

Geotechnical Investigation

Proposed Mixed-Use Development

265 Catherine Street Ottawa, Ontario

Prepared for Brigil

Report PG5933-1 Revision 7 dated September 29, 2025

Table of Contents

		PAGE
1.0	Introduction	1
2.0	Proposed Development	1
3.0	Method of Investigation	
3.1	Field Investigation	
3.2	,	
3.3	Laboratory Review	4
4.0	Observations	5
4.1	Surface Conditions	5
4.2	Subsurface Profile	5
4.3	Groundwater	6
5.0	Discussion	8
5.1	Geotechnical Assessment	8
5.2	Site Grading and Preparation	8
5.3	Foundation Design	12
5.4	Design for Earthquakes	15
5.5	Basement Slab	18
5.6	Basement Wall	18
5.7	Pavement Design	20
6.0	Design and Construction Precautions	23
6.1	Foundation Drainage and Backfill	23
6.2	Protection of Footings Against Frost Action	25
6.3	Excavation Side Slopes	25
6.4	Pipe Bedding and Backfill	27
6.5	Groundwater Control	28
6.6	Winter Construction	29
6.7	Corrosion Potential and Sulphate	30
6.8	Hydraulic Conductivity and Groundwater Infiltration	30
7.0	Recommendations	32
8 N	Statement of Limitations	33

Appendices

Appendix 1 Soil Profile and Test Data Sheets

Symbols and Terms

Analytical Testing Results Hydraulic Conductivity Testing

Appendix 2 Figure 1 - Key Plan

Figures 2 & 3 - Seismic Shear Wave Velocity Profiles

Figure 4 – Elevator Shaft Waterproofing

Drawing PG5933-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Brigil to conduct a geotechnical investigation for the proposed mixed-use development, to be located at 265 Catherine Street in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2 of this report for the general site location).

The objectives of the geotechnical investigation were to:

Determine 1	the subso	il and	l groundwater	conditions	at this	site by	means	of
boreholes.								

Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

Based on the current concept drawings, it is understood that the proposed development will consist of three hi-rise mixed-use buildings, with shared underground levels, connected at and/or below the podium deck surface and with pedestrian bridges. The proposed buildings will consist of one 32-storey tower, one 36-storey tower and one 34-storey tower.

It is understood that the high-rise buildings will be provided with two to three (2 to 3) levels of underground parking whose footprints are anticipated to occupy the majority of the subject site. It is understood that a block of seven (7), three-storey townhouse style buildings will be constructed over the podium deck slab.

Associated at grade access lanes, pedestrian pathways and landscaped areas are also anticipated. The proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

Paterson previously conducted a series of field program for the subject site. The most recent geotechnical investigation was carried out between June 12 and 16, 2025. At that time four (4) test pits (TP1-25 through TP 4-25) were completed to a maximum depth of 9 m below the existing ground surface. Paterson carried out three (3) previous geotechnical investigations - between February 28 to March 4, 2024; on August 19, 2020; and between August 24 to 25, 2010. During the time of our geotechnical investigation completed between February 28 to March 4, 2024, Paterson completed seven (7) boreholes (BH 1-24 through BH 7-24) advance to a maximum depth of 15.06 m below the existing ground surface, cored to a maximum depth of 4 m into the bedrock. At that time our geotechnical investigation completed on August 19, 2020, three (3) boreholes (BH 1-20 through BH 3-20) were advanced to a maximum depth of 14.7 m below the existing ground surface. During the time of our geotechnical investigation completed between August 24 and 25, 2010, a total of six (6) boreholes (BH 1 through BH 6) were advanced to a maximum depth of 11.73 m below the existing ground surface. Furthermore, a previous investigation was carried out by others in August of 1971. At that time, five (5) boreholes were advanced to a maximum depth of 12.5 m below the existing ground surface.

The borehole locations were distributed in a manner to provide general coverage of the subject site. The approximate locations of the test holes are shown on Drawing PG5933-1 - Test Hole Location Plan included in Appendix 2.

The test pits were completed using a hydraulic shovel excavator and the boreholes were advanced using a truck-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The test pit procedure consisted of excavating to the required depths at the selected locations to determine the depth of the bedrock. The test pits were backfilled with the excavated soils upon completion. The drilling procedure consisted of augering to the required depths at the selected borehole locations, and sampling and testing the soil.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using two different techniques, namely, sampled directly from the auger flights (AU) or collected using a 50 mm diameter split-spoon (SS) sampler. All samples were visually inspected and initially classified on site. The auger and split-spoon samples were placed in sealed plastic bags and transported to our laboratory for further examination and classification. The depths at which the auger and split spoon samples were recovered from the boreholes are shown as AU and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

A Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing, using a vane apparatus, was carried out at regular intervals of depth in cohesive soils.

The overburden thickness was evaluated by a dynamic cone penetration test (DCPT) completed at BH 2-20. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

Rock samples were recovered using a core barrel and diamond drilling techniques. The bedrock samples were classified on site, placed in hard cardboard core boxes and transported to Paterson's laboratory.

The depths at which rock core samples were recovered from the boreholes are presented as RC on the Soil Profile and Test Data sheets in Appendix 1.

The recovery value and a Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are presented on the borehole logs. The recovery value is the length of the bedrock sample recovered over the length of the drilled section. The RQD value is the total length of intact rock pieces longer than 100 mm over the length of the core run. The values indicate the bedrock quality. The subsurface conditions observed at the test pits were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data Sheets in Appendix 1 of this report.

Groundwater

Groundwater monitoring wells were installed in BH 4-24, BH 6-24, BH 7-24, BH 1-20, BH 2-20 and BH 3-20 to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. A flexible polyethylene standpipe was installed within boreholes from the previous investigation to measure the stabilized groundwater levels subsequent to completion of the sampling program.

3.2 Field Survey

The borehole locations, and the ground surface elevation at each borehole location, were surveyed by Paterson using a GPS unit with respect to a geodetic datum. The locations of the boreholes and ground surface elevation at each borehole location are presented on Drawing PG5933-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Review

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. All samples will be stored in the laboratory for 1 month after this report is completed. They will then be discarded unless we are otherwise directed.

4.0 Observations

4.1 Surface Conditions

Currently, the subject site was previously occupied by a bus terminal building which has been demolished with partially removed asphalt covered parking areas and access lanes. The subject site is approximately at grade with surrounding streets.

The site is bordered by Catherine Street to the south, Lyon Street to the west, Arlington Avenue and further by residential dwellings to the north and Kent Street to the east. The existing ground surface across the subject site is relatively flat and at grade with adjacent properties.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile at the test hole locations consists of concrete or asphaltic concrete underlain by fill. The fill was generally observed to consist of a compact brown silty sand with crushed stone and occasional brick, metal, and plastic fragments.

Underlying the fill a loose to compact brown or grey silty sand deposit was observed in some of the boreholes.

Underlying the fill and the silty sand, a silty clay deposit was encountered underlying the fill. The silty clay deposit was observed to consist of a very stiff to stiff brown silty clay and /or very stiff to firm grey silty clay.

A glacial till deposit was encountered underlying the silty clay deposit. The glacial till deposit was observed to consist of a grey silty sand to sandy silt or clayey silt or silty clay with gravel, cobbles and boulders.

Practical refusal to augering or the DCPT was encountered at depths ranging from 7.4 to 11.84 m below the existing ground surface.

Reference should be made to the Soil Profile and Test Data Sheets in Appendix 1 for details of the soil profile encountered at each borehole location.

Bedrock

Based on available geological mapping, the subject site is located in an area where the bedrock consists of interbedded limestone and shale of the Verulam Formation and shale of the Billings Formation at depths ranging from 10 to 15 m.

Bedrock was cored within the boreholes BH 5-24, BH 6-245 & BH 7-24. Based on the RQDs of the recovered rock core, the bedrock quality ranges from fair to excellent grey limestone with interbedded shale. The quality of the bedrock was generally observed to improve with depth.

4.3 Groundwater

The groundwater levels observed are summarized in Table 1 below.

Table 1 - Summary of Groundwater Level Readings					
Test Hole Number	Ground Surface Elevation (m)	Groundwater Level (m)	Groundwater Elevation (m)	Recording Date	
BH 1-24	68.37	8.12	60.25	March 14, 2024	
BH 2-24	68.27	-	-	March 14, 2024	
BH 3-24	68.32	5.77	62.55	March 14, 2024	
BH 4-24*	68.29	4.87	63.42	March 14, 2024	
BH 5-24	68.54	5.14	63.40	March 14, 2024	
BH 6-24*	68.12	4.84	63.28	March 14, 2024	
BH 7-24*	68.31	4.75	63.56	March 14, 2024	
BH 1-20*	68.62	4.60	64.02	September 1, 2020	
BH 2-20*	68.46	Dry	-	September 1, 2020	
BH 3-20*	68.11	4.26	63.85	September 1, 2020	
BH 1	-	3.48	-	September 16, 2010	
BH 1	-	5.32	-	September 16, 2010	
BH 3	-	5.30	-	September 16, 2010	
BH 4	-	N/A	-	September 16, 2010	
BH 5	-	4.59	-	September 16, 2010	
BH 6	-	2.18	-	September 16, 2010	

Note: Ground surface elevations at borehole locations were surveyed by Paterson and are referenced to a geodetic datum.

^{*-} Monitoring Well

It should be noted that surface water can be trapped within a backfilled borehole that can lead to higher than typical groundwater level observations. Based on our field observations, experience with the local area and the colouring of the recovered samples, it is expected that the long-term groundwater level is between 4 to 5 m below the existing ground surface within the silty clay layer. The recorded groundwater levels are noted on the applicable Soil Profile and Test Data sheet presented in Appendix 1.

However, it should be noted that groundwater levels are subject to seasonal fluctuations, therefore, the groundwater levels could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. Based on the subsurface conditions encountered in the test holes and the anticipated building depth and loads, it is recommended that the building foundation be comprised of conventional footings placed over an approved bedrock bearing surface or a raft foundation placed over an undisturbed glacial till or approved bedrock bearing surface.

Alternately, to avoid excavating the entire building footprint to the bedrock level, footings could be placed over lean concrete infilled trenches. Near vertical, zero entry trench extending at least 300 mm beyond the footing face should be excavated to a clean bedrock surface approved by the geotechnical consultant. The trenches should be infilled by a minimum of 15 MPa lean concrete to the underside of the footing.

Due to the permeable water bearing glacial till layer at depth, special considerations should be taken for construction excavation and dewatering to avoid excess groundwater pumping and affecting neighbouring properties.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas and other settlement sensitive structures. Existing construction debris should be entirely removed from within the perimeter of all buildings.

Protection of Subgrade (Raft Foundation)

Where a raft foundation is utilized, it is recommended that a minimum 50 mm thick lean concrete mud slab be placed on the undisturbed glacial till subgrade shortly after the completion of the excavation. The main purpose of the mud slab is to reduce the risk of disturbance of the subgrade under the traffic of workers and equipment.

The final excavation to the raft bearing surface level and the placing of the mud slab should be done in smaller sections to avoid exposing large areas of the silty clay or glacial till to potential disturbance due to drying.

Bedrock Removal

Where the bedrock is weathered and/or only small quantities of bedrock need to be removed, hoe ramming is an option of bedrock removal. Where large quantities of bedrock need to be removed, line drilling and controlled blasting may be required.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in proximity of the blasting operations should be conducted prior to commencing construction. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm per second during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Vibration Considerations

Construction operations could be the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain a cooperative environment with the residents.

The following construction equipment could be the source of vibrations: hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether it is caused by blasting operations or by construction operations, could be the cause or the source of detrimental vibrations at the nearby buildings and structures. Therefore, it is recommended that all vibrations be limited.

Two parameters determine the recommended vibration limit, the maximum peak particle velocity (PPV) and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline for structures and pipelines, as per S.P. No: F-1201, the peak particle velocity should be less than 20 mm/s for frequencies less than 40 Hz and 50 mm/s for frequencies above 40 Hz.

These guidelines are at perceivable human level and, in some cases, could be very disturbing to some people. A pre-blast survey is recommended to minimize the risks of claims during or following the construction of the proposed building.

Impacts to City Infrastructure and Mitigation Measures

Due to the proximity of the nearby 3000mm CCST sewer and the 1200mm diameter combined sewer on Arlington, a vibration monitoring program should be utilized to ensure they are not impacted by the proposed excavation and shoring system.

Based on City of Ottawa Standard Provision F-1201 for Use of Explosives, Table 2, peak particle velocities should be limited to the following: 20 mm/s for frequencies 40 Hz and below, and 50 mm/s for frequencies above 40 Hz. While blasting is not anticipated at this site, F-1201 limits are applicable to the monitoring of the CCST sewer and the combined sewer on Arlington Avenue.

Reviewing the provided drawings, some bedrock removal may be required via hoe-ramming and/or line drilling in addition to the installation of the shoring system via piling. The CCST sewer below Kent Street and the combined sewer at Arlington Avenue are approximately 10 m and 9 m, respectively, from the closest site boundaries. Vibrations will dissipate through the subsurface due to the distance between the subject site and the utilities. Hoe-ramming and/or piling activities should not exceed the limits provided by City of Ottawa F-1201 at the aforementioned utilities.

Paterson recommends a vibration monitoring program to be completed during all rock breaking, shoring and piling activities at the subject site. Vibration monitors should be installed directly in contact over the CCST pipe. The vibration consultant should determine acceptable limits at the perimeters of the site to ensure that vibrations at the CCST sewer below Kent Street and the combined sewer at Arlington Avenue are within the limits provided by F-1201.

Fill Placement

Fill used for grading beneath the proposed building footprint, unless otherwise specified, should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be tested and approved prior to delivery to the site. It should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building area should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified site excavated soil can be used as general landscaping fill where settlement of the ground surface is of minor concern.

These materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD.

Site excavated soils are not suitable for use as backfill against foundation walls due to the frost heave potential of the site excavated soils below settlement sensitive areas, such as concrete sidewalks and exterior concrete entrance areas.

Bearing Surface Preparation

The excavation is expected to be completed below the groundwater table. Where the bearing surface will consist of glacial till, measures to protect against heaving and ground disturbance should be put in place. Accordingly, it is recommended that the entirety of each building footprint be excavated to the underside of footing elevation, and then covered with a 150 mm thick mud slab to protect the glacial till from disturbance.

Furthermore, groundwater pumping using dry wells with sump pumps which are located centrally within the excavation will be required to control the influx of water during construction. Details can be provided once the groundwater influx is better assessed during the excavation process.

Lean Concrete Infilled Trenches

Where footings are designed to be supported on bedrock, and the bedrock is not encountered at the design underside of footing elevation, consideration should be given to excavating zero-entry vertical trenches to expose the underlying bedrock surface and then backfilling with lean concrete (15 MPa 28-day compressive strength). Typically, the excavation sidewalls will be used as the form to support the concrete. The trench excavation should be at least 150 mm wider than all sides of the footing at the base of the excavation.

The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying bedrock. The excavation bottom should be relatively clean using the hydraulic shovel only (no worker entry). Once approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

Footings placed on lean concrete filled trenches extending to the bedrock surface can be designed using a factored bearing resistance value at ultimate limit states (ULS) of **2000 kPa**. This is discussed further below.

5.3 Foundation Design

Option 1: Conventional Footings

Conventional spread and pad footings placed on the upper levels of the fractured bedrock a clean, surface sounded sandstone bedrock bearing surface can be designed using a factored bearing resistance value at ultimate limit states (ULS) of **2,000 kPa**, incorporating a geotechnical resistance factor of 0.5.

A factored bearing resistance value at ULS of **7,000 kPa**, incorporating a geotechnical resistance factor of 0.5, can be used for footings founded on clean, surface sounded bedrock and the bedrock is free of seams, fractures and voids within 1.5 m below the founding level. This could be verified by completing and probing 50 mm diameter drill holes to a depth of 1.5 m below the founding level within the footing footprint(s). One drill hole should be completed per footing. The drill hole inspection should be completed by the geotechnical consultant.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

Alternately, where the bedrock is deeper then the proposed USF elevation, the footings can be lowered by placing them over concrete in-filled (minimum 15 MPa) zero entry, near vertical trenches extended to a surface sounded bedrock bearing surface using the same bearing resistance values. The concrete in-filled trenches should extend a minimum 300 mm beyond the footing faces in all directions. The construction of the lean concrete trenches can be completed as per the recommendations provided on Section 5.2.

Settlement

Footings bearing on an acceptable bedrock bearing surface and designed using the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

Option 2: Raft Foundation

Alternately, a raft foundation can be constructed to support the high-rise portion of the proposed building consist of a raft foundation bearing on undisturbed glacial till or bedrock.

For 3 levels of underground parking, it is anticipated that the excavation will extend to a depth such that the underside of the raft slab would be placed between 10 to 11 m. The contact pressure provided considers the stress relief associated with the soil removal required for 3 levels of underground parking.

The amount of settlement of the raft slab will be dependent on the sustained raft contact pressure. The loading conditions for the contact pressure are based on sustained loads, that are generally taken to be 100% Dead Load and 50% Live Load.

For 2 levels of underground parking at a founding elevation of approximately 60.0 m, a bearing resistance value at SLS (contact pressure) of **430 kPa** will be considered acceptable for a raft supported on the undisturbed glacial till or sound bedrock. It should be noted that the weight of the raft slab and everything above must be included when designing with this value. The factored bearing resistance (contact pressure) at ULS can be taken as **650 kPa**. For this case, the modulus of subgrade reaction was calculated to be **17.0 MPa/m** for a contact pressure of **430 kPa**.

The raft foundation design is required to consider the relative stiffness of the reinforced concrete slab and the supporting bearing medium. A geotechnical resistance factor of 0.5 was applied to the bearing resistance values at ULS.

Settlement

The total and differential settlement will be dependent on characteristics of the proposed buildings. For design purposes, the total and differential settlements are estimated to be 25 to 20 mm, respectively.

Bedrock/Soil Transition

If the raft slab is constructed in the areas underlain by bedrock, it is recommended that a minimum 500 mm thick layer (native soil and or crushed stone layer) be present between the raft slab and the bedrock surface to reduce the risks of bending stresses developing in the concrete slab. The rock should be broken down a minimum of 500 mm and backfill using Granular B Type II crushed stone compacted to 98% of the material's SPMDD. The bending stress could lead to cracking of the concrete slab. This requirement could be waived in areas where the bedrock surface is relatively flat within the footprint of the building. This recommendation does not refer to potential concrete shrinkage cracking which should be controlled in the usual manner.

Foundation Option 3: Drilled Shafts and Caissons

As an alternative to the above two (2) options, cast-in-place caissons, socketed into bedrock can be considered where supplemental axial resistance is required for structural design for the proposed building. The caisson should be installed by driving a temporary steel casing and excavating the soil through the casing. A minimum of 35 MPa concrete should be used to in fill the caissons. The caissons are to be structurally reinforced over their entire length. The caissons will primarily be designed for friction resistance between the shaft and the rock.

It is recommended that the concrete caisson be socketed minimum of 3 m into sound bedrock. The axial capacity is increased by the shear capacity of the concrete/rock interface. Furthermore, the tensile resistance of the caisson is increased by the rock capacity. It should be noted that the rock socket should be reinforced. An ultimate unit friction resistance of 1000 kPa will be applicable to the piles.

Table 2 below presents the estimated capacity for different typical caisson sizes for rock socketed caisson extending into sound bedrock.

Caisson Diameter		Socket Depth	Axial Capacity (kN)	
inch	mm	(m)	Rock Socket	
		3	9425	
42	1,000	4	12566	
		5	15708	
		3	11310	
48	1,200	4	15080	
		5	18850	
		3	14137	
60	1,500	4	18850	
		5	23562	

Notes:

- Reinforced caisson and rock socket when applicable
- 0.4 geotechnical factor applied to the shaft capacity

The minimum recommended centre-to-centre pile spacing is 3 times the pile diameter. The closer the piles are spaced, however, the more potential that the installation of subsequent piles in a group could have influence on piles in the group that have already been driven. These effects, primarily consisting of uplift of previously installed piles.

Settlement

Footings placed completely over an acceptable bedrock bearing surface will be subjected to negligible post construction total and differential settlements.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels.

Adequate lateral support is provided to a silty clay or glacial till bearing medium when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V, passes only through in situ soil or engineered fill of the same or higher capacity as the soil.

Adequate lateral support is provided to a sound bedrock bearing medium when a plane extending down and out from the bottom edge of the footing at a minimum of 1H:6V (or flatter) passes only through sound bedrock or a material of the same or higher capacity as the bedrock, such as concrete. A heavily fractured, weathered bedrock bearing medium will require a lateral support zone of 1H:1V (or flatter).

5.4 Design for Earthquakes

Shear wave velocity testing was completed for the subject site to accurately determine the applicable seismic site classification for the proposed buildings in accordance with Table 4.1.8.4.A of the Ontario Building Code (OBC) 2012. The shear wave velocity testing was completed by Paterson personnel. The results of the shear wave velocity test are provided in Figures 2 and 3 in Appendix 2 of the present report.

Field Program

The seismic array testing location was placed as presented on drawing PG5933-1-Test Hole Location Plan, attached to the present report. Paterson field personnel placed 24 horizontal 4.5 Hz. geophones mounted to the surface by means of two 75 mm ground spikes attached to the geophone land case.

The geophones were spaced at 2 m intervals and connected by a geophone spread cable to a Geode 24 Channel seismograph.

The seismograph was also connected to a computer laptop and a hammer trigger switch attached to a 12-pound dead blow hammer. The hammer trigger switch sends a start signal to the seismograph. The hammer is used to strike an I-Beam seated into the ground surface, which creates a polarized shear wave. The hammer shots are repeated between four (4) to eight (8) times at each shot location to improve signal to noise ratio.

The shot locations are also completed in forward and reverse directions (i.e.-striking both sides of the I-Beam seated parallel to the geophone array). The shot locations were 15.0, 3.0 and 2.0 m away from the first and last geophone, and at the centre of the seismic array.

Data Processing and Interpretation

Interpretation for the shear wave velocity results was completed by Paterson personnel. Shear wave velocity measurement was made using reflection/refraction methods. The interpretation is performed by recovering arrival times from direct and refracted waves.

The interpretation is repeated at each shot location to provide an average shear wave velocity, V_{s30} , of the upper 30 m profile, immediately below the foundation of the buildings. The layer intercept times, velocities from different layers and critical distances are interpreted from the shear wave records at each location.

The bedrock velocity was interpreted using the main refractor wave velocity, which is considered a conservative estimate of the bedrock velocity due to the increasing quality of the bedrock with depth. It should be noted that as bedrock quality increases, the bedrock shear wave velocity also increases.

Based on our testing results, the average overburden shear wave velocity is **124 m/s**, while the bedrock shear wave velocity is **2,045 m/s**. Further, the testing results indicate the average overburden thickness to be approximately 10 m.

Site Class for Buildings Founded Directly or Indirectly on Bedrock

If the building foundation consists of footings founded on the bedrock surface or lean concrete filled trenches extended to the underlying bedrock surface, the Vs₃₀ was calculated using the standard equation for average shear wave velocity provided in the OBC 2012 and as presented below:

$$V_{s30} = \frac{Depth_{of\ interest}(m)}{\left(\frac{Depth_{Layer1}(m)}{V_{S_{Layer1}}(m/s)} + \frac{Depth_{Layer2}(m)}{V_{S_{Layer2}}(m/s)}\right)}$$

$$V_{s30} = \frac{30\ m}{\left(\frac{30\ m}{2,045\ m/s}\right)}$$

$$V_{s30} = 2.045\ m/s$$

Based on the results of the shear wave velocity testing, the average shear wave velocity, V_{s30} , for the proposed buildings is **2,045 m/s** provided the totality of the footings are placed directly on the bedrock surface or zero entry lean concrete filled trenches are extended to the bedrock surface.

Therefore, for the previously mentioned foundation, a **Site Class A** is applicable for design as per Table 4.1.8.4.A of the OBC 2012. However due to bedrock variation on site and currently proposed elevations it is expected that the foundation will be approximately 3.0 m above bedrock. See below for seismic site classification for 2 levels of underground parking levels.

The soils underlying the subject site are not susceptible to liquefaction.

Site Class for Buildings Founded on Overburden and Within 3 m of Bedrock

If the building foundation consists of conventional footings founded on soil, or a raft foundation located on soil, and bedrock is anticipated to be located within a maximum depth of 3 m of the founding depth or at an approximate elevation of 60.0 m, the Vs₃₀ was calculated using the standard equation for average shear wave velocity provided in the OBC 2012 and as presented below:

$$V_{s30} = \frac{Depth_{of\ interest}(m)}{\left(\frac{Depth_{Layer1}(m)}{V_{S_{Layer1}}(m/s)} + \frac{Depth_{Layer2}(m)}{V_{S_{Layer2}}(m/s)}\right)}$$

$$V_{s30} = \frac{30\ m}{\left(\frac{3\ m}{124\ m/s} + \frac{27\ m}{2,045\ m/s}\right)}$$

$$V_{s30} = 802\ m/s$$

Based on the results of the shear wave velocity testing, the average shear wave velocity, V_{s30} , for the proposed buildings with foundation located within 3 m of the bedrock surface is **802 m/s**.

Therefore, a **Site Class B** is applicable for design of buildings if footings will be founded upon a soil bearing surface within 3 m of the bedrock, or a raft foundation located within 3 m of the bedrock surface, and as per Table 4.1.8.4.A of the OBC 2012.

The soils underlying the subject site are not susceptible to liquefaction.

5.5 Basement Slab

Multi-Storey Buildings

The basement areas for the proposed project will be mostly parking and the recommended pavement structure noted in Subsection 5.7 will be applicable. However, if storage or other uses of the lower level where a concrete floor slab will be constructed, the upper 200 mm of sub-slab fill is recommended to consist of 19 mm clear crushed stone. The upper 200 mm sub-slab fill is recommended to consist of OPSS Granular A crushed stone for slab on grade construction.

All backfill material within the footprint of the proposed building(s) should be placed in a maximum of 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. All backfill material within the footprint of the proposed building(s) should be placed in a maximum of 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

In consideration of the groundwater conditions encountered at the time of the current and previous fieldwork, a subfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone under the lower basement floor (discussed in Subsection 6.1).

5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the basement walls of the subject structure.

However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a bulk (drained) unit weight of 20 kN/m³.

Where undrained conditions are anticipated (i.e. below the groundwater level), the applicable effective (undrained) unit weight of the retained soil can be taken as 13 kN/m³, where applicable. A hydrostatic pressure should be added to the total static earth pressure when using the effective unit weight.

Two distinct conditions, static and seismic, should be reviewed for design calculations. The corresponding parameters are presented below.

Lateral Earth Pressures

The static horizontal earth pressure (p_0) can be calculated using a triangular earth pressure distribution equal to $K_0 \cdot \gamma \cdot H$ where:

 K_{\circ} = at-rest earth pressure coefficient of the applicable retained material (0.5)

 $y = \text{unit weight of fill of the applicable retained soil (kN/m}^3)$

H = height of the wall (m)

An additional pressure having a magnitude equal to $K_0 \cdot q$ and acting on the entire height of the wall should be added to the above diagram for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure will only be applicable for static analyses and should not be used in conjunction with the seismic loading case.

Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

Seismic Earth Pressures

The total seismic force (P_{AE}) includes both the earth force component (P_o) and the seismic component (ΔP_{AE}).

The seismic earth force (ΔP_{AE}) can be calculated using $0.375 \cdot a_c \cdot \gamma \cdot H^2/g$ where:

 $a_c = (1.45 - a_{max}/g)a_{max}$

y = unit weight of fill of the applicable retained soil (kN/m³)

H = height of the wall (m)

 $g = gravity, 9.81 \text{ m/s}^2$

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32 g according to OBC 2012. Note that the vertical seismic coefficient is assumed to be zero.

The earth force component (P_o) under seismic conditions can be calculated using $P_o = 0.5 \text{ K}_o \text{ y H}^2$, where $K_o = 0.5$ for the soil conditions noted above.

The total earth force (PAE) is considered to act at a height, h (m), from the base of the wall, where:

$$h = {P_o \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)}/P_{AE}$$

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

5.7 Pavement Design

Rigid Pavement Structures

For design purposes, it is recommended that the rigid pavement structure for the lower underground parking level of the proposed building consist of Category C2, 32 MPa concrete at 28 days with air entrainment of 5 to 8%. The recommended rigid pavement structure is further presented in Table 3 below.

To control cracking due to shrinking of the concrete floor slab, it is recommended that strategically located saw cuts be used to create control joints within the concrete floor slab of the lower underground parking level. The control joints are generally recommended to be located at the center of the column lines and spaced at approximately 24 to 36 times the slab thickness (for example; a 0.15 m thick slab should have control joints spaced between 3.6 and 5.4 m). The joints should be cut between 25 and 30% of the thickness of the concrete floor slab and completed as early as 4 hour after the concrete has been poured during warm temperatures and up to 12 hours during cooler temperatures.

Table 3 – Recommended Rigid Pavement Structure – Lower Parking Level				
Thickness (mm)	Material Description			
125	Exposure Class C2 – 32 MPa Concrete (5 to 8% Air Entrainment)			
300	BASE – OPSS Granular A Crushed Stone			
SUPORARE Friedrick and 150 and				

SUBGRADE – Existing imported fill, or OPSS Granular B Type I or II material placed over in situ soil or bedrock.

Flexible Pavement Structures

The flexible pavement structure presented in Table 4 and Table 5 below should be used for driveways and car only parking areas and at grade access lanes and heavy loading parking areas.

Table 4 - Recommended Pavement Structure - Car Only Parking Areas				
Material Description				
Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete				
BASE - OPSS Granular A Crushed Stone				
SUBBASE - OPSS Granular B Type II				

SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill

Table 5 - Recommended Pavement Structure Access Lanes and Heavy Truck Parking Areas				
Thickness (mm) Material Description				
40	Wear Course - Superpave 12.5 Asphaltic Concrete			
50	Binder Course - Superpave 19.0 Asphaltic Concrete			
150	BASE - OPSS Granular A Crushed Stone			
450	SUBBASE - OPSS Granular B Type II			
SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ				

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable vibratory equipment.

soil or fill

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

Consideration should also be given to installing subdrains during the pavement construction as per City of Ottawa standards. These drains should extend in four orthogonal directions or longitudinally when placed along a curb. The clear crushed stone surrounding the drainage lines, or the pipe should be wrapped with suitable filter cloth. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines. Discharge of the subdrains should be directed by gravity to storm sewers or deeper drainage ditches.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage and Waterproofing

For the proposed underground parking levels of the high-rise buildings, it is expected that the building's foundation walls will be placed in close proximity to the site boundaries. Therefore, it is recommended that the foundation walls be blind poured against a drainage system and waterproofing system fastened to a near watertight shoring system.

Waterproofing of the foundation walls is recommended, and the waterproofing membrane is to be installed from 300 mm above the proposed P1 level to the bottom of foundation.

It is also recommended that a composite drainage system, such as Delta Drain 6000 or equivalent, be installed over the waterproofing membrane and extend from the exterior finished grade to the founding elevation (underside of footing or raft slab). The purpose of the composite drainage system is to direct any water infiltration resulting from a breach of the waterproofing membrane to the building sump pit. It is recommended that 150 mm diameter sleeves at 3 m centres be cast in the foundation wall at the perimeter footing or raft slab interface to allow the infiltration of water to flow to an interior perimeter underfloor drainage pipe. The perimeter drainage pipe should direct water to sump pit(s) within the lower basement area.

If a permeable shoring system is considered a tanked raft foundation should be considered for final design.

Sub-slab Drainage

Sub-slab drainage will be required to control water infiltration below the lowest level floor slabs. For preliminary design purposes, we recommend that 100 or 150 mm perforated pipes be placed at approximately 6 m centres. The spacing of the sub-slab drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

Subfloor Water Infiltration

Due to the variability in the limestone, it is expected that water might infiltrated through seems and cracks. Paterson should review the water infiltration.

It is recommended to carry a minimum 150 mm mubslab and horizontal membrane to act has hydraulic barrier on top of the bedrock.

Elevator Pit Waterproofing

The horizontally applied Colphene BSW H waterproofing membrane (or approved other) should be placed on an adequately prepared mud slab and extend vertically within the inside of the temporary forms of the elevator raft slab. Once the concrete raft slab and elevator shaft sidewalls are poured in place, it is recommended that a waterproofing membrane, such as Colphene Torch'N Stick (or approved other) should be applied to the exterior of the elevator pit sidewalls. The Colphene Torch'N Stick waterproofing membrane should extend over the vertical portion of the previously applied Colphene BSW H waterproofing membrane installed on the concrete raft slab in accordance with the manufacturer's specifications. As a secondary defense, a continuous PVC waterstop such as Southern waterstop 14RCB or equivalent should be installed within the concrete raft slab below the elevator pit sidewalls.

A protection board should be placed over the waterproofing membrane to protect the waterproofing membrane from damage during backfilling operations. The area between the elevator pit and bedrock excavation face should be in-filled with lean concrete, OPSS Granular B Type 2 or Granular A crushed stone. Refer to Figure 4 — Waterproofing System for Elevator, for specific details of the elevator waterproofing in Appendix 2.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free draining non frost susceptible granular materials, such as clean sand or OPSS Granular A granular material. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls.

Adverse Effects from Dewatering on Adjacent Structures

Since the excavation is expected to extend in a water bearing clayey till, construction dewatering is not recommended at depths greater than 5 to 6 m. The excavation should consider the use of a nearly waterproofed shoring system. It is estimated that groundwater lowering will affect the residential neighborhood to the north if more than 400,000 L/day is pumped during the excavation process. The use of a secant or diaphragm wall socketed a minimum of 1.5 m in bedrock will lower the groundwater infiltration into the excavation to controllable and acceptable levels.

The temporary dewatering of the bedrock during the excavation and construction stage will not be susceptible to significant consolidation.

Implementation of dual use shoring system recommended above is expected to limit the drawdown of the local groundwater table over the long term and in a limited area. Therefore, in our opinion, no adverse effects to nearby structures and infrastructure are expected over the long term if a watertight shoring is used for construction.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided in this regard.

Exterior unheated footings, such as isolated piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m, or an equivalent combination of soil cover and foundation insulation.

The foundations for the underground parking levels are expected to have sufficient frost protection due to the founding depth. However, it has been our experience that insufficient soil cover is typically provided to entrance ramps to underground parking garages.

Paterson requests permission to review design drawings prior to construction to ensure proper frost protection is provided for these areas.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be excavated at acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled.

Given the proximity of the underground parking levels to the property lines, it is expected that a temporary shoring will be required to support the excavation for this proposed development.

Unsupported Excavations

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level.

The subsurface soils are considered to be Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not remain open for extended periods of time.

Temporary Shoring

Temporary shoring will be required for the overburden soil to complete the required excavations where insufficient room is available for open cut methods. The shoring requirements designed by a structural engineer specializing in those works will depend on the depth of the excavation, the proximity of the adjacent structures and the elevation of the adjacent building foundations and underground services. The design and implementation of these temporary systems will be the responsibility of the excavation contractor and their design team. Inspections and approval of the temporary system will also be the responsibility of the designer.

The geotechnical information provided below is to assist the designer in completing a suitable and safe shoring system. The designer should take into account the impact of a significant precipitation event and designate design measures to ensure that precipitation will not negatively impact the shoring system, or soils supported by the system. Any changes to the approved shoring design system should be reported immediately to the owner's structural design prior to implementation.

The temporary shoring system is recommended to consist of secant pile walls or pile and sheet pile system such as a combi-wall which could be cantilevered. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be added to the earth pressures described below. The earth pressures acting on the shoring system may be calculated using the following parameters.

It is recommended to use a watertight shoring system to reduce water infiltration into the excavation and building and prevent dewatering of the surrounding areas. A waterproof shoring system will also ensure the stability of the soil at the back of the wall and prevent washouts caused by high water infiltration.

Generally, it is expected that the shoring systems will be provided with tie-back rock anchors to ensure their stability.

The shoring system is recommended to be adequately supported to resist toe failure and inspected to ensure that the sheet piles extend well below the excavation base. It should be noted if consideration is being given to utilizing a raker style support for the shoring system that lateral movements can occur and the structural engineer should ensure that the design selected minimizes these movements to tolerable levels.

The earth pressures acting on the shoring system may be calculated with the following parameters.

Table 6 – Soils Parameter for Shoring System Design				
Parameters	Values			
Active Earth Pressure Coefficient (Ka)	0.33			
Passive Earth Pressure Coefficient (Kp)	3			
At-Rest Earth Pressure Coefficient (K ₀)	0.5			
Unit Weight (γ), kN/m³	20			
Submerged Unit Weight (γ), kN/m³	13			

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible. The dry unit weight should be calculated above the groundwater level while the effective unit weight should be calculated below the groundwater level.

The hydrostatic groundwater pressure should be included in the earth pressure distribution wherever the effective unit weight is calculated for earth pressures. If the groundwater level is lowered, the dry unit weight for the soil should be calculated to full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on a soil subgrade. The bedding should extend to the spring line of the pipe. Cover material, should be placed from the spring line to a minimum of 300 mm above the obvert of the pipe, should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe).

The bedding and cover materials should be placed in maximum 225 mm thick lifts and compacted to 98% of the SPMDD.

Generally, it should be possible to re-use the moist (not wet) silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay material will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) and above the cover material should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 98% of the material's SPMDD.

All cobbles larger than 200 mm in their longest direction should be segregated from re-use as trench backfill.

Clay Seals

Where silty clay is encountered, to reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, sub-bedding and cover material.

The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the material's SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all subgrades, regardless of the source, to prevent disturbance to the founding medium.

Groundwater Control for Building Construction

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR).

A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Persons as stipulated under O.Reg. 63/16.

Long-term Groundwater Control

Long-term groundwater control will be required for the subject site to prevent dewatering of the surrounding areas. Our recommendations for the proposed building's long-term groundwater control are presented in Subsection 6.1.

Any groundwater which breaches the building's perimeter groundwater infiltration control system will be directed to the sump pit. Provided the proposed groundwater infiltration control system is properly implemented and approved by the geotechnical consultant at the time of construction, it is expected that long-term groundwater flow will be very low to negligible (ie.- less than 30,000 L/day).

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures using straw, propane heaters and tarpaulins or other suitable means.

In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost into the subgrade or in the excavation walls and bottoms.

Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site.

The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of an aggressive to very aggressive corrosive environment.

6.8 Hydraulic Conductivity and Groundwater Infiltration

Hydraulic conductivity testing was completed at all boreholes outfitted with monitoring wells screened within the overburden material and below the bedrock surface. Falling head tests ("slug testing") were completed in accordance with ASTM Standard Test Method D4404 - Field Procedure for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers.

Following the completion of the slug testing, the test data was analyzed as per the method set out by Hvorslev (1951). Assumptions inherent in the Hvorslev method include a homogeneous and isotropic aquifer of infinite extent with zero-storage assumption, and a screen length significantly greater than the monitoring well diameter.

The assumption regarding aquifer storage is considered to be appropriate for groundwater flow through the overburden aquifer. The assumption regarding screen length and well diameter is considered to be met based on the screen lengths of 1.5 m and well diameter of 0.0508 m.

While the idealized assumptions regarding aquifer extent, homogeneity, and isotropy are not strictly met in this case (or in any real-world situation), it has been our experience that the Hvorslev method produces effective point estimates of hydraulic conductivity in conditions similar to those encountered at the subject site.

The Hvorslev analysis is based on the line of best fit through the field data (hydraulic head recovery vs. time), plotted on a semi-logarithmic scale. In cases where the initial hydraulic head displacement is known with relative certainty, such as in this case where a physical slug has been introduced/removed, the line of best fit is considered to pass through the origin.

Results

Based on testing at the subject site, the hydraulic conductivity values for the glacial till varies from 2.02x10⁻⁶ to 2.32x10⁻⁶ m/s. Based on testing at the subject site, the hydraulic conductivity values for the bedrock varies from 3.68x10⁻⁷ to 2.01x10⁻⁵ m/s. The results from the hydraulic conductivity testing have been included in Appendix 1. An estimate on water infiltration can be made once more detail drawings are available.

Estimated Groundwater Infiltration during Construction

The dewatering and infiltration quantity estimated below are based on the current information for the proposed development. Based on available plans at the time of writing it is expected that the towers will be constructed over 3 levels of underground parking.

Based on the hydraulic conductivity testing results of the overburden and bedrock material, a conservative unfactored steady state volume of groundwater is anticipated to be approximately between 700,000 L/day to >1,000,000 L/day if the entire proposed excavation does not extend below a depth of 12 m below the existing ground surface.

Note that excavation in bedrock can lead to highly variable conditions in the case an open fracture is encountered. The contractor should be ready to seal open factures to limit the influx of water.

It should be noted that the calculated infiltration rates do not account for the initial groundwater inflow into the excavation resulting from perched water conditions. The estimate is provided for a fully open excavation. A factor of safety should be applied to the calculated infiltration rates to account for perched conditions, variability in the overburden material and the quality of bedrock, levels of hydrostatic pressure in the bedrock, and any unforeseen circumstances that may arise during construction activities.

It should also be noted that an additional 150,000 L/day of surface water infiltration can be expected during a 5yr-1hr duration precipitation event based on the proposed building footprint.

7.0 Recommendations

It is a requirement for the foundation data provided herein to be applicable that the following material testing, and observation program be performed by the geotechnical consultant.

- Review of the as built grading plan, from a geotechnical perspective.
- Review of the contractor's design of the temporary shoring system.
- Review and inspection of the foundation waterproofing system and all foundation drainage systems.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials.
- ➤ Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- > Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

All excess soils, with the exception of engineered crushed stone fill, generated by construction activities that will be transported on-site or off-site should be handled as per *Ontario Regulation 406/19: On-Site and Excess Soil Management*.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by Paterson.

8.0 Statement of Limitations

The recommendations provided are in accordance with the present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Brigil, or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

MACE OF ON DORY R. Villeneuve, M.A.Sc., P.Eng., ing.

Paterson Group Inc.

Pratheep Thirumoolan, M.En

Report Distribution:

□ Brigil (email copy)

☐ Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS
SYMBOLS AND TERMS
SOIL PROFILE AND TEST DATA SHEETS BY OTHERS
ANALYTICAL TESTING RESULTS
HYDRAULIC CONDUCTIVITY TESTING

Geotechnical Investigation

265 Catherine Street, Ottawa, Ontario

COORD. SYS.: MTM ZONE 9 **EASTING:** 367730.27 **NORTHING:** 5030161.17 **ELEVATION:** 67.85

PROJECT: Proposed Mixed Use Development FILE NO. : PG5933

ADVANCED BY: Excavator

REMARKS: DATE: June 12, 2025 HOLE NO.: TP 1-25

REMARKS:					DATE: J	June 12	, 202	5		HOLE NO. :	IP 1-25		
				S	AMPLE			■ F		SIST. (BLOWS/0 50mm DIA. CON			
						-		20		0 60	80		1
	_		o.	[e		WATER CONTENT (%)	^					PIEZOMETER CONSTRUCTION	=
SAMPLE DESCRIPTION	STRATA PLOT		TYPE AND NO.	RECOVERY (%)		K	Δ.			SHEAR STRENG			ELEVATION (m)
	<u> </u>	DEPTH (m)	Ş	<u>K</u>	N OR RQD	၂႘ ိ်	•			SHEAR STRENG			ြင့်
	¥	푸	Щ	0	ă X	HH		20		60 60	80		∣₹
	🛂	Ē	Ϋ́	l Ö	<u>e</u>	₩		PL (%)	WAIE	ER CONTENT (%) LL (%)		9
GROUND SURFACE	ဟ			~	z	5		20	4	0 60	80	<u> </u>	ш
ASPHALT 0.06m [67.79m]													
FILL: Brown silty sand, with gravel and cobbles,	\bowtie	1					:	: :	į				
													1
trace brick and concrete	\bowtie	1					:	: :	į				67
	$\otimes \otimes \otimes$	1-								ļ <u>ģ</u> .			01
	\otimes	7					:	: :	:				
		7											
		3											
1.90m [65.95m]	\boxtimes	-							i				66
Grey SILTY CLAY	WW	2									} · · · · · · · · · · · · · · · · · · ·		1
	18KA	=							i				
											ļ <u>ļ</u> ļ		
	M								:				1
	MM												65
		3-					:						1
	M/A	3							- 1				
		=								<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		=											
		4_						: : 		: : : : : : : : : : : : : : : : : : :	1		64
	KK/A												
	M/A	1											
		1					:						
		7							- 1				63-
		5-					:]		1		
	KK/A	3											1
											1		1
		=					:	: :	:				
													62
		6-						· · · · · · · · · · · · · · · · · · ·	1.1				
	KK/A	1											
	M/A	3							[ļļļ	ļļļ		1
]					:	:	i				
		7_											61-
		′ 🖠							į				1
7.40m [60.45m]		=					:	: :					1
GLACIAL TILL: Grey silty clay, with sand, gravel,	\[\bar{\sigma} \sigma \sigma \sigma \]									3 (*) 1			
cobbles and boulders	A A A A						:		:				60
	$ \begin{array}{c c} \Delta & \Delta & \Delta & \Delta \\ \Delta & \Delta & \Delta & \Delta \end{array}$	8-									<u> </u>		
	$ \begin{picture}(20,0) \put(0,0){\line(1,0){10}} \put(0,$	\exists					:						
8.50m [59.35m]	\(\neq \times \t									: : : : : : : : : : : : : : : : : : :	: : : : : : : : : : : : : : : : : : :		
End of Test Pit		=											
													59-
Proptical Refusal to execution at 9.50 m don't		9-											1
Practical Refusal to excavation at 8.50 m depth									:				
										<u> </u>	<u> </u>		
		7							:				
	<u>L</u>	10					<u> </u>	<u> </u>	<u>:</u>	<u>i i i i i i i i i i i i i i i i i i i </u>	<u> </u>		58
DIOOLAIMED THE DATA DRECENTED IN THIS SHEET IS THE	E DDC5	SEDE) (d	>F DAT'	-000	N OBOUS	T	- 01 15			IT MAC DOCCU	OED THIS CHE		

DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHOM IT WAS PRODUCED. THIS SHEET SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

PAGE: 1/1

P:/AutoCAD Drawings/Test Hole Data Files/PG5933/data.sqlite 2025-07-25, 15:12 Paterson_Template GP

Geotechnical Investigation

265 Catherine Street, Ottawa, Ontario

COORD. SYS.: MTM ZONE 9 **EASTING:** 367742.75 **NORTHING:** 5030131.48 **ELEVATION:** 68.08

PROJECT: Proposed Mixed Use Development FILE NO. : PG5933

ADVANCED BY: Excavator

REMARKS: DATE: June 12, 2025 HOLE NO.: TP 2-25

REMARKS:					DATE: .	June 12	, 202	25		HOLE	NO. :	TP 2-	25		
				S	AMPLE					IST. (BLC					
						⊨		20	40		60	80			
	₋		o.	 			Δ							8	
SAMPLE DESCRIPTION	STRATA PLOT		TYPE AND NO.	RECOVERY (%)	_	WATER CONTENT (%)				HEAR ST				PIEZOMETER CONSTRUCTION	
	 	E	Ä	띮	ઠ	ပို့ ခွ	_	20	40		60	80		듄윤	
	¥	₹	Ď.	8	82	造 一				R CONTE		LL (%	, —	ZO	
GROUND SURFACE	STF	DEPTH (m)	₹		N OR RQD	≸		20	40	$ \sim$	60		'	분형	
	 X X X 		÷	\vdash		+		20	40	-	60	80 '	:		H
SPHALT 0.06m [68.02m] ¹															
ILL: Brown silty sand, with gravel		=						ļ.,					<u>;</u>		
ILL: Brown silty sand	\bowtie								: :		: :		:		
ILL. DIOWIT SIITY SAITU	\otimes														
		'3										:			
		-										:			
		-						1 1				:	:		
2 20 [CE 00]		2-						ļ	dered.		. [] .				
2.20m [65.88m]		-										:			
OPSOIL 2.60m [65.48m]								<u>.</u>					<u>:</u>		
irey SILTY CLAY	(XX)											:	:		
JOY OIL! I OLA!		3											<u> </u>		
	MA	3													
	MM	=							: :	:	: :	:			
	WW	=											:		
	W											- 1			
	M	4-						de de la constanción	ii		. [] .		<u> </u>		
]													
		-											<u>:</u>		
	MA											:			
	MA	_ =						: :	: :	Ė	1 1	i i	:		
	WW	5-													
	W	=										- 1			
	MM.	=													
		=						: :	: :	Ė	1 1	i i	:		
	M	6-							. j j.				į		
]										į			
	M							ļ					<u>:</u>		
	MM											:			
	MM	7_						1 1			: :		:		
	MM	'=								-					
	KKK	=										:			
7.70m [60.38m]	WW	=						· · · · · · · · · · · · · · · · · · ·	1						
LACIAL TILL: Grey silty clay, with sand, gravel,	$\triangle \triangle \triangle \triangle$: :	:	: :	:			
obbles and boulders	$ \begin{picture}(20,0) \put(0,0){\line(1,0){10}} \put(0,$	8-						<u> </u>	· [· · · · · [. <u> </u>		<u> </u>		
DUDIES AND DUDIDES	\[\times \qq \qq \]]										:			
	$ \begin{array}{c c} A & A & A & A \\ \hline A & A & A & A \end{array} $	=						ļ					<u>;</u>		
	$\triangle \triangle \triangle \triangle$							1 1	i	:		1			
8.90m [59.18m]	$ abla \ \Delta \ \Delta \ \Delta $:			
nd of test Pit		9-													
]						1 1	i	:		1			
ractical Refusal to excavation at 8.90 m depth		=													
		=										:			
		10 -						1 1	<u>: i</u>	1	1 1	1	:		\perp

DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHOM IT WAS PRODUCED. THIS SHEET SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

PAGE: 1/1

P./AutoCAD Drawings/Test Hole Data Files/PG5933/data.sqlite 2025-07-25, 15:12 Paterson_Template G

Geotechnical Investigation

265 Catherine Street, Ottawa, Ontario

COORD. SYS.: MTM ZONE 9 **EASTING:** 367775.19 **NORTHING:** 5030181.20 **ELEVATION:** 68.27

PROJECT: Proposed Mixed Use Development FILE NO.: PG5933

ADVANCED BY: Excavator

P:/AutoCAD Drawings/Test Hole Data Files/PG5933/data.sqlite 2025-07-25, 15:12 Paterson_Template

REMARKS: DATE: June 12, 2025 HOLE NO.: TP 3-25

REMARKS:					DATE:	June 12	2, 2025	HOLE NO. :	TP 3-25		
				SA	AMPLE	1.	DCPT	ESIST. (BLOWS/0.3 (50mm DIA. CONE)		
SAMPLE DESCRIPTION	STRATA PLOT	DEPTH (m)	TYPE AND NO.	RECOVERY (%)	RQD	WATER CONTENT (%)	20 △ REMOULDEI ▲ UNDRAINED 20	40 60 D SHEAR STRENGT O SHEAR STRENGT 40 60		PIEZOMETER CONSTRUCTION	ELEVATION (m)
GROUND SURFACE	STRA	DEPTI	TYPE	RECO	N OR RQD	WATE	PL (%) WAT	TER CONTENT (%) 40 60	LL (%)	PIEZO	ELEV/
ASPHALT 0.06m [68.21m]/							20	40 60	80		-
FILL: Brown silty sand, with gravel, trace clay		=									68
FILL: Brown silty sand, trace gravel		1_									-
FILL. DIOWITSHLY Salid, flace graver		' =									67
		=									-
		2									-
		=									66
		=									-
Oldy GIETT GEAT		3									-
		=									65 –
		=							121	.	-
		4-									64 –
		=									
		5—									-
		,									63
		=									-
		6									-
		=									62
		=									-
		7-									-
		=									61-
		=									-
8.30m [59.97m]		8-									60 –
GLACIAL TILL: Grey silty sand, with gravel, trace	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=									-
Clay 8.70m [59.57m]/		9-									-
End of Test Pit		9 -									59
		=									-
		10 -							. :		

DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHOM IT WAS PRODUCED. THIS SHEET SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

PAGE: 1/1

Geotechnical Investigation

265 Catherine Street, Ottawa, Ontario

COORD. SYS.: MTM ZONE 9 **EASTING:** 367801.18 **NORTHING:** 5030199.99 **ELEVATION:** 68.38

PROJECT: Proposed Mixed Use Development FILE NO.: PG5933

ADVANCED BY: Excavator

REMARKS: DATE: June 13, 2025 HOLE NO.: TP 4-25

REMARKS:					DATE:	June 13	, 202	5		HOLE N	10. :	TP 4-25		
				SA	AMPLE			■ F		IST. (BLO\ 0mm DIA.				
						⊨		20	40			80		
			<u>⊙</u>	(%)		恒	Δ			SHEAR ST			_ 8	E
SAMPLE DESCRIPTION	STRATA PLOT	=	TYPE AND NO.	RECOVERY (%)	0	WATER CONTENT (%)	A			HEAR STE			PIEZOMETER CONSTRUCTION	ELEVATION (m)
	¥	DEPTH (m)	¥		N OR RQD	K %		20	40) 6	0	80] SE	ĕ
	₹	EPT	Æ		R	AE		PL (%)	WATE	R CONTEN	IT (%)	LL ₍ (%)	ONS EX	4
GROUND SURFACE	, v		<u> </u>	~	z	>		20	40) 6	0	80	<u> </u>	
SPHALT 0.05m [68.33m]	; XXX	- =					:	:						
ILL: Crushed stone and gravel 0.40m [67.98m]	XXXX	=												68
ILL: Brown silty sand	, XXX							:						
ILL. Drown sitty said		1-												
1.30m[67.08m]							:	:						
Grey SILTY CLAY		=						<u>.</u>						67
•														
		2					:							
		_ =						:						
		3						<u>.</u>						66
		3-												
		1						:						
		=												6
		=						:						
		4-												
		. =						:						
		=												6
		=					:	:						
		5-												
]												6
								:						
		6-												
		=												6
								:						
		7-												
		· =						:						
		=												6
		=					:	:				: :		
8.00m[60.38m]		8-												
ACIAL TILL: Grey silty sand, with gravel,	V V V V						:	:						
ccasional cobbles and boulders	0 0 0 0	=												6
	A A A A	‡						:			:			
9.00m [59.38m]	V V V V	9-												
nd of Test Pit							:	:						
]												5
		‡					:							
		10						i	<u>i</u> i	<u> </u>	i	<u> </u>		

DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHOM IT WAS PRODUCED. THIS SHEET SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

PAGE: 1/1

P:/AutoCAD Drawings/Test Hole Data Files/PG5933/data.sqlite 2025-07-25, 15:12 Paterson_Template GP

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

EASTING: 367830.466

Geodetic

DATUM: G

NORTHING: 5030202.891 **ELEVATION:** 68.37

FILE NO. PG5933

HOLE NO.

BORINGS BY: CME 55 Low Clearance F					Februa	ary 28, 20		BH 1-24			
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH	ELEV.		sist. Blows/0.3m mm Dia. Cone	TER	
Ground Surface	STRATA PLOT	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		ter Content %	PIEZOMETER	
ASPHALT with brown silty sand 0.08		- AU	1	<u> </u>		0-	-68.37	0	40 00 00	₩	
FILL: Granular crushed stone 0.30 FILL: Brown silty sand, trace gravel 1.52		ss	2	75	12	1-	-67.37	0			
FILL: Brown silty sand with gravel 1.98	\bowtie	√ss	3	17	30			0			
Stiff, grey SILTY CLAY		<u>7</u> 7				2-	-66.37				
		ss	4	100	<1	2	-65.37		Ο		
		ss	5	100	Р	3	-05.37		04		
		ss	6	92	Р	4-	-64.37	#	0		
		ss	7	75	Р	5-	-63.37	<u> </u>	0 /		
		∛ ss	8	100	Р			4	→		
		∆ ∑ss	9	100	Р	6-	-62.37	\	0		
		ss	10	100	Р	7-	-61.37	∆	6		
0.04		ss	11	100	Р	8-	-60.37	Δ		▓	
8.31 GLACIAL TILL: Loose to compact,		ss	12	83	5				12		
grey silty sand with gravel, trace clay		∑ ss ∑ ss	13	75	2	9-	-59.37				
		∑ ss	14	0	13	10-	-58.37				
with cobbles and boulders by 10.7m depth		∆ ∑ss	15		+50	11-	-57.37	О			
End of Borehole											
Practical refusal to augering at 11.10m depth											
(GWL @ 8.12m - Mar. 14, 2024)											
									40 60 80 10 Strength (kPa) rbed △ Remoulded	00	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

367780.982 EASTING:

DATUM: **REMARKS:**

NORTHING: Geodetic

5030179.343 **ELEVATION**: 68.27

FILE NO.

PG5933

HOLE NO.

ORINGS BY: CME 55 Low Clearance I	Powe	r Auge	er		DATE:	Februa	ary 28, 20)24	BH 2-24	4_
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. I		TER
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		ontent %	PIEZOMETER
round Surface				~	_	0-	-68.27	20 40	60 80	▙
SPHALT 0.05		<u>/</u>	4				00.27			
LL: Granular crushed stone 0.30 LL: Brown silty sand with gravel		Ã AU	1							-
trace brick and ash from 0.8m to 4m depth		ss	2	50	10	1-	-67.27	0		
		ss	3	50	27	2-	-66.27	0		
2.59		∦-ss	4	83	8	_	00.27		0	
tiff, grey SILTY CLAY			-			3-	-65.27			
		ss	5	75	Р		03.27	4)	
		ss	6	83	Р	4-	-64.27	#	0	-
		ss	7	83	Р					
) 	/	03		5-	-63.27		0	-
		ss	8	58	Р		00.07	<u> </u>	Φ 📥	
6.63		ss	9	17	Р	6-	-62.27	0		
oose to compact, grey SILTY SAND SANDY SILT, trace clay		ss	10	92	9	7-	-61.27	0		
			. 0	"-						
race gravel by 7.6m depth 8.31		ss	11	13	6	8-	-60.27	0		-
LACIAL TILL: Compact, grey silty and with gravel, trace to some clay,	1,2,2,2	ss	12	67	19					
ccasional cobbles	\^^^^/ \^^^^/	γ γ γ	13	100	. 50	9-	-59.27	0		
1m depth 9.60 yery dense by 9.4m depth		\ \\	13	100	+50			0		1
nd of Borehole										
ractical refusal to augering at 9.60m epth										
Borehole Blocked - Mar. 14, 2024)										
								20 40		00
								Shear Strer ▲ Undisturbed	igth (kPa) △ Remoulded	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

EASTING: 367779.458

DATUM: **REMARKS:** Geodetic

5030141.587 **ELEVATION**: 68.32 NORTHING:

FILE NO. **PG5933**

HOLE NO.

BORINGS BY: CMF 55 Low Clearance Power Auger

DATE: February 28, 2024 BH 3-24

BORINGS BY: CME 55 Low Clearance	Power	· Auge	er		DATE:	Februa	ary 28, 20	024	BH 3-2	4
SAMPLE DESCRIPTION	PLOT			IPLE -		DEPTH (m)	ELEV. (m)		ist. Blows/0.3m nm Dia. Cone	TER
Ground Surface	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(11)	()		er Content % 0 60 80	PIEZOMETER
ASPHALT 0.05	5 XXX	\$		_		0-	-68.32	 		W
FILL: Brown silty sand with gravel		§ AU	1					0		
trace brick and wood by 0.8m depth		∑ ∑ss	2	62	+50	1-	-67.32			
1.98	3	ss	3	83	11	2-	-66.32	0		
organics by 2.0m depth oose, grey SILTY SAND							00.32			
2.97	7	ss	4	75	5		05.00		0	
Stiff, grey SILTY CLAY		ss	5	100	2	3-	-65.32		Φ	
		ss	6	92	Р	4-	-64.32	Δ	0 4	
		ss	7	100	Р	5-	-63.32	A		
		ss	8	92	Р	6-	-62.32		0 🔨	
6.78	3	ss	9	100	Р		02.02			
GLACIAL TILL: Loose to compact, rey silty sand with gravel, trace clay, ccasional cobbles	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	10	83	10	7-	-61.32	0		生
		ss	11	83	2	8-	-60.32	O		
shale fragments by 8.4m depth		ss	12	42	18			0		
9.35	5 \ ^ ^ ^ ^ ^	⊔ ≊ SS	13	100	+50	9-	-59.32	0		
and of Borehole										
Practical refusal to augering at 9.35m epth										
GWL @ 5.77m - Mar. 14, 2024)										
								20 4 Shear S	Strength (kPa)	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

367838.673 EASTING:

NORTHING:

5030168.358 **ELEVATION**: 68.29

FILE NO.

PG5933

HOLE NO.

DATUM: **REMARKS:**

DII 4 04

BORINGS BY: CME 55 Low Clearance P	ower	Auge	er		DATE:	Februa	ary 29, 2	024		BH 4-2	24
SAMPLE DESCRIPTION	PLOT		SAN	IPLE	ı	DEPTH	ELEV.			ows / 0.3m a. Cone	3 WELL
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 W	ater Co	ntent %	MONITORING WEL
GROUND SURFACE FILL: Brown silty sand with gravel		× 11		<u> </u>		0-	-68.29	20	40	60 80	≥
FILL: Brown silty sand, trace gravel		AU SS	1	67	8	1 -	-67.29	0			
Compact, brown SAND , trace silt 2.21		ss	3	67	14	2-	-66.29	0			
Firm to stiff, grey SILTY CLAY		ss	4	100	3	2_	-65.29			0	
		ss	5	100	Р					0	
		ss s	6	100	Р	4-	-64.29	<u> </u>)	
		\(\ss \)	7	100	Р	5-	-63.29	4		/	¥
		∑ss Zaa	8	83	P	6-	-62.29			A	
		X ss	9	100	P	7-	-61.29	A	0		
- some sand by 7.6m depth		ss	11	50	' Р	8-	-60.29	Δ)		
Loose, grey SILTY SAND to SANDY SILT, trace clay		ss	12	58	3			0			
GLACIAL TILL: Compact, grey silty sand with gravel and clay, occasional	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	13	75	17	9-	-59.29	φ			
cobbles - some shale fragments by 9.9m depth		ss	14	58	37	10-	-58.29	0			
Practical refusal to augering at 10.54m											
depth (GWL @ 4.87m - Mar. 14, 2024)											
								20 Shea ▲ Undist	r Streng	60 80 gth (kPa) A Remoulded	100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

367879.574 EASTING:

NORTHING:

5030192.335 **ELEVATION**: 68.54

FILE NO. PG5933

DATUM: **REMARKS:** Geodetic

HOLE NO.

BORINGS BY: CME 55 Low Clearance F	Powe	r Auge	er		DATE:	Februa	ıry 29, 2)24 BH 5-24
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
Ground Surface	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone ○ Water Content % 20 40 60 80
FILL: Brown silty sand with gravel			1	_		0+	68.54	
1.45		ss	2	50	6	1 +	67.54	
Loose, brown SILTY SAND 1.83	ППТ	- Ss	3	50	4			р:
Stiff, brown SILTY CLAY 2.21			3	30	4	2+	66.54	
Stiff to firm, grey SILTY CLAY		ss	4	83	Р			· · · · · · · · · · · · · · · · · · · · · · ·
		\(\) ss	5	100	Р	3+	65.54	
				7.		4-	64.54	
		X ss	6	75	Р			
		X ss	7	83	P	5+	63.54	
		ss ss	8	100	P	6-	62.54	
		ss	10	83	P	7-	61.54	
		ss	11	100	' Р		00.54	
			' '	100	'	8+	60.54	
8.69 Loose to compact, grey SILTY SAND to SANDY SILT, trace clay		y-ss	12	58	Р	9+	59.54	Z 0 X
		∦ ss	13	67	6			
10.59		ss	14	67	6	10-	58.54	0
GLACIAL TILL: Dense to very dense, grey silty sand with gravel, occasional cobbles and boulders		ss	15	50	29	11-	57.54	0
- shale fragments by 11.4m depth 11.84	[^^^^/ [^^^^/	⊠ SS	16	86	+50			O
BEDROCK: Good to excellent quality, grey limestone interbedded with black shale		RC	1	100	78	12-	56.54	
The state of the		RC	2	100	85	13-	55.54	20 40 60 80 100 Shear Strongth (kPa)
								Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

EASTING:

DATUM:

367879.574

NORTHING:

5030192.335 **ELEVATION**: 68.54

FILE NO.

PG5933

HOLE NO.

REMARKS:

DRINGS BY: CME 55 Low Clearance		r Auge	er		DATE:	Febru	ary 29, 20	024 		BH 5-2	24
SAMPLE DESCRIPTION	PLOT			IPLE -		DEPTH (m)	ELEV. (m)			lows/0.3m a. Cone	TER
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0 W	/ater Co	ntent %	PIEZOMETER
round Surface	S	-	Z	REC	z°	10	FE E4	20	40	60 80	٦
EDROCK: Good to excellent ality, grey limestone interbedded th black shale		_				13-	-55.54				
		RC	3	100	100	14-	-54.54				
15.06						15.	-53.54				
nd of Borehole		-					33.34				
GWL @ 5.14m - Mar. 14, 2024)											
					1			20	40	60 80	 100

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

367748.417 EASTING:

NORTHING:

Geodetic

DATUM: **REMARKS:** 5030139.276 **ELEVATION**: 68.12

PG5933

HOLE NO.

FILE NO.

BORINGS BY: CME 55 Low Clearance F		Auge	er		DATE:	March	1, 2024	BH 6-24
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows / 0.3m ● 50 mm Dia. Cone
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	()	()	Pen. Resist. Blows / 0.3m
ASPHALT 0.05		¥		_		0-	68.12	
FILL: Brown silty sand with gravel 0.56 FILL: Brown silty sand, trace gravel		AU SS	1	75	11	1 -	-67.12	0
trace wood by 1.5m depth		ss	3	67	6	2-	-66.12	Φ
Loose to compact, grey SILTY SAND 2.97		ss	4	50	6			Φ
Firm, grey SILTY CLAY 3.73		ss	5	100	2	3-	-65.12	
GLACIAL TILL: Compact, grey silty cand with gravel, trace clay		ss	6	50	6	4-	64.12	0
		ss	7	33	7	5-	-63.12	0
		ss	8	42	10	6	-62.12	0
		ss	9	42	9	0-	T02.12	0
		ss	10	75	7	7-	-61.12	O -
		ss	11	67	19	8-	-60.12	Ö
very dense by 8.4m depth 8.61 BEDROCK: Excellent quality, grey	^^^^	Z_SS ⁷ RC	12 1	57 100	+50 100	9-	-59.12	Ö
mestone interbedded with black shale		RC	2	100	97			
		_				10-	-58.12	
		RC	3	100	100	11-	-57.12	
12. <u>07</u> End of Borehole						12-	-56.12	
GWL @ 4.84m - Mar. 14, 2024)								
								20 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 265 Catherine Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

367801.934 EASTING:

DATUM: Geodetic

REMARKS:

5030156.324 **ELEVATION**: 68.31 NORTHING:

FILE NO.

PG5933

HOLE NO.

BORINGS BY: CME 55 Low Clearance P	4, 2024	HOLE NO. BH 7-24						
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows / 0.3m ■ 50 mm Dia. Cone
	STRATA F	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	○ Water Content %
GROUND SURFACE	() √√√	×		<u>«</u>	_	0-	-68.31	20 40 60 80
FILL: Brown silty sand with gravel	\Longrightarrow	ÃU	1					
FILL: Brown sand, trace gravel 1.52	XX	ss	2	50	18	1-	-67.31	
FILL : Brown silty sand with gravel, trace peat 2.21		ss	3	75	4	2-	-66.31	O 1111
FILL: Brown to grey silty sand 2.97		ss	4	17	15	3-	-65.31	0
Stiff, grey SILTY CLAY		SS	5	100	3			O 144
		X ss	6	75	P	4-	64.31	0
		X ss	7	100	P	5-	-63.31	
		x ss x ss	8	100	P	6-	-62.31	
Grey SILTY SAND to SANDY SILT 7.16			10	100	2	7-	-61.31	0 121
Grey SILTY SAND with gravel, trace clay		∆ ∑ss	11	83	4	8-	-60.31	
- trace to some shale fragments by 8.3m depth		Ss	12	31	+50		E0.01	0 5
9.55 BEDROCK: Fair to good quality, grey		∑ SS	13	40	+50	9-	-59.31	0 4114
limestone interbedded with black shale		RC	1	100	65	10-	-58.31	
- excellent quality by 10.5m depth		RC	2	100	93	11-	-57.31	
- shale content decreases with depth		_				12-	-56.31	
·		RC	3	100	100	13-	-55.31	
13.51 End of Borehole	1 1 1							
(GWL @ 4.75m - Mar. 14, 2024)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Preliminary Geotechnical Investigation Prop. High-Rise Building - 265 Catherine Street Ottawa, Ontario

DATUM Geodetic FILE NO. **PG5498 REMARKS** HOLE NO. BH 1-20 BORINGS BY CME-55 Low Clearance Drill **DATE** August 19, 2020 **SAMPLE** Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER **Water Content % GROUND SURFACE** 80 20 0+68.62Asphaltic concrete 0.10 ΑU 1 FILL: Brown silty sand 0.63 SS 2 75 50+ 1+67.62FILL: Brown silty sand with gravel, cobbles and debris (wood, bricks) SS 3 58 18 2+66.62¥ 2.29 SS 4 75 2 Compact, brown SILTY SAND 3.05 3+65.62SS 5 Ρ 100 4+64.62 SS Ρ 6 100 5 + 63.62Stiff, grey SILTY CLAY, some fine sand seams 6+62.62SS 7 Ρ 38 7 + 61.627.62 SS 8 100 2 8+60.62 Grey SILTY CLAY, trace silty sand 9+59.62SS 9 100 2 End of Borehole (GWL @ 4.60m - Sept. 1, 2020) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

SOIL PROFILE AND TEST DATA

FILE NO.

Preliminary Geotechnical Investigation Prop. High-Rise Building - 265 Catherine Street Ottawa, Ontario

DATUM PG5498 REMARKS HOLE NO. BH 2-20 BORINGS BY CME-55 Low Clearance Drill **DATE** August 19, 2020 **SAMPLE** Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY VALUE r RQD STRATA NUMBER Water Content % N o v **GROUND SURFACE** 80 20 0+68.46Asphaltic concrete 0.10 ΑU 1 FILL: Brown silty sand with crushed 0.60 1+67.46SS 2 54 16 FILL: Brown silty sand with gravel, trace wood and brick SS 3 18 9 2+66.46SS 4 100 4 3+65.46SS 5 100 2 4 + 64.46SS 6 100 4 SS 7 100 2 5 + 63.46Brown SILTY CLAY, trace brown silty sand SS 8 100 3 6+62.46SS 9 100 4 7+61.46SS 10 100 2 8+60.469+59.469.14 GLACIAL TILL: Grey clayey silty SS 11 58 3 sand with gravel, cobbles and 9.75 boulders 10 + 58.46Dynamic Cone Penetration Test commenced at 9.75m depth. Inferred GLACIAL TILL 10.84 End of Borehole Practical DCPT refusal at 10.84m depth. (BH dry - Sept. 1, 2020) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Preliminary Geotechnical Investigation Prop. High-Rise Building - 265 Catherine Street Ottawa, Ontario

DATUM Geodetic FILE NO. **PG5498 REMARKS** HOLE NO. BH 3-20 BORINGS BY CME-55 Low Clearance Drill **DATE** August 19, 2020 **SAMPLE** Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction **DEPTH** ELEV. **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY VALUE r RQD STRATA NUMBER Water Content % N o v **GROUND SURFACE** 80 20 0+68.11Asphaltic concrete 0.10 1 FILL: Brown silty sand with silty clay0.60 and crushed stone 1+67.11SS 2 38 9 Loose to compact, brown SILTY **SAND**, some organics SS 3 67 13 2+66.11SS 4 100 2 3+65.11SS 5 Stiff, grey SILTY CLAY with sandy 100 2 4 + 64.11SS 6 100 Р Δ GLACIAL TILL: Compact, grey sandy silt with some clay, gravel and SS 7 42 11 5 + 63.11cobbles 5.33 SS 8 62 4 6 + 62.11GLACIAL TILL: Grey clayey silty sand with gravel, cobbles and SS 8 46 7 boulders 7+61.117.49 End of Borehole Practical refusal to augering at 7.49m depth. (GWL @ 4.26m - August 28, 2020) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnica Investigation 265 Catherine Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

TBM - Finished floor level of existing building at gate 2. Assumed elevation = 100.00m.

FILE NO. PG2174

HOLE NO.

REMARKS

DATUM

BORINGS BY CME 45 Power Auge	er				D	ATE 2	24 August	2010		BH 1	
SOIL DESCRIPTION		PLOT		SAN	/IPLE	T	DEPTH	ELEV.	1	esist. Blows/0.3m) mm Dia. Cone	eter tion
		STRATA F	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 W	ater Content %	Piezometer Construction
GROUND SURFACE		(* N, W.)			-		0-	-99.45	20	40 60 80	1-1-
Asphaltic concrete FILL: Crushed stone	_0.10 _0.20		∑ AU	1							
FILL: Dark brown silty sand with gravel and cobbles	\$ \$		ss	2	29	50+	1-	-98.45			
Black PEAT	1.83 2.10		ss	3	62	3	2-	-97.45			
Loose, grey SILTY SAND	2.97		ss	4	54	10					
	- - -:/-		ss	5	92	2	3-	-96.45			<u></u>
Very stiff to stiff arey SILTY			ss	6			4-	-95.45			
Very stiff to stiff, grey SILTY CLAY			ss	7	88		5-	-94.45			
	6.00		ss	8	92			00.45	<u> </u>		
		<i>2 V A 2</i>					6-	-93.45			
							7-	-92.45			
							8-	-91.45			
							Q_	-90.45			
	<u>9.75</u>							50.45			
End of Borehole Practical refusal to augering @											
9.75m depth											
(GWL @ 3.48m-Nov. 22/10)											
									20 Shea	40 60 80 10 ar Strength (kPa)	00
									▲ Undistu		

Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnica Investigation 265 Catherine Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

TBM - Finished floor level of existing building at gate 2. Assumed elevation = 100.00m.

FILE NO. PG2174

REMARKS

DATUM

HOLE NO.

BORINGS BY CME 45 Power Aug	ger			D	DATE 2	24 August	2010		BH 2	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	1	esist. Blows/0.3m 0 mm Dia. Cone	ster tion
	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		/ater Content %	Piezometer Construction
GROUND SURFACE Asphaltic concrete	0.10					0-	-99.38	20	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	#
FILL: Brown silty sand with gravel and cobbles	0.60	⊗ AU	1			4	00.00			
FILL: Brown silty sand with gravel, wood and brick	1.45	SS T	2	50	7	-	-98.38			
Loose, grey SILTY SAND		ss T	3	0	11	2-	-97.38			
	2.97	ss	4	33	8	3-	-96.38			
Stiff, grey-brown SILTY CLAY		ss	5	92	1					
		∑ ss	6	100		4-	-95.38			
	4.85	ss	7	67	26	5-	-94.38			
		∭ ss	8	17	11	6-	-93.38			
GLACIAL TILL: Grey silty		ss	9	42	4		30.00			
clay with sand, gravel, cobbles and boulders						7-	-92.38			
						8-	-91.38			
End of Borehole	8.63									
Practical refusal to augering @ 8.63m depth										
(GWL @ 5.32m-Sept. 16/10)										
								20	40 60 80 10	0
									ar Strength (kPa)	
								▲ Undistu	urbed △ Remoulded	

Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnica Investigation 265 Catherine Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

TBM - Finished floor level of existing building at gate 2. Assumed elevation = 100.00m.

FILE NO. PG2174

REMARKS

DATUM

HOLE NO.

BORINGS BY CME 45 Power Auger				0	DATE 2	24 August	2010		HOLE NO. BH 3	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.		esist. Blows/0.3m 0 mm Dia. Cone	Well
	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		ater Content %	Monitoring Well Construction
GROUND SURFACE				2	z °	0-	-99.82	20	40 60 80	
Concrete 0.45	5 * * * * * * * * * * * * * * * * * * *	⊗ AU	1				33.02			
FILL: Grey-brown sand	, XX	ss	2	50	10	1-	-98.82			
FILL: Brown silty sand with gravel, cobbles and boulders		ss	3	58	23	2-	-97.82			
		ss	4	100	2		07.10=			
		ss	5	92		3-	-96.82			
Stiff, grey-brown SILTY CLAY		ss	6	92		4-	-95.82			
		ss	7	92		5-	-94.82			
		ss	8	92		6.	-93.82			
6.70		ss	9	92		0-	-93.02			
						7-	-92.82			
						8-	-91.82			
						9-	-90.82			
						10-	-89.82			
11.13	3					11-	-88.82			
End of Borehole Practical refusal to augering @										
11.13m depth (GWL @ 5.30m-Sept. 16/10)										
								20 Shea	40 60 80 10 ar Strength (kPa)	00
								▲ Undistu		

Consulting Engineers

SAMPLE

NUMBER

1

2

3

4

5

6

7

8

TYPE

AU

SS

SS

SS

SS

SS

SS

SS

RECOVERY

83

38

92

0

92

92

N VALUE or RQD

25

14

4

STRATA PLOT

0.09

0.60

10.03

SOIL PROFILE AND TEST DATA

Geotechnica Investigation 265 Catherine Street

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

Ottawa, Ontario TBM - Finished floor level of existing building at gate 2. Assumed elevation = 100.00m.

ELEV.

(m)

0+99.67

1+98.67

2+97.67

3+96.67

4 + 95.67

5 + 94.67

6 + 93.67

7 + 92.67

8 + 91.67

9+90.67

10 + 89.67

FILE NO. **PG2174**

BH 4

HOLE NO.

REMARKS

GROUND SURFACE

FILL: Brown silty sand with

FILL: Brown silty sand, trace

Stiff, grey-brown SILTY CLAY

Inferred GLACIAL TILL

Practical refusal to augering @

End of Borehole

10.03m depth

Asphaltic concrete

gravel and cobbles FILL: Grey silty clay with

gravel and asphalt

DATUM

BORINGS BY CME 45 Power Auger

SOIL DESCRIPTION

DATE 25 August 2010

DEPTH

(m)

Pen. Resist. Blows/0.3m Piezometer Construction 50 mm Dia. Cone Water Content % 80

40

▲ Undisturbed

Shear Strength (kPa)

60

80

△ Remoulded

100

Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnica Investigation 265 Catherine Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

TBM - Finished floor level of existing building at gate 2. Assumed elevation = 100.00m.

FILE NO. _

PG2174

REMARKS

DATUM

HOLE NO.

BORINGS BY CME 45 Power Auge	er				DATE 2	25 August	2010		BH 5	
SOIL DESCRIPTION	FO.19	1	SAN	/IPLE		DEPTH	ELEV.		esist. Blows/0.3m mm Dia. Cone	ter tion
	ያ ልጉልጸጉ ያ		NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		/ater Content %	Piezometer Construction
GROUND SURFACE	0.40 12/2	70.0				0-	-99.75	20	+0 00 00 ++++++++++++++++++++++++++++++	
Asphaltic concrete FILL: Brown silty sand with	0.13	AU	1							
FILL: Brown silty sand with gravel and cobbles		ss 7	2	58	10	1-	-98.75			
	2.06	ss		58	8	2-	-97.75			
		ss ss	5	96	2	3-	-96.75	A		
Stiff to very stiff, grey-brown SILTY CLAY		ss	6	100		4-	-95.75			
		ss	7	100		5-	-94.75			
	<u>5.94</u>	SS	8	100		6-	-93.75			
						7-	-92.75			
Inferred SILTY CLAY						8-	-91.75			
						9-	-90.75			
	9.75	^^^				10-	-89.75			
Inferred GLACIAL TILL	\^^^ \^^^ \^^^	^^^				11-	-88.75			
End of Borehole Practical refusal to augering @ 11.73m depth	11.73	^^								
(GWL @ 4.59m-Sept. 16/10)								20 Shea	40 60 80 10 or Strength (kPa)	00
								▲ Undistu		
İ		1	1	1	1	1		1		

Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnica Investigation 265 Catherine Street Ottawa, Ontario

28 Concourse Gate, Unit 1, Ottawa, ON K2E 7T7

TBM - Finished floor level of existing building at gate 2. Assumed elevation = 100.00m.

FILE NO. PG2174

REMARKS

DATUM

HOLE NO.

BORINGS BY CME 45 Power Auger	r				ATE 2	25 August	2010	BH 6
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone
	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %
GROUND SURFACE				α.	-	0-	99.94	20 40 60 80
↑Asphaltic concrete	0.10	∑ AU	1				00.01	
FILL: Brown silty sand with gravel, cobbles and boulders		ss	2		4	1-	-98.94	
	2.36	ss	3	50	8	2-	-97.94	
		ss	4	92	1	3-	-96.94	
OUT TO AV		ss	5	96				
Stiff, grey-brown SILTY CLAY		ss	6	92		4-	-95.94	
		ss	7	58		5-	94.94	
End of Borehole	5.94	ss	8	92				
(GWL @ 2.18m-Sept. 16/10)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

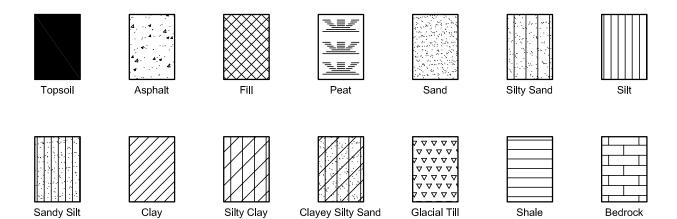
p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

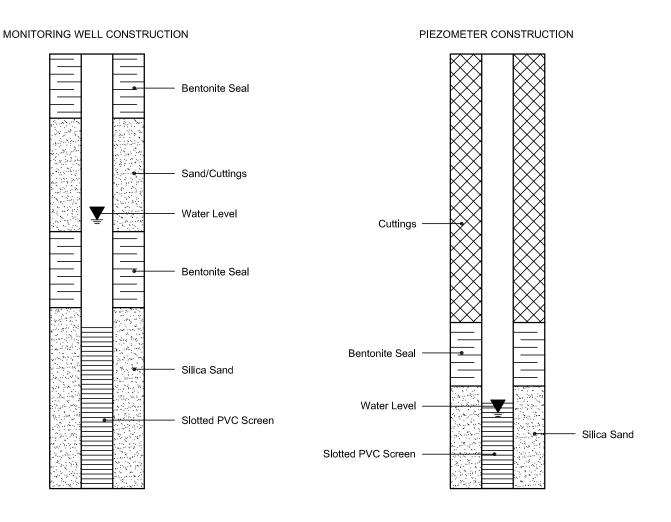
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

MCROSTIE SETO GENEST

& ASSOCIATES LTD. & ASSOCIÉS LTÉE CONSULTING ENGINEERS - INGÉNIEURS CONSEILS SOIL PROFILE & TEST SUMMARIES

PROFIL SOUTERRAIN ET RÉSUME DES ESSAIS

KENT & LYON

OTTAWA CANADA

HOLE

ELEVATION OF GROUND SURFACE (ZERO DEPTH) 227.2' DATE AUG. G. 1971 FORAGE fie. NIVEAU DU SOL (PROFONDEUR ZÉRO) NOTES B.M. (ELEV. 231.49') GEODETIC. SOUTHEAST CORNER OF KENT & MCLEOD Compressive
Strength K.S.F.
Refisione a
la Compression
K/Pd.²
Small Scale
Penetrometer
K.S.F.
Petit
Petit
Petit
K.S.F.
K.Pd.² VANE TEST ESSAL AU MOULINET DESCRIPTION OF SOIL NO CASING Niveau MARTEALLSHAMMER Sample Echancillon CHUTE LIBRE --- DROP | BARRE --- DIA . ROD BLOWS/FOOT OR SHEAR STRENGTH K.S.F.
GOUDS/FIED OU RESISTANCE AU, K/PD.
CISAILLEMENT Ground Surface - Niveau du Sol FILL-O' 227.2 3.0 SAND, GRAVEL & CRUSHED STONE 1.0 -226.2 WATER CONTENT 11 MEDIUM DENSE 12 FINE & VERY FINE 10 FORG" 1-2 SAND WITH A YZ" SILTY VERY FINE SAND LAYER O SILTY SAND 21 1-3 SAND 6.5 220.7 DENSE FINE & VERY FINE SAND 31 32 FOR 6 1-4 SAND GRAVELI SAND WITH SOME SILT RAZ GRAVELLY SANDLAYER 10.0 217.2 MEDIUM SOFT GRAY 1.5, 1.6, 1.4 5 1-5 WITH SOME SILT -ILS - 215.7 VANE SHEAR STRENGTH STIFF GRAY CLAY REMOULDED WITH SOME SILT - UNDISTURBED WITH A FEW FISSURES 2.4, 3.2, 2.2 2.2,2.5,2.6 1-6 R-0.2 17.5 - 209.7 STIFF TER LEVEL AUG. 11 1971-EL 208.2 SILTY GRAY 3.2,2.6,3.0 2.8, 3.4, 3.2 CLAY 2.2, 2.2, 2.0 WITH A FEW FISSURES 1-7 2.4. 2.0,2.2 R-0.2 22.5 204.7 MEDIUM SOFT SILTY GRAY 1.2, 1.4, 1.4 WITH A TRACE OF 1.4, 1.4, 1.2 1-8 R-0.0 VERY FINE SAND 27.5-199.7 STIFE SILTY GRAY 2.5, 2.4,2.6 CLAY 2.2, 2.5, 2.2 WITH A FEW FISSURES 2.0, 2.2, 2.4 STIFF SILTY GRAY CLAY WITH SOME KE 31.5 - 195.7 SANDO 2.0,2.2,1.6 R-0.0 TO 'E MEDIUM & FINE SAND LAYERS 32.5 194.7 MEDIUM DENSE CLAYEY
SILT
WITH SOME VERY FINE SAND
& A TRACE OF GRAYEL 34.0- 193.2' MEDIUM DENSE VERY FINE SAND 1-11 WITH A LITTLE SILT & A TRACE OF GRAVEL 37.5- 189.7 26 1-12 MEDIUM DENSE TILL 400 - 187.2 VERY DENSE SILTY 100 1-13 TILL 41.4-185.8

LIMESTONE

MCROSTIE SETO GENEST

CR TOAR OF TE RECUPEREE

& ASSOCIATES LTD. & ASSOCIÉS LTÉE CONSULTING ENGINEERS - INGÉNIEURS CONSEILS

SOIL PROFILE & TEST SUMMARIES

PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS

PLASTIC LIMIT LIMITE DE PLASTICITÉ

Δ

KENT & LYON

OTTAWA CANADA HOLE ELEVATION OF GROUND SURFACE (ZERO DEPTH) 225.2 DATE AUG. 9, 1971 FORAGE No. NIVEAU DU SOL (PROFONDEUR ZERO) 2 SEE PLATE No. 2 NOTES SONDAGE OU Essai - Standard Penetration Blows/ft-Coups/pd ESSAL AU MOULINET ş VANE TEST DESCRIPTION OF SOIL Depth in Feet Profondeur - Pied Compressive Strength K.S.F. Résistance à la Compression K/Pd.2 Small Scale Penetrometer K.S.F. Petit Pénétromètre K/Pd,2 NO CASING SANS TUBAGE Elevation Niveau MARTEAU----HAMMER CHUTE LIBRE---DROP BARRE----DIA. ROD Sample Echantil BLOWS/FOOT OF SHEAR STRENGTH K.S.F. COUPS/PIED OU RÉSISTANCE AU, K/PD.2 Ground Surface - Niveau du Sol 60 1.5 3.0 4.5 0' - 225.2' WATER CONTENT FILL-13 2-1 SAND 12 2-2 WITH SOME CLAY & SILT & WITH A TRACE OF GRAVEL, CINDERS & ORGANIC MATERIAL 11 2-3 7.5 - 217.7 AUG 17, 1971-EL. 216.8 WATERLEVE MEDIUM SOFT 1.2, 1.4, 1.4 8 2-4 TO STIFF VANE SHEAR STREN BROWNISH GRAY 2.6, 2.4, 2.4 CLAY 2.6,2.5,2.8 3.0,3.0,3.2 WITH SOME SILT 2-5 3.4, 3.2, 3.6 & A FEW FISSURES 1.8, 1.8, 1.6 12.5-212.7 REMOULDED R-0.0 UNDISTURBED 2.4, 2.0, 2.6 3.2, 3.4, 3.2 3.6, 3.6,3.6 STIFF 5-6 2.5, 2.4, 2.6 GRAY 2.8, 2.6, 2.5 R-0.0 CLAY WITH SOME SILT 2.8, 2.6, 2.5 3.0,2.6,2.8 24,26,24 2-7 2.6,3.0,3.4 2.6, 2.4,24 R-0.0 24.0-201.2 BOTTOM OF HOLE 80 GO WATER CONTENT PLAQUE NO. TENEUR EN EAU NATURAL NATURELLE 0 LIQUID LIMIT LIMITE DE LIQUIDITÉ \Box 3 R -REMOULDED-REMANIE

MEROSTIE SETO GENEST

& ASSOCIATES LTD. & ASSOCIÉS LTÉE CONSULTING ENGINEERS - INGÉNIEURS CONSEILS SOIL PROFILE & TEST SUMMARIES

PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS

KENT & LYON

OTTAWA CANADA ELEVATION OF GROUND SURFACE (ZERO DEPTH) 225.5'
NIVEAU DU SOL (PROFONDEUR ZERO) HOLE DATE AUG. 9, 1971

No. FORAGE SEE PLATE NO. 2 3 SONDAGE OU ESSAL AU MOULINET Depth in Feet Profondeur - Pied VANE TEST DESCRIPTION OF SOIL DU SOL Compressive Strength K.S.F. Résistance à la Compression K/Pd.2 Small Scale Penetrometer K.S.F. Perit Pénétromètre K/Pd.2 NO CASING SANS TUBAGE Sevation MARTEAU----HAMMER Sample Echantillon CHUTE LIBRE---DROP BARRE----DIA, ROD. BLOWS/FOOT OR SHEAR STRENGTH K.S.F. CISALLEMENT RÉSISTANCE AU, K/PD.2 Ground Surface - Niveau du Sol 4.5 6.0 75 1.5 3.0 0' - 225.5 FILL-WATER CONTENT SAND WITH SOME CLAY 3-1 7 & A LITTLE BRICK & CINDERS 3-2 & WITH A TRACE OF GLASS & METAL 5.0-220.5 9 3-3 LOOSE SILTY FINE & VERY FINE WATER LEVEL AUG. 11-1971-EL 217.5 SAND 3-4 8.7 -216.8 41-EL.216.9 WATER LEVEL AUG. 16,19 MEDIUM SOFT TO STIFF VANE SHEAR STRENGTH 8.5,8.5,2.5 BROWNISH GRAY 8.5, 2.6,2.8 CLAY 2.2,2.4,2.2 WITH SOME SILT 3-5 2.4,2.0,2.2 -REMOULDED 1.0, 1.2, 1.2 & A FEW FISSURES 12.5- 213.0 R-0.0 UNDISTURBED 3.2,3.4,3.2 2.5,2.4,2.6 2.8,2,8,2.8 STIFF 3-6 4.2,4.2,4.2 SILTY GRAY 3.0, 3.0,2.8 R-0.0 CLAY 3.5, 3.4, 3.2 3.6,3.6,3.8 3.6, 3.8, 3.8 3-7 34, 3.6, 3.8 2.6, 2.5, 2.4 22.5-203.0 R-0.0 BOTTOM OF HOLE WATER CONTENT PLATE PLAQUE TO. %TENEUR EN EAU NATURAL NATURELLE 0 LIQUID LIMIT LIMITE DE LIQUIDITÉ 4 R = REMOULDED - REMANIE PLASTIC LIMIT LIMITE DE PLASTICITÉ CR CAR OTTE RECUPEREE

MCROSTIE SETO GENEST

& ASSOCIATES LTD. & ASSOCIÉS LTÉE CONSULTING ENGINEERS – INGÉNIEURS CONSEILS SOIL PROFILE & TEST SUMMARIES

PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS

CONSULTING ENGINEERS - INGÉNIEURS CONSEILS

OTTAWA CANADA

ELEVATION OF GROUND SURFACE (ZERO DEPTH) 225.1'

DATE AUG. 5, 1971 FORAGE

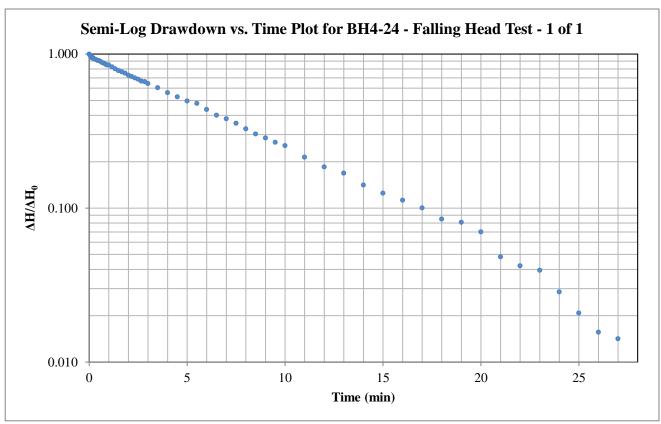
FORAGE No. ELEVATION OF GROUND SURFACE (ZERO DEPTH) NIVEAU DU SOL (PROFONDEUR ZERO) DATE AUG. 9, 1971 4 SEE PLATE NO. 2 SONDAGE OU DODING OF ESSAI AU MOULINET Small Scale
Penetrometer
K.S.F.
Petit
Pénétromètre
K/Pd.2
Essai - Standard
Penetration ŝ VANE TEST Depth in Feet Profondeur - Pied DESCRIPTION OF SOIL DU SOL Compressive Strength K.S.F. Résistance à la Compression K/Pd.2 NO CASING SANS TUBAGE Elevation Niveau MARTEAU----HAMMER CHUTE LIBRE---DROP BARRE----DIA. ROD Sample Echantillon SLOWS/FOOT OR SHEAR STRENGTH K.S.F. COUPS/PIED OU RÉSISTANCE AU, K/PD.2 Ground Surface - Niveau du Sol 6.0 4.5 1.5 3.0 0' = 223.1 WATER CONTENT FILL -Ø SAND 4-1 51 & ORGANIC MATERIAL WITH SOME 4-2 15 BROKEN ROCK & ATRACE OF ORGANIC SAND O WOOD & GRAVEL 5 4-3 G.0'- 219.1' GFORG FILL- S SILTY VERY FINE SAND AUG. 11 & 16,71-EL.217.3 WATER LEVEL & BROWNISH GRAY CLAY CLAY WITH SOME SAND & GRAVEL 8.7 - 216.4 5.5, 5.4, 5.5 G5 4-4 RAPH VANE SHEAR MEDIUM SOFT TO STIFF 2.2, 1.6, 1.8 SILTY BROWNISH GRAY REMOULDED 2.5, 2.5,2.2 2.4, 3.2,2.0 CLAY 4-5 -UNDISTURBE 2.6,2.6,3.0 WITH SOME FISSURES 2.2,1.8,2.0 12.5- 212.6 R-0.4 STIFF TO VERY STIFF 4.4,4.2,4.2 SILTY GRAY 3.5, 3.6, 3.5 Q 3.8,3.8,3.8 CLAY 4-6 3.4, 2.8,2.8 WITH SOME 3.6,3.5,3.5 R-0.2 FISSURES 1.205-0.61 BOTTOM OF HOLE 60 100 PLAGUE TO WATER CONTENT %TENEUR EN EAU NATURAL NATURELLE 0 LIQUID LIMIT 5 R -REMOULDED-REMANIE PLASTIC LIMIT Δ CR CAROTTE RECUPEREE

McROSTIE SETO GENEST

& ASSOCIATES LTD. & ASSOCIÉS LTÉE CONSULTING ENGINEERS - INGÉNIEURS CONSEILS

SOIL PROFILE & TEST SUMMARIES

PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS


KENT & LYON

OTTAWA CANADA ELEVATION OF GROUND SURFACE (ZERO DEPTH)
NIVEAU DU SOL (PROFONDEUR ZERO) HOLE 223.7' FORAGE No. DATE AUG. 10, 1971 SEE PLATE No. 2 Essai - Standard Penetration Slows /tt-Coups/pd PROBING on SONDAGE OU ģ Résistance à la Compression K/Pd.2 DESCRIPTION OF SOIL DU SOL Compressive Strength K.S.F. Depth in Feet Profondeur-Pied VANE TEST ESSAL AU MOULINET Small Scale Penetromete K.S.F. Perit Pénétromètr K/Pd.2 Elevation Niveau NO CASING MARTEAU----HAMMER CHUTE LIBRE --- DROP BARRE ---- DIA. ROD. DLOWS/FOOT OR SHEAR STRENGTH K.S.F. RÉSISTANCE AU, K/PD.2 CISAILLEMENT COUPS/PIED-OU Ground Surface - Niveau du Sol 3.0 4.5 6.0 O' - 223.7 FILL-WATER CONTENT SAND a 5-1 & ORGANIC MATERIAL WITH SOME GRAVEL 5-2 A LITTLE CLAY, ASHES & WOOD 5-3 E A TRACE OF GLASS G.0+ 217.7 5-4 FILL -SILTY VERY FINE SAND 3 5-5 WATER LEVEL AUG II,1971-EL.214.8 & FIBROUS WATER LEVEL AUG (G, 1971-EL.214.5 ORGANIC MATERIAL A I" STONE SILTY GRAY 10.7 - 213.0 0.6, 0.4, 0.825x185-6 11.5- 212.2 STIFF SILTY GRAY SHEAR STRENGTH VANE CLAY WITH A FEW FISSURES 2.6, 2.4, 2.5 & A VG4" VERTICAL UNDISTURBED 2.2, 3.6, 2.4 FINE SAND LAYER REMOULDED 3.4, 3.2, 3.4 5-7 4.4, 3.2, 3.5 & A FEW 18" TO 14" CLAYEY 3.0, 2.8, 2.6 FINE SAND LAYERS R-0.5 18.0-205.7 BOTTOM OF HOLE WATER CONTENT PLAQUE O. TENEUR EN EAU NATURAL NATURELLE 0 LIQUID LIMIT LIMITE DE LIQUIDITÉ 6 R -REMOULDED-REMANIE PLASTIC LIMIT LIMITE DE PLASTICITÉ CR CORE RECOVERY

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH4-24 Test: Falling Head - 1 of 1 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.31086

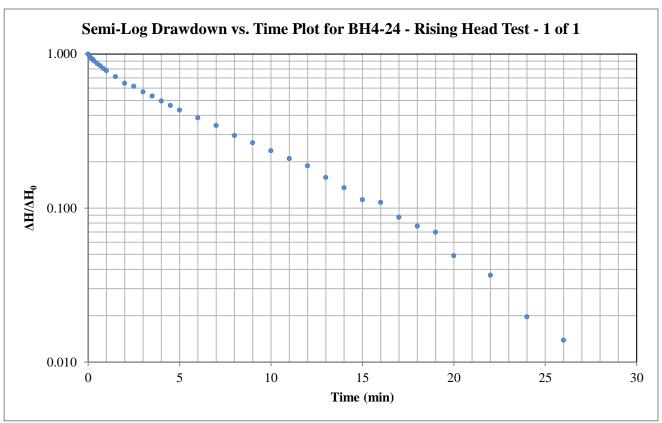
Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.0508 \text{ m} & \text{Diameter of well} \\ r_c & 0.0254 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 7.190 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity
K = 2.02E-06 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH4-24 Test: Rising Head - 1 of 1 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.31086

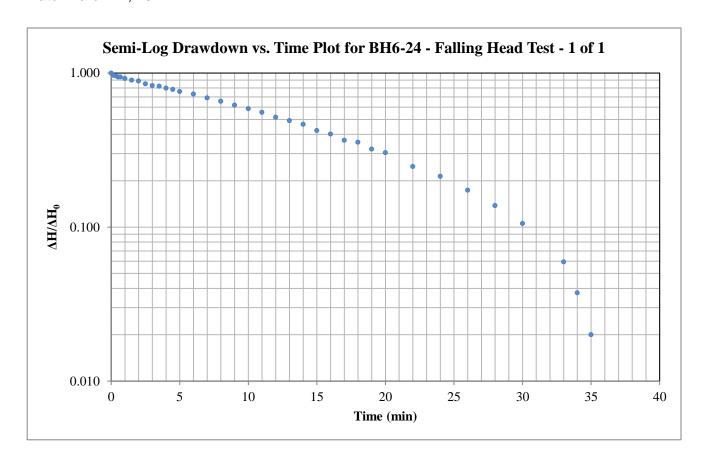
Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.0508 \text{ m} & \text{Diameter of well} \\ r_c & 0.0254 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 6.257 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity
K = 2.32E-06 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH6-24 Test: Falling Head - 1 of 1 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

Hvorslev Shape Factor

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$
 Valid for L>>D

Hvorslev Shape Factor F: 2.07207

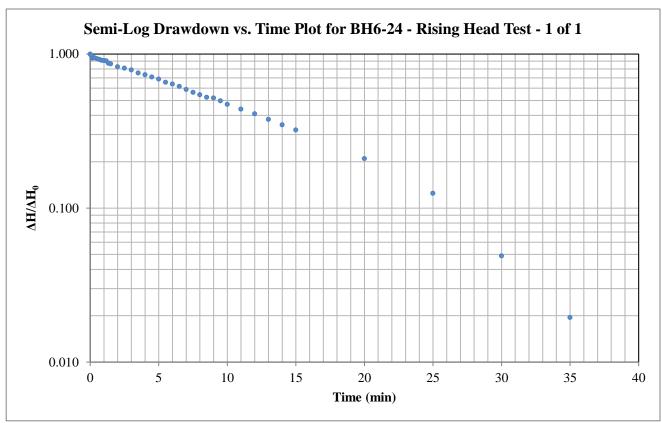
Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.03175 \text{ m} & \text{Diameter of well} \\ r_c & 0.01588 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 17.214 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity K = 3.68E-07 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH6-24 Test: Rising Head - 1 of 1 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.07207

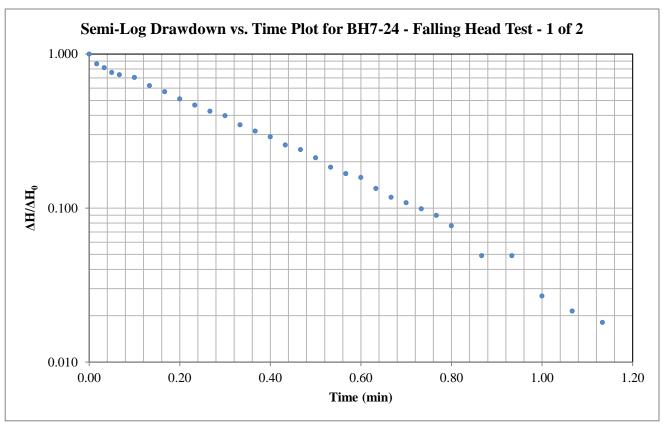
Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.03175 \text{ m} & \text{Diameter of well} \\ r_c & 0.01588 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 13.128 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity K = 4.82E-07 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH7-24 Test: Falling Head - 1 of 2 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.07207

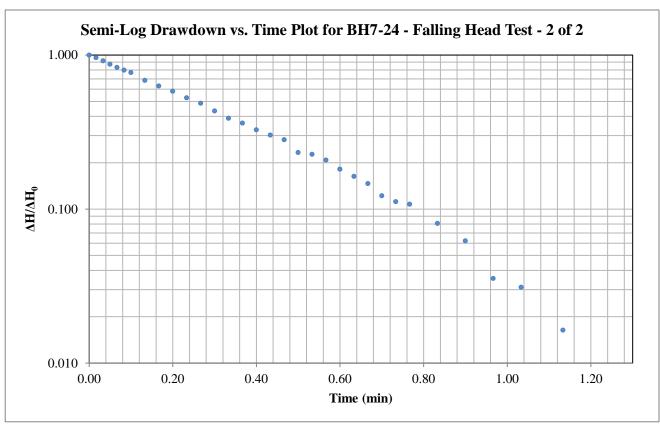
Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.03175 \text{ m} & \text{Diameter of well} \\ r_c & 0.01588 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 0.315 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity
K = 2.01E-05 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH7-24 Test: Falling Head - 2 of 2 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.07207

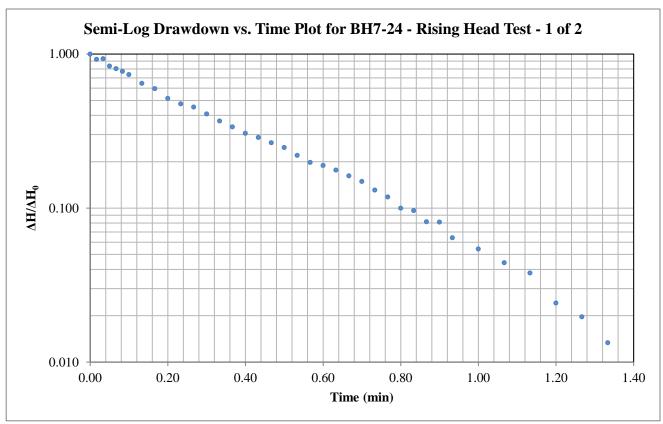
Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.03175 \text{ m} & \text{Diameter of well} \\ r_c & 0.01588 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 0.357 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity K = 1.77E-05 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH7-24 Test: Rising Head - 1 of 2 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.07207

Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.03175 \text{ m} & \text{Diameter of well} \\ r_c & 0.01588 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 0.332 minutes $\Delta H^*/\Delta H_0$: 0.37


Horizontal Hydraulic Conductivity
K = 1.91E-05 m/sec

Hvorslev Hydraulic Conductivity Analysis

Project: Brigil - 265 Catherine Street

Test Location: BH7-24 Test: Rising Head - 2 of 2 Date: March 14, 2024

Hvorslev Horizontal Hydraulic Conductivity

Hvorslev Shape Factor

$$K = \frac{\pi r_c^2}{F} \frac{1}{t^*} \ln \left(\frac{\Delta H^*}{\Delta H_0} \right)$$

$$F = \frac{2\pi L}{\ln\left(\frac{2L}{D}\right)}$$

Valid for L>>D

Hvorslev Shape Factor F: 2.07207

Well Parameters:

L 1.5 m Saturated length of screen or open hole

 $\begin{array}{ccc} D & 0.03175 \text{ m} & \text{Diameter of well} \\ r_c & 0.01588 \text{ m} & \text{Radius of well} \end{array}$

Data Points (from plot):

t*: 0.333 minutes $\Delta H^*/\Delta H_0$: 0.37

Horizontal Hydraulic Conductivity
K = 1.90E-05 m/sec

Order #: 2034480

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 26-Aug-2020

Order Date: 20-Aug-2020

Client PO: 30690 Project Description: PE2703

	Client ID:	BH3-20 SS4	-	-	-
	Sample Date:	19-Aug-20 09:00	-	-	-
	Sample ID:	2034480-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics			•		
% Solids	0.1 % by Wt.	59.6	-	-	-
General Inorganics					
pH	0.05 pH Units	7.40	-	-	-
Resistivity	0.10 Ohm.m	3.33	-	-	-
Anions			•		
Chloride	5 ug/g dry	1780	-	-	-
Sulphate	5 ug/g dry	398	-	-	-

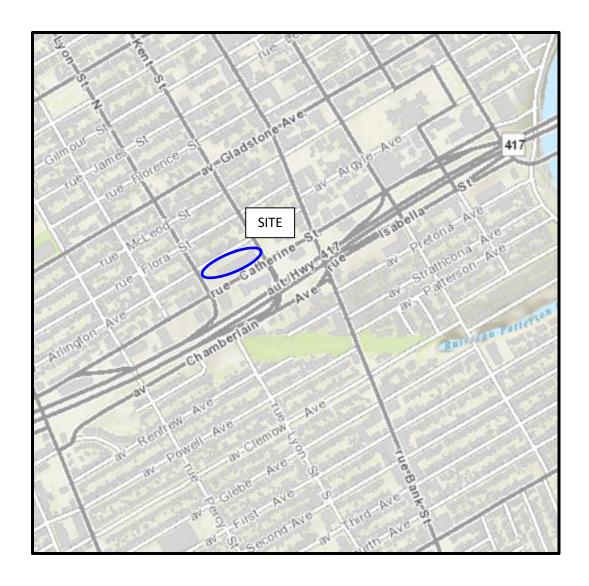

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 & 3 – SEISMIC SHEAR WAVE VELOCITY PROFILES

FIGURE 4 – ELEVATOR SHAFT WATERPROOFING

DRAWING PG5933-1 – TEST HOLE LOCATION PLAN

FIGURE 1

KEY PLAN

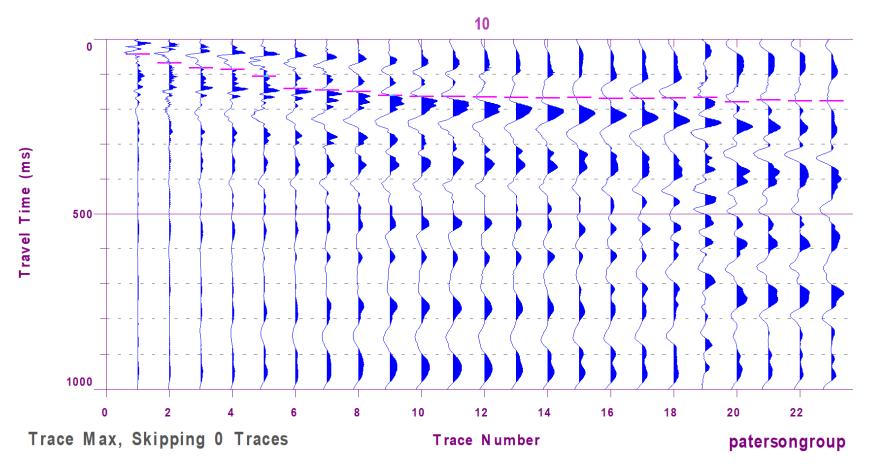


Figure 2 – Shear Wave Velocity Profile at Shot Location -2 m

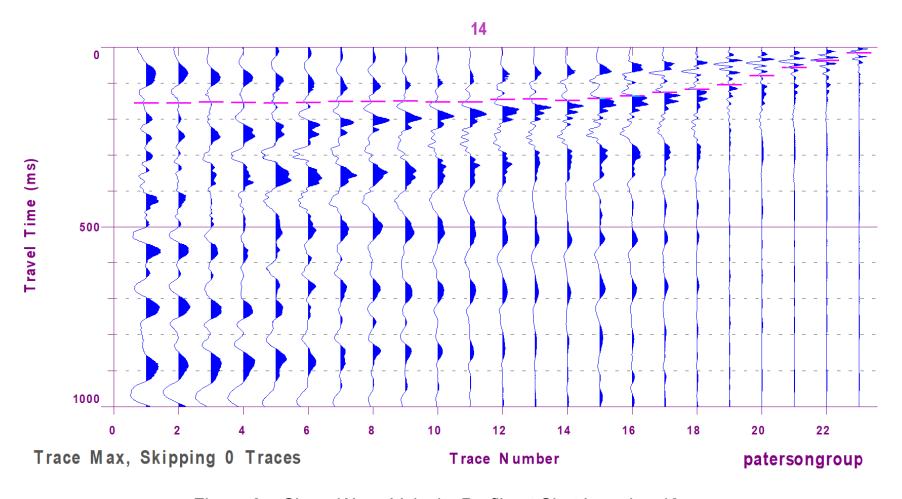
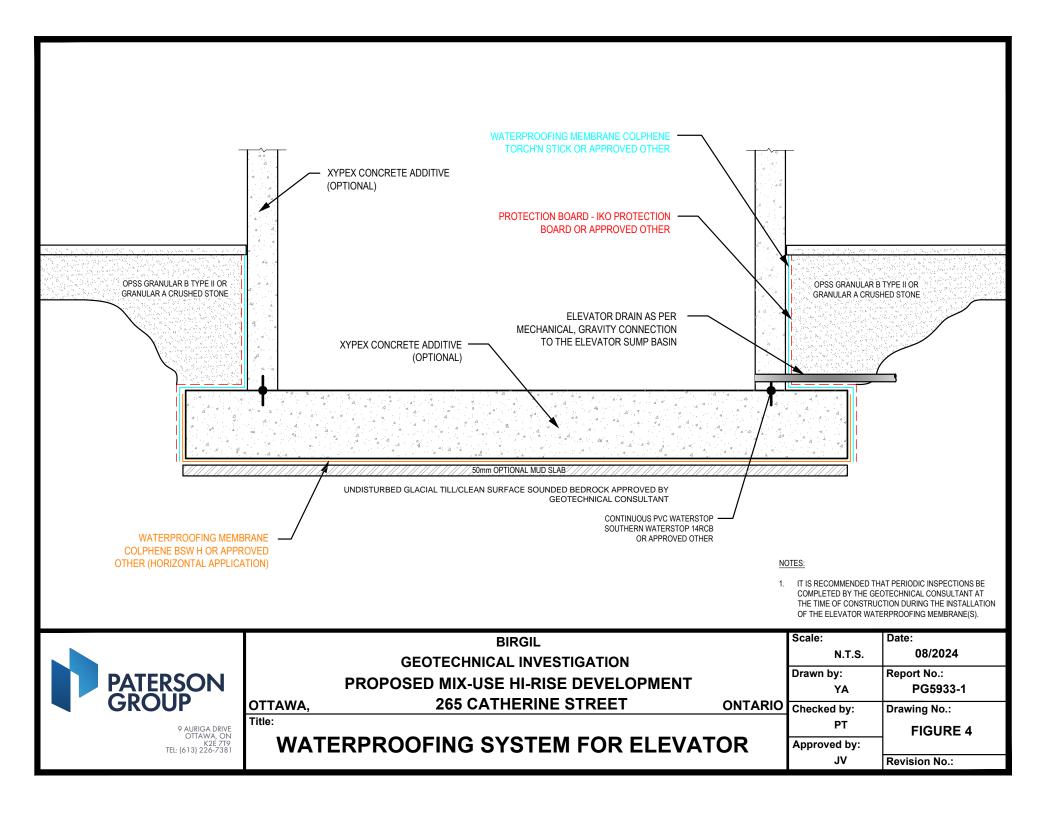
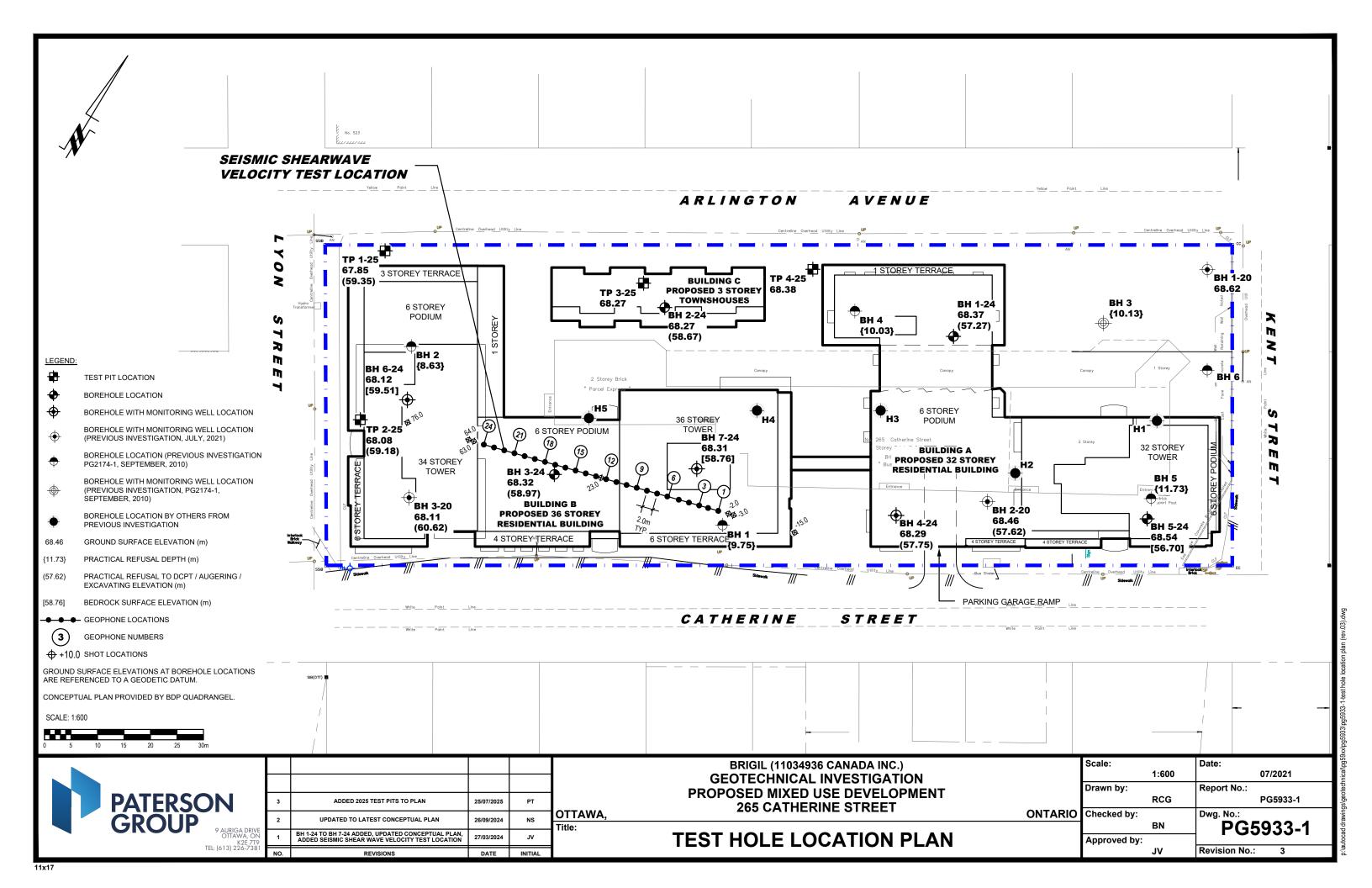




Figure 3 – Shear Wave Velocity Profile at Shot Location 48 m

