

DESIGN BRIEF

FOR

MINTO COMMUNITIES-ABBOTT'S RUN BLOCK 13

CITY OF OTTAWA

PROJECT NO.: 22-1295.1

OCTOBER 2025 SUBMISSION 2 © DSEL

DESIGN BRIEF FOR ABBOTT'S RUN BLOCK 13 MINTO COMMUNITIES

TABLE OF CONTENTS

1.0	INTRODUCTION & BACKGROUND	1
1.1	Development Concept	2
1.2	Existing Conditions	2
1.3	Required Permits / Approvals	2
1.4	Pre-Consultation	3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	4
3.0	WATER SUPPLY SERVICING	5
3.1	Existing Water Supply Services	5
3.2	Water Supply Servicing Design	5
	3.2.1 Watermain Modelling	6
3.3	Water Supply Conclusion	8
4.0	WASTEWATER SERVICING	9
4.1	Existing Wastewater Services	9
4.2	Wastewater Design	9
4.3	Wastewater Servicing Conclusions	11
5.0	STORMWATER MANAGEMENT	12
5.1	Existing Stormwater Drainage	12
5.2	Stormwater Management Criteria	12
5.3	Stormwater Management Strategy	13
	5.3.1 Minor System	
	5.3.2 Hydraulic Grade Line	
	5.3.4 Quality Control	
5.4	Stormwater Management	15
	5.4.1 Uncontrolled Flows	16
5.5	Stormwater Servicing Conclusions	17
6.0	EROSION AND SEDIMENT CONTROL	18
7.0	CONCLUSIONS AND RECOMMENDATIONS	20
-		

IN-TEXT FIGURES

Figure 1.1: Site Location Figure 5.1 Existing Drainage Features		
<u>TABLES</u>		
Table 1.1: Development Statistic Projections	2	
Table 1.2: Anticipated Permit/Approval Requirements	2	
Table 3.1: Water Supply Design Criteria	5	
Table 3.2 Water Demands		
Table 3.3: Boundary Conditions	7	
Table 3.4: Service Pressures Analysis	8	
Table 4.1: Wastewater Design Criteria	9	
Table 4.2: Block 13 Wastewater Peak Flow		
Table 5.1 Stormwater Management Standards	14	
Table 5.2 Allowable Release Rates (1:100 year)		

APPENDICES

Appendix A

➤ Abbott's Run Block 13 Site Plan – S25016-A100 (SRN Architects, 2025-10-20)

Appendix B

- Average Day Demand (ADD) Scenario Figure (DSEL, 2025-10-16)
- Peak Hour Demand (PHD) Scenario Figure (DSEL, 2025-10-17)
- Max Day Fire Flow Demand (MDD) Scenario Figure (DSEL, 2025-10-16)
- EPANET Hydraulic & Water Quality Analysis ADD Report (DSEL, 2025-10-16)
- ➤ EPANET Hydraulic & Water Quality Analysis PHD Report (DSEL, 2025-10-16)
- ➤ EPANET Hydraulic & Water Quality Analysis MDD Report (DSEL, 2025-10-16)
- ➤ Abbott's Run Block 13 Concept Plan 42 Option C Fire Wall Locations (SRN Architects, 2025-04-01)
- > FUS Fire Flow Demand (FFD) Calculations (DSEL, 2025-05-14)
- Hydraulic Capacity and Modelling Analysis (GeoAdvice, 2025-10-16)

Appendix C

- ➤ Abbott's Run Block 13 Sanitary Drainage Plan (DSEL, 2025-10-17)
- Sanitary Sewer Design Sheets (DSEL, 2025-10-20)
- Abbot's Run Stage 2/3 Overall Sanitary Drainage Plan (DSEL, 2025-10-10)
- Sanitary Sewer Design Sheets from Abbott's Run Stage 2/3 Design Brief
- > (DSEL, 2025-08-14)
- Adequacy of Public Servicing Report Sanitary Sewer Design Sheet
- > (DSEL, 2025-05-09)

Appendix D

- Storm Drainage Plan (DSEL, 2025-10-10)
- Storm Sewer Design Sheet (DSEL, 2025-10-17)
- Subdivision Markup Model (DSEL, 2025-10-06)
- Ponding Volume Table (DSEL, 2025-06-20)
- 100 Year Chicago 3HR HGL vs USF (DSEL, 2025-06-13)
- > 100 Year + 20% Chicago 3 HR HGL vs USF (DSEL, 2025-06-13)
- 100 Year & 100 Year + 20% Chicago 3 HR Ponding Depth (DSEL, 2025-06-12)
- ➤ Abbotts Run Block 13 Adjacent Row Overland Flow Analysis 100 Year Chicago 3 HR Block 13 & Subdivision Model (DSEL, 2025-10-07)
- Abbotts Run Adjacent Row Ponding Depths Over Catchbasins (DSEL, 2025-10-07)
- ➤ EMP Excerpt for Water Balance Calculations

DESIGN BRIEF FOR ABBOTT'S RUN BLOCK 13 MINTO COMMUNITIES

JUNE 2025 CITY OF OTTAWA PROJECT NO.: 22-1295.1

1.0 INTRODUCTION & BACKGROUND

David Schaeffer Engineering Limited (DSEL) has prepared this Design Brief in support of the development of Abbott's Run Block 13 on behalf of Minto Communities.

The study area is located within 5618 Hazeldean Road in the City of Ottawa urban boundary, in the Stittsville ward. As illustrated in *Figure 1.1*, the study area is bounded by Abbott's Run Stage 2 and Robert Grant Avenue. The site is a 1.39 ha parcel located within the Fernbank Community.

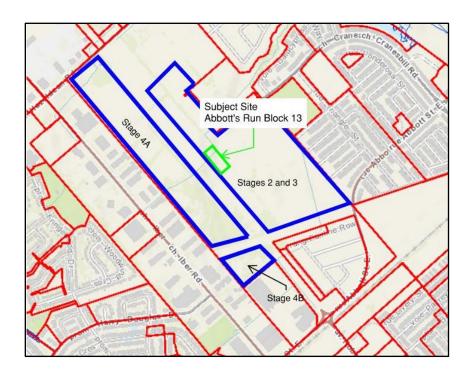


Figure 1.1: Site Location

The study area is part of the broader Fernbank community. The *Master Servicing Study* (MSS) (Novatech, June 2009) and the *Environmental Management Plan* (EMP)

(Novatech, June 2009) were prepared for the Fernbank Community, which includes Abbott's Run—encompassing the subject lands, Abbott's Run Block 13—and provide a roadmap for development. The *Adequacy of Public Servicing Report* (DSEL) and the *Abbott's Run Phase 2 and 3 Design Brief* (DSEL) have recently been submitted to the City of Ottawa for review. These reports of consistent both the MSS and EMP and provide both the overall and detailed servicing strategy for these lands.

1.1 Development Concept

The site plan for the proposed development is presented in *Appendix A*. The proposed development consists of a total of 124 stacked townhouse units. *Table 1.1* presented below provides a projected population count for the site.

Land Use	Total Area (ha)	Projected Residential Units	Residential Population per Unit	Projected Population
2 Bedroom Units	1 20	76	2.1	160
3 Bedroom Units	1.39	48	3.1	149
			Total Project Population:	309

Table 1.1: Development Statistic Projections

1.2 Existing Conditions

The existing elevations within the subject site generally range from 103 m to 102 m, falling from the south end of the site to the north end. The geotechnical report indicates that the maximum permissible grade raise for the subject site is between 2.0m to 2.3 m. Additional geotechnical details can be found within the Geotechnical Investigation – Proposed Residential Development, 5618 Hazeldean Road – Block 143. Report: PG7460-1 Revision 1 (Paterson Group, May 28, 2025).

1.3 Required Permits / Approvals

of Watermains

Development of the study area is expected to be subject to the following permits and approvals presented in *Table 1.2*.

Agency	Permit/Approval Required	Trigger	Remarks
MECP	Permit to Take Water (PTTW)	Construction of proposed land uses (e.g. basements for residential homes) and services.	Pumping of groundwater or surface water may be required during construction, given site conditions, proposed land uses, and on-site/off-site municipal infrastructure.
MECP/C	city MECP Form 1 – Record	Construction of	The City of Ottawa is expected to

watermains.

Table 1.2: Anticipated Permit/Approval Requirements

of Ottawa

review the

	Authorized as a Future Alteration.		watermains on behalf of the MECP through the Form 1 – Record of Watermains Authorized as a Future Alteration.
City of Ottawa	Commence Work Notification (CWN)	Construction of new sanitary and storm sewer throughout the site plan.	The City of Ottawa will issue a commence work notification for construction of the sanitary and storm sewers

Under Ontario Regulation 525/98, privately owned sanitary sewers located entirely on private property and not including treatment or pumping facilities are exempt from requiring an Environmental Compliance Approval (ECA). As such, the proposed system for this site does not require an ECA.

1.4 Pre-Consultation

Pre-application consultation was conducted on May 12, 2025, between the City of Ottawa and the developers as part of the Plan of Subdivision Application process. Various stakeholders provided written comments that were recorded and formalized in meeting minutes.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following key studies were utilized in the preparation of this report:

- > Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (Sewer Design Guidelines) and all applicable technical bulletins.
- Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010. (Water Supply Guidelines) and all applicable technical bulletins.
- Fire Underwriters Survey, 1999. (FUS)
- ➤ **Design Guidelines for Drinking-Water Systems**, Ministry of the Environment, 2008. (MECP Water Guidelines)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MECP Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, 2003. (SWMP Design Manual)
- Fernbank Community Design Plan Master Servicing Study, Novatech June 24, 2009. (MSS)
- Fernbank Community Design Plan Environmental Management Plan, Novatech June 2009. (EMP)
- Adequacy of Public Servicing Report for Abbott's Run Phase 2, 3, 4a and 4b, DSEL, May 2025.

 (Adequacy of Public Servicing Report)
- Design Brief for Abbott's Run Phase 2 and 3, DSEL, October 2025. (Design Brief)
- Fernbank Community Pond 1 Stormwater Management Report Novatech July 19, 2023, (Pond 1 SWM Report)
- Geotechnical Investigation Proposed Residential Development 5618 Hazeldean Road – Block 143, Paterson Group, PG7460-1 Revision 1 May 28, 2025. (Geotechnical Report)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the existing City of Ottawa 3W pressure zone in the West Urban Community (WUC). To the south of the subject property, a 200mm diameter watermain is proposed on Monorail Road and to the north a 300mm diameter watermain is proposed on Cranesbill Road. A 200mm stub extending from Cranesbill Road extends to subject lands.

3.2 Water Supply Servicing Design

The study area is proposed to be serviced by a network comprised of 50mm, 100mm and 200mm diameter watermains with connections to Cranesbill Road to the north and Monorail Road to the south. The units will be equipped with individual water meters and have their own water service. The sizing of the proposed watermain network is based on the *Water Supply Guidelines* summarized in *Table 3.1* below. As Block 13 is surrounded by Abbott's Run Stage 2, which is also currently under review by the city, the hydraulic analysis for these lands have been included in Appendix B.

Potable water will be supplied to pressurized local watermains by connections to the 300mm diameter watermain on Cranesbill Road and the 200mm diameter watermain on Monorail Road. The proposed watermain network can be seen in the accompanying engineering drawings prepared by DSEL.

Table 3.1: Water Supply Design Criteria

Design Parameter	Value
Residential – 2 Bedroom Unit	2.1 p/unit
Residential – 3 Bedroom Unit	3.1 p/unit
Single Family Home Average Day Demand (ADD)	280 L/c/d
High Density Building Max. Day Demand (MDD) (Per MOE – 300 pop. Equivalent)	avg. day x 3.6
High Density Building Peak Hour Demand (PHD) (Per MOE – 300 pop. Equivalent)	Avg. day x 5.4
Minimum Watermain Size	150 mm diameter
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
During normal operating conditions desired operating pressure is within	350 kPa (50 psi) and 480 kPa (70 psi)
During normal operating conditions pressure must not drop below	275 kPa (40 psi)

During normal operating conditions pressure must not exceed	552 kPa (80 psi)		
During fire flow operating pressure must not drop below	140 kPa (20 psi)		
Notes: Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July 2010), Table 4.1 – Per Unit Populations and Table 4.2 – Consumption Rates for Subdivisions of 501 to 3,000 Persons. No Outdoor Water Demand considered for residential uses. Park water demands assumed based on classification and potential for community facilities, etc. Residential Average Daily Demand assumed to be 280 L/d/P in accordance with 2018 changes to Sanitary Design Guidelines, see Section 4.0.			

3.2.1 Watermain Modelling

To support the design of the on-site water distribution system, a hydraulic analysis was completed for the proposed watermain network. A summary of the results is provided in this section, with the full analysis available in Appendix B.

The domestic water demands used for the hydraulic analysis were determined based on the anticipated site population and applicable design criteria from Table 3.1. Table 3.2 summarizes the average day, maximum day, and peak hour demands applied in the analysis.

Total Domestic Demand	Don	Avg.	Daily	Max	Day	Peak	Hour
	Pop	m³/d	L/min	m³/d	L/min	m³/d	L/min
Design Brief Phase 2/3, Per GeoAdvice Report (Octpber 2025)	187	40.99	28.2	40.99	28.2	86.09	60
Block 13 Site Plan (October, 2025)	309	86.52	60.1	311.5	216.3	467.2	324.5

Table 3.2 Water Demands

For reference, the domestic demand assumptions from the Design Brief have been included for comparison with those used for Block 13. The difference between the two demand scenarios is that the GeoAdvice values are based on the larger Phase 2 & 3 subdivision population, while the Block 13 figures reflect only the localized site population. In accordance with the City of Ottawa Water Distribution Design Guidelines, when the serviced population is fewer than 500 people, peaking factors must be determined using Table 3-3 of the MOE Design Guidelines.

Accordingly, the hydraulic modelling applies the more conservative Block 13 Site Plan population and demand values to ensure the proposed network is adequately sized under peak conditions. This approach provides a higher level of confidence that the system will maintain acceptable service pressures during maximum day and peak hour demands.

In addition to the domestic demand analysis, fire flow requirements were also evaluated to confirm that the proposed watermain network can meet firefighting needs under emergency conditions. The fire flow calculations were completed in accordance with the City of Ottawa's Technical Bulletins and the Fire Underwriters Survey's Water Supply for Public Fire Protection Guideline (2020). The full fire flow analysis is provided in Appendix B.

The following parameters were applied in determining the required fire flows for Block 13:

• Type of construction: Wood frame

Sprinkler protection: Non-sprinklered

Firewalls: Provided for 24-unit blocks

Based on these parameters, the required fire flow demands for each block are summarized below:

Block 1: 16,000 L/min

Blocks 2 and 5: 14,000 L/minBlocks 3 and 4: 15,000 L/min

Block 6: 12,000 L/min

These values were used in the hydraulic model to assess available pressures and confirm that the proposed water distribution system can deliver adequate flow rates for fire protection while maintaining pressures above the minimum criteria established by the City of Ottawa.

The boundary conditions were derived from the Hydraulic Capacity and Modeling Analysis Abbott's Run Phases 2 & 3 Development (GeoAdvice, October 2025). The full analysis is provided in Appendix B.

Table 3.3 summarizes the boundary conditions extracted from the Stage 2 & 3 model for the Block 13 site.

Table 3.3: Boundary Conditions

Condition		ction 1 oill Road)	Connection 2 (Monorail Road)		
	HGL (m)	Pressure (psi)	HGL (m)	Pressure (psi)	
Average Day	58.4	83.0	58.4	83.1	
Peak Hour	51.0	72.5	51.0	72.5	
Max Day + Fire 1 (267 L/s)	38.9	55.3	38.1	54.2	

Using the established boundary conditions, hydraulic modelling was performed for the average day, peak hour, and maximum day plus fire flow scenarios to evaluate system performance under a range of operating conditions. Several Max Day plus Fire Flow scenarios were analyzed; however, only the worst case scenario, which results in the lowest system pressure, is presented to demonstrate compliance with the design criteria. The results of this analysis are summarized in Table 3.4.

Table 3.4: Service Pressures Analysis

Service Pressures Analysis		Design Criteria
Max Average Day Demand Pressure 58.47 m (573.59 kPa) [Node 11]		During normal operating conditions pressure must not exceed 552 kPa (80 psi)
Min Peak Hour Demand Pressure	50.27 m (493.15 kPa) [Node 12]	During peak hour conditions pressure must not drop below 275 kPa (40 psi)
Min Max Day + Fire Flow Pressure	21.56 m (211.50 kPa) [Node 3]	During fire flow operating pressure must not drop below 140 kPa (20 psi)

As demonstrated in Table 3.4, modelling was completed for the Average Day Demand (ADD), Peak Hour Demand (PHD), and Maximum Day Demand plus Fire Flow (MDD+FF) scenarios, as documented in Appendix B. Both the PHD and MDD+FF scenarios meet the minimum required pressure under their respective operating conditions.

The Average Day Demand pressure is 573.59 kPa, which exceeds the 552 kPa threshold; therefore, pressure-reducing valves (PRVs) have been incorporated into the proposed design. A pressure check will be performed during construction, and PRVs will be installed as required based on actual field pressures.

3.3 Water Supply Conclusion

The proposed watermain network conforms to all relevant City and MECP *Water Supply Guidelines*. The hydraulic analysis of the proposed watermain network, concludes that all required domestic and fire flows can be met throughout the study area upon full buildout of the development. Anticipated fire flow requirements can be met throughout the development lands according to City Guidelines and ISTB-2018-02.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

There is an existing 900mm diameter sanitary trunk on Robert Grant Avenue and ultimately to the Kanata West Pump Station located at 1590 Maple Grove Road.

4.2 Wastewater Design

The wastewater servicing strategy for Block 13 was developed with consideration of the Adequacy of Public Servicing Report and the Abbott's Run Stage 2 and 3 Design Brief, both of which are currently under review by the City. The site's allocated sanitary flows are proposed to discharge to a new sanitary sewer on Cranesbill Road, which will ultimately convey flows to the trunk sewer on Robert Grant Avenue.

The development will be serviced by a network of 200 mm diameter gravity sewers, which connect to the proposed 250 mm diameter municipal sewer on Cranesbill Road. The sanitary sewer network has been designed in accordance with the wastewater design parameters outlined in ISTB-2018-01 and the City of Ottawa Sewer Design Guidelines, summarized in Table 4.1. The detailed sanitary layout and design information are provided on the engineering drawings prepared by DSEL.

Table 4.1: Wastewater Design Criteria

Design Parameter	Value
Townhome/Stacked Townhome Unit Population	2.1 people/unit
Residential Flow Rate, Average Daily	280 L/cap/day
Residential Peaking Factor	Harmon's Peaking Factor, where K=0.8
Commercial & Institutional Flow Rate	50,000 L/day/ha
ICI Peaking Factor	1.5
Park Peaking Factor	1.0
Infiltration Rate	0.33 L/s/ha
Sanitary sewers are to be sized employing Manning's Equation	$Q = \frac{1}{n} A R^{2_3} S^{1_2}$
Minimum Manning's 'n'	0.013
Minimum Depth of Cover	2.5 m from crown of sewer to grade
Minimum Pipe Size	250 mm (ICI), 200mm (Res)
Minimum Velocity	0.6 m/s
Maximum Velocity	3.0 m/s

The proposed sanitary design for Block 13 has been evaluated to confirm that the downstream system has sufficient capacity to accommodate the projected flows. The analysis incorporates updated design parameters and compares them with the values previously established in supporting reports. The resulting values are summarized in Table 4.2 below.

Table 4.2: Block 13 Wastewater Peak Flow

	Area (ha)	Population	Peak Factor	Peak Flow (L/s)	I/I (L/s)	Total Peak Flow (L/s)
Adequacy Of Public Servicing Report (May 2025)	1.39	111	3.6	1.29	0.46	1.75
Design Brief Ph.2&3 (Oct 2025)	1.39	158	3.5	1.82	0.46	2.27
Current Block 13 Submission (Oct 2025)	1.39	309	3.5	3.46	0.46	3.93

As presented above, the proposed development is expected to generate a total peak wastewater flow of 3.93 L/s. In comparison, the Adequacy of Public Servicing Report and the Stage 2 and 3 Design Brief (both currently under City review) estimated lower peak flows of 1.75 L/s and 2.27 L/s, respectively. The increase is primarily due to an underestimation of the block's population in earlier reports, as the Block 13 Site Plan had not been fully developed at the time those documents were prepared. This results in a net increase of 2.18 L/s compared to the Adequacy of Public Servicing Report.

To verify that the downstream system can accommodate the additional flow, the design sheets from both the Adequacy of Public Servicing Report and the Abbott's Run Stage 2 and 3 Design Brief were reviewed and are provided in Appendix C. Based on the updated analysis, the Cranesbill sewer downstream of Block 13 will operate at approximately 52% full, leaving 15.7 L/s of available capacity. According to the Adequacy of Public Servicing Report, the most restrictive leg along Robert Grant Avenue operates at 45% capacity, with 651.3 L/s of remaining capacity.

The additional 2.18 L/s of flow is therefore not expected to have any impact on the performance of the downstream sanitary system. Detailed design sheets are provided in Appendix C, with key information highlighted for ease of review.

4.3 Wastewater Servicing Conclusions

A network of local gravity sewers is proposed within the subject site to convey wastewater to existing off-site sanitary sewers. The proposed system design is consistent with the Adequacy of Public Servicing Report and the Abbott's Run Stage 2 and 3 Design Brief. The downstream sanitary system has been reviewed for available capacity, and based on the information available, it has been confirmed that the existing network can accommodate the Block 13 flows as proposed.

The sanitary sewers have been designed in accordance with all applicable City of Ottawa and MECP design guidelines and policies. In accordance with ISTB-2018-01, the City's current wastewater design parameters represent a refinement of previous standards used within the Master Servicing Study (MSS) and Concept Servicing Report, resulting in more representative flow estimates for the proposed development.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Drainage

The subject site is located within the Carp River watershed - under the jurisdiction of the Mississippi Valley Conservation Authority (MVCA).

The site generally drains from the south to the north. There is currently an interim ditch which cuts across from the west of the site towards the east boundary. The ditch will be decommissioned as the flow from the ditch is now captured by the Robert Grant sewer. The existing interim site drainage is shown in Figure 5.1.

Figure 5.1 Existing Drainage Features

5.2 Stormwater Management Criteria

Stormwater management requirements for the subject site have been adopted from the MSS, the Design Brief and Pond 1 Stormwater Management Report.

The following criteria were considered as part of the stormwater management strategy within the subject site and conveyance to the stormwater management Pond 1 among other requirements:

- Storm sewers on local roads are designed to provide a minimum 2-year level of service per the City's latest Technical Bulletin PIEDTB-2016-01.
- ➤ For less frequent storms (i.e. larger than the minimum level of service), the minor system sewer capture will be restricted with the use of inlet control devices to prevent excessive hydraulic surcharges.
- ➤ Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s.
- ➤ The major system is designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public ROW or adjacent to the right- of-way provided that the water level must not touch any part of the building envelope, must remain below all building openings during the stress test event (100-year + 20%), and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope.
- ➤ The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.
- Freeboard clearance is to be calculated between the USF and the HGL or pipe obvert, whichever is higher.
- ➤ A minimum 15cm of freeboard is to be provided from the ponding spill elevation to the ground elevation at the envelope.

5.3 Stormwater Management Strategy

The overall stormwater management strategy for the subject site was developed as part of the *Adequacy of Public Servicing Report* and *Design Brief*, which are currently under review by the city. Both the minor and major systems of the residential portion are to be directed towards the existing stormwater management Pond 1.

5.3.1 Minor System

The site is to be serviced by a storm sewer system designed in accordance with the amendment to the storm sewer and stormwater management elements of *PIETB-2016-01*. Table 5.1 summarizes the standards used for detailed design of the storm sewer network, consistent with the *Design Brief* and *Adequacy of Public Servicing Report* and meeting the criteria described in *Section 5.2*. The storm sewer design uses ICDs to ensure that storm flows entering the minor system are limited to 2-year event.

Table 5.1 Stormwater Management Standards

Design Parameter	Value
Minor System Design Return Period	2-Year (Local Streets) – PIEDTB-2016-01
100-Year Hydraulic Grade Line	0.3m below underside of footing (USF)
Minimum CB Lead Size	200mm
Storm Sewer Velocity	0.8 m/s – 6.0 m/s
Inlet Control Device Min Flow	2-year storm
Maximum Ponding Depth	0.35 m

The proposed gravity storm sewer network are designed in accordance to the sewer design guidelines and relevant ISTBs. The storm sewer network is shown in the accompanying engineering drawings prepared by DSEL. The proposed sewers collect stormwater runoff from the Block 13, and ultimately direct minor flows towards SWM Pond 1 via the proposed storm sewers.

ICDs were sized for minimum 2 year capture and local surface depressions in the parking lot and travel lanes were used for on-site storage. ICDs are located within catchbasins only.

Both the major and minor system were modelled using the PCSWMM modelling software to confirm ponding extent and freeboards between the underside of footings and the hydraulic grade line during both the 1:100year and the 1:100year +20% storm events.

5.3.2 Hydraulic Grade Line

A detailed hydraulic grade line (HGL) analysis using the PCSWMM modeling software has been completed for the proposed storm sewer network as detailed Appendix D. The analysis concludes that there is at least 0.30 m of freeboard between the HGL or the pipe obvert, whichever is higher, and the underside of residential footings during the 1:100-year storm for all units. The results also confirm adequate freeboard during the 100 year +20% event for all units.

The analysis was conducted using the design storms listed below:

- 1. The 100-Year, 3-hour Chicago Storm;
- 2. The 100-Year, 3-hour Chicago Storm+20%.

Detailed results are presented in **Appendix D**.

5.3.3 Major System

As outlined in the Adequacy of Public Servicing Report and the Design Brief, major system drainage from the site will be conveyed to SWM Pond 1. Major system flows are

proposed to be conveyed along the site's internal road network, except for the outer units fronting Cranesbill Road, Robert Grant Avenue, and Monorail Road, which will drain uncontrolled to the adjacent streets. All major system flows from the site are proposed to be directed towards Pond 1. Major system flow paths are illustrated in the engineering drawings prepared by DSEL.

Based on the SWMM model, it was determined that the 100-year depth of water in the street ponding areas (both static and dynamic) will not exceed the maximum ponding depth of 35cm. The models during the 100 year + 20% event show that the maximum water surface elevation will not touch the building envelopes. The overland flow analysis results are saved in Appendix D.

5.3.4 Quality Control

Quality control for Block 13 will be provided by Pond 1, as outlined in the Pond 1 SWM Report. The report identifies a required permanent pool volume of 13,923 m³ to achieve 80% TSS removal for the contributing drainage area. Pond 1 provides a total permanent pool volume of 29,380 m³, which exceeds this requirement.

5.4 Stormwater Management

A detailed PCSWMM model was produced for the detailed design of stages 2 and 3 of the Abott's Run development. The detailed model included both minor and major system flow allocations for Block 13. The site plan was modelled, again using PCSWMM to ensure the allowable release rates, that were accounted for in stages 2 and 3 were respected. Allowable release rates are presented in Table 5.2.

Table 5.2 Allowable Release Rates (1:100 year)

	Allowable Release Rate (L/s)	Block 13 Model Flow Rate (L/s)
Minor System	237	231
Major System	333	278

Minor and major system peak flows are less than the allowable flows established in the Stage 2 and 3 detailed design model.

 During the 100-year storm, a total of 97 m³ of on-site surface ponding is provided to store excess runoff and maintain compliance with the allowable major and minor system release rates.

Detailed results on ponding extents are provided in Appendix D and within the engineering drawings. The packaged PCSWMM model is included with this submission.

5.4.1 Uncontrolled Flows

To assess the potential impacts of uncontrolled overland flow from the proposed development, the portions of Cranesbill Road, Robert Grant Avenue, and Monorail Road rights-of-way (ROWs) impacted by the site were extracted from the stormwater model for detailed review. A comprehensive overland flow and ponding depth analysis was completed to evaluate system performance under both minor and major storm events.

The results of this analysis are presented in the tables provided in Appendix D:

- "Adjacent ROW Ponding Depths over Catch Basins Scenario" confirms that, under the respective design storm events (5-year for Cranesbill Road, 10-year for Robert Grant Avenue, and 2-year for Monorail Road), no surface ponding occurs, and the level of service criteria are maintained.
- "Adjacent ROW Overland Flow Analysis" demonstrates that ponding depths during the 100-year, 3-hour Chicago storm remain below allowable ponding criteria, with no overspillage beyond the right-of-way limits.

Based on this analysis, uncontrolled overland flow from the outer units will not adversely affect the level of service of Cranesbill Road, Robert Grant Avenue, or Monorail Road. The existing stormwater infrastructure and right-of-way grading are sufficient to safely convey uncontrolled surface runoff under both minor and major storm conditions.

5.5 Infiltration Targets

Infiltration targets were established by the EMP and MSS in support of the Community Design Plan (CDP). The targets were based on Best Management Practices being implemented on low and medium density residential developments. The following is an excerpt from the MSS:

Infiltration BMPs

The majority of the Fernbank Community will be low and medium density residential development. The most suitable practices for groundwater infiltration include:

- Infiltration of runoff captured by rearyard catchbasins.
- Direct roof leaders to rearyard areas.
- Infiltration trenches underlying drainage swales in park and open space areas.
- The use of fine sandy loam topsoil in parks and on residential lawns.

The infiltration targets set by the EMP/MSS were set by assuming that 35% of runoff from low density, medium density and parks would be routed towards rear yard swales with perforated pipe system. These targets were achieved for the low and medium density land-uses for Abott's Run Stages 1-3. The EMP/MSS assumed runoff from the remaining land-uses would be directed towards conventional sewers. An excerpt of the EMP calculations is provided in **Appendix D**.

5.6 Stormwater Servicing Conclusions

A network of local gravity storm sewers is proposed within Block 13 to collect and convey runoff to the existing storm infrastructure along Cranesbill Road, ultimately discharging to SWM Pond 1. The storm sewers have been sized using the Rational Method, with ICDs incorporated to regulate discharge to the allowable release rate for the minor system.

For events exceeding the 2-year return period, surface storage has been provided onsite to manage excess runoff and maintain quantity control. Quality control will be provided by SWM Pond 1, which is designed to achieve the required TSS removal.

HGL analysis confirms that sufficient freeboard is maintained throughout the site, ensuring the system operates safely under both minor and major storm conditions.

6.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate, and topography. The extent of erosion losses is exaggerated where vegetation has been removed during construction and the top layer of soil becomes agitated, and where increased stormwater runoff is directed to natural areas.

Prior to earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

The erosion and sediment controls will include (but are not limited to):

- Minimize the area to be cleared and grubbed.
- Plan construction at proper time to avoid flooding.
- Provide sediment traps and basins during dewatering.
- ➤ Silt fence to be installed around the perimeter of the site and to be cleaned and maintained throughout construction. Silt fence to remain in place until the working areas have been stabilized and re-vegetated.
- A mud mat to be installed at the construction access in order to prevent mud tracking onto adjacent roads.
- ➤ Catch basins to have inserts installed under the grate during construction to protect from silt entering the storm sewer system.
- > Extent of exposed soils to be limited at any given time, and exposed areas will be re-vegetated as soon as possible.
- Exposed slopes to be protected with plastic or synthetic mulches.
- Stockpiles of cleared materials as well as equipment fueling and maintenance areas to be located away from swales, watercourses, and other conveyance routes.
- Seepage barriers such as silt fencing, straw bale check dams and other sediment and erosion control measures to be installed in any temporary drainage stormwater conveyance channels and around disturbed areas during construction and stockpiles of fine material.
- Filter inserts to remain on open surface structures such as manholes and catch basins until these structures are commissioned and put into use, streets are asphalted and curbed, and the surrounding landscape is stabilized.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change inserts at catch basins.

A qualified Inspector will give recommendations related to the mitigation measures that are being implemented and maintained. Bulkhead barriers, filter clothes on open surface structures, silt fencing, and other E&SC measures may require removal of sediment and repairs. The City of Ottawa's Protocol for Wildlife Protection is to be followed during construction.

After build-out of the development, applicable sewers will be inspected and cleaned. All sediment and construction fencing should be removed following construction, providing there is no exposed soil or other potential sources of sedimentation.

7.0 CONCLUSIONS AND RECOMMENDATIONS

This Design Brief has been prepared on behalf of Minto Communities - Canada.

This Design Brief is to be read in conjunction with detailed engineering drawing package from DSEL.

The key features of the detailed design of the proposed development are as follows:

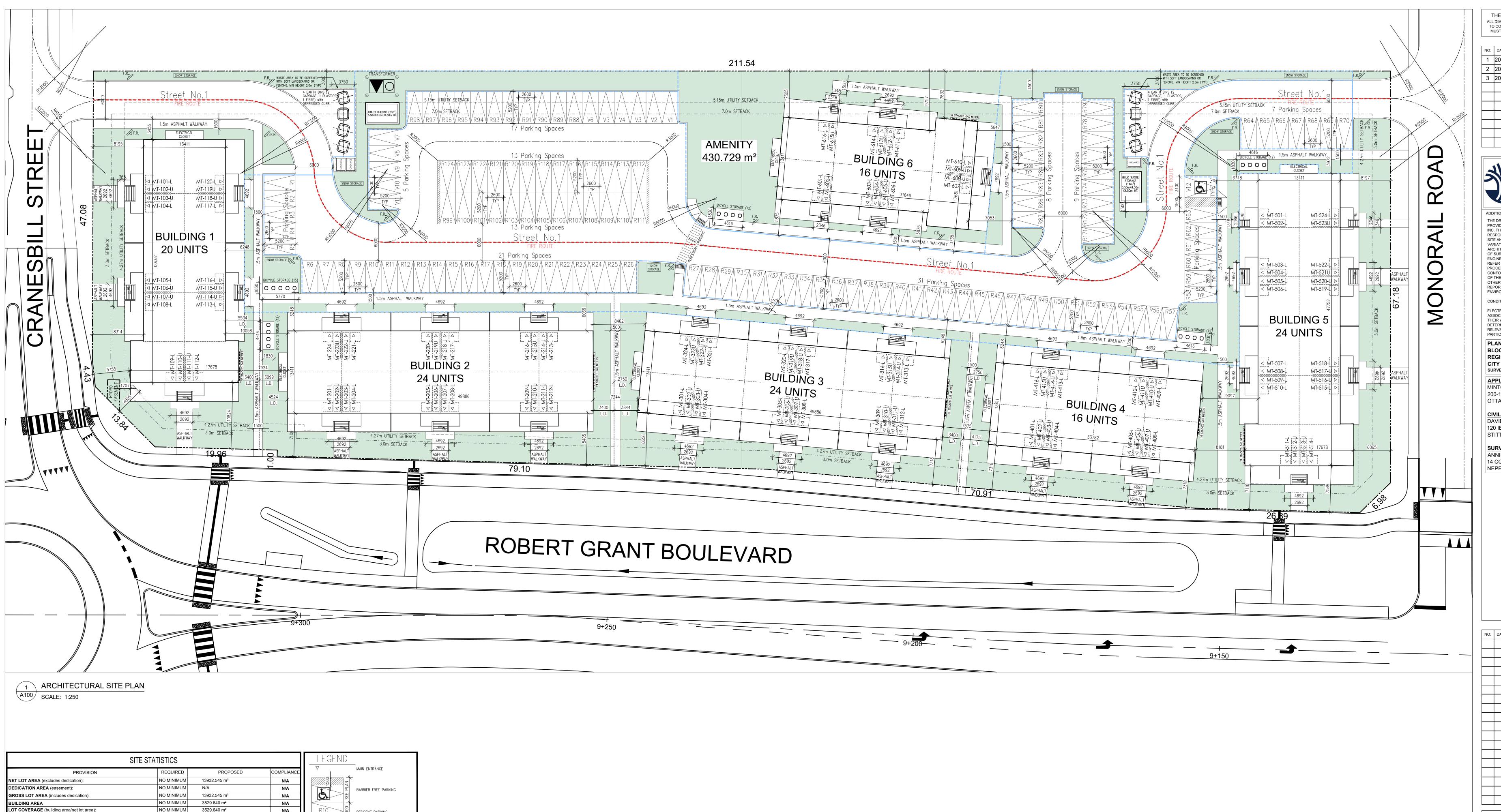
- ➤ The site will connect to the proposed watermain on Cranesbill Road. The proposed watermain network conforms to all relevant City and MECP *Water Supply Guidelines*.
- ➤ Wastewater service will be provided through gravity sewers that have been designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies. A series of gravity sewers will direct wastewater to a proposed sanitary sewer on Cranesbill Road to be built prior to the construction of Block 13.
- Stormwater from the outer units along Cranesbill Road, Robert Grant Avenue, and Monorail Drive will drain uncontrolled to the surrounding streets. This uncontrolled runoff has been deducted from the site's allowable 2-year release rate. The remaining areas will drain to the minor storm system, with flows exceeding the 2-year capacity managed through on-site surface storage via road ponding. The site's quality control will be provided by Pond 1.

The infrastructure identified in this Design Brief is expected to require approval from the City of Ottawa, Ontario Ministry of the Environment, Conservation and Parks prior to construction.

Prepared by,

David Schaeffer Engineering Ltd.

Per: Martin Fréchette P.Eng.


Per: Alexandre Tourigny P.Eng.

© DSEL

APPENDIX A

Site Plans

➤ Abbott's Run Block 13 Site Plan – S25016-A100 (SRN Architects, 2025-10-20)

OT COVERAGE (building area/net lot area) RESIDENT PARKING GROSS FLOOR AREA N/A NET F.S.I. (gross floor area/net lot area): 2.0 MAX GROSS F.S.I. (gross floor area/gross lot area) N/A BUILDING HEIGHTS (mid-point of roof): STACKED DWELLINGS: 11.62m (MID-POINT) 12.00 m FIRE HYDRANT, REFER TO CIVIL MIN. FRONT YARD (WEST): MIN INTERIOR SIDE YARD (NORTH) 7.00m 7.50 m LIGHT POLE, REFER TO ELECTRICA MIN REAR YARD (EAST): 3.00m 6.06 m LIGHT BOLLARD, REFER TO MIN CORNER SIDE YARD (SOUTH) 3.00m 4.50 m ELECTRICAL DRAWINGS 124 SUITES MBER OF STACKED TOWNHOUSE UNITS WALL MOUNTED LIGHT FIXTURE. NO MINIMUM 76 SUITES REFER TO ELECTRICAL DWGS 2 BED INTERIOR: NO MINIMUM 3 BED END: 48 SUITES FIRE ROUTE SIGN AS PER CITY STANDARD OTAL PARKING SPACES : BARRIER FREE PARKING SIGN, AS RESIDENT PARKING SPACES (STACKED-TOWNS): 0.9 SPACES/UNIT = (124x0.9) MIN. 112 SP VISITOR PARKING SPACES (STACKED-TOWNS) 0.1 SPACES/UNIT = (124x0.1) MIN. 12 SP YES (INCLUDES BARRIER FREE PS): BARRIER FREE PARKING SPACES DEDICATED FOR VISITORS 0.5 SPACES/UNIT = (124x0.5) MIN. 62 BICYCLE SPACES : YES TOTAL LANDSCAPE: DEPRESSED CURB (44.76% OF NET LOT AREA) ANDSCAPED OPEN SPACE AREA: GAS METER SOFT LANDSCAPE AREA: (53.46% OF LANDSCAPING) HYDRO METER HARD LANDSCAPE AREA: NON FREEZABLE HOSE BIB → NFHB (46.54% OF LANDSCAPING) ELECTRIC VEHICLE CHARGING STATION ANDSCAPED PARKING AREA: TOTAL PARKING AREA: 5413.200m² SIAMESE CONNECTION SUITE NUMBER PAVED PARKING AREA: 3793.092m² 85% MAX (70.07 % OF PARKING AREA) FIRE BREAK BLOCK LANDSCAPED PARKING AREA: 1620.108 m²

LOWER LEVEL ELEVATION

FIRST FLOOR ELEVATION

DENOTES FIRE ROUTE

DENOTES AMENITY BOUNDARY

DENOTES PARKING LOT

LANDSCAPING BOUNDARY

DENOTES SOFT LANDSCAPING AREA

DENOTES DECORATIVE FENCING

AREA DRAIN

YES

(29.93 % OF PARKING AREA)

LOWER PATIO = 16.483m² X 38 INT. UNITS

= 1527.045m² TOTAL PRIVATE AREA =PRIVATE 1527.045m² + COMMUNAL 430.729m²

= 430.729m² TOTAL COMMUNAL AREA

124 UNITS X 6 m² UPPER BALCONY AREA 6.828m² X 62 UNITS

=1957.773m² TOTAL AMENITY

AREA WEST OF BUILDING 6

TOTAL AMENITY AREA:

COMMUNAL AMENITY AREA:

(50% OF REQUIRED)

(6 m² PER METRO UNIT INCULDES PRIVATE + COMMUNAL)

File:H:Acad SRN Projects\2025\S25016-MintoAbbott'sRun-StacksStittsville\1-Drawings\1-DESIGN\1-ACAD\S25016-A100 [CURRENT].dwg Plotted: Oct 20, 2025 By:AndrewB

THESE DRAWINGS ARE NOT TO BE SCALED:
ALL DIMENSIONS MUST BE VERIFIED BY CONTRACTOR PRIOR
TO COMMENCEMENT OF ANY WORK. ANY DISCREPANCIES
MUST BE REPORTED DIRECTLY TO SPIN ARCHITECTS INC.

 NO:
 DATE:
 ISSUED FOR:

 1
 2024.04.30
 COORDINATION

 2
 2025.06.25
 SPA SUBMISSION #1

 3
 2025.10.20
 SPA SUBMISSION #2

TIONAL NOTES:
DRAWING, AS AN INSTRUMENT OF SERVICE, IS OVIDED BY AND IS THE PROPERTY OF SRN ARCHITECTS THE CONTRACTOR MUST VERIFY AND ACCEPT

PROVIDED BY AND IS THE PROPERTY OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF SRN ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY SRN ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. SRN ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL. ETC. ENGINEERING INFORMATION SHOWN ON THIS DRAWING REFER TO APPROPRIATE ENGINEERS DRAWINGS BEFORE PROCEEDING WITH ANY WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION (UNDERTAKEN OTHERWISE NOTED). NO INVESTIGATION HAS BEEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE ERECTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/

ASSOCIATED FIRMS TO ASSIST THEM IN THE ERECTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

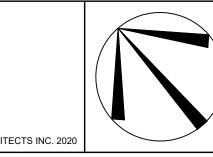
PLAN OF SURVEY OF

BLOCK 140
REGISTERED PLAN 4M-1544
CITY OF OTTAWA
SURVEYED BY ANNIS, O'SULLIVAN, VOLLEBEKK LTD.

APPLICANT:

MINTO CANADA
200-180 KENT STREET
OTTAWA ON K1P 0B6

CIVIL ENGINEER:


DAVID SCHAEFER ENGINEERING LTD. 120 IBER ROAD, UNIT 103 STITTVILLE, ON K4S 1E9

ANNIS, O'SULLIVAN, VOLLEBEKK LTD.
14 CONCOURSE GATE, SUITE 500
NEPEAN, ON K2E 7S6

REVISION COMMENT:

ARCHITECTS

8395 JANE STREET, SUITE 203
VAUGHAN, ONTARIO. L4K 5Y2
PHONE: 905.417.5515 FAX: 905.417.5517

© SRN ARCHITECTS INC. 2020

CLIENT:

Minto Canada

200, 180, Kent Street

Minto Canada 200-180 Kent Street Ottawa, Ontario K1P 0B6

Abbott's Run Block 13 Ottawa, Ontario

PROJECT:

DRAWING TITLE:
SITE PLAN

DATE: 2025-10-20 SCALE: 1:250

DRAWN BY: AB CHECKED BY: GF


DECT NUMBER: DRAWING NUMBER:

APPENDIX B

Water Servicing

- Average Day Demand (ADD) Scenario Figure (DSEL, 2025-10-16)
- ➤ Peak Hour Demand (PHD) Scenario Figure (DSEL, 2025-10-17)
- Max Day Fire Flow Demand (MDD) Scenario Figure (DSEL, 2025-10-16)
- ➤ EPANET Hydraulic & Water Quality Analysis ADD Report (DSEL, 2025-10-16)
- ➤ EPANET Hydraulic & Water Quality Analysis PHD Report (DSEL, 2025-10-16)
- ➤ EPANET Hydraulic & Water Quality Analysis MDD Report (DSEL, 2025-10-16)
- ➤ Abbott's Run Block 13 Concept Plan 42 Option C Fire Wall Locations (SRN Architects, 2025-04-01)
- > FUS Fire Flow Demand (FFD) Calculations (DSEL, 2025-05-14)
- Hydraulic Capacity and Modelling Analysis (GeoAdvice, 2025-10-16)

AVERAGE DAY SCENARIO

PEAK HOUR SCENARIO

MAX DAY FIRE FLOW SCENARIO

Page 1		2025-10-16 4:54:03 PM
******	********	********
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	******	******

Input File: 1295_Block13_AverageDay.net

1295_Block13_AverageDay

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
2	 2	 3	 50	200
4	4	5	65	50
5	13	11	15	200
6	11	12	55	50
7	11	14	20	200
8	14	10	35	200
9	10	9	5	200
10	9	7	185	150
11	7	8	15	150
12	8	2	15	200
13	7	6	65	50
14	3	4	70	200
15	4	10	25	200
16	1	2	65	200

Node Results:

Node ID	Demand LPM	Head m	Pressure m	Quality	
2	5.01	161.13	58.24	0.00	
3	5.01	161.24	58.09	0.00	
4	5.01	161.37	57.87	0.00	
5	5.01	161.36	58.13	0.00	
6	5.01	161.15	58.39	0.00	
7	5.01	161.16	58.00	0.00	
8	5.01	161.14	57.80	0.00	
9	5.01	161.42	58.06	0.00	
10	5.01	161.43	58.24	0.00	
11	5.01	161.65	58.47	0.00	
12	5.01	161.64	57.79	0.00	
14	5.01	161.57	58.28	0.00	
1	1136.42	160.92	0.00	0.00	Reservoir
13	-1196.54	161.70	0.00	0.00	Reservoir

ink Flow VelocityUnit Headloss Status D LPM m/s m/km
<u>-</u>
-833.95 0.44 2.03 Open
5.01 0.04 0.13 Open
1196.54 0.63 3.46 Open
5.01 0.04 0.13 Open
1186.52 0.63 3.94 Open
1181.51 0.63 4.03 Open
327.52 0.17 0.66 Open
0 322.51 0.30 1.43 Open
1 312.49 0.29 1.34 Open
2 307.48 0.16 0.44 Open
3 5.01 0.04 0.13 Open
4 -838.96 0.45 1.85 Open
5 -848.98 0.45 2.51 Open
6 -1136.42 0.60 3.29 Open

Page 1	202	25-10-16 5:10:43 PM
******	********	*****
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	*******	******

Input File: 1295_Block13_MaxDayFF.net

1295_Block13_MaxDayFF

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
2	2	3	50	200
4	4	5	65	50
5	13	11	15	200
6	11	12	55	50
7	11	14	20	200
8	14	10	35	200
9	10	9	5	200
10	9	7	185	150
11	7	8	15	150
12	8	2	15	200
13	7	6	65	50
14	3	4	70	200
15	4	10	25	200
16	1	2	65	200

Node Results:

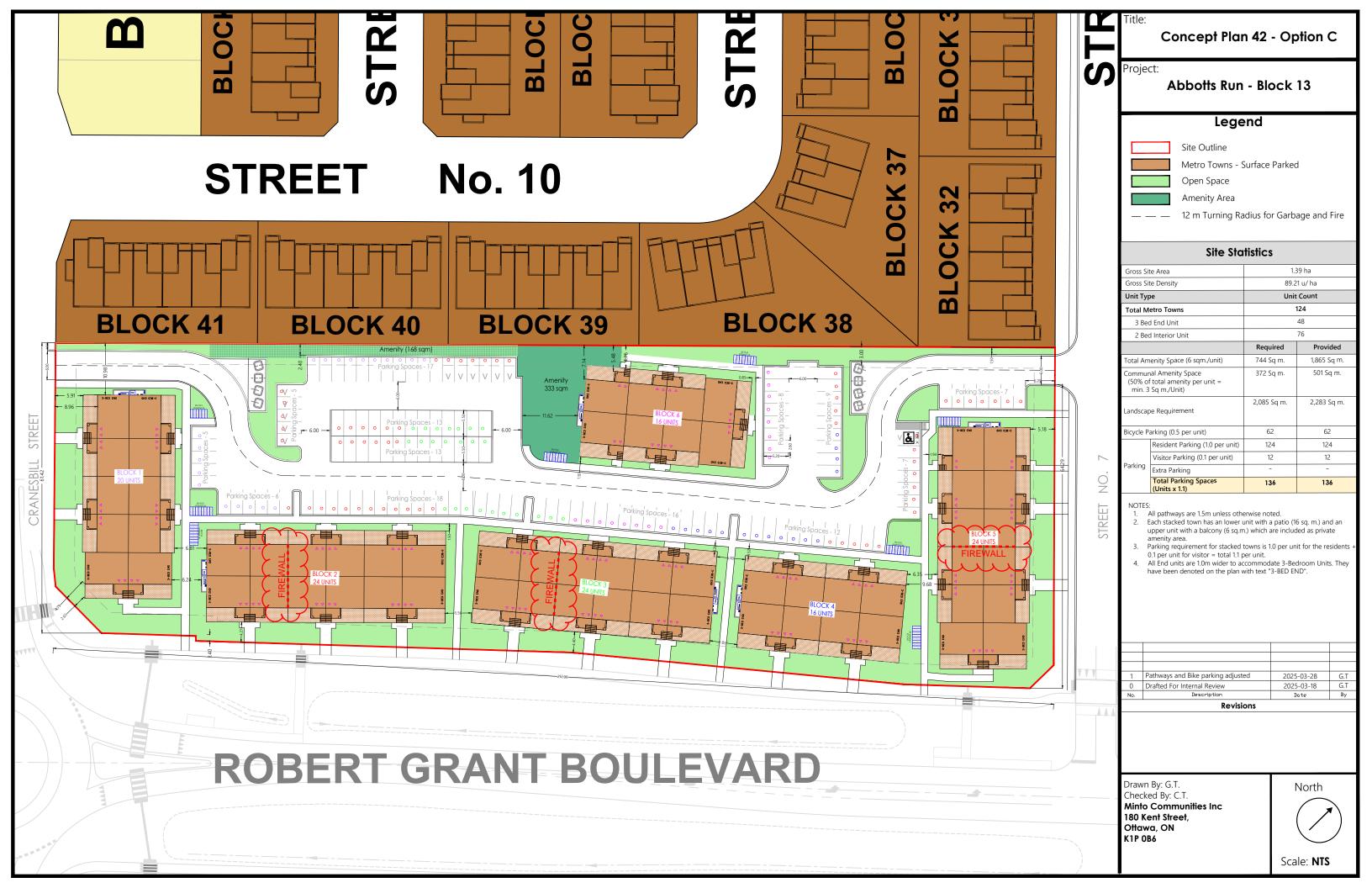
Node	Demand	Head	Pressure	Quality
ID	LPM	m	m	<u>-</u>
2	15.03	132.91	30.02	0.00
3	15015.03	124.71	21.56	0.00
4	15.03	130.59	27.09	0.00
5	15.03	130.53	27.30	0.00
6	15.03	132.91	30.15	0.00
7	15.03	132.97	29.81	0.00
8	15.03	132.93	29.59	0.00
9	15.03	133.61	30.25	0.00
10	15.03	133.62	30.43	0.00
11	15.03	139.97	36.79	0.00
12	15.03	139.92	36.07	0.00
14	15.03	137.71	34.42	0.00
1	-8109.38	141.40	0.00	0.00 Reservoi
13	-7070.98	141.40	0.00	0.00 Reservoi
	, , , , ,	± 1± • 10	0.00	0.00 1000100

Link	Flow	VelocityUn	it Headloss	Status
ID 	LPM	m/s	m/km	
2	8565.67	4.54	164.09	Open
4	15.03	0.13	1.02	Open
5	7070.98	3.75	95.10	Open
6	15.03	0.13	1.02	Open
7	7040.92	3.74	113.30	Open
}	7025.88	3.73	116.88	Open
	531.43	0.28	1.68	Open
0	516.40	0.49	3.43	Open
1	486.34	0.46	3.06	Open
2	471.31	0.25	0.99	Open
3	15.03	0.13	1.00	Open
4	-6449.36	3.42	84.06	Open
5	-6479.42	3.44	120.91	Open
6	8109.38	4.30	130.56	Open

Page 1	2025-10-16	5:29:03 PM
******	*********	*****
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.2	*
******	*********	*****

Input File: 1295_Block13_PeakHour.net

1295_Block13_PeakHour


Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
2	2	3	50	200
4	4	5	65	50
5	13	11	15	200
6	11	12	55	50
7	11	14	20	200
8	14	10	35	200
9	10	9	5	200
10	9	7	185	150
11	7	8	15	150
12	8	2	15	200
13	7	6	65	50
14	3	4	70	200
15	4	10	25	200
16	1	2	65	200

Node Results:

Node ID	Demand LPM	Head	Pressure	Quality	
ID	LPM	m	m		
2	22.55	153.69	50.80	0.00	
3	22.55	153.79	50.64	0.00	
4	22.55	153.92	50.42	0.00	
5	22.55	153.78	50.55	0.00	
6	22.55	153.57	50.81	0.00	
7	22.55	153.71	50.55	0.00	
8	22.55	153.69	50.35	0.00	
9	22.55	153.98	50.62	0.00	
10	22.55	153.99	50.80	0.00	
11	22.55	154.24	51.06	0.00	
12	22.55	154.12	50.27	0.00	
14	22.55	154.15	50.86	0.00	
1	1058.86	153.50	0.00	0.00	Reservoir
13	-1329.40	154.30	0.00	0.00	Reservoir

Link ID	Flow LPM	VelocityUnit m/s	Headloss m/km	Status
2	-820.87	0.44	1.97	Open
4	22.55	0.19	2.16	Open
5	1329.40	0.71	4.21	Open
6	22.55	0.19	2.18	Open
7	1284.31	0.68	4.58	Open
8	1261.76	0.67	4.56	Open
9	350.71	0.19	0.75	Open
10	328.17	0.31	1.47	Open
11	283.08	0.27	1.12	Open
12	260.53	0.14	0.32	Open
13	22.55	0.19	2.13	Open
14	-843.41	0.45	1.87	Open
15	-888.50	0.47	2.74	Open
16	-1058.86	0.56	2.89	Open

Abbotts Run Block 13 - Block 1 FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Wood Frame

C 1.5 Type of Construction Coefficient per FUS Part II, Section 1
A 1710.0 m² Total floor area based on FUS Part II section 1

Fire Flow 13646.2 L/min

14000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 11900.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;	
N Type V	10.1m-20m	13.5	2	27	11%	
S Type V	Over 30m	18.5	0	0	0%	
E Type V	3.1m-10m	40	3	120	20%	
W Type V	Over 30m	40	0	0	0%	
	% Increase				31% va	lue not to exceed 75%

Increase 3689.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	15589.0 L/min	!
	16000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by _____

Abbotts Run Block 13 - Block 2 FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area Type of Construction: Wood Frame

C 1.5 Type of Construction Coefficient per FUS Part II, Section 1
 A 1341.0 m² Total floor area based on FUS Part II section 1

Fire Flow 12084.5 L/min

12000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 10200.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
N Type V	Over 30m	33.5	2	67	0%
S Type V	Over 30m	33.5	0	0	0%
E Type V	3.1m-10m	13.5	3	41	17%
W Type V	0m-3m	13.5	3	41	22%

% Increase 39% value not to exceed 75%

Increase 3978.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	14178.0 L/min	!
	14000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by _____

Abbotts Run Block 13 - Block 3 FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area Type of Construction: Wood Frame

 $\begin{array}{lll} \textbf{C} & 1.5 & \textit{Type of Construction Coefficient per FUS Part II, Section 1} \\ \textbf{A} & 1341.0 & \text{m}^2 & \textit{Total floor area based on FUS Part II section 1} \end{array}$

Fire Flow 12084.5 L/min

12000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 10200.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
N Type V	20.1m-30m	33.5	3	101	10%
S Type V	Over 30m	33.5	0	0	0%
E Type V	3.1m-10m	13.5	3	41	17%
W Type V	0m-3m	13.5	3	41	22%

% Increase 49% value not to exceed 75%

Increase 4998.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	15198.0 L/min	•
	15000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by _____

Abbotts Run Block 13 - Block 4 FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area Type of Construction:

C 1.5 Type of Construction Coefficient per FUS Part II, Section 1
 A 1386.0 m² Total floor area based on FUS Part II section 1

Fire Flow 12285.6 L/min

12000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 10200.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
N Type V	20.1m-30m	34.5	3	104	10%
S Type V	Over 30m	33.5	0	0	0%
E Type V	3.1m-10m	13.5	3	41	17%
W Type V	3.1m-10m	13.5	3	41	17%

% Increase 44% value not to exceed 75%

Increase 4488.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	14688.0 L/min	!
	15000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by _____

Abbotts Run Block 13 - Block 5 FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area Type of Construction: Wood Frame

C 1.5 Type of Construction Coefficient per FUS Part II, Section 1
A 1017.0 m² Total floor area based on FUS Part II section 1

Fire Flow 10523.8 L/min

11000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 9350.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;
N Type V	10.1m-20m	13.5	2	27	11%
S Type V	0m-3m	13.5	3	41	22%
E Type V	Over 30m	25.5	3	77	0%
W Type V	3.1m-10m	25.5	3	77	18%
	% Increase				51% value not to exceed 75%

Increase 4768.5 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	14118.5 L/min	1
	14000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by _____

Abbotts Run Block 13 - Block 6 FUS-Fire Flow Demand

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 2020

2025-05-14

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Wood Frame

C 1.5 Type of Construction Coefficient per FUS Part II, Section 1
 A 1386.0 m² Total floor area based on FUS Part II section 1

Fire Flow 12285.6 L/min

12000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 10200.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;	
N Type V	10.1m-20m	32	2	64	13%	
S Type V	20.1m-30m	32	3	96	8%	
E Type V	Over 30m	18.5	3	56	0%	
W Type V	Over 30m	13.5	3	41	0%	
	% Increase				21% value	e not to exceed 75%

Increase 2142.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure. Max 5 stories

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	12342.0 L/min	•
	12000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by _____

Hydraulic Capacity and Modeling Analysis Abbott's Run Phases 2 & 3 Development

Technical Memorandum

FINAL

Prepared for:

David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

Prepared by:

GeoAdvice Engineering Inc. Unit 203, 2502 St. John's Street Port Moody, BC V3H 2B4

Submission Date: October 16, 2025

Contact: Mr. Werner de Schaetzen, Ph.D., P.Eng.

Project: 2024-123-DSE

Copyright © 2025 GeoAdvice Engineering Inc.

Page | 1

Document History and Version Control

Revision No.	Date	Document Description	Revised By	Reviewed By
R0	December 19, 2024	Draft	Jim Lee	Werner de Schaetzen
R1	December 20, 2024	Final	Jim Lee	Werner de Schaetzen
R2	October 15, 2025	Updated Draft	Jim Lee	Werner de Schaetzen
R3	October 16, 2025	Final	Jim Lee	Werner de Schaetzen

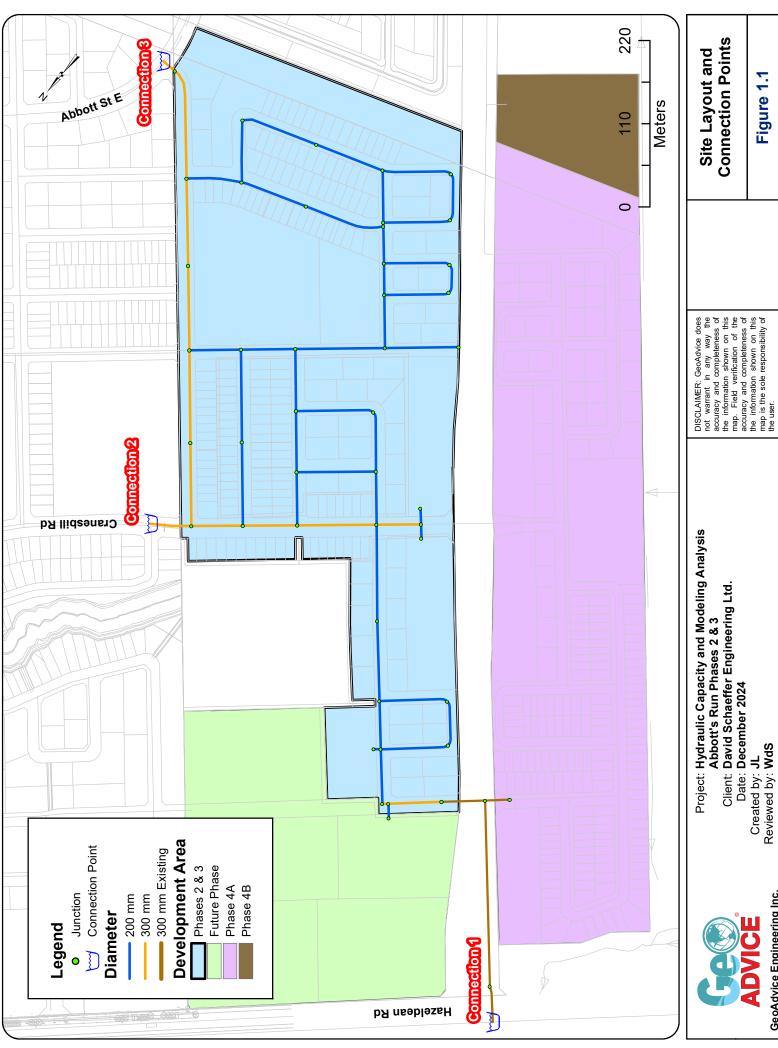
Confidentiality and Copyright

This document was prepared by GeoAdvice Engineering Inc. for David Schaeffer Engineering Ltd. The material in this document reflects the best judgment of GeoAdvice in light of the information available to it at the time of preparation. Any use which a third party makes of this memo, or any reliance on or decisions made based on it, are the responsibilities of such third parties. GeoAdvice accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or actions based on this document. Information in this document is to be considered the intellectual property of GeoAdvice Engineering Inc. in accordance with Canadian copyright law.

Statement of Qualifications and Limitations

This document represents GeoAdvice Engineering Inc. best professional judgment based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by a member of the engineering profession currently practicing under similar conditions. No warranty, express or implied is made.

1 Introduction


GeoAdvice Engineering Inc. ("GeoAdvice") was retained by David Schaeffer Engineering Ltd. ("DSEL") to size the proposed water main network for Abbott's Run Phases 2 and 3 development ("Development") in the City of Ottawa, ON ("City").

The development will have multiple connections to the City's water distribution system along Abbott Street East, Cranesbill Road and Hazeldean Road. The development site is shown in **Figure 1.1** on the following page, with the final recommended pipe diameters.

This memo describes the assumptions and results of the hydraulic modeling and capacity analysis using InfoWater Pro (Autodesk Software), a GIS water distribution system modeling and management software application.

The results presented in this memo are based on the analysis of steady state simulations. The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi. No extended period simulations were completed in this analysis to assess the water quality or to assess the hydraulic impact on storage and pumping.

Project: Hydraulic Capacity and Modeling Analysis Abbott's Run Phases 2 & 3
Client: David Schaeffer Engineering Ltd.
Date: December 2024

Created by: JL Reviewed by: WdS

GeoAdvice Engineering Inc.

Connection Points Site Layout and

Figure 1.1

2 Modeling Considerations

2.1 Water Main Configuration

The water main network was modeled based on a water network plan prepared by DSEL (1295 wtr-coord.dwg) and provided to GeoAdvice on November 21th, 2024.

2.2 Elevations

Elevations of the modeled junctions were assigned according to a site base plan prepared by DSEL (1295_grad-coord.dwg) and provided to GeoAdvice on November 21th, 2024.

2.3 Consumer Demands

The demand factors were based on the City of Ottawa's internally developed parameters (DraftFinal_SystemLevelDemandParameters_24May2024(JB).xls) for populations exceeding 3,000. A summary of the rates relevant for this development is presented in **Table 2.1**.

Table 2.1: City of Ottawa Demand Factors*

Demand Type	Amount	Units	Outdoor Water Demand (OWD)	Units
Average Day Demand (ADD)				
Single Family Home	180	L/c/d	700	L/unit/d
Multi Family Townhome	198	L/c/d	350	L/unit/d
High Density Building	219	L/c/d	0	L/unit/d
Institutional/Park**	28,000	L/ha/d		
Maximum Daily Demand (MDD)				
Single Family Home	avg. day + OWD	L/d		
Multi Family Townhome	avg. day + OWD	L/d		
High Density Building	avg. day	L/d		
Institutional/Park	1.5 x avg. day	L/ha/d		
Peak Hour Demand (PHD)				
Single Family Home	2.1 x max. day	L/d		
Multi Family Townhome	2.1 x max. day	L/d		
High Density Building	1.6 x max. day	L/d		
Institutional/Park	1.8 x max. day	L/ha/d		

^{*}For ADD, a connection loss of 80 L/unit/day was applied to each unit, except for high density buildings

^{**}City of Ottawa Design Guidelines – Water Distribution (2010)

Table 2.2 and **Table 2.3** summarize the water demand calculations for the Abbott's Run Phases 2 and 3 developments.

Table 2.2: Residential Water Demand Calculations

Development	Population (Cap)	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Phase 2	864	2.14	3.54	7.21
Phase 3	883	2.24	3.47	7.05
Phase 4A	1,506	3.78	5.83	11.88
Future Phase	770	1.96	1.96	4.10

Table 2.3: Non-residential Water Demand Calculations

Development	Land Use	Area (Ha)	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Dhasa 2	School	2.83	0.92	1.38	2.48
Phase 2	Park	0.99	0.32	0.48	0.87
Phase 3	Park	0.82	0.27	0.40	0.72
Phase 4A	Park	2.55	0.83	1.24	2.23

Demands from two additional adjacent development areas (Phase 4A and future phase) were incorporated into the analysis due to their downstream location relative to the City's boundary conditions. Phase 4B was excluded as it is expected to be serviced by a separate connection. Detailed demand calculations are provided in **Appendix A**.

2.4 Fire Flow Demand

Fire flow calculations were completed as per the City of Ottawa's Technical Bulletins and the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (2020).

The FUS calculations yielded the following required fire flows:

- Single-Family: 8,000 L/min (133 L/s)
- 6-unit Townhome: 10,000 L/min (167 L/s)
- Back-to-Back Townhome with Firewall: 10,000 L/min (167 L/s)
- 7-unit Townhome with Firewall: 10,000 L/min (167 L/s)
- 8-unit Townhome with Firewall: 11,000 L/min (183 L/s)

Please note that the required fire flows for medium density condo blocks and school blocks have been assumed as 267 L/s, as agreed with DSEL.

Fire flow simulations were completed at each model node. The locations of nodes do not necessarily represent hydrant locations.

Detailed FUS fire flow calculations as well as the illustrated spatial allocation of the required fire flows are shown in Appendix B.

2.5 **Boundary Conditions**

The boundary conditions were provided by the City of Ottawa in the form of Hydraulic Grade Line (HGL) at the following location:

• Connection 1: Hazeldean Road

Connection 2: Cranesbill Road

• Connection 3: Abbott Street East

The above connection points are illustrated in Figure 1.1.

Boundary conditions were provided for Peak Hour demand (PHD), Maximum Day demand plus Fire (MDD+FF) and Average Day demand (ADD) conditions. The City boundary conditions were provided to GeoAdvice on November 29, 2024, and can be found in Appendix C.

Table 2.3 outlines the boundary conditions used for sizing and analyzing the water network.

Table 2.3: Boundary Conditions

Condition	Connection 1 HGL (m)	Connection 2 HGL (m)	Connection 3 HGL (m)
ADD (max. pressure)	161.1	161.1	161.1
PHD (min. pressure)	154.9	154.2	154.2
Max Day + Fire Flow (133 L/s)*	157.2	153.4	155.6
Max Day + Fire Flow (167 L/s)**	156.8	150.4	154.2
Max Day + Fire Flow (183 L/s)**	156.6	148.9	153.5
Max Day + Fire Flow (267 L/s)	155.6	141.4	149.9

^{*}Extrapolated from the boundary conditions provided by the City of Ottawa.

^{**}Interpolated from the boundary conditions provided by the City of Ottawa.

3 Hydraulic Capacity Design Criteria

3.1 Pipe Characteristics

Pipe characteristics of internal diameter (ID) and Hazen-Williams C factors were assigned in the model according to the City of Ottawa Design Guidelines for PVC water main material. Pipe characteristics used for the development are outlined in **Table 3.1** below.

Table 3.1: Model Pipe Characteristics

Nominal Diameter (mm)	ID PVC (mm)	Hazen Williams C-Factor (/)
200	204	110
300	297	120

3.2 Pressure Requirements

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). Pressure requirements are outlined in **Table 3.2.**

Table 3.2: Pressure Requirements

Demand Condition	Minimum	Pressure	Maximum Pressure	
Demand Condition	(kPa)	(psi)	(kPa)	(psi)
Normal Operating Pressure (maximum daily flow)	350	50	480	70
Peak Hour Demand (minimum allowable pressure)	276	40	-	-
Maximum Fixture Pressure (Ontario Building Code)	-	-	552	80
Maximum Distribution Pressure (minimum hour check)	-	-	552	80
Maximum Day Plus Fire	140	20	-	-

4 Hydraulic Capacity Analysis

The proposed water mains within the development were sized to the minimum diameter which would satisfy the greater of maximum day plus fire and peak hour demand. Modeling was carried out for average day demand, peak hour demand and maximum day demand plus fire flow using InfoWater.

4.1 Development Pressure Analysis

Modeled service pressures for the development are summarized in **Table 4.1**. Figures showing the pressures under ADD and PHD scenarios are provided in **Appendix D**.

Table 4.1: Summary Available Service Pressures

Average Day Demand	Peak Hour Demand
Maximum Pressure	Minimum Pressure
85 psi (585 kPa)	72 psi (496 kPa)

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). The maximum service pressure is 85 psi, exceeding the 80 psi threshold. As such, pressure reducing valves may be required for the proposed development. The minimum service pressure is 72 psi under PHD, meeting the required 40 psi threshold.

4.2 Development Fire Flow Analysis

Table 4.2: Summary of Minimum Available Fire Flows

Required Fire Flow	Minimum Available Flow*
133 L/s	299 L/s
167 L/s	207 L/s
183 L/s	267 L/s
267 L/s	359 L/s

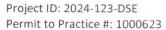
^{*}The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi. High available fire flows (>500 L/s) are theoretical values. Actual available fire flow is limited by the hydraulic losses through the hydrant lateral and hydrant port sizes.

As summarized in Table 4.2 the fire flow requirements can be met at all junctions within the development. The figure showing the available fire flows at 20 psi under MDD + FF scenario can be found in Appendix E.

Submission

Prepared by:

Jim Lee, E.I.T.


Hydraulic Modeler

Approved by:

Werner de Schaetzen, Ph.D., P.Eng.

Senior Modeling Review / Project Manager

TNOT OF

Appendix A Domestic Water Demand Calculations

Project ID: 2019-059-DSE Permit to Practice #: 1000623

Consumer Water Demands

Residential Demands - Phase 2*

		Pop	ulation	OWD	Motor Loop	Avera	age Day Den	nand		
Dwelling Type	Number of Units	Persons per Unit	Population Per Dwelling Type	Outdoor Water Demand (L/unit/day)	Water Loss per Connection (L/unit/day)	(L/c/d)	(L/d)	(L/s)	Max Day ADD + OWD	Peak Hour 2.1 x Max. Day
Singles	130	3.4	442	700	-	180	79,560	0.92	1.97	4.15
Executive Towns	45	2.7	122	350	-	198	24,057	0.28	0.46	0.97
Avenue Towns	42	2.7	113	350	-	198	22,453	0.26	0.43	0.90
Medium Density Condos	104	1.8	187	-	-	219	40,997	0.47	0.47	1.00
Connection Loss‡	218	-	-	-	80		17,440	0.20	0.20	0.20
Subtotal	321		864				184,507	2.14	3.5	7.2

Non Residential Demands - Phase 2

	Aroo	A 112 2		Avera	age Day Den	nand	Max Day	Peak Hour
Property Type	Area (ha)		/L /bo/d\	(1 (4)	(1 /0)	1.5 x Avg.	1.8 x Max	
	(IIa)		(L/ha/d) (L/d	(L/u)	(L/s)	Day	Day	
School	2.83			28,000	79,240	0.92	1.38	2.48
Park	0.99			28,000	27,720	0.32	0.48	0.87
Subtotal	3.82				106,960	1.24	1.86	3.34

Residential Demands - Phase 3*

		Pop	ulation	(OMD)Outd	Water Loss	Avera	age Day Den	nand		
Dwelling Type	Number of Units	Persons per Unit	Population Per Dwelling Type		per Connection (L/unit/day)	(L/c/d)	(L/d)	(L/s)	Max Day ADD + OWD	Peak Hour 2.1 x Max. Day
Singles	69	3.4	235	700	-	180	42,228	0.49	1.05	2.20
Executive Towns	166	2.7	448	350	ı	198	88,744	1.03	1.70	3.57
Medium Density Condos	111	1.8	200	1	1	219	43,756	0.51	0.51	1.06
Connection Loss‡	236	-	-	1	80		18,880	0.22	0.22	0.22
Subtotal	346		883				193,608	2.24	3.5	7.1

Non Residential Demands - Phase 3

Area	Aroa		Avera	ige Day Den	nand	Max Day	Peak Hour		
Property Type			(L/ha/d)	(1 (4)	(1 /0)	1.5 x Avg.	1.8 x Max		
	(ha)				(L/IIa/u)	(L/d)	(L/s)	Day	Day
Park	0.82				28,000	22,960	0.27	0.40	0.72
Subtota	0.82					22,960	0.27	0.40	0.72

Residential Demands - Phase 4A*

		Pop	ulation	(OMD)Ontd	Waterlass	Avera	age Day Den	nand		
Dwelling Type	Number of Units	Persons per Unit	Population Per Dwelling Type		per Connection (L/unit/day)	(L/c/d)	(L/d)	(L/s)	Max Day ADD + OWD	Peak Hour 2.1 x Max. Day
Singles	150	3.4	510	700	-	180	91,800	1.06	2.28	4.78
Executive Towns	175	2.7	473	350	ı	198	93,555	1.08	1.79	3.76
Avenue Towns	30	2.7	81	350	1	198	16,038	0.19	0.31	0.65
Medium Density Condos	246	1.8	443	-	-	219	96,973	1.12	1.12	2.36
Connection Loss‡	357	-	-	-	80		28,560	0.33	0.33	0.33
Subtotal	601		1,506				326,926	3.78	5.8	11.9

Non Residential Demands - Phase 4A

Aron				Average Day Dem		nand	Max Day	Peak Hour	
Property Type	Property Type Area (ha)			(L/ha/d)	(L/d)	(1 /c)	1.5 x Avg.	1.8 x Max	
(ha)			(L/IIa/u)	(L/u)	(L/s)	Day	Day		
Park	2.55				28,000	71,400	0.83	1.24	2.23
Subtotal	2.55					71,400	0.83	1.24	2.23

Residential Demands - Phase 4B*

		Pop	ulation	(OMD)Ontd	Waterlass	Avera	age Day Den	nand		
Dwelling Type	Number of Units	Persons	Population Per Dwelling Type		per Connection (L/unit/day)	(L/c/d)	(L/d)	(L/s)	Max Day ADD + OWD	Peak Hour 2.1 x Max. Day
Executive Towns	49	2.7	132	350	-	198	26,195	0.30	0.50	1.05
Avenue Towns	62	2.7	167	350	1	190	33,145	0.38	0.63	1.33
Connection Loss‡	111	ı	-	1	80	·	8,880	0.10	0.10	0.10
Subtotal	111		300				68,221	0.79	1.2	2.5

Residential Demands - Future Phase*

		Pop	ulation	(OWD)Outd Water Lees		Avera	age Day Den	nand		
Dwelling Type	Number of Units**	Persons	Population Per Dwelling Type		Water Loss per Connection (L/unit/day)	(L/c/d)	(L/d)	(L/s)	Max Day ADD + OWD	Peak Hour 2.1 x Max. Day
High Density Residential	264	1.8	475	-	-	219	104,069	1.20	1.20	2.53
Mixed Use Residential	164	1.8	295	1	1	219	64,649	0.75	0.75	1.57
Connection Loss‡	4	-	-	-	80		320	0.00	0.00	0.00
Subtotal	428		770				169,038	1.96	1.96	4.1

	Avg. Day	Max Day	Peak Hour
Total (Connection Points 1, 2 and 3)	13.24	19.53	39.03

 $^{{\}tt *Peaking\,factors\,based\,on\,the\,City\,of\,Ottawa's\,DraftFinal_SystemLevelDemandParameters_24May2024(JB).xls\,spreadsheet}$

^{**}Units based on estimate provided by DSEL

[‡]Condo connections assumed to be 1 per 100 units. ADD, MDD and PHD are the same for conection loss

Appendix B FUS Calculations and Required Fire Flows

Project ID: 2019-059-DSE Permit to Practice #: 1000623

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2024-123-DSE

Development: Abbott's Run Single Family Block 28

Zoning: Single Family Residential Date: October 9, 2025

HIL. ADDOLL'S RUIT SINGLE FAITHIY BIOCK

7,752 L/min

A. Type of Construction: **Wood Frame Construction** 192 m² **B. Ground Floor Area:** C. Number of Storeys: $F = 220C\sqrt{A}$ D. Required Fire Flow*: C: Coefficient related to the type of construction 1.5 384 m² A: Effective area The total floor area in $\mbox{\em m}^2$ in the building being considered 6,468 L/min 6,000 L/min* E. Occupancy Occupancy content hazard Limited Combustible % of **D** -900 5,100 L/min F. Sprinkler Protection Automatic sprinkler protection None 0 % of **E** 0 L/min 5,100 L/min G. Exposures Length-Height Factor -Separation Side **Construction Type - Adjacent Structure** Distance **Adjacent Structure** Exposure North 20.1 to 30 m 0-20 m-storeys **Wood Frame** 0% **Wood Frame** 21% **East** 0.0 to 3 m 21-40 m-storeys **South** 10.1 to 20 m 0-20 m-storeys **Wood Frame** 10% West 0.0 to 3 m 21-40 m-storeys Wood Frame 21% 52% % of **E** + 2,652 L/min 7.752 L/min

Calculations Based on "Water Supply for Public Fire

Protection", Fire Underwriters Survey, 2020.

Total Fire Flow Required	8,000	L/min**
	133	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	960	m³

L/min

No

The Total Required Fire Flow for the Abbott's Run development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

H. Wood Shake Charge

For wood shingle or shake roofs

^{*}Rounded to the nearest 1,000 L/min

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Exposure Distances – Single Family Block 28

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2024-123-DSE

Development: Abbott's Run Townhouse Block 88

Zoning: Multi Family Residential 6-unit Townhome

For wood shingle or shake roofs

Date: October 9, 2025

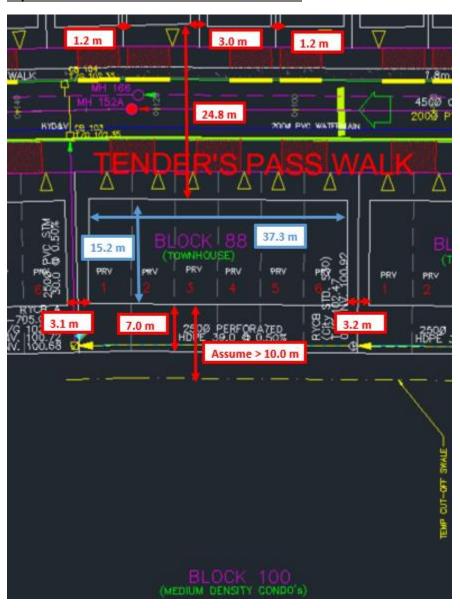
Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 2020.

A. Type of Construction: **Wood Frame Construction B. Ground Floor Area:** 567 **m**² C. Number of Storeys: D. Required Fire Flow*: $F = 220C\sqrt{A}$ C: Coefficient related to the type of construction 1.5 1134 m² A: Effective area The total floor area in m² in the building being considered F = 11,112 L/min D = 11,000 L/min* E. Occupancy Occupancy content hazard Limited Combustible % of **D** -1,650 L/min 9,350 L/min F. Sprinkler Protection Automatic sprinkler protection None 0 % of **E** 0 L/min F = 9,350 L/min G. Exposures Separation Length-Height Factor -Side **Construction Type - Adjacent Structure** Distance **Adjacent Structure** Exposure North 20.1 to 30 m 61-80 m-storeys Wood Frame 6% 16% **East** 3.1 to 10 m 21-40 m-storeys Wood Frame South 3.1 to 10 m 61-80 m-storeys Wood Frame 18% 21-40 m-storeys West 3.1 to 10 m Wood Frame 16% 56% Total + 5,236 L/min G = 14,586 L/min H. Wood Shake Charge H = 14,586 L/min No L/min

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.1. The townhome dwellings do comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required	10,000	L/min**
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m³

^{*}Rounded to the nearest 1,000 L/min


The Total Required Fire Flow for the Abbott's Run development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Exposure Distances – 6-unit Townhome Block 88

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2024-123-DSE

Development: Abbott's Run B2B Block 135

Zoning: Single Family Residential 12-unit B2B Townhome Split with Firewall

Date: October 9, 2025

A. Type of Construction:	Wood Frame Construction		
B. Ground Floor Area:	414_ m²		
C. Number of Storeys:	2		
D. Required Fire Flow*:	$F = 220C\sqrt{A}$		
C: Coefficient related to the type of co	nstruction	C = 1.5	
A: Effective area		$A = 828 \text{ m}^2$	
The total floor area in m ² in the building being	considered		
		F = 9,496 L/min	D = 9,000 L/min
E. Occupancy			
Occupancy content hazard	Limited Combustible	15% of D1,350 _ L/min	E = 7,650 L/min
F. Sprinkler Protection			
Automatic sprinkler protection	None	0% of E 0 L/min	F = 7,650 L/min
C Evnesures			
G. Exposures Separation	Laurath Hairbt Frater		
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure	Exposure
North Firewall	41-60 m-storeys	Wood Frame	10%
East 20.1 to 30 m	•	Wood Frame	2%
South 3.1 to 10 m	41-60 m-storeys	Wood Frame	17%
West 20.1 to 30 m	•	Wood Frame	2%
West 20.1 to 30 III	21-40 III-3torey3	wood Frame	Total 31%
			10tai 31%
		% of E <u>+ 2,372</u> L/min	G = 10,022 L/min
H. Wood Shake Charge	No	0 L/min	H = 10,022 L/min
For wood shingle or shake roofs			11 - 10,022 - 1,11111
Tot wood stringle of strake roots			
	To	otal Fire Flow Required 10,000 L/min**	
		167 L/s	
	Require	d Duration of Fire Flow 2 Hrs	
	•	ed Volume of Fire Flow 1,200 m ³	

Calculations Based on "Water Supply for Public Fire

Protection", Fire Underwriters Survey, 2020.

The Total Required Fire Flow for the Abbott's Run development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*}Rounded to the nearest 1,000 L/min

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Exposure Distances – 12-Unit B2B Townhome Block 135 with Firewall

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2024-123-DSE

Development: Abbott's Run

Townhouse Block 81

7-unit Townhome Split with Firewall

Zoning: Multi Family Residential Date: October 15, 2025

A. Type of Construction:		Wood Frame Construction				
B. Ground Floor Area:		429 m²				
C. Number of Storeys:		2				
D. Required Fire Flow*:		$F = 220C\sqrt{A}$				
C: Coefficient related to	the type of co	nstruction	C = 1.5			
A: Effective area			$A = 857 \text{ m}^2$			
The total floor area in m ² in t	he building being	considered				
			F = 9,661 L/min	D = :	10,000	L/min
E. Occupancy						
Occupancy content haza	ard	Limited Combustible	15% of D1,500L/min	E =	8,500	L/min
F. Sprinkler Protection						
Automatic sprinkler prot	tection	None	0% of E_0L/min	F =	8,500	L/min
G. Exposures						
Side	Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjacent Structure	E:	xposure	<u>.</u>
North	Firewall	21-40 m-storeys	Wood Frame		10%	
East	10.1 to 20 m	41-60 m-storeys	Wood Frame		12%	
South	3.1 to 10 m	21-40 m-storeys	Wood Frame		10%	
West	20.1 to 30 m	41-60 m-storeys	Wood Frame		4%	_
				Total	36%	-
			% of E	G = 3	11,560	L/min
H. Wood Shake Charge		No	0 L/min	H = 3	11,560	L/min
For wood shingle or shall	ke roofs					

Calculations Based on "Water Supply for Public Fire

Protection", Fire Underwriters Survey, 2020.

The required fire flow exceeds the cap in the City of Ottawa Technical Bulletin ISDTB-2014-02 4.1. The townhome dwellings do comply with the provisions of the Bulletin; therefore, the required fire flow is:

Total Fire Flow Required	10,000	L/min**
	167	L/s
Required Duration of Fire Flow	2	Hrs
Required Volume of Fire Flow	1,200	m ³

^{*}Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the Abbott's Run development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Exposure Distances – 7-Unit Townhome Block 81 with Firewall

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2024-123-DSE

Development: Abbott's Run

Townhouse Block 133

8-unit Townhome Split with Firewall

Date: October 9, 2025

Zoning: Multi Family Residential

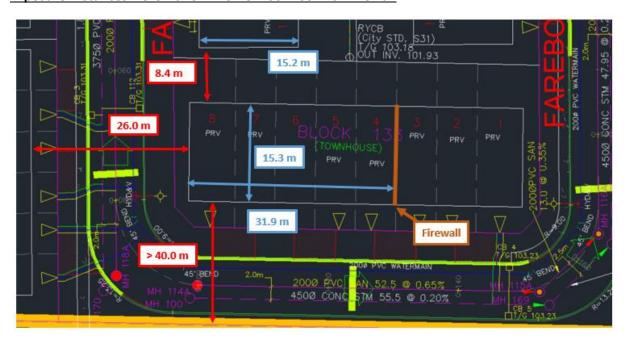
A. Type of Construction:		Wood Frame Construction					
B. Ground Floor Area:		486 m²					
C. Number of Storeys:		2					
D. Required Fire Flow*: C: Coefficient related to the A: Effective area The total floor area in m² in the bu			C = 1.5 A = 973	3 m²			
	0 0		F = 10,293	3 L/min	D =	10,000	L/min*
E. Occupancy Occupancy content hazard		Limited Combustible	-15 % of D	1,500 L/m	in E =	8,500	L/min
F. Sprinkler Protection Automatic sprinkler protecti	ion	None		0L/m	in F=	8,500	L/min
ahi2	eparation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Ad	jacent Structure	2	Exposure	<u>.</u>
North 3.	1 to 10 m	21-40 m-storeys	W	ood Frame		16%	
East	Firewall	21-40 m-storeys	W	ood Frame		10%	
South Bey	yond 30 m	61-80 m-storeys	W	ood Frame		0%	
West 20	.1 to 30 m	21-40 m-storeys	W	ood Frame	Total	2% 28%	= -
			% of E	+ 2,380 L/m	in G =	10,880	L/min
H. Wood Shake Charge		No	0	L/min	H =	10,880	L/min
For wood shingle or shake ro	oofs			_			

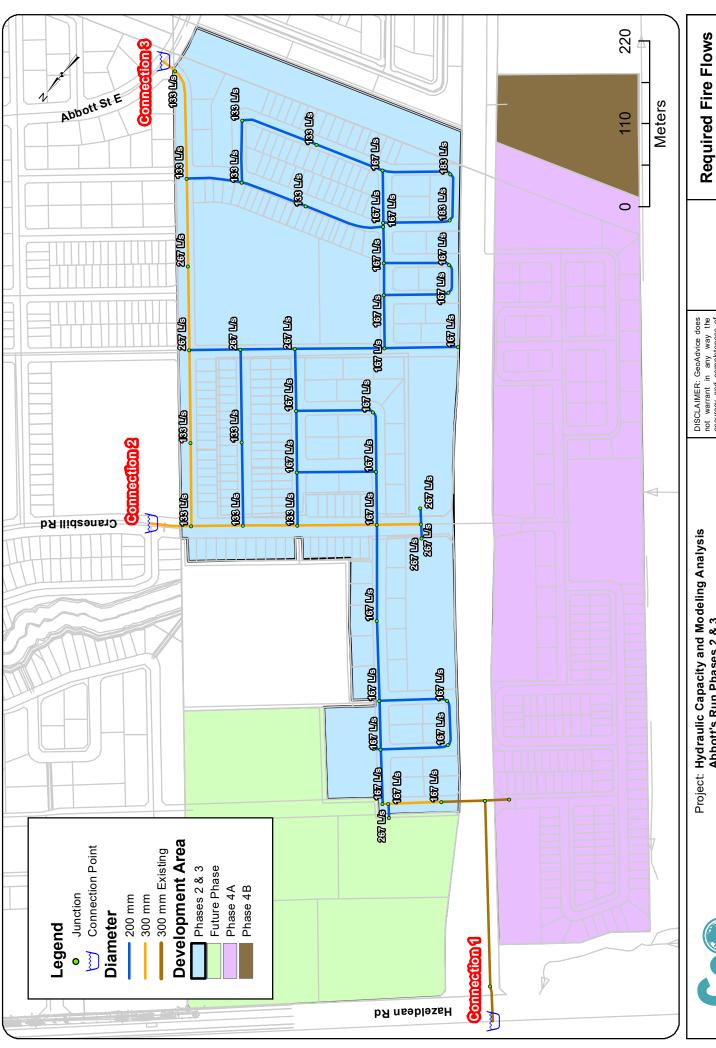
Calculations Based on "Water Supply for Public Fire

Protection", Fire Underwriters Survey, 2020.

Total Fire Flow Required	11,000	L/min**
	183	L/s
Required Duration of Fire Flow	2.25	Hrs
Required Volume of Fire Flow	1,485	m³

^{*}Rounded to the nearest 1,000 L/min


The Total Required Fire Flow for the Abbott's Run development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.


Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Exposure Distances – 8-Unit Townhome Block 133 with Firewall

Abbott's Run Phases 2 & 3 Client: David Schaeffer Engineering Ltd. Date: October 2025 Created by: JL Reviewed by: WdS

GeoAdvice Engineering Inc.

DISCLAIMER: GeoAdvice does not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of the user.

Figure B.1

Appendix C Boundary Conditions

Project ID: 2019-059-DSE Permit to Practice #: 1000623

Boundary Conditions Minto – Abbott's Phases 2 & 3

Provided Information

Scenario	Der	Demand		
Scenario	L/min	L/s		
Average Daily Demand	794	13.24		
Maximum Daily Demand	1,172	19.53		
Peak Hour	2,342	39.03		
Fire Flow Demand #1	9,000	150.00		
Fire Flow Demand #2	16,000	266.67		

Location

Results

Connection 1 - Hazeldean Road

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	84.5
Peak Hour	154.9	75.8
Max Day plus Fire Flow #1	157.0	78.8
Max Day plus Fire Flow #2	155.6	76.8

m

Connection 2 - Cranesbill Road

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	87.5
Peak Hour	154.2	77.7
Max Day plus Fire Flow #1	151.9	74.4
Max Day plus Fire Flow #2	141.4	59.5

¹ Ground Elevation = 99.6 m

Connection 3 - Abbott Street

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	85.0
Peak Hour	154.2	75.1
Max Day plus Fire Flow #1	154.9	76.1
Max Day plus Fire Flow #2	149.9	69.1

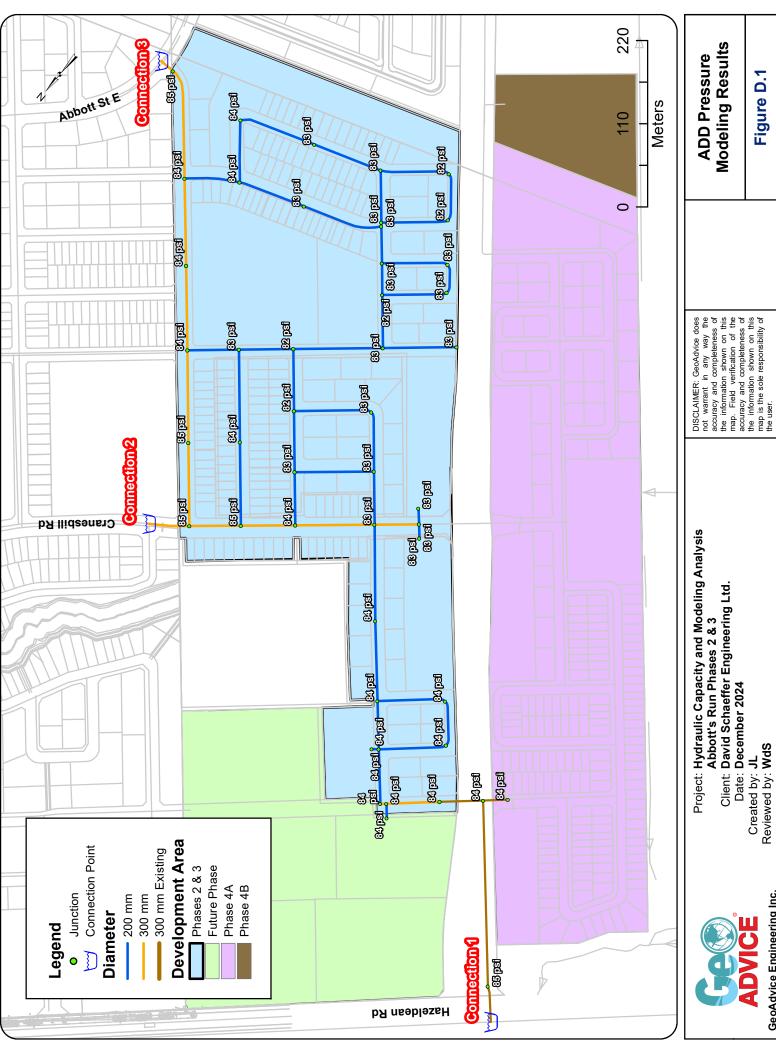
¹ Ground Elevation = 101.3 m

¹ Ground Elevation = 101.6

Notes

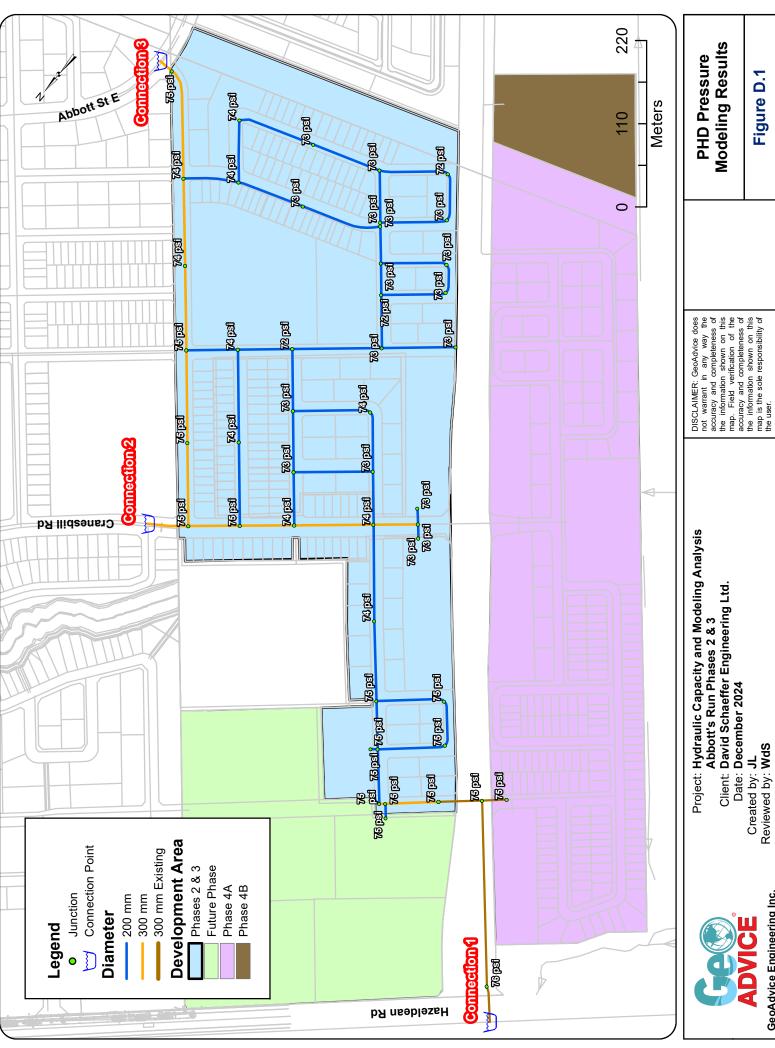
- Demands for proposed Connection 1 at existing stub off Hazeldean Road were assigned to upstream junction of the existing stub and Hazeldean Road off the public looped watermains. The engineer must calculate headloss off the dead-end main.
- 2. Demands for proposed Connection 2 at existing stub off Cranesbill Road were assigned to upstream junction of the existing stub and Cranesbill Road off the public looped watermains. The engineer must calculate headloss off the dead-end main.
- 3. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer


The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix D Pressure Results

Project ID: 2019-059-DSE Permit to Practice #: 1000623


Project: Hydraulic Capacity and Modeling Analysis Abbott's Run Phases 2 & 3 Client: David Schaeffer Engineering Ltd. Date: December 2024

Created by: JL Reviewed by: WdS

GeoAdvice Engineering Inc.

Modeling Results

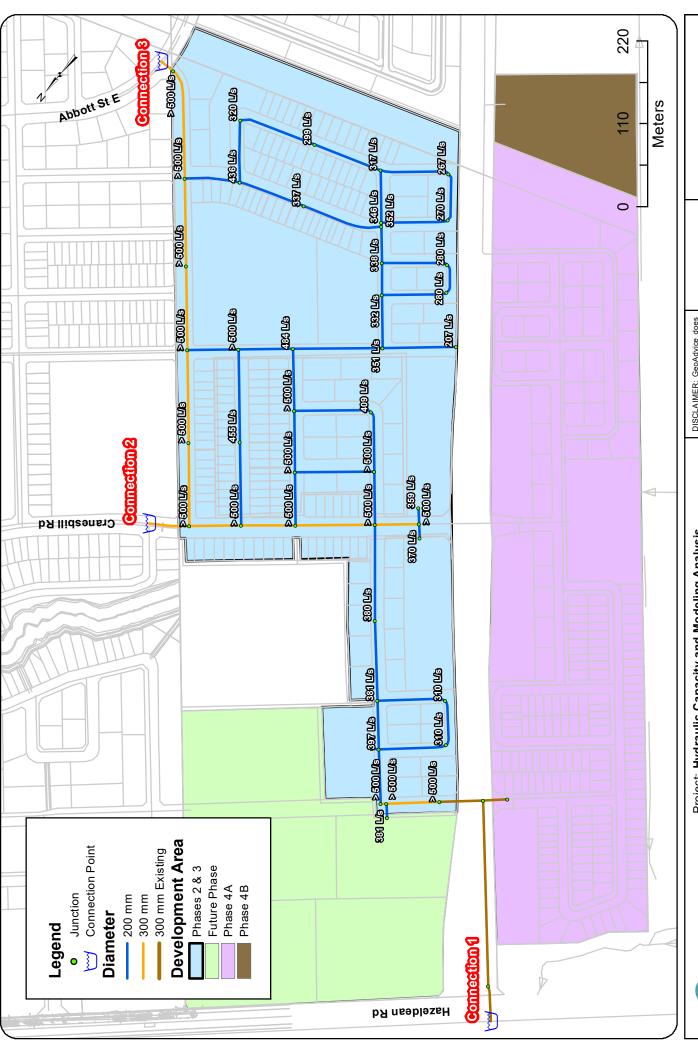
Figure D.1

Project: Hydraulic Capacity and Modeling Analysis Abbott's Run Phases 2 & 3 Client: David Schaeffer Engineering Ltd. Date: December 2024

Created by: JL Reviewed by: WdS

Modeling Results PHD Pressure

Figure D.1


GeoAdvice Engineering Inc.

Appendix E MDD+FF Model Results

Project ID: 2019-059-DSE Permit to Practice #: 1000623

Project: Hydraulic Capacity and Modeling Analysis Abbott's Run Phases 2 & 3 Client: David Schaeffer Engineering Ltd. Date: October 2025 Created by: JL Reviewed by: WdS

GeoAdvice Engineering Inc.

DISCLAIMER: GeoAdvice does not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of the user.

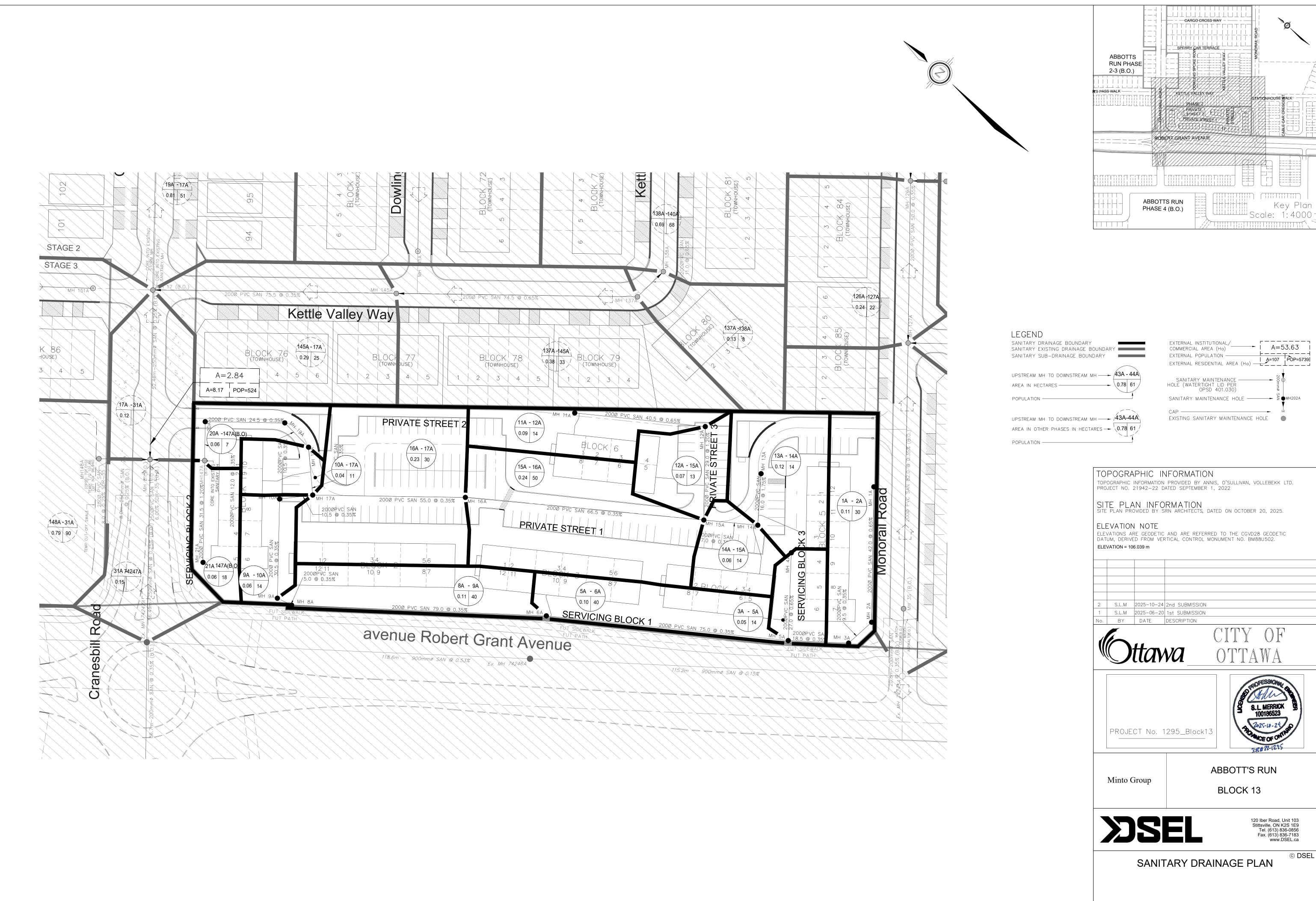

Available Fire Flow Modeling Results

Figure E.1

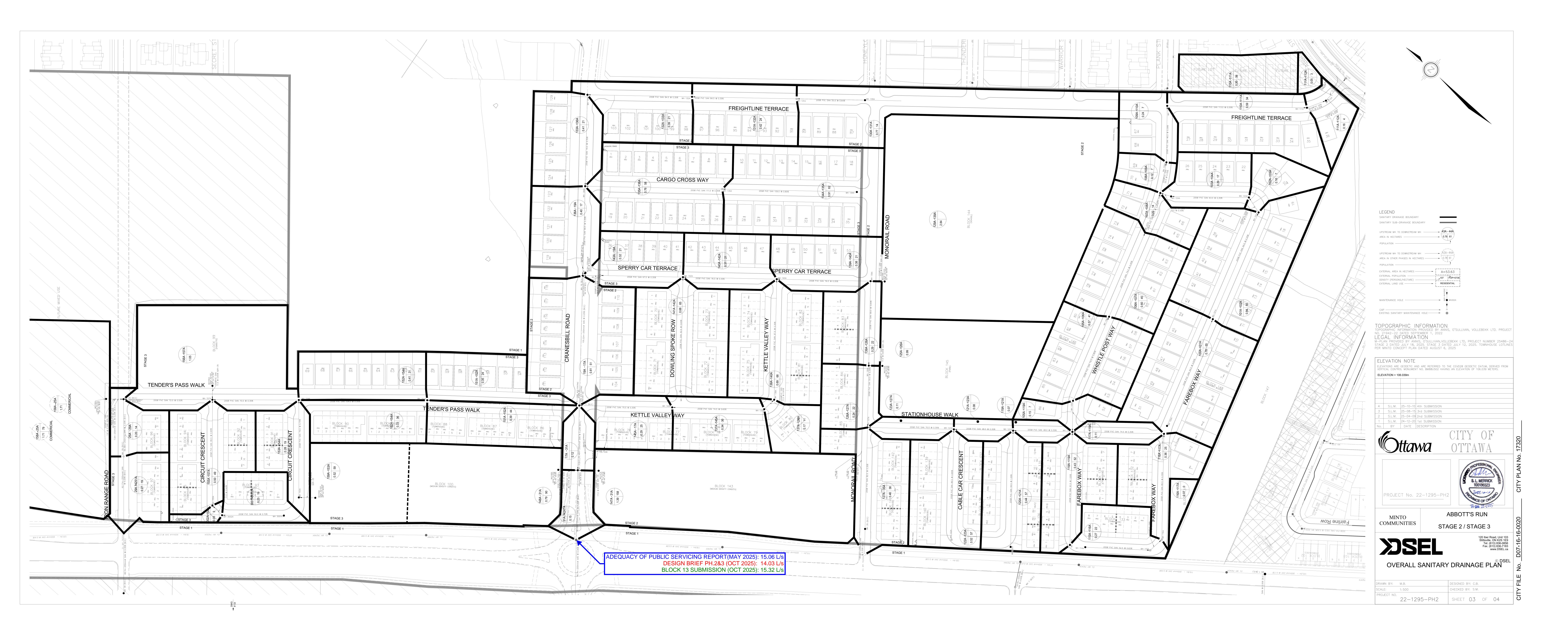
APPENDIX C

Sanitary Servicing

- ➤ Abbott's Run Block 13 Sanitary Drainage Plan (DSEL, 2025-10-17)
- ➤ Sanitary Sewer Design Sheets (DSEL, 2025-10-20)
- ➤ Abbot's Run Stage 2/3 Overall Sanitary Drainage Plan (DSEL, 2025-10-10)
- Sanitary Sewer Design Sheets from Abbott's Run Stage 2/3 Design Brief (DSEL, 2025-08-14)
- Adequacy of Public Servicing Report Sanitary Sewer Design Sheet (DSEL, 2025-05-09)

© DSEL

CHECKED BY: S.L.M. SHEET NO.


DRAWN BY: E.D. DESIGNED BY: E.D. CHECKED BY: S.L.M. SCALE: 1:500 DATE: JUNE 2025

SANITARY SEWER CALCULATION SHEET

Manning's n=0.013																								lluv	VU	
LOCATION	I		RE	ESIDENTIAL	AREA ANI	POPULATION	ON			СОММ	11	NSTIT	PARK		C+I+I		INFILTRATIO	N					PIPE			
STREET	FROM	TO	AREA	UNITS	POP.		LATIVE	PEAK	PEAK	AREA ACCI				CCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	
	M.H.	M.H.	(1)			AREA	POP.	FACT.	FLOW	ARE		AREA	1	AREA	FLOW	AREA	AREA	FLOW	FLOW	()	()	(0/)	(FULL)	Q act/Q cap	(FULL)	(ACT.)
	+	+	(ha)	+	-	(ha)		-	(l/s)	(ha) (ha	(ha)	(ha)	(ha) ((ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
SERVICING BLOCK 3				1								+								+						
	4A	5A				0.00				0.00)	0.00		0.00	0.00	0.00	0.00	0.00	0.00	24.5	200	0.65	26.44	0.00	0.84	0.05
To SERVICING BLOCK 1, Pipe 5A - 6	6A					0.00	0			0.00)	0.00	C	0.00			0.00									
SERVICING BLOCK 1	1.0	- 24	0.11	10	20	0.11	30	0.7	0.00	0.00	, —	0.00	 	0.00	0.00	0.11	0.11	0.04	0.20	40.0	200	0.05	20.44	0.01	0.04	0.20
	1A 2A	2A 3A	0.11	12	30	0.11	30	3.7	0.36	0.00		0.00		0.00	0.00	0.11	0.11	0.04	0.39	42.0 9.5	200	0.65 0.35	26.44 19.40	0.01	0.84	0.30
	3A	5A	0.05	6	14	0.16	44	3.7	0.52	0.00		0.00		0.00	0.00	0.05	0.16	0.04	0.57	18.5	200	0.35	19.40	0.02	0.62	0.27
Contribution From SERVICING BLOC						0.00	0			0.00		0.00		0.00		0.00	0.16			10.0						
	5A	6A	0.10	16	40	0.26	84	3.6	0.98	0.00		0.00		0.00	0.00	0.10	0.26	0.09	1.07	75.0	200	0.35	19.40	0.06	0.62	0.33
	6A	8A	2.11	1		0.26	84	3.6	0.98	0.00		0.00		0.00	0.00	0.00	0.26	0.09	1.07	79.0	200	0.35	19.40	0.06	0.62	0.33
	8A 9A	9A 10A	0.11	16	40 14	0.37	124 138	3.6 3.6	1.44	0.00		0.00		0.00	0.00	0.11	0.37	0.12 0.14	1.56 1.73	5.0 30.5	200	0.35 0.35	19.40 19.40	0.08	0.62	0.37 0.38
	10A	17A	0.06	4	11	0.43	149	3.6	1.72	0.00		0.00		0.00	0.00	0.06	0.43	0.14	1.73	10.5	200	0.35	19.40	0.09	0.62	0.36
To PRIVATE STREET 1, Pipe 17A - 1		17.5	0.04	+	- ' ' -	0.47	149	3.0	1.72	0.00		0.00		0.00	0.00	0.04	0.47	0.10	1.07	10.5	200	0.55	13.40	0.10	0.02	0.55
										1		1														
PRIVATE STREET 3																										
	11A	12A	0.09	6	14	0.09	14	3.7	0.17	0.00		0.00		0.00	0.00	0.09	0.09	0.03	0.20	40.5	200	0.65	26.44	0.01	0.84	0.24
To PRIVATE STREET 1, Pipe 15A - 1	12A	15A	0.07	4	13	0.16 0.16	27 27	3.7	0.32	0.00		0.00		0.00	0.00	0.07	0.16	0.05	0.38	29.0	200	1.20	35.93	0.01	1.14	0.37
10 PRIVATE STREET 1, Pipe 15A - 1	T T	+				0.16	21			0.00	' 	0.00		0.00			0.16									
PRIVATE STREET 1																										
	13A	14A	0.12	6	14	0.12	14	3.7	0.17	0.00)	0.00	C	0.00	0.00	0.12	0.12	0.04	0.21	16.0	200	1.75	43.39	0.00	1.38	0.35
	14A	15A	0.06	6	14	0.18	28	3.7	0.33	0.00		0.00		0.00	0.00	0.06	0.18	0.06	0.39	17.0	200	0.35	19.40	0.02	0.62	0.24
Contribution From PRIVATE STREET			0.04			0.16	27		4.00	0.00		0.00		0.00	0.00	0.16	0.34	0.40			200	0.05	10.10	0.07	0.00	0.00
	15A 16A	16A 17A	0.24	20 12	50 30	0.58 0.81	105 135	3.6 3.6	1.22 1.56	0.00		0.00		0.00	0.00	0.24	0.58	0.19 0.27	1.41 1.83	66.5 55.0	200 200	0.35 0.35	19.40 19.40	0.07 0.09	0.62	0.36 0.39
Contribution From SERVICING BLOC		17A	0.23	12	30	0.47	149	3.0	1.50	0.00		0.00		0.00	0.00	0.23	1.28	0.27	1.03	33.0	200	0.33	19.40	0.09	0.02	0.39
CONTRIBUTION SERVICING BESS	17A	18A				1.28	284	3.5	3.19	0.00		0.00		0.00	0.00	0.00	1.28	0.42	3.62	15.0	200	0.35	19.40	0.19	0.62	0.47
	18A	19A				1.28	284	3.5	3.19	0.00)	0.00	C	0.00	0.00	0.00	1.28	0.42	3.62	10.5	200	0.35	19.40	0.19	0.62	0.47
	19A	20A				1.28	284	3.5	3.19	0.00		0.00		0.00	0.00	0.00	1.28	0.42	3.62	24.5	200	0.35	19.40	0.19	0.62	0.47
To SERVICING BLOCK 2, Pipe 20A -	147A(B.O.)					1.28	284			0.00)	0.00	C	0.00			1.28									
SERVICING BLOCK 2	+	+		1								+								+						
SERVICING BECCK 2	21A	147A(B.O.)	0.06	8	18	0.06	18	3.7	0.22	0.00)	0.00		0.00	0.00	0.06	0.06	0.02	0.24	31.5	200	1.20	35.93	0.01	1.14	0.31
To EXISTING SERVICING NORTH, P	ipe 147A(B.O.)	- 31(B.O.)				0.06	18			0.00)	0.00	d	0.00			0.06									
Contribution From PRIVATE STREET	1, Pipe 19A - 2	20A				1.28	284			0.00		0.00		0.00		1.28	1.28									
T. EVICTIVIC DEDVICING NODELLE		147A(B.O.)	0.06	2	7	1.34	291	3.5	3.27	0.00		0.00		0.00	0.00	0.06	1.34	0.44	3.71	12.0	200	0.35	19.40	0.19	0.62	0.47
To EXISTING SERVICING NORTH, F	<u>'ipe 147A(B.O.)</u> T	- 31(B.O.)				1.34	291			0.00)	0.00	1	0.00			1.34			_						
EXISTING SERVICING NORTH		+										+								╁┪╏	lock 13	Total P	eak Flov	N		
Contribution From SERVICING BLOC	K 2, Pipe 20A -	147A(B.O.)				1.34	291			0.00		0.00		0.00		1.34	1.34									
Contribution From SERVICING BLOC	K 2, Pipe 21A -	147A(B.O.)				0.06	18			0.00		0.00		0.00		0.06	1.40		K							
		31(B.O.)				1.40	309	3.5	3.46			0.00			0.00	0.00		0.46	3.93	17.0	250	6.00	145.67	0.03	2.97	1.26
To CRANESBILL ROAD, Pipe 31A(B.	O.) - 74247(B.C	0.)				1.40	309			0.00)	0.00	1 0	0.00			1.40									
EXISTING CRANESBILL ROAD Contribution From CRANESBILL ROA	D Pine 17Δ/R	O) - 314/B O	1	+	 	8.17	524			0.00	-1004	2.84		0.00		11.01	11.01			1		+				
Contribution From BLOCK 143, Pipe 1				+	 	0.79	90					0.00-		0.00		0.16	11.17			+		+				
Contribution From EXSISTING SERVI			D.) - 31A(E	3.0.)		1.40	309			000	1/	000		0.00		1.40	12.57									
	31A(B.O.)		0.15		0	10.36	923	3.3	9.74	8 0.00	K-1/1/	2.84		0.00	1.38	0.15	12.72	4.20	15.32	56.5	250	0.25	29.73	0.52	0.61	0.61
)	ADAMETE	l DC					11 117	A STREET, SQUARE, SQUA	Designa	7				DDC IEC		_							
Park Flow =	9300	L/ha/da	0.10764		-KO					18 0	_ MER	RICK	u. 💥 🕽				PROJEC	1.			ΔF	BOTT'S F	RUN			
Average Daily Flow =	280	I/p/day	0.10704	1/3/1 Id		Industrial	Peak Fact	or = as pe	er MOE Gr	pla o	P MILLI	202	20 1			E.D.					AL	BLOCK 1				
Comm/Inst Flow =	28000	L/ha/da	0.3241	l/s/Ha		Extraneou			0.330	L/s/ha	UU 100	523 Checked	d:				LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509			Minimum	Velocity =		0.600	n/s		()										City of	Ottawa			
Max Res. Peak Factor =	4.00					Manning's		(Conc)	0.013	(Pvc)	25-10-	24	_/و			S.M.										
Commercial/Inst./Park Peak Factor =	1.50	1/- // 1-				Townhous			2.7	B		Dwg.	erence:	_			File Ref:				Date:	24 Oct 202	-		Sheet No.	1
Institutional =	0.32	I/s/Ha				Single ho	use coeff=		3.4	14	100	Sarray	Drainage Plan,	Dwgs.	No. 16		l				l	24 UCT 2025	9	<u> </u>	of	1
											CE OF					Luc	doted I	Dook El	ow Disc	haraa t	Dobo				120E Bloo	k-13 SAN vis

Updated Peak Flow Discharge to Robert Grand & Cranesbill Road Intersection

SANITARY SEWER CA Manning's n=0.013	ALCULA	TION SH	IEET						Block	13 Pop	ulatio	n and	l Peak	Flow	Estim	ate –									ttav	va	
LOCATION			RE	SIDENTIAL	AREA AN	D POPULATI	ON	1		CON	им	IN	STIT	PA	RK	C+I+I	1	INFIL TRATIO	N		I			PIPE			
STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	POP.	AREA (he)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU: AREA (ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DIST (m)	DIA (mm)	SLOPE	CAP. (FULL) (I/s)	RATIO Q act/Q cap	(FULL) (m/s)	/EL. (At
LOCK 143											` '			` '						*		<u> </u>					
D CRANESBILL ROAD, Pipe 31A - 74	147A 4247A	31A	1.39		158	1.39	158 158	3.5	1.82		0.00		0.00		0.00	0.00	1.39	1.39 1.39	0.46	2.27	16.0	250	6.00	145.67	0.02	2.97	1.0
CRANESBILL ROAD, Pipe 31A - 74	148A 4247A	31A	0.79		90	0.79 0.79	90 90	3.6	1.05		0.00		0.00		0.00	0.00	0.79	0.79 0.79	0.26	1.31	16.0	250	0.25	29.73	0.04	0.61	0.3
OWLING SPOKE ROW																											
SPERRY CAR TERRACE, Pipe 14:	141A 2A - 143A	142A	0.68	24	65	0.68 0.68	65 65	3.6	0.77		0.00		0.00		0.00	0.00	0.68	0.68 0.68	0.22	0.99	92.5	200	0.65	26.44	0.04	0.84	0.4
ETTLE VALLEY WAY	137A	138A	0.17	4	11	0.17	11	3.7	0.13		0.00		0.00		0.00	0.00	0.17	0.17	0.06	0.19	11.0	200	0.65	26.44	0.01	0.84	0.2
o SPERRY CAR TERRACE, Pipe 14	138A	140A	0.69	25	68	0.86	79 79	3.6	0.93		0.00		0.00		0.00	0.00	0.69	0.86 0.86	0.28	1.21	97.5	200	0.35	19.40	0.06	0.62	0.3
	137A	145A	0.34	11	30	0.34	30	3.7	0.36		0.00		0.00		0.00	0.00	0.34	0.34	0.11	0.47	74.5	200	0.65	26.44	0.02	0.84	0.3
o CRANESBILL ROAD, Pipe 17A - 3	145A 1A	17A	0.29	9	24	0.63 0.63	54 54	3.6	0.64		0.00		0.00		0.00	0.00	0.29	0.63 0.63	0.21	0.85	75.5	200	0.35	19.40	0.04	0.62	0.3
PERRY CAR TERRACE	129A	139A				0.00					0.00	2.84	2.84		0.00	1.38	2.84	2.84	0.94	2.32	11.5	200	0.35	19.40	0.12	0.62	0.4
Contribution From KETTLE VALLEY W			0.38	6	20	0.38 0.86	20 79	3.7	0.24		0.00		2.84 0.00		0.00	1.38	0.38 0.86	3.22 4.08	1.06	2.68	76.0	200	0.35	19.40	0.14	0.62	0.4
ontribution From DOWLING SPOKE	140A ROW, Pipe 14 142A	142A 1A - 142A 143A	0.31	6	20	1.55 0.68 2.23	119 65 184	3.6	2.10		0.00 0.00 0.00		2.84 0.00 2.84		0.00 0.00 0.00	1.38	0.31 0.68 0.00	4.39 5.07 5.07	1.45	4.21 5.16	76.0 67.0	200	0.35	19.40	0.22	0.62	0.4
o CRANESBILL ROAD, Pipe 19A - 1	143A	19A	0.32	6	20	2.55 2.55	204	3.5	2.32		0.00		2.84		0.00	1.38	0.32	5.39 5.39	1.78	5.48	14.0	200	0.35	19.40	0.28	0.62	0.5
ARGO CROSS WAY																											
CORANICORILL BOAR BY 400A	134A 135A	135A 136A	0.91 0.76	18 17	62 58	0.91 1.67	62 120	3.6 3.6	0.73 1.39		0.00		0.00		0.00	0.00	0.91 0.76	0.91 1.67	0.30 0.55	1.03 1.94	109.0 111.0	200 200	0.85 0.35	30.24 19.40	0.03 0.10	0.96 0.62	0.4
o CRANESBILL ROAD, Pipe 136A - 1	19A					1.67	120				0.00		0.00		0.00			1.67									\perp
Contribution From FREIGHTLINE TER	RACE, Pipe 1 133A	32A - 133A 136A	0.41	6	20	1.58 1.99	58 78	3.6	0.91		0.00		0.00		0.00	0.00	1.58 0.41	1.58 1.99	0.66	1.57	74.0	200	0.35	19.40	0.08	0.62	0.3
ontribution From CARGO CROSS W.	136A	19A	0.40	5	17	1.67 4.06	120 215	3.5	2.45		0.00		0.00		0.00	0.00	1.67 0.40	3.66 4.06	1.34	3.78	72.5	250	0.35	35.18	0.11	0.72	0.4
Contribution From SPERRY CAR TER Contribution From KETTLE VALLEY W	19A	17A	0.81	15	51	2.55 7.42 0.63	204 470 54	3.4	5.16		0.00 0.00 0.00		2.84 2.84 0.00		0.00 0.00 0.00	1.38	5.39 0.81 0.63	9.45 10.26 10.89	3.39	9.93	105.2	250	0.25	29.73	0.33	0.61	0.5
Contribution From RETTLE VALLET W	17A	31A	0.12		0	8.17 1.39	524 158	3.4	5.72		0.00		2.84 0.00		0.00	1.38	0.12	11.01 12.40	3.63	10.74	52.5	250	0.25	29.73	0.36	0.61	0.5
Contribution From BLOCK 143, Pipe 14		74247A	0.15		0	0.79	90	3.3	8.25		0.00		0.00		0.00	1.38	0.79	13.19	4.40	14.03	56.5	250	0.25	29.73	0.47	0.61	0.6
			DESIGN PA	DAMETE	DC						00	E33K						DDO IEC									
Park Flow = verage Daily Flow =	9300 280	L/ha/da I/p/day	0.10764		INO .	Industrial	Peak Fact	or = as r	er MOE G	ron 6		I/	776					PROJECT	1.	\	\						
omm/Inst Flow = dustrial Flow =	28000 35000	L/ha/da L/ha/da	0.3241 0.40509			Extraneou Minimum	ıs Flow = Velocity =		0.330 0.600	rap Vs/lys/		M	Offecka d	31				LOCATIO	N:		$\overline{}$		City of	Ottawa			
ax Res. Peak Factor = ommercial/Inst./Park Peak Factor = stitutional =	4.00 1.50 0.32	I/s/Ha				Manning's Townhous Single ho		(Conc)	0.013 2.7 3.4	3	\$.L	MER	RICK ef	eren :	an. Dwas	s. No.		File Ref:			+	Date:	14 Aug 202	5		Sheet No	_
										18	202	\$ 08.		ر و						Ited Pea esbill Ro			ert Gra				1

SANITARY SEWER C	ALCULA	ATION SH	HEET																								
Manning's n=0.013																											
LOCATION		_				D POPULATI			•		DMM		STIT	PA		C+I+I		INFILTRATIC					т	PIPE	•		
STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	POP.	AREA (ha)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DIST (m)	DIA (mm)	SLOPE (%)	CAP. (FULL) (I/s)	RATIO Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
CABLE CAR CRESCENT			(IIa)			(IIa)			(1/5)	(IIa)	(IIa)	(IIa)	(IIa)	(IIa)	(IIa)	(1/5)	(IIa)	(IIa)	(#5)	(#5)	(111)	(111111)	(70)	(1/5)		(111/5)	(111/5)
CABLE CAR CRESCENT	120A	121A	0.44	21	57	0.44	57	3.6	0.67		0.00	+	0.00		0.00	0.00	0.44	0.44	0.15	0.82	94.5	200	1.05	33.61	0.02	1.07	0.44
To STATIONHOUSE WALK, Pipe 12	1A - 123A					0.44	57				0.00	-	0.00		0.00			0.44									
To STATIONHOUSE WALK, Pipe 12	122A 3A - 127A	123A	0.52	21	57	0.52 0.52	57 57	3.6	0.67		0.00	\vdash	0.00		0.00	0.00	0.52	0.52 0.52	0.17	0.84	89.5	200	0.85	30.24	0.03	0.96	0.41
FAREBOX WAY																											
	118A	119A	0.43	19	51	0.43	51	3.7	0.60		0.00	<u> </u>	0.00		0.00	0.00	0.43	0.43	0.14	0.75	91.5	200	1.05	33.61	0.02	1.07	0.43
To STATIONHOUSE WALK, Pipe 11	9A - 121A					0.43	51				0.00	+	0.00		0.00			0.43								— —	
	114A	115A	0.27	8	22	0.27	22	3.7	0.26		0.00		0.00		0.00	0.00	0.27	0.27	0.09	0.35	52.5	200	0.65	26.44	0.01	0.84	0.29
	115A 116A	116A 117A	0.30	9	25	0.27 0.57	22 47	3.7	0.26 0.56		0.00	₩	0.00	0.07	0.00	0.00	0.00	0.27	0.09	0.35 0.78	13.0 85.5	200 200	0.35	19.40 19.40	0.02 0.04	0.62 0.62	0.23
To STATIONHOUSE WALK, Pipe 11		11/A	0.30	9	25	0.57	47	3.1	0.50		0.00	士一	0.00	0.07	0.07	0.01	0.37	0.64	0.21	0.70	00.0	200	0.35	19.40	0.04	0.02	0.30
												1															
STATIONHOUSE WALK Contribution From FAREBOX WAY. F	Dine 1164 - 11	7.0				0.57	47			1	0.00	—	0.00		0.07		0.64	0.64	1							<u> </u>	
CONTINUED FOR FAREBOX WAY, F	117A	119A	0.11		0	0.57	47	3.7	0.56		0.00	†	0.00		0.07	0.01	0.04	0.75	0.25	0.82	74.5	200	0.35	19.40	0.04	0.62	0.30
Contribution From WHISTLE POST V						0.15	7				0.00	1	0.00		0.00		0.15	0.90									
Contribution From FAREBOX WAY, F			0.07			0.43	51	0.0	4.00		0.00	 	0.00		0.00	0.04	0.43	1.33	0.40	4.00	40.0	000	0.05	10.10	0.00	0.00	0.07
Contribution From CABLE CAR CRES	119A SCENT, Pipe 1	121A 120A - 121A	0.07		0	1.33 0.44	105 57	3.6	1.22		0.00	+	0.00		0.07	0.01	0.07	1.40 1.84	0.46	1.69	48.0	200	0.35	19.40	0.09	0.62	0.37
	121A	123A	0.08		0	1.85	162	3.5	1.86		0.00		0.00		0.07	0.01	0.08	1.92	0.63	2.51	48.0	200	0.35	19.40	0.13	0.62	0.42
Contribution From CABLE CAR CRES			0.11			0.52	57	0.5	0.40		0.00	<u> </u>	0.00		0.00	0.04	0.52	2.44	0.04	0.04	70.0	200		10.10	0.47		0.40
To MONORAIL ROAD, Pipe 127A - 3	123A 55A	127A	0.11		0	2.48 2.48	219 219	3.5	2.49		0.00		0.00		0.07	0.01	0.11	2.55 2.55	0.84	3.34	70.0	200	0.35	19.40	0.17	0.62	0.46
BLOCK 145 (PARK 1)												+															
To MONORAIL ROAD, Pipe 126A - 1	125A	126A				0.00	0				0.00	 	0.00	0.99	0.99	0.16	0.99	0.99	0.33	0.49	11.0	200	0.65	26.44	0.02	0.84	0.32
16 MONORAIL ROAD, PIPE 126A - 1	21A					0.00	U				0.00	+	0.00		0.99			0.99								 	
MONORAIL ROAD												$ldsymbol{f L}$															
Contribution From BLOCK 145 (PARK	124A	126A	0.29	8	22	0.29	22	3.7	0.26		0.00	₩	0.00		0.00	0.00	0.29	0.29	0.10	0.36	68.0	200	0.65	26.44	0.01	0.84	0.29
CONTIDUCION FION BLOCK 145 (PARA	126A	127A	0.24	8	22	0.00	0 44	3.7	0.52		0.00	+	0.00		0.99	0.16	0.99	1.28 1.52	0.50	1.18	50.0	200	0.35	19.40	0.06	0.62	0.34
Contribution From STATIONHOUSE	WALK, Pipe 12	23A - 127A				2.48	219				0.00		0.00		0.07		2.55	4.07									
	127A 35A	35A 74245A	0.46	14	38	3.47 3.47	301 301	3.5	3.38		0.00	₩	0.00		1.06	0.17 0.17	0.46	4.53 4.53	1.49 1.49	5.04 5.04	82.0 20.8	200 200	0.35	19.40 19.40	0.26 0.26	0.62 0.62	0.52 0.52
	JOA	74245A				3.47	301	3.5	3.30		0.00	+	0.00		1.00	0.17	0.00	4.55	1.49	5.04	20.0	200	0.35	19.40	0.20	0.62	0.52
FAREBOX WAY																											
	100A 101A	101A 102A	0.78 0.84	16 16	54 54	0.78	54 108	3.6	0.64 1.26		0.00	∔	0.00		0.00	0.00	0.78	0.78	0.26	0.90 1.79	94.0 94.0	200 200	0.65 0.35	26.44 19.40	0.03	0.84	0.39
	101A 102A	102A 103A	0.04	2	7	1.62 1.80	115	3.6	1.33		0.00		0.00		0.00	0.00	0.84	1.62 1.80	0.53	1.79	14.5	200	0.35	19.40	0.09	0.62 0.62	0.39
	103A	104A	0.29	5	17	2.09	132	3.6	1.53	-	0.00	ESSM	00.00		0.00	0.00	0.29	2.09	0.69	2.22	63.0	200	0.35	19.40	0.11	0.62	0.41
To MUICTLE DOCT WAY Dis 400A	104A	108A				2.09	132	3.6	1.53		0.00	77	0.00	11	0.00	0.00	0.00	2.09	0.69	2.22	9.0	200	0.35	19.40	0.11	0.62	0.41
To WHISTLE POST WAY, Pipe 108A	A - 109A					2.09	132			18	00	The	i	41	0.00			2.09									
			DESIGN PA	DAMETE	DC					15	4	/	Docine					PROJEC									
Park Flow =	9300	L/ha/da	0.10764		.110					14	S.L	MER	RICK	a: B				PROJEC	1.								
Average Daily Flow =	280	l/p/day				Industrial	Peak Fact	or = as p	er MOE G	aph	10	01865	523														
Comm/Inst Flow =	28000	L/ha/da	0.3241			Extraneou			0.330	/s/ha		-	Спеске					LOCATIO	DN:				0::	0			
Industrial Flow = Max Res. Peak Factor =	35000 4.00	L/ha/da	0.40509	l/s/Ha		Minimum Manning's	,	(Conc)	0.600 0.013		202	508	15/	او									City of	Ottawa			
Commercial/Inst./Park Peak Factor =	1.50					Townhous	se coeff=	, ,	2.7	13	6	_	Jwg T	re ice:				File Ref:				Date:				Sheet No.	
Institutional =	0.32	l/s/Ha				Single ho	use coeff=		3.4	-	1	*		anage F	Plan, Dwg	s. No.							14 Aug 202	25		of	4

JOB 1 22.1295

Manning's n=0.013																											
LOCATION	N		RE	SIDENTIAL	AREA AN	D POPULATI	ON			CC	ММ	IN	ISTIT	PA	RK	C+I+I		INFILTRATIC	N					PIPE			
STREET	FROM	TO	AREA	UNITS	POP.	CUMU		PEAK	PEAK	AREA	ACCU.	AREA		AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	
	M.H.	M.H.	(ha)			AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (l/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
WHISTLE POST WAY																											
	105A	119A	0.15	2	7	0.15	7	3.7	0.08		0.00		0.00		0.00	0.00	0.15	0.15	0.05	0.13	25.0	200	0.65	26.44	0.01	0.84	0.22
To STATIONHOUSE WALK, Pipe 119	9A - 121A					0.15	7				0.00		0.00		0.00			0.15									
	105A	106A	0.57	12	41	0.57	41	3.7	0.49		0.00		0.00		0.00	0.00	0.57	0.57	0.19	0.68	74.0	200	0.85	30.24	0.02	0.96	0.39
	106A 107A	107A 108A	0.60	13 4	44 14	1.17 1.39	85 99	3.6	0.99 1.15		0.00		0.00		0.00	0.00	0.60	1.17 1.39	0.39 0.46	1.38 1.61	74.0 34.5	200	0.45	22.00 19.40	0.06 0.08	0.70	0.38
L Contribution From FAREBOX WAY, F			0.22	4	14	2.09	132	3.0	1.15		0.00		0.00		0.00	0.00	2.09	3.48	0.46	1.01	34.5	200	0.35	19.40	0.00	0.62	0.37
CONTIDUTOR FAREBOX WAT, I	108A	109A	0.12	2	7	3.60	238	3.5	2.70		0.00		0.00		0.00	0.00	0.12	3.60	1.19	3.88	25.5	200	0.35	19.40	0.20	0.62	0.48
	109A	110A	0.24	2	7	3.84	245	3.5	2.77		0.00		0.00		0.00	0.00	0.24	3.84	1.27	4.04	46.0	200	0.35	19.40	0.21	0.62	0.48
To FREIGHTLINE TERRACE, Pipe 1	10A - 111A	-				3.84	245				0.00		0.00		0.00			3.84									
FREIGHTLINE TERRACE																											
	130A	131A	0.77	4	14	0.77	14	3.7	0.17		0.00		0.00		0.00	0.00	0.77	0.77	0.25	0.42	55.5	200	0.65	26.44	0.02	0.84	0.30
	131A	132A	0.42	7	24	1.19	38	3.7	0.45		0.00		0.00		0.00	0.00	0.42	1.19	0.39	0.84	84.5	200	0.35	19.40	0.04	0.62	0.31
To CRANESBILL ROAD, Pipe 133A -	132A	133A	0.39	6	20	1.58 1.58	58 58	3.6	0.68		0.00		0.00		0.00	0.00	0.39	1.58 1.58	0.52	1.21	84.5	200	0.35	19.40	0.06	0.62	0.34
Contribution From WHISTLE POST V		1100				3.84	245				0.00		0.00		0.00		3.84	3.84									
CONTRIBUTION FROM WHISTEE FOST V	T Fipe 109A	I IIUA	0.30	14	38	4.14	283	<u> </u>			0.00		0.00		0.00		0.30	4.14									
	110A	111A	0.59	10	34	4.73	317	3.5	3.55		0.00		0.00		0.00	0.00	0.59	4.73	1.56	5.11	113.0	200	0.35	19.40	0.26	0.62	0.52
			0.05	1	3	4.78	320	0.0	0.00		0.00		0.00		0.00	0.00	0.05	4.78		0	110.0	200	0.00	10.10	0.20	0.02	0.02
	111A	112A	0.16	1	3	4.94	323	3.5	3.61		0.00		0.00		0.00	0.00	0.16	4.94	1.63	5.24	16.5	200	0.35	19.40	0.27	0.62	0.52
	112A	20A				4.94	323	3.5	3.61		0.00		0.00		0.00	0.00	0.00	4.94	1.63	5.24	24.0	200	0.50	23.19	0.23	0.74	0.59
BLOCK 100																											
	159A	153A	0.52		59	0.52	59	3.6	0.70		0.00		0.00		0.00	0.00	0.52	0.52	0.17	0.87	13.5	200	0.65	26.44	0.03	0.84	0.38
To CIRCUIT CRESCENT, Pipe 153A	- 154A					0.52	59	<u> </u>			0.00		0.00		0.00			0.52									
CIRCUIT CRESCENT	+		1					<u> </u>																			
CIRCOLL CRECOENT	156A	157A				0.00					0.00		0.00	1.05	1.05	0.17	1.05	1.05	0.35	0.52	11.5	200	0.65	26.44	0.02	0.84	0.33
To TENDER'S PASS WALK, Pipe 15		10171				0.00	0				0.00		0.00	1.00	1.05	0		1.05	0.00	0.02		200	0.00	20	0.02	0.01	0.00
Contribution From BLOCK 100, Pipe						0.52	59				0.00		0.00		0.00		0.52	0.52									
	153A	154A	0.28	7	19	0.80	78	3.6	0.91		0.00		0.00		0.00	0.00	0.28	0.80	0.26	1.18	79.0	200	0.75	28.40	0.04	0.90	0.44
To TENDER'S PASS WALK, Pipe 15	4A - 157A					0.80	78				0.00		0.00		0.00			0.80									
	3001A	3002A	0.23	7	19	0.23	19	3.7	0.23		0.00		0.00		0.00	0.00	0.23	0.23	0.08	0.30	50.0	200	0.70	27.44	0.01	0.87	0.28
	3002A 155A	155A 157A	0.03	1 18	3 49	0.26 0.76	22 71	3.7	0.26		0.00		0.00		0.00	0.00	0.03	0.26 0.76	0.09 0.25	0.35 1.08	11.0 85.5	200	0.60 0.95	25.41 31.97	0.01	0.81 1.02	0.28
To TENDER'S PASS WALK, Pipe 15		157A	0.50	10	49	0.76	71	3.0	0.03		0.00		0.00		0.00	0.00	0.50	0.76	0.23	1.00	65.5	200	0.95	31.91	0.03	1.02	0.47
TO TENDER OF AGO WALK, Tipe 10	17A - 25A					0.70					0.00		0.00		0.00			0.70									
TENDER'S PASS WALK																											
	158A	25A	1.71		79	1.71	79	3.6	0.93	1.71	1.71		0.00		0.00	0.83	3.42	3.42	1.13	2.89	14.0	250	0.29	31.75	0.09	0.65	0.40
To IRON RANGE ROAD, Pipe 25A - 2	29A					1.71	79				1.71		0.00		0.00			3.42									
				ļ								-004															
	4544	4504	0.35	7	24	0.35	24	0.0	0.00		0.00	COOM	00.00	\	0.00	0.00	0.35	0.35	0.04	4.04	404.5	000	0.05	00.44	0.04	0.04	0.44
	151A	152A	0.39	16	44	0.74	68	3.6	0.80		0.00	17	0.00	1	0.00	0.00	0.39	0.74	0.24	1.04	104.5	200	0.65	26.44	0.04	0.84	0.41
 	152A	154A	0.33	13 9	36 31	1.07	104 135	3.6	1.56	18	0.00		1000	15	0.00	0.00	0.33	1.07	0.49	2.05	104.0	200	0.35	19.40	0.11	0.62	0.40
 	IJZM	1344	0.41	9	31	1.40	133	5.0	1.50	12	0.00	N	0.00	71	0.00	0.00	0.41	1.40	0.48	۷.00	104.0	200	0.33	13.40	0.11	0.02	0.40
<u> </u>			DESIGN PA	RAMETE	RS				9	I X	0 1	MED	Drive	i: 14 1			1	PROJEC	T:		1		1	1	1		
Park Flow =	9300	L/ha/da	0.10764							1 3	3. L	MICH	RICK	3	1												
Average Daily Flow =	280	l/p/day				Industrial	Peak Fact	or = as p	er MOE G	aph	10	0186	523		ľ												
Comm/Inst Flow =	28000	L/ha/da	0.3241	l/s/Ha		Extraneou	s Flow =		0.330	/s/ha			Спеске		,			LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509	l/s/Ha		Minimum '	,		0.600	r\s	202	COS.	-15/	0/									City of	Ottawa			
Max Res. Peak Factor =	4.00					Manning's		(Conc)	0.013	(PC)	0.013	700	1	8/											1		
Commercial/Inst./Park Peak Factor =	1.50	Ua/Ha				Townhous			2.7	1.	4	_	-wg	ere ice:	Nan D	. No		File Ref:				Date:	14 Aug 202	E		Sheet No.	
Institutional =	0.32	l/s/Ha				Single hou	ise coett=		3.4		A - COM	PM	a wry	∍a ınage P	Plan, Dwgs	s. INO.		1					14 Aug 202	Ü	ĺ	of	4

lanning's n=0.013																										
LOCATIO						POPULATION				COI		INSTIT		PARK	C+I+I		INFILTRATIO						PIPE			
STREET	FROM M.H.	то	AREA	UNITS	POP.		ATIVE POP.	PEAK FACT.	PEAK	AREA	ACCU.	AREA AC				TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	(FULL)	/EL.
	M.H.	M.H.	(ha)			AREA (ha)	POP.	FACT.	FLOW (l/s)	(ha)	AREA (ha)		EA a) (ha	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(m/s)	(AC (m/
ntribution From CIRCUIT CRESCE	NT D: 450/	1544				0.00	70				0.00		00	0.00		0.80	2.28									1
1tribution From CIRCUIT CRESCE	154A	157A	+	-		0.80 2.28	78 213	3.5	2.42		0.00		00	0.00		0.00	2.28	0.75	3.18	70.0	200	0.35	19.40	0.16	0.62	0.
ntribution From CIRCUIT CRESCE						0.76	71				0.00		00	0.00		0.76	3.04									
ntribution From CIRCUIT CRESCE						0.00	0				0.00		00	1.05		1.05	4.09									
IRON RANGE ROAD, Pipe 25A -	157A	25A				3.04	284 284	3.5	3.19		0.00		00	1.05 1.05		0.00	4.09 4.09	1.35	4.71	72.0	200	0.55	24.32	0.19	0.77	0
IKON RANGE ROAD, PIPE 25A -	29A					3.04	204				0.00	0.	00	1.05			4.09									+
ON RANGE ROAD																										+
ntribution From TENDER'S PASS						3.04	284				0.00		00	1.05	_	4.09	4.09									
ntribution From TENDER'S PASS			0.00		44	1.71	79	0.4	4.40		1.71		00	0.00		3.42	7.51	0.54	7.70	40.4	050	0.05	00.70	0.00	0.04	<u> </u>
	25A 29A	29A 74251A	0.20	5 7	14 19	4.95 5.22	377 396	3.4	4.19 4.39		1.71		00	1.05 1.05		0.20	7.71 7.98	2.54	7.73 8.02	46.4 62.2	250 250	0.25 0.25	29.73 29.73	0.26 0.27	0.61	0.
	29/	74231A	0.21	- '	19	5.22	390	3.4	4.55		1.71	0.	00	1.03	1.00	0.21	7.30	2.00	0.02	02.2	230	0.23	29.13	0.21	0.01	┰
																										╁
																										+
																										I
																										+-
																										+
																										1
				+										+		1										+-
																										1
																1										+
																										_
															_											4
			-																							+
																										_
			-																							+
																										+
																										+
		-	-	-								-		_	+	-										+
																										土
																										+
											25	F8940A														
											W.						DD 0 150									
< Flow =	0200		0.10764		KS					16		1/2	au C				PROJEC	1:								
rage Daily Flow =	9300 280	L/ha/da l/p/day	0.10704	1/5/ma		Industrial F	Peak Fact	or = as n	er MOF G			IN	74	1												
nm/Inst Flow =	28000	L/ha/da	0.3241	l/s/Ha		Extraneou		. ασμ	0.330	Li yy a '	~	Che	cked:				LOCATIO	N:								
ıstrial Flow =	35000	L/ha/da	0.40509			Minimum \	/elocity =		0.600	m/S (PVC)	5. L	MERRI	K" g									City of	Ottawa			
Res. Peak Factor =	4.00					Manning's		(Conc)	0.013	(PVC)	0.010	0186523					E11. D (D. L.			ı	01	_
mmercial/Inst./Park Peak Factor = itutional =	1.50 0.32	l/s/Ha				Townhous Single hou			2.7 3.4	1		San	erend				File Ref:				Date:	14 Aug 202	_		Sheet No	

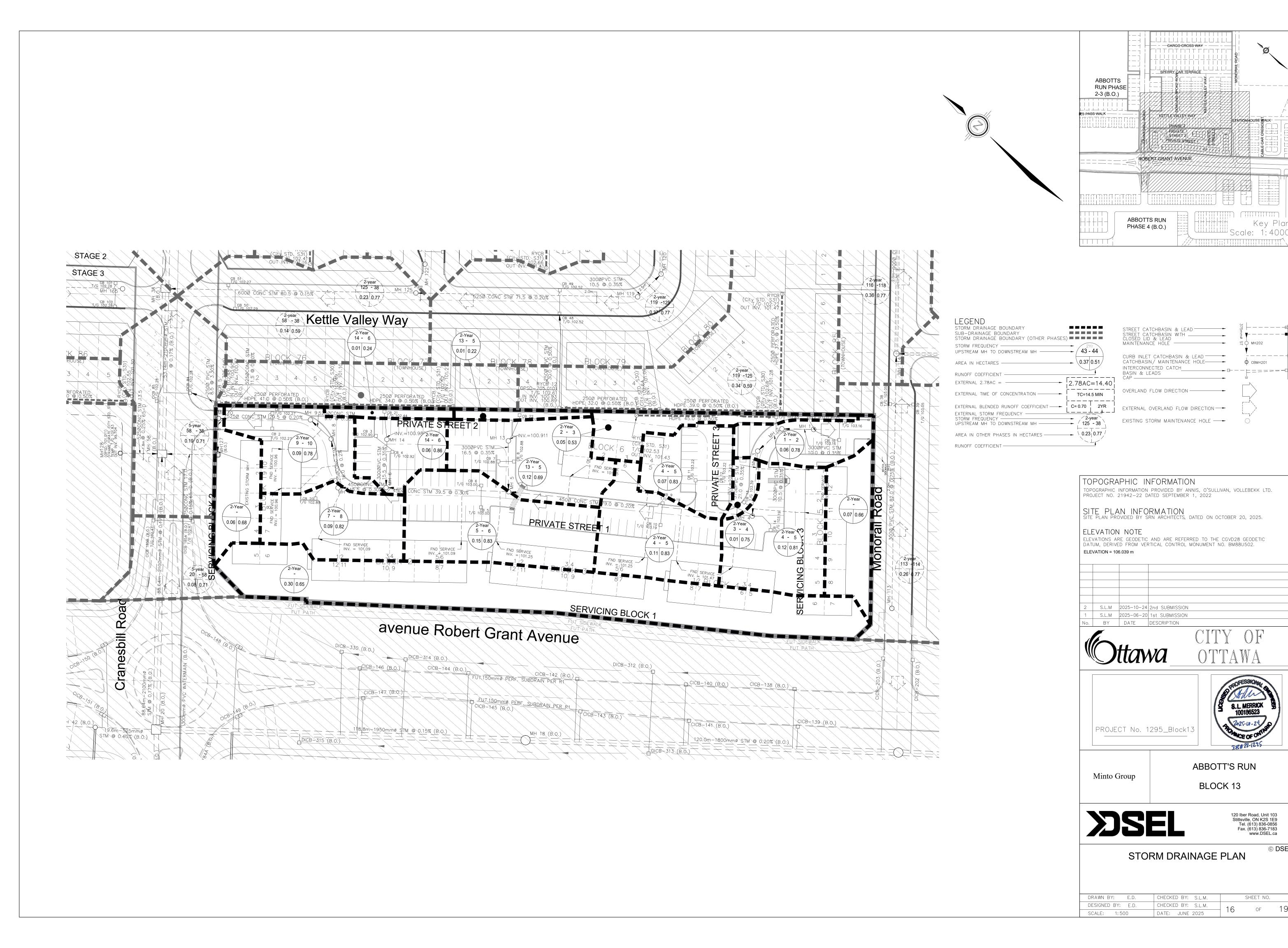
SANITARY SEWER CALCULATION SHEET Manning's n=0.013 RESIDENTIAL AREA AND POPULATION LOCATION COMM INFILTRATION INSTIT PARK C+I+I STREET CLIMULATIVE ACCII PEAK ACCU M.H. M.H. AREA POP. FACT. FLOW AREA AREA AREA FLOW AREA AREA FLOW FLOW (FULL) (FULL) Q act/Q cap (ha) (ha) (l/s) (%) (ha) (ha) (l/s) (ha) (ha) (ha) (ha) (ha) (ha) (l/s) (l/s) (m/s) (m/s) (mm) (l/s) BLOCK 143 243 243 146A 148A 2.29 3.5 2.75 2.29 3.51 2.29 243 0.00 0.00 2.29 0.76 0.65 26.44 0.13 0.84 0.00 To IRON RANGE ROAD, Pipe 148A - 149A 0.00 0.00 2.21 234 2.21 234 2.39 0.00 0.00 4.60 4.60 147A 148A 2.39 110 4.60 344 3.4 3.84 0.00 1.16 2.39 6.99 2.31 7.31 18.0 200 0.70 27.44 0.27 0.87 0.74 2 39 0.00 To IRON RANGE ROAD, Pipe 148A - 149A 344 4.60 6.99 BLOCK 147 128A 74253 2.27 109 109 0.00 0.00 0.00 2.27 0.75 2.02 51.0 200 0.65 26.44 0.08 0.84 0.49 2.27 3.6 1.27 0.00 2.27 To ROBERT GRANT, Pipe 74253 - 74254 109 2.27 BLOCK 142 117A 118A 0.00 0.00 0.00 0.82 0.82 0.13 0.82 0.82 0.27 0.40 17.5 200 5.10 74.07 0.01 0.61 2.36 To TENDER'S PASS & KETTLE VALLEY, Pipe 118A - 120A 0.00 0 0.00 CIRCUIT CRESCENT 0.07 0.00 0.00 0.00 0.07 0.07 0.07 119A 120A 0.54 44 0.61 50 3.7 0.59 0.00 0.00 0.00 0.54 0.61 0.20 0.79 84.5 200 0.65 26.44 0.03 0.84 0.37 0.00 To TENDER'S PASS & KETTLE VALLEY, Pipe 120A - SA25 0.61 50 0.00 0.00 0.00 0.61 113A 114A 0.08 0.08 3.7 0.08 0.00 0.00 0.00 0.00 0.08 0.08 0.03 0.11 54.0 26.44 0.00 0.84 0.20 0.18 114A 115A 0.11 10 3.7 0.12 0.03 0.00 0.00 0.00 0.03 0.11 0.04 0.16 11.0 200 0.35 19 40 0.01 0.62 115A 116A 0.34 0.45 3.7 0.45 0.00 0.00 0.00 0.34 0.45 0.15 0.60 84.5 200 0.35 19.40 0.03 0.62 0.28 To TENDER'S PASS & KETTLE VALLEY, Pipe 116A - 118A 0.45 38 0.00 0.00 0.00 0.45 IRON RANGE ROAD 145A 148A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.0 200 1.70 42.76 0.00 Contribution From BLOCK 143, Pipe 146A - 148A 243 0.00 0.00 0.00 2.29 2.29 2.29 Contribution From BLOCK 143, Pipe 147A - 148A 4.60 344 2.39 0.00 0.00 6.99 9.28 148A 149A 7.43 587 3.3 6.37 2.39 0.00 0.00 0.54 9.82 3.24 10.77 56.0 200 0.80 29.34 0.37 0.93 0.86 Contribution From TENDER'S PASS & KETTLE VALLEY, Pipe 120A - SA25 Contribution From TENDER'S PASS & KETTLE VALLEY, Pipe 122A - SA25 0.82 3.67 0.00 1.71 0.00 3.67 3.42 0.00 7.09 1 71 SA25 SA29 17 332 3.4 3.71 1.71 0.00 0.82 0.96 0.21 7.30 7.08 45.0 250 0.25 29.73 0.24 0.50 0.21 4.77 2.41 0.61 74251 SA29 0.25 20 5.02 352 3.4 3.92 1.71 0.00 0.82 0.96 0.25 7.55 2.49 7.38 63.5 250 0.25 29.73 0.25 0.61 0.50 To ROBERT GRANT, Pipe 74251 - 7425 5.02 1.71 0.00 0.82 STREET No. 21 Contribution From STREET No.20- 22, Pipe 101A - 102A 0.87 70 0.00 0.00 0.00 0.87 0.87 Contribution From STREET No.20- 22, Pipe 98A - 102A 2.03 165 2.03 2.90 0.00 0.00 0.00 102A 0.23 3.13 254 0.00 0.00 0.23 3.13 1.03 3.90 19.40 Contribution From STREET No.20-22, Pipe 106A - 107A 136 0.00 0.00 0.00 1.69 1.69 4.82 107A SA39 0.31 5.13 415 3.4 4.59 0.00 0.00 0.00 0.00 0.31 5.13 1.69 6.28 83.0 250 0.35 35.18 0.18 0.72 0.54 5.33 431 0.00 0.00 5.33 0.20 16 0.00 0.20 SA39 74251 1.04 83 6.37 514 3.4 5.62 0.00 0.00 0.00 0.00 6.37 7.72 250 0.35 35.18 0.22 0.72 0.57 To ROBERT GRANT, Pipe 74251 - 74252 6.37 514 0.00 0.00 0.00 6.37 DESIGN PARAMETERS ROJECT: 9300 Park Flow = L/ha/da 0.10764 280 Industrial Peak Factor = as per MOE Graph Average Daily Flow = I/p/dav Comm/Inst Flow = 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION City of Ottawa Industrial Flow = 35000 L/ha/da 0.40509 I/s/Ha Minimum Velocity = 0.600 m/s 4.00 (Conc) 0.013 (Pvc) 0.013 Max Res Peak Factor = Manning's n = Commercial/Inst./Park Peak Factor = 1.50 Townhouse coeff= 2.7 Dwg. Reference: File Ref: nstitutional = 0.32 l/s/Ha Single house coeff= 3.4 Sanitary Drainage Plan, Dwgs. No. 09 May 2025

SANITAF Manning's n=0	RY SEWER CA	LCULA ⁻	TION SH	EET										riginal w Estir		ation											
	LOCATION			RE	SIDENTIAL	AREA AND	POPULATION	ON			СОММ	IN	ISTIT	PAI	RK	C+I+I		INFILTRATIO	ON					PIPE			
	STREET	FROM	ТО	AREA	UNITS	POP.	CUMU		PEAK	PEAK	AREA ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO		EL.
		M.H.	M.H.	(ha)			AREA (ha)	POP.	FACT.	FLOW (l/s)	(ha) (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
				(Ha)			(IIa)			(1/3)	(na) (na)	(Ha)	(IIa)	(Ha)	(Ha)	(1/3)	(Ha)	(Ha)	(/3)	(1/3)	(111)	(11111)	(70)	(1/3)		(111/3)	(111/3)
BLOCK 13																											
T. ODAINODII	. D: 0404 74047	67A	SA31	1.31		105	1.31	105	3.6	1.22	0.00		0.00		0.00	0.00	1.31	1.31	0.43	1.65	19.5	200	6.00	80.34	0.02	2.56	0.99
To CRAINSBIL	L, Pipe SA31 - 74247						1,31	105			0.00		0.00		0.00			1.31									
		68A	SA31	1.39		111	1.39	111	3.6	1.29	0.00		0.00		0.00	0.00	1.39	1.39	0.46	1.75	19.5	200	0.65	26.44	0.07	0.84	0.47
To CRAINSBIL	L, Pipe SA31 - 74247						1.39	111			0.00		0.00		0.00			1.39									
DOWLING SPO	OKE DOM																						1				
DOWLING SPO	JNE ROW	61A	62A	0.68		54	0.68	54	3.6	0.64	0.00		0.00		0.00	0.00	0.68	0.68	0.22	0.86	90.5	200	0.65	26.44	0.03	0.84	0.38
To SPERRY C	AR TERRACE, Pipe 62A		02/1	0.00		01	0.68	54	0.0	0.01	0.00		0.00		0.00	0.00	0.00	0.68	U.ZZ	0.00	00.0	200	0.00	20.11	0.00	0.01	0.00
	,																										
TENDER'S PA	SS & KETTLE VALLEY	1224	CAGE	1 71	-	02	1 71	02	2.6	0.07	171 174	<u> </u>	0.00		0.00	0.00	2.40	2.40	1 12	2.02	17.0	250	0.24	24.60	0.00	0.74	0.42
TO IRON RANG	JE ROAD, Pipe SA25 - S	122A A29	SA25	1.71		83	1.71	83 83	3.6	0.97	1.71 1.71 1.71		0.00		0.00	0.83	3.42	3.42	1.13	2.93	17.0	250	0.34	34.68	0.08	0.71	0.43
10 11 (0) (1)	32 ((6)(15), (1)po 6)(120 G	7120						- 00			1		0.00		0.00			0.12									
		58A	60A	0.78		62	0.78	62	3.6	0.73	0.00		0.00		0.00	0.00	0.78	0.78	0.26	0.99	97.5	200	0.65	26.44	0.04	0.84	0.40
To SPERRY C	AR TERRACE, Pipe 60A	- 62A	1	ļ			0.78	62			0.00	ļ	0.00		0.00		ļ	0.78	ļ		1						
		64A	65A	0.39		32	0.39	32	3.7	0.38	0.00		0.00		0.00	0.00	0.39	0.39	0.13	0.51	68.0	200	0.65	26.44	0.02	0.84	0.33
		65A	SA17	0.31		25	0.70	57	3.6	0.67	0.00		0.00		0.00	0.00	0.31	0.70	0.23	0.90	81.5	200	0.35	19.40	0.05	0.62	0.31
To CRAINSBIL	L, Pipe SA17 - SA31						0.70	57			0.00		0.00		0.00			0.70									
		111A	112A	0.86		69	0.86	69	0.0	0.81	0.00		0.00		0.00	0.00	0.86	0.00	0.00	1.09	107.0	200	0.65	26.44	0.04	0.84	0.44
		111A 112A	116A	0.86		53	1.52	122	3.6 3.6	1.41	0.00		0.00		0.00	0.00	0.86	0.86 1.52	0.28	1.09	92.0	200	0.65	19.40	0.04	0.62	0.41
Contribution Fr	om CIRCUIT CRESCEN		- 116A	0.00		- 00	0.45	38	0.0		0.00		0.00		0.00	0.00	0.45	1.97	0.00	1.02	02.0	200	0.00	10.10	0.10	0.02	0.00
		116A	118A	0.11		9	2.08	169	3.5	1.94	0.00		0.00		0.00	0.00	0.11	2.08	0.69	2.62	62.5	200	0.35	19.40	0.14	0.62	0.43
Contribution Fr	om BLOCK 142, Pipe 11		1004				0.00	0	0.5	101	0.00		0.00		0.82	0.40	0.82	2.90	0.00	0.00		000	0.05	10.10	0.40	0.00	0.45
Contribution En	om CIRCUIT CRESCEN	118A	120A				2.08 0.61	169 50	3.5	1.94	0.00		0.00		0.82	0.13	0.00	2.90 3.51	0.96	3.03	7.5	200	0.35	19.40	0.16	0.62	0.45
Continuation	DITI CIRCOTT CRESCEN	120A	SA25	0.16		13	2.85	232	3.5	2.63	0.00	1	0.00		0.82	0.13	0.16	3.67	1.21	3.97	72.0	200	0.35	19.40	0.20	0.62	0.48
To IRON RANG	GE ROAD, Pipe SA25 - S						2.85	232			0.00		0.00		0.82			3.67									
SPERRY CAR	TERRACE	59A	60A	0.35		28	0.35	28	3.7	0.33	0.00		0.00		0.00	0.00	0.35	0.35	0.12	0.45	64.0	200	0.65	26.44	0.02	0.84	0.32
Contribution Fr	om TENDER'S PASS & F					20	0.33	62	3.1	0.33	0.00		0.00		0.00	0.00	0.33	1.13	0.12	0.45	04.0	200	0.05	20.44	0.02	0.04	0.32
		60A	62A	0.35		28	1.48	118	3.6	1.37	0.00		0.00		0.00	0.00	0.35	1.48	0.49	1.86	76.0	200	0.35	19.40	0.10	0.62	0.39
Contribution From	om DOWLING SPOKE R						0.68	54			0.00		0.00		0.00		0.68	2.16									
To CRAINCRII	L, Pipe SA19 - SA17	62A	SA19	0.32	1	26	2.48	198 198	3.5	2.26	0.00		0.00		0.00	0.00	0.32	2.48	0.82	3.08	81.0	200	0.35	19.40	0.16	0.62	0.45
TO CIVALINOBIL	L, I IPE ON 18 - ON II			1	 		2.40	190			0.00		0.00		0.00		1	2.40	1		+		+				
CARGO CROS	S WAY																										
		55A	56A	0.93		74	0.93	74	3.6	0.87	0.00	2.83			0.00	1.38	3.76	3.76	1.24	3.49	118.0	200	0.65	26.44	0.13	0.84	0.58
To CRAINCRI	L. Pipe 343A - SA19	56A	343A	0.73	1	58	1.66	132	3.6	1.53	0.00		2.83		0.00	1.38	0.73	4.49	1.48	4.38	115.0	200	0.35	19.40	0.23	0.62	0.50
10 CKAINSBIL	L, FIPE 343A - 3A 19			1	 		1.66	132			0.00		2.83		0.00		1	4.49	1		+		+				
CRAINSBILL																					<u> </u>						
Contribution Front	om FREIGHTLINE TERR			0 :-			1.36	109			0.00		0.00		0.00		1.36	1.36	0.55	0		0		46 ::	0 :-	0	
		52A	343A	0.45		36	1.81	145	3.6	1.67	0.00		0.00	 	0.00	0.00	0.45	1.81	0.60	2.27	74.0	200	0.35	19.40	0.12	0.62	0.41
				DESIGN PA	RAMETER	RS		I	I		<u> </u>	ı	Designe	d:	l	<u> </u>	I	PROJEC	<u>.</u> Т:]	1	<u> </u>	1	I	1	1	1
Park Flow =		9300	L/ha/da	0.10764									1														
Average Daily Flo		280	l/p/day						or = as p	er MOE Gr																	
Comm/Inst Flow	=	28000	L/ha/da	0.3241	l/s/Ha		Extraneou				L/s/ha		Checked	l:				LOCATIO	DN:				0::	044			
Industrial Flow = Max Res. Peak F	actor =	35000 4.00	L/ha/da	0.40509	I/s/Ha		Minimum \ Manning's		(Conc)	0.600 0.013													City of	Ottawa			
	/Park Peak Factor =	1.50					Townhous		(JIIO)	2.7	(1 40) 0.013		Dwg. Re	ference:				File Ref:				Date:				Sheet No.	. 2
Institutional =		0.32	l/s/Ha				Single hou			3.4				Drainage Pla	an, Dwgs.	No.							09 May 202	5	1	of	

SANITAI Manning's n=			TION SH														T		Crane	ated Pea esbill Ro							
	LOCA		T ===	_			POPULATIO		DEAL	DE 417	COMM		STIT	PAI		C+I+I		INFILTRATIO		TOTAL	D. 07		0,005	PIPE	D4710		_,
	STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	POP.	AREA (ha)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA ACCU. AREA (ha) (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DI ≸ T (m)	DIA (mm)	SLOPE (%)	CAP. (FULL) (I/s)	RATIO Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
Caratrila di ara Fa	CARCO CROS	C MAY Din - FCA	2424				4.00	400	1		0.00		0.00		0.00		4.40	0.00			+/-						
Contribution Fr	rom CARGO CROS I	343A	- 343A SA19	0.40		32	1.66 3.87	132 309	3.5	3.46	0.00		2.83		0.00	1.38	4.49 0.40	6.30	2.21	7.05	72.0	250	0.25	29.73	0.24	0.61	0.50
Contribution Fr	rom SPERRY CAR			0.40		32	2.48	198	3.3	3.40	0.00		0.00		0.00	1.50	2.48	9.18	2.21	7.00	12.0	230	0.23	23.13	0.24	0.01	0.50
		SA19	SA17	0.80		64	7.15	571	3.4	6.21	0.00		2.83		0.00	1.38	0.80	9.98	3.29	10.88	106.0	250	0.25	29.73	0.37	0.61	0.56
Contribution Fr	om TENDER'S PAS	SS & KETTLE VAL	LEY, Pipe 65A	- SA17			0.70	57			0.00		0.00		0.00		0.70	10.68									
		SA17	SA31	0.12		10	7.97	638	3.3	6.89	0.00		2.83		0.00	1.38	0.12	10.80	3.56	11.83	52.5	250	0.25	29.73	0.40	0.61	0.57
	rom BLOCK 13, Pip						1.31	105			0.00		0.00		0.00		1.31	12.11		>					ļ		
Contribution Fr	rom BLOCK 13, Pip		74047	0.45		40	1.39	111	2.2	0.40	0.00		0.00 2.83		0.00	4.00	1.39 0.15	13.50	4.50	15.06	FC F	250	0.05	20.72	0.54	0.04	0.04
To ROBERT G	I GRANT, Pipe 74247	SA31 - 74248	74247	0.15		12	10.82	866 866	3.3	9.18	0.00		2.83		0.00	1.38	0.15	13.65 13.65	4.50	15.06	56.5	250	0.25	29.73	0.51	0.61	0.61
TOTOBERT	TOTAL TIPE 14241	- 14240					10.02	000			0.00		2.00		0.00			10.00									
BLOCK 5																											
		87A	SA-37	1.12		90	1.12	90	3.6	1.05	0.00		0.00		0.00	0.00	1.12	1.12	0.37	1.42	16.0	200	6.00	80.34	0.02	2.56	0.96
To STREET N	o. 17, Pipe SA-37 -	74247	1		1		1.12	90	1		0.00	 	0.00		0.00		<u> </u>	1.12					1				
		88A	SA-37	0.95		76	0.95	76	3.6	0.89	0.00	<u> </u>	0.00		0.00	0.00	0.95	0.95	0.31	1.20	13.0	200	0.65	26.44	0.05	0.84	0.43
To STREET N	o. 17. Pipe SA-37 -		3A-31	0.93		70	0.95	76	3.0	0.09	0.00		0.00		0.00	0.00	0.95	0.95	0.31	1.20	13.0	200	0.03	20.44	0.03	0.04	0.43
TOOTICETTI	0. 17,1 Ipc 0A-07 -	14241					0.55	70			0.00		0.00		0.00			0.55									
STREET No.2	0- 22																										
		101A	102A	0.87		70	0.87	70	3.6	0.82	0.00		0.00		0.00	0.00	0.87	0.87	0.29	1.11	126.5	200	0.65	26.44	0.04	0.84	0.41
To STREET N	o. 21, Pipe 102A - 1	107A					0.87	70			0.00		0.00		0.00			0.87									
		4044	4044	0.04		47	0.04	47	0.7	0.00	0.00	ļ	0.00		0.00	0.00	0.04	0.04	0.07	0.07	40.0	000	0.05	00.44	0.04	0.04	0.07
		101A 104A	104A 105A	0.21		17 21	0.21	17 38	3.7	0.20	0.00	<u> </u>	0.00		0.00	0.00	0.21	0.21	0.07	0.27 0.61	12.0 55.0	200	0.65 0.35	26.44 19.40	0.01	0.84	0.27 0.28
		105A	106A	0.26		21	0.47	59	3.6	0.43	0.00		0.00		0.00	0.00	0.26	0.47	0.10	0.01	14.0	200	0.35	19.40	0.05	0.62	0.20
		106A	107A	0.96		77	1.69	136	3.6	1.57	0.00		0.00		0.00	0.00	0.96	1.69	0.56	2.13	143.0	200	0.35	19.40	0.11	0.62	0.40
To STREET N	o. 21, Pipe 107A - S						1.69	136			0.00		0.00		0.00			1.69									
		97A	98A	0.51		41	0.51	41	3.7	0.49	0.00		0.00		0.00	0.00	0.51	0.51	0.17	0.66	45.0	200	0.65	26.44	0.02	0.84	0.35
Contribution Fr	rom STREET No. 19		4004	0.40		00	1.04	85	0.5	4.00	0.00		0.00		0.00	0.00	1.04	1.55	0.07	0.50	70.5	000	0.05	40.40	0.40	0.00	0.40
To STREET N	l o. 21, Pipe 102A - 1	98A	102A	0.48		39	2.03	165 165	3.5	1.89	0.00		0.00		0.00	0.00	0.48	2.03	0.67	2.56	73.5	200	0.35	19.40	0.13	0.62	0.43
	on STREET No. 19						0.06	5			0.00		0.00		0.00		0.06	0.06							+		
CONTIDUCTORY	I I I I I I I I I I I I I I I I I I I	75A	76A	0.22		18	0.28	23	3.7	0.28	0.00		0.00		0.00	0.00	0.22	0.28	0.09	0.37	33.5	200	0.35	19.40	0.02	0.62	0.24
		76A	77A	0.63		50	0.91	73	3.6	0.86	0.00		0.00		0.00	0.00	0.63	0.91	0.30	1.16	89.5	200	0.35	19.40	0.06	0.62	0.34
		77A	78A	0.06		5	0.97	78	3.6	0.91	0.00		0.00		0.00	0.00	0.06	0.97	0.32	1.23	11.0	200	0.35	19.40	0.06	0.62	0.34
		78A	79A	0.10		8	1.07	86	3.6	1.01	0.00		0.00		0.00	0.00	0.10	1.07	0.35	1.36	63.0	200	0.35	19.40	0.07	0.62	0.35
To STREET N	o. 16-18, Pipe 79A -	- 86A					1.07	86			0.00	ļ	0.00		0.00			1.07									
STREET No. 1	9		+		+ +		1		1	 		}	 		1		1		1		1		1	1	+	 	
CINCLI NO. I		73A	74A	0.16	1	13	0.16	13	3.7	0.16	0.00	1	0.00		0.00	0.00	0.16	0.16	0.05	0.21	36.0	200	0.95	31.97	0.01	1.02	0.28
To STREET N	o. 16-18, Pipe 74A -		1				0.16	13	1		0.00		0.00		0.00		1	0.16					15				
	•																										
		73A	75A	0.06		5	0.06	5	3.8	0.06	0.00		0.00		0.00	0.00	0.06	0.06	0.02	0.08	35.0	200	0.65	26.44	0.00	0.84	0.19
To STREET N	o.20- 22, Pipe 75A -	- 76A	-				0.06	5	ļ		0.00	 	0.00		0.00			0.06							 		
		70A	71A	0.10	+ +	8	0.10	8	3.7	0.10	0.00	}	0.00		0.00	0.00	0.10	0.10	0.03	0.13	26.5	200	0.65	26.44	0.00	0.84	0.22
-		70A 71A	71A 72A	0.10	1	3	0.10	11	3.7	0.10	0.00	1	0.00		0.00	0.00	0.10	0.10	0.03	0.13	11.5	200	0.05	19.40	0.00	0.62	0.22
		1 , ",		3.00	† †		5.10		J.,	5.10	0.50	<u> </u>	0.00		0.00	5.00	0.00	0.10	0.01	5.10			0.00		0.01	0.02	0.10
				DESIGN PA	ARAMETER	RS							Designe	d:				PROJECT	Г:								
Park Flow =		9300	L/ha/da	0.10764	l/s/Ha																						
Average Daily F		280	l/p/day						or = as p	er MOE Gr	•																
Comm/Inst Flow		28000	L/ha/da	0.3241	l/s/Ha		Extraneou				L/s/ha		Checked	d:				LOCATIO	N:				.				
Industrial Flow =		35000	L/ha/da	0.40509	l/s/Ha		Minimum \	,		0.600													City of	Ottawa			
Max Res. Peak	Factor = /Park Peak Factor =	4.00					Manning's Townhous		(Conc)	0.013	(Pvc) 0.013		Dwg Ba	foronco				File Ref:				Data:			1	Shoot M-	2
Institutional =	r aik reak racior=	1.50 0.32	l/s/Ha				Single hou			2.7 3.4			Dwg. Re	erence: Drainage Pla	an. Dwas	No.		rile Kei:				Date:	09 May 202	5		Sheet No. of	
การแนนเปลี่สี -		0.32	1/3/1 Ia				Single 110t	19C (()CII=		3.4			oanilary l	oramage Pla	an, Dwys.	INU.		<u> </u>				l	บฮ เพลิy 202	J	1	OI	

SANITARY SEWER	CALCULA	TION SH	IEET																								
Manning's n=0.013	ATION		Di	ESIDENTIAL	ADEA ANI	D POPULATIO	ON	_		1 00	OMM	T IN	ISTIT	I DA	ARK	C+I+I	_	INFILTRATIO	INI					PIPE			
STREET	FROM	TO	AREA	UNITS	POP.		ILATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	EI .
SIREEI	M.H.	M.H.		UNITS	POP.	AREA	POP.	FACT.	FLOW		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
			(ha)			(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
T. OTDEET No. 40 40 Big. 744	72A	74A	0.29		24	0.42	35	3.7	0.42		0.00		0.00		0.00	0.00	0.29	0.42	0.14	0.56	81.5	200	0.35	19.40	0.03	0.62	0.27
To STREET No. 16-18, Pipe 74A	- 151A					0.42	35				0.00		0.00		0.00			0.42									
	70A	94A	0.13		11	0.13	11	3.7	0.13		0.00		0.00		0.00	0.00	0.13	0.13	0.04	0.18	32.0	200	0.65	26.44	0.01	0.84	0.23
	94A	95A	0.07		6	0.20	17	3.7	0.20		0.00		0.00		0.00	0.00	0.07	0.20	0.07	0.27	11.0	200	0.35	19.40	0.01	0.62	0.21
	95A 96A	96A 98A	0.48		39 29	0.68 1.04	56 85	3.6	0.66	1	0.00		0.00		0.00	0.00	0.48	0.68 1.04	0.22	0.89 1.34	75.5 77.0	200	0.35	19.40 19.40	0.05 0.07	0.62	0.31
To STREET No.20- 22, Pipe 98A -		30A	0.30		29	1.04	85	3.0	0.99	1	0.00		0.00		0.00	0.00	0.30	1.04	0.34	1.34	77.0	200	0.33	19.40	0.07	0.02	0.55
STREET No. 17	C 40 Dim - 704 00			1		2.02	220				0.00		0.00		4.00		4.45	4.45									
Contribution From STREET No. 16 Contribution From STREET No. 16						2.83 1.96	229 159				0.00	1	0.00		1.62 0.00		4.45 1.96	4.45 6.41									
CONTRACTOR OF TABLE 1 140. 10	86A	SA-37	0.07		6	4.86	394	3.4	4.37		0.00		0.00		1.62	0.26	0.07	6.48	2.14	6.77	45.0	200	0.35	19.40	0.35	0.62	0.56
Contribution From BLOCK 5, Pipe						1.12	90				0.00		0.00		0.00		1.12	7.60									
Contribution From BLOCK 5, Pipe		74047	0.40		10	0.95	76	0.4	0.00		0.00		0.00		0.00	0.00	0.95	8.55	0.00	0.44	00.5	200	0.05	10.10	0.40	0.00	0.04
To ROBERT GRANT, Pipe 74247	SA-37	74247	0.19		16	7.12 7.12	576 576	3.4	6.26	-	0.00	1	0.00		1.62 1.62	0.26	0.19	8.74 8.74	2.88	9.41	86.5	200	0.35	19.40	0.48	0.62	0.61
	- 14240					7.12	370				0.00		0.00		1.02			0.74									
CABLE CAR CRESCENT																											
	004	004	0.05		4	0.05	4	0.7	0.00		0.00		0.00		0.00	0.00	0.05	0.05	0.44	0.50	00.0	000	0.05	00.44	0.00	0.04	0.00
To STATIONHOUSE WALK, Pipe	38A	39A	0.36		29	0.41	33 33	3.7	0.39		0.00		0.00		0.00	0.00	0.36	0.41	0.14	0.53	82.0	200	0.65	26.44	0.02	0.84	0.33
TO STATION TOUGH WALK, TIPE	100/1-40/1					0.41	- 55				0.00		0.00		0.00			0.41									
	40A	41A	0.04		4	0.04	4	3.8	0.05		0.00		0.00		0.00	0.00	0.04	0.04	0.01	0.06	32.0	200	0.65	26.44	0.00	0.84	0.17
	41A	42A	0.07		6	0.11	10	3.7	0.12		0.00		0.00		0.00	0.00	0.07	0.11	0.04	0.16	11.0	200	0.35	19.40	0.01	0.62	0.18
To STATIONHOUSE WALK, Pipe	42A 43A - 45A	43A	0.43		35	0.54 0.54	45 45	3.7	0.53		0.00		0.00		0.00	0.00	0.43	0.54 0.54	0.18	0.71	81.5	200	0.35	19.40	0.04	0.62	0.29
STATIONHOUSE WALK																		-									
Contribution From FAREBOX WAY	Y & WHISTI E POS	ST Pine 150A	- 29A			0.20	17				0.00		0.00		0.00		0.20	0.20									
Contribution From FAREBOX WA						0.42	35				0.00		0.00		0.00		0.42	0.62									
	29A	36A	0.12		11	0.74	63	3.6	0.74		0.00		0.00		0.00	0.00	0.12	0.74	0.24	0.99	72.5	200	0.35	19.40	0.05	0.62	0.32
Contribution From FAREBOX WA						0.69	59	0.0	4.40		0.00		0.00		0.00	0.00	0.69	1.43	0.50	4.00	40.0	000	0.05	40.40	0.40	0.00	0.40
Contribution From CABLE CAR CI	36A RESCENT Pine 38	39A	0.08		- /	1.51 0.41	129 33	3.6	1.49		0.00		0.00		0.00	0.00	0.08	1.51 1.92	0.50	1.99	48.0	200	0.35	19.40	0.10	0.62	0.40
CONTRIBUTION CABLE GAR OF	39A	43A	0.08		7	2.00	169	3.5	1.94		0.00		0.00	0.99	0.99	0.16	1.07	2.99	0.99	3.08	48.0	200	0.35	19.40	0.16	0.62	0.45
Contribution From CABLE CAR CI	RESCENT, Pipe 42	2A - 43A				0.54	45				0.00		0.00		0.00		0.54	3.53									
T. MONORAN BOAR B: 454	43A	45A	0.11		9	2.65	223	3.5	2.53		0.00		0.00		0.99	0.16	0.11	3.64	1.20	3.89	70.0	200	0.35	19.40	0.20	0.62	0.48
To MONORAIL ROAD, Pipe 45A -	- SA35					2.65	223				0.00		0.00		0.99			3.64									
MONORAIL ROAD																											
	44A	45A	0.53		43	0.53	43	3.7	0.51		0.00		0.00		0.00	0.00	0.53	0.53	0.17	0.69	118.5	200	0.65	26.44	0.03	0.84	0.36
Contribution From STATIONHOUS			0.45			2.65	223	0.5	0.00		0.00		0.00		0.99	0.40	3.64	4.17	4.50	5.07	70.5	000	0.04	10.10	0.07	0.04	0.54
	45A SA35	SA35 74245	0.45		36	3.63	302 302	3.5	3.39	1	0.00		0.00		0.99	0.16	0.45	4.62 4.62	1.52 1.52	5.07 5.07	73.5 29.5	200	0.34 0.25	19.12 16.40	0.27 0.31	0.61	0.51 0.46
To ROBERT GRANT, Pipe 74245		74243	+			3.63	302	3.3	3.33	1	0.00	1	0.00		0.99	0.10	0.00	4.62	1.02	3.07	23.3	200	0.23	10.40	0.51	0.52	0.40
, ,																											
	1	1	DESIGN PA	ARAMETE	RS	1	<u> </u>	1		1	1	1	Designe	d:	1		1	PROJEC	<u>I</u> Г:	1	<u>I</u>	<u> </u>	1	l	1	1	1
Park Flow =	9300	L/ha/da	0.10764										1														
Average Daily Flow =	280	l/p/day	0.2244	1/0/11=				or = as p	er MOE G				Cheekee	4.				LOCATIO	MI.								
Comm/Inst Flow = Industrial Flow =	28000 35000	L/ha/da L/ha/da	0.3241 0.40509	l/s/Ha l/s/Ha		Extraneou Minimum			0.330	L/s/ha			Checked	1.				LOCATIO	vin:				City of	Ottawa			
Max Res. Peak Factor =	4.00	L/fla/da	0.40509	i/5/∏ä		Manning's	,	(Conc)		m/s (Pvc)	0.013												City Of	Citawa			
Commercial/Inst./Park Peak Factor =	nmercial/Inst./Park Peak Factor = 1.50							(230)	2.7	, ,	2.0.0		Dwg. Re					File Ref:				Date:				Sheet No.	. 4
Institutional =	0.32	l/s/Ha				Single hou	use coeff=		3.4				Sanitary [Drainage P	lan, Dwgs.	No.							09 May 202	5		of	7

SANITARY SEWER CALCULATION SHEET Manning's n=0.013 RESIDENTIAL AREA AND POPULATION COMM INFILTRATION LOCATION INSTIT PARK C+I+I PIPE STREET FROM TO CUMULATIVE PEAK ACCU AREA ACCU. ACCU PEAK ACCU TOTAL CAP RATIO FACT. FI OW ARFA ARFA ARFA FLOW ARFA ARFA FLOW M.H M.H. ARFA POP. FLOW (FULL) Q act/Q cap (FULL) (ACT.) (ha) (ha) (l/s) (ha) (ha) (ha) (ha) (ha) (l/s) (ha) (ha) (l/s) (l/s) (mm) (%) (l/s) (m/s) (m/s) STREET No. 13 8A 9A 0.21 17 17 3.7 0.20 0.00 0.00 0.00 0.21 0.21 0.07 0.27 49.5 200 0.65 26.44 0.01 0.84 0.27 0.21 0.00 9A 10A 0.03 20 3.7 0.24 0.00 0.00 0.00 0.03 0.32 11.5 200 0.35 0.02 0.62 0.22 3 0.24 0.00 0.24 0.08 19.40 10A 12A 0.05 4 0.29 24 3.7 0.29 0.00 0.00 0.00 0.00 0.05 0.29 0.10 0.38 38.0 200 0.35 19.40 0.02 0.62 0.24 Contribution From STREET No.14, Pipe 11A - 12A 0.30 24 0.00 0.00 0.00 0.30 0.59 13A 0.05 0.64 52 0.00 0.00 0.00 0.05 0.64 0.21 0.83 39.0 0.35 19.40 0.04 0.62 0.31 12A 3.6 0.61 0.00 200 13A 14A 0.06 0.70 57 3.6 0.67 0.00 0.00 0.00 0.00 0.06 0.70 0.23 0.90 10.5 200 0.35 19.40 0.05 0.62 0.31 20A 30 0.00 0.37 200 14A 0.37 1.07 87 3.6 1.02 0.00 0.00 0.00 1.07 0.35 1.37 71.5 0.35 19.40 0.07 0.62 0.35 To STREET No. 16-18, Pipe 20A - 25A 1.07 87 0.00 0.00 0.00 1.07 STREET No.14 11A 12A 0.30 24 0.30 24 3.7 0.29 0.00 0.00 0.00 0.00 0.30 0.30 0.10 0.39 57.0 200 0.65 26.44 0.01 0.84 To STREET No. 13, Pipe 12A - 13A 0.30 24 0.00 0.00 0.30 18A 0.11 3.7 0.11 0.00 0.00 0.00 0.00 0.11 0.04 0.15 56.0 200 1.90 1.44 0.32 19A 9 0.11 9 0.11 45.21 0.00 To STREET No. 16-18, Pipe 19A - 20A 0.11 9 0.00 0.00 0.00 0.11 STREET No. 16-18 83A 84A 0.40 32 0.40 32 3.7 0.38 0.00 0.00 0.00 0.00 0.40 0.40 0.13 0.51 55.5 200 1.10 34.40 0.01 1.09 0.40 Contribution From STREET No. 12, Pipe 82A - 84A 1.03 1.03 1.43 84 0.00 0.00 0.00 1.59 84A 85A 0.16 13 129 3.6 1.49 0.00 0.00 0.00 0.00 0.16 1.59 0.52 2.02 35.5 200 0.35 19.40 0.10 0.62 0.40 86A 0.37 30 1.96 159 3.5 1.83 0.00 0.00 0.00 0.00 0.37 1.96 0.65 2.47 85.5 200 0.35 19.40 0.13 0.62 0.42 To STREET No. 17, Pipe 86A - SA-37 1.96 159 0.00 0.00 0.00 1.96 Contribution From STREET No. 19, Pipe 72A - 74A 0.42 0.42 35 0.00 0.00 0.00 0.42 Contribution From STREET No. 19, Pipe 73A - 74A 0.16 13 0.00 0.00 0.00 0.16 0.58 151A 0.84 1.42 115 3.6 0.00 0.00 0.00 0.00 0.84 1.42 0.47 1.80 65.5 200 0.35 19.40 0.09 0.62 151A 79A 1.42 115 3.6 1.33 0.00 0.00 0.00 0.00 0.00 1.42 0.47 1.80 65.5 200 0.35 19.40 0.09 0.62 0.39 Contribution From STREET No.20- 22, Pipe 78A - 79A 1.07 86 0.00 0.00 0.00 1.07 2.49 0.34 28 2.83 229 3.5 2.60 0.00 1.47 4.33 85.5 200 0.35 19.40 0.22 0.50 86A 0.00 1.62 1.62 0.26 1.96 4.45 0.62 To STREET No. 17, Pipe 86A - SA-37 2.83 229 0.00 0.00 1.62 4.45 17A 19A 0.18 15 0.18 15 3.7 0.18 0.00 0.00 0.00 0.00 0.18 0.18 0.06 0.24 46.0 200 0.65 26.44 0.01 0.84 0.26 Contribution From STREET No.14, Pipe 18A - 19A 0.11 0.00 0.00 0.00 0.11 0.29 20A 0.17 14 0.60 0.29 19A 0.46 38 3.7 0.45 0.00 0.00 0.00 0.00 0.17 0.46 0.15 46.0 200 0.40 20.74 0.03 0.66 Contribution From STREET No. 13, Pipe 14A - 20A 0.00 1.07 87 0.00 0.00 1.07 1.53 25A 0.27 22 1.80 147 0.00 0.00 0.00 0.27 0.59 2.29 0.35 19.40 0.12 0.62 0.41 20A 3.6 1.69 0.00 1.80 70.0 200 To STREET No. 12. Pipe 25A - SA33 1.80 147 0.00 0.00 0.00 1.80 STREET No. 12 200 200 80A 81A 0.58 47 0.58 47 3.7 0.56 0.00 0.00 0.00 0.00 0.58 0.58 0.19 72.5 0.80 29.34 0.03 0.93 81A 82A 0.19 16 0.77 63 3.6 0.74 0.00 0.00 0.00 0.00 0.19 0.77 0.25 1.00 11.0 1.65 42.13 0.02 1.34 0.55 21 0.00 200 2.20 82A 84A 0.26 1.03 84 3.6 0.98 0.00 0.00 0.00 0.26 1.03 0.34 1.32 63.0 48.65 0.03 1.55 0.66 To STREET No. 16-18, Pipe 84A - 85A 1.03 84 0.00 0.00 0.00 1.03 21A 22A 0.18 15 3.7 0.18 0.00 0.00 0.00 0.00 0.06 0.24 23.0 200 29.34 0.01 0.93 0.27 0.18 0.18 22A 23A 0.82 66 1.00 81 3.6 0.95 0.00 0.00 0.00 0.00 0.82 1.00 0.33 1.28 108.5 200 0.80 29.34 0.04 0.93 0.46 0.37 23A 24A 0.15 12 1.15 93 3.6 1.09 0.00 0.00 0.00 0.00 0.15 1.15 0.38 1.46 11.0 200 0.40 20.74 0.07 0.66 1.48 24A 25A 0.33 27 120 3.6 1.39 0.00 0.00 0.00 0.00 0.33 1.48 0.49 1.88 63.0 200 1.75 43.39 0.04 1.38 0.68 DESIGN PARAMETERS ROJECT Designed: 9300 0.10764 Park Flow = I /ha/da I/s/Ha Average Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph Comm/Inst Flow = 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked LOCATION: 35000 City of Ottawa Industrial Flow = L/ha/da 0.40509 l/s/Ha Minimum Velocity = 0.600 m/s Max Res Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013 1.50 Commercial/Inst./Park Peak Factor = Townhouse coeff= 2.7 Dwa. Reference: File Ref: Sheet No. 0.32 Institutional = l/s/Ha Single house coeff= 3.4 Sanitary Drainage Plan, Dwgs. No. 09 May 2025


SANITARY SEWER CA	ALCULAT	TION SH	IEET																							
Manning's n=0.013			l R	ESIDENTIAL A	ARFA AND	POPIII ATIO)N			СОММ	T IN	NSTIT	РΔ	RK	C+I+I	ı	INFILTRATIO)N					PIPE			
STREET	FROM	TO	AREA	UNITS	POP.	CUMUL		PEAK	PEAK	AREA ACCU	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	EL.
	M.H.	M.H.	(ha)			AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha) (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
Contribution From STREET No. 16-18,	Pipe 20A - 25A	À				1.80	147			0.00		0.00		0.00		1.80	3.28									
	25A	SA33	0.35		28	3.63	295	3.5	3.31	0.00		0.00	0.71	0.71	0.11	1.06	4.34	1.43	4.86	72.0	200	0.35	19.40	0.25	0.62	0.51
	SA33 SA07	SA07 74244				3.63 3.63	295 295	3.5	3.31	0.00	-	0.00		0.71	0.11	0.00	4.34	1.43	4.86 4.86	29.0 21.0	200	0.30 0.50	17.96 23.19	0.27 0.21	0.57 0.74	0.49 0.58
To ROBERT GRANT, Pipe 74244 - 742		74244				3.63	295	3.5	3.31	0.00		0.00		0.71	0.11	0.00	4.34	1.43	4.00	21.0	200	0.50	23.19	0.21	0.74	0.56
BLOCK 9				+ +							-			-								+				
BEOOKS	4A	SA01	2.38		191	2.38	191	3.5	2.18	0.00		0.00		0.00	0.00	2.38	2.38	0.79	2.97	49.0	250	0.35	35.18	0.08	0.72	0.43
To ROBERT GRANT, Pipe SA01 - 742	42					2.38	191			0.00		0.00		0.00			2.38				C -				no of Di	a als 40
ROBERT GRANT																				Ro	oert Gr	ant Cap	acity Do	wnstrea	m of Bio	OCK 13
	74004	74000	0.00		0	0.00	0			0.00	_	0.00		0.00	0.00	0.00	0.00	0.00	493.40	100.5	000	0.05	4050.00	0.05	2.07	0.55
	74231 74232	74232 74241	1	+ +		0.00	0		 	0.00		0.00		0.00	0.00	0.00	0.00	0.00	493.40 493.40	136.5 119.5	900	0.65 0.15	1952.92 1194.58		3.07 1.88	2.55 1.78
	74241	SA01				0.00	0			0.00		0.00		0.00	0.00	0.00	0.00	0.00	493.40	88.5	900	0.15	1194.53		1.88	1.78
Contribution From BLOCK 9, Pipe 4A -	SA01					2.38	191			0.00		0.00		0.00		2.38	2.38									
	SA01	74242				2.38	191	3.5	2.18	0.00		0.00		0.00	0.00	0.00	2.38	0.79	496.37	31.5	900	0.20	1303.00		2.05	1.90
	74242	74243 74244				2.38	191	3.5	2.18	0.00		0.00		0.00	0.00	0.00	2.38	0.79	496.37	120.0	900	0.15	1194.53		1.88	1.78
Contribution From STREET No. 12, Pig	74243		+	+ +		2.38 3.63	191 295	3.5	2.18	0.00	-	0.00		0.00	0.00	0.00 4.34	2.38 6.72	0.79	496.37	47.5	900	0.25	1398.56	0.35	2.20	2.01
Contribution Fine Tree 12, 11	74244	74245				6.01	486	3.4	5.33	0.00		0.00		0.71	0.11	0.00	6.72	2.22	501.06	126.5	900	0.10	1065.87	0.47	1.68	1.65
Contribution From MONORAIL ROAD,	Pipe SA35 - 74	245				3.63	302			0.00		0.00		0.99		4.62	11.34									
	74245	74246				9.64	788	3.3	8.41	0.00		0.00		1.70	0.27	0.00	11.34	3.74	505.82	115.0	900	0.10		0.47	1.68	1.65
Contribution From CRAINSBILL, Pipe S	74246	74247	_	1		9.64	788	3.3	8.41	0.00	_	0.00		1.70 0.00	0.27	0.00	11.34	3.74	505.82	118.5	900	0.10	1065.87	0.47	1.68	1.65
Contribution From CRAINSBILL, Pipe S		17		1		10.82 7.12	866 576			0.00		2.83 0.00		1.62		13.65 8.74	24.99 33.73					 			_	1
Contribution Fine Tree Tree Tree	74247	74248				27.58	2230	3.0	21.96	0.00		2.83		3.32	1.91	0.00	33.73	11.13	528.40	121.5	900		1194.53		1.88	1.82
	74248	74249				27.58	2230	3.0	21.96	0.00		2.83		3.32	1.91	0.00	33.73	11.13	528.40	78.5	900	0.20	1303.00	0.41	2.05	1.93
	74249	74250				27.58	2230	3.0	21.96	0.00		2.83		3.32	1.91	0.00	33.73	11.13	528.40	87.5	900	0.15			1.88	1.82
Carabrilla di an Engara IDON DANCE DOM	74250	74251				27.58	2230	3.0	21.96	0.00	_	2.83		3.32	1.91	0.00	33.73	11.13	528.40	79.0	900	0.15	1194.53	0.44	1.88	1.82
Contribution From IRON RANGE ROAL Contribution From STREET No. 21, Pig.			+	+ +		5.02 6.37	352 514	-		1.71 0.00	-	0.00		0.82		7.55 6.37	41.28 47.65					 			1	1
Contribution From CTREET No. 21,115	74251	74252				38.97	3096	2.9	29.54	1.71		2.83		4.14	2.88	0.00	47.65	15.72	541.54	120.5	900	0.15	1194.53	0.45	1.88	1.83
	74252	74253				38.97	3096	2.9	29.54	1.71		2.83		4.14	2.88	0.00	47.65	15.72	541.54	120.5	900		1194.53		1.88	1.83
Contribution From BLOCK 147, Pipe 12						2.27	109			0.00		0.00		0.00		2.27	49.92									
	74253	74254				41.24	3205	2.9	30.48	1.71		2.83		4.14	2.88	0.00	49.92	16.47	543.23	93.0	900	1.40	2635.39	0.21	4.14	3.24
FAREBOX WAY & WHISTLE POST	1		1	+ +					 			1		1		1	-			-		+	+	1	+	1
I AKEBOK WAT & WINGTEET GOT	150A	29A	0.20		17	0.20	17	3.7	0.20	0.00		0.00		0.00	0.00	0.20	0.20	0.07	0.27	22.0	200	0.65	26.44	0.01	0.84	0.27
To STATIONHOUSE WALK, Pipe 29A	- 36A					0.20	17			0.00		0.00		0.00			0.20									
	004	00.4	0.40		0.5	0.40	0.5	0.7	0.40	0.00		0.00		0.00	0.00	0.40	0.40	0.44	0.50	050	000	0.05	00.44	0.00	0.04	0.04
To STATIONHOUSE WALK. Pipe 29A	28A	29A	0.42	+ +	35	0.42 0.42	35 35	3.7	0.42	0.00		0.00		0.00	0.00	0.42	0.42	0.14	0.56	85.0	200	0.65	26.44	0.02	0.84	0.34
TO STATION HOUSE WALK, PIPE 29A	- 30A		+	+ +		0.42	33			0.00	+	0.00		0.00			0.42			<u> </u>	\ 	 	1	1		
	136A	137A	0.88		50	0.88	50	3.7	0.59	0.00		0.00		0.00	0.00	0.88	0.88	0.29	0.88	88.5	200	0.65	26.44	0.03	0.84	0.39
	137A	139A	0.67		39	1.55	89	3.6	1.04	0.00		0.00		0.00	0.00	0.67	1.55	0.51	1.55	86.0	200	0.35	19.40	0.08	0.62	0.37
	32A	33A	0.25		21	0.25	21	3.7	0.25	0.00		0.00		0.00	0.00	0.25	0.25	0.08	0.33	56.5	200	0.65	26.44	0.01	0.84	0.28
			DESIGN PA	DAMETER	00							Dooigno	4.				PROJEC	T.								
Park Flow =	9300	L/ha/da	0.10764									Designe	u.				FINOJEC	٠.	Pea	k Flow	Discha	rge to F	lazeldea	an		
Average Daily Flow =	280	l/p/day						or = as p	er MOE Gr	•																_
Comm/Inst Flow =	28000	L/ha/da	0.3241			Extraneou				L/s/ha		Checked	1:				LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509	l/s/Ha		Minimum \	,	·	0.600													City of	Ottawa			
Max Res. Peak Factor = Commercial/Inst./Park Peak Factor =	4.00 1.50					Manning's Townhous		(Conc)	0.013 2.7	(Pvc) 0.01	3	Dwg. Re	ference:				File Ref:				Date:			1	Sheet No	. 6
Institutional =		l/s/Ha				Single hou			3.4				rainage Pl	an, Dwgs.	No.		i iio redi.				Date.	09 May 202	25		of	
	0.02	,, J, 1 IU				Single nou			J. ↑			Ourniary L	amaye Fi	, Dwys.			1				1	20 may 202	.~	1	U	

SANITARY SEWER CALCULATION SHEET Manning's n=0.013 RESIDENTIAL AREA AND POPULATION LOCATION COMM PARK INFILTRATION INSTIT C+I+I PIPE STREET TO CUMULATIVE PEAK ACCU AREA ACCU. ACCU. PEAK ACCU. TOTAL CAP. RATIO FACT. FLOW AREA ARFA ARFA FLOW ARFA ARFA FLOW M.H M.H. AREA POP. FLOW (FULL) Q act/Q cap (FULL) (ACT.) (ha) (ha) (l/s) (ha) (ha) (ha) (ha) (l/s) (ha) (ha) (l/s) (l/s) (mm) (%) (l/s) (m/s) (m/s) 33A 34A 0.05 0.30 0.31 0.00 0.00 0.41 200 0.35 19.40 0.25 3.7 0.00 0.00 0.05 0.30 0.10 11.0 0.02 0.62 34A 36A 0.39 33 3.6 0.70 0.00 0.00 0.00 0.00 0.39 0.69 0.23 0.92 200 0.35 0.05 0.62 0.31 0.69 59 84.0 19.40 To STATIONHOUSE WALK, Pipe 36A - 39A 59 0.00 0.00 0.00 0.69 0.69 132A 133A 0.89 52 0.89 52 3.6 0.61 0.00 0.00 0.00 0.00 0.89 0.89 0.29 0.91 104.0 200 0.65 26.44 0.03 0.84 0.39 133A 134A 0.39 23 1.28 75 3.6 0.88 0.00 0.00 0.00 0.00 0.39 1.28 0.42 1.30 55.0 200 0.35 19.40 0.07 0.62 0.35 134A 135A 1.62 0.00 0.00 0.00 0.00 0.34 0.62 0.37 0.34 20 95 3.6 1.11 1.62 0.53 1.64 14.5 200 0.35 19.40 0.08 135A 139A 0.28 16 1.90 111 3.6 1.29 0.00 0.00 0.00 0.00 0.28 1.90 0.63 1.92 72.5 200 0.35 19.40 0.10 0.62 0.39 19.40 139A 140A 0.57 33 4.02 233 3.5 2.64 0.00 0.00 0.00 0.00 0.57 4.02 1.33 3.97 13.5 200 0.35 0.20 0.62 0.48 140A 0.00 141A 4.02 233 3.5 2.64 0.00 0.00 0.00 0.00 4.02 1.33 3.97 60.5 200 0.35 19.40 0.20 0.62 0.48 To FREIGHTLINE TERRACE, Pipe 141A - 142A 4.02 233 0.00 0.00 0.00 4.02 FREIGHTLINE TERRACE 49A 50A 0.83 66 0.83 3.6 0.78 0.00 0.00 0.00 0.00 0.83 0.27 1.05 116.0 200 0.65 26.44 0.83 0.04 0.84 0.41 50A 52A 0.53 43 1.36 109 3.6 1.27 0.00 0.00 0.00 0.00 0.53 1.36 0.45 1.72 116.0 200 0.35 19.40 0.09 0.62 0.38 To CRAINSBILL, Pipe 52A - 343A 1.36 109 0.00 0.00 0.00 1.36 Contribution From FAREBOX WAY & WHISTLE POST, Pipe 140A - 141A 4.02 233 0.00 0.00 0.00 4.02 4.02 141A 142A 0.48 28 4.50 261 3.5 2.95 0.00 0.00 0.00 0.00 0.48 4.50 1.49 4.43 114.0 200 19.40 0.23 0.62 0.50 0.35 142A 143A 0.23 13 4.73 274 3.5 3.09 0.00 0.00 0.00 0.00 0.23 4.73 1.56 4.65 17.0 200 0.70 27.44 0.17 0.87 0.65 143A 144A 0.01 1 4.74 275 3.5 3.10 0.00 0.00 0.00 0.00 0.01 4.74 1.56 4.66 23.5 200 0.35 19.40 0.24 0.62 0.50 DESIGN PARAMETERS Designed: Park Flow = 9300 L/ha/da 0.10764 l/s/Ha 280 Average Daily Flow = Industrial Peak Factor = as per MOE Graph I/p/day Comm/Inst Flow = Checked: LOCATION: 28000 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha City of Ottawa Industrial Flow = 35000 0.600 m/s L/ha/da 0.40509 l/s/Ha Minimum Velocity = Max Res. Peak Factor = 4.00 0.013 (Pvc) 0.013 Manning's n = (Conc) Commercial/Inst./Park Peak Factor = 1.50 Townhouse coeff= 2.7 Dwg. Reference: File Ref: Sheet No. 0.32 l/s/Ha Institutional = Single house coeff= 3.4 Sanitary Drainage Plan, Dwgs. No. 09 May 2025

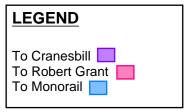
APPENDIX D

Storm Servicing

- Storm Drainage Plan (DSEL, 2025-10-10)
- Storm Sewer Design Sheet (DSEL, 2025-10-17)
- ➤ Subdivision Markup Model (DSEL, 2025-10-06)
- Ponding Volume Table (DSEL, 2025-06-20)
- ➤ 100 Year Chicago 3HR HGL vs USF (DSEL, 2025-06-13)
- ➤ 100 Year + 20% Chicago 3 HR HGL vs USF (DSEL, 2025-06-13)
- > 100 Year & 100 Year + 20% Chicago 3 HR Ponding Depth (DSEL, 2025-06-12)
- Adjacent Row Overland Flow Analysis 100 Year Chicago 3 HR Block 13 & Subdivision Model (DSEL, 2025-10-07)
- ➤ Abbotts Run Adjacent Row Ponding Depths Over Catchbasins (DSEL, 2025-10-07)
- ➤ EMP Excerpt for Water Balance Calculations (Novatech)

© DSEL

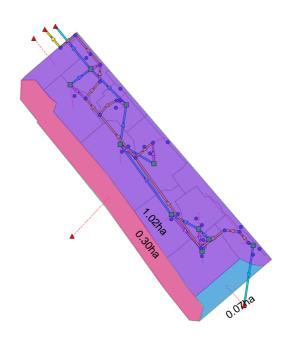
SHEET NO.


\$ ♦ MH202

Ф СВМН201

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years Manning 0.013 Arterial Roads Return Frequency = 10 years

Manning	0.01	3	Arterial Roa	ids Return	Frequency =	10 years																											
	LOC	CATION								AREA	(Ha)								mi a	T		OW		In 1 m		leave e			SEWER DA		Luny o over	den es es	n . mr. o
		_		2 '	YEAR			5 '	YEAR			10 Y	ÆAR			100 \	YEAR		Time of					Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
ocation	From Noc	de To Node	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	2.78 AC	Accum. 2.78 AC	AREA (Ha)	R	2 78 AC	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum. 2.78 AC	Conc.	2 Year (mm/h)	5 Year (mm/h)	10 Year (mm/h)	100 Year (mm/h)	O (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	O/O full
ocation	I TOIII IVOC	id 10 Node	(1.0)		2.70 AC	2.70 AC	(1.0)	1	2.70 AC	2.70 AC	(114)		2.70 AC	2.70 AC	(114)		2.70 AC	2.70 AC	(11111)	(11111/11)	(11111/11)	(11111/11)	(11111/11)	Q (1/3)	(actual)	(nonniai)		(/0)	(111)	(13)	(11/5)	LOW (IIIII	Q/Q Iui
RIVATE	STREET	Γ2																													1		
			0.01	0.22	0.01	0.01			0.00	0.00			0.00	0.00			0.00	0.00	10.00														
			0.12	0.69	0.23	0.24			0.00	0.00			0.00	0.00			0.00	0.00	10.00													<u> </u> '	
	13	5			0.00	0.24			0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	18	300	300	PVC	0.35	16.5	57.2089	0.8093	0.3398	0.317
o PRIVA	TE STRE	ET 1, Pipe	5-6			0.24				0.00				0.00				0.00	10.34										-		+	 	
		-	0.01	0.24	0.01	0.01			0.00	0.00			0.00	0.00			0.00	0.00	10.00												+	+	
			0.06	0.86	0.14	0.15			0.00	0.00			0.00	0.00			0.00	0.00	10.00														
	14	6			0.00	0.15			0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	12	300	300	PVC	0.35	15.5	57.2089	0.8093	0.3192	0.202
o PRIVA	TE STRE	ET 1, Pipe	6 - 7			0.15				0.00				0.00				0.00	10.32														
RIVATE	STREET	Γ1																														<u> </u> '	
	-	2	0.06	0.78	0.13	0.13			0.00	0.00			0.00	0.00			0.00	0.00	10.00	70.04	101.10	400.44	470.50	40	200	200	DVC	0.25	40.0	F7 2000	0.0000	0.2050	0.475
	- '		0.05	0.53	0.00	0.13	1		0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	176.30	10	300	300	PVC	0.35	10.0	57.2089	0.8093	0.2059	0.173
	2	3	0.03	0.55	0.00	0.20			0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.02	103.12	120.87	176.70	15	300	300	PVC	0.35	10.5	57.2089	0.8093	0.2162	0.271
		†	0.01	0.75	0.02	0.22			0.00	0.00			0.00	0.00			0.00	0.00	10.00	7 0.02	100.12	120.01	11 0.1 0					0.00	10.0	07.2000	0.0000	0.2.02	0.27
	3	4			0.00	0.22			0.00	0.00			0.00	0.00			0.00	0.00	10.42	75.22	102.01	119.58	174.79	17	300	300	PVC	0.35	21.0	57.2089	0.8093	0.4325	0.295
			0.07	0.83	0.16	0.39			0.00	0.00			0.00	0.00			0.00	0.00	10.00														
			0.11	0.83	0.25	0.64			0.00	0.00			0.00	0.00			0.00	0.00	10.00													<u> </u> '	
	4	5	0.12	0.81	0.27	0.91	-		0.00	0.00			0.00	0.00			0.00	0.00	10.00	70.07	00.00	447.07	474.44	67	450	450	CONC	0.00	70.0	127.5033	0.0047	4.0404	0.500
`ontributi			I I STREET 2, F	2ine 13 -		0.91			0.00	0.00			0.00	0.00			0.00	0.00	10.85 10.34	73.67	99.89	117.07	17 1.11	67	450	450	CONC	0.20	79.0	127.5033	0.8017	1.0424	0.526
OHUBUU		TRIVAIL	0.15	0.83	0.35	1.49			0.00	0.00			0.00	0.00			0.00	0.00	10.00														
	5	6	0.10	0.00	0.00	1.49			0.00	0.00			0.00	0.00			0.00	0.00	12.50	68.38	92.63	108.52	158.55	102	450	450	CONC	0.30	39.5	156.1591	0.9819	0.6705	0.654
ontributi	ion From	PRIVATE S	STREET 2, I	Pipe 14 -		0.15				0.00				0.00				0.00	10.32														
	6	7			0.00	1.64			0.00	0.00			0.00	0.00			0.00	0.00	13.17	66.46	89.99	105.42	154.00	109	450	450	CONC	0.30	15.5	156.1591	0.9819	0.2631	0.699
			0.09	0.82	0.21	1.85			0.00	0.00			0.00	0.00			0.00	0.00	10.00													<u> </u> '	
	7	8			0.00	1.85			0.00	0.00			0.00	0.00			0.00	0.00	13.43	65.74	89.00	104.25	152.28	121	525	525	CONC	0.20	16.0	192.3297	0.8885	0.3001	0.632
	8	9	0.09	0.70	0.00	1.85 2.04			0.00	0.00			0.00	0.00			0.00	0.00	13.73	64.94	87.90	102.96	150.38	120	525	525	CONC	0.30	9.0	235.5548	1.0881	0.1379	0.509
	9	10	0.09	0.78	0.20	2.04			0.00	0.00			0.00	0.00			0.00	0.00	13.87	64.57	87.40	102.37	149.53	132	525	525	CONC	0.20	29.5	192.3297	0.8885	0.5534	0.686
o SERVI			e 10 - 127(B.O)	0.00	2.04			0.00	0.00			0.00	0.00			0.00	0.00	14.42	04.57	07.40	102.57	143.55	102	323	323	00110	0.20	23.5	192.5297	0.0000	0.5554	0.000
		1		,																													
ERVICI	NG BLOC	CK 2																															
Contributi			STREET 1, F	Pipe 9 - 1		2.04				0.00				0.00				0.00	14.42													<u> </u> '	
EVIOT		127(B.O		407/D O	0.00	2.04			0.00	0.00			0.00	0.00			0.00	0.00	14.42	63.17	85.47	100.10	146.20	129	525	525	CONC	0.20	11.5	192.3297	0.8885	0.2157	0.671
0 EXIST	ING SER	VICING INC	ORTH, Pipe	127 (B.U)) - 58(B.U) T	2.04				0.00				0.00				0.00	14.64													+	
XISTING	SFRVIO	CING NOR	ГН																												+		
			G BLOCK 2	Pipe 10	- 127(B.O)	2.04				0.00				0.00				0.00	14.64												1		
	127(B.O)) 58(B.O)			0.00	2.04			0.00	0.00			0.00	0.00			0.00	0.00	14.64	62.64	84.75	99.25	144.95	128	525	525	CONC	0.20	17.0	192.3297	0.8885	0.3189	0.665
																																<u> </u> '	
																																 	
		-					<u> </u>	-																							+	+	
																															+	\vdash	
																															+	\vdash	
																															1	T '	
																																<u> </u>	
																CESS	MOA.															 	
															100	V-	- V	-														+	
														-	N'A	11/		41													+		
														- /	98/	XIVU/		1 4	1										1		†		
																		-	1														
															3 0	1 ME	DRICK		1														
efinitions														1 3	5 0	L. ME 10018	0E00	. 20	1					Designed:			PROJECT:	:			BOTT'S RU	N	
	AIR, where		101/2							Notes:	D-1-6-9-1			1		10018	0523		1					CI 1 1		E.D.	LOCHTIC	NT.			BLOCK 13		
		res per seco	na (L/s)								Rainfall-Inte		•					7	/					Checked:		S.M.	LOCATIO:	IN:		C:4 * *	Ottour		
	in hectares I Intensity									∠) IVIIII. Vei	locity = 0.80	111/5				2025-U	9-24	101	7					Dwg. Refer	ence:	S.IVI.	File Ref:			City of C	Judwa	Sheet No.	
	f Coefficie														AN	- 3- M		8/						2 11 g. Reiel	c.icc.	17	I IIC ICCI.			24 Oct	2025	SHEET	1 OF 1
															A 100	-		- A															



Subdivision model - scenario to address City Comment

Block 13 model

Project Name: Abbot's Run-Block 13

Project Number: 1295 Designed By: VM Checked By:

Date: 2025-10-23

SWM Appendix D: USF Freeboard Results - 100yr Chicago 3 hr

Name	Inlet Node	Outlet Node	Lot #	USF (m)	Dist from DS	U/S MH HGL	D/S MH HGL	Pipe Length	INT HGI (m)	Freeboard (m)
Name	miet Noue	Outlet Node	LOT #	031 (111)	MH (m)	(m)	(m)	(m)	iivi: iiGE (iii)	rreeboard (III)
STM-10-127	MH-10	MH-127				100.42	100.37	11.5		
STM-127-58	MH-127	MH-58				100.37	100.26	17		
STM-1-2	MH-1	MH-2				101.35	101.26	10.2		
STM-13-5	MH-13	MH-5				100.98	100.97	16.33		
STM-14-6	MH-14	MH-6				100.85	100.84	15.51		
STM-2-3	MH-2	MH-3				101.26	101.22	10.55		
STM-3-4	MH-3	MH-4	5-1	102.01	14.00	101.22	101.12	20.96	101.19	0.82
STM-4-5	MH-4	MH-5	3-6	101.80	41.10	101.12	100.97	78.78	101.05	0.75
STM-4-5	MH-4	MH-5	4-4	102.02	80.40	101.12	100.97	78.78	101.12	0.90
STM-5-6	MH-5	MH-6	2-6	101.64	23.50	100.97	100.84	39.39	100.92	0.72
STM-6-7	MH-6	MH-7				100.84	100.68	15.45		
STM-7-8	MH-7	MH-8	1-10	101.51	12.60	100.68	100.63	15.84	100.67	0.84
STM-8-9	MH-8	MH-9				100.63	100.59	9		
STM-9-10	MH-9	MH-10				100.59	100.42	29.5		

Project Name: Abbot's Run-Block 13

Project Number: 1295 Designed By: VM Checked By:

Date: 2025-10-23

SWM Appendix D: USF Freeboard Results - 100yr+20% Chicago 3 hr

Name	Inlet Node	Outlet Node	Lot #	USF (m)	Dist from DS	U/S MH HGL	D/S MH HGL	Pipe Length	INT HGI (m)	Freeboard (m)
Name	miet Node	Outlet Node	LOT #	031 (111)	MH (m)	(m)	(m)	(m)	iivi: iiGE (iii)	rreeboard (III)
STM-10-127	MH-10	MH-127				100.46	100.37	11.5		
STM-127-58	MH-127	MH-58				100.37	100.26	17		
STM-1-2	MH-1	MH-2				101.47	101.46	10.2		
STM-13-5	MH-13	MH-5				101.18	101.17	16.33		
STM-14-6	MH-14	MH-6				101.01	100.99	15.51		
STM-2-3	MH-2	MH-3				101.46	101.43	10.55		
STM-3-4	MH-3	MH-4	5-1	102.01	14.00	101.43	101.35	20.96	101.40	0.61
STM-4-5	MH-4	MH-5	3-6	101.80	41.10	101.35	101.17	78.78	101.26	0.54
STM-4-5	MH-4	MH-5	4-4	102.02	80.40	101.35	101.17	78.78	101.35	0.67
STM-5-6	MH-5	MH-6	2-6	101.64	23.50	101.17	100.99	39.39	101.10	0.54
STM-6-7	MH-6	MH-7				100.99	100.78	15.45		
STM-7-8	MH-7	MH-8	1-10	101.51	12.60	100.78	100.71	15.84	100.77	0.74
STM-8-9	MH-8	MH-9				100.71	100.66	9		
STM-9-10	MH-9	MH-10				100.66	100.46	29.5		

Project Name: Abbott's Run - Block 13

Project Number: 1295
Designed By: VM

Checked By:

Date:

23-Oct-25

Ponding Depth - 100-year & 100-year+20% Chicago 3hr

Storago	Catch	hacin	Po	n)	ICD Size (m)	
Storage	Calcii	ınaşııı	2yr	100 yr	100yr+20%	ICD Size (III)
PA-1	CB_1	CB_2	0.00	0.32	0.35	0.083
PA-10	CB	_20	0.00	0.16	0.18	0.094
PA-2	CB_3	CB_4	0.00	0.13	0.18	0.083
PA-3	CB_7	CB_8	0.00	0.22	0.43	0.083
PA-4	CB_5	CB_6	0.00	0.22	0.30	0.108
PA-5	CB_9	CB_10	0.00	0.18	0.26	0.094
PA-6	CB_11	CB_12	0.00	0.10	0.14	0.083
PA-7	CB	_13	0.00	0.00	0.16	0.094
PA-8	СВ	_14	0.00	0.29	0.43	0.094
PA-9	CB_15	CB_16	0.00	0.01	0.09	0.102

PH 2 & 3 Subdivision Model Check

Project Name: Abbott's Run
Project Number: 1295
Designed By: JC
Checked By: VM
Date Oct 7 2025

ADJACENT ROW OVERLAND FLOW ANALYSIS - 100yr Chicago 3hr

Conduit Name	Inlet Junction	Outlet Junction	Transect	Max/Full Depth *	Max Depth (m)	Max. Velocity (m/s)	Depth x Velocity (m ² /s)
	Sub	division Model - S	Scenario to Address City Comm	ent (Block 13 divide	d into 3 subcatchn	nents)	
C14	HP003	J018	22mROW_CranesbillRd	0.05	0.03	0.00	0.00
C15	J018	J019	22mROW_CranesbillRd	0.10	0.06	0.52	0.03
C16	J019	J020	22mROW_CranesbillRd	0.10	0.06	0.52	0.03
C17	J020	J014	22mROW_CranesbillRd	0.09	0.05	0.74	0.04
C12	J014	J015	22mROW_CranesbillRd	0.11	0.07	0.39	0.03
C186	J015	J016	22mROW_CranesbillRd	0.16	0.10	0.41	0.04
C187	J016	LP003	22mROW_CranesbillRd	0.17	0.10	0.72	0.07
26	P1-07S	P1-09S	27mROW_RobertGrantAve	0.23	0.14	0.63	0.08
C243	J164	LP010	18mROW	0.16	0.10	0.61	0.06
C244	HP009	J164	18mROW	0.10	0.06	0.54	0.03
16	HP009	P1-07S	18mROW	0.13	0.08	0.87	0.07

^{*} Major system depth is 0.60m for the entire study area

PH 2 & 3 Subdivision Model Check

Project Name: Abbott's Run
Project Number: 1295
Designed By: JC
Checked By: VM
Date: 07-Oct-25

Adjacent ROW

Ponding Depths Over Catchbasins: Scenario to Address City Comment

ICD ID	Junction ID	Applied ICD (mm)	2yr Depth Over CB (m)	5yr Depth Over CB (m)	10yr Depth Over CB (m)	100yr Depth Over CB (m)	Depth Over CB
		10-у	ear Catchbasins:	Robert Grant Aven	nue		
OP1-07	P1-07S	N/A	0.00	0.00	0.00	0.00	0.00
OP1-09	P1-09S	N/A	0.00	0.00	0.00	0.00	0.00
5-Year On-Grade Catchbasins: Cranesbill Road							
ICD-CB_185A	CB_185A	83	0.02	0.03	0.03	0.04	0.05
ICD-CB_185B	CB_185B	83	0.02	0.03	0.03	0.04	0.05
		5-ye	ar In-Sag Catchba	sins: Cranesbill Ro	ad		
ICD-CB_84	LP003	250	0.00	0.00	0.00	0.05	0.22
ICD-CB_85	LP003	250	0.00	0.00	0.00	0.05	0.22
		2-уе	ear In-Sag Catchb	asins: Monorail Ro	ad		
ICD-CB_38	LP010	83	0.00	0.07	0.09	0.13	0.14
ICD-CB_39	LP010	108	0.00	0.07	0.09	0.13	0.14

APPENDIX G

BEST MANAGEMENT PRACTICES MODELING / WATER BALANCE CALCULATIONS

BMP Modeling Sample Calculation - Carp River Subwatershed Figure G-1: Distribution of Runoff for Low Density Residential Lots Figure G-2: Distribution of Runoff for Medium Density Residential Lots

Water Balance Parameters
Water Balance Results - Carp River
Water Balance Results - Faulkner Drain
Water Balance Results - Flewellyn Drain
Water Balance Results - Monahan Drain

Carp River Subwatershed: Methodology used to model perforated pipes Example Calculations - Post-Development Drainage Areas to Pond1

SWMHYMO METHODOLOGY:

(MOE Stormwater Management Planning and Design Manual, March 2003 - section 4.9)

Method used to determine the portion of runoff infiltrated using perforated pipes:

Step 1: Calculate proportion of 5yr and 100yr peak flows for each land use within catchment P1 (using the Rational Method)

Q = 2.78 CIA $I_5 = 85.60 \text{ mm/hr}$ (15 min tc) $I_{100} = 146.80 \text{ mm/hr}$ (15 min tc)

Pond 1	Mixed Use	Commercial	Major Road	Schools	High Density	Medium Density*	Low Density*	Parks*	Open Space	Total
Area (ha)	11.06	0.61	8.3	9.13	0.00	20.49	22.36	2.42	2.76	74.39
C value	0.80	0.80	0.70	0.60	0.70	0.60	0.50	0.40	0.20	0.61
2.78 AC	24.60	1.36	16.15	15.23	0.00	34.18	31.08	2.69	1.53	126.82
Q ₅ (L/s)	2,055	113	1,350	1,273	0	2,856	2,597	225	128	10,597
Q ₁₀₀ (L/s)	3,515	194	2,308	2,176	0	4,884	4,441	385	219	18,121

Areas and Runoff Coefficients from storm sewer design sheets (refer to Master Drainage Plan)

Step 2: Split runoff from P1 into flows going to the perforated pipes (parks/rearyards) and flows to the conventional storm system.

35% of runoff from low/medium density residential areas directed to rearyard swales /perforated pipe system (refer to Figures G-1 and G-2) 36% of runoff from parks directed to swales / perforated pipe system.

All runoff from remaining areas (roads, commercial, mixed use, schools, etc.) to conventional sewer system.

$$\begin{array}{l} Q_{5 \; (perf \; pipes)} = \; 0.35 (Q_{medium \; density} + Q_{low \; density}) + 0.36 (Q_{parks}) \\ = \; 0.35 \; x \; (2856 \; L/s + 2597 \; L/s) + 0.36 \; x \; (225 \; L/s) \\ = \; 1989 \; L/s \end{array}$$

Overall percentage of flow from catchment P1 to perforated pipe system:

$$\begin{tabular}{ll} \% \mbox{ Perf Pipes} &= \mbox{ Q_{5 (perf pipes)}$ / Q_{5 (total)}$} \\ &= \mbox{ $1,989$ Lps / $10,597$ Lps} \\ &= \mbox{ 0.1877} \\ &= \mbox{ 18.8%} \\ \end{tabular}$$

Therefore, 18.8% of the total runoff from catchment P1 will be directed to the perforated pipe systems. Use the DIVERT HYD command to split flows between the perforated pipe system (18.8%) and the conventional sewer system (81.2%).

Step 3: Use MOE equation 4.18 to split flows that are conveyed through the pervious pipes and flows that are exfiltrated into the storage/infiltration media.

```
\begin{aligned} Q_{\text{extil}} &= Q_{\text{in}} \left(15\text{A} - 0.06\text{S} + 0.33\right) & \text{where A = area of perforations per metre of pipe} \\ &= Q_{\text{in}} \left[15(0.0032) - 0.06(0.5) + 0.33\right] &= 0.348Q_{\text{in}} \end{aligned}
= 0.348Q_{\text{in}} 
= 0.348Q_{\text{in}} 
= 0.5\% \left(\text{assumed}\right)
where A = area of perforations per metre of pipe
= 0.0032 \text{ m}^2/\text{m} \left(\text{HDPE perforated pipe s} 300\text{mm} - \text{Hancor} \left(\text{TN 1.02, April 2007}\right)\right)
```

Therefore, 34.8% of flow through perforated pipes is exfiltrated to storage/infiltration media, and 65.2% is conveyed through to conventional sewers. Use the DIVERT HYD to model the conveyance/exfiltration ratio in SWMHYMO.

^{*} A portion of flow from these areas is directed to perforated pipe system

Carp River Subwatershed: Methodology used to model perforated pipes Example Calculations - Post-Development Drainage Areas to Pond1

Step 4: Use MOE equation 4.17 to calculate infiltration rate from storage media.

Flow out of storage media (infiltration trench) represents infiltration into the native soil

Overflows will occur when the infiltration trench storage is full and runoff continues through the perforated pipes to the minor system

Q = f x (P/3 600 000) x (2LD + 2 WD + LW) x nV = L W D x n x f

 $Q = flow rate (m^3/s) for a given storage volume$

f = longevity factor - 0.5 (table 4.12 MOE Stormwater Management Planning and Design Manual, March 2003)

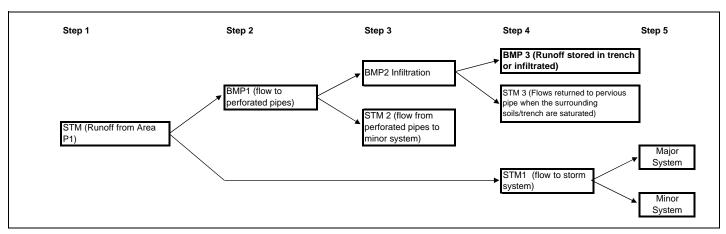
P = native soil percolation rate (assume 15mm/h based on soil type)

L = approximate length of pervious pipe in catchment (m)

W = width of pipe trench in (m)

D = depth of water in pipe trench (m)

V = volume of water in pipe trench (m)


n = void space in the trench storage layer

Use the ROUTE RESERVOIR command in SWMHYMO to model infiltration / overflow to conventional sewers.

Step 5: Split flows in the conventional storm system into minor and major systems.

Minor System Flow: 6.84 m³/s (85 L/s/ha)
Major System Storage: 4,021 m³ (50 m³/ha)

Use the COMPUTE DUALHYD command in SWMHYMO to split flows to conventional storm system into minor and major systems

BMP 3 represents the total reduction in runoff volume to the storm sewer system from infiltration through perforated pipes, all other flows are added together and directed to SWM Facility 1.

Carp River Subwatershed: Methodology used to model perforated pipes Example Calculations - Post-Development Drainage Areas to Pond1

EXAMPLE CALCULATIONS:

Step 1 - Split flows based on direction of runoff

18.8% of flow to perforated pipes
81.2% of flow to stormwater system

Q_{total} = Total runoff form drainage area

Q_{BMP1} = Flow to perforated pipes = $0.196 \times Q_{total}$

 Q_{STM1} = Flow to storm sewers = $0.804 \times Q_{total}$

DIVERTHI	U
Q total	(

Q total m ³ /s	Q BMP1 m³/s	Q STM1 m ³ /s
0.000	0.000	0.000
0.250	0.048	0.203
0.500	0.095	0.405
0.750	0.143	0.608
1.000	0.190	0.810
1.500	0.285	1.215
2.000	0.380	1.620
2.500	0.475	2.025
3.000	0.570	2.430
4.000	0.760	3.240
5.000	0.950	4.050
6.000	1.140	4.860
7.000	1.330	5.670

	QIDi	+	QIDii	=	QTOTAL	
[0.000	+	0.000	=	0.00]
[0.048	+	0.203	=	0.25]
[0.095	+	0.405	=	0.50]
[0.143	+	0.608	=	0.75]
[0.190	+	0.810	=	1.00]
[0.285	+	1.215	=	1.50]
[0.380	+	1.620	=	2.00]
[0.475	+	2.025	=	2.50]
[0.570	+	2.430	=	3.00]
[0.760	+	3.240	=	4.00]
[0.950	+	4.050	=	5.00]
[1.140	+	4.860	=	6.00]
[1.330	+	5.670	=	7.00]

Step 2 - Exfiltration Discharge

 $Q_{BMP2} = Q_{BMP1} (15A - 0.06S + 0.33)$ $A = 0.0021 \text{ m}^2/\text{m}$

S = 0.5 %

 Q_{BMP1} = Flow to perforated pipes

 Q_{BMP2} = Flow exfiltrated from perforated pipes

Q_{STM2} = Flow which is not exfiltrated through perforations and is conveyed to the minor system

DIVERT HYD

Q BMP1	Q BMP2	Q STM2
m ³ /s	m ³ /s	m ³ /s
0.000	0.000	0.000
0.048	0.016	0.032
0.095	0.031	0.064
0.143	0.047	0.095
0.190	0.063	0.127
0.285	0.094	0.191
0.380	0.126	0.254
0.475	0.157	0.318
0.570	0.189	0.381
0.760	0.252	0.508
0.950	0.315	0.635
1.140	0.378	0.762
1.330	0.441	0.889

	QIDi	+	QIDii	=	QTOTAL	
[0.000	+	0.000	=	0.00]
[0.016	+	0.032	=	0.05]
[0.031	+	0.064	=	0.10]
[0.047	+	0.095	=	0.14]
[0.063	+	0.127	=	0.19]
[0.094	+	0.191	=	0.29]
[0.126	+	0.254	=	0.38]
[0.157	+	0.318	=	0.48]
[0.189	+	0.381	=	0.57]
[0.252	+	0.508	=	0.76]
[0.315	+	0.635	=	0.95]
[0.378	+	0.762	=	1.14]
Ī	0 441	+	0.889	=	1.33	1

Equation 4.18 - MOE Stormwater Management Planning and Design Manual, March 2003

Step 3 - Rating Curve for Exfiltrated Water

V =	LWD	Х	n	Х	f

0.0430

Qexfil = f x (P/360 0000) x (2LD + 2WD + LW) x n

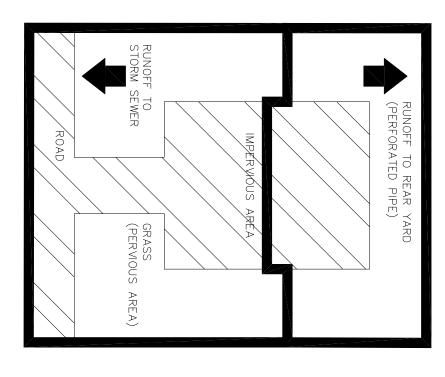
L	8608 m
W	0.5 m
D	0.5 m
n	0.4
f	0.5
Р	15 mm/

ROUTE RESERVOIR

Depth (m)	Storage (ha)	Exfil (m ³ /s)
0.1	0.0086	0.0050
0.2	0.0172	0.0065
0.3	0.0258	0.0079
0.4	0.0344	0.0093
0.5	0.0430	0.0108

	(cms)	-	(ha-m)	
[0	,	0]
[0.0050	,	0.0086]
[0.0065	,	0.0172]
[0.0079	,	0.0258]
[0.0093	,	0.0344]
[,	0.0430]
[-1	,	-1]

IDovf=[8], NHYDovf=["P1STM3"]


Equation 4.17 - MOE Stormwater Management Planning and Design Manual, March 2003

Storage = Flow stored in the trench and surrounding soil

Exfil = Flow which exfiltrates from the perforated pipes into the surrounding soil

Overflow = Once the trench and surrounding soil are saturated water will not exfiltrate through the perforations, this water will be conveyed to the minor system

TYPICAL LOW DENSITY RESIDENTIAL LOT

OW DENSITY RESIDENTIAL LOT

SPLIT LOT WITH

- 35% OF LOT AREA TO REAR YARD

- HALF OF ROOF AREA TO REAR YARD

(PER CITY OF OTTAWA SEWER DESIGN

GUIDELINES, NOV 2004)

Weighted Average C	0.50	
Front Yard	0.53	738.7
Rear yard	0.46	447.3
Lot	0.50	1186
Proposed land use	С	Area (m²)

<u>Distribution of runoff</u>

l = 83.56 mm/hrQ = 2.78 CiA

Q = 2.78 CiA Q (Total) = $2.78 \times 0.50 \times 83.56 \times 0.1186$ = 13.77 L/s

Q (Rear yards) = $2.78 \times 0.46 \times 83.56 \times 0.0447$ = 4.73 L/s

= 34.3% of total runoff

Q (Front yards)

= $2.78 \times 0.53 \times 83.56 \times 0.0739$ = 9.04 L/s= 65.7% of total runoff

FERNBANK - EMP

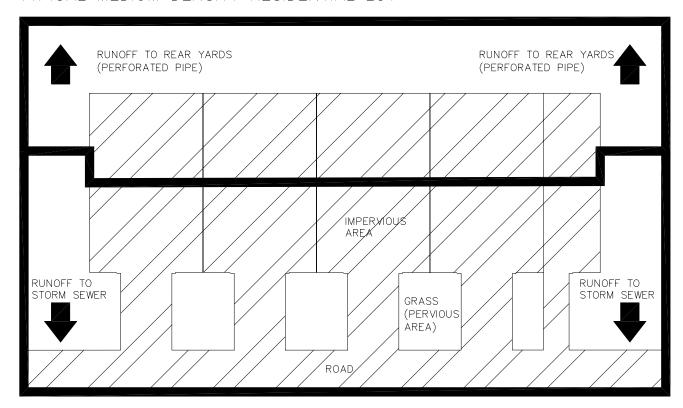
DISTRIBUTION OF RUNOFF FOR LOW DENSITY RESIDENTIAL LOTS

(613) 254-9643 (613) 254-5867 novainfo@novatech-eng.com

Telephone Facsimile

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M IP6

N G I N E E R I N G O N S U L T A N T S L T D.


SHT8X11.DWG - 216mmX278mm

MARCH 25

101108

FIGURE G-1

TYPICAL MEDIUM DENSITY RESIDENTIAL LOT

MEDIUM DENSITY RESIDENTIAL LOT

SPLIT LOT WITH

– 35% OF LOT AREA TO REAR YARD– HALF OF ROOF AREA TO REAR YARD

(PER CITY OF OTTAWA SEWER DESIGN GUIDELINES, NOV 2004)

Area (m²)	С	Proposed land use
2749	0.60	Lot
1145.7	0.52	Rear yard
1603.3	0.66	Front Yard
	0.60	Weighted Average C

Distribution of runoff

I = 83.56 mm/hrQ = 2.78 CiA

Q (Total) = $2.78 \times 0.60 \times 83.56 \times 0.2749$

= 38.4 L/s

Q (Reare yards) = $2.78 \times 0.52 \times 83.56 \times 0.1146$

= 13.9 L/s

= 36.3% of total runoff

Q (Front yards) = $2.78 \times 0.66 \times 83.56 \times 0.1603$

= 24.5 L/s

= 63.7% of total runoff

ENGINEERS & PLANNERS

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M IP6

Telephone Facsimile Email:

(613) 254-9643 (613) 254-5867 novainfo@novatech-eng.com

FERNBANK - EMP

DISTRIBUTION OF RUNOFF FOR MEDIUM DENSITY RESIDENTIAL LOTS

MARCH 25 2009

101108

FIGURE G-2