

3145 Conroy Road

Transportation Impact Assessment (TIA) Strategy Report

Draft

August 2025

TIA Step 3 Report – Strategy

3145 Conroy Rd, Ottawa, ON

Prepared for:
WO MW Realty Limited
180 Renfrew Drive
Suite 230
Markham ON L3R9Z2

1223 Michael Street North
Suite 100
Ottawa, ON K1J 7T2

August 26, 2025

479371-01000

DOCUMENT CONTROL PAGE

CLIENT:	WO MW Realty Limited					
PROJECT NAME:	3145 Conroy Road					
REPORT TITLE:	TIA Step 3 Report – Strategy					
PARSONS PROJECT NO:	479371 - 01000					
IN SUPPORT OF:	Site Plan Application (SPA)					
VERSION:	Draft					
DIGITAL MASTER:	https://parsons365can.sharepoint.com/sites/OttawaHub/Projects/Projects/479371 - 3145 Conroy Road - White Owl Approvals/4. 03000 - Transportation/Documents/3-Strategy Report/3145 Conroy - Step 3 Strategy Draft Report.docx					
ORIGINATOR	Myles Fox, Juan Lavin, P.Eng.,					
REVIEWER:	Basel Ansari, P.Eng.					
AUTHORIZATION:						
CIRCULATION LIST:	Rochelle Fortier, P.Eng.					
HISTORY: TIA Step 2 Report – Scoping and Forecasting – May 26, 2025 TIA Step 3 Report – Strategy – August 26, 2025						

TABLE OF CONTENTS

1.0	SCREENII	NG FORM	1
2.0	SCOPING	REPORT	1
	2.1. EXIST	ING AND PLANNED CONDITIONS	1
	2.1.1.	PROPOSED DEVELOPMENT	1
	2.1.2.	EXISTING CONDITIONS	5
		PLANNED CONDITIONS	
		Y AREA AND TIME PERIODS	
		IPTION REVIEW	
3.0		STING	
		LOPMENT GENERATED TRAVEL DEMAND	
		TRIP GENERATION SOURCES	
		TRIP DISTRIBUTION AND ASSIGNMENT	
	3.2. BACK	GROUND NETWORK TRAFFIC	
	3.2.1.	TRANSPORTATION NETWORK PLANS	22
	3.2.2.	BACKGROUND GROWTH AND OTHER AREA DEVELOPMENTS	22
	3.2.3.	FUTURE BACKGROUND VOLUMES	22
	3.2.4.	FUTURE PROJECTED TRAFFIC VOLUMES	23
		AND RATIONALIZATION	
4.0		S	
		LOPMENT DESIGN	
		DESIGN FOR SUSTAINABLE MODES	
	4.1.2.	CIRCULATION AND ACCESS	
	4.1.3.		
	4.2. PARK	ING	26
	4.3. BOUN	NDARY STREET DESIGN	27
	4.3.1.	EXISTING & FUTURE CONDITIONS	27
	4.4. ACCE	SS INTERSECTION LOCATION	28
	4.4.1.	LOCATION AND DESIGN OF ACCESS	28
	4.5. TRAN	SPORTATION DEMAND MANAGEMENT	29
	4.5.1.	CONTEXT FOR TDM	29
	4.5.2.	NEED AND OPPORTUNITY	29
	4.5.3.	TDM PROGRAM	29
	4.6. NEIGI	HBORHOOD TRAFFIC MANAGEMENT	30
	4.7. TRAN	SIT	30

	4.7.1.	TRANSIT ROUTE CAPACITY	30
	4.7.2.	TRANSIT PRIORITY REQUIREMENTS	30
	4.8. REVIE	W OF NETWORK CONCEPT	30
	4.9. INTER	SECTION DESIGN	30
	4.9.1.	INTERSECTION CONTROL	30
	4.9.2.	INTERSECTION DESIGN	31
	4.9.3.	INTERSECTION PERFORMANCE	
		QUEUEING ANALYSIS	
5.0	FINDINGS	AND RECOMMENDATIONS	35
LIS	T OF FIGU	RES	
FIGL	JRE 1: LOCA	L CONTEXT	3
FIGL	JRE 2: PROP	OSED SITE PLAN	4
FIGL	JRE 3: EXIST	ING DRIVEWAYS ADJACENT TO DEVELOPMENT	7
FIGL	JRE 4: CROS	STOWN BIKEWAY NETWORK	8
FIGL	JRE 5: AREA	TRANSIT NETWORK	8
FIGL	JRE 6: BUS	STOP LOCATIONS	9
FIGL	JRE 7: EXIST	ING PEAK HOUR VEHICLE TRAFFIC VOLUMES	11
FIGL	JRE 8: EXIST	ING PEAK HOUR PEDESTRIAN AND CYCLIST VOLUMES	11
FIGL	JRE 9: TMP I	PRIORITY TRANSIT NETWORK - MARCH 2025	13
FIGL	JRE 10: OFF	ICIAL PLAN - SCHEDULE C4 URBAN ROAD NETWORK	14
FIGL	JRE 11: OTH	ER AREA DEVELOPMENTS	15
FIGL	JRE 12: STU	DY AREA AND INTERSECTIONS TO BE ANALYZED	17
FIGL	JRE 13: PEA	K HOUR SITE-GENERATED TRAFFIC DISTRIBUTION, FOR STAFF AND TRUCKS	20
		K HOUR SITE GENERATED TRAFFIC VOLUMES FOR EMPLOYEE TRAFFIC (MONDAY TO	21
		K HOUR SITE GENERATED COLLECTION VEHICLE TRAFFIC VOLUMES (MONDAY, TUESDAY	,
FIGL	JRE 16: PEA	K HOUR SITE GENERATED COLLECTION VEHICLE TRAFFIC VOLUMES (WEDNESDAY)	21
FIGL	JRE 17: TOT	AL SITE GENERATED PEAK HOUR TRAFFIC VOLUMES (MONDAY, TUESDAY, THURSDAY)	22
FIGL	JRE 18: TOT	AL SITE GENERATED PEAK HOUR TRAFFIC VOLUMES (WEDNESDAY)	22
FIGL	JRE 19: PEA	K HOUR TRAFFIC VOLUMES FOR OTHER DEVELOPMENTS	23
FIGL	JRE 20: FUT	URE BACKGROUND PEAK HOUR TRAFFIC VOLUMES	23
FIGL		URE PROJECTED PEAK HOUR TRAFFIC VOLUMES INCLUDING THE DEVELOPMENT (2033	,
			24

FIGURE 22: FUTURE PROJECTED PEAK HOUR TRAFFIC VOLUMES INCLUDING THE DEVELOPMENT (2033 WEDNESDAY)	24
FIGURE 23: SITE ACCESS ALTERNATE ANALYSIS SCENARIOS	34
LIST OF TABLES	
TABLE 1: SUMMARY OF PROPOSED LAND USES, SIZE AND LOCATION	2
TABLE 2: COLLISION SUMMARY BY TYPE AND SEVERITY	12
TABLE 3: COLLISION SUMMARY AT STUDY AREA INTERSECTIONS, VULNERABLE ROAD USERS	12
TABLE 4: COLLISION SUMMARY AT STUDY AREA MID-BLOCK LOCATIONS	12
TABLE 5: EXEMPTIONS REVIEW SUMMARY	17
TABLE 6: EMPLOYEE PEAK HOUR PERSON TRIP GENERATION	18
TABLE 7: PEAK HOUR TRIPS MODE SHARE BREAKDOWN	19
TABLE 8: SITE COLLECTION VEHICLE PEAK HOUR TRIP GENERATION BY TRAVEL MODE	
TABLE 9: COMBINED SITE GENERATED PEAK HOUR TRIPS	19
TABLE 10: SUMMARY OF PARKING REQUIREMENTS AND PROPOSED PARKING	27
TABLE 11: MMLOS - BOUNDARY STREET SEGMENTS EXISTING AND FUTURE CONDITIONS	28
TABLE 12: MMLOS - EXISTING AND FUTURE INTERSECTION CONDITIONS	31
TABLE 13: EXISTING CONDITIONS INTERSECTION PERFORMANCE	32
TABLE 14: FUTURE PROJECTED 2033 CONDITIONS INTERSECTION PERFORMANCE (MTT SCHEDULE)	33
TABLE 15: FUTURE PROJECTED 2033 CONDITIONS INTERSECTION PERFORMANCE (WEDNESDAY SCHED	
TABLE 16: SITE ACCESS ALTERNATE SCENARIOS FUTURE PROJECTED 2033 CONDITIONS INTERSECTION PERFORMANCE (WEDNESDAY SCHEDULE)	
TABLE 17: QUEUEING ANALYSIS AT SITE ACCESS - FUTURE PROJECTED 2033	35

LIST OF APPENDICES

APPENDIX A: TIA SCREENING FORM AND SITE PLAN

APPENDIX B: OC TRANSPO TRANSIT ROUTES

APPENDIX C: EXISTING PEAK HOUR VOLUMES

APPENDIX D: HISTORIC COLLISION DATA

APPENDIX E: TRANS FORECASTED GROWTH CONROY

APPENDIX F: TRUCK TURNING TEMPLATES

APPENDIX G: MMLOS ANALYSIS SHEETS

APPENDIX H: TDM CHECKLISTS

APPENDIX I: TRAFFIC SIGNAL WARRANT SHEETS

APPENDIX J: SYNCHRO AND SIMTRAFFIC REPORTS

TIA STRATEGY REPORT

Parsons has been retained by WO MW Realty Limited to prepare a Transportation Impact Assessment (TIA) in support of a Site Plan Application (SPA) for a proposed office and truck fleet maintenance facility located at the municipal address of 3145 Conroy Road, referred to as the Subject Site herein. This document follows the TIA process as outlined in the City of Ottawa Transportation Impact Assessment Guidelines (2017) and the 2023 revisions. The following report represents Step 3 – Strategy Report.

1.0 SCREENING FORM

The screening form confirmed the need for a TIA Report based on the Trip Generation trigger, given that the proposed development consists of fleet and employee parking, a mechanic shop, office space, and a Compressed Natural Gas (CNG) refueling area, and is forecasted to produce more than 60 person trips during peak hours.

Screening also determined that the conditions for additional analysis due to Location Triggers were met. The development proposes to maintain an existing access location to a boundary street (Conroy Road) that is designated as part of the City's Transit Priority Network and Cross-Town Bikeway Network.

The Safety Trigger is also met as the proposed driveway is within the area of influence of the CN Rail at-grade crossing, which has railway traffic signal control, and the proposed driveway makes use of an existing median break along Conroy Road. The Screening Form and Site Plan have been provided in **Appendix A**.

2.0 SCOPING REPORT

2.1. Existing and Planned Conditions

2.1.1. Proposed Development

The proposed development is located at 3145 Conroy Road in the City of Ottawa. The site is approximately 4.86 hectares on a rectangular parcel, with a minimum depth of 375m. This site is located in Ward 10 (Gloucester-Southgate) between Walkley Road and Hunt Club Road and south-adjacent to a CN Rail Corridor. The site is currently vacant with remnants of a go-karting track and a mini-golf course. The site context is illustrated in **Figure 1.**

The proposed development includes an office space, a servicing garage with loading spaces, storage at the rear of the site for roll-off and front-end waste bins, and a new surface parking lot for 135 truck spaces and 265 employee parking spaces (including barrier-free spaces). Site modifications associated with the proposed development include site clearing and grading. The installation of a 1.8m sidewalk will provide pedestrian access to the main building from Conroy Road along with 10 bicycle parking spaces east of the building entrance. Otherwise, site access will be provided through the existing driveway to Conroy Road, with full movements.

Proposed surface parking consists of 257 standard vehicle spaces, eight barrier-free parking spaces, and 12 motorcycle spaces. Landscaping buffers will surround the surface parking areas and around the edges of the site. The site plan is illustrated in **Figure 2**.

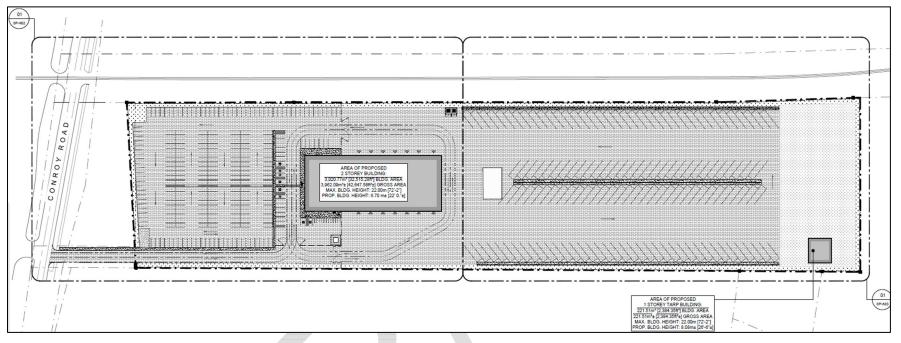
Zoning and planning provisions

The current Zoning By-law designates the development parcel as IG3 (General Industrial), which permits a 'wide range of low to moderate impact, light industrial uses in accordance with the Employment Area designation of the Official Plan'. As a **servicing and repair shop** and **office**, the development is subjected to provisions 199(3) to (5) of the Zoning By-law. Physical planning provisions, as per 199(3), are presented below in Table 1. 199(4) is not applicable, as there is no accessory display and sales area. It should be noted that a draft Zoning By-law is underway, with the only changed stipulation for the site applying to the minimum lot area, which is met under both the draft and current Zoning By-law. Additional provisions related to parking are discussed in **Section 4.2** of this report.

The 2025 Official Plan designates the development parcel as Industrial and Logistics in the Outer Urban Transect, which permits 'heavy equipment and vehicle sales and service' as well as 'offices that are accessory to a primary use'.

Table 1: Summary of Proposed Land Uses, Size and Location

Statistic	Value	General Industrial (IG3) (Table 199, 2023 ZBL)
Lot Area	48,611.80m ²	Minimum 1,000 m ²
Lot Width	104m	No minimum
Lot Depth	375.24m - 456.64m	-
Lot Coverage	6%	Maximum 65%
Gross Floor Area	3,962.09m ²	-
Building Area	3,020.77m ²	-
Building Height	22m	22m
Setback		
Front	108.20m	Minimum 3m
Corner	N/A	Minimum 3m
Interior	34.20m	Minimum 3m
Rear	18.20m	Minimum 3m
Vehicle Parking Spaces	265	Minimum 59
Bicycle Parking Spaces	8	Minimum 9
Motorcycle Spaces	12	Maximum 13
Fleet Parking Spaces	135	-


Figure 1: Local Context

3145 Conroy Road - TIA Strategy Report August 26, 2025

Figure 2: Proposed Site Plan (August 2025)

Note: The proposed access will continue to be through the City of Ottawa property as a Right-of-Way (ROW) easement agreement.

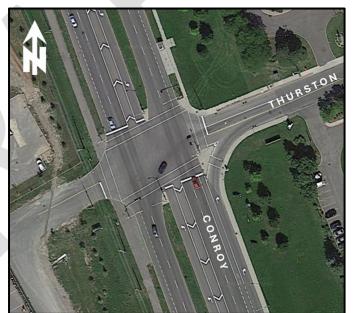
2.1.2. Existing Conditions

Area Road Network

A description for each road within the study area included in the TIA has been provided below.

Thurston Road is classified as a local road which extends from Conroy Road in the west followed by a 90-degree bend directing to St Laurent Boulevard in the north. Within the study area, Thurston Road has a two-lane cross section consisting of one eastbound lane and one westbound lane. According to the Official Plan Schedule C16, the protected right-of-way is 18m. The posted speed limit is 50km/h.

Johnston Road is classified as collector road traveling east from the Conroy Road intersection and a Major Collector Road traveling west extending to Bank Street. According to Official Plan Schedule C16, the protected right-of-way is 26m. The posted speed limit is 50km/h.


Conroy Road is classified as an arterial road which extends from Walkley Road in the north and merges into Bank Street in the south. Conroy Road has four lane cross section consisting of two northbound lanes, two southbound lanes, curbside bike lanes on either side, and a median break. According to the Official Plan Schedule C16, the protected right-of-way is 37.5m. The posted speed limit is 60km/h. Conroy Road is classified as a full-load truck route.

Existing Study Area Intersections

The following provides a description of study area intersections:

Thurston/Conroy Road

The Thurston/Conroy Road intersection is a four-legged signalized intersection. The northbound movements consist of a leftturn lane, two through lanes, and a channelized right-turn lane, with a pedestrian refuge island. The southbound approach consists of a left-turn lane, a through lane, and a shared through-right lane. A curbside bike lane and a pocket bike lane are provided on Conroy Road for the southbound and northbound directions. respectively. The northbound and southbound cross-section is separated by a median. The westbound movement consists of a left turn lane and a shared throughright lane. The eastbound approach consists of a shared left-turn, through-right lane. All movements are permitted at this location.

Johnston/Conroy Road

The Johnston/Conroy Road intersection is a four-legged intersection. The eastbound and westbound approach consists of a through lane, a right-turn lane, a pocket bike lane, and a left-turn lane. The northbound and southbound movements consist of a single through lane, a shared through-right lane and a left-turn lane separated by a painted buffer. A curbside bike lane is provided on Conroy Road. All movements are permitted at this location.

Existing Driveways to Adjacent Developments

Driveway accesses within 200m of the development access are indicated in red boxes for major accesses and yellow boxes for minor accesses in **Figure 3**. This includes:

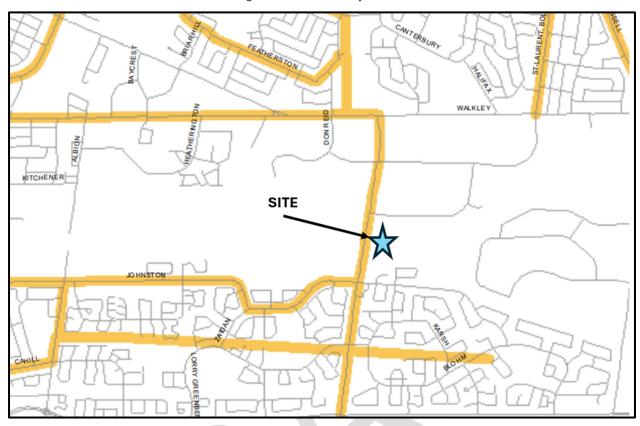
- South of the Subject Site at:
 - 3225 Conroy Road (east side): single access to a place of worship and place of assembly, approximately 150m south of the site.
 - o 3201 Conroy Road (east side): single access to a gas bar and car wash, approximately 200m south of the site with additional access to Johnston Street.
- North of the Subject site at:
 - o 3138 Conroy Road (west side): single access to a train yard with restricted access, approximately 70m away across from the Subject Site on Conroy Road.
 - 3100 Conroy Road (west side): single access to light-industrial facility, approximately 350m north of the site that enters the four-legged intersection with Thurston Road.

Figure 3: Existing Driveways Adjacent to Development

Existing Area Traffic Management Measures

Below are the existing area traffic management measures within the study area:

- Railway crossing and barriers, including pavement markings warning of the train crossing
- No trucks allowed on Johnston Road
- A "No U-turn" sign travelling northbound on Conroy at the intersection with the Subject Site's driveway
- "This Lane" bike lane indicator signs on Conroy Road
- · Centre flex poles on Johnston Rd

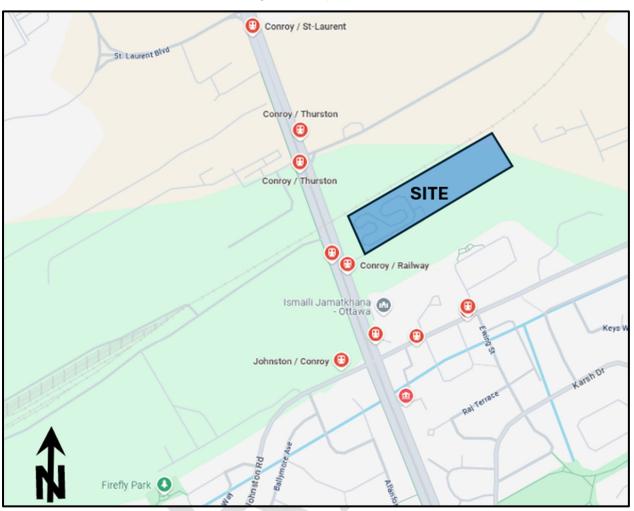

Existing Pedestrian/Cycling Network

A sidewalk facility approximately 1.6m wide is provided on the east side of Conroy Road, directly adjacent to the site. A multi-use pathway (MUP) facility approximately 3.5m wide is provided on the west side of Conroy Road. Both sides of Conroy Road have 2.1m wide painted curbside bike lanes. Johnston Road provides a 2m sidewalk on the south side only west of Conroy Road and on both sides of the road east of Conroy Road. Thurston Drive has sidewalk facilities approximately 2m wide on both sides of the road east of Conroy Road and no facilities west of Conroy Road. Throughout the study area, Conroy Road and Johnston Road (west of Conroy Road) are both part of the Crosstown Bikeway Network (March 1, 2023)¹ according to the new Transportation Master Plan (TMP) and as illustrated in **Figure 4**.

¹Crosstown Bikeway Network, March 1, 2023

Figure 4: Crosstown Bikeway Network

Transit Network


The transit network for the study area is illustrated in **Figure 5** with **Figure 6** illustrating the bus stop locations near to the site.

1 SL SITE 222 43 2 6 10 41 44 6 40 90 98 98 88 90 98 111 116 197 116 197 18 48 112 43 92 117 43 92 117 198 92 304 198 304 294 304 294 Legend • Légende 40

Figure 5: Area Transit Network

Figure 6: Bus Stop Locations

Figures for each OC Transpo transit route servicing the site are available in Appendix B. They are as follows:

Route #40 (St Laurent <-> Greenboro): Identified by OC Transpo as a "Frequent" service type, this route operates seven days a week in all time periods, with headways of approximately 30 minutes during the day. This route provides connectivity to the LRT Line 1 at St Laurent Mall and various destinations within Gloucester all the way to LRT Line 2 at South Keys and Greenboro. Stops for this route are available on both sides of Conroy Road. Stops #4334 and #4335 are immediately adjacent to the site, although there is no pedestrian crossing on Conroy Road from this location. Transit users riding from the north might instead stop at Stops #4333 or #0413, which are roughly 300m from the site, but offer safe crossings at Thurston/Conroy and Johnston/Conroy, respectively.

Route #43 (Karsh <-> Greenboro): Identified by OC Transpo as a "Local" service type, this route operates on weekdays on an hourly basis. The route provides connectivity to LRT Line 2 at Greenboro and various destinations within the Greenboro and South Keys residential areas. Bus stops for this route are available on Johnston Road, located approximately 330m from the site (stops #8135 and #1305).

Route #644 (Canterbury H.S <-> Greenboro): Identified by OC Transpo as a customer service from home to school under the service type "School". This route operates two times a day in the morning during the week. This route provides connectivity to the LRT Line 2 at Greenboro station to Canterbury Highschool and Canterbury Recreation complex. The nearest bus stops serving this route are the site-adjacent Stops #4334 and #4335, although transit users from the north might instead stop further north at Stop #4333, where they can cross safely at Thurston/Conroy.

Route #649 (Hillcrest <-> Greenboro): identified by OC Transpo as a customer service from home to school under the service type "School". This route operates once daily on weekdays. This route provides connectivity between LRT Line 2 and Hillcrest Highschool, located close to the Ottawa Hospital. The nearest bus stops serving this route are the site-adjacent Stops #4334 and #4335, although transit users from the north might instead stop further north at Stop #4333, where they can cross safely at Thurston/Conroy.

CN Rail Corridor

The CN Rail corridor crosses Conroy Road at approximately 105m north of the proposed development access. Railroad crossing signs and gates are provided on Conroy Road. According to information provided on the OC Transpo website regarding coordination of the CN Freight Trains on LRT Line 2, the CN trains are infrequent, running twice on certain days. The timing of the two train is 8-9am and 4-5pm, both of which do not align with the peak hours of the development discussed in the following section.

Peak Hour Travel Demands

Traffic count data was obtained from the City of Ottawa. The vehicle traffic volumes at study area intersections are illustrated in **Figure 7** and active transportation volumes in **Figure 8**, with raw traffic count data provided in **Appendix C**. The City of Ottawa normally provides eight-hour counts, which includes the AM Peak Period (7:00-10:00 AM), the Mid-day Off-Peak Period (11:30 AM-1:30 PM) and the PM Peak Period (3:00-6:00 PM). However, it is noted that the morning peak hour of the generator (i.e. the proposed development) is estimated to be 6:00-7:00 AM.

For this analysis, the earliest available traffic data from the City from 7:00-8:00 AM will be used to represent the 6:00-7:00 AM period at the signalized intersections. Parsons conducted mid-block field counts on Thursday May 15th, 2025, to determine the proportion of traffic volumes from 6:00-7:00 AM versus 7:00-8:00 AM. The count determined that traffic volumes from 6:00-7:00 AM were approximately 50% lower than traffic volumes from 7:00-8:00 AM. Therefore, using the City's 7:00-8:00 AM data is very conservative.

The peak hour of the generator in the PM is 17:00-18:00 which is available within the data provided by the city and will be used as the PM peak hours.

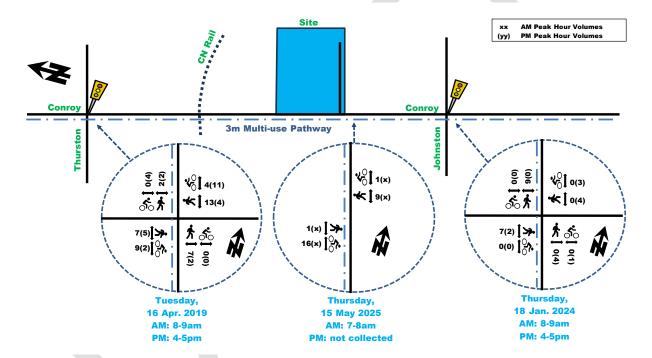

A review of traffic volumes showed that there was a significant imbalance of vehicular volumes, particularly in the northbound direction. Additional counts were requested at adjacent intersections such as St. Laurent Boulevard (December 2023) and Lorry Greenburg Drive (April 2025). It was determined that Johnston Road (January 2024) was consistent with the other three counts while Thurston Drive (April 2019) was significantly higher, by about 700 to 900 additional vehicles during the morning peak hour. Since the Thurston Drive count was an outlier to the other three counts and is much older than the other three counts (pre-Covid count for Thurston Drive vs post-Covid counts for the other three), the volumes at Thurston Drive were balanced to the other intersections. A review of mid-block counts conducted by Parsons staff on May 15, 2025, confirmed that the reduced traffic volumes on Thurston Drive/balancing to the other three intersections was consistent with counts from the May 15, 2025. Active transportation volumes may be lower at the Johnston/Conroy intersection compared to other locations as that count was conducted during winter months where there is generally less walking and cycling activity.

Figure 7: Existing Peak Hour Vehicle Traffic Volumes

Figure 8: Existing Peak Hour Pedestrian and Cyclist Volumes

Existing Road Safety Conditions

A five-year collision history data (2018-2022, inclusive) was obtained from the City of Ottawa Open Data for the study area intersections and road segments. The data was analyzed as an initial screening. Detailed collision analysis has been provided in **Appendix D**.

The total number of collisions in the five-year study period was 34. Of the collisions, 25 of 34 (74%) resulted in property-damage-only (PDO), while the remaining incidents (nine, or 26%) resulted in non-fatal injury. There were no fatal collisions within the study area. **Table 2** provides a summary of collisions by type and summary.

Table 2: Collision Summary by Type and Severity

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV Other	SMV Unattended	Other	Total
Property-Damage-Only (PDO)	7	6	1	6	0	5	0	0	25 (74%)
Non-fatal injury	2	3	1	3	0	0	0	0	9 (26%)
Fatal Incidents	0	0	0	0	0	0	0	0	0 (0%)
Total	9 (26%)	9 (26%)	2 (6%)	9 (26%)	0 (0%)	5 (15%)	0 (0%)	0 (0%)	34 (100%)

The most common collision types are rear end, turning movement and angle collisions, all with nine collisions each and making up nearly four fifths of all recorded collisions. Additionally, there were five single-motor-vehicle accidents (15%) and two sideswipes (6%). The study area contains many long, straight road segments with few driveways, which may lead to high speeds and sudden stops as traffic lights turn red, contributing to a high number of rear end collisions. Turning and angle type collisions may be a result of the faster operating speeds and vehicles turning at intersections where left or right-turns are permissive and misjudging the available vehicle gap to safely perform a turn manoeuvre or merging into traffic.

Table 3 summarizes the collision history by intersection, including the total number of collisions, percent causing injury, number of collisions with vulnerable road users, and the most frequent collision type. Similarly, the mid-block collisions are summarized in **Table 4**.

Table 3: Collision Summary at Study Area Intersections, Vulnerable Road Users

Intersection Location	# Collisions in 5 Years	% Causing Injury	# Collisions with Peds	# Collisions with Bikes	Most frequent type of collision and % of total collision at that location
Conroy/Thurston	11	36%	0	0	Turning movement (45%)
Conroy/Johnston	20	20%	0	2	Angle (35%)

Table 4: Collision Summary at Study Area Mid-Block Locations

Midblock Location on Conroy Between	# Collisions in 5 Years	Length of Segment	% Causing Injury	# Collisions with AT	Most frequent type of collision and % of total collision at that location
St. Laurent & Thurston	0	390m	0%	0	N/A
Thurston & Johnston	2	530m	0%	0	Rear end (100%)
Johnston & Lorry Greenberg	1	460m	0%	0	Rear end (100%)

The intersection of Conroy/Thurston recorded 11 total collisions. This intersection had an injury rate of 36% (4 of 11), but no vulnerable road user collisions were recorded. The most common collision type was turning movement (5 of 11, or 45%), followed by rear end (27%), and angle (18%). The relatively high injury rate (above 30%) may be reflective of the road design which is conducive of speeding given its long straight stretches of road, coupled with high impact turning movement collisions which tend to have a higher frequency of injury compared to other classifications of collisions. Albeit the frequency of collisions recorded at this intersection was considered low for an intersection between a collector road and an arterial road.

The intersection of Conroy/Johnston recorded 20 collisions within the five-year data, which is also considered generally low frequency of collision given that it is an intersection between an arterial road and a collector/major collector road. This intersection recorded two angled collisions with cyclists, only one of which resulted in injury. This intersection connects two segments of the Crosstown Bikeway Network but does not currently provide protected treatments or protected turning movements/time separated crossings. A more contemporary intersection design following the Protected Intersection Design Guide could be considered to mitigate these collisions with vulnerable users.

The midblock segment analysis showed that very few collisions occurred, and all resulted in property damage only. It is noteworthy that the Ontario Traffic Manual Book 18 Figure 5.5 suggests that the bike facilities on Conroy Road should be provided as physically separated; however, a 3.5m wide MUP facility is currently provided on the west side of Conroy Road, lessening the priority to upgrade the existing curbside bike lanes into cycletracks. There were no mid-block collisions with active users.

2.1.3. Planned Conditions

Future Transportation Network Changes

Within the Official Plan, Conroy Road is identified in an *Industrial and Logistics* designation. Based on the most recent update in the TMP as of March 31st, 2025, Conroy Road is identified within the Needs-Based Transit Network, and the Priority Transit Network, with continuous bus lanes from Findlay Creek to Walkley Road via Bank Street and Conroy Road as illustrated in *Figure 9*. The TMP update estimates the project to cost \$122 million for dedicated bus lanes on Heron Road between Conroy Road and Bank Street (including the Conroy Road segment fronting the site). This transit priority project rated second within the continuous bus lanes category. The Needs-Based Transit Network further includes transit priority measures on Hunt Club Road and Bank Street. At the time of submission, no design plans were available online for the section extending south of Walkley Road, on Conroy Road or on Bank Street. It should be noted that the 2025 TMP update has not yet been finalized and is still undergoing public consultation.

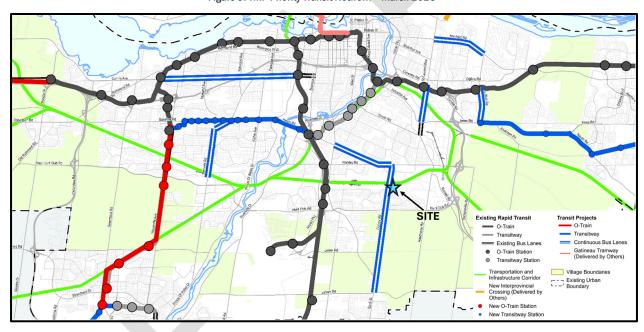


Figure 9: TMP Priority Transit Network - March 2025

Similarly, the road network classifications map and future network has recently been released as of March 31st, 2025 for the TMP. The TMP illustrates a northern extension of Conroy Road from Walkley Road to the Hospital Link Road within the Needs-Based Road Network and is consistent with Schedule C4 of the Official Plan as shown in **Figure 10**. However, the Priority Road Network within the new TMP update does not illustrate this link, meaning that it will likely not be built within the study horizon years.

The latest Crosstown Bikeway Network from the 2023 TMP (as shown previously in **Figure 4**) classifies Conroy Road and Johnston Road west of Conroy Road as part of the Crosstown Bikeway Route. The latest TMP Cycling Priority Map (March 2025) highlights Johnston Road as a "later priority" from Conroy Road to the Airport Parkway, likely to occur beyond 10 years from now.

WALKEEY

SITE

Arterial - Existing

Arterial - Proposed (alignment defined)

Arterial - Conceptual (alignment undefined)

Major Collector - Existing

Major Collector - Proposed

Collector - Proposed

Collector - Proposed

New Interchange

Figure 10: Official Plan - Schedule C4 Urban Road Network

Other Area Developments

The following section outlines adjacent developments in the general area that were considered in the TIA. The criteria for inclusion of other area developments are for developments that have an active planning application and are generally within a one-kilometre radius of the subject site. **Figure 11** illustrates the location and relative size of relevant developments in other areas.

Figure 11: Other Area Developments

1) 2700 Swansea Crescent

Proposal to construct additions to the existing two-storey medium manufacturing facility, approximately 1,540m² large and will be constructed above the parking lot as an addition to the south side of the second story of the existing facility. The site is comprised of Light Industrial and Heavy Industrial uses and is bounded by a corridor zoned Parks and Open Space to the south, followed by an established low-rise residential neighbourhood. The purpose of this addition is to provide more research and office space and to expand current operations. The status of this Site Plan Control is post-approval as of January 7, 2025. No TIA Report was submitted with the application for this site and site generated trips will not be accounted for in the background volumes.

2) 2510 St-Laurent Boulevard

The site is currently vacant with remnants of past development, fronting Don Reid Drive and St. Laurent Boulevard. The City of Ottawa received a Zoning By-law Amendment and Site Plan Control application to construct a planned unit development that consists of 192 back-to-back townhomes and 36 townhomes on private streets with a section dedicated as a public park. The file is currently pending as of April 12, 2024. Based on the TIA submitted with the application, the development is expected to generate 170 person trips (67 vehicle trips) and 193 person trips (79 vehicle trips) in the AM and PM peak hours, respectively.

3) 2145 Walkley Road

A proposal was submitted to the city to develop an 18-storey high-rise with 260 residential units, at the corner of Walkley Road and Halifax Drive. This site is situated in the Elmvale Acres community, directly to the east of Canterbury Highschool. The 4.36ha site is used for residential purposes and currently contains two 12-storey apartment buildings and 51 townhouse dwellings. The proposal retains all existing buildings on the site but will modify the existing parking structure. The file is currently active as of January 8, 2025. Based on the TIA prepared by Dillon Consulting on March 2025, the development is expected to generate 26 and 31 person trips in the AM and PM peak hours, respectively.

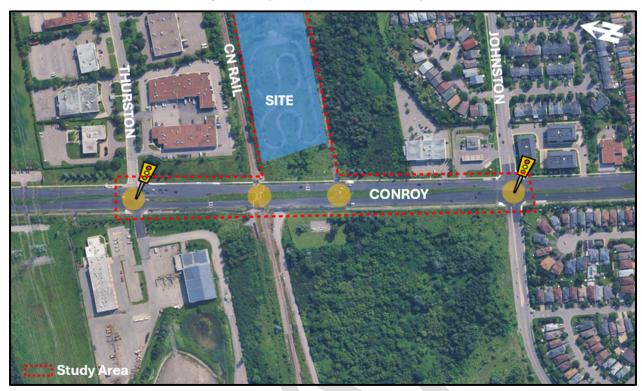
4) 2375 St-Laurent Boulevard

This is a Site Plan Application approval for a 930m² one-storey warehouse building. The site is currently vacant. If developed, the site will contain eight parking spaces and side-façade loading facilities. The TIA screening form completed by D.J. Halpenny & Associates, Ltd. found that the development did not trigger the need for a TIA report.

Conroy Road Environmental Assessment Study

Based on City of Ottawa feedback comments during the pre-consultation, an EA study was completed in 1997 for Conroy Road widening. No new information regarding the study was found on City website. However, according to the City comment, the EA investigated grade-separating the rail corridor and recommended a below-grade crossing of Conroy Road as a preferred solution. However, there is currently no confirmation on when this modification may take place or whether it will be pursued.

2.2. Study Area and Time Periods


For the purposes of this report, occupancy of the proposed development is expected to be in 2028. The date of occupancy scenario (2028) and five-years post-occupancy scenario (2033) will be analyzed. The future horizon years analyzed will use the weekday morning and afternoon peak hour traffic volumes. Based on data provided by the developer's operations team, it is understood that the peak hours of the generator where collection trucks and employee vehicles enter and exit the facility are 6:00-7:00 AM and 5:00-6:00 PM. As discussed in Section 2.1.2: Peak Hour Travel Demands, the 7:00-8:00 AM period will be used conservatively for the AM peak hour analysis. The PM peak will use the 17:00-18:00 counts which generally coincide with the peak hour of the adjacent road network. Proposed study area intersections are listed below and illustrated in Figure 12.

- Thurston/Conroy
- CN Rail/Conroy
- Site Access/Conroy

- Johnston/Conroy
- Along the site frontage

Figure 12: Study Area and Intersections to be Analyzed

2.3. Exemption Review

The following modules/elements of the TIA process provided in **Table 5** are recommended to be exempt in the subsequent steps of the TIA process, based on the City's TIA guidelines and the subject site:

Table 5: Exemptions Review Summary

Module	Element	Exemption Consideration		
4.1 Development Design	4.1.3 New Street Network	Only required for plans of subdivision.		
4.6 Neighbourhood Traffic	4.6.1 Adjacent Neighbourhoods	The site is accessed by an arterial road.		
Calming		The cite is accessed by an arterial read.		
4.7 Transit	4.7.1 Transit Route Capacity	Less than 75 transit trips per hour anticipated.		
4.8 Review of Network Concept	All	Site use consistent with existent zoning (IG3).		

3.0 FORECASTING

3.1. Development Generated Travel Demand

3.1.1. Trip Generation Sources

Travel demand and trip distribution by the proposed development was summarized in a schedule provided to Parsons by the developer, accounting for employee travel to and from the site before and after the workday, as well as the trip distribution of collection vehicle movements to and from the site.

The site operations schedule was created for each day of the week. The highest trip generation occurs Monday through Thursday, with fewer trips generated on Friday as fewer employees are scheduled to work. As such, peak trip generation analysis will focus on the Monday-Thursday period. Two different travel patterns were identified on these days for the collection vehicles:

- Mondays, Tuesdays, and Thursdays: collection vehicles travel north from the site.
- Wednesdays: collection vehicles travel south from the site.

Employee commuting patterns using personal vehicles to and from the site are consistent throughout the Monday-Thursday period.

The schedules differentiated between types of 'truck' traffic. For the purposes of this analysis, the ¾ ton pick-up trucks and Miller pick-up trucks were not considered trucks or heavy vehicles, and their use was categorized under typical passenger car traffic along with staff traffic.

Employee (Passenger Vehicle) Traffic

Of the 231 workers, 205 are scheduled to arrive between 6:00-7:00 AM, which is the AM peak hour for the site. In the PM peak hour for the site, 203 workers are scheduled to leave between 5:00-6:00 PM. Outside of these AM and PM peak of the generator hours, trips generated by the site are very low (≤10 trips per hour). The PM peak hour of the generator generally coincides with the PM peak hour of the adjacent road network and will be carried forward for PM peak analysis. The AM peak hour of the generator however occurs before the AM peak hour of the adjacent road network. During the first hour of the AM peak period (7:00 to 8:00 AM) of the adjacent road network, the 10 trips generated by the site will result in negligible impacts to the study area performance (approximately 1 new vehicle every 5 minutes). For this reason, the AM peak hour of the generator will be considered for trip generation purposes (i.e. 6:00-7:00 AM), along with the PM peak hour of both the generator and adjacent road network (i.e. 5:00-6:00 PM). Employee peak hour person trip generation is summarized below in **Table 6**.

Land Use	AM Peak Hour Person Trips	PM Peak Hour Person Trips
Collection Fleet & Drivers	198	192
Operational Support Staff	2	11
Equipment Staff	5	0
Total Employee Trips	205	203

Table 6: Employee Peak Hour Person Trip Generation

The 2020 TRANS Manual for the "Hunt Club" District was used as a basis for employee mode shares for staff arriving to work before they clock in and departing the worksite once their workday is complete. Overall, the TRANS mode shares, which suggest a high driver mode share of approximately 83%, were deemed reasonable for this site given that the start hour of the site is earlier than the traditional AM peak hour, potentially resulting in fewer public transit frequencies and less cycling/walking activity. **Table 7** provides the forecasted staff trip generation by mode shares assuming the TRANS mode shares for Hunt Club.

In addition, the proposed development is located across the street from a multi-use pathway that runs the length of Conroy Road from Walkley Road south to Hunt Club Road. The east side of the street also has a

sidewalk. However, facilities for active transportation are otherwise lacking; crossings in intersections are unprotected and at-grade with a long distance between the site and the nearest traffic signal, there are few shade-providing trees for shelter, and surrounding land uses are not supportive of active transportation. The low-mode shares for active transportation (1% each for cycling and for pedestrians) are thus reasonable.

Travel Mode	Mode Share	AM Peak Hour Person Trip ₁	Mode Share	PM Peak Hour Person Trips ₂	
Auto Driver	83%	170	83%	169	
Auto Passenger	5%	10	5%	10	
Transit	10%	21	10%	20	
Cycling	1%	2	1%	2	
Walking	1%	2	1%	2	
Total Person Trips	100%	205	100%	203	
1. All AM trips are inbound. 2. All PM trips are outbound.					

Table 7: Peak Hour Trips Mode Share Breakdown

Truck (Collection Vehicle) Traffic

The developer schedules also include a detailed schedule of collection vehicle traffic generated by the site, including volumes and directions. The largest volumes of truck traffic occur during the Monday-Thursday period, with the same schedule and routes for Monday, Tuesday, and Thursday, and a different route for Wednesday. The quantity of trucks is the same, however the direction to and from the site differs. Table 8 provides a summary of the commercial vehicle activity occurring to and from the site. Based on the schedule of operations, peak hours for truck traffic coincide with the peak hours for employee traffic (i.e. During the AM peak hour of the generator, employees enter the facility via passenger vehicle and exit via collection vehicle in the same hour, an vice versa for the PM peak hour).

Table 8: Site Collection Vehicle Peak Hour Trip Generation by Travel Mode

Travel Mode	AM Peak Hour Trips ₁	PM Peak Hour Trips ₁				
Heavy Vehicles	100	97				
Light Vehicles	3	8				
All Other Mode Shares	0	0				
Total Commercial Vehicles	103	105				
All AM trips are outbound. 2. All PM trips are inbound.						

Combined Site Generated Trips

The combined site generated trip includes staff arriving in the morning and departing in the afternoon, plus all truck-related trips that depart from the site in the morning and return to their parking areas in the afternoon. The combined site generated trips have been summarized in **Table 9**.

Table 9: Combined Site Generated Peak Hour Trips

Travel Mode	AM Peak Hour (Trips/Hr)			PM Peak Hour (Trips/Hr)		
	In	Out	Total	In	Out	Total
Heavy Vehicle Driver	0	100	100	97	0	97
Light Vehicle Driver	170	3	173	8	169	177
Auto Passenger	10	0	10	0	10	10
Transit	21	0	21	0	20	20
Cycling	2	0	2	0	2	2
Walking	2	0	2	0	2	2
Total Person Trips	205	103	308	105	203	308

3.1.2. Trip Distribution and Assignment

Based on the TRANS 2011 0-D Survey for the "Hunt Club" district, the trip assignment distribution for traffic is estimated as follows:

- 65% to/from the north;
- 5% to/from the east;

- 15% to/from the south; and,
- 15% to/from the west.

For inbound traffic to/from the east and west, routing favoured travel via Hunt Club Road, which is readily accessible from western districts and from the Highway 417 to the east. Therefore, the majority of east and west traffic were assigned to/from the south on Conroy Road, resulting in an assumed north/southbound split of 70/30. For a schematic, see **Figure 13.**

Based on the Mode Shares from the O-D Survey, the developer-provided schedule, and the location of adjacent arterial roadways and neighbourhoods, the distribution of site-generated traffic volumes for staff-generated traffic and for truck traffic on Monday, Tuesday, Thursday (MTT) and Wednesday (W) are illustrated in **Figure 13**.

SITE 0% 0% (70%)(30%)CONROY (30% 30% 70% (0%)(0%) (0%) TRUCKS (V 4% 96% (0%) (0%)CONROY 0% (0% (100% (100%) TRUCKS (MTT 99% 99% 1% (0%)(0%)CONROY 0% **AM PEAK %** (PM PEAK %) (100%)

Figure 13: Peak Hour Site-Generated Traffic Distribution, for Staff and Trucks

The trip assignments from **Figure 13** was used with the trips forecasted from **Table 9** to produce the site generated trips as illustrated for staff, the Monday, Tuesday, and Thursday truck distribution and the Wednesday truck distribution in **Figure 14**, **Figure 15**, **and Figure 16** respectively. It should be noted that the peak hour trips occur from 6:00-7:00 AM and 5:00-6:00 PM, which are the site's peak morning and afternoon hours.

Thurston Site 00 **L**₀₍₀₎ 0(0) 4 † r 0(118) **←**51(0) £ 51(0) **₽**0(0) **₽**0(0) Conroy ← o(o) ↑ → 119(0) -> t 119(0) ↑ → 0(0) o(o)→ 00 119(0) → 0(0)7 6:00-7:00 AM volumes ХX 5:00-6:00 PM volumes (yy) Figure 15: Peak Hour Site Generated Collection Vehicle Traffic Volumes (Monday, Tuesday, Thursday) Thurston Site £₀₍₀₎ 1 † r **←**0(103) 103(0) **L** 0(103) £0(0) £0(0) 103(0) **←** 0(0) Conroy Conroy **€**(0)0 $O(0) \rightarrow$ t **(0)0 1** (0)0 **1** (0)0 **1** (0)0 ኅ 🕇 🗠 00 $o(o) \rightarrow$ 2(0) → 0(0) → 6:00-7:00 AM volumes 5:00-6:00 PM volumes (yy) Figure 16: Peak Hour Site Generated Collection Vehicle Traffic Volumes (Wednesday) **Thurston** Johnst Site 00 **€**0(0) 0(0) **←** o(o) 5(0) ₽0(0) 5(0) Conroy Conroy ኅ 🕇 0(103) 0(103) 4 **€** (0)0 ↑ → £ (0)0 o(o)→ 000 00 100(0) → 0(0) **→** 0(103) -> 0(0)7 6:00-7:00 AM volumes XX (yy)

Figure 14: Peak Hour Site Generated Traffic Volumes for Employee Traffic (Monday to Thursday)

The total traffic generation for Monday, Tuesday, and Thursday and Wednesday are summarized in **Figure 17** and **Figure 18**, respectively. As above, the site's peak hour trips occur from 6:00-7:00 AM and 5:00-6:00 PM.

Thurston Johnstor Site 00 **€**0(0) 0(0) **€** ↑ † ¢ 888 103(118) **←**51(103) £₅₁₍₁₀₃₎ £0(0) T-0(0) 103(118) **←** 0(0) Conroy ┑╽┍ Conroy 119(0) -> t 119(0) £ (0)0 Ť 0(0) 000 00 o(o) → 2(51) 000 119(0)→ 0(0) 0(0)7 XX 6:00-7:00 AM volumes 5:00-6:00 PM volumes (yy) Figure 18: Total Site Generated Peak Hour Traffic Volumes (Wednesday) **Thurston** Site 00 £0(0) 000 -5(118) 51(0) £ 51(0) L0(0) £0(0) 5(118) **←** 0(0) Conroy 119(103) t Conroy 119(103) د (0)0 0(0) 00 o(o)→ 100(51) → 119(103) 0(0)7 0(0)7 6:00-7:00 AM volumes XX (yy) 5:00-6:00 PM volumes

Figure 17: Total Site Generated Peak Hour Traffic Volumes (Monday, Tuesday, Thursday)

3.2. Background Network Traffic

3.2.1. Transportation Network Plans

Refer to Section 2.1.3: Planned Conditions.

3.2.2. Background Growth and Other Area Developments

Review of the City's Strategic Long-Range Model and Intersection Traffic Growth Rates (2000-2016) found that background traffic is projected to decline or remain constant along Conroy Road between St. Laurent Boulevard and Walkley Road. Detailed background traffic growth analysis is included as **Appendix E.** For a conservative projection, the annual background traffic growth rate will be 0%.

3.2.3. Future Background Volumes

As described in **Section 2.1.3**, there are various new developments proposed within or near to the study area. Vehicle trips resulting from other area developments are discussed and summarized below.

Other Area Developments

Four developments in the application process were flagged for potential traffic impacts near the site, three of which are sited within a one-kilometer radius of the development and one beyond. These are: 2700 Swansea Crescent, for which no TIA Report was submitted and no future site generated trips were layered on to

background traffic volumes; 2375 St. Laurent Boulevard, for which no TIA Report was submitted and no future site generated trips were layered on to background traffic volumes; 2510 St. Laurent Boulevard, for which a TIA Report was prepared by Novatech was used to derive future trip generated volumes to be added to background conditions; and 2145 Walkley Road, for which a TIA Report that was prepared by Dillon Consulting was used to derive future trip generated volumes to be added to background conditions. Traffic flows resulting from other area developments are summarized in **Figure 19**. Note that these trips, as per their associated TIAs, occur during the 'morning peak' of adjacent roadways, which is likely not concurrent with the site's morning peak of 6:00-7:00 AM. Thus, their inclusion in the model is conservative.

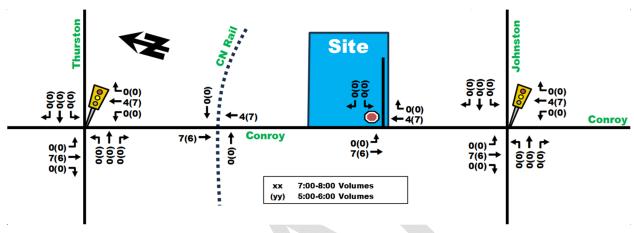


Figure 19: Peak Hour Traffic Volumes for Other Developments

As no background traffic growth is projected, the future background traffic volumes are the sum of existing peak hour traffic volumes and those resulting from other developments. Note that the existing 'peak hour' volumes are taken from the 7:00-8:00 AM and 5:00-6:00 PM periods to coincide with the site's peak hours. These volumes are summarized in **Figure 20**. The increase in traffic volumes in the study area due to future adjacent developments is considered minimal and will not result in any notable impacts to traffic operations.

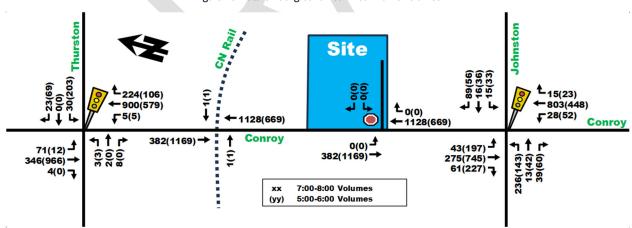
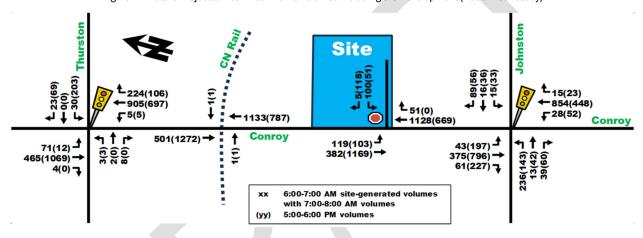


Figure 20: Future Background Peak Hour Traffic Volumes

3.2.4. Future Projected Traffic Volumes


The background network traffic volumes developed in **Figure 20** were layered onto site generated traffic volumes from **Figure 17** for Monday, Tuesday, Thursdays and **Figure 18** for Wednesday to produce the combined total forecasted traffic volumes including the development, as shown in **Figure 21** for Monday, Tuesday, and Thursday and **Figure 22** for Wednesday. Considering the minimal change in background traffic volumes between existing conditions and the 2028 and 2033 horizon years, the 2033 total forecasted volumes have been shown below.

Johnston Site 30(203) 15(23) 224(106) 854(551) 1003(697) £₅₁₍₁₀₃₎ **£**28(52) ï, **F**5(5) 1231(787) 1128(669) Conroy 501(1169) 119(0) 43(197) **4** 71(12) 382(1169)→ € 277(796) 465(966) 236(143) 61(227) 4(0) 6:00-7:00 AM site-generated volumes with 7:00-8:00 AM volumes 5:00-6:00 PM volumes (yy)

Figure 21: Future Projected Peak Hour Traffic Volumes Including the Development (2033 MTT)

Figure 22: Future Projected Peak Hour Traffic Volumes Including the Development (2033 Wednesday)

3.3. Demand Rationalization

The following section indicates factors that may be used to rationalize the future travel demands in the study area and determine if there are potential capacity limitations and how they may be addressed.

Site-Generated Traffic

The proposed development is anticipated to add nearly 310 total person trips to Conroy Road each morning and afternoon Monday-Thursday, and significantly less trips (approximately 60% less) on Fridays.

Site-generated AM trips would peak in the 6:00-7:00 AM hour, before Conroy Road's peak hour of 8:00-9:00 AM based on traffic counts. Nevertheless, the analysis from this TIA will use the very conservative traffic count data from the 7:00-8:00 AM period of the adjacent intersections with 6:00-7:00 AM site-generated values given available traffic turning data at study area intersections. This represents a sensitivity analysis of the site access as midblock traffic count data on Conroy Road indicates that traffic volumes during the 6:00-7:00 AM hour are approximately 50% lower than the 7:00-8:00 AM volumes.

Background Traffic Volumes

Based on City historic traffic growth rates, traffic along Conroy Road is expected to decrease or to remain constant, even with additional development. This may be due to support from future road widening projects on parallel arterial roads such as Hawthorne Road or the Airport Parkway. Additional reductions may be caused by improved transit facilities such as the newly opened Trillium LRT Line 2. To maintain a conservative assumption, annual background traffic growth was assumed to be 0%.

Trip generation volumes were gathered from TIA Reports submitted for other area developments, though only two TIA Reports provided traffic volumes (2510 St. Laurent Blvd. and 2145 Walkley Road). Traffic volumes were added to the background traffic and modelled as part of the 7:00-8:00 AM and 5:00-6:00 PM peak hours. Increase in traffic due to adjacent future developments was found to be minimal with less than 10 vehicle trips in one direction during peak hours.

Future Transportation Network Modifications

Changes to the road network in the study area have been identified within the Needs-Based Road Network (long-term) of the City of Ottawa TMP update, but not in the Priority Road Network (short-term). The proposed Conroy Road extension north to Hospital Link Road within the Needs-Based Network would likely increase traffic volumes on the road but is not expected to occur within the horizon years since it is not included in the Priority Network.

There are active transportation improvements identified within the Official Plan and Transportation Master Plan that could potentially contribute to a mode shift from auto to cycling and transit use along Conroy Road. The TMP Cycling Projects Proposed Priority map indicates that cycling facilities may be improved along Johnston Road in a 'later phase', including separated cycling facilities from Bank Street to Southgate Road, and bike lanes from Southgate Road to Conroy Road. The proposed Priority Transit Network includes a continuous bus lane along Conroy Road from Leitrim Road to Walkley Road, which would connect the site to the O-Train Line 1 at Hurdman or St. Laurent.

Although these improvements could contribute to a modal shift, they are not anticipated to be completed within the horizon years of this study. This report thus only considers the more conservative scenario where the improvements to transit and cycling facilities are not completed, and a modal shift does not occur.

<u>Transportation Demand Management Measures</u>

Transportation Demand Management (TDM) comprises measures implemented by developers to encourage the use of alternative travel modes to personal vehicles, such as cycling, transit, or walking. For transit, TDM measures could include employee bus pass subsidies and high-quality connections from the development to transit stops. For walking and cycling, TDM measures might include the provision of active transportation facilities like walkable routes to the site and secure bicycle parking.

The proposed development contains four bicycle parking spaces and links the proposed site to the road with a 1.5m sidewalk. While the modal share for the 'Hunt Club' district heavily favours personal vehicle use (83% of trips) according to the 2020 TRANS Manual, the provision of active transportation connections to the site may help to encourage active transportation by employees given the adjacent multi-use pathway and curbside bike lanes on Conroy Road.

Road Capacity

Conroy Road currently has a four-lane cross-section and auxiliary turn lanes at major intersections. Based on the classification of Conroy Road as an arterial, it should have ample capacity to accommodate the existing traffic volumes, anticipated background growth and forecasted trip generation by this development. The latest traffic counts at study area intersections indicate the existing daily traffic volumes (AADT) of Conroy Road to be less 17,000 vehicles/day, which falls within the traffic volume range of 10,000 to 30,000 vehicles/day for arterial roads as indicated by TAC Guidelines.

4.0 ANALYSIS

4.1. Development Design

4.1.1. Design for Sustainable Modes

Pedestrian/Cycling Routes and Facilities

The Site Plan illustrates a 1.8m wide sidewalk that connects the proposed building to the existing sidewalk on Conroy Road, with five internal crosswalks across proposed site parking. There are 10 proposed bicycle parking spaces located near the proposed building's south entrance, meeting the number of spaces required by the Zoning By-law (further detail in **Section 4.2**). The east side of Conroy Road currently has a marked bike lane on the roadway, as well as a boulevard-separated pedestrian facility. A MUP on the other side of Conroy Road can be safely accessed from the signalized intersection at Conroy Road/Johnston Road to the south, or from the signalized intersection at Conroy Road/Thurston Drive to the north.

Given the industrial nature and location of the development which forecasts very few active transportation trips, the proposed internal pedestrian sidewalk and crossings and bike parking are considered sufficient as active transportation facilities.

Location of Transit Facilities

Transit facilities are located on Conroy Road just west of the site, as discussed in **Section 2.1.2.** While the northbound bus stop can be easily accessed from the site, the southbound stop is located on the other side with no nearby crossing of Conroy Road. Alternate stops for southbound travel can be reached 300m to the north or to the south at Thurston Drive or Johnston Road, respectively.

4.1.2. Circulation and Access

The site is currently accessed via a driveway on the east side of Conroy Road. The proposed design will add a sidewalk to the north side of the driveway and extend it into the site for a distance of approximately 140m.

Employee parking is located at the front of the proposed building, which can be accessed through site driveway and drive aisles and an internal road which loops around the building and connects to the site driveway. Larger collection vehicles are parked to the rear of the building and can also access the internal driveway. Access to both parking areas is restricted by gates. The fire route is anticipated to extend along the driveway into the site and around the proposed development building.

Truck turning templates have been provided in **Appendix F**. To be conservative, the trucks turns reviewed simulate the movements of the NCHRP Report's "Rear-Loading Garbage Truck", which are larger in size than all trucks anticipated by the development. Based on the turning templates, no concerns are anticipated at the site access or within the site.

4.1.3. New Street Network

Exempt - refer to **Table 5**.

4.2. Parking

The following parking analysis reflects the minimum number of parking spaces required based on the City of Ottawa Zoning By-law for developments in Area C: Suburban. **Table 10** summarizes the minimum vehicle and bicycle parking rates for the site, as outlined in Tables 101, 102, and 111A of the Ottawa Zoning By-law. It should be noted that the current draft of the Zoning By-law, Draft 2, has abolished parking minimums and significantly lowered parking maximums, while changing requirements for bicycle parking. However, these new parking rate requirements have not come into effect yet.

Vehicle Parking Bicycles Area Land Use Prop. Min. Prop. Min. (m²) **Base Rate Base Rate Spaces Spaces** Spaces Spaces Heavy Equipment and Vehicle 2,230 $0.75/100m^2$ 1/1500m²2 17 Sales, Rental and Servicing 9 10 265 Office 1,730 2.4/100m² 42 1/250m² 59 265 9 Total Total 10

Table 10: Summary of Parking Requirements and Proposed Parking

- 1. The land use falls under the 'Heavy Equipment and Vehicle Sales, Rental and Servicing' category in Zoning By-law Section 101.
- 2. The land use falls under the 'all other non-residential uses' category in Zoning By-law Section 111.
- 3. Neither use requires visitor parking.

As shown above in **Table 10**, the site requires a minimum of 59 parking spaces and 9 bicycle parking spaces. The proposed development would contain 257 standard spaces and 8 barrier-free spaces (265 total), as well as 10 bicycle parking spaces. It should be noted that the high volume of proposed parking spaces (relative to the minimum value) is due to the nature of the development as an industrial site, the location and context of the site in a suburban region, and the lack of any nearby major transit stations. Additionally, as the development is not located within 600m of a rapid transit station, there is no maximum for parking spaces. The number of barrier-free parking spaces meets the minimum requirements set by the Accessibility for Ontarians with Disabilities Act (AODA).

The proponent intends to offer the minimum number of cycling parking spaces required (which is higher than the expected site-generated number of cyclists), as well as on-site facilities such as showers, tools and equipment for bicycle maintenance, which are shared with collection vehicle operators. This will help leverage the site's access to a MUP on the west side of Conroy Road.

4.3. Boundary Street Design

For the purpose of this analysis, the new MMLOS Tool will be used. It is noted that the new MMLOS Tool is in final stages but has not yet received full approval. No major changes are anticipated to the MMLOS Tool at this time.

4.3.1. Existing & Future Conditions

The boundary street to the proposed development is Conroy Road, which is designated as an arterial road.

- The following facilities and geometric features are available on Conroy Road:
 - o Two vehicle travel lanes in each direction
 - o Curbside bike lane on both sides along with MUP on the west side
 - OC Transpo stops in both travel directions
 - Approximately 1.5m wide sidewalk on east side of road with 3m wide boulevard separation
 - Approximately 3m wide MUP on west side of road with 3m wide boulevard separation
 - o At-grade railway crossing approximately 105m north of site driveway
 - Approximately 12m wide median boulevard, narrowing to 9m for the 3.5m wide southbound left-turn lane into site driveway
 - Approximately 21,000 veh/day (two-way)
 - Posted speed limit of 60km/h
 - o More than 3,000 vehicles per day on curb lane

Multi-modal Level of Service analysis for the Conroy Road segment adjacent to the site is summarized in **Table 11** with detailed analysis provided in **Appendix G**. Note that the truck level of service is no longer calculated as part of the new MMLOS Tool, but rather confirmed as part of the geometrics checks and truck turning templates in other sections of the report.

Level of Service Pedestrian **Bicycle Road Segment** Transit **PLOS Target BLOS** Target **TLOS Target Existing and Future Conditions** Conroy Road (west side) В С D В В В Ε С С B/C* D В Conroy Road (east side) Note: Asterisk (*) indicates different future condition.

Table 11: MMLOS - Boundary Street Segments Existing and Future Conditions

Pedestrian

Pedestrian conditions along Conroy Road meet the target pedestrian LOS on the west side. On the east side, the target is not met due to narrower sidewalk width. Notably, the west side marks higher due to the 3.0m wide MUP and a wide 2.5-3.0m grassy boulevard. The east side has a 1.5m wide sidewalk and a 2.5-3.0m wide, grassy boulevard. No changes are anticipated as a result of the proposed development.

Bicycle

As Conroy Road forms part of the Crosstown Bikeway, target levels of service for cyclists are higher, at LOS 'B'. The west side of Conroy Road meets this target, in large part due to the well-buffered MUP. The east side of Conroy Road is graded at LOS 'C', with a 2.0-2.5m wide on-street bike lane. Notably, the west side of Conroy Road also has an on-street bike lane. No changes to cycling facilities are anticipated as a result of the proposed development.

Transit

Transit conditions are currently satisfactory and exceed the City's target level of service for a frequent transit route. Due to the addition of site-generated truck traffic to the east side Conroy Road, transit may be slightly impeded in the future given the location of the bus stop just south of the access, reducing the level of service to 'C'. However, TLOS for future conditions is still expected to meet the City's target.

4.4. Access Intersection Location

4.4.1. Location and Design of Access

Vehicle Access

The site plan proposes site access through an existing driveway on the east side of Conroy Road, about 240m north of the Johnston Road/Conroy Road intersection, and about 105m south of an at-grade railroad crossing. The existing driveway allows full movement to/from Conroy Road with an existing median break for left turns.

Throat Length

The Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads, Chapter 8 (Access) provides guidelines for clear throat length. Clear throat lengths are only recommended for arterial and collector roads. Per TAC Table 8.9.3, the suggested minimum clear throat length to an arterial road for light industrial developments under 10,000 m² is 15m, which is well under the proposed throat length of 140m.

Private Approach By-law

The proposed design was also reviewed for compliance with the City of Ottawa's Private Approach By-law, with the following noted:

• The existing site approach is approximately 15m wide at the curb line. While this exceeds the requirement of 9m maximum width in Section 25.1(c) of the By-law, the width is necessary given the

required truck turning radii of the proposed use's vehicles. For truck turning templates, refer to discussion in **Section 4.1.2.**

- The site abuts Conroy Road, and as such is subject to the provisions of Section 25.1(m)(ii), which
 specifies a minimum distance of 60m between the approach and any intersecting street lines. The site's
 access is located more than 75m from Thurston Drive, Johnston Drive, and CN Rail's Walkley Corridor.
- As per requirement 25.1(p) of the Private Approach By-Law, the site access provides more than 3m separation from the nearest property line.
- It is anticipated that the proposed approach will slope towards the roadway at a grade not exceeding 2%, in compliance with Section 25.1(u).

Therefore, the access design is expected to be in conformance with the City of Ottawa Private Approach By-law 2003-447 or have been justified based on the intended purpose of the development.

4.5. Transportation Demand Management

4.5.1. Context for TDM

The site is expected to be owned and managed by WO MW Realty Limited, but operated by Miller Waste Systems. Approximately 89% of commuters enter the site between 6:00-7:00 AM and 88% leave the site between 5:00-6:00 PM. Collection vehicles are expected to exit the site during the 6:00-7:00 AM time period as commuters arrive at the site and return to the site during the 5:00-6:00 PM time period. As such, the morning peak of the proposed site occurs prior to the peak of the Conroy Road, while the afternoon peak of the proposed site may coincide with the peak for Conroy Road. **Section 3.1** provides a detailed breakdown of the site-generated trips and their assignment to the surrounding road network.

OC Transpo bus route #40, which links to LRT Line #1 via St. Laurent Station and LRT Line #2 via South Keys Station and Greenboro Station, operates on Conroy Road with bus stops on both sides immediately adjacent to the site. Additionally, a sidewalk and bike lane are provided on Conroy Road on the east side, with a MUP on the west side.

4.5.2. Need and Opportunity

Given the type of development as a parking for waste collection vehicles, as well as the context of the site near the greenbelt region and away from major transit stations, the majority of trips are naturally anticipated to be vehicle trips. Nonetheless, TDM measures are proposed as summarized in **Section 4.5.3** below.

4.5.3. TDM Program

The TDM-Supportive Development Design and Infrastructure Checklist and TDM Measures Checklists have been provided in **Appendix H**. Checklists reflecting non-residential developments were completed.

Regarding the TDM-Supportive Development Design and Infrastructure Checklist, the following are anticipated:

- All ten (10) "required" measures related to walking and cycling (facilities and bicycle parking) and vehicle parking are anticipated to be satisfied.
- Seven (7) of sixteen (16) "basic" measures related to walking and cycling, transit, ridesharing and parking are anticipated to be satisfied.
- One (1) of the of the ten (10) candidate "better" measures is proposed, where tools and pumps available in the truck maintenance shop are expected to be usable for bike repair purposes.

Regarding the TDM Measures Checklist, the following are anticipated:

• Four (4) out of ten (10) "basic" measures related to walking, cycling, transit, parking and TDM marketing are expected to be satisfied. One (1) of those, which has been designated by an asterisk

(*), is considered by the TDM Measures to be some of the most dependably effective tools to encourage sustainable travel modes. This includes:

- Display local area maps with walking/cycling access routes and key destinations at major entrances.
- Display relevant transit schedules and route maps at entrances.
- Provide online links to OC Transpo and STO information.
- *Provide a multimodal travel option information package to new/relocating employees and students.
- None of the twenty-six (26) "better" measures related to walking, cycling, transit, parking and TDM marketing are expected to be provided.

4.6. Neighborhood Traffic Management

The site is directly accessible via an arterial road. This section is exempt as per Table 5.

4.7. Transit

4.7.1. Transit Route Capacity

Exempt - refer to Table 5.

4.7.2. Transit Priority Requirements

The development is expected to generate 21 and 20 transit trips in the morning and afternoon peak hours, respectively. Given the location of the existing northbound bus stop, truck trips may slightly impede northbound transit due to vehicles turns into the site. However, this will be limited to the site's peak hours of 6:00 AM – 7:00 AM and 5:00 PM – 6:00 PM, which may cause minor delays.

The draft TMP proposes a continuous transit lane from Leitrim Road to Walkley Road, which could improve transit operations. It is not anticipated that further improvements to the transit network will be necessary due to the development.

4.8. Review of Network Concept

Exempt - refer to Table 5.

4.9. Intersection Design

4.9.1. Intersection Control

A traffic signal warrant analysis was completed for the site access using the Ontario Traffic Manual's (OTM) Traffic Signal Justification methodology. The analysis sheets have been provided in **Appendix I**. which was based on the two future projected peak hour volumes scenarios in **Figure 21** and **Figure 22**. The warrant analysis typically uses 8-hour traffic volumes at an intersection to determine if a traffic signal is warranted. Since only AM and PM peak hour volumes are available for the site access, the AM peak hour volumes were very conservatively assumed during each hour for the first four hours and the PM peak hours were conservatively assumed during each of the remaining four hours. However, it should be noted that traffic movements at the site access are mainly anticipated to occur during peak hours of the development, with minimal or negligible volumes outside of the peak hours.

Less than 55% of the warrant threshold was met at the access during the 'MTT' schedule, with less than 85% of the threshold met during the 'W' schedule. Based on the analysis results and despite the conservative

estimation using peak hour traffic volumes, a traffic signal is not expected to be warranted at the site access in the future. As such, the existing site access stop control is proposed to be maintained in the future.

4.9.2. Intersection Design

Multi-Modal Level of Service

For the purpose of this analysis, the new MMLOS Tool will be used. It is noted that the new MMLOS Tool is in final stages but has not yet received full approval. No major changes are not anticipated to the MMLOS Tool at this time.

Only signalized intersections are considered for the intersection Level of Service analysis in the MMLOS Guidelines. The MMLOS analysis is summarized in **Table 12**, with detailed analysis sheets provided in **Appendix G**.

	Level of Service						
Intersection	Pede	strian	Bicyc	ele	Tra	nsit	
	PLOS	Target	BLOS	Target	TLOS	Target	
Conroy/Thurston	С	С	D	В	Α	D	
Conroy/Johnston	С	С	F	В	Α	D	

Table 12: MMLOS - Existing and Future Intersection Conditions

Pedestrian

Pedestrian levels of service at Conroy/Thurston and Conroy/Johnston meet the targets for an Outer Urban or Suburban intersection. No changes to pedestrian facilities at these intersections are anticipated as part of this development.

Bicycle

Bicycle levels of service at Conroy/Thurston do not meet the targets for an intersection along the Crosstown Bikeway. This is in part due to the lane configurations along Conroy Road and the lack of bike lanes on Thurston Drive. Of particular concern are conditions along the east and west leg of Conroy Road (graded 'E' and 'C', respectively), which form the Crosstown Bikeway elements in this intersection. While the development is not expected to generate many cycling trips or to affect cycling facilities at this intersection, the following could help improve the levels of service:

- Installation of dedicated left-turn infrastructure for cyclists, particularly on the north and south leg of the intersection (on Conroy Road), which currently require left-turning cyclists to cross two or more lanes to reach the left-turn lane.
- Implementation of a protected intersection with dedicated cyclist infrastructure, to avoid right-lane crossovers over the bike lane (in this case, on the east leg), or the conversion of right-turn lanes into shared right-through lanes.

Conditions at Conroy/Johnston are well-below the targets for a Crosstown Bikeway intersection. To improve cycling conditions to approach the target grade, similar measures to the ones indicated for the Conroy/Thurston intersection could be implemented, with protected intersection adjustments needed to north and south legs to improve levels of service. However, it is noted that the listed measures for both intersections would potentially have operational impacts on the area's traffic flows and may affect other modes' levels of service.

Transit

Transit levels of service are satisfactory, achieving an 'A' or 'B' grade and meeting the target 'D' grade. Modelling conducted with Synchro determined that these levels of service will be maintained at Conroy/Thurston and Conroy/Johnston in the future.

4.9.3. Intersection Performance

Synchro 11 Trafficware was used to analyze intersection performance of intersections within the study area. Critical movements at each of the intersections were assessed based on either the movement with the highest volume-to-capacity ratio (for signalized intersections), or the movement experiencing the highest average delay (for unsignalized intersections). It should be noted that, as per the TIA Guidelines, the Peak Hour Factor (PHF) used for analysis was 0.90 in existing conditions and 1.0 in all future scenario conditions. A queueing analysis using Synchro and SimTraffic was also conducted at the site access to identify any potential future queuing concerns at the existing southbound left-turn lane. All Synchro and SimTraffic report outputs for existing and future conditions have been provided in **Appendix J**.

Existing Conditions

The following **Table 13** provides a summary of the existing traffic operations at the study area intersection based on peak hour volumes (7:00 – 8:00 AM and 5:00 – 6:00 PM) from **Figure 7** and Synchro (V11) traffic analysis software.

		Weekday AM Peak (PM Peak)					
Intersection		Critical Moven			ction 'as a	whole'	
mersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c	
Conroy/Thurston (S)	A(C)	0.51(0.71)	NBT(WBL)	14.6(13.9)	A(A)	0.47(0.53)	
Conroy/Johnston (S)	C(B)	0.79(0.63)	EBL(EBL)	19.9(14.5)	A(A)	0.54(0.48)	
Note: Analysis of signalized inters	ections as	sumes a PHF of 0.90	and a saturation flo	ow rate of 1800 veh/h	n/lane.		

Table 13: Existing Conditions Intersection Performance

As shown in **Table 13**, the two adjacent signalized intersections within the study area operate 'as a whole' at LOS 'A' during both peak hours, with the critical movements operating at LOS 'C' or better.

Future Background Conditions (2033)

(S) - Signalized intersection.

As discussed in **Section 3.2**, a 0% annual growth factor plus layering of other area developments was used to develop the background traffic volumes shown in **Figure 20**. Traffic volumes from the other area developments are expected to be minimal, with less than 10 vehicles/hour anticipated at study area intersections during peak hours. Therefore, since there are no forecasted future network changes at study area intersections, and the increase in future background traffic volumes is expected to be minimal compared to existing conditions, an assessment of future background traffic volumes was not considered necessary for the purpose of this report.

Future Projected Conditions (2033)

The future projected conditions account for both the future background volumes and the site-generated traffic volumes. Since no background growth is anticipated between horizon years 2028 and 2033 for traffic volumes at study area intersections, only the 2033 horizon year needs to be assessed. The two schedule conditions for MTT and Wednesday shown in **Figure 21** and **Figure 22** are analyzed as shown below. Given that the site generates truck traffic, the heavy vehicle percentages were appropriately accounted for in the Synchro analysis.

MTT Schedule

The projected traffic volumes Synchro analysis based on the MTT schedule are summarized in **Table 14** below.

(S) – Signalized intersection, (U) – Unsignalized stop controlled intersection.

Table 14: Future Projected 2033 Conditions Intersection Performance (MTT Schedule)

	Weekday AM Peak (PM Peak)						
Intersection	Critical Movement			Intersection 'as a whole'			
mersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c	
Conroy/Thurston (S)	A(B)	0.55(0.61)	NBT(WBL)	14.4(13.4)	A(A)	0.51(0.48)	
Conroy/Johnston (S)	C(A)	0.75(0.59)	EBL(EBL)	18.9(14.4)	A(A)	0.51(0.45)	
Conroy/Site Access (U)	B(B)	14.0(13.7)	WB(WB)	1.6(1.1)	A(A)	=	
Note: Analysis of signalized inters	sections as	sumes a PHF of 1.00	and a saturation flo	ow rate of 1800 veh/h	n/lane.		

As shown in **Table 14**, traffic operations of adjacent study area signals are expected to be similar to or slightly better compared to existing conditions for the intersections 'as a whole', with critical movements also showing a similar trend. The unsignalized access is expected to result in LOS 'B' for the WB movement during both peak hours.

Wednesday Schedule

The projected traffic volumes Synchro analysis based on the Wednesday schedule are summarized in **Table 15** below.

Table 15: Future Projected 2033 Conditions Intersection Performance (Wednesday Schedule)

		Weekday AM Peak (PM Peak)						
Intersection		Critical Moven	nent	Interse	ction 'as a	whole'		
mersection	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c		
Conroy/Thurston (S)	A(B)	0.47(0.61)	NBT(WBL)	13.4(14.2)	A(A)	0.44(0.56)		
Conroy/Johnston (S)	C(A)	0.75(0.59)	EBL(EBL)	18.6(13.8)	A(A)	0.51(0.45)		
Conroy/Site Access (U)	F(C)	93.9 (16.2)	WB(WB)	6.3(2.0)	A(A)	-		

Note: Analysis of signalized intersections assumes a PHF of 1.00 and a saturation flow rate of 1800 veh/h/lane. (S) – Signalized intersection, (U) – Unsignalized stop controlled intersection. Red font indicates the respective metric is operating at capacity.

As shown in **Table 15**, traffic operations of adjacent study area signals are expected to be similar to or slightly better compared to existing conditions for the intersections 'as a whole', with critical movements also showing a similar trend.

The unsignalized access is expected to operate at capacity for the critical WB movement during the AM peak hour and LOS 'C' during the PM peak hour. The WB movement operates at capacity during the AM peak hour due to collection vehicles exiting the site via a WBL turn onto Conroy Road during the Wednesday schedule's travel routes. As a result, the WB movement may experience high delays and operate at capacity.

However, as indicated previously, analysis of the AM peak hour is conservative as it overlays the morning site-generated traffic of the site, which are anticipated to occur between 6:00 and 7:00 AM, onto the 7:00 to 8:00 AM traffic volumes of Conroy Road, where volumes are approximately 50 to 55% higher than the volumes in the preceding hour. Therefore, two alternative AM peak hour scenarios considered to be realistic for traffic volumes at the site access are shown in **Figure 23**, which includes the following:

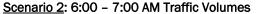

- Scenario 1: Since the directional splits of collection vehicles at the site access are based on an operations schedule indicated by the developer, it would be possible for the travel routes of the collection vehicles to be adjusted as needed to reduce pressure on the critical WBL movement. As shown in the traffic volumes below, approximately 55% of the WBL collection vehicles were shifted to the WBR.
- <u>Scenario 2</u>: To align with the proposed schedule of the collection vehicles, the 6:00 to 7:00 AM traffic volumes of Conroy Road will be assessed as shown by the volumes below.

Figure 23: Site Access Alternate Analysis Scenarios

Scenario 1: 7:00 - 8:00 AM WBL Sensitivity

Based on the traffic volumes shown in **Figure 23** at the Conroy/Site Access intersection, Synchro analysis results of the two scenarios have been summarized in **Table 16** below.

Table 16: Site Access Alternate Scenarios Future Projected 2033 Conditions Intersection Performance (Wednesday Schedule)

		Weekday 6:00 - 7:00 AM						
Conroy/Site Access		Critical Movement		Intersection 'as a whole'				
Analysis Scenario	LOS	max. v/c or avg. delay (s)	Movement	Delay (s)	LOS	v/c		
Scenario 1	D	33.9	WB	2.8	Α	-		
Scenario 2	E	36.3	WB	4.6	Α	-		
Note: Analysis of signalized inte	rsections as	sumes a PHF of 1.00	and a saturation flo	w rate of 1800 veh/	h/lane.			

Results in **Table 16** indicate that traffic operations at the site access are expected to be acceptable for both scenarios analyzed. Scenario 1 results in LOS 'D' while Scenario 2 results in LOS 'E' for the WB movement of the site access. These results indicate that capacity is available at the intersection and any impacts are limited to the outbound movement of the site. Should delays for the WB movement be excessive in the future, shifting some of the collection vehicle travel routes from WBL to WBR would be a plausible scenario to improve operations.

4.9.4. Queueing Analysis

The following **Table 17** summarizes queuing results based on Synchro and SimTraffic analysis of different time periods and scenarios at the site access. The results are based on the future projected 2033 conditions analysis where traffic queues at both the southbound left-turn lane and the westbound movement of the intersection were reviewed.

Table 17: Queueing Analysis at Site Access - Future Projected 2033

		Ctorogo Longth I	Traffic	Traffic Queues SBL, WB (m)			
Schedule	Time Period	Storage Length +	Synchro	SimTraffic			
		Taper (SBL, WB)	95 th Percentile	Average	95 th Percentile		
	7:00 - 8:00 AM		5,	13,	24,		
Monday, Tuesday, Thursday	7.00 - 0.00 AIVI		6	26	47		
	5:00 - 6:00 PM		0,	Ο,	8,		
	3.00 - 0.00 FW		9	18	31		
	7:00 – 8:00 AM		5,	13,	25,		
		45 + 20m,	36	45	90		
	5:00 - 6:00 PM	140m	5,	18,	38,		
Wednesday			12	21	40		
	7:00 - 8:00 AM		5,	13,	25,		
	(Scenario 1)		17	33	66		
	6:00 - 7:00 AM		3,	10,	22,		
	(Scenario 2)		18	29	53		

As shown in **Table 17**, queues anticipated for the SBL and WB movements are within their storage capacity in all scenarios and time periods. Based on SimTraffic results, a slightly longer traffic queue may be expected at the WB approach of the access during the 7:00 to 8:00 AM time period of the Wednesday schedule. However, the queue length, consisting primarily of collection vehicles, is expected to remain within the available 140m throat length of the proposed driveway.

5.0 FINDINGS AND RECOMMENDATIONS

Based on the results summarized herein the following findings and recommendations are provided:

Existing Conditions

- The site is currently vacant with remnants of a go-karting track and a mini-golf course.
- The site is currently accessed via an existing full movement access on Conroy Road, at the south end of the property. This includes a median break with an auxiliary left-turn lane.
- Sidewalks are provided on the east side of Conroy Road, along with MUP on the west side and bike lanes on both sides. Conroy Road is a designated Crosstown Bikeway in the TMP.
- Frequent bus route #40 currently operates along Conroy Road, with bus stops on both sides of the road, adjacent to the site.
- The CN Rail corridor is located approximately 105m north of the existing site access and is understood
 to operate twice a day between 8-9am and 4-5pm, which do not align with the peak hours of the
 proposed development.
- Traffic volumes were found to be in the order of approximately 1,500 and 1,800 veh/h along Conroy Road, during the morning and afternoon peak hours, respectively. However, it is noted that the morning peak hour reflects a 7:00-8:00 AM time period, whereas the morning peak hour of the development is expected to be between 6:00-7:00 AM, when traffic volumes on Conroy Road are approximately 800 veh/h.
- Based on five-year historic collision data, there are no existing safety concerns along the proposed development frontage and study area intersections.
- Based on Synchro analysis, all study area intersections currently operate at LOS 'A' during peak hours, with critical movements operating at LOS 'C' or better.

Proposed Development

- The proposed development is located at 3145 Conroy Road and will consist of office space, a
 servicing garage with loading spaces, storage at the rear of the site for roll-off and front-end waste
 bins, and a new surface parking lot for 135 truck spaces and 265 employee parking spaces. The date
 of occupancy is expected to be June 2028.
- The development is expected to maintain the existing full-movement site access on Conroy Road. A
 1.8m wide sidewalk is proposed along the north side of the site driveway to connect the site to Conroy Road. The driveway throat length is approximately 140m.
- Parking requirements of the Zoning By-Law are met for vehicle parking (257 spaces), accessible parking (8 spaces) and bicycle parking (10 spaces).
- Trucks are expected to operate on two different schedules, primarily a Monday, Tuesday, and
 Thursday (MTT) schedule, and a different Wednesday schedule. During the MTT schedule, trucks
 primarily exit the site and travel north via WBR at the access. During the Wednesday schedule, trucks
 would travel south via WBL. Employees are expected to commute to the site between 6:00-7:00 AM
 and leave the site between 5:00-6:00 PM. The collection trucks will operate during the same hours,
 travelling opposite of the employee traffic.
- Total employee trips are estimated to be 205 and 203 veh/h during the respective morning and
 afternoon peak hours, while collection trucks are estimated at 103 and 105 veh/h during the same
 respective hours. based on the TRANS 2011 0-D Survey, approximately 70% of employee traffic would
 travel to/from the north on Conroy Road, while 30% would travel to/from the south.
- Truck turns at the site access and internal to the site were reviewed using a conservative design vehicle. No concerns were raised for truck circulation.
- Requirements of the Private Approach By-Law and suggested TAC throat lengths are expected to be met by the site access.
- Traffic signal warrant analysis was completed for the site access, with highly conservative
 assumptions of 8-hour volumes at the site access. It was determined that a traffic signal is not
 warranted in the future.
- Proposed TDM Measures include the following, where an asterisk (*) is considered by the TDM
 Measures to be some of the most dependably effective tools to encourage sustainable travel modes:
 - Display local area maps with walking/cycling access routes and key destinations at major entrances.
 - Display relevant transit schedules and route maps at entrances.
 - Provide online links to OC Transpo and STO information.
 - *Provide a multimodal travel option information package to new/relocating employees and students.

Future Conditions

- In planned conditions, continuous bus lanes are proposed on Conroy Road as part of the Priority
 Transit Network of the new TMP. The TMP also illustrates a northern extension of Conroy Road from
 Walkley Road to the Hospital Link Road within the Needs-Based Road Network.
- Future adjacent developments were accounted for and anticipated to result in minimal increase of traffic volumes of less than 10 veh/h along Conroy Road within the study area in the future.
- MMLOS analysis for the Conroy Road segment at site frontage indicates that all travel modes meet
 their respective LOS targets on both side of the road, with the exception of the pedestrian LOS on the
 east side due to a narrower 1.5m wide sidewalk.

- MMLOS analysis for study area traffic signal intersections at Conroy/Thurston and Conroy/Johnston indicates that the pedestrian and transit LOS meet their respective targets, but the cycling does not. This is due to lack of dedicated infrastructure and protected cycling facilities at the intersections.
- Intersection analysis was conducted for the future projected 2033 conditions using Synchro. It was
 determined that no operational concerns are anticipated by the MTT schedule. For The Wednesday
 schedule, critical high delays may be experienced at the WB approach of the access due to majority of
 truck attempting to travel south via WBL movement. However, analysis of alternate and realistic
 scenarios was found to result in acceptable impacts to the WB approach:
 - Scenario 1: a directional shift of a portion of the outbound site-generated truck volumes (approximately 55%) from the WBL movement to WBR would reduce impacts significantly resulting in LOS 'D' for the WB approach.
 - Scenario 2: as indicated previously, the peak hour of the development is expected to be between 6:00-7:00 AM, where volumes on Conroy Road are nearly half of the volumes noted during the 7:00-8:00 AM time period. Therefore, delays for the WB approach would be less, resulting in LOS 'E'.
- Queueing analysis from both Synchro and SimTraffic indicates no major queueing concerns for any
 movements at the site access for all time periods and scenarios.

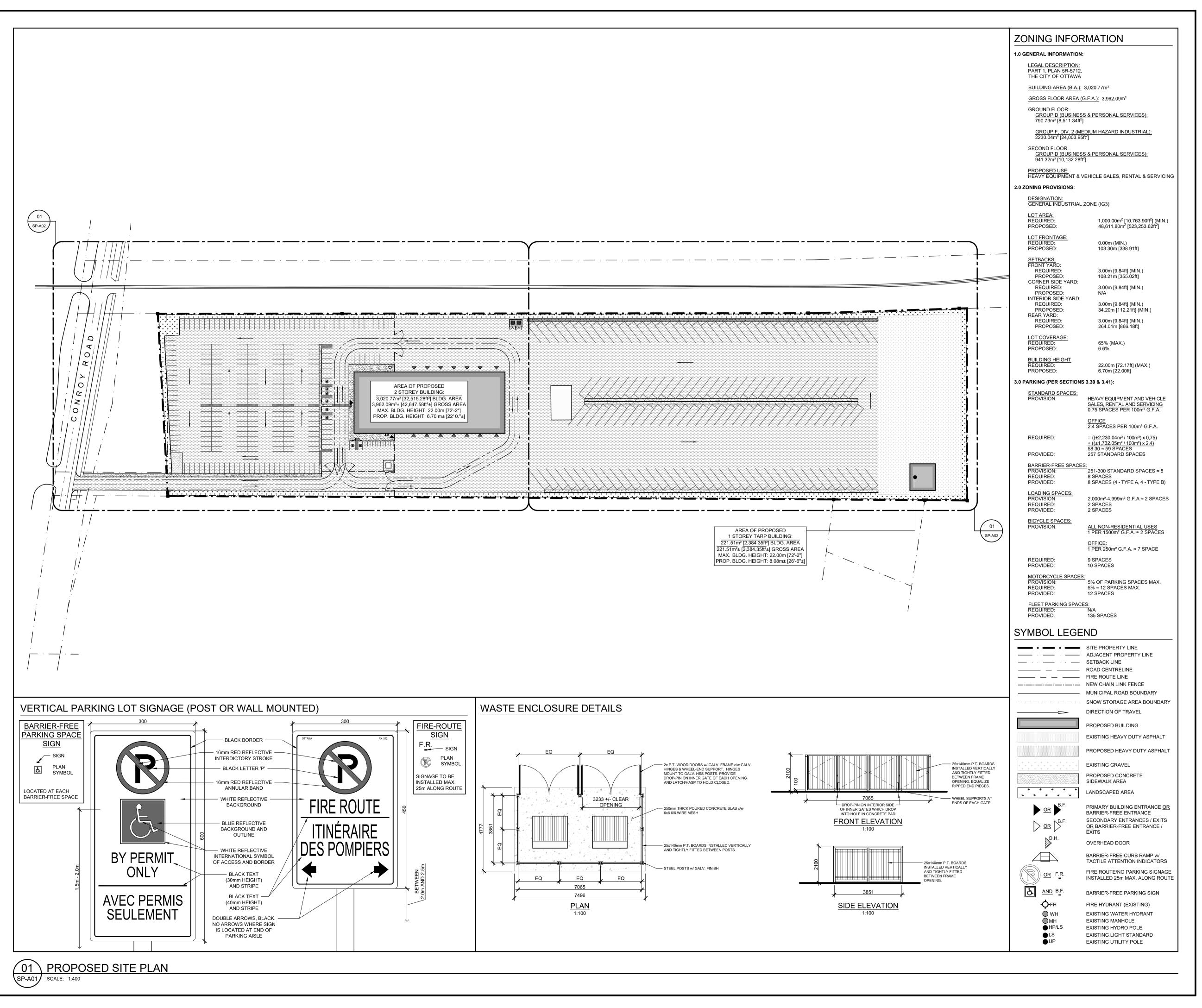
Based on the preceding report, the proposed development located at 3145 Conroy Road is recommended to proceed from a transportation perspective.

Appendix A:

TIA Screening Form and Site Plan

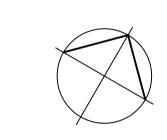
City of Ottawa 2017 TIA Guidelines

Date June 6th, 2025 **TIA Screening Form** Project 3145 Conroy Rd Project Number 479371 - 01000


Results of Screening	Yes/No
Development Satisfies the Trip Generation Trigger	Yes
Development Satisfies the Location Trigger	Yes
Development Satisfies the Safety Trigger	Yes

Module 1.1 - Description of Proposed Development	
Municipal Address	3145 Conroy Rd
Description of location	Currently occupied by a go-kart track and open grass.
Land Use	General Industrial (IG3). Proposed as a truck storage facility.
Development Size	$\sim\!\!260$ staff parking spaces and 135 truck fleet parking spaces, plus minor ancillary office space.
Number of Accesses and Locations	1: located on the southwest quadrant of the site.
Development Phasing	Single phase
Buildout Year	2025
Sketch Plan / Site Plan	See attached

Module 1.2 - Trip Generation Trigger			
Land Use Type	Other		
Development Size		100	People Trips
Trip Generation Trigger Met?		Yes	


Module 1.3 - Location Triggers		
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority Network, Rapid Transit network or Cross-Town Bikeways?	Yes	Conroy Rd is part of a transit priority corridor and is part of the Cross-Town Bikeway Network.
Is the development in a Hub, a Protected Major Transit Station Area (PMTSA), or a Design Priority Area (DPA)?	No	
Location Trigger Met?	Yes	

Module 1.4 - Safety Triggers		
Posted Speed Limit on any boundary road	<80	km/h
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	No	
A proposed driveway is within the area of influence of an		
adjacent traffic signal or roundabout (i.e. within 300 m of		The access is within 100m of the CN
intersection in rural conditions, or within 150 m of	Yes	Rail at-grade crossing which has
intersection in urban/ suburban conditions) or within auxiliary		railway traffic signal control.
lanes of an intersection?		
Does the proposed driveway make use of an existing median	Yes	Conroy Rd is generally median
break that serves an existing site?	165	separated and provides a break.
Is there is a documented history of traffic operations or safety		
concerns on the boundary streets within 500 m of the	No	
development?		
Does the development include a drive-thru facility?	No	
Safety Trigger Met?	Yes	

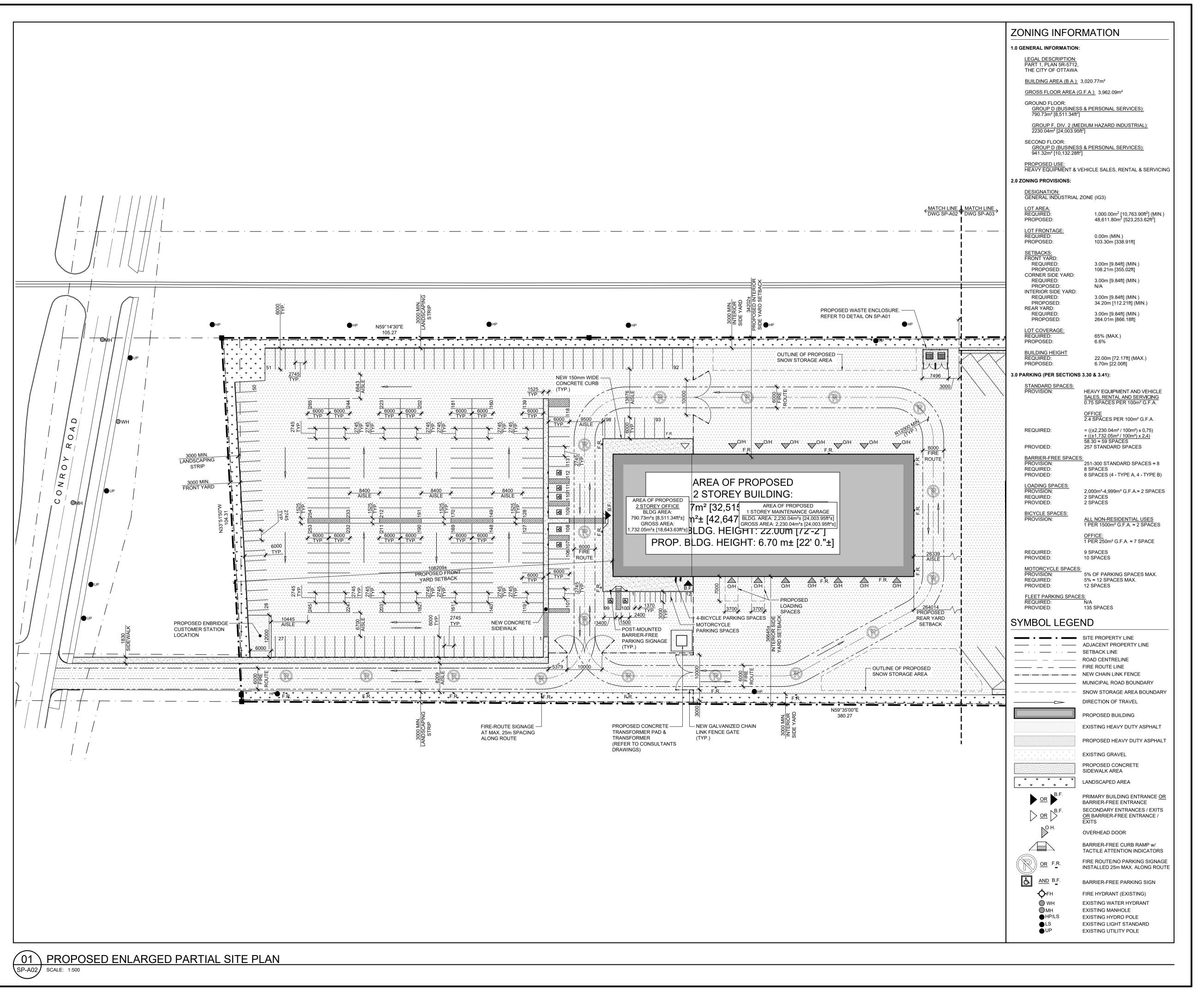
No.	Ву	Description	Date
08	W.P.	ISSUED FOR SITE PLAN CONTROL	20 AUG 202
07	T.D.	ISSUED FOR COORDINATION	17 JUN 202
06	T.D.	ISSUED FOR COORDINATION	28 MAY 202
05	T.D.	ISSUED FOR COORDINATION	09 MAY 202
04	W.P.	ISSUED FOR COORDINATION	10 APR 202
03	W.P.	ISSUED FOR CLIENT REVIEW	25 MAR 202
02	W.P.	ISSUED FOR CLIENT REVIEW	05 MAR 202
01	T.D.	ISSUED FOR COORDINATION	10 JAN 202

Project

WO MW REALTY LIMITED OFFICE GROUP SITE PLAN APPLICATION NEW MILLER WASTE FACILITY

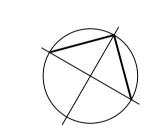
3145 CONROY ROAD, OTTAWA, ON

PROPOSED SITE PLAN


Scale Stamp **AS NOTED** Drawn T.D. O ARCHITECTS Z Checked CHRISTOPHER LEE DEIMLING W.P. LICENCE 6238

Project No. 24-151

Drawing No.


DECEMBER, 2024

SP-A01

Revis	ions		
No.	Ву	Description	Date
08	W.P.	ISSUED FOR SITE PLAN CONTROL	20 AUG 202
07	T.D.	ISSUED FOR COORDINATION	17 JUN 202
06	T.D.	ISSUED FOR COORDINATION	28 MAY 202
05	T.D.	ISSUED FOR COORDINATION	09 MAY 202
04	W.P.	ISSUED FOR COORDINATION	10 APR 202
03	W.P.	ISSUED FOR CLIENT REVIEW	25 MAR 202
02	W.P.	ISSUED FOR CLIENT REVIEW	05 MAR 202
01	T.D.	ISSUED FOR COORDINATION	10 JAN 202
	_		-

Proj

WO MW REALTY LIMITED OFFICE GROUP SITE PLAN APPLICATION NEW MILLER WASTE FACILITY

3145 CONROY ROAD, OTTAWA, ON

PROPOSED SITE PLAN

Scale

AS NOTED

Drawn

T.D.

Checked

W.P.

W.P.

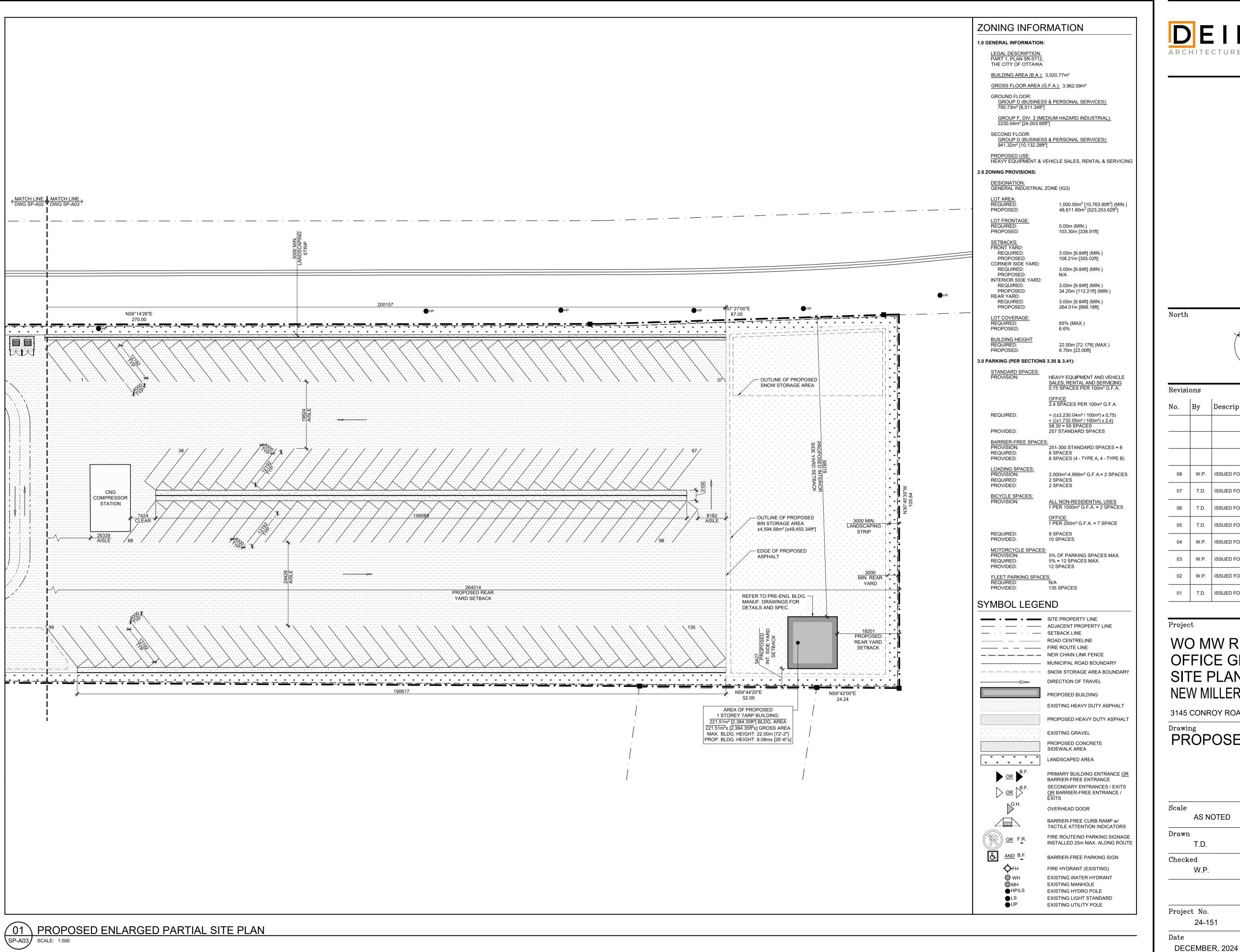
Stamp

ASSOCIATION

OF

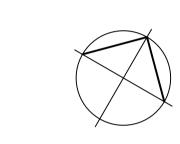
ARCHITECTS

CHRISTOPHER LEE DEIMLING


LICENCE

6238

Project No. 24-151


Drawing No.

Date SP-A02
DECEMBER, 2024

No.	Ву	Description	Date
08	W.P.	ISSUED FOR SITE PLAN CONTROL	20 AUG 2025
07	T.D.	ISSUED FOR COORDINATION	17 JUN 2025
06	T.D.	ISSUED FOR COORDINATION	28 MAY 2025
05	T.D.	ISSUED FOR COORDINATION	09 MAY 2025
04	W.P.	ISSUED FOR COORDINATION	10 APR 2025
03	W.P.	ISSUED FOR CLIENT REVIEW	25 MAR 2025
02	W.P.	ISSUED FOR CLIENT REVIEW	05 MAR 2025
01	T.D.	ISSUED FOR COORDINATION	10 JAN 2025

WO MW REALTY LIMITED OFFICE GROUP SITE PLAN APPLICATION NEW MILLER WASTE FACILITY

3145 CONROY ROAD, OTTAWA, ON

PROPOSED SITE PLAN

Scale Stamp AS NOTED Drawn T.D. O ARCHITECTS Checked CHRISTOPHER LEE DEIMLING W.P. LICENCE 6238

Project No. 24-151

Drawing No.

SP-A03

Appendix B:

OC Transpo Transit Routes

Figure 1: Map of OC Transpo Route #40.

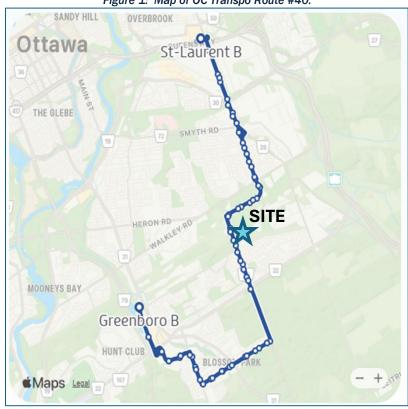


Figure 2: Map of OC Transpo Route #43.

Figure 3: Map of OC Transpo Route #644.

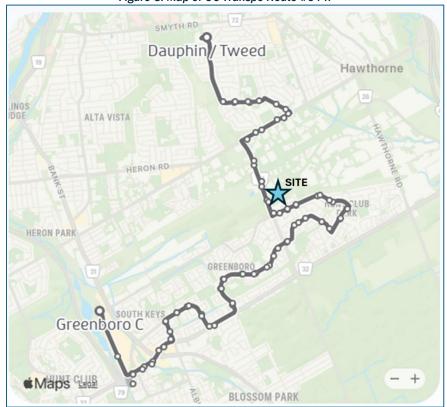
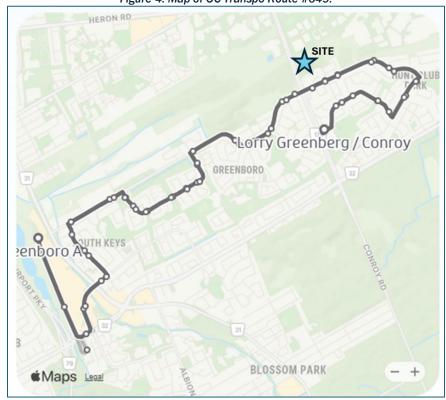
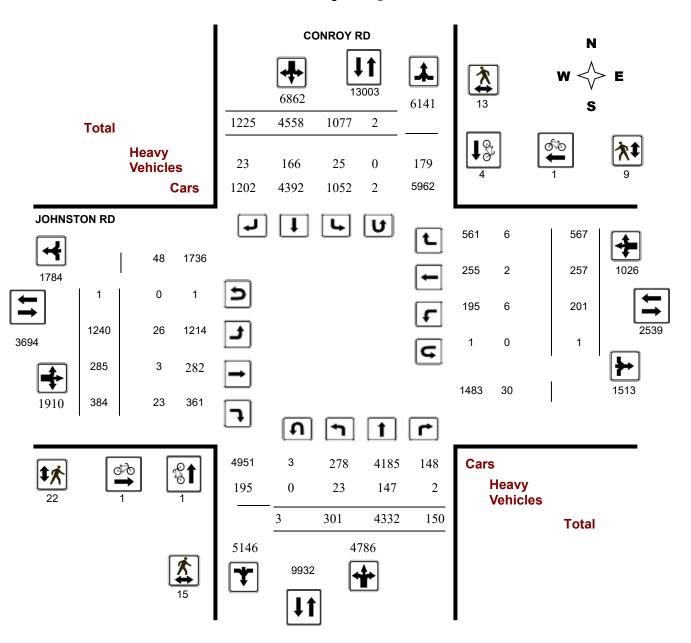



Figure 4: Map of OC Transpo Route #649.

Appendix C:

Existing Peak Hour Volumes



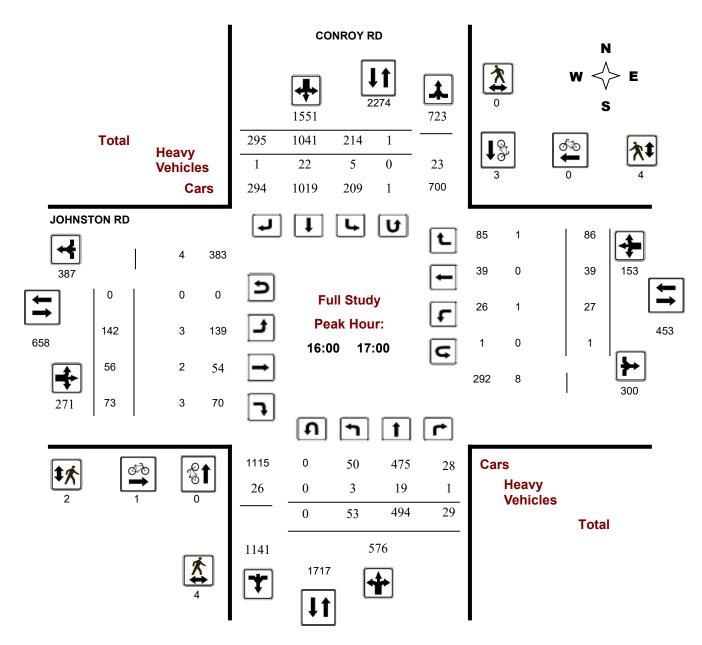
Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533
Start Time: 07:00 Device: Miovision

Full Study Diagram

August 20, 2024 Page 1 of 11


Turning Movement Count - Study Results

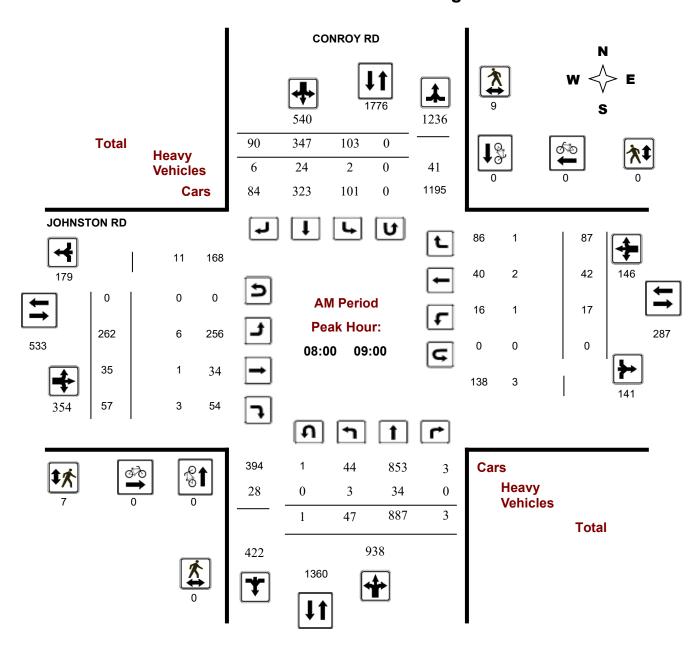
CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

August 20, 2024 Page 2 of 11



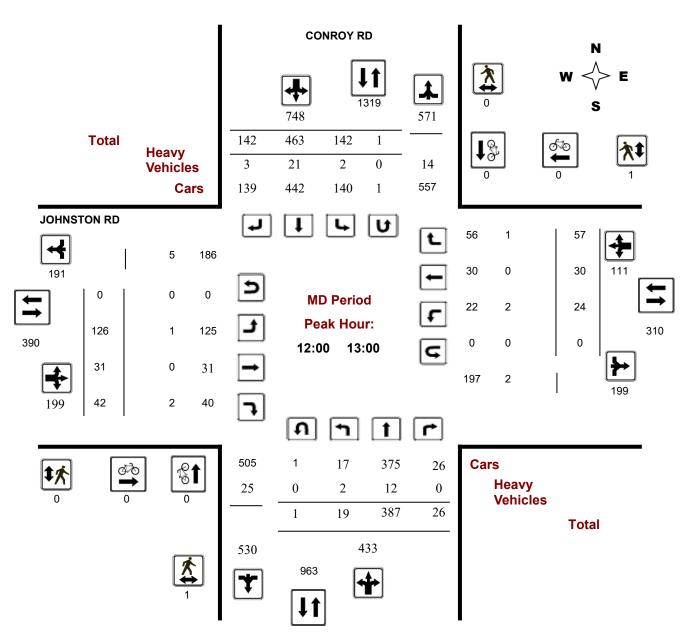
Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533
Start Time: 07:00 Device: Miovision

AM Period Peak Hour Diagram

August 20, 2024 Page 3 of 11



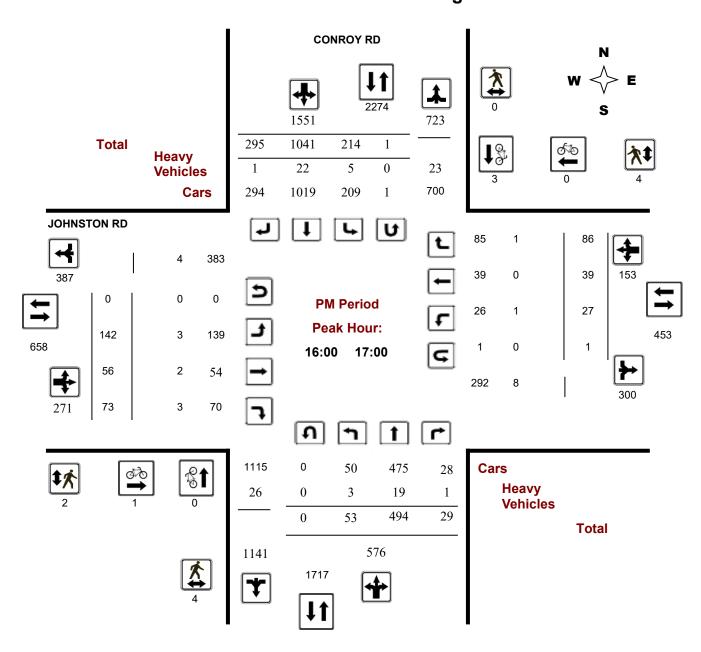
Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533
Start Time: 07:00 Device: Miovision

MD Period Peak Hour Diagram

August 20, 2024 Page 4 of 11



Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533
Start Time: 07:00 Device: Miovision

PM Period Peak Hour Diagram

August 20, 2024 Page 5 of 11

Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, January 18, 2024 Total Observed U-Turns AADT Factor

Northbound: 3 Southbound: 2
Eastbound: 1 Westbound: 1

1.00

CONROY RD JOHNSTON RD

			00	111101	ועט							001		ווווט					
	No	rthbou	nd		So	uthbo	und			Е	astbou	nd		W	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	28	671	15	714	43	268	61	372	1086	198	13	39	250	15	16	75	106	356	1442
08:00 09:00	47	887	3	937	103	347	90	540	1477	262	35	57	354	17	42	87	146	500	1977
09:00 10:00	21	620	7	648	92	360	120	572	1220	143	18	35	196	27	35	123	185	381	1601
11:30 12:30	27	374	23	424	129	463	113	705	1129	114	34	43	191	26	26	50	102	293	1422
12:30 13:30	26	362	28	416	123	451	128	702	1118	118	33	30	181	27	28	69	124	305	1423
15:00 16:00	47	483	22	552	176	889	191	1256	1808	120	54	47	221	29	35	21	85	306	2114
16:00 17:00	53	494	29	576	214	1041	295	1550	2126	142	56	73	271	27	39	86	152	423	2549
17:00 18:00	52	441	23	516	197	739	227	1163	1679	143	42	60	245	33	36	56	125	370	2049
Sub Total	301	4332	150	4783	1077	4558	1225	6860	11643	1240	285	384	1909	201	257	567	1025	2934	14577
U Turns				3				2	5				1				1	2	7
Total	301	4332	150	4786	1077	4558	1225	6862	11648	1240	285	384	1910	201	257	567	1026	2936	14584
EQ 12Hr	418	6021	208	6653	1497	6336	1703	9538	16191	1724	396	534	2655	279	357	788	1426	4081	20272
Note: These	values a	re calcu	lated by	y multipl	lying the	totals b	y the a	ppropriat	e expan	sion fact	tor.			1.39					
AVG 12Hr	418	6021	208	6653	1497	8300	2231	9538	16191	1724	396	534	2655	279	357	788	1426	4081	20272
Note: These	volumes	are calc	culated	by multi	iplying t	he Equi	valent 1	2 hr. tota	als by the	AADT	factor.			1.00					
AVG 24Hr	548	7888	272	8715	1961	10873	2923	12495	21210	2258	519	700	3478	365	468	1032	1868	5346	26556
Note: These	volumes	are calc	culated	by multi	iplying t	he Aver	age Dai	ily 12 hr.	totals by	12 to 2	4 expans	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

August 20, 2024 Page 6 of 11

13:00

15:00

15:15

15:45

16:00

16:15

16:30

16:45

17:00

17:15

17:30

15:30

Total:

13:15 | 13:30

13:15

15:15

15:30

16:00

16:15

16:30

16:45

17:00

17:15

17:30

17:45

15:45

14,584

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

CONROY RD JOHNSTON RD Westbound Northbound Southbound Eastbound S **STR** w STR Grand E **Time Period** LT LT ST RT ST RT LT ST RT LT ST RT TOT TOT TOT TOT TOT TOT Total 07:00 07:15 07:15 07:30 07:30 07:45 17:45 18:00 07:45 08:00 08:00 08:15 08:30 08:15 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00

Note: U-Turns are included in Totals.

August 20, 2024 Page 7 of 11

Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

CONROY RD JOHNSTON RD

		CONKOT KD			JOHNS LON K	D	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	1	1	1
17:45 18:00	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	1	1	1	0	1	2
16:15 16:30	0	1	1	0	0	0	1
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	1	1	0	0	0	1
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	1	1	0	0	0	1
17:30 17:45	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
Total	1	4	5	1	1	2	7

August 20, 2024 Page 8 of 11

Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

CONROY RD JOHNSTON RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	1	0	1	1	0	1	2
07:30 07:45	1	1	2	1	1	2	4
17:45 18:00	1	0	1	3	0	3	4
07:45 08:00	0	2	2	4	0	4	6
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	5	5	5	0	5	10
08:30 08:45	0	3	3	2	0	2	5
08:45 09:00	0	1	1	0	0	0	1
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	1	0	1	0	0	0	1
09:30 09:45	0	0	0	1	0	1	1
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	0	0	0	1	1	2	2
11:45 12:00	1	0	1	0	1	1	2
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	1	0	1	0	1	1	2
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	1	1	1
15:45 16:00	0	1	1	0	0	0	1
16:00 16:15	1	0	1	0	2	2	3
16:15 16:30	1	0	1	2	1	3	4
16:30 16:45	2	0	2	0	0	0	2
16:45 17:00	0	0	0	0	1	1	1
17:00 17:15	0	0	0	2	0	2	2
17:15 17:30	2	0	2	0	0	0	2
17:30 17:45	1	0	1	0	0	0	1
15:30 15:45	0	0	0	0	0	0	0
Total	15	13	28	22	9	31	59

August 20, 2024 Page 9 of 11

Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

CONROY RD JOHNSTON RD

	ı	Northbo	und		Sc	outhbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Perio	d LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:1	15 1	4	0	5	0	7	0	7	12	0	0	1	1	0	0	0	0	1	13
07:15 07:3	30 1	3	0	4	1	1	1	3	7	0	0	2	2	0	0	0	0	2	9
07:30 07:4	15 0	4	1	5	2	2	1	5	10	1	0	0	1	0	0	1	1	2	12
17:45 18:0	00 1	2	0	3	0	2	0	2	5	0	0	1	1	0	0	0	0	1	6
07:45 08:0	00 2	2	0	4	0	9	1	10	14	0	0	1	1	0	0	0	0	1	15
08:00 08:	15 0	9	0	9	1	4	1	6	15	1	0	0	1	1	0	0	1	2	17
08:15 08:3	30 1	3	0	4	1	2	2	5	9	2	1	1	4	0	0	0	0	4	13
08:30 08:4	15 1	13	0	14	0	10	0	10	24	1	0	2	3	0	1	1	2	5	29
08:45 09:0	00 1	9	0	10	0	8	3	11	21	2	0	0	2	0	1	0	1	3	24
09:00 09:1	15 0	7	0	7	0	4	0	4	11	1	0	0	1	0	0	0	0	1	12
09:15 09:3	30 1	4	0	5	1	4	1	6	11	2	0	2	4	0	0	0	0	4	15
09:30 09:4	15 1	4	0	5	1	2	1	4	9	2	0	0	2	0	0	1	1	3	12
09:45 10:0	00 1	6	0	7	0	2	2	4	11	2	0	1	3	0	0	0	0	3	14
11:30 11:4	15 0	7	0	7	1	4	1	6	13	2	0	0	2	0	0	0	0	2	15
11:45 12:0	00 1	4	0	5	0	1	0	1	6	0	0	1	1	0	0	0	0	1	7
12:00 12:1	15 0	2	0	2	1	2	0	3	5	0	0	0	0	0	0	0	0	0	5
12:15 12:3	30 1	2	0	3	0	2	0	2	5	0	0	1	1	0	0	0	0	1	6
12:30 12:4	15 1	4	0	5	1	6	0	7	12	1	0	0	1	1	0	1	2	3	15
12:45 13:0	0 0	4	0	4	0	11	3	14	18	0	0	1	1	1	0	0	1	2	20
13:00 13:1	15 1	4	0	5	1	5	0	6	11	1	0	0	1	0	0	0	0	1	12
13:15 13:3	30 1	4	0	5	0	8	1	9	14	2	0	1	3	0	0	1	1	4	18
15:00 15:1	15 0	3	0	3	0	8	0	8	11	0	0	0	0	0	0	0	0	0	11
15:15 15:3	30 2	9	0	11	2	14	0	16	27	1	0	0	1	2	0	0	2	3	30
15:45 16:0	_	4	0	5	3	12	3	18	23	0	0	0	0	0	0	0	0	0	23
16:00 16:1	15 1	5	1	7	1	14	0	15	22	1	2	1	4	0	0	1	1	5	27
16:15 16:3	30 0	4	0	4	3	2	1	6	10	1	0	1	2	0	0	0	0	2	12
16:30 16:4	_	4	0	5	1	1	0	2	7	1	0	1	2	1	0	0	1	3	10
16:45 17:0	00 1	6	0	7	0	5	0	5	12	0	0	0	0	0	0	0	0	0	12
17:00 17:	_	2	0	2	0	1	0	1	3	0	0	2	2	0	0	0	0	2	5
17:15 17:3	30 1	2	0	3	1	1	0	2	5	1	0	2	3	0	0	0	0	3	8
17:30 17:4	15 0	3	0	3	1	4	0	5	8	0	0	1	1	0	0	0	0	1	9
15:30 15:4	15 0	4	0	4	2	8	1	11	15	1	0	0	1	0	0	0	0	1	16
Total: Nor	ne 23	147	2	172	25	166	23	214	386	26	3	23	52	6	2	6	14	66	452

August 20, 2024 Page 10 of 11

Turning Movement Count - Study Results

CONROY RD @ JOHNSTON RD

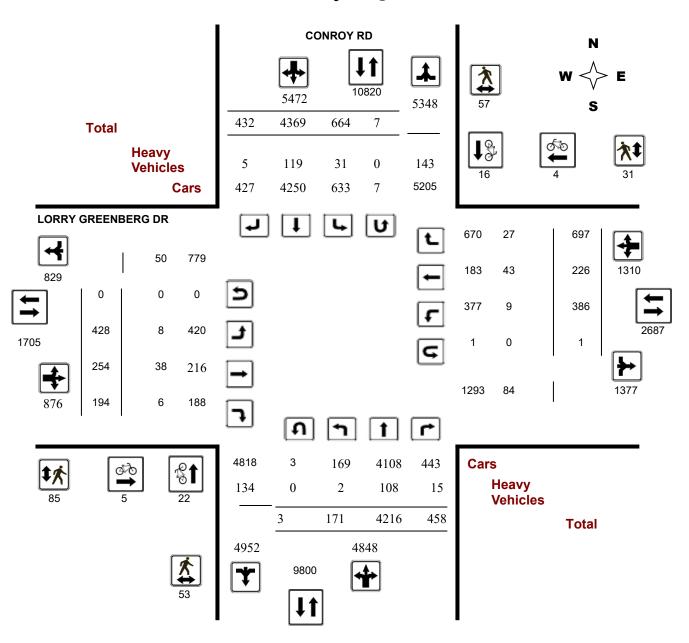
Survey Date: Thursday, January 18, 2024 WO No: 41533

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total CONROY RD JOHNSTON RD

Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	1	0	0	0	1
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	1	0	1
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	1	1	0	0	2
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	1	1
16:45	17:00	0	1	0	0	1
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
15:30	15:45	1	0	0	0	1
To	otal	3	2	1	1	7

August 20, 2024 Page 11 of 11



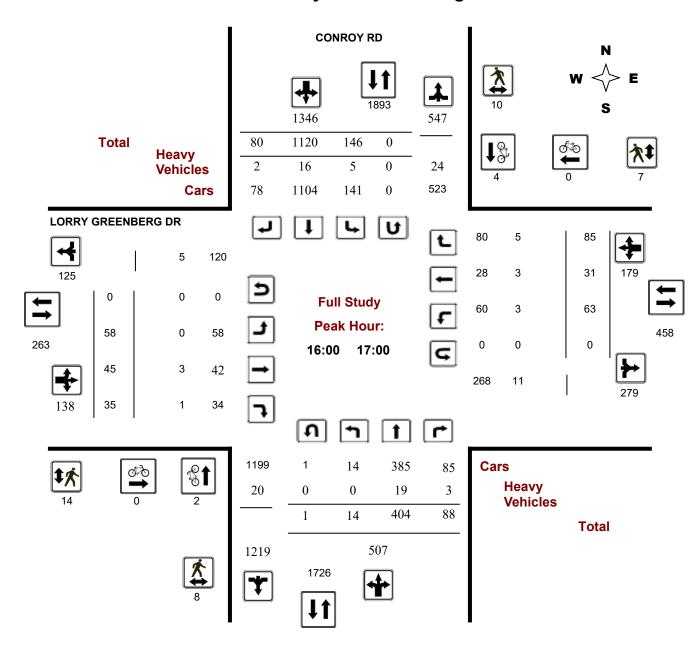
Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date:Tuesday, April 15, 2025WO No:42645Start Time:07:00Device:Miovision

Full Study Diagram

May 8, 2025 Page 1 of 11


Turning Movement Count - Study Results

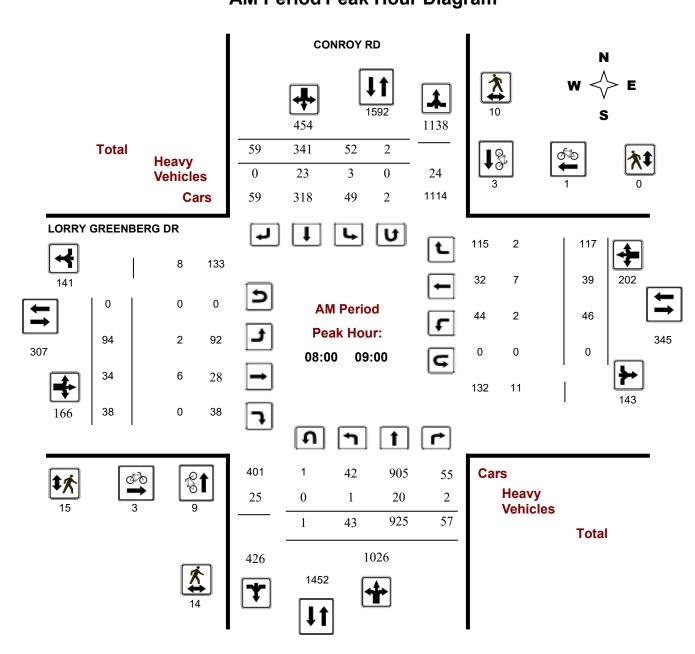
CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

May 8, 2025 Page 2 of 11



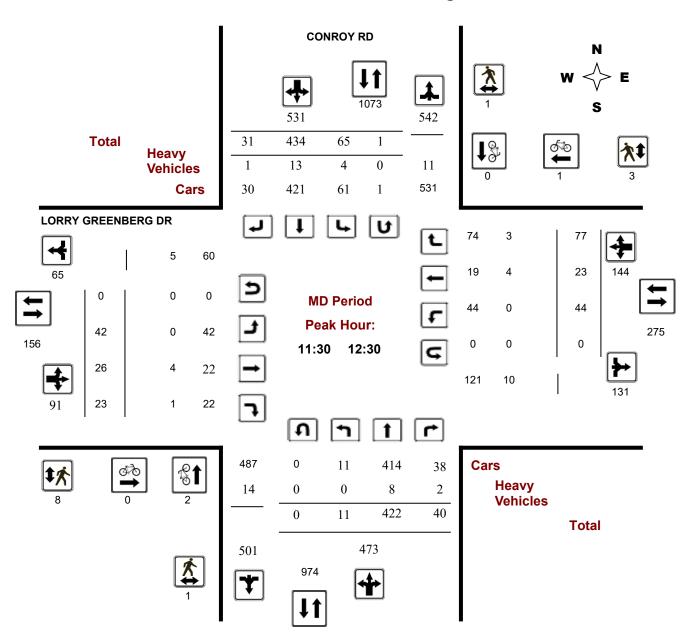
Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645
Start Time: 07:00 Device: Miovision

AM Period Peak Hour Diagram

May 8, 2025 Page 3 of 11



Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645
Start Time: 07:00 Device: Miovision

MD Period Peak Hour Diagram

May 8, 2025 Page 4 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

PM Period Peak Hour Diagram

May 8, 2025 Page 5 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, April 15, 2025 Total Observed U-Turns AADT Factor

Northbound: 3 Southbound: 7

Eastbound: 0 Westbound: 1

.90

CONROY RD LORRY GREENBERG DR

			00	IVITO	ווט						LOI			IDLIK	וטו				
	No	rthbou	nd		So	uthbou	ınd			Е	astbou	nd		W	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	25	749	25	799	25	279	26	330	1129	58	18	13	89	31	16	88	135	224	1353
08:00 09:00	43	925	57	1025	52	341	59	452	1477	94	34	38	166	46	39	117	202	368	1845
09:00 10:00	22	533	42	597	46	344	42	432	1029	62	29	13	104	34	27	50	111	215	1244
11:30 12:30	11	422	40	473	65	434	31	530	1003	42	26	23	91	44	23	77	144	235	1238
12:30 13:30	11	374	52	437	62	374	40	476	913	29	22	22	73	38	13	76	127	200	1113
15:00 16:00	24	405	49	478	114	799	77	990	1468	44	51	33	128	55	51	107	213	341	1809
16:00 17:00	14	404	88	506	146	1120	80	1346	1852	58	45	35	138	63	31	85	179	317	2169
17:00 18:00	21	404	105	530	154	678	77	909	1439	41	29	17	87	75	26	97	198	285	1724
Sub Total	171	4216	458	4845	664	4369	432	5465	10310	428	254	194	876	386	226	697	1309	2185	12495
U Turns				3				7	10				0				1	1	11
Total	171	4216	458	4848	664	4369	432	5472	10320	428	254	194	876	386	226	697	1310	2186	12506
EQ 12Hr	238	5860	637	6739	923	6073	600	7606	14345	595	353	270	1218	537	314	969	1821	3039	17383
Note: These v	alues a	re calcu	lated by	y multiply	ying the	totals b	y the a	ppropriat	te expans	ion fact	tor.			1.39					
AVG 12Hr	214	5274	573	6065	831	7160	708	6845	12910	536	318	243	1096	483	283	872	1639	2735	15645
Note: These v	olumes	are calc	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	als by the	AADT 1	factor.			.90					
AVG 24Hr	280	6909	751	7945	1089	9380	927	8967	16912	702	417	318	1436	633	371	1142	2147	3583	20495
Note: These v	olumes	are calc	culated	by multi	plying tl	he Avera	age Dai	ly 12 hr.	totals by	12 to 2	4 expans	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

May 8, 2025 Page 6 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

CONROY RD LORRY GREENBERG DR

		No	orthbou	ınd		Sc	uthbou	nd			Е	astbour	nd		We	estbour	nd			
Time P	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	5	116	3	124	5	62	3	70	194	11	3	1	15	7	3	18	28	43	237
07:15	07:30	5	167	5	177	6	63	3	72	249	16	5	4	25	6	5	18	29	54	303
07:30	07:45	4	219	9	232	3	74	10	87	319	18	4	3	25	7	3	23	33	58	377
07:45	08:00	11	247	8	266	11	80	10	101	367	13	6	5	24	11	5	29	45	69	436
08:00	08:15	11	212	15	238	10	87	14	112	350	18	9	12	39	11	10	34	55	94	444
08:15	08:30	18	257	15	290	22	91	26	139	429	26	8	15	49	12	8	23	43	92	521
08:30	08:45	4	208	14	227	11	78	11	100	327	25	8	5	38	11	7	29	47	85	412
08:45	09:00	10	248	13	271	9	85	8	103	374	25	9	6	40	12	14	31	57	97	471
09:00	09:15	11	168	13	192	10	93	21	124	316	30	13	7	50	11	10	11	32	82	398
09:15	09:30	5	141	8	154	11	91	10	112	266	11	6	1	18	11	8	13	32	50	316
09:30	09:45	4	131	9	144	10	84	5	99	243	14	6	2	22	7	1	10	18	40	283
09:45	10:00	2	93	12	107	15	76	6	97	204	7	4	3	14	5	8	16	29	43	247
11:30	11:45	1	95	7	103	13	93	9	115	218	13	5	5	23	14	6	20	40	63	281
11:45	12:00	2	101	10	113	23	104	7	135	248	6	6	7	19	6	1	21	28	47	295
12:00	12:15	8	123	13	144	14	122	8	144	288	18	12	3	33	14	8	19	41	74	362
12:15	12:30	0	103	10	113	15	115	7	137	250	5	3	8	16	10	8	17	35	51	301
12:30	12:45	1	84	11	96	23	80	8	112	208	4	6	5	15	11	1	11	23	38	246
12:45	13:00	6	109	15	130	13	93	11	118	248	8	4	4	16	11	7	22	40	56	304
13:00	13:15	2	91	11	104	14	97	16	127	231	8	7	8	23	9	2	27	39	62	293
13:15	13:30	2	90	15	107	12	104	5	121	228	9	5	5	19	7	3	16	26	45	273
15:00	15:15	7	105	11	123	24	173	22	219	342	12	10	8	30	17	9	27	53	83	425
17:30	17:45	3	87	22	113	39	165	24	228	341	10	8	4	22	29	10	25	64	86	427
15:15	15:30	4	107	11	122	29	193	19	241	363	15	13	9	37	4	14	29	47	84	447
15:30	15:45	4	101	14	119	27	221	17	265	384	4	7	9	20	14	9	26	49	69	453
16:00	16:15	5	102	20	127	47	281	18	346	473	14	13	11	38	12	13	14	39	77	550
16:15	16:30	4	114	19	137	32	256	17	305	442	14	10	11	35	17	4	28	49	84	526
16:30	16:45	2	98	26	126	34	308	23	365	491	19	5	10	34	17	5	16	38	72	563
16:45	17:00	3	90	23	117	33	275	22	330	447	11	17	3	31	17	9	27	53	84	531
17:00	17:15	4	102	18	124	40	220	24	285	409	15	5	3	23	16	7	26	49	72	481
17:15	17:30	11	102	45	158	41	182	20	244	402	6	10	7	23	16	6	14	36	59	461
15:45	16:00	9	92	13	114	34	212	19	265	379	13	21	7	41	20	19	25	64	105	484
17:45	18:00	3	113	20	136	34	111	9	154	290	10	6	3	19	14	3	32	49	68	358
Total:		171	4216	458	4848	664	4369	432	5472	10320	428	254	194	876	386	226	697	1310	2186	12,506

Note: U-Turns are included in Totals, cyclist volume is not included in totals. For cycliste volumes reffer to Cyclist Volume report.

May 8, 2025 Page 7 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

CONROY RD LORRY GREENBERG DR

		CONTOLIND		LOI			
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	2	0	2	1	0	1	3
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	1	0	1	0	0	0	1
07:45 08:00	2	0	2	0	0	0	2
08:00 08:15	2	1	3	1	0	1	4
08:15 08:30	3	2	5	1	1	2	7
08:30 08:45	2	0	2	0	0	0	2
08:45 09:00	2	0	2	1	0	1	3
09:00 09:15	0	1	1	0	1	1	2
09:15 09:30	1	0	1	0	0	0	1
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	2	0	2	0	1	1	3
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	1	2	3	0	0	0	3
13:15 13:30	0	2	2	0	0	0	2
15:00 15:15	0	0	0	0	0	0	0
17:30 17:45	1	1	2	0	0	0	2
15:15 15:30	0	0	0	1	1	2	2
15:30 15:45	0	0	0	0	0	0	0
16:00 16:15	0	2	2	0	0	0	2
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	1	1	0	0	0	1
16:45 17:00	2	1	3	0	0	0	3
17:00 17:15	0	3	3	0	0	0	3
17:15 17:30	0	0	0	0	0	0	0
15:45 16:00	1	0	1	0	0	0	1
17:45 18:00	0	0	0	0	0	0	0
Total	22	16	38	5	4	9	47

May 8, 2025 Page 8 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

CONROY RD LORRY GREENBERG DR

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	3	0	3	2	1	3	6
07:15 07:30	1	1	2	5	0	5	7
07:30 07:45	0	4	4	5	1	6	10
07:45 08:00	0	1	1	4	0	4	5
08:00 08:15	3	1	4	5	0	5	9
08:15 08:30	7	0	7	6	0	6	13
08:30 08:45	4	5	9	3	0	3	12
08:45 09:00	0	4	4	1	0	1	5
09:00 09:15	1	7	8	1	1	2	10
09:15 09:30	0	6	6	5	1	6	12
09:30 09:45	1	0	1	0	1	1	2
09:45 10:00	0	0	0	3	0	3	3
11:30 11:45	0	1	1	0	1	1	2
11:45 12:00	0	0	0	1	0	1	1
12:00 12:15	0	0	0	2	0	2	2
12:15 12:30	1	0	1	5	2	7	8
12:30 12:45	3	2	5	1	5	6	11
12:45 13:00	1	1	2	6	2	8	10
13:00 13:15	0	0	0	0	2	2	2
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	7	2	9	1	1	2	11
17:30 17:45	0	1	1	1	2	3	4
15:15 15:30	3	0	3	3	1	4	7
15:30 15:45	4	0	4	5	0	5	9
16:00 16:15	2	4	6	5	2	7	13
16:15 16:30	2	1	3	3	3	6	9
16:30 16:45	2	5	7	3	2	5	12
16:45 17:00	2	0	2	3	0	3	5
17:00 17:15	1	0	1	0	0	0	1
17:15 17:30	0	0	0	2	0	2	2
15:45 16:00	5	11	16	4	2	6	22
17:45 18:00	0	0	0	0	1	1	1
Total	53	57	110	85	31	116	226

May 8, 2025 Page 9 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

CONROY RD LORRY GREENBERG DR

	N	orthbou	und		Sc	uthbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	3	0	3	3	6	0	9	12	0	1	0	1	0	2	1	3	4	16
07:15 07:30	0	6	0	6	1	2	0	3	9	0	1	0	1	0	3	2	5	6	15
07:30 07:45	0	3	0	3	0	0	1	1	4	0	0	0	0	0	3	0	3	3	7
07:45 08:00	0	2	0	2	1	4	0	5	7	0	1	1	2	0	2	1	3	5	12
08:00 08:15	0	4	1	5	0	8	0	8	13	0	0	0	0	1	2	0	3	3	16
08:15 08:30	0	6	0	6	2	6	0	8	14	0	3	0	3	0	2	0	2	5	19
08:30 08:45	0	6	1	7	1	3	0	4	11	1	2	0	3	1	1	2	4	7	18
08:45 09:00	1	4	0	5	0	6	0	6	11	1	1	0	2	0	2	0	2	4	15
09:00 09:15	0	7	1	8	0	7	0	7	15	0	1	1	2	0	1	2	3	5	20
09:15 09:30	1	2	0	3	2	6	0	8	11	0	1	0	1	0	0	0	0	1	12
09:30 09:45	0	8	0	8	0	6	0	6	14	0	0	0	0	0	1	0	1	1	15
09:45 10:00	0	5	2	7	1	2	0	3	10	2	1	0	3	1	3	1	5	8	18
11:30 11:45	0	3	1	4	1	4	1	6	10	0	1	0	1	0	1	0	1	2	12
11:45 12:00	0	2	1	3	1	7	0	8	11	0	1	1	2	0	0	2	2	4	15
12:00 12:15	0	1	0	1	0	2	0	2	3	0	1	0	1	0	1	0	1	2	5
12:15 12:30	0	2	0	2	2	0	0	2	4	0	1	0	1	0	2	1	3	4	8
12:30 12:45	0	2	1	3	1	0	0	1	4	0	1	0	1	1	0	1	2	3	7
12:45 13:00	0	3	1	4	1	2	0	3	7	0	0	0	0	1	2	1	4	4	11
13:00 13:15	0	2	0	2	0	5	1	6	8	1	1	2	4	0	0	0	0	4	12
13:15 13:30	0	3	0	3	1	4	0	5	8	0	2	0	2	0	1	1	2	4	12
15:00 15:15	0	3	0	3	0	6	0	6	9	0	2	0	2	0	1	1	2	4	13
17:30 17:45	0	2	0	2	1	3	0	4	6	0	1	0	1	0	1	0	1	2	8
15:15 15:30	0	5	0	5	1	5	0	6	11	2	5	0	7	0	3	0	3	10	21
15:30 15:45	0	1	2	3	1	2	0	3	6	1	2	0	3	0	2	3	5	8	14
16:00 16:15	0	3	0	3	2	7	2	11	14	0	0	0	0	0	1	1	2	2	16
16:15 16:30	0	5	3	8	2	5	0	7	15	0	1	0	1	1	1	1	3	4	19
16:30 16:45	0	2	0	2	1	3	0	4	6	0	1	1	2	2	0	2	4	6	12
16:45 17:00	0	9	0	9	0	1	0	1	10	0	1	0	1	0	1	1	2	3	13
17:00 17:15	0	0	1	1	2	1	0	3	4	0	0	0	0	0	1	0	1	1	5
17:15 17:30	0	2	0	2	2	2	0	4	6	0	1	0	1	0	0	2	2	3	9
15:45 16:00	0	1	0	1	0	2	0	2	3	0	2	0	2	1	3	0	4	6	9
17:45 18:00	0	1	0	1	1	2	0	3	4	0	2	0	2	0	0	1	1	3	7
Total: None	2	108	15	125	31	119	5	155	280	8	38	6	52	9	43	27	79	131	411

May 8, 2025 Page 10 of 11

Turning Movement Count - Study Results

CONROY RD @ LORRY GREENBERG DR

Survey Date: Tuesday, April 15, 2025 WO No: 42645

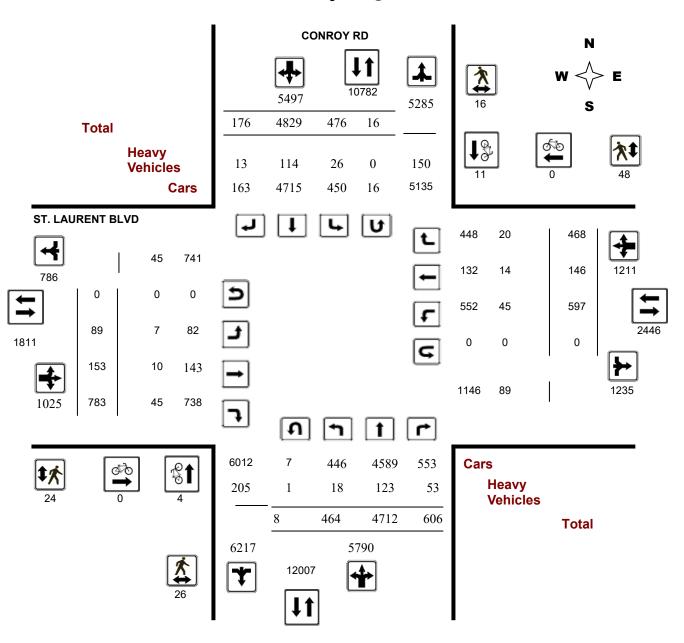
Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total

CONROY RD LORRY GREENBERG DR

Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	1	0	0	1
08:15	08:30	0	0	0	0	0
08:30	08:45	1	0	0	0	1
08:45	09:00	0	1	0	0	1
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	1	0	0	1
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	1	0	0	1
12:45	13:00	0	1	0	0	1
13:00	13:15	0	0	0	1	1
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
17:30	17:45	1	0	0	0	1
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	1	0	0	0	1
17:00	17:15	0	1	0	0	1
17:15	17:30	0	1	0	0	1
15:45	16:00	0	0	0	0	0
17:45	18:00	0	0	0	0	0
Tot	al	3	7	0	1	11

May 8, 2025 Page 11 of 11



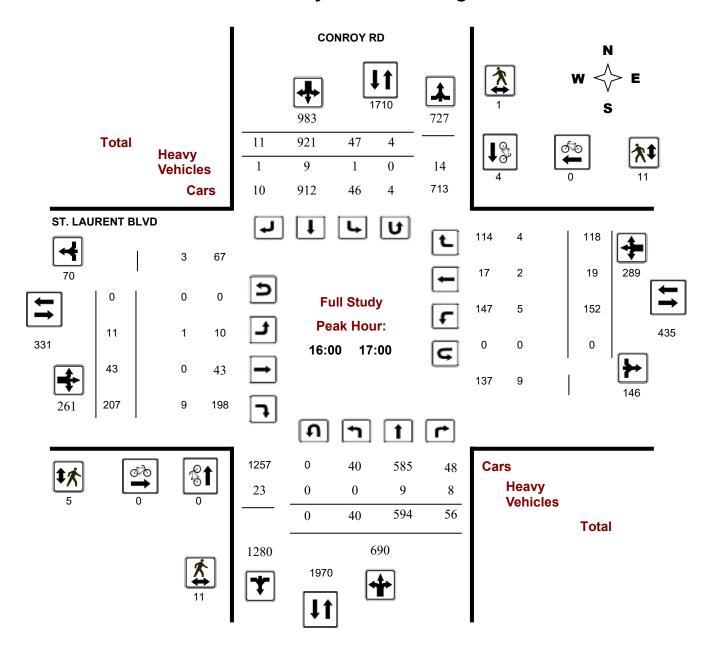
Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374
Start Time: 07:00 Device: Miovision

Full Study Diagram

May 8, 2025 Page 1 of 11


Turning Movement Count - Study Results

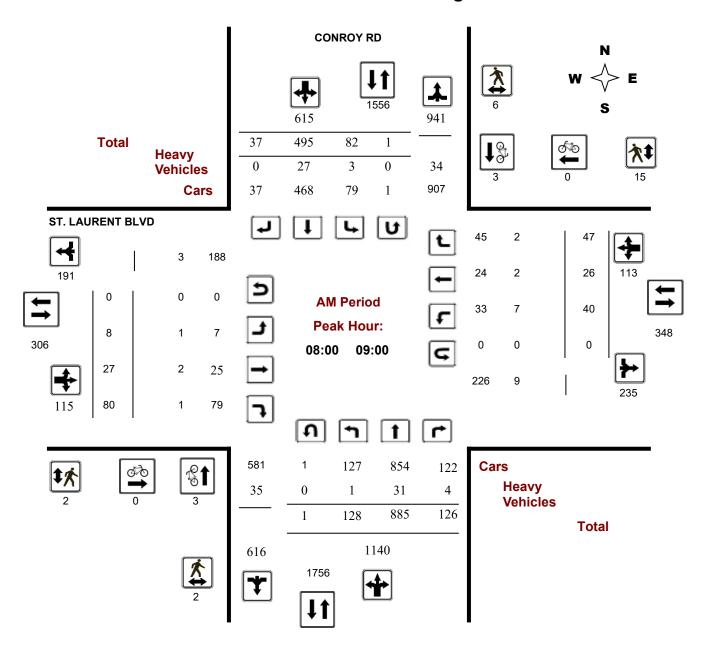
CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

May 8, 2025 Page 2 of 11


Turning Movement Count - Study Results

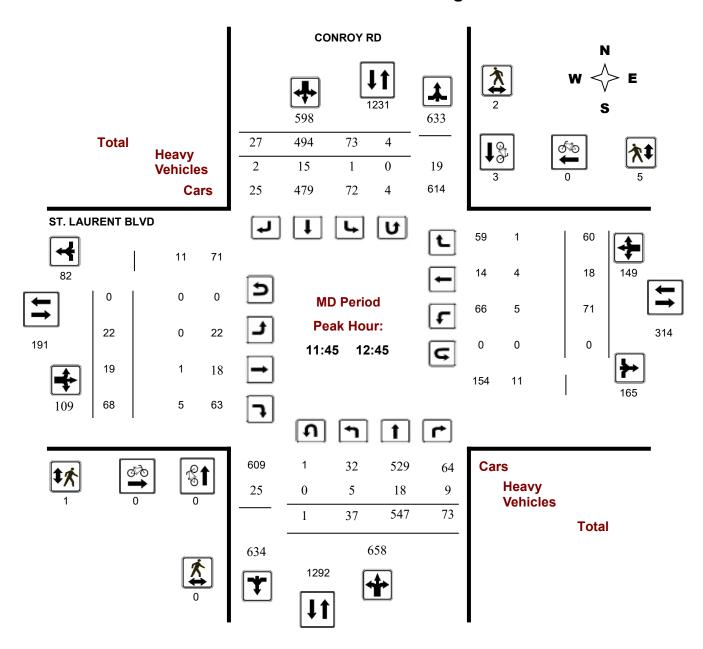
CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

AM Period Peak Hour Diagram

May 8, 2025 Page 3 of 11


Turning Movement Count - Study Results

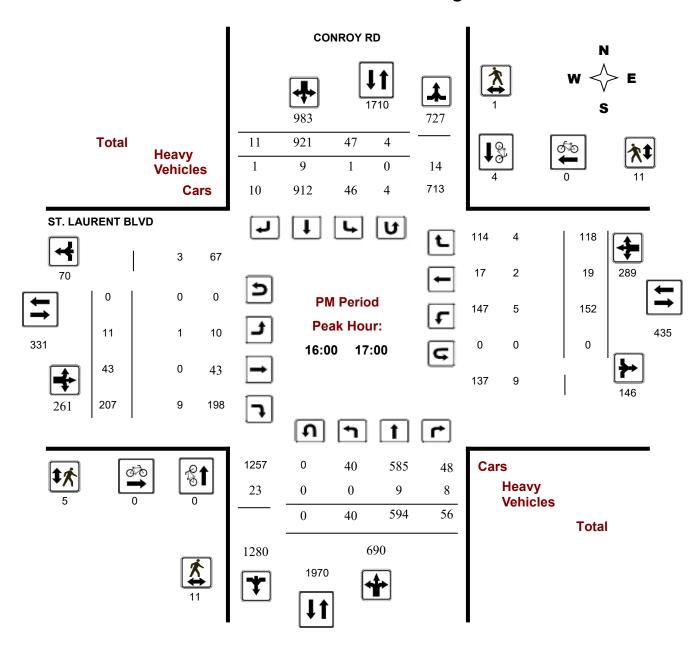
CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

MD Period Peak Hour Diagram

May 8, 2025 Page 4 of 11


Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

PM Period Peak Hour Diagram

May 8, 2025 Page 5 of 11

Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, December 06, Total Observed U-Turns

Northbound: 8 Southbound: 16

AADT Factor

Eastbound: 0 Westbound: 0 1.00

CONROY RD ST. LAURENT BLVD Northbound Southbound Eastbound Westbound SB **STR WB** STR NB EΒ Grand LT ST RT LT ST RT ST RT LT ST RT Period LT TOT TOT TOT TOT TOT TOT Total 07:00 08:00 08:00 09:00 09:00 10:00 11:30 12:30 12:30 13:30 15:00 16:00 16:00 17:00 17:00 18:00 Sub Total **U Turns** Total EQ 12Hr 1.39 Note: These values are calculated by multiplying the totals by the appropriate expansion factor AVG 12Hr Note: These volumes are calculated by multiplying the Equivalent 12 hr. totals by the AADT factor. 1.00 AVG 24Hr Note: These volumes are calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expansion factor. 1.31

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

May 8, 2025 Page 6 of 11

Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

CONROY RD ST. LAURENT BLVD

		N	orthbou	und		Sc	uthbou	nd			Е	astbour	nd		We	estbour	nd			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	16	113	15	144	12	58	4	74	218	3	0	3	6	11	2	4	17	23	241
07:15	07:30	19	135	24	179	13	59	7	79	258	2	4	8	14	3	2	10	15	29	287
07:30	07:45	22	171	29	222	13	81	4	98	320	1	2	9	12	8	3	3	14	26	346
17:30	17:45	9	145	13	167	5	194	3	203	370	0	0	33	33	16	2	11	29	62	432
09:00	09:15	17	153	23	193	28	130	7	165	358	1	2	5	8	4	4	13	21	29	387
07:45	08:00	27	200	33	260	26	118	10	154	414	0	1	14	15	12	2	3	17	32	446
08:00	08:15	32	221	35	288	10	117	5	132	420	0	4	18	22	9	8	11	28	50	470
08:45	09:00	26	236	27	290	29	107	10	146	436	2	11	19	32	12	5	14	31	63	499
11:30	11:45	8	112	15	135	10	115	5	130	265	5	5	19	29	13	11	20	44	73	338
12:15	12:30	12	124	17	153	26	133	9	168	321	6	5	21	32	13	4	18	35	67	388
16:15	16:30	12	146	24	182	18	245	3	268	450	1	11	64	76	39	3	31	73	149	599
16:45	17:00	6	164	9	179	9	221	0	231	410	3	9	46	58	36	4	28	68	126	536
17:15	17:30	9	139	8	156	7	219	1	228	384	1	0	35	36	21	4	16	41	77	461
17:00	17:15	8	115	7	130	6	184	1	192	322	1	0	42	43	26	1	26	53	96	418
08:15	08:30	35	206	36	277	23	118	12	154	431	4	6	28	38	6	7	15	28	66	497
08:30	08:45	35	222	28	285	20	153	10	183	468	2	6	15	23	13	6	7	26	49	517
15:15	15:30	13	160	13	187	17	217	3	238	425	4	10	39	53	31	5	11	47	100	525
09:15	09:30	23	145	26	194	26	124	9	159	353	2	4	4	10	10	4	9	23	33	386
09:30	09:45	18	128	24	170	13	103	8	124	294	5	5	8	18	7	3	15	25	43	337
09:45	10:00	11	122	21	154	10	101	7	118	272	2	9	13	24	12	7	10	29	53	325
11:45	12:00	7	152	20	179	12	113	8	133	312	4	4	16	24	23	9	18	50	74	386
12:00	12:15	7	141	15	163	16	133	3	152	315	4	5	17	26	22	3	14	39	65	380
12:30	12:45	11	130	21	163	19	115	7	145	308	8	5	14	27	13	2	10	25	52	360
12:45	13:00	13	113	17	143	19	120	11	151	294	1	1	22	24	18	8	5	31	55	349
13:00	13:15	9	97	9	115	9	134	2	145	260	3	2	22	27	16	1	31	48	75	335
13:15	13:30	7	99	11	118	14	112	5	131	249	5	1	14	20	20	6	19	45	65	314
15:00	15:15	10	149	14	176	14	172	4	190	366	4	8	33	45	27	7	7	41	86	452
17:45	18:00	6	115	10	131	6	208	3	218	349	1	0	23	24	13	0	9	22	46	395
15:30	15:45	8	137	21	166	13	232	2	248	414	5	6	33	44	37	5	8	50	94	508
15:45	16:00	6	138	18	162	13	238	5	256	418	2	4	49	55	29	6	13	48	103	521
16:00	16:15	8	132	10	150	11	228	6	245	395	3	10	56	69	38	6	22	66	135	530
16:30	16:45	14	152	13	179	9	227	2	239	418	4	13	41	58	39	6	37	82	140	558
Total:		464	4712	606	5790	476	4829	176	5497	11287	89	153	783	1025	597	146	468	1211	2236	13,523

Note: U-Turns are included in Totals, cyclist volume is not included in totals. For cycliste volumes reffer to Cyclist Volume report.

May 8, 2025 Page 7 of 11

Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

CONROY RD ST. LAURENT BLVD

		CONNOTIND		•	I. LAUNLINI D		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
07:45 08:00	0	1	1	0	0	0	1
08:00 08:15	2	1	3	0	0	0	3
08:45 09:00	0	1	1	0	0	0	1
11:30 11:45	0	0	0	0	0	0	0
12:15 12:30	0	1	1	0	0	0	1
16:15 16:30	0	1	1	0	0	0	1
16:45 17:00	0	1	1	0	0	0	1
17:15 17:30	1	0	1	0	0	0	1
17:00 17:15	0	0	0	0	0	0	0
08:15 08:30	0	1	1	0	0	0	1
08:30 08:45	1	0	1	0	0	0	1
15:15 15:30	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:30 12:45	0	2	2	0	0	0	2
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	1	1	0	0	0	1
16:30 16:45	0	1	1	0	0	0	1
Total	4	11	15	0	0	0	15

May 8, 2025 Page 8 of 11

Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

CONROY RD ST. LAURENT BLVD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	1	1	0	0	0	1
07:30 07:45	0	1	1	0	1	1	2
17:30 17:45	0	0	0	1	0	1	1
09:00 09:15	1	1	2	0	0	0	2
07:45 08:00	1	0	1	1	0	1	2
08:00 08:15	0	1	1	0	0	0	1
08:45 09:00	0	1	1	0	9	9	10
11:30 11:45	0	0	0	0	5	5	5
12:15 12:30	0	0	0	1	1	2	2
16:15 16:30	1	0	1	0	2	2	3
16:45 17:00	5	0	5	4	2	6	11
17:15 17:30	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
08:15 08:30	0	3	3	1	1	2	5
08:30 08:45	2	1	3	1	5	6	9
15:15 15:30	0	1	1	1	0	1	2
09:15 09:30	0	1	1	0	0	0	1
09:30 09:45	2	1	3	1	6	7	10
09:45 10:00	0	0	0	0	0	0	0
11:45 12:00	0	1	1	0	2	2	3
12:00 12:15	0	0	0	0	1	1	1
12:30 12:45	0	1	1	0	1	1	2
12:45 13:00	1	0	1	2	0	2	3
13:00 13:15	5	0	5	1	2	3	8
13:15 13:30	1	0	1	1	0	1	2
15:00 15:15	2	1	3	7	1	8	11
17:45 18:00	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	2	2	2
15:45 16:00	0	0	0	1	0	1	1
16:00 16:15	4	1	5	1	5	6	11
16:30 16:45	1	0	1	0	2	2	3
Total	26	16	42	24	48	72	114

May 8, 2025 Page 9 of 11

Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

CONROY RD ST. LAURENT BLVD

	N	orthbou	und		Sc	uthbou	ınd			E	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	2	2	0	2	0	2	4	0	0	0	0	4	0	0	4	4	8
07:15 07:30	0	3	2	5	1	0	0	1	6	0	0	1	1	1	0	1	2	3	9
07:30 07:45	0	3	1	4	1	1	0	2	6	1	0	1	2	2	1	0	3	5	11
17:30 17:45	1	2	2	5	1	1	0	2	7	0	0	0	0	0	0	1	1	1	8
09:00 09:15	0	5	2	7	0	4	0	4	11	0	0	1	1	1	0	0	1	2	13
07:45 08:00	1	6	3	10	1	4	1	6	16	0	0	1	1	1	0	1	2	3	19
08:00 08:15	0	9	1	10	0	14	0	14	24	0	0	0	0	2	1	0	3	3	27
08:45 09:00	0	9	1	10	1	3	0	4	14	0	2	0	2	1	0	2	3	5	19
11:30 11:45	0	3	2	5	1	2	0	3	8	0	1	0	1	2	0	0	2	3	11
12:15 12:30	1	5	1	7	0	5	0	5	12	0	0	1	1	1	0	1	2	3	15
16:15 16:30	0	2	3	5	0	4	0	4	9	1	0	6	7	2	0	1	3	10	19
16:45 17:00	0	2	3	5	0	1	0	1	6	0	0	1	1	0	0	0	0	1	7
17:15 17:30	2	3	1	6	1	1	0	2	8	1	0	1	2	0	0	0	0	2	10
17:00 17:15	1	1	1	3	1	4	1	6	9	0	0	1	1	1	0	3	4	5	14
08:15 08:30	0	5	1	6	2	3	0	5	11	1	0	1	2	1	0	0	1	3	14
08:30 08:45	1	8	1	10	0	7	0	7	17	0	0	0	0	3	1	0	4	4	21
15:15 15:30	1	6	1	8	3	5	0	8	16	0	3	4	7	4	0	0	4	11	27
09:15 09:30	0	5	0	5	3	2	2	7	12	0	0	0	0	0	0	0	0	0	12
09:30 09:45	0	3	2	5	1	3	1	5	10	0	0	1	1	2	0	1	3	4	14
09:45 10:00	0	1	0	1	0	2	0	2	3	0	1	4	5	1	1	0	2	7	10
11:45 12:00	3	3	3	9	0	4	0	4	13	0	0	1	1	2	2	0	4	5	18
12:00 12:15	0	4	2	6	1	3	1	5	11	0	1	3	4	1	2	0	3	7	18
12:30 12:45	1	6	3	10	0	3	1	4	14	0	0	0	0	1	0	0	1	1	15
12:45 13:00	0	4	1	5	0	6	0	6	11	0	0	1	1	2	0	0	2	3	14
13:00 13:15	1	3	1	5	1	4	0	5	10	1	0	5	6	2	0	2	4	10	20
13:15 13:30	0	3	0	3	1	6	3	10	13	2	0	1	3	0	1	3	4	7	20
15:00 15:15	3	4	3	11	2	6	0	8	19	0	1	2	3	2	2	1	5	8	27
17:45 18:00	1	1	2	4	1	1	0	2	6	0	0	0	0	0	0	0	0	0	6
15:30 15:45	1	5	4	10	1	5	0	6	16	0	1	2	3	2	0	0	2	5	21
15:45 16:00	0	4	2	6	1	4	2	7	13	0	0	4	4	1	1	0	2	6	19
16:00 16:15	0	4	1	5	0	2	1	3	8	0	0	2	2	1	1	0	2	4	12
16:30 16:45	0	1	1	2	1	2	0	3	5	0	0	0	0	2	1	3	6	6	11
Total: None	18	123	53	195	26	114	13	153	348	7	10	45	62	45	14	20	79	141	489

May 8, 2025 Page 10 of 11

Total

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CONROY RD @ ST. LAURENT BLVD

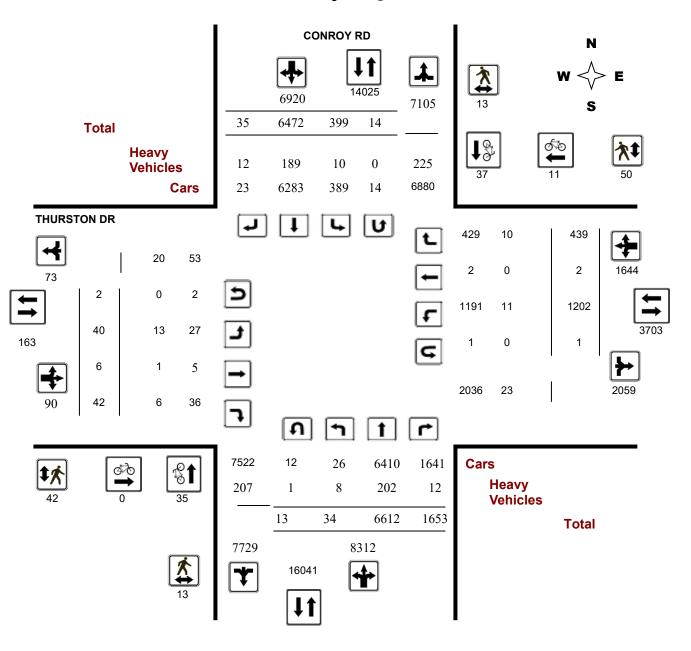
Survey Date: Wednesday, December 06, 2023 WO No: 41374

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total CONROY RD ST. LAURENT E

ST. LAURENT BLVD Northbound Southbound Eastbound Westbound **Time Period** Total **U-Turn Total U-Turn Total U-Turn Total U-Turn Total** 07:00 07:15 07:15 07:30 07:30 07:45 17:30 17:45 09:00 09:15 07:45 08:00 08:00 08:15 08:45 09:00 11:30 11:45 12:15 12:30 16:15 16:30 17:00 16:45 17:15 17:30 17:00 17:15 08:15 08:30 08:30 08:45 15:15 15:30 09:15 09:30 09:30 09:45 09:45 10:00 11:45 12:00 12:00 12:15 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 15:00 15:15 17:45 18:00 15:30 15:45 15:45 16:00 16:00 16:15 16:30 16:45

May 8, 2025 Page 11 of 11



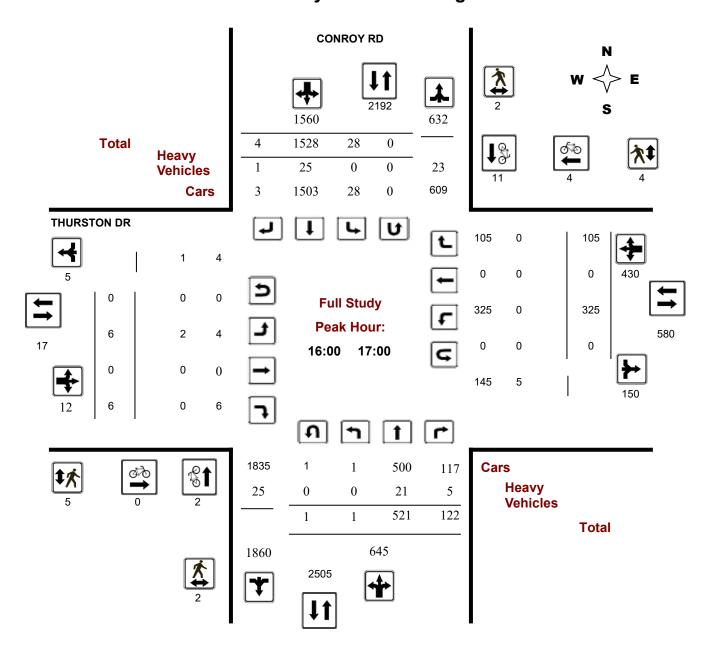
Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date:Tuesday, April 16, 2019WO No:38547Start Time:07:00Device:Miovision

Full Study Diagram

August 20, 2024 Page 1 of 11


Turning Movement Count - Study Results

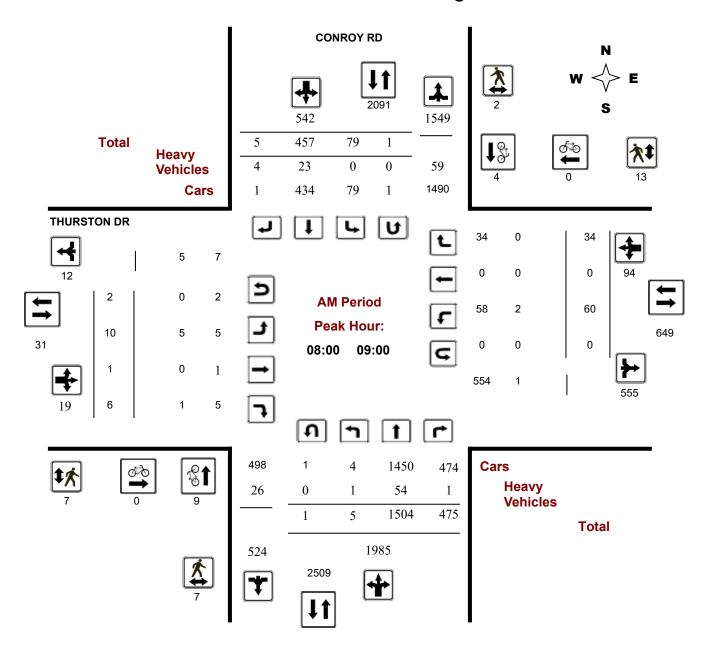
CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

August 20, 2024 Page 2 of 11


Turning Movement Count - Study Results

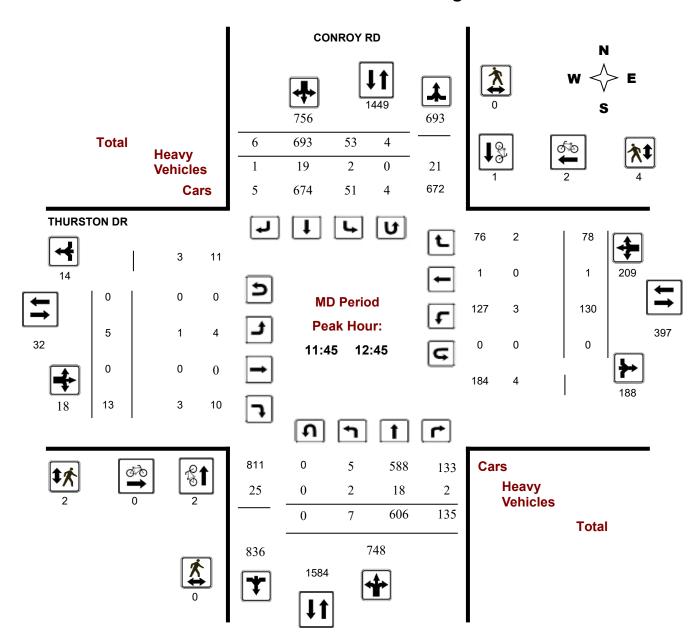
CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

AM Period Peak Hour Diagram

August 20, 2024 Page 3 of 11


Turning Movement Count - Study Results

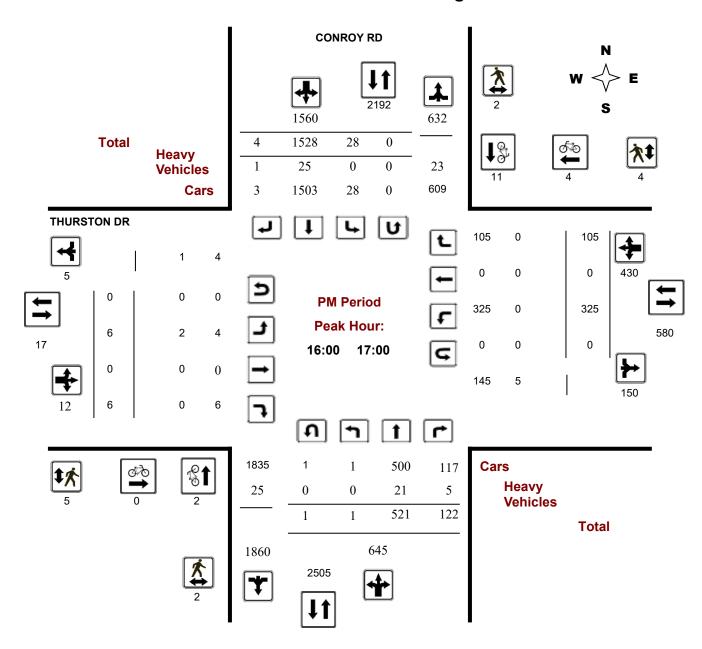
CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

MD Period Peak Hour Diagram

August 20, 2024 Page 4 of 11


Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

PM Period Peak Hour Diagram

August 20, 2024 Page 5 of 11

Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Tuesday, April 16, 2019 Total Observed U-Turns AADT Factor

Northbound: 13 Southbound: 14

Eastbound: 2 Westbound: 1

.90

CONROY RD THURSTON DR

	No	orthbou	ınd		Sc	uthbou	ınd			E	astbou	nd		W	estbou	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	7	1366	341	1714	71	339	4	414	2128	3	2	8	13	30	0	23	53	66	2194
08:00 09:00	5	1504	475	1984	79	457	5	541	2525	10	1	6	17	60	0	34	94	111	2636
09:00 10:00	2	813	220	1035	64	460	5	529	1564	3	0	2	5	75	0	30	105	110	1674
11:30 12:30	10	575	125	710	45	691	8	744	1454	6	0	11	17	130	2	72	204	221	1675
12:30 13:30	3	631	144	778	68	571	2	641	1419	3	0	8	11	116	0	57	173	184	1603
15:00 16:00	1	630	120	751	32	1205	7	1244	1995	6	3	1	10	208	0	49	257	267	2262
16:00 17:00	1	521	122	644	28	1528	4	1560	2204	6	0	6	12	325	0	105	430	442	2646
17:00 18:00	5	572	106	683	12	1221	0	1233	1916	3	0	0	3	258	0	69	327	330	2246
Sub Total	34	6612	1653	8299	399	6472	35	6906	15205	40	6	42	88	1202	2	439	1643	1731	16936
U Turns				13				14	27				2				1	3	30
Total	34	6612	1653	8312	399	6472	35	6920	15232	40	6	42	90	1202	2	439	1644	1734	16966
EQ 12Hr	47	9191	2298	11554	555	8996	49	9619	21172	56	8	58	125	1671	3	610	2285	2410	23583
Note: These	values a	are calcu	ılated b	y multiply	ying the	e totals b	y the a	ppropriat	te expans	ion facto	or.			1.39					
AVG 12Hr	42	8272	2068	10399	500	10606	57	8657	19055	50	7	52	112	1504	3	549	2056	2169	21225
Note: These	volume	s are cal	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	als by the	AADT f	actor.			.90					
AVG 24Hr	55	10836	2709	13623	655	13894	75	11341	24962	66	9	68	147	1970	4	719	2693	2841	27805
Note: These	volumes	s are cal	culated	by multi	plying t	he Avera	ige Da	ily 12 hr.	totals by	12 to 24	1 expans	sion fac	tor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

August 20, 2024 Page 6 of 11

Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

CONROY RD

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments THURSTON DR

		N	orthbou	und		Sc	outhbou	nd			E	astbour	nd		We	estbour	nd			
Time Pe	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	3	249	47	299	13	64	1	78	377	3	0	1	4	11	0	6	17	21	398
07:15	07:30	3	309	99	411	19	92	3	114	525	0	1	0	1	8	0	4	12	13	538
07:30	07:45	1	414	96	511	15	96	0	111	622	0	1	3	4	4	0	6	10	14	636
17:45 1	18:00	1	143	25	169	4	240	0	245	414	1	0	0	1	65	0	15	80	81	495
07:45	00:80	0	394	99	493	24	87	0	111	604	0	0	4	4	7	0	7	14	18	622
08:00	08:15	1	394	100	495	17	113	2	132	627	3	0	2	7	17	0	5	22	29	656
08:15	08:30	1	375	137	513	14	119	0	133	646	1	0	1	2	11	0	8	19	21	667
08:30	08:45	2	374	110	487	19	114	3	136	623	5	1	2	8	19	0	6	25	33	656
08:45	09:00	1	361	128	490	29	111	0	141	631	1	0	1	2	13	0	15	28	30	661
09:00	09:15	0	288	72	361	28	135	3	166	527	1	0	2	3	16	0	14	30	33	560
09:15	09:30	0	198	63	263	12	119	0	132	395	0	0	0	0	18	0	5	23	23	418
09:30	09:45	0	161	49	210	14	110	2	126	336	0	0	0	0	24	0	5	29	29	365
	10:00	2	166	36	204	10	96	0	108	312	2	0	0	2	17	0	6	23	25	337
11:30 1	11:45	4	137	33	174	9	152	3	164	338	3	0	2	5	31	1	10	42	47	385
11:45 1	12:00	1	157	26	184	15	171	1	189	373	0	0	1	1	32	1	20	53	54	427
12:00 1	12:15	2	122	24	148	13	216	3	233	381	2	0	4	6	42	0	26	68	74	455
12:15 1	12:30	3	159	42	204	8	152	1	161	365	1	0	4	5	25	0	16	41	46	411
12:30 1	12:45	1	168	43	212	17	154	1	173	385	2	0	4	6	31	0	16	47	53	438
12:45 1	13:00	1	161	36	200	21	142	0	163	363	1	0	2	3	29	0	18	48	51	414
	13:15	0	138	34	173	14	137	0	152	325	0	0	2	2	37	0	12	49	51	376
	13:30	1	164	31	196	16	138	1	155	351	0	0	0	0	19	0	11	30	30	381
	15:15	0	172	21	194	12	259	0	272	466	0	0	0	0	59	0	13	72	72	538
	15:30	0	156	34	190	9	252	1	263	453	6	3	1	10	56	0	6	62	72	525
	15:45	0	163	31	195	4	358	0	363	558	0	0	0	0	45	0	16	61	61	619
	16:00	1	139	34	176	7	336	6	349	525	0	0	0	0	48	0	14	62	62	587
	16:15	1	124	29	154	12	411	1	424	578	3	0	5	8	115	0	38	153	161	739
	16:30	0	131	35	167	4	328	0	332	499	0	0	0	0	74	0	26	100	100	599
	16:45	0	144	22	166	9	426	1	436	602	0	0	0	0	75	0	21	96	96	698
	17:00	0	122	36	158	3	363	2	368	526	3	0	1	4	61	0	20	81	85	611
	17:15	1	129	32	162	2	334	0	337	499	0	0	0	0	78	0	19	97	97	596
	17:30	2	149	18	169	3	343	0	346	515	2	0	0	2	63	0	19	82	84	599
	17:45	1	151	31	184	3	304	0	307	491	0	0	0	0	52	0	16	68	68	559
Total:		34	6612	1653	8312	399	6472	35	6920	15232	40	6	42	90	1202	2	439	1644	1734	16,966

Note: U-Turns are included in Totals.

August 20, 2024 Page 7 of 11

Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

CONROY RD THURSTON DR

Time Period	N 411 1						
	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	2	0	2	0	0	0	2
07:30 07:45	4	1	5	0	1	1	6
17:45 18:00	0	1	1	0	1	1	2
07:45 08:00	4	1	5	0	0	0	5
08:00 08:15	2	2	4	0	0	0	4
08:15 08:30	5	1	6	0	0	0	6
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	2	1	3	0	0	0	3
09:00 09:15	3	0	3	0	0	0	3
09:15 09:30	0	1	1	0	0	0	1
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	1	1	0	1	1	2
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	2	1	3	0	2	2	5
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	1	1	0	0	0	1
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	1	0	1	0	0	0	1
15:00 15:15	1	0	1	0	1	1	2
15:15 15:30	1	2	3	0	0	0	3
15:30 15:45	1	2	3	0	0	0	3
15:45 16:00	2	1	3	0	0	0	3
16:00 16:15	1	2	3	0	2	2	5
16:15 16:30	0	2	2	0	0	0	2
16:30 16:45	0	3	3	0	2	2	5
16:45 17:00	1	4	5	0	0	0	5
17:00 17:15	2	5	7	0	0	0	7
17:15 17:30	0	3	3	0	0	0	3
17:30 17:45	1	2	3	0	1	1	4
Total	35	37	72	0	11	11	83

August 20, 2024 Page 8 of 11

Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

CONROY RD THURSTON DR

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	5	0	5	5
07:15 07:30	0	0	0	1	3	4	4
07:30 07:45	0	2	2	2	1	3	5
17:45 18:00	0	0	0	1	2	3	3
07:45 08:00	2	1	3	3	1	4	7
08:00 08:15	2	0	2	1	3	4	6
08:15 08:30	1	0	1	2	3	5	6
08:30 08:45	0	0	0	1	1	2	2
08:45 09:00	4	2	6	3	6	9	15
09:00 09:15	0	0	0	2	3	5	5
09:15 09:30	0	0	0	1	4	5	5
09:30 09:45	0	0	0	1	0	1	1
09:45 10:00	0	1	1	0	1	1	2
11:30 11:45	0	0	0	0	3	3	3
11:45 12:00	0	0	0	1	0	1	1
12:00 12:15	0	0	0	0	3	3	3
12:15 12:30	0	0	0	1	1	2	2
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	1	0	1	1	0	1	2
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	1	0	1	1	1	2	3
15:00 15:15	0	1	1	2	0	2	3
15:15 15:30	0	1	1	0	4	4	5
15:30 15:45	0	0	0	1	0	1	1
15:45 16:00	0	1	1	2	1	3	4
16:00 16:15	1	0	1	0	1	1	2
16:15 16:30	0	0	0	2	0	2	2
16:30 16:45	0	0	0	2	0	2	2
16:45 17:00	1	2	3	1	3	4	7
17:00 17:15	0	0	0	3	3	6	6
17:15 17:30	0	1	1	1	1	2	3
17:30 17:45	0	1	1	1	1	2	3
Total	13	13	26	42	50	92	118

August 20, 2024 Page 9 of 11

Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

CONROY RD THURSTON DR

	N	orthbol	und		Sc	uthbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	8	0	8	0	5	0	5	13	1	0	0	1	0	0	0	0	1	14
07:15 07:30	0	5	0	5	0	12	0	12	17	0	1	0	1	0	0	0	0	1	18
07:30 07:45	0	9	2	11	0	6	0	6	17	0	0	0	0	0	0	1	1	1	18
17:45 18:00	1	2	0	3	0	0	0	0	3	1	0	0	1	0	0	0	0	1	4
07:45 08:00	0	7	0	7	0	6	0	6	13	0	0	0	0	1	0	0	1	1	14
08:00 08:15	1	6	0	7	0	2	2	4	11	3	0	1	4	0	0	0	0	4	15
08:15 08:30	0	16	0	16	0	6	0	6	22	0	0	0	0	0	0	0	0	0	22
08:30 08:45	0	16	1	17	0	7	2	9	26	2	0	0	2	2	0	0	2	4	30
08:45 09:00	0	16	0	16	0	8	0	8	24	0	0	0	0	0	0	0	0	0	24
09:00 09:15	0	10	1	11	0	9	1	10	21	0	0	1	1	1	0	1	2	3	24
09:15 09:30	0	8	0	8	1	9	0	10	18	0	0	0	0	1	0	1	2	2	20
09:30 09:45	0	3	0	3	2	5	1	8	11	0	0	0	0	1	0	2	3	3	14
09:45 10:00	2	1	1	4	0	5	0	5	9	0	0	0	0	0	0	1	1	1	10
11:30 11:45	0	4	0	4	0	4	2	6	10	0	0	1	1	0	0	0	0	1	11
11:45 12:00	0	5	0	5	0	6	0	6	11	0	0	1	1	0	0	0	0	1	12
12:00 12:15	0	2	1	3	1	8	0	9	12	1	0	1	2	0	0	1	1	3	15
12:15 12:30	1	5	0	6	1	1	1	3	9	0	0	1	1	1	0	1	2	3	12
12:30 12:45	1	6	1	8	0	4	0	4	12	0	0	0	0	2	0	0	2	2	14
12:45 13:00	0	5	0	5	1	6	0	7	12	1	0	0	1	0	0	1	1	2	14
13:00 13:15	0	6	0	6	1	5	0	6	12	0	0	0	0	0	0	0	0	0	12
13:15 13:30	0	4	0	4	0	4	0	4	8	0	0	0	0	1	0	0	1	1	9
15:00 15:15	0	11	0	12	1	5	0	6	18	0	0	0	0	0	0	0	0	0	18
15:15 15:30	0	7	0	7	1	7	0	8	15	0	0	0	0	0	0	0	0	0	15
15:30 15:45	0	6	0	6	0	15	0	15	21	0	0	0	0	0	0	0	0	0	21
15:45 16:00	0	8	0	8	0	9	2	11	19	0	0	0	0	0	0	1	1	1	20
16:00 16:15	0	5	2	7	0	10	0	10	17	0	0	0	0	0	0	0	0	0	17
16:15 16:30	0	6	0	6	0	2	0	2	8	0	0	0	0	0	0	0	0	0	8
16:30 16:45	0	8	2	10	0	7	0	7	17	0	0	0	0	0	0	0	0	0	17
16:45 17:00	0	2	1	3	0	6	1	7	10	2	0	0	2	0	0	0	0	2	12
17:00 17:15	1	1	0	2	1	4	0	5	7	0	0	0	0	0	0	0	0	0	7
17:15 17:30	1	2	0	3	0	2	0	2	5	2	0	0	2	1	0	0	1	3	8
17:30 17:45	0	2	0	2	0	4	0	4	6	0	0	0	0	0	0	0	0	0	6
Total: None	8	202	12	223	10	189	12	211	434	13	1	6	20	11	0	10	21	41	475

August 20, 2024 Page 10 of 11

Turning Movement Count - Study Results

CONROY RD @ THURSTON DR

Survey Date: Tuesday, April 16, 2019 WO No: 38547

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total CONROY RD THURSTON DR

Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
17:45	18:00	0	1	0	0	1
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	2	0	2
08:15	08:30	0	0	0	0	0
08:30	08:45	1	0	0	0	1
08:45	09:00	0	1	0	0	1
09:00	09:15	1	0	0	0	1
09:15	09:30	2	1	0	0	3
09:30	09:45	0	0	0	0	0
09:45	10:00	0	2	0	0	2
11:30	11:45	0	0	0	0	0
11:45	12:00	0	2	0	0	2
12:00	12:15	0	1	0	0	1
12:15	12:30	0	0	0	0	0
12:30	12:45	0	1	0	0	1
12:45	13:00	2	0	0	1	3
13:00	13:15	1	1	0	0	2
13:15	13:30	0	0	0	0	0
15:00	15:15	1	1	0	0	2
15:15	15:30	0	1	0	0	1
15:30	15:45	1	1	0	0	2
15:45	16:00	2	0	0	0	2
16:00	16:15	0	0	0	0	0
16:15	16:30	1	0	0	0	1
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	1	0	0	1
17:15	17:30	0	0	0	0	0
17:30	17:45	1	0	0	0	1
To	otal	13	14	2	1	30

August 20, 2024 Page 11 of 11

				North	bound	Northbound								Southbound					
	Passenger	Heavy	Total	Сус	lists	Pedes	strians	Total	Passenger	Heavy	Total	Сус	lists	Pedes	strians	Total	Total	Total AT	
	Vehicles	Vehicles	(North)	West Side	East Side	West Side	East Side	(North)	Vehicles	Vehicles	(South)	West Side	East Side	West Side	East Side	(South)	Traffic	TOLATAT	
6:00-6:15	105	3	108	1	1	0	2	4	51	3	54	0	1	0	1	2	162	6	
6:16-6:30	109	2	111	1	2	0	0	3	39	6	45	0	2	0	0	2	156	5	
6:31-6:45	154	10	164	2	1	0	1	4	38	5	43	1	0	1	0	2	207	6	
6:46-7:00	193	11	204	3	1	1	1	6	52	11	63	2	0	0	0	2	267	8	
7:01-7:15	181	11	192	2	3	0	0	5	72	10	82	3	0	0	0	3	274	8	
7:16-7:30	234	15	249	0	1	0	0	1	80	11	91	0	0	0	0	0	340	1	
7:31-7:45	338	12	350	5	2	0	1	8	95	14	109	1	0	0	0	1	459	9	
7:46-8:00	364	12	376	3	3	0	0	6	123	12	135	2	0	1	0	3	511	9	
peak hr	1117	50	1167	10	9	1	4	20	370	47	417	6	3	1	1	9	1584	27	
				10	9	0	1					6	0	1	0				

6:00:00 AM - 7:00 **587 205**

West Side East Side
Cyclists Pedestrians Cyclists Pedestrians

16 1 9 1

Appendix D:

Historic Collision Data

Total Area

lotal Area										
Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	
P.D. only	7	6	1	6	0	5	0	0	25	74%
Non-fatal injury	2	3	1	3	0	0	0	0	9	26%
Non-reportable	0	0	0	0	0	0	0	0	0	0%
Total	9	9	2	9	0	5	0	0	34	100%
	#1 or 26%	#1 or 26%	#5 or 6%	#1 or 26%	#6 or 0%	#4 or 15%	#6 or 0%	#6 or 0%		=

INTERSECTION COLLISIONS

CONROY RD/THURSTON DR										
Years	Total #	24 Hr AADT	Davs	Collisions/MEV						
i cai s	Collisions	Veh Volume	Days	COMSIONS/INEV						
2018-2022	11	28,200	1825	0.21						

Peds	Cyclists
0	0

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	
P.D. only	2	3	0	1	0	1	0	0	7	İ
Non-fatal injury	1	2	0	1	0	0	0	0	4	ĺ
Non-reportable	0	0	0	0	0	0	0	0	0	ĺ
Total	3	5	0	2	0	1	0	0	11	
	27%	45%	0%	18%	0%	9%	0%	0%		

64% 36% 0% 100%

CONROY RD	CONROY RD/JOHNSTON RD										
Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV							
2018-2022	20	28,200	1825	0.39							

Peds	Cyclists
0	2

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	3	3	1	5	0	4	0	0	16
Non-fatal injury	0	1	1	2	0	0	0	0	4
Non-reportable	0	0	0	0	0	0	0	0	0
Total	3	4	2	7	0	4	0	0	20
	15%	20%	10%	35%	0%	20%	0%	0%	

80% 20% 0% 100%

MIDBLOCK COLLISIONS

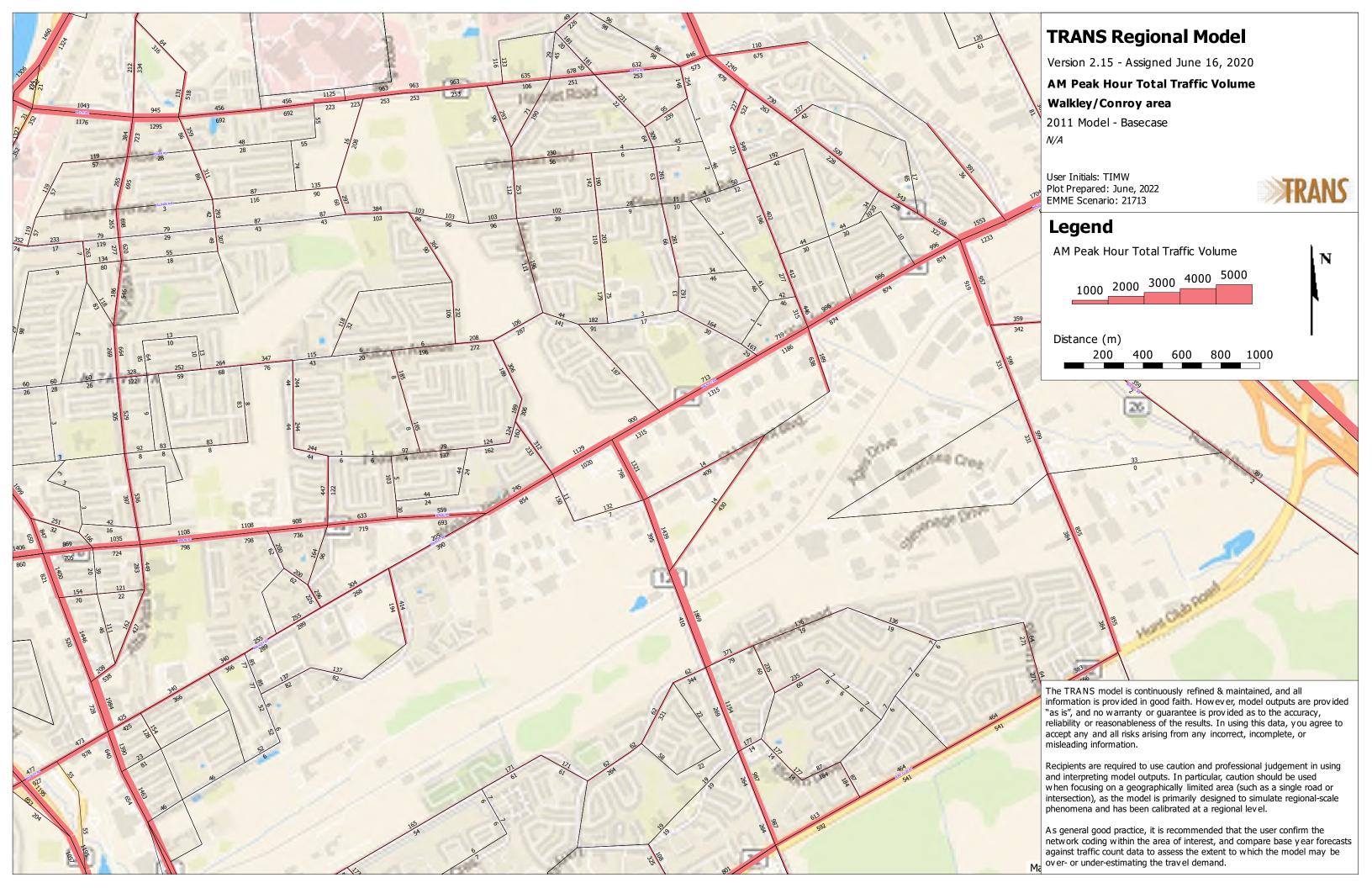
CONROY RD,	JOHNSTON	RD to LORRY	GREENBER	G DR	
Years	Total # Collisions	24 Hr AADT Veh Volume	Days Collisions/MEV		
2018-2022	1	28,200	1825	0.02	

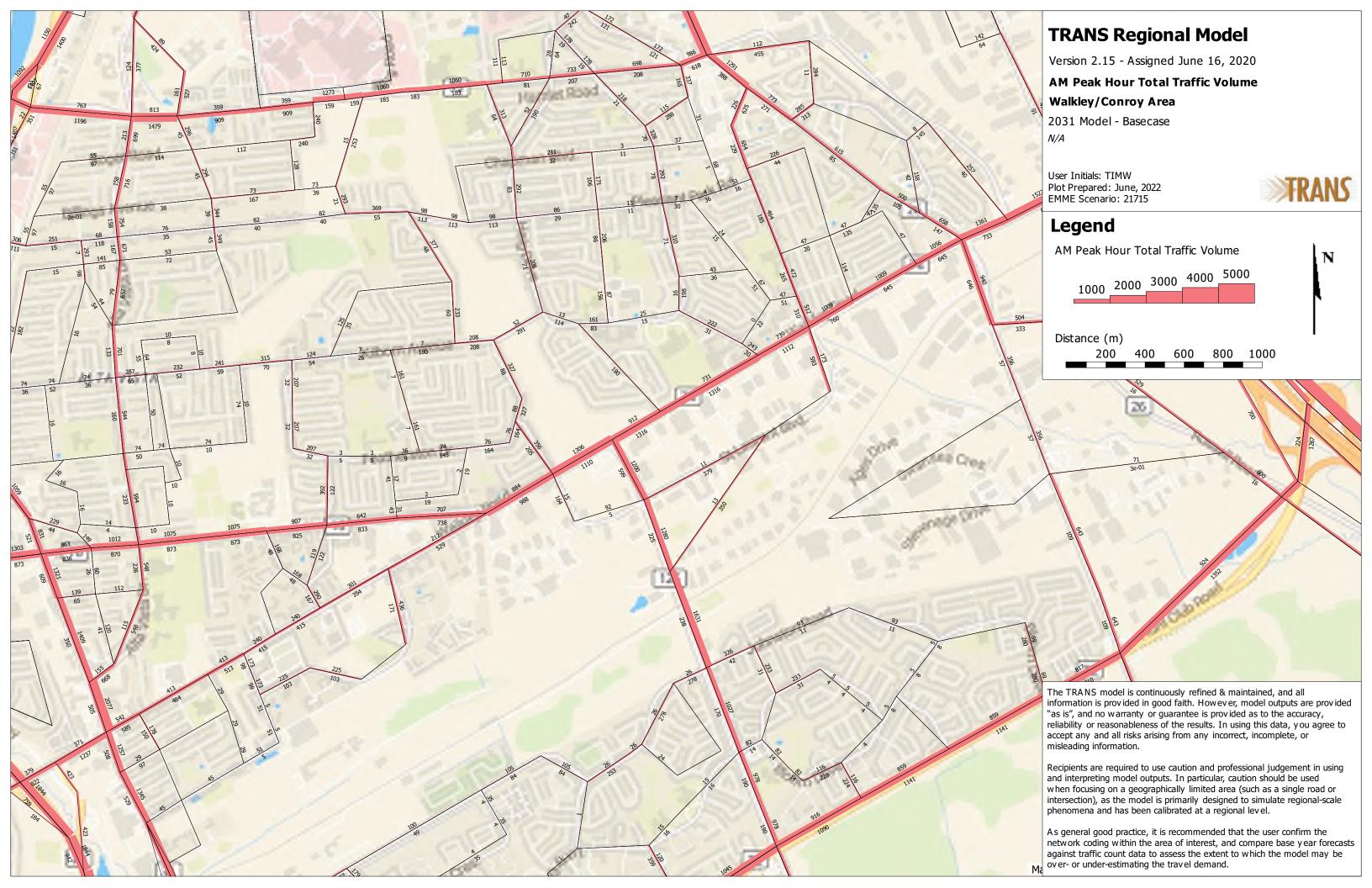
Peds	Cyclists
0	0

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	1	0	0	0	0	0	0	0	1
Non-fatal injury	0	0	0	0	0	0	0	0	0
Non-reportable	0	0	0	0	0	0	0	0	0
Total	1	0	0	0	0	0	0	0	1
	1000/	00/	00/	00/	00/	00/	00/	00/	

100% 0% 0% 100%

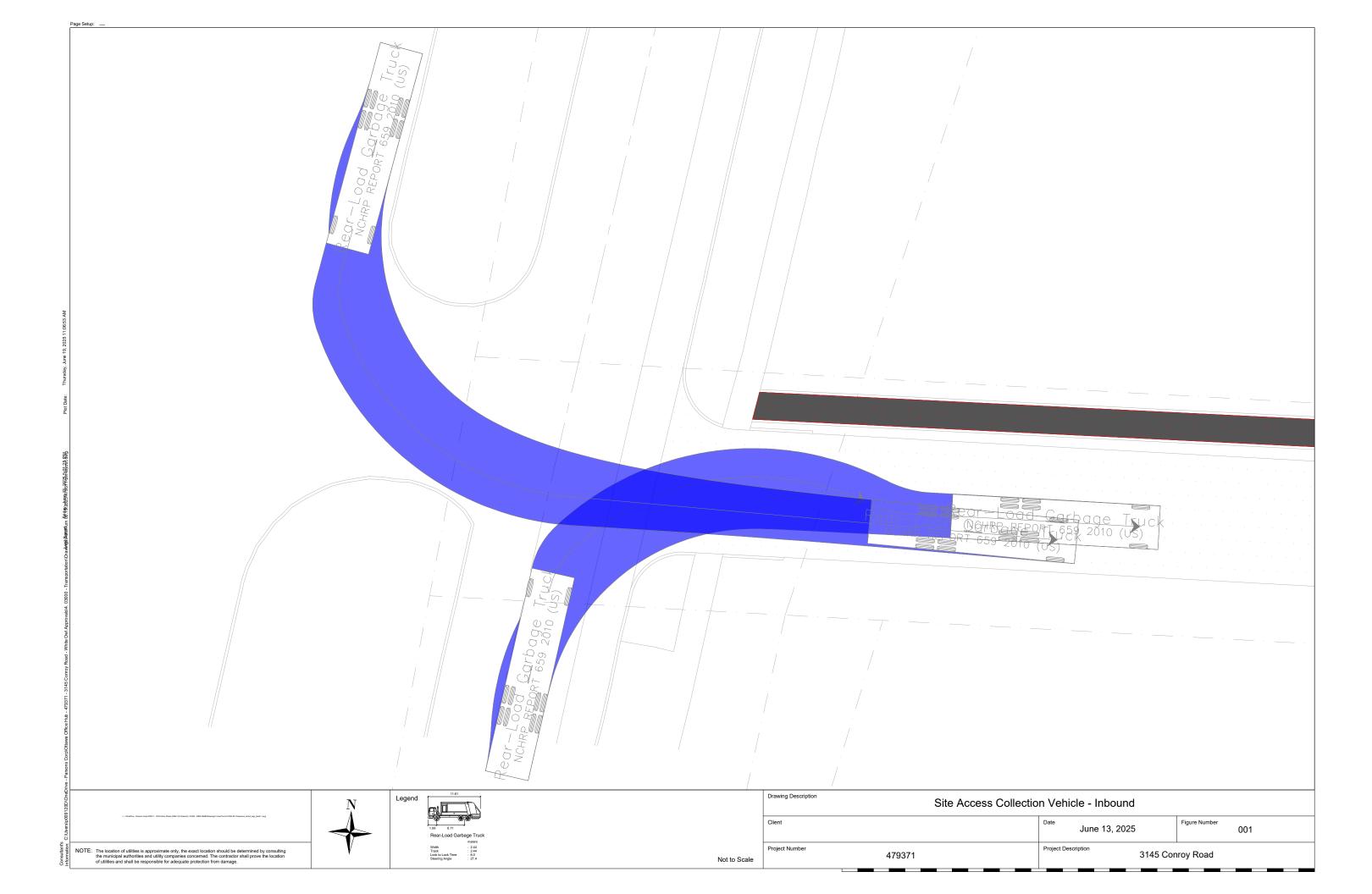
CONROY RD,	STON RD			
Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2018-2022	2	28,200	1825	0.04

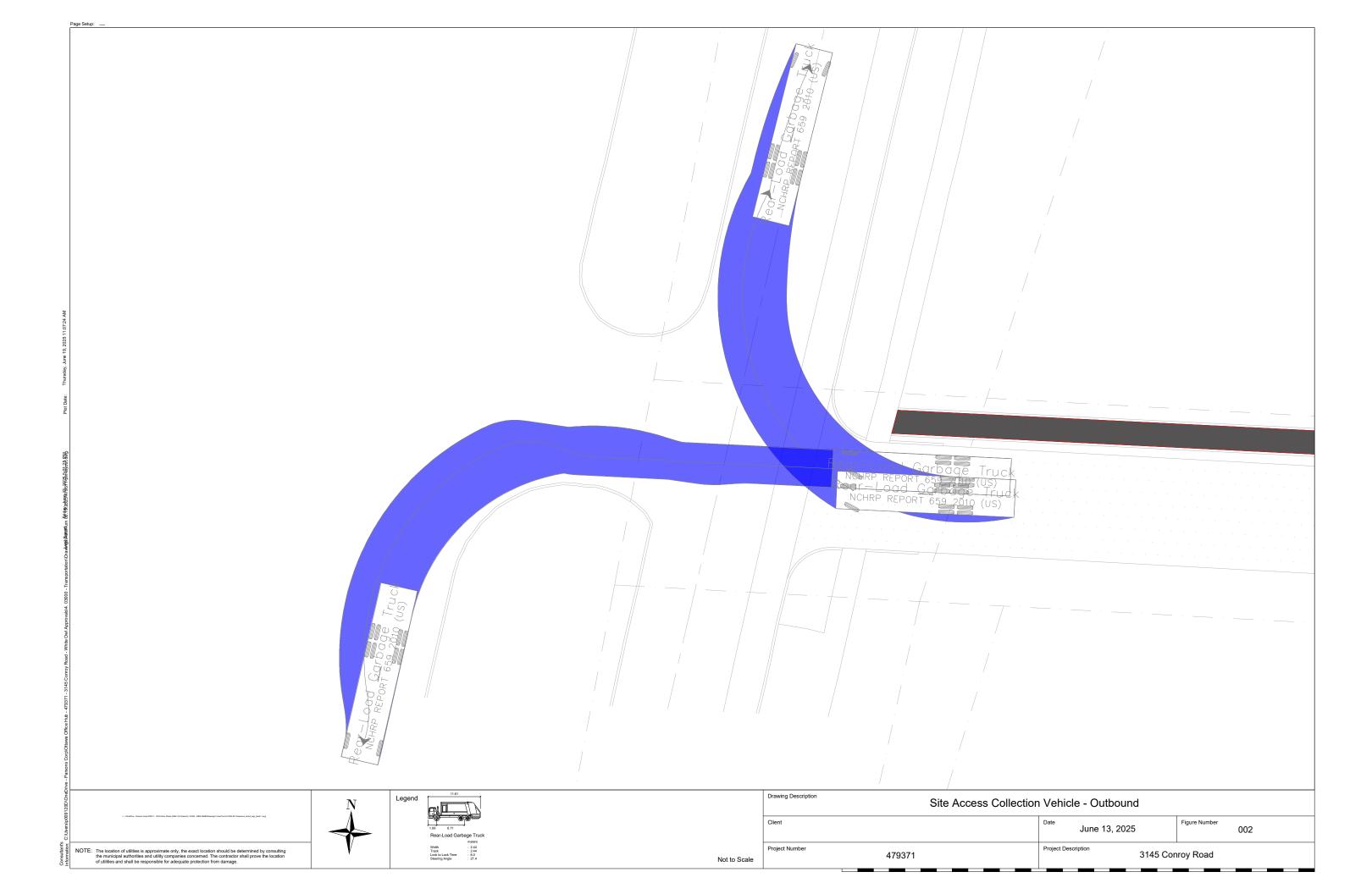

Peds	Cyclists				
0	0				

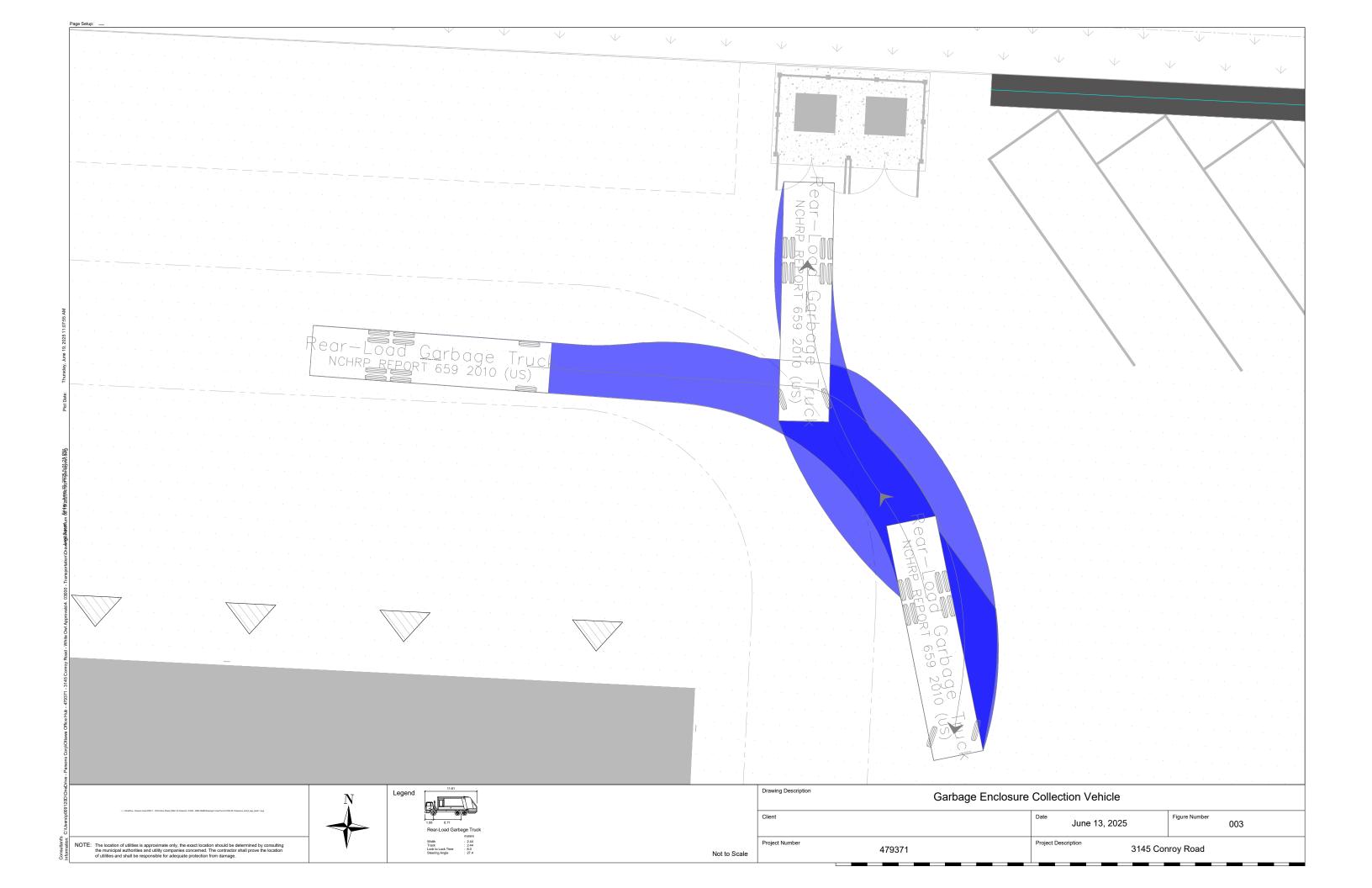

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	1	0	0	0	0	0	0	0	1
Non-fatal injury	1	0	0	0	0	0	0	0	1
Non-reportable	0	0	0	0	0	0	0	0	0
Total	2	0	0	0	0	0	0	0	2
	100%	0%	0%	0%	0%	0%	0%	0%	<u> </u>

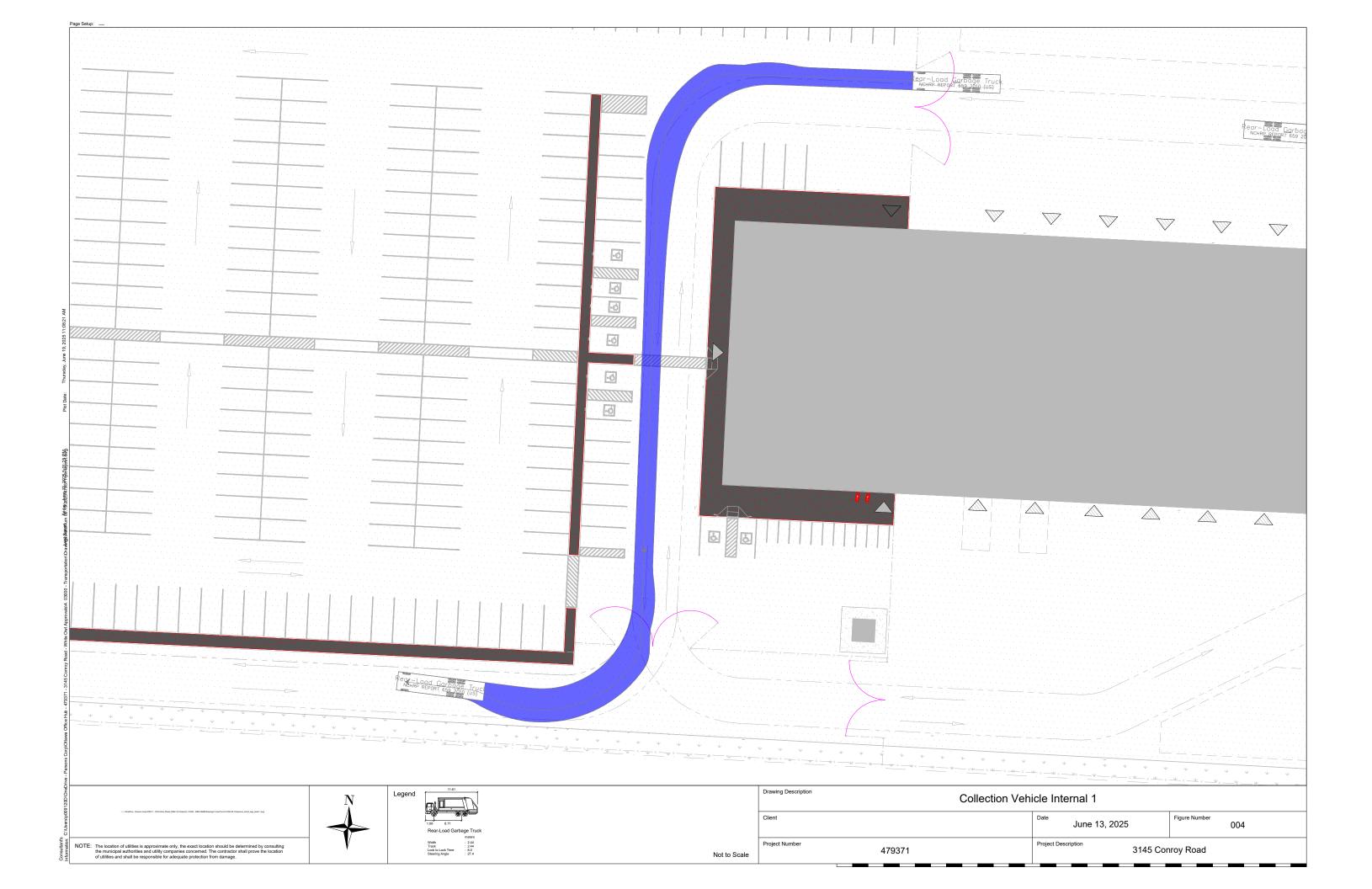
50% 50% 0% 100%

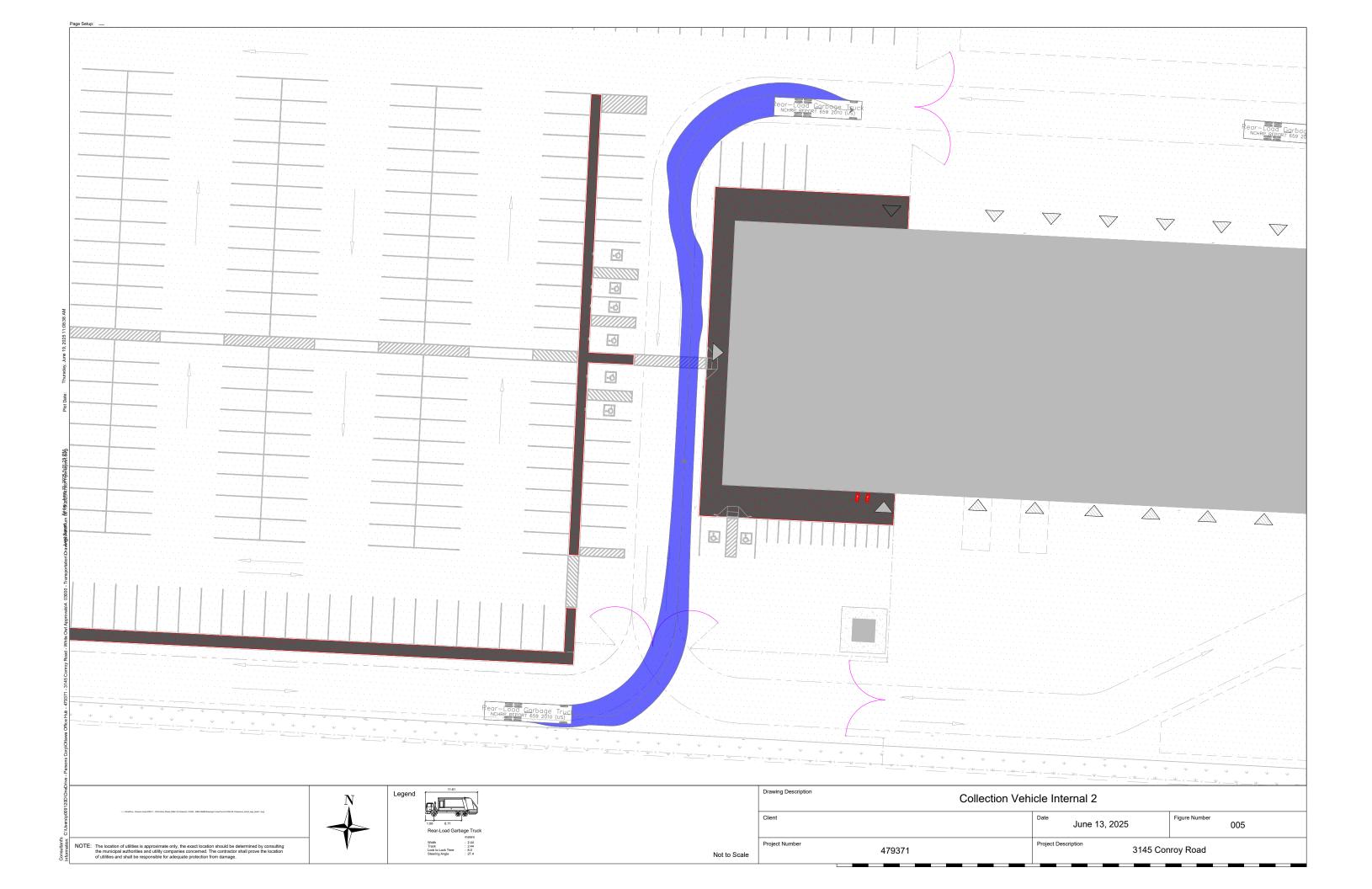
Appendix E:

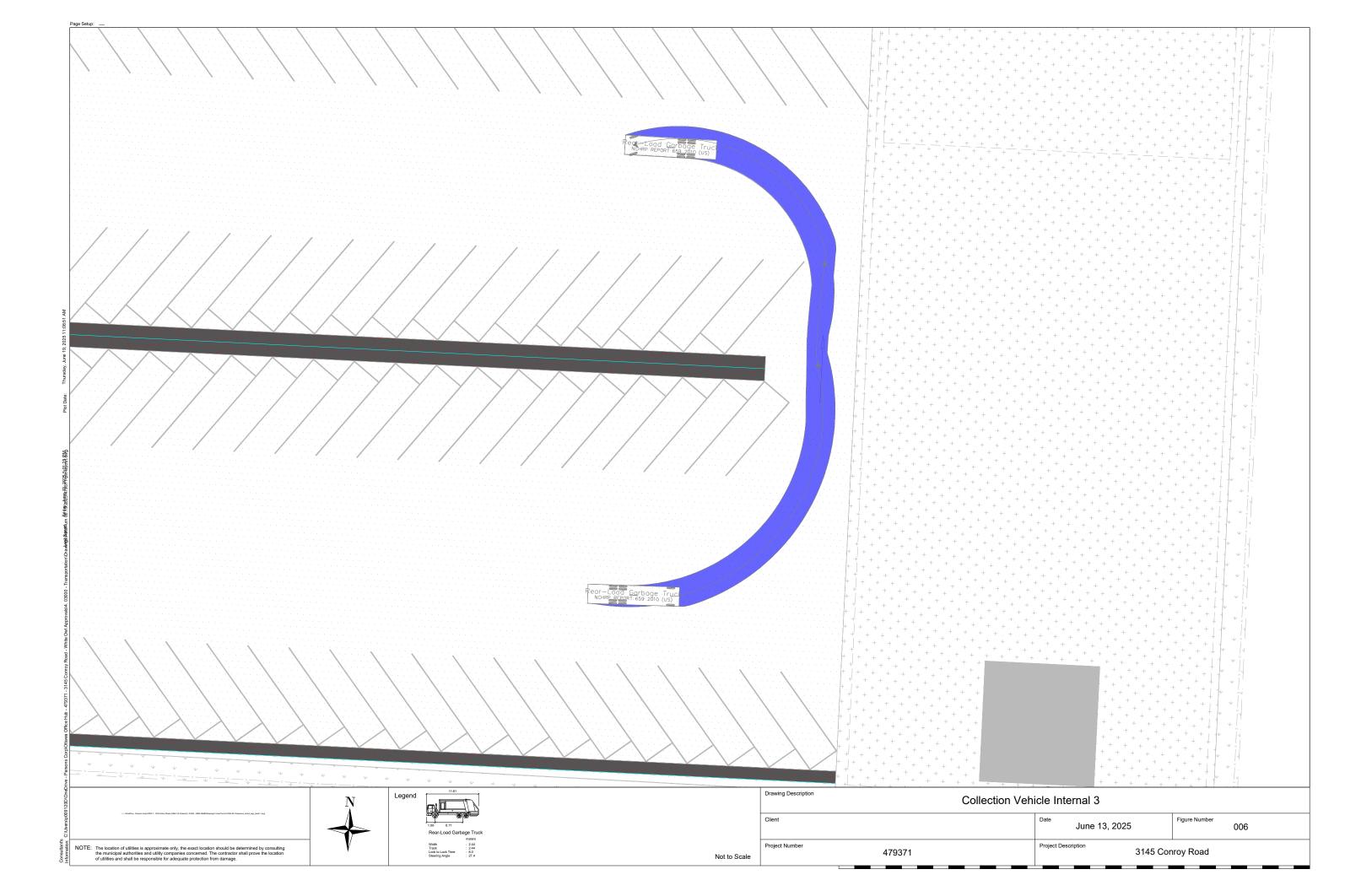

TRANS Forecasted Growth Conroy






Appendix F:


Truck Turning Templates



Appendix G: MMLOS Analysis Sheets

Multi-Modal Level of Service - Intersections Form Project: 3145 Conroy Road Consultant: Persons Date: Jun 20, 2025 Scenario:

Scenario	Intersection Name		CONROY RD./	THURSTON DR.			CONROY RD./	JOHNSTON RD.	
	OP Transect / Policy Area		Outer Urban	or Suburban		Outer Urban or Suburban			
	PLOS Inputs								
	Pedestrians Crossing the	North Leg	South Leg	East Leg	West Leg	North Leg	South Leg	East Leg	West Leg
	Number of Travel Lanes Crossed	5	6	4	1-3	5	5	4	4
	Median Refuge (≥2.7m)	No	No	No	No	No	No	No	No
	Crosswalk Treatment	Std Transverse Markings	Std Transverse Markings	Std Transverse Markings	Std Transverse Markings	Std Transverse Markings	Std Transverse Markings	Std Transverse Markings	Std Transverse Markings
	Signal Cycle Length (sec)			0.00				00.0	
	Effective Walk Time (sec)	37.9	37.9	31.0	31.0	41.0	41.0	37.3	37.3
	Conflict with Right-Turn Vehicles	WBR	EBR	NBR	SBR	WBR	EBR	NBR	SBR
	(For PLOS & BLOS) Right-Turn Geometry	Right-Turn With No	Right-Turn With No	Conventional Right-Turn	Right-Turn With No	Right-Turn With No	Right-Turn With No	Right-Turn With No	Right-Turn With No
an	Right-Turn Signal Phasing	Channel Permissive	Channel Permissive	Channel -	Channel Permissive	Channel Permissive	Channel Permissive	Channel Permissive	Channel Permissive
Pedestrian	Right-Turn Volume	≤ 150 veh/h	≤ 150 veh/h	≤ 150 veh/h	≤ 150 veh/h	≤ 150 veh/h	≤ 150 veh/h	≤ 150 veh/h	> 150 to 300 veh/h
pede	Right-Turn Effective Corner Radius	> 8m	> 8m		> 8m	> 8m	> 8m	> 8m	> 8m
_	Cross-street Posted Speed (km/h)		km/h	501	km/h		km/h		km/h
	Conflict with Left-Turn Vehicles	EBL	WBL	SBL	NBL	EBL	WBL	SBL	NBL
	(For PLOS & BLOS) Left-Turn Signal Phasing	Perm or Prot+Perm	Perm or Prot+Perm	Perm or Prot+Perm	Perm or Prot+Perm	Perm or Prot+Perm	Perm or Prot+Perm	Perm or Prot+Perm	Perm or Prot+Perm
	Left-Turn Signal Priasing	≤ 50 yeh/h	> 100 veh/h	≤ 50 veh/h	≤ 50 veh/h	> 100 yeh/h	≤ 50 veh/h	> 100 yeh/h	> 50 to 100 veh/h
	Left-Turn Opposing Lanes	s so verini	> 100 Veri/ii	> 50 Vervii	≥ 50 VeII/II	> 100 Vervii	s so venin	> 100 verim	> 50 to 100 ven/ii ≥ 2
	Score	3,25	2.45	3.40	4.45	3.05	3,25	3.80	3.35
	Score	C C	D D	C C	4.45	C	3.25 C	3.80 B	C C
	PLOS	- u		C C		Ü		C C	<u> </u>
	Target PLOS			C		C			
	BLOS Inputs								
	Cycling Route Classification	Cross-Town Bikeway				Cross-Town Bikeway			
		North Leg	South Leg	East Leg	West Leg	North Leg	South Leg	East Leg	West Leg
	Cyclists Crossing the			Bike Lane Through	Bike Lane Through	Bike Lane Through	Bike Lane Through	Bike Lane Through	Bike Lane Through
	Type of Cycling Facility Across Leg	Mixed Traffic	Mixed Traffic	Intersection 24.	Intersection	Intersection	Intersection 346	Intersection	Intersection ,210
	Two-Way ADT (in Cyclist Travel Direction) Floating Bike Lane or Right-Turn Lane								
	Crossover Approaching the Crossing?	No	No	Yes	No	Yes	Yes	No	No
	Crossride Operation	-	· ·	•	-	-	•	•	•
Bicycle	Target Crossride Setback Met? Right-Turn Vehicle Volume	-	-	-	-	-	-	-	-
薑	from Adjacent Roadway > 100 veh/h?							NIE	
	Cyclist Left-Turn Operation	WBL	EBL	NBL	SBL	WBL	EBL	NBL	SBL
	Cyclist Left-Turn Treatment Type	Left or Single Left-Turn Lane	Left or Single Left-Turn Lane	General Purpose Through- Left or Single Left-Turn Lane	Left or Single Left-Turn Lane	Left or Single Left-Turn Lane	Left or Single Left-Turn Lane	General Purpose Through- Left or Single Left-Turn Lane	Left or Single Left-Turn Lane
	Vehicle Lanes Crossed by Cyclists	One Lane Crossed	No Lane Crossed	Two or More Lanes Crossed	Two or More Lanes Crossed	One Lane Crossed	One Lane Crossed	Two or More Lanes Crossed	Two or More Lanes Crossed
	Score	40	10	25	65	-5	35	25	-5
		D	F	E	С	F	D	E	F
	BLOS			D		F			
	Target BLOS			В		В			
	TLOS Inputs								
	Transit Facility		Mixed	Traffic			Mixed	Traffic	
	Vehicles Travelling	Southbound	Northbound	Westbound	Eastbound	Southbound	Northbound	Westbound	Eastbound
ž.	Average Transit Delay (if available)	≤ 10 sec	11-20 sec			≤ 10 sec	11-20 sec		
Transit	Example Transit Priority Treatment	-	-			-	-		
•		Α	В	-	-	Α	В	-	-
	TLOS			Α				Α	
	Target TLOS	E (D for frequent transit routes)						nt transit routes	
	AutoLOS Inputs								
	Overall Intersection		0 to	0.60			0 to	0.60	
Auto	Volume to Capacity Ratio Individual Movements V/C Ratios and Queue Lengths			fic Operations Table				fic Operations Table	
∢	AutoLOS			A				A	
	Target AutoLOS							E	
		E				E			

Multi-Modal Level of Service - Segments Form Project: 3145 Conroy Road Consultant: Parsons Date: May 22, 2025 Scenario:

	OP Transect / Policy Area				
	OP Transect / Policy Area		0	an Cubumb :	
	Segment Component	Majority	Outer Urban	or Suburban Critical	
	Side of Street	W	E	W	E
	PLOS Inputs				
	Posted Speed (km/h)	60 k	m/h	60 k	m/h
	Two-Way ADT	21,2		21,210	
	Pedestrian Facility	Multi-Use Pathway	Sidewalk	Multi-Use Pathway	Sidewalk
ian	Does the facility meet the TMP Sidewalk or MUP Policy? If not, for MUPs, does the location have a low volume of peak daily users AND are pedestrian volumes likely less than 20% of total users?	Yes	Yes	Yes	Yes
Pedestrian	Facility Width (m)	3.00m	1.50m	3.00m	1.50m
Pec	Offset from Motor Vehicle Travel Lanes (m)	≥ 3.0m	-	1.5-2.99m	-
	Presence of Adjacent Parking?	No	-	-	-
	General Purpose Curb Lane ADT Max. Distance between	-	-	> 3000	-
	Controlled Crossings (m)	-	> 400m	> 400m	> 400m
	Score	3.75 B	0.75 E	3.00 C	0.75 E
	Target PLOS	Б			
	BLOS Inputs				
	Cycling Route Classification		Cross-Tow	n Bikeway	
	Cycling Facility	Multi-Use Pathway	Painted or Physically Separated Bike Lanes	Multi-Use Pathway	Painted or Physically Separated Bike Lanes
	Is the minimum level of separation provided according to OTM Book 18 Pre-Selection. Nomograph - Rural Context (Figure 5.6)? (for paved shoulders)	-	-	-	-
	Facility Operation	-	Unidirectional	-	Unidirectional
	Pedestrian/Cyclist Volume	Low to Moderate Volume MUP (≤ 100 users per hour)	-	Low to Moderate Volume MUP (≤ 100 users per hour)	-
	Facility Width	3.0-3.49m	2.0-2.5m	3.0-3.49m	2.0-2.5m
Bicycle	Boulevard/Buffer Width (excluding curb)	≥ 1.5m or any boulevard width with continuous traffic barrier	< 1.0m and no vertical measure or < 0.6m with adjacent parking	≥ 1.5m or any boulevard width with continuous traffic barrier	< 1.0m and no vertical measure or < 0.6m with adjacent parking
	Unsignalized Roadway Crossing Type (where cyclists are required to yield)	None	None	None	None
	Number of Travel Lanes at Crossing Crossing includes Median	-	-	-	-
	Refuge (≥ 2.7m) Cross-street Posted Speed (km/h)	-	-	-	-
	Cycling Path Blockages	-	Rare	-	Rare
	(e.g. bus stops and/or loading zones) Score	4.00	2.88	4.00	2.88
	BLOS	В	С	В	С
	Target BLOS		E	3	
	TLOS Inputs				
	Transit Facility	Mixed			
Transit	Facility Type	Mixed Traffic	Mixed Traffic		
Trai	Expected Transit Running Time Transit Travel Speed (if available)	Unimpeded Enter Speed (if available)	Slightly Impeded Enter Speed (if available)		
	TLOS	В	C		
	Target TLOS	E (D for frequen	t transit routes)		
	PRLOS Inputs				
	Context	Other Streets	Other Streets		
	Inner Boulevard Width	≤ 0.6m	≤ 0.6m		
alm	Middle Boulevard Width	≥ 3.0m	≥ 3.0m		
Public Realm	Outer Boulevard (Frontage) Width	≥ 3.0m	≥ 3.0m		
ildu	Transit Route on Segment?	Yes Curbside landing zone with no	Yes Curbside landing zone with no		
4	Bus Stop Elements Number of Midblock Traffic Lanes	shelter 5	shelter		
	(both travel directions) Score	18.60	14.10		
		C	D		
	PRLOS				

Appendix H:

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend				
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed			
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users			
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance			

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\mathbf{Z}
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	☑
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	♂
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	⊴
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	$ \mathbf{Z} $
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	Sidewalk is expected to be lit.
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1		Entrance sidewalk primarily for employee use. Expected to be lit.
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	Public access to interior of site not permitted.

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	✓
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	☑
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	 ✓
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	✓
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	Fewer than 50 bicycle parking spaces onsite are required.
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	Shared with drivers of collection vehicles.
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	Tools and pumps used in vehicle maintenance shop available for use by cyclists.

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	☑
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

•	Legend
BASI	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTE	The measure could maximize support for users of sustainable modes, and optimize development performance
	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDN	l measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	* 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	▼
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	* 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	₫
BASIC	3.1.2	Provide online links to OC Transpo and STO information	☑
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER *	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	•
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC	* 4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC	* 6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC	* 7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	
		Visitor travel	<u></u>
BETTER	* 7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER	* 7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER	* 8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC	* 8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER	* 8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC	* 8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	

Appendix I:

Traffic Signal Warrant Sheets

Conroy/Site Access - Future (8 hr signal warrant) MTT Schedule

			s - Future (8 nr signai warrant)	MIII SCH	uuie		Hour I	Ending								
	Signal Varrant		Description	1	AM Peak	3	4	5	6	7	PM Peak			Sectional Total % Fulfilled/8	Entire %	Warrant
			Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	1785	1785	1785	1785	2110	2110	2110	2110	Total Across	Min Requirement for Two-Lane Roadways	100%		
		(1) A	100% Fullfilled	Х	Х	X	X	X	Х	Х	Х	800	900	100%		
			80% Fullfilled									0	720			
	1.		Actual % if below 80% value									0				
	Minimum			•			•		•	Total	% Fulfilled	800			54%	
	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	105	105	105	105	169	169	169	169	Total Across	Min Requirement for Two-Lane Roadways		54%	
			100% Fullfilled									0	255	54%		
			80% Fullfilled									0	200			
loi			Actual % if below 80% value	41%	41%	41%	41%	66%	66%	66%	66%	430			i l	
t l				1270	1270	1270	1270	0070	0070		% Fulfilled	430				54%
Intersection	(1)	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	1680	1680	1680	1680	1941	1941	1941	1941	Total Across	Min Requirement for Two-Lane Roadways			No
			100% Fullfilled	Х	Х	Х	Х	Х	Х	Х	Х	800	900	100%		
			80% Fullfilled									0	720			
۔ ا			Actual % if below 80% value									0				
4	2. Delay to								•	Total	% Fulfilled	800		1	250/	
	Cross		Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	2	2	2	2	51	51	51	51	Total Across	Min Requirement for Two-Lane Roadways		35%	
			100% Fullfilled									0	75	33%		
			80% Fullfilled									0	60	1		
	<u> </u>		Actual % if below 80% value	3%	3%	3%	3%	68%	68%	68%	68%	283]		
1					·					Total	% Fulfilled	283				

Notes

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

Yes

- 2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08
- 3 The Lowest Sectional Percentage Governs the Entire Warrant
- 4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50% (Warrant 1B only)

5 Restricted Flow - Operating Speed Less Than 70 km/h

Yes

Yes

Conroy/Site Access - Future (8 hr signal warrant) Wednesday Schedule

	Acces	ss - ruture (8 nr signai warrant)	Wednesd	ay Scheau		Hour	Ending]				
Signal Warrant		Description	1	AM Peak	3	4	5	6	7	PM Peak			Sectional Total % Fulfilled/8	Entire %	Warrant
		Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	1785	1785	1785	1785	2110	2110	2110	2110	Total Across	Min Requirement for Two-Lane Roadways			
	(1)	100% Fullfilled	Х	Х	Х	Х	Х	Х	Х	Х	800	900	100%		
		80% Fullfilled									0	720			
1.		Actual % if below 80% value									0				
Minimun	n								Total	% Fulfilled	800			54%	
Vehicula Volume		Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	105	105	105	105	169	169	169	169	Total Across	Min Requirement for Two-Lane Roadways		54%	
		100% Fullfilled									0	255	54%		
		80% Fullfilled									0	200			
<u>io</u>		Actual % if below 80% value	41%	41%	41%	41%	66%	66%	66%	66%	430		1		
다.									Total	% Fulfilled	430		1		84%
Intersection		Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	1680	1680	1680	1680	1941	1941	1941	1941	Total Across	Min Requirement for Two-Lane Roadways			No
		100% Fullfilled	Х	Х	Х	Х	Х	Х	Х	Х	800	900	100%		
		80% Fullfilled									0	720	1		
2. Delay	t-0	Actual % if below 80% value									0				
,	10								Total	% Fulfilled	800			84%	
Traffic	Cross	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	100	100	100	100	51	51	51	51	Total Across	Min Requirement for Two-Lane Roadways		0470	
		100% Fullfilled	Χ	Х	Χ	Х					400	75	04%		
1		80% Fullfilled									0	60	1		
		Actual % if below 80% value					68%	68%	68%	68%	272]		
1									Total	% Fulfilled	672				

Notes

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

Yes

- 2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08
- 3 The Lowest Sectional Percentage Governs the Entire Warrant
- 4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50% (Warrant 1B only)

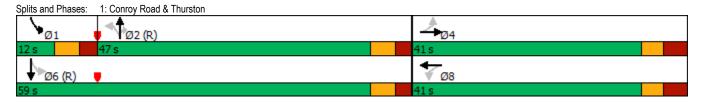
5 Restricted Flow - Operating Speed Less Than 70 km/h

Yes

Yes

Appendix J:

Synchro and SimTraffic Reports


	۶	→	•	•	←	•	•	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	î,		7	î,		75	44	7	7	∳ ሴ	
Traffic Volume (vph)	3	2	8	30	0	23	5	896	224	71	339	4
Future Volume (vph)	3	2	8	30	0	23	5	896	224	71	339	4
Satd. Flow (prot)	1300	1441	0	1679	1467	0	1729	3390	1532	1729	3168	0
Flt Permitted	0.740			0.750			0.526			0.196		
Satd. Flow (perm)	1011	1441	0	1316	1467	0	949	3390	1457	356	3168	0
Satd. Flow (RTOR)		9			166				249		2	
Lane Group Flow (vph)	3	11	0	33	26	0	6	996	249	79	381	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	5.0	10.0	
Minimum Split (s)	38.0	38.0		38.0	38.0		31.3	31.3	31.3	11.3	31.3	
Total Split (s)	41.0	41.0		41.0	41.0		47.0	47.0	47.0	12.0	59.0	
Total Split (%)	41.0%	41.0%		41.0%	41.0%		47.0%	47.0%	47.0%	12.0%	59.0%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.7	3.7		3.7	3.7		2.6	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.3	6.3	6.3	6.3	6.3	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	None	C-Max	
Act Effct Green (s)	22.6	22.6		22.6	22.6		57.5	57.5	57.5	67.5	68.8	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.58	0.58	0.58	0.68	0.69	
v/c Ratio	0.01	0.03		0.11	0.06		0.01	0.51	0.26	0.23	0.17	
Control Delay	24.3	14.7		27.0	0.2		17.8	19.9	3.3	10.8	8.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	24.3	14.7		27.0	0.2		17.8	19.9	3.3	10.8	8.8	
LOS	C	В		С	A		В	В	A	В	A	
Approach Delay		16.8			15.2			16.6			9.1	
Approach LOS		В			В			В			A	
Queue Length 50th (m)	0.4	0.3		4.5	0.0		0.7	81.8	0.0	6.7	18.3	
Queue Length 95th (m)	2.5	4.2		11.5	0.0		3.1	106.6	14.2	13.3	26.2	
Internal Link Dist (m)		205.4			328.9		. .,	150.7	· ··-		350.8	
Turn Bay Length (m)	30.0			40.0			105.0		95.0	100.0	2 3 0 . 0	
Base Capacity (vph)	343	495		447	608		546	1950	944	340	2179	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01	0.02		0.07	0.04		0.01	0.51	0.26	0.23	0.17	

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 69 (69%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 85

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.51

Intersection Signal Delay: 14.6 Intersection Capacity Utilization 58.6% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

	•	-	•	•	←	•	4	†	/	\	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	•	7	75	•	7	7	∳ ሴ		7	∳ ሴ	
Traffic Volume (vph)	236	13	39	15	16	89	28	799	15	43	268	61
Future Volume (vph)	236	13	39	15	16	89	28	799	15	43	268	61
Satd. Flow (prot)	1712	1820	1406	1729	1820	1532	1517	3377	0	1616	3134	0
Flt Permitted	0.746			0.748			0.534			0.220		
Satd. Flow (perm)	1334	1820	1406	1361	1820	1501	847	3377	0	374	3134	0
Satd. Flow (RTOR)			105			105		2			41	
Lane Group Flow (vph)	262	14	43	17	18	99	31	905	0	48	366	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	4	4	4	8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	37.3	37.3		11.3	37.3	
Total Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	47.0	47.0		12.0	59.0	
Total Split (%)	41.0%	41.0%	41.0%	41.0%	41.0%	41.0%	47.0%	47.0%		12.0%	59.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.3	6.3		6.3	6.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)	25.0	25.0	25.0	25.0	25.0	25.0	54.0	54.0		61.7	61.7	
Actuated g/C Ratio	0.25	0.25	0.25	0.25	0.25	0.25	0.54	0.54		0.62	0.62	
v/c Ratio	0.79	0.03	0.10	0.05	0.04	0.22	0.07	0.50		0.16	0.19	
Control Delay	51.0	24.6	0.5	25.2	25.0	5.7	16.7	18.2		10.8	8.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	51.0	24.6	0.5	25.2	25.0	5.7	16.7	18.2		10.8	8.6	
LOS	D	C	A	C	C	Α.	В	В		В	A	
Approach Delay		43.0	,,		10.8	,,		18.2			8.8	
Approach LOS		D			В			В			Α	
Queue Length 50th (m)	47.4	2.1	0.0	2.5	2.7	0.0	3.1	62.1		3.4	13.1	
Queue Length 95th (m)	67.3	6.0	0.0	6.9	7.1	9.6	9.5	94.2		9.7	24.7	
Internal Link Dist (m)	07.0	440.9	0.0	0.0	426.7	5.0	3.0	419.6		0.1	215.3	
Turn Bay Length (m)	95.0	440.0	50.0	30.0	720.1	70.0	140.0	410.0		110.0	210.0	
Base Capacity (vph)	453	618	547	462	618	579	457	1824		308	1950	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.58	0.02	0.08	0.04	0.03	0.17	0.07	0.50		0.16	0.19	
rioddodd Wo riddio	0.50	0.02	0.00	0.04	0.00	0.17	0.01	0.00		0.10	0.13	

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 69 (69%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.79 Intersection Signal Delay: 19.9

Intersection Capacity Utilization 69.3%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

	•	→	\rightarrow	•	←	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	î,		*	î,		7	^	#	*	∳ ሴ	
Traffic Volume (vph)	3	0	0	203	0	69	5	572	106	12	960	0
Future Volume (vph)	3	0	0	203	0	69	5	572	106	12	960	0
Satd. Flow (prot)	864	1820	0	1729	1521	0	1631	3390	1547	1601	3424	0
Flt Permitted	0.707			0.757			0.225			0.397		
Satd. Flow (perm)	642	1820	0	1375	1521	0	386	3390	1493	667	3424	0
Satd. Flow (RTOR)					235				118			
Lane Group Flow (vph)	3	0	0	226	77	0	6	636	118	13	1067	0
Turn Type	Perm			Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	38.0	38.0		38.0	38.0		31.3	31.3	31.3	31.3	31.3	
Total Split (s)	39.0	39.0		39.0	39.0		61.0	61.0	61.0	61.0	61.0	
Total Split (%)	39.0%	39.0%		39.0%	39.0%		61.0%	61.0%	61.0%	61.0%	61.0%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.7	3.7		3.7	3.7		2.6	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.3	6.3	6.3	6.3	6.3	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	23.1			23.1	23.1		63.6	63.6	63.6	63.6	63.6	
Actuated g/C Ratio	0.23			0.23	0.23		0.64	0.64	0.64	0.64	0.64	
v/c Ratio	0.02			0.71	0.14		0.02	0.30	0.12	0.03	0.49	
Control Delay	25.3			46.8	0.6		10.0	9.7	2.3	9.7	11.8	
Queue Delay	0.0			0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	25.3			46.8	0.6		10.0	9.7	2.3	9.7	11.8	
LOS	С			D	Α		A	Α	A	Α	В	
Approach Delay		25.3			35.1			8.5			11.7	
Approach LOS		С			D			Α			В	
Queue Length 50th (m)	0.5			41.2	0.0		0.4	25.3	0.0	0.8	50.1	
Queue Length 95th (m)	2.5			59.5	0.0		2.4	44.4	7.3	3.8	83.8	
Internal Link Dist (m)		205.4			328.9			150.7			350.8	
Turn Bay Length (m)	30.0			40.0			105.0		95.0	100.0		
Base Capacity (vph)	205			440	646		245	2155	992	423	2177	
Starvation Cap Reductn	0			0	0		0	0	0	0	0	
Spillback Cap Reductn	0			0	0		0	0	0	0	0	
Storage Cap Reductn	0			0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01			0.51	0.12		0.02	0.30	0.12	0.03	0.49	
Intersection Summary												
Cycle Length: 100												

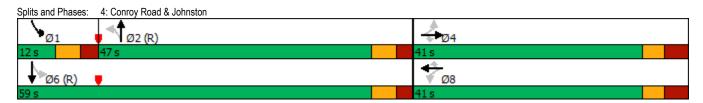
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 2 (2%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 13.9 Intersection Capacity Utilization 58.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B


	•	-	•	•	←	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	•	7	*	•	7	75	ቀ ሴ		7	ቀ ሴ	
Traffic Volume (vph)	143	42	60	33	36	56	52	441	23	197	739	227
Future Volume (vph)	143	42	60	33	36	56	52	441	23	197	739	227
Satd. Flow (prot)	1712	1820	1406	1729	1820	1547	1662	3361	0	1712	3294	0
Flt Permitted	0.731			0.726			0.267			0.395		
Satd. Flow (perm)	1317	1820	1384	1317	1820	1547	467	3361	0	710	3294	0
Satd. Flow (RTOR)			105			105		6			61	
Lane Group Flow (vph)	159	47	67	37	40	62	58	516	0	219	1073	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	4	4	4	8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	37.3	37.3		11.3	37.3	
Total Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	47.0	47.0		12.0	59.0	
Total Split (%)	41.0%	41.0%	41.0%	41.0%	41.0%	41.0%	47.0%	47.0%		12.0%	59.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.3	6.3		6.3	6.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)	19.3	19.3	19.3	19.3	19.3	19.3	52.5	52.5		67.4	67.4	
Actuated g/C Ratio	0.19	0.19	0.19	0.19	0.19	0.19	0.52	0.52		0.67	0.67	
v/c Ratio	0.63	0.13	0.19	0.15	0.11	0.16	0.24	0.29		0.39	0.48	
Control Delay	46.3	30.4	2.9	30.7	29.9	2.2	19.9	15.3		10.5	9.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	46.3	30.4	2.9	30.7	29.9	2.2	19.9	15.3		10.5	9.6	
LOS	D	C	2.5 A	C	23.3 C	Α.2	13.3 B	В		В	J.0	
Approach Delay	D D	32.9			17.8			15.7			9.7	
Approach LOS		02.9 C			17.0 B			15.7 B			3.7 A	
Queue Length 50th (m)	29.2	7.8	0.0	6.2	6.6	0.0	5.7	27.4		13.2	40.8	
Queue Length 95th (m)	40.1	14.0	3.6	11.8	12.3	2.7	18.2	48.6		35.5	88.1	
Internal Link Dist (m)	40.1	440.9	3.0	11.0	426.7	2.1	10.2	419.6		33.3	215.3	
Turn Bay Length (m)	95.0	440.3	50.0	30.0	420.7	70.0	140.0	413.0		110.0	210.0	
Base Capacity (vph)	95.0 447	618	539	447	618	70.0 595	245	1768		564	2240	
Starvation Cap Reductn	0	010	0	0	010	0	243	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0.36	0.08	0.12	0.08	0.06	0.10	0.24	0.29		0.39	0.48	
Neudoed V/C Ralio	0.30	0.00	0.12	0.00	0.00	0.10	0.24	0.29		0.39	0.40	

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 69 (69%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.63

Intersection Signal Delay: 14.5 Intersection Capacity Utilization 70.6% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

	•	4	†	~	\	
Movement	WBL	WBR	NBT	• NBR	SBL	SBT
Lane Configurations	W		ቀ ቤ		*	44
Traffic Volume (veh/h)	51	118	669	103	0	1169
Future Volume (Veh/h)	51	118	669	103	0	1169
Sign Control	Stop	110	Free	100		Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
	51	1.00	669	1.00	0	1169
Hourly flow rate (vph)	51	ΠĎ	909	103	U	1109
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			Raised			Raised
Median storage veh)			1			1
Upstream signal (m)			239			103
pX, platoon unblocked	0.94	0.93			0.93	
vC, conflicting volume	1305	386			772	
vC1, stage 1 conf vol	720					
vC2, stage 2 conf vol	584					
vCu, unblocked vol	867	193			607	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)	5.8	0.0			7.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	3.5 87	84			100	
	378	760			900	
cM capacity (veh/h)						
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	169	446	326	0	584	584
Volume Left	51	0	0	0	0	0
Volume Right	118	0	103	0	0	0
cSH	582	1700	1700	1700	1700	1700
Volume to Capacity	0.29	0.26	0.19	0.00	0.34	0.34
Queue Length 95th (m)	9.1	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	13.7	0.0	0.0	0.0	0.0	0.0
Lane LOS	В	0.0			0.0	0.0
Approach Delay (s)	13.7	0.0		0.0		
Approach LOS	В	0.0		0.0		
•	U					
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utilization			51.4%	ICL	J Level of S	Service
Analysis Period (min)			15			

	ᄼ	-	\rightarrow	•	←	•	1	†	_	-	ţ	1
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	75	î,		*	î,		*	**	7	*	ቀ ሴ	
Traffic Volume (vph)	3	0	0	203	0	69	5	697	106	12	966	C
Future Volume (vph)	3	0	0	203	0	69	5	697	106	12	966	0
Satd. Flow (prot)	864	1820	0	1729	1522	0	1631	3424	1547	1601	3424	0
FIt Permitted	0.712			0.757			0.256			0.366		
Satd. Flow (perm)	647	1820	0	1375	1522	0	439	3424	1491	615	3424	0
Satd. Flow (RTOR)					169				106			
Lane Group Flow (vph)	3	0	0	203	69	0	5	697	106	12	966	0
Turn Type	Perm			Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	38.0	38.0		38.0	38.0		31.3	31.3	31.3	31.3	31.3	
Total Split (s)	44.0	44.0		44.0	44.0		56.0	56.0	56.0	56.0	56.0	
Total Split (%)	44.0%	44.0%		44.0%	44.0%		56.0%	56.0%	56.0%	56.0%	56.0%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.7	3.7		3.7	3.7		2.6	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.3	6.3	6.3	6.3	6.3	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	24.4			24.4	24.4		62.3	62.3	62.3	62.3	62.3	
Actuated g/C Ratio	0.24			0.24	0.24		0.62	0.62	0.62	0.62	0.62	
v/c Ratio	0.02			0.61	0.14		0.02	0.33	0.11	0.03	0.45	
Control Delay	24.3			39.9	0.6		10.4	10.7	2.4	10.4	12.0	
Queue Delay	0.0			0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	24.3			39.9	0.6		10.4	10.7	2.4	10.4	12.0	
LOS	С			D	Α		В	В	Α	В	В	
Approach Delay		24.3			29.9			9.6			12.0	
Approach LOS		С			С			Α			В	
Queue Length 50th (m)	0.4			31.7	0.0		0.4	37.3	0.0	1.0	57.3	
Queue Length 95th (m)	2.5			53.2	0.0		2.1	49.1	6.9	3.6	73.2	
Internal Link Dist (m)		205.4			328.9			150.7			350.8	
Turn Bay Length (m)	30.0			40.0			105.0		95.0	100.0		
Base Capacity (vph)	239			508	669		273	2133	968	383	2133	
Starvation Cap Reductn	0			0	0		0	0	0	0	0	
Spillback Cap Reductn	0			0	0		0	0	0	0	0	
Storage Cap Reductn	0			0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01			0.40	0.10		0.02	0.33	0.11	0.03	0.45	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 2 (2%), Referenced to phase 2:	NBTL and	6:SBTL, Sta	rt of Green									
Natural Cycle: 70												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.61												
Intersection Signal Delay: 13.4					ersection LOS							
Intersection Capacity Utilization 58.3%				ICI	J Level of Se	rvice B						
Analysis Period (min) 15												
Splits and Phases: 1: Conroy Road 8	& Thurston	1										
*						- 4						

₩ø8

	٠	→	•	•	←	4	1	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	7	*	•	7	¥	♦ ₽		×	∳ ሴ	
Traffic Volume (vph)	143	42	60	33	36	56	52	551	23	197	796	227
Future Volume (vph)	143	42	60	33	36	56	52	551	23	197	796	227
Satd. Flow (prot)	1712	1820	1406	1729	1820	1547	1662	2880	0	1712	3301	0
Flt Permitted	0.734			0.730			0.280			0.366		
Satd. Flow (perm)	1323	1820	1384	1324	1820	1547	490	2880	0	658	3301	0
Satd. Flow (RTOR)			105			105		5			56	
Lane Group Flow (vph)	143	42	60	33	36	56	52	574	0	197	1023	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	4	4	4	8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	37.3	37.3		11.3	37.3	
Total Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	42.0	42.0		17.0	59.0	
Total Split (%)	41.0%	41.0%	41.0%	41.0%	41.0%	41.0%	42.0%	42.0%		17.0%	59.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.3	6.3		6.3	6.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)	18.5	18.5	18.5	18.5	18.5	18.5	52.8	52.8		68.2	68.2	
Actuated g/C Ratio	0.18	0.18	0.18	0.18	0.18	0.18	0.53	0.53		0.68	0.68	
v/c Ratio	0.59	0.12	0.18	0.13	0.11	0.15	0.20	0.38		0.36	0.45	
Control Delay	45.0	30.8	2.2	31.1	30.4	1.6	19.9	16.9		9.4	9.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	45.0	30.8	2.2	31.1	30.4	1.6	19.9	16.9		9.4	9.0	
LOS	D	С	Α	С	С	A	В	В		Α	Α	
Approach Delay		32.1			17.7			17.1			9.1	
Approach LOS		С			В			В			Α	
Queue Length 50th (m)	26.3	7.1	0.0	5.6	6.0	0.0	4.8	30.8		11.1	36.1	
Queue Length 95th (m)	36.2	12.7	2.2	10.9	11.4	1.5	17.7	62.7		32.0	82.5	
Internal Link Dist (m)		440.9			426.7			419.6			215.3	
Turn Bay Length (m)	95.0		50.0	30.0		70.0	140.0			110.0		
Base Capacity (vph)	449	618	539	450	618	595	258	1521		561	2268	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.32	0.07	0.11	0.07	0.06	0.09	0.20	0.38		0.35	0.45	
Intersection Commons	0.32	0.07		0.07	- 0.00	0.00	0.20	- 0.00		- 0.00	- 0	

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 48 (48%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 14.4

Intersection Capacity Utilization 72.3% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

	•	•	†	/	\	Ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		Φß		*	44
Traffic Volume (veh/h)	51	118	669	0	103	1169
Future Volume (Veh/h)	51	118	669	0	103	1169
Sign Control	Stop	110	Free	U	100	Free
Grade	0%		0%			0%
		4.00		4.00	4.00	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	51	118	669	0	103	1169
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			Raised			Raised
Median storage veh)			1			1
Upstream signal (m)			239			103
pX, platoon unblocked	0.92	0.96			0.96	100
vC, conflicting volume	1460	334			669	
vC1, stage 1 conf vol	669	JJ-T			303	
vC2, stage 2 conf vol	790					
vCu, unblocked vol	1119	216			565	
	6.8	6.9			6.1	
tC, single (s)		0.9			0.1	
tC, 2 stage (s)	5.8	2.0			2.0	
tF (s)	3.5	3.3			3.2	
p0 queue free %	81	84			81	
cM capacity (veh/h)	270	755			532	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	169	446	223	103	584	584
Volume Left	51	0	0	103	0	0
Volume Right	118	0	0	0	0	0
cSH	489	1700	1700	532	1700	1700
Volume to Capacity	0.35	0.26	0.13	0.19	0.34	0.34
Queue Length 95th (m)	11.6	0.0	0.0	5.4	0.0	0.0
Control Delay (s)	16.2	0.0	0.0	13.4	0.0	0.0
Lane LOS	C	0.0	0.0	13.4 B	0.0	0.0
Approach Delay (s)	16.2	0.0		1.1		
	10.2 C	0.0		1.1		
Approach LOS	Ü					
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utilization			51.4%	ICL	J Level of S	Service
Analysis Period (min)			15			

	•	-	•	•	•	•	1	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	7	î,		¥	ĵ.		¥	44	7	7	♦ %	
Traffic Volume (vph)	3	0	0	203	0	69	5	697	106	12	1069	
Future Volume (vph)	3	0	0	203	0	69	5	697	106	12	1069	
Satd. Flow (prot)	864	1820	0	1729	1521	0	1631	3357	1547	1601	3115	
FIt Permitted	0.712			0.757			0.221			0.366		
Satd. Flow (perm)	647	1820	0	1375	1521	0	379	3357	1492	615	3115	
Satd. Flow (RTOR)					189				106			
Lane Group Flow (vph)	3	0	0	203	69	0	5	697	106	12	1069	
Turn Type	Perm			Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	38.0	38.0		38.0	38.0		31.3	31.3	31.3	31.3	31.3	
Total Split (s)	41.0	41.0		41.0	41.0		59.0	59.0	59.0	59.0	59.0	
Total Split (%)	41.0%	41.0%		41.0%	41.0%		59.0%	59.0%	59.0%	59.0%	59.0%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.7	3.7		3.7	3.7		2.6	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.3	6.3	6.3	6.3	6.3	
Lead/Lag	7.0	7.0		7.0	7.0		0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	24.4	110110		24.4	24.4		62.3	62.3	62.3	62.3	62.3	
Actuated g/C Ratio	0.24			0.24	0.24		0.62	0.62	0.62	0.62	0.62	
v/c Ratio	0.02			0.61	0.13		0.02	0.33	0.11	0.03	0.55	
Control Delay	24.3			39.9	0.6		10.4	10.7	2.4	10.4	13.6	
Queue Delay	0.0			0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	24.3			39.9	0.6		10.4	10.7	2.4	10.4	13.6	
LOS	C C			D	A		В	В	Α	В	В	
Approach Delay		24.3			29.9			9.6	,,		13.6	
Approach LOS		C C			C			A.0			В	
Queue Length 50th (m)	0.4			31.7	0.0		0.4	37.5	0.0	1.0	69.3	
Queue Length 95th (m)	2.5			53.2	0.0		2.1	49.3	6.9	3.6	89.3	
Internal Link Dist (m)	2.0	205.4		JJ.2	328.9		2.1	150.7	0.5	0.0	350.8	
Turn Bay Length (m)	30.0	200.4		40.0	020.0		105.0	150.7	95.0	100.0	000.0	
Base Capacity (vph)	219			467	641		236	2091	969	383	1940	
Starvation Cap Reductn	0			0	0		0	0	0	0	0	
Spillback Cap Reductn	0			0	0		0	0	0	0	0	
Storage Cap Reductn	0			0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01			0.43	0.11		0.02	0.33	0.11	0.03	0.55	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: 2 (2%), Referenced to phase	2·NRTL and	6-SRTI Sta	art of Green									
Natural Cycle: 70	Z.INDTL allu	U.ODTE, Old	ii oi dieeli									
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.61												
Intersection Signal Delay: 14.2				l-at	ersection I (00 D						

Intersection Signal Delay: 14.2
Intersection Capacity Utilization 61.3%
Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 1: Conroy Road & Thurston

Parsons Synchro 11 Report

	۶	→	•	•	←	•	4	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	7	7	•	7	*	ቀ ሴ		*	ቀ ሴ	
Traffic Volume (vph)	143	42	60	33	36	56	52	448	23	197	796	227
Future Volume (vph)	143	42	60	33	36	56	52	448	23	197	796	227
Satd. Flow (prot)	1712	1820	1406	1729	1820	1547	1662	3365	0	1712	3301	0
Flt Permitted	0.734			0.730			0.280			0.421		
Satd. Flow (perm)	1323	1820	1384	1324	1820	1547	490	3365	0	757	3301	0
Satd. Flow (RTOR)			105			105		6			56	
Lane Group Flow (vph)	143	42	60	33	36	56	52	471	0	197	1023	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	4	4	4	8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	37.3	37.3		11.3	37.3	
Total Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	42.8	42.8		16.2	59.0	
Total Split (%)	41.0%	41.0%	41.0%	41.0%	41.0%	41.0%	42.8%	42.8%		16.2%	59.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.3	6.3		6.3	6.3	
Lead/Lag							Lag	Lag		Lead	***	
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)	18.5	18.5	18.5	18.5	18.5	18.5	52.9	52.9		68.2	68.2	
Actuated g/C Ratio	0.18	0.18	0.18	0.18	0.18	0.18	0.53	0.53		0.68	0.68	
v/c Ratio	0.59	0.12	0.18	0.13	0.10	0.15	0.20	0.26		0.33	0.45	
Control Delay	45.0	30.8	2.2	31.1	30.4	1.6	19.6	15.2		9.0	9.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	45.0	30.8	2.2	31.1	30.4	1.6	19.6	15.2		9.0	9.0	
LOS	73.0 D	C	Α.Δ	C	C	Α	13.0 B	В		A	J.0	
Approach Delay	<u> </u>	32.1			17.7			15.6			9.0	
Approach LOS		C			В			В			J.0	
Queue Length 50th (m)	26.3	7.1	0.0	5.6	6.0	0.0	4.8	23.4		11.1	36.1	
Queue Length 95th (m)	36.2	12.7	2.2	10.9	11.4	1.5	17.4	47.7		32.1	82.5	
Internal Link Dist (m)	30.2	440.9	2.2	10.9	426.7	1.0	17.4	419.6		32.1	215.3	
Turn Bay Length (m)	95.0	440.3	50.0	30.0	420.7	70.0	140.0	413.0		110.0	210.0	
Base Capacity (vph)	449	618	539	450	618	70.0 595	259	1783		612	2268	
Starvation Cap Reductn	0	010	0	430	010	0	239	0		012	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio	0.32	0.07	0.11	0.07	0.06	0.09	0.20	0.26		0.32	0.45	
Reduced V/C Ratio	0.32	0.07	0.11	0.07	0.00	0.09	0.20	0.20		0.32	0.45	

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 48 (48%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59

Intersection Signal Delay: 13.8 Intersection Capacity Utilization 72.3% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

		•	<u>†</u>	<i>></i>	<u> </u>	1
	▼		'			*
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		ቀ ኄ		7	44
Traffic Volume (veh/h)	100	5	591	51	119	212
Future Volume (Veh/h)	100	5	591	51	119	212
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	100	5	591	51	119	212
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			Raised			Raised
Median storage veh)			1			1
Upstream signal (m)			239			103
pX, platoon unblocked			233			103
vC, conflicting volume	960	321			642	
	616	32 l			042	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	344	204			0.40	
vCu, unblocked vol	960	321			642	
tC, single (s)	8.8	8.9			4.1	
tC, 2 stage (s)	7.8					
tF (s)	4.5	4.3			2.2	
p0 queue free %	53	99			87	
cM capacity (veh/h)	211	459			939	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	105	394	248	119	106	106
Volume Left	100	0	0	119	0	0
Volume Right	5	0	51	0	0	0
cSH	217	1700	1700	939	1700	1700
Volume to Capacity	0.48	0.23	0.15	0.13	0.06	0.06
Queue Length 95th (m)	18.3	0.0	0.0	3.3	0.0	0.0
Control Delay (s)	36.3	0.0	0.0	9.4	0.0	0.0
Lane LOS	E	0.0	0.0	A	0.0	0.0
Approach Delay (s)	36.3	0.0		3.4		
Approach LOS	50.5 E	0.0		J.T		
Intersection Summary						
Average Delay			4.6			
Intersection Capacity Utilization Analysis Period (min)			42.1%	ICU	J Level of S	Service

	6	4	†	/	\	Ţ
Movement	▼ WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	TIDIT	† Ъ	HEIL	<u> </u>	44
Traffic Volume (veh/h)	2	103	1128	51	119	382
Future Volume (Veh/h)	2	103	1128	51	119	382
Sign Control	Stop	103	Free	JI	113	Free
Grade	0%		0%			0%
		4.00		4.00	4.00	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	2	103	1128	51	119	382
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			Raised			Raised
Median storage veh)			1			1
Upstream signal (m)			239			103
pX, platoon unblocked	0.85	0.85			0.85	
vC, conflicting volume	1582	590			1179	
vC1, stage 1 conf vol	1154					
vC2, stage 2 conf vol	429					
vCu, unblocked vol	1325	152			848	
tC, single (s)	8.8	8.9			4.1	
tC, 2 stage (s)	7.8	0.9			4.1	
tF (s)	4.5	4.3			2.2	
	4.5 98	4.3 81			82	
p0 queue free %						
cM capacity (veh/h)	128	535			664	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	105	752	427	119	191	191
Volume Left	2	0	0	119	0	0
Volume Right	103	0	51	0	0	0
cSH	505	1700	1700	664	1700	1700
Volume to Capacity	0.21	0.44	0.25	0.18	0.11	0.11
Queue Length 95th (m)	5.9	0.0	0.0	4.9	0.0	0.0
Control Delay (s)	14.0	0.0	0.0	11.6	0.0	0.0
Lane LOS	В			В		
Approach Delay (s)	14.0	0.0		2.8		
Approach LOS	В	0.5				
•						
Intersection Summary			4.0			
Average Delay			1.6			
Intersection Capacity Utilization			58.4%	ICL	J Level of S	Service
Analysis Period (min)			15			

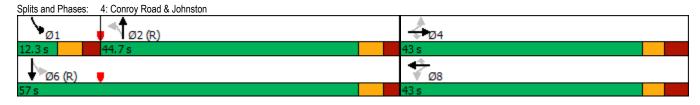
	۶	→	•	•	←	•	1	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ,		7	ĵ.		¥	44	*	7	ት ቤ	
Traffic Volume (vph)	3	2	8	30	0	23	5	1003	224	71	465	4
Future Volume (vph)	3	2	8	30	0	23	5	1003	224	71	465	4
Satd. Flow (prot)	1300	1434	0	1679	1467	0	1729	3060	1532	1729	3259	0
Flt Permitted	0.742			0.751			0.483			0.199		
Satd. Flow (perm)	1013	1434	0	1318	1467	0	873	3060	1457	361	3259	0
Satd. Flow (RTOR)		8			167				224		1	
Lane Group Flow (vph)	3	10	0	30	23	0	5	1003	224	71	469	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	5.0	10.0	
Minimum Split (s)	38.0	38.0		38.0	38.0		31.3	31.3	31.3	11.3	31.3	
Total Split (s)	38.0	38.0		38.0	38.0		50.0	50.0	50.0	12.0	62.0	
Total Split (%)	38.0%	38.0%		38.0%	38.0%		50.0%	50.0%	50.0%	12.0%	62.0%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.7	3.7		3.7	3.7		2.6	2.6	2.6	2.6	2.6	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.3	6.3	6.3	6.3	6.3	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	None	C-Max	
Act Effct Green (s)	22.6	22.6		22.6	22.6		59.1	59.1	59.1	67.5	68.8	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.59	0.59	0.59	0.68	0.69	
v/c Ratio	0.01	0.03		0.10	0.05		0.01	0.55	0.24	0.22	0.21	
Control Delay	24.3	15.3		26.8	0.2		16.2	19.7	3.1	10.9	9.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	24.3	15.3		26.8	0.2		16.2	19.7	3.1	10.9	9.0	
LOS	С	В		С	Α		В	В	Α	В	Α	
Approach Delay		17.4			15.3			16.6			9.3	
Approach LOS		В			В			В			Α	
Queue Length 50th (m)	0.4	0.3		4.1	0.0		0.6	83.4	0.0	6.0	23.2	
Queue Length 95th (m)	2.5	4.0		10.7	0.0		2.6	108.0	12.8	12.2	32.1	
Internal Link Dist (m)		205.4			328.9			150.7			350.8	
Turn Bay Length (m)	30.0			40.0			105.0		95.0	100.0		
Base Capacity (vph)	314	450		408	570		515	1808	952	323	2241	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.01	0.02		0.07	0.04		0.01	0.55	0.24	0.22	0.21	
Interception Cummen.												

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 2 (2%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 85

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.55

Intersection Signal Delay: 14.4 Intersection Capacity Utilization 61.7% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B


	•	→	•	•	+	•	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	*	*	•	7	*	∳ ሴ		1	∳ ሴ	
Traffic Volume (vph)	236	13	39	15	16	89	28	854	15	43	277	61
Future Volume (vph)	236	13	39	15	16	89	28	854	15	43	277	61
Satd. Flow (prot)	1729	1820	1406	1729	1820	1532	1517	3377	0	1616	3114	0
Flt Permitted	0.747			0.749			0.548			0.237		
Satd. Flow (perm)	1349	1820	1406	1363	1820	1501	869	3377	0	403	3114	0
Satd. Flow (RTOR)			105			105		2			38	
Lane Group Flow (vph)	236	13	39	15	16	89	28	869	0	43	338	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	4	4	4	8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	37.3	37.3		11.3	37.3	
Total Split (s)	43.0	43.0	43.0	43.0	43.0	43.0	44.7	44.7		12.3	57.0	
Total Split (%)	43.0%	43.0%	43.0%	43.0%	43.0%	43.0%	44.7%	44.7%		12.3%	57.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.3	6.3		6.3	6.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)	23.4	23.4	23.4	23.4	23.4	23.4	55.2	55.2		63.3	63.3	
Actuated g/C Ratio	0.23	0.23	0.23	0.23	0.23	0.23	0.55	0.55		0.63	0.63	
v/c Ratio	0.75	0.03	0.10	0.05	0.04	0.21	0.06	0.47		0.13	0.17	
Control Delay	49.3	25.4	0.5	25.9	25.6	4.8	16.6	17.4		10.0	8.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	49.3	25.4	0.5	25.9	25.6	4.8	16.6	17.4		10.0	8.0	
LOS	D	С	A	С	С	A	В	В		Α	A	
Approach Delay		41.6			10.2			17.4			8.2	
Approach LOS		D			В			В			A	
Queue Length 50th (m)	42.9	2.0	0.0	2.3	2.4	0.0	2.6	55.7		2.8	11.2	
Queue Length 95th (m)	59.7	5.7	0.0	6.3	6.5	7.8	9.2	93.2		9.0	22.8	
Internal Link Dist (m)	33.1	440.9	0.0	0.0	426.7	, .5	0.2	419.6		0.0	215.3	
Turn Bay Length (m)	95.0	110.0	50.0	30.0	120.7	70.0	140.0	110.0		110.0	210.0	
Base Capacity (vph)	485	655	573	490	655	607	479	1865		336	1984	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.49	0.02	0.07	0.03	0.02	0.15	0.06	0.47		0.13	0.17	
	0.43	0.02	0.01	0.00	0.02	0.10	0.00	0.47		0.10	0.17	
Intersection Summary												

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 69 (69%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.75

Intersection Signal Delay: 18.9 Intersection Capacity Utilization 69.7% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

	•	•	†	/	/	Ţ
Movement	WBL	WBR	• NBT	• NBR	SBL	SBT
Lane Configurations	W		↑ Ъ	.,,,,,	*	44
Traffic Volume (veh/h)	45	60	T → 1128	51	119	TT 382
Future Volume (Veh/h)	45	60	1128	51	119	382
Sign Control	Stop	00	Free	JI	119	Free
Grade	0%	4.00	0%	4.00	4.00	0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	45	60	1128	51	119	382
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			Raised			Raised
Median storage veh)			1			1
Upstream signal (m)			239			103
pX, platoon unblocked	0.85	0.85	200		0.85	100
vC, conflicting volume	1582	590			1179	
vC1, stage 1 conf vol	1154	550			1113	
vC2, stage 2 conf vol	429					
vCu, unblocked vol	1325	152			848	
	8.8	8.9			4.1	
tC, single (s)		ŏ.9			4.1	
tC, 2 stage (s)	7.8	4.0			0.0	
tF (s)	4.5	4.3			2.2	
p0 queue free %	65	89			82	
cM capacity (veh/h)	128	535			664	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	105	752	427	119	191	191
Volume Left	45	0	0	119	0	0
Volume Right	60	0	51	0	0	0
cSH	226	1700	1700	664	1700	1700
Volume to Capacity	0.46	0.44	0.25	0.18	0.11	0.11
Queue Length 95th (m)	17.2	0.0	0.0	4.9	0.0	0.0
Control Delay (s)	33.9	0.0	0.0	11.6	0.0	0.0
Lane LOS	D	0.0	0.0	В	0.0	0.0
Approach Delay (s)	33.9	0.0		2.8		
Approach LOS	33.9 D	0.0		2.0		
	ט					
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utilization			58.1%	ICU	J Level of S	Service
Analysis Period (min)			15			

	•	•	†	~	\	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		† Ъ		ኝ	**
Traffic Volume (veh/h)	100	5	1128	51	119	382
Future Volume (Veh/h)	100	5	1128	51	119	382
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	100	5	1128	51	119	382
Pedestrians	100	J	1120	31	113	302
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			Raised			Raised
			Raiseu 1			Raiseu 1
Median storage veh)						•
Upstream signal (m)	0.05	0.05	239		0.05	103
pX, platoon unblocked	0.85	0.85			0.85	
vC, conflicting volume	1582	590			1179	
vC1, stage 1 conf vol	1154					
vC2, stage 2 conf vol	429					
vCu, unblocked vol	1325	152			848	
tC, single (s)	8.8	8.9			4.1	
tC, 2 stage (s)	7.8					
tF (s)	4.5	4.3			2.2	
p0 queue free %	22	99			82	
cM capacity (veh/h)	128	535			664	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	SB 3
Volume Total	105	752	427	119	191	191
Volume Left	100	0	0	119	0	0
Volume Right	5	0	51	0	0	0
cSH	133	1700	1700	664	1700	1700
Volume to Capacity	0.79	0.44	0.25	0.18	0.11	0.11
Queue Length 95th (m)	36.3	0.0	0.0	4.9	0.0	0.0
Control Delay (s)	93.9	0.0	0.0	11.6	0.0	0.0
Lane LOS	55.5 F	0.0	0.0	В	0.0	0.0
Approach Delay (s)	93.9	0.0		2.8		
Approach LOS	93.9 F	0.0		2.0		
•						
Intersection Summary			6.3			
Average Delay				10:		
Intersection Capacity Utilization			57.8%	ICL	J Level of S	Service
Analysis Period (min)			15			

3 3 3000 14 742 013 14		30 30 1679 0.751	WBT 0 0 1467	23 23	NBL 5 5	NBT ↑↑ 905	NBR 7	SBL	SBT ♠♣	SBR
3 3 300 14 742 013 14	2 8 34 0	30 30 1679 0.751	0	23	5				ቀ ሴ	
3 300 14 742 013 14	2 8 34 0	30 1679 0.751	0	23		905	22/			
300 14 742 013 14	34 C	1679 0.751	-		5			71	465	4
742 013 14 3	34 0	0.751	1467	_		905	224	71	465	4
013 14 3				0	1729	3325	1532	1729	3259	0
3		1210			0.483			0.230		
	8	1010	1467	0	873	3325	1457	417	3259	0
	-		199				224		1	
	10 0	30	23	0	5	905	224	71	469	0
erm l	۱A	Perm	NA		Perm	NA	Perm	pm+pt	NA	
	4		8			2		1	6	
4		8			2		2	6		
4	4	8	8		2	2	2	1	6	
0.0	0.0	10.0	10.0		10.0	10.0	10.0	5.0	10.0	
8.0 3	3.0	38.0	38.0		31.3	31.3	31.3	11.3	31.3	
8.0 3	3.0	38.0	38.0		49.0	49.0	49.0	13.0	62.0	
0% 38.0)%	38.0%	38.0%		49.0%	49.0%	49.0%	13.0%	62.0%	
3.3	3.3	3.3	3.3		3.7	3.7	3.7	3.7	3.7	
3.7	3.7	3.7	3.7		2.6	2.6	2.6	2.6	2.6	
0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
		7.0	7.0		6.3	6.3	6.3	6.3	6.3	
					Lag	Lag	Lag	Lead		
					Yes	Yes	Yes	Yes		
one No	ne	None	None		C-Max	C-Max	C-Max	None	C-Max	
2.6 2	2.6	22.6	22.6		58.5	58.5	58.5	67.5	68.8	
.23 0.	23	0.23	0.23		0.58	0.58	0.58	0.68	0.69	
.01 0.	03	0.10	0.05		0.01	0.47	0.24	0.20	0.21	
4.3 1	5.3	26.8	0.2		16.8	18.3	3.2	10.5	9.0	
0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
4.3 1	5.3	26.8	0.2		16.8	18.3	3.2	10.5	9.0	
С	В	С	Α		В	В	Α	В	Α	
1	'.4		15.2			15.3			9.2	
	В		В			В			Α	
0.4).3	4.1	0.0		0.6	70.9	0.0	6.0	23.2	
2.5	1.0	10.7	0.0		2.7	91.4	13.0	12.2	32.1	
			328.9						350.8	
		40.0			105.0		95.0	100.0		
	50	408	592		510	1944	945	369	2241	
0	0	0	0		0	0	0	0	0	
0	-	0	0		0	0	0	0	0	
0	0	0	0		0	0	0	0	0	
		0.07	0.04		0.01	0.47	0.24	0.19	0.21	
	4 4 4 0.0 10 8.0 38 8.0 38 8.0 38 8.0 38 8.0 38 0.0 0 0 7.0 7 one No 12.6 22 0.23 0.3 0.01 0.1 14.3 15 0.0 0 17 0.4 0 17 0.4 0 18 0.0 0 0 0 0 0 0	3 10 0 erm NA 4 4 4 4 4 4 4 4 0.0 10.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 3	3 10 0 30 erm NA Perm 4 4 4 8 4 4 4 8 6 0.0 10.0 10.0 10.0 88.0 38.0 38.0 88.0 38.0 38.0 0% 38.0% 38.0% 3.3 3.3 3.3 3.7 3.7 3.7 0.0 0.0 0.0 0.0 7.0 7.0 7.0 One None None None 12.6 22.6 22.6 0.23 0.23 0.23 0.01 0.03 0.10 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.4.3 15.3 26.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3 10 0 30 23 erm NA Perm NA 4 8 8 4 4 8 8 4 4 8 8 4 4 8 8 4 4 8 8 0.0 10.0 10.0 10.0 88.0 38.0 38.0 38.0 38.0 38.0% 38.0% 38.0% 33.3 3.3 3.3 3.3 3.3 3.7 3.7 3.7 3.7 3.7 0.0 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 one None None None None 22.6 22.6 22.6 22.6 22.6 2.23 0.23 0.23 0.23 0.23 24.3 15.3 26.8 0.2 C B <t< td=""><td>3 10 0 30 23 0 erm NA Perm NA NA 4 8 8 4 8 8 4 4 8 8 8 0.0 10.0 10.0 10.0 10.0 10.0 88.0 38.0</td><td>3 10 0 30 23 0 5 erm NA Perm NA Perm 4 8 8 2 4 4 8 8 2 4 4 8 8 2 0.0 10.0 10.0 10.0 10.0 18.0 38.0 38.0 38.0 31.3 38.0 38.0 38.0 38.0 49.0 0.0% 38.0% 38.0% 38.0 49.0% 3.3 3.3 3.3 3.3 3.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 6.3 1.2<</td><td>3 10 0 30 23 0 5 905 erm NA Perm NA Perm NA 4 8 8 2 2 4 4 8 8 2 2 0.0 10.0 10.0 10.0 10.0 10.0 18.0 38.0 38.0 38.0 31.3 31.3 31.3 18.0 38.0 38.0 38.0 49.0 49.0 49.0 0.0% 38.0% 38.0% 38.0% 49.0% 49.0% 49.0% 3.3 3.3 3.3 3.3 3.7 3.6 3.8<</td><td> 10</td><td> 10</td><td> 3</td></t<>	3 10 0 30 23 0 erm NA Perm NA NA 4 8 8 4 8 8 4 4 8 8 8 0.0 10.0 10.0 10.0 10.0 10.0 88.0 38.0	3 10 0 30 23 0 5 erm NA Perm NA Perm 4 8 8 2 4 4 8 8 2 4 4 8 8 2 0.0 10.0 10.0 10.0 10.0 18.0 38.0 38.0 38.0 31.3 38.0 38.0 38.0 38.0 49.0 0.0% 38.0% 38.0% 38.0 49.0% 3.3 3.3 3.3 3.3 3.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 6.3 1.2<	3 10 0 30 23 0 5 905 erm NA Perm NA Perm NA 4 8 8 2 2 4 4 8 8 2 2 0.0 10.0 10.0 10.0 10.0 10.0 18.0 38.0 38.0 38.0 31.3 31.3 31.3 18.0 38.0 38.0 38.0 49.0 49.0 49.0 0.0% 38.0% 38.0% 38.0% 49.0% 49.0% 49.0% 3.3 3.3 3.3 3.3 3.7 3.6 3.8<	10	10	3

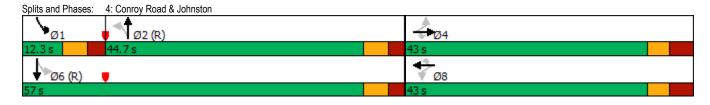
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 69 (69%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 85

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.47 Intersection Signal Delay: 13.4

Intersection Capacity Utilization 58.9% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

	٠	→	•	•	←	4	1	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	*	7	¥	•	7	¥	ቀ ሴ		¥	∳ ሴ	
Traffic Volume (vph)	236	13	39	15	16	89	28	854	15	43	375	61
Future Volume (vph)	236	13	39	15	16	89	28	854	15	43	375	61
Satd. Flow (prot)	1729	1820	1406	1729	1820	1532	1517	3377	0	1616	2629	0
Flt Permitted	0.747			0.749			0.499			0.237		
Satd. Flow (perm)	1349	1820	1406	1363	1820	1501	792	3377	0	403	2629	0
Satd. Flow (RTOR)			105			105		2			27	
Lane Group Flow (vph)	236	13	39	15	16	89	28	869	0	43	436	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	4	4	4	8	8	8	2	2		1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		5.0	10.0	
Minimum Split (s)	41.0	41.0	41.0	41.0	41.0	41.0	37.3	37.3		11.3	37.3	
Total Split (s)	43.0	43.0	43.0	43.0	43.0	43.0	44.7	44.7		12.3	57.0	
Total Split (%)	43.0%	43.0%	43.0%	43.0%	43.0%	43.0%	44.7%	44.7%		12.3%	57.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	2.6	2.6		2.6	2.6	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.3	6.3		6.3	6.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		None	C-Max	
Act Effct Green (s)	23.4	23.4	23.4	23.4	23.4	23.4	55.2	55.2		63.3	63.3	
Actuated g/C Ratio	0.23	0.23	0.23	0.23	0.23	0.23	0.55	0.55		0.63	0.63	
v/c Ratio	0.75	0.03	0.10	0.05	0.04	0.21	0.06	0.47		0.13	0.26	
Control Delay	49.3	25.4	0.5	25.9	25.6	4.8	16.8	17.4		10.0	9.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	49.3	25.4	0.5	25.9	25.6	4.8	16.8	17.4		10.0	9.1	
LOS	D	С	Α	С	С	Α	В	В		Α	Α	
Approach Delay		41.6			10.2			17.4			9.2	
Approach LOS		D			В			В			Α	
Queue Length 50th (m)	42.9	2.0	0.0	2.3	2.4	0.0	2.6	55.7		2.8	16.3	
Queue Length 95th (m)	59.7	5.7	0.0	6.3	6.5	7.8	9.3	93.2		9.0	32.2	
Internal Link Dist (m)		440.9			426.7			419.6			215.3	
Turn Bay Length (m)	95.0		50.0	30.0		70.0	140.0			110.0		
Base Capacity (vph)	485	655	573	490	655	607	437	1865		336	1673	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.49	0.02	0.07	0.03	0.02	0.15	0.06	0.47		0.13	0.26	
Intersection Summary												


Cycle Length: 100
Actuated Cycle Length: 100
Offset: 48 (48%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.75

Intersection Signal Delay: 18.6

Intersection Capacity Utilization 69.7% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service C

Movement	WB	SB
Directions Served	LR	Т
Maximum Queue (m)	38.9	8.0
Average Queue (m)	17.6	0.3
95th Queue (m)	30.7	7.9
Link Distance (m)	201.2	91.0
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

SimTraffic Report Parsons Page 1

Movement	WB	NB	NB	SB
Directions Served	LR	T	TR	L
Maximum Queue (m)	59.8	4.7	8.4	31.8
Average Queue (m)	25.9	0.2	0.5	12.7
95th Queue (m)	47.0	2.6	4.0	24.2
Link Distance (m)	201.2	221.4	221.4	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				45.0
Storage Blk Time (%)				0
Queuing Penalty (veh)				0

SimTraffic Report Parsons Page 1

Movement	WB	NB	NB	SB	SB	SB
Directions Served	LR	Т	TR	L	Т	Т
Maximum Queue (m)	53.7	9.5	10.2	47.7	16.8	5.4
Average Queue (m)	20.9	0.7	0.9	17.8	0.6	0.2
95th Queue (m)	40.2	5.0	5.2	37.9	9.9	5.3
Link Distance (m)	201.2	221.4	221.4		91.0	91.0
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (m)				45.0		
Storage Blk Time (%)				0	0	
Queuing Penalty (veh)				2	0	

Parsons SimTraffic Report Page 1

Movement	WB	NB	NB	SB	SB
Directions Served	LR	T	TR	L	T
Maximum Queue (m)	64.7	7.0	8.0	29.9	1.2
Average Queue (m)	28.9	0.5	0.8	10.2	0.0
95th Queue (m)	52.7	3.4	4.6	22.5	1.2
Link Distance (m)	201.2	221.4	221.4		91.0
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)				45.0	
Storage Blk Time (%)				0	
Queuing Penalty (veh)				0	

Parsons SimTraffic Report Page 1

Movement	WB	NB	NB	SB	SB	SB
Directions Served	LR	Т	TR	L	T	Т
Maximum Queue (m)	85.8	29.6	25.7	30.8	3.6	0.8
Average Queue (m)	32.9	1.4	1.5	13.2	0.2	0.0
95th Queue (m)	65.7	22.5	15.0	25.0	2.2	0.7
Link Distance (m)	201.2	221.4	221.4		91.0	91.0
Upstream Blk Time (%)		0				
Queuing Penalty (veh)		0				
Storage Bay Dist (m)				45.0		
Storage Blk Time (%)				0		
Queuing Penalty (veh)				0		

SimTraffic Report Parsons Page 1

Movement	WB	NB	NB	SB	SB
Directions Served	LR	Т	TR	L	Т
Maximum Queue (m)	116.4	11.0	12.7	33.3	3.3
Average Queue (m)	45.3	1.1	1.6	13.0	0.1
95th Queue (m)	90.5	5.9	7.6	25.0	1.7
Link Distance (m)	201.2	221.4	221.4		91.0
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (m)				45.0	
Storage Blk Time (%)				0	
Queuing Penalty (veh)				0	

Parsons SimTraffic Report Page 1