Prefab wall analysis

Input data (Stage of construction 1)

Project: 1386 & 1394 Greely Lane, Ottawa, ON

Customer: Permacon
Date: 6/18/2025
Project number: PG7563

Settings

CHBDC

Materials and standards

Concrete structures: CSA A23.3-14

Wall analysis

Verification methodology: according to LRFD

Active earth pressure calculation: Coulomb

Passive earth pressure calculation: Mazindrani (Rankine)
Earthquake analysis: Mononobe-Okabe
Shape of earth wedge: Calculate as skew

Allowable eccentricity: 0.333

Load factors								
Design situation - Strength I								
		Minin	num	Maxir	num			
Dead load of structural components :	DC =	0.95	[-]	1.10	[-]			
Dead load of wearing surfaces:	DW =	0.65	[-]	1.50	[-]			
Earth pressure - active :	EH _A =	0.80	[-]	1.25	[-]			
Earth pressure - at rest :	EH _R =	0.80	[-]	1.25	[-]			
Earth surcharge load (permanent):	ES =	0.80	[-]	1.25	[-]			
Vertical pressure of earth fill :	EV =	1.00	[-]	1.35	[-]			
Live load surcharge :	LL =	1.70	[-]	1.70	[-]			
Water load :	WA =	0.90	[-]	1.10	[-]			

Resistance factors							
Design situation - Strength I							
Resistance factor on overturning :	φ ₀ =	0.55	[–]				
Resistance factor on sliding :	φ _t =	0.90	[–]				
Resistance factor on bearing capacity:	φ _b =	1.00	[–]				
Resistance factor on passive pressure :	φ _{VE} =	0.50	[-]				

Load factors Design situation - Service I							
		Minin	Minimum Maximum				
Dead load of structural components :	DC =	1.00	[-]	1.00	[-]		
Dead load of wearing surfaces :	DW =	1.00	[-]	1.00	[-]		
Earth pressure - active :	EH _A =	1.00	[-]	1.00	[-]		
Earth pressure - at rest :	EH _R =	1.00	[-]	1.00	[-]		
Earth surcharge load (permanent) :	ES =	1.00	[-]	1.00	[-]		

Load factors						
Design situation - Service I						
Vertical pressure of earth fill:	EV =	1.00	[-]	1.00 [–]		
Live load surcharge :	LL =	0.90	[-]	0.90 [–]		
Water load :	WA =	1.00	[-]	1.00 [–]		

Resistance factors							
Design situation - Service I							
Resistance factor on overturning :	φ _o =	1.00	[-]				
Resistance factor on sliding :	φ _t =	1.00	[-]				
Resistance factor on bearing capacity:	φ _b =	1.00	[-]				
Resistance factor on passive pressure :	φ _{VE} =	1.00	[-]				

Load factors							
Design situation - Extreme I							
		Minin	num	Maximum			
Dead load of structural components :	DC =	0.80	[-]	1.25 [–]			
Dead load of wearing surfaces :	DW =	0.80	[-]	1.25 [–]			
Earth pressure - active :	EH _A =	0.90	[-]	1.50 [–]			
Earth pressure - at rest :	EH _R =	0.90	[-]	1.35 [–]			
Earth surcharge load (permanent) :	ES =	0.80	[-]	1.25 [–]			
Vertical pressure of earth fill :	EV =	1.00	[-]	1.35 [–]			
Live load surcharge :	LL =	0.00	[-]	0.00 [–]			
Water load :	WA =	1.00	[-]	1.00 [-]			

Resistance factors							
Design situation - Extreme I							
Resistance factor on overturning :	φ _o =	1.00	[-]				
Resistance factor on sliding :	φ _t =	1.00	[-]				
Resistance factor on bearing capacity:	φ _b =	1.00	[-]				
Resistance factor on passive pressure :	φ _{VE} =	1.00	[-]				

Geometry of structure

Slope of wall = 0.00 °

No.	Block width	Block height	Offset	Offs.(L)	Offs.(R)	Merge	Unit weight	Block friction	Cohesion	Shear bo	
	w [m]	h [m]	k [m]	o ₁ [m]	o ₂ [m]		[kN/m ³]	[-]	[kPa]	F _{min}	F _{max}
9	0.44	0.20	-0.050	0.000	0.000	No	22.00	0.533	0.00	0.00	-
8	0.38	0.20	0.000	0.000	0.000	No	22.00	0.533	0.00	0.00	-
7	0.75	0.20	0.063	0.000	0.000	No	22.00	0.533	0.00	0.00	-
6	0.38	0.20	0.000	0.000	0.000	No	22.00	0.533	0.00	0.00	-
5	0.38	0.20	0.063	0.000	0.000	No	22.00	0.533	0.00	0.00	-
4	0.38	0.20	0.000	0.000	0.000	No	22.00	0.533	0.00	0.00	-
3	0.75	0.20	0.063	0.000	0.000	No	22.00	0.533	0.00	0.00	-
2	0.75	0.20	0.000	0.000	0.000	No	22.00	0.533	0.00	0.00	-
1	0.75	0.20	-	0.000	0.000	-	22.00	-	-	-	-

Note: Blocks are ordered from bottom to the top

Basic soil parameters

No.	Name	Pattern	Φ _{ef} [°]	c _{ef} [kPa]	γ [kN/m³]	γ _{su} [kN/m³]	δ [°]
1	Granular B		38.00	0.00	22.00	12.00	26.00
2	Engineered Fill		38.00	0.00	22.00	12.00	26.00
3	native soil		30.00	0.00	19.00	9.00	20.00

All soils are considered as cohesionless for at rest pressure analysis.

Soil parameters

Granular B

Unit weight : $\gamma = 22.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state:} & \text{effective} \\ \text{Angle of internal friction:} & \phi_{ef} = 38.00\,^{\circ} \\ \text{Cohesion of soil:} & c_{ef} = 0.00\,\text{kPa} \\ \text{Angle of friction struc.-soil:} & \delta = 26.00\,^{\circ} \\ \text{Soil:} & \text{cohesionless} \end{array}$

Saturated unit weight : $\gamma_{sat} = 22.00 \text{ kN/m}^3$

Engineered Fill

Unit weight : $\gamma = 22.00 \text{ kN/m}^3$

Stress-state: effective

Angle of internal friction : $\phi_{ef} = 38.00 \,^{\circ}$ Cohesion of soil : $c_{ef} = 0.00 \, \text{kPa}$ Angle of friction struc.-soil : $\delta = 26.00 \,^{\circ}$ Soil : cohesionless

Saturated unit weight : $\gamma_{sat} = 22.00 \text{ kN/m}^3$

native soil

Unit weight: $\gamma = 19.00 \text{ kN/m}^3$

 $\begin{array}{lll} \text{Stress-state:} & \text{effective} \\ \text{Angle of internal friction:} & \phi_{ef} = 30.00 \, ^{\circ} \\ \text{Cohesion of soil:} & c_{ef} = 0.00 \, \text{kPa} \\ \text{Angle of friction struc.-soil:} & \delta = 20.00 \, ^{\circ} \\ \text{Soil:} & \text{cohesionless} \end{array}$

Saturated unit weight : $\gamma_{sat} = 19.00 \text{ kN/m}^3$

Backfill

Assigned soil: Granular B

Slope = 45.00 °

Geological profile and assigned soils

No.	Thickness of layer t [m]	Depth z [m]	Assigned soil	Pattern
1	1.00	0.00 1.00	Engineered Fill	
2	-	1.00 ∞	native soil	/ / / / /

Foundation

Type of foundation : strip foundation Soil of foundation - Granular B

Geometry

Foundation thickness h = 0.20 mOffset left $b_l = 0.20 \text{ m}$ Offset right $b_p = 0.20 \text{ m}$

Terrain profile

Terrain behind the structure is flat.

Water influence

Ground water table is located below the structure.

Input surface surcharges

No.	Surcharge		Action	Mag.1	Mag.2	Ord.x	Length	Depth
NO.	new	change	Action	[kN/m ²]	[kN/m ²]	x [m]	l [m]	z [m]
1	Yes		variable	12.00		0.50	10.00	on terrain

No.	Name
1	Live Load

Resistance on front face of the structure

Resistance on front face of the structure: at rest Soil on front face of the structure - Engineered Fill

Soil thickness in front of structure h = 0.25 m

Terrain in front of structure is flat.

Earthquake

Factor of horizontal acceleration $K_h = 0.2015$ Factor of vertical acceleration $K_v = 0.0000$

Water below the GWT is restricted.

Global settings

Settings of the stage of construction

Design situation: Extreme I

The wall is free to move. Active earth pressure is therefore assumed.

Reduction of soil/soil friction angle : do not reduce Verification No. 1 (Stage of construction 1)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-0.81	21.78	0.39	0.800	0.800	1.250
Earthq constr.	4.39	-0.81	0.00	0.39	1.000	1.000	1.000
FF resistance	-0.26	-0.08	0.00	0.00	0.900	0.900	1.350
Weight - earth wedge	0.00	-0.80	2.44	0.59	1.000	1.000	1.350
Earthquake - soil wedge	0.49	-0.80	0.00	0.59	1.000	1.000	1.000
Weight - earth wedge	0.00	-1.57	2.35	0.71	1.000	1.000	1.350
Earthquake - soil wedge	0.47	-1.57	0.00	0.71	1.000	1.000	1.000
Active pressure	7.54	-0.63	8.74	1.09	0.900	1.500	1.500
Earthq act.pressure	5.00	-1.21	8.44	0.95	1.000	1.000	1.000
Live Load	2.75	-0.69	2.68	1.08	0.000	0.000	0.000

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 26.61 \text{ kNm/m}$ Overturning moment $M_{ovr} = 14.98 \text{ kNm/m}$

Capacity demand ratio CDR = 1.78
Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 34.20 \text{ kN/m}$ Active horizontal force $H_{act} = 21.43 \text{ kN/m}$

Capacity demand ratio CDR = 1.60 Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY

Maximum stress in footing bottom: 78.33 kPa

Bearing capacity of foundation soil (Stage of construction 1)

Design load acting at the center of footing bottom

	No.	Moment	Norm. force	Shear Force	Eccentricity	Stress
		[kNm/m]	[kN/m]	[kN/m]	[-]	[kPa]
	1	1.23	55.26	21.31	0.030	78.33
	2	2.82	38.53	21.43	0.098	63.84

Service load acting at the center of footing bottom

No.	Moment	Norm. force	Shear Force
	[kNm/m]	[kN/m]	[kN/m]
1	2.60	46.44	20.38

Verification of foundation soil

Stress in the footing bottom: rectangle

Eccentricity verification

Max. eccentricity of normal force e = 0.098Maximum allowable eccentricity $e_{alw} = 0.333$

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

Max. stress at footing bottom $\sigma = 78.33 \text{ kPa}$ Allowable bearing capacity of foundation soil R_d = 150.00 kPa Capacity demand ratio CDR = 1.91

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Dimensioning No. 1 (Stage of construction 1)

Forces acting on construction

Name	F _{hor}	App.Pt. z [m]	F _{vert} [kN/m]	App.Pt. x [m]	Coeff. overtur.	Coeff. sliding	Coeff. stress
Weight - wall	0.00	-0.10	1.94	0.17	0.800	0.800	1.250
Earthq constr.	0.39	-0.10	0.00	0.17	1.000	1.000	1.000

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Active pressure	0.09	-0.07	0.04	0.39	0.900	1.500	1.500
Earthq act.pressure	0.05	-0.13	0.03	0.39	1.000	1.000	1.000
Live Load	0.00	-0.20	0.00	0.39	0.000	0.000	0.000

Verification of construction joint above the block No.: 8

Check for overturning stability

Resisting moment $M_{res} = 0.29 \text{ kNm/m}$ Overturning moment $M_{ovr} = 0.05 \text{ kNm/m}$

Capacity demand ratio CDR = 5.63

Joint for overturning stability is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 0.87 \text{ kN/m}$ Active horizontal force $H_{act} = 0.57 \text{ kN/m}$

Capacity demand ratio CDR = 1.53

Joint for slip is SATISFACTORY

Input data (Stage of construction 2)

Geological profile and assigned soils

No.	Thickness of layer t [m]	Depth z [m]	Assigned soil	Pattern
1	1.00	0.00 1.00	Engineered Fill	
2	-	1.00 ∞	native soil	/ / .

Foundation

Type of foundation : strip foundation Soil of foundation - Granular B

Geometry

Foundation thickness h = 0.20 mOffset left $b_l = 0.20 \text{ m}$ Offset right $b_p = 0.20 \text{ m}$

Terrain profile

Terrain behind the structure is flat.

Water influence

Ground water table is located below the structure.

Input surface surcharges

No.	Surc	harge	Action	Mag.1	Mag.2	Ord.x	Length	Depth
	new	change	Action	[kN/m ²]	[kN/m ²]	x [m]	l [m]	z [m]
1	No	No	variable	12.00		0.50	10.00	on terrain
No.	Name							
1	Live Load							

Resistance on front face of the structure

Resistance on front face of the structure: at rest

Soil on front face of the structure - Engineered Fill

Soil thickness in front of structure

h = 0.25 m

Terrain in front of structure is flat.

Earthquake

Factor of horizontal acceleration $K_h = 0.0000$ Factor of vertical acceleration $K_v = 0.0000$

Water below the GWT is restricted.

Settings of the stage of construction

Design situation: Strength I

The wall is free to move. Active earth pressure is therefore assumed.

Reduction of soil/soil friction angle : do not reduce **Verification No. 1 (Stage of construction 2)**

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-0.81	21.78	0.39	0.950	0.950	1.100
Earthq constr.	0.00	-0.81	0.00	0.39	1.000	1.000	1.000
FF resistance	-0.26	-0.08	0.00	0.00	0.800	0.800	1.250
Weight - earth wedge	0.00	-0.80	2.44	0.59	1.000	1.000	1.350
Earthquake - soil wedge	0.00	-0.80	0.00	0.59	1.000	1.000	1.000
Weight - earth wedge	0.00	-1.57	2.35	0.71	1.000	1.000	1.350
Earthquake - soil wedge	0.00	-1.57	0.00	0.71	1.000	1.000	1.000
Active pressure	7.54	-0.63	8.74	1.09	0.800	1.250	1.250
Earthq act.pressure	0.00	-1.80	0.00	0.74	1.000	1.000	1.000
Live Load	2.75	-0.69	2.68	1.08	1.700	1.700	1.700

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 13.10 \text{ kNm/m}$ Overturning moment $M_{ovr} = 7.00 \text{ kNm/m}$

Capacity demand ratio CDR = 1.87
Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 28.81 \text{ kN/m}$ Active horizontal force $H_{act} = 13.88 \text{ kN/m}$

Capacity demand ratio CDR = 2.08 Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY

Maximum stress in footing bottom: 61.22 kPa

Bearing capacity of foundation soil (Stage of construction 2)

Design load acting at the center of footing bottom

No.	Moment [kNm/m]			Eccentricity [–]	Stress [kPa]
1	-4.17	45.91	13.76	0.000	61.22

No.	Moment [kNm/m]	Norm. force [kN/m]	Shear Force [kN/m]	Eccentricity [-]	Stress [kPa]
2	-2.93	37.03	13.88	0.000	49.38

Service load acting at the center of footing bottom

No	Moment	Norm. force	Shear Force	
No.	[kNm/m]	[kN/m]	[kN/m]	
1	-3.29	38.00	10.02	

Verification of foundation soil

Stress in the footing bottom: rectangle

Eccentricity verification

Max. eccentricity of normal force e = 0.000Maximum allowable eccentricity $e_{alw} = 0.333$

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

Max. stress at footing bottom $\sigma = 61.22 \text{ kPa}$ Allowable bearing capacity of foundation soil $R_d = 150.00 \text{ kPa}$ Capacity demand ratio CDR = 2.45

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Dimensioning No. 1 (Stage of construction 2)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-0.10	1.94	0.17	0.950	0.950	1.100
Earthq constr.	0.00	-0.10	0.00	0.17	1.000	1.000	1.000
Active pressure	0.09	-0.07	0.04	0.39	0.800	1.250	1.250
Earthq act.pressure	0.00	-0.20	0.00	0.39	1.000	1.000	1.000
Live Load	0.00	-0.20	0.00	0.39	1.700	1.700	1.700

Verification of construction joint above the block No.: 8

Check for overturning stability

Resisting moment $M_{res} = 0.18 \text{ kNm/m}$ Overturning moment $M_{ovr} = 0.00 \text{ kNm/m}$

Capacity demand ratio CDR = 39.16

Joint for overturning stability is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 0.91 \text{ kN/m}$ Active horizontal force $H_{act} = 0.11 \text{ kN/m}$

Capacity demand ratio CDR = 8.46

Joint for slip is SATISFACTORY

Input data (Stage of construction 3)

Geological profile and assigned soils

No	t [m]	Depth z [m]	Assigned soil	Pattern
1	1.00	0.00 1.00	Engineered Fill	
2	-	1.00 ∞	native soil	/ / / / /

Foundation

Type of foundation : strip foundation Soil of foundation - Granular B

Geometry

Foundation thickness h = 0.20 m Offset left b_1 = 0.20 m Offset right b_p = 0.20 m

Terrain profile

Terrain behind the structure is flat.

Water influence

Ground water table is located below the structure.

Input surface surcharges

No.	Surc	harge	Action	Mag.1	Mag.2	Ord.x	Length	Depth
NO.	new	change	ACTOR	[kN/m ²]	[kN/m ²]	x [m]	l [m]	z [m]
1	No	No	variable	12.00		0.50	10.00	on terrain

No.	Name
1	Live Load

Resistance on front face of the structure

Resistance on front face of the structure: at rest Soil on front face of the structure - Engineered Fill

Soil thickness in front of structure h = 0.25 m

Terrain in front of structure is flat.

Earthquake

Factor of horizontal acceleration $K_h = 0.0000$ Factor of vertical acceleration $K_V = 0.0000$

Water below the GWT is restricted.

Settings of the stage of construction

Design situation: Service I

The wall is free to move. Active earth pressure is therefore assumed.

Reduction of soil/soil friction angle : do not reduce **Verification No. 1 (Stage of construction 3)**

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-0.81	21.78	0.39	1.000	1.000	1.000
Earthq constr.	0.00	-0.81	0.00	0.39	1.000	1.000	1.000

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
FF resistance	-0.26	-0.08	0.00	0.00	1.000	1.000	1.000
Weight - earth wedge	0.00	-0.80	2.44	0.59	1.000	1.000	1.000
Earthquake - soil wedge	0.00	-0.80	0.00	0.59	1.000	1.000	1.000
Weight - earth wedge	0.00	-1.57	2.35	0.71	1.000	1.000	1.000
Earthquake - soil wedge	0.00	-1.57	0.00	0.71	1.000	1.000	1.000
Active pressure	7.54	-0.63	8.74	1.09	1.000	1.000	1.000
Earthq act.pressure	0.00	-1.80	0.00	0.74	1.000	1.000	1.000
Live Load	2.75	-0.69	2.68	1.08	0.900	0.900	0.900

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 23.85 \text{ kNm/m}$ Overturning moment $M_{ovr} = 6.42 \text{ kNm/m}$

Capacity demand ratio CDR = 3.72
Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 29.48 \text{ kN/m}$ Active horizontal force $H_{act} = 9.75 \text{ kN/m}$

Capacity demand ratio CDR = 3.02 Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY

Maximum stress in footing bottom: 50.31 kPa

Bearing capacity of foundation soil (Stage of construction 3)

Design load acting at the center of footing bottom

No.	Moment [kNm/m]	Norm. force [kN/m]	Shear Force [kN/m]	Eccentricity [–]	Stress [kPa]	
1	-3.29	37.73	9.75	0.000	50.31	

Service load acting at the center of footing bottom

No.	Moment	Norm. force	Shear Force
NO.	[kNm/m]	[kN/m]	[kN/m]
1	-3.29	38.00	10.02

Verification of foundation soil

Stress in the footing bottom: rectangle

Eccentricity verification

Max. eccentricity of normal force e = 0.000Maximum allowable eccentricity $e_{alw} = 0.333$

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

Max. stress at footing bottom $\sigma = 50.31 \text{ kPa}$ Allowable bearing capacity of foundation soil $R_d = 150.00 \text{ kPa}$ Capacity demand ratio

CDR = 2.98

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Dimensioning No. 1 (Stage of construction 3)

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[kN/m]	z [m]	[kN/m]	x [m]	overtur.	sliding	stress
Weight - wall	0.00	-0.63	11.88	0.33	1.000	1.000	1.000
Earthq constr.	0.00	-0.63	0.00	0.33	1.000	1.000	1.000
Weight - earth wedge	0.00	-0.97	2.35	0.65	1.000	1.000	1.000
Earthquake - soil wedge	0.00	-0.97	0.00	0.65	1.000	1.000	1.000
Active pressure	3.16	-0.41	2.20	0.61	1.000	1.000	1.000
Earthq act.pressure	0.00	-1.20	0.00	0.68	1.000	1.000	1.000
Live Load	2.05	-0.44	1.25	0.61	0.900	0.900	0.900

Verification of construction joint above the block No.: 3

Check for overturning stability

Resisting moment $M_{res} = 7.47 \text{ kNm/m}$ Overturning moment $M_{ovr} = 2.11 \text{ kNm/m}$

Capacity demand ratio CDR = 3.54

Joint for overturning stability is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 9.36 \text{ kN/m}$ Active horizontal force $H_{act} = 5.01 \text{ kN/m}$

Capacity demand ratio CDR = 1.87

Joint for slip is SATISFACTORY