Area (Ha) C = T _c Variable	CB6 0.070 0.45 i _{2yr}	Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78 x Ci_{2yr} A$	_/s)= ng Q ,	overflows to: $Q_p - Q_r$	Volume 2yr
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅yr <i>im/hour)</i> 203.51 166.09	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q</i> _p =2.78xCi _{5yr} <i>A</i> (L/s) 40.73 33.24	_/S)= Q _r (L/S) 20.00 20.00	overflows to: (20.00 Q _p -Q _r (L/s) 20.73 13.24	CB8 Volume 5yr (m ³) 1.24 2.38	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08	_/s)= ng 	overflows to: 0 20.00 Q _p -Q _r (L/s) 13.90 0.08	Volume 2yr (m ³) -3.34 -0.01
<i>P3/L3</i> 0.160 0.45 <i>i₅yr</i> <i>i₅yr</i> 203.51 166.09 152.51	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53	_/s)= Q , <u>(L/s)</u> 20.00 20.00 20.00	overflows to: (20.00 Q _p - Q _r (L/s) 20.73 13.24 10.53	Volume 5yr (m ³) 1.24 2.38 2.53	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89	_/s)= ng Q , (L/s) 20.00 20.00 20.00	overflows to: 0 20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11	Volume 2yr (m ³) -3.34 -0.01 0.19
<i>P3/L3</i> 0.160 0.45 <i>i₅yr</i> <i>m/hour)</i> 203.51 166.09 152.51 141.18	Restricted Flow Q _r (L 5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00	overflows to: (20.00 20.00 (L/s) 20.73 13.24 10.53 8.26	Volume 5yr (m ³) 1.24 2.38 2.53 2.48	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	CB6 0.070 0.45 <i>i</i> _{2yr} (mm/hour) 387.14 229.26 192.83 167.22	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00	overflows to: 0 20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11 -5.36	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅yr <i>i</i> 5yr 203.51 166.09 152.51 141.18	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26 24.68	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00	overflows to: (20.00 Q _p - Q _r (L/s) 20.73 13.24 10.53	Volume 5yr (m ³) 1.24 2.38 2.53	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68	/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00	overflows to: 0 20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11	Volume 2yr (m ³) -3.34 -0.01 0.19
P3/L3 0.160 0.45 <i>i</i> _{5yr} m/hour) 203.51 166.09 152.51 141.18 123.30	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26 24.68 Stor	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 7 age (m ³)	overflows to: 0 20.00 Q _p -Q _r (L/s) 20.73 13.24 10.53 8.26 4.68	Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 prage (m ³)	20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00
<i>P3/L3</i> 0.160 0.45 <i>i</i> _{5yr} <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30 verflow	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p=2.78xCi</i> _{5yr} <i>A</i> <i>(L/s)</i> 40.73 33.24 30.53 28.26 24.68 Stor Required	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface	overflows to: (20.00 Qp-Qr (L/s) 20.73 13.24 10.53 8.26 4.68	CB8 Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97 Balance	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	20.00 Qp-Qr (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance
P3/L3 0.160 0.45 i _{5yr} 203.51 166.09 152.51 141.18 123.30	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26 24.68 Stor	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 7 age (m ³)	overflows to: 0 20.00 Q _p -Q _r (L/s) 20.73 13.24 10.53 8.26 4.68	Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 prage (m ³)	20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00
<i>P3/L3</i> 0.160 0.45 <i>i</i> _{5yr} <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p=2.78xCi</i> _{5yr} <i>A</i> <i>(L/s)</i> 40.73 33.24 30.53 28.26 24.68 Stor Required	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface	overflows to: (20.00 Qp-Qr (L/s) 20.73 13.24 10.53 8.26 4.68	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	20.00 Qp-Qr (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅yr <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30 <i>verflow</i> 0.00	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p=2.78xCi</i> _{5yr} <i>A</i> <i>(L/s)</i> 40.73 33.24 30.53 28.26 24.68 Stor Required	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface	overflows to: (20.00 Q _p -Q _r (L/s) 20.73 13.24 10.53 8.26 4.68	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0 2	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33 Overflow 0.00	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00
<i>P3/L3</i> 0.160 0.45 <i>i</i> _{5yr} <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30 verflow	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p=2.78xCi</i> _{5yr} <i>A</i> <i>(L/s)</i> 40.73 33.24 30.53 28.26 24.68 Stor Required	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface	overflows to: (20.00 Q _p -Q _r (L/s) 20.73 13.24 10.53 8.26 4.68	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -4 -2 -1 0	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00
P3/L3 0.160 0.45 i _{5yr} 203.51 166.09 152.51 141.18 123.30 verflow 0.00	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p=2.78xCi</i> _{5yr} <i>A</i> <i>(L/s)</i> 40.73 33.24 30.53 28.26 24.68 Stor Required	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	overflows to: (20.00 Q _p -Q _r (L/s) 20.73 13.24 10.53 8.26 4.68	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = <i>T_c</i> <i>Variable</i> (min) -4 -2 -1 0 2 <i>Drainage Area</i>	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33 Overflow 0.00	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 Drage (m ³) Surface 13.66	20.00 Q _p -Q _r (L/s) 13.90 0.08 -3.11 -5.36 -8.32	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00
P3/L3 0.160 0.45 i _{5yr} 203.51 166.09 152.51 141.18 123.30 verflow 0.00	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 Sub-surface 0.00 overflows to: 0	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97	Area (Ha) C = T _c Variable (min) -4 -2 -1 0 2	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33 Overflow 0.00	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19	/s)= ng Q, (L/s) 20.00 20	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00
P3/L3 0.160 0.45 i _{5yr} 203.51 166.09 152.51 141.18 123.30 verflow 0.00 CB5 0.060 0.90	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i>	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66	20.00 Qp-Qr (L/s) 20.73 13.24 10.53 8.26 4.68 Sub-surface 0.00 overflows to: 15.00	Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8	Area (Ha) C = <i>T_c</i> <i>Variable</i> (min) -4 -2 -1 0 2 <i>Drainage Area</i> Area (Ha) C = <i>T_c</i>	CB6 0.070 0.45 <i>i</i> _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 Overflow 0.00	Restricted Flow Qr (L 2-Year Pondin Peak Flow Qp = 2.78xCi 2yr A (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Qr (L 2-Year Pondin Peak Flow	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 prage (m ³) Surface 13.66	20.00 Qp-Qr (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅yr <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30 verflow 0.00 CB5 0.060 0.90	Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q _r (L 5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 Sub-surface 0.00 overflows to: 0 15.00	Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8	Area (Ha) C = T _c Variable (min) -4 -2 -1 0 2 Drainage Area Area (Ha) C = T _c Variable	СВ6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33 Оverflow 0.00 СВ5 0.060 0.90	Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 prage (m ³) Surface 13.66 13.66	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8
P3/L3 0.160 0.45 i 5yr m/hour) 203.51 166.09 152.51 141.18 123.30 verflow 0.00 0.060 0.90 i 5yr m/hour)	Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s)	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 4.68 0.00 overflows to: (0) 0.00 15.00 4.53	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m³)	Area (Ha) C = T_c Variable (min) -4 -2 -1 0 2 Drainage Area Area (Ha) C = T_c Variable (min)	CB6 0.070 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 387.14 229.26 192.83 167.22 133.33 Overflow 0.00 CB5 0.060 0.90	Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s)	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 prage (m ³) Surface 13.66	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 $Q_p - Q_r$ (L/s)	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8
P3/L3 0.160 0.45 i _{5yr} m/hour) 203.51 166.09 152.51 141.18 123.30 verflow 0.00 verflow 0.00 0.90 i _{5yr} i _{5yr}	Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 30.55	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 4.68 0.00 overflows to: 0 0.00 0.00 15.00 15.55	CB8 Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m ³) 0.93	Area (Ha) C = T _c Variable (min) -4 -2 -1 0 2 Drainage Area Area (Ha) C = T _c Variable	CB6 0.070 0.45 i _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 0verflow 0.00 0.00 0.00 0.00 0.90	Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 28.95	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 0 20.00 0 20.00 0 0 0 0 0 0 0 0 0 0 0 0	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 $Q_p - Q_r$ (L/s) 13.95	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84
P3/L3 0.160 0.45 i _{5yr} m/hour) 203.51 166.09 152.51 141.18 123.30 verflow 0.00 0.060 0.90 i _{5yr} m/hour) 203.51 166.09	Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 30.55 24.93	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66 Q , (L/s) 15.00 15.00	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 Sub-surface 0.00 overflows to: 15.00 15.00 15.55 9.93	CB8 Volume 5yr (m ³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m ³) 0.93 1.79	Area (Ha) C = T_c Variable (min) -4 -2 -1 0 2 Drainage Area Area (Ha) C = T_c Variable (min) -1 1	CB6 0.070 0.45 i _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 0verflow 0.00 CB5 0.060 0.000 i _{2yr} (mm/hour) 192.83 148.14	Restricted Flow Q_r (L 2-Year Pondia Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondia Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 28.95 22.24	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 prage (m ³) Surface 13.66 /s)= ng Q, (L/s) 15.00 15.00	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 $Q_p - Q_r$ (L/s) 13.95 7.24	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84 0.43
P3/L3 0.160 0.45 i _{5yr} m/hour) 203.51 166.09 152.51 141.18 123.30 verflow 0.00 0.000 i _{5yr} 0.000 i _{5yr} 0.000 152.51 146.09 152.51 166.09 152.51	Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 30.55 24.93 22.89	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66 Q , (L/s) 15.00 15.00 15.00	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 Sub-surface 0.00 overflows to: 15.00 15.00 15.55 9.93 7.89	Volume 5yr (m³) 1.24 2.38 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m³) 0.00 CB8	Area (Ha) C = T_c Variable (min) -4 -2 -1 0 2 Drainage Area Area (Ha) C = T_c Variable (min) -1 1 2	CB6 0.070 0.45 i _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 0Verflow 0.00 0.00 0.00 0.00 0.90 i _{2yr} (mm/hour) 192.83 148.14 133.33	Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 28.95 22.24 20.02	_/s)= ng Q, (L/s) 20.00 13.66	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 $Q_p - Q_r$ (L/s) 13.95 7.24 5.02	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84 0.43 0.60
P3/L3 0.160 0.45 i₅yr m/hour) 203.51 166.09 152.51 141.18 123.30 verflow 0.00 0.90 i₅yr m/hour) 203.51 166.09 152.51 141.18 203.51 166.09 152.51 141.18	Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 30.55 24.93 22.89 21.19	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66 C C C C C C C C	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 4.68 0.00 overflows to: 0 0.00 overflows to: 0 15.00 15.00 7.89 6.19	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m³) 0.00 CB8	Area (Ha) C = T _c Variable (min) -4 -2 -1 0 2	CB6 0.070 0.45 i _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 167.22 133.33 0.000 CVerflow 0.00 0.00 0.90 i _{2yr} (mm/hour) 192.83 148.14 133.33 121.46	Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 28.95 22.24 20.02 18.23	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 prage (m ³) Surface 13.66 13.66 √s)= ng Q, (L/s) 15.00 15.00 15.00 15.00	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 45.00 13.95 7.24 5.02 3.23	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84 0.43 0.60 0.58
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅yr <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30 <i>Dverflow</i> 0.00	Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 30.55 24.93 22.89	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66 Q , (L/s) 15.00 15.00 15.00	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 Sub-surface 0.00 overflows to: 15.00 15.00 15.55 9.93 7.89	Volume 5yr (m³) 1.24 2.38 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m³) 0.00 CB8	Area (Ha) C = T_c Variable (min) -4 -2 -1 0 2 Drainage Area Area (Ha) C = T_c Variable (min) -1 1 2	CB6 0.070 0.45 i _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 0Verflow 0.00 0.00 0.00 0.00 0.90 i _{2yr} (mm/hour) 192.83 148.14 133.33	Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondin Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 28.95 22.24 20.02	_/s)= ng Q, (L/s) 20.00 13.66	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 $Q_p - Q_r$ (L/s) 13.95 7.24 5.02	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84 0.43 0.60
<i>P3/L3</i> 0.160 0.45 <i>i</i> ₅yr <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30 <i>Pverflow</i> 0.00 0.90 <i>i</i> ₅yr <i>i</i> ₅yr <i>m/hour)</i> 203.51 166.09 152.51 141.18 123.30	Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 30.55 24.93 22.89 21.19 18.51	_/s)= Q , (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66 C /s)= Q , (L/s) 15.00 15.	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 4.68 0.00 overflows to: 0 15.00 4.68 15.00 15.00 15.00 15.00 15.55 9.93 7.89 6.19 3.51	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8 Volume 5yr 0.00 CB8 Volume 5yr 1.79 1.89 1.86 1.47	Area (Ha) C = T _c Variable (min) -4 -2 -1 0 2	CB6 0.070 0.45 <i>i</i> _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 167.22 133.33 0.000 0.00 0.00 0.00 0.00 0.90 <i>CB5</i> 0.060 0.90 <i>CB5</i> 0.060 0.90 <i>i</i> _{2yr} (mm/hour) 192.83 148.14 133.33 121.46 103.57	Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 28.95 22.24 20.02 18.23 15.55	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 20.00 crage (m ³) Surface 13.66 13.66 13.66 Q, (L/s) 15.00 15	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 13.95 7.24 5.02 3.23 0.55	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84 0.43 0.60 0.58 0.16
P3/L3 0.160 0.45 i 5yr 203.51 166.09 152.51 141.18 123.30 Overflow 0.00 0.00 0.90 i 5yr i 5yr 166.09 152.51 166.09 152.51 166.09	Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 40.73 33.24 30.53 28.26 24.68 Stor Required 2.53 Restricted Flow Q_r (L 5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 30.55 24.93 22.89 21.19 18.51	_/s)= Q _r (L/s) 20.00 20.00 20.00 20.00 20.00 rage (m ³) Surface 13.66 13.66 C C C C C C C C	20.00 $Q_p - Q_r$ (L/s) 20.73 13.24 10.53 8.26 4.68 4.68 0.00 overflows to: 0 0.00 overflows to: 0 15.00 15.00 7.89 6.19	Volume 5yr (m³) 1.24 2.38 2.53 2.48 1.97 Balance 0.00 CB8 Volume 5yr (m³) 0.00 CB8	Area (Ha) C = T _c Variable (min) -4 -2 -1 0 2	CB6 0.070 0.45 i _{2yr} (mm/hour) 387.14 229.26 192.83 167.22 133.33 167.22 133.33 0.000 CVerflow 0.00 0.00 0.90 i _{2yr} (mm/hour) 192.83 148.14 133.33 121.46	Restricted Flow Q _r (L Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 33.90 20.08 16.89 14.64 11.68 Sto Required 0.19 Restricted Flow Q _r (L Peak Flow Q _p = 2.78xCi _{2yr} A (L/s) 28.95 22.24 20.02 18.23 15.55	/s)= ng Q, (L/s) 20.00 20.00 20.00 20.00 20.00 0 20.00 0 20.00 13.66 Mg 13.60 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00	20.00 $Q_p - Q_r$ (L/s) 13.90 0.08 -3.11 -5.36 -8.32 Sub-surface 0.00 overflows to: 0 15.00 45.00 13.95 7.24 5.02 3.23	Volume 2yr (m ³) -3.34 -0.01 0.19 0.00 -1.00 Balance 0.00 CB8 Volume 2yr (m ³) -0.84 0.43 0.60 0.58

CB8	1				Drainage Area	CB8	1			
0.170					Area (Ha)	0.170				
0.90	Restricted Flow Q_r (_/s)=	47.00		C =	0.90	Restricted Flow Q _r (L	_/s)=	47.00	
	5-Year Ponding						2-Year Pondi	ng		
i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	<i>T</i> _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
	$Q_p = 2.78 \times Ci_{5yr} A$			5yr (m ³)	Variable		$Q_p = 2.78 \times Ci_{2yr} A$			2yr (m ³)
n/hour) 03.51	(L/s) 86.56	(L/s) 47.00	(L/s) 39.56	2.37	(min) -1	(<i>mm/hour)</i> 192.83	(L/s) 82.02	(L/s) 47.00	(L/s) 35.02	-2.10
6.09	70.64	47.00	23.64	4.26	1	148.14	63.01	47.00	16.01	0.96
52.51	64.87	47.00	17.87	4.29	2	133.33	56.71	47.00	9.71	1.17
41.18	60.05	47.00	13.05	3.91	3	121.46	51.66	47.00	4.66	0.84
23.30	52.45	47.00	5.45	2.29	5	103.57	44.05	47.00	-2.95	-0.88
	Sto	r age (m³)					Sto	orage (m ³)		
erflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
0.00	4.29	24.90	1.60	0.00		0.00	1.17	24.90	1.60	0.00
	Depth	Area (m ²)	Volume (m ³)							
	1.80	0.36	0.65							
			0.65							
CB4	/				Drainage Area	CB4	1			
0.030					Area (Ha)	0.030				
0.90	Restricted Flow Q _r (_/s)=	6.00		C =	0.90	Restricted Flow Q _r (L		6.00	
	5-Year Ponding	1					2-Year Pondi	ng		
i _{5yr}	Peak Flow	\mathbf{Q}_r	$Q_p - Q_r$	Volume	<i>T</i> _c	i _{2yr}	Peak Flow	Qr	$Q_p - Q_r$	Volume
	$Q_p = 2.78 \times Ci_{5yr} A$			5yr	Variable		$Q_p = 2.78 \times Ci_{2yr} A$			2yr
n/høur) 36.09	(L/s) 12.47	(L/s) 6.00	(L/s) 6.47	(m ³) 1.16	(min) 1	(<i>mm/hour)</i> 148.14	(L/s) 11.12	(L/s) 6.00	(L/s) 5.12	(m ³) 0.31
41.18	10.60	6.00	4.60	1.38	3	121.46	9.12	6.00	3.12	0.56
31.57	9.88	6.00	3.88	1.40	4	111.72	8.39	6.00	2.39	0.57
23.30	9.26	6.00	3.26	1.37	5	103.57	7.77	6.00	1.77	0.53
)9.79	8.24	6.00	2.24	1.21	7	90.66	6.81	6.00	0.81	0.34
	Sto	r age (m ³)					St/	orage (m ³)		
erflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
0.00	1.40	10.62	0.00	0.00		0.00	0.57	10.62	0.00	0.00
			overflows to:	CBMH1					overflows to: C	BMH1
	_						_			
CBMH1					Drainage Area	CBMH1				
0.080	Restricted Flow Q _r (/c)-	20.00		Area (Ha)	0.080	Restricted Flow Q _r (L	/c)-	20.00	
0.90	5-Year Ponding	•	20.00		C =	0.90	2-Year Pondi	•	20.00	
	Peak Flow	1		Volume	T _c	_	Peak Flow			Volume
i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q _r	Q _p - Q _r	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q _r	Q _p - Q _r	2yr
n/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
03.51	40.73	20.00	20.73	1.24	-1	192.83	38.60	20.00	18.60	-1.12
66.09	33.24	20.00	13.24	2.38	1	148.14	29.65	20.00	9.65	0.58
52.51 41.18	30.53 28.26	20.00 20.00	10.53 8.26	2.53 2.48	2 3	133.33 121.46	26.69 24.31	20.00 20.00	6.69 4.31	0.80 0.78
23.30	24.68	20.00	4.68	1.97	5	103.57	20.73	20.00	0.73	0.78
	L									
		rage (m ³)						orage (m ³)		
	Required 2.53	Surface 0.00	Sub-surface 0.00	Balance 2.53		Overflow 0.00	Required 0.80	Surface 0.00	Sub-surface 0.00	Balance 0.80
		0.00	0.00	2.00		0.00	0.00	0.00	0.00	0.00
	2.00		overflows to:	CB9					overflows to: C	CB9
	2.00									
0.00	_				Drainage Area		1			
]				Drainage Area Area (Ha)	CB9 0.150				
0.00 CB9 0.160]	_/s)=	43.00			0.150		_/s)=	43.00	
0.00 CB9 0.160			43.00		Area (Ha)	0.150			43.00	
0.00 CB9 0.160 0.45	Restricted Flow Q _r (Volume	Area (Ha)	0.150 0.45	Restricted Flow Q _r (L	ng		Volume
0.00 CB9 0.160 0.45	Restricted Flow Qr (5-Year Ponding		43.00 Q _p - Q _r	5yr	Area (Ha) C =	0.150	Restricted Flow Q _r (L 2-Year Pondi		43.00 Q _p - Q _r	2yr
0.00 CB9 0.160 0.45 i ₅yr j, 5yr	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s)		Q _p -Q _r (L/s)	5yr (m³)	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i>	0.150 0.45 i _{2yr} (mm/hour)	Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s)	ng	Q _p -Q _r (L/s)	2yr (m³)
0.00 CB9 0.160 0.45 i ₅yr p/hour) 02.34	Restricted Flow Q_r (5-Year Ponding <i>Peak Flow</i> $Q_p = 2.78xCi_{5yr}A$ (L/s) 80.53	Q _r (L/s) 43.00	Q _p -Q _r (L/s) 37.53	5yr (m ³) -6.76	Area (Ha) C = T _c Variable (min) -3	0.150 0.45 <i>i</i> _{2yr} (mm/hour) 285.77	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 53.62	ng Q, <u>(L/s)</u> 43.00	Q _p - Q _r (L/s) 10.62	2yr (m ³) -1.91
0.00 CB9 0.160 0.45 <i>5yr</i> <i>5yr</i> <i>1</i> /hour) 02.34 66.98	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 80.53 53.44	Q _r (L/s) 43.00 43.00	Q _p - Q _r (L/s) 37.53 10.44	5yr (m ³) -6.76 -0.63	Area (Ha) C = <i>T</i> _c <i>Variable</i> <i>(min)</i> -3 -1	0.150 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 285.77 192.83	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 53.62 36.18	ng Q, (L/s) 43.00 43.00	Q _p - Q _r (L/s) 10.62 -6.82	2yr (m ³) -1.91 0.41
0.00 CB9 0.160 0.45 <i>i</i> ₅yr <i>n</i> /hour) 02.34 66.98 30.48	Restricted Flow Q _r (5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 80.53 53.44 46.13	Q _r (L/s) 43.00 43.00 43.00	Q _p -Q _r (L/s) 37.53 10.44 3.13	5yr (m ³) -6.76 -0.63 0.00	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -3 -1 0	0.150 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 285.77 192.83 167.22	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 53.62 36.18 31.38	Q , (L/s) 43.00 43.00 43.00	Q _p - Q _r (L/s) 10.62 -6.82 -11.62	2yr (m ³) -1.91 0.41 0.00
0.00 CB9 0.160 0.45 i ₅yr n/hour) 02.34 66.98 30.48 03.51	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 80.53 53.44	Q _r (L/s) 43.00 43.00	Q _p - Q _r (L/s) 37.53 10.44	5yr (m ³) -6.76 -0.63	Area (Ha) C = <i>T</i> _c <i>Variable</i> <i>(min)</i> -3 -1	0.150 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 285.77 192.83	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 53.62 36.18	ng Q, (L/s) 43.00 43.00	Q _p - Q _r (L/s) 10.62 -6.82	2yr (m ³) -1.91 0.41
0.00 CB9 0.160 0.45 i _{5yr} n/hour) 02.34 66.98 30.48 03.51	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 80.53 53.44 46.13 40.73 33.24	Q _r (L/s) 43.00 43.00 43.00 43.00 43.00	Q _p - Q _r (L/s) 37.53 10.44 3.13 -2.27	5yr (m ³) -6.76 -0.63 0.00 -0.14	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -3 -1 0 1	0.150 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 285.77 192.83 167.22 148.14	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 53.62 36.18 31.38 27.80 22.79	Q _r (L/s) 43.00 43.00 43.00 43.00 43.00	Q _p - Q _r (L/s) 10.62 -6.82 -11.62 -15.20	2yr (m ³) -1.91 0.41 0.00 -0.91
0.00 CB9 0.160 0.45 i _{5yr} n/hour) 02.34 66.98 30.48 03.51 66.09	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 80.53 53.44 46.13 40.73 33.24 Sto	Q _r (<i>L/s</i>) 43.00 43.00 43.00 43.00 43.00	Q _p - Q _r (L/s) 37.53 10.44 3.13 -2.27 -9.76	5yr (m ³) -6.76 -0.63 0.00 -0.14 -1.76	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -3 -1 0 1	0.150 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 285.77 192.83 167.22 148.14 121.46	Restricted Flow Q_r (L 2-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 53.62 36.18 31.38 27.80 22.79 Ste	Q , (L/s) 43.00 43.00 43.00 43.00 43.00 5000 (m ³)	Q _p - Q _r (L/s) 10.62 -6.82 -11.62 -15.20 -20.21	(m ³) -1.91 0.41 0.00 -0.91 -3.64
0.160	Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 80.53 53.44 46.13 40.73 33.24	Q _r (L/s) 43.00 43.00 43.00 43.00 43.00	Q _p - Q _r (L/s) 37.53 10.44 3.13 -2.27	5yr (m ³) -6.76 -0.63 0.00 -0.14	Area (Ha) C = <i>T_c</i> <i>Variable</i> <i>(min)</i> -3 -1 0 1	0.150 0.45 <i>i</i> _{2yr} (<i>mm/hour</i>) 285.77 192.83 167.22 148.14	Restricted Flow Q _r (L 2-Year Pondin Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 53.62 36.18 31.38 27.80 22.79	Q _r (L/s) 43.00 43.00 43.00 43.00 43.00	Q _p - Q _r (L/s) 10.62 -6.82 -11.62 -15.20	2yr (m ³) -1.91 0.41 0.00 -0.91

Drainage Area	CB18					Drainage Area	CB18					Drainage Area	CB18				
Area (Ha)	0.160					Area (Ha)	0.160				_	Area (Ha)	0.160)			
C =	0.25	Restricted Flow Q _r (L/	s)=	15.00		C =	0.20	Restricted Flow Q_r ((L/s)=	15.00		C =	0.20) Restricted Flow Q _r (L	_/s)=	15.00	
		100-Year Pond	ling					5-Year Ponding	J					2-Year Pondi	ng	-	
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q _r	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q _r	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q _r	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
3	286.05	31.81	15.00	16.81	3.03	-2	319.47	28.42	15.00	13.42	-1.61	-3	285.77	25.42	15.00	10.42	-1.88
5	242.70	26.99	15.00	11.99	3.60	0	230.48	20.50	15.00	5.50	0.00	-1	192.83	17.15	15.00	2.15	-0.13
6	226.01	25.13	15.00	10.13	3.65	1	203.51	18.10	15.00	3.10	0.19	0	167.22	14.88	15.00	-0.12	0.00
7	211.67	23.54	15.00	8.54	3.59	2	182.69	16.25	15.00	1.25	0.15	1	148.14	13.18	15.00	-1.82	-0.11
9	188.25	20.93	15.00	5.93	3.20	4	152.51	13.57	15.00	-1.43	-0.34	3	121.46	10.81	15.00	-4.19	-0.76

Overflow	Required	Surface	Sub-surface	Balance
42.19	45.84	13.76	46.33	0.00

Subsurface storage calculation

450mm subdrain @ 96m

Bottom of storage medium ave. grade width of S29 trench depth of S29 trench (below spill elev.) Volume of S29 trench Volume of clear stone 25mm clear stone per S29 Stoage within clear stone 15.30 m³ 98.00 m 1.00 m 1.01 m 96.96 m³ 81.66 m³ 0.38 void ratio 31.03 m³

Drainage AreaRAArea (Ha)0.300Area (Ha)0.300		¥	RA		
		Area (Ha) 0.	300		
C = 1.00 Restricted Flow Q _r (L/s)= 27.00 C = 0.90 Restricted Flow Q _r (L/s)=	27.00	C = (.90 Restricted Flow Q _r (L/s)=	27.00	
100-Year Ponding 5-Year Ponding			2-Year Ponding		
T_c Variable i_{100yr} Peak Flow $Q_p=2.78xCi_{100yr}A$ Q_r Q_p-Q_r Volume 100yr T_c Volume i_{5yr} Peak Flow $Q_p=2.78xCi_{5yr}A$ Q_r	Q _p -Q _r 5yr	Т _с i _{2yr} Variable	$\begin{array}{c c} Peak Flow \\ Q_p = 2.78 x Ci_{2yr} A \end{array} \qquad Q_r$	Q _p -Q _r	Volume 2yr
(min) (mm/hour) (L/s) (L/s) (L/s) (m^3) (min) (mm/hour) (L/s) (L/s)	(L/s) (m ³)	(min) (mm/hour	(L/s) (L/s)	(L/s)	(m³)
25 103.85 86.61 27.00 59.61 89.41 13 90.63 68.03 27.00	41.03 32.00	8 85.46	64.14 27.00	37.14	17.83
26 101.18 84.38 27.00 57.38 89.52 14 86.93 65.25 27.00	38.25 32.13	10 76.81	57.65 27.00	30.65	18.39
27 98.66 82.28 27.00 55.28 89.56 15 83.56 62.72 27.00	35.72 32.15	11 73.17	54.92 27.00	27.92	18.43
28 96.27 80.29 27.00 53.29 89.53 16 80.46 60.39 27.00	33.39 32.06	12 69.89	52.46 27.00	25.46	18.33
29 94.01 78.41 27.00 51.41 89.45 17 77.61 58.25 27.00	31.25 31.88	14 64.23	48.21 27.00	21.21	17.82

	\$	Storage (m ³)				St	orage (m ³)					S	torage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance	_	Overflow	Required	Surface	Sub-surface	Balance
0.00	89.56	90.00	0.00	0.00	0.00	32.15	90.00	0.00	0.00		0.00	18.43	90.00	0.00	0.00

J:\119351_4836BankSt\5.7 Calculations\5.7.1 Sewers & Grading\2nd Submission\CCS_swm_2019-10-08

	Sto	orage (m ³)			Storage (m ³)
Overflow	Required	Surface	Sub-surface	Balance	Overflow Required Surface Sub-surface Balance
0.00	0.19	13.76	46.33	0.00	0.00 0.00 13.76 46.33 0.00

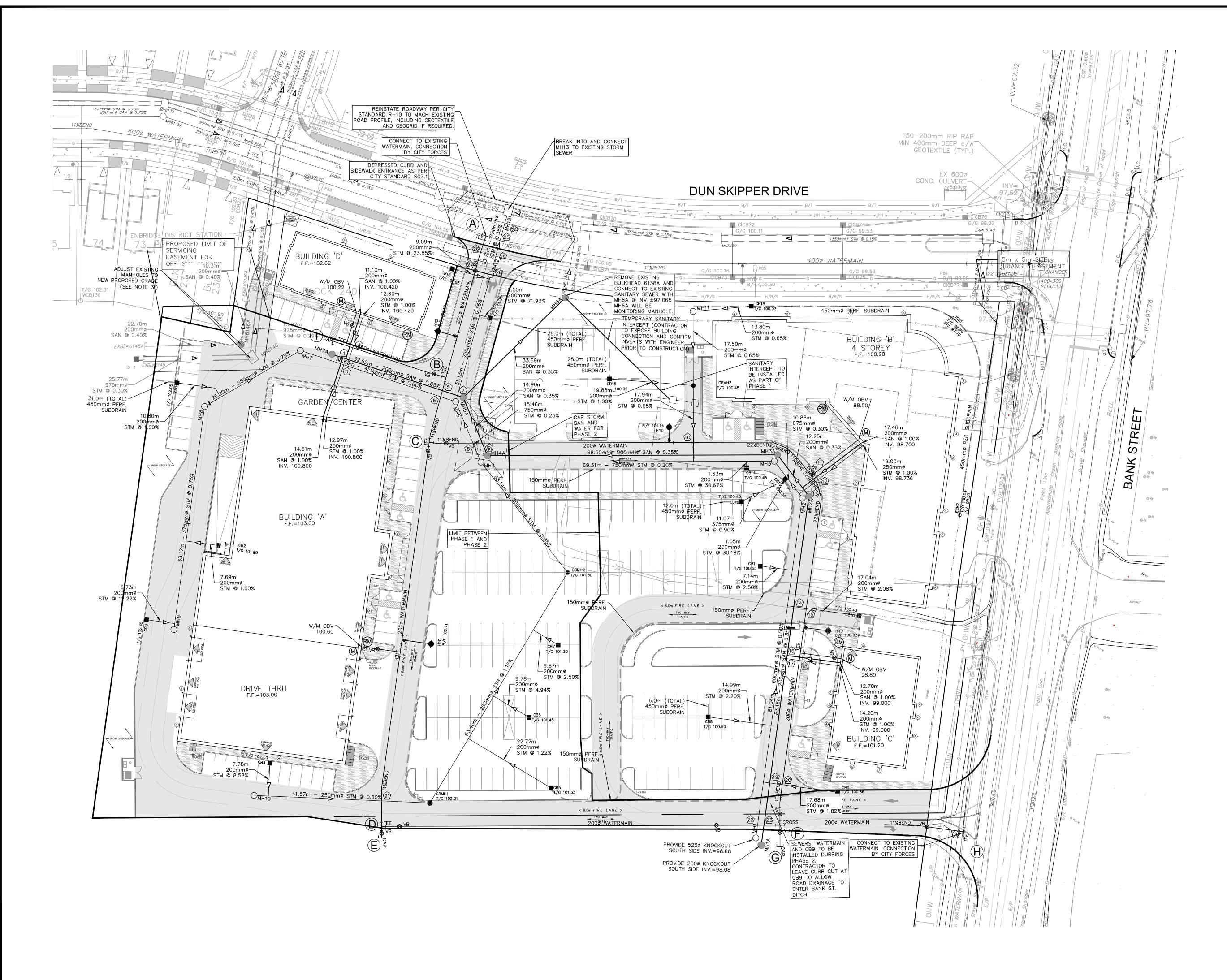
С

overflows to: offsite

		_						_									
Drainage Area	RB					Drainage Area	RB					Drainage Area	RB				
Area (Ha)	0.220		(2)			Area (Ha)	0.220		L /o)		1	Area (Ha)	0.220	Destricted Flow O ((a)		
C =	1.00	Restricted Flow Q _r (L	-	20.00		C =	0.90	Restricted Flow Q _r (20.00		C =	0.90	Restricted Flow Q _r (20.00	
T		100-Year Pon Peak Flow	aing		Volume	T		5-Year Ponding Peak Flow			Volumo			2-Year Pondi Peak Flow	ng		Volumo
ا _د Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100 \text{vr}} A$	Q _r	$Q_p - Q_r$	100yr	T _c Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q,	$Q_p - Q_r$	Volume 5yr	T _c Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q _r	$Q_p - Q_r$	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
24	106.68	65.24	20.00	45.24	65.15	11	99.19	54.60	20.00	34.60	22.84	8	85.46	47.04	20.00	27.04	12.98
26	101.18	61.88	20.00	41.88	65.34	13	90.63	49.89	20.00	29.89	23.31	10	76.81	42.28	20.00	22.28	13.37
27 28	98.66 96.27	60.34 58.88	20.00 20.00	40.34 38.88	65.35 65.32	<u> </u>	86.93 83.56	47.85 45.99	20.00 20.00	27.85 25.99	23.40 23.39	11 12	73.17 69.89	40.27 38.47	20.00 20.00	20.27 18.47	13.38 13.30
30	91.87	56.19	20.00	36.19	65.14	17	77.61	42.72	20.00	22.72	23.17	14	64.23	35.36	20.00	15.36	12.90
		6	torogo (m ³)					Sta	rege (m ³)					64			
	Overflow	Required	torage (m ³) Surface	Sub-surface	Balance	-	Overflow	Required	rage (m ³) Surface	Sub-surface	Balance	_	Overflow	Required	orage (m ³) Surface	Sub-surface	Balance
	0.00	65.35	66.00	0.00	0.00		0.00	23.40	66.00	0.00	0.00		0.00	13.38	66.00	0.00	0.00
Drainage Area	RC					Drainage Area	RC					Drainage Area	RC				
Area (Ha)	0.050) Restricted Flow Q _r (L	<u>/s)=</u>	9.00		Area (Ha)	0.050) Restricted Flow Q _r ([/s)=	0.00	1	Area (Ha)	0.050	Restricted Flow Q _r (/s)-	0.00	
C =	1.00	100-Year Pon	-	8.00		C =	0.90	5-Year Ponding		8.00		C =	0.90	2-Year Pondi		8.00	
Т _с		Peak Flow		1	Volume	Τ _c		2-Tear Ponding Peak Flow	, 		Volume	Τ _c		2-Tear Pondi Peak Flow	<u> </u>		Volume
، Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100yr} A$	Q _r	$Q_p - Q_r$	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
12	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
14	148.72	20.67	8.00	12.67	10.64	7	123.30	15.43	8.00	7.43	3.12	4	111.72	13.98	8.00	5.98	1.43
<u>15</u> 16	142.89 137.55	19.86 19.12	8.00 8.00	11.86 11.12	10.68 10.67	8	116.11 109.79	14.53 13.74	8.00 8.00	6.53 5.74	3.13 3.10	5	103.57 96.64	12.96 12.09	8.00 8.00	4.96 4.09	1.49 1.47
18	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
								0	<i>(</i> 3)					•	, 3,		
	Overflow	S Required	torage (m ³) Surface	Sub-surface	Balance	-	Overflow	Sto Required	rage (m ³) Surface	Sub-surface	Balance	-	Overflow	St Required	orage (m ³) Surface	Sub-surface	Balance
	0.00	10.68	13.50	1.00	0.00		0.00	3.13	13.50	0.00	0.00		0.00	1.49	13.50	0.00	0.00
		-						-						I			
Drainage Area	RD					Drainage Area	RD					Drainage Area	RD 0.050				
Area (Ha) C =		Restricted Flow Q _r (L	/s)=	8.00		Area (Ha) C =	0.050	Restricted Flow Q _r (l /s)=	8.00	1	Area (Ha) C =		Restricted Flow Q _r (/s)=	8.00	
0 -	1.00	100-Year Pon	,	0.00		0 -	0.30	5-Year Ponding	,	0.00			0.90	2-Year Pondi	,	0.00	
T _c		Peak Flow			Volume	T _c		Peak Flow	, 		Volume	Τ _c		Peak Flow			Volume
Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100 \text{ yr}} A$	Q _r	$Q_p - Q_r$	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
12	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
<u> </u>	148.72 142.89	20.67 19.86	8.00 8.00	12.67 11.86	10.64 10.68	7	123.30 116.11	15.43 14.53	8.00 8.00	7.43 6.53	3.12 3.13	4 5	111.72 103.57	13.98 12.96	8.00 8.00	5.98 4.96	1.43 1.49
16	142.89	19.00	8.00	11.00	10.67	9	109.79	13.74	8.00	5.74	3.10	6	96.64	12.96	8.00	4.98	1.49
18	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
		e	torage (m ³)					640	rage (m ³)					61	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	10.68	11.25	1.00	0.00		0.00	3.13	11.25	0.00	0.00		0.00	1.49	11.25	0.00	0.00
Drainage Area Area (Ha)	EXTERNAL 1.550)				Drainage Area Area (Ha)	EXTERNAL 1.550)			1	Drainage Area Area (Ha)	EXTERNAL 1.550				
C =	1.00	Restricted Flow Q _r (L	-	291.58		C =	0.80	Restricted Flow Q _r (291.58		C =	0.80	Restricted Flow Q _r (291.58	
		100-Year Pon	ding		14.1			5-Year Ponding						2-Year Pondi	ng	,	
T _c Variable	i _{100yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c Variable	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume 5vr	T _c Variable	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
		Q _p =2.78xCi _{100yr} A (L/s)	(L/s)	(L/s)	100yr (m ³)	(min)	(mm/hour)	Q _p =2.78xCi _{5yr} A (L/s)	(L/s)	(L/s)	5yr (m ³)	(min)	(mm/hour)	Q _p =2.78xCi _{2yr} A (L/s)	(L/s)	(L/s)	2yr (m ³)
(min)	(mm/nn/ir)		291.58	519.61	280.59	2	182.69	629.76	291.58	338.18	40.58	0	167.22	576.45	291.58	284.87	0.00
<u>(min)</u> 9	(<i>mm/hour)</i> 188.25	811.19			290.76	4	152.51	525.73	291.58	234.15	56.19	2	133.33	459.62	291.58	168.04	20.16
9 11	188.25 169.91	811.19 732.13	291.58	440.55													
9 11 12	188.25 169.91 162.13	732.13 698.63	291.58 291.58	407.05	293.08	5	141.18	486.67	291.58	195.09	58.53	3	121.46	418.71	291.58	127.13	22.88
9 11 12 13	188.25 169.91 162.13 155.11	732.13 698.63 668.36	291.58 291.58 291.58	407.05 376.78	293.08 293.89	5 6 8	131.57	453.54	291.58	161.96	58.31	4	111.72	385.13	291.58	127.13 93.55	22.45
9 11 12	188.25 169.91 162.13	732.13 698.63 668.36 615.73	291.58 291.58 291.58 291.58 291.58	407.05	293.08	5 6 8								385.13 333.13	291.58 291.58	127.13	
9 11 12 13	188.25 169.91 162.13 155.11 142.89	732.13 698.63 668.36 615.73	291.58 291.58 291.58 291.58 torage (m ³)	407.05 376.78 324.15	293.08 293.89 291.74	÷	131.57 116.11	453.54 400.26 Sto	291.58 291.58 rage (m ³)	161.96 108.68	58.31 52.17	4	111.72 96.64	385.13 333.13 St	291.58 291.58 orage (m ³)	127.13 93.55 41.55	22.45 14.96
9 11 12 13	188.25 169.91 162.13 155.11	732.13 698.63 668.36 615.73	291.58 291.58 291.58 291.58 291.58	407.05 376.78	293.08 293.89	÷	131.57	453.54 400.26	291.58 291.58	161.96	58.31	4	111.72	385.13 333.13	291.58 291.58	127.13 93.55	22.45

nage Area	RB					Drainage Area	RB					Drainage Area	RB				
Ha)	0.220	Restricted Flow Q _r (L	/c)-	~~~~	1	Area (Ha)	0.220	Restricted Flow Q _r (I	/c)-	00.00		Area (Ha)	0.220	Restricted Flow Q _r (L	<u>/e)-</u>	00.00	
	1.00	100-Year Pon	-	20.00		C =		5-Year Ponding		20.00		C =	0.90	2-Year Pondir		20.00	
T _c		Peak Flow			Volume	Τ _c		Peak Flow			Volume	T _c		2-Tear Pondir Peak Flow			Volum
Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100yr} A$	Q _r	Q _p -Q _r	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q _r	Q _p -Q _r	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q,	Q _p -Q _r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
24	106.68	65.24	20.00	45.24	65.15	11	99.19	54.60	20.00	34.60	22.84	8	85.46	47.04	20.00	27.04	12.98
26 27	101.18 98.66	61.88 60.34	20.00 20.00	41.88 40.34	65.34 65.35	13 14	90.63 86.93	49.89 47.85	20.00 20.00	29.89 27.85	23.31 23.40	10 11	76.81 73.17	42.28 40.27	20.00	22.28 20.27	13.37 13.38
28	96.27	58.88	20.00	38.88	65.32	15	83.56	45.99	20.00	25.99	23.39	12	69.89	38.47	20.00	18.47	13.30
30	91.87	56.19	20.00	36.19	65.14	17	77.61	42.72	20.00	22.72	23.17	14	64.23	35.36	20.00	15.36	12.90
		Si	torage (m ³)					Sto	age (m ³)					Sto	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balanc
	0.00	65.35	66.00	0.00	0.00		0.00	23.40	66.00	0.00	0.00		0.00	13.38	66.00	0.00	0.00
age Area	RC					Drainage Area	RC					Drainage Area	RC				
Ha)	0.050				•	Area (Ha)	0.050					Area (Ha)	0.050				
	1.00	Restricted Flow Q _r (L		8.00		C =		Restricted Flow Q _r (I		8.00		C =	0.90	Restricted Flow Q _r (L		8.00	
	1	100-Year Pon	ding	1	Valuma		1	5-Year Ponding	-	ı – – – –	Volume			2-Year Pondir	ıg		Volum
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q _r	$Q_p - Q_r$	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	$Q_p = 2.76 \times Cr_{5yr} A$ (L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	$Q_p = 2.76 \times Cr_{2yr} A$ (L/s)	(L/s)	(L/s)	(m ³)
12	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
14	148.72 142.89	20.67 19.86	8.00	12.67 11.86	10.64 10.68	7 8	123.30 116.11	15.43	8.00	7.43	3.12 3.13	4	111.72 103.57	13.98 12.96	8.00 8.00	5.98	1.43
<u>15</u> 16	142.89 137.55	19.86 19.12	8.00 8.00	11.86	1 0.68 10.67	9	116.11	14.53 13.74	8.00 8.00	6.53 5.74	3.13 3.10	5 6	96.64	12.96	8.00	4.96 4.09	1.49 1.47
18	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
		6	torogo (m ³)					Sto	1 (m ³)					Sto	(m^3)		
	Overflow	Required	torage (m ³) Surface	Sub-surface	Balance	_	Overflow	Required	rage (m ³) Surface	Sub-surface	Balance	-	Overflow	Required	orage (m ³) Surface	Sub-surface	Balance
	0.00	10.68	13.50	1.00	0.00		0.00	3.13	13.50	0.00	0.00		0.00	1.49	13.50	0.00	0.00
		1						1									
h age Area ⊣a)	RD 0.050					Drainage Area Area (Ha)	RD 0.050					Drainage Area Area (Ha)	RD 0.050				
14)		Restricted Flow Q _r (L	_/s)=	8.00		C =		Restricted Flow Q _r (I	_/s)=	8.00		C =		Restricted Flow Q _r (L	/s)=	8.00	
		100-Year Pon	ding			1		5-Year Ponding						2-Year Pondir	ng		
T _c	i	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i.	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i.	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		Q _p =2.78xCi _{100yr} A		ŗ	100yr	Variable	I _{5yr}	Q _p =2.78xCi _{5yr} A			5yr	Variable	l _{2yr}	Q _p =2.78xCi _{2yr} A	-	r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(<i>mm/hour</i>)	(L/s)	(L/s)	(L/s)	(m ³)
12 14	162.13 148.72	22.54 20.67	8.00 8.00	14.54 12.67	10.47 10.64	5	141.18 123.30	17.66 15.43	8.00 8.00	9.66 7.43	2.90 3.12	2 4	133.33 111.72	16.68 13.98	8.00 8.00	8.68 5.98	1.04 1.43
15	142.89	19.86	8.00	11.86	10.68	8	116.11	14.53	8.00	6.53	3.13	5	103.57	12.96	8.00	4.96	1.49
16	137.55	19.12	8.00	11.12	10.67	9	109.79	13.74	8.00	5.74 4.41	3.10	6	96.64	12.09	8.00	4.09	1.47
18	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
		St	torage (m ³)			_		Stor	rage (m ³)			_		Sto	rage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface 11.25	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	10.68	11.25	1.00	0.00		0.00	3.13	11.25	0.00	0.00		0.00	1.49	11.25	0.00	0.00
nage Area	EXTERNAL					Drainage Area	EXTERNAL					Drainage Area	EXTERNAL				
Ha)	1.550				1	Area (Ha)	1.550					Area (Ha)	1.550				
	1.00	Restricted Flow Q _r (L	-	291.58		C =	0.80	Restricted Flow Q _r (I		291.58		C =	0.80	Restricted Flow Q _r (L		291.58	
_		100-Year Pon	ding					5-Year Ponding	-	1				2-Year Pondir	ig		
T _c Variable	і _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c Variable	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume 5vr	T _c Variable	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volum 2vr
Variable (min)	(mm/hour)	Q _p =2.78xCi _{100yr} A (L/s)	(L/s)	(L/s)	100yr (m ³)	(min)	(mm/hour)	Q _p =2.78xCi _{5yr} A (L/s)	(L/s)	(L/s)	5yr (m ³)	(min)	(mm/hour)	Q _p =2.78xCi _{2yr} A (L/s)	(L/s)	(L/s)	2yr (m ³)
9	188.25	811.19	291.58	519.61	280.59	2	182.69	629.76	291.58	338.18	40.58	0	167.22	576.45	291.58	284.87	0.00
11	169.91	732.13	291.58	440.55	290.76	4	152.51	525.73	291.58	234.15	56.19	2	133.33	459.62	291.58	168.04	20.16
12 13	162.13 155.11	698.63 668.36	291.58 291.58	407.05 376.78	293.08 293.89	5	141.18 131.57	486.67 453.54	291.58 291.58	195.09 161.96	58.53 58.31	3	121.46 111.72	418.71 385.13	291.58 291.58	127.13 93.55	22.88 22.45
15	142.89	615.73	291.58	324.15	293.89	8	116.11	400.26	291.58	108.68	52.17	6	96.64	333.13	291.58	41.55	14.96
												-					
	Overflow	Required	torage (m ³) Surface	Sub-surface	Balance	_	Overflow	Stor Required	rage (m ³) Surface	Sub-surface	Balance	-	Overflow	Sto Required	orage (m ³) Surface		Balance
	0.00	293.08	270.00	0.00	23.08		0.00	58.53	270.00	0.00	0.00		0.00	22.88	270.00	0.00	0.00
			-												-		

		_						_									
Drainage Area	RB					Drainage Area	RB					Drainage Area	RB				
Area (Ha)	0.220		(2)			Area (Ha)	0.220		L /o)		1	Area (Ha)	0.220	Destricted Flow O ((a)		
C =	1.00	Restricted Flow Q _r (L	-	20.00		C =	0.90	Restricted Flow Q _r (20.00		C =	0.90	Restricted Flow Q _r (20.00	
T		100-Year Pon Peak Flow	aing		Volume	T		5-Year Ponding Peak Flow			Volumo			2-Year Pondi Peak Flow	ng		Volumo
ا _د Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100 \text{vr}} A$	Q _r	$Q_p - Q_r$	100yr	T _c Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q,	$Q_p - Q_r$	Volume 5yr	T _c Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q _r	$Q_p - Q_r$	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
24	106.68	65.24	20.00	45.24	65.15	11	99.19	54.60	20.00	34.60	22.84	8	85.46	47.04	20.00	27.04	12.98
26	101.18	61.88	20.00	41.88	65.34	13	90.63	49.89	20.00	29.89	23.31	10	76.81	42.28	20.00	22.28	13.37
27 28	98.66 96.27	60.34 58.88	20.00 20.00	40.34 38.88	65.35 65.32	<u> </u>	86.93 83.56	47.85 45.99	20.00 20.00	27.85 25.99	23.40 23.39	11 12	73.17 69.89	40.27 38.47	20.00 20.00	20.27 18.47	13.38 13.30
30	91.87	56.19	20.00	36.19	65.14	17	77.61	42.72	20.00	22.72	23.17	14	64.23	35.36	20.00	15.36	12.90
		6	torogo (m ³)					Sta	rege (m ³)					64			
	Overflow	Required	torage (m ³) Surface	Sub-surface	Balance	-	Overflow	Required	rage (m ³) Surface	Sub-surface	Balance	_	Overflow	Required	orage (m ³) Surface	Sub-surface	Balance
	0.00	65.35	66.00	0.00	0.00		0.00	23.40	66.00	0.00	0.00		0.00	13.38	66.00	0.00	0.00
Drainage Area	RC					Drainage Area	RC					Drainage Area	RC				
Area (Ha)	0.050) Restricted Flow Q _r (L	<u>/s)=</u>	9.00		Area (Ha)	0.050) Restricted Flow Q _r ([/s)=	0.00	1	Area (Ha)	0.050	Restricted Flow Q _r (/s)-	0.00	
C =	1.00	100-Year Pon	-	8.00		C =	0.90	5-Year Ponding		8.00		C =	0.90	2-Year Pondi		8.00	
Т _с		Peak Flow		1	Volume	Τ _c		2-Tear Ponding	, 		Volume	Τ _c		2-Tear Pondi Peak Flow	<u> </u>		Volume
، Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100yr} A$	Q _r	$Q_p - Q_r$	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
12	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
14	148.72	20.67	8.00	12.67	10.64	7	123.30	15.43	8.00	7.43	3.12	4	111.72	13.98	8.00	5.98	1.43
<u>15</u> 16	142.89 137.55	19.86 19.12	8.00 8.00	11.86 11.12	10.68 10.67	8	116.11 109.79	14.53 13.74	8.00 8.00	6.53 5.74	3.13 3.10	5	103.57 96.64	12.96 12.09	8.00 8.00	4.96 4.09	1.49 1.47
18	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
								0	<i>(</i> 3)					•	, 3,		
	Overflow	S Required	torage (m ³) Surface	Sub-surface	Balance	-	Overflow	Sto Required	rage (m ³) Surface	Sub-surface	Balance	-	Overflow	St Required	orage (m ³) Surface	Sub-surface	Balance
	0.00	10.68	13.50	1.00	0.00		0.00	3.13	13.50	0.00	0.00		0.00	1.49	13.50	0.00	0.00
		-						-						I			
Drainage Area	RD					Drainage Area	RD					Drainage Area	RD 0.050				
Area (Ha) C =		Restricted Flow Q _r (L	/s)=	8.00		Area (Ha) C =	0.050	Restricted Flow Q _r (l /s)=	8.00	1	Area (Ha) C =		Restricted Flow Q _r (/s)=	8.00	
0 -	1.00	100-Year Pon	,	0.00		0 -	0.30	5-Year Ponding	,	0.00			0.90	2-Year Pondi	,	0.00	
T _c		Peak Flow			Volume	T _c		Peak Flow	, 		Volume	Τ _c		Peak Flow			Volume
Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100 \text{ yr}} A$	Q _r	$Q_p - Q_r$	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
12	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
<u> </u>	148.72 142.89	20.67 19.86	8.00 8.00	12.67 11.86	10.64 10.68	7	123.30 116.11	15.43 14.53	8.00 8.00	7.43 6.53	3.12 3.13	4 5	111.72 103.57	13.98 12.96	8.00 8.00	5.98 4.96	1.43 1.49
16	142.89	19.00	8.00	11.00	10.67	9	109.79	13.74	8.00	5.74	3.10	6	96.64	12.96	8.00	4.98	1.49
18	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
		e	torage (m ³)					640	rage (m ³)					64	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	10.68	11.25	1.00	0.00		0.00	3.13	11.25	0.00	0.00		0.00	1.49	11.25	0.00	0.00
Drainage Area Area (Ha)	EXTERNAL 1.550)				Drainage Area Area (Ha)	EXTERNAL 1.550)			1	Drainage Area Area (Ha)	EXTERNAL 1.550				
C =	1.00	Restricted Flow Q _r (L	-	291.58		C =	0.80	Restricted Flow Q _r (291.58		C =	0.80	Restricted Flow Q _r (291.58	
		100-Year Pon	ding		14.1			5-Year Ponding						2-Year Pondi	ng	,	
T _c Variable	i _{100yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c Variable	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume 5vr	T _c Variable	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
		Q _p =2.78xCi _{100yr} A (L/s)	(L/s)	(L/s)	100yr (m ³)	(min)	(mm/hour)	Q _p =2.78xCi _{5yr} A (L/s)	(L/s)	(L/s)	5yr (m ³)	(min)	(mm/hour)	Q _p =2.78xCi _{2yr} A (L/s)	(L/s)	(L/s)	2yr (m ³)
(min)	(mm/nn/ir)		291.58	519.61	280.59	2	182.69	629.76	291.58	338.18	40.58	0	167.22	576.45	291.58	284.87	0.00
<u>(min)</u> 9	(<i>mm/hour)</i> 188.25	811.19			290.76	4	152.51	525.73	291.58	234.15	56.19	2	133.33	459.62	291.58	168.04	20.16
9 11	188.25 169.91	811.19 732.13	291.58	440.55													
9 11 12	188.25 169.91 162.13	732.13 698.63	291.58 291.58	407.05	293.08	5	141.18	486.67	291.58	195.09	58.53	3	121.46	418.71	291.58	127.13	22.88
9 11 12 13	188.25 169.91 162.13 155.11	732.13 698.63 668.36	291.58 291.58 291.58	407.05 376.78	293.08 293.89	5 6 8	131.57	453.54	291.58	161.96	58.31	4	111.72	385.13	291.58	127.13 93.55	22.45
9 11 12	188.25 169.91 162.13	732.13 698.63 668.36 615.73	291.58 291.58 291.58 291.58 291.58	407.05	293.08	5 6 8								385.13 333.13	291.58 291.58	127.13	
9 11 12 13	188.25 169.91 162.13 155.11 142.89	732.13 698.63 668.36 615.73	291.58 291.58 291.58 291.58 torage (m ³)	407.05 376.78 324.15	293.08 293.89 291.74	÷	131.57 116.11	453.54 400.26 Sto	291.58 291.58 rage (m ³)	161.96 108.68	58.31 52.17	4	111.72 96.64	385.13 333.13 St	291.58 291.58 orage (m ³)	127.13 93.55 41.55	22.45 14.96
9 11 12 13	188.25 169.91 162.13 155.11	732.13 698.63 668.36 615.73	291.58 291.58 291.58 291.58 291.58	407.05 376.78	293.08 293.89	÷	131.57	453.54 400.26	291.58 291.58	161.96	58.31	4	111.72	385.13 333.13	291.58 291.58	127.13 93.55	22.45


Drainage Area	RD]			
Area (Ha)	0.050				
C =	1.00	Restricted Flow Q _r (L	/s)=	8.00	
		100-Year Pone	ding		
T _c Variable (min)	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 100yr (m³)
12	162.13	22.54	8.00	14.54	10.47
14	148.72	20.67	8.00	12.67	10.64
15	142.89	19.86	8.00	11.86	10.68
16	137.55	19.12	8.00	11.12	10.67
18	128.08	17.80	8.00	9.80	10.59

			_						_						_			
Drainage /	Area	RB					Drainage Area	RB					Drainage Area	RB				
Area (Ha)		0.220					Area (Ha)	0.220		(-)		1	Area (Ha)	0.220		(-)		
C =		1.00	Restricted Flow Q _r (L/s	-	20.00		C =	0.90	Restricted Flow Q _r (20.00		C =	0.90	Restricted Flow Q _r (I		20.00	
_			100-Year Pond	ing			_	T	5-Year Ponding				_		2-Year Pondi	ng	T T	
T _c		i _{100yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume		i _{2yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume
Variab	bie	-	$Q_p = 2.78 \times Ci_{100yr} A$	(1 /0)	(1.(0)	100yr (m ³)	Variable		$Q_p = 2.78 \times Ci_{5yr} A$	(1/0)	(1 (0)	5yr (m ³)	Variable		$Q_p = 2.78 \times Ci_{2yr} A$	(1 (a)	(1 (2)	2yr (m ³)
(min) 24	/	<i>mm/hour)</i> 106.68	(L/s) 65.24	(L/s) 20.00	(L/s) 45.24	65.15	(min) 11	(<i>mm/hour)</i> 99.19	(L/s) 54.60	(L/s) 20.00	(L/s) 34.60	22.84	(min) 8	(<i>mm/hour)</i> 85.46	(L/s) 47.04	(L/s) 20.00	(L/s) 27.04	12.98
24		101.18	61.88	20.00	41.88	65.34	13	90.63	49.89	20.00	29.89	23.31	10	76.81	42.28	20.00	22.28	13.37
27		98.66	60.34	20.00	40.34	65.35	14	86.93	47.85	20.00	27.85	23.40	11	73.17	40.27	20.00	20.27	13.38
28		96.27	58.88	20.00	38.88	65.32	15	83.56	45.99	20.00	25.99	23.39	12	69.89	38.47	20.00	18.47	13.30
30		91.87	56.19	20.00	36.19	65.14	17	77.61	42.72	20.00	22.72	23.17	14	64.23	35.36	20.00	15.36	12.90
			Sto	orage (m ³)					Sto	r age (m ³)					Ste	orage (m ³)		
	C	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
		0.00	65.35	66.00	0.00	0.00		0.00	23.40	66.00	0.00	0.00		0.00	13.38	66.00	0.00	0.00
			•						•						•			
Drainage	Area	RC 0.050					Drainage Area	RC					Drainage Area	RC 0.050				
Area (Ha) C =			Restricted Flow Q _r (L/s	3)=	8.00		Area (Ha) C =		Restricted Flow Q _r (L/s)=	8.00		Area (Ha) C =		Restricted Flow Q _r (I	_/s)=	8.00	
<u> </u>		1.00	100-Year Pond		0.00			0.90	5-Year Ponding		0.00			0.90	2-Year Pondi		0.00	
T _c			Peak Flow			Volume	T _c		Peak Flow			Volume	Τ _c		Peak Flow		<u>г</u>	Volume
' c Variab		i _{100yr}	$Q_p = 2.78 \times Ci_{100yr} A$	Q _r	$Q_p - Q_r$	100yr	، ر Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q _r	Q _p - Q _r	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q _r	$Q_p - Q_r$	2yr
(min)		mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
12	, .	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
14		148.72	20.67	8.00	12.67	10.64	7	123.30	15.43	8.00	7.43	3.12	4	111.72	13.98	8.00	5.98	1.43
15		142.89	19.86	8.00	11.86	10.68	8	116.11	14.53	8.00	6.53	3.13	5	103.57	12.96	8.00	4.96	1.49
16 18		137.55 128.08	19.12 17.80	8.00 8.00	11.12 9.80	10.67 10.59	<u> </u>	109.79 99.19	13.74 12.41	8.00 8.00	5.74 4.41	3.10 2.91	<u>6</u> 8	96.64 85.46	12.09 10.69	8.00 8.00	4.09 2.69	1.47 1.29
10		120.00	17.00	0.00	9.00	10.55		33.13	12.71	0.00	4.41	2.31	0	00.40	10.03	0.00	2.09	1.29
			Sto	orage (m ³)					Sto	r age (m³)					Ste	orage (m ³)		
	C	Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
		0.00	10.68	13.50	1.00	0.00		0.00	3.13	13.50	0.00	0.00		0.00	1.49	13.50	0.00	0.00
Drainage J	Area	RD	1				Drainage Area	RD	1				Drainage Area	RD	1			
Area (Ha)	/// 04	0.050					Area (Ha)	0.050					Area (Ha)	0.050				
C =				·)_	8.00		C =		Restricted Flow Q _r ((-)	8.00		C =			/s)-		
		1.00	Restricted Flow Q _r (L/s	s)=	0.00		0 -	0.90	roothotod i low dr (L/S)=	0.00				Restricted Flow Q _r (I		8.00	
		1.00			0.00			0.90		-	0.00						8.00	
T _c			Restricted Flow Q _r (L/s 100-Year Pond Peak Flow	ing	т. Т. Т.	Volume			5-Year Ponding Peak Flow				T _c		2-Year Pondi Peak Flow	ng	• •	Volume
T _c Variab		i	100-Year Pond Peak Flow		Q _p -Q _r	Volume 100yr	T _c Variable	<i>i</i> _{5yr}	5-Year Ponding	-	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	2-Year Pondi		8.00 Q _p - Q _r	Volume 2yr
	ble	i	100-Year Pond	ing	т. Т. Т.		T _c		5-Year Ponding Peak Flow			Volume			2-Year Pondi Peak Flow	ng	• •	
Variab (min) 12	ble 1) (n	i _{100yr} mm/hour) 162.13	100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{100yr} A (L/s) 22.54	ing Q _r (L/s) 8.00	Q _p - Q _r (L/s) 14.54	100yr (m ³) 10.47	T _c Variable (min) 5	<i>i_{5yr}</i> (<i>mm/hour)</i> 141.18	5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 17.66	Q _r (L/s) 8.00	Q _p - Q _r <u>(L/s)</u> 9.66	Volume 5yr (m ³) 2.90	Variable (min) 2	i _{2yr} (mm/hour) 133.33	2-Year Pondi <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{2yr} A (L/s) 16.68	ng Q _r <u>(L/s)</u> 8.00	Q _p -Q _r (L/s) 8.68	2yr (m³) 1.04
Variab (min) 12 14	ble 1) (n	i _{100yr} mm/hour) 162.13 148.72	Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67	ing Q _r (L/s) 8.00 8.00	Q _p - Q _r (L/s) 14.54 12.67	100yr (m ³) 10.47 10.64	T _c Variable (min) 5 7	<i>i</i> ₅ _{yr} (mm/hour) 141.18 123.30	5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 17.66 15.43	Q , (L/s) 8.00 8.00	Q _p -Q _r (L/s) 9.66 7.43	Volume 5yr (m ³) 2.90 3.12	Variable (min) 2 4	i _{2yr} (mm/hour) 133.33 111.72	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98	ng Q _r (L/s) 8.00 8.00	Q _p -Q _r (L/s) 8.68 5.98	2yr (m ³) 1.04 1.43
Variab (min) 12 14 15	ble n) (m	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86	Q _r (L/s) 8.00 8.00 8.00 8.00	Q _p -Q _r (L/s) 14.54 12.67 11.86	100yr (m ³) 10.47 10.64 10.68	T _c Variable (min) 5	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53	Q _r (L/s) 8.00 8.00 8.00	Q _p -Q _r (L/s) 9.66 7.43 6.53	Volume 5yr (m ³) 2.90 3.12 3.13	Variable (min) 2 4 5	<i>i_{2yr}</i> (<i>mm/hour)</i> 133.33 111.72 103.57	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96	ng Q _r (L/s) 8.00 8.00 8.00	Q _p -Q _r (L/s) 8.68 5.98 4.96	2yr (m ³) 1.04 1.43 1.49
Variab (min) 12 14	ble 1) (n	i _{100yr} mm/hour) 162.13 148.72	Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67	ing Q _r (L/s) 8.00 8.00	Q _p - Q _r (L/s) 14.54 12.67	100yr (m ³) 10.47 10.64	T _c Variable (min) 5 7 8	<i>i</i> ₅ _{yr} (mm/hour) 141.18 123.30	5-Year Ponding <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{5yr} A (L/s) 17.66 15.43	Q , (L/s) 8.00 8.00	Q _p -Q _r (L/s) 9.66 7.43	Volume 5yr (m ³) 2.90 3.12	Variable (min) 2 4	i _{2yr} (mm/hour) 133.33 111.72	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98	ng Q _r (L/s) 8.00 8.00	Q _p -Q _r (L/s) 8.68 5.98	2yr (m ³) 1.04 1.43
Variab (min) 12 14 15 16	ble 1) (n	<i>i_{100yr}</i> <i>mm/hour)</i> 162.13 148.72 142.89 137.55	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80	Qr (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 8.00	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12	100yr (m ³) 10.47 10.64 10.68 10.67	T _c Variable (min) 5 7 8 9	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74	Volume 5yr (m ³) 2.90 3.12 3.13 3.10	Variable (min) 2 4 5 6	<i>i</i> _{2yr} (<i>mm/hour)</i> 133.33 111.72 103.57 96.64	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09	2yr (m ³) 1.04 1.43 1.49 1.47
Variab (min) 12 14 15 16	ble n) (m	i _{100yr} mm/hour) 162.13 148.72 142.89 137.55 128.08	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80	Qr (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80	100yr (m ³) 10.47 10.64 10.68 10.67 10.59	T _c Variable (min) 5 7 8 9	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto	Q , (L/s) 8.00 8.00 8.00 8.00 8.00	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74 4.41	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91	Variable (min) 2 4 5 6	<i>i</i> _{2yr} (<i>mm/hour)</i> 133.33 111.72 103.57 96.64 85.46	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Sto	ng <i>Q</i> _r (L/s) 8.00 8.00 8.00 8.00 8.00 0 rage (m ³)	Q _p - Q _r (L/s) 8.68 5.98 4.96 4.09 2.69	2yr (m ³) 1.04 1.43 1.49 1.47 1.29
Variab (min) 12 14 15 16	ble n) (m	<i>i_{100yr}</i> <i>mm/hour)</i> 162.13 148.72 142.89 137.55	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80	Qr (L/s) 8.00 8.00 8.00 8.00 8.00 8.00	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12	100yr (m ³) 10.47 10.64 10.68 10.67	T _c Variable (min) 5 7 8 9	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74	Volume 5yr (m ³) 2.90 3.12 3.13 3.10	Variable (min) 2 4 5 6	<i>i</i> _{2yr} (<i>mm/hour)</i> 133.33 111.72 103.57 96.64	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09	2yr (m ³) 1.04 1.43 1.49 1.47
Variab (min) 12 14 15 16 18	ble n) (m	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Stor Required	Qr (L/s) 8.00 <	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12 9.80	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance	T _c Variable (min) 5 7 8 9 11	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance	Variable (min) 2 4 5 6 8	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required	ng <i>Q</i> , <i>(L/s)</i> 8.00 8.00 8.00 8.00 8.00 0 0 0 0 0 0 0 0 0 0 0 0	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance
Variab (min) 12 14 15 16	ble n) (m	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Stor Required 10.68	Qr Qr (L/s) 8.00 9 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12 9.80	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance	T _c Variable (min) 5 7 8 9	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance	Variable (min) 2 4 5 6	<i>i</i> _{2yr} (<i>mm/hour)</i> 133.33 111.72 103.57 96.64 85.46 Overflow	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49	ng Q, (L/s) 8.00 8.00 8.00 8.00 8.00 0 0 0 0 0 0 0 0 0 0 0 0	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance
Variab (min) 12 14 15 16 18 Drainage	ble n) (m	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Sto Required 10.68	Qr Qr (L/s) 8.00 9 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12 9.80	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance	T _c Variable (min) 5 7 8 9 11	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00	Variable (min) 2 4 5 6 8 8	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance
Variab (min) 12 14 15 16 18 18 Drainage / Area (Ha)	ble n) (m	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550	100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Stor Required 10.68	Qr Qr (L/s) 8.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance	T _c Variable (min) 5 7 8 9 11	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00	Variable (min) 2 4 5 6 8 8 Drainage Area Area (Ha)	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25	Qp-Qr (L/s) 8.68 5.98 4.96 4.09 2.69	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance
Variab (min) 12 14 15 16 18 Drainage Area (Ha) C =	ble (n n) (n 	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550 1.00	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Restricted Flow Qr (L/s 100-Year Pond Peak Flow	Qr Qr (L/s) 8.00 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 </td <td>Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58</td> <td>100yr (m³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00</td> <td>T_c Variable (min) 5 7 8 9 11 Drainage Area Area (Ha) C = T_c</td> <td><i>i</i>_{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80</td> <td>5-Year Ponding Peak Flow Q_p=2.78xCi_{5yr}A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow</td> <td>Q_r (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m³) Surface 11.25</td> <td>Q_p-Q_r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58</td> <td>Volume 5yr (m³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00</td> <td>Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C =</td> <td><i>i</i>_{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550 0.80</td> <td>2-Year Pondi Peak Flow Q_p=2.78xCi_{2yr}A (L/s) 16.68 13.98 12.96 12.09 10.69 Stop Required 1.49 Restricted Flow Q_r (I 2-Year Pondi Peak Flow</td> <td>ng Q, (L/s) 8.00 8.00 8.00 8.00 0rage (m³) Surface 11.25</td> <td>Q_p-Q_r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58</td> <td>2yr (m³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00</td>	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00	T_c Variable (min) 5 7 8 9 11 Drainage Area Area (Ha) C = T_c	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80	5-Year Ponding Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q _r (5-Year Ponding Peak Flow	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p - Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C =	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550 0.80	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Stop Required 1.49 Restricted Flow Q _r (I 2-Year Pondi Peak Flow	ng Q, (L/s) 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00
Variab (min) 12 14 15 16 18 Drainage / Area (Ha) C = T _c Variab	ble (n n) (n 	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550 1.00 <i>i</i> _{100yr}	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Restricted Flow Qr (L/s) Peak Flow Qp=2.78xCi 100yr A	ing Q, (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 6)= ing Q,	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00 Volume 100yr	T _c Variable (min) 5 7 8 9 11 Drainage Area Area (Ha) C = T _c Variable	i _{5yr} (mm/hour) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80	5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$	Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Volume 5yr	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable	i _{2yr} (mm/hour) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550 0.80	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49 Restricted Flow Q _r (I 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A	ng Q _r (L/s) 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q _r	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Volume 2yr
Variab (min) 12 14 15 16 18 Drainage Area (Ha) C = T _c Variab (min)	ble n) (m 	i 100yr mm/hour) 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 XTERNAL 1.550 1.00 i 100yr mm/hour)	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Restricted Flow Qr (L/s) Peak Flow Qp=2.78xCi 100yr A (L/s)	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 5)= ing Q _r (L/s)	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58 Qp-Qr (L/s)	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00 Volume 100yr (m ³)	T_{c} Variable (min) 5 7 8 9 11 11 Drainage Area Area (Ha) C = T_{c} Variable (min)	i _{5yr} (mm/hour) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80	5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s)	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 7age (m ³) Surface 11.25	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s)	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Volume 5yr (m ³)	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min)	i _{2yr} (mm/hour) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550 0.80 i _{2yr} (mm/hour)	2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 16.68 13.98 12.96 12.09 10.69 Stor Required 1.49 Restricted Flow Q _r (I 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s)	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q _r (L/s)	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 Q _p -Q _r (L/s)	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Balance 0.00
Variab (min) 12 14 15 16 18 Drainage Area (Ha) C = T _c Variab (min) 9	ble n) (n 	i 100yr mm/hour) 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 XTERNAL 1.550 1.00 i 100yr i 100yr mm/hour) 188.25	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Peak Flow Qr (L/s) Peak Flow Qp = 2.78xCi 100yr A (L/s) 811.19	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 5)= ing Q _r (L/s) 291.58	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00 Volume 100yr (m ³) 280.59	T _c Variable (min) 5 7 8 9 11 Drainage Area Area (Ha) C = T _c Variable	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80 <i>i</i> _{5yr} (<i>mm/hour</i>) 182.69	5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 629.76	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25 ⊥/s)= Q, (L/s) 291.58	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 338.18	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Volume 5yr (m ³) 40.58	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min) 0	<i>i</i> _{2yr} (<i>mm/hour)</i> 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{2yr} (<i>mm/hour</i>) 167.22	2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 16.68 13.98 12.96 12.09 10.69 Sternet Required 1.49 Restricted Flow Q_r (I Peak Flow Q_p = 2.78xCi_{2yr}A (L/s) 576.45	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q _r (L/s) 291.58	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 291.58	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Volume 2yr (m ³) 0.00
Variab (min) 12 14 15 16 18 Drainage Area (Ha) C = T _c Variab (min) 9 11	ble n) (n 	i 100yr mm/hour) 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 XTERNAL 1.550 1.00 i 100yr i 100yr 188.25 169.91	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Peak Flow Qr (L/s) Peak Flow Qp=2.78xCi 100yr A (L/s) 811.19 732.13	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 (L/s) 291.58 291.58 291.58	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58 Q _p -Q _r (L/s) 519.61 440.55	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00 Balance 0.00 Volume 100yr (m ³) 280.59 290.76	T_{c} Variable (min) 5 7 8 9 11 $Drainage Area$ Area (Ha) $C =$ T_{c} Variable (min) 2 4	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80 <i>i</i> _{5yr} (<i>mm/hour</i>) 182.69 152.51	5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 629.76 525.73	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 338.18 234.15	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Balance 0.00 Volume 5yr (m ³) 40.58 56.19	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min) 0 2	<pre>i 2yr (mm/hour) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 EXTERNAL 1.550 0.80 i 2yr (mm/hour) 167.22 133.33</pre>	2-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 16.68 13.98 12.96 12.09 10.69 Stern Required 1.49 Restricted Flow Q_r (I Peak Flow $Q_p = 2.78 \times Ci_{2yr} A$ (L/s) 576.45 459.62	ng Q, (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q, (L/s) 291.58 291.58	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 284.87 168.04	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Balance 0.00 Volume 2yr (m ³) 0.00 20.16
Variab (min) 12 14 15 16 18 Drainage Area (Ha) C = T _c Variab (min) 9	ble n) (n 	i 100yr mm/hour) 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 XTERNAL 1.550 1.00 i 100yr i 100yr mm/hour) 188.25	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Peak Flow Qr (L/s) Peak Flow Qp = 2.78xCi 100yr A (L/s) 811.19	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 5)= ing Q _r (L/s) 291.58	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00 Volume 100yr (m ³) 280.59	T_{c} Variable (min) 5 7 8 9 11 11 Drainage Area Area (Ha) C = T_{c} Variable (min)	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 EXTERNAL 1.550 0.80 <i>i</i> _{5yr} (<i>mm/hour</i>) 182.69	5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 629.76	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25 ⊥/s)= Q, (L/s) 291.58	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 338.18	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Volume 5yr (m ³) 40.58	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min) 0	<i>i</i> _{2yr} (<i>mm/hour)</i> 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{2yr} (<i>mm/hour</i>) 167.22	2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 16.68 13.98 12.96 12.09 10.69 Sternet Required 1.49 Restricted Flow Q_r (I Peak Flow Q_p = 2.78xCi_{2yr}A (L/s) 576.45	ng Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q _r (L/s) 291.58	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 291.58	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Volume 2yr (m ³) 0.00
Variab (min) 12 14 15 16 18 Drainage / Area (Ha) C = T _c Variab (min) 9 11 12	ble n) (n 	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550 1.00 <i>i</i> _{100yr} <i>i</i> _{100yr} <i>i</i> _{100yr} <i>i</i> _{100yr} 188.25 169.91 162.13	100-Year Pond Peak Flow Qp=2.78xCi 100yr A (L/s) 22.54 20.67 19.86 19.12 17.80 Store Required 10.68 Restricted Flow Qr (L/s) Peak Flow Qp=2.78xCi 100yr A (L/s) 811.19 732.13 698.63	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 5)= ing Q _r (L/s) 291.58 291.58 291.58	Q _p -Q _r (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58 291.58 291.58 291.58 291.58 291.58 291.58 291.58 407.05	100yr (m ³) 10.47 10.64 10.68 10.67 10.59 Balance 0.00 Balance 0.00 Volume 100yr (m ³) 280.59 290.76 293.08	T_{c} Variable (min) 5 7 8 9 11 1 Drainage Area Area (Ha) C = T_{c} Variable (min) 2 4 5	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{5yr} (<i>mm/hour</i>) 182.69 152.51 141.18	5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 629.76 525.73 486.67	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 338.18 234.15 195.09	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Balance 0.00 Volume 5yr (m ³) 40.58 56.19 58.53	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min) 0 2 3	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{2yr} (<i>mm/hour</i>) 167.22 133.33 121.46	2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49 Restricted Flow Q _r (I Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 576.45 459.62 418.71	ng Q, (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q, (L/s) 291.58 291.58 291.58	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 284.87 168.04 127.13	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Balance 0.00 Volume 2yr (m ³) 0.00 20.16 22.88
Variab (min) 12 14 15 16 18 Drainage / Area (Ha) C = T _c Variab (min) 9 11 12 13	ble n) (n 	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550 1.00 <i>i</i> _{100yr} <i>i</i> _{100yr} <i>i</i> _{100yr} 188.25 169.91 162.13 155.11	100-Year Pond Peak Flow $Q_p = 2.78 \times Ci_{100yr} A$ (L/s) 22.54 20.67 19.86 19.12 17.80 Sto Required 10.68 Peak Flow Q _r (L/s) Peak Flow Q _p =2.78xCi 100yr A (L/s) 811.19 732.13 698.63 668.36 615.73	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 5)= ing Q _r (L/s) 291.58 291.58 291.58 291.58 291.58	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58 Qp-Qr (L/s) 519.61 440.55 407.05 376.78	100yr (m ³) 10.47 10.64 10.67 10.59 Balance 0.00 Balance 0.00 Volume 100yr (m ³) 280.59 290.76 293.08 293.89	$ T_c Variable (min) 5 7 8 9 11 11 Drainage Area Area (Ha) C = T_c Variable (min) 2 4 5 6 $	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{5yr} (<i>mm/hour</i>) 182.69 152.51 141.18 131.57	5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 629.76 525.73 486.67 453.54 400.26	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 rage (m ³) Surface 11.25	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 338.18 234.15 195.09 161.96	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Balance 0.00 Volume 5yr (m ³) 40.58 56.19 58.53 58.31	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min) 0 2 3 4	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{2yr} (<i>mm/hour</i>) 167.22 133.33 121.46 111.72	2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49 Restricted Flow Q_r (I Peak Flow Q_p = 2.78xCi_{2yr}A (L/s) 576.45 459.62 418.71 385.13 333.13	ng Q, (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q, (L/s) 291.58 291.58 291.58 291.58 291.58	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 284.87 168.04 127.13 93.55	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Balance 0.00 Volume 2yr (m ³) 0.00 20.16 22.88 22.45
Variab (min) 12 14 15 16 18 Drainage / Area (Ha) C = T _c Variab (min) 9 11 12 13	ble n) (n 	<i>i</i> _{100yr} <i>mm/hour)</i> 162.13 148.72 142.89 137.55 128.08 Overflow 0.00 <i>XTERNAL</i> 1.550 1.00 <i>i</i> _{100yr} <i>i</i> _{100yr} <i>i</i> _{100yr} 188.25 169.91 162.13 155.11	100-Year Pond Peak Flow $Q_p = 2.78 \times Ci_{100yr} A$ (L/s) 22.54 20.67 19.86 19.12 17.80 Sto Required 10.68 Peak Flow Q _r (L/s) Peak Flow Q _p =2.78xCi 100yr A (L/s) 811.19 732.13 698.63 668.36 615.73	ing Q _r (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 5)= ing Q _r (L/s) 291.58 291.58 291.58 291.58	Qp-Qr (L/s) 14.54 12.67 11.86 11.12 9.80 Sub-surface 1.00 291.58 Qp-Qr (L/s) 519.61 440.55 407.05 376.78	100yr (m ³) 10.47 10.64 10.67 10.59 Balance 0.00 Balance 0.00 Volume 100yr (m ³) 280.59 290.76 293.08 293.89	$ T_c Variable (min) 5 7 8 9 11 11 Drainage Area Area (Ha) C = T_c Variable (min) 2 4 5 6 $	<i>i</i> _{5yr} (<i>mm/hour</i>) 141.18 123.30 116.11 109.79 99.19 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{5yr} (<i>mm/hour</i>) 182.69 152.51 141.18 131.57	5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 17.66 15.43 14.53 13.74 12.41 Sto Required 3.13 Restricted Flow Q_r (5-Year Ponding Peak Flow $Q_p = 2.78xCi_{5yr}A$ (L/s) 629.76 525.73 486.67 453.54 400.26	Q, (L/s) 8.00 8.00 8.00 8.00 8.00 7age (m ³) Surface 11.25 L/s)= Q, (L/s) 291.58 291.58 291.58 291.58	Q _p -Q _r (L/s) 9.66 7.43 6.53 5.74 4.41 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 338.18 234.15 195.09 161.96	Volume 5yr (m ³) 2.90 3.12 3.13 3.10 2.91 Balance 0.00 Balance 0.00 Volume 5yr (m ³) 40.58 56.19 58.53 58.31	Variable (min) 2 4 5 6 8 Drainage Area Area (Ha) C = T _c Variable (min) 0 2 3 4	<i>i</i> _{2yr} (<i>mm/hour</i>) 133.33 111.72 103.57 96.64 85.46 Overflow 0.00 <i>EXTERNAL</i> 1.550 0.80 <i>i</i> _{2yr} (<i>mm/hour</i>) 167.22 133.33 121.46 111.72	2-Year Pondi Peak Flow $Q_p = 2.78xCi_{2yr}A$ (L/s) 16.68 13.98 12.96 12.09 10.69 Ste Required 1.49 Restricted Flow Q_r (I Peak Flow Q_p = 2.78xCi_{2yr}A (L/s) 576.45 459.62 418.71 385.13 333.13	ng Q, (L/s) 8.00 8.00 8.00 8.00 8.00 0rage (m ³) Surface 11.25 /s)= ng Q, (L/s) 291.58 291.58 291.58 291.58	Q _p -Q _r (L/s) 8.68 5.98 4.96 4.09 2.69 Sub-surface 0.00 291.58 Q _p -Q _r (L/s) 284.87 168.04 127.13 93.55	2yr (m ³) 1.04 1.43 1.49 1.47 1.29 Balance 0.00 Balance 0.00 Volume 2yr (m ³) 0.00 20.16 22.88 22.45

Area	RB	1				Drainage Area	RB	1				Drainage Area	RB	1			
	0.220					Area (Ha)	0.220					Area (Ha)	0.220				
	1.00) Restricted Flow Q _r (L/	/s)=	20.00		C =	0.90	Restricted Flow Q _r (I	_/s)=	20.00		C =	0.90	Restricted Flow Q _r (L	_/s)=	20.00	
		100-Year Pond	dina	<u>,</u>				5-Year Ponding		<u> </u>				2-Year Pondi	na	<u>I</u>	
		Peak Flow	<u> </u>		Volume	T _c	1.	Peak Flow			Volume	T _c		Peak Flow			Volume
le	i _{100yr}	Q _p =2.78xCi _{100yr} A	Q,	Q _p - Q _r	100yr	Variable	I _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q,	Q _p - Q _r	5yr	Variable	l _{2yr}	Q _p =2.78xCi _{2vr} A	Q _r	Q _p - Q _r	2yr
	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
	106.68	65.24	20.00	45.24	65.15	11	99.19	54.60	20.00	34.60	22.84	8	85.46	47.04	20.00	27.04	12.98
	101.18	61.88	20.00	41.88	65.34	13	90.63	49.89	20.00	29.89	23.31	10	76.81	42.28	20.00	22.28	13.37
	98.66	60.34	20.00	40.34	65.35	14	86.93	47.85	20.00	27.85	23.40	11	73.17	40.27	20.00	20.27	13.38
	96.27 91.87	58.88 56.19	20.00 20.00	38.88 36.19	65.32 65.14	<u>15</u> 17	83.56 77.61	45.99 42.72	20.00 20.00	25.99 22.72	23.39 23.17	12 14	69.89 64.23	38.47 35.36	20.00 20.00	18.47 15.36	13.30 12.90
	91.07	50.19	20.00	30.19	05.14	17	77.01	42.72	20.00	22.12	23.17	14	04.23	55.50	20.00	15.50	12.90
		St	orage (m ³)					Sto	r age (m ³)					Sto	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	65.35	66.00	0.00	0.00		0.00	23.40	66.00	0.00	0.00		0.00	13.38	66.00	0.00	0.00
		-						1						1			
Area	RC					Drainage Area	RC	4				Drainage Area	<u>RC</u>				
	0.050) Restricted Flow Q _r (L/	/e)_	0.00		Area (Ha)	0.050	Restricted Flow Q _r (I	/c)-	0.00		Area (Ha)	0.050	Restricted Flow Q _r (L	/s)-	0.00	
	1.00			8.00		C =	0.90			8.00		C =	0.90			8.00	
		100-Year Pond	aing	1				5-Year Ponding		1 1	17.1			2-Year Pondi	ng		
	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume
le	-	$Q_p = 2.78 \times Ci_{100yr} A$	<i>(</i> 1 /)		100yr	Variable		$Q_p = 2.78 \times Ci_{5yr} A$			5yr	Variable		$Q_p = 2.78 \times Ci_{2yr} A$			2yr
	<i>(mm/hour)</i> 162.13	(L/s) 22.54	(L/s) 8.00	(L/s) 14.54	(m ³) 10.47	(min) 5	(<i>mm/hour</i>) 141.18	(L/s) 17.66	(L/s) 8.00	(L/s) 9.66	(<i>m</i> ³) 2.90	(min) 2	(mm/hour) 133.33	(L/s) 16.68	<i>(L/s)</i> 8.00	(L/s) 8.68	(<i>m</i> ³) 1.04
	162.13	22.54	8.00	14.54	10.47	5 7	123.30	17.66	8.00	7.43	2.90	4	133.33	13.98	8.00	5.98	1.04
	148.72	19.86	8.00	11.86	10.64	8	116.11	14.53	8.00	6.53	3.12	5	103.57	12.96	8.00	4.96	1.43
	137.55	19.12	8.00	11.12	10.67	9	109.79	13.74	8.00	5.74	3.10	6	96.64	12.09	8.00	4.09	1.47
	128.08	17.80	8.00	9.80	10.59	11	99.19	12.41	8.00	4.41	2.91	8	85.46	10.69	8.00	2.69	1.29
		_	2					-	2					_	2		
			orage (m ³)						rage (m ³)	<u> </u>		_			prage (m ³)		
	Overflow 0.00	Required 10.68	Surface 13.50	Sub-surface 1.00	Balance 0.00		Overflow 0.00	Required 3.13	Surface 13.50	Sub-surface 0.00	Balance 0.00		Overflow 0.00	Required 1.49	Surface 13.50	Sub-surface 0.00	Balance 0.00
	0.00	10.00	13.50	1.00	0.00		0.00	5.15	13.50	0.00	0.00		0.00	1.49	13.50	0.00	0.00
Area	RD	7				Drainage Area	RD	1				Drainage Area	RD				
	0.050					Area (Ha)	0.050					Area (Ha)	0.050				
	1.00) Restricted Flow Q _r (L/	/s)=	8.00		C =	0.90	Restricted Flow Q _r (_/s)=	8.00		C =	0.90	Restricted Flow Q _r (L	_/s)=	8.00	
		100-Year Pond	ding					5-Year Ponding					•	2-Year Pondi	ng		
		Peak Flow			Volume	T _c	:	Peak Flow			Volume	Τ _c		Peak Flow			Volume
le	l _{100yr}	Q _p =2.78xCi _{100yr} A	\boldsymbol{Q}_r	Q _p - Q _r	100yr	Variable	I _{5yr}	Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	5yr	Variable	l _{2yr}	Q _p =2.78xCi _{2vr} A	Q _r	Q _p -Q _r	2yr
	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
	162.13	22.54	8.00	14.54	10.47	5	141.18	17.66	8.00	9.66	2.90	2	133.33	16.68	8.00	8.68	1.04
	148.72	20.67	8.00	12.67	10.64	7	123.30	15.43	8.00	7.43	3.12	4	111.72	13.98	8.00	5.98	1.43
	142.89	19.86	8.00	11.86	10.68	8	116.11	14.53	8.00	6.53	3.13	5	103.57	12.96	8.00	4.96	1.49
	137.55 128.08	19.12 17.80	8.00 8.00	11.12 9.80	10.67 10.59	<u>9</u> 11	109.79 99.19	13.74 12.41	8.00 8.00	5.74 4.41	3.10 2.91	<u>6</u> 8	96.64 85.46	12.09 10.69	8.00 8.00	4.09 2.69	1.47 1.29
	120.00	17.00	0.00	3.00	10.09		33.13	12.41	0.00	4.41	۲.31		00.40	10.03	0.00	2.03	1.23
		St	orage (m ³)					Stor	r age (m³)					Sto	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	10.68	11.25	1.00	0.00		0.00	3.13	11.25	0.00	0.00		0.00	1.49	11.25	0.00	0.00
A		-				Duration		1				During		1			
Area	EXTERNAL					Drainage Area	EXTERNAL	-				Drainage Area	EXTERNAL				
	1.550) Restricted Flow Q _r (L/	/s)_	291.58		Area (Ha)	1.550	Restricted Flow Q _r (I	/s)-	204 50		Area (Ha)	1.550	Restricted Flow Q _r (L	/s)-	291.58	
	1.00		-	291.58		C =	0.80			291.58		C =	0.80			291.58	
		100-Year Pond	aing	1 1		_		5-Year Ponding		<u>г</u>	14.4	-		2-Year Pondi	ng	1	
10	i _{100yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q _r	$Q_p - Q_r$	Volume
e		$Q_p = 2.78 \times Ci_{100yr} A$	-		100yr (m ³)	Variable		$Q_p = 2.78 \times Ci_{5yr} A$			5yr	Variable		$Q_p = 2.78 \times Ci_{2yr} A$			2yr
	(<i>mm/hour</i>)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(<i>mm/hour</i>)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(<i>mm/hour</i>)	(L/s)	(L/s)	(L/s)	(m ³)
	188.25 169.91	811.19 732.13	291.58 291.58	519.61 440.55	280.59 290.76	2	182.69 152.51	629.76 525.73	291.58 291.58	338.18 234.15	40.58 56.19	0 2	167.22 133.33	576.45 459.62	291.58 291.58	284.87 168.04	0.00 20.16
		698.63	291.58	440.55	290.76 293.08	5	141.18	486.67	291.58	195.09	58.53	3	121.46	459.62	291.58	127.13	20.16 22.88
	162.13	000.00		376.78	293.89	6	131.57	453.54	291.58	161.96	58.31	4	111.72	385.13	291.58	93.55	22.45
	162.13 155.11	668.36	291.58	3/0./0				· · · ·			-						
		668.36 615.73	291.58 291.58	324.15	291.74	8	116.11	400.26	291.58	108.68	52.17	6	96.64	333.13	291.58	41.55	14.96
	155.11	615.73	291.58			8	116.11			108.68	52.17	6	96.64				14.96
	155.11 142.89	615.73 St	291.58 orage (m ³)	324.15	291.74	8		Stor	r age (m³)			66		Sto	orage (m ³)	41.55	
	155.11 142.89 Overflow	615.73 Sta Required	291.58 orage (m ³) Surface	324.15 Sub-surface	291.74 Balance	8	Overflow	Stor Required	rage (m ³) Surface	Sub-surface	Balance	-	Overflow	Sto Required	orage (m ³) Surface	41.55 Sub-surface	Balance
	155.11 142.89	615.73 St	291.58 orage (m ³)	324.15	291.74	8		Stor	r age (m³)			6		Sto	orage (m ³)	41.55	

APPENDIX F

- Drawing 119351-001 Site Servicing Plan
- Drawing 119351-010 Details and Notes
- Drawing 119351-200 Site Grading Plan
- Drawing 119351-600 Ponding Plan
- Drawing 119351-900 Erosion and Sedimentation Control Plan

	1			B	LAIS ROAD
Image: a serie of the set of the se			Ŧ		
Image: a serie of the set of the se				- CI	
			IVE THE STA		
	A	DUNSKIPPERU.) (-
Kursi Notes: 1-steenowiks C-010 FOR ADDITIONAL DETAILS AND 2-STEE BENOWIKS ADDITIONAL DETAILS AND 3-STEE BENOWIKS ADDITIONAL DETAILS AND 3-STEE BENOWIKS ADDITION DETAILS ADDITIONAL DETAIL					\
NOTES: 1: SEE DRAWING C-010 FOR ADDITIONAL DETAILS AND NOTES: 2: SITE BENCHMARK TO BE OBTAINED FROM LEGAL SURVEYOR HA. KEN SUPPAN SURVEYING LTD. 10: DEVENTION DE ADDUSTED TO 2102100 EXISTING STORM MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 11: DEVENTION MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 12: DEVENTION MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 13: DEVENTION MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 14: DEVENTION MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 15: DEVENTION MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 16: DEVENTION MANDOLE - MINISHING AS-BUILT Fr.C = 102 018 17: REVISED AS PER CITY COMMENTS JM 20: DEVENTION - MINISTING - MINISHING AS-BUILT Fr.C = 102 018 30: REVISED AS PER CITY COMMENTS JM 31: REVISED AS PER CITY COMMENTS JM 32: REVISED AS PER CITY COMMENTS JM 31: REVISED AS PER CITY COMMENTS JM 32: REVISED AS PER CITY COMMENTS JM 32: REVISED AS PER CITY COMMENTS JM 34: REVIS	\bigoplus^{N}				
Notes. 2. SITE BEROMMARY TO BE OF INITED FROM LEGAL. 3.1 EXISTING SANITARY MANNOLE - MENTAGA AS BUILT From 102.018 TO BE ADJUSTED TO 102.02 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 4. EXISTING STORM MANHOLE - MENTAGA AS BUILT From 102.018 5. ISSUED FOR TENDER ANNO 102.002.01 5. ISSUED FOR TENDER ANNO 102.002.01 6. ISSUED FOR TENDER MAN 2020.02 6. ISSUED FOR TENDER MAN 2020.02 6. ISSUED FOR TENDER MAN 2020.02 7. ISSUE FOR TENDER MAN 2020.02 7.	NOT		-,		
3.0 EXISTING SANITARY MANHOLE - MINITARY ADD ADD SUBJUE TYPE - 102 018 3.1 EXISTING SANITARY MANHOLE - MINITARY ADD ADD SUBJUE TYPE - 102 018 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.1			ITIONAL DETAIL	S ANE)
14 Image: Control of the control of					
14 Image: Im	F/C =	= 102.019 TO BE ADJUSTED	D TO ±102.160		
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					0 - 102.010
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
13 11 11 12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 10 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS JM 20200402 3 3 3 ReviseD AS PER CITY COMMENTS JM 20200213 JM 20200213 3 ReviseD AS PER CITY COMMENTS JM 11 Issued FOR SPA JM 11 Issued FOR SPA JM 12 Issued FOR SPA JM 13 ReviseD AS PER CITY COMMENTS JM 14 ReviseD AS PER CITY COMMENTS JM 15 Issued FOR SPA JM 16 ReviseD AS PER CITY COMMENTS JM 17 Issued FOR SPA JM 18 BONK STREET State					
12 11 11 10 11 11 10 11 11 10 11 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11 12 11 11 11 11 11 12 11 11 13 ReviseD AS PER CITY COMMENTS 111 14 ReviseD AS PER CITY COMMENTS 111 15 ISSUED FOR TENDER 111 16 REVISED AS PER CITY COMMENTS 111 17 ISSUED FOR SPA 111 18 ISSUED FOR SPA 111 10 ISSUED FOR SPA 111 10 ISSUED FOR SPA 111 10 ISSUED FOR SPA 111 11 ISSUED FOR SPA 111 12 ISSUED FOR SPA 111 13	14				
11 Image: Constraint of the second secon					
9 Image: Constraint of the second					
B I I 7 REVISED AS PER CITY COMMENTS JM 202004/20 5 ISSUED FOR TENDER JM 202004/20 3 REVISED AS PER CITY COMMENTS JM 202003/13 3 REVISED AS PER CITY COMMENTS JM 202003/13 3 REVISED AS PER CITY COMMENTS JM 2019/12/09 2 REVISED AS PER CITY COMMENTS JM 2019/12/09 1 ISSUED FOR SPA JM 2019/12/09 1 ISSUED FOR SPA JM 2019/04/15 No. REVISIONS By Date Project Title BANK STREET DEVELOPMENT ASIG BANK STREET SEL SCARE Orawing Title SCIE Design SEL Date Project Title Design SEL Checked Date FEB. 2019 Date Project Tit	10				
7 REVISED AS PER CITY COMMENTS JM 202004/02 8 REVISED AS PER CITY COMMENTS JM 202004/02 5 ISSUED FOR TENDER JM 202003/18 4 REVISED AS PER CITY COMMENTS JM 202003/18 3 REVISED AS PER CITY COMMENTS JM 2019/12/08 2 REVISED AS PER CITY COMMENTS JM 2019/12/08 3 REVISED AS PER CITY COMMENTS JM 2019/12/08 4 REVISED AS PER NEW SITE PLAN AND JM 2019/12/08 5 ISSUED FOR SPA JM 2019/12/08 5 REVISIONS By Date Project Title SEL Site Site Site Site Site Site Site Site	-				
5 ISSUED FOR TENDER JM 2020.03:18 4 REVISED AS PER CITY COMMENTS JM 2020.03:18 3 REVISED AS PER CITY COMMENTS JM 2019.12:09 2 REVISED AS PER NEW SITE PLAN AND CITY COMMENTS JM 2019.01:11 1 ISSUED FOR SPA JM 2019.01:15 No. REVISIONS By Date FOIDENT NEW SITE PLAN AND NO. JM 2019.01:15 POIDENT NEW SITE PLAN AND POIDENT NEW SITE PLAN AND 		REVISED AS PER CITY CO	MMENTS	JIM	2020:04:20
4 REVISED AS PER CITY COMMENTS JIM 2020.03.13 3 REVISED AS PER CITY COMMENTS JIM 2019.12.09 2 REVISED AS PER NEW SITE PLAN AND JIM 2019.10.11 1 ISSUED FOR SPA JIM 2019.04.15 No. REVISIONS By Date BIG GROUP A00 - 333 Preston Street Ottawa ON K15 SN4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com Project Title BANK STREET DEVELOPMENT Lasse BANK STREET OUT FOR SUM STREET OUT FOR SUM STREET OUT FOR SUM STREET OUT FOR SUM STREET DEVELOPMENT Lasse BANK STREET OUT FOR SUM STREET SUM STREET SUM STREET OUT FOR SUM STREET SUM STREET OUT FOR SUM STREET DEVELOPMENT SUM STREET DEVELOP SUM STR	6	REVISED AS PER CITY CO	MMENTS	JIM	2020:04:02
3 REVISED AS PER CITY COMMENTS JM 2019:12:09 2 REVISED AS PER NEW SITE PLAN AND CITY COMMENTS JM 2019:10:11 1 ISSUED FOR SPA JM 2019:04:15 No. REVISIONS By Date REVISIONS BI GROUP 400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 Bibgroup.com Project Title BANK STREET BANK STREET 					
2 CITY COMMENTS JM 2019/01/11 1 ISSUED FOR SPA JM 2019/04/15 No. REVISIONS By Date Image: Comparison of the					
No. REVISIONS By Date Image: No. REVISIONS By Date Image: No. BI GROUP 400 - 333 Preston Street Ottawa ON K15 SN4 Canada tel 613 225 1311 fax 613 225 9868 Project Title Image: No. Image: No. Project Title Image: No. Image: No. Project Title Image: No. Image: No. Image: No. Image: No. Image: No.	2		E PLAN AND	JIM	2019:10:11
Image: Bist GROUP A00 – 333 Preston Street A00 – 333 Preston Street Ottawa ON K1S 5NA Canada Disgroup.com BANK STREET Image: Bank Street BANK STREET Image: Bank Street BANK STREET Image: Bank Street Image: Bank Street Image: Bank Street Street Image: Bank Street Street Image: Bank Street Street Street Image: Bank Street Street Street	4				2010.01.15
400 - 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 Project Title BANK STREET BANK STREET BANK STREET OFFICIENT OFF	1		ONS		
400 - 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 Project Title BANK STREET BANK STREET BANK STREET OFFICIENT OFF	1		ONS		
400 - 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 Project Title BANK STREET BANK STREET BANK STREET OFFICIENT OFF	1		ONS		
400 - 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 Project Title BANK STREET BANK STREET BANK STREET OFFICIENT OFF	1		ONS		
400 - 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 Project Title BANK STREET BANK STREET BANK STREET OFFICIENT OFF	1		ONS		
Image: Display of the second seco	1		ONS		
Project Title BANK STREET BANK STREET BANK STREET A836 BANK STREET	1	REVISI			
BANK STREET Asse BANK STREET Asse BANK STREET Image Bank Street STREET Image Bank Street STREET Image Bank Street STREET Image Bank Street STREET Ima	1 No.	REVISI BI BI GRO 400 – 3 Ottawa	DUP 133 Preston St ON K1S 5N4	By treet	Date
BANK STREET Asse BANK STREET Asse BANK STREET Image Colspan="2">Image Colspan="2">Image Colspan="2" Image Colspan="2" Design SEL Date FEB. 2019 Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax	By treet	Date
DEVELOPMENT 4836 BANK STREET ABAGE BANK STREET JUNOFFAIT 2020/04/20 2020/04/20 2020/04/20 2020/04/20 Date JUNOFFAIT Date FEB. 2019 Date JIM Drawn Checked JIM	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax	By treet	Date
4836 BANK STREET Image: Street s	1 No.	BI BI Ottawa tel 613 ibigrou	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com	By treet Ca 613	Date
J. I. MOFFATT 2020/04/20 2020/04/20 Drawing Title SITE SERVICING PLAN Scale 1: 400 Design SEL Date FEB. 2019 Drawn DPS JIM Project No. Drawing No.	1 No.	BI BI BI Ottawa tel 613 ibigrou	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com	By treet Ca 613	Date
J. I. MOFFATT 2020/04/20 2020/04/20 Drawing Title SITE SERVICING PLAN Scale 1: 400 Design SEL Date FEB. 2019 Drawn DPS JIM Project No. Drawing No.	1 No.	BI BI BI Ottawa tel 613 ibigrou	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
Drawing Title SITE SERVICING PLAN Scale 1: 400 Design SEL Date FEB. 2019 Drawn DPS JIM	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
Drawing Title Scale 1: 400 Design SEL Design SEL Design DPS JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
Drawing Title SITE SERVICING PLAN	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
Drawing Title SITE SERVICING PLAN	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
Scale T: 400 Design SEL Date FEB. 2019 Drawn Checked DPS JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
PLAN Scale 1:400 Design SEL Date FEB.2019 Drawn DPS Checked JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE DPMEN	By treet Ca 613	Date
Scale 1:400 Design Date SEL FEB.2019 Drawn Checked JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET	By treet Ca 613	Date
1 : 400 Design SEL Date FEB. 2019 Drawn DPS Checked JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET COM COM COM COM COM COM COM COM	By treet Ca 613	Date
1 : 400 Design SEL Date FEB. 2019 Drawn DPS Checked JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET COM COM COM COM COM COM COM COM	By treet Ca 613	Date
Design Date SEL FEB. 2019 Drawn Checked DPS JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET COM K STREET COM RVICIN	By treet Ca 613	Date
SEL FEB. 2019 Drawn Checked DPS JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET COM K STREET COM RVICIN	By treet Ca 613	Date
SEL FEB. 2019 Drawn Checked DPS JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET COM K STREET COM RVICIN	By treet Ca 613	Date
DPS JIM Project No. Drawing No.	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET C RVICIN AN	By treet Ca 613	Date
Project No. Drawing No.	1 No.	REVISI BI BI BI BI BI BI BI BI BI BI BI C MOF - 3 Ottawa tel 613 ibigrou ct Title BANK S DEVELC 4836 BAN V 4836 BAN	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET RVICIN AN	By treet Ca 613 T JT	Date
440054	1 No.	BI BI BI BI BI BI BI BI BI BI BI BI BI B	DUP 33 Preston St ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET C RVICIN AN Date FEI	ву treet Ca Ca Ca Ca Ca S. 20	Date
	1 No.	REVISI BI BI BI BI BI BI BI BI CA BI BI CA STE SITE SEL DPS	DUP 33 Preston Sf ON K1S 5N4 225 1311 fax p.com STREE PMEN K STREET Checked	ву treet Ca Ca Ca Ca Ca S. 20	Date

DRAWING NOTES

1.0 GENERAL

1.2 DO NOT SCALE DRAWINGS

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.

1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE ARCHITECT OR DESIGN ENGINEER AS APPLICABLE.

1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION" 1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS.

1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS. 1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN.

1.8 REFER TO SITE PLAN BY S. J. LAWRENCE ARCHITECT INCORPORATED.

1.09 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA. SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF FILTER CLOTHS ACROSS MANHOLE AND CATCHBASIN LIDS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED.

1.10 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER

1.11 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO CITY STANDARDS SC1.1 AND SC1.4. ALL ONSITE CURBS TO BE BARRIER TYPE, WITH DEPRESSIONS AS NOTED. 1.12 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL

ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS. 1.13 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM BANK STREET.

1.14 FOR GEOTECHNICAL REPORT SEE GEOTECHNICAL INVESTIGATION PROPOSED COMMERCIAL DEVELOPMENT - 4836 BANK STREET, OTTAWA, ON. REPORT №. PG2934-LET.01 REVISON 1 BY PATERSON GROUP DATED NOV. 19 2019. FOR GEOTECHNICAL REPORT ON DUN SKIPPER DRIVE SEE GEOTECHNICAL INVESTIGATION PROPOSED RESIDENTIAL DEVELOPMENT REMER LANDS OTTAWA, ONTARIO REPORT #13-1121-0083 (1042/2042) PREPARED BY GOLDER ASSOCIATES.

1.15 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY

1.16 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

1.17 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER

1.18 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES, ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.

1.19 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER.

1.20 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED. 1.21 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL

1.22 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION.

1.23 CLAY DIKES TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.24 ALL UTILITY BOXES (i.e. PEDESTALS, TRANSFORMERS, ETC) ARE TO BE INSTALLED IN ACCORDANCE WITH THE LATEST EDITION OF THE CITY OF OTTAWA'S "GUIDELINES FOR UTILITY PEDESTALS WITHIN THE ROAD

RIGHT OF WAY" 1.25 FOR SITE BENCH MARK SEE SURVEY BY H. A. KEN SHIPMAN SURVEYING LTD. REF. NO. GL-495.

2.0 SANITARY

2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 250mmØ AND SMALLER - PVC DR 35

2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED.

2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24

2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT.

2.5 ANY SANITARY SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF

OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER. 2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

3.0 STORM

3.1 ALL STORM SEWERS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. STORM SEWER MATERIALS TO

3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN ACCORDANCE WITH THE PLANS AND AS PER CITY OF

STD. S25. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE. 3.4 STORM MAINTENANCE HOLES TO BE OPSD, SIZE AS SPECIFIED, TAPER TOP. 3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & FISH TYPE GRATE AS PER CITY OF OTTAWA STD.

3.3 STORM MH COVERS TO BE OPEN TYPE, AS PER CITY STANDARD S24, FRAMES TO BE PER CITY OF OTTAWA

3.6 150mm DIAMETER SOCK-WRAPPED PERFORATED PVC SUBDRAINS TO BE INSTALLED AT THE LIMIT OF THE HEAVY DUTY ROAD STRUCTURE WHERE IT MEETS THE LIGHT DUTY ROAD STRUCTURE AND AT ALL CB'S IN HEAVY DUTY ROADS AS IDENTIFIED ON PLAN. SUBDRAINS TO DISCHARGE TO CB'S AS SHOWN.

3.7 ANY STORM SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

3.8 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER

INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS. 3.9 CONTRACTOR TO PROVIDE IPEX-TEMPEST MHF ICD'S SHOP DRAWINGS, OR EQUIVALENT, FOR ENGINEERS REVIEW PRIOR TO ORDERING ICD'S

4.0 WATER

4.1 ALL WATERMAINS TO BE PVC DR 18, WITH MINIMUM COVER OF 2.4m AND INSTALLED PER CITY OF OTTAWA STANDARDS W17. ALL DOMESTIC WATER SERVICES ARE TO BE 200mmØ. 4.2 THRUST BLOCKS TO BE INSTALLED AT ALL BENDS, TEES, AND CAPS ALL TO CITY STANDARDS W25.3 AND

4.3 CONTRACTOR TO CONDUCT PRESSURE AND LEAKAGE TESTING OF ALL WATERMAINS AND DISINFECT AND CHLORINATE ALL WATERMAINS TO THE SATISFACTION OF M.O.E. AND THE CITY OF OTTAWA. 4.4 TRACER WIRE TO BE INSTALLED ALONG THE FULL LENGTH OF WATERMAIN AND ATTACHED TO EACH MAIN

STOP AS PER CITY OF OTTAWA STANDARD W36. 4.5 ALL COMPONENTS OF THE WATER DISTRIBUTION SYSTEM SHALL BE CATHODICALLY PROTECTED AS PER

CITY OF OTTAWA STANDARD W40 4.6 ALL VALVES & VALVE BOXES AND CHAMBERS, HYDRANTS, AND HYDRANT VALVES AND ASSEMBLIES SHALL

BE INSTALLED AS PER CITY OF OTTAWA STANDARDS W19 & W24. 4.7 ANY WATERMAIN WITH LESS THAN 2.4m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER

4.8 CONTRACTOR IS RESPONSIBLE FOR ACQUIRING THE WATER PERMIT FROM THE CITY OF OTTAWA AND PAYMENT OF ANY FFFS ASSOCIATED WITH SECURING THE WATER PERMIT. OWNER IS RESPONSIBLE FOR REIMBURSING THE CONTRACTOR FOR THE ACTUAL COST OF ACQUIRING THE WATER PERMIT.

4.9 CONNECTION TO EXISTING WATERMAIN TO BE INCLUDED IN THE COST FOR THE WATERMAIN INSTALLATION. THIS COST INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARD R10.

5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY

5.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTAWA STANDARD R-10.

5.2 THE CONTRACTOR SHALL PREPARE A TRAFFIC MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY THE CITY OF OTTAWA. CONTRACTOR TO MAINTAIN TRAFFIC FLOW DURING THE ENTIRE CONSTRUCTION PERIOD. MAINTENANCE OF ROAD CUTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. PROVISION OF FLAGMEN, DETOURS AS NECESSARY, BARRICADES AND SIGNS TO THE FULL SATISFACTION OF THE ENGINEER AND ROAD AUTHORITY SHALL BE THE CONTRACTOR'S RESPONSIBILITY.

5.3 CONTRACTOR TO PREPARE SUBGRADE, INCLUDING PROOFROLLING, TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER PRIOR TO THE COMMENCEMENT OF PLACEMENT OF GRANULAR B MATERIAL 5.4 FILL TO BE PLACED AND COMPACTED PER THE GEOTECHNICAL REPORT REQUIREMENTS

5.5 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR B MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER, CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR B MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT. 5.6 GRANULAR A MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF

5.7 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR A MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR A MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

5.9 CONTRACTOR TO SUPPLY, PLACE AND COMPACT ASPHALT MATERIAL IN ACCORDANCE WITH THE

OF ASPHALT MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

AND FOR PROVIDING THE ENGINEER WITH VERIFICATION PRIOR TO PLACEMENT.

TO THEIR ORIGINAL CONDITION AND FLOWLINE GRADES. 5 12 EXISTING EAST SIDE ROAD DITCH ALONG PALLADIUM DRIVE TO BE REALIGNED AS PER THE GRADING PLAN

EXISTING PUBLIC RIGHTS OF WAY ARE TO BE FINISHED WITH SOD ON 100mm TOPSOIL. 5 13 ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD

TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.

	LEGEND:				
O ^{MH3A}	EXISTING SANITARY MANHOLE	О ^{МНЗА}	SANITARY MANHOLE	$\rightarrow \rightarrow \rightarrow$	P
Омнз	EXISTING STORM MANHOLE	O ^{MH3}	STORM MANHOLE	0.5%	— PI
CB T/G 99.76	EXISTING STREET CATCHBASIN	■ CB T/G 99.76	CATCHBASIN c/w TOP OF GRATE	1.3%	SI
CICB G/G 99.76	EXISTING CURB INLET CATCHBASIN	RYCB	REAR YARD CATCHBASIN	<^]	М
⊗ V&VB	EXISTING VALVE AND VALVE BOX	T/G 99.76	c/w GUTTER GRADE	×104.62	PI
\otimes ^{V&C}	EXISTING VALVE AND CHAMBER	О_{ЕСВ} Т/G 100.25	REAR YARD "END" CATCHBASIN C/W TOP OF GRATE 300Ø)	×104.40 (S)	PI
HYD B/F 100.5	56 EXISTING HYDRANT	🔲 СВМН	CATCHBASIN MANHOLE	×104.50 (S)HP	PI
	EXISTING BARRIER CURB	T/G 101.55	c/w TOP OF GRATE	104.60 <i>103.59</i> ×	L
D.C.	EXISTING DEPRESSED BARRIER CURB	⊗ ^{V&VB}	VALVE AND VALVE BOX	86.45 EX ×	TI
	EXISTING CONCRETE SIDEWALK	⊗ ^{V&C}	VALVE AND CHAMBER		FU
	EXISTING CONCRETE SIDEWALK	+ HYD B∕F 100.56	HYDRANT c/w BOTTOM OF FLANGE ELEVATION		R
	– PERF. SUBDRAIN (SIZE AS NOTED)	D.C.	DEPRESSED BARRIER CURB AS PER SC1.1	105.30 T/w [×]	T
Ş	SIAMESE CONNECTION (IF REQUIRED)		BARRIER CURB AND GUTTER AS PER SC1.2	103.50 в/w [×]	Р
M	METER		MOUNTABLE CURB AS PER SC1.3		Т
RM	REMOTE METER		PROPOSED CONCRETE SIDEWALK	\bigcirc	PI
PRV	PRESSURE REDUCING VALVE	200mmø SAN	SANITARY SEWER & FLOW DIRECTION	TP 13-301	
	WATERMAIN IDENTIFICATION	825mmø STM	STORM SEWER & FLOW DIRECTION	-	TE
	PIPE CROSSING IDENTIFICATION	2000 WATERMAIN	WATERMAIN		CL
		2000 RED 1500	WATERMAIN REDUCER	F.F.E.=106.30	PF EL
	INLET CONTROL DEVICE LOCATION	2 VBENDS	VERTICAL BEND LOCATION	U.S.F.=104.30	PF
0	PROTECTIVE BOLLARD		PROPERTY LINE	0.3.F.=104.50	EL
	-	MB	PROPOSED MAIL BOX		PF
	HEAVY DUTY ASPHALT / FIRE ROUTE	B		в	PF

BE: 375mmØ AND SMALLER - PVC DR 35 450mmØ AND LARGER - 100-D REINFORCED CONCRETE. OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, AND FRAME AND COVER.

GRANULAR B PLACEMENT

5.8 ASPHALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR A PLACEMENT.

RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES

5.10 CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING LINE AND GRADE IN ACCORDANCE WITH THE PLANS, 5.11 DITCHES DISTURBED DURING CULVERT INSTALLATION AND GRADING OPERATIONS ARE TO BE REINSTATED

ADJACENT AREAS BETWEEN ROAD SIDE DITCH AND PARKING LOT TO BE RE GRADED AS PER THE GRADING PLAN. ALL RE GRADED AREAS IN EXISTING PUBLIC RIGHTS OF WAY AND ANY OTHER DISTURBED AREAS IN

THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER

5.14 PAVEMENT STRUCTURE (MATERIAL TYPES AND THICKNESSES) FOR HEAVY DUTY AND LIGHT DUTY AREAS TO BE AS SPECIFIED IN THE GEOTECHNICAL REPORT AND SHOWN ON THE PLANS.

ED BIKE RACK

ED TRANSFORMER

ED UNDERSIDE OF FOOTING

ED BUILDING FINISHED FLOOR

YKES PER S8

ITS (SEE GEOTECHNICAL REPORT)

NARY ROOF DRAIN LOCATION

ING 3:1 MAXIMUM UNLESS NOTED OTHERWISE

SED BOTTOM OF RETAINING WALL

RETAINING WALL

NG WALL

TATIC PONDING GRADE

D EXISTING GRADE

RNER GRADE C/W EXISTING GROUND

SED SWALE HIGH POINT

SED SWALE GRADE

SED SPOT GRADE

OVERLAND FLOW ROUTE

C/W FLOW DIRECTION

SED DITCH C/W FLOW DIRECTION AND SLOPE

SED SWALE C/W FLOW DIRECTION

	10.040		102.21	33.01	2.40	1
	0+048.82	200Ø – 11 1/4° BEND	102.42	100.02	2.40	
С	0+050.57	200Ø x 200Ø TEE	102.45	100.05	2.40	
-	0+052.57	200Ø V&VB	102.46	100.06	2.40	
	0+060		102.55	100.15	2.40	
	0+080		102.65	100.25	2.40	
	0+97.676	200Ø x 150Ø HY DRANT TEE	102.68	100.28	2.40	<u> </u>
	0+100		102.68	100.28	2.40	
	0+100.58	2000 x 2000 TEE DOMESTIC WATER SERVICE	102.00	100.20	2.40	<u> </u>
	0+120		102.70	100.30	2.40	
	0+133.06		102.70	100.30		
	0+136.02	200Ø – 11 1/4° BEND	102.56	100.16	2.40	
					2.40	
D	0+142.04	200Ø x 200Ø TEE	102.42	100.02	2.40	
	0+143.71	200Ø V&VB	102.37	99.97	2.40	
E	0+144.76	200Ø CAP	102.33	99.93	2.40	
C	0+000	200Ø x 200Ø TEE	102.45	100.05	2.40	
	0+001.61	200Ø – 11 1/4° BEND	102.39	99.99	2.40	
	0+004.04	200Ø V&VB	102.34	99.94	2.40	
	0+020		101.91	99.51	2.40	
	0+040		101.35	98.95	2.40	
	0+056.69	200Ø x 150Ø HY DRANT TEE	100.90	98.50	2.40	
	0+060		100.74	98.34	2.40	
	0+062.44		100.66	98.26	2.40	
	0.081.06	200Ø – 22 1/2° BEND	100.47	98.07	2.40	
	0+084.95	2000 – 22 1/2° BEND	100.44	98.04	2.40	
	0+088.64	2000 – 11 1/4° BEND	100.40	98.00	2.40	
	0+093.48	2000 × 2000 TEE DOMESTIC WATER SERVICE	100.40	98.01	2.40	<u> </u>
	0+095.48	2000 - 22 1/2° BEND	100.41	98.01	2.40	<u> </u>
	0+096.06		100.44	98.04		
	0+099.51	200Ø – 22 1/2° BEND			2.40	
			100.56	98.16	2.40	
	0+130.23	2000 x 1500 HY DRANT TEE	100.66	98.26	2.40	
	0+136.32	2000 x 2000 TEE DOMESTIC WATER SERVICE	100.82	98.42	2.40	ļ
	0+140		100.85	98.45	2.40	
	0+160		100.88	98.48	2.40	
	0+171.94	200Ø – 11 1/4° BEND	100.97	98.57	2.40	
	0+174.66	200Ø V&VB	100.98	98.58	2.40	
F	0+177.30	200Ø x 200Ø CROSS	101.03	98.63	2.40	
	0+179.04	200Ø V&VB	101.01	98.61	2.40	
G	0+182.36	200Ø CAP	100.89	98.49	2.40	[
-	0+000	CONNECT TO EX. 400Ø W/M	101.05	97.80	3.25	
<u>.</u>	0+008.79	200Ø V&VB	101.06	98.66	2.40	
	0+012.26	2000 - 11 1/4° BEND	101.04	98.64	2.40	<u> </u>
	0+012.20		101.04	98.56	2.40	<u> </u>
	0+020		101.03	98.63		
F	0+043.52	200Ø x 200Ø CROSS	101.03	98.72	2.40	<u> </u>
					2.40	
	0+058.52	200Ø V&VB	101.22	98.82	2.40	
	0+060		101.23	98.83	2.40	
	0+080		101.41	99.01	2.40	ļ
	0+100		101.73	99.33	2.40	
	0+120		102.23	99.83	2.40	
	10,122.20	200Ø V&VB	102.42	100.02	2.40	
	0+133.36		100.40	100.02	2.40	
	0+133.36	200Ø x 200Ø TEE	102.42	100.02		
)		200Ø x 200Ø TEE	102.42	100.02	2.10	
		200Ø x 200Ø TEE 150Ø x 200Ø TEE	102.42	99.65	2.40	
	0+137.59					
	0+137.59 0+000 0+003 0+020	150Ø x 200Ø TEE	102.05 102.09 102.33	99.65 99.69 99.93	2.40	
D	0+137.59 0+000 0+003	150Ø x 200Ø TEE	102.05 102.09	99.65 99.69	2.40 2.40	

WATERMAIN SCHEDULE

DESCRIPTION

CONNECT TO EX. 400Ø W/M

200Ø x 150Ø HY DRANT TEE

FINISHED

101.67

101.57

101.76

102.05

102.21

GRADE (m) WATERMAIN

101.45 99.16 2.29

99.27 2.40

99.17 2.40

99.36 2.40

99.65 2.40

99.81 2.40

TOP OF WATERMAIN AS-BUILT

COVER WATERMAIN

							H BASIN DA	CATC				ELEVATION OUTLET PIPE											
	ICD TYPE	FLOW	HEAD		DIAMETER	INVERT		TOP OF	COVER	STRUCTURE	AREA	TRUCTURE											
NAME		FLOW	IILAD	TYPE	(mm)	OUTLET	INLET	GRATE	COVER	STRUCTURE	ID	ID											
CB18	Tempest Vortex	13.00	1.65	HDPE PERF	200	100.570		102.05	S19	OPSD 705.010	MH8	CB1											
СВМН1		13.00	1.05	HDPE PERF	200	100.370		102.05	\$19 \$19	OPSD 705.010	MH9B	CB1											
	Tempest Vortex	10.00	1.65	PVC DR-35	200	100.350		101.75	\$19 \$19	OPSD 705.010	MH9	CB2											
CBMH2	Tempest Vortex	6.00	1.4	PVC DR-35 PVC DR-35	200	100.330		102.43	\$19 \$19	OPSD 705.010	MH10A	CB3											
СВМНЗ	Tempest Vortex	15.00	1.4	PVC DR-35 PVC DR-35	200	99.980		102.30	S19	OPSD 705.010	CBMH1A	CB4 CB5											
	Tempest HF - Type A	20.00	1.4	PVC DR-35 PVC DR-35	200	100.200		101.35	\$19 \$19	OPSD 705.010	CBMH1A CBMH1B	CB5 CB6											
EXBLK900	Tempest HF - Type B	30.00	1.4	PVC DR-35 PVC DR-35	200	100.200		101.45	\$19 \$19	OPSD 705.010	CBIVIN16 CBMH1C	СВ0											
EXMH6140				PVC DR-35 PVC DR-35	200	99.400		101.30		OPSD 705.010	MH1B												
MH1	Tempest HF - Type D	47.00	1.4						S19			CB8											
MH2	Tempest HF - Type D	43.00	1.35	PVC DR-35	200	99.420		100.66	S19	OPSD 705.010	MH1A	CB9											
	Tempest HF - Type B	45.00	1.65	PVC DR-35	200	98.850		100.40	S19	OPSD 705.010	MH1D	CB10											
MH3	Tempest Vortex	15.00	1.65	PVC DR-35	200	98.930		100.55	S19	OPSD 705.010	MH1E	CB11											
MH4				PVC DR-35	200	99.100		100.40	S19	OPSD 705.010	MH2B	CB12											
	Tempest HF - Type B	36.00	1.5	PVC DR-35	200	99.000	99.000	100.30	S19	OPSD 705.010	MH3	CB13											
И мн5	Tempest HF - Type B	37.00	1.5	PVC DR-35	200	99.000		100.45	S19	OPSD 705.010	MH4	CB14											
	Tempest Vortex	6.00	1.65	PVC DR-35	200	99.470		100.92	S19	OPSD 705.010	СВМНЗВ	CB15											
MH7	Tempest Vortex	6.00	1.65	PVC DR-35	200	100.020		100.65	S19	OPSD 705.010	MH5B	CB16											
MH8	Tempest Vortex	6.00	1.65	PVC DR-35	200	99.690		101.35	S19	OPSD 705.010	MH5A	CB17											
мнэ	Tempest Vortex	15.00	1.65	PVC DR-35	200	98.320		100.03	S19	OPSD 705.010	MH11	CB18											
	Tempest Vortex	20.0	2.54	PVC DR-35	250	99.795		102.21	S25 & S28.1 Open	OPSD 701.010	MH10B	CBMH1											
MH10	Tempest Vortex	20.0	2.834	PVC DR-35	300	99.016		101.50	S25 & S28.1 Open	OPSD 701.010	CBMH2	CBMH2											
MH11	Tempest Vortex	6.0	2.045	PVC DR-35	200	98.705		100.45	S25 & S28.1 Open	OPSD 701.010	СВМНЗА	СВМНЗ											
MH12				HDPE PERF	450	97.700		98.70	S30/S31	CITY STD S29	MH11	TCB1											
-				HDPE PERF	450	98.300		100.04	S30/S31	CITY STD S29	MH11	ECB2											

STATION

0+008.59 200Ø V&VB

B 0+034.70 150Ø x 200Ø TEE

A |0+000

0+020

0+040

0+024.72

REVISED 2020-03-13

		ST	M STRUCT	URE TABI	_E			
RIM ELEV.	INVERT IN	INVERT IN AS-BUILT		INVERT OUT AS-BUILT	DESCRIPTION			
100.57			SW98.320	· ,	Eccentric Cylinder Metric			
102.22	SW100.250		N99.795		1200mmø OPSD-701.010			
101.50	S99.066		W99.016		1200mmø OPSD-701.010			
100.83	SW99.321 NW98.116		SE98.116		1200mmø OPSD-701.010			
99.20			NW95.298		1350mm BULKHEAD			
98.93	SE95.266		SW95.206	· · · · · · · · · · · · · · · · · · ·	2438mm x 2438mm RECTANGULAR METRIC			
101.16			NW98.605		1200mmø OPSD-701.010			
100.41	SE98.200		W98.125		1200mmø OPSD-701.010			
100.39	E98.092		SW97.762		1200mmø OPSD-701.010			
102.14	NE97.623 E98.900		NW97.623	·	1200mmø OPSD-701.010			
100.96	SE97.584 W99.130		N97.584	· · · · · · · · · · · · · · · · · · ·	1200mmø OPSD-701.010			
102.35	SW99.562		E99.362		1200mmø OPSD-701.010			
102.45	SE99.780		NE99.758	· · · · · · · · · · · · · · · · · · ·	1200mmø OPSD-701.010			
102.76			NW100.179		1200mmø OPSD-701.010			
102.68			NE100.499		1200mmø OPSD-701.010			
100.49	NE98.230		SE98.230	· · · · · · · · · · · · · · · · · · ·	1200mmø OPSD-701.010			
101.51	S97.475		N97.455		1200mmø OPSD-701.010			
	SAN STRUCTURE TABLE							
				1 INL				

NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION
EXBLK6138A	0.00					200mm BULKHEAD
EXMH6138A	101.10	S97.028		W96.968		1200mmø OPSD-701.010
MH1A	101.53			NW98.004		1200mmø OPSD-701.010
MH2A	100.43	SE97.713		W97.683		1200mmø OPSD-701.010
MH3A	100.41	E97.640		SW97.610		1200mmø OPSD-701.010
MH4A	102.09	NE97.370		NW97.340		1200mmø OPSD-701.010
MH5A	98.09	SE97.288 W98.640		N97.228		1200mmø OPSD-701.010
MH6A	101.01	S97.110		N97.065		1200mmø OPSD-701.010
MH7A	102.36			E98.852		1200mmø OPSD-701.010

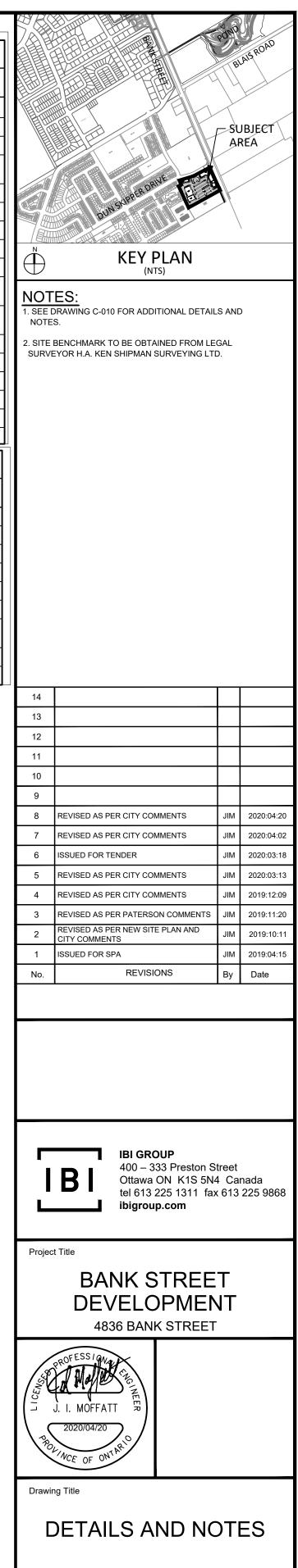
							1
			Crossing				
1	150 Φ WM INV	99.75	0.8 m	CLEARANCE OVER	200 Φ SAN O	3V 98.95	
3	200 Φ SAN INV	98.80	0.35 m	CLEARANCE OVER	450 Φ STM O	3V 98.45	
4	200 Φ SAN INV	98.85	0.25 m	CLEARANCE OVER	200 ¢ STM O	3V 98.60	
5	200 Φ WM INV	99.55	0.8 m	CLEARANCE OVER	200 Φ SAN O	3V 98.75	
6	200 Φ WM INV	99.55	0.25 m	CLEARANCE OVER	450 Φ STM O	3V 99.30	*INSULATE PER W22
7	750 Φ STM INV	97.58	0.2 m	CLEARANCE OVER	200 Φ SAN O	3V 97.38	
8	200 Φ WM INV	99.50	0.95 m	CLEARANCE OVER	750 Φ STM O	3V 98.55	
9	200 Φ WM INV	99.50	2.1 m	CLEARANCE OVER	200 Φ SAN O	3V 97.40	
10	200 ¢ STM INV	98.55	0.8 m	CLEARANCE OVER	200 Φ SAN O	3V 97.75	
11	200 Φ WM OBV	98.00	0.50 (min) m	CLEARANCE UNDER	200 Φ SAN IN	V 98.50	
12	200 Φ WM OBV	98.00	0.50 (min) m	CLEARANCE UNDER	200 Φ STM IN	V 98.50	
13	200 ¢ STM INV	98.56	0.65 m	CLEARANCE OVER	200 Φ SAN O	3V 97.91	
14	200 Φ STM INV	98.75	0.9 m	CLEARANCE OVER	200 Φ SAN O	3V 97.85	
15	200 Φ WM OBV	98.20	0.7 m	CLEARANCE UNDER	200 Φ STM IN	V 98.90	
16	200 Φ WM OBV	98.40	0.50 (min) m	CLEARANCE UNDER	200 Φ SAN IN	V 98.90	
17	200 Φ STM INV	98.87	0.75 m	CLEARANCE OVER	200 Φ SAN O	3V 98.12	
18	200 Φ WM OBV	98.40	0.50 (min) m	CLEARANCE UNDER	200 Φ STM IN	V 98.90	
19	200 Φ STM INV	98.95	0.8 m	CLEARANCE OVER	200 Φ SAN O	3V 98.15	
20	200 Φ WM OBV	98.40	0.9 m	CLEARANCE UNDER	200 Φ STM IN	V 99.30	
21	200 Φ WM OBV	100.00	0.50 (min) m	CLEARANCE UNDER	250 Φ STM IN	V 100.50	
22	200 Φ WM INV	98.83	0.25 m	CLEARANCE OVER	525 Φ STM O	3V 98.58	*INSULATE PER W22
23	200 Ø WM INV	98.78	0.5 m	CLEARANCE OVER	200 Φ SAN O	3V 98.28	
24	750 Φ STM INV	97.42	0.2 m	CLEARANCE OVER	200 Φ SAN O	3V 97.22	
25	400 Φ WM INV	98.90	0.35 m	CLEARANCE OVER	750 Φ STM O	3V 98.55	
26	GAS INV	100.98	1.8 m	CLEARANCE OVER	200 Φ WM O	3V 99.18	
27	3 PARTY DUCT INV	100.84	1.4 m	CLEARANCE OVER	200 Φ WM O	3V 99.44	
28	3 PARTY DUCT INV	100.75	2.5 m	CLEARANCE OVER	750 Ø STM O	3V 98.25	
29	GAS INV	100.78	2.9 m	CLEARANCE OVER	750 Φ STM O	3V 97.88	
30	GAS INV	99.24	1.8 m	CLEARANCE OVER	200 Φ WM O	3V 97.44	

PAVEMENT STRUCTURE **

CAR ONLY PARKING AREAS:

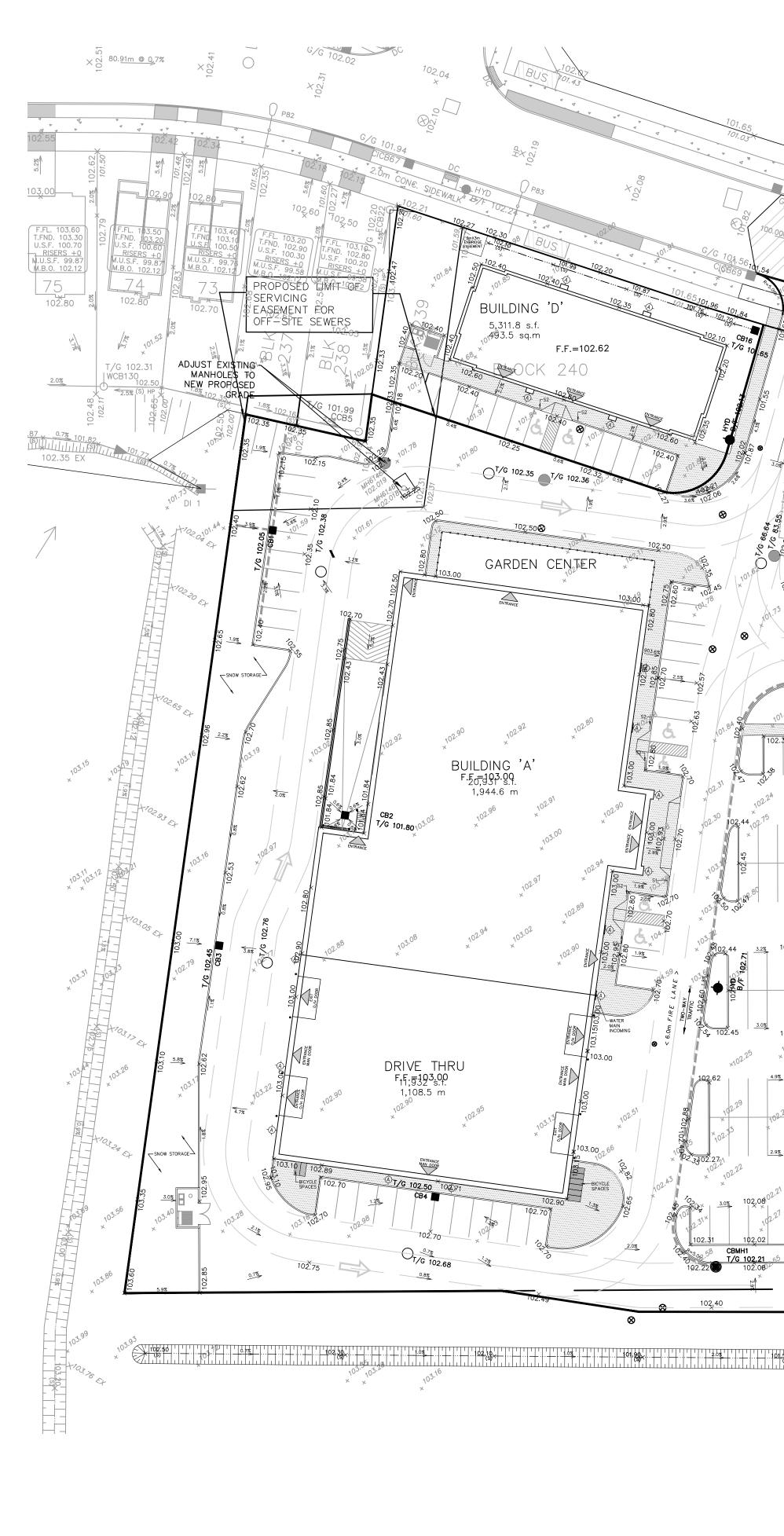
50mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 150mm BASE - OPSS GRANULAR "A" CRUSHED STONE 300mm SUBBASE – OPSS GRANULAR "B" TYPE II

REVISED 2020-03-13

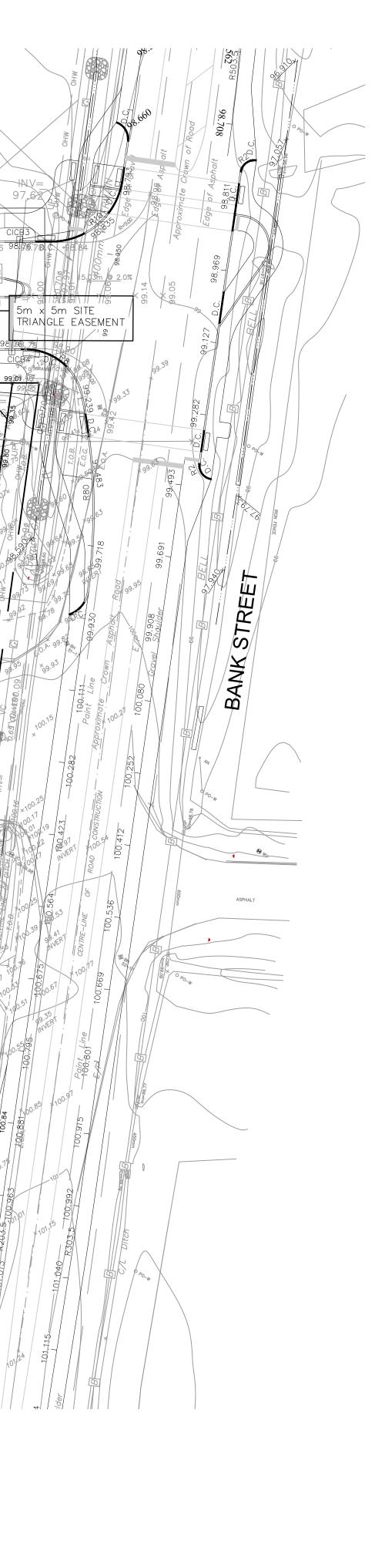

SUBGRADE – EITHER FILL, IN SITU SOIL, OR OPSS GRANULAR "B" TYPE I OR II MATERIAL PLACED OVER IN SITU SOIL OR FILL

HEAVY TRUCK PARKING AREAS AND ACCESS LANES:

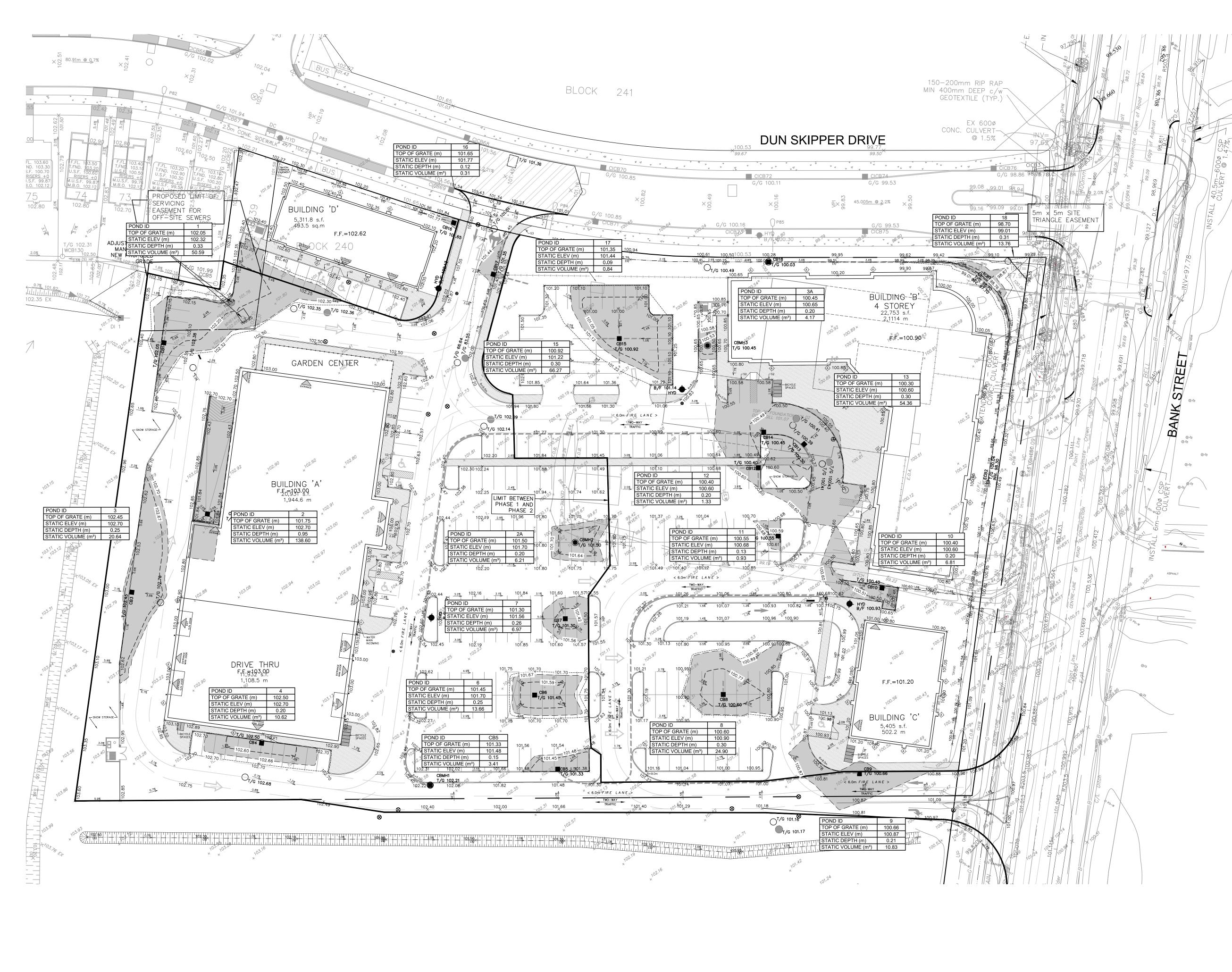
- 40mm WEAR COURSE SUPERPAVE 12.5 ASPHALTIC CONCRETE 50mm BINDER COURSE – SUPERPAVE 19.0 ASPHALTIC CONCRETE
- 150mm BASE COURSE OPSS GRANULAR "A" CRUSHED STONE 400mm SUBBASE – OPSS GRANULAR "B" TYPE II
 - SUBGRADE EITHER FILL, IN SITU SOIL, OR OPSS GRANULAR "B" TYPE I OR II MATERIAL PLACED OVER IN SITU SOIL OR FILL

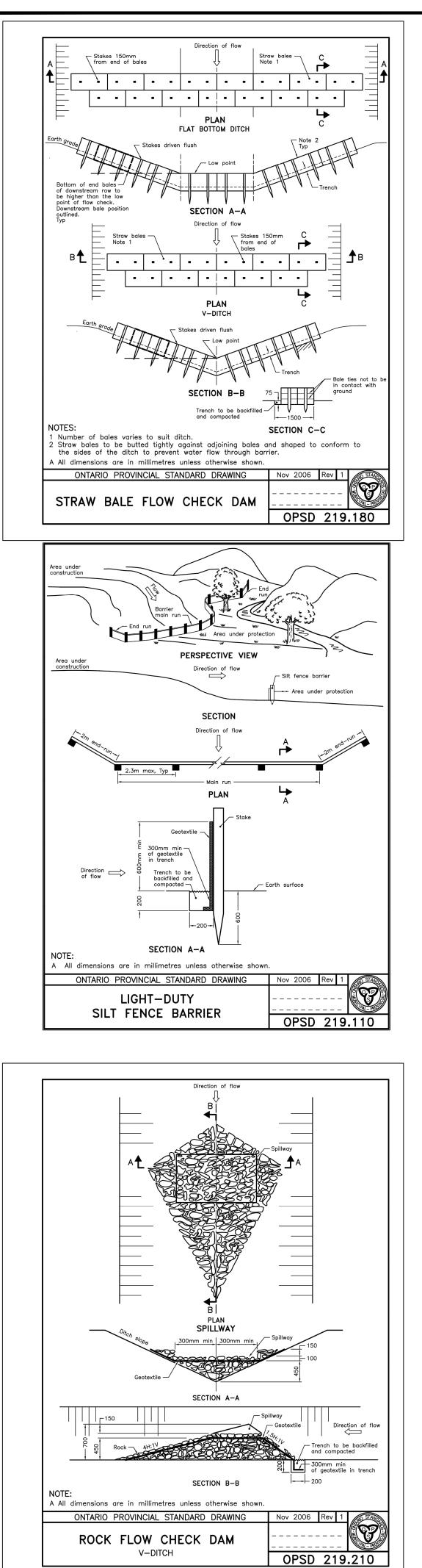

EXISTING DUN SKIPPER DRIVE ***

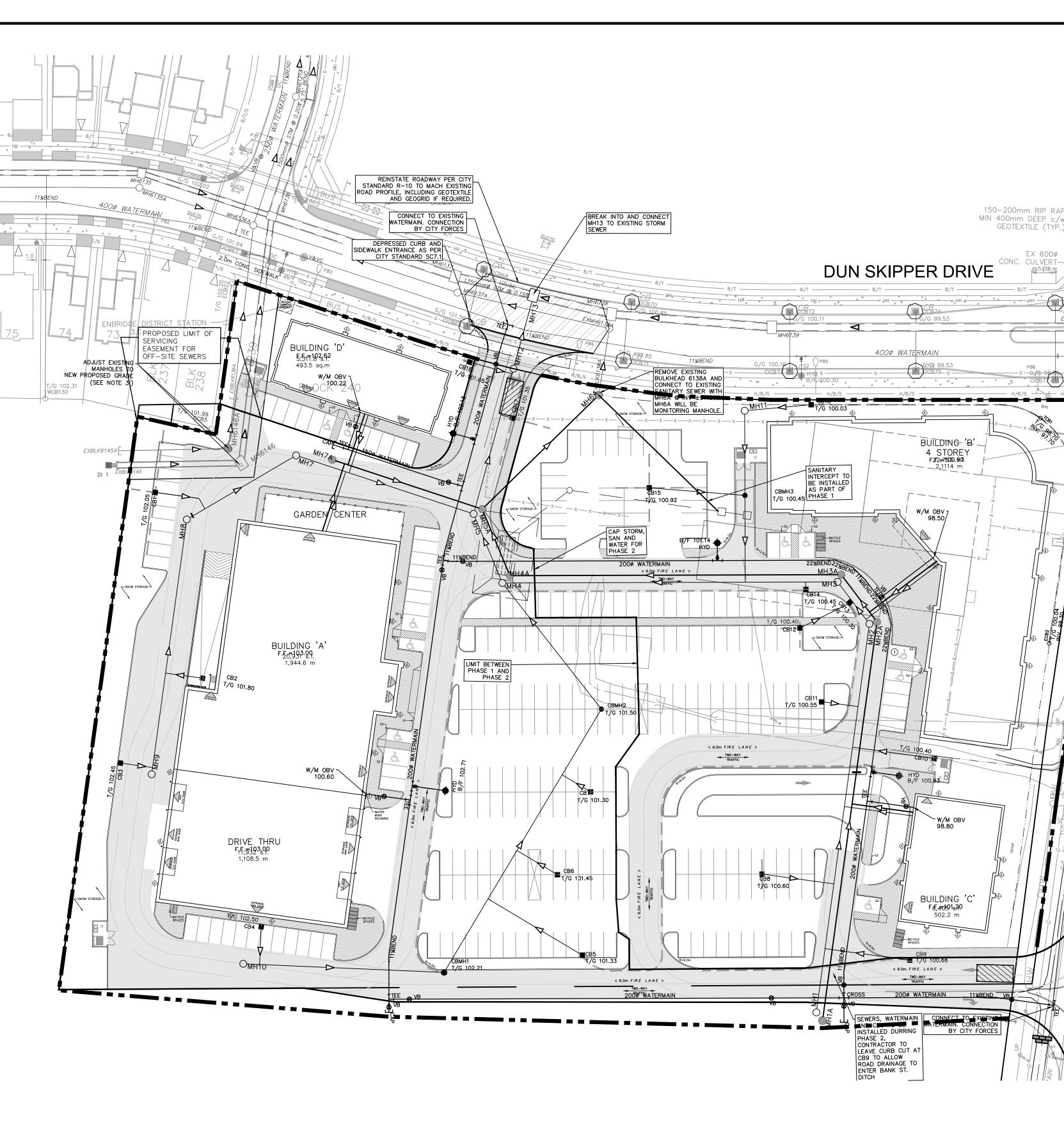
- 40mm WEAR COURSE SUPERPAVE 12.5 ASPHALTIC CONCRETE 2x50mm BINDER COURSE – SUPERPAVE 19.0 ASPHALTIC CONCRETE 150mm BASE COURSE – OPSS GRANULAR "A" CRUSHED STONE 450mm SUBBASE – OPSS GRANULAR "B" TYPE II
- ** REFER TO GEOTECHNICAL REPORT PG2934-LET.01 REVISION 1 DATED NOV. 19-2019 BY PATERSON GROUP *** REFER TO GEOTECHNICAL REPORT No. 12-1121-0286 BY GOLDER ASSOCIATES.



Scale N.T.S.


		\sim
Design SEL	Date FEB. 2019	600-6
Drawn DPS	Checked JIM	-12-19-
Project No.	Drawing No.	2
119351	010	D07-


150–200mm RIP RAP MIN 400mm DEEP c/w GEOTEXTILE (TYP.) \ BLOCK 241 EX 600ø CONC. CULVERT-@ 1.5% DUN SKIPPER DRIVE 99.50[×] 96.00m/@/2/210 P 4 P 4 P 7 a b a a b a A P A P A A G/G 98.86 CICB74 · 100.8r G/G 99.53 G/G 100.11 99.08 <u>99.01</u> 98.94 □ × 6 45.005m @ 2.2% × 6 99.16 ×99.09 99.0 G/G 100.85 G/G 100.16 G/G 99.53 G∕G 98.86[⊃] 7 🗸 A M X 101.08 (5) T/G 101.01 00.75 .<u>100.45</u> 2.93 100.25 100. 2443 100 CB18 3.43 T/G 100.49 A _____<u>3.4%</u>_____98,99,____<u>3.4%</u>98 99.90 BUILDING--B' 4 STOREY 22,753 s.f. ____2,1114 m K. N% √€.Ê.=100.90⁸³ 1.5% СВМН3 СВМН3 Т/G 100.45 -----G 100.92 SNOW STORAGE-100.80 B/F 10 101.56 101.30 101.56 101.30 6.0m FIR5 LANE > / 101.30 TOP OF FOUNDATH DOOR SILL 101.07 70 T/G 102.14 101,77 <u>367</u> 101,30 100,99 <u>3.07</u> 100,60 <u>1.37</u> T/G 100.45 T/G 100.40 × 102.30 102.24 2.4% LIMIT BETWEEN PHASE 1 AND PHASE 2 101.04 102,19 <u>2.9%</u> 3.2% 80 101.80 < 6.0m PIRE LANE > TWO-WAY 2.0% × 1.3⁸ 100.93 100.82 1.8⁸ 10 1.3⁸ 100,96 100,90 + HYD B/F 100.93 101.00 100.8 T/G 101.30 <u>3.28</u> (1) (X) 101.60 101.5 100.90100.88 101.85 101.30 101.13 101.00 0.5% 100.95 102.19 F.F.=101.20 T/G 101.45 T/G 100.60 🛸 BUILDING 'C' 5,405 s.f. 502.2 m T/G 101.33 6.0m FIRE LANE > × < 6.0% FIRE LANE 100,87 101.09 2.31 101.66 102,00 O^{T/G} 101.16 T/G 101.17



		PONP	AIS ROAD
		BI	AI3.
	H.	ГЧ	
	FER	-9	IBJECT
			REA
· · ·	VE TRUE		
Stupper DR	E		
DUN -			۱.
KEVI			
ES: RAWING C-010 FOR ADD		S ANG)
		0.41	
REVISED AS PER CITY CO	MMENTS	JIM	2020:04:20
	MMENTS	JIM	2020:04:02
		JIM	2020:03:13
			2020:03:13
ADD EXISTING AND PROP	DSED DITCHES	JIM	2019:11:26
		JIM	2019:10:11
ISSUED FOR SPA		JIM	2019:04:15
REVISI	ONS	Ву	Date
- 400 0		troot	
Ottawa	ON K1S 5N4	1 Cai	
		(613	225 9868
Title			
BANK S	TREE	Т	
DEVELC	PMEN	1T	
4836 BAN	K STREET		
ROFESSION			•
Mallexis			N
I. I. MOFFATT			
			1
2020/04/20	\ /		\checkmark
2020/04/20			\rightarrow
			\rightarrow
2020/04/20			>
2020/04/20 <i>NCE</i> OF ONT ARIO			→
g Title		G	×
2020/04/20 <i>NCE</i> OF ONT ARIO		G	×
g Title		G	Y
g Title SITE GF PL		G	<u> </u>
g Title		G	<u> </u>
g Title SITE GF PL		G	×
g Title SITE GF PL	AN		10
g Title SITE GF PL	AN ^{Date} FE	G B. 20	19
g Title SITE GF PL	AN		
g Title SITE GF 1 : 400 SEL	AN ^{Date} FE	B. 20	
g Title SITE GF 1 : 400 SEL	AN ^{Date} FE		19
g Title SITE GF PL	AN Date FE Checked Drawing No.	B. 20	
	KEYISED AS PER CITY COI REVISED AS PER CITY COI REVISED AS PER CITY COI ISSUED FOR TENDER REVISED AS PER CITY COI REVISED AS PER CITY COI ISSUED FOR TENDER REVISED AS PER CITY COI ISSUED FOR TENDER REVISED AS PER CITY COI ISSUED FOR SPA REVISED ADD EXISTING AND PROPO OR WEST AND SOUTH SID REVISED AS PER CITY COI ISSUED FOR SPA REVISIO ADD EXISTING AND PROPO OR WEST AND SOUTH SID REVISED AS PER CITY COI ISSUED FOR SPA REVISIO TITE BANKS	RAWING C-010 FOR ADDITIONAL DETAIL SENCHMARK TO BE OBTAINED FROM LE YOR H.A. KEN SHIPMAN SURVEYING LTD POR H.A. KEN SHIPMAN SURVEYING LTD REVISED AS PER CITY COMMENTS REVISED AS PER CITY COMMENTS REVISIONS TITLE REVISIONS TITLE REVISIONS TITLE REVISED AS PER CITY COMMENTS REVISIONS REVI	BUS SUBER BALL CONSTRUCTIONAL DETAILS AND CONSTRUCTIONAL DETAILS AND CONSTRUCTIONAL DETAILS AND CONSTRUCTION EXEMPTION EX

			PONE	AIS ROAD
/</th <th></th> <th></th> <th>ĺЦ</th> <th></th>			ĺЦ	
		F	-SU AF	IBJECT
	DUN SCIPPER DR	NC PROVINCE		
	DUN 3			
	KEY F	ΟΙΔΝΙ		
\oplus	(NT			
	TES: DRAWING C-010 FOR ADD	TIONAL DETAIL	S AND	
NOTE	ES. E BENCHMARK TO BE OBTA		GAI	
	EYOR H.A. KEN SHIPMAN			
<u> </u>	LEGEND :			
0	100 YEAF	PONDING VOL	UME	
		ONDING ELEV ER ELEVATION		
		VERLAND	•	
	٣			
14				
13 12				
11				
10				
9				
8				
7				
6 5				
4				
3	REVISED AS PER CITY CO	MMENTS	JIM	2020:04:20
2	REVISED AS PER NEW SITI CITY COMMENTS	E PLAN AND	JIM	2019:10:11
1	ISSUED FOR SPA		JIM	2019:04:15
No.	REVISI	JNS	Ву	Date
	IBI GRO			
L	Ct Title BANK S DEVELC 4836 BANI	33 Preston Si ON K1S 5N4 225 1311 fax p.com	t Car 613	
Proje	Ct Title BANK S DEVELC 4836 BANK V 4836 BANK 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20 2020/04/20	33 Preston Si ON K1S 5N4 225 1311 fax p.com	t Car 613	
Proje	Ct Title Ct Tit	33 Preston Si ON K1S 5N4 225 1311 fax p.com		
Proje	BI Ottawa tel 613 : ibigrou	33 Preston Si ON K1S 5N4 225 1311 fax p.com		
Proje	BI Ottawa tel 613 : ibigrou ct Title BANK S DEVELC 4836 BANI 4836 BANI 4836 BANI 2020/04/20 2020/00	33 Preston Si ON K1S 5N4 225 1311 fax p.com		225 9868
Proje Proje	BI Ottawa tel 613 : ibigrou ct Title BANK S DEVELC 4836 BANI V 4836 BANI V 4836 BANI V 4836 BANI V V V V V V V V V V V V V V V V V V V	33 Preston Si ON K1S 5N4 225 1311 fax p.com		225 9868
Proje Proje	BI Ottawa tel 613 : ibigrou ct Title BANK S DEVELC 4836 BANI VACE OF ONT ARIA 2020/04/20 NOCE OF ONT ARIA	33 Preston Si ON K1S 5N4 225 1311 fax p.com		225 9868
Proje Proje	BI Ottawa tel 613 : ibigrou	33 Preston Si ON K1S 5N4 225 1311 fax p.com TREE PMEN (STREET G PLA Date FEI Checked Drawing No.		225 9868

ILLUES OF REACT OF REACT OF REACT OF REACT AND AND THE REACT OF RE	NOTES: 1. SEE DRAWING C- NOTES: 2. SITE BENCHMARE SURVEYOR H.A. KO LEGEND :
	Design SE Drawn DF
	Drawn

				PONP	
				B	LAIS ROAD
			Ŧ	4U	
E				17	
			F		JBJECT REA
ľ					
		DUNSUPPERDR	NL Contest		
		DUNSM	F		\
\oplus		KEY F			
NOT					
1. SEE I NOTE		C-010 FOR ADD	ITIONAL DET	AILS ANI)
		RK TO BE OBTA KEN SHIPMAN S			
LEG	SEND :	-			
LIGHT DUTY SILT FENCE AS PER OPSD-219.110					
		SNOW FENC			_
	5	STRAW BALE OPSD-219.18		.M AS PE	R
¢	>	ROCK CHEC	K DAM AS PI	ER OPSE	0-219.210
() ^{CB}	SILT SACK P COVER	LACED UND	ER EXIS	TING CB
		TEMPORARY CLEAR STON			
15.		CLOTH		NOVENI	
- 10.	-				
14					
13					
12					
11 10					
9					
8					
7					
6				_	
5					
3	REVISED A	AS PER CITY COI	MMENTS	JIM	2020:04:20
2	REVISED A	AS PER NEW SIT MENTS	E PLAN AND	JIM	2019:10:11
1	ISSUED FO	DR SPA REVISI		JIM	2019:04:15
No.				Ву	Date
 	BI	Ottawa	33 Prestor ON K1S 5 225 1311	5N4 Ca	
Projec	B DE	ANK S EVELC 4836 BANI	PME	NT	
J.S.	PROFESSI			\frown	N
	J. I. MOF	FATT FATT			\mathcal{A}
$\int $	2020/04	/20			\checkmark
1 PRO				1	/
	VINOT	ONTARIO		\sim	
	VINCE OF	ONTARIO			
Drawi	ng Title	ONTARIO			
	ng Title	ROSIC			ſROL
	ng Title E DIME	ROSIC	ON C		ſROL
SE	ng Title	ROSIC	ON C		ſROL
SE	ng Title E DIME	ROSIC	ON C		ſROL
SE	ng Title E DIME 1 : 500	EROSIC ENTATI PL	ON C AN Date	ON	
Scale Desig	ng Title E DIME 1 : 500	ROSIC	ON C AN Date		
Scale	ng Title E DIME 1 : 500	EROSIC ENTATI PL	ON C AN Date	ON	019

<u>N</u>

900

119351