PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

3145 Conroy Road, Ottawa, ON

TABLE OF CONTENTS

1.0	E	XECUT	TIVE SUMMARY	1
2.0	II	NTROD	UCTION	3
	2.1	SITE D	DESCRIPTION	3
	2.2		ERTY OWNERSHIP	
	2.3		ENT AND PROPOSED FUTURE USES	
	2.4		CABLE SITE CONDITION STANDARDS	
3.0	В	BACKG	ROUND INFORMATION	6
	3 1	Physi	CAL SETTING	6
	0.1	3.1.1	Water Bodies & Areas of Natural Significance	
		3.1.2	Topography & Surface Water Drainage	
	3.2	-	Investigations	
		3.2.1	Summary of Phase One ESA	
4.0	s	COPE (OF INVESTIGATION	
	4.1	OVER	VIEW OF SITE INVESTIGATION	10
	4.2		A INVESTIGATED	
	4.3		ONE CONCEPTUAL SITE MODEL	
	4.4		TIONS FROM THE SAMPLING AND ANALYSIS PLAN	
	4.5		IMENTS	
5.0	II	NVESTI	GATION METHOD	14
	5.1	GENEI	RAL	14
	5.2		ING AND EXCAVATING	
	5.3	Soil		14
		5.3.1	Soil Sampling	
		5.3.2	Field Screening Measurements	15
	5.4	GROU	NDWATER	15
		5.4.1	Monitoring Well Installation	15
		5.4.2	Field Measurements of Water Quality Parameters	16
		5.4.3	Groundwater Sampling	16
	5.5	SEDIM	IENT	16
	5.6	ANALY	TICAL TESTING	16
	5.7	RESID	UE MANAGEMENT	17
	5.8	ELEVA	ATION SURVEYING	17
	5.9	QUALI	TY ASSURANCE AND QUALITY CONTROL MEASURES	17
		5.9.1	Sample Collection Avoidance of Cross-Contamination	17
		5.9.2	Field Quality Assurance Sampling	
		5.9.3	Laboratory Quality Assurance Sampling	18
			AND EVALUATION	

	6.1	GEOLOGY	19
		6.1.1 Background	19
		6.1.2 Encountered Stratigraphy	
	6.2		
	6.3	GROUNDWATER HYDRAULIC GRADIENTS AND CONDUCTIVITY	20
	6.4	SOIL TEXTURE	20
	6.5		
	6.6	SOIL QUALITY	21
	6.7		
	6.8	SEDIMENT QUALITY	21
	6.9		
		6.9.1 Field Quality Control Objectives	21
		6.9.2 Field Quality Assurance Objectives	
		6.9.3 Laboratory Quality Assurance Objectives	
		6.9.4 Summary of QA/QC Results	
	6.10	•	
7.0	_	CONCLUSIONS	22
7.0	C	CONCLUSIONS	23
	7.1	SIGNATURES	23
8.0	R	REFERENCES	24
0			

FIGURES

Figure 1	Site Location
Figure 2	Site Features
Figure 3	Conceptual Site Model – Phase One Study Area
Figure 4	Conceptual Site Model and Potentially Contaminating Activities
Figure 5A	Conceptual Site Model – Areas of Potential Environmental Concern
Figure 5B	Conceptual Site Model – Areas of Potential Environmental Concern & Sampling Locations
Figure 6A	General Stratigraphy – Cross-Section A-A
Figure 6B	General Stratigraphy – Cross-Section B-B
Figure 7	Interpreted Groundwater Flow (June 4, 2025)
Figure 8	Soil Sample Distribution – PHCs
Figure 9	Soil Sample Distribution – VOCs
Figure 10	Soil Sample Distribution – PAHs
Figure 11	Soil Sample Distribution – pH
Figure 12	Groundwater Sample Distribution – PHCs
Figure 13	Groundwater Sample Distribution – VOCs
Figure 14	Groundwater Sample Distribution – PAHs

APPENDED TABLES

Table 1	Current and Past Uses of the Phase One Property
Table 2	Potentially Contaminating Activities On, In or Under the Phase One Property or Study Area
Table 3	Areas of Potential Environmental Concern
Table 4	Groundwater Monitoring Data
Table 5	Summary of Soil Analytical Results – BTEX & PHCs
Table 6	Summary of Soil Analytical Results – VOCs
Table 7	Summary of Soil Analytical Results – PAHs
Table 8	Summary of Soil Analytical Results – Metals, HFMs & Other Regulated Parameters
Table 9	Summary of Groundwater Analytical Results – BTEX & PHCs
Table 10	Summary of Groundwater Analytical Results – VOCs
Table 11	Summary of Groundwater Analytical Results – PAHs

APPENDICES

Appendix I Plan of Survey

Appendix II Pertinent Previous Environmental Reports

Appendix III Borehole Logs

Appendix IV Grain Size Analysis

Appendix V Laboratory Certificates of Analysis

1.0 EXECUTIVE SUMMARY

Terrapex was retained by WO MW Realty Limited (the Client) to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 3145 Conroy Road in Ottawa, Ontario (the Phase Two Property, hereinafter also referred to as the Site).

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified by a Phase One ESA (Terrapex, 2025) to fulfill the requirements of the Ontario Regulation (O. Reg.) 153/04 and City of Ottawa (the City) for permitting requirements for the redevelopment of the Site.

This report was prepared to update a previous Phase II ESA completed for the Site by Pinchin Ltd. (Pinchin) in 2024. Where indicated, Terrapex has relied on information / data from the previous report and has updated information where needed to meet the requirements of O. Reg. 153/04.

A Phase One ESA was completed by Terrapex in July 2025 in accordance with the requirements of O. Reg. 153/04. The Phase One ESA identified four areas of potential environmental concern (APECs) at the Site, resulting from past fuel storage and maintenance at the Site and chemical storage in off-Site properties. As a result, a Phase Two ESA was required to investigate soil and groundwater quality at the Site.

The Phase Two ESA was subsequently conducted by Pinchin to investigate the environmental quality of soil and groundwater at and in the vicinity of the APECs identified at the Site. The Phase Two ESA consisted of the completion of 7 boreholes to a maximum depth of 12.8 m below ground surface (bgs) for environmental and geotechnical purposes, installation of 3 groundwater monitoring wells, and the collection of soil and groundwater samples for laboratory analysis.

A summary of the COPC sampling locations for each APEC and potentially affected media is provided in the table below.

SUMMARY OF SAMPLING LOCATIONS

APEC	MEDIA POTENTIALLY IMPACTED	CONTAMINANTS OF POTENTIAL CONCERN	SAMPLING LOCATIONS	
APEC			SOIL	GROUNDWATER
APEC 1	Soil & Groundwater	BTEX/PHCs F1-F4	MW102-S3	MW102
APEC 2	Soil & Groundwater	BTEX/PHCs F1-F4	MW101-SS4	MW101
		VOCs	MW101-SS4	MW101
		PAHs	MW101-SS4	MW101
APEC 3	Groundwater	VOCs	N/A	MW102
APEC 4	Groundwater	VOCs	N/A	MW102

BTEX: Benzene, toluene, ethylbenzene, xylene
PHCs: Petroleum hydrocarbons (fractions F1 to F4)

PAHs: Polycyclic aromatic hydrocarbons VOCs: Volatile Organic Compounds

The Table 3 Site Condition Standards (SCS) of the April 15, 2011 MECP *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* for commercial/industrial/community property use for medium and fine textured soils are considered appropriate for evaluating laboratory analytical results.

Based on field observations and an evaluation of soil and groundwater quality data, the following conclusions are provided:

- The soil stratigraphy encountered in the boreholes drilled at the Site generally consisted of a layer of topsoil or asphalt. Fill material consisting of sand and gravel with varying silt was encountered at some locations to a depth of 1.5 m bgs, likely representing engineered fill related to the former development. Native soils were observed to be fat clay soil that extended to depths 7.6 m bgs, underlaid by silty sand with gravel to a maximum depth of 12.8 m bgs. Refusal on suspected bedrock was encountered between 11.1 and 12.8 m bgs.
- Terrapex conducted one groundwater monitoring event on June, 4, 2025, that included all
 of the monitoring wells. The depth to groundwater was identified between 0.90 and 4.43
 m bgs during that monitoring event.
- The findings of the June 2025 monitoring event indicated that the groundwater flow was towards the southwest.
- No evidence of non aqueous phase liquids (i.e., NAPL) or free-product was encountered during monitoring, purging, or sampling of the monitoring wells.
- All of the soil samples submitted for laboratory analysis had concentrations of BTEX, PHC F1-F4, VOCs, PAHs less than the Table 3 SCS. Further, all parameters were not detected at the laboratory reportable detection limit (RDL).
- All of the groundwater samples submitted for laboratory analysis had concentrations of BTEX, PHC F1-F4, VOCs, PAHs less than the Table 3 SCS. Further, all parameters were not detected at the laboratory RDL.

Based on the findings of the Phase Two ESA, the environmental quality of soil and groundwater beneath the Site has been determined to meet the applicable Table 3 SCS.

2.0 INTRODUCTION

Terrapex was retained by WO MW Realty Limited (the Client) to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 3145 Conroy Road in Ottawa, Ontario (the Phase Two Property, hereinafter also referred to as the Site).

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified by a Phase One ESA (Terrapex, 2025) to fulfill the requirements of the Ontario Regulation (O. Reg.) 153/04 and City of Ottawa (the City) for permitting requirements for the redevelopment of the Site.

This report was prepared to update a previous Phase II ESA completed for the Site by Pinchin Ltd. (Pinchin) in 2024. Where indicated, Terrapex has relied on information / data from the previous report and has updated information where needed to meet the requirements of O. Reg. 153/04.

2.1 SITE DESCRIPTION

The Site is located on the east of Conroy Road accessed from a driveway from Conroy Road along the southern portion of the property. The Site is vacant that consists of an abandoned go-kart racetrack on the western portion of the Site, mini golf course situated on the central portion of the Site, and a former golf range on the east side of the property.

The Site is located in a neighbourhood comprised of generally mixed commercial and light industrial land uses as shown on Figure 1 (Site Location Plan) and Figure 2 (Site Features).

Information regarding the location, identification, and geometry of the Phase Two Property is provided in the table below. Refer to Figure 1 for the location of the Site, and to Figure 2 for the general layout of the Site at the time of the site reconnaissance.

PHASE TWO PROPERTY INFORMATION

Address:	3145 Conroy Road, Ottawa, ON
Property Identification Number:	04165-0769
Legal Description:	PT LT 2, CON 5RF, PTS 1, 2, 3, Plan 5R-5712, except PT1, 4R11804
UTM Coordinates (centre of site, WGS 84):	18T East: 373538.21 m North: 5026713.53 m
Name and Address of Owner:	WO MW Realty Limited 180 Renfrew Drive, Suite 230, Markham, Ontario, L3R 9Z2
Name and Address of Authorizing Party:	Christine Yee WO MW Realty Limited 180 Renfrew Drive, Suite 230, Markham, Ontario, L3R 9Z2

Current Condition and Use(s):	Vacant with no structures on-Site.
Structures:	None
Site Area:	4.86 ha (48,614.38 m²)
Occupants (current):	None
Other facilities of note:	None

The survey file was extracted from an existing survey of the Site from a previous report made by Pinchin for the Client, titled Topographic Details of 3145 Conroy Road, dated 05 January 2024. The PIN for the Stie is 04165-0769 (LT).

The plan of survey for the Site is provided in Appendix I.

2.2 PROPERTY OWNERSHIP

Contact information for the registered owner of the Site and the party authorizing this Phase Two ESA is provided in the table below.

Name and Address of Registered Owner:	WO MW Realty Ltd. 180 Renfrew Drive, Suite 230, Markham, Ontario, L3R 9Z2
Name and Address of Authorizing Party:	Christine Yee WO MW Realty Limited 180 Renfrew Drive, Suite 230, Markham, Ontario, L3R 9Z2

2.3 CURRENT AND PROPOSED FUTURE USES

The Site was last used as an amusement park with miniature golf, a driving range and a go-kart track, which is a commercial property use per O. Reg. 153/04. (Records of Site Condition – Part XV.1 of the Act).

The Client is proposing the redevelopment of the Site with an office, service garage and work yard, which is a commercial property use per O. Reg. 153/04 (i.e., there is no proposed change in property use and as a result, a RSC is not required).

2.4 APPLICABLE SITE CONDITION STANDARDS

Generic Site Condition Standards for evaluating laboratory analytical results for soil and groundwater were determined on the basis of Site-specific criteria specified in O. Reg. 153/04, and are summarized below:

SITE-SPECIFIC CRITERIA TO DETERMINE APPLICABLE SITE CONDITION STANDARDS

	pH of surface soil less than 5 or greater than 9?	No (6.70)
Environmental	pH of subsurface soil less than 5 or greater than 11?	No (6.73)
Sensitivity:	Includes, or within 30 m of, an area of natural significance?	No
	Includes, or within 30 m of, a body of water?	No
	Is bedrock shallower than 2 m beneath the site?	No
	Does the site lend itself to the application of stratified Site Condition Standards (SCS)?	No
	Is the site located in an area designated in the municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater?	No
Stratigraphy and Hydrogeology:	Is potable water at the Site, and all other properties wholly or partially within 250 m radius of the Site, supplied by municipal drinking water system as defined in the Safe Drinking Water Act, 2002?	Yes (see additional comment below)
	Is the Site, or any other property wholly or partially within 250 m radius of the Site, equipped with a well that is used or intended for use as a source of water for human consumption or for agriculture?	No
	Has appropriate tier municipalities consented to the use of non-potable site condition standards?	N/A
	Is at least ½ of the volume of soil beneath the property coarse textured?	No
Proposed Land Use:	Agricultural or Other; Residential; Parkland; Institutional; Industrial; Commercial; Community use?	Commercial

It should be noted that some records from the Phase One ESA indicated that the Site was supplied water from an on-Site well as of 1999 and a suspected cistern was observed during the site inspection. No well record for a potable water well was identified during the Phase One ESA and the status of the well cannot be confirmed. Further no potable water wells were identified within the Phase One study area. On that basis, it is assumed that there is no current potable groundwater use within the Phase One study area any future site development will include connection to municipal water service.

Based on the above, the Table 3 SCS of the April 15, 2011 MECP *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* for commercial/industrial/community property use for medium and fine textured soils are considered appropriate for evaluating laboratory analytical results.

If an RSC is to be prepared and submitted to the MECP for posting on the Brownfields Environmental Site Registry per O. Reg. 153/04, the regulation requires that the local municipality be informed of the intention to apply non-potable standards. Notification of the intent to apply non-potable SCS was not provided during this work program as it is understood that there is no intention to file an RSC at this time.

3.0 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

3.1.1 Water Bodies & Areas of Natural Significance

Based on the review of the aerial photographs, satellite images, and topographic maps completed as part of the previous Phase One ESA, a summary of water bodies, areas of natural significance, and groundwater sensitivity information within the Phase One study area is provided in the table below, and on Figure 3.

WATER BODIES AND AREAS OF NATURAL SIGNIFICANCE

Surface Water:	McEwan Creek is located approximately 350 m south of the Site. Based on aerial photographs, it is assumed that the creek was channelized as part of the construction of the residential development to the south of the Site (i.e., south of Johnston Road). McEwan Creek discharges to Ramsay Creek and ultimately Greens Creek approximately 2.2 km southeast of the Site.
	The Mather Award Drain is located 1,200 m northeast of the Site. The Mather Award Drain also directs water generally to the southeast to Greens Creek. The Mather Award Drain drains into the Greens approximately 3.17 km to the east of the Site.
	A ditch is located on the northside of the rail line to the north of the Site. The ditch is mapped on the Rideau Valleys Conservation Authorities (RVCA) GIS mapping website. However, the ditch is not expected to meet the definition of a waterbody per O. Reg 153/04 as it is not anticipated to be permanent feature.
Area of Natural Significance:	None at, or within 30 m of the Site.
Wellhead and Intake Protection Zones	None located within the Phase One Property, or within the Phase One Study Area.
Municipal Drinking Water System	All properties within the Phase One Study Area are deemed to be connected to the municipal drinking water system supplied by the City of Ottawa.

3.1.2 Topography & Surface Water Drainage

Based on a review of the site reconnaissance records, the topographic map of the Site, and Phase One Study area determined as part of the previous Phase One ESA, a summary of topography and surface water drainage is presented in the table below:

SUMMARY OF TOPOGRAPHY & SURFACE WATER DRAINAGE

Site & Regional Topography:	The Site is flat, and no major topographic features are mapped on the Site. The Phase One Study Area generally slopes to the east towards the Greens Creek, which flows north towards the Ottawa River.
Approximate Elevation:	84 m above sea level (asl).
Surface Water Drainage:	Overland flow with infiltration

3.2 PAST INVESTIGATIONS

Terrapex was provided with the following previous environmental reports for review as part of the scope of the current Phase One ESA:

- Phase I Environmental Site Assessment, 3145 Conroy Road, Ottawa, ON, prepared for WO MW Realty Limited by Pinchin Ltd., dated June 21, 2024.
- Phase II Environmental Site Assessment, 3145 Conroy Road, Ottawa, ON, prepared for WO MW Realty Limited by Pinchin Ltd., dated September 6, 2024.
- Preliminary Geotechnical Investigation Proposed Commercial Development, 3145
 Conroy Road, Ottawa, ON, prepared for WO MW Realty Limited by Pinchin Ltd., dated
 September 25, 2024.

A summary of the aforementioned previous environmental report is provided below:

PINCHIN, JUNE 2024, PHASE I ESA

Comments/Limitations/Other	A Phase I ESA was conducted at 3145 Conroy Road, Ottawa, ON to assess potential issues of environmental concern in relation to the potential acquisition and financing of the Site. The Phase I ESA study area included lands within 100 m of the Road. The Site was included within the Phase I study area for this report.	
Identified PCAs	Potential environmental concerns were identified at the following locations:	
	 The Site (presence of a 9,092 L gasoline UST); and, 	
	The Site (presence of a 72 L gasoline AST).	
	Pinchin recommended that a Phase II ESA be conducted concurrently with a ground-penetrating radar (GPR) survey to try to locate the former UST.	

PINCHIN, SEPTEMBER 2024, PHASE II ESA

Work Program	 2 boreholes to a depth of 6.09 m below ground surface (bgs) at the locations of the former AST and UST 2 monitoring wells (MW101 & MW102) installed at these borehole locations. 		
Site Condition Standards Applied	MECP Table 3 SCS: Full Depth Generic SCS for Use in a Non-Potable Ground Water Condition for Fine-textured soils and industrial/commercial/community property use.		
Stratigraphy and Groundwater	 The soil stratigraphy below the grass generally consisted of brownish-grey sand and gravel, some silt to a depth of 1.52 m bgs overlying grey clayey silt with trace sand that extended to the maximum borehole completion depth of 6.09 m bgs. Wet soil conditions were generally observed between 3.20 and 6.09 m bgs. 		
	Bedrock was not encountered		
	Groundwater levels depths ranged from 1.34 m to 4.24 m bgs (July-September 2024)		
	Groundwater flow was inferred to be the south. However, it was noted that a groundwater flow direction was not provided and only two monitoring wells were monitored.		
Analytical Program	Soil: BTEX/ PHC F1-F4, VOCs and PAHs		
	Groundwater: BTEX/ PHC F1-F4, VOCs and PAHs		
	pH and grain size		

Results	GPR Survey:		
	 The location of the former UST could not be confirmed. No anomalies were identified that might indicate the location of the former UST. However, it was also noted that the survey was not conducted to the north of the former building due to uneven ground surface. 		
	Soil:		
	Concentration of all parameters in the soil samples were less than the Table 3 SCS		
	Groundwater:		
	Concentration of all parameters in the groundwater samples were less than the Table 3 SCS		
Comments/Limitations/Other	None		

PINCHIN, SEPTEMBER 2024, PRELIMINARY GEOTECHNICAL INVESTIGATION

Work Program	 5 boreholes to a depth of 6.7m to 12.8 m bgs 1 monitoring well (BH2) installed at one of the borehole locations. 		
Site Condition Standards Applied	MECP Table 3 SCS: Full Depth Generic Site Condition Standards for Use in a Non-Potable Ground Water Condition for Fine-textured soils and Industrial/commercial/community property use.		
Stratigraphy and Groundwater	 the soil stratigraphy at the Site comprised fat clay, a sand deposit, till and probable bedrock to the maximum borehole termination depths of approximately 12.8 m bgs. bedrock was encountered at depths between approximately 11.1 to 12.8 mbgs. groundwater levels depths were 3.90 m and 3.80 m bgs during the July and August 2024 monitoring events. 		
Analytical Program	• none		
Results	• none		
Comments/Limitations/Other	Moderate groundwater inflow through the fat clay material is expected where the excavations extend less than 0.60 m below the groundwater table. It is believed that this groundwater inflow can be controlled using a gravity dewatering system with perimeter interceptor ditches and high-capacity pumps.		

It should be noted that one of the well records provided a site plan from DST Consulting Engineers dated November 2004. It appears that the well record and site plan were related to an environmental assessment conducted at the time for the National Capital Commission (NCC). A copy of the report was not available for review. However, from the site plan it appears that the assessment included the installation of four monitoring wells. The location of the UST was shown to the north of the building adjacent to the go-kart track.

3.2.1 Summary of Phase One ESA

A Phase One ESA of the Site was carried out by Terrapex in June 2025 in accordance with the requirements of O. Reg. 153/04, as amended, to support the redevelopment of the Site. The Phase One and Two Properties are identical.

The Phase One ESA identified two potentially contaminating activities (PCAs) on the Phase One Property and 25 PCAs within the Phase One Study Area (refer to Table 2, appended). Through an evaluation of the information gathered from the records review, interviews, and the site reconnaissance, a total of four APECs were identified within the Phase One Property, as summarized in Table 3 (also appended). The Phase One Conceptual Site Model (CSM) is presented in Section 4.3.

4.0 SCOPE OF INVESTIGATION

4.1 OVERVIEW OF SITE INVESTIGATION

The scope of assessment comprised the following:

 Drilling of six boreholes (BH1 to BH5 and MW101) on July 16, 2024, to a maximum depth of 12.8 m bgs, two of which were completed as groundwater monitoring wells (BH2 and MW101).

- Drilling of one borehole (MW102) on August 21, 2024, to a depth of 6.1 m bgs that was completed as a monitoring well.
- Collection of soil samples and logging of visual, olfactory and tactile soil characteristics.
- Screening of total organic vapour (TOV) and combustible soil vapour (CSV) concentrations in soil.
- Collecting and submitting groundwater samples from monitoring wells MW for laboratory analyses.
- Review and assessment of all available chemical data pertaining to the subject Site, including (but not necessarily limited to) the following contaminants of potential concern:
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - o Benzene, Toluene, Ethylbenzene, Xylenes (collectively referred to as BTEX)
 - Petroleum Hydrocarbons (PHCs) fractions F1 through F4 (PHC F1-F4)
 - Volatile Organic Compounds (VOCs)
- Measurement of the elevation of each monitoring well relative to a geodetic benchmark.
- Measurement of groundwater conditions within each monitoring well.
- Evaluation of laboratory analytical results with respect to the selected SCS.
- Refinement of the existing Conceptual Site Model (developed during the previous Terrapex Phase One ESA) to reflect the information collected during the Phase Two ESA activities.

The sampling procedures are documented in detail in Section 5.0.

The Phase Two ESA was supervised by Mr. Keith Brown, P.Eng., of Terrapex, located at 20 Gurdwara Rd. in Ottawa, Ontario. Mr. Brown has a license under the Professional Engineers Act and meets the qualifications to be considered a Qualified Person for the purposes of conducting or supervising environmental site assessments in Ontario (per Section 5 (2) (a) of O. Reg. 153/04).

4.2 MEDIA INVESTIGATED

Based on the Phase One ESA findings, the Phase Two ESA work program documented herein included investigation of the environmental quality of both soil and groundwater at the Site. The environmental quality of sediment was not investigated as sediment is not present at the Site.

Soil and groundwater were investigated by drilling boreholes, installing monitoring wells, and groundwater sampling, as described above, and in Section 5.0.

4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) presented in the Phase One ESA report (Terrapex, 2025) includes figures and narrative that provided the logical basis for the interpretation of PCAs and APECs on the Phase Two Property. The Phase One CSM is reproduced in the sections below.

The Phase One CSM includes the following figures appended to this report:

PHASE ONE CSM FIGURES

	Requisite Feature	Figure
i.	Show any existing buildings and structures,	Figure 1: Site Location
		Figure 2: Site Features
ii.	Identify and locate water bodies located in whole or in part in the Phase One Study Area,	Figure 3: Conceptual Site Model – Phase One Study Area
iii.	Identify and locate any areas of natural significance located in whole or in part on the Phase One Study Area,	Figure 3: Conceptual Site Model – Phase One Study Area
iv.	Locate any drinking water wells at the Phase One Property	Figure 3: Conceptual Site Model – Phase One Study Area
٧.	Show roads, including names, within the Phase One Study Area,	Figure 3: Conceptual Site Model – Phase One Study Area
vi.	Show uses of properties adjacent to the Phase One Property,	Figure 3: Conceptual Site Model – Phase One Study Area
vii.	Identify and locate areas where any potentially	Figure 3: Conceptual Site Model – Phase One Study Area
contaminating such areas,	contaminating activity has occurred, and show tanks in such areas,	Figure 4: Conceptual Site Model and Potentially Contaminating Activities
viii.	Identify and locate any areas of potential environmental concern.	Figure 5: Conceptual Site Model – Areas of Potential Environmental Concern

The Phase One CSM comprises the narrative provided in the following table:

PHASE ONE CSM NARRATIVE

	Requisite Component	Description & Assessment		
i.	Areas where potentially contaminating activity on, or potentially affecting the Phase One Property has occurred,	A total of two on-Site and two off-Site PCAs are deemed to have affected the property (as summarized in Table 2, appended). The PCA locations are shown in Figure 4. A total of four APECs have been identified associated with the aforementioned on-Site and off-Site PCAs, as summarised in Table 3 (also appended) and on Figure 5.		
ii.	Any contaminants of potential concern,	As summarized in Table 3 (appended), media beneath the Site are considered to be potentially affected by the following contaminants of potential concern: BTEX/PHCs VOCs PAHs		
iii.	The potential for underground utilities, if present, to affect contaminant distribution and transport,	In general, potential migration pathways for subsurface contaminants at the Site would consist of buried services or remnants of former buried services. However, no such pathways have been identified during the study.		
iv.	Available regional or site specific geological and hydrogeological information,	Site & Regional Topography:	The Site is flat, and no major topographic features are mapped on the Site. The Phase One Study Area generally slopes to the east towards the Greens Creek, which flows north towards the Ottawa River.	
	and	Approximate Site Elevation:	84 m above sea level (asl)	
		Surface Water Drainage:	Overland flow with infiltration	
		Inferred Groundwater Flow Direction:	South towards McEwan Creek. McEwan Creek flows generally to the east towards Greens Creek.	
		Physiography and Soil Stratigraphy:	The Site and Phase One Study Area are located on older alluvial deposits: clay, silt, sand, gravel and some organic remains. Borehole/well records report the soil stratigraphy at the Site comprises surficial organics overlying fat clay, a sand deposit, till and probable bedrock to the maximum borehole termination depths of approximately 12.8 m bgs.	
		Bedrock and Approximate Depth:	The underlying bedrock at this Site is of the Georgian Bay Formation, Blue Mountain Formation and Billings Formation consisting of shale, limestone, dolostone and siltstone at approximately 12.8 m bgs.	
		Surface Water:	None within, or within 30 m of, the Phase One Property. McEwan Creek is located approximately 350 m south of the Site. McEwan Creek discharges to Ramsay Creek and ultimately Greens Creek approximately 2.2 km southeast of the Site.	
			The Mather Award Drain is located 1,200 m northeast of the Site. The Mather Award Drain also directs water generally to the southeast to Greens Creek. The Mather Award Drain drains into the Greens approximately 3.17 km to the east of the Site.	
		Area of Natural Significance:	None at, or within 30 m of the Site.	
		Wellhead and Intake Protection Areas:	None located within the Phase One Property, or within the Phase One Study Area.	

	Requisite Component	Description & Assessment	
		Municipal Drinking Water System	All properties are deemed to be connected to the municipal drinking water system supplied by the City of Ottawa.
		Well For Consumption/ Agricultural Use:	None currently located within the Site, or within the Phase One Study Area.
V.	How uncertainty or absence of information obtained in each of the components of the Phase One ESA could	The main uncertainty associated with the CSM developed for the Site relates to the limited information regarding the former fuel handling and waste storage at the Site as well as the limited information regarding activities on neighbouring properties, specifically the commercial light industrial properties to the north of the Site.	
	affect the validity of the model.	Notwithstanding the above, it should be noted that Phase One ESAs have inherent limitation and therefore findings cannot be considered definitive (i.e., the findings of a Phase One ES are inherently associated with some uncertainty).	

The following table describes the rationale pertaining to any applicable reliance on exemptions provided by Paragraphs 1, 1.1, 2 and 3 of Section 49.1 of O. Reg. 153/04.

RELIANCE ON EXEMPTIONS

	Exemption(s) Circumstances	Rationale
(1.)	Substance(s) applied to surfaces for safety of vehicular or pedestrian traffic under conditions of snow or ice or both.	Not relied upon.
(1.1)	Excess soil deposited at the property for final placement meets the soil quality standards that apply to the property as determined in accordance with the Excess Soil Standards.	Not relied upon.
(2.)	There has been a discharge of drinking water within the meaning of the Safe Drinking Water Act, 2002.	Not relied upon.
(3.)	Applicable site condition standard deemed not exceeded if the concentrations do not exceed the naturally occurring range of concentrations typically found within the vicinity of the Site.	Not relied upon

4.4 DEVIATIONS FROM THE SAMPLING AND ANALYSIS PLAN

No deviations from the sampling plan were noted by Pinchin in their Phase II ESA report.

4.5 IMPEDIMENTS

Access to the Site was not impeded at any time during the Phase Two ESA work program, except where intended sampling locations conflicted with underground services, such as water lines, gas service, and private hydro which are present in some areas of the Site.

5.0 INVESTIGATION METHOD

5.1 GENERAL

Soil assessment in each of the APECs was conducted by Pinchin in 2024. Copies of the respective Phase II ESA, including investigative methods are provided in Appendix II.

The soil and groundwater quality at the Site were investigated at the locations shown on Figure 5 through the advancement of boreholes and installation of groundwater monitoring wells and included review of work by others (Pinchin) to characterize environmental conditions at the APECs identified in the Phase One ESA. Although the Pinchin report was not compliant with O. Reg. 153/04, based on Terrapex's review of the sampling methodology, the investigative works conducted by Pinchin were compliant with O. Reg. 153/04 and can be relied upon for the purpose and objective.

5.2 DRILLING AND EXCAVATING

Borehole drilling and monitoring well installation services for this work program were provided by Strata Drilling Group (Strata) of Markham, Ontario using a direct push drill rig. Strata is a MECP licensed well drilling contractor.

Measures to minimize potential cross-contamination or other potential bias are described in the Pinchin report. There were no deviations from sampling procedures reported by Pinchin during this investigation.

5.3 **S**OIL

5.3.1 Soil Sampling

Soil assessment in each of the APECs was conducted by Pinchin in 2024. A copy of the Phase II ESA report the described the investigative methods are provided in Appendix II.

Based on Terrapex's review, soil samples were collected at boreholes MW101 and MW102 at regular depth intervals for environmental purposes. The boreholes were drilled to depths of approximately 6.1 m bgs using a Geoprobe direct push drill rig. Soil samples were collected at continuous 0.76 m intervals using a disposable dual tube sampler for the direct push drill rig. Soil samples were collected and placed in laboratory-supplied sample containers.

Borehole locations are shown on Figure 5A. Borehole logs illustrating the stratigraphy encountered, chemical analysis samples and measured SV concentrations are included in Appendix III.

5.3.2 Field Screening Measurements

Pinchin indicated that subsurface soil conditions were logged in the field. Soil samples were screened for visual and olfactory evidence of impacts and a portion of each sample was analyzed in the field for combustible and volatile vapour concentrations in soil headspace using an RKI Eagle 2 equipped with a combustible gas indicator (CGI) operated in methane elimination mode and calibrated with hexane, and photoionization detector (PID) calibrated with isobutylene.

One apparent "worst case" soil sample each from boreholes MW101 and MW102 was submitted for laboratory analysis of PHC F1-F4, VOCs and PAHs based on vapour concentrations as well as visual and/or olfactory considerations (if any). In addition, representative soil samples were submitted for pH analysis to confirm the Site Condition Standards applicable to the Site as provided in the MECP document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (MECP Standards).

5.4 GROUNDWATER

5.4.1 Monitoring Well Installation

Monitoring well installation services for this work program were provided by Strata. A monitoring well was installed in select boreholes, as shown on Figure 5. Based on information provided by Pinchin, the monitoring wells were constructed using 50 mm inside diameter schedule 40 PVC well pipe and #10 slot screen interval. The annulus of each monitoring well was backfilled with silica well sand in the screened interval. A bentonite seal was placed above the sand pack to prevent infiltration of surface water into the monitoring well. An aboveground monument well casing was cemented in place over each monitoring well for protection. Well installation details are provided within the borehole logs in Appendix III.

The depths to the bottom of the screened intervals of the monitoring wells varied approximately 5.8 to 6.1 m bgs.

Prior to developing and sampling, the monitoring wells were monitored by Pinchin for depth to water (DTW) and non-aqueous phase liquids (NAPL). Monitoring wells MW101 and MW102 were the subsequently developed by Pinchin by purging the wells dry in order to remove entrained particulate in the well standpipe, well screen and filter pack as well as surrounding formation materials. Pinchin indicated that well development was conducted using dedicated inertial pumps comprised of Waterra polyethylene tubing and foot valves.

5.4.2 Field Measurements of Water Quality Parameters

Prior to conducting groundwater sampling activities on July 25 (MW101) and August 23, 2024 (MW102), the DTW and apparent thickness, if any, of any NAPL were then measured by Pinchin.

On June 4, 2025, Terrapex monitored MW101, MW102 and BH2. Monitoring activities included the measurement of combustible vapours (CV) concentrations within the headspace of each monitoring well immediately following removal of the well standpipe cap using a RKI Eagle II Hydrocarbon Surveyor calibrated to *n*-hexane and operated in "methane elimination" mode. The presence, and apparent thickness (if applicable) of any NAPL, and DTW was measured using a Heron oil/water interface probe (IP).

5.4.3 Groundwater Sampling

Pinchin conducted groundwater sampling on July 30 (MW101) and August 23, 2024 (MW102). Pinchin indicated that prior to sampling, the monitoring wells were purged in accordance with their standard operating procedures (SOPs). Groundwater samples were collected into laboratory supplied sampling bottles for analysis of PHC F1-F4, VOCs and PAHs.

5.5 SEDIMENT

Sediment sampling was not completed as sediment is not present at the Site.

5.6 ANALYTICAL TESTING

Laboratory analytical services for this work program involving soil and groundwater media were provided by AGAT Laboratories Inc. (AGAT) facility in Ottawa, Ontario. At the time of the assessment, AGAT's laboratory was accredited by the Standards Council of Canada (SCC) for each of the analyses it was required to undertake as part of this work program.

Soil and groundwater samples were analysed as per the sampling and analysis plan to address the identified APECs from the Phase One ESA.

5.7 RESIDUE MANAGEMENT

No information was provided by Pinchin on residue management during the site investigation.

5.8 ELEVATION SURVEYING

On June, 2, 2025, Terrapex completed a survey of the geodetic elevations of the top of the pipe and ground surface for each monitoring well. The survey was completed using a Trimble Catalyst DA2 Global Navigation Satellite System (GNSS) Receiver Navigation Satellite System (GNSS) Receiver was used to establish geodetic elevations with reference to NAD 1983.

5.9 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

Quality Assurance and Quality Control (QA/QC) measures were implemented during the Phase Two ESA by Pinchin. Pinchin indicated that sample collection and handling procedures were performed in general accordance with the Ontario Ministry of the Environment, Conservation and Parks (MECP) document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" dated December 1996 (MECP Sampling Guideline), the Association of Professional Geoscientists of Ontario (PGO) document entitled "Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)", dated April 2011 (PGO Guideline) and Pinchin's SOPs. Based on the information provided, a summary of these measures follows.

5.9.1 Sample Collection Avoidance of Cross-Contamination

During drilling, to mitigate cross-contamination, dual tube sample liners were disposed after the collection of each sample. Fresh nitrile gloves were worn for the handling of each sample.

During groundwater sampling, dedicated purging and sampling equipment was used at each monitoring well location. To mitigate cross-contamination, the interface probe was washed with a liquid solution of Alconox detergent and rinsed with potable water between each monitoring well. A fresh pair of nitrile gloves was donned at each well location.

Pre-cleaned groundwater sample containers for the specific parameters of interest were provided by the laboratory and used at each borehole and monitoring well location for the collection of soil and groundwater samples. Samples for analyses were placed in an enclosed cooler with ice and transported under a signed chain of custody to the laboratory for chemical analysis.

5.9.2 Field Quality Assurance Sampling

No field quality assurance sampling was conducted by Pinchin.

5.9.3 Laboratory Quality Assurance Sampling

Commercial contract laboratories will have their own internal quality assurance and quality control programs. These programs typically include quality assurance samples in analytical runs, the results of which are provided (in summary form) in the Certificate of Analysis documenting analytical results for a sample submission. Examples of Laboratory QA sample types are summarized below.

TYPICAL LABORATORY QA SAMPLING

QA Sample Type	Field QA Sampling		
Method Blank	An aliquot prepared using analyte-free water and processed through the entire analytical method, including extracting, digestion, and other preparation procedures.		
Blank Spike	An aliquot prepared using water containing known concentrations of target parameters and processed through the entire analytical method, including extracting, digestion, and other preparation procedures.		
Matrix Spike	A second aliquot from an analytical sample that is fortified with known concentrations of the target parameters and processed through the entire analytical method, including extracting, digestion, and other preparation procedures.		
Laboratory Duplicate	A second aliquot from an analytical sample that is included in the analytical run for comparison to results from the corresponding sampling pair.		
Certificate Reference Material (CRM)	An aliquot that has been certified by a recognized agency to contain specific concentrations of target parameters and which is included in the analytical run.		
Surrogate Recovery	Surrogates are parameters not normally found in nature but that behave chemically and physically similar to the analytical run target parameters, and that are introduced into the aliquot of an analytical sample		

6.0 REVIEW AND EVALUATION

6.1 **GEOLOGY**

6.1.1 Background

The Site and Phase One Study Area are located on older alluvial deposits: clay, silt, sand, gravel and some organic remains. Borehole/well records report the soil stratigraphy at the Site comprises surficial organics overlying fat clay, a sand deposit, till and probable bedrock.

The underlying bedrock at this Site is of the Georgian Bay Formation, Blue Mountain Formation and Billings Formation consisting of shale, limestone, dolostone and siltstone. Bedrock was encountered during field investigations completed by Pinchin at depths between 11.1 and 12.8 m bgs.

6.1.2 Encountered Stratigraphy

The Phase Two ESA fieldwork programs encountered one hydro stratigraphic units at the Site, as summarized in the following table.

SUMMARY OF HYDRO STRATIGRAPHIC UNITS ENCOUNTERED BENEATH THE SITE

Stratigraphic Unit	General Description	Depth Range (m bgs)	Hydrogeological Condition
Organics	Surficial organics were encountered at BH1 to BH4	0.075 and 0.1	N/A
Fill	Fill was encountered at the surface at BH5, MW101 and MW102 consisting of compact sand and gravel with varying amounts of silt.	0.6 to 1.5	Damp to wet
Native Fat Clay	Fat Clay Fat clay was encountered underlying the surficial organics and fill within all the boreholes.		Moist to wet
Native Silty Sand A silty sand with gravel was encountered underlying the fat clay material at BH4.		7.6 to 12.8	Wet

No aquitards were encountered during the intrusive investigations. As no contaminants were identified in the shallow overburden aquifer, deeper aquifers were not investigated.

The general soil stratigraphy at the Site is shown on the borehole logs in Appendix III and on cross sections in Figures 6A and 6B.

6.2 GROUNDWATER ELEVATIONS AND FLOW DIRECTION

Three groundwater monitoring wells were installed at the Site in July and August, 2024. Monitoring wells MW101 and MW102 were screened between 3.1 and 6.1 m bgs; monitoring well BH2 was screened between 2.8 and 5.8 m bgs.

Terrapex conducted a groundwater monitoring event on June 4, 2025. The depth to groundwater was identified between 1.01 m bgs (MW102) and 3.56 m bgs (BH2) during that monitoring event.

The findings of the June 4, 2025 monitoring event indicated that the groundwater flow is towards the southwest. The groundwater monitoring data is summarised in Table 4 (appended) and the interpreted groundwater elevation contours are shown on Figure 7.

Free-product or NAPL was not encountered during monitoring, purging, or sampling of the monitoring wells during the Phase Two ESA work programs.

6.3 GROUNDWATER HYDRAULIC GRADIENTS AND CONDUCTIVITY

Based on the relative groundwater elevations on June 4, 2025, the interpreted horizontal gradient ranged between 0.01 m/m and 0.02 m/m, with an average of approximately 0.015 m/m.

Vertical hydraulic gradients were not calculated as the measured concentrations of contaminants of concern in the shallow groundwater beneath the Site do not exceed the applicable SCS.

Based on the fine to medium soil textured soil at the Site, the hydraulic conductivity for the unconfined clay aquifer was estimated to range from 10⁻¹¹ to 10⁻⁸ m/sec (Freeze and Cherry, 1979).

6.4 SOIL TEXTURE

Based on grain size analysis of soil samples submitted by Pinchin (Appendix IV), the QP determined the soil to be medium and fine textured (per the definitions of O. Reg. 153/04), as less than one-third of the soil (measured by volume) constitutes coarse textured soil.

6.5 SOIL FIELD SCREENING

In addition, potential impacts associated with spills, leaks, or other releases were screened by measuring TOV and CV concentrations in the headspace of the portion of recovered soil samples.

During the Phase Two ESA, the following headspace vapour screening measurements were recorded:

- Pinchin reported that all TOV concentrations were 0 ppm in all soil samples.
- Pinchin reported that all CV concentrations were 0 ppm in all soil samples.

The TOV and CV concentrations measured for each soil sample are included on the borehole logs (Appendix III).

6.6 SOIL QUALITY

Laboratory results for the soil samples submitted for analyses of BTEX, PHC F1-F4, VOCs, PAHs and other regulated parameters (ORP) (pH) are summarized in the appended Tables 5 through 8, respectively, with the laboratory Certificates of Analysis enclosed in Appendix V. As indicated in the tables, all of the soil samples had concentrations less than the Table 3 SCS for the parameters analysed. Further, all BTEX, PHC F1-F4, VOCs, PAHs parameters were not detected at the laboratory reportable detection limit (RDL).

Lateral distributions of soil samples for each parameter group are depicted as plan views presented in Figures 8 through 11.

6.7 GROUNDWATER QUALITY

Laboratory results for the groundwater samples submitted for analyses of BTEX, PHCs, VOCs, and PAHs are summarized in the appended Tables 9 through 11, respectively, with the laboratory Certificates of Analysis enclosed in Appendix V. As indicated in the tables, all of the groundwater samples had concentrations less than the Table 3 SCS for the parameters analysed. Further, all BTEX, PHC F1-F4, VOCs, PAHs parameters were not detected at the laboratory RDL.

Lateral distributions of groundwater samples for each parameter group are depicted as plan views presented in Figures 12 through 14.

6.8 SEDIMENT QUALITY

The environmental quality of sediment was not investigated as sediment is not present at the Site.

6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

6.9.1 Field Quality Control Objectives

Based on information provided in the Pinchin Phase II ESA report, no deviations from their SOPs were noted.

6.9.2 Field Quality Assurance Objectives

No field quality assurance sampling was conducted by Pinchin.

6.9.3 Laboratory Quality Assurance Objectives

The laboratory's QA/QC program consisted of the analysis of laboratory replicates, method and spiked blanks, process percent recoveries, matrix spikes, and surrogate percent recoveries, as appropriate for the particular analysis protocol.

The QA section(s) of the laboratory Certificates of Analyses were reviewed to identify any contraventions to the following QA objectives:

LABORATORY QA OBJECTIVES

Laboratory QA Objectives	Objective Satisfied	Remarks
QA/QC samples within QC limits.	Yes	No issues were identified based on Terrapex's review of the laboratory certificates of analysis
RPDs for laboratory duplicates within acceptable limits.	Yes	No issues were identified based on Terrapex's review of the laboratory certificates of analysis
Trip spike recoveries within acceptable limits.	Yes	No issues were identified based on Terrapex's review of the laboratory certificates of analysis
Variation of Detection limits.	Yes	There was no variation of detection limits based on Terrapex's review of the laboratory certificates of analysis
Deviation from standard protocol	Yes	No deviation from the standard protocol were noted based on Terrapex's review of the laboratory certificates of analysis

6.9.4 Summary of QA/QC Results

Based on the above analysis of the QA/QC program, no concerns regarding the adequacy or representativeness of the sampling and analytical program were identified and, as a result, the decision-making was not affected, and the overall objectives of the investigation and the assessment were met.

6.10 Phase Two Conceptual Site Model

A preliminary conceptual site model (CSM) was developed as part of the Phase One ESA which is discussed in Section 4.3. Following completion of the Phase Two ESA field program, the CSM has been updated to present the Site characteristics (prior to any efforts to reduce contaminant concentrations), identify and evaluate areas of contaminant impact, including their sources, exposure routes, and receptors at risk.

7.0 CONCLUSIONS

Based on the findings of the Phase Two ESA, the environmental quality of soil and groundwater beneath the Site has been determined to meet the Table 3 SCS.

7.1 SIGNATURES

This report has been completed in accordance with the terms of reference for this project as agreed upon by WO MW Realty Limited (the Client) and Terrapex Environmental Ltd. (Terrapex) and generally accepted engineering or environmental consulting practices in this area.

The reported information is believed to provide a reasonable representation of the general environmental conditions at the site; however, studies of this nature have inherent limitations. The data were collected at specific locations and conditions may vary at other locations, or with the passage of time. The assessment was also limited to a study of those chemical parameters specifically addressed in this report.

Terrapex has relied in good faith on information and representations obtained from the Client and third parties and, except where specifically identified, has made no attempt to verify such information. Terrapex accepts no responsibility for any deficiency or inaccuracy in this report as a result of any misstatement, omission, misrepresentation, or fraudulent act of those providing information. Terrapex shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time of the study.

This report has been prepared for the sole use of WO MW Realty Limited. Terrapex accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than WO MW Realty Limited.

The objectives and requirements set out in Schedule E of O. Reg. 153/04 have been applied in carrying out this environmental site assessment.

Respectfully submitted,

TERRAPEX ENVIRONMENTAL LTD.

Greg Sabourin, P.Eng., QPESA

Project Manager

Keith Brown, P.Eng., QP_{ESA}

Senior Reviewer

POVINCE OF

DROFESSIONAL EN

W. BROWN

8.0 REFERENCES

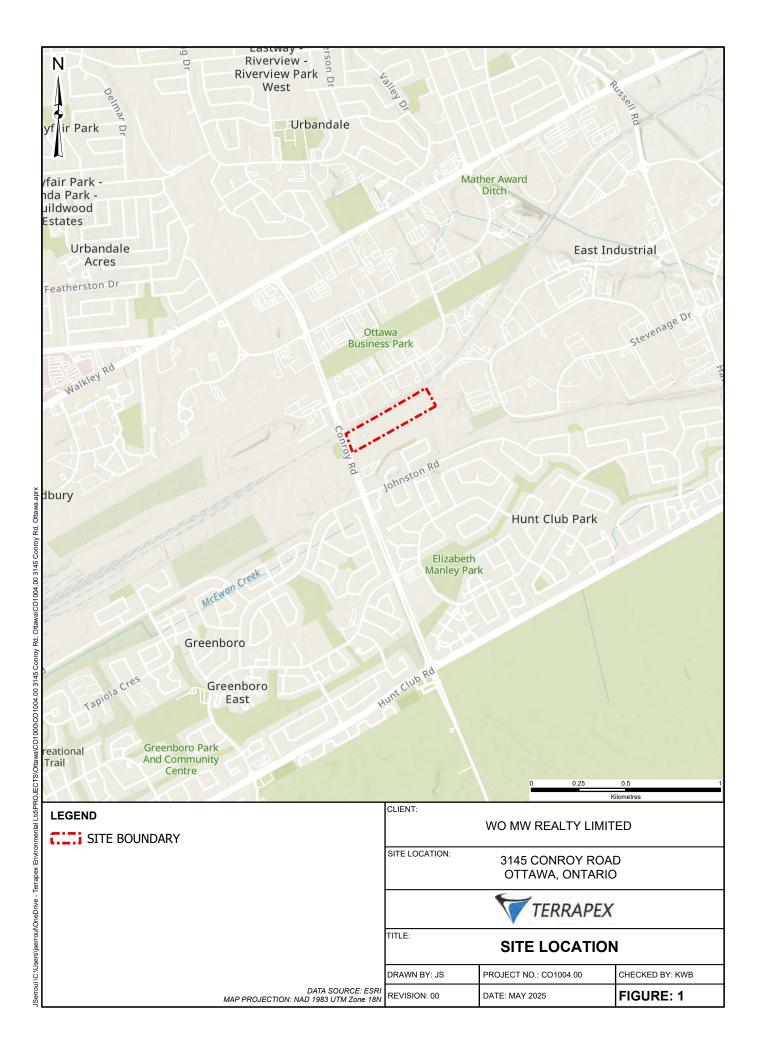
Groundwater. Prentice-Hall Canada Inc., Toronto. Freeze, Allan R. and Cherry, John A., 1979.

Ontario Regulation 153/04, Records of Site Condition – Part XV.1 of the Environmental Protection Act.

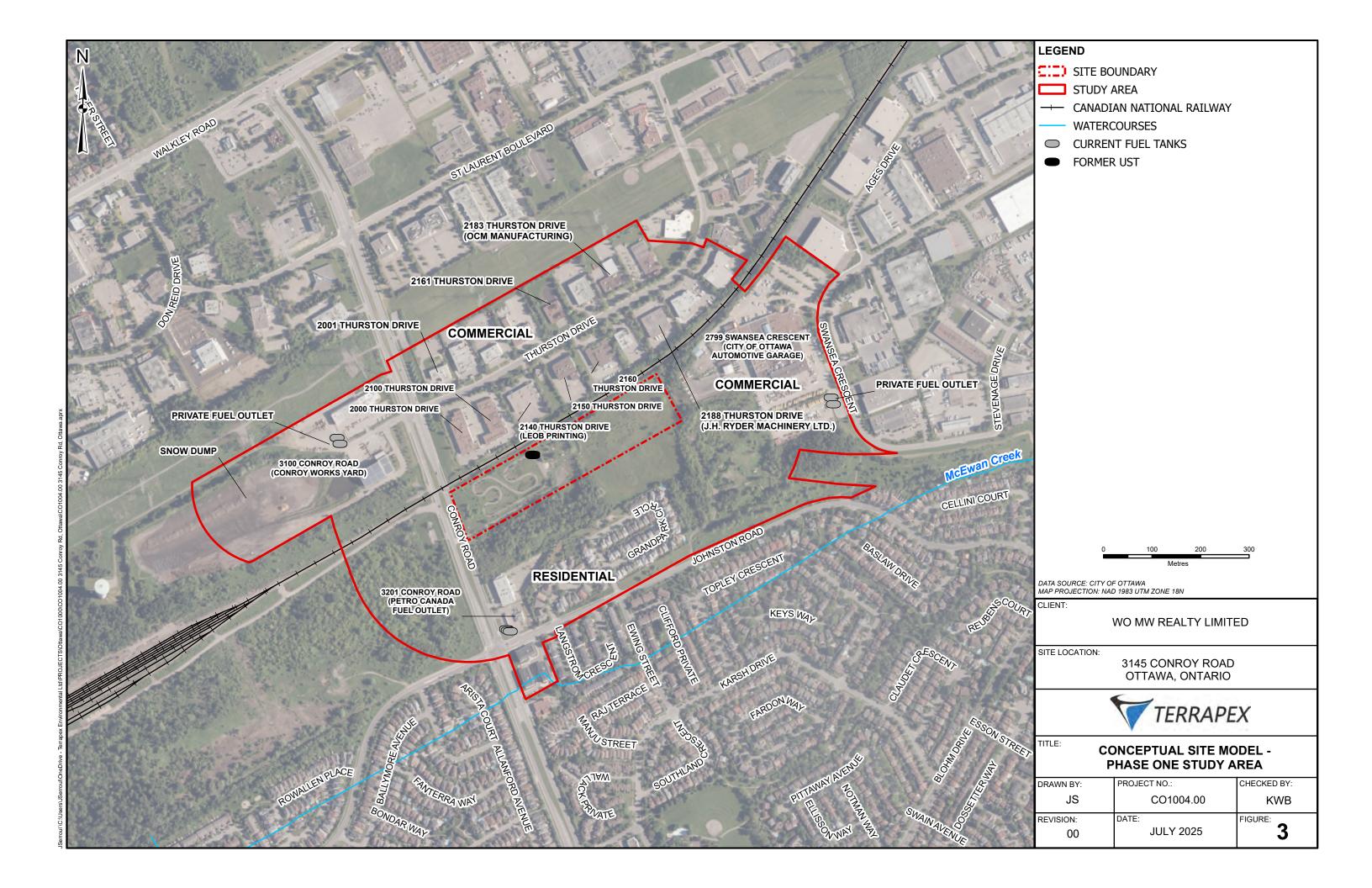
Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ministry of Environment, Conservation and Parks. April 15, 2011.

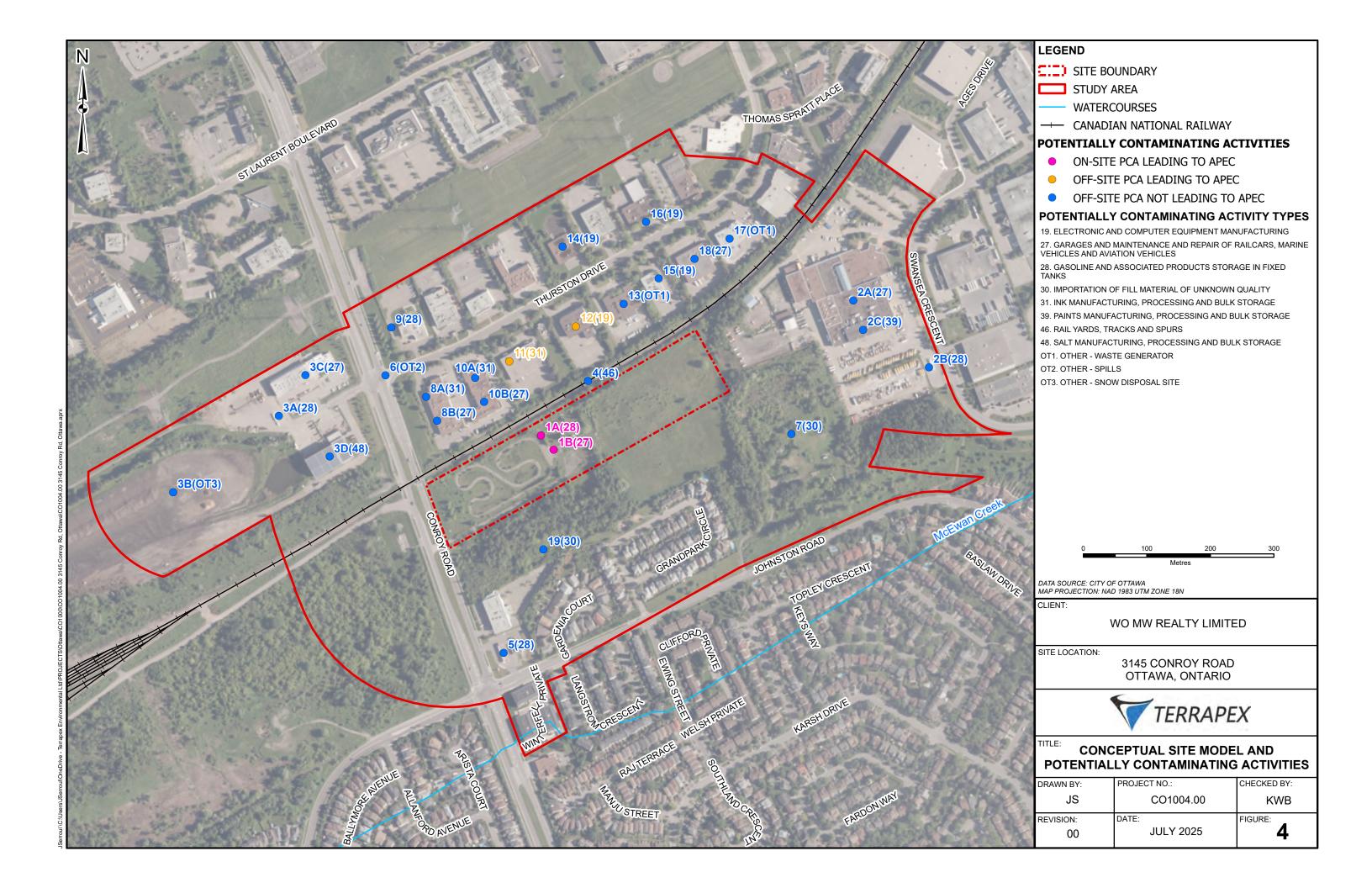
Phase I Environmental Site Assessment, 3145 Conroy Road, Ottawa, ON, Pinchin Ltd. June 21, 2024.

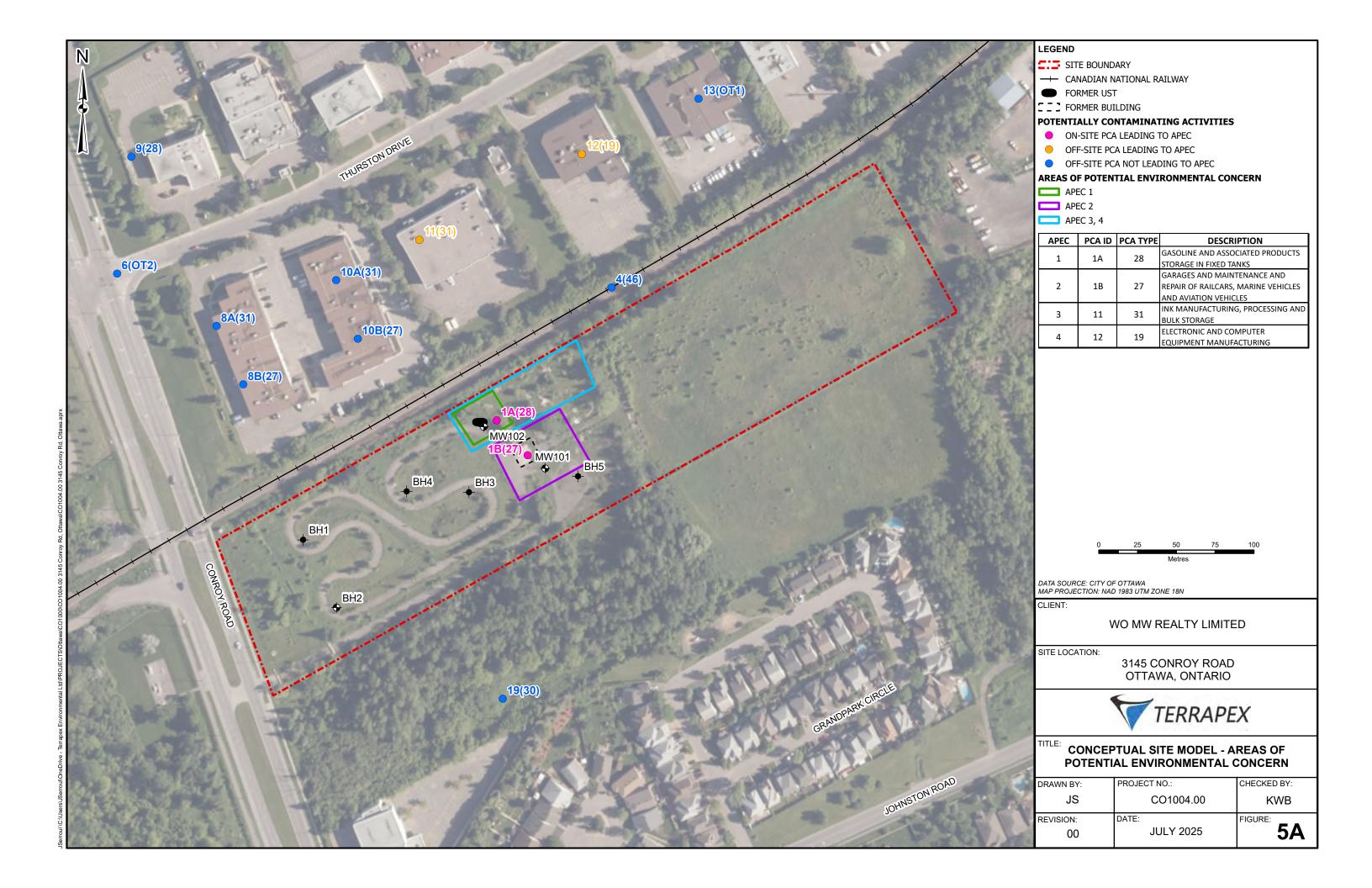
Phase II Environmental Site Assessment, 3145 Conroy Road, Ottawa, ON. Pinchin Ltd. September 6, 2024.

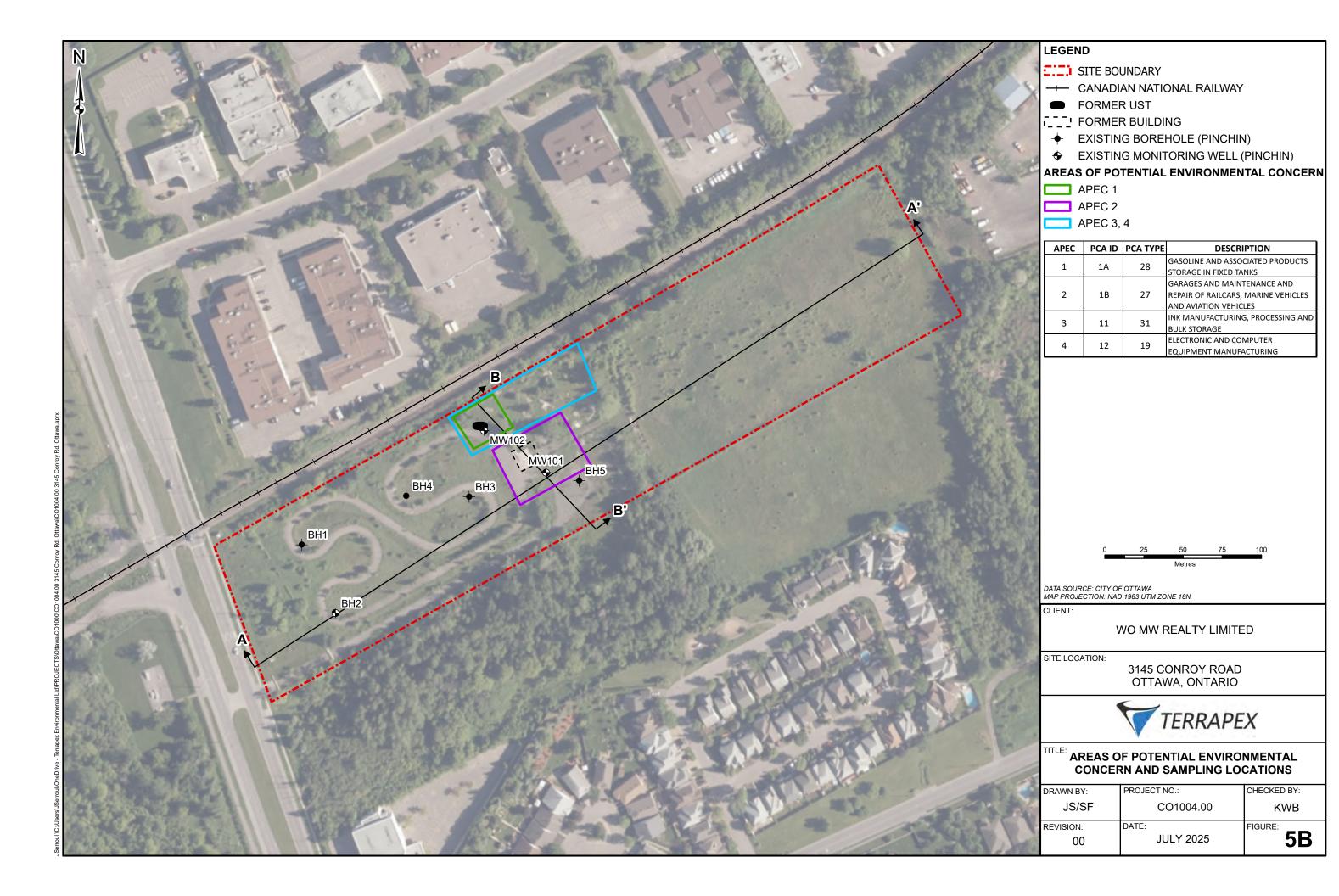

Preliminary Geotechnical Investigation – Proposed Commercial Development, 3145 Conroy Road, Ottawa, ON. Pinchin Ltd. dated September 25, 2024.

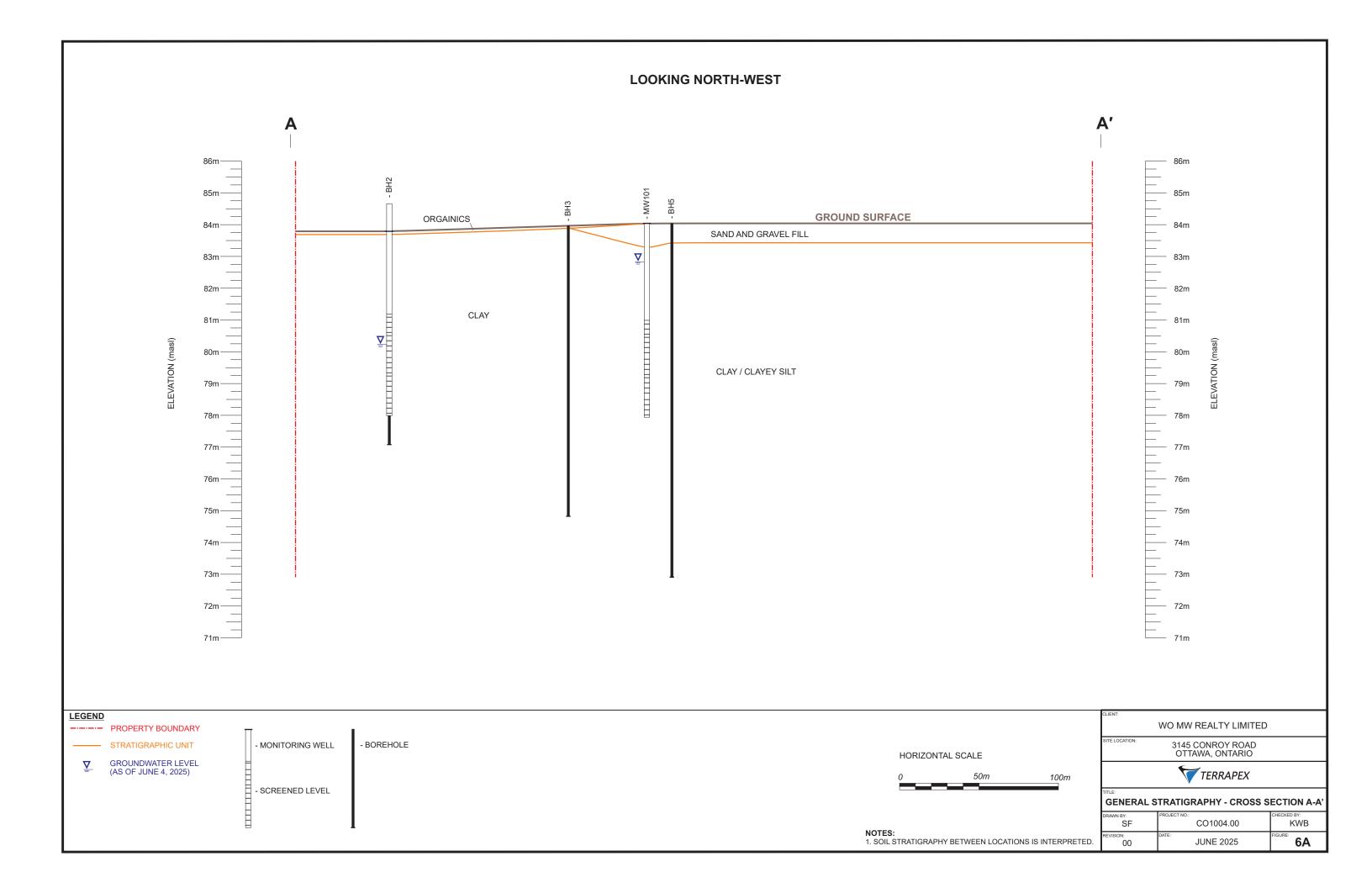
Phase One Environmental Site Assessment, 3145 Conroy Road, Ottawa, Ontario (Draft). Terrapex. July 11, 2025.




FIGURES

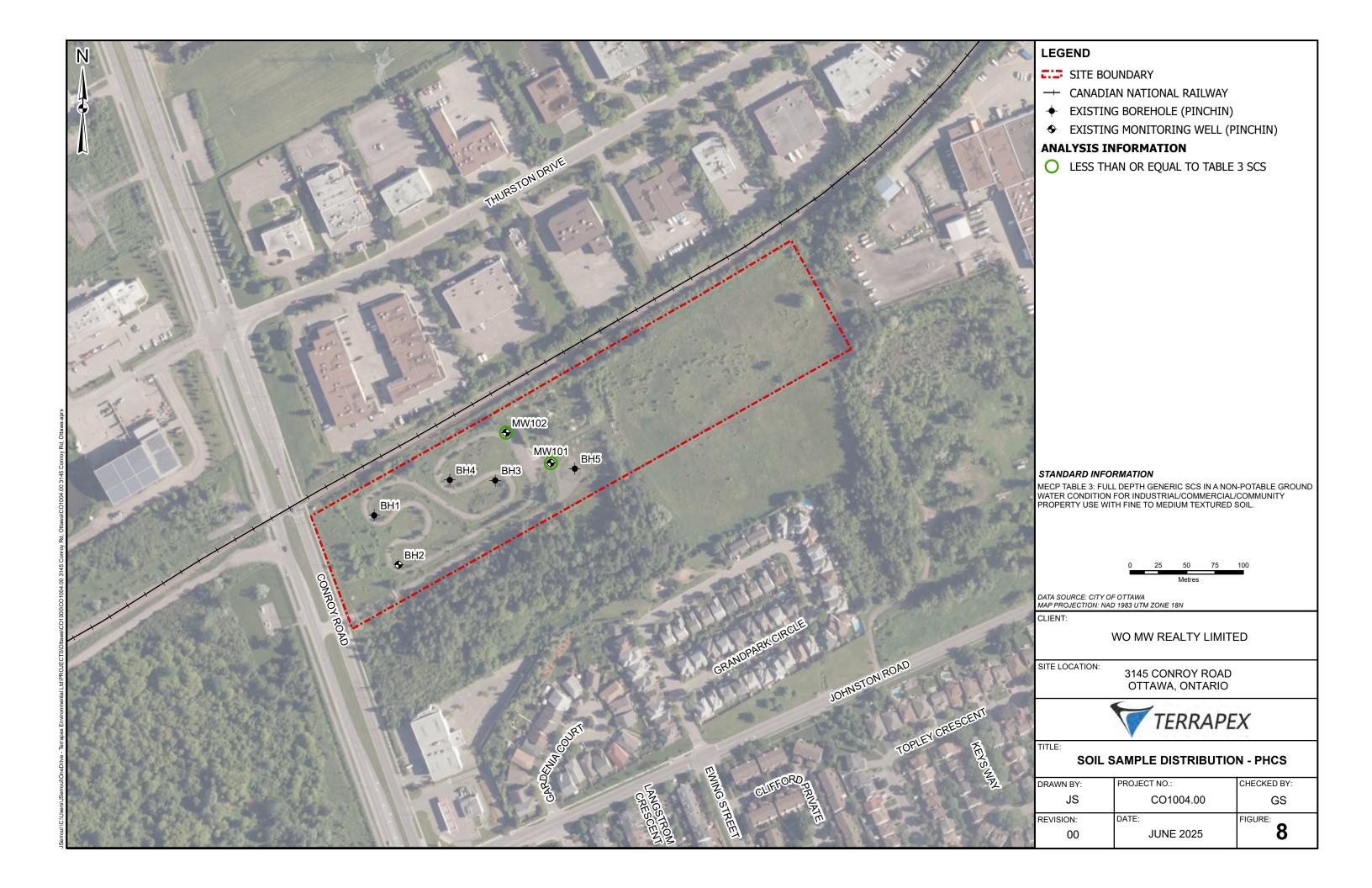


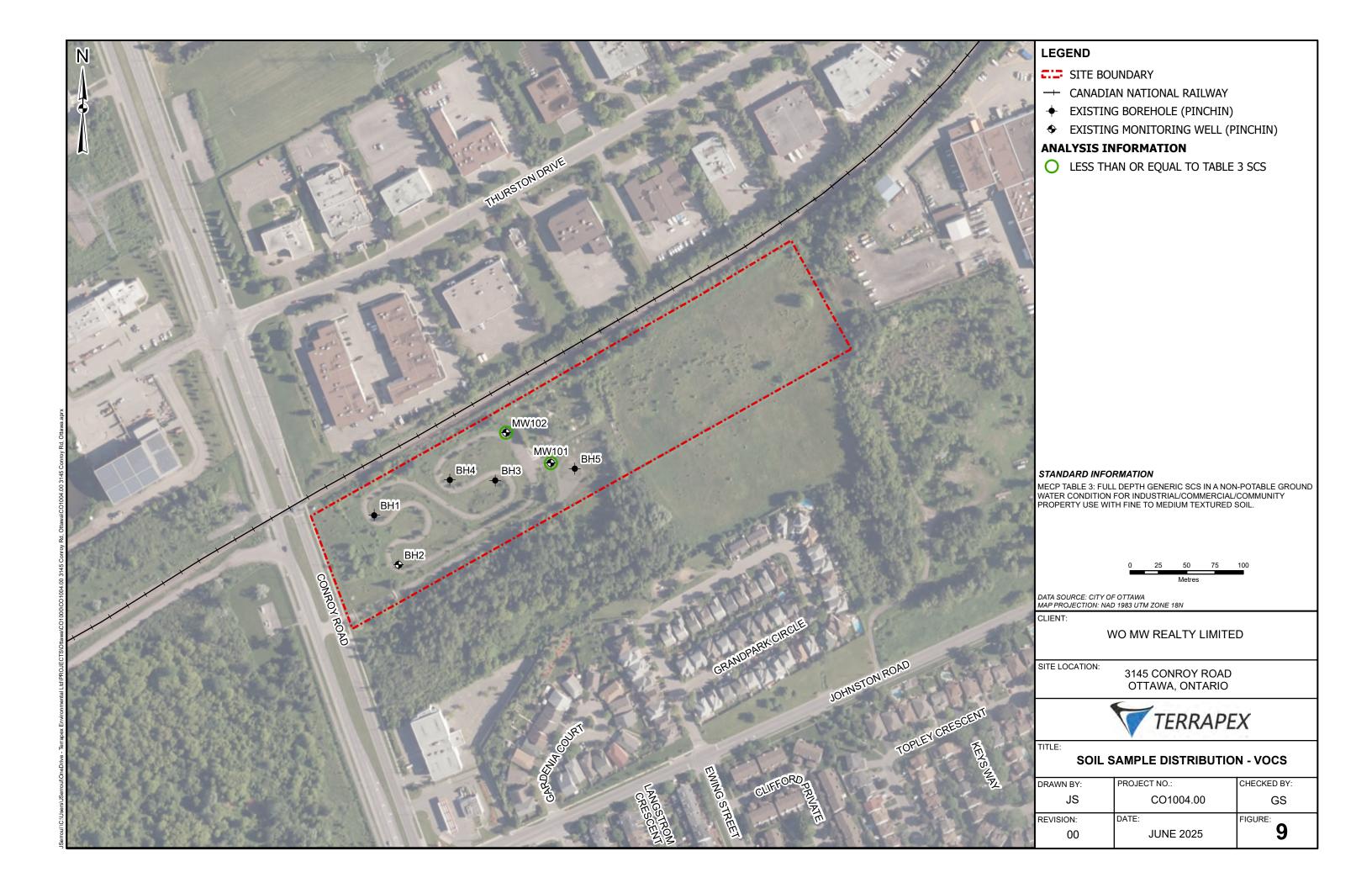


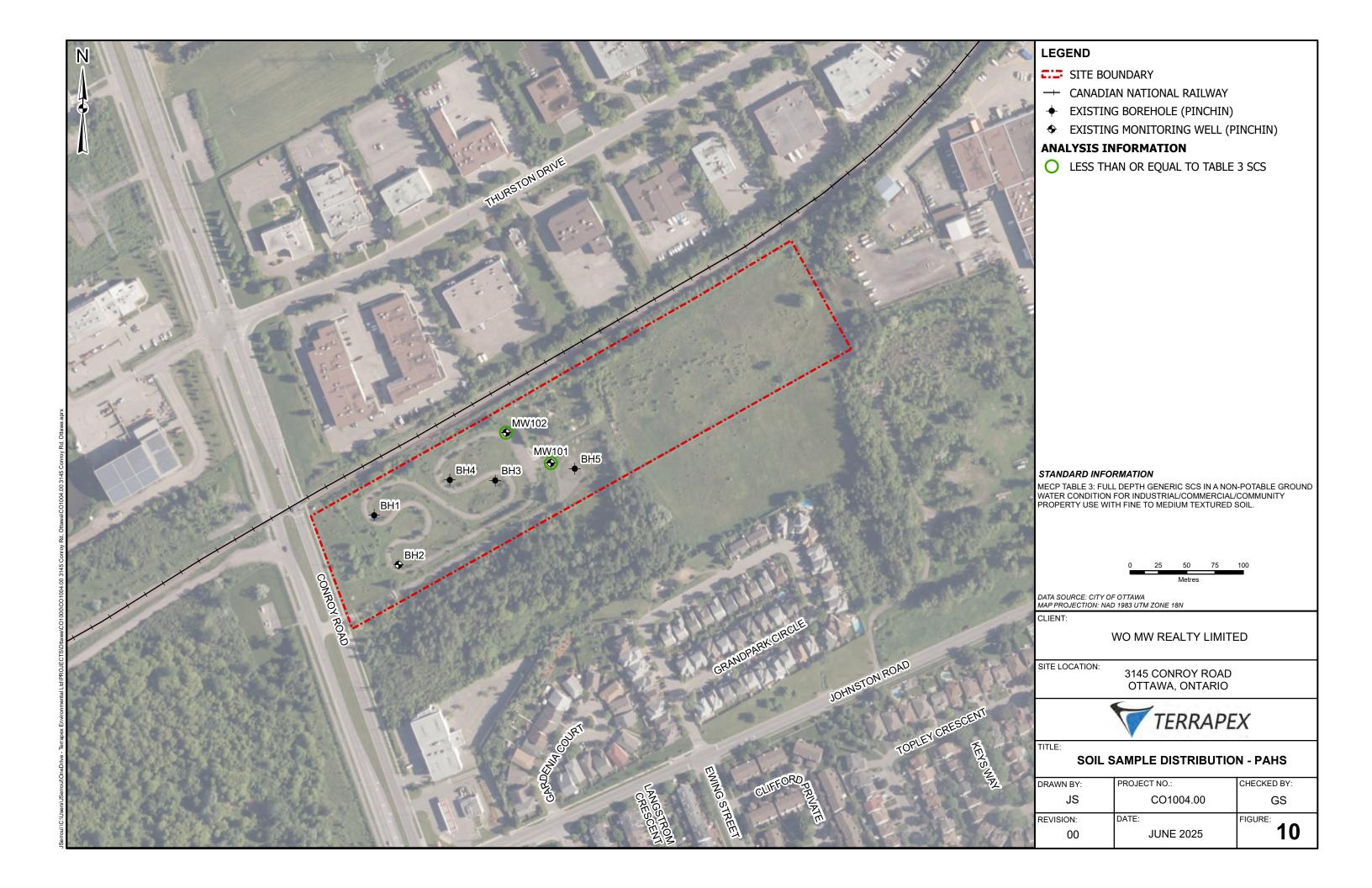


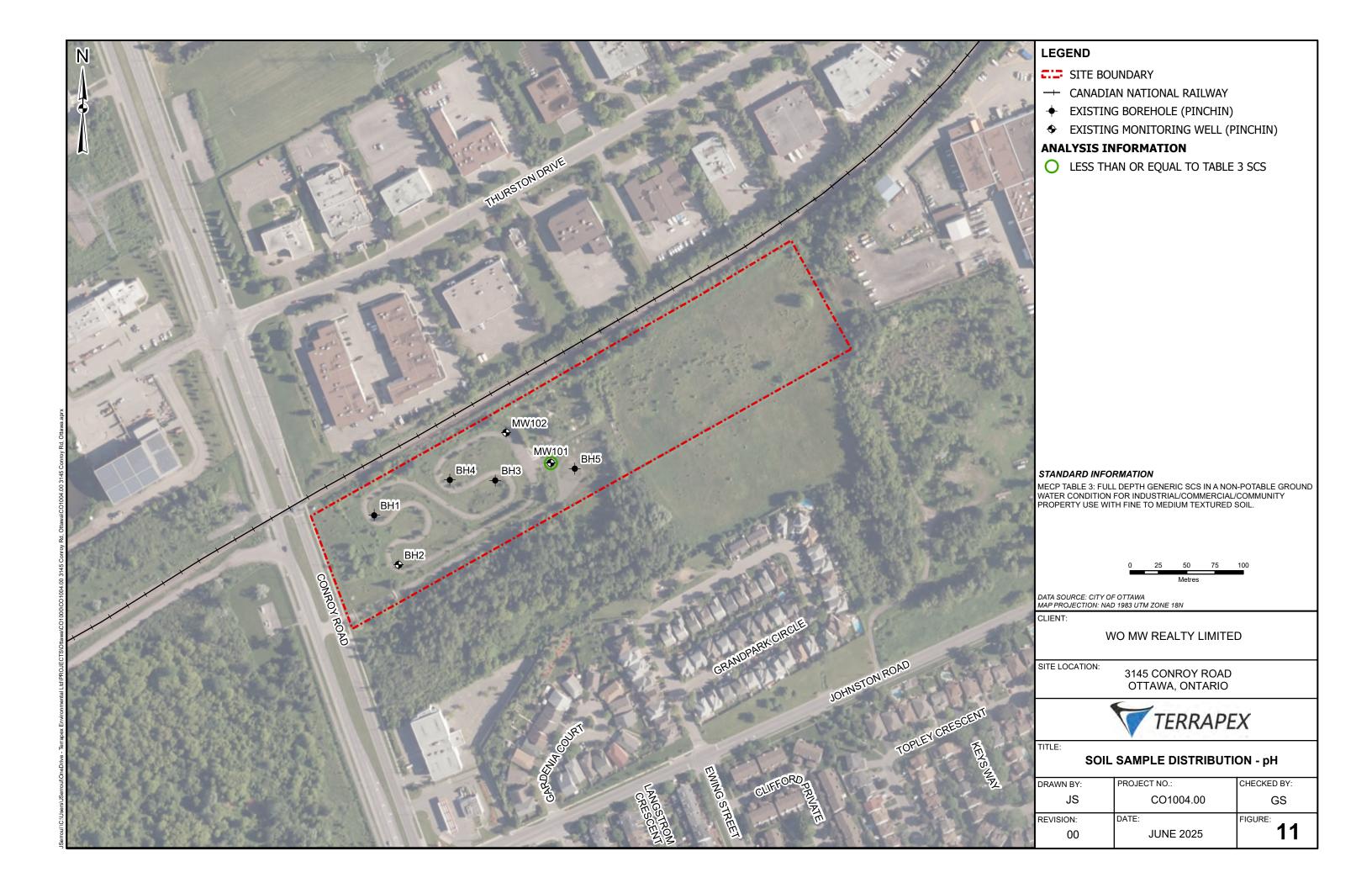


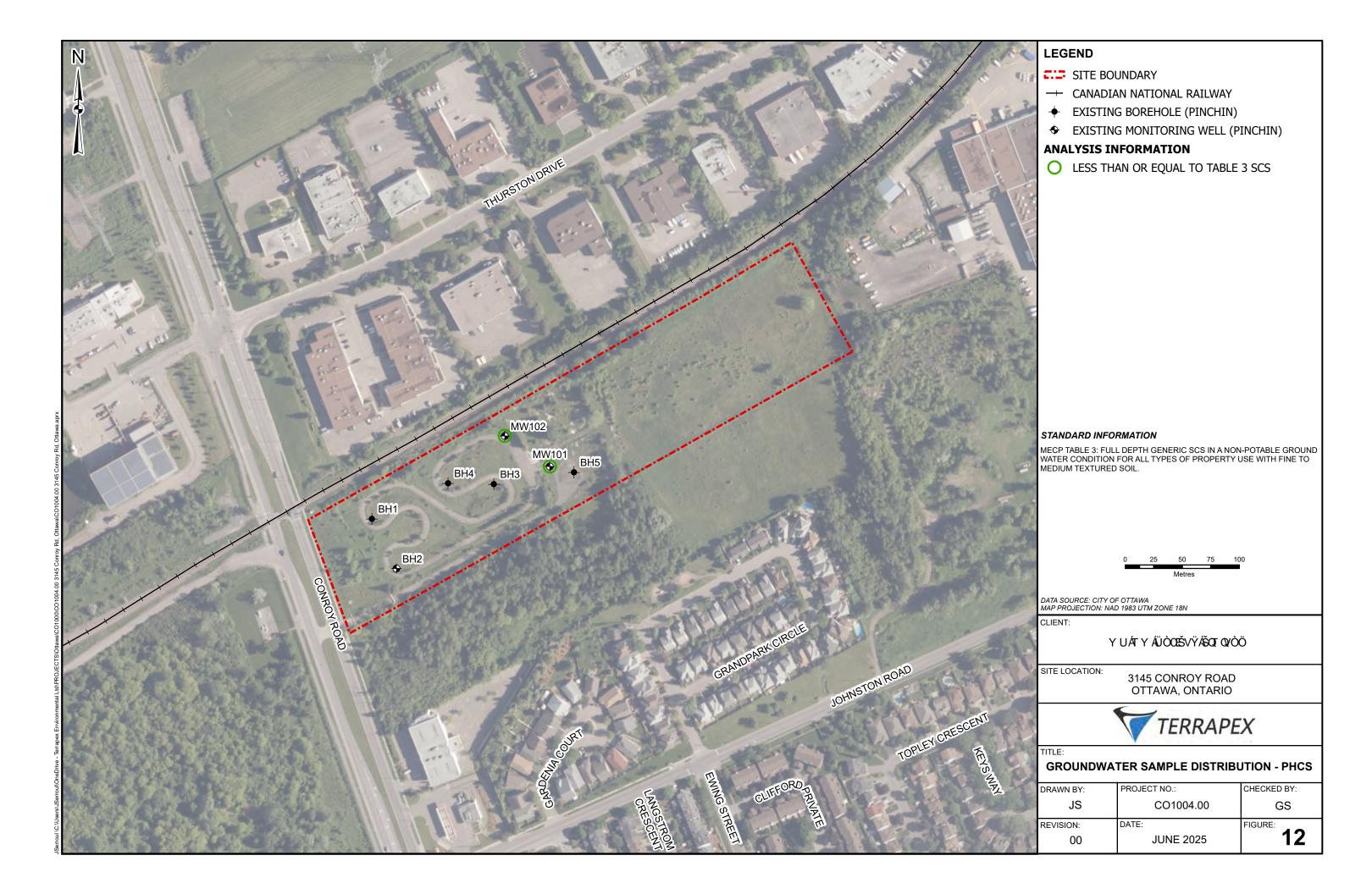


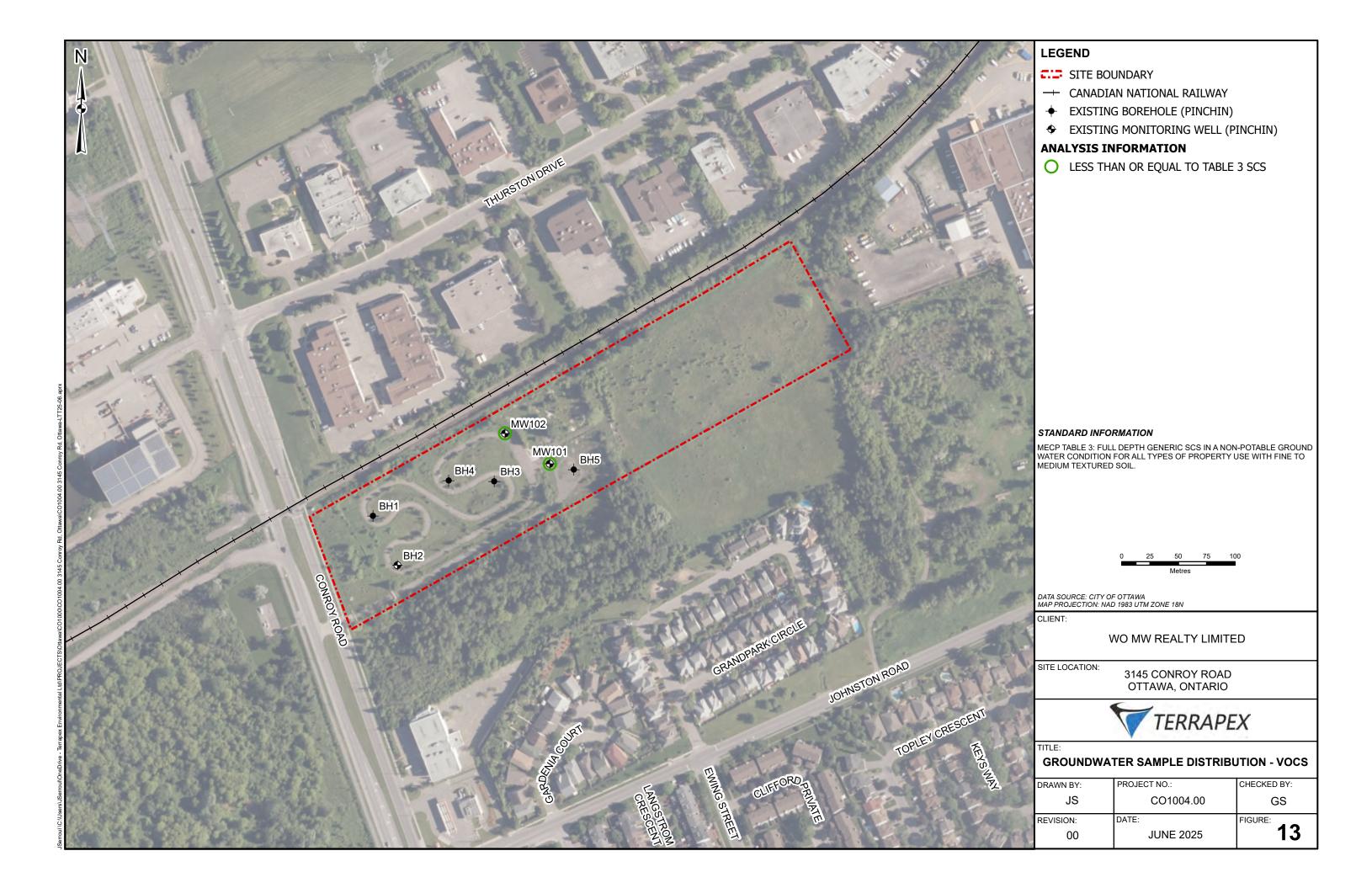


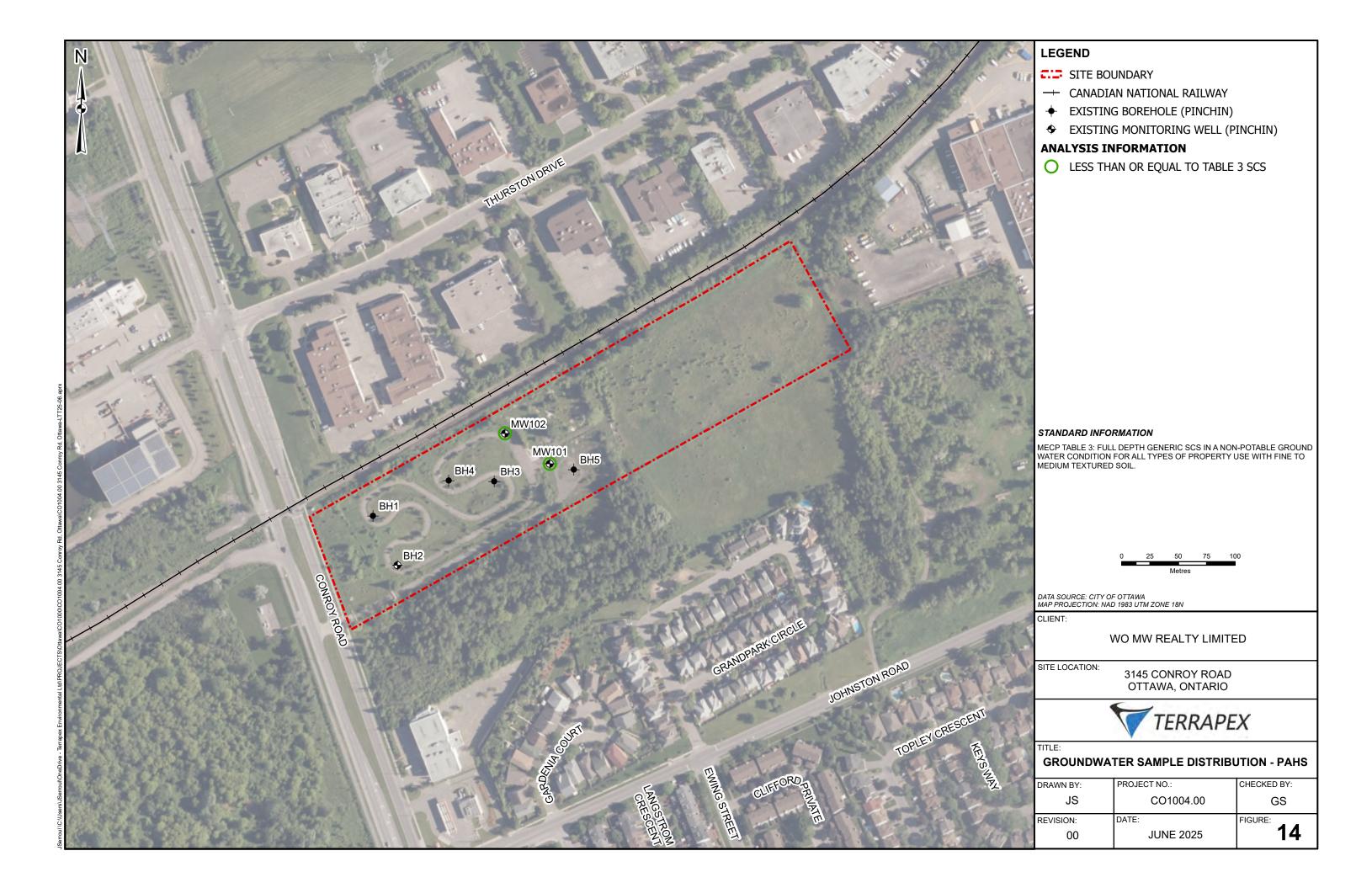












TABLES

TABLE 1: TABLE OF CURRENT AND PAST USES OF THE PHASE ONE PROPERTY (Refer to clause 16(2)(b), Schedule D, O. Reg. 153/04)

Year	Name of Owner	Description of Property Use	Property Use ¹	Other Observations from Aerial Photographs, Fire Insurance Plans, etc.
1840 - 1870	William Moxley	Vacant	Agricultural or Other Use	No information available for this time period.
1870 – 1872	Elizabeth Moxley	Vacant	Agricultural or Other Use	No information available for this time period.
1872 - 1874	Richard Moxley	Vacant	Agricultural or Other Use	No information available for this time period.
1874 - 1877	John Crawford	Vacant	Agricultural or Other Use	No information available for this time period.
1877 - 1877	Samuel Benoit	Vacant	Agricultural or Other Use	No information available for this time period.
1877 - 1885	M.L Crawford	Vacant	Agricultural or Other Use	No information available for this time period.
1885	John Simmons	Vacant	Agricultural or Other Use	No information available for this time period.
1885 – 1931	James Gorman	Vacant	Agricultural or Other Use	No information available for this time period.
1931 – 1952	Ellen Gorman	Vacant	Agricultural or Other Use	No information available for this time period.
1952 – 1954	Her Majesty the Queen	Vacant	Agricultural or Other Use	No information available for this time period.
1954 – 2005	National Capital Commission (NCC)	Use as a golf cart track and driving range from 1981 to 2011.	Agricultural or Other Use	The Site was developed as a golf-kart and driving range "Thunderbird Golf & Go-Karts" in 1981 based one aerial photographs and insurance inspection reports. The
2005	Pineland Amusement Ltd.	Use as a golf cart track and driving range from 1981 to 2011.	Commercial Use	The Site operated as a golf kart track and driving range from 1981 to 2011.
2014	3145 Conroy Road Inc.	Vacant	Commercial Use	The building previously present on the Site has been demolished, and the Site appears to be inactive.
2024	WO MW Realty Limited	Vacant	Commercial Use	The Site is abandoned and vacant.

Votes.

^{2 -} when submitting a record of site condition for filing, a copy of this table must be attached

^{1 -} for each owner, specify one of the following types of property use (as defined in O. Reg. 153/04) that applies:

Agriculture or other use | Commercial use | Community use | Industrial use | Institutional use | Parkland use | Residential use

TABLE 2: POTENTIALLY CONTAMINATING ACTIVITIES ON, IN OR UNDER THE PHASE ONE PROPERTY AND STUDY AREA

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 1A	28 - Gasoline and Associated Products Storage in Fixed Tanks	The Site	The presence of the former UST located at the Site.	Previous Reports Ontario Well Records HLUI City Directory Insurance Inspection Reports	Possible	Likely, the only known references to this UST is a mention in previous reports and well records, with no confirmed location identifier	APEC 1
PCA 1B	27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	The Site	The storage of gasoline and repair of go-karts within the area of the main building as described in the inspection reports.	Insurance Inspection Reports	Possible	Unknown of the exact storage of materials	APEC 2
PCA 2A	27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	2799 Swansea Cres (170 m east)	The operation of the City of Ottawa automotive garage at the City work yard.	ERIS Report Aerial Photographs HLUI	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No
PCA 2B	28 - Gasoline and Associated Products Storage in Fixed Tanks	2799 Swansea Cres (170 m east)	The operation of the current and former private fuel outlet associated with the City of Ottawa works yard.	Aerial Photographs ERIS	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 2C	39. Paint Manufacturing, Processing and Bulk Storage	2799 Swansea Cres (170 m east)	A record was provided for the approval for two spray paint booths in the automotive and carpentry sections of the building with approval provided in 2000.	ERIS	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No
PCA 3A	28 - Gasoline and Associated Products Storage in Fixed Tanks	3100 Conroy Road (145 m northwest)	The operation of the City of Ottawa works yard, and the private retail fuel outlet with reported spills.	ERIS Aerial Photographs HLUI Site Inspection	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No
PCA 3B	Other – Operation of Snow Dump	3100 Conroy Road (200 m northwest)	The operation of the City of Ottawa snow dump located at City works yard	ERIS Report Aerial Photographs HLUI	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No
PCA 3C	27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	3100 Conroy Road (200 m northwest)	Operation of a garage associated with the City works yard	ERIS Site Inspection	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No
PCA 3D	48 - Salt Manufacturing, Processing and Bulk Storage	3100 Conroy Road (200 m northwest)	Assumed salt storage at the City works yard due to a reported 1,000 L calcium chloride spill in 2013	ERIS	Unlikely to being cross-gradient of the Site.	No information is available on the operations	No

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 4	46 - Rail Yards, Tracks and Spurs	Located to adjacent northern boundary of the Site (adjacent to the north)	The presence of the Canadian National rail line was identified along the north property boundary.	HLUI Aerial Photographs Site Inspection	Unlikely as any impacts are expected to be localized to the rail line	None	No
PCA 5	28 - Gasoline and Associated Products Storage in Fixed Tanks	3201 Conroy Road (157 m south southwest)	Records indicated the presence of a Petro-Canada retail fuel outlet with four double walled fibreglass 50,000 L USTs which were installed in 2002. Records indicated the presence of a ERIS City Directories HLUI Aerial Photographs Records indicated the presence of a Petro-Canada retail fuel outlet with being downgradient from the Site		None	No	
PCA 6	Other - Spills	Thurston Road & Conroy Road (167 m west northwest)	A spill of 113 L diesel fuel to water-filled ditch was reported in 1995.	ERIS	Not likely due to being cross- gradient and the distance from the Site	Unclear if environmental assessment and/or remediation was conducted	No
PCA 7	30 - Importation of Fill Material of Unknown Quality	3203 Conroy Road (adjacent to southeast corner of the Site)	The importation of fill to the property was visible in the aerial photographs (2007)	Aerial Photographs	Not likely as fill does not appear to extend onto the Site	Type and extent of fill material is unknown	No
PCA 8A	31 - Ink Manufacturing, Processing and Bulk Storage	2000 Thurston Drive (30 m to the north)	The property was listed as a waste generator for paint, pigment, coating from 1991 to 2021. The city directories identified the property as a printing business.	ERIS HLUI	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills.	Quantities of waste generated are unknown Waste handling practices are unknown	No

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 8B	27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	2000 Thurston Drive (30 m to the north)	The property was listed as a waste generator for paint, pigment, coating from 1991 to 2021. HLUI identify the property as automotive garage ('Hyper Performance Auto Care').	ERIS HLUI	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills.	Quantities of waste generated are unknown Waste handling practices are unknown	No
PCA 9	28 - Gasoline and Associated Products Storage in Fixed Tanks	2001 Thurston Drive (183 m to the north)	The suspected presence of a diesel fuel tank for a back up generator based on air emissions approval.	ERIS	Not likely as there have been no reported spills	Volumes of tank not provided.	No
PCA 10A	31 - Ink Manufacturing, Processing and Bulk Storage	2100 Thurston Drive (30 m to the north)	The property was listed as a generator of variety of wastes. Property was identified as "FND Graphics".	ERIS	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills.	Quantities of waste generated are unknown Waste handling practices are unknown	No
PCA 10B	27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	2100 Thurston Drive (30 m to the north)	The property was listed as a generator of variety of wastes. The property was identified as an automotive garage ("Imperial Auto") in HLUI.	ERIS HLUI	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills.	Quantities of waste generated are unknown Waste handling practices are unknown	No

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 11	31 - Ink Manufacturing, Processing and Bulk Storage	2140 Thurston Drive (30 m to the north)	The property was listed as a generator of halogenated solvents and is suspected to be a former/current printing business. The property was identified in waste generator records as "Loeb printing"	ERIS HLUI City Directory	Possible	Quantities of waste generated are unknown Waste handling practices are unknown	APEC 3
PCA 12	19 - Electronic and Computer Equipment Manufacturing	2150 Thurston Drive (30 m to the north)	The property was listed as a waste generator for various wastes including halogenated solvents and was identified as manufacturing electrical components.	ERIS	Possible	Significant uncertainty as it is unknown if actual manufacturing was completed.	APEC 4
PCA 13	Other – Waste Generation	2160 Thurston Drive (30 m to the north)	The property was listed as a generator of variety of wastes including photo processing waste and petroleum distillates from 1992 to 2001.	ERIS	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills.	Quantities of waste generated are unknown Waste handling practices are unknown	No
PCA 14	19 - Electronic and Computer Equipment Manufacturing	2161 Thurston Drive (175 m north)	Property is identified manufacturer of printed circuit boards under M.P.C Circuit Inc. established in 1984.	ERIS HLUI	Not likely due to the distance from the Site	No information is available on the operations Waste handling practices are unknown	No

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 15	19 - Electronic and Computer Equipment Manufacturing	2170 Thurston Drive (30 m to the north)	The property is registered for the manufacturing of computer and peripheral equipment under the business name "Cemtech".	ERIS	Not likely as there is no reported waste generation or spills	Significant uncertainty as it is unknown if actual manufacturing was completed.	No
PCA 16	19 - Electronic and Computer Equipment Manufacturing	2183 Thurston Drive 175 m to the north northeast	Property is suspected of electronics manufacturing based on waste generator records and other ERIS Property is suspected of electronics ERIS HLUI the distance from as it is city Directory City Directory		Significant uncertainty as it is unknown if actual manufacturing was completed.	No	
PCA 17	Other – Waste Generator	2200 Thurston Drive (100 m northeast)	The property is listed as a generator of variety of wastes including petroleum distillates and waste oils and lubricants. Properties are listed as "Moham Electric" and "Schindler Elevator"	ERIS HLUI	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills	No information is available on the operations Waste handling practices are unknown	No
PCA 18	27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	2188 Thurston Road Or 2184 Thurston Drive (46 m north)	The property is listed as a waste generator of waste oils and lubricants and petroleum distillate and photo processing waste between 1992 and 2002. Property is identified as an automotive garage in ERIS records and in City directories from 1993 to 1994 (Thurston Auto Repairs)	ERIS City Directory	Not likely due to nature of the wastes generated and quantities are expected to be relatively minor with no reported spills	No information is available on the operations Waste handling practices are unknown	No

PCA ¹	Potentially Contaminating Activity ²	Address/ Location/ Distance/ Direction	Description	Data Source	Likelihood To Affect the Site / Rationale	Uncertainty	Area(s) of Potential Environment al Concern
PCA 19	30 - Importation of Fill Material of Unknown Quality	3169 Thurston Road (adjacent to the south)	The importation of fill to the property was visible in the aerial photographs (1976 and 1984)	Aerial Photographs	Not likely as fill does not appear to extend onto the Site	Type and extent of fill material is unknown	No

¹ As shown on Figure 4.

² As set out in Table 2 in Schedule D of O. Reg. 153/04.

TABLE 3: TABLE OF AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

(Refer to clause 16(2)(a), Schedule D, O. Reg. 153/04)

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site Or Off-Site)	Contaminants Of Potential Concern ^{3,4}	Media Potentially Impacted (Ground water, Soil, and/or Sediment)
APEC 1	The area directly in the vicinity of the former UST	PCA 1A: 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	BTEX/PHCs	Soil & Groundwater
APEC 2	The footprint of the former building and within its immediate vicinity due to the storage of fill and maintenance and storage of go-karts.	PCA 1B: 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	BTEX/PHCs, VOCs and PAHs	Soil & Groundwater
APEC 3	North-central portion of the Site	PCA 11: 31 - Ink Manufacturing, Processing and Bulk Storage	Off-Site	VOCs	Groundwater
APEC 4	North-central portion of the Site	PCA 12: 19 - Electronic and Computer Equipment Manufacturing	Off-Site	VOCs	Groundwater

^{1 -} Areas of potential environmental concern means the area on, in or under a Phase One Property where one or more contaminants are potentially present, as determined through the Phase One environmental site assessment, including through,

- (a) identification of past or present uses on, in or under the Phase One Property, and
- (b) identification of potentially contaminating activity.
- 2 Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area.
- 3 When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011 and as of February 19, 2021, as specified below:

List of Method Groups:

ABNs	Dioxins/Furans, PCDDs/PCDFs	PCBs	VOCs	Metals	B- HWS	EC	Methyl Mercury
CPs	OCs	PAHs	BTEX	As, Sb, Se	Cf	Cr (VI)	Low or high pH
1,4-Dioxane	PHCs	THMs	Bromomethane	Na	CN ⁻	Hg	SAR

^{4 -} Where an identified contaminant of potential concern is not listed in the table that sets out the applicable site conditions standards in the Soil, Ground Water and Sediment Standards for which sampling and analysis is performed and is associated with potentially contaminating activity, the qualified person is referred to Subsection 43(3) of the Regulation.

^{5 -} When submitting a record of site condition for filing, a copy of this table must be attached.

TABLE 4: GROUNDWATER MONITORING DATA 3145 CONROY ROAD, OTTAWA, ONTARIO

		WELL CONS	TRUCTION		WELL MONITORING						
WELL ID	GROUND ELEVATION ¹	T.O.P. ELEVATION ²	SCREEN LENGTH	BOTTOM OF SCREEN ³	DATE	CV⁴	DEPTH TO WATER FROM T.O.P.	DEPTH TO WATER FROM GROUND	GROUNDWATER ELEVATION ⁵	LNAPL THICKNESS ⁶	
	(m)	(m)	(m)	(m)			(m)	(m)	(m)	(m)	
BH2	83.79	84.66	3.05	77.99	04-Jun-25	<5 ppm	4.43	3.56	80.23	None	
MW101	84.04	85.03	3.05	77.94	04-Jun-25	<5 ppm	2.20	1.21	82.83	None	
MW102	84.30	84.19	3.05	78.20	04-Jun-25	<5 ppm	0.90	1.01	83.29	None	

NOTES

¹ Elevation of ground surface at well location, relative to site benchmark

² Elevation of highest point of well pipe ("top of pipe"), relative to site benchmark

³ Elevation of bottom of well screened interval, relative to site benchmark

⁴ Combustible vapour concentration in well headspace in parts per million by volume (ppm) or percent of lower explosive limit (%LEL)

⁵ Static water level elevation, relatve to site benchmark

⁶ Measured thickness of light, non-aqueous phase liquid, if any

TABLE 5: SUMMARY OF SOIL ANALYTICAL RESULTS - BTEX AND PHCs 3145 CONROY ROAD, OTTAWA, ONTARIO

SAMPLE NAME	UNITS	STANDARDS Table 3 I/C/C fine/medium	MW101-SS4	MW102-S3
Sample Depth	m bgs	-	2.3-3.0	1.5-2.3
Sampling Date	dd-mmm-yy	-	16-Jul-24	21-Aug-24
Analysis Date (on or before)	dd-mmm-yy	-	24-Jul-24	5-Sep-24
Certificate of Analysis No.	-	-	24Z175126	24Z188540
BENZENE, TOLUENE, ETHYLBENZENE, XYLENES (BTEX)				
Benzene	ug/g	0.40	<0.02	<0.02
Toluene	ug/g	78	< 0.05	< 0.05
Ethylbenzene	ug/g	19	< 0.05	< 0.05
Xylenes (Total)	ug/g	30	< 0.05	<0.05
PETROLEUM HYDROCARBONS (PHCs)				
Petroleum Hydrocarbons F1-BTEX	ug/g	65	<5	<5
Petroleum Hydrocarbons F2	ug/g	250	<10	<10
Petroleum Hydrocarbons F3	ug/g	2,500	<50	<50
Petroleum Hydrocarbons F4	ug/g	6,600	<50	<50

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the $\,$

Environmental Protection Act (April 15, 2011 and as amended).

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition Industrial/Commercial/Community Property-Use, Fine- to Medium-Textured Soil

- Not analyzed

m bgs meters below ground surface
ppm parts per million by volume
% LEL percent of the lower explosive limit
NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

<u>Value</u> Exceeds applicable site condition standard

<u>Value</u> Detection limit exceeds standard

TABLE 6: SUMMARY OF SOIL ANALYTICAL RESULTS - VOCs 3145 CONROY ROAD, OTTAWA, ONTARIO

SAMPLE NAME	UNITS	STANDARDS	MW101-SS4	MW102-S3
SAMPLE NAME	UNITS	Table 3	WW101-554	WW102-53
		I/C/C		
		fine/medium		
Sample Depth	m bgs	-	2.3-3.0	1.5-2.3
Sampling Date	dd-mmm-yy	-	16-Jul-24	21-Aug-24
Analysis Date (on or before)	dd-mmm-yy	-	24-Jul-24	5-Sep-24
Certificate of Analysis No.	-	-	24Z175126	24Z188540
VOLATILE ORGANIC COMPOUNDS (VOCs)				
Acetone	ug/g	28	<0.50	<0.50
Bromodichloromethane	ug/g	18	< 0.05	< 0.05
Bromoform	ug/g	1.7	<0.05	<0.05
Bromomethane	ug/g	0.050	< 0.05	< 0.05
Carbon Tetrachloride	ug/g	1.5	<0.05	< 0.05
Chlorobenzene	ug/g	2.7	< 0.05	< 0.05
Chloroform	ug/g	0.18	<0.04	< 0.04
Dibromochloromethane	ug/g	13	<0.05	<0.05
Dichlorobenzene, 1,2-	ug/g	8.5	<0.05	<0.05
Dichlorobenzene, 1,3-	ug/g	12	<0.05	<0.05
Dichlorobenzene, 1,4-	ug/g	0.84	<0.05	< 0.05
Dichlorodifluoromethane	ug/g	25	<0.05	<0.05
Dichloroethane, 1,1-	ug/g	21	<0.02	<0.02
Dichloroethane, 1,2-	ug/g	0.050	<0.05	< 0.05
Dichloroethylene, 1,1-	ug/g	0.48	<0.05	< 0.05
Dichloroethylene, 1,2-cis-	ug/g	37	<0.02	<0.02
Dichloroethylene, 1,2-trans-	ug/g	9.3	<0.05	<0.05
Dichloropropane, 1,2-	ug/g	0.68	< 0.03	<0.03
Dichloropropene,1,3-	ug/g	0.21	<0.05	<0.05
Ethylene dibromide	ug/g	0.050	<0.04	< 0.04
Hexane (n)	ug/g	88	<0.05	<0.05
Methyl Ethyl Ketone	ug/g	88	<0.50	<0.50
Methyl Isobutyl Ketone	ug/g	210	<0.50	<0.50
Methyl tert-Butyl Ether (MTBE)	ug/g	3.2	<0.05	<0.05
Methylene Chloride	ug/g	2.0	<0.05	< 0.05
Styrene	ug/g	43	<0.05	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	0.11	<0.04	< 0.04
Tetrachloroethane, 1,1,2,2-	ug/g	0.094	<0.05	<0.05
Tetrachloroethylene	ug/g	21	<0.05	<0.05
Trichloroethane, 1,1,1-	ug/g	12	<0.05	<0.05
Trichloroethane, 1,1,2-	ug/g	0.11	<0.04	<0.04
Trichloroethylene	ug/g	0.61	<0.03	<0.03
Trichlorofluoromethane	ug/g	5.8	<0.05	<0.05
Vinyl Chloride	ug/g	0.25	<0.02	<0.02

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011 and as amended). Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition Industrial/Commercial/Community Property-Use, Fine- to Medium-Textured Soil

- Not analyzed

m bgs meters below ground surface
ppm parts per million by volume
% LEL percent of the lower explosive limit
NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

<u>Value</u> Exceeds applicable site condition standard

<u>Value</u> Detection limit exceeds standard

WO MW Realty Limited

TABLE 7: SUMMARY OF SOIL ANALYTICAL RESULTS - PAHS 3145 CONROY ROAD, OTTAWA, ONTARIO

SAMPLE NAME	UNITS	STANDARDS Table 3 I/C/C fine/medium	MW101-SS4	MW102-S3
Sample Depth	m bgs	-	2.3-3.0	1.5-2.3
Sampling Date	dd-mmm-yy	-	16-Jul-24	21-Aug-24
Analysis Date (on or before)	dd-mmm-yy	-	24-Jul-24	5-Sep-24
Certificate of Analysis No.	-	-	24Z175126	24Z188540
POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)				
Acenaphthene	ug/g	96	<0.05	<0.05
Acenaphthylene	ug/g	0.17	< 0.05	< 0.05
Anthracene	ug/g	0.74	< 0.05	<0.05
Benz[a]anthracene	ug/g	0.96	< 0.05	<0.05
Benzo[a]pyrene	ug/g	0.30	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	0.96	<0.05	<0.05
Benzo[ghi]perylene	ug/g	9.6	< 0.05	<0.05
Benzo[k]fluoranthene	ug/g	0.96	< 0.05	<0.05
Chrysene	ug/g	9.6	< 0.05	<0.05
Dibenz[a h]anthracene	ug/g	0.10	< 0.05	<0.05
Fluoranthene	ug/g	9.6	< 0.05	<0.05
Fluorene	ug/g	69	< 0.05	<0.05
Indeno[1 2 3-cd]pyrene	ug/g	0.95	< 0.05	<0.05
Methlynaphthalene, 2-(1-) ¹	ug/g	85	<0.05	<0.05
Naphthalene	ug/g	28	<0.05	<0.05
Phenanthrene	ug/g	16	<0.05	<0.05
Pyrene	ug/g	96	<0.05	<0.05

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011 and as amended).

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition Industrial/Commercial/Community Property-Use, Fine- to Medium-Textured Soil

- Parameter not analyzed
m bgs meters below ground surface
ppm parts per million by volume
% LEL percent of the lower explosive limit
NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

<u>Value</u> Exceeds applicable site condition standard

Value Detection limit exceeds standard

the sum of 1-methylnaphthalene and 2- methylnaphthalene

WO MW Realty Limited CO1004.00

TABLE 8: SUMMARY OF SOIL ANALYTICAL RESULTS - METALS, HFMs AND OTHER REGULATED PARAMETERS 3145 CONROY ROAD, OTTAWA, ONTARIO

SAMPLE NAME	UNITS	STANDARDS Table 3 I/C/C fine/medium	MW101-SS1	MW101-SS2
Sample Depth	m bgs	-	0.0-0.8	0.8-1.5
Sampling Date	dd-mmm-yy	-	16-Jul-24	16-Jul-24
Analysis Date (on or before)	dd-mmm-yy	-	24-Jul-24	24-Jul-24
Certificate of Analysis No.	-	-	24Z175126	24Z175126
OTHER REGULATED PARAMETERS (ORPs)				
рН	pH Units	5-9* or 5-11**	6.7	6.73

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011 and as amended).

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

Industrial/Commercial/Community Property-Use, Fine- to Medium-Textured Soil

Parameter not analyzed meters below ground surface m bgs parts per million by volume % LEL percent of the lower explosive limit NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

Surface soil (<1.5m bgs) acceptable pH range Subsurface soil (>1.5m bgs) acceptable pH range <u>Value</u> Exceeds applicable site condition standard Detection limit exceeds standard

Value

WO MW Realty Limited

TABLE 9: SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - BTEX AND PHCs 3145 CONROY ROAD, OTTAWA, ONTARIO

SAMPLE NAME	UNITS	STANDARDS Table 3	MW101-GW	MW102-GW
		fine/medium		
Screen Interval	m bgs	-	3.1-6.1	3.1-6.1
Sampling Date	dd-mmm-yy	-	30-Jul-24	23-Aug-24
Analysis Date (on or before)	dd-mmm-yy	-	6-Aug-24	29-Aug-24
Certificate of Analysis No.	-	-	24Z179679	24Z189028
BENZENE, TOLUENE, ETHYLBENZENE, XYLENES (BTEX)				
Benzene	ug/L	430	<0.20	<0.20
Toluene	ug/L	18,000	<0.20	<0.20
Ethylbenzene	ug/L	2,300	<0.10	<0.10
Xylenes (Total)	ug/L	4,200	<0.20	<0.20
PETROLEUM HYDROCARBONS (PHCs)				
Petroleum Hydrocarbons F1-BTEX	ug/L	750	<25	<25
Petroleum Hydrocarbons F2	ug/L	150	<100	<100
Petroleum Hydrocarbons F3	ug/L	500	<100	<100
Petroleum Hydrocarbons F4	ug/L	500	<100	<100

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011 and as amended).

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

All Types of Property-Use, Fine- to Medium-Textured Soil

- Not analyzed

m bgs meters below ground surface
ppm parts per million by volume
% LEL percent of the lower explosive limit
NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

<u>Value</u> Exceeds applicable site condition standard

<u>Value</u> Detection limit exceeds standard

TABLE 10: SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - VOCs 3145 CONROY ROAD, OTTAWA, ONTARIO

LIMITS	STANDARDS	MW101-GW	MW102-GW
UNITS		WWW TOT-GW	WWW TOZ-GVV
	Table 3		
	fine/medium		
m bgs	-	3.1-6.1	3.1-6.1
dd-mmm-yy	-	30-Jul-24	23-Aug-24
dd-mmm-yy	-	6-Aug-24	29-Aug-24
-	-	24Z179679	24Z189028
ug/L	130,000	<1.0	<1.0
ug/L	85,000	<0.20	<0.20
ug/L	770	<0.10	<0.10
ug/L	56	<0.20	<0.20
ug/L	8.4	<0.20	<0.20
ug/L	630	<0.10	<0.10
ug/L	22	<0.20	<0.20
ug/L	82,000	<0.10	<0.10
ug/L	9,600	<0.10	<0.10
ug/L	9,600	<0.10	<0.10
ug/L	67	<0.10	<0.10
ug/L	4,400	< 0.40	<0.40
ug/L	3,100	< 0.30	<0.30
ug/L	12	<0.20	<0.20
ug/L	17	< 0.30	<0.30
ug/L	17	<0.20	<0.20
ug/L	17	<0.20	<0.20
ug/L	140	<0.20	<0.20
ug/L	45	< 0.30	<0.30
ug/L	0.83	<0.10	<0.10
ug/L	520	<0.20	<0.20
ug/L	1,500,000	<1.0	<1.0
ug/L	580,000	<1.0	<1.0
ug/L	1,400	<0.20	<0.20
ug/L	5,500	< 0.30	< 0.30
ug/L	9,100	<0.10	<0.10
ug/L	28	<0.10	<0.10
ug/L	15	<0.10	<0.10
ug/L	17	<0.20	<0.20
ug/L	6,700	<0.30	<0.30
-	30	<0.20	<0.20
	17	<0.20	<0.20
ug/L	2,500	<0.40	<0.40
ug/L	1.7	<0.17	<0.17
	dd-mmm-yy dd-mmm-yy dd-mmm-yy	## Table 3 ## fine/medium ## bgs	Table 3 fine/medium

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011 and as amended).

Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

All Types of Property-Use, Fine- to Medium-Textured Soil

- Not analyzed

m bgs meters below ground surface
ppm parts per million by volume
% LEL percent of the lower explosive limit
NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

<u>Value</u> Exceeds applicable site condition standard

<u>Value</u> Detection limit exceeds standard

TABLE 11: SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - PAHS 3145 CONROY ROAD, OTTAWA, ONTARIO

SAMPLE NAME	UNITS	STANDARDS Table 3	MW101-GW	MW102-GW
		fine/medium		
Screen Interval	m bgs	-	3.1-6.1	3.1-6.1
Sampling Date	dd-mmm-yy	-	30-Jul-24	23-Aug-24
Analysis Date (on or before)	dd-mmm-yy	-	6-Aug-24	29-Aug-24
Certificate of Analysis No.	-	-	24Z179679	24Z189028
POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)	//	4.700	0.00	2.00
Acenaphthene	ug/L	1,700	<0.20	<0.20
Acenaphthylene	ug/L	1.8	<0.20	<0.20
Anthracene	ug/L	2.4	<0.10	<0.10
Benz[a]anthracene	ug/L	4.7	<0.20	<0.20
Benzo[a]pyrene	ug/L	0.81	<0.01	<0.01
Benzo[b]fluoranthene	ug/L	0.75	<0.10	<0.10
Benzo[ghi]perylene	ug/L	0.20	<0.20	<0.20
Benzo[k]fluoranthene	ug/L	0.40	<0.10	<0.10
Chrysene	ug/L	1.0	<0.10	<0.10
Dibenz[a h]anthracene	ug/L	0.52	<0.20	<0.20
Fluoranthene	ug/L	130	<0.20	<0.20
Fluorene	ug/L	400	<0.20	<0.20
Indeno[1 2 3-cd]pyrene	ug/L	0.20	<0.20	<0.20
Methlynaphthalene, 2-(1-) ¹	ug/L	1,800	<0.20	<0.20
Naphthalene	ug/L	6,400	<0.20	<0.20
Phenanthrene	ug/L	580	<0.10	<0.10
Pyrene	ug/L	68	<0.20	<0.20

Standards from Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011 and as amended).

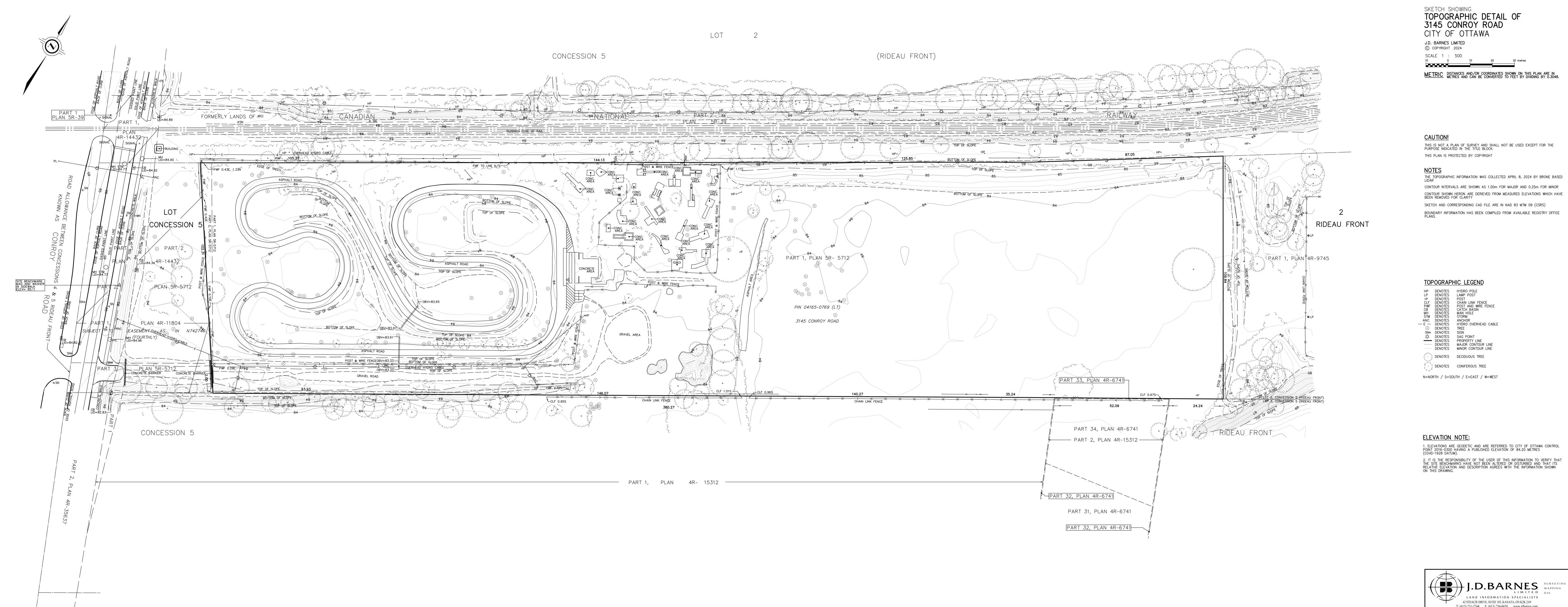
Table 3: Full Depth Generic SCS in a Non-Potable Ground Water Condition

All Types of Property-Use, Fine- to Medium-Textured Soil

Parameter not analyzed
 m bgs meters below ground surface
 ppm parts per million by volume
 % LEL percent of the lower explosive limit
 NV No Value; no standard established

NA Not Applicable; no standard established because a standard is not required

<u>Value</u> Exceeds applicable site condition standard


Value Detection limit exceeds standard

the sum of 1-methylnaphthalene and 2- methylnaphthalene

APPENDIX I PLAN OF SURVEY

24-10-029-00

APPENDIX II PERTINENT PREVIOUS ENVIRONMENTAL REPORTS

FINAL

Phase II Environmental Site Assessment

3145 Conroy Road Ottawa, Ontario

Prepared for:

WO MW Realty Limited

180 Renfrew Drive Markham, ON L3R 9Z2

September 6, 2024

Pinchin File: 339662.006

Issued To: WO MW Realty Limited Issued On: September 6, 2024

Pinchin File: 339662.006
Issuing Office: Kanata, ON
Primary Contact: Matthew Ryan

Author: Ester Wilson, B.Sc., G.I.T

Project Coordinator, Environmental Due Diligence & Remediation

613.462.2801

ewilson@pinchin.com

Reviewer: Mandy Witteman, M.A.Sc., P.Eng., QPESA

Project Manager, Environmental Due Diligence & Remediation

613.617.5936

mwitteman@pinchin.com

Reviewer: Matthew Ryan, B.A., CET., EP

Operations Manager, Environmental Due Diligence & Remediation

Regional Practice Lead, Capital and NE Ontario Regions

613.614.7221

mryan@pinchin.com

© 2024 Pinchin Ltd. Page i

EXECUTIVE SUMMARY

Pinchin Ltd. (Pinchin) was retained through an Authorization to Proceed, Limitation of Liability and Terms of Engagement contract form signed by WO MW Realty Limited (Client) to conduct a Phase II Environmental Site Assessment (ESA) of the property located at 3145 Conroy Road in Ottawa, Ontario (hereafter referred to as the Site).

The Site is vacant land that consists of an abandoned go-kart racetrack and mini putt course situated on the western half of the Site.

The purpose of this Phase II ESA was to assess a potential issue of environmental concern in relation to the potential acquisition and financing of the Site.

The results of the Phase I ESA completed by Pinchin identified the following potential issue of environmental concern:

• The 1995 Property Underwriters' Report indicated that a 9,092 litre gasoline underground storage tank (UST) was located on-Site to supply fuel for the go-karts. No documentation was provided to Pinchin regarding the removal of this UST. As such, it is Pinchin's opinion that this on-Site UST could result in potential subsurface impacts at the Site.

Based on the finding noted above, Pinchin recommended completing a Phase II ESA at the Site.

The Phase II ESA was completed at the Site by Pinchin between July 16 and August 21, 2024. and consisted of the advancement of two boreholes, both of which were completed as a groundwater monitoring wells.

Select "worst case" soil samples collected during the borehole drilling program were submitted for laboratory analysis of volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs) in the F1 to F4 fraction ranges (F1-F4) and polycyclic aromatic hydrocarbons (PAHs). Groundwater samples collected from the newly installed monitoring well were submitted for laboratory analysis of PHCs (F1-F4), VOCs, and PAHs.

Based on Site-specific information, the soil and groundwater quality were assessed based on the Ontario Ministry of the Environment, Conservation and Parks (MECP) *Table 3 Standards* for industrial/commercial/community land use and fine-textured soil.

The reported concentrations in the soil and groundwater samples submitted for analysis of PHCs (F1-F4), VOCs, and PAHs satisfied the *Table 3 Standards*.

© 2024 Pinchin Ltd. Page ii

Based on the findings of this Phase II ESA, it is Pinchin's opinion that no further subsurface investigation is required for the Site in relation to the findings of the Phase I ESA.

This Executive Summary is subject to the same standard limitations as contained in the report and must be read in conjunction with the entire report.

© 2024 Pinchin Ltd. Page iii

TABLE OF CONTENTS

1.0	INTR	INTRODUCTION					
	1.1 1.2	Background					
2.0	METI	HODOLOGY2					
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Ground Penetrating Radar Survey 2 Borehole Investigation 2 Monitoring Well Installation 3 Groundwater Monitoring and Elevation Survey 3 Sampling and Laboratory Analysis 4 2.5.1 Soil 4 2.5.2 Groundwater 4 2.5.3 Analytical Laboratory 4 QA/QC Protocols 5 Ontario Water Well Records 5 Site Condition Standards 6					
3.0	RESI	ULTS7					
	3.1 3.2 3.3 3.4 3.5	Geophysical Survey 7 Site Geology and Hydrogeology 7 Soil Headspace Vapour Concentrations 7 Field Observations 7 Analytical 8 3.5.1 Soil 8 3.5.2 Groundwater 8					
4.0	INVE	STIGATION FINDINGS					
5.0	TERI	MS AND LIMITATIONS					

APPENDICES

APPENDIX I Figures

APPENDIX II Borehole Logs
APPENDIX III Summary Tables

APPENDIX IV Laboratory Certificates of Analysis

APPENDIX V Ground Penetrating Radar

FIGURES

Figure 1 Key Map

Figure 2 Borehole and Monitoring Well Location Plan

TABLES

Table 9

Table 1 Samples Submitted for Laboratory Analysis Table 2 pH and Grain Size Analysis for Soil Table 3 **Groundwater Data** Table 4 Petroleum Hydrocarbon Analysis for Soil Table 5 Volatile Organic Compound Analysis for Soil Table 6 Polycyclic Aromatic Hydrocarbon Analysis for Soil Table 7 Petroleum Hydrocarbon and BTEX Analysis for Groundwater Table 8 Volatile Organic Compound Analysis for Groundwater

© 2024 Pinchin Ltd. Page v

Polycyclic Aromatic Hydrocarbon Analysis for Groundwater

1.0 INTRODUCTION

Pinchin Ltd. (Pinchin) was retained through an Authorization to Proceed, Limitation of Liability and Terms of Engagement signed by WO MW Realty Limited (Client) to conduct a Phase II Environmental Site Assessment (ESA) of the property located at 3145 Conroy Road in Ottawa, Ontario (hereafter referred to as the Site). The Site location is shown on Figure 1 (all Figures are provided in Appendix I). The Site is vacant land that consists of an abandoned go-kart racetrack and mini putt course situated on the western portion of the Site. The purpose of this Phase II ESA was to address a potential issue of environmental concern in relation to the potential acquisition and financing of the Site.

This Phase II ESA was completed in general accordance with the Canadian Standards Association document entitled "*Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2023)*", dated 2000 and reaffirmed in 2023.

1.1 Background

Pinchin completed a Phase I ESA of the Site for the Client, the findings of which were provided in the report entitled "*Phase I Environmental Site Assessment 3145 Conroy Road, Ottawa, Ontario*", dated June 21, 2024. The results of the Phase I ESA completed by Pinchin identified the following area of potential environmental concern (APEC) that could result in subsurface impacts at the Site:

• The 1995 Property Underwriters' Report indicated that a 9,092 litre gasoline underground storage tank (UST) was located on-Site to supply fuel for the go-karts. No documentation was provided to Pinchin regarding the removal of this UST. As such, it is Pinchin's opinion that this on-Site UST could result in potential subsurface impacts at the Site.

Based on the above-mentioned finding, it was Pinchin's recommendation that a Phase II ESA be conducted at the Site to determine if the above-noted APEC has resulted in subsurface impacts at the Site.

1.2 Scope of Work

The scope of work completed by Pinchin, as outlined in the proposal entitled "*Proposal for Phase II Environmental Site Assessment 3145 Conroy Road, Ottawa, Ontario*" submitted to the Client on June 25, 2024, included the following:

Retain the services of an independent contractor to complete a geophysical survey to assess for the presence/absence of an underground storage tank (UST) or disturbed soil in the immediate area of former building slab-on-grade foundation and to clear the proposed borehole locations of underground services.

© 2024 Pinchin Ltd. Page 1 of 10

- Advancement of up to two boreholes following the clearance of underground services, all
 of which were to be instrumented with a monitoring well;
- Submission of select "worst case" soil samples for laboratory analysis of, petroleum hydrocarbons (PHCs) in the F1 to F4 fraction ranges (F1-F4), volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs);
- Collection of groundwater samples from each of the newly installed monitoring wells following well development and purging, for laboratory analysis of PHCs (F1-F4), VOCs, and PAHs:
- Comparison of the soil and groundwater laboratory analytical results to the applicable regulatory criteria; and
- Preparation of a factual report detailing the findings of the Phase II ESA and recommendations.

2.0 METHODOLOGY

The investigation methodology was conducted in general accordance with the Ontario Ministry of the Environment, Conservation and Parks (MECP) document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" dated December 1996 (MECP Sampling Guideline), the Association of Professional Geoscientists of Ontario document entitled "Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)", dated April 2011 (PGO Guideline) and Pinchin's standard operating procedures (SOPs).

2.1 Ground Penetrating Radar Survey

Pinchin retained multiVIEW Locates Inc. (multiVIEW) to complete a GPR survey at the Site on July 9, 2024 to investigate the location of a former historical UST at the Site.

2.2 Borehole Investigation

Pinchin retained Strata Drilling Group (Strata) to complete the borehole drilling program at the Site on July 16 and August 21, 2024 following the clearance of underground services in the vicinity of the work area by public utility locators and a private utility locator retained by Pinchin. The drilling program was completed concurrently with the geotechnical investigation conducted by Pinchin, provided under separate cover. Strata is licensed by the MECP in accordance with Ontario Regulation 903 (as amended) to undertake borehole drilling/well installation activities.

Two boreholes were advanced to a maximum depth of 6.09 metres below ground surface (mbgs) using a Geoprobe direct push drill rig. Soil samples were collected at continuous 0.76-metre intervals using 5.08

© 2024 Pinchin Ltd. Page 2 of 10

centimetre (cm) inner diameter (ID) direct push soil samplers with dedicated single-use sample liners. Discrete soil samples were collected from the single-use liners and placed in laboratory-supplied sample containers.

Subsurface soil conditions were logged on-Site by Pinchin personnel at the time of drilling. Soil samples were examined for visual and olfactory evidence of impacts and a portion of each sample was analyzed in the field for combustible and volatile vapour concentrations in soil headspace using an RKI Eagle 2 equipped with a combustible gas indicator (CGI) operated in methane elimination mode and calibrated with hexane, and photoionization detector (PID) calibrated with isobutylene.

The locations of the boreholes are shown on Figure 2 and a description of the subsurface stratigraphy encountered during the drilling program is documented in the borehole logs included in Appendix II.

2.3 Monitoring Well Installation

Groundwater monitoring wells were installed in boreholes MW101 and MW102 to enable groundwater monitoring and sampling. The monitoring wells were constructed with 5.08 cm inner diameter (ID) flush-threaded Schedule 40 polyvinyl chloride (PVC) risers, followed by a 3.04 m length of 5.08 cm ID No. 10 slot PVC screen that intersected the water table. Each well screen was sealed at the bottom using a threaded cap and each riser was sealed at the top with a lockable J-plug cap. Silica sand was placed around and above the screened interval to form a filter pack around the well screen. A layer of bentonite was placed above the silica sand and was extended to just below the ground surface. A bentonite seal was then placed between the riser and the outer casing. A protective aboveground monument casing was installed at the ground surface over each riser pipe and outer casing and cemented in place.

The locations of the monitoring wells are shown on Figure 2. The monitoring well construction details are shown on the borehole logs included in Appendix II.

2.4 Groundwater Monitoring and Elevation Survey

The water levels within the monitoring wells were measured on July 25, and August 23, 2024, using a water level tape. The presence/absence of non-aqueous phase liquid (NAPL) was also assessed during groundwater monitoring using water level tape.

Pinchin completed a relative elevation survey of the newly installed groundwater monitoring wells and boreholes on July 25, 2024, as part of the geotechnical investigation that was completed as part of this Phase II ESA program. More information is provided in the Preliminary Geotechnical Investigation completed by Pinchin in August of 2024.

© 2024 Pinchin Ltd. Page 3 of 10

2.5 Sampling and Laboratory Analysis

2.5.1 Soil

One most apparent "worst case" soil sample, based on vapour concentrations as well as visual and/or olfactory considerations, recovered from each borehole was submitted for laboratory analysis of PHCs (F1-F4), VOCs and PAHs.

In addition, representative soil samples were submitted for pH analysis to confirm the Site Condition Standards applicable to the Site as provided in the MECP document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (MECP Standards).

The borehole locations are shown on Figure 2. Table 1 provides a summary of the soil samples submitted for laboratory analysis. The locations of the geotechnical boreholes are also included on Figure 2 for reference.

2.5.2 Groundwater

On July 25, 2024 and August 22, 2024 the newly installed groundwater monitoring wells, MW101 and MW102, respectively, were purged until dry, in accordance with Pinchin's SOPs.

On July 30 and August 23, 2024, the newly installed groundwater monitoring wells, MW101 and MW102, respectively, were purged and sampled using Pinchin's SOPs. The groundwater samples collected from these monitoring wells were submitted for laboratory analysis of PHCs (F1-F4), VOCs, and PAHs.

All monitoring well development activities were conducted using dedicated inertial pumps comprised of Waterra polyethylene tubing and foot valves. Following pre-sampling purging with dedicated inertial pumps, sampling for PHCs (F2-F4) and PAHs was conducted using a peristaltic pump and dedicated polyethylene tubing. Sampling for VOCs, and PHC (F1) was then conducted using dedicated inertial pumps.

Table 1 provides a summary of the groundwater samples submitted for laboratory analysis.

2.5.3 Analytical Laboratory

Selected soil and groundwater samples were delivered to AGAT Laboratories (AGAT) in Ottawa, Ontario for analysis. AGAT is an independent laboratory accredited by the Standards Council of Canada and the Canadian Association for Laboratory Accreditation. Formal chain of custody records of the sample submissions were maintained between Pinchin and the staff at AGAT.

© 2024 Pinchin Ltd. Page 4 of 10

2.6 QA/QC Protocols

Various quality assurance/quality control (QA/QC) protocols were followed during the Phase II ESA to ensure that representative samples were obtained, and that representative analytical data were reported by the laboratory.

Field QA/QC protocols that were employed by Pinchin included the following:

- Soil samples were extracted from the interior of the sampling device (where possible),
 rather than from areas in contact with the sampler walls to minimize the potential for cross-contamination;
- Soil and groundwater samples were placed in laboratory-supplied sample containers or vials, with the appropriate preservative as required by the analytical method;
- The monitoring wells were developed following installation and were purged to remove stagnant water prior to sample collection so that representative groundwater samples could be obtained. Dedicated purging and sampling equipment was used for monitoring well development, purging and sampling to minimize the potential for crosscontamination;
- Soil and groundwater samples were placed in coolers on ice immediately upon collection,
 with appropriate sample temperatures maintained prior to submission to the laboratory;
- Dedicated and disposable nitrile gloves were used for sample handling;
- Non-dedicated monitoring and sampling equipment (e.g., water level tape) was cleaned before initial use and between uses to minimize the potential for cross-contamination by washing with an Alconox[™]/potable water mixture followed by a deionized water rinse; and
- Sample collection and handling procedures were performed in general accordance with the MECP Sampling Guideline, the PGO Guideline and Pinchin's SOPs for Phase II ESAs.

AGAT's internal laboratory QA/QC consisted of the analysis of laboratory duplicate, method blank, matrix spike and spiked blank samples, an evaluation of relative percent difference calculations for laboratory duplicate samples, and an evaluation of surrogate recoveries.

2.7 Ontario Water Well Records

Ontario Regulation 903 (as amended) requires that all wells installed to depths greater than 3.0 mbgs have a water well record completed by a licensed well technician. The owner of the monitoring well must keep the water well record on file for a period of two years and the monitoring wells must be

© 2024 Pinchin Ltd. Page 5 of 10

decommissioned as per Ontario Regulation 903 (as amended) if monitoring wells are no longer in use. Strata is a licensed well driller under Ontario Regulation 903 (as amended) and submitted a water well record to the MECP and the Client to fulfill the requirements of Ontario Regulation 903 (as amended).

2.8 Site Condition Standards

The Site is a commercial property located within the City of Ottawa. It is Pinchin's understanding that potable water for the Site and surrounding area is supplied by the City of Ottawa, with the Ottawa River serving as the water source.

Ontario Regulation 153/04 (as amended) states that a Site is classified as an "environmentally sensitive area" if the pH of the surface soil (less than 1.5 mbgs) is less than 5 or greater than 9, the pH of the subsurface soil (greater than 1.5 mbgs) is less than 5 or greater than 11, or if the Site is an area of natural significance or is adjacent to or contains land within 30 metres of an area of natural significance. Two representative soil samples collected from the boreholes advanced at the Site were submitted for pH analysis. The pH values measured in the submitted soil samples were within the limits for non-sensitive sites. The Site is also not an area of natural significance, and it is not adjacent to, nor does it contain land within 30 metres of, an area of natural significance. As such, the Site is not an environmentally sensitive area.

Based on the analytical results from the geotechnical field investigation conducted concurrently with this Phase II ESA program, the soil at the Site is interpreted to be fine-textured for the purpose of selecting the appropriate *MECP Standards*.

The pH and grain size analytical results are summarized in Table 2.

Based on the above, the appropriate Site Condition Standards for the Site are:

- "Table 3: Full Depth Generic Site Condition Standards for Use in a Non-Potable Ground Water Condition", provided in the MECP Standards (Table 3 Standards) for:
 - Fine-textured soils; and
- Industrial/commercial/community property use.

As such, the analytical results have been compared to these *Table 3 Standards*.

© 2024 Pinchin Ltd. Page 6 of 10

3.0 RESULTS

3.1 Geophysical Survey

The approximate location of the former UST was suspected to be situated on either the north or south side of the slab-on-grade foundation for the former building. A well record from 2004 identified the approximate location of the former UST nest on the north side of the former building. No anomalies or a UST were identified in the targeted area to the south of the former building foundation. A GPR survey was not completed for the north side of the former building foundation due to the uneven ground surface. The GPR scan did not detect any anomalies in the soil profile that would confirm the inferred location of the former on-Site UST or soil disturbances. The findings of the survey activities as provided by multiVIEW are included in Appendix V.

3.2 Site Geology and Hydrogeology

Based on the soil samples recovered during the borehole drilling program, the soil stratigraphy at the drilling location below the grass generally consisted of inferred fill material comprised of brownish-grey sand and gravel, some silt to a depth of 1.52 mbgs.

Native subsurface material underlying the fill material consisted of grey clayey silt, trace sand, that extended to the maximum borehole completion depth of 6.09 mbgs. Wet soil conditions were generally observed between 3.20 and 6.09 mbgs.

A detailed description of the subsurface stratigraphy encountered during borehole advancement is documented in the borehole logs located in Appendix II.

The topography of the Site and surrounding area slope gradually towards the south. The inferred groundwater flow direction is to the south based on the topography of the Site area and the proximity to McEwen Creek.

3.3 Soil Headspace Vapour Concentrations

Vapour concentrations measured in the headspace of soil samples collected during the drilling investigation were 0 parts per million by volume (0 ppm_v) and are presented in the borehole logs in Appendix II.

3.4 Field Observations

Odours, staining or inferred fill materials were not observed in the soil samples collected during the borehole drilling program.

© 2024 Pinchin Ltd. Page 7 of 10

3.5 Analytical

3.5.1 Soil

A total of two soil samples were submitted for laboratory analysis of PHCs (F1-F4), VOCs, and PAHs. An additional two soil samples were submitted for pH analysis for soil classification. The analytical results are summarized in Table 2 and Tables 4 through 6 (Appendix III), and the analytical laboratory report is included in Appendix IV.

The reported concentrations in the soil samples submitted for analysis of PHCs (F1-F4), VOCs, and PAHs satisfied the *Table 3 Standards*.

3.5.2 Groundwater

Two groundwater samples collected from monitoring wells MW101 and MW102 were submitted for laboratory analysis of PHCs (F1-F4), VOCs, and PAHs. The analytical results are summarized in Tables 7 through 9 (Appendix III), and the analytical laboratory report is included in Appendix IV.

The reported concentrations in the groundwater samples submitted for analysis of PHCs (F1-F4), VOCs, and PAHs satisfied the *Table 3 Standards*.

4.0 INVESTIGATION FINDINGS

Based on the work completed, the following provides a summary of the findings of this Phase II ESA:

- The investigation included the advancement of two boreholes, both of which were completed as groundwater monitoring wells (MW101 to MW102).
- Soil samples were collected by Pinchin during the drilling work, and two inferred "worst case samples" were submitted or laboratory analysis of PHCs (F1-F4), VOCs, and PAHs.
- Groundwater samples were collected on July 30, 2024 and August 23, 2024 from each of the two monitoring wells and were submitted for laboratory analysis of PHCs (F1-F4), VOCs. and PAHs.
- The inferred groundwater flow direction is to the south based on topography and the proximity to McEwen Creek, south of the Site.
- Based on Site-specific information, the soil and groundwater quality were assessed based on the *Table 3 Standards* for industrial/commercial/community land use and fine textured soils.

The reported concentrations in the soil and groundwater samples submitted for analysis of PHCs (F1-F4), VOCs, and PAHs satisfied the *Table 3 Standards*.

© 2024 Pinchin Ltd. Page 8 of 10

Based on the findings of this Phase II ESA, it is Pinchin's opinion that no further subsurface investigation is required for the Site in relation to the findings of the Phase I ESA.

5.0 TERMS AND LIMITATIONS

This Phase II ESA was performed for WO MW Realty Limited (Client) in order to investigate potential environmental impacts at 3145 Conroy Road in Ottawa, Ontario (Site). This Phase II ESA does not quantify the extent of the current and/or potential environmental impacts or the cost of any remediation.

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples have been analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

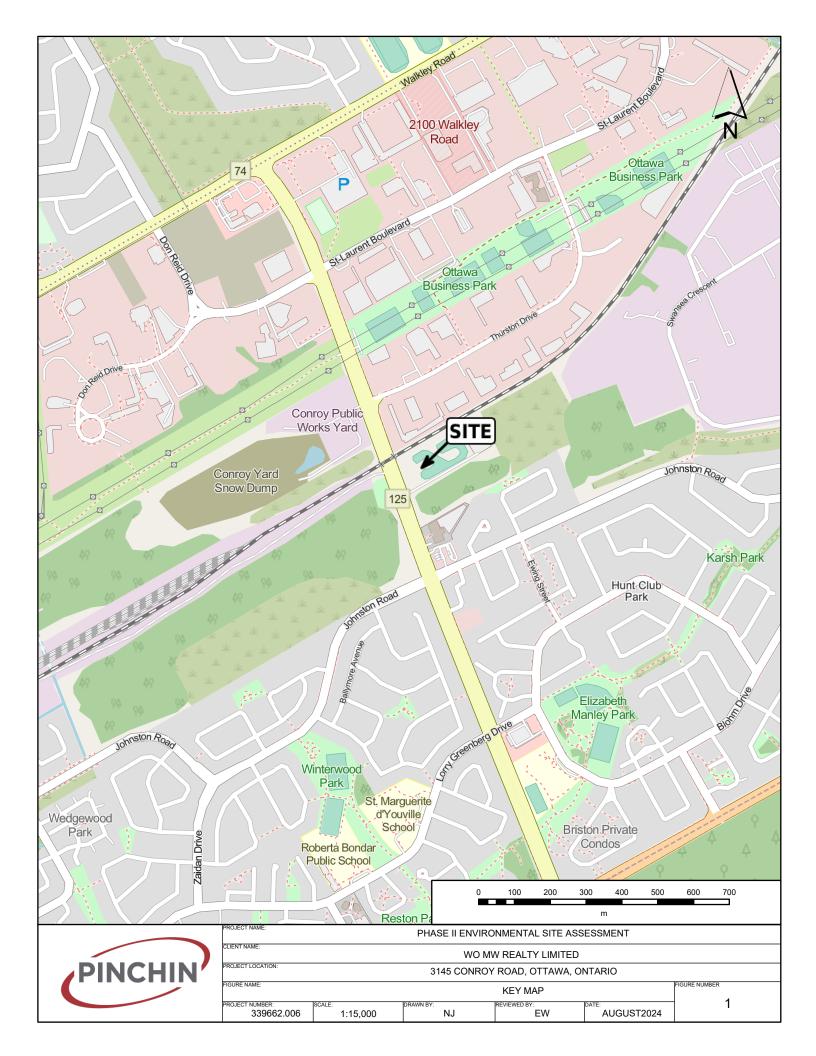
No environmental site assessment can wholly eliminate uncertainty regarding the potential for environmental impacts on a property. Performance of this Phase II ESA to the standards established by Pinchin is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental impacts on the Site and recognizes reasonable limits on time and cost.

This Phase II ESA was performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site. The scope of work completed by Pinchin, as part of this Phase II ESA, is not sufficient (in and of itself) to meet the requirements for the submission of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (as amended) or Ontario Regulation 406/19 (O.Reg.406/19). Therefore, the scope of work completed by Pinchin is not sufficient (in and of itself) to meet the reporting requirements for the submission of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (as amended), nor will it meet the requirements to manage Excess Soils in accordance with Ontario regulation 406/19.

This report was prepared for the exclusive use of the Client subject to the terms, conditions and limitations contained within the duly authorized proposal for this project. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.

If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this report should not be construed as legal advice. Pinchin will not provide results or information to any party unless disclosure by Pinchin is required by law.

© 2024 Pinchin Ltd. Page 9 of 10


Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

J:\339000s\0339662.000 WhitOwl,3145Conroy145Walgreen,ON,EDR,SA1\0339662.006 WhitOwl,3145ConroyRd,Ottawa,ON,EDR,SA2\Deliverables\339662.006 Phase II ESA 3145 Conroy Rd WhiteOwl.docx

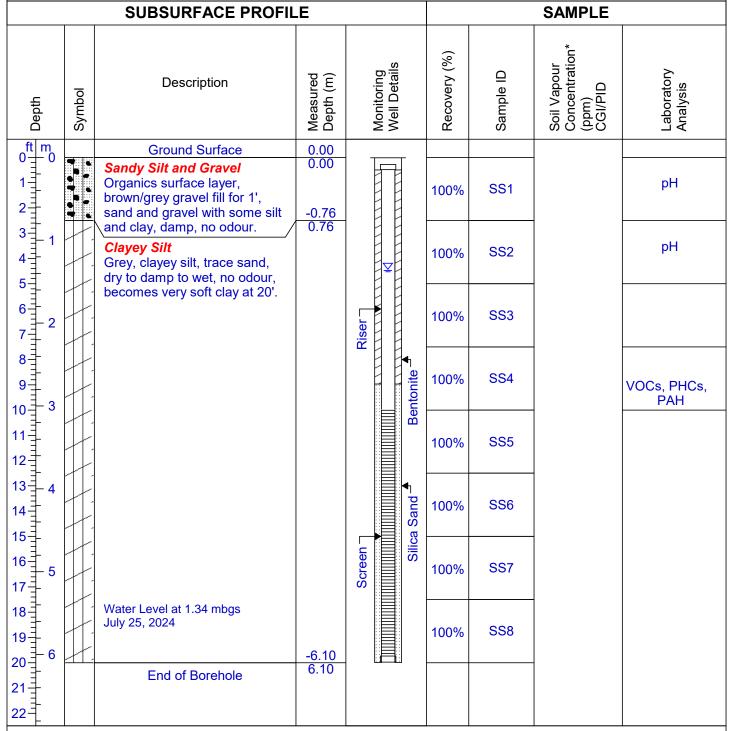
Template: Master Report for Phase II ESA - Stage 2 PSI, EDR, January 30, 2024

© 2024 Pinchin Ltd. Page 10 of 10

APPENDIX I Figures

APPENDIX II
Borehole Logs

Log of Borehole: MW101


Project #: 339662.006 Logged By: EW

Project: Phase II Environmental Site Assessment

Client: WO MW Realty Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 16, 2024

Contractor: Strata Drilling

Drilling Method: Direct Push

Well Casing Size: 5.08 cm

Note:

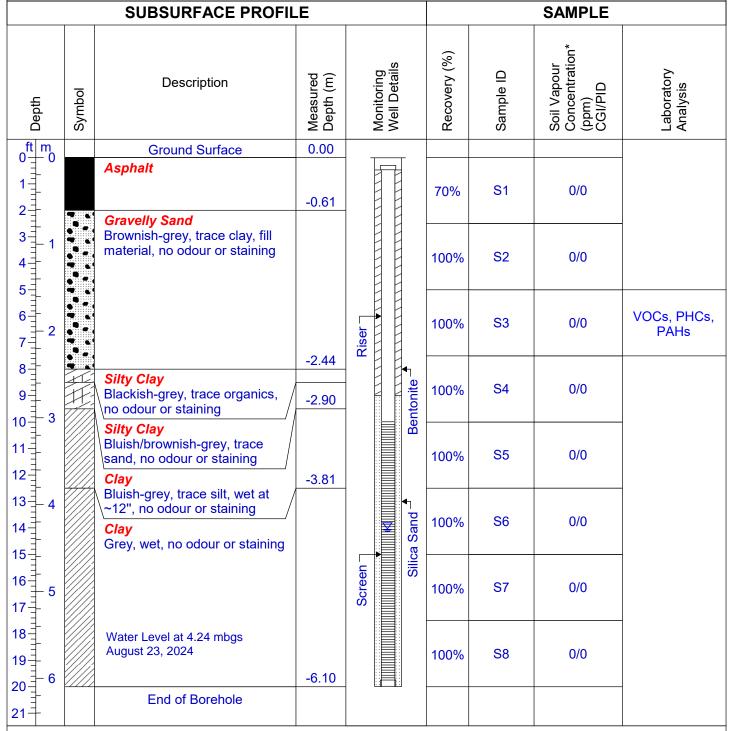
* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: N/A

Top of Casing Elevation: N/A

Sheet: 1 of 1

Log of Borehole: MW102


Project #: 339662.006 Logged By: EW

Project: Phase II Environmental Site Assessment

Client: WO MW Realty Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: August 21, 2024

Contractor: Strata Drilling

Drilling Method: Direct Push

Well Casing Size: 5.08 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID). Grade Elevation: N/A

Top of Casing Elevation: N/A

Sheet: 1 of 1

APPENDIX III
Summary Tables

TABLE 1 SAMPLES SUBMITTED FOR LABORATORY ANALYSIS

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

Samples			Parameters					eter	'S			
Borehole / Monitoring Well ID	Sample ID	Sample Depth Range (mbgs)		PHCs (F1-F4)	VOCs	PAHs	Н	SAMPLES	PHCs (F1-F4)	VOCs	PAHS	Rationale/Notes
	MW101-SS1	0-0.76					•	^r ER				Classify soil for pH
BH101	MW101-SS2	0.76-1.52	S				•	VA7				Classify soil for pH
БПТОТ	MW101-SS4	2.28-3.04	97a	•	•	•		NDI				Assess the soil and groundwater quality in relation to the potential
	MW101-GW	3.04-6.09	AMI					Sou	•	•	•	presence of a former UST.
DU402	MW102-S3	1.52-2.28	S 71	•	•	•		GF				Assess the soil and groundwater quality in relation to the presence of a
BH102	MW102-GW	3.04-6.09	os						•	•	•	former UST.

Notes:

PHCs (F1-F4) Petroleum Hydrocarbons (Fraction 1 to Fraction 4)

VOCs Volatile Organic Compounds
PAHs Polycyclic Aromatic Hydrocarbons
mbgs Metres Below Ground Surface
UST Underground Storage Tank

MECP Ontario Ministry of the Environment, Conservation and Parks

TABLE 2 pH AND GRAIN SIZE ANALYSIS FOR SOIL

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

			Sample Designation						
		MECD Cita Condition		Sample Collection	Date (dd/mm/yyyy)				
Doromotor	Units	MECP Site Condition — Standard Selection —	Sample Depth (mbgs)						
Parameter	Ullits	Criteria —	MW101-SS1	MW101-SS2	BH2-SS2*	BH1-SS4*			
		Criteria	16/07/2024	16/07/2024	16/07/2024	16/07/2024			
			0-0.76	0.76-1.52	0.76-1.37	2.29-2.90			
ъЦ		Surface: 5 < pH < 9	6.70	6.73	NA	NA			
рН		Subsurface: 5 < pH < 11	0.70	0.73	NA	NA			
Sieve #200 <0.075 mm	%	50%	NA	NA	99.1	97.3			
Sieve #200 >0.075 mm	%	50%	NA	NA	0.9	2.7			
		Grain Size Classification	NA	NA	Fine-texture	Fine-texture			

Notes:

BOLD BOLD NA Environmentally Sensitive Area (Based Upon pH of Surface Soil) Environmentally Sensitive Area (Based Upon pH of Sub-Surface Soil)

NA Not Analysed mbgs Metres Below

Metres Below Ground Surface

Results from the Preliminary Geotechnical Investigation

TABLE 3 GROUNDWATER LEVELS

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

		NAPL Level	Water Level	Water Level	
		Measurement	Measurement	Measurement	Product
	Date	from TOC	from TOC	from Ground	Thickness
Well Number	(dd/mm/yyyy)	(m)	(m)	(mbgs)	(m)
MW101	25/07/2024	ND	2.28	1.34	ND
MW102	23/08/2024	ND	4.13	4.24	ND

Notes:

NAPL Non-Aqueous Phase Liquid

ND Not Detected

TOC Indicates Top of Casing

m Metres

mbgs Metres Below Ground Surface

TABLE 4 PETROLEUM HYDROCARBON ANALYSIS FOR SOIL

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

Paramotor	MECP Table 3	Sample Designation Sample Collection Date (dd/mm/yyyy) Sample Depth (mbgs)		
Parameter	Standards*	MW101-SS4	MW102-S3	
		16/07/2024	21/08/2024	
		2.28-3.04	1.52-2.28	
Petroleum Hydrocarbons F1 (C ₆ - C ₁₀)	65	<5	<5	
Petroleum Hydrocarbons F2 (>C ₁₀ - C ₁₆)	250	<10	<10	
Petroleum Hydrocarbons F3 (>C ₁₆ - C ₃₄)	2500	<50	<50	
Petroleum Hydrocarbons F4 (>C ₃₄ - C ₅₀)	6600	<50	<50	

Notes:

MECP Table 3 Standards*

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 3 Standards, Medium/Fine-Textured Soils, Non-Potable Groundwater Condition, for Industrial/Commercial/Community Property Use.

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in µg/g Metres Below Ground Surface

TABLE 5 VOLATILE ORGANIC COMPOUND ANALYSIS FOR SOIL

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

		Sample De	signation	
		Sample Collection L	Date (dd/mm/vvvv)	
5	MECP Table 3	Sample Depth (mbgs)		
Parameter	Standards*	MW101-SS4	MW102-S3	
		16/07/2024	21/08/2024	
		2.28-3.04	1.52-2.28	
Acetone	28	<0.50	<0.50	
Benzene	0.4	<0.02	<0.02	
Bromodichloromethane	18	< 0.05	< 0.05	
Bromoform	1.7	< 0.05	< 0.05	
Bromomethane	0.05	< 0.05	< 0.05	
Carbon Tetrachloride	1.5	< 0.05	< 0.05	
Chlorobenzene	2.7	< 0.05	< 0.05	
Chloroform	0.18	<0.04	<0.04	
Dibromochloromethane	13	<0.05	< 0.05	
1,2-Dichlorobenzene	8.5	<0.05	< 0.05	
1,3-Dichlorobenzene	12	< 0.05	< 0.05	
1,4-Dichlorobenzene	0.84	< 0.05	< 0.05	
Dichlorodifluoromethane	25	< 0.05	< 0.05	
1,1-Dichloroethane	21	<0.02	< 0.02	
1,2-Dichloroethane	0.05	< 0.05	< 0.05	
1,1-Dichloroethylene	0.48	< 0.05	< 0.05	
cis-1,2-Dichloroethylene	37	<0.02	< 0.02	
rans-1,2-Dichloroethylene	9.3	< 0.05	< 0.05	
1,2-Dichloropropane	0.68	< 0.03	< 0.03	
1,3-Dichloropropene (Total)	0.21	<0.05	< 0.05	
Ethylbenzene	19	<0.05	< 0.05	
Ethylene Dibromide	0.05	<0.04	<0.04	
Hexane	88	<0.05	< 0.05	
Methyl Ethyl Ketone	88	<0.50	< 0.50	
Methyl Isobutyl Ketone	210	<0.50	< 0.50	
Methyl t-Butyl Ether (MTBE)	3.2	<0.05	< 0.05	
Methylene Chloride	2	<0.05	< 0.05	
Styrene	43	<0.05	< 0.05	
1,1,1,2-Tetrachloroethane	0.11	<0.04	<0.04	
1,1,2,2-Tetrachloroethane	0.094	< 0.05	< 0.05	
Tetrachloroethylene	21	<0.05	< 0.05	
Toluene	78	<0.05	<0.05	
1,1,1-Trichloroethane	12	<0.05	< 0.05	
1,1,2-Trichloroethane	0.11	<0.04	<0.04	
Trichloroethylene	0.61	< 0.03	< 0.03	
Trichlorofluoromethane	5.8	<0.05	< 0.05	
Vinyl Chloride	0.25	<0.02	<0.02	
Xylenes (Total)	30	<0.05	< 0.05	

MECP Table 3 Standards*

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 3 Standards, Medium/Fine-Textured Soils, Non-Potable Groundwater Condition, for Industrial/Commercial/Community Property Use.

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in µg/g Metres Below Ground Surface

TABLE 6 POLYCYCLIC AROMATIC HYDROCARBON ANALYSIS FOR SOIL

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

		Sample Designation Sample Collection Date (dd/mm/yyyy) Sample Depth (mbgs)				
Davamatav	MECP Table 3					
Parameter	Standards*	MW101-SS4	MW102-S3			
		16/07/2024	21/08/2024			
		2.28-3.04	1.52-2.28			
Acenaphthene	96	<0.05	<0.05			
Acenaphthylene	0.17	<0.05	< 0.05			
Anthracene	0.74	<0.05	< 0.05			
Benzo(a)anthracene	0.96	<0.05	< 0.05			
Benzo(a)pyrene	0.3	<0.05	< 0.05			
Benzo(b)fluoranthene	0.96	<0.05	< 0.05			
Benzo(ghi)perylene	9.6	<0.05	< 0.05			
Benzo(k)fluoranthene	0.96	<0.05	< 0.05			
Chrysene	9.6	<0.05	< 0.05			
Dibenzo(a,h)anthracene	0.1	<0.05	< 0.05			
Fluoranthene	9.6	<0.05	< 0.05			
Fluorene	69	<0.05	< 0.05			
Indeno(1,2,3-cd)pyrene	0.95	<0.05	<0.05			
Methylnaphthalene 2-(1-)	85	<0.05	<0.05			
Naphthalene	28	<0.05	< 0.05			
Phenanthrene	16	<0.05	< 0.05			
Pyrene	96	<0.05	<0.05			

Notes:

MECP Table 3 Standards* Pro

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 3 Standards, Medium/Fine-Textured Soils, Non-Potable Groundwater Condition, for Industrial/Commercial/Community Property Use.

BOLD

Exceeds Site Condition Standard

Reportable Detection Limit Exceeds Site Condition Standard

Units All Units in μg/g

mbgs Metres Below Ground Surface

TABLE 7 PETROLEUM HYDROCARBON AND BTEX ANALYSIS FOR GROUNDWATER

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

		Sample Designation			
Parameter	MECP Table 3	Sample Collection	Date (dd/mm/yyyy)		
i arameter	Standards*	MW101-GW	MW102-GW		
		30/07/2024	23/08/2024		
Benzene	430	<0.20	<0.20		
Toluene	18000	<0.20	<0.20		
Ethylbenzene	2300	<0.10	<0.10		
Xylenes (Total)	4200	<0.20	<0.20		
Petroleum Hydrocarbons F1 (C ₆ - C ₁₀)	750	<25	<25		
Petroleum Hydrocarbons F2 (>C ₁₀ - C ₁₆)	150	<100	<100		
Petroleum Hydrocarbons F3 (>C ₁₆ - C ₃₄)	500	<100	<100		
Petroleum Hydrocarbons F4 (>C ₃₄ - C ₅₀)	500	<100	<100		

Notes:

MECP Table 3 Standards*

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 3 Standards, Medium/Fine-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

BOLD BOLD Units BTEX Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in μ g/L Benzene, Toluene, Ethylbenzene and Xylenes

TABLE 8

VOLATILE ORGANIC COMPOUND ANALYSIS FOR GROUNDWATER

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

		Sample Designation			
5	MECP Table 3	Sample Collection Date (dd/mm/yyyy			
Parameter	Standards*	MW101-GW	MW102-GW		
		30/07/2024	23/08/2024		
Acetone	130000	<1.0	<1.0		
Benzene	430	< 0.20	<0.20		
Bromodichloromethane	85000	< 0.20	<0.20		
Bromoform	770	< 0.10	<0.10		
Bromomethane	56	<0.20	<0.20		
Carbon Tetrachloride	8.4	<0.20	<0.20		
Chlorobenzene	630	< 0.10	<0.10		
Chloroform	22	<0.20	<0.20		
Dibromochloromethane	82000	< 0.10	<0.10		
1,2-Dichlorobenzene	9600	< 0.10	<0.10		
1,3-Dichlorobenzene	9600	<0.10	<0.10		
1,4-Dichlorobenzene	67	< 0.10	<0.10		
Dichlorodifluoromethane	4400	< 0.40	< 0.40		
1.1-Dichloroethane	3100	< 0.30	< 0.30		
1.2-Dichloroethane	12	<0.20	<0.20		
1.1-Dichloroethylene	17	< 0.30	<0.30		
cis-1.2-Dichloroethylene	17	<0.20	< 0.20		
trans-1,2-Dichloroethylene	17	<0.20	<0.20		
1,2-Dichloropropane	140	<0.20	<0.20		
1,3-Dichloropropene (Total)	45	< 0.30	< 0.30		
Ethylbenzene	2300	< 0.10	<0.10		
Ethylene Dibromide	0.83	< 0.10	<0.10		
Hexane	520	<0.20	<0.20		
Methyl Ethyl Ketone	1500000	<1.0	<1.0		
Methyl Isobutyl Ketone	580000	<1.0	<1.0		
Methyl t-Butyl Ether (MTBE)	1400	<0.20	<0.20		
Methylene Chloride	5500	< 0.30	< 0.30		
Styrene	9100	< 0.10	<0.10		
1,1,1,2-Tetrachloroethane	28	< 0.10	<0.10		
1,1,2,2-Tetrachloroethane	15	<0.10	<0.10		
Tetrachloroethylene	17	< 0.20	<0.20		
Toluene	18000	< 0.20	<0.20		
1,1,1-Trichloroethane	6700	< 0.30	< 0.30		
1,1,2-Trichloroethane	30	<0.20	<0.20		
Trichloroethylene	17	<0.20	<0.20		
Trichlorofluoromethane	2500	< 0.40	<0.40		
Vinyl Chloride	1.7	<0.17	<0.17		
Xylenes (Total)	4200	<0.20	<0.20		
Notes:					

MECP Table 3 Standards*

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 3 Standards, Medium/Fine-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard . All Units in μg/L

TABLE 9 POLYCYCLIC AROMATIC HYDROCARBON ANALYSIS FOR GROUNDWATER

WO MW Realty Limited 3145 Conroy Road, Ottawa, Ontario

		Sample Designation Sample Collection Date (dd/mm/yyyy)				
Parameter Parameter	MECP Table 3					
Parameter	Standards*	MW101-GW	MW102-GW			
		30/07/2024	23/08/2024			
Acenaphthene	1700	<0.20	<0.20			
Acenaphthylene	1.8	<0.20	<0.20			
Anthracene	2.4	<0.10	<0.10			
Benzo(a)anthracene	4.7	<0.20	<0.20			
Benzo(a)pyrene	0.81	<0.01	<0.01			
Benzo(b)fluoranthene	0.75	<0.10	<0.10			
Benzo(ghi)perylene	0.2	<0.20	<0.20			
Benzo(k)fluoranthene	0.4	<0.10	<0.10			
Chrysene	1	<0.10	<0.10			
Dibenzo(a,h)anthracene	0.52	<0.20	<0.20			
Fluoranthene	130	<0.20	<0.20			
Fluorene	400	<0.20	<0.20			
Indeno(1,2,3-cd)pyrene	0.2	<0.20	<0.20			
Methylnaphthalene 2-(1-)	1800	<0.20	<0.20			
Naphthalene	6400	<0.20	<0.20			
Phenanthrene	580	<0.10	<0.10			
Pyrene	68	<0.20	<0.20			

Notes:

MECP Table 3 Standards*

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 3 Standards, Medium/Fine-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

BOLD BOLD Units Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in $\mu g/L$

APPENDIX IV

Laboratory Certificates of Analysis

CLIENT NAME: PINCHIN LTD.

1 HINES ROAD SUITE 200

KANATA, ON K2K 3C7

(613) 592-3387

ATTENTION TO: Mandy Witteman

PROJECT: 339662.006 AGAT WORK ORDER: 24Z175126

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jul 24, 2024

PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: PINCHIN LTD. ATTENTION TO: Mandy Witteman

SAMPLED BY:

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2024-07-17 DATE REPORTED: 2024-07-24

	S	AMPLE DES	CRIPTION:	MW101-SS1	MW101-SS2
		SAM	PLE TYPE:	Soil	Soil
		DATE	SAMPLED:	2024-07-16	2024-07-16
Parameter	Unit	G/S	RDL	6014142	6014143
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.70	6.73

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6014142-6014143 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Conroy Road

CHEMIST OF CHARTERED OF CHARTERED OF CHARTERED OF CHARTERED OF CHARTER OF CHA

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2024-07-17				DATE REPORTED: 2024-0
		SAMPLE DESCRIP	TION: MW101-SS4	
		SAMPLE 1	TYPE: Soil	
		DATE SAME	PLED: 2024-07-16	
Parameter	Unit	G/S R	DL 6014144	
Naphthalene	μg/g	0.09 0.	.05 <0.05	
Acenaphthylene	μg/g	0.093 0.	.05 <0.05	
Acenaphthene	μg/g	0.072 0.	.05 <0.05	
Fluorene	μg/g	0.12 0.	.05 <0.05	
Phenanthrene	μg/g	0.69 0.	.05 <0.05	
Anthracene	μg/g	0.16 0.	.05 <0.05	
Fluoranthene	μg/g	0.56 0.	.05 <0.05	
Pyrene	μg/g	1 0.	.05 <0.05	
Benzo(a)anthracene	μg/g	0.36 0.	.05 <0.05	
Chrysene	μg/g	2.8 0.	.05 <0.05	
Benzo(b)fluoranthene	μg/g	0.47 0.	.05 <0.05	
Benzo(k)fluoranthene	μg/g	0.48 0.	.05 <0.05	
Benzo(a)pyrene	μg/g	0.3 0.	.05 <0.05	
ndeno(1,2,3-cd)pyrene	μg/g	0.23 0.	.05 <0.05	
Dibenz(a,h)anthracene	μg/g	0.1 0.	.05 <0.05	
Benzo(g,h,i)perylene	μg/g	0.68 0.	.05 <0.05	
2-and 1-methyl Naphthalene	μg/g	0.59 0.	.05 <0.05	
Moisture Content	%	C	0.1 33.8	
Surrogate	Unit	Acceptable Lir	nits	
Naphthalene-d8	%	50-140	70	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

%

50-140

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6014144 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

100

80

Analysis performed at AGAT Toronto (unless marked by *)

Acridine-d9

Terphenyl-d14

Certified By:

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-07-17 DATE REPORTED: 2024-07-24

		SAMPLE DESC	RIPTION:	MW101-SS4
		SAMPLE TYPE:		Soil
		DATE S	DATE SAMPLED:	
Parameter	Unit	G/S	RDL	6014144
F1 (C6 to C10)	μg/g	25	5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5
F2 (C10 to C16)	μg/g	10	10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10
F3 (C16 to C34)	μg/g	240	50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	<50
F4 (C34 to C50)	μg/g	120	50	<50
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA
Moisture Content	%		0.1	33.8
Surrogate	Unit	Acceptabl	e Limits	
Toluene-d8	%	50-1	40	110
Terphenyl	%	60-1	40	86
erpnenyl	%	60-1	40	86

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6014144 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Mandy Witteman

SAMPLED BY:

O. Reg. 153(511) - VOCs (with PHC) (Soil)

				J. Keg. 153(511) - VOCS (With PRC) (5011)
DATE RECEIVED: 2024-07-17					DATE REPORTED: 2024-07-24
	S	AMPLE DESCR	RIPTION:	MW101-SS4	
		SAMPLE TYPE:		Soil	
		DATE SA	MPLED:	2024-07-16	
Parameter	Unit	G/S	RDL	6014144	
Dichlorodifluoromethane	μg/g	0.05	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	0.25	0.05	<0.05	
Acetone	ug/g	0.5	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.05	0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.05	0.05	<0.05	
1,1-Dichloroethane	ug/g	0.05	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.5	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.02	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	
Trichloroethylene	ug/g	0.05	0.03	<0.03	
Bromodichloromethane	ug/g	0.05	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.5	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	0.2	0.05	<0.05	
Dibromochloromethane	ug/g	0.05	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	0.05	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	
Chlorobenzene	ug/g	0.05	0.05	<0.05	
Ethylbenzene	ug/g	0.05	0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	

Certified By:

Jung

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-07-17		DATE REPORTED: 2024-07-24
SAMPLE DESCRIPTION:	MW101-SS4	
SAMPLE TYPE:	Soil	

	SAM	Soil		
		DATE	SAMPLED:	2024-07-16
Parameter	Unit	G/S	RDL	6014144
Bromoform	ug/g	0.05	0.05	<0.05
Styrene	ug/g	0.05	0.05	< 0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05
o-Xylene	ug/g		0.05	< 0.05
1,3-Dichlorobenzene	ug/g	0.05	0.05	< 0.05
1,4-Dichlorobenzene	ug/g	0.05	0.05	< 0.05
1,2-Dichlorobenzene	ug/g	0.05	0.05	< 0.05
Xylenes (Total)	ug/g	0.05	0.05	< 0.05
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05
n-Hexane	μg/g	0.05	0.05	< 0.05
Moisture Content	%		0.1	33.8
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-	50-140	
4-Bromofluorobenzene	% Recovery	50-	140	96

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was

performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

6014144

Certified By:

Quality Assurance

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z175126
PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road SAMPLED BY:

Soil Analysis															
RPT Date: Jul 24, 2024		DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim		Recovery	Acceptable Limits		Recovery	Accepta Verv Limits	
T / W / W E T E K							Value	Lower	Upper	,		Upper	,,		Upper

O. Reg. 153(511) - ORPs (Soil)

pH, 2:1 CaCl2 Extraction 6013744 5.39 5.59 3.6% NA 103% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

CHARTERED CHEMIST

Certified By:

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy Road

AGAT WORK ORDER: 24Z175126

ATTENTION TO: Mandy Witteman

SAMPLED BY:

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jul 24, 2024				DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery		ptable nits
17M7MILTER		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)	'		•			•	•								
Naphthalene	6014114		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	93%	50%	140%	103%	50%	140%
Acenaphthylene	6014114		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	75%	50%	140%	88%	50%	140%
Acenaphthene	6014114		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	83%	50%	140%	78%	50%	140%
Fluorene	6014114		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	78%	50%	140%	78%	50%	140%
Phenanthrene	6014114		<0.05	<0.05	NA	< 0.05	86%	50%	140%	75%	50%	140%	75%	50%	140%
Anthracene	6014114		<0.05	<0.05	NA	< 0.05	70%	50%	140%	88%	50%	140%	83%	50%	140%
Fluoranthene	6014114		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	80%	50%	140%	75%	50%	140%
Pyrene	6014114		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	80%	50%	140%	73%	50%	140%
Benzo(a)anthracene	6014114		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	90%	50%	140%	85%	50%	140%
Chrysene	6014114		<0.05	< 0.05	NA	< 0.05	102%	50%	140%	80%	50%	140%	78%	50%	140%
Benzo(b)fluoranthene	6014114		<0.05	<0.05	NA	< 0.05	88%	50%	140%	98%	50%	140%	108%	50%	140%
Benzo(k)fluoranthene	6014114		< 0.05	< 0.05	NA	< 0.05	124%	50%	140%	73%	50%	140%	98%	50%	140%
Benzo(a)pyrene	6014114		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	75%	50%	140%	80%	50%	140%
Indeno(1,2,3-cd)pyrene	6014114		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	73%	50%	140%	88%	50%	140%
Dibenz(a,h)anthracene	6014114		<0.05	<0.05	NA	< 0.05	96%	50%	140%	95%	50%	140%	103%	50%	140%
Benzo(g,h,i)perylene	6014114		<0.05	<0.05	NA	< 0.05	122%	50%	140%	110%	50%	140%	95%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs a	and VOC)	(Soil)												
F1 (C6 to C10)	6014375		<5	<5	NA	< 5	121%	60%	140%	113%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6013649		< 10	< 10	NA	< 10	103%	60%	140%	99%	60%	140%	104%	60%	140%
F3 (C16 to C34)	6013649		< 50	< 50	NA	< 50	106%	60%	140%	126%	60%	140%	127%	60%	140%
F4 (C34 to C50)	6013649		< 50	< 50	NA	< 50	66%	60%	140%	119%	60%	140%	101%	60%	140%
O. Reg. 153(511) - VOCs (with P	HC) (Soil)														
Dichlorodifluoromethane	6014375		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	82%	50%	140%	86%	50%	140%
Vinyl Chloride	6014375		<0.02	<0.02	NA	< 0.02	83%	50%	140%	94%	50%	140%	119%	50%	140%
Bromomethane	6014375		<0.05	< 0.05	NA	< 0.05	89%	50%	140%	97%	50%	140%	122%	50%	140%
Trichlorofluoromethane	6014375		< 0.05	< 0.05	NA	< 0.05	74%	50%	140%	83%	50%	140%	96%	50%	140%
Acetone	6014375		<0.50	<0.50	NA	< 0.50	99%	50%	140%	110%	50%	140%	104%	50%	140%
1,1-Dichloroethylene	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	89%	60%	130%	70%	50%	140%
Methylene Chloride	6014375		<0.05	< 0.05	NA	< 0.05	97%	50%	140%	97%	60%	130%	91%	50%	
Trans- 1,2-Dichloroethylene	6014375		<0.05	<0.05	NA	< 0.05	97%		140%	98%		130%	83%		140%
Methyl tert-butyl Ether	6014375		<0.05	<0.05	NA	< 0.05	99%		140%	105%		130%	106%	50%	
1,1-Dichloroethane	6014375		<0.02	<0.02	NA	< 0.02	110%		140%	107%		130%	117%		140%
Methyl Ethyl Ketone	6014375		<0.50	<0.50	NA	< 0.50	101%	50%	140%	110%	50%	140%	98%	50%	140%
Cis- 1,2-Dichloroethylene	6014375		<0.02	<0.02	NA	< 0.02	100%		140%	101%		130%	74%		140%
Chloroform	6014375		<0.04	< 0.04	NA	< 0.04	102%		140%	98%		130%	76%		140%
1,2-Dichloroethane	6014375		<0.03	< 0.03	NA	< 0.03	104%		140%	106%		130%	79%		140%
1,1,1-Trichloroethane	6014375		<0.05	<0.05	NA	< 0.05	90%		140%	86%		130%	98%		140%
Carbon Tetrachloride	6014375		<0.05	<0.05	NA	< 0.05	89%	50%	140%	85%	60%	130%	65%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy Road

AGAT WORK ORDER: 24Z175126

ATTENTION TO: Mandy Witteman

SAMPLED BY:

							`								
Trace Organics Analysis (Continued)															
RPT Date: Jul 24, 2024				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
							Value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	6014375		< 0.02	< 0.02	NA	< 0.02	107%	50%	140%	101%	60%	130%	74%	50%	140%
1,2-Dichloropropane	6014375		< 0.03	< 0.03	NA	< 0.03	94%	50%	140%	96%	60%	130%	69%	50%	140%
Trichloroethylene	6014375		< 0.03	< 0.03	NA	< 0.03	102%	50%	140%	96%	60%	130%	71%	50%	140%
Bromodichloromethane	6014375		<0.05	<0.05	NA	< 0.05	90%	50%	140%	92%	60%	130%	65%	50%	140%
Methyl Isobutyl Ketone	6014375		<0.50	<0.50	NA	< 0.50	78%	50%	140%	100%	50%	140%	95%	50%	140%
1,1,2-Trichloroethane	6014375		< 0.04	< 0.04	NA	< 0.04	107%	50%	140%	103%	60%	130%	107%	50%	140%
Toluene	6014375		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	103%	60%	130%	89%	50%	140%
Dibromochloromethane	6014375		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	99%	60%	130%	91%	50%	140%
Ethylene Dibromide	6014375		<0.04	<0.04	NA	< 0.04	104%	50%	140%	108%	60%	130%	101%	50%	140%
Tetrachloroethylene	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	107%	60%	130%	100%	50%	140%
1,1,1,2-Tetrachloroethane	6014375		< 0.04	<0.04	NA	< 0.04	94%	50%	140%	101%	60%	130%	87%	50%	140%
Chlorobenzene	6014375		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	100%	60%	130%	101%	50%	140%
Ethylbenzene	6014375		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	93%	50%	140%
m & p-Xylene	6014375		<0.05	<0.05	NA	< 0.05	102%	50%	140%	104%	60%	130%	90%	50%	140%
Bromoform	6014375		<0.05	<0.05	NA	< 0.05	103%	50%	140%	90%	60%	130%	105%	50%	140%
Styrene	6014375		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	104%	60%	130%	88%	50%	140%
1,1,2,2-Tetrachloroethane	6014375		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	106%	60%	130%	100%	50%	140%
o-Xylene	6014375		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	96%	60%	130%	105%	50%	140%
1,3-Dichlorobenzene	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	94%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene	6014375		<0.05	<0.05	NA	< 0.05	105%	50%	140%	101%	60%	130%	101%	50%	140%
1,2-Dichlorobenzene	6014375		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	104%	60%	130%	99%	50%	140%
n-Hexane	6014375		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	106%	60%	130%	76%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jung

Time Markers

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

Date Analyzed

Initials

ATTENTION TO: Mandy Witteman

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Sample ID	Sample Description	Sample Type	Date Sample	d Date Received
6014142	MW101-SS1	Soil	16-JUL-2024	17-JUL-2024
	O. Reg. 153(511) - ORPs (Soil)			
	Parameter	Date Pre	pared Date A	Analyzed Initials
	pH, 2:1 CaCl2 Extraction	24-JUL	-2024 24-Jl	JL-2024 SB
6014143	MW101-SS2	Soil	16-JUL-2024	17-JUL-2024
	O. Reg. 153(511) - ORPs (Soil)			
	Parameter	Date Pre	pared Date A	Analyzed Initials
	pH, 2:1 CaCl2 Extraction	24-JUL	-2024 24-Jl	JL-2024 SB
6014144	MW101-SS4	Soil	16-JUL-2024	17-JUL-2024

O. Reg. 153(511) - PAHs (Soil)

Parameter

raiailielei	Date Frepareu	Date Allalyzeu	IIIIIIais
Naphthalene	23-JUL-2024	23-JUL-2024	NP
Acenaphthylene	23-JUL-2024	23-JUL-2024	NP
Acenaphthene	23-JUL-2024	23-JUL-2024	NP
Fluorene	23-JUL-2024	23-JUL-2024	NP
Phenanthrene	23-JUL-2024	23-JUL-2024	NP
Anthracene	23-JUL-2024	23-JUL-2024	NP
Fluoranthene	23-JUL-2024	23-JUL-2024	NP
Pyrene	23-JUL-2024	23-JUL-2024	NP
Benzo(a)anthracene	23-JUL-2024	23-JUL-2024	NP
Chrysene	23-JUL-2024	23-JUL-2024	NP
Benzo(b)fluoranthene	23-JUL-2024	23-JUL-2024	NP
Benzo(k)fluoranthene	23-JUL-2024	23-JUL-2024	NP
Benzo(a)pyrene	23-JUL-2024	23-JUL-2024	NP
Indeno(1,2,3-cd)pyrene	23-JUL-2024	23-JUL-2024	NP
Dibenz(a,h)anthracene	23-JUL-2024	23-JUL-2024	NP
Benzo(g,h,i)perylene	23-JUL-2024	23-JUL-2024	NP
2-and 1-methyl Naphthalene	23-JUL-2024	23-JUL-2024	SYS
Naphthalene-d8	23-JUL-2024	23-JUL-2024	NP
Acridine-d9	23-JUL-2024	23-JUL-2024	NP
Terphenyl-d14	23-JUL-2024	23-JUL-2024	NP
Moisture Content	22-JUL-2024	22-JUL-2024	SD

Date Prepared

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
F1 (C6 to C10)	23-JUL-2024	23-JUL-2024	CK
F1 (C6 to C10) minus BTEX	23-JUL-2024	23-JUL-2024	SYS

Time Markers

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. ATTENTION TO: Mandy Witteman

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6014144	MW101-SS4	Soil	16-JUL-2024	17-JUL-2024

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Toluene-d8	23-JUL-2024	23-JUL-2024	CK
F2 (C10 to C16)	23-JUL-2024	23-JUL-2024	SS
F2 (C10 to C16) minus Naphthalene	23-JUL-2024	23-JUL-2024	SYS
F3 (C16 to C34)	23-JUL-2024	23-JUL-2024	SS
F3 (C16 to C34) minus PAHs	23-JUL-2024	23-JUL-2024	SYS
F4 (C34 to C50)	23-JUL-2024	23-JUL-2024	SS
Gravimetric Heavy Hydrocarbons			
Moisture Content	22-JUL-2024	22-JUL-2024	SD
Terphenyl	23-JUL-2024	23-JUL-2024	SS

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Dichlorodifluoromethane	23-JUL-2024	23-JUL-2024	CK
Vinyl Chloride	23-JUL-2024	23-JUL-2024	CK
Bromomethane	23-JUL-2024	23-JUL-2024	CK
Trichlorofluoromethane	23-JUL-2024	23-JUL-2024	CK
Acetone	23-JUL-2024	23-JUL-2024	CK
1,1-Dichloroethylene	23-JUL-2024	23-JUL-2024	CK
Methylene Chloride	23-JUL-2024	23-JUL-2024	CK
Trans- 1,2-Dichloroethylene	23-JUL-2024	23-JUL-2024	CK
Methyl tert-butyl Ether	23-JUL-2024	23-JUL-2024	CK
1,1-Dichloroethane	23-JUL-2024	23-JUL-2024	CK
Methyl Ethyl Ketone	23-JUL-2024	23-JUL-2024	CK
Cis- 1,2-Dichloroethylene	23-JUL-2024	23-JUL-2024	CK
Chloroform	23-JUL-2024	23-JUL-2024	CK
1,2-Dichloroethane	23-JUL-2024	23-JUL-2024	CK
1,1,1-Trichloroethane	23-JUL-2024	23-JUL-2024	CK
Carbon Tetrachloride	23-JUL-2024	23-JUL-2024	CK
Benzene	23-JUL-2024	23-JUL-2024	CK
1,2-Dichloropropane	23-JUL-2024	23-JUL-2024	CK
Trichloroethylene	23-JUL-2024	23-JUL-2024	CK
Bromodichloromethane	23-JUL-2024	23-JUL-2024	CK
Methyl Isobutyl Ketone	23-JUL-2024	23-JUL-2024	CK
1,1,2-Trichloroethane	23-JUL-2024	23-JUL-2024	CK
Toluene	23-JUL-2024	23-JUL-2024	CK
Dibromochloromethane	23-JUL-2024	23-JUL-2024	CK
Ethylene Dibromide	23-JUL-2024	23-JUL-2024	CK
Tetrachloroethylene	23-JUL-2024	23-JUL-2024	CK
1,1,1,2-Tetrachloroethane	23-JUL-2024	23-JUL-2024	CK

Time Markers

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: PINCHIN LTD. ATTENTION TO: Mandy Witteman

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6014144	MW101-SS4	Soil	16-JUL-2024	17-JUL-2024

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Chlorobenzene	23-JUL-2024	23-JUL-2024	CK
Ethylbenzene	23-JUL-2024	23-JUL-2024	CK
m & p-Xylene	23-JUL-2024	23-JUL-2024	CK
Bromoform	23-JUL-2024	23-JUL-2024	CK
Styrene	23-JUL-2024	23-JUL-2024	CK
1,1,2,2-Tetrachloroethane	23-JUL-2024	23-JUL-2024	CK
o-Xylene	23-JUL-2024	23-JUL-2024	CK
1,3-Dichlorobenzene	23-JUL-2024	23-JUL-2024	CK
1,4-Dichlorobenzene	23-JUL-2024	23-JUL-2024	CK
1,2-Dichlorobenzene	23-JUL-2024	23-JUL-2024	CK
Xylenes (Total)	23-JUL-2024	23-JUL-2024	SYS
1,3-Dichloropropene (Cis + Trans)	23-JUL-2024	23-JUL-2024	SYS
n-Hexane	23-JUL-2024	23-JUL-2024	CK
Toluene-d8	23-JUL-2024	23-JUL-2024	CK
4-Bromofluorobenzene	23-JUL-2024	23-JUL-2024	CK
Moisture Content	22-JUL-2024	22-JUL-2024	SD

Method Summary

CLIENT NAME: PINCHIN LTD.
PROJECT: 339662.006
SAMPLING SITE:Conroy Road

AGAT WORK ORDER: 24Z175126
ATTENTION TO: Mandy Witteman

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z175126
PROJECT: 339662.006

ATTENTION TO: Mandy Witteman
SAMPLING SITE:Conroy Road

SAMPLED BY:

PARAMETER AGAT S.O.P LITERATURE REFERENCE **ANALYTICAL TECHNIQUE Trace Organics Analysis** modified from EPA 3570 and EPA Naphthalene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Acenaphthylene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA ORG-91-5106 GC/MS Acenaphthene 8270E modified from EPA 3570 and EPA Fluorene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA ORG-91-5106 GC/MS Phenanthrene 8270E modified from EPA 3570 and EPA Anthracene ORG-91-5106 GC/MS 8270F modified from EPA 3570 and EPA Fluoranthene GC/MS ORG-91-5106 8270F modified from EPA 3570 and EPA Pyrene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Benzo(a)anthracene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Chrysene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA ORG-91-5106 GC/MS Benzo(b)fluoranthene 8270F modified from EPA 3570 and EPA GC/MS Benzo(k)fluoranthene ORG-91-5106 8270E modified from EPA 3570 and EPA Benzo(a)pyrene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 8270E modified from EPA 3570 and EPA ORG-91-5106 GC/MS Dibenz(a,h)anthracene 8270E modified from EPA 3570 and EPA ORG-91-5106 GC/MS Benzo(g,h,i)perylene 8270E modified from EPA 3570 and EPA 2-and 1-methyl Naphthalene ORG-91-5106 GC/MS 8270F modified from EPA 3570 and EPA GC/MS Naphthalene-d8 ORG-91-5106 8270E modified from EPA 3570 and EPA Acridine-d9 ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Terphenyl-d14 ORG-91-5106 GC/MS 8270E Moisture Content VOL-91-5009 modified from CCME Tier 1 Method **BALANCE** F1 (C6 to C10) VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/FID F1 (C6 to C10) minus BTEX VOL-91-5009 modified from CCME Tier 1 Method P&T GC/FID modified from EPA 5030B & EPA Toluene-d8 VOL-91-5001 (P&T)GC/MS 8260D F2 (C10 to C16) VOL-91-5009 modified from CCME Tier 1 Method GC/FID F2 (C10 to C16) minus Naphthalene VOL-91-5009 modified from CCME Tier 1 Method GC/FID F3 (C16 to C34) modified from CCME Tier 1 Method GC/FID VOL-91-5009 F3 (C16 to C34) minus PAHs VOL-91-5009 modified from CCME Tier 1 Method GC/FID VOL-91-5009 modified from CCME Tier 1 Method GC/FID F4 (C34 to C50) modified from CCME Tier 1 Method Gravimetric Heavy Hydrocarbons VOL-91-5009 BALANCE Terphenyl VOL-91-5009 modified from CCME Tier 1 Method GC/FID modified from EPA 5035A and EPA Dichlorodifluoromethane VOL-91-5002 (P&T)GC/MS

8260D

Method Summary

CLIENT NAME: PINCHIN LTD.
PROJECT: 339662.006
SAMPLING SITE:Conroy Road

AGAT WORK ORDER: 24Z175126
ATTENTION TO: Mandy Witteman

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD.
PROJECT: 339662.006
SAMPLING SITE:Conroy Road

AGAT WORK ORDER: 24Z175126
ATTENTION TO: Mandy Witteman

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

Report Information:

Project Information:

Company: Contact:

Address:

Phone:

1. Email:

2. Email:

Project:

1. 2. 3. 4. 5.

6. 7 8. 9. 10. 11.

Site Location:

Sampled By:

Reports to be sent to.

Have feedback?

Scan here for a quick survey!

Regulatory Requirements:

Is this submission for a

Record of Site Condition?

Regulation 406

Regulation 558

CCME

☐ No

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Regulation 153/04

□lod/Com

Res/Park

Coarse

☐ Yes

Fine

☐ Agriculture

Soil Texture (Check One)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

> Sewer Use Sanitary

Other

☐ Yes

mo113

Region

Prov. Water Quality

Objectives (PWQO)

Indicate One

Report Guideline on

Certificate of Analysis

O. Reg 153

Storm

☐ No

Laboratory Use Only

Work Order #:	7471	75	120	Ī
		1	The same of the sa	Ξ

Cooler Quantity: (7)	1- 001	CO ID	acks
Arrival Temperatures:			
	Carl	15.0	5-3

Custody Seal Intact: ☐Yes □N/A □No

Turna	around Tim	e (TAT) Requir	ed:
	lar TAT TAT (Rush Surchar	5 to 7 Busines	ss Days
Rusii	(Rush Surchar	ges Apply)	
	3 Business Days	2 Business Days	Next Busine
	OR Date Regu	ired (Rush Surcharge	es May Apply):

Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

O. Reg 406

AGAT Quote #:	PO:		2.0	Com	nla Matrix Logand	8	0.	. Reg It	0.3	003			558	O. Re	_		- 189	4	展	-	X/N)
Please note: If quotation number is n	ot provided, client wil	l be billed full price for	analysis.		iple Matrix Legend	crvI, DOC					-			ن	kage	o o		4 1	Ĕ.	1080	ion (Y
Invoice Information: Company: Pinchus	E	Bill To Same: Ye	es 🗤 No 🗆		Ground Water Oil Paint	五		HWSB		- 18		m	zation TCLP: □B(a)P□P	nwater Leach	Characterization Package Is, BTEX, F1-F4] Sulphide	1 5 70		51		Concentrat
Contact:				S	Soil	Metals,	1					RI	cteri		x F1	e 🗆					High (
Address:				SD	Sediment	- pa	sjic	Π Hg	S			3	hara s 🗆 /	SPLP Ra	BTEX	istur		4 1			Sor
Email: Apa Pincl	rin-cc	m		SW	Surface Water	Field Filtered -	& Inorganics	- Crvi, [F1-F4 PHCs			oclors 🗆	Disposal Char	0,	406 Meta	Corrosivity: Moisture	. Um			42	y Hazardou
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	~	PAHS	PCBs	PCBs: Aroclors	Landfill [TCLP:	Regulation 406 SPLP □ Metals	Regulation pH, ICPMS	Corrosiv	Ha		all se		Potential
1. MWIDI-SSI	July 16/21	AM PA	A [= =	<										111			X			U-S	П
2. MW101-552	1) AN PN	A (The s			X				1
3. MW101-554	W	AN PN	1 2		Table '		-		\times	X											4
4.		AN PN	1												=1						
5.		AN PN	A																		
6.		AN PN			H K																
7.		AN PN			New Transfer		.E							1007							Ť
8.		AN PN																			
9.		AN PN					-		1			53		1937						100	
10.		AN PN										US.		- WAY							1
11.		AN PN			parties in the same	- 100						Œ.		100						100	Ī
amples Rollinguished By (Print Name and Sign):	Hen	Date	6/24		Samples Received By (Print Name and sign):	5			Tiel		ate	17/2	24 F	5h3	5						

Page

GAN

CLIENT NAME: PINCHIN LTD. 1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7 (613) 592-3387

ATTENTION TO: Mandy Witteman

PROJECT: 339662.006

AGAT WORK ORDER: 24Z188540

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Sep 05, 2024

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2024-08-21					DATE REPORTED: 2024-09-
	5	SAMPLE DES	CRIPTION:	MW102-S3	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2024-08-21	
Parameter	Unit	G/S	RDL	6094579	
Naphthalene	μg/g	0.09	0.05	<0.05	
Acenaphthylene	μg/g	0.093	0.05	< 0.05	
Acenaphthene	μg/g	0.072	0.05	< 0.05	
Fluorene	μg/g	0.12	0.05	< 0.05	
Phenanthrene	μg/g	0.69	0.05	< 0.05	
nthracene	μg/g	0.16	0.05	< 0.05	
luoranthene	μg/g	0.56	0.05	< 0.05	
Pyrene	μg/g	1	0.05	< 0.05	
Benzo(a)anthracene	μg/g	0.36	0.05	< 0.05	
Chrysene	μg/g	2.8	0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.47	0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.48	0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	
ndeno(1,2,3-cd)pyrene	μg/g	0.23	0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.68	0.05	< 0.05	
-and 1-methyl Naphthalene	μg/g	0.59	0.05	< 0.05	
Moisture Content	%		0.1	30.7	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-1	140	80	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

%

50-140

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6094579 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

80

85

Analysis performed at AGAT Toronto (unless marked by *)

Acridine-d9

Terphenyl-d14

Certified By:

NPoprukolef

SAMPLING SITE:Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-08-21 DATE REPORTED: 2024-09-05

	:	SAMPLE DES	CRIPTION:	MW102-S3
		SAM	PLE TYPE:	Soil
		DATES	SAMPLED:	2024-08-21
Parameter	Unit	G/S	RDL	6094579
F1 (C6 to C10)	μg/g	25	5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5
F2 (C10 to C16)	μg/g	10	10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10
F3 (C16 to C34)	μg/g	240	50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	<50
F4 (C34 to C50)	μg/g	120	50	<50
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA
Moisture Content	%		0.1	30.7
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	%	50-1	40	104
Terphenyl	%	60-1	40	83

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6094579 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolef

SAMPLING SITE:Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-08-21					DATE REPORTED: 2024-09-0
	S	AMPLE DESC	RIPTION:	MW102-S3	
		SAMP	LE TYPE:	Soil	
		DATE S	AMPLED:	2024-08-21	
Parameter	Unit	G/S	RDL	6094579	
Dichlorodifluoromethane	μg/g	0.05	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	0.25	0.05	<0.05	
Acetone	ug/g	0.5	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.05	0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.05	0.05	< 0.05	
1,1-Dichloroethane	ug/g	0.05	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.5	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.02	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	
Trichloroethylene	ug/g	0.05	0.03	<0.03	
Bromodichloromethane	ug/g	0.05	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.5	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	0.2	0.05	<0.05	
Dibromochloromethane	ug/g	0.05	0.05	<0.05	
thylene Dibromide	ug/g	0.05	0.04	<0.04	
etrachloroethylene	ug/g	0.05	0.05	<0.05	
,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	
Chlorobenzene	ug/g	0.05	0.05	<0.05	
Ethylbenzene	ug/g	0.05	0.05	<0.05	
n & p-Xylene	ug/g		0.05	<0.05	

SAMPLING SITE:Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-08-21					DATE REPORTED: 2024-09-05
	SA		PLE TYPE:	MW102-S3 Soil	
Parameter	Unit	DATE S G/S	SAMPLED: RDL	2024-08-21 6094579	
Bromoform	ug/g	0.05	0.05	<0.05	
Styrene	ug/g	0.05	0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	
Xylenes (Total)	ug/g	0.05	0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05	
n-Hexane	μg/g	0.05	0.05	< 0.05	
Moisture Content	%		0.1	30.7	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	140	104	
4-Bromofluorobenzene	% Recovery	50-1	140	84	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was

performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

6094579

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy

AGAT WORK ORDER: 24Z188540

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

Trace Organics Analysis															
RPT Date: Sep 05, 2024			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SI		IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable mits
TANAMETER	Daten	ld	- Dup #1	Dup #2	IXI D		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)	•					•									•
Naphthalene	6087836		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	95%	50%	140%	85%	50%	140%
Acenaphthylene	6087836		< 0.05	< 0.05	NA	< 0.05	69%	50%	140%	110%	50%	140%	85%	50%	140%
Acenaphthene	6087836		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	80%	50%	140%	95%	50%	140%
Fluorene	6087836		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	75%	50%	140%	90%	50%	140%
Phenanthrene	6087836		<0.05	<0.05	NA	< 0.05	105%	50%	140%	88%	50%	140%	100%	50%	140%
Anthracene	6087836		<0.05	< 0.05	NA	< 0.05	65%	50%	140%	80%	50%	140%	90%	50%	140%
Fluoranthene	6087836		< 0.05	< 0.05	NA	< 0.05	121%	50%	140%	80%	50%	140%	101%	50%	140%
Pyrene	6087836		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	100%	50%	140%	78%	50%	140%
Benzo(a)anthracene	6087836		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	98%	50%	140%	95%	50%	140%
Chrysene	6087836		<0.05	<0.05	NA	< 0.05	95%	50%	140%	93%	50%	140%	83%	50%	140%
Benzo(b)fluoranthene	6087836		<0.05	<0.05	NA	< 0.05	89%	50%	140%	78%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	6087836		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	90%	50%	140%	70%	50%	140%
Benzo(a)pyrene	6087836		< 0.05	< 0.05	NA	< 0.05	63%	50%	140%	80%	50%	140%	70%	50%	140%
Indeno(1,2,3-cd)pyrene	6087836		<0.05	< 0.05	NA	< 0.05	66%	50%	140%	93%	50%	140%	75%	50%	
Dibenz(a,h)anthracene	6087836		<0.05	<0.05	NA	< 0.05	82%	50%	140%	98%	50%	140%	73%	50%	140%
Benzo(g,h,i)perylene	6087836		<0.05	<0.05	NA	< 0.05	107%	50%	140%	78%	50%	140%	73%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs a	and VOC)	(Soil)												
F1 (C6 to C10)	6093320		<5	<5	NA	< 5	133%	60%	140%	121%	60%	140%	84%	60%	140%
F2 (C10 to C16)	6095711		< 10	< 10	NA	< 10	107%	60%	140%	103%	60%	140%	100%	60%	140%
F3 (C16 to C34)	6095711		< 50	< 50	NA	< 50	105%	60%	140%	123%	60%	140%	125%	60%	140%
F4 (C34 to C50)	6095711		< 50	< 50	NA	< 50	77%	60%	140%	107%	60%	140%	91%	60%	140%
O. Reg. 153(511) - VOCs (with PH	IC) (Soil)														
Dichlorodifluoromethane	6093320		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	89%	50%	140%	112%	50%	140%
Vinyl Chloride	6093320		<0.02	< 0.02	NA	< 0.02	116%	50%	140%	91%	50%	140%	97%	50%	140%
Bromomethane	6093320		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	73%	50%	140%	115%	50%	140%
Trichlorofluoromethane	6093320		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	87%	50%	140%	84%	50%	140%
Acetone	6093320		<0.50	<0.50	NA	< 0.50	83%	50%	140%	90%	50%	140%	108%	50%	140%
1,1-Dichloroethylene	6093320		<0.05	<0.05	NA	< 0.05	101%	50%	140%	99%	60%	130%	85%	50%	140%
Methylene Chloride	6093320		< 0.05	< 0.05	NA	< 0.05	99%		140%	88%	60%	130%	103%	50%	
Trans- 1,2-Dichloroethylene	6093320		< 0.05	< 0.05	NA	< 0.05	88%		140%	89%		130%	103%		140%
Methyl tert-butyl Ether	6093320		< 0.05	< 0.05	NA	< 0.05	78%		140%	93%		130%	86%	50%	
1,1-Dichloroethane	6093320		<0.02	<0.02	NA	< 0.02	99%		140%	99%		130%	80%		140%
Methyl Ethyl Ketone	6093320		<0.50	<0.50	NA	< 0.50	111%	50%	140%	91%	50%	140%	96%	50%	140%
Cis- 1,2-Dichloroethylene	6093320		<0.02	<0.02	NA	< 0.02	91%		140%	99%		130%	99%		140%
Chloroform	6093320		<0.04	< 0.04	NA	< 0.04	90%		140%	96%		130%	99%		140%
1,2-Dichloroethane	6093320		<0.03	< 0.03	NA	< 0.03	74%		140%	81%		130%	95%		140%
1,2-Dictrior detriane													· -		
1,1,1-Trichloroethane	6093320		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	78%	60%	130%	85%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD. AGAT WORK ORDER: 24Z188540 PROJECT: 339662.006 **ATTENTION TO: Mandy Witteman SAMPLING SITE:Conroy SAMPLED BY:EW**

CAIM EING GITE:COMOY								J, (1011							
	Trace Organics Analysis (Continued)														
RPT Date: Sep 05, 2024		DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery		eptable mits
		Id		·			value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	6093248		<0.02	<0.02	NA	< 0.02	97%	50%	140%	95%	60%	130%	96%	50%	140%
1,2-Dichloropropane	6093320		<0.03	< 0.03	NA	< 0.03	82%	50%	140%	89%	60%	130%	99%	50%	140%
Trichloroethylene	6093320		<0.03	< 0.03	NA	< 0.03	90%	50%	140%	87%	60%	130%	92%	50%	140%
Bromodichloromethane	6093320		<0.05	<0.05	NA	< 0.05	72%	50%	140%	64%	60%	130%	79%	50%	140%
Methyl Isobutyl Ketone	6093320		<0.50	<0.50	NA	< 0.50	92%	50%	140%	110%	50%	140%	100%	50%	140%
1,1,2-Trichloroethane	6093320		< 0.04	< 0.04	NA	< 0.04	101%	50%	140%	94%	60%	130%	87%	50%	140%
Toluene	6093248		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	101%	60%	130%	96%	50%	140%
Dibromochloromethane	6093320		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	99%	60%	130%	97%	50%	140%
Ethylene Dibromide	6093320		<0.04	<0.04	NA	< 0.04	87%	50%	140%	104%	60%	130%	100%	50%	140%
Tetrachloroethylene	6093320		<0.05	<0.05	NA	< 0.05	103%	50%	140%	106%	60%	130%	93%	50%	140%
1,1,1,2-Tetrachloroethane	6093320		< 0.04	< 0.04	NA	< 0.04	83%	50%	140%	102%	60%	130%	99%	50%	140%
Chlorobenzene	6093320		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	95%	60%	130%	104%	50%	140%
Ethylbenzene	6093248		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	109%	60%	130%	88%	50%	140%
m & p-Xylene	6093248		<0.05	<0.05	NA	< 0.05	118%	50%	140%	125%	60%	130%	104%	50%	140%
Bromoform	6093320		<0.05	<0.05	NA	< 0.05	87%	50%	140%	93%	60%	130%	103%	50%	140%
Styrene	6093320		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	85%	60%	130%	92%	50%	140%
1,1,2,2-Tetrachloroethane	6093320		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	104%	60%	130%	84%	50%	140%
o-Xylene	6093248		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	110%	60%	130%	98%	50%	140%
1,3-Dichlorobenzene	6093320		<0.05	<0.05	NA	< 0.05	101%	50%	140%	110%	60%	130%	99%	50%	140%
1,4-Dichlorobenzene	6093320		<0.05	<0.05	NA	< 0.05	96%	50%	140%	99%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	6093320		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	98%	60%	130%	102%	50%	140%

NA Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

< 0.05

93%

50% 140%

89%

< 0.05

Certified By:

60% 130%

70%

6093320

< 0.05

n-Hexane

50% 140%

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman
SAMPLING SITE:Conroy

SAMPLED BY:EW

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD. PROJECT: 339662.006

AGAT WORK ORDER: 24Z188540 ATTENTION TO: Mandy Witteman SAMPLED BY:EW

SAMPLING SITE:Conroy		SAMPLED BY:EW							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

AGAT WORK ORDER: 24Z188540

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy SAMPLED BY:EW

Ortini Ento ott Eroomoy		9/IIII 225 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS								
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS								
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS								

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

webearth agatlabs.com

Laboratory Use Only

Work Order #: 2421885

Chain of Custody Record

Chain of Custody Record	U If this is a	Drinklng Water	sample, plea	ase use Drin	king Water Chain of Custody Form (potal	ole water	consum	ed by hi	uman	;)					eratures		397	0-0	6.5
Report Information: Company:	n			Reg	gulatory Requirements:							11		-	I Intact:]Yes	□No	□N/A
Contact: Mwittema		chin 1	ion	1	egulation 153/04 Regulation 406		C Sev	wer Hs	P				Notes:	_			01	1	
Address: EWISM (a)	pochi	com	-		Table						Turnaround Time (TAT) Required:								
1-three to	l, Suite	200	2	_							R	Regular TAT 5 to 7 Business Days							
Phone: 63 617 5936	2 Fax:				Res/Park Res/Park Agriculture Agriculture			v. Wate				R	ush '	TAT (R	ush Surcha				
Reports to be sent to: 1. Email:					Forture (c) 1 c		Obj	ectives	(PW	QO)				0.0			0.0 .		
I. Ellall.	**			- 11	Coarse Regulation 558	3	Oth	er						3 Bus	siness		2 Business Days		ext Business ay
2. Email:					Fine CCME			Indicate	One		_			OR D	ate Rec	juired (F	Rush Surcha	rges May Ar	ply):
Project Information:				ls th	nis submission for a Record	Re	port	Guid	elin	e on									
Project: 33966	2.006	,		0	of Site Condition (RSC)?	Cei	tifica	ite of	Ana	ilysis		Н					rior notificati		
Site Location:					Yes No		Yes	3	Ø	No							eekends and		
Sampled By:										-	-		_	_		-	please cont	act your AG	AT CSR
AGAT Quote #: Please note: If quotation number is	PO:	na billad full seine fee		Leg	al Sample 🗌	000	0.	Reg 15	3				O. Reg	-	0. Re 558				N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/
	not provided, crient wiir	be billed fall price for	analysis.	=		CrVI, DOC						Package		rater Leach		- -			ation (
Invoice Information:	Bi	II To Same: Ye	s 🗌 No 🗆	San	nple Matrix Legend			SB			-	Pa Lo		r Lea	svous Lition TCLP:	Sulphide			centra
Company: Pinch IV	n.	. 110		- GW	Ground Water SD Sediment	etals,		□HWSB				rizati		wate	erizati	က က			L Co
Contact: #Connes	paya	este.		- O	Oil SW Surface Water	Σ̈́	y)	□ Hg, □				haracte	4	LP Rainv	aracteriz	ure		10.0	I High
Address: Email: (106) pipo	· hin	1 10-		- P	Paint R Rock/Shale	terec	Inorganics	<u> </u>	PHCs			Chai	7, 1	SPLF	osal Cha	Aoist			o sno
than.	rure	COPPL.		_ S	Soil	Field Filtered - Metals, Hg,		CrVI,	F4 P		2	406 C		406	Disposal Characterization TCLP:	<u></u>			Hazaro
	D-t-	T'				ΙË	S &] - SI	, F1-F4		, A	ulation	SAR	ation	fill Disp	sivity		12000	ially F
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals - I	втех,	VOC	PAHS DCBc: Amolog	Regulation 406 Characterization	EC, S	Regulation 406 SPLP Rainwater Leach	Landfill Disposal C	Corrosivity:			Poteni
1. BH102-S3	Ann olbe	AM PM	2	5					V	VX	1								
2.	17/1	AM					10751				1								
3.		AM PM					12.1												
4.		AM PM				1													
5.		AM PM														1			
6.		AM PM																	
7.		AM PM						-											
8.		AM PM																	
9.	-	AN PM																	
10.		AM PM																	
11.		AM PM																	
Samples Relinquished By (Prox Name and Sign):	0	Date	Time		Eamplon Received By (Print Name and Sign):	1		- 10			Date	,	1 11	ime	1				
Samples Relinquished By (Print Name and Sign): Ester Wilson Ester W Samples Relinquished By (Print Name and Sign):	elson	2024-0	18-21		(Chilleto						38	21/2	4	151	115				
Ca to Pino		08/22/	24 15	100	THE					H	Date /	27	1	Time	4		Page	of	_

CLIENT NAME: PINCHIN LTD. 1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7 (613) 592-3387

ATTENTION TO: Ester Wilson PROJECT: 339662.006

AGAT WORK ORDER: 24Z189028

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Aug 29, 2024

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. SAMPLING SITE:Conroy

ATTENTION TO: Ester Wilson SAMPLED BY:E. Wilson

				O. Reg. 153	(511) - PAHs (Water)	
DATE RECEIVED: 2024-08-23						DATE REPORTED: 2024-08-29
	:		CRIPTION: PLE TYPE: SAMPLED:	MW102-GW Water 2024-08-23		
Parameter	Unit	G/S	RDL	6098656		
Naphthalene	μg/L	7	0.20	<0.20		
Acenaphthylene	μg/L	1	0.20	<0.20		
Acenaphthene	μg/L	4.1	0.20	<0.20		
Fluorene	μg/L	120	0.20	<0.20		
Phenanthrene	μg/L	0.1	0.10	<0.10		
Anthracene	μg/L	0.1	0.10	<0.10		
Fluoranthene	μg/L	0.4	0.20	<0.20		
Pyrene	μg/L	0.2	0.20	<0.20		
Benzo(a)anthracene	μg/L	0.2	0.20	<0.20		
Chrysene	μg/L	0.1	0.10	<0.10		
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10		
Benzo(k)fluoranthene	μg/L	0.1	0.10	<0.10		
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01		
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20		
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20		
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20		
2-and 1-methyl Napthalene	μg/L	2	0.20	<0.20		
Sediment				3		
Surrogate	Unit	Acceptab	le Limits			
Naphthalene-d8	%	50-1	40	100		
Acridine-d9	%	50-1	40	85		
Terphenyl-d14	%	50-1	40	90		

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6098656

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLED BY:E. Wilson

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-08-23					DATE REPORTED): 2024-08
	;	SAMPLE DES	CRIPTION:	MW102-GW		
		SAM	PLE TYPE:	Water		
		DATES	SAMPLED:	2024-08-23		
Parameter	Unit	G/S	RDL	6098656		
F1 (C6 to C10)	μg/L	420	25	<25		
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25		
F2 (C10 to C16)	μg/L	150	100	<100		
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100		
F3 (C16 to C34)	μg/L	500	100	<100		
F3 (C16 to C34) minus PAHs	μg/L		100	<100		
F4 (C34 to C50)	μg/L	500	100	<100		
Gravimetric Heavy Hydrocarbons	μg/L		500	NA		
Sediment				3		
Surrogate	Unit	Acceptab	le Limits			

Comments:

Toluene-d8

Terphenyl

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6098656

The C6-C10 fraction is calculated using toluene response factor.

%

% Recovery

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

103 67

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

50-140

60-140

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. SAMPLING SITE:Conroy

ATTENTION TO: Ester Wilson SAMPLED BY:E. Wilson

O. Reg. 153(511) - VOCs (with PHC) (Water)
--

DATE RECEIVED: 2024-08-23					DATE REPORTED: 2024-08-2
	:	SAMPLE DESCR SAMPL DATE SA	E TYPE:	MW102-GW Water 2024-08-23	
Parameter	Unit	G/S	RDL	6098656	
Dichlorodifluoromethane	μg/L	590	0.40	<0.40	
inyl Chloride	μg/L	0.5	0.17	<0.17	
romomethane	μg/L	0.89	0.20	<0.20	
richlorofluoromethane	μg/L	150	0.40	<0.40	
Acetone	μg/L	2700	1.0	<1.0	
,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	
Methylene Chloride	μg/L	5	0.30	< 0.30	
rans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	
,1-Dichloroethane	μg/L	0.5	0.30	< 0.30	
lethyl Ethyl Ketone	μg/L	400	1.0	<1.0	
is- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2	0.20	<0.20	
,2-Dichloroethane	μg/L	0.5	0.20	<0.20	
,1,1-Trichloroethane	μg/L	0.5	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	
Benzene	μg/L	0.5	0.20	<0.20	
,2-Dichloropropane	μg/L	0.5	0.20	<0.20	
richloroethylene	μg/L	0.5	0.20	<0.20	
Bromodichloromethane	μg/L	2	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	
,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	
oluene	μg/L	0.8	0.20	<0.20	
Dibromochloromethane	μg/L	2	0.10	<0.10	
thylene Dibromide	μg/L	0.2	0.10	<0.10	
etrachloroethylene	μg/L	0.5	0.20	<0.20	
,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	
Chlorobenzene	μg/L	0.5	0.10	<0.10	
Ethylbenzene	μg/L	0.5	0.10	<0.10	
n & p-Xylene	μg/L		0.20	<0.20	

Certificate of Analysis

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD.
SAMPLING SITE:Conroy

ATTENTION TO: Ester Wilson SAMPLED BY:E. Wilson

DATE RECEIVED: 2024-08-23	3				DATE REPORTED: 202
	SA	AMPLE DES	CRIPTION:	MW102-GW	
		SAMI	PLE TYPE:	Water	
		DATE S	SAMPLED:	2024-08-23	
Parameter	Unit	G/S	RDL	6098656	
Bromoform	μg/L	5	0.10	<0.10	
Styrene	μg/L	0.5	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	<0.30	
Xylenes (Total)	μg/L	72	0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	103	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

93

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6098656 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

50-140

% Recovery

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

4-Bromofluorobenzene

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy

AGAT WORK ORDER: 24Z189028

ATTENTION TO: Ester Wilson

SAMPLED BY:E. Wilson

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Aug 29, 2024			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	TRIX SPIKE	
DADAMETED	Detak	Sample	D #4	D #0	RPD	Method Blank	Measured		ptable nits	D	Lir	ptable	D	Lin	ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	KPD		Value	Lower	Upper	Recover	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	F4 (with PAHs a	nd VOC)	(Water)			•	•				•			'	
F1 (C6 to C10)	6100338		<25	<25	NA	< 25	119%	60%	140%	90%	60%	140%	75%	60%	140%
F2 (C10 to C16)	6092776		<100	<100	NA	< 100	88%	60%	140%	73%	60%	140%	73%	60%	140%
F3 (C16 to C34)	6092776		<100	<100	NA	< 100	92%	60%	140%	111%	60%	140%	77%	60%	140%
F4 (C34 to C50)	6092776		<100	<100	NA	< 100	91%	60%	140%	117%	60%	140%	106%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	6100338		< 0.40	< 0.40	NA	< 0.40	65%	50%	140%	117%	50%	140%	110%	50%	140%
Vinyl Chloride	6100338		<0.17	<0.17	NA	< 0.17	119%	50%	140%	118%	50%	140%	114%	50%	140%
Bromomethane	6100338		<0.20	< 0.20	NA	< 0.20	117%	50%	140%	116%	50%	140%	91%	50%	140%
Trichlorofluoromethane	6100338		< 0.40	< 0.40	NA	< 0.40	106%	50%	140%	109%	50%	140%	111%	50%	140%
Acetone	6100338		<1.0	<1.0	NA	< 1.0	111%	50%	140%	104%	50%	140%	117%	50%	140%
1,1-Dichloroethylene	6100338		<0.30	<0.30	NA	< 0.30	106%	50%	140%	91%	60%	130%	111%	50%	140%
Methylene Chloride	6100338		< 0.30	< 0.30	NA	< 0.30	113%	50%	140%	104%	60%	130%	100%	50%	140%
trans- 1,2-Dichloroethylene	6100338		<0.20	< 0.20	NA	< 0.20	71%	50%	140%	68%	60%	130%	85%	50%	140%
Methyl tert-butyl ether	6100338		<0.20	<0.20	NA	< 0.20	74%	50%	140%	116%	60%	130%	95%	50%	140%
1,1-Dichloroethane	6100338		<0.30	<0.30	NA	< 0.30	92%	50%	140%	88%	60%	130%	85%	50%	140%
Methyl Ethyl Ketone	6100338		<1.0	<1.0	NA	< 1.0	87%	50%	140%	95%	50%	140%	112%	50%	140%
cis- 1,2-Dichloroethylene	6100338		<0.20	<0.20	NA	< 0.20	92%	50%	140%	94%	60%	130%	90%	50%	140%
Chloroform	6100338		<0.20	<0.20	NA	< 0.20	101%	50%	140%	99%	60%	130%	90%	50%	140%
1,2-Dichloroethane	6100338		<0.20	<0.20	NA	< 0.20	89%	50%	140%	85%	60%	130%	80%	50%	140%
1,1,1-Trichloroethane	6100338		<0.30	<0.30	NA	< 0.30	90%	50%	140%	85%	60%	130%	78%	50%	140%
Carbon Tetrachloride	6100338		<0.20	<0.20	NA	< 0.20	89%	50%	140%	84%	60%	130%	89%	50%	140%
Benzene	6100338		<0.20	<0.20	NA	< 0.20	95%	50%	140%	90%	60%	130%	84%	50%	140%
1,2-Dichloropropane	6100338		<0.20	<0.20	NA	< 0.20	88%	50%	140%	90%	60%	130%	87%	50%	140%
Trichloroethylene	6100338		<0.20	<0.20	NA	< 0.20	90%	50%	140%	89%	60%	130%	89%	50%	140%
Bromodichloromethane	6100338		<0.20	<0.20	NA	< 0.20	97%	50%	140%	99%	60%	130%	95%	50%	140%
Methyl Isobutyl Ketone	6100338		<1.0	<1.0	NA	< 1.0	80%	50%	140%	112%	50%	140%	97%	50%	140%
1,1,2-Trichloroethane	6100338		<0.20	<0.20	NA	< 0.20	118%	50%	140%	118%	60%	130%	117%	50%	140%
Toluene	6100338		0.46	0.48	NA	< 0.20	101%	50%	140%	102%	60%	130%	114%	50%	140%
Dibromochloromethane	6100338		<0.10	<0.10	NA	< 0.10	117%	50%	140%	118%	60%	130%	107%	50%	140%
Ethylene Dibromide	6100338		<0.10	<0.10	NA	< 0.10	111%	50%	140%	116%	60%	130%	112%	50%	140%
Tetrachloroethylene	6100338		<0.20	<0.20	NA	< 0.20	92%	50%	140%	98%	60%	130%	101%	50%	140%
1,1,1,2-Tetrachloroethane	6100338		<0.10	<0.10	NA	< 0.10	119%		140%	112%	60%	130%	106%		140%
Chlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	100%		140%	100%		130%	106%		140%
Ethylbenzene	6100338		<0.10	<0.10	NA	< 0.10	89%		140%	93%		130%	93%		140%
m & p-Xylene	6100338		<0.20	<0.20	NA	< 0.20	91%		140%	95%		130%	97%		140%
Bromoform	6100338		<0.10	<0.10	NA	< 0.10	120%	50%	140%	114%	60%	130%	114%	50%	140%
Styrene	6100338		<0.10	<0.10	NA	< 0.10	86%		140%	87%		130%	95%		140%
1,1,2,2-Tetrachloroethane	6100338		<0.10	<0.10	NA	< 0.10	119%		140%	105%		130%	111%	50%	140%
o-Xylene	6100338		<0.10	<0.10	NA	< 0.10	97%		140%	99%		130%	101%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy

AGAT WORK ORDER: 24Z189028

ATTENTION TO: Ester Wilson

SAMPLED BY:E. Wilson

Trace Organics Analysis (Continued)															
RPT Date: Aug 29, 2024			С	DUPLICATE			REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		Iu		-			value	Lower	Upper		Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	93%	50%	140%	96%	60%	130%	97%	50%	140%
1,4-Dichlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	94%	50%	140%	96%	60%	130%	96%	50%	140%
1,2-Dichlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	100%	50%	140%	99%	60%	130%	101%	50%	140%
n-Hexane	6100338		<0.20	<0.20	NA	< 0.20	97%	50%	140%	93%	60%	130%	107%	50%	140%
O. Reg. 153(511) - PAHs (Water)															
Naphthalene	6081463		<0.20	<0.20	NA	< 0.20	111%	50%	140%	86%	50%	140%	101%	50%	140%
Acenaphthylene	6081463		<0.20	<0.20	NA	< 0.20	97%	50%	140%	72%	50%	140%	83%	50%	140%
Acenaphthene	6081463		<0.20	<0.20	NA	< 0.20	90%	50%	140%	72%	50%	140%	79%	50%	140%
Fluorene	6081463		<0.20	<0.20	NA	< 0.20	87%	50%	140%	67%	50%	140%	74%	50%	140%
Phenanthrene	6081463		<0.10	<0.10	NA	< 0.10	74%	50%	140%	83%	50%	140%	83%	50%	140%
Anthracene	6081463		<0.10	<0.10	NA	< 0.10	75%	50%	140%	74%	50%	140%	79%	50%	140%
Fluoranthene	6081463		<0.20	<0.20	NA	< 0.20	84%	50%	140%	85%	50%	140%	71%	50%	140%
Pyrene	6081463		<0.20	<0.20	NA	< 0.20	81%	50%	140%	72%	50%	140%	73%	50%	140%
Benzo(a)anthracene	6081463		<0.20	<0.20	NA	< 0.20	81%	50%	140%	83%	50%	140%	102%	50%	140%
Chrysene	6081463		<0.10	<0.10	NA	< 0.10	99%	50%	140%	85%	50%	140%	107%	50%	140%
Benzo(b)fluoranthene	6081463		<0.10	<0.10	NA	< 0.10	96%	50%	140%	94%	50%	140%	98%	50%	140%
Benzo(k)fluoranthene	6081463		<0.10	<0.10	NA	< 0.10	80%	50%	140%	99%	50%	140%	74%	50%	140%
Benzo(a)pyrene	6081463		<0.01	<0.01	NA	< 0.01	83%	50%	140%	93%	50%	140%	69%	50%	140%
Indeno(1,2,3-cd)pyrene	6081463		<0.20	<0.20	NA	< 0.20	74%	50%	140%	84%	50%	140%	76%	50%	140%
Dibenz(a,h)anthracene	6081463		<0.20	<0.20	NA	< 0.20	76%	50%	140%	65%	50%	140%	67%	50%	140%
Benzo(g,h,i)perylene	6081463		<0.20	<0.20	NA	< 0.20	86%	50%	140%	100%	50%	140%	78%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jata

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy

AGAT WORK ORDER: 24Z189028

ATTENTION TO: Ester Wilson

SAMPLED BY:E. Wilson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis	7.67.1 6.611		7.11.7.12.11.2011.11.202				
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Sediment			N/A				
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE				
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: PINCHIN LTD.
PROJECT: 339662.006
SAMPLING SITE:Conroy

AGAT WORK ORDER: 24Z189028
ATTENTION TO: Ester Wilson
SAMPLED BY:E. Wilson

SAMPLING SITE:Controy		SAMPLED BY:E. V	VIISUII				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

5835 COOPERS AVENUE http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Method Summary

CLIENT NAME: PINCHIN LTD. AGAT WORK ORDER: 24Z189028 PROJECT: 339662.006 **ATTENTION TO: Ester Wilson SAMPLING SITE:Conroy SAMPLED BY:E. Wilson**

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

Have feedback?

Scan here for a quick survey!

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122 webearth.agatlabs.com

Laboratory	Use	Only	
		-	

Work Order #:	747	189078	

Cooler Quantity: (M	e -	no	100	100	CUS
Arrival Temperatures:	19.	0	120	OZ	0.0
Depot Temperatures:	23	.0	23	-2	23-1

Report Information: Company: Pinchin		Regulatory Requirements: (Please check all applicable boxes)								Custody Seal Intact: Yes No Notes;												
Contact: Address: Phone: Reports to be sent to: 1. Email: E. Wilson Address: Contact: E. Wilson Contact: Address: Contact: E. Wilson Contact: C	Tal	egulation 153/04 Regulation 406 ble folicate One Ind/Com Ind/Com Res/Park Agriculture Agriculture Regulation 558 CCME	-	Prov	Region Wate ectives	er Qua		1		Re	egul	TAT (Rust 3 Busin Days OR Dat	Surchai	ges Apply)	5 to 7 B 4 2 Busin Days	Busines / Do	ss Days	Next Bu Day	ısines			
Project Information: Project: 339662.006 Site Location: Conroy E. Wilson AGAT Quote #: Please note: If quotation number is	PO: not provided, client will	l be billed full price for	analysis_		is submission for a Record of Site Condition (RSC)? Yes T No al Sample	Cer	eport rtifica Yes	te of	Ana		is		-		*TAT is 6 Same D 406	ay' an	alysis, p	ekends	and s	tatutor	sh TAT ry holida; AGAT CS	
Invoice Information: Company: Contact: Address: Email: Accounts Payar Apo pinchin. Co	ble	Bill To Same: Ye	es 🗌 No 🗔	San GW O P	Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg. CrVI,	& Inorganics	s - □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs			Aroclors	Regulation 406 Characterization Package	ph, metals, B1EX, F1-F4 EC, SAR	tion 406 SPLP Rainwater Leach : □ Metals □ VOCs □ SVOCs □ OC	Landfill Disposal Characterization TCLP: TCLP: ☐M&I ☐VOCs ☐ABNs ☐ B(a)P☐PCBs	□ Mois					IIIV Hazardous or High Concentratio
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -	втех,	VOC	PAHs	PCBs: /	Regula	pH, Meta EC, SAR	Regulation of mSPLP: □ N	Landfill TCLP:	Corrosivity:					Potentia
1. BHI02 - GW 2. 3. 4. 5. 6. 7. 8. 9. 10.	2029-08	AM PN AM AM PN AM AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM AM PN AM AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM AM PN AM PN AM PN AM PN AM PN AM AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM AM PN AM AM AM AM AM AM AM AM AM AM AM AM AM		GW	phenois bottle just in case you can Use it.					~												
Samples Relinquished By (Print Name and Sign) Ester Wilson Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign)	low.	2024 - 0 Date (19, 23)	7 Time	hoo	Samples Received by (Print Name and Sign): Samples Received by (Print Name and Sign): Samples Received by (Print Name and Sign):					-	Date	2	3/2	6	Time H	10		Page	e	of _		

Ocument ID: DW-78-1511.023

CLIENT NAME: PINCHIN LTD. 1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7

(613) 592-3387

ATTENTION TO: Ester Wilson

PROJECT: 339662.006

AGAT WORK ORDER: 24Z179679

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Sep 05, 2024

PAGES (INCLUDING COVER): 14 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	
VERSION 2:V2 issued 2024-09-05. Sample ID updated from BH101-GW to MW101-GW by client request. Supe	rsedes version 1 issued 2024-08-06. (LB)
	, , , , , , , , , , , , , , , , , , , ,

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V2)

Page 1 of 14

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Water)

				O. Reg. 1	53(511) - PAHS (Water)
DATE RECEIVED: 2024-07-30					DATE REPORTED: 2024-09-05
	SAMPLE TYPE:		MW101-GW Water 2024-07-30 08:00		
Parameter	Unit	G/S	RDL	6041772	
Naphthalene	μg/L	7	0.20	<0.20	
Acenaphthylene	μg/L	1	0.20	<0.20	
Acenaphthene	μg/L	4.1	0.20	<0.20	
Fluorene	μg/L	120	0.20	<0.20	
Phenanthrene	μg/L	0.1	0.10	<0.10	
Anthracene	μg/L	0.1	0.10	<0.10	
Fluoranthene	μg/L	0.4	0.20	<0.20	
Pyrene	μg/L	0.2	0.20	<0.20	
Benzo(a)anthracene	μg/L	0.2	0.20	<0.20	
Chrysene	μg/L	0.1	0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.1	0.10	<0.10	
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	
ndeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	2	0.20	<0.20	
Sediment				1	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-	140	95	
Acridine-d9	%	50-1	140	110	
Terphenyl-d14	%	50-	140	75	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6041772

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraberty

SAMPLING SITE: Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

SAMPLED BY:

ATTENTION TO: Ester Wilson

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-07-30 DATE REPORTED: 2024-09-05 SAMPLE DESCRIPTION: MW101-GW SAMPLE TYPE: Water DATE SAMPLED: 2024-07-30 08:00 **Parameter** Unit G/S **RDL** 6041772 F1 (C6 to C10) μg/L 420 25 <25 F1 (C6 to C10) minus BTEX µg/L 420 25 <25 F2 (C10 to C16) μg/L 150 100 <100 F2 (C10 to C16) minus Naphthalene μg/L 100 <100 500 100 F3 (C16 to C34) μg/L <100 F3 (C16 to C34) minus PAHs μg/L 100 <100 μg/L F4 (C34 to C50) 500 100 <100 Gravimetric Heavy Hydrocarbons μg/L 500 NA Sediment **Acceptable Limits** Surrogate Unit Toluene-d8 50-140 99 Terphenyl % Recovery 60-140 101

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6041772

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraberty

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE: Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

					voos (min i no) (vaici)
DATE RECEIVED: 2024-07-30					DATE REPORTED: 2024-09-05
		SAMPLE DES	CRIPTION:	MW101-GW	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2024-07-30	
Parameter	Unit	G/S	RDL	08:00 6041772	
Dichlorodifluoromethane	μg/L	590	0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	
Trichlorofluoromethane	μg/L	150	0.40	<0.40	
Acetone	μg/L	2700	1.0	<1.0	
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30	
Methylene Chloride	μg/L	5	0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	
1,1-Dichloroethane	μg/L	0.5	0.30	<0.30	
Methyl Ethyl Ketone	μg/L	400	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2	0.20	<0.20	
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	0.5	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	
Benzene	μg/L	0.5	0.20	<0.20	
1,2-Dichloropropane	μg/L	0.5	0.20	<0.20	
Trichloroethylene	μg/L	0.5	0.20	<0.20	
Bromodichloromethane	μg/L	2	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	
Toluene	μg/L	0.8	0.20	<0.20	
Dibromochloromethane	μg/L	2	0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	
Chlorobenzene	μg/L	0.5	0.10	<0.10	
Ethylbenzene	μg/L	0.5	0.10	<0.10	

Certified By:

R. Chakraberty

SAMPLING SITE: Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

				<u> </u>	, , , , ,
DATE RECEIVED: 2024-07-30					DATE REPORTED: 2024-09-05
	SA	SAMPLE DESCRIPTION: N SAMPLE TYPE: DATE SAMPLED: 2			
Parameter	Unit	G/S	RDL	08:00 6041772	
m & p-Xylene	μg/L		0.20	<0.20	
Bromoform	μg/L	5	0.10	<0.10	
Styrene	μg/L	0.5	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	<0.30	
Kylenes (Total)	μg/L	72	0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	
Surrogate	Unit	Acceptak	ole Limits		
Toluene-d8	% Recovery	50-	140	99	
4-Bromofluorobenzene	% Recovery	50-	140	95	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6041772 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: PINCHIN LTD.
PROJECT: 339662.006
SAMPLING SITE:Conroy Rd

AGAT WORK ORDER: 24Z179679
ATTENTION TO: Ester Wilson

SAMPLED BY:

		Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Sep 05, 2024			DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
	Sample	1			Method Blank	Measured		ptable nits	_	Lin	eptable mits			ptable
PARAMETER	Batch Id	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	1	Recovery	Lower	
O. Reg. 153(511) - PAHs (Wate	er)	_1			1					1				
Naphthalene	6037910	<0.20	<0.20	NA	< 0.20	101%	50%	140%	95%	50%	140%	108%	50%	140%
Acenaphthylene	6037910	<0.20	<0.20	NA	< 0.20	96%	50%	140%	89%	50%	140%	81%	50%	140%
Acenaphthene	6037910	<0.20	<0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	91%	50%	140%
Fluorene	6037910	< 0.20	<0.20	NA	< 0.20	89%	50%	140%	95%	50%	140%	91%	50%	140%
Phenanthrene	6037910	<0.10	<0.10	NA	< 0.10	89%	50%	140%	98%	50%	140%	95%	50%	140%
Anthracene	6037910	<0.10	<0.10	NA	< 0.10	71%	50%	140%	95%	50%	140%	92%	50%	140%
Fluoranthene	6037910	<0.20	<0.20	NA	< 0.20	92%	50%	140%	99%	50%	140%	100%	50%	140%
Pyrene	6037910	<0.20	<0.20	NA	< 0.20	91%	50%	140%	99%	50%	140%	100%	50%	140%
Benzo(a)anthracene	6037910	<0.20	<0.20	NA	< 0.20	75%	50%	140%	73%	50%	140%	79%	50%	140%
Chrysene	6037910	<0.10	<0.10	NA	< 0.10	111%	50%	140%	99%	50%	140%	113%	50%	140%
Benzo(b)fluoranthene	6037910	<0.10	<0.10	NA	< 0.10	71%	50%	140%	102%	50%	140%	86%	50%	140%
Benzo(k)fluoranthene	6037910	<0.10	<0.10	NA	< 0.10	80%	50%	140%	106%	50%	140%	91%	50%	140%
Benzo(a)pyrene	6037910	<0.01	<0.01	NA	< 0.01	82%	50%	140%	91%	50%	140%	89%	50%	140%
Indeno(1,2,3-cd)pyrene	6037910	<0.20	<0.20	NA	< 0.20	83%	50%	140%	85%	50%	140%	88%	50%	140%
Dibenz(a,h)anthracene	6037910	<0.20	<0.20	NA	< 0.20	74%	50%	140%	97%	50%	140%	92%	50%	140%
Benzo(g,h,i)perylene	6037910	<0.20	<0.20	NA	< 0.20	98%	50%	140%	88%	50%	140%	108%	50%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs and VOC) (Water)												
F1 (C6 to C10)	6041772 6041772	<25	<25	NA	< 25	84%	60%	140%	94%	60%	140%	98%	60%	140%
F2 (C10 to C16)	6031604	< 100	< 100	NA	< 100	114%	60%	140%	68%	60%	140%	83%	60%	140%
F3 (C16 to C34)	6031604	< 100	< 100	NA	< 100	98%	60%	140%	75%	60%	140%	80%	60%	140%
F4 (C34 to C50)	6031604	< 100	< 100	NA	< 100	72%	60%	140%	100%	60%	140%	111%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)													
Dichlorodifluoromethane	6041772 6041772	< 0.40	< 0.40	NA	< 0.40	71%	50%	140%	117%	50%	140%	118%	50%	140%
Vinyl Chloride	6041772 6041772	<0.17	<0.17	NA	< 0.17	93%	50%	140%	116%	50%	140%	114%	50%	140%
Bromomethane	6041772 6041772	<0.20	<0.20	NA	< 0.20	112%	50%	140%	112%	50%	140%	95%	50%	140%
Trichlorofluoromethane	6041772 6041772	<0.40	<0.40	NA	< 0.40	76%	50%	140%	95%	50%	140%	91%	50%	140%
Acetone	6041772 6041772	<1.0	<1.0	NA	< 1.0	112%	50%	140%	114%	50%	140%	107%	50%	140%
1,1-Dichloroethylene	6041772 6041772	<0.30	<0.30	NA	< 0.30	105%	50%	140%	83%	60%	130%	87%	50%	140%
Methylene Chloride	6041772 6041772	<0.30	<0.30	NA	< 0.30	111%	50%	140%	98%	60%	130%	115%	50%	140%
trans- 1,2-Dichloroethylene	6041772 6041772	<0.20	<0.20	NA	< 0.20	86%		140%	71%		130%	107%		140%
Methyl tert-butyl ether	6041772 6041772	<0.20	<0.20	NA	< 0.20	97%		140%	85%	60%	130%	77%		140%
1,1-Dichloroethane	6041772 6041772	<0.30	<0.30	NA	< 0.20	99%		140%	62%		130%	109%		140%
Methyl Ethyl Ketone	6041772 6041772	<1.0	<1.0	NA	< 1.0	107%	50%	140%	97%	50%	140%	71%	50%	140%
cis- 1,2-Dichloroethylene	6041772 6041772	<0.20	<0.20	NA	< 0.20	99%		140%	87%		130%	110%		140%
Chloroform	6041772 6041772	<0.20	<0.20	NA	< 0.20	99%		140%	90%		130%	103%		140%
1,2-Dichloroethane	6041772 6041772	<0.20	<0.20	NA	< 0.20	99%		140%	90%		130%	98%		140%
1,1,1-Trichloroethane	6041772 6041772	<0.20	<0.20	NA	< 0.20	67%		140%	64%		130%	68%		140%
Carbon Tetrachloride	6041772 6041772	<0.20	< 0.20	NA	< 0.20	68%	50%	140%	65%	60%	130%	69%	50%	140%

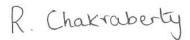
AGAT QUALITY ASSURANCE REPORT (V2)

Page 6 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 24Z179679

ATTENTION TO: Ester Wilson


Quality Assurance

CLIENT NAME: PINCHIN LTD.
PROJECT: 339662.006
SAMPLING SITE:Conroy Rd

SAMPLED BY:

	Trace Organics Analysis (Continued)														
RPT Date: Sep 05, 2024				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
Benzene	6041772	6041772	<0.20	<0.20	NA	< 0.20	106%	50%	140%	89%	60%	130%	97%	50%	140%
1,2-Dichloropropane	6041772	6041772	<0.20	< 0.20	NA	< 0.20	82%	50%	140%	77%	60%	130%	86%	50%	140%
Trichloroethylene	6041772	6041772	<0.20	< 0.20	NA	< 0.20	101%	50%	140%	83%	60%	130%	112%	50%	140%
Bromodichloromethane	6041772	6041772	<0.20	<0.20	NA	< 0.20	86%	50%	140%	79%	60%	130%	92%	50%	140%
Methyl Isobutyl Ketone	6041772	6041772	<1.0	<1.0	NA	< 1.0	95%	50%	140%	92%	50%	140%	90%	50%	140%
1,1,2-Trichloroethane	6041772	6041772	<0.20	<0.20	NA	< 0.20	106%	50%	140%	106%	60%	130%	111%	50%	140%
Toluene	6041772	6041772	<0.20	<0.20	NA	< 0.20	113%	50%	140%	102%	60%	130%	113%	50%	140%
Dibromochloromethane	6041772	6041772	<0.10	<0.10	NA	< 0.10	84%	50%	140%	82%	60%	130%	91%	50%	140%
Ethylene Dibromide	6041772	6041772	<0.10	<0.10	NA	< 0.10	100%	50%	140%	95%	60%	130%	104%	50%	140%
Tetrachloroethylene	6041772	6041772	<0.20	<0.20	NA	< 0.20	96%	50%	140%	89%	60%	130%	100%	50%	140%
1,1,1,2-Tetrachloroethane	6041772	6041772	<0.10	<0.10	NA	< 0.10	81%	50%	140%	79%	60%	130%	90%	50%	140%
Chlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	107%	50%	140%	98%	60%	130%	108%	50%	140%
Ethylbenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	91%	50%	140%	84%	60%	130%	96%	50%	140%
m & p-Xylene	6041772	6041772	<0.20	<0.20	NA	< 0.20	93%	50%	140%	87%	60%	130%	100%	50%	140%
Bromoform	6041772	6041772	<0.10	<0.10	NA	< 0.10	92%	50%	140%	91%	60%	130%	97%	50%	140%
Styrene	6041772	6041772	<0.10	<0.10	NA	< 0.10	84%	50%	140%	79%	60%	130%	87%	50%	140%
1,1,2,2-Tetrachloroethane	6041772	6041772	<0.10	<0.10	NA	< 0.10	103%	50%	140%	110%	60%	130%	110%	50%	140%
o-Xylene	6041772	6041772	<0.10	<0.10	NA	< 0.10	108%	50%	140%	100%	60%	130%	113%	50%	140%
1,3-Dichlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	98%	50%	140%	95%	60%	130%	105%	50%	140%
1,4-Dichlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	105%	50%	140%	103%	60%	130%	112%	50%	140%
1,2-Dichlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	113%	50%	140%	108%	60%	130%	116%	50%	140%
n-Hexane	6041772	6041772	<0.20	<0.20	NA	< 0.20	88%	50%	140%	90%	60%	130%	73%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Time Markers

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6041772	MW101-GW	Water	30-JUL-2024	30-JUL-2024

O. Reg.	153(511) - PAHs	(Water)
---------	---------	----------	---------

CLIENT NAME: PINCHIN LTD.

Parameter	Date Prepared	Date Analyzed	Initials
Naphthalene	06-AUG-2024	06-AUG-2024	NP
Acenaphthylene	06-AUG-2024	06-AUG-2024	NP
Acenaphthene	06-AUG-2024	06-AUG-2024	NP
Fluorene	06-AUG-2024	06-AUG-2024	NP
Phenanthrene	06-AUG-2024	06-AUG-2024	NP
Anthracene	06-AUG-2024	06-AUG-2024	NP
Fluoranthene	06-AUG-2024	06-AUG-2024	NP
Pyrene	06-AUG-2024	06-AUG-2024	NP
Benzo(a)anthracene	06-AUG-2024	06-AUG-2024	NP
Chrysene	06-AUG-2024	06-AUG-2024	NP
Benzo(b)fluoranthene	06-AUG-2024	06-AUG-2024	NP
Benzo(k)fluoranthene	06-AUG-2024	06-AUG-2024	NP
Benzo(a)pyrene	06-AUG-2024	06-AUG-2024	NP
Indeno(1,2,3-cd)pyrene	06-AUG-2024	06-AUG-2024	NP
Dibenz(a,h)anthracene	06-AUG-2024	06-AUG-2024	NP
Benzo(g,h,i)perylene	06-AUG-2024	06-AUG-2024	NP
2-and 1-methyl Napthalene	06-AUG-2024	06-AUG-2024	SYS
Naphthalene-d8	06-AUG-2024	06-AUG-2024	NP
Acridine-d9	06-AUG-2024	06-AUG-2024	NP
Terphenyl-d14	06-AUG-2024	06-AUG-2024	NP
Sediment	01-AUG-2024	01-AUG-2024	NH

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

Date Prepared	Date Analyzed	Initials
01-AUG-2024	01-AUG-2024	MK
01-AUG-2024	01-AUG-2024	SYS
01-AUG-2024	01-AUG-2024	MK
01-AUG-2024	01-AUG-2024	SS
06-AUG-2024	06-AUG-2024	SYS
01-AUG-2024	01-AUG-2024	SS
06-AUG-2024	06-AUG-2024	SYS
01-AUG-2024	01-AUG-2024	SS
01-AUG-2024	01-AUG-2024	SS
01-AUG-2024	01-AUG-2024	NH
	01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 06-AUG-2024 06-AUG-2024 01-AUG-2024 01-AUG-2024	01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 06-AUG-2024 06-AUG-2024 01-AUG-2024 01-AUG-2024 06-AUG-2024 06-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024 01-AUG-2024

O. Reg. 153(511) - VOCs (with PHC) (Water)

Parameter	Date Prepared	Date Analyzed	Initials
Dichlorodifluoromethane	01-AUG-2024	01-AUG-2024	MK

CLIENT NAME: PINCHIN LTD.

Time Markers

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6041772	MW101-GW	Water	30-JUL-2024	30-JUL-2024

Parameter	Date Prepared	Date Analyzed	Initials
Vinyl Chloride	01-AUG-2024	01-AUG-2024	MK
Bromomethane	01-AUG-2024	01-AUG-2024	MK
Trichlorofluoromethane	01-AUG-2024	01-AUG-2024	MK
Acetone	01-AUG-2024	01-AUG-2024	MK
1,1-Dichloroethylene	01-AUG-2024	01-AUG-2024	MK
Methylene Chloride	01-AUG-2024	01-AUG-2024	MK
trans- 1,2-Dichloroethylene	01-AUG-2024	01-AUG-2024	MK
Methyl tert-butyl ether	01-AUG-2024	01-AUG-2024	MK
1,1-Dichloroethane	01-AUG-2024	01-AUG-2024	MK
Methyl Ethyl Ketone	01-AUG-2024	01-AUG-2024	MK
cis- 1,2-Dichloroethylene	01-AUG-2024	01-AUG-2024	MK
Chloroform	01-AUG-2024	01-AUG-2024	MK
1,2-Dichloroethane	01-AUG-2024	01-AUG-2024	MK
1,1,1-Trichloroethane	01-AUG-2024	01-AUG-2024	MK
Carbon Tetrachloride	01-AUG-2024	01-AUG-2024	MK
Benzene	01-AUG-2024	01-AUG-2024	MK
1,2-Dichloropropane	01-AUG-2024	01-AUG-2024	MK
Trichloroethylene	01-AUG-2024	01-AUG-2024	MK
Bromodichloromethane	01-AUG-2024	01-AUG-2024	MK
Methyl Isobutyl Ketone	01-AUG-2024	01-AUG-2024	MK
1,1,2-Trichloroethane	01-AUG-2024	01-AUG-2024	MK
Toluene	01-AUG-2024	01-AUG-2024	MK
Dibromochloromethane	01-AUG-2024	01-AUG-2024	MK
Ethylene Dibromide	01-AUG-2024	01-AUG-2024	MK
Tetrachloroethylene	01-AUG-2024	01-AUG-2024	MK
1,1,1,2-Tetrachloroethane	01-AUG-2024	01-AUG-2024	MK
Chlorobenzene	01-AUG-2024	01-AUG-2024	MK
Ethylbenzene	01-AUG-2024	01-AUG-2024	MK
m & p-Xylene	01-AUG-2024	01-AUG-2024	MK
Bromoform	01-AUG-2024	01-AUG-2024	MK
Styrene	01-AUG-2024	01-AUG-2024	MK
1,1,2,2-Tetrachloroethane	01-AUG-2024	01-AUG-2024	MK
o-Xylene	01-AUG-2024	01-AUG-2024	MK
1,3-Dichlorobenzene	01-AUG-2024	01-AUG-2024	MK
1,4-Dichlorobenzene	01-AUG-2024	01-AUG-2024	MK
1,2-Dichlorobenzene	01-AUG-2024	01-AUG-2024	MK
1,3-Dichloropropene	01-AUG-2024	01-AUG-2024	SYS
Xylenes (Total)	01-AUG-2024	01-AUG-2024	SYS
n-Hexane	01-AUG-2024	01-AUG-2024	MK

Time Markers

AGAT WORK ORDER: 24Z179679

ATTENTION TO: Ester Wilson

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD.

Sample ID

6041772

 Sample Description
 Sample Type
 Date Sampled
 Date Received

 MW101-GW
 Water
 30-JUL-2024
 30-JUL-2024

O. Reg. 153(511) - VOCs (with PHC) (Water)

Parameter	Date Prepared	Date Analyzed	Initials
Toluene-d8	01-AUG-2024	01-AUG-2024	MK
4-Bromofluorobenzene	01-AUG-2024	01-AUG-2024	MK

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy Rd

AGAT WORK ORDER: 24Z179679

ATTENTION TO: Ester Wilson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD. PROJECT: 339662.006 SAMPLING SITE:Conroy Rd AGAT WORK ORDER: 24Z179679 ATTENTION TO: Ester Wilson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy Rd

AGAT WORK ORDER: 24Z179679

ATTENTION TO: Ester Wilson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

webearth agatlabs com

Laboratory Use Only

Cooler Quantity: CMQ - NO 10

Chain of Custody Reco	If this is a	Drinking Water s	sample, plea	se use Drin	king Water Chain o	of Custody Form (potat	ole water	consum	ed by hi	umans						ratures ratures	20	.6 7	20.4		ر کر ای ر
Report Information: Company: Pinchin					Regulatory Requirements: (Please check all applicable boxes)					11	ustod otes:	y Seal	Intact:		Yes 3	TO		□N/A			
Contact: E. Wilson Address: 1-Hines Rd Kanata, ON	Address: 1-Hines Rd			_ Ta	Table Indicate One	Table	1	Sewer Use			Turnaround Time (TAT) Required:										
Phone: Reports to be sent to: 1. Email: 2. Email: Phone: Fax: ewilson 7 (a pinch in Com mwitteman				□ Ind/Com □ Res/Park □ Agriculture Soil Texture (Check One) □ Come □ Regulation 558 □ Fine □ CCME			Prov. Water Quality Objectives (PWQO) Other Indicate One				Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Busin Days Days Days Day OR Date Required (Rush Surcharges May Apply):										
Project Information: Project: 339662.00 Site Location: Conroy Ra	06 d.			- 0	is submission f Site Condition		Cei		Guid ate of	Ana					TAT is	exclusi Day' an	ive of we	eekends	and stat	r rush TAT utory hol our AGAT	lidays
AGAT Quote #:	P0:			Leg	al Sample		CrVI, DOC	0	. Reg 15	53				Reg		0. Rep					(X/N)
Invoice Information: Company: Contact: Address: Email: Accounts Pay AP@ pinchin	rable	ill To Same: Ye	s • No 🗆	San GW O P	Ground Water SOII SOII	Sediment Surface Water	Field Filtered - Metals, Hg. Cr	& Inorganics	s - □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs		PCBs: Aroclors	Regulation 406 Characterization Package oh. Metals. BTEX. F1-F4	œ	tion 406 SPLP Rainwater Leach □ Metals □ vocs □ Svocs □ oc	Disposal Characteriza	Corrosivity: Moisture Sulphide			,	Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals -	втех,	VOC	PCBs:	Regula pH. Me	EC, SAR	Regulation mSPLP: □ N	Landfill To P. T	Corros				Potentia
1. BHIOI-GW	July 30	8.00 PM		GW						~	~ ~										
2. 3.		AM PM AM PM										-		-			+				
4.		PM AM PM										+									
5,		AM PM						-				+		H		-	+++				
6,		AM PM									+			-							
7.		AM PM									-	+				1					
8.		AM PM									-				-20						
9.		AM																			
10.		AM									+	+			- 0					1	
11		AM PM																			
Ester WISON Estruel Stoppes Relinquaried By (Print Name and Sign): Ester WISON Estruel Stoppes Relinquaried By (Print Name and Sign):	ook .	30/07/2	7 Time	8:37A	Sample Received By (F	Print Name and Sign):	2				C	Date	30/2		ime S Ime	38		Page	,	of /	

APPENDIX V
Ground Penetrating Radar

multiVIEW Locates Inc Phone: 1-800-363-3116 Fax: 1-866-571-5946 www.multiview.ca

Primary Locate Report

multiVIEW Locate Sheet1 of2
Project # WO-62283 OTHER
Locate Valid for: Excavation Design

A COPY OF T	HIS LOCATE REF	ORT N	IUST BE ON	SITE AND IN POSSES	SSION OF THE MAC	HINE OPERATOR [OURING EXCAVATI	ON	
REQUEST									
Customer:	Pinchin				Site Address: C	Conroy Road			
Contact Nam	ne: Mandy Witter	man			Phone:		City: Ottawa		
Reference: Type of						rivate			
Project Desc	ription: GPR								
UTILITY	Gas		Electrical	Water	Sanitary Services	Storm Sewer	Communications	Other/Unknown	
Status	С		С	С	С	С	С	С	
Page #									
This table sum	marizes the private p	roperty	utilities request	ed to be located. Any pub	lic utillities will be sent a	s seperate documents	if requested by the cu	stomer	
*Status M - M	farked on site C - C	lear for a	all locate areas	NL - Not locatable (see	Terms & Conditions) SP	-See Page # NR - No	ot Requested		
NOTES/WAR	RNINGS: CUSTOM	IER MU	IST OBTAIN	PUBLIC UTILITY CLE	ARANCES PRIOR TO	O EXCAVATION			
No GPR GPR sig Located	Performed GPR Survey to detect possible UST in survey area. No GPR reflections indicated a possible UST. GPR signal penetration was roughly 2m Located utilities within 2m of proposed BH. None detected Site North This sketch is NOT to scale								
CAUTION									
Exposed ofEach LocaThe markingPlease rea	or damaged utilities ate Sketch is only v ngs may disappea ad the warnings/tel	s must valid for r or be rms/gui	be immediate 30 days fron misplaced. S delines on th	olice pits + pad mounte ely reported to multiVIE in the date of completion should sketch markings e back of all individual d Locate Area without a	EW @ 1-800-363-3116 on. not coincide, a new s utility locate forms at	and utility owner as			
INFO									
Start t	time:	End	time:	Crew Size:	Overtime	: P	hotos: F	Project Completed:	
12:15	am	1:4	4 pm	1	No		Yes	Yes	
CHARGEABI	LE TIME (hrs)	Locate	e: 0.50	. hrs EM/GPR:		PORTING:0	hrs		
	multiVIEW		I have read fully a	and understand the Terms and		y Acknowledgments		provided. I further understand	

that this information is provided only for the convenience of the Client and does not relieve the Client for any claims or damages associated with subsequent activities and that multiVIEW shall not be liable for any amount in excess of the fees paid by the Client under any circumstances. I understand that this information does not substitute for an authorized location by the owners of any underground plant, multiVIEW Locates linc, cannot locate underground facilities unless the Client provides direct physical access to each individual underground facility. In the event that a credit card has been taken for backup and payment has NOT been received within 10 busines days of commencement of the field work, then the credit card will be charged, multiVIEW shall not be liable for any amount in excess of the the fees paid by the Client to multiVIEW for the Service on account of along loss, injury, death, or damage whether resulting directly or indirectly to a person or property irrespective of the cause or origin of such loss, injury, death or damage including, without limitation, loss, injury, death, or damage attributable to the negligence of multiVIEW, its employees and agents in the performance or nonperformance of the Service.

mm / dd / yyyy

_/_J. H.

07/09/2024

2024 Locator ID

Print name of client company representative

Client company representative signature

multiVIEW Locates Inc Phone: 1-800-363-3116 Fax: 1-866-571-5946 www.multiview.ca Auxillary Locate Report

multiVIEW Locate She	et <u>2</u> of <u>2</u>					
Project # WO-62283						
Locate Valid for: Excavation Design						
DPT Intials/Date:	07/09/2024					
	mm / dd / yyyy					

III	signi, noi ninc	isigrit						DPT Intials/Date: _	07/0	9/2024
Customer:	Pinchin					_			mm	/ dd / yyyy
Marking Me	ethod: 🔽 Pain	t 🗆 Pin	Flags	d Stakes	ayon	☐ Chalk	Other:			
	LOCATE AF	REA								
From:					To:					
From:					To:					
	LEGEND		HAND D	IG WITHIN 1m AS MEASUF				MARKINGS UNLESS (FIED BY HAND DIGGIN		BE NOTED.
Feature	Symbol	Paint	☐ Locate	Area has been altered as pe		II VANIES AI	ND MOST BE VENI	FIED BY HAND DIGGIN	_ APPR	
Gas	- G -	Yellow								
Electric	-E-	Red	Thick line ar	ea - GPR Scan area	90	-		AL ALLEY	100	
Water	-W-	Blue		within 2m of painted pr	posed	1 BH. 🏻 🎆	200		-49	
Sanitary Sewer	- SAN -	Green	30 1 155	TO THE REAL PROPERTY.		48	100	A STATE OF THE PARTY OF THE PAR		1000
Storm Sower	- ST -	Green	N 3000				報わる	图5 (图象)	10.00	
Communications	- COMM -	Orange	Special	THE RESERVE OF THE PERSON OF T			The second		250	PERSONAL PROPERTY.
Unknown	-?-	Pink	Marie Committee	1000	5	類。	St. Talk San	SEE 13 18 18 18 18 18 18 18 18 18 18 18 18 18		2277160
DESIGN Or	nly		elle.		450			923-190		a white
Gas Main	- GM -	Pink	CATHOLIC			C. 600		200		PARTY STO
Toronto Hydro	-H-	Pink	2015 3 FEW			1		CONTRACTOR OF THE PARTY OF THE		At
Traffic Lights	-TL-	Pink	7500	Former Building -	-)	10.0	Out of the sale		The Land
Street Lights	- SL -	Pink	化原则 定	1		1 3		4.5663	★ 3m	6
Bell	- BT -	Pink	1000	0		N. A.	L Lines	Land Street	1	
Transformer		A	A STATE OF	GO KAN		1000	Inknown Utilities	Y	- MARCH	Holaska
Street Light		\otimes	公司的管理	3	160	DOM:		X	303	0
Pole		0			9	250			W 43	V/86/25
Hand Well		(HW)	355		1		CIC			300
Pedestal		\times			7		1 ; X	\ \		F 463 5
Hydrant		×	520968		3	*	1.	T. 6.15.27		30.380
Valve		\mathbf{H}			100		1			1
Valve Chamber	,			CDD	SCAN	ADEA/	V	1		ALTHURSE.
Manhole Catch Basin					30/147	OILLO*	36	S. A. S. S. S.		
Curb Line		-CL-					186.71	10	1 _m	25000
Building Line		- BL -			1		Unknown Uti	lity	303	200
Fence Line		- x x-	100		530	4		100	級	55 BIGGS
Sidewalk		- SW -	CE S			1			200	Site North
Centre Line		-Œ-	-	老师 的原则				A LONG WAY	10 80	\]'_
Railway		+++++++	Service Control	STORY OF STREET						*
Tree/Bush		ℬ	23.40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			STATE OF THE PARTY.	1000	Marie State	7 \
BH/Test Pit		₩ ₩	Con Control	O BOOK CAR	The state of	100 All 8 All	- XCC	SPA WAS	1000	This sketch is NOT to scale
Raining	Wet Ground		se/Dirt Soil	Snow Ice Covered		Outlin	e Mark & Fax		Offsets	
Locate	marks by measure	ement from	maps	Easement Present		Buriec	d utility maps provi	ded		
✓ Drill within²_m radius of centre mark of proposed BH location (unless otherwise noted) □ Access NOT provided for proper locating										

Terms and Conditions for Field Services

A. Technical Limitations

- A.1 The Client acknowledges that the laws of fundamental physics apply and do not enable multiVIEW Locates Inc (multiVIEW) locating equipment to detect all utilities, objects, features and structures or to provide all coordinates of the position thereof Pipe, cable, conduit, utilities, objects, features or structures which are not detectable (i.e. not "Locatable") because of the laws of fundamental physics cannot be located by multiVIEW and are not the subject of the provision of the Service pursuant to this contract.
- A.2 The "Service" to be provided pursuant to this contract is the location, laterally and longitudinally, of Locatable Utilities, objects, features or structures and the subsequent marking of the site according to standard subsurface utility locating industry practice. The depth and/or 5128 of pipe, cable, conduits, utilities, objects, features and structures is Non-Locatable and IS not part of the Service.
- A.3 Locatable buried utilities are normally defined as:
 - (a) metallic pipes, cables and conduits which are capable of carrying an electrical current, are accessible for direct coupling or Inductive coupling of an energizing current or naturally are actively carrying an identifiable electric current and such current is sufficiently large to be detectable by instruments according to the laws of fundamental physics;
 - (b) non-metallic pipes, cables and conduits which have continuous associated tracer wire capable of carrying an electric current, which is accessible for direct coupling of an energizing current or naturally are actively carrying an identifiable electric current and such current is sufficiently large to be detectable by instruments according to the laws of fundamental physics;
 - (c) As in A 3 (a) or (b) above, provided that the material either surrounding and/or enclosing and/or above the pipe, cable or conduit does not interfere with the energizing current and the operation of the locating instrument.
- A.4 It is the responsibility of the Client to identify and provide direct and simple access (including provision of licensed plumbing, electrical or confined space entry personnel if required) to any and all access points for any and all individual pipes, cables, conduits, etc to permit application of a current as detailed in section A.3. multiVIEW accepts no responsibility for locating any such lines where the Client does not provide access and/or appropriate workplace safety measures.
- A.5 "Non-Locatable Utilities are defined as all utilities which are not locatable Examples of Non-Locatable Utilities include, but are not limited to, the following:
 - (a) pipes, cables and conduits whose depth of burial is too great and/or overlain by or m proximity to metallic material which results in signal distortion thus preventing physically measurable signals at the surface or where burial material interferes with current generation and signal emissions:
 - (b) normally locatable utilities as defined in section A3 situated in, or emerging from, an area which Is an Inaccessible Area (as defined In Section A4 and A.10);
 - (c) normally locatable utilities as defined in section A 3 with a break or breaks to the electrical continuity of any metallic pipe, cable or tracer wire (i.e. segmented lengths, corroded connections, sections of plastic repair, etc.).
 - (d) non-metallic pipe, cable and conduits other than those described in Sections A 7,A.8 and A.9;
 - (e) individual pipes, cables and conduits man area where there are Clustered Utilities (as defined in Section A 6)
- A.6 Specific pipes, cables, conduits, utilities, objects, features and structures are Non-Locatable where numerous pipes, cables, conduits, utilities, objects, features and structures are clustered together either vertically and/or horizontally ("Clustered Utilities").
- A.7 Non-metallic pipe and cable (i.e fibre-optic systems, etc.) are Non-Locatable unless either an unbroken tracer wire or continuous metallic sheathing surrounding such buried plant is easily accessible from the surface. The Client must identify and provide all access as detailed in A.4.
- A.8 Non-metallic pipe and conduits (i.e. plaatic, concrete, asbestos, clay, etc.) under pressure (i.e. water, gas, forcemain systems, etc.) are Non-Locatable unless an unbroken tracer wire is attached to the pipe and this tracer wire is easily accessible from the surface The Client must identify and provide all access as detailed in A.4.
- A.9 Non-pressurized, non-metallic (i.e. plastic, concrete, asbestos, clay, etc.) conduits or pipe (i.e. sewers, drains, empty ducts, etc.) are Non-Locatable unless a transmitting sonde can be inserted throughout the full length of the pipe or conduit. The Client must identify and provide all access as detailed in A.4.
- A.10 Areas considered to be inaccessible (an "inaccessible Area") for the Service include, but are not limited to, the following: those of physically restricted access: those covered by a structure or object (i.e. building walls, vehicles, equipment, debris, stockpiles of material or snow, etc.); those covered by open water; those covered by woods or vegetation too thick to permit easy walking; those with surface terrain slopes steeper than 1:3; and, those where the safety of the operator is Jeopardized (i.e. unstable footing, environmental hazards, uncontrolled roads, etc.). The judgment of the multiVIEW operator will prevail on accessibility decisions inaccessible Areas will be marked on the sketch map of the work area.
- B. Limits on multiVIEW Liability
- B.1 Any information provided by multiVIEW regarding the location of underground utilities does not substitute for an authorized location by the owners of the underground facilities. The Service is provided to assist with excavation planning only. The Client is always responsible for obtaining sanctioned locates from the owners of underground plant such as hydroelectric, natural gas, telecommunications, cable TV, fibre-optics, water, sewer, oil, steam, etc. The Client must contact the utility owners directly, or their call-centre, to facilitate these locates.
- B.2 multiVIEW's marking of underground utilities is only for the convenience of the Client, and this does not relieve the Client, or any other person, or corporation, from liability for damages for personal injury including death, or for property damage or liability caused to or from any underground utility, within the area on the property where the underground utility and/or clearance was marked, or any other property, by reason of the Client, its representatives, or any other person, or corporation having relied upon the surface marking provided by multiVIEW.
- B.3 Cables carrying DC voltages and/or small diameter cables (i.e. fire alarm or security systems, remote signal cables, inaccessible tracer wire, perfectly balanced AC cables, etc.) can only be detected by direct connection methods. Where a sensitive or dangerous connection is involved. The Client must provide qualified personnel to isolate and enable direct access to these systems. The Client is responsible for defining the impact of locating signals on sensitive electronics, multiVIEW accepts no responsibility for any damage to plant, or any third party, caused by locating signals Technical information about locating signals is available from multiVIEW upon request.
- B.4 multiVIEW is not liable for damages resulting from physical exposure of any underground utilities by the Client its representatives, their sub-contractors or any other person- or corporation
- B.5 multiVIEW accepts no responsibility and is not liable for damages suffered by any third party as a result of decisions or actions based on the performance of the Service or multiVIEWs failure to perform the Service.
- B.6 multiVIEW accepts no responsibility and is not liable for conduit blockage, or restoration of the site to pre-survey conditions, as a result of survey practices needed to fulfill the objectives of the Service provided
- B.7 The Service completed by multiVIEW is based on Information provided by the Client at or prior to the earlier of the lime when the Service is described in this contract or the performance of the Service. The Service provided by multiVIEW regarding the location of any underground utility, object or structure. Is on a best effort and best practices basis The sketch map provided by multiVIEW to the Client at the time of the Service defines the extent of the area investigated.
- B.8 The Client agrees that excavation (defined as digging, drilling or disturbing the ground in any fashion) work required within a minimum of 1.0 metre (or greater if indicated by multiVIEW at the time of the Service) of the ground surface markings provided by multiVIEW will be completed by hand digging only. The Client acknowledges the risk of damage to underground utilities and structures and the possibility of resultant injury to persons, damage to property and businesses if the Client or its representatives or sub-contractors or any other person or corporation does not perform its covenant to excavate by hand digging only within a minimum of 1.0 metre (or greater if indicated by multiVIEW at the time of the Service) or the ground surface markings provided by multiVIEW
- B.9 A re-mark of surficial markings placed on the site by multiVIEW must be obtained prior to any excavation, if:
 - (a) markings become unclear, disappear, are disturbed or displaced;
 - (b) 30 days have elapsed since the Service was provided,
 - (c) the sketch and site markings do not coincide;
 - (d) the work location has changed:
 - (e) the nature of the work to be performed at the site has changed, or
 - (f) anything occurs which may indicate that a new or better or different locate service is needed
- B.10 If the Client excavates outside the limit of the sketched map area or under any of the circumstances identified in Section B.9, multiVIEW accepts no responsibility.
- B.11 Except as written in this contract, multiVIEW disclaims any and all promises, representations, warranties and covenants, express, implied statutory or otherwise
- B.12 The Client warrants that multiVIEW Locates Inc will not be liable for any claims for damages to any underground plant where multiVIEW Locates Inc was not notified of such damage within a reasonable time such that multiVIEW Locates Inc. can complete a damage investigation to physically view any such damaged underground plant whether or not any such damage may be attributed to errors or omissions committed by multiVIEW Locates Inc. In performing this work
- 8.13 multiVIEW shall not be liable for any amount in excess of the fees paid by the Client to multiVIEW for the Service on account of any loss, injury, death or damage whether resulting directly or indirectly to a person or property irrespective of the cause or origin of such loss, injury, death or damage including, without limitation, loss, injury, death or damage attributable to the negligence of multiVIEW, its employees and agents in the performance or nonperformance of the Service.
- C Additional Limitations for Concrete Scanning Services
- C.1 An "Inaccessible Area" includes all issues as in Item A.10 above and also includes: working on concrete less than 6 months cured, those covered by terrazzo tile or any other flooring with wire mesh screed;
- C.2 The Client is aware that this service will only identify the approximate centre-line position of features that are in the plane of the scanned surface to an accuracy of ±5 cm from the edges of the centre-line marking, multiVIEW will not accept any responsibility or liability for detecting features at angles to the scanned surface, which include dipping, spiralled or perpendicular targets.
- C.3 The limit of the areas scanned for 'locatable features' are defined by the outer limit of the markings as painted on site at the location of the work area as defined by the Client.

multiVIEW Locates Inc Phone: 1-800-363-3116 Fax: 1-866-571-5946 www.multiview.ca

Primary Locate Report

multiVIEW Locate Sheet1 of2
Project # WO-62527 OTHER
Locate Valid for: Excavation Design

A COPY OF TO	HIS LOCATE REPOR	RT MUST BE ON S	ITE AND IN POSSES	SION OF THE MAC	HINE OPERATOR	DURING EXCAVA	TION				
	PINCHIN LTD.			Site Address: 3145 Conroy Road							
Contact Nam	e: Mandy Wittema	n		Phone:	Phone: City: Ottawa						
Reference:				Type of Work: Pr	rivate						
Project Desci	ription: Private										
UTILITY	Gas	Electrical	Water	Sanitary Services	Storm Sewer	Communication	s Other/Unknown				
Status	С	С	NL	С	С	С	С				
Page #											
This table sum	marizes the private prop	erty utilities requested	to be located. Any publi	c utillities will be sent a	s seperate documen	ts if requested by the o	ustomer				
*Status M - M	arked on site C - Clear	for all locate areas	NL - Not locatable (see Te	rms & Conditions) SP	-See Page #NR -	Not Requested					
NOTES/WAR	NINGS: CUSTOMER	R MUST OBTAIN P	UBLIC UTILITY CLEA	RANCES PRIOR TO	EXCAVATION						
PUBLIC CONDUCTION	ANY ABANDONED OR UNTRACEABLE PRIVATE UTILITIES NOT LOCATED. PUBLIC LOCATE IS REQUIRED FOR PUBLIC UTILITIES. CONDUCTED PASSIVE SWEEPS BUT NO SIGNAL WAS PICKED UP. UNDERGROUND STORAGE TANK NOT LOCATABLE AS WELL AS DRINKING WATER WELL. PLEASE SEE DRAWING FOR WORK AREA. CAUTION										
 ✓ Hand dig within 3 metres of all terminal poles, splice pits + pad mounted equipment (transformers, etc) Exposed or damaged utilities must be immediately reported to multiVIEW @ 1-800-363-3116 and utility owner as soon as possible Each Locate Sketch is only valid for 30 days from the date of completion. The markings may disappear or be misplaced. Should sketch markings not coincide, a new stakeout must be obtained. Please read the warnings/terms/guidelines on the back of all individual utility locate forms attached The CLIENT must not work outside the indicated Locate Area without a new locate. 											
INFO		Ford stores	0			Photography	Designat Constant				
Start ti		End time:	Crew Size:	Overtime		Photos:	Project Completed:				
1:15	pm	2:15 pm	1	No		No	No				
CHARGEABL	E TIME (hrs) Lo	ocate:1.00 h	rs EM/GPR:	hrs RE	PORTING:0	hrs					
Client Company Acknowledgments I have read fully and understand the Terms and Conditions shown on the reverse side of this form under which this information was provided. I further understand that this information is provided only for the convenience of the Client and does not relieve the Client for any claims or damages associated with subsequent activities and that multivIEW and not be liable for any amount in excess of the fees paid by the Client under any circumstances. I understand that this information does not substitute for an authorized location by the owners of any underground plant, multivIEW Locates Inc. cannot locate underground facilities unless the Client provides direct physical access to each individual underground facility. In the event that a credit card has been taken for backup and payment has NOT been received within 10 busines days of commencement of the field work, then the credit card will be charged. multivIEW shall not be liable for any amount in excess of the the fees paid by the Client to multivIEW for the Service on account of any loss, injury, death, or damage whether resulting directly or indirectly to a person or property irrespective of the cause or origin of such loss, injury, death or damage including, without limitation, loss, injury, death, or damage attributable to the negligence of multiVIEW, its employees and agents in the performance or nonperformance of the Service.											

Print name of client company representative

Client company representative signature

multiVIEW Locates Inc Phone: 1-800-363-3116 Fax: 1-866-571-5946 www.multiview.ca Auxillary Locate Report

multiVIEW Locate She	et <u>2</u> of <u>2</u>					
Project # WO-62527						
Locate Valid for: 🗹 Ex	cavation Design					
DPT Intials/Date:	08/08/2024					
	mm / dd / yyyy					

	Custor	ner: E	PINC	HIN LTD.				mm /	/ dd / yy
ſ									

Marking Method: ☐ Paint ☐ Pin Flags ☐ Wood Stakes ☐ Marker/Crayon ☐ Chalk ☐ Other:									
LOCATE AREA									
From:			То:						
From:			То:						
	LEGEND		HAND DIG WITHIN 1m AS MEASURED HORIZONTALLY FROM THE FIELD MARKINGS UNLESS OTHERWISE NOTED.						
Feature	Symbol	Paint	DEPTH TO BURIED PLANT VARIES AND MUST BE VERIFIED BY HAND DIGGING. Locate Area has been altered as per:APPR						
Gas	-G-	Yellow							
Electric	-E-	Red							
Water	- W -	Blue							
Sanitary Sewer	- SAN -	Green							
Storm Sewer	- ST -	Green							
Communications	- COMM -	Orange							
Unknown	-?-	Pink							
DESIGN On	y		1 1 1 1 1 1 1 1 1 1						
Gas Main	- GM -	Pink							
Toronto Hydro	- H -	Pink	PROPOSED						
Traffic Lights	-TL-	Pink	BOREHOLE						
Street Lights	- SL -	Pink	LOCATION						
Bell	- BT -	Pink							
Transformer									
Street Light		\otimes							
Pole		\circ							
Hand Well		(HW)							
Pedestal		\times	LOCATED						
Hydrant		×	LOCATED AREA						

Valve • Valve Chamber Manhole Catch Basin Curb Line - CL -**Building Line** - BL -Fence Line - X - - X-Sidewalk - SW -Centre Line -Œ-------Railway

➂

Drill within _m radius of centre mark of proposed BH location (unless otherwise noted)

Tree/Bush

BH/Test Pit

N	M

Raining/Wet Ground	Loose/Dirt Soil	☐ Snow Ice Covered	Outline Mark & Fax	☐ Offsets Use
haining/wet dround	COOSE/DIT SOII	Show ice Covered	Oddine Mark & Pax	Olisets Ose
Locate marks by measurer	nent from maps	Easement Present	☐ Buried utility maps provided	

Access NOT provided for proper locating

Terms and Conditions for Field Services

Technical Limitations

- The Client acknowledges that the laws of fundamental physics apply and do not enable multiVIEW Locates Inc (multiVIEW) locating equipment to detect all utilities, objects, features and structures or to provide all coordinates of the position thereof Pipe, cable, conduit, utilities, objects, features or structures which are not detectable (i.e. not "Locatable") because of the laws of fundamental physics cannot be located by multiVIEW and are not the subject of the provision of the Service pursuant to this contract.
- A.2 The "Service" to be provided pursuant to this contract is the location, laterally and longitudinally, of Locatable Utilities, objects, features or structures and the subsequent marking of the site according to standard subsurface utility locating industry practice. The depth and/or 5128 of pipe, cable, conduits, utilities, objects, features and structures is Non-Locatable and IS not part of the Service.
- A.3 Locatable buried utilities are normally defined as:
 - metallic pipes, cables and conduits which are capable of carrying an electrical current, are accessible for direct coupling or Inductive coupling of an energizing current or naturally are actively carrying an identifiable electric current and such current is sufficiently large to be detectable by instruments according to the laws of fundamental physics;
 - (b) non-metallic pipes, cables and conduits which have continuous associated tracer wire capable of carrying an electric current, which is accessible for direct coupling of an energizing current or naturally are actively carrying an identifiable electric current and such current is sufficiently large to be detectable by instruments according to the laws of fundamental physics;
 - (c) As in A 3 (a) or (b) above, provided that the material either surrounding and/or enclosing and/or above the pipe, cable or conduit does not interfere with the energizing current and the operation of the locating
- It is the responsibility of the Client to identify and provide direct and simple access (including provision of licensed plumbing, electrical or confined space entry personnel if required) to any and all access A 4 points for any and all individual pipes, cables, conduits, etc to permit application of a current as detailed in section A.3. multiVIEW accepts no responsibility for locating any such lines where the Client does not provide access and/or appropriate workplace safety measures.
- "Non-Locatable Utilities are defined as all utilities which are not locatable Examples of Non-Locatable Utilities include, but are not limited to, the following:
 - pipes, cables and conduits whose depth of burial is too great and/or overlain by or m proximity to metallic material which results in signal distortion thus preventing physically measurable signals at the surface or where burial material interferes with current generation and signal emissions:
 - normally locatable utilities as defined in section A3 situated in, or emerging from, an area which Is an Inaccessible Area (as defined in Section A4 and A.10);
 - (c) normally locatable utilities as defined in section A 3 with a break or breaks to the electrical continuity of any metallic pipe, cable or tracer wire (i.e. segmented lengths, corroded connections, sections of plastic repair, etc.),
 - non-metallic pipe, cable and conduits other than those described in Sections A 7,A.8 and A.9;
- individual pipes, cables and conduits man area where there are Clustered Utilities (as defined in Section A 6)
- Specific pipes, cables, conduits, utilities, objects, features and structures are Non-Locatable where numerous pipes, cables, conduits, utilities, objects, features and structures are clustered together either A.6 vertically and/or horizontally ("Clustered Utilities").
- A.7 Non-metallic pipe and cable (i.e fibre-optic systems, etc.) are Non-Locatable unless either an unbroken tracer wire or continuous metallic sheathing surrounding such buried plant is easily accessible from the surface. The Client must identify and provide all access as detailed in A.4.
- Non-metallic pipe and conduits (i.e. plastic, concrete, asbestos, clay, etc.) under pressure (i.e. water, gas, forcemain systems, etc.) are Non-Locatable unless an unbroken tracer wire is attached to the pipe and this tracer wire is easily accessible from the surface The Client must identify and provide all access as detailed in A.4.
- Non-pressurized, non-metallic (i.e. plastic, concrete, asbeatos, clay, etc.) conduits or pipe (i.e. sewers, drains, empty ducts, etc.) are Non-Locatable unless a transmitting sonde can be inserted throughout the A.9 full length of the pipe or conduit. The Client must identify and provide all access as detailed in A.4.
- A.10 Areas considered to be inaccessible (an "Inaccessible Area") for the Service include, but are not limited to, the following: those of physically restricted access: those covered by a structure or object (i.e. building walls, vehicles, equipment, debris, stockpiles of material or snow, etc.); those covered by open water; those covered by woods or vegetation too thick to permit easy walking; those with surface terrain slopes steeper than 1:3; and, those where the safety of the operator is Jeopardized (i.e. unstable footing, environmental hazards, uncontrolled roads, etc.). The judgment of the multivIEW operator will prevail on accessibility decisions Inaccessible Areas will be marked on the sketch map of the work area
- Limits on multiVIEW Liability
- B.1 Any information provided by multiVIEW regarding the location of underground utilities does not substitute for an authorized location by the owners of the underground facilities. The Service is provided to assist with excavation planning only. The Client is always responsible for obtaining sanctioned locates from the owners of underground plant such as hydroelectric, natural gas, telecommunications, cable TV. fibre-optics, water, sewer, oil, steam, etc. The Client must contact the utility owners directly, or their call-centre, to facilitate these locates.
- R2 multiVIEW's marking of underground utilities is only for the convenience of the Client, and this does not relieve the Client, or any other person, or corporation, from liability for damages for personal injury including death, or for property damage or liability caused to or from any underground utility, within the area on the property where the underground utility and/or clearance was marked, or any other property, by reason of the Client, its representatives, or any other person, or corporation having relied upon the surface marking provided by multiVIEW.
- B.3 Cables carrying DC voltages and/or small diameter cables (i.e. fire alarm or security systems, remote signal cables, inaccessible tracer wire, perfectly balanced AC cables, etc.) can only be detected by direct connection methods. Where a sensitive or dangerous connection is involved. The Client must provide qualified personnel to isolate and enable direct access to these systems. The Client is responsible for defining the impact of locating signals on sensitive electronics, multiVIEW accepts no responsibility for any damage to plant, or any third party, caused by locating signals Technical information about locating signals is available from multiVIEW upon request.
- B.4 multiVIEW is not liable for damages resulting from physical exposure of any underground utilities by the Client its representatives, their sub-contractors or any other person- or corporation
- multiVIEW accepts no responsibility and is not liable for damages suffered by any third party as a result of decisions or actions based on the performance of the Service or multiVIEWs failure to perform the Service
- B.6 multiVIEW accepts no responsibility and is not liable for conduit blockage, or restoration of the site to pre-survey conditions, as a result of survey practices needed to fulfill the objectives of the Service provided
- B.7 The Service completed by multiVIEW is based on Information provided by the Client at or prior to the earlier of the lime when the Service is described in this contract or the performance of the Service. The Service provided by multiVIEW regarding the location of any underground utility, object or structure. Is on a best effort and best practices basis The sketch map provided by multiVIEW to the Client at the time of the Service defines the extent of the area investigated
- B.8 The Client agrees that excavation (defined as digging, drilling or disturbing the ground in any fashion) work required within a minimum of 1.0 metre (or greater if indicated by multiVIEW at the time of the Service) of the ground surface markings provided by multiVIEW will be completed by hand digging only. The Client acknowledges the risk of damage to underground utilities and structures and the possibility of resultant injury to persons, damage to property and businesses if the Client or its representatives or sub-contractors or any other person or corporation does not perform its covenant to excavate by hand digging only within a minimum of 1.0 metre (or greater if indicated by multiVIEW at the time of the Service) or the ground surface markings provided by multiVIEW
- A re-mark of surficial markings placed on the site by multiVIEW must be obtained prior to any excavation, if:
 - (a) markings become unclear, disappear, are disturbed or displaced:
 - 30 days have elapsed since the Service was provided,
 - the sketch and site markings do not coincide; the work location has changed: (d)

 - the nature of the work to be performed at the site has changed, or
 - anything occurs which may indicate that a new or better or different locate service is needed
- B.10 If the Client excavates outside the limit of the sketched map area or under any of the circumstances identified in Section B.9, multiVIEW accepts no responsibility.
- B.11 Except as written in this contract, multiVIEW disclaims any and all promises, representations, warranties and covenants, express, implied statutory or otherwise
- B.12 The Client warrants that multiVIEW Locates Inc will not be liable for any claims for damages to any underground plant where multiVIEW Locates Inc was not notified of such damage within a reasonable time such that multiVIEW Locates Inc. can complete a damage investigation to physically view any such damaged underground plant whether or not any such damage may be attributed to errors or omissions committed by multiVIEW Locates Inc. In performing this work
- B.13 multiVIEW shall not be liable for any amount in excess of the fees paid by the Client to multiVIEW for the Service on account of any loss, injury, death or damage whether resulting directly or indirectly to a person or property irrespective of the cause or origin of such loss, injury, death or damage including, without limitation, loss, injury, death or damage attributable to the negligence of multiVIEW, its employees and agents in the performance or nonperformance of the Service.
- Additional Limitations for Concrete Scanning Services
- C.1 An "Inaccessible Area" includes all issues as in Item A.10 above and also includes- working on concrete less than 6 months cured, those covered by terrazzo tile or any other flooring with wire mesh screed;
- The Client is aware that this service will only identify the approximate centre-line position of features that are in the plane of the scanned surface to an accuracy of ±5 cm from the edges of the centre-line C.2 marking, multiVIEW will not accept any responsibility or liability for detecting features at angles to the scanned surface, which include dipping, spiralled or perpendicular targets.
- C.3 The limit of the areas scanned for 'locatable features' are defined by the outer limit of the markings as painted on site at the location of the work area as defined by the Client.

CO1004.00 WO MW Realty Limited

APPENDIX III BOREHOLE LOGS

Log of Borehole: MW101

Project #: 339662.006 Logged By: EW

Project: Phase II Environmental Site Assessment

Client: WO MW Realty Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 16, 2024

		SUBSURFACE PROFIL		SAMPLE						
Depth	Symbol	Description	Measured Depth (m)		Monitoring Well Details		Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m		Ground Surface	0.00			_				
ft m 0 1 0 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sandy Silt and Gravel Organics surface layer, brown/grey gravel fill for 1', sand and gravel with some silt	-0.76 0.76				100%	SS1		рН
3 1 4 1 5 -	/ . / .	and clay, damp, no odour. Clayey Silt Grey, clayey silt, trace sand, dry to damp to wet, no odour,	0.76		¥		100%	SS2		рН
5 1 1 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		becomes very soft clay at 20'.		Riser	*		100%	SS3		
9 10 3	<u> </u>					Bentonite →	100%	SS4		VOCs, PHCs, PAH
11 - 12 - 12 - 1						Be	100%	SS5		
13 - 4	<u> </u>					a Sand ≜	100%	SS6		
16 5	/ . / .			Screen -		Silica	100%	SS7		
18 1 19 1 6		Water Level at 1.34 mbgs July 25, 2024	-6.10				100%	SS8		
21 - 22 -		End of Borehole	6.10							

Contractor: Strata Drilling

Drilling Method: Direct Push

Well Casing Size: 5.08 cm

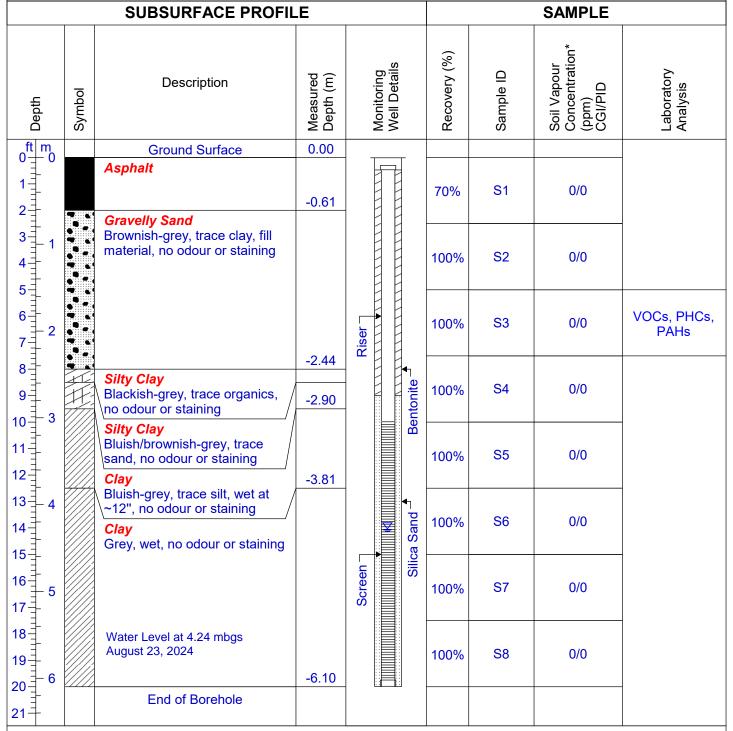
Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: N/A

Top of Casing Elevation: N/A

Log of Borehole: MW102


Project #: 339662.006 **Logged By:** EW

Project: Phase II Environmental Site Assessment

Client: WO MW Realty Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: August 21, 2024

Contractor: Strata Drilling

Drilling Method: Direct Push

Well Casing Size: 5.08 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID). Grade Elevation: N/A

Top of Casing Elevation: N/A

Project #: 339662.003 **Logged By:** MK

Project: Preliminary Geotechnical Investigation

Client: WO MW Reality Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 15, 2024 Project Manager: MK

		SUBSURFACE PROFILE			SAMPLE									
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength [△] kPa [△] 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-	~ ~	Ground Surface	84.10	*							_			
-		Organics Organics - 100 mm	0.00		SS	1	70	2	-					
1-		Fat Clay Fat clay, grey, firm, APL to WTPL			SS	2	80	4						
2-					ss	3	100	2	-					
-					SS	4	100	1			64.5			Hyd., MC. Att. Lim.
3-											-			7
=			80.29 3.81		FVT		42	NA						
4-		Very stiff	3.01	alled	SS	5	100	0	<u> </u>					
5-				Inst	FVT		199	NA	-\					
=				Well	1 V 1		100	INA						
6-			78.01 6.10	oring										
7-		Sand Grey/black sand, some silt, compact, moist to wet	6.10	No Monitoring Well Installed	SS	6	100	11	<u> </u>					
=		Trace gravel, wet	76.48 7.62						-					
8-		Trace graver, wet			SS	7	100	17	1 7					
=														
9-					SS	8	100	10						
10-														
=			73.44											
11 -		Bedrock fragments, very dense	10.67 72.83	_ ↓	SS	9	100	57						
=		End of Borehole	11.28											
13-		Borehole was terminated at 11.3 mbgs upon sampler refusal at inferred bedrock. At drilling completion water was encountered at 2.3 mbgs in the open borehole.	i,								-			

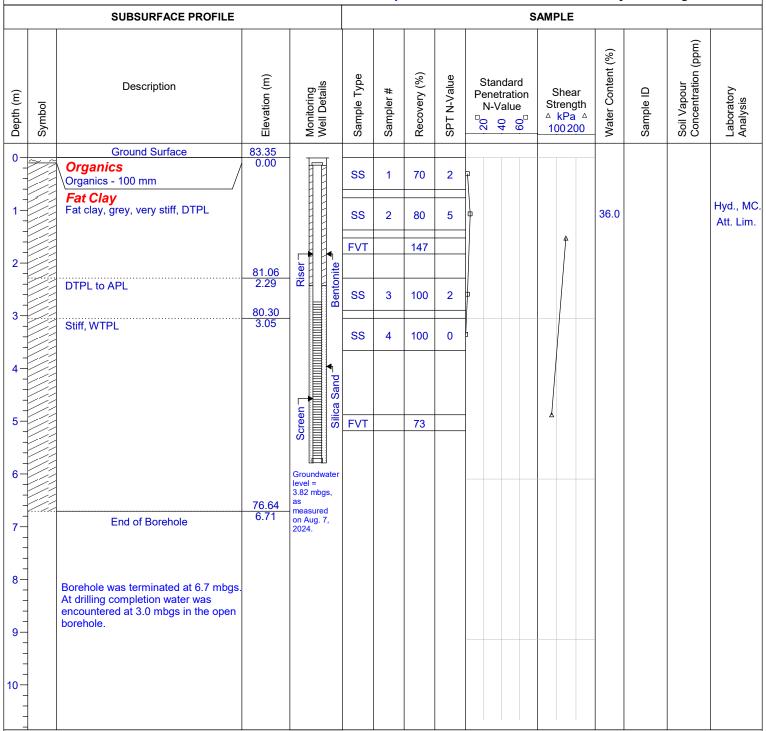
Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon Sampler

Well Casing Size: NA

Grade Elevation: 84.10 m

Top of Casing Elevation: NA


Project #: 339662.003 Logged By: MK

Project: Preliminary Geotechnical Investigation

Client: WO MW Reality Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 15, 2024 Project Manager: MK

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon Sampler

Well Casing Size: NA

Grade Elevation: 83.35 m

Top of Casing Elevation: NA

Project #: 339662.003 **Logged By:** MK

Project: Preliminary Geotechnical Investigation

Client: WO MW Reality Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 15, 2024 Project Manager: MK

				וווזע	Project Manager: MK									
		SUBSURFACE PROFILE			SAMPLE									
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength [△] kPa [△] 100 200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	83.38	*										
-		Organics Organics - 75 mm	0.00		SS	1	20	8	 					
1-		Fat Clay Fat clay, grey, very stiff to stiff, DTPL			SS	2	100	4	 -	A				
2-					FVT		115		-					
3-			80.33 3.05	 pe	FVT		84			 				
-		Firm, APL	3.05	No Monitoring Well Installed	SS	3	100	0			68.0			Hyd., MC. Att. Lim.
4-				Well										
5-				oring	FVT		42		-	<u> </u>				
-				Monit										
6-				№			400				-			
7-		Dynamic Cone Pentration	76.67 6.71	-	SS DCP	4	100 NA	0 4	-[-					
' =		Test (DCPT)			DCP DCP		NA NA	4 10						
8-		Unsampled			DCP DCP		NA NA	7	- -					
-				•	DCP DCP		NA NA	15 17						
9-		End of Borehole	74.24 9.14	. •	DCP		NA	20	7					
10-		End of Borenole												
-		Borehole was terminated at 9.1 mbgs												
11 -														
12-														
12 -														
13	-													
-	-													
	1	1	1		1				1	L			ļ	

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon Sampler

Well Casing Size: NA

Grade Elevation: 83.38 m

Top of Casing Elevation: NA

Project #: 339662.003 **Logged By:** MK

Project: Preliminary Geotechnical Investigation

Client: WO MW Reality Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 16, 2024 Project Manager: MK

		SUBSURFACE PROFILE			SAMPLE										
		JUBSURFACE FRUFILE						3	AIVIF LE						
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis	
0-		Ground Surface	84.03	*											
-		Organics Organics - 75 mm	0.00		SS	1	30	5							
1-		Fat Clay Fat clay, grey, very stiff, DTPL			SS	2	100	3	<u> </u>						
2-			81 74		FVT		115			<u>*</u>					
-		Firm to stiff, APL to WTPL	81.74 2.29		SS	3	100	1	-						
3-															
4-					FVT		42								
4			79.46 4.57		FVT		52			†					
5-		WTPL	4.57	alled	SS	4	100	0							
				No Monitoring Well Installed											
6-			77.63	Wel											
7-		Very stiff	6.40	toring	FVT		126		-						
			76.41 7.62	Moni											
8		Till Grey silty clayey sand with gravel,	7.02	2	SS	5	30	11	4						
	:::	compact, wet	74.00												
9-		Loose	74.88 9.14		SS	6	20	9	4						
10	•														
11-	:::				SS	7	60	44	-		8.9			Hyd., MC.	
12-															
-	•		71.23	•	SS	8	30	45	6						
13-		End of Borehole	12.80	_ ▼											
14-		Borehole was terminated at 12.8 mbg/ upon sampler refusal on inferred bedrock.	\$,												

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon Sampler

Well Casing Size: NA

Top of Casing Elevation: NA

Grade Elevation: 84.03 m

Project #: 339662.003 **Logged By:** MK

Project: Preliminary Geotechnical Investigation

Client: WO MW Reality Limited

Location: 3145 Conroy Road, Ottawa, Ontario

Drill Date: July 16, 2024 Project Manager: MK

		SUBSURFACE PROFILE			SAMPLE										
		JUBSURFACE PROFILE								ANT LE					
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength ^Δ kPa ^Δ 100 200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis	
0-		Ground Surface	83.88 0.00	*											
-		Fill Grey sand and gravel, trace silt, compact, wet	83.27 0.61		SS	1	30	18							
1-		Fat Clay Fat clay, grey, very stiff to stiff,			SS	2	100	4	 - 						
2-		WTPL			FVT		147			 					
3-					SS	3	100	2	- 		56.4			Hyd., MC. Att. Lim.	
3-							70								
4-				— pə	FVT		73		-						
-				No Monitoring Well Installed					-						
5-					SS	4	100	0	 -						
-				W gr											
6-				itorir											
-			77.17 6.71	Mon	SS	5	30	0	<u> </u>						
7-		Dyanmic Cone	6.71	8 8	DCP DCP		NA NA	0	р - р						
-		Penetration Test (DCPT) Unsampled			DCP		NA	0	- 						
8-					DCP DCP		NA NA	0 4	<u> </u>						
-					DCP DCP		NA NA	4							
9-					DCP		NA	7	1						
-					DCP DCP		NA NA	12 13							
10-					DCP		NA	14	1						
-					DCP DCP		NA NA	19 18	[]						
11-			72.75	_ ↓	DCP		NA	24 30							
-		End of Borehole	11.13												
12-															
-															
13		Borehole was terminated at 11.1 mbgs upon sampler refusal on inferred bedrock.	5 ,												
-															

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon Sampler

Well Casing Size: NA

Grade Elevation: 83.88 m

Top of Casing Elevation: NA

CO1004.00 WO MW Realty Limited

APPENDIX IV GRAIN SIZE ANALYSIS

PATERSON	٧									SIEVE ANALYSIS ASTM C136		
CLIENT:	Pino	chin	DEPTH:			7'6" - 9'6"		FILE NO:			PM4184	
CONTRACT NO.:			BH OR TP No.:			BH1 SS4		LAB NO:			54859	
PROJECT:	33966	32 003						DATE RECEIVE	D:		8-Aug-24	
TROOLOT.	33300	12.003						DATE TESTED:			12-Aug-24	
DATE SAMPLED:	-	-						DATE REPORTI	ED:		15-Aug-24	
SAMPLED BY:	-	-						TESTED BY:			D.K	
0.00 100.0)1		0.01		0.1	Sieve Size	(mm) ¹		10		100	\neg
90.0							<u> </u>					
80.0	N.											
70.0												
60.0 -												
% 50.0 -												
40.0												
30.0												
20.0												
0.0												
Clay	,		Silt			Sand			Gravel		Cobble	
					Fine	Medium		Fine		Coarse		
Identification			Soil Clas	sification			MC(%) 64.5%	LL	PL	PI	Сс	Cu
	D100	D60	D30	D10	G	ravel (%)	Sar	nd (%)	Sil	t (%)	Clay (% 77.0)
	Comments:				0.0 2.1						77.0	
REVIEWE	REVIEWED BY: Curtis Beadow		adow			Joe Forsyth, P. Eng.						
KEVIEWE	REVIEWED BY:		L	n Kn			Joe Poisylli, F. Elig.					

PATERSON	ı							:	SIEVE ANALYSI ASTM C136	s	
CLIENT:	Pinchin	DEPTH:			2'6" - 4'6"		FILE NO:			PM4184	
CONTRACT NO.:		BH OR TP No.:			BH2 SS2		LAB NO:			54855	
PROJECT:	339662.003						DATE RECEIVED):		8-Aug-24	
FROJECT.	339002.003						DATE TESTED:			12-Aug-24	
DATE SAMPLED:	-						DATE REPORTE	D:		15-Aug-24	
SAMPLED BY:	-						TESTED BY:			D.K	
0.00 100.0	1	0.01		0.1	Sieve Size (m	m) ¹	•	10		100	_
90.0											
80.0											
70.0 – 60.0 –											
% 50.0 - 40.0 -											
30.0											
20.0											
10.0											
0.0					Sand			Gravel			_
Clay		Silt		Fine	Medium	Coarse	Fine	- Graver	Coarse	Cobble	
Identification	ı	Soil Clas	sification			MC(%)	LL	PL	PI	Cc	Cu
-	D100 D60	D30	D10	Grave	el (%)	36.0% San	d (%)	Silt	t (%)	Clay (%	o)
					.0		0.9		4.6	74.5	
	Comments:										
			Curtis Beadow				Joe Forsyth, P. Eng.				
REVIEWED	BY:	L	n Ru				Je	72			

PATERSON	1					SIEVE ANALYSIS ASTM C136		
CLIENT:	Pinchin	DEPTH:	10' - 12'		FILE NO:		PM4184	
CONTRACT NO.:		BH OR TP No.:	BH2 SS2		LAB NO:		54856	
PROJECT:	339662.003				DATE RECEIVED:		8-Aug-24	
PROJECT.	338002.003				DATE TESTED:	<u> </u>	12-Aug-24	
DATE SAMPLED:	-				DATE REPORTED:		15-Aug-24	
SAMPLED BY:	-				TESTED BY:		D.K	
0.00 100.0)1	0.01	0.1 Sieve Size (mr	m) 1	10		100	_
90.0								
80.0								
70.0								
60.0								
% 50.0								
40.0 - 30.0 -								
20.0								
10.0								
0.0								
Clay		Cilt	Sand		Gravel		Cabble	7
Clay		Silt	Fine Medium	Coarse	Fine	Coarse	Cobble	
Identification		Soil Classification		MC(%) 68.0%	LL PL	PI	Сс	Cu
l 1	D100 D60	D30 D10	Gravel (%)	Sand	d (%)	silt (%)	l Clay (%))
	Comments:		0.0	3.	·	19.6	77.0	
REVIEWED	REVIEWED BY:		OW .		Joe Forsyth, P. Eng.			

PATERSON											SIEVE ANALYS ASTM C136	is	
CLIENT:	Pinchin		DEPTH:			3	5' - 37'		FILE NO:			PM4184	
CONTRACT NO.:			BH OR TP No.:				14 SS7		LAB NO:			54858	
PROJECT:	339662.00	2							DATE RECEIVE	:D:		8-Aug-24	
PROJECT.	339662.00	3							DATE TESTED:			12-Aug-24	
DATE SAMPLED:	-								DATE REPORT			15-Aug-24	
SAMPLED BY:	-								TESTED BY:			D.K	
0.001			0.01		0.1		ieve Size (mm) 1		10		100	_
90.0													
80.0													
70.0													
60.0													
% 50.0													
40.0													
30.0													
20.0													
10.0													
0.0	<u> </u>				<u> </u>		Sand		1	Gravel			$\vec{\neg}$
Clay			Silt		Fine	<u>, </u>	Medium	Coarse	Fine	Gravei	Coarse	Cobble	
dentification			Soil Cla	ssification	1		cuiuiii	MC(%)	LL	PL	PI	Cc	Cu
	D100	Dec	D20	D40		Crovel (0/)		8.9%	nd (0/)	•	il+ (0/)	Class (9)	()
	D100	D60	D30	D10		Gravel (%) 20.4		Sai	nd (%) 46.0	S	ilt (%) 24.1	Clay (% 9.5	0)
	Comments:											-	
DE1/151	Curtis Beade		Curtis Beadow	adow				Joe Fors	yth, P. Eng.				
REVIEWED I	REVIEWED BY:		1	In Ru					Joe Forsyth, P. Eng.				

PATERSON										SIEVE ANALYSI ASTM C136	s	
CLIENT:	Pinchi	า	DEPTH:			7'6" - 9'6"		FILE NO:			PM4184	
CONTRACT NO.:			BH OR TP No.	:		BH5 SS3		LAB NO:			54860	
PROJECT:	339662.0	102						DATE RECEIVED):		8-Aug-24	
FROJECT.	339002.0	103						DATE TESTED:			12-Aug-24	
DATE SAMPLED:	-							DATE REPORTE	D:		15-Aug-24	
SAMPLED BY:	-							TESTED BY:			D.K	
0.001 100.0	1		0.01		0.1	Sieve Size (m	m) ¹	•	10		100	
90.0				•								
80.0												
70.0												
60.0												
% 50.0												
40.0												
30.0												
20.0												
10.0												
0.0	1							<u> </u>				_
Clay			Silt		Fine	Sand Medium	Coarse	Fine	Gravel	Coarse	Cobble	
Identification			Soil Cla	ssification		IVICUIUIII	MC(%)	LL	PL	PI	Cc	Cu
	D100	D60	D30			ivel (%)	56.4%	nd (%)		t (%)	Clay (%	\
	וטוט	טטט	D30	D10		0.0		5.4		4.1	70.5	
	Comment	S :										
DEVIEWED	REVIEWED BY:			Curtis Beadow				Joe Forsyth, P. Eng.				
KEVIEWED	ы.		1	m Km				Je	12			

CO1004.00 WO MW Realty Limited

APPENDIX V CHEMICAL LABORATORY CERTIFICATES OF ANALYSIS

CLIENT NAME: PINCHIN LTD.

1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7

(613) 592-3387

ATTENTION TO: Mandy Witteman

PROJECT: 339662.006 AGAT WORK ORDER: 24Z175126

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jul 24, 2024

PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mandy Witteman

SAMPLING SITE: Conroy Roa	ıd				SAMPLED BY:						
				O. Re	g. 153(511) -) - ORPs (Soil)					
DATE RECEIVED: 2024-07-17						DATE REPORTED: 2024-07-24					
		SAMPLE DES	CRIPTION:	MW101-SS1	MW101-SS2						
		SAMI	PLE TYPE:	Soil	Soil						
		DATES	SAMPLED:	2024-07-16	2024-07-16						
Parameter	Unit	G/S	RDL	6014142	6014143						
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.70	6.73						

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6014142-6014143 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: PINCHIN LTD.

CLIENT NAME: PINCHIN LTD.

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mandy Witteman

SAMPLED BY:

O. Reg. 153(511) - PAHs (Soil)

			9	
				DATE REPORTED: 2024-07-24
S	SAMPLE DESC	RIPTION:	MW101-SS4	
	SAMPI	LE TYPE:	Soil	
	DATE SAMPLED:		2024-07-16	
Unit	G/S	RDL	6014144	
μg/g	0.09	0.05	<0.05	
μg/g	0.093	0.05	< 0.05	
μg/g	0.072	0.05	< 0.05	
μg/g	0.12	0.05	<0.05	
μg/g	0.69	0.05	< 0.05	
μg/g	0.16	0.05	< 0.05	
μg/g	0.56	0.05	< 0.05	
μg/g	1	0.05	<0.05	
μg/g	0.36	0.05	< 0.05	
μg/g	2.8	0.05	<0.05	
μg/g	0.47	0.05	< 0.05	
μg/g	0.48	0.05	< 0.05	
μg/g	0.3	0.05	< 0.05	
μg/g	0.23	0.05	<0.05	
μg/g	0.1	0.05	< 0.05	
μg/g	0.68	0.05	<0.05	
μg/g	0.59	0.05	<0.05	
%		0.1	33.8	
Unit	Acceptable Limits			
%	50-140		70	
%	50-14	10	100	
%	50-14	10	80	
	Unit #9/9	SAMPI DATE S/ Unit G / S Up/g 0.09 µg/g 0.093 µg/g 0.072 µg/g 0.12 µg/g 0.69 µg/g 0.16 µg/g 0.56 µg/g 1 µg/g 0.36 µg/g 0.36 µg/g 0.36 µg/g 0.47 µg/g 0.48 µg/g 0.47 µg/g 0.69 µg/g 0.56 µg/g 0.56 µg/g 1 µg/g 0.56 µg/g 0.56 µg/g 0.50 µg/g 0.50 µg/g 0.50 µg/g 0.50 µg/g 0.50 µg/g 0.50 % 0.50 % 50-14	Unit G/S RDL μg/g 0.09 0.05 μg/g 0.093 0.05 μg/g 0.072 0.05 μg/g 0.072 0.05 μg/g 0.12 0.05 μg/g 0.69 0.05 μg/g 0.16 0.05 μg/g 0.56 0.05 μg/g 1 0.05 μg/g 1 0.05 μg/g 0.36 0.05 μg/g 0.36 0.05 μg/g 0.47 0.05 μg/g 0.48 0.05 μg/g 0.3 0.05 μg/g 0.3 0.05 μg/g 0.3 0.05 μg/g 0.59 0.05 μg/g 0.59 0.05 μg/g 0.59 0.05 % 0.1 Unit Acceptable Limits % 50-140	SAMPLE DESCRIPTION: MW101-SS4 SAMPLE TYPE: Soil DATE SAMPLED: 2024-07-16 Unit G/S RDL 6014144 µg/g 0.09 0.05 <0.05 µg/g 0.093 0.05 <0.05 µg/g 0.12 0.05 <0.05 µg/g 0.69 0.05 <0.05 µg/g 0.16 0.05 <0.05 µg/g 0.56 0.05 <0.05 µg/g 1 0.05 <0.05 µg/g 1 0.05 <0.05 µg/g 0.36 0.05 <0.05 µg/g 0.36 0.05 <0.05 µg/g 0.36 0.05 <0.05 µg/g 0.47 0.05 <0.05 µg/g 0.48 0.05 <0.05 µg/g 0.48 0.05 <0.05 µg/g 0.23 0.05 <0.05 µg/g 0.23 0.05 <0.05 µg/g 0.68 0.05 <0.05 µg/g 0.68 0.05 <0.05 µg/g 0.59 0.05 <0.05 % 50-140 70 % 50-140 70

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: PINCHIN LTD.

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-07-17 DATE REPORTED: 2024-07-24

		SAMPLE DESCRIPTION:		MW101-SS4
		SAMPLE TYPE: DATE SAMPLED:		Soil
				2024-07-16
Parameter	Unit	G/S	RDL	6014144
F1 (C6 to C10)	μg/g	25	5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5
F2 (C10 to C16)	μg/g	10	10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10
F3 (C16 to C34)	μg/g	240	50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	<50
F4 (C34 to C50)	μg/g	120	50	<50
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA
Moisture Content	%		0.1	33.8
Surrogate	Unit	Acceptable I	imits	
Toluene-d8	%	50-140		110
Terphenyl	%	60-140		86

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6014144 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD.
SAMPLING SITE:Conroy Road

ATTENTION TO: Mandy Witteman

SAMPLED BY:

			O. Reg. 153(5	11) - VOCs (with PHC) (Soil)
DATE RECEIVED: 2024-07-17				DATE REPORTED: 2024-07-24
	S	AMPLE DESCRIPT	ION: MW101-SS4	
		SAMPLE T	YPE: Soil	
		DATE SAMP	LED: 2024-07-16	
Parameter	Unit	G/S RE	DL 6014144	
Dichlorodifluoromethane	μg/g	0.05 0.0	0.05	
Vinyl Chloride	ug/g	0.02 0.0)2 <0.02	
Bromomethane	ug/g	0.05 0.0	0.05	
Trichlorofluoromethane	ug/g	0.25 0.0	0.05	
Acetone	ug/g	0.5 0.5	< 0.50	
1,1-Dichloroethylene	ug/g	0.05 0.0	05 < 0.05	
Methylene Chloride	ug/g	0.05 0.0	0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05 0.0	05 < 0.05	
Methyl tert-butyl Ether	ug/g	0.05 0.0	0.05	
1,1-Dichloroethane	ug/g	0.05 0.0)2 <0.02	
Methyl Ethyl Ketone	ug/g	0.5 0.5	< 0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05 0.0)2 <0.02	
Chloroform	ug/g	0.05 0.0	0.04	
1,2-Dichloroethane	ug/g	0.05 0.0	< 0.03	
1,1,1-Trichloroethane	ug/g	0.05 0.0	05 < 0.05	
Carbon Tetrachloride	ug/g	0.05 0.0	05 < 0.05	
Benzene	ug/g	0.02 0.0)2 <0.02	
1,2-Dichloropropane	ug/g	0.05 0.0	0.03	
Trichloroethylene	ug/g	0.05 0.0	0.03	
Bromodichloromethane	ug/g	0.05 0.0	05 < 0.05	
Methyl Isobutyl Ketone	ug/g	0.5 0.5	50 <0.50	
1,1,2-Trichloroethane	ug/g	0.05 0.0		
Toluene	ug/g	0.2 0.0	05 < 0.05	
Dibromochloromethane	ug/g	0.05 0.0	05 < 0.05	
Ethylene Dibromide	ug/g	0.05 0.0	0.04	
Tetrachloroethylene	ug/g	0.05 0.0		
1,1,1,2-Tetrachloroethane	ug/g	0.05 0.0	0.04	
Chlorobenzene	ug/g	0.05 0.0		
Ethylbenzene	ug/g	0.05 0.0		
m & p-Xylene	ug/g	0.0		

CLIENT NAME: PINCHIN LTD.

SAMPLING SITE: Conroy Road

Certificate of Analysis

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Mandy Witteman

SAMPLED BY:

\cap Dog	150/511\	VOCa	huith	PHC) (Soil)	
O. Rea.	103(011)	- VUUS	(WILII)	PHC) (3011)	

				J (, ,	, , ,	
DATE RECEIVED: 2024-07-17							DATE REPORTED: 2024-07-24
	S	AMPLE DESC	RIPTION:	MW101-SS4			
	SAMPLE TYPE:		Soil				
	DATE SAMPLED:		2024-07-16				
Parameter	Unit	G/S	RDL	6014144			
Bromoform	ug/g	0.05	0.05	<0.05			
Styrene	ug/g	0.05	0.05	< 0.05			
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05			
o-Xylene	ug/g		0.05	< 0.05			
1,3-Dichlorobenzene	ug/g	0.05	0.05	< 0.05			
1,4-Dichlorobenzene	ug/g	0.05	0.05	< 0.05			
1,2-Dichlorobenzene	ug/g	0.05	0.05	< 0.05			
Xylenes (Total)	ug/g	0.05	0.05	<0.05			
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05			
n-Hexane	μg/g	0.05	0.05	< 0.05			
Moisture Content	%		0.1	33.8			
Surrogate	Unit	Acceptable Limits					
Toluene-d8	% Recovery	50-140		110			
4-Bromofluorobenzene	% Recovery	50-14	40	96			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was

performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

6014144

Quality Assurance

CLIENT NAME: PINCHIN LTD. AGAT WORK ORDER: 24Z175126
PROJECT: 339662.006 ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road SAMPLED BY:

Soil Analysis														
RPT Date: Jul 24, 2024				UPLICAT	E		REFEREN	NCE MATER	AL METH	D BLAN	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable d Limits	le Recove	1 11	eptable mits	Recovery	Lin	ptable nits
		ld	- '	- '			Value	Lower Upp	er	Lowe	Upper	,	Lower	Upper

O. Reg. 153(511) - ORPs (Soil)

pH, 2:1 CaCl2 Extraction 6013744 5.39 5.59 3.6% NA 103% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

CHARTERED CHEMIST

Quality Assurance

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road SAMPLED BY:

			mac		gain	03 / (1	nalys	13							
RPT Date: Jul 24, 2024			DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable	Recovery		ptable	Recovery		ptable
		lu lu					value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6014114		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	93%	50%	140%	103%	50%	1409
Acenaphthylene	6014114		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	75%	50%	140%	88%	50%	1409
Acenaphthene	6014114		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	83%	50%	140%	78%	50%	1409
Fluorene	6014114		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	78%	50%	140%	78%	50%	1409
Phenanthrene	6014114		<0.05	< 0.05	NA	< 0.05	86%	50%	140%	75%	50%	140%	75%	50%	140%
Anthracene	6014114		<0.05	<0.05	NA	< 0.05	70%	50%	140%	88%	50%	140%	83%	50%	1409
Fluoranthene	6014114		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	80%	50%	140%	75%	50%	1409
Pyrene	6014114		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	80%	50%	140%	73%	50%	140%
Benzo(a)anthracene	6014114		< 0.05	<0.05	NA	< 0.05	89%	50%	140%	90%	50%	140%	85%	50%	140%
Chrysene	6014114		<0.05	<0.05	NA	< 0.05	102%	50%	140%	80%	50%	140%	78%	50%	140%
Benzo(b)fluoranthene	6014114		<0.05	<0.05	NA	< 0.05	88%	50%	140%	98%	50%	140%	108%	50%	140%
Benzo(k)fluoranthene	6014114		<0.05	<0.05	NA	< 0.05	124%	50%	140%	73%	50%	140%	98%	50%	140%
Benzo(a)pyrene	6014114		<0.05	<0.05	NA	< 0.05	102%	50%	140%	75% 75%		140%	80%	50%	140%
Indeno(1,2,3-cd)pyrene	6014114		<0.05	<0.05	NA	< 0.05	102%	50%	140%	73%	50%	140%	88%	50%	140%
Dibenz(a,h)anthracene	6014114		<0.05	<0.05	NA	< 0.05	96%	50%	140%	95%	50%	140%	103%	50%	140%
Benzo(g,h,i)perylene	6014114		<0.05	<0.05	NA	< 0.05	122%	50%	140%	110%	50%	140%	95%	50%	140%
O Dog 453/544) DUCo F4 F4	(with DAHo	224 //OC/	(Co:I)												
O. Reg. 153(511) - PHCs F1 - F4 F1 (C6 to C10)	6014375	and voc)	(SOII) <5	<5	NA	< 5	121%	60%	140%	113%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6013649		< 10	< 10	NA	< 10	103%	60%	140%	99%	60%	140%	104%	60%	140%
F3 (C16 to C34)	6013649		< 50	< 50	NA	< 50	106%	60%	140%	126%	60%	140%	127%	60%	140%
F4 (C34 to C50)	6013649		< 50	< 50	NA	< 50	66%	60%	140%	119%	60%	140%	101%	60%	140%
O Dog 453/544) VOCo (with F	NUC) (Cail)														
O. Reg. 153(511) - VOCs (with F Dichlorodifluoromethane	, , ,		-0.0E	-O OE	NΙΛ	- 0.05	82%	E00/	1.400/	82%	E00/	140%	86%	50%	1 100
Vinyl Chloride	6014375		<0.05	<0.05	NA NA	< 0.05		50%	140%		50%				140% 140%
Bromomethane	6014375		<0.02	<0.02	NA NA	< 0.02 < 0.05	83% 89%	50%	140%	94% 97%	50% 50%	140% 140%	119% 122%	50% 50%	140%
Trichlorofluoromethane	6014375		<0.05	< 0.05	NA NA			50%	140%						140%
Acetone	6014375 6014375		<0.05 <0.50	<0.05 <0.50	NA NA	< 0.05 < 0.50	74% 99%	50% 50%	140% 140%	83% 110%	50% 50%	140% 140%	96% 104%	50% 50%	140%
1,1-Dichloroethylene	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	89%	60%	130%	70%	50%	140%
Methylene Chloride	6014375		<0.05	<0.05	NA	< 0.05	97%	50%	140%	97%	60%	130%	91%	50%	140%
Trans- 1,2-Dichloroethylene	6014375		<0.05	<0.05	NA	< 0.05	97%		140%	98%		130%	83%		140%
Methyl tert-butyl Ether	6014375		<0.05	<0.05	NA	< 0.05	99%	50%		105%		130%	106%	50%	140%
1,1-Dichloroethane	6014375		<0.02	<0.02	NA	< 0.02	110%	50%	140%	107%	60%	130%	117%	50%	140%
Methyl Ethyl Ketone	6014375		<0.50	<0.50	NA	< 0.50	101%	50%	140%	110%	50%	140%	98%	50%	140%
Cis- 1,2-Dichloroethylene	6014375		<0.02	< 0.02	NA	< 0.02	100%	50%	140%	101%	60%	130%	74%	50%	140%
Chloroform	6014375		<0.04	< 0.04	NA	< 0.04	102%	50%	140%	98%	60%	130%	76%	50%	1409
1,2-Dichloroethane	6014375		< 0.03	< 0.03	NA	< 0.03	104%	50%	140%	106%	60%	130%	79%	50%	1409
1,1,1-Trichloroethane	6014375		<0.05	<0.05	NA	< 0.05	90%	50%	140%	86%	60%	130%	98%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD. AGAT WORK ORDER: 24Z175126
PROJECT: 339662.006 ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road SAMPLED BY:

	Trace Organics Analysis (Continued)														
RPT Date: Jul 24, 2024			UPLICAT	E		REFERENCE MATERIAL		METHOD BLANK SPIKE		SPIKE	MATRIX SPIKE		KE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable	Recovery	1 :-	ptable	Recovery		ptable
		10					Value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	6014375		< 0.02	< 0.02	NA	< 0.02	107%	50%	140%	101%	60%	130%	74%	50%	140%
1,2-Dichloropropane	6014375		< 0.03	< 0.03	NA	< 0.03	94%	50%	140%	96%	60%	130%	69%	50%	140%
Trichloroethylene	6014375		< 0.03	< 0.03	NA	< 0.03	102%	50%	140%	96%	60%	130%	71%	50%	140%
Bromodichloromethane	6014375		<0.05	<0.05	NA	< 0.05	90%	50%	140%	92%	60%	130%	65%	50%	140%
Methyl Isobutyl Ketone	6014375		<0.50	<0.50	NA	< 0.50	78%	50%	140%	100%	50%	140%	95%	50%	140%
1,1,2-Trichloroethane	6014375		<0.04	< 0.04	NA	< 0.04	107%	50%	140%	103%	60%	130%	107%	50%	140%
Toluene	6014375		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	103%	60%	130%	89%	50%	140%
Dibromochloromethane	6014375		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	99%	60%	130%	91%	50%	140%
Ethylene Dibromide	6014375		<0.04	<0.04	NA	< 0.04	104%	50%	140%	108%	60%	130%	101%	50%	140%
Tetrachloroethylene	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	107%	60%	130%	100%	50%	140%
1,1,1,2-Tetrachloroethane	6014375		<0.04	< 0.04	NA	< 0.04	94%	50%	140%	101%	60%	130%	87%	50%	140%
Chlorobenzene	6014375		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	100%	60%	130%	101%	50%	140%
Ethylbenzene	6014375		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	93%	50%	140%
m & p-Xylene	6014375		<0.05	<0.05	NA	< 0.05	102%	50%	140%	104%	60%	130%	90%	50%	140%
Bromoform	6014375		<0.05	<0.05	NA	< 0.05	103%	50%	140%	90%	60%	130%	105%	50%	140%
Styrene	6014375		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	104%	60%	130%	88%	50%	140%
1,1,2,2-Tetrachloroethane	6014375		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	106%	60%	130%	100%	50%	140%
o-Xylene	6014375		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	96%	60%	130%	105%	50%	140%
1,3-Dichlorobenzene	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	94%	60%	130%	94%	50%	140%
1,4-Dichlorobenzene	6014375		<0.05	<0.05	NA	< 0.05	105%	50%	140%	101%	60%	130%	101%	50%	140%
1,2-Dichlorobenzene	6014375		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	104%	60%	130%	99%	50%	140%
n-Hexane	6014375		<0.05	<0.05	NA	< 0.05	106%	50%	140%	106%	60%	130%	76%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jung

Time Markers

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. ATTENTION TO: Mandy Witteman

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6014142	MW101-SS1	Soil	16-JUL-2024	17-JUL-2024
	O. Reg. 153(511) - ORPs (Soil)			
	Parameter	Date Prep	ared Date Ana	lyzed Initials
	pH, 2:1 CaCl2 Extraction	24-JUL-2		-
6014143	MW101-SS2	Soil	16-JUL-2024	17-JUL-2024
	O. Reg. 153(511) - ORPs (Soil)			
	Parameter	Date Prep	ared Date Ana	lyzed Initials
	pH, 2:1 CaCl2 Extraction	24-JUL-2		-
6014144	MW101-SS4	Soil	16-JUL-2024	17-JUL-2024
	O. Reg. 153(511) - PAHs (Soil)			
	Parameter	Date Prep	ared Date Ana	lyzed Initials
	Naphthalene	23-JUL-2		_
	Acenaphthylene	23-JUL-2		
	Acenaphthene	23-JUL-2	024 23-JUL-2	2024 NP
	Fluorene	23-JUL-2	024 23-JUL-2	2024 NP
	Phenanthrene	23-JUL-2	024 23-JUL-2	2024 NP
	Anthracene	23-JUL-2	024 23-JUL-2	2024 NP
	Fluoranthene	23-JUL-2	024 23-JUL-2	2024 NP
	Pyrene	23-JUL-2	024 23-JUL-2	2024 NP
	Benzo(a)anthracene	23-JUL-2	024 23-JUL-2	2024 NP
	Chrysene	23-JUL-2	024 23-JUL-2	2024 NP
	Benzo(b)fluoranthene	23-JUL-2	024 23-JUL-2	2024 NP
	Benzo(k)fluoranthene	23-JUL-2	024 23-JUL-2	2024 NP
	Benzo(a)pyrene	23-JUL-2	024 23-JUL-2	2024 NP
	Indeno(1,2,3-cd)pyrene	23-JUL-2	024 23-JUL-2	2024 NP
	Dibenz(a,h)anthracene	23-JUL-2	024 23-JUL-2	2024 NP
	Benzo(g,h,i)perylene	23-JUL-2	024 23-JUL-2	2024 NP
	2-and 1-methyl Naphthalene	23-JUL-2	024 23-JUL-2	2024 SYS
	Naphthalene-d8	23-JUL-2	024 23-JUL-2	2024 NP
	Acridine-d9	23-JUL-2	024 23-JUL-2	2024 NP
	Terphenyl-d14	23-JUL-2	024 23-JUL-2	2024 NP
	Moisture Content	22-JUL-2	024 22-JUL-2	2024 SD
	O. Reg. 153(511) - PHCs F1 - F4 (with	PAHs and VOC) (Soil)		
	Parameter	Date Prep	ared Date Ana	lyzed Initials
	F1 (C6 to C10)	23-JUL-2	024 23-JUL-2	2024 CK
	F1 (C6 to C10) minus BTEX	23-JUL-2	024 23-JUL-2	2024 SYS

Time Markers

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mandy Witteman

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6014144	MW101-SS4	Soil	16-JUL-2024	17-JUL-2024

Parameter	Date Prepared	Date Analyzed	Initials
Toluene-d8	23-JUL-2024	23-JUL-2024	CK
F2 (C10 to C16)	23-JUL-2024	23-JUL-2024	SS
F2 (C10 to C16) minus Naphthalene	23-JUL-2024	23-JUL-2024	SYS
F3 (C16 to C34)	23-JUL-2024	23-JUL-2024	SS
F3 (C16 to C34) minus PAHs	23-JUL-2024	23-JUL-2024	SYS
F4 (C34 to C50)	23-JUL-2024	23-JUL-2024	SS
Gravimetric Heavy Hydrocarbons			
Moisture Content	22-JUL-2024	22-JUL-2024	SD
Terphenyl	23-JUL-2024	23-JUL-2024	SS

O. Reg. 153(511) - VOCs (with PHC) (Soil)

Parameter	Date Prepared	Date Analyzed	Initials
Dichlorodifluoromethane	23-JUL-2024	23-JUL-2024	CK
Vinyl Chloride	23-JUL-2024	23-JUL-2024	CK
Bromomethane	23-JUL-2024	23-JUL-2024	CK
Trichlorofluoromethane	23-JUL-2024	23-JUL-2024	CK
Acetone	23-JUL-2024	23-JUL-2024	CK
1,1-Dichloroethylene	23-JUL-2024	23-JUL-2024	CK
Methylene Chloride	23-JUL-2024	23-JUL-2024	CK
Trans- 1,2-Dichloroethylene	23-JUL-2024	23-JUL-2024	CK
Methyl tert-butyl Ether	23-JUL-2024	23-JUL-2024	CK
1,1-Dichloroethane	23-JUL-2024	23-JUL-2024	CK
Methyl Ethyl Ketone	23-JUL-2024	23-JUL-2024	CK
Cis- 1,2-Dichloroethylene	23-JUL-2024	23-JUL-2024	CK
Chloroform	23-JUL-2024	23-JUL-2024	CK
1,2-Dichloroethane	23-JUL-2024	23-JUL-2024	CK
1,1,1-Trichloroethane	23-JUL-2024	23-JUL-2024	CK
Carbon Tetrachloride	23-JUL-2024	23-JUL-2024	CK
Benzene	23-JUL-2024	23-JUL-2024	CK
1,2-Dichloropropane	23-JUL-2024	23-JUL-2024	CK
Trichloroethylene	23-JUL-2024	23-JUL-2024	CK
Bromodichloromethane	23-JUL-2024	23-JUL-2024	CK
Methyl Isobutyl Ketone	23-JUL-2024	23-JUL-2024	CK
1,1,2-Trichloroethane	23-JUL-2024	23-JUL-2024	CK
Toluene	23-JUL-2024	23-JUL-2024	CK
Dibromochloromethane	23-JUL-2024	23-JUL-2024	CK
Ethylene Dibromide	23-JUL-2024	23-JUL-2024	CK
Tetrachloroethylene	23-JUL-2024	23-JUL-2024	CK
1,1,1,2-Tetrachloroethane	23-JUL-2024	23-JUL-2024	CK

Time Markers

AGAT WORK ORDER: 24Z175126

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. ATTENTION TO: Mandy Witteman

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6014144	MW101-SS4	Soil	16-JUL-2024	17-JUL-2024

O. Reg. 153(511) - VOCs (with PHC) (Soil)			
Parameter	Date Prepared	Date Analyzed	Initials
Chlorobenzene	23-JUL-2024	23-JUL-2024	CK
Ethylbenzene	23-JUL-2024	23-JUL-2024	CK
m & p-Xylene	23-JUL-2024	23-JUL-2024	CK
Bromoform	23-JUL-2024	23-JUL-2024	CK
Styrene	23-JUL-2024	23-JUL-2024	CK
1,1,2,2-Tetrachloroethane	23-JUL-2024	23-JUL-2024	CK
o-Xylene	23-JUL-2024	23-JUL-2024	CK
1,3-Dichlorobenzene	23-JUL-2024	23-JUL-2024	CK
1,4-Dichlorobenzene	23-JUL-2024	23-JUL-2024	CK
1,2-Dichlorobenzene	23-JUL-2024	23-JUL-2024	CK
Xylenes (Total)	23-JUL-2024	23-JUL-2024	SYS
1,3-Dichloropropene (Cis + Trans)	23-JUL-2024	23-JUL-2024	SYS
n-Hexane	23-JUL-2024	23-JUL-2024	CK
Toluene-d8	23-JUL-2024	23-JUL-2024	CK
4-Bromofluorobenzene	23-JUL-2024	23-JUL-2024	CK
Moisture Content	22-JUL-2024	22-JUL-2024	SD

Method Summary

CLIENT NAME: PINCHIN LTD. PROJECT: 339662.006

AGAT WORK ORDER: 24Z175126
ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z175126
PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road SAMPLED BY:

GAMI EING GITE. GOIITGY ROAG		OAWII EED DT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD. AGAT WORK ORDER: 24Z175126 PROJECT: 339662.006 ATTENTION TO: Mandy Witteman SAMPLING SITE: Conroy Road

SAMPLED BY:

OAIMI EINO OTTE.OOTTOY ROad		O/NWI LLD D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD. PROJECT: 339662.006

AGAT WORK ORDER: 24Z175126 ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy Road		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

Report Information:

Project Information:

Company: Contact:

Address:

Phone:

1. Email:

2. Email:

Project:

1. 2. 3. 4. 5.

6. 7 8. 9. 10. 11.

Site Location:

Sampled By:

Reports to be sent to.

Have feedback?

Scan here for a quick survey!

Regulatory Requirements:

Is this submission for a

Record of Site Condition?

Regulation 406

Regulation 558

CCME

☐ No

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Regulation 153/04

□lod/Com

Res/Park

Coarse

☐ Yes

Fine

☐ Agriculture

Soil Texture (Check One)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

> Sewer Use Sanitary

Other

☐ Yes

mo113

Region

Prov. Water Quality

Objectives (PWQO)

Indicate One

Report Guideline on

Certificate of Analysis

O. Reg 153

Storm

☐ No

Laboratory Use Only

Work Order #:	7471	75	120	Ī
		1	The same of the sa	Ξ

Cooler Quantity: (7)	1- 001	CO ID	acks
Arrival Temperatures:			
	Carl	15.0	5-3

Custody Seal Intact: ☐Yes □N/A □No

Turna	around Tim	e (TAT) Requir	ed:
	lar TAT TAT (Rush Surchar	5 to 7 Busines	ss Days
Rusii	(Rush Surchar	ges Apply)	
	3 Business Days	2 Business Days	Next Busine
	OR Date Regu	ired (Rush Surcharge	es May Apply):

Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

O. Reg 406

AGAT Quote #:	PO:		2.0	Com	nla Matrix Logand	8	0.	. Reg It	0.3	003			558	O. Re	_		- 189	4	展	-	X/N)
Please note: If quotation number is n	ot provided, client wil	l be billed full price for	analysis.		iple Matrix Legend	crvI, DOC					-			ن	kage	o o		4 1	Ĕ.	1080	ion (Y
Invoice Information: Company: Pinchus	// E	Bill To Same: Ye	es 🗤 No 🗆		Ground Water Oil Paint	五		HWSB		- 18		m	zation TCLP: □B(a)P□P	nwater Leach	Characterization Package Is, BTEX, F1-F4] Sulphide	1 5 70		51		Concentrat
Contact:				S	Soil	Metals,	1					RI	cteri		x F1	e 🗆					High (
Address:				SD	Sediment	- pa	sjic	Π Hg	S			3	hara s 🗆 /	SPLP Ra	BTEX	istur		4 1			Sor
Email: Apa Pincl	rin-cc	m		SW	Surface Water	Field Filtered -	& Inorganics	- Crvi, [F1-F4 PHCs			oclors 🗆	Disposal Char	0,	406 Meta	Corrosivity: Moisture	. Um			42	y Hazardou
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	~	VOC	PCBs	PCBs: Aroclors	Landfill [TCLP:	Regulation 406 SPLP □ Metals	Regulation pH, ICPMS	Corrosiv	Ha		all se		Potential
1. MWIDI-SSI	July 16/21	AM PA	A [= =	<										111			X			U-S	П
2. MW101-552	1) AN PN	A (The s			X				1
3. MW101-554	W	AN PN	1 2		Table '		-		\times	X											4
4.		AN PN	1												=1						
5.		AN PN	A																		
6.		AN PN			H K																
7.		AN PN			New Transfer		.E							1007							Ť
8.		AN PN																			
9.		AN PN					-		1			53		1937						100	
10.		AN PN										US.		- WAY							1
11.		AN PN			parties in the same	- 100						Œ.		100						100	Ī
amples Rollinguished By (Print Name and Sign):	Hen	Date	6/24		Samples Received By (Print Name and sign):	5			Tiel		ate	17/2	24 F	5h3	5						

Page

GAN

CLIENT NAME: PINCHIN LTD.

1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7

(613) 592-3387

ATTENTION TO: Mandy Witteman

PROJECT: 339662.006

AGAT WORK ORDER: 24Z188540
TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Sep 05, 2024

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE: Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

O. Reg. 153(511) - PAHs (Soil)

				O. rtog.	100(011) 171110 (0011)
DATE RECEIVED: 2024-08-21					DATE REPORTED: 2024-09-05
	;	SAMPLE DES	CRIPTION:	MW102-S3	
		SAM	PLE TYPE:	Soil	
		DATE:	SAMPLED:	2024-08-21	
Parameter	Unit	G/S	RDL	6094579	
Naphthalene	μg/g	0.09	0.05	<0.05	
Acenaphthylene	μg/g	0.093	0.05	<0.05	
Acenaphthene	μg/g	0.072	0.05	<0.05	
Fluorene	μg/g	0.12	0.05	<0.05	
Phenanthrene	μg/g	0.69	0.05	<0.05	
Anthracene	μg/g	0.16	0.05	<0.05	
Fluoranthene	μg/g	0.56	0.05	<0.05	
Pyrene	μg/g	1	0.05	< 0.05	
Benzo(a)anthracene	μg/g	0.36	0.05	<0.05	
Chrysene	μg/g	2.8	0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.47	0.05	<0.05	
Benzo(k)fluoranthene	μg/g	0.48	0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	
ndeno(1,2,3-cd)pyrene	μg/g	0.23	0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.68	0.05	< 0.05	
2-and 1-methyl Naphthalene	μg/g	0.59	0.05	< 0.05	
Moisture Content	%		0.1	30.7	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-	140	80	
Acridine-d9	%	50-	140	80	
Terphenyl-d14	%	50-	140	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6094579 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

1 147...

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-08-21 DATE REPORTED: 2024-09-05

		SAMPLE DESC	RIPTION:	MW102-S3
		SAMF	LE TYPE:	Soil
		DATE S	AMPLED:	2024-08-21
Parameter	Unit	G/S	RDL	6094579
F1 (C6 to C10)	μg/g	25	5	<5
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5
F2 (C10 to C16)	μg/g	10	10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10
F3 (C16 to C34)	μg/g	240	50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	<50
F4 (C34 to C50)	μg/g	120	50	<50
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA
Moisture Content	%		0.1	30.7
Surrogate	Unit	Acceptabl	e Limits	
Toluene-d8	%	50-1	40	104
Terphenyl	%	60-1	40	83

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6094579 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolof

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mandy Witteman SAMPLED BY: EW

SAMPLING SITE:Conroy						SAMPLED BY:	EW			
			(O. Reg. 153(511) - VOCs (with PHC) (Soil)						
DATE RECEIVED: 2024-08-21							DATE REPORTED: 2024-09-05			
		SAMPLE DESC	CRIPTION:	MW102-S3						
		SAMF	PLE TYPE:	Soil						
		DATE S	SAMPLED:	2024-08-21						
Parameter	Unit	G/S	RDL	6094579						
Dichlorodifluoromethane	μg/g	0.05	0.05	<0.05						
Vinyl Chloride	ug/g	0.02	0.02	<0.02						
Bromomethane	ug/g	0.05	0.05	< 0.05						
Trichlorofluoromethane	ug/g	0.25	0.05	<0.05						
Acetone	ug/g	0.5	0.50	<0.50						
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05						
Methylene Chloride	ug/g	0.05	0.05	<0.05						
Trans- 1,2-Dichloroethylene	ug/g	0.05	0.05	<0.05						
Methyl tert-butyl Ether	ug/g	0.05	0.05	<0.05						
1,1-Dichloroethane	ug/g	0.05	0.02	<0.02						
Methyl Ethyl Ketone	ug/g	0.5	0.50	<0.50						
Cis- 1,2-Dichloroethylene	ug/g	0.05	0.02	<0.02						
Chloroform	ug/g	0.05	0.04	<0.04						
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03						
1,1,1-Trichloroethane	ug/g	0.05	0.05	<0.05						
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05						
Benzene	ug/g	0.02	0.02	<0.02						
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03						
Trichloroethylene	ug/g	0.05	0.03	< 0.03						
Bromodichloromethane	ug/g	0.05	0.05	<0.05						
Methyl Isobutyl Ketone	ug/g	0.5	0.50	<0.50						
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04						
Toluene	ug/g	0.2	0.05	<0.05						
Dibromochloromethane	ug/g	0.05	0.05	<0.05						
Ethylene Dibromide	ug/g	0.05	0.04	<0.04						
Tetrachloroethylene	ug/g	0.05	0.05	<0.05						
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04						
Chlorobenzene	ug/g	0.05	0.05	<0.05						
Ethylbenzene	ug/g	0.05	0.05	<0.05						
m & p-Xylene	ug/g		0.05	<0.05						

SAMPLING SITE: Conroy

Certificate of Analysis

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLED BY:EW

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - V	OCs (with	PHC)	(Soil)
----------------------	-----------	------	--------

				3 (-	, ()
DATE RECEIVED: 2024-08-21					DATE REPORTED: 2024-09-05
	S	AMPLE DESC	CRIPTION:	MW102-S3	
		SAME	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2024-08-21	
Parameter	Unit	G/S	RDL	6094579	
Bromoform	ug/g	0.05	0.05	<0.05	
Styrene	ug/g	0.05	0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	
p-Xylene	ug/g		0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	
,2-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	
Kylenes (Total)	ug/g	0.05	0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05	
n-Hexane	μg/g	0.05	0.05	< 0.05	
Moisture Content	%		0.1	30.7	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	104	
4-Bromofluorobenzene	% Recovery	50-1	40	84	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was

performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

6094579

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman
SAMPLING SITE:Conroy

SAMPLED BY:EW

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Sep 05, 2024				UPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		eptable mits	Recovery		ptable nits
		-						Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6087836		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	95%	50%	140%	85%	50%	140%
Acenaphthylene	6087836		< 0.05	< 0.05	NA	< 0.05	69%	50%	140%	110%	50%	140%	85%	50%	140%
Acenaphthene	6087836		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	80%	50%	140%	95%	50%	140%
Fluorene	6087836		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	75%	50%	140%	90%	50%	140%
Phenanthrene	6087836		<0.05	<0.05	NA	< 0.05	105%	50%	140%	88%	50%	140%	100%	50%	140%
Anthracene	6087836		<0.05	< 0.05	NA	< 0.05	65%	50%	140%	80%	50%	140%	90%	50%	140%
Fluoranthene	6087836		< 0.05	< 0.05	NA	< 0.05	121%	50%	140%	80%	50%	140%	101%	50%	140%
Pyrene	6087836		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	100%	50%	140%	78%	50%	140%
Benzo(a)anthracene	6087836		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	98%	50%	140%	95%	50%	140%
Chrysene	6087836		<0.05	< 0.05	NA	< 0.05	95%	50%	140%	93%	50%	140%	83%	50%	140%
Benzo(b)fluoranthene	6087836		<0.05	< 0.05	NA	< 0.05	89%	50%	140%	78%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	6087836		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	90%	50%	140%	70%	50%	140%
Benzo(a)pyrene	6087836		< 0.05	< 0.05	NA	< 0.05	63%	50%	140%	80%	50%	140%	70%	50%	140%
Indeno(1,2,3-cd)pyrene	6087836		< 0.05	< 0.05	NA	< 0.05	66%	50%	140%	93%	50%	140%	75%	50%	140%
Dibenz(a,h)anthracene	6087836		<0.05	< 0.05	NA	< 0.05	82%	50%	140%	98%	50%	140%	73%	50%	140%
Benzo(g,h,i)perylene	6087836		<0.05	<0.05	NA	< 0.05	107%	50%	140%	78%	50%	140%	73%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs a	and VOC)	(Soil)												
F1 (C6 to C10)	6093320	,	<5	<5	NA	< 5	133%	60%	140%	121%	60%	140%	84%	60%	140%
F2 (C10 to C16)	6095711		< 10	< 10	NA	< 10	107%	60%	140%	103%	60%	140%	100%	60%	140%
F3 (C16 to C34)	6095711		< 50	< 50	NA	< 50	105%	60%	140%	123%	60%	140%	125%	60%	140%
F4 (C34 to C50)	6095711		< 50	< 50	NA	< 50	77%	60%	140%	107%	60%	140%	91%	60%	140%
O. Reg. 153(511) - VOCs (with PF	IC) (Soil)														
Dichlorodifluoromethane	6093320		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	89%	50%	140%	112%	50%	140%
Vinyl Chloride	6093320		<0.02	<0.02	NA	< 0.02	116%	50%	140%	91%	50%	140%	97%	50%	140%
Bromomethane	6093320		<0.05	< 0.05	NA	< 0.05	106%	50%	140%	73%	50%	140%	115%	50%	140%
Trichlorofluoromethane	6093320		<0.05	< 0.05	NA	< 0.05	94%	50%	140%	87%	50%	140%	84%	50%	140%
Acetone	6093320		<0.50	<0.50	NA	< 0.50	83%	50%	140%	90%	50%	140%	108%	50%	140%
1,1-Dichloroethylene	6093320		<0.05	<0.05	NA	< 0.05	101%	50%	140%	99%	60%	130%	85%	50%	140%
Methylene Chloride	6093320		<0.05	< 0.05	NA	< 0.05	99%	50%	140%	88%	60%	130%	103%	50%	140%
Trans- 1,2-Dichloroethylene	6093320		<0.05	< 0.05	NA	< 0.05	88%		140%	89%		130%	103%		140%
Methyl tert-butyl Ether	6093320		<0.05	<0.05	NA	< 0.05	78%		140%	93%		130%	86%	50%	
1,1-Dichloroethane	6093320		<0.02	<0.02	NA	< 0.02	99%		140%	99%		130%	80%		140%
Methyl Ethyl Ketone	6093320		<0.50	<0.50	NA	< 0.50	111%	50%	140%	91%	50%	140%	96%	50%	140%
Cis- 1,2-Dichloroethylene	6093320		<0.02	<0.02	NA	< 0.02	91%		140%	99%		130%	99%		140%
Chloroform	6093320		<0.02	<0.02	NA	< 0.02	90%		140%	96%		130%	99%		140%
1,2-Dichloroethane	6093320		<0.03	< 0.03	NA	< 0.03	74%		140%	81%		130%	95%		140%
1,1,1-Trichloroethane	6093320		<0.05	<0.05	NA	< 0.05	77%		140%	78%		130%	85%		140%
Carbon Tetrachloride	6093320		<0.05	<0.05	NA	< 0.05	67%	50%	140%	66%	60%	130%	92%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy SAMPLED BY:EW

Ortivii Elite erre:comoy	OANII ELIVO GITE. GOTILO														
	Trace Organics Analysis (Continued)														
RPT Date: Sep 05, 2024			С	DUPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery		ptable nits
							74.40	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	6093248		<0.02	< 0.02	NA	< 0.02	97%	50%	140%	95%	60%	130%	96%	50%	140%
1,2-Dichloropropane	6093320		< 0.03	< 0.03	NA	< 0.03	82%	50%	140%	89%	60%	130%	99%	50%	140%
Trichloroethylene	6093320		< 0.03	< 0.03	NA	< 0.03	90%	50%	140%	87%	60%	130%	92%	50%	140%
Bromodichloromethane	6093320		<0.05	<0.05	NA	< 0.05	72%	50%	140%	64%	60%	130%	79%	50%	140%
Methyl Isobutyl Ketone	6093320		<0.50	<0.50	NA	< 0.50	92%	50%	140%	110%	50%	140%	100%	50%	140%
1,1,2-Trichloroethane	6093320		< 0.04	< 0.04	NA	< 0.04	101%	50%	140%	94%	60%	130%	87%	50%	140%
Toluene	6093248		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	101%	60%	130%	96%	50%	140%
Dibromochloromethane	6093320		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	99%	60%	130%	97%	50%	140%
Ethylene Dibromide	6093320		<0.04	<0.04	NA	< 0.04	87%	50%	140%	104%	60%	130%	100%	50%	140%
Tetrachloroethylene	6093320		<0.05	<0.05	NA	< 0.05	103%	50%	140%	106%	60%	130%	93%	50%	140%
1,1,1,2-Tetrachloroethane	6093320		<0.04	< 0.04	NA	< 0.04	83%	50%	140%	102%	60%	130%	99%	50%	140%
Chlorobenzene	6093320		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	95%	60%	130%	104%	50%	140%
Ethylbenzene	6093248		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	109%	60%	130%	88%	50%	140%
m & p-Xylene	6093248		<0.05	<0.05	NA	< 0.05	118%	50%	140%	125%	60%	130%	104%	50%	140%
Bromoform	6093320		<0.05	<0.05	NA	< 0.05	87%	50%	140%	93%	60%	130%	103%	50%	140%
Styrene	6093320		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	85%	60%	130%	92%	50%	140%
1,1,2,2-Tetrachloroethane	6093320		<0.05	< 0.05	NA	< 0.05	90%	50%	140%	104%	60%	130%	84%	50%	140%
o-Xylene	6093248		<0.05	< 0.05	NA	< 0.05	99%	50%	140%	110%	60%	130%	98%	50%	140%
1,3-Dichlorobenzene	6093320		<0.05	<0.05	NA	< 0.05	101%	50%	140%	110%	60%	130%	99%	50%	140%
1,4-Dichlorobenzene	6093320		<0.05	<0.05	NA	< 0.05	96%	50%	140%	99%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	6093320		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	98%	60%	130%	102%	50%	140%
n-Hexane	6093320		<0.05	< 0.05	NA	< 0.05	93%	50%	140%	89%	60%	130%	70%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy SAMPLED BY:EW

SAMPLING SITE. CONTOY		SAMPLED BY.EM	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy SAMPLED BY:EW

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z188540

PROJECT: 339662.006

ATTENTION TO: Mandy Witteman

SAMPLING SITE:Conroy SAMPLED BY:EW

or time En to on E. com cy		********	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

webearth agatlabs.com

Laboratory Use Only

Work Order #: 2421885

Chain of Custody Record

Chain of Custody Record	U If this is a	Drinking Water	sample, plea	ase use Drin	king Water Chain of Custody Form (potal	ole water	consum	ed by hi	uman	;)					eratures		397	0-0	6.5
Report Information: Company:	n			Reg	gulatory Requirements:							11		-	I Intact:]Yes	□No	□N/A
Contact: Mwittema		chin 1	ion	1	egulation 153/04 Regulation 406		C Sev	wer Us	P				Notes:	_			01	1	
Address: EWISM (a)	pochi	com	-		Table Indicate One Sanitary Storm						Turnaround Time (TAT) Required:								
1- thes Fd, Suite 200				_	Indicate One Indicate One Indicate One Indicate One Region						R	Regular TAT 5 to 7 Business Days							
Phone: 63 617 5936	2 Fax:				Res/Park Res/Park Agriculture Agriculture			v. Wate				R	ush '	TAT (R	ush Surcha				
Reports to be sent to: 1. Email:					Forture (c) 1 c		Obj	ectives	(PW	QO)				0.0			0.0 .		
I. Ellall.	**			- 11	Coarse Regulation 558	3	Oth	er						3 Bus	siness		2 Business Days		ext Business ay
2. Email:					Fine CCME			Indicate	One		_			OR D	ate Rec	juired (F	Rush Surcha	rges May Ar	ply):
Project Information:				ls th	nis submission for a Record	Re	port	Guid	elin	e on									
Project: 33966	2.006	,		0	of Site Condition (RSC)?	Cei	tifica	ite of	Ana	ilysis		Н					rior notificati		
Site Location:					Yes No		Yes	3	Ø	No							eekends and		
Sampled By:										-	-		_	_		-	please cont	act your AG	AT CSR
AGAT Quote #: Please note: If quotation number is	PO:	na billad full seine fee		Leg	al Sample 🗌	000	0.	Reg 15	3				O. Reg	-	0. Re 558				N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/
	not provided, crient wiir	be billed fall price for	analysis.	=		CrVI, DOC						Package		rater Leach		- -			ation (
Invoice Information:	Bi	II To Same: Ye	s 🗌 No 🗆	San	nple Matrix Legend			SB			-	Pa Lo		r Lea	svous Lition TCLP:	Sulphide			centra
Company: Pinch IV	n.	. 110		- GW	Ground Water SD Sediment	etals,		□HWSB				rizati		wate	erizati	က က			L Co
Contact: #Connes	paya	este.		- O	Oil SW Surface Water	Σ̈́	y)	□ Hg, □				haracte	4	LP Rainv	aracteriz	ure		10.0	I High
Address: Email: (106) pipo	· hin	1 10-		- P	Paint R Rock/Shale	terec	Inorganics	<u> </u>	PHCs			Chai	7, 1	SPLF	osal Cha	Aoist			o sno
than.	rure	COPPL.		_ S	Soil	Field Filtered - Metals, Hg,		CrVI,	F4 P		2	406 C		406	Disposal Characterization TCLP:	<u></u>			Hazaro
	D-t-	T'				ιĔ	S &] - SI	, F1-F4		, A	ulation	SAR	ation	fill Disp	sivity		12000	ially F
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals - I	втех,	VOC	PAHS DCBc: Amolog	Regulation 406 Characterization	EC, S	Regulation 406 SPLP Rainwater Leach	Landfill Disposal C	Corrosivity:			Poteni
1. BH102-S3	Ann olbe	AM PM	2	5					V	VX	1								
2.	17/1	AM					10751			1	1								
3.		AM PM					12.1												
4.		AM PM				1													
5.		AM PM														1			
6.		AM PM																	
7.		AM PM						-											
8.		AM PM																	
9.	-	AN PM																	
10.		AM PM																	
11.		AM PM																	
Samples Relinquished By (Prox Name and Sign): 0 - 4	0	Date	Time		Eamplon Received By (Print Name and Sign):	1		- 10			Date	,	1 11	ime	1				
Samples Relinquished By (Print Name and Sign): Ester Wilson Ester W Samples Relinquished By (Print Name and Sign):	elson	2024-0	18-21		(Chilleto						38	21/2	4	151	115				
Ca to Pino		08/22/	24 15	100	THE					H	Date /	27	1	Time	4		Page	of	_

CLIENT NAME: PINCHIN LTD.

1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7

(613) 592-3387

ATTENTION TO: Ester Wilson

PROJECT: 339662.006 AGAT WORK ORDER: 24Z189028

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Aug 29, 2024

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. SAMPLING SITE: Conroy

ATTENTION TO: Ester Wilson SAMPLED BY: E. Wilson

				O. Reg. 153(511) - F	'AHs (Water)
DATE RECEIVED: 2024-08-23					DATE REPORTED: 2024-08-29
	:	SAMPLE DES	CRIPTION:	MW102-GW	
		SAMI	PLE TYPE:	Water	
		DATES	SAMPLED:	2024-08-23	
Parameter	Unit	G/S	RDL	6098656	
Naphthalene	μg/L	7	0.20	<0.20	
Acenaphthylene	μg/L	1	0.20	<0.20	
Acenaphthene	μg/L	4.1	0.20	<0.20	
Fluorene	μg/L	120	0.20	<0.20	
Phenanthrene	μg/L	0.1	0.10	<0.10	
Anthracene	μg/L	0.1	0.10	<0.10	
Fluoranthene	μg/L	0.4	0.20	<0.20	
Pyrene	μg/L	0.2	0.20	<0.20	
Benzo(a)anthracene	μg/L	0.2	0.20	<0.20	
Chrysene	μg/L	0.1	0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.1	0.10	<0.10	
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	2	0.20	<0.20	
Sediment				3	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-1		100	
Acridine-d9	%	50-1	140	85	
Terphenyl-d14	%	50-1	140	90	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6098656

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD.
SAMPLING SITE:Conroy

ATTENTION TO: Ester Wilson SAMPLED BY:E. Wilson

O. Reg. 153(511) - PHCs F1 - F4	(with PAHs and VOC) (water)

DATE RECEIVED: 2024-08-23				DATE REPORTED: 2024-08-29
	S/	AMPLE DESCRIPTIO	N: MW102-GW	
		SAMPLE TYP	E: Water	
		DATE SAMPLE	D: 2024-08-23	
Parameter	Unit	G/S RDL	6098656	
F1 (C6 to C10)	μg/L	420 25	<25	
F1 (C6 to C10) minus BTEX	μg/L	420 25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	
Sediment			3	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	%	50-140	103	
Terphenyl	% Recovery	60-140	67	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6098656

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD.
SAMPLING SITE:Conroy

ATTENTION TO: Ester Wilson SAMPLED BY:E. Wilson

			0	. Reg. 153(5	11) - VOCs (with PHC) (Water)
DATE RECEIVED: 2024-08-23					DATE REPORTED: 2024-08-29
	S	SAMPLE DES		MW102-GW	
			PLE TYPE:	Water	
			SAMPLED:	2024-08-23	
Parameter	Unit	G/S	RDL	6098656	
Dichlorodifluoromethane	μg/L	590	0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	
Trichlorofluoromethane	μg/L	150	0.40	<0.40	
Acetone	μg/L	2700	1.0	<1.0	
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30	
Methylene Chloride	μg/L	5	0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	
1,1-Dichloroethane	μg/L	0.5	0.30	<0.30	
Methyl Ethyl Ketone	μg/L	400	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2	0.20	<0.20	
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	0.5	0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	
Benzene	μg/L	0.5	0.20	<0.20	
1,2-Dichloropropane	μg/L	0.5	0.20	<0.20	
Trichloroethylene	μg/L	0.5	0.20	<0.20	
Bromodichloromethane	μg/L	2	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	
Toluene	μg/L	0.8	0.20	<0.20	
Dibromochloromethane	μg/L	2	0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	
Chlorobenzene	μg/L	0.5	0.10	<0.10	
Ethylbenzene	μg/L	0.5	0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	

AGAT WORK ORDER: 24Z189028

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD.
SAMPLING SITE:Conroy

ATTENTION TO: Ester Wilson SAMPLED BY:E. Wilson

			О	. Reg. 153(5	511) - VOCs (with PHC) (Water)
DATE RECEIVED: 2024-08-23					DATE REPORTED: 2024-08-29
	SA	AMPLE DESC	RIPTION:	MW102-GW	
		SAMP	LE TYPE:	Water	
		DATE S	AMPLED:	2024-08-23	
Parameter	Unit	G/S	RDL	6098656	
Bromoform	μg/L	5	0.10	<0.10	
Styrene	μg/L	0.5	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	<0.30	
Xylenes (Total)	μg/L	72	0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	
Surrogate	Unit	Acceptable	e Limits		
Toluene-d8	% Recovery	50-14	10	103	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6098656 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

% Recovery

50-140

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

93

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

4-Bromofluorobenzene

Quality Assurance

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z189028
PROJECT: 339662.006

ATTENTION TO: Ester Wilson
SAMPLING SITE:Conroy

SAMPLED BY:E. Wilson

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Aug 29, 2024				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Recovery	1 1 1 1 1 1	ptable nits	Recovery	1 1 1 1	eptable mits
							1	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Water)												
F1 (C6 to C10)	6100338		<25	<25	NA	< 25	119%	60%	140%	90%	60%	140%	75%	60%	140%
F2 (C10 to C16)	6092776		<100	<100	NA	< 100	88%	60%	140%	73%	60%	140%	73%	60%	140%
F3 (C16 to C34)	6092776		<100	<100	NA	< 100	92%	60%	140%	111%	60%	140%	77%	60%	140%
F4 (C34 to C50)	6092776		<100	<100	NA	< 100	91%	60%	140%	117%	60%	140%	106%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	6100338		< 0.40	< 0.40	NA	< 0.40	65%	50%	140%	117%	50%	140%	110%	50%	140%
Vinyl Chloride	6100338		<0.17	<0.17	NA	< 0.17	119%	50%	140%	118%	50%	140%	114%	50%	140%
Bromomethane	6100338		<0.20	< 0.20	NA	< 0.20	117%	50%	140%	116%	50%	140%	91%	50%	140%
Trichlorofluoromethane	6100338		< 0.40	< 0.40	NA	< 0.40	106%	50%	140%	109%	50%	140%	111%	50%	140%
Acetone	6100338		<1.0	<1.0	NA	< 1.0	111%	50%	140%	104%	50%	140%	117%	50%	140%
1,1-Dichloroethylene	6100338		<0.30	<0.30	NA	< 0.30	106%	50%	140%	91%	60%	130%	111%	50%	140%
Methylene Chloride	6100338		< 0.30	< 0.30	NA	< 0.30	113%	50%	140%	104%	60%	130%	100%	50%	140%
trans- 1,2-Dichloroethylene	6100338		<0.20	<0.20	NA	< 0.20	71%	50%	140%	68%	60%	130%	85%	50%	140%
Methyl tert-butyl ether	6100338		<0.20	<0.20	NA	< 0.20	74%	50%	140%	116%	60%	130%	95%	50%	140%
1,1-Dichloroethane	6100338		<0.30	<0.30	NA	< 0.30	92%	50%	140%	88%		130%	85%	50%	140%
Methyl Ethyl Ketone	6100338		<1.0	<1.0	NA	< 1.0	87%	50%	140%	95%	50%	140%	112%	50%	140%
cis- 1,2-Dichloroethylene	6100338		<0.20	<0.20	NA	< 0.20	92%	50%	140%	94%	60%	130%	90%	50%	140%
Chloroform	6100338		<0.20	<0.20	NA	< 0.20	101%	50%	140%	99%	60%	130%	90%	50%	140%
1,2-Dichloroethane	6100338		<0.20	<0.20	NA	< 0.20	89%	50%	140%	85%	60%	130%	80%	50%	140%
1,1,1-Trichloroethane	6100338		<0.30	<0.30	NA	< 0.30	90%	50%	140%	85%	60%	130%	78%	50%	140%
Carbon Tetrachloride	6100338		<0.20	<0.20	NA	< 0.20	89%	50%	140%	84%	60%	130%	89%	50%	140%
Benzene	6100338		<0.20	<0.20	NA	< 0.20	95%	50%	140%	90%	60%	130%	84%	50%	140%
1,2-Dichloropropane	6100338		<0.20	<0.20	NA	< 0.20	88%	50%	140%	90%	60%	130%	87%	50%	140%
Trichloroethylene	6100338		<0.20	<0.20	NA	< 0.20	90%	50%	140%	89%	60%	130%	89%	50%	140%
Bromodichloromethane	6100338		<0.20	<0.20	NA	< 0.20	97%	50%	140%	99%	60%	130%	95%	50%	140%
Methyl Isobutyl Ketone	6100338		<1.0	<1.0	NA	< 1.0	80%	50%	140%	112%	50%	140%	97%	50%	140%
1,1,2-Trichloroethane	6100338		<0.20	<0.20	NA	< 0.20	118%	50%	140%	118%	60%	130%	117%	50%	140%
Toluene	6100338		0.46	0.48	NA	< 0.20	101%	50%	140%	102%	60%	130%	114%	50%	140%
Dibromochloromethane	6100338		<0.10	<0.10	NA	< 0.10	117%	50%	140%	118%	60%	130%	107%	50%	140%
Ethylene Dibromide	6100338		<0.10	<0.10	NA	< 0.10	111%	50%		116%	60%		112%	50%	140%
Tetrachloroethylene	6100338		<0.20	<0.20	NA	< 0.20	92%	50%	140%	98%	60%	130%	101%	50%	140%
1,1,1,2-Tetrachloroethane	6100338		<0.10	<0.10	NA	< 0.10	119%		140%	112%		130%	106%	50%	
Chlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	100%		140%	100%		130%	106%		140%
Ethylbenzene	6100338		<0.10	<0.10	NA	< 0.10	89%		140%	93%		130%	93%		140%
m & p-Xylene	6100338		<0.20	<0.20	NA	< 0.20	91%		140%	95%		130%	97%		140%
Bromoform	6100338		<0.10	<0.10	NA	< 0.10	120%	50%	140%	114%	60%	130%	114%	50%	140%
Styrene	6100338		<0.10	<0.10	NA	< 0.10	86%		140%	87%	60%		95%		140%
1,1,2,2-Tetrachloroethane	6100338		<0.10	<0.10	NA	< 0.10	119%		140%	105%		130%	111%	50%	140%
o-Xylene	6100338		<0.10	<0.10	NA	< 0.10	97%		140%	99%		130%			140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy

AGAT WORK ORDER: 24Z189028

ATTENTION TO: Ester Wilson

SAMPLED BY:E. Wilson

	Trace Organics Analysis (Continued)														
RPT Date: Aug 29, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptabl Limits		Recovery	Acce Lin		Recovery		ptable nits
		ld		i i			Value	Lower	Upper		Lower	Upper	_	Lower	Upper
1,3-Dichlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	93%	50%	140%	96%	60%	130%	97%	50%	140%
1,4-Dichlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	94%	50%	140%	96%	60%	130%	96%	50%	140%
1,2-Dichlorobenzene	6100338		<0.10	<0.10	NA	< 0.10	100%	50%	140%	99%	60%	130%	101%	50%	140%
n-Hexane	6100338		<0.20	<0.20	NA	< 0.20	97%	50%	140%	93%	60%	130%	107%	50%	140%
O. Reg. 153(511) - PAHs (Water)															
Naphthalene	6081463		<0.20	< 0.20	NA	< 0.20	111%	50%	140%	86%	50%	140%	101%	50%	140%
Acenaphthylene	6081463		<0.20	< 0.20	NA	< 0.20	97%	50%	140%	72%	50%	140%	83%	50%	140%
Acenaphthene	6081463		<0.20	< 0.20	NA	< 0.20	90%	50%	140%	72%	50%	140%	79%	50%	140%
Fluorene	6081463		<0.20	< 0.20	NA	< 0.20	87%	50%	140%	67%	50%	140%	74%	50%	140%
Phenanthrene	6081463		<0.10	<0.10	NA	< 0.10	74%	50%	140%	83%	50%	140%	83%	50%	140%
Anthracene	6081463		<0.10	<0.10	NA	< 0.10	75%	50%	140%	74%	50%	140%	79%	50%	140%
Fluoranthene	6081463		<0.20	< 0.20	NA	< 0.20	84%	50%	140%	85%	50%	140%	71%	50%	140%
Pyrene	6081463		<0.20	< 0.20	NA	< 0.20	81%	50%	140%	72%	50%	140%	73%	50%	140%
Benzo(a)anthracene	6081463		<0.20	< 0.20	NA	< 0.20	81%	50%	140%	83%	50%	140%	102%	50%	140%
Chrysene	6081463		<0.10	<0.10	NA	< 0.10	99%	50%	140%	85%	50%	140%	107%	50%	140%
Benzo(b)fluoranthene	6081463		<0.10	<0.10	NA	< 0.10	96%	50%	140%	94%	50%	140%	98%	50%	140%
Benzo(k)fluoranthene	6081463		<0.10	<0.10	NA	< 0.10	80%	50%	140%	99%	50%	140%	74%	50%	140%
Benzo(a)pyrene	6081463		<0.01	< 0.01	NA	< 0.01	83%	50%	140%	93%	50%	140%	69%	50%	140%
Indeno(1,2,3-cd)pyrene	6081463		<0.20	< 0.20	NA	< 0.20	74%	50%	140%	84%	50%	140%	76%	50%	140%
Dibenz(a,h)anthracene	6081463		<0.20	<0.20	NA	< 0.20	76%	50%	140%	65%	50%	140%	67%	50%	140%
Benzo(g,h,i)perylene	6081463		<0.20	<0.20	NA	< 0.20	86%	50%	140%	100%	50%	140%	78%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jatal

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z189028
PROJECT: 339662.006

ATTENTION TO: Ester Wilson
SAMPLING SITE:Conroy

SAMPLED BY:E. Wilson

OAM LING OITE. Comby		OAMI LED DT.L.							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis									
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Sediment			N/A						
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID						
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
,			BALANCE						
Gravimetric Heavy Hydrocarbons	VOI -91-5010	modified from Mich Per P 3471							
Gravimetric Heavy Hydrocarbons Terphenyl	VOL-91-5010 VOL-91-5010	modified from MOE PHC-E3421 modified from MOE PHC-E3421	GC/FID						

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z189028
PROJECT: 339662.006

ATTENTION TO: Ester Wilson
SAMPLING SITE:Conroy

SAMPLED BY:E. Wilson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z189028
PROJECT: 339662.006

ATTENTION TO: Ester Wilson
SAMPLED BY:E. Wilson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Chain of Custody Record

Have feedback?

Scan here for a quick survey!

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122 webearth.agatlabs.com

Laboratory	Use	Only	
		-	

Work Order #:	747	189078	
			à

Cooler Quantity: (M	e -	no	100	100	CUS
Arrival Temperatures:	19.	0	120	OZ	0.0
Depot Temperatures:	23	.0	23	-2	23-1

Report Information: Company: Pinchin					gulatory Requirements:									Custoc Notes:	ly Seal I	ntact:	□Y	es]No		□N/A
Contact: Address: Phone: Reports to be sent to: 1. Email: E. Wilson Address: Contact: E. Wilson Contact: Address: Contact: E. Wilson Contact: C	Fax:	@om_		Tal	egulation 153/04 Regulation 406 ble folicate One Ind/Com Ind/Com Res/Park Agriculture Agriculture Regulation 558 CCME	-	Prov	Region Wate	r Qua				Re	egula ush 1	AT (Rush 3 Busin Days	Surcha ess	ges Apply)	5 to 7 B 4 2 Busine Days	Busines Do	ss Days	Next Bu Day	sines
Project Information: Project: 339662.006 Site Location: Conroy E. Wilson AGAT Quote #: Please note: If quotation number is	PO: not provided, client will	l be billed full price for	analysis_	0	is submission for a Record of Site Condition (RSC)? Yes T No al Sample	Cer	eport rtifica Yes	te of	Ana		5		_		*TAT is 6 Same D 406	ay' an	alysis, p	ekends	and st	tatutory	h TAT y holiday AGAT CS	
Invoice Information: Company: Contact: Address: Email: Accounts Payar Apo pinchin. Co	ble	Bill To Same: Ye	es 🗌 No 🗔	Sam GW O P	Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg. CrVI,	ও Inorganics	s - □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs			Aroclors	Regulation 406 Characterization Package	ph, metals, blex, rt-r4 EC, SAR	tion 406 SPLP Rainwater Leach : □ Metals □ VOCs □ SVOCs □ OC	Landfill Disposal Characterization TCLP: TCLP: ☐ M&I ☐ VOCs ☐ ABNs ☐ B(a)P ☐ PCBs	□ Mois					ally Hazardous or High Concentratio
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -		200	PAHs	PCBs: /	Regula	EC, SAR	Regulation of mSPLP: □ N	Landfill TCLP:	Corrosivity:					Potentia
1. BH102 - GW 2. 3. 4. 5. 6. 7. 8. 9. 10.	2029-08	AM PN AM AM PN AM AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM AM PN AM AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM AM PN AM PN AM AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM PN AM AM PN AM PN AM AM AM AM AM AM AM AM AM AM AM AM AM		GW	phenols bottle just in case you can Use it.					V												
Samples Relinquished By (Print Name and Sign) Ester Wilson Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign)	low	2024 - 0 Date (196723	Time [-2]	hoo	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):					1	Date Date Date	12:	3/2	6	Time Time	10		Page	e/	of _		

Ocument ID: DW-78-1511.023

CLIENT NAME: PINCHIN LTD.

1 HINES ROAD SUITE 200 KANATA, ON K2K 3C7

(613) 592-3387

ATTENTION TO: Ester Wilson

PROJECT: 339662.006

AGAT WORK ORDER: 24Z179679

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Sep 05, 2024

PAGES (INCLUDING COVER): 14 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes
VERSION 2:V2 issued 2024-09-05. Sample ID updated from BH101-GW to MW101-GW by client request. Supersedes version 1 issued 2024-08-06. (LB)

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V2)

Page 1 of 14

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE: Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Water)

				O. Reg.	55(511) - FARS (Water)
DATE RECEIVED: 2024-07-30)				DATE REPORTED: 2024-09-05
		SAMPLE DES	CRIPTION:	MW101-GW	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2024-07-30 08:00	
Parameter	Unit	G/S	RDL	6041772	
Naphthalene	μg/L	7	0.20	<0.20	
Acenaphthylene	μg/L	1	0.20	<0.20	
Acenaphthene	μg/L	4.1	0.20	<0.20	
Fluorene	μg/L	120	0.20	<0.20	
Phenanthrene	μg/L	0.1	0.10	<0.10	
Anthracene	μg/L	0.1	0.10	<0.10	
Fluoranthene	μg/L	0.4	0.20	<0.20	
Pyrene	μg/L	0.2	0.20	<0.20	
Benzo(a)anthracene	μg/L	0.2	0.20	<0.20	
Chrysene	μg/L	0.1	0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.1	0.10	<0.10	
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	2	0.20	<0.20	
Sediment				1	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-	140	95	
Acridine-d9	%	50-	140	110	
Terphenyl-d14	%	50-	140	75	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6041772

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraberty

SAMPLING SITE: Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

		O. Ne	g. 133(311)	(Water)
DATE RECEIVED: 2024-07-30				DATE REPORTED: 2024-09-05
	S	AMPLE DESCRIF	PTION: MW101	I-GW
		SAMPLE	TYPE: Wate	ner er
		DATE SAM	PLED: 2024-07 08:0	
Parameter	Unit	G/S F	RDL 60417	772
F1 (C6 to C10)	μg/L	420	25 <25	5
F1 (C6 to C10) minus BTEX	μg/L	420	25 <25	5
F2 (C10 to C16)	μg/L	150	100 <100	00
F2 (C10 to C16) minus Naphthalene	μg/L	•	100 <100	00
F3 (C16 to C34)	μg/L	500	100 <100	00
F3 (C16 to C34) minus PAHs	μg/L	•	100 <100	00
F4 (C34 to C50)	μg/L	500	100 <100	00
Gravimetric Heavy Hydrocarbons	μg/L	ŧ	500 NA	4
Sediment			1	
Surrogate	Unit	Acceptable Li	mits	
Toluene-d8	%	50-140	99)
Terphenyl	% Recovery	60-140	101	1

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6041772

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

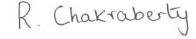
C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.


Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

TEL (905)712-5100

SAMPLING SITE:Conroy Rd

CLIENT NAME: PINCHIN LTD.

SAMPLED BY:

	O. Reg. 153(511) - VOCs (with PHC) (Water)							
DATE RECEIVED: 2024-07-30					DATE REPORTED: 2024-09-05			
	S		CRIPTION: PLE TYPE: SAMPLED:	MW101-GW Water 2024-07-30 08:00				
Parameter	Unit	G/S	RDL	6041772				
Dichlorodifluoromethane	μg/L	590	0.40	<0.40				
Vinyl Chloride	μg/L	0.5	0.17	<0.17				
Bromomethane	μg/L	0.89	0.20	<0.20				
Trichlorofluoromethane	μg/L	150	0.40	<0.40				
Acetone	μg/L	2700	1.0	<1.0				
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30				
Methylene Chloride	μg/L	5	0.30	<0.30				
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20				
Methyl tert-butyl ether	μg/L	15	0.20	<0.20				
1,1-Dichloroethane	μg/L	0.5	0.30	<0.30				
Methyl Ethyl Ketone	μg/L	400	1.0	<1.0				
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20				
Chloroform	μg/L	2	0.20	<0.20				
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20				
1,1,1-Trichloroethane	μg/L	0.5	0.30	< 0.30				
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20				
Benzene	μg/L	0.5	0.20	<0.20				
1,2-Dichloropropane	μg/L	0.5	0.20	<0.20				
Trichloroethylene	μg/L	0.5	0.20	<0.20				
Bromodichloromethane	μg/L	2	0.20	<0.20				
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0				
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20				
Toluene	μg/L	0.8	0.20	<0.20				
Dibromochloromethane	μg/L	2	0.10	<0.10				
Ethylene Dibromide	μg/L	0.2	0.10	<0.10				
Tetrachloroethylene	μg/L	0.5	0.20	<0.20				
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10				
Chlorobenzene	μg/L	0.5	0.10	<0.10				
Ethylbenzene	μg/L	0.5	0.10	<0.10				

Certified By:

R. Chakraberty

SAMPLING SITE: Conroy Rd

Certificate of Analysis

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

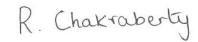
SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Rea	153(511)	- VOCs (with PHC) (Water)
O. Neg.	100(011)	- VOCS (WILLIFILO) (vval c i)

				J (
DATE RECEIVED: 2024-07-30					DATE REPORTED: 2024-09-05
	S	AMPLE DES	CRIPTION:	MW101-GW	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2024-07-30 08:00	
Parameter	Unit	G/S	RDL	6041772	
m & p-Xylene	μg/L		0.20	<0.20	
Bromoform	μg/L	5	0.10	<0.10	
Styrene	μg/L	0.5	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	<0.30	
Xylenes (Total)	μg/L	72	0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-	140	99	
4-Bromofluorobenzene	% Recovery	50-	140	95	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Ground Water - All Types of Property Uses


Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6041772 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLING SITE:Conroy Rd

SAMPLED BY:

Trace Organics Analysis																	
RPT Date: Sep 05, 2024			С	DUPLICATI	E		REFERENCE MATERIAL			METHOD	METHOD BLANK SPIKE		MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Acceptable Measured Limits		Measured Limits		Limite		Acceptable Limits		Recovery		ptable
PANAMETER	Batch	ld	- Βαρ #1	Dup #2	KFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper		
O. Reg. 153(511) - PAHs (Water)	•					•		•			•				•		
Naphthalene	6037910		<0.20	< 0.20	NA	< 0.20	101%	50%	140%	95%	50%	140%	108%	50%	140%		
Acenaphthylene	6037910		<0.20	<0.20	NA	< 0.20	96%	50%	140%	89%	50%	140%	81%	50%	140%		
Acenaphthene	6037910		<0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	91%	50%	140%		
Fluorene	6037910		<0.20	<0.20	NA	< 0.20	89%	50%	140%	95%	50%	140%	91%	50%	140%		
Phenanthrene	6037910		<0.10	<0.10	NA	< 0.10	89%	50%	140%	98%	50%	140%	95%	50%	140%		
Anthracene	6037910		<0.10	<0.10	NA	< 0.10	71%	50%	140%	95%	50%	140%	92%	50%	140%		
Fluoranthene	6037910		<0.20	< 0.20	NA	< 0.20	92%	50%	140%	99%	50%	140%	100%	50%	140%		
Pyrene	6037910		<0.20	< 0.20	NA	< 0.20	91%	50%	140%	99%	50%	140%	100%	50%	140%		
Benzo(a)anthracene	6037910		<0.20	< 0.20	NA	< 0.20	75%	50%	140%	73%	50%	140%	79%	50%	140%		
Chrysene	6037910		<0.10	<0.10	NA	< 0.10	111%	50%	140%	99%	50%	140%	113%	50%	140%		
Benzo(b)fluoranthene	6037910		<0.10	<0.10	NA	< 0.10	71%	50%	140%	102%	50%	140%	86%	50%	140%		
Benzo(k)fluoranthene	6037910		<0.10	<0.10	NA	< 0.10	80%	50%	140%	106%	50%	140%	91%	50%	140%		
Benzo(a)pyrene	6037910		< 0.01	< 0.01	NA	< 0.01	82%	50%	140%	91%	50%	140%	89%	50%	140%		
Indeno(1,2,3-cd)pyrene	6037910		<0.20	< 0.20	NA	< 0.20	83%	50%	140%	85%	50%	140%	88%	50%	140%		
Dibenz(a,h)anthracene	6037910		<0.20	<0.20	NA	< 0.20	74%	50%	140%	97%	50%	140%	92%	50%	140%		
Benzo(g,h,i)perylene	6037910		<0.20	<0.20	NA	< 0.20	98%	50%	140%	88%	50%	140%	108%	50%	140%		
O. Reg. 153(511) - PHCs F1 - F4 (v	vith PAHs a	and VOC)	(Water)														
F1 (C6 to C10)	6041772 6	6041772	<25	<25	NA	< 25	84%	60%	140%	94%	60%	140%	98%	60%	140%		
F2 (C10 to C16)	6031604		< 100	< 100	NA	< 100	114%	60%	140%	68%	60%	140%	83%	60%	140%		
F3 (C16 to C34)	6031604		< 100	< 100	NA	< 100	98%	60%	140%	75%	60%	140%	80%	60%	140%		
F4 (C34 to C50)	6031604		< 100	< 100	NA	< 100	72%	60%	140%	100%	60%	140%	111%	60%	140%		
O. Reg. 153(511) - VOCs (with PH	C) (Water)																
Dichlorodifluoromethane	6041772 6	:041772	<0.40	< 0.40	NA	< 0.40	71%	50%	140%	117%	50%	140%	118%	50%	140%		
Vinyl Chloride	6041772 6		<0.40	<0.40	NA	< 0.40	93%	50%	140%	116%	50%	140%	114%	50%	140%		
Bromomethane	6041772 6		<0.20	<0.20	NA	< 0.20	112%	50%	140%	112%	50%	140%	95%	50%	140%		
Trichlorofluoromethane	6041772 6		<0.40	<0.40	NA	< 0.40	76%	50%	140%	95%	50%	140%	91%	50%	140%		
Acetone	6041772 6		<1.0	<1.0	NA	< 1.0	112%		140%	114%		140%	107%	50%	140%		
1,1-Dichloroethylene	6041772 6	:0/1772	<0.30	<0.30	NA	< 0.30	105%	50%	140%	83%	60%	130%	87%	50%	140%		
Methylene Chloride	6041772 6		<0.30	<0.30	NA	< 0.30	111%		140%	98%	60%	130%	115%	50%	140%		
trans- 1,2-Dichloroethylene	6041772 6		<0.20	<0.20	NA	< 0.20	86%		140%	71%		130%	107%		140%		
Methyl tert-butyl ether	6041772 6		<0.20	<0.20	NA	< 0.20	97%		140%	85%		130%	77%	50%			
1,1-Dichloroethane	6041772 6		<0.30	< 0.30	NA	< 0.20	99%		140%	62%		130%	109%		140%		
Methyl Ethyl Ketone	6041772 6	S041772	<1.0	<1.0	NA	< 1.0	107%	50%	140%	97%	50%	140%	71%	50%	140%		
cis- 1,2-Dichloroethylene	6041772 6		<0.20	<0.20	NA	< 0.20	99%		140%	97 % 87%		130%	110%		140%		
Chloroform	6041772 6		<0.20	<0.20	NA	< 0.20	99%		140%	90%		130%	103%		140%		
1,2-Dichloroethane	6041772 6		<0.20	<0.20	NA	< 0.20	99%		140%	90%		130%	98%		140%		
1,1,1-Trichloroethane	6041772 6		<0.20	<0.20	NA	< 0.20	99% 67%		140%	64%		130%	68%		140%		
Carbon Tetrachloride	6041772 6		<0.20	<0.20	NA	< 0.20	68%	50%	140%	65%		130%	69%		140%		

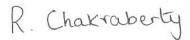
AGAT QUALITY ASSURANCE REPORT (V2)

Page 6 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PINCHIN LTD.


AGAT WORK ORDER: 24Z179679
PROJECT: 339662.006

ATTENTION TO: Ester Wilson
SAMPLING SITE:Conroy Rd

SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Sep 05, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable	Recovery	1 :-	eptable mits	Recovery		eptable
							Value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	6041772	6041772	<0.20	<0.20	NA	< 0.20	106%	50%	140%	89%	60%	130%	97%	50%	140%
1,2-Dichloropropane	6041772	6041772	<0.20	<0.20	NA	< 0.20	82%	50%	140%	77%	60%	130%	86%	50%	140%
Trichloroethylene	6041772	6041772	<0.20	< 0.20	NA	< 0.20	101%	50%	140%	83%	60%	130%	112%	50%	140%
Bromodichloromethane	6041772 6	6041772	<0.20	<0.20	NA	< 0.20	86%	50%	140%	79%	60%	130%	92%	50%	140%
Methyl Isobutyl Ketone	6041772 6	6041772	<1.0	<1.0	NA	< 1.0	95%	50%	140%	92%	50%	140%	90%	50%	140%
1,1,2-Trichloroethane	6041772 6	6041772	<0.20	< 0.20	NA	< 0.20	106%	50%	140%	106%	60%	130%	111%	50%	140%
Toluene	6041772 6	6041772	<0.20	< 0.20	NA	< 0.20	113%	50%	140%	102%	60%	130%	113%	50%	140%
Dibromochloromethane	6041772	6041772	<0.10	<0.10	NA	< 0.10	84%	50%	140%	82%	60%	130%	91%	50%	140%
Ethylene Dibromide	6041772 6	6041772	<0.10	<0.10	NA	< 0.10	100%	50%	140%	95%	60%	130%	104%	50%	140%
Tetrachloroethylene	6041772 6	6041772	<0.20	<0.20	NA	< 0.20	96%	50%	140%	89%	60%	130%	100%	50%	140%
1,1,1,2-Tetrachloroethane	6041772	6041772	<0.10	<0.10	NA	< 0.10	81%	50%	140%	79%	60%	130%	90%	50%	140%
Chlorobenzene	6041772 6	6041772	<0.10	<0.10	NA	< 0.10	107%	50%	140%	98%	60%	130%	108%	50%	140%
Ethylbenzene	6041772 6	6041772	<0.10	<0.10	NA	< 0.10	91%	50%	140%	84%	60%	130%	96%	50%	140%
m & p-Xylene	6041772 6	6041772	<0.20	<0.20	NA	< 0.20	93%	50%	140%	87%	60%	130%	100%	50%	140%
Bromoform	6041772 6	6041772	<0.10	<0.10	NA	< 0.10	92%	50%	140%	91%	60%	130%	97%	50%	140%
Styrene	6041772	6041772	<0.10	<0.10	NA	< 0.10	84%	50%	140%	79%	60%	130%	87%	50%	140%
1,1,2,2-Tetrachloroethane	6041772	6041772	<0.10	<0.10	NA	< 0.10	103%	50%	140%	110%	60%	130%	110%	50%	140%
o-Xylene	6041772	6041772	<0.10	<0.10	NA	< 0.10	108%	50%	140%	100%	60%	130%	113%	50%	140%
1,3-Dichlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	98%	50%	140%	95%	60%	130%	105%	50%	140%
1,4-Dichlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	105%	50%	140%	103%	60%	130%	112%	50%	140%
1,2-Dichlorobenzene	6041772	6041772	<0.10	<0.10	NA	< 0.10	113%	50%	140%	108%	60%	130%	116%	50%	140%
n-Hexane	6041772	6041772	<0.20	< 0.20	NA	< 0.20	88%	50%	140%	90%	60%	130%	73%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Time Markers

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CLIENT NAM	ME: PINCHIN LTD.		- 111001	2011 000	302.000	ATTENTION TO: Ester Wilson	nttp://w
Sample ID	Sample Description	Sample Type	Date Sam	pled [Date Received		
6041772	MW101-GW	Water	30-JUL-2	024	30-JUL-2024		
	O. Reg. 153(511) - PAHs (Water)						
	Parameter	Date Pre	oared Da	te Analyzed	Initials		
	Naphthalene	06-AUG-		-AUG-2024	NP		
	Acenaphthylene	06-AUG-		6-AUG-2024	NP		
	Acenaphthene	06-AUG-	2024 06	6-AUG-2024	NP		
	Fluorene	06-AUG-	2024 06	S-AUG-2024	NP		
	Phenanthrene	06-AUG-	2024 06	S-AUG-2024	NP		
	Anthracene	06-AUG-	2024 06	S-AUG-2024	NP		
	Fluoranthene	06-AUG-	2024 06	S-AUG-2024	NP		
	Pyrene	06-AUG-	2024 06	S-AUG-2024	NP		
	Benzo(a)anthracene	06-AUG-	2024 06	6-AUG-2024	NP		
	Chrysene	06-AUG-	2024 06	6-AUG-2024	NP		
	Benzo(b)fluoranthene	06-AUG-	2024 06	6-AUG-2024	NP		
	Benzo(k)fluoranthene	06-AUG-	2024 06	6-AUG-2024	NP		
	Benzo(a)pyrene	06-AUG-	2024 06	-AUG-2024	NP		
	Indeno(1,2,3-cd)pyrene	06-AUG-	2024 06	6-AUG-2024	NP		
	Dibenz(a,h)anthracene	06-AUG-	2024 06	6-AUG-2024	NP		
	Benzo(g,h,i)perylene	06-AUG-	2024 06	6-AUG-2024	NP		
	2-and 1-methyl Napthalene	06-AUG-	2024 06	-AUG-2024	SYS		
	Naphthalene-d8	06-AUG-	2024 06	6-AUG-2024	NP		
	Acridine-d9	06-AUG-	2024 06	6-AUG-2024	NP		
	Terphenyl-d14	06-AUG-	2024 06	6-AUG-2024	NP		
	Sediment	01-AUG-	2024 01	-AUG-2024	NH		
	O. Reg. 153(511) - PHCs F1 - F4 (with PA	Hs and VOC) (Water)					
	Parameter	Date Pre	pared Da	te Analyzed	Initials		
	F1 (C6 to C10)	01-AUG-	2024 01	-AUG-2024	MK		
	F1 (C6 to C10) minus BTEX	01-AUG-		-AUG-2024	SYS		
	Toluene-d8	01-AUG-	2024 01	-AUG-2024	MK		
	F2 (C10 to C16)	01-AUG-	2024 01	-AUG-2024	SS		
	F2 (C10 to C16) minus Naphthalene	06-AUG-	2024 06	6-AUG-2024	SYS		
	F3 (C16 to C34)	01-AUG-	2024 01	-AUG-2024	SS		
	F3 (C16 to C34) minus PAHs	06-AUG-	2024 06	6-AUG-2024	SYS		
	F4 (C34 to C50)	01-AUG-	2024 01	-AUG-2024	SS		
	Gravimetric Heavy Hydrocarbons						
	Terphenyl	01-AUG-	2024 01	-AUG-2024	SS		
	Sediment	01-AUG-	2024 01	-AUG-2024	NH		
	O. Reg. 153(511) - VOCs (with PHC) (Wat	er)					
	_						

Parameter

Dichlorodifluoromethane

Initials

MK

Date Analyzed

01-AUG-2024

Date Prepared

01-AUG-2024

Time Markers

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6041772	MW101-GW	Water	30-JUL-2024	30-JUL-2024

Parameter	Date Prepared	Date Analyzed	Initials
Vinyl Chloride	01-AUG-2024	01-AUG-2024	MK
Bromomethane	01-AUG-2024	01-AUG-2024	MK
Trichlorofluoromethane	01-AUG-2024	01-AUG-2024	MK
Acetone	01-AUG-2024	01-AUG-2024	MK
1,1-Dichloroethylene	01-AUG-2024	01-AUG-2024	MK
Methylene Chloride	01-AUG-2024	01-AUG-2024	MK
trans- 1,2-Dichloroethylene	01-AUG-2024	01-AUG-2024	MK
Methyl tert-butyl ether	01-AUG-2024	01-AUG-2024	MK
1,1-Dichloroethane	01-AUG-2024	01-AUG-2024	MK
Methyl Ethyl Ketone	01-AUG-2024	01-AUG-2024	MK
cis- 1,2-Dichloroethylene	01-AUG-2024	01-AUG-2024	MK
Chloroform	01-AUG-2024	01-AUG-2024	MK
1,2-Dichloroethane	01-AUG-2024	01-AUG-2024	MK
1,1,1-Trichloroethane	01-AUG-2024	01-AUG-2024	MK
Carbon Tetrachloride	01-AUG-2024	01-AUG-2024	MK
Benzene	01-AUG-2024	01-AUG-2024	MK
1,2-Dichloropropane	01-AUG-2024	01-AUG-2024	MK
Trichloroethylene	01-AUG-2024	01-AUG-2024	MK
Bromodichloromethane	01-AUG-2024	01-AUG-2024	MK
Methyl Isobutyl Ketone	01-AUG-2024	01-AUG-2024	MK
1,1,2-Trichloroethane	01-AUG-2024	01-AUG-2024	MK
Toluene	01-AUG-2024	01-AUG-2024	MK
Dibromochloromethane	01-AUG-2024	01-AUG-2024	MK
Ethylene Dibromide	01-AUG-2024	01-AUG-2024	MK
Tetrachloroethylene	01-AUG-2024	01-AUG-2024	MK
1,1,1,2-Tetrachloroethane	01-AUG-2024	01-AUG-2024	MK
Chlorobenzene	01-AUG-2024	01-AUG-2024	MK
Ethylbenzene	01-AUG-2024	01-AUG-2024	MK
m & p-Xylene	01-AUG-2024	01-AUG-2024	MK
Bromoform	01-AUG-2024	01-AUG-2024	MK
Styrene	01-AUG-2024	01-AUG-2024	MK
1,1,2,2-Tetrachloroethane	01-AUG-2024	01-AUG-2024	MK
o-Xylene	01-AUG-2024	01-AUG-2024	MK
1,3-Dichlorobenzene	01-AUG-2024	01-AUG-2024	MK
1,4-Dichlorobenzene	01-AUG-2024	01-AUG-2024	MK
1,2-Dichlorobenzene	01-AUG-2024	01-AUG-2024	MK
1,3-Dichloropropene	01-AUG-2024	01-AUG-2024	SYS
Xylenes (Total)	01-AUG-2024	01-AUG-2024	SYS
n-Hexane	01-AUG-2024	01-AUG-2024	MK

Time Markers

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: PINCHIN LTD. ATTENTION TO: Ester Wilson

Sample ID	Sample Description	Sample Type	Date Sampled	Date Received
6041772	MW101-GW	Water	30-JUL-2024	30-JUL-2024

O. Reg. 153(511) - VOCs (with PHC) (Water)

Parameter	Date Prepared	Date Analyzed	Initials
Toluene-d8	01-AUG-2024	01-AUG-2024	MK
4-Bromofluorobenzene	01-AUG-2024	01-AUG-2024	MK

Method Summary

CLIENT NAME: PINCHIN LTD.

AGAT WORK ORDER: 24Z179679

PROJECT: 339662.006

ATTENTION TO: Ester Wilson

SAMPLING SITE:Conroy Rd

SAMPLED BY:

SAMPLING SITE: Conroy Rd		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·		
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy Rd

AGAT WORK ORDER: 24Z179679

ATTENTION TO: Ester Wilson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: PINCHIN LTD.

PROJECT: 339662.006

SAMPLING SITE:Conroy Rd

AGAT WORK ORDER: 24Z179679

ATTENTION TO: Ester Wilson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

webearth agatlabs com

Laboratory Use Only

Cooler Quantity: CMQ - NO 10

Chain of Custody Reco	If this is a	Drinking Water s	sample, plea	se use Drin	king Water Chain o	of Custody Form (potat	ole water	consum	ed by hi	umans						ratures ratures	20	:6	20.		0.6
Report Information: Company: Pinchin Contact: E. Wilson Address: 1-Hines Rd Kanata, on Phone: Fax: Reports to be sent to: 1. Email: ewilson 2. Email: mwitteman Project Information: Project: 339(662.006 Site Location: Conroy Rd. Sampled By: AGAT Quote #: Please note: If quotation number is not provided, client will be billed full price for analysis.			Regulatory Requirements: (Please check all applicable boxes)							11	ustod lotes:	ly Seal	Intact:		lYes	T]No	□N/A			
		_ Ta	Regulation 153/04 Regulation 406 Table Table Indicate One			Sewer Use Sanitary Storm					Turnaround Time (TAT) Required:										
		Soil T	Ind/Com Res/Park Agriculture exture (Check One) Coarse Fine	☐ Ind/Com ☐ Res/Park ☐ Agriculture ☐ Regulation 558 ☐ CCME	Prov. Water Quality Objectives (PWQO)					Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Bus Days Days								-			
		- 0	Is this submission for a Record of Site Condition (RSC)? Yes No			Report Guideline on Certificate of Analysis Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR										
		Leg	Legal Sample			O. Reg 153						Reg		0. Rep					(N/N)		
Invoice Information: Company: Contact: Address: Email: Accounts Pay AP@ pinchin	rable	ill To Same: Ye	s • No 🗆	San GW O P	Ground Water SOII SOII	Sediment Surface Water	Field Filtered - Metals, Hg. CrVI, DOC	& Inorganics	s - □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs		PCBs: Aroclors			tion 406 SPLP Rainwater Leach ☐ Metals ☐ VOCs ☐ SVOCs ☐ OC	Disposal Characteriza	Corrosivity: Moisture Sulphide				Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals -	втех,	VOC	PCBs:	Regula nH Me	EC, SAR	Regulation mSPLP: □ N	Landfill To P. T	Corros				Potentia
1. BHIOI-GW	July 30	8.00 PM		GW						~	V 1										
2. 3.		AM PM AM PM										+		-			+		-		
4.		PM AM PM										+				-					
5.		AM PM					-				-	+		-			+ +		+		
6,		AM PM									+			-					-		
7.		AM PM					-				-	+				-					
8.		AM PM									-				-		1-1		-		
9.		AM					1-1-1	-													
10.		AM PM									+	+		+	- 0				-	_	
11		AM PM																			
Ester WISON Estruel Stoppes Relinquaried By (Print Name and Sign): Ester WISON Estruel Stoppes Relinquaried By (Print Name and Sign):	ook	30/07/2	7 Time	8:37A	Sample Received By IF	Print Name and Sign):	2				C	Date	30/2	200	ime US Y	38		Page		of	