




July 25, 2025

# **Table of Contents**

| 1.0 | Introduction                                              | 1  |
|-----|-----------------------------------------------------------|----|
| 1.1 | Site Description                                          | 1  |
| 2.0 | Physical Setting                                          | 3  |
| 2.1 | Topography and Drainage                                   |    |
| 2.2 | Physiography                                              |    |
| 2.3 | Overburden Geology                                        | 3  |
| 2.4 | Bedrock Geology                                           | 4  |
| 2.5 | Vulnerable and Regulated Areas                            | 4  |
| 3.0 | Subsurface Investigation                                  | 6  |
| 3.1 | Borehole Logs                                             | 6  |
| 3.2 | Physical Laboratory Testing                               | g  |
| 4.0 | Hydrogeological Assessment                                | 10 |
| 4.1 | MECP Well Records Assessment                              | 10 |
| 4.2 | Door-to-Door Well Survey                                  | 11 |
| 4.3 | Groundwater Quality                                       | 11 |
| 4.4 | Single Well Hydraulic Tests                               | 14 |
| 5.0 | Dewatering Assessment                                     | 16 |
| 5.1 | Excavation Design Parameters                              | 16 |
| 5.2 | Estimated Dewatering Rate – Construction Phase            | 16 |
| 5.3 | Estimated Dewatering Rate – Operational Phase             | 18 |
| 5.4 | Assessment of Required Regulatory Permits or Registration | 19 |
| 6.0 | Water Supply Assessment                                   | 21 |
| 6.1 | Test Well Installation and Inspection                     | 21 |
| 6.2 | Hydraulic Pumping Test                                    | 21 |
| 6.3 | Aquifer Parameter Analysis                                | 23 |
| 6.4 | Groundwater Quality Analysis                              | 23 |



July 25, 2025

| 7.0     | Water Balance Assessment                                              | 26 |
|---------|-----------------------------------------------------------------------|----|
| 7.1     | Water Budget and Total Water Surplus                                  | 27 |
| 7.2     | Annual Infiltration and Runoff                                        | 28 |
| 7.3     | Pre-Development Water Balance                                         | 29 |
| 7.4     | Post-Development Water Balance                                        | 29 |
| 7.5     | Water Balance Comparison                                              | 30 |
| 7.6     | Required Infiltration from Roof Runoff                                | 30 |
| 7.7     | Water Balance Assessment Summary                                      | 31 |
| 8.0     | Wastewater Assessment                                                 | 32 |
| 8.1     | Conceptual Wastewater Design                                          | 32 |
| 8.1.1   | Concept Design Details                                                | 32 |
| 8.1.2   | Treatment Unit                                                        | 32 |
| 8.1.3   | Leaching Bed                                                          | 32 |
| 8.2     | Septic System Impact Assessment                                       | 33 |
| 8.3     | Step One: Lot Size Consideration                                      | 34 |
| 8.4     | Step Two: System Isolation Considerations                             | 34 |
| 8.4.1   | Step Three: Assessment of Nitrate Loading and Contaminant Attenuation | 34 |
| 8.4.2   | Estimate of Nitrate Concentrations at Lot Boundaries                  | 35 |
| 9.0     | Conclusions and Recommendations                                       | 36 |
| 9.1     | Construction Dewatering                                               | 36 |
| 9.2     | Private Servicing                                                     | 37 |
| 10.0    | Closing                                                               | 40 |
| 11.0    | References                                                            | 41 |
| 12.0    | Standard Limitations                                                  | 43 |
| List of | Embedded Tables                                                       |    |
| Table 1 | Summary of Measured Water Levels                                      | 8  |
| Table 2 | Monitoring Well Construction Details                                  | 9  |



Cambium Reference: 17281-002 July 25, 2025

| Table 3  | Grain Size Distribution Analysis Results                    | 9  |
|----------|-------------------------------------------------------------|----|
| Table 4  | MECP Water Well Information Summary                         | 10 |
| Table 5  | Summary of Results Exceeding PWQO Criteria                  | 12 |
| Table 6  | Summary of Results Exceeding Storm Sewer By-law Criteria    | 13 |
| Table 7  | Summary of Results Exceeding Sanitary Sewer By-law Criteria | 13 |
| Table 8  | Hydraulic Conductivity Estimates derived via SWHTs          | 15 |
| Table 9  | Calculated Construction Dewatering Rates                    | 17 |
| Table 10 | Calculated Permanent Dewatering Rate                        |    |
| Table 11 | Pumping Test Field Parameter Measurements                   | 24 |
| Table 12 | Summary of Results Exceeding ODWQS Standards                | 24 |
| Table 13 | Summary of Pre- and Post-Development Areas                  | 27 |
| Table 14 | Determination of Infiltration Factor                        |    |
| Table 15 | Pre-Development Water Balance                               | 29 |
| Table 16 | Post-Development Water Balance                              | 30 |
| Table 17 | Water Balance Comparison                                    | 30 |
| Table 18 | Requirement of Infiltration from Roof Runoff                | 31 |
| Table 19 | Predictive Assessment of Nitrate Concentration              | 35 |

# **List of Appended Figures**

| Figure 1 | Site Location Plan              |
|----------|---------------------------------|
| Figure 2 | Site and Borehole Location Plan |
| Figure 3 | Groundwater Configuration Plan  |
| Figure 4 | MECP Well Records Within 500m   |
| Figure 5 | Pre-Development Plan            |
| Figure 6 | Post-Development Plan           |
| Figure 7 | Conceptual Sewage System Design |

Cambium Inc. Page iii



Cambium Reference: 17281-002

July 25, 2025

## **List of Appendices**

Appendix A Property and Land Information

Appendix B Borehole Logs

Appendix C Grain Size Analysis Results

Appendix D Well Inventory Survey Results

Appendix E Groundwater Quality Lab Results

Appendix F Single Well Hydraulic Test Results

Appendix G Dewatering Calculations

Appendix H Hydraulic Pumping Test Results

Appendix I Water Balance Calculations and Nitrate Assessment

Appendix J Waterloo Biofilter Supporting Documentation



Cambium Reference: 17281-002 July 25, 2025

#### 1.0 Introduction

Cambium Inc. (Cambium) was retained by Cassidy EW Construction Consultant Ltd. (the Client) to complete a hydrogeological assessment and terrain analysis for the proposed redevelopment of the land located at 1386 and 1394 Greely Lane, Ottawa, Ontario (the Site).

The purpose of the field work and testing was to obtain information on the general subsurface and groundwater conditions at the Site by means of groundwater monitoring well measurements, as well as field and laboratory tests. This report addresses the hydrogeological aspects of the subsurface conditions at the Site. Cambium has also completed a Geotechnical Investigation (Cambium, 2023a) and a Phase Two Environmental Site Assessment (Cambium, 2023b) prior to the hydrogeological assessment and relevant details of these investigations have been incorporated into this report. Detailed information from the Geotechnical Investigation and the Phase Two Environmental Site Assessment were provided under separate cover.

This report provides the results of the hydrogeological assessment and should be read in conjunction with the "Standard Limitations" in Section 12.0, which forms an integral part of this document. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The data, interpretations, and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location, or elevation, or if the project is not initiated within eighteen months of the date of the report, Cambium should be given an opportunity to confirm that the recommendations in this report are still valid.

# 1.1 Site Description

The Site is an irregularly shaped 0.47 ha (1.15 acres) property that is developed for commercial use. It contains a single-storey commercial car wash building, two temporary seacan storage units, and an additional single storey metal storage building adjacent to the commercial building. A driveway connects to the adjacent Greely Lane at two locations on the north side of the site. The remainder of the property is landscaped, with the southern portion of



Cambium Reference: 17281-002 July 25, 2025

the Site predominantly occupied by a septic bed raised at a higher elevation than the grade. The Site is bound by Greely Lane to the east, Parkway Road to the south, and commercial/light industrial use to the north and west.

Based on discussions with the Client and preliminary site sketches provided to Cambium, it understood that the proposed plan is to construct one 1,110 m<sup>2</sup> (12,000 ft<sup>2</sup>) building for light industrial use which will be divided in three 370 m<sup>2</sup> (4,000 ft<sup>2</sup>) units with two loading bays, two washrooms, and an estimated five employees for each unit. The building will be constructed slab-on-grade with perimeter foundations that will extend to below the local frost penetration depths. The development will include at grade parking and driveways to access delivery doors at the backs of each building.

The proposed finished floor elevations (FFE) have not yet been determined; however, it is anticipated that the grades of the Site will not differ significantly from the current grades of the property, exclusive of the raised septic bed on the southern property. The grade there will be lowered as a result of removal of the septic bed.

The regional location of the Site is identified on Figure 1, the property and surrounding areas are outlined on Figure 2, and a Site plan is included in Appendix A.



Cambium Reference: 17281-002

July 25, 2025

#### **Physical Setting** 2.0

### 2.1 Topography and Drainage

Based on regional topographic maps the Site area is relatively flat with a gentle slope to the east-southeast towards the North Castor River. The Site has a raised septic bed located in the southern portion of the property with a topographic high of approximately 100 meters above sea level (masl).

The Site is located within the Castor River quaternary watershed and the North Castor River is located approximately 250 m south-southeast of the Site. North Castor River subsequently flows eastward into South Nation River, which is a tributary to Ottawa River.

Regionally, surface elevation decreases to the east toward Ottawa River. It is assumed that local drainage will follow the local surficial topography and flow towards the south-southeast ultimately discharging into the North Castor River. Based on the location of the nearest water bodies and topographic relief, the inferred that the regional groundwater flow direction is easterly.

## 2.2 Physiography

The Site is located in the physiographic region known as the Russell and Prescott Sand Plains (Chapman & Putnam, 1984). The Russell and Prescott Sand Plains region covers and area of approximately 1,490 km<sup>2</sup> extending from Ottawa to Hawkesbury. The Sand Plains are a relatively flat region with a clay valley located to the south, which was formed as a delta by the Ottawa River and tributaries of the Champlain Sea. The sand deposits have a thickness of 5 m to 10 m in the northern region of the plains and thin towards the clay plains of the south. The sand plains consist of coarser grained sands to the north grading into fine sand to silt in the south. The region is underlain by stratified red and grey clays (Appendix A).

# 2.3 Overburden Geology

According to Miscellaneous Release – Data 128 from the Ontario Geological Survey (2010) the predominant overburden of the Site consists of coarse-textured glaciomarine deposits (sand, gravel, minor silt and clay) (Appendix A).



Cambium Reference: 17281-002

July 25, 2025

## 2.4 Bedrock Geology

According to Miscellaneous Release – Data 219 from the Ontario Geological Survey (2007), the bedrock in the area of the Site consists of the Beekmantown Group. The Beekmantown Group consists of two formations: the March and Oxford Formations. The bedrock of the Site consists of the Oxford Formation and is described as dolostone, minor shale and sandstone (Appendix A).

## 2.5 Vulnerable and Regulated Areas

The Site is situated within the South Nation Source Protection Area, under jurisdiction of the South Nation Conservation Authority, as per the Source Water Protection Information Atlas (SPIA) from the Ministry of the Environment, Conservation and Parks (MECP) (2024a). The Site is within the following areas:

- Intake Protection Zone 3 (IPZ-3) with a vulnerability score of 7
- Significant Ground Water Recharge Area (SGRA) with a vulnerability score of N/A
- Highly Vulnerable Aquifer (HVA) with a vulnerability score of 6

IPZs are areas surrounding water courses and lakes which have surface water intakes for water supply. There is potential that contaminants spilled within IPZs may reach intakes more quickly than the ability to take appropriate action to shut down the intake should a spill occur. IPZ-3s are defined as event-based areas only. They are areas that can contribute contaminants under an extreme event (e.g., high winds or heavy rain) at a concentration that would result in deterioration of untreated source water. Best management practices should be used to minimize the potential for the release of chemicals to the environment during future operations at the Site.

SGRAs are landscape surfaces which allow a high volume of water to infiltrate into the ground. A recharge area is classified as significant if the recharge rate for a particular area is greater than the average watershed recharge rate by 15% or more and the area has a hydrological connection to a surface water body or to an aquifer that is a source of groundwater for a drinking water system (Ministry of the Environment, Conservation and Parks, 2021). SGRAs



Cambium Reference: 17281-002 July 25, 2025

are delineated using models which consider topography, surficial soil, land cover and climate. The SGRA in the vicinity of the Site does not have a vulnerability score associated with it. Efforts should be made to maintain the Site pre-development water balance as much as practicable following redevelopment. Water balance information is presented in Section 7.0.

HVAs are aquifers that are more sensitive to contamination as a result of the proximity to surface (shallow aquifers). By default, all HVA's have a vulnerability score of 6. Best management practices should be used to minimize the potential for the release of chemicals to the subsurface environment during future operations at the Site.

A review of the Natural Heritage System database from the Ministry of Natural Resources and Forestry (2024) indicates the Site is not located within any Areas of Natural and Scientific Interest.

The Site does not fall under a regulated area, as per the South Nation Conservation Authority or O.Reg. 41/24.

The source protection, natural heritage, and conservation area mapping is attached in Appendix A.



Cambium Reference: 17281-002 July 25, 2025

3.0 Subsurface Investigation

Cambium staff completed a borehole investigation at the Site on March 7<sup>th</sup> to 8<sup>th</sup>, 2023, to assess subsurface conditions. A total of nine boreholes, designated as BH101-23 through BH109-23, were advanced at the Site to depths ranging from approximately 3.7 to 6.7 meters below ground surface (mbgs). Test pit locations are shown in Figure 4 and test pit logs are included in Appendix B.

3.1 Borehole Logs

Subsurface conditions generally consist of surficial deposits of pavements or topsoil overlying a relatively thin deposit of fill overlying native deposits of clays and silts.

A summary of general lithological details obtained from the investigation is presented below.

Topsoil

Topsoil was encountered from the surface of all boreholes with the exception BH101-23 and BH108-23. The thickness of the topsoil ranges from 0.10 to 0.91 m.

**Asphaltic Concrete** 

Asphaltic concrete was encountered from the surface of BH101-23 and BH108-23 that were advanced in the existing paved areas. The thickness of the asphalt measures 0.08 and 0.05 m in BH101-23 and BH108-23, respectively.

**Base Material** 

Pavement base material was encountered underlying the asphaltic concrete. The base material is composed of brown gravelly sand with some silt. The thickness of the material measures 380 and 560 mm in BH101-23 and BH108-23, respectively.

Fill Material

Fill material other than the pavement structure was encountered at all borehole locations. The fill material varies slightly in composition between borehole locations but is predominantly composed of silty sandy. The material ranges from trace gravel to gravelly, and trace clay was



Cambium Reference: 17281-002 July 25, 2025

noted in BH105-23 and BH107-23. Roots were noted within the fill material in BH102-23. The

The thickness of the fill material ranges from 0.1 to 1.4 m and extends to depth ranging from 0.3 to 1.5 mbgs.

fill material varies in colour between brown and grey depending on location.

### **Clayey Silt**

Native deposits of grey, sandy, clayey silt were encountered underlying the fill material at all borehole locations at depths ranging from 0.3 to 1.5 mbgs. A notable decrease in clay content was observed in BH103-23 and BH104-23 at a depth of 2.3 mbgs as the material transitions to the non-cohesive underlying deposits.

Boreholes BH108-23 and BH109-23 terminated within the clayey silt deposits at depths of 1.5 mbgs. The deposit was fully penetrated at all other borehole locations. The thickness of the deposits at these locations ranges from 0.9 to 2.3 m, and the deposits extend to depths ranging from 2.3 to 3.2 mbgs.

## Silty Sand

A native deposit of grey silty sand was observed in BH101-23 underlying the clayey silt deposit at a depth of 2.6 mbgs. The deposit measures 0.5 m in thickness and extends to a depth of 3.1 mbgs. A seam similar in composition was noted in BH104-23 at a depth of 3.1 mbgs. The seam measured 0.10 m.

#### Silt

Native deposits of silt were encountered underlying the clayey silt and silty sand in boreholes BH101-23 through BH107-23. The deposit is grey in colour and contains some sand to sandy and trace clay.

The silt deposits were encountered at depths ranging from 2.3 to 3.2 mbgs. Where encountered, all boreholes terminated within the silt at depths ranging from 3.7 to 6.7 mbgs.



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd. Cambium Reference: 17281-002

July 25, 2025

#### Groundwater

Groundwater was observed at all borehole locations during drilling. Unstabilized groundwater level measurements were recorded upon completion of drilling and monitoring wells were installed in three locations (BH105-23, BH106-23, and BH107-23) to enable further characterization. A subsequent monitoring event was completed as part of Phase II ESA work, as well as during hydraulic testing detailed later in this report (Section 4.3). As demonstrated in Table 1, there is significant variability in groundwater levels, which is expected within shallow unconfined aquifers. A figure illustrating the approximate groundwater flow direction based on water levels measured April 19, 2024 is provided in Figure 3.

**Table 1 Summary of Measured Water Levels** 

|             | Wate              | r Level (mbo       | gs)               | Wa                | ater Level (m      | nasl)             |
|-------------|-------------------|--------------------|-------------------|-------------------|--------------------|-------------------|
| Borehole ID | Post-<br>drilling | March 15,<br>2023* | April 19,<br>2024 | Post-<br>drilling | March 15,<br>2023* | April 19,<br>2024 |
| BH101-23    | 1.1               | -                  | -                 | 97.9              | -                  | -                 |
| BH102-23    | 1.5               | -                  | -                 | 97.2              | -                  | -                 |
| BH103-23    | 0.9               | -                  | -                 | 97.8              | -                  | ı                 |
| BH104-23    | 0.6               | -                  | -                 | 98.2              | -                  | -                 |
| BH105-23    | 2.0               | 1.30               | 0.62              | 96.9              | 98.91              | 98.29             |
| BH106-23    | 1.5               | 0.89               | 0.30              | 97.1              | 98.64              | 98.34             |
| BH107-23    | 1.8               | 1.14               | 0.36              | 96.3              | 98.12              | 97.76             |
| BH108-23    | 0.8               | -                  | -                 | 98.3              | -                  | -                 |
| BH109-23    | 1.1               | -                  | -                 | 97.5              | -                  | -                 |

<sup>\*</sup> water level measured prior to well development

Further well construction details for the three monitoring wells are provided in Table 2.



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd. Cambium Reference: 17281-002

July 25, 2025

**Table 2 Monitoring Well Construction Details** 

|            | Surface             |                      | Well Casing                      | Screen                     | Details                       |
|------------|---------------------|----------------------|----------------------------------|----------------------------|-------------------------------|
| Well<br>ID | Elevation<br>(masl) | Well Depth<br>(mbgs) | Stick-up<br>(mags <sup>1</sup> ) | Top of<br>Screen<br>(mbgs) | Bottom of<br>Screen<br>(mbgs) |
| BH105-23   | 98.91               | 3.06                 | 0.92                             | 0.62                       | 3.06                          |
| BH106-23   | 98.64               | 2.75                 | 1.00                             | 0.31                       | 2.75                          |
| BH107-23   | 98.12               | 3.05                 | 0.75                             | 0.61                       | 3.05                          |

<sup>&</sup>lt;sup>1</sup> meters above ground surface

All monitoring wells with water were developed after installation. Development involved purging ten well volumes of groundwater or three times dry from the wells by hand pumping with Waterra tubing and a foot valve.

## 3.2 Physical Laboratory Testing

Physical laboratory testing, including grain size distribution analysis, was completed on four soil samples to confirm textural classification identified during field logging and obtain percolation rate estimates. Analysis results are based on the Unified Soil Classification System (USCS) scale. A summary of results is provided in Table 3. Complete laboratory analysis reports are provided in Appendix C.

Table 3 Grain Size Distribution Analysis Results

| Sample<br>Location | Depth<br>(mbgs) | Description                  | Gravel<br>(%) | Sand<br>(%) | Silt<br>(%) | Clay<br>(%) | T-time<br>(min/cm) |
|--------------------|-----------------|------------------------------|---------------|-------------|-------------|-------------|--------------------|
| BH101-<br>23 SS3   | 1.5 to<br>2.1   | Sandy Clayey Silt            | 0             | 22          | 57          | 21          | 40                 |
| BH101-<br>23 SS6   | 3.8 to<br>4.4   | Silt some Sand trace<br>Clay | 0             | 19          | 77          | 4           | 20                 |
| BH104-<br>23 SS4   | 2.3 to<br>2.9   | Sandy Silt some Clay         | 0             | 25          | 57          | 18          | 35                 |
| BH104-<br>23 SS6   | 3.8 to<br>4.4   | Sandy Silt trace Clay        | 0             | 22          | 74          | 4           | 20                 |



Cambium Reference: 17281-002 July 25, 2025

## 4.0 Hydrogeological Assessment

The results obtained for the shallow groundwater assessment are discussed in the following subsections.

#### 4.1 MECP Well Records Assessment

Cambium accessed the MECP Water Well Information System (WWIS) to review water well records within 500 m of the Site (Ministry of the Environment, Conservation and Parks, 2024b). A total of 73 records were identified, 64 of which describe wells installed into bedrock and 9 installed into overburden. The records identified two monitoring/test wells, two abandoned wells, three recharge well and the remaining wells were either water supply wells or unknown use. The locations of wells records identified within 500 m of the Site are illustrated in

Figure 4. A summary of water well information, including total depth, static water level, and recommended pumping rate, is presented in Table 4. Further details are provided Appendix D.

One well with well record ID 7448964 is identified to be present at the Site by the WWIS. No details are provided on the record, however.

Table 4 MECP Water Well Information Summary

|            |         | Depth<br>(mbgs) | Depth Water<br>Found<br>(mbgs) | Static<br>Water Level<br>(mbgs) | Recommended<br>Pumping Rate<br>(L/min) |
|------------|---------|-----------------|--------------------------------|---------------------------------|----------------------------------------|
| Bedrock    | Minimum | 10.67           | 9.75                           | 1.00                            | 18.00                                  |
| Wells      | Maximum | 101.50          | 100.58                         | 15.00                           | 182.00                                 |
| Count = 64 | Average | 32.18           | 27.79                          | 4.41                            | 55.90                                  |
| Overburden | Minimum | 4.88            | 13.11                          | 4.00                            | 23.00                                  |
| Wells      | Maximum | 50.00           | 16.76                          | 5.00                            | 46.00                                  |
| Count = 9  | Average | 15.90           | 14.66                          | 4.23                            | 38.26                                  |

A summary of other information outlined in the well records is provided below:

 The general lithology described by the well records is a sequence of overburden overlying limestone which is subsequently underlain by sandstone.



Cambium Reference: 17281-002 July 25, 2025

• The overburden is described as predominantly sand which is overlain by a clay layer in some locations. Gravel is also present at depth at some wells.

- The average contact depth between overburden materials and limestone bedrock is 16.5 mbgs (4.0 to 63.4 mbgs).
- Water supply in the area surrounding the Site is primarily derived from the bedrock aquifer.
   Based on the high static water level recorded compared to the depth that water was found, it is inferred that the bedrock aquifer is at least partially confined.
- The bedrock aquifer is productive, with a geometric mean recommended pumping rate of approximately 56 L/min for bedrock wells.

## 4.2 Door-to-Door Well Survey

A door-to-door survey of all accessible properties within 500 m of the property was conducted by Cambium staff on April 22<sup>nd</sup>, 2024, to confirm details in the public record and to identify any wells not included in the MECP records assessment. Due to the commercial and industrial development of the surrounding area, a number of properties were not accessible to the general public. Five properties were visited, and in-person interviews were conducted with available office workers regarding the condition and details of their water supply well(s), including the method of construction, water level, pump intake, well, and water level depths, water use, and general water quality and well yield.

If the property was accessible but a representative was not available, a letter was left in the mailbox with a pre-paid return envelope. The letter explained the nature of the proposed project and the survey and provided direct contact information for Cambium's project manager.

Details and responses from the well use survey are provided in Appendix D. Generally, workers indicated that the water supply for the surrounding area is not good quality due to hardness and suspect iron and sulphur.

## 4.3 Groundwater Quality

Groundwater quality samples were collected BH106-24 during hydraulic testing activities on April 19, 2024.



July 25, 2025

Samples were submitted for analysis of general organic and inorganic chemistry to Caduceon Environmental Laboratories in Ottawa, which is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). Samples were stored at a temperature between 0°C and 10°C prior to and during transport.

Water quality results were compared against Provincial Water Quality Objectives (PWQO) and City of Ottawa Sewer Discharge Bylaw 2003-514 guidelines. Certificates of Analysis for the samples are included in Appendix E. A summary of parameters exceeding the PWQO and Sewer By-law criteria is provided in Table 5, Table 6, and Table 7.

Table 5 Summary of Results Exceeding PWQO Criteria

|                        |       | PWQO           | BH106-23 |                           |
|------------------------|-------|----------------|----------|---------------------------|
| Parameter              | Units | Units Criteria |          | 2024/08/10<br>(Dissolved) |
| Phosphorus             | ug/L  | 10             | 8,720    | <10                       |
| Arsenic                | ug/L  | 5              | 27.5     | 1.0                       |
| Cadmium                | ug/L  | 0.1            | 1.12     | 0.211                     |
| Cobalt                 | ug/L  | 0.9            | 103      | 1.1                       |
| Copper                 | ug/L  | 5              | 301      | 5.4                       |
| Lead                   | ug/L  | 1              | 76.8     | 0.08                      |
| Thallium               | ug/L  | 0.3            | 1.82     | <0.05                     |
| Uranium                | ug/L  | 5              | 11.4     | 4.68                      |
| Vanadium               | ug/L  | 6              | 327      | 0.3                       |
| Benzo[a]anthracene     | ug/L  | 0.0004         | <0.05*   | -                         |
| Benzo(g,h,i)perylene   | ug/L  | 0.00002        | <0.05*   | -                         |
| Butyl Benzyl Phthalate | ug/L  | 0.2            | <1*      | -                         |
| Chrysene               | ug/L  | 0.0001         | <0.05*   | -                         |
| Dibenzo(a,h)anthracene | ug/L  | 0.002          | <0.05*   | -                         |
| Fluoranthene           | ug/L  | 0.0008         | <0.05*   | -                         |
| Phenanthrene           | ug/L  | 0.03           | <0.05*   | -                         |
| Formaldehyde           | ug/L  | 0.8            | <8*      | -                         |
| Nonylphenols           | ug/L  | 0.04           | <1*      | -                         |

Bolded numbers indicate exceedance with respect to applicable guideline value

<sup>\*</sup> Laboratory Reporting Limit exceeds PWQO value



Cambium Reference: 17281-002 July 25, 2025

Table 6 Summary of Results Exceeding Storm Sewer By-law Criteria

|                        |       | Storm Sewer | BH106-23              |                                    |  |
|------------------------|-------|-------------|-----------------------|------------------------------------|--|
| Parameter              | Units | Criteria    | 2024/04/22<br>(Total) | 2024/08/10<br>(Filtered/Dissolved) |  |
| Total Suspended Solids | mg/L  | 15          | 9,480                 | <3                                 |  |
| Phosphorus             | mg/L  | 0.4         | 8.72                  | <0.01                              |  |
| Arsenic                | mg/L  | 0.02        | 0.0275                | 0.001                              |  |
| Chromium               | mg/L  | 0.08        | 0.249                 | <0.0011                            |  |
| Copper                 | mg/L  | 0.04        | 0.301                 | 0.054                              |  |

**Bolded** numbers indicate exceedance with respect to applicable guideline value

Table 7 Summary of Results Exceeding Sanitary Sewer By-law Criteria

|                        |       | Sanitary          | BH106-23              |                                    |  |
|------------------------|-------|-------------------|-----------------------|------------------------------------|--|
| Parameter              | Units | Sewer<br>Criteria | 2024/04/22<br>(Total) | 2024/08/10<br>(Filtered/Dissolved) |  |
| Total Suspended Solids | mg/L  | 350               | 9,480                 | <3                                 |  |

**Bolded** numbers indicate exceedance with respect to applicable guideline value

Based on the results of the chemical analysis, the following comments on groundwater quality are made.

- Both the unfiltered and filtered samples had numerous parameters measured at concentrations in excess of PWQO criteria. Treatment of excavation water would be required prior to discharge to off-site surface receiving environments.
- The method detection limit concentrations for many total metals and semi-volatile organics were greater than some of the PWQO criteria for these parameters. This is a limitation of laboratory analysis and is not confirmation that the guideline value was exceeded.
- Total suspended solids (TSS), phosphorus, arsenic, chromium, and copper concentrations
  were above City of Ottawa Storm Sewer Discharge guidelines in the unfiltered sample. The
  filtered sample had concentrations less than guideline values for all parameters, indicating
  that filtration is a suitable treatment method to enable discharge to this receptor.



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd. Cambium Reference: 17281-002

July 25, 2025

The filtered water quality sample had concentrations less than City of Ottawa Sanitary
 Sewer Discharge guideline values for all parameters, indicating that filtration is a suitable treatment method to enable discharge to this receptor.

 It is recommended that a water quality sample of treated water be submitted for laboratory analysis prior to discharge during construction activities to confirm the treatment system adequately reduces elevated parameters to acceptable concentrations.

## 4.4 Single Well Hydraulic Tests

Cambium staff visited the Site on April 19<sup>th</sup>, 2024, to perform in-situ single well hydraulic tests (SWHTs) on select monitoring wells.

Rising head tests were conducted in each well by inducing an instantaneous change in head (water level) in the monitoring wells. Water level changes were achieved by introducing/removing a solid slug.

Water level recovery was monitored using a Solinst Levelogger pressure transducer data logger, with manual measurements collected simultaneously at regular intervals.

The hydraulic conductivity of the geological formations adjacent to the screened portion of each well was estimated via the AquiferTest Pro software using the Hvorslev method (Hvorslev, 1951). A summary of results is presented in Table 8. Detailed analytical reports are provided in Appendix F.

Estimated hydraulic conductivities for the tested wells screened within the silty clay unit ranged between 1.9 x10<sup>-9</sup> and 2.2 x10<sup>-7</sup> m/s, with an overall geometric mean value of 1.2 x10<sup>-8</sup> m/s. These values are consistent with published values for the tested materials (unconsolidated silt) (Freeze & Cherry, 1979).



July 25, 2025

# Table 8 Hydraulic Conductivity Estimates derived via SWHTs

| Monitoring                         | Screened                        | ŀ                      | lydraulic C            | onductivity<br>n/s)   | <i>γ</i> , Κ           |  |
|------------------------------------|---------------------------------|------------------------|------------------------|-----------------------|------------------------|--|
| Well                               | Lithology                       | Test 1                 | Test 2                 | Test 3                | Geometric<br>Mean      |  |
| BH105-24                           | Silty sand to Sandy clayey silt | 6.4 x 10 <sup>-9</sup> | 3.4 x 10 <sup>-9</sup> | -                     | 4.6 x 10 <sup>-9</sup> |  |
| BH106-24                           | Sandy clayey silt               | 2.2 x 10 <sup>-7</sup> | 1.9 x 10 <sup>-7</sup> | 2.1 x10 <sup>-7</sup> | 2.1 x 10 <sup>-7</sup> |  |
| BH107-24 Sandy clayey silt to silt |                                 | 1.9 x 10 <sup>-9</sup> | -                      | -                     | 1.9 x 10 <sup>-9</sup> |  |
| Geometric Mean                     |                                 |                        |                        |                       |                        |  |



Cambium Reference: 17281-002

July 25, 2025

#### 5.0 **Dewatering Assessment**

The requirements for construction dewatering generally depend on the Site's soil and groundwater conditions including soil type, soil permeability or hydraulic conductivity, local groundwater levels, and the design of the proposed works, such as the foundation/basement elevation or pipe invert level, as well as the size of proposed structure/excavation. The following subsections detail the specific excavation parameters and anticipated dewatering rates for the Site.

## 5.1 Excavation Design Parameters

It is understood that the footprint of the proposed slab-on-grade building will be approximately 1,110 m<sup>2</sup>.

For construction purposes, it is assumed that excavation for footings will occur along a linear perimeter with dimensions of 23 m by 55 m. It is further assumed that during footing emplacement, groundwater will be temporarily lowered to a minimum of 1 m below the frost line to ensure dry conditions during footing construction, to a total depth of 2.5 mbgs.

For permanent operations, due to the high-water levels at the Site, permanent dewatering will be required to ensure water levels beneath the building remain below the frost line level (approximately 1.5 mbgs) throughout the year. A maximum water level of 0.30 mbgs was measured in BH106-23 on April 19, 2024.

## 5.2 Estimated Dewatering Rate – Construction Phase

An estimated dewatering rate for the construction phase of the proposed development was calculated a modified Dupuit-Forchheimer equation developed for linear excavations according to Powers, Corwin, Schmall, & Kaeck (2007):

$$Q = \frac{\pi K(H^2 - h^2)}{\ln(R_0/r_s)} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$



Cambium Reference: 17281-002 July 25, 2025

Where:

 $Q = dewatering rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

H = initial hydraulic head in aquifer (m)

 $h = target \ hydraulic \ head \ (initial \ hydraulic \ head - target \ drawdown) \ (m)$ 

 $R_0 = distance to radial source (from excavation center)$ 

 $r_s = equivalent single well radius = width of trench/2 (m)$ 

x = unit length of trench (m)

 $L = distance to line source (from excavation center) = R_0/2 (m)$ 

A summary of calculated dewatering rates for per 50 m linear excavation, given a target depth to water of 2.5 mbgs, is provided in Table 9. Detailed calculations are provided in Appendix G.

Table 9 Calculated Construction Dewatering Rates

|                   | Hydraulic<br>Conductivity<br>(K) | Radius of Influence<br>(from excavation edge) | Dewatering Rate<br>(Q) |       |
|-------------------|----------------------------------|-----------------------------------------------|------------------------|-------|
|                   | m/s                              | m                                             | m³/day                 | L/s   |
| Minimum           | 1.9 x10 <sup>-9</sup>            | 0.3                                           | 0.14                   | 0.002 |
| Maximum           | 2.1 x10 <sup>-7</sup>            | 3.0                                           | 4.70                   | 0.05  |
| Geometric<br>Mean | 1.2 x10 <sup>-8</sup>            | 0.7                                           | 0.65                   | 0.01  |

Using the hydraulic conductivity estimates presented in Table 9, the estimated radius of influence from the edge of the excavation ranges from 0.3 to 3.0 m (average 0.7 m). The estimated dewatering rate ranges from 0.14 m³/day (140 L/day, or 0.002 L/s) to 4.70 m³/day (4,700 L/day, or 0.05 L/s), with a geometric mean average value of 0.65 m³/day (650 L/day, or 0.01 L/s).

Applying a safety factor of 2 to account for uncertainty resulting from heterogeneity of subsurface materials and other unknown factors, the estimated dewatering rate for 50 m sections of footing excavation ranges from 0.28 m³/day (280 L/day, or 0.004 L/s) to 9.4 m³/day (9,400 L/day, or 0.10 L/s), with a geometric mean average value of 1.30 m³/day (1,300 L/day, or 0.02 L/s).

Cambium Reference: 17281-002 July 25, 2025

It is noted that the above equation is designed to represent steady state pumping conditions. In general, at the beginning of the pumping, the pumping rate required to lower Site water levels to acceptable levels may be greater than the rate estimated for steady state conditions as incoming water replaces the volume of excavated soils. Additionally, the above equation does not account for any precipitation that may occur during the construction process.

## 5.3 Estimated Dewatering Rate - Operational Phase

An estimated dewatering rate for the operational phase of the proposed development was calculated using a modified Dupuit-Forchheimer equation (Powers, Corwin, Schmall, & Kaeck, 2007). Calculations for a square dewatering area with an equivalent radius were employed.

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_0 / r_s)}$$

Where:

 $Q = dewatering rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

H = initial hydraulic head in aquifer (m)

 $h = target \ hydraulic \ head \ (initial \ hydraulic \ head \ - \ target \ drawdown) \ (m)$ 

 $R_0 = zone \ of \ influence \ (from \ excavation \ center) = 3000 (H - h) \sqrt{K} \ (m)$ 

 $r_s = equivalent single well radius$ 

For square excavations, the equivalent radius  $(r_s)$  can be determined as the radius of a circle with the same area as the excavation, or with the same perimeter as the excavation.

Here, the equivalent area method was used such that

$$r_s = \sqrt{rac{excavation\ area}{\pi}}$$

A summary of calculated dewatering rates for per 50 m linear excavation, given a target depth to water of 2.5 mbgs, is provided in Table 10. Detailed calculations are provided in Appendix G

Cambium Reference: 17281-002 July 25, 2025

**Table 10 Calculated Permanent Dewatering Rate** 

|                   | Hydraulic<br>Conductivity<br>(K) | Radius of Influence<br>(from excavation edge) | Dewatering Rate<br>(Q) |       |
|-------------------|----------------------------------|-----------------------------------------------|------------------------|-------|
|                   | m/s                              | m                                             | m³/day                 | L/s   |
| Minimum           | 1.9 x10 <sup>-9</sup>            | 0.2                                           | 0.4                    | 0.005 |
| Maximum           | 2.1 x10 <sup>-7</sup>            | 1.6                                           | 4.6                    | 0.05  |
| Geometric<br>Mean | 1.2 x10 <sup>-8</sup>            | 0.4                                           | 1.1                    | 0.01  |

Using the hydraulic conductivity estimates presented in Table 10, the estimated radius of influence from the edge of the building footprint ranges from 0.2 to 1.6 m (average 0.4 m). The estimated dewatering rate ranges from 0.4 m³/day (400 L/day, or 0.005 L/s) to 4.6 m³/day (4,600 L/day, or 0.05 L/s), with a geometric mean average value of 1.1 m³/day (1,100 L/day, or 0.01 L/s).

Applying a safety factor of 2 to account for uncertainty resulting from heterogeneity of subsurface materials and other unknown factors, the estimated permanent dewatering rate for the building footprint ranges from 0.8 m³/day (800 L/day, or 0.01 L/s) to 9.2 m³/day (9,200 L/day, or 0.10 L/s), with a geometric mean average value of 2.2 m³/day (2,200 L/day, or 0.02 L/s).

It is noted that the above calculations are an approximation only, which can be further refined based on results observed during the construction phase of the proposed development.

Cambium recommends reassessment of dewatering rates once construction nears the completion stage.

## 5.4 Assessment of Required Regulatory Permits or Registration

Any construction dewatering or other water taking in Ontario is governed by the Ontario Water Resources Act (OWRA) (Ontario Regulation 387/04 and/or Ontario Regulation 63/16) and/or the Environmental Protection Act (Registrations under Part II.2).

As of July 1, 2025, O.Reg. 63/16 will be amended such that temporary construction dewatering greater than 50,000 L/day registration of the water taking must be completed through the



July 25, 2025

Environmental Activity and Sector Registry (EASR) prior to the start of dewatering. Additionally, O.Reg. 387/04 will be amended such that low-risk foundation drainage systems, used primarily for residential purposes, that take less than 379,000 L/day of groundwater will be exempt from requiring environmental permissions.

As the maximum estimated dewatering rate for both construction activities and long-term building operation is less than 9,500 L/day, neither a PTTW nor an EASR registration will be required for the proposed development.



Cambium Reference: 17281-002 July 25, 2025

## 6.0 Water Supply Assessment

### 6.1 Test Well Installation and Inspection

Test Well 1 (TW1; Well Tag No. A379053, Appendix D) was installed by Air Rock Drilling Company on May 21, 2025. TW1 was completed in a landscaped area in the southeast corner of the Site to a depth of 55 mbgs. The identified lithology is clay from 0 to 11.6 mbgs, boulders/hardpan from 11.6 to 14.7 mbgs, and limestone bedrock to completion depth. Three water bearing units of indeterminate thickness were identified at 22.6, 38.2, and 53 mbgs.

The borehole has a 0.025 m diameter from ground surface to 16.5 mbgs, and a diameter of 0.016 m from 16.5 to 55 mbgs. A 0.016 m inside diameter steel casing was installed from 0.6 m above ground surface to a depth of 16.5 mbgs. Grout was emplaced in the annular space around the casing. A Cambium technician, under the supervision of the hydrogeologist who signed this report, observed the installation and grouting of the well casing (no well screen was installed). The signed and sealed well inspection report certifying that the well meets the minimum well construction requirements in the Wells Regulation and recommendations in this report is provided in Appendix D.

The remaining borehole was then completed and left as open hole in limestone bedrock. All three water bearing zones are below the bottom of the casing. The driller's well yield test provided an estimated pumping rate of 57 L/min, and the recommended pump depth was 30 mbgs.

# 6.2 Hydraulic Pumping Test

An 8-hour hydraulic pumping test was completed on TW1 by Cambium staff on May 29, 2025. Prior to the test, a Solinst Levelogger (logger) was installed in TW1 and OW1 (the pre-existing water supply well on the site) to monitor water levels before, during, and after the pumping test. Manual measurements were also recorded during the pumping tests to mitigate the possibility of equipment failure. Well water levels measured during pumping test activities are provided in Appendix H. OW1 was not used for at least 12 hours prior to the start of the pumping test, nor was it used during the test or subsequent recovery period.



Cambium Reference: 17281-002 July 25, 2025

TW1 was chlorinated by Air Rock Drillers 48 hours prior to testing. The static water level in TW1 prior to the pumping test was 1.73 mbgs and the pump was installed at approximately 50 mbgs, resulting an available drawdown of approximately 48.21 m (height of static water level above pump).

Water from the pumping test was discharged to the drainage ditch at the perimeter of the site, in a downslope direction approximately 15 m from the test well. The pumping rate for the test was controlled by a valve on the discharge line.

Hydraulic testing began at 8:03 a.m. for a duration of 8 hours. The total sewage design flow for the proposed development is 1,800 L/day (Section 8.1.1). Assuming water use is limited to a standard (8-hour) working day, this corresponds to an average rate of 225 L/hour (3.75 L/min).

To account for periods of peak demand, the flow rate during the initial 15 minutes of the test was set to 5 times the average demand (approximately 19 L/min). The pumping rate was then increased and maintained at approximately 10 times the average demand (38 L/min) for the remainder of the test. The total volume of water discharged from TW1 during the pumping test was approximately 17,955 L.

Rainfall of 11.6 mm was recorded at the Ottawa Airport Climate Station (ID # 6106001) on the day of the pumping test (Appendix H). This is reflected in monitoring data collected in TW1 and OW1 during the pumping test. After an initial water level decrease up to 0.25 m within the first hour following the start of pumping, the water level in TW1 gradually increased for the duration of the test. A similar trend was observed in OW1, which experienced a maximum drawdown of approximately 0.1 m within the first hour before progressively increasing throughout the day. Water level fluctuations in TW1 and OW1 mirrored each other, both in terms of timing and magnitude (Appendix H).

The pump in TW was shut off at 4:03 pm. At this time, the water level in TW1 was 1.79 mbgs, which is equivalent to a water level increase of 0.06 m since the start of testing and represents approximately 0.1% of the total available drawdown in the well.



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd. Cambium Reference: 17281-002

July 25, 2025

Following pump cessation, water levels were measured for 60 minutes. The water level recovered to greater than 100% of the initial water level in both TW1 and OW1 immediately upon termination of the pumping test.

## 6.3 Aquifer Parameter Analysis

Drawdown measurements recorded for TW1 during the pumping test were analyzed with Aqtesolv software to obtain an estimate of transmissivity for the water supply aquifer using the Theis method. Although transmissivity of the aquifer is inferred to be very high due to the negligible drawdown over the course of the pumping test, concurrent recovery of the aquifer(s) during the test precludes a reliable estimate of the precise value. A report for the aquifer analysis illustrating the recharge trend in the data is included in Appendix H. Although results are presented based on a Theis analysis of the results, they are considered highly uncertain.

## 6.4 Groundwater Quality Analysis

Field water quality parameters were measured regularly during pumping to ensure baseline aquifer water qualities were established prior to sampling. Field parameter measurements are summarized in Table 11. All water testing equipment was calibrated prior to use as per manufacturer's instructions; further details about equipment type. Residual chlorine was monitored during the supplemental sampling event and was confirmed to be less than 0.01 ppm before sample collection occurred.

Two sets of water quality samples were collected from TW1 and analyzed for the subdivision suite as well as trace metals and volatile organic compounds. The first sample (TW1-1) was collected three hours into the pumping test, and the second sample (TW1-2) within the final hour of the test.

Samples were collected in laboratory supplied containers which included preservatives as required. They were subsequently stored at a temperature between 0 and 10 °C prior to and during transport. Samples were submitted along with laboratory supplied COC forms to Caduceon Environmental Laboratories in Ottawa, Ontario, which is accredited by the Canadian Association for Laboratory Accreditation Inc. All samples were submitted within the required hold-time period.



Cambium Reference: 17281-002 July 25, 2025

**Table 11 Pumping Test Field Parameter Measurements** 

| Test<br>Hour | Temperature<br>(°C) | Dissolved<br>Oxygen<br>(mg/L) | Electrical<br>Conductivity<br>(µs/cm) | рН   | Oxygen<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) | Chlorine<br>(mg/L) |
|--------------|---------------------|-------------------------------|---------------------------------------|------|------------------------------------------|--------------------|--------------------|
| 1            | 11.2                | 1.69                          | 663                                   | 7.37 | -9.4                                     | 4.44               | <0.01              |
| 2            | 11.5                | 1.82                          | 669                                   | 7.34 | -9.4                                     | 5.89               | <0.01              |
| 3            | 11.6                | 1.99                          | 682                                   | 7.33 | -9.3                                     | 7.05               | <0.01              |
| 4            | 11.4                | 1.94                          | 684                                   | 7.31 | -9.6                                     | 5.21               | <0.01              |
| 5            | 11.3                | 1.92                          | 688                                   | 7.32 | -12.8                                    | 3.95               | <0.01              |
| 6            | 11.7                | 1.92                          | 690                                   | 7.36 | -28.2                                    | 2.83               | <0.01              |
| 7            | 11.8                | 1.91                          | 691                                   | 7.42 | -46.1                                    | 2.62               | <0.01              |

Water quality results were compared against the Ontario Drinking Water Quality Standards (ODWQS) criteria for parameters outlined in Procedure D-5-5 Tables 1, 2, and 3 (Ministry of the Environment, 1996a). A complete summary of water quality results and certificate of lab analyses are provided in Appendix E. Parameters reported at concentrations exceeding ODWQS criteria are outlined in Table 12.

Table 12 Summary of Results Exceeding ODWQS Standards

| Parameter                           | Units | ODWQS Criteria | TW Concentration |       |  |
|-------------------------------------|-------|----------------|------------------|-------|--|
|                                     |       | ODWQ3 Criteria | TW1-1            | TW1-2 |  |
| Hardness<br>(as CaCO <sub>3</sub> ) | mg/L  | 80-100         | 389              | 394   |  |
| Total Dissolved<br>Solids (Ion Sum) | mg/L  | 500            | 510              | 522   |  |
| Turbidity                           | NTU   | 5              | 8.4              | 3.4   |  |
| Total Iron                          | mg/L  | 0.3            | 0.205            | 0.326 |  |
| Sodium                              | mg/L  | 20 / 200       | 38.9             | 40.0  |  |

As suggested by the field parameter measurements, water quality was consistent between samples. All measured parameters were less than the corresponding health related criteria. Hardness, total dissolved solids, turbidity, and total iron exceeded their respective aesthetic/operational guidelines but are below the corresponding Maximum Concentration



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd. Cambium Reference: 17281-002

July 25, 2025

Considered Reasonably Treatable (MCCRT). Turbidity decreased significantly between sampling events, suggesting well development during pumping resolved the issue.

Sodium exceeded the "warning level" concentration of 20 mg/L for people on sodium-reduced diets. As water softening is required to address hardness, a sodium-free softener is recommended. Alternatively, a separate tap supplying unsoftened water could be used for drinking purposes.

A detailed assessment of surrounding land use was completed during the Phase Two ESA (Cambium, 2023b). All contaminants of potential concern were less than the Table 6 Site Characterization Standards in all soil and groundwater samples. All VOC concentrations measured during the pumping test were below the project laboratory's limit of reporting and indicate there are no significant impacts to the quality of the water supply aquifer from historical activities at the Site or surrounding lands.



Cambium Reference: 17281-002 July 25, 2025

#### 7.0 Water Balance Assessment

A water balance assessment was completed to determine the potential change in groundwater recharge that could occur due to the proposed development. Generally, any property can be categorized into three broad types of areas: paved, roof, and landscape/vegetated. Currently, the Site is developed as a car wash, with paved roadways and parking and landscaping around the existing septic bed. In the post-development scenario, the amount of paved and roof areas at the Site will increase and the amount of landscape/vegetated area will decrease. This has the potential to impact the amount of water that infiltrates into the ground and is available to replenish natural ground- and surface-water systems, which must be considered as part of the development process.

To compare the difference in infiltration that may result from the proposed development, a water balance calculation was completed to determine the amount of surplus water that is currently generated at the Site. Site characteristics such as surficial soil type, topography, and the amount of pervious and impervious areas were then used to estimate the volume of water infiltrating at the Site. Calculations were completed for both pre-and post-development scenarios, so that a comparison could be made to identify potential changes in infiltration as well as mitigation measures which could be employed to reduce development impacts.

Figure 6 presents the post-development plans of the proposed development. As a detailed breakdown of landscape and building details are yet to be determined, the paved, roof, and landscape areas for the developed lots were calculated based on an assumption that each surface type comprises 10%, 50%, and 40% of the total developed lot area, respectively. Table 13 provides a summary of statistics for the total areas for each type of surface at the Site for both pre- and post-development scenarios. Further discussion of each component completed for the water balance assessment is provided in the following subsections.

Cambium Reference: 17281-002 July 25, 2025

**Table 13 Summary of Pre- and Post-Development Areas** 

| Type of Land Coverage    | Pre-Development Areas (m²) | Post-Development Areas (m²) |  |
|--------------------------|----------------------------|-----------------------------|--|
| Paved Area               | 811                        | 2,246                       |  |
| Roof Area                | 365                        | 1,261                       |  |
| Landscape/Vegetated Area | 3,502                      | 1,171                       |  |
| Total (m <sup>2</sup> )  | 4,678                      | 4,678                       |  |

## 7.1 Water Budget and Total Water Surplus

Based on the Thornthwaite and Mather methodology (1957), the water balance is an accounting of water in the hydrologic cycle. Precipitation (P) falls as rain and snow. It can run off towards lakes and streams (R), infiltrate to the groundwater table (I), or evaporate from the ground or be used for transpiration by vegetation (ET). When long-term average values of P, R, I, and ET are used, there is minimal or no net change to groundwater storage ( $\Delta$ S).

The annual water budget can be expressed as:

$$P = R + I + ET + \Delta S$$

Where:

P = Precipitation (mm/yr)

R = Run-off (mm/yr)

I = Infiltration (mm/yr)

ET = Evapotranspiration (mm/yr)

 $\Delta S$  = Change in soil water storage (mm/yr)

Total water surplus is defined as the difference between precipitation and evapotranspiration. It is the amount of water per unit area that can either infiltrate into on-site soils or be directed off-site as runoff. An assumption for the calculation of water surplus is that changes in soil water storage are negligible over the course of a year. It is also assumed that the catchment area for the water balance described above is completely contained within Site boundaries (i.e. the model does not account for catchment areas that extend off-site).



Cambium Reference: 17281-002 July 25, 2025

An annual water budget for the Site was calculated using the thirty-year climate normal data (1981-2010) provided by Environment Canada for the Ottawa MacDonald-Cartier International Airport (Climate ID 6106000), located approximately 114 km north (Environment Canada, 2024). A detailed table outlining the calculations is provided in Appendix I. In summary, the average annual precipitation and evapotranspiration at the Site is estimated to be 944 mm/yr and 547 mm/yr, respectively. Therefore, the water surplus at the Site is estimated to be 397 mm/yr.

#### 7.2 Annual Infiltration and Runoff

To determine the amount of water infiltrated into on-site soils annually, the total volume of water available is multiplied by an infiltration factor (IF). The total volume of water available is obtained by multiplying the water surplus value determined from the water balance described above by the total permeable landscape area at the Site. The infiltration factor, which ranges from 0 to 1, is estimated based on topography, soils and cover as per the Stormwater Management Planning and Design Manual (Ministry of the Environment, 2003). As outlined in Table 14, the infiltration factor at the Site was assigned a value of 0.6.

**Table 14 Determination of Infiltration Factor** 

| Factor                   | Value                                  |
|--------------------------|----------------------------------------|
| Topography               | Flat land, avg. slope < 0.6 m/km = 0.3 |
| Soil                     | Silty Loam = 0.2                       |
| Cover                    | Cultivated Land = 0.1                  |
| Infiltration Factor (IF) | 0.6                                    |

The annual volume of water that infiltrates at the site is calculated as follows:

 $I(m^3/yr) = Water Surplus(m/yr) * Total landscape area(m^2/yr) * Infiltration Factor$ 

The annual infiltration at the Site is expected to vary based on a number of factors (i.e. actual precipitation, variation in soil composition, soil compaction, etc.).

The annual runoff that occurs at the Site varies between permeable and impermeable surfaces. On permeable landscape surfaces, the runoff is calculated as the difference between total precipitation and annual infiltration. On impermeable surfaces where there is no



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd. Cambium Reference: 17281-002

July 25, 2025

infiltration, the runoff is calculated as 90% of precipitation, with the remaining 10% of precipitation lost directly to evaporation.

Annual infiltration and runoff volumes were calculated for the Site for both pre- and postdevelopment scenarios. Details of the calculations are provided in Appendix I. A discussion of the water balance used to calculate the infiltration and runoff volumes for each scenario is provided in Section 7.3 and Section 7.4.

## 7.3 Pre-Development Water Balance

The water balance for existing conditions at the Site is summarized in Table 15. The predevelopment infiltration rate and runoff rate was calculated to be 834 m³/yr and 1,555 m³/yr, respectively.

Table 15 Pre-Development Water Balance

| Land                | l Use             | Area<br>(m²) | Precipitation (m³) | Evapotranspiration (m³) | Infiltration<br>(m³) | Run-<br>off<br>(m³) |
|---------------------|-------------------|--------------|--------------------|-------------------------|----------------------|---------------------|
| Impervious<br>Areas | Paved<br>Area     | 811          | 766                | 77                      | -                    | 689                 |
|                     | Roof Area         | 365          | 345                | 34                      | -                    | 310                 |
| Pervious<br>Areas   | Landscape<br>Area | 3,502        | 3,306              | 1,916                   | 834                  | 556                 |
|                     | Total             | 4,678        | 4,416              | 2,027                   | 834                  | 1,555               |

### 7.4 Post-Development Water Balance

A comparison of water balances for the pre-development and post-development scenarios is summarized in Table 17. There is a net infiltration deficit of approximately 555 m³/yr, compared to the pre-development infiltration. The run-off rate upon development of the Site is projected to increase by 1,610 m³/yr.



Cambium Reference: 17281-002

July 25, 2025

**Table 16 Post-Development Water Balance** 

| Land Use            |                   | Area<br>(m²) | Precipitation (m³) | Evapotranspiration (m³) | Infiltration<br>(m³) | Run-<br>off<br>(m³) |
|---------------------|-------------------|--------------|--------------------|-------------------------|----------------------|---------------------|
| Impervious<br>Areas | Paved<br>Area     | 2,246        | 2,120              | 212                     | -                    | 1,908               |
|                     | Roof Area         | 1,261        | 1,190              | 119                     | -                    | 1,071               |
| Pervious<br>Areas   | Landscape<br>Area | 1,171        | 1,105              | 641                     | 279                  | 186                 |
|                     | Total             | 4,678        | 4,416              | 972                     | 279                  | 3,166               |

Assuming no infiltration occurring in paved and roof areas, and 10% of precipitation to be evaporated from paved and roof areas.

## 7.5 Water Balance Comparison

A comparison of water balances for the pre-development and post-development scenarios is summarized in Table 17. There is a net infiltration deficit of approximately 555 m³/yr, compared to the pre-development infiltration. The run-off rate upon development of the Site is projected to increase by 1,610 m³/yr.

Table 17 Water Balance Comparison

|                  | Precipitation (m³) | Evapotranspiration (m³) | Infiltration<br>(m³) | Run-off<br>(m³) |
|------------------|--------------------|-------------------------|----------------------|-----------------|
| Pre-Development  | 4,416              | 2,027                   | 834                  | 1,555           |
| Post-Development | 4,416              | 972                     | 279                  | 3,166           |
| Change in Volume | -                  | -1,055                  | -555                 | 1,610           |
| Change in %      | -                  | -52                     | -67                  | 104             |

## 7.6 Required Infiltration from Roof Runoff

To compensate for the post-development infiltration deficit, a portion of roof run-off water can be captured and directed towards infiltration. As the infiltration deficit volume is 555 m<sup>3</sup>/yr and the total roof run-off volume is projected to be 1,071 m<sup>3</sup>/yr, the percentage of roof run-off that is required to be redirected to maintain pre-development infiltration volumes is 52%. These details are summarized in Table 18.



Cambium Reference: 17281-002 July 25, 2025

Table 18 Requirement of Infiltration from Roof Runoff

| Volume of Pre-Development Infiltration (m³/yr)                                   | 834 |  |  |
|----------------------------------------------------------------------------------|-----|--|--|
| Volume of Post-Development Infiltration (m³/yr)                                  | 279 |  |  |
| Deficit from Pre to Post Development Infiltration (m³/yr)                        |     |  |  |
| Percentage of Roof Runoff required to match the pre-development infiltration (%) | 52  |  |  |

## 7.7 Water Balance Assessment Summary

Based on the calculations detailed in the preceding subsections, a summary of the water balance assessment is as follows:

- Impervious post-development area (roof and pavement) is projected to increase by approximately 2,331 m<sup>2</sup> when compared to pre-development conditions.
- Without implementing any mitigation measures, it is estimated that the reduction of pervious surfaces at the Site will create a net deficit in infiltration of approximately 555 m<sup>3</sup>/yr.
- To regain the lost volume of water infiltrated, a diversion of approximately 52% of roof runoff would be required to maintain pre-development water balance conditions (assuming 100% of diverted water is infiltrated).
- Implementation of Low Impact Development measures would enhance the Site's ability to
  infiltrate diverted roof run-off water into pervious areas. Due to the high groundwater levels
  however, a civil design engineer should be involved in designing any suitable infiltration
  measures across the Site.



July 25, 2025

# 8.0 Wastewater Assessment

# 8.1 Conceptual Wastewater Design

Part 8 of the Ontario Building Code (OBC) details the design, construction, operation, and maintenance of sewage systems. A conceptual peak sewage design flow was calculated following a review of OBC Table 8.2.1.3.B is summarized as follows:

- Warehouse: 150 L/day/loading bay x 4 loading bays = 600 L/day
- Factory: 75 L/employee per 8 hr shift x 16 person occupancy = 1,200 L/day
  - Total sewage design flow = 1,800 L/day

# 8.1.1 Concept Design Details

A daily sewage design flow volume of 1,800 L/day is calculated for the proposed light industrial building.

### 8.1.2 Treatment Unit

It is understood the client is proposing to use a Waterloo Biofilter advanced treatment system which includes:

- Anaerobic Digestor with Internal Pump Chamber (Model ADIPC-6000)
- Biofilter Tank (Model BFCN-4800)
- WaterNOx-LS Tank (for nitrogen removal)

### 8.1.3 Leaching Bed

Following the subsurface investigation, native soils were observed to be similar, consisting of a surficial layer of topsoil and silty sand fill to depths ranging from 0.3 to 1.0 mbgs overlying sandy clayey silt and sandy silt. Groundwater was encountered between 0.6 and 2.0 mbgs across all boreholes. Soil sample results are summarized in Section 3.2 above and have estimated percolation rates between 20 and 40 min/cm.



July 25, 2025

Considering the available land constraints and using a conservative estimated percolation rate of 40 min/cm, a partially raised Type A area bed has been conceptually designed below using the following information and calculations:

- Design flow (Q) = 1,800 L/day
- Native Soil T-time (T) = 40 min/cm
- Configuration: partially raised
- Stone area = Q/75 when Q < 3,000 L/day = 1,800/75 = 24 m<sup>2</sup>
  - Proposed concept design: 5.6 m x 4.5 m = 25.2 m<sup>2</sup>
- Mantle area (imported sand fill) = QT/400 = 1,800 x 40 / 400 = 180 m<sup>2</sup>
  - Proposed concept design: 21.6 m x 8.5 m = 183.6 m<sup>2</sup>

Based on the filter bed mantle requirement, the total bed footprint would be approximately 21.6 m by 8.5 m, as shown on Figure 7.

The Type A Area Bed will likely require to be raised above original grade. Assuming a raised height of 1.0 m, setback distances shown on Figure 7 were increased accordingly.

The area of the Site appears to provide adequate space for the installation of an on-site sewage system and appears to meet the required setback distances outlined in OBC Tables 8.2.1.6.A and 8.2.1.6.B. However, this should be considered and evaluated during the detailed sewage system design stage. The Site conditions appear feasible to install an on-site sewage system.

# 8.2 Septic System Impact Assessment

Guideline D-5-4 (Ministry of the Environment, 1996b) outlines a three-step process for assessing potential groundwater impact from individual on-site sewage systems. The first two steps involve lot size and system isolation considerations. If risk is identified through either of these two steps, the assessment must progress to the third step, which is detailed consideration of nitrate loading and contaminant attenuation.



Cambium Reference: 17281-002

July 25, 2025

# 8.3 Step One: Lot Size Consideration

As the Site size is less than 1 ha, the assessment automatically progresses to Step Two.

# 8.4 Step Two: System Isolation Considerations

Water supply at the Site and surrounding area is predominately sourced from a bedrock aquifer which is overlain by a significant layer of overburden material (Section 4.1). Given this information, it is expected that the water supply aquifer will be hydraulically isolated from the proposed septic system at the Site. Regardless of the potential isolation, based on the small lot site size and the large amount of impermeable ground surface, nitrate loading is a consideration for the Site. As such, the assessment progresses to Step Three.

# 8.4.1 Step Three: Assessment of Nitrate Loading and Contaminant Attenuation

A daily flow of 1,800 L/day of sewage effluent is anticipated at the Site. Total nitrogen (all species) ultimately converts to nitrate through the wastewater treatment process. Nitrate is considered to be the critical contaminant in sewage effluent. A nitrate loading of 40 grams/lot/day is typically used to determine the effluent loading from conventional septic systems on the receiving groundwater system. The proposed Waterloo Biofilter advanced treatment system, (Section 8.1.2), has an add-on nitrate reduction tank (WaterNOx-LS) which takes a nominal amount of additional space and can achieve between 80.3% and 91.6% reduction in total nitrogen (Appendix J). Provided the WaterNOx-LS tank is installed and using the conservative 80.3% total nitrogen reduction, the system will have a theoretical nitrate loading of 7.88 g/day. This value is used in the following equations.

A mass balance calculation is used to determine the sewage loading for nitrate on the property boundary:

$$C_t = \frac{Q_e C_e + Q_i C_i}{Q_t}$$

Where:

 $Q_t$  = Total volume ( $Q_e + Q_i$ )

Ct = Total concentration of nitrate at the property boundary



July 25, 2025

Qe = Volume of septic effluent

 $C_e$  = Concentration of nitrate in effluent (7.88 mg/L)

Q<sub>i</sub> = Volume of available dilution water

 $C_i$  = Concentration of nitrate in infiltration water (0.1 mg/L)

### 8.4.2 Estimate of Nitrate Concentrations at Lot Boundaries

The predictive assessment indicates the proposed development will result in an estimated nitrate concentration of 5.3 mg/L at lot boundaries if wastewater is treated via the proposed Waterloo Biofilter advanced treatment system and only dilution water from infiltration within permeable areas is considered. The treatment system capable of 80.3% or greater nitrate reduction is well below the ODWQS criteria of 10 mg/L using only dilution water from infiltration within permeable areas.

A summary of these results is provided in Table 19. Detailed calculations are included in Appendix I.

**Table 19 Predictive Assessment of Nitrate Concentration** 

| Variable               | Waterloo Biofilter Advanced Treatment System |
|------------------------|----------------------------------------------|
| Q <sub>e</sub> (L/day) | 1,800                                        |
| C <sub>e</sub> (mg/L)  | 7.88                                         |
| Q <sub>i</sub> (L/day) | 891                                          |
| C <sub>i</sub> (mg/L)  | 0.1                                          |
| Q <sub>t</sub> (L/day) | 2,691                                        |
| C <sub>t</sub> (mg/L)  | 5.3                                          |



Cambium Reference: 17281-002 July 25, 2025

# 9.0 Conclusions and Recommendations

Cambium was retained by the Client to complete a hydrogeological assessment for proposed redevelopment of the land located at 1386 and 1394 Greely Lane, Ottawa, Ontario. Development plans include construction of one 1,110 m<sup>2</sup> (12,000 ft<sup>2</sup>) slab-on grade building which will be divided in three 370 m<sup>2</sup> (4,000 ft<sup>2</sup>) light industrial use units.

The subsurface investigation completed at the site indicates the lithology is comprised primarily of surficial deposits of pavements or topsoil overlying a relatively thin deposit of fill overlying native deposits of clays and silts. T-times estimated from laboratory analysis of soil samples collected from the native deposits range from 20 to 40 min/cm.

Monitoring wells installed in three locations (BH105-23, BH106-23, and BH107-23) indicate water levels vary across the site and fluctuate seasonally. A minimum water level of 1.3 mbgs was measured in BH105-23 on March 15, 2023, and a maximum water level of 0.30 mbgs was measured in BH106-23 on April 19, 2024. Hydraulic testing (rising head slug tests) provided hydraulic conductivity estimates for the shallow aquifer ranging from 1.9 x10<sup>-9</sup> to 2.2 x10<sup>-7</sup> m/s with a geometric mean estimate of 1.2 x10<sup>-8</sup> m<sup>2</sup>/s.

# 9.1 Construction Dewatering

## Water Quality Analysis

Analysis of water quality samples from BH106-23 identified a number of parameters with concentrations exceeding PWQO criteria in both unfiltered and filtered samples. All parameters had concentrations below City of Ottawa storm and sanitary sewer discharge guidelines, indicating that filtration is a suitable treatment method to enable discharge to these receptors. Should on-site treatment and discharge to surface (i.e. drainage ditch) be the preferred option for dewatering, it is recommended that a water quality sample of treated water be submitted for laboratory analysis prior to discharge during construction activities to confirm the treatment system adequately reduces elevated parameters to acceptable concentrations.



Cambium Reference: 17281-002 July 25, 2025

# **Dewatering Assessment**

Due to the high groundwater levels at the Site, dewatering during both the construction phase and permanent building operation will be required. During construction, it is estimated than an average dewatering rate of 1.30 m³/day (1,300 L/day, or 0.02 L/s) will be needed to achieve dry conditions per 50 m section of footing excavation. This rate represents steady state pumping conditions and higher volumes may be required to lower Site water levels to acceptable levels during the initial stage of pumping. Additionally, the estimate does not account for any precipitation that may occur during the construction process.

For permanent operations, it is estimated that an estimated average dewatering rate of 2.2 m³/day (2,200 L/day, or 0.02 L/s) will be required to ensure water levels beneath the building remain below the frost line level (approximately 1.5 mbgs) throughout the year. It is recommended that dewatering rates be reassessed however, once building construction nears the completion stage.

The maximum estimated dewatering rate for both construction activities and long-term building operation are less than 9,500 L/day. As such, neither a PTTW nor an EASR registration will be required for the proposed development.

The monitoring wells installed for the hydrogeological assessment should be decommissioned in accordance with O.Reg. 903 prior to redevelopment of the Site.

# 9.2 Private Servicing

# Water Supply

Test Well 1 was installed on May 21, 2025, in a landscaped area in the southeast corner of the Site to a depth of 55 mbgs. The identified lithology is clay from 0 to 11.6 mbgs, boulders/hardpan from 11.6 to 14.7 mbgs, and limestone bedrock to completion depth. Three water bearing units of indeterminate thickness were identified at 22.6, 38.2, and 53 mbgs. A Cambium technician observed the installation and grouting of the well casing (no well screen was installed).



Cambium Reference: 17281-002 July 25, 2025

An 8-hour hydraulic pumping test was completed on TW1 by Cambium staff on May 29, 2025 and the pre-existing water supply well on the Site was used to monitor water levels before, during, and after the pumping test. OW1 was not used for at least 12 hours prior to the start of the pumping test, nor was it used during the test or subsequent recovery period.

The total sewage design flow for the proposed development is 1,800 L/day corresponds to an average rate of 3.75 L/min for an 8-hour business day. To account for periods of peak demand, the flow rate during the initial 15 minutes of the test was set to 5 times the average demand (approximately 19 L/min). The pumping rate was then increased and maintained at approximately 10 times the average demand (38 L/min) for the remainder of the test. The total volume of water discharged from TW1 during the pumping test was approximately 17,955 L.

Rainfall of 11.6 mm was recorded on the day of the pumping test and resulted in a gradual increase in water level in both TW1 and OW1 over the duration of the test. Water level fluctuations in TW1 and OW1 mirrored each other, both in terms of timing and magnitude.

Following pump cessation, water levels were measured for 60 minutes. The water level recovered to greater than 100% of the initial water level in both TW1 and OW1 immediately upon termination of the pumping test.

Cambium notes that the pre-existing water supply well must be appropriately abandoned with consideration to Wells Regulation when it is no longer in use.

# Water Balance

It is projected that impervious post-development area (roof and pavement) will increase by approximately 2,331 m<sup>2</sup> when compared to pre-development conditions, which will create a net deficit in infiltration to groundwater of approximately 555 m<sup>3</sup>/yr if no mitigation measures are implanted.

To regain the lost volume of water infiltrated, a diversion of approximately 52% of roof run-off would be required to maintain pre-development water balance conditions (assuming 100% of diverted water is infiltrated).

Implementation of Low Impact Development measures would enhance the Site's ability to infiltrate diverted roof run-off water into pervious areas. Due to the high groundwater levels



Cambium Reference: 17281-002 July 25, 2025

however, a civil design engineer should be involved in designing any suitable infiltration measures across the Site.

## Conceptual Wastewater Design

A daily sewage design flow volume of 1,800 L/day was calculated for the proposed light industrial building. Given the site lithology and estimated T-times, a total septic bed footprint of approximately 21.6 m by 8.5 m, with a 6,000 L septic tank and a Waterloo Biofilter advanced treatment system, will be required. The bed will be at least partially raised due to Site conditions, with the specific height to be determined during the final building design.

The predictive assessment indicates the proposed development will result in an estimated nitrate concentration of 5.3 mg/L at lot boundaries if wastewater is treated via the proposed Waterloo Biofilter advanced treatment system and only dilution water from infiltration within permeable areas is considered.

Overall, the Site conditions appear feasible to install an on-site sewage system, and there is adequate space for the installation which appears to meet the required OBC setback distances. However, this should be considered and evaluated during the detailed sewage system design stage.

It is noted that the existing septic system at the Site must be appropriately decommissioned in line with guidelines provided by the Ottawa Septic System Office.



July 25, 2025

# 10.0 Closing

We trust that the information in this submission meets your current requirements. If you have any questions regarding the contents of this report, please contact the undersigned.

Respectfully submitted,

Cambium Inc.

DocuSigned by:

C9F8935E96D14CC...

Jeremy Tracey, P.Eng.

**Project Manager** 

DocuSigned by:

677F3F2E4427404..

Kevin Warner, M.Sc., P.Geo. (Ltd), BCIN Group Manager – Water & Wastewater

DocuSigned by:

6C8CA15FD6B4444...

Warren Yoբրg, P.Eng.

Coordinator, Hydrogeologist



\cambiumincstorage.file.core.windows.net\projects\17200 to 17299\17281-002 Cassidy EW Construction Consultant Ltd - HydroG - Greely Lane\Deliverables\REPORT - HydroG\Final\2025-07-25 RPT HydroG Greely Ln - Rev1.docx



July 25, 2025

### 11.0 References

- Cambium. (2023a). Geotechnical Investigation Report 1386 & 1994 Greely Lane, Ottawa, Ontario.
- Cambium. (2023b). Phase Two Environmental Site Assessment 1386-1394 Greely Lane Ottawa, Ontario.
- Chapman, L., & Putnam, D. (1984). *Physiography of Southern Ontario*. Ontario Geological Survey.
- Cooper, H., & Jacob, C. (1946). A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History. *American Geophysical Union Transactions*, 27, 526-534.
- Environment Canada. (2024, August). *Canadian Climate Normals 1981-2010 Station Data*(Climate ID 6112340). Retrieved from

  https://climate.weather.gc.ca/climate\_normals/index\_e.html
- Freeze, R., & Cherry, J. (1979). *Groundwater*. Englewood Cliffs, NJ: Prentice-Hall.
- Hvorslev, M. (1951). Time Lag and Soil Permeability in Ground-water Observations. *Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army*, 1-50.
- Ministry of Natural Resources and Forestry. (2024). *Natural Heritage System Areas*. Retrieved from https://www.lioapplications.lrc.gov.on.ca/Natural Heritage/index.html
- Ministry of the Environment. (1996a). *Guideline D-5-5, Technical Guideline for Private Wells:*Water Supply Assessment.
- Ministry of the Environment. (1996b). Guideline D-5-4, Technical Guideline For Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment.
- Ministry of the Environment. (2003). Stormwater Management Planning and Design Manual.
- Ministry of the Environment, Conservation and Parks. (2021). 2021 Technical Rules Under the Clean Water Act.



July 25, 2025

- Ministry of the Environment, Conservation and Parks. (2024a). Source Protection Information Atlas. Retrieved from https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html
- Ministry of the Environment, Conservation and Parks. (2024b). *Water Well Information System*. Retrieved from https://www.ontario.ca/environment-and-energy/map-well-records
- Ontario Geological Survey. (2007). *Paleozoic Geology of Southern Ontario; Miscellaneous Release Data 219.* Ontario Geological Survey.
- Ontario Geological Survey. (2010). *Surficial Geology of Southern Ontario; Miscellaneous Release Data 128 Revised.* Ontario Geological Survey.
- Powers, J. P., Corwin, A. B., Schmall, P. C., & Kaeck, W. E. (2007). *Construction Dewatering and Groundwater Control.*
- van Everdingen, D. (2024). Comparison of Two Methods for Determining Long-term Well Yield in British Columbia. BC: Water Science Series.



Cambium Reference: 17281-002 July 25, 2025

### 12.0 Standard Limitations

#### **Limited Warranty**

In performing work on behalf of a client, Cambium relies on its client to provide instructions on the scope of its retainer and, on that basis, Cambium determines the precise nature of the work to be performed. Cambium undertakes all work in accordance with applicable accepted industry practices and standards. Unless required under local laws, other than as expressly stated herein, no other warranties or conditions, either expressed or implied, are made regarding the services, work or reports provided.

#### Reliance on Materials and Information

The findings and results presented in reports prepared by Cambium are based on the materials and information provided by the client to Cambium and on the facts, conditions and circumstances encountered by Cambium during the performance of the work requested by the client. In formulating its findings and results into a report, Cambium assumes that the information and materials provided by the client or obtained by Cambium from the client or otherwise are factual, accurate and represent a true depiction of the circumstances that exist. Cambium relies on its client to inform Cambium if there are changes to any such information and materials. Cambium does not review, analyze or attempt to verify the accuracy or completeness of the information or materials provided, or circumstances encountered, other than in accordance with applicable accepted industry practice. Cambium will not be responsible for matters arising from incomplete, incorrect or misleading information or from facts or circumstances that are not fully disclosed to or that are concealed from Cambium during the provision of services, work or reports.

Facts, conditions, information and circumstances may vary with time and locations and Cambium's work is based on a review of such matters as they existed at the particular time and location indicated in its reports. No assurance is made by Cambium that the facts, conditions, information, circumstances or any underlying assumptions made by Cambium in connection with the work performed will not change after the work is completed and a report is submitted. If any such changes occur or additional information is obtained, Cambium should be advised and requested to consider if the changes or additional information affect its findings or results.

When preparing reports, Cambium considers applicable legislation, regulations, governmental guidelines and policies to the extent they are within its knowledge, but Cambium is not qualified to advise with respect to legal matters. The presentation of information regarding applicable legislation, regulations, governmental guidelines and policies is for information only and is not intended to and should not be interpreted as constituting a legal opinion concerning the work completed or conditions outlined in a report. All legal matters should be reviewed and considered by an appropriately qualified legal practitioner.

#### Site Assessments

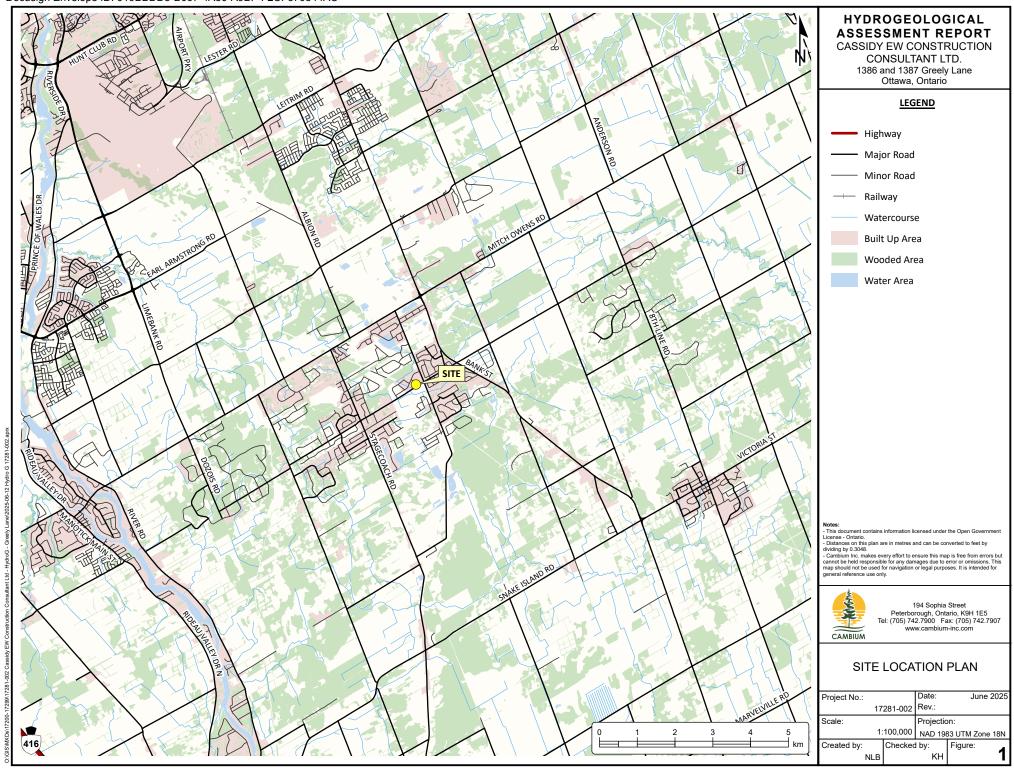
A site assessment is created using data and information collected during the investigation of a site and based on conditions encountered at the time and particular locations at which fieldwork is conducted. The information, sample results and data collected represent the conditions only at the specific times at which and at those specific locations from which the information, samples and data were obtained and the information, sample results and data may vary at other locations and times. To the extent that Cambium's work or report considers any locations or times other than those from which information, sample results and data was specifically received, the work or report is based on a reasonable extrapolation from such information, sample results and data but the actual conditions encountered may vary from those extrapolations.

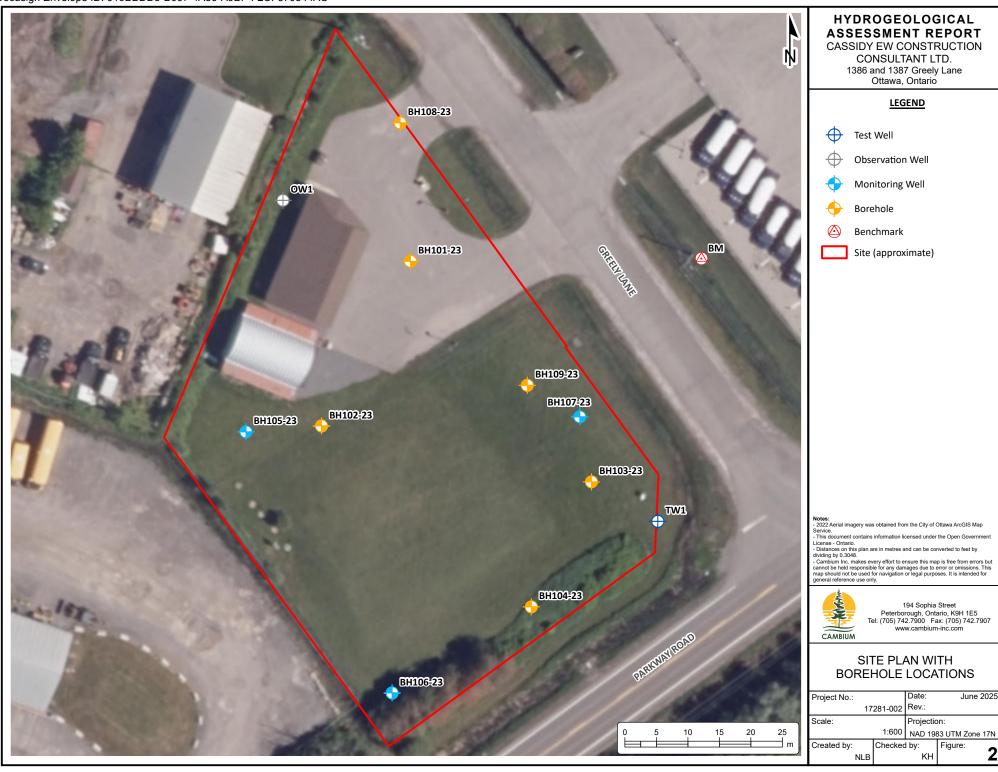
Only conditions at the site and locations chosen for study by the client are evaluated; no adjacent or other properties are evaluated unless specifically requested by the client. Any physical or other aspects of the site chosen for study by the client, or any other matter not specifically addressed in a report prepared by Cambium, are beyond the scope of the work performed by Cambium and such matters have not been investigated or addressed.

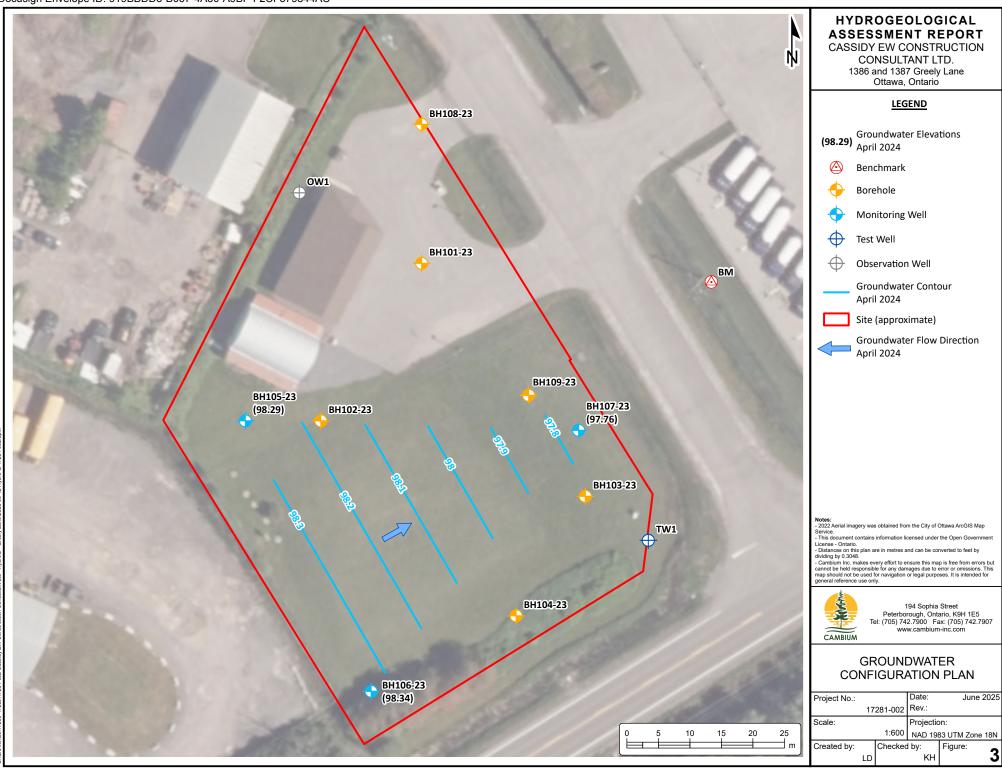
#### Reliance

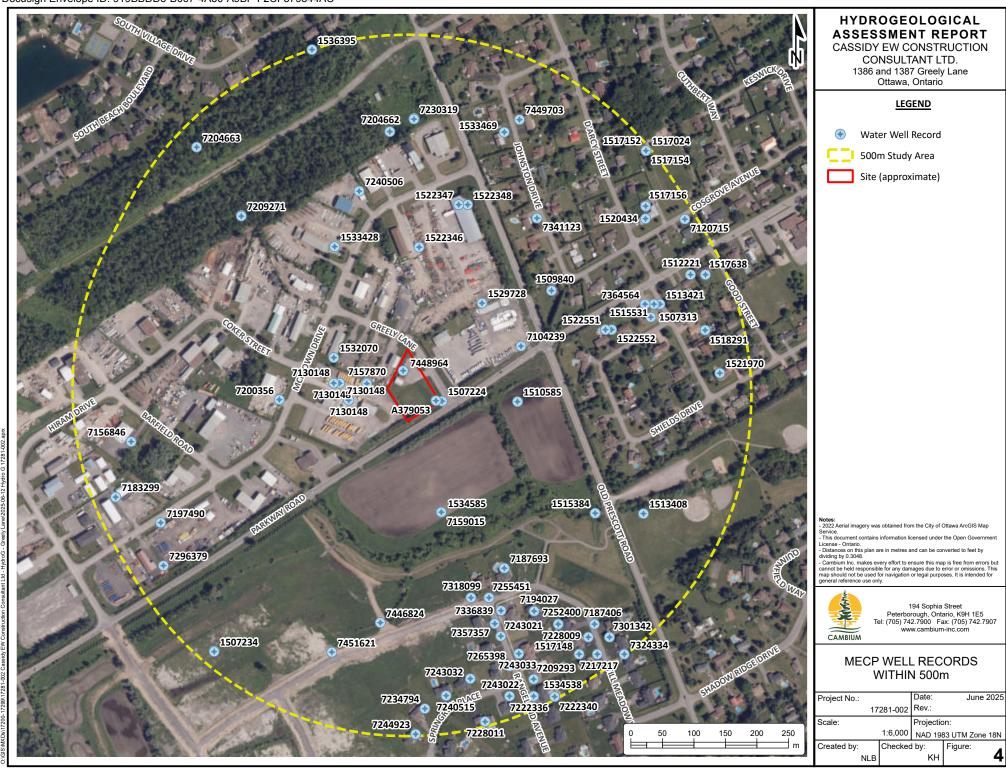
Cambium's services, work and reports may be relied on by the client and its corporate directors and officers, employees, and professional advisors. Cambium is not responsible for the use of its work or reports by any other party, or for the reliance on, or for any decision which is made by any party using the services or work performed by or a report prepared by Cambium without Cambium's express written consent. Any party that relies on services or work performed by Cambium or a report prepared by Cambium without Cambium's express written consent, does so at its own risk. No report of Cambium may be disclosed or referred to in any public document without Cambium's express prior written consent. Cambium specifically disclaims any liability or responsibility to any such party for any loss, damage, expense, fine, penalty or other such thing which may arise or result from the use of any information, recommendation or other matter arising from the services, work or reports provided by Cambium.

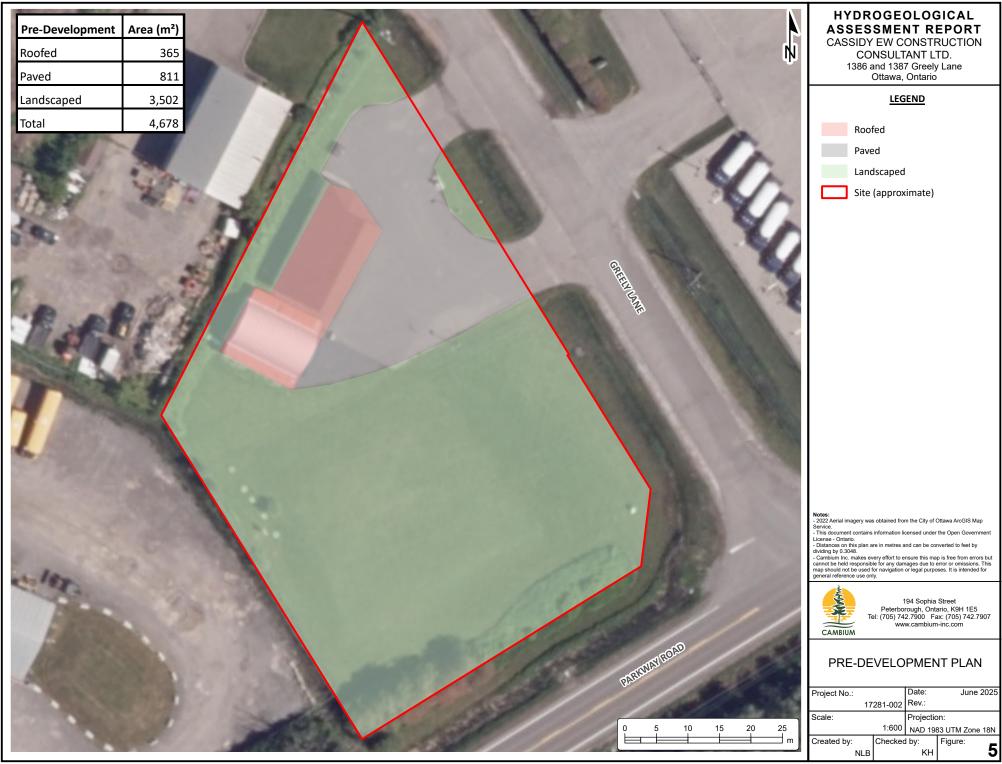
#### **Limitation of Liability**


Potential liability to the client arising out of the report is limited to the amount of Cambium's professional liability insurance coverage. Cambium shall only be liable for direct damages to the extent caused by Cambium's negligence and/or breach of contract. Cambium shall not be liable for consequential damages.

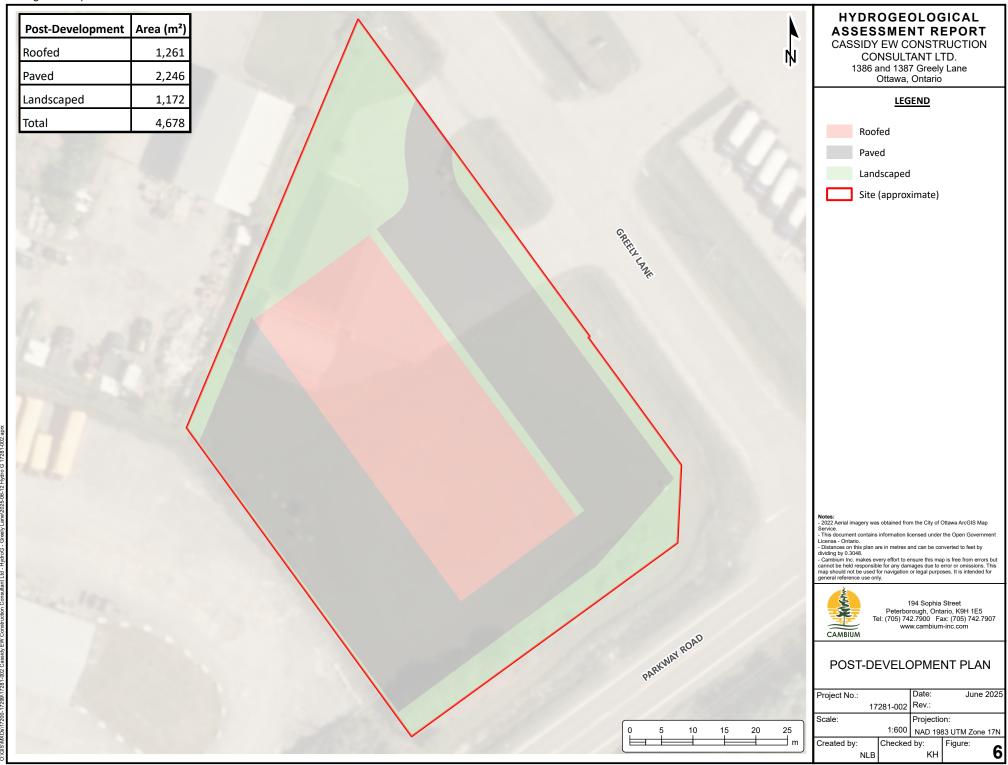

### Personal Liability

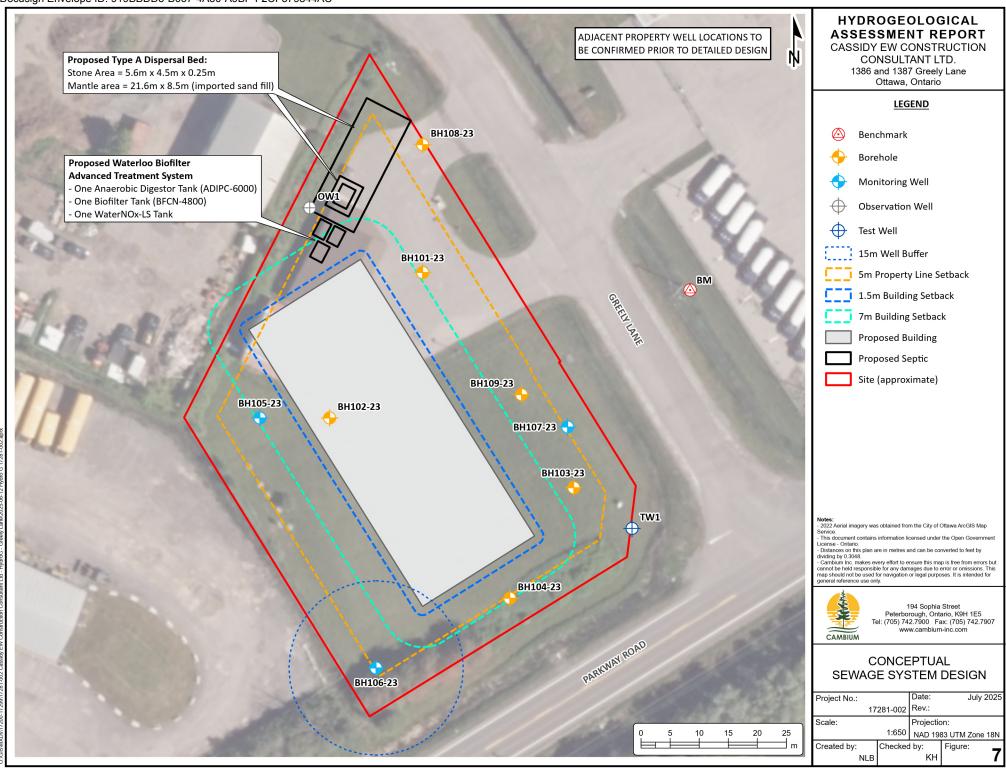

The client expressly agrees that Cambium employees shall have no personal liability to the client with respect to a claim, whether in contract, tort and/or other cause of action in law. Furthermore, the client agrees that it will bring no proceedings nor take any action in any court of law against Cambium employees in their personal capacity.





**Appended Figures** 

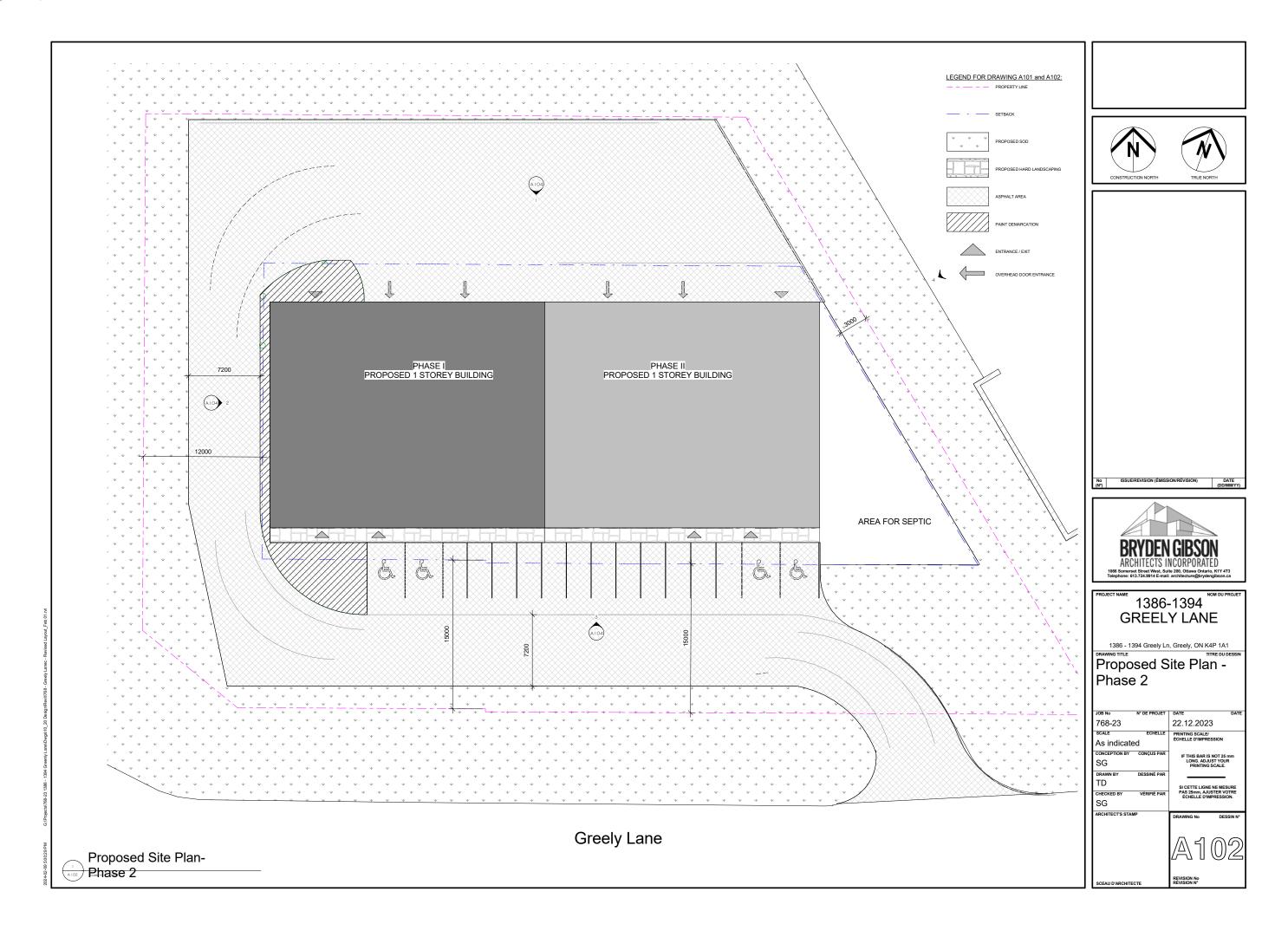




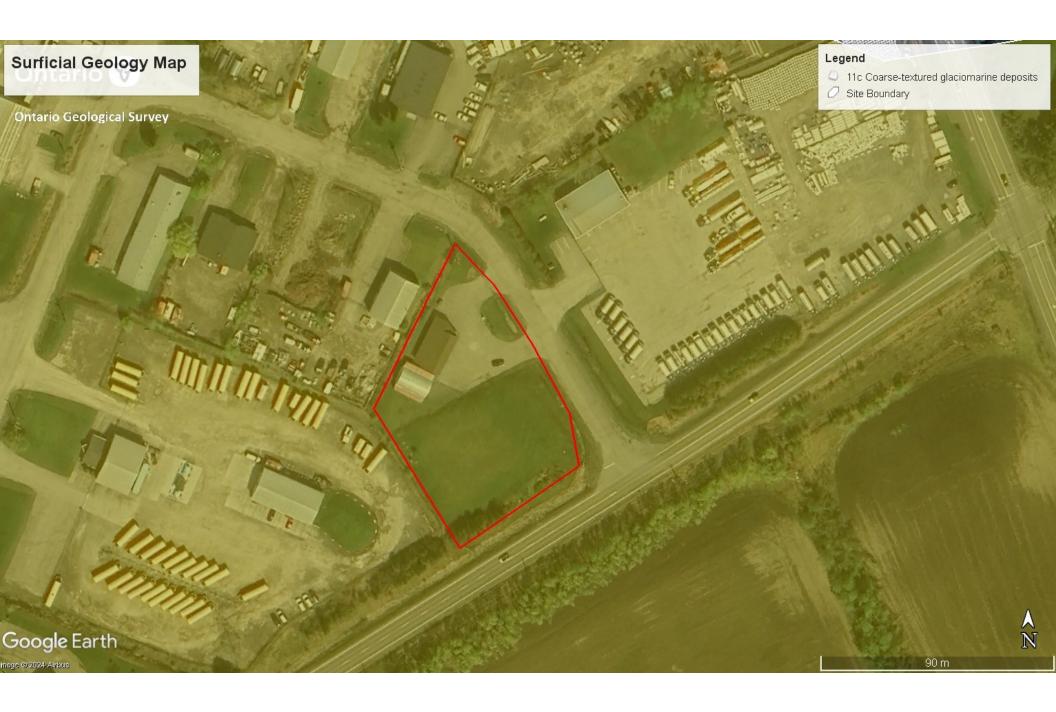







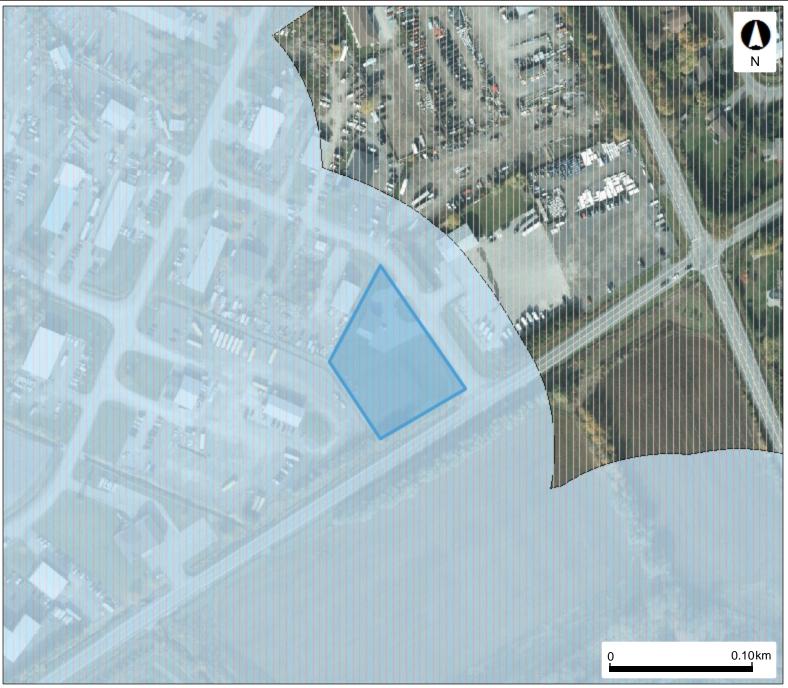


O:\GIS\MXDs\17200-17299\17281-002 Cassidy EW Construction Consultant Ltd - Hydro(








Appendix A Property and Land Information





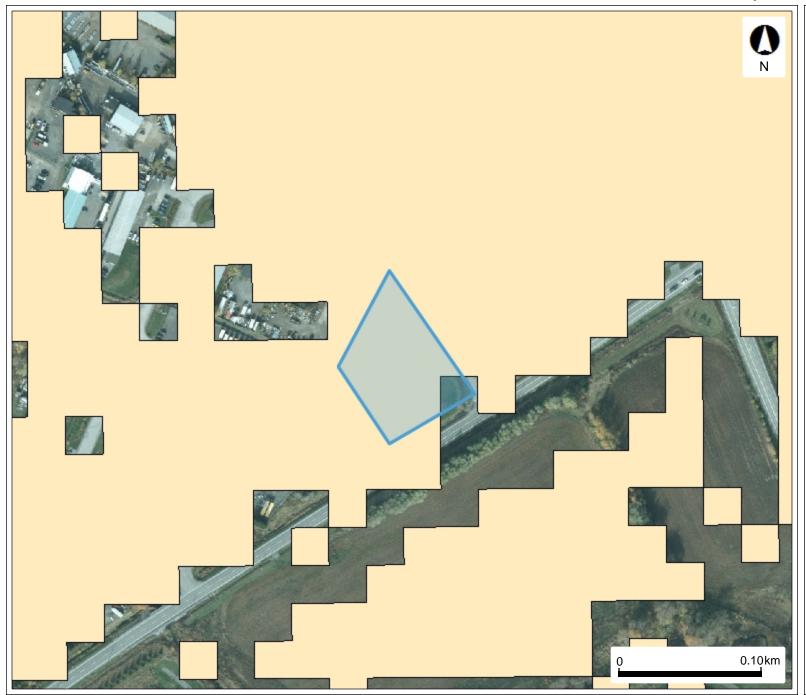


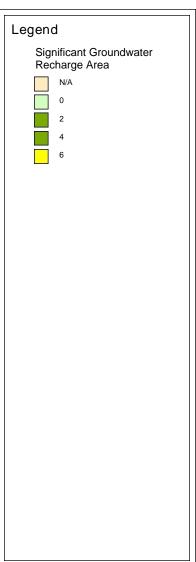



# Source Protection Information Atlas Map



Legend


Highly Vulnerable Aquifers


Intake Protection Zone 3

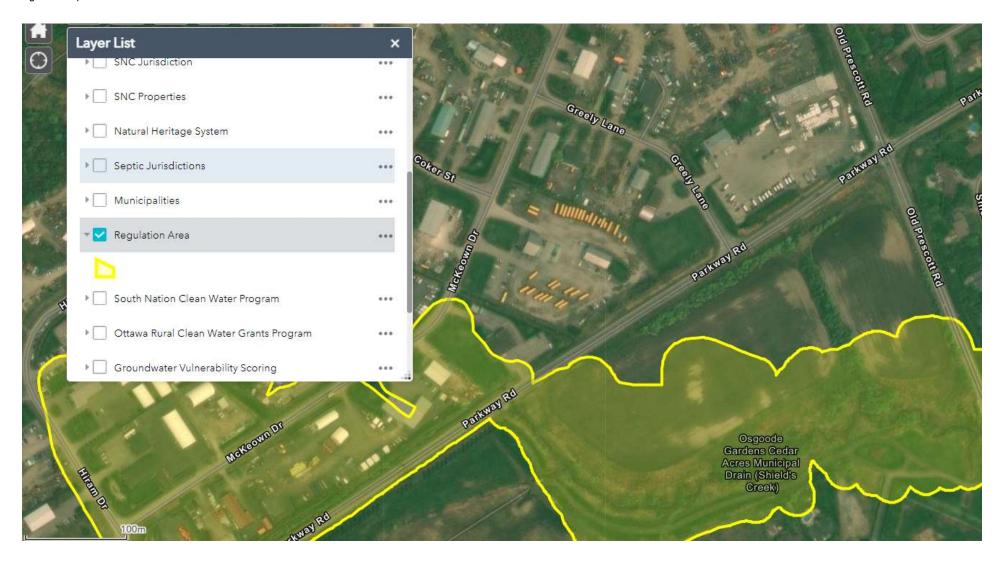
This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Ontario Ministry of Environment, Conservation and Parks (MECP) shall not be liable in any way for the use or any information on this map. of, or reliance upon, this map.



# Source Protection Information Atlas - SGRA Map






This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Ontario Ministry of Environment, Conservation and Parks (MECP) shall not be liable in any way for the use or any information on this map. of, or reliance upon, this map.



May Not be Reproduced without Permission.  $\mbox{THIS IS NOT A PLAN OF SURVEY}.$ 

Map Created: 5/27/2024

Map Center: 45.25878 N, -75.57137 W





Appendix B Borehole Logs



Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B Location: Ottawa, ON

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 99.01 mASL

Log of Borehole: BH101-23

> Page: 1 of 1

Date Completed: March 8, 2023

**UTM**: 18 T **N**: 5011868 **E**: 455169

| SUBSURFACE PROFILE |                   |                  |                                                                          |        |        |            | SAMP    |               |                           |                                                                |                                                     |
|--------------------|-------------------|------------------|--------------------------------------------------------------------------|--------|--------|------------|---------|---------------|---------------------------|----------------------------------------------------------------|-----------------------------------------------------|
|                    |                   |                  |                                                                          |        |        |            |         | Atterberg LLO | Shear Strength<br>Cu, kPa |                                                                |                                                     |
|                    |                   |                  |                                                                          |        |        | Σie        |         | 25 50 75      | nat V. rem V. e           |                                                                |                                                     |
| Elevation          | oth               | Lithology        |                                                                          | Number | g<br>g | % Recovery | SPT (N) | % Moisture    | SPT (N)                   | Well                                                           |                                                     |
| Ele                | (m)<br>Depth      | Liŧ              | Description Elevation Depth                                              | N      | Туре   | %          | SP      | 25 50 75      | 20 40 60 80               | Installation                                                   | Log Notes                                           |
| 99-                | <del></del> 0     |                  |                                                                          |        |        |            |         |               |                           |                                                                |                                                     |
|                    | "                 |                  | ASPHALT: 75 mm 98.93                                                     |        |        |            |         | 10%           |                           |                                                                |                                                     |
| 98.5               | 0.5               |                  | FILL: (SM) GRAVELLY SAND: brown, moist, some silt [base material]  98.55 | 1A     | SS     | 100        | 75      | 12.7%         | 75                        |                                                                |                                                     |
|                    | _                 |                  | FILL: (SM) SILTY SAND: grey, moist, gravelly                             | 1B     | SS     |            |         |               |                           |                                                                |                                                     |
| 98-                | <u> </u>          |                  | 97.94                                                                    | 2A     | ss     | 83         | 7       | 18.8%         | 7                         |                                                                |                                                     |
|                    | <u> </u>          |                  | (ML) sandy CLAYEY SILT:<br>grey, cohesive, w>PL, firm                    | 2B     | SS     | 03         | ,       | 18.8%         |                           |                                                                |                                                     |
| 97.5               | 1.5               |                  |                                                                          |        |        |            |         | 000           |                           |                                                                | 1.5m: ATT SS3:<br>19.8%LL 12.5%PL                   |
|                    | +                 |                  |                                                                          | 3      | SS     | 75         | 4       | 18.8%         | 4                         |                                                                |                                                     |
| 97-                | -2                |                  |                                                                          |        |        |            |         |               |                           |                                                                |                                                     |
|                    | †                 |                  |                                                                          | 44     |        |            |         | 21%           |                           |                                                                |                                                     |
| 96.5               | 2.5               |                  | 96.42                                                                    | 4A     | SS     | 67         | 9       | 19.5%         | 9                         |                                                                |                                                     |
|                    | †                 |                  | trace clay                                                               | 4B     | SS     |            |         |               |                           |                                                                |                                                     |
| 96-                | <del> </del> 3    | <b>!</b> • • • • | 95.96 (ML) SILT: grey, non-cohesive,                                     |        |        |            |         |               |                           |                                                                |                                                     |
|                    | † <sub></sub>     |                  | wet, compact, some sand, trace clay                                      | 5      | ss     | 63         | 15      | 17.1%         | • 15                      |                                                                |                                                     |
| 95.5               | 3.5               |                  |                                                                          |        |        |            |         |               |                           |                                                                |                                                     |
|                    | †                 |                  | -becomes moist, dense                                                    |        |        |            |         |               |                           |                                                                |                                                     |
| 95-                | <del> </del> 4    |                  |                                                                          | 6      | ss     | 67         | 46      | 13.3%         | <b>●</b> <sup>46</sup>    |                                                                |                                                     |
|                    | † <sub></sub>     |                  |                                                                          |        |        |            |         |               |                           |                                                                |                                                     |
| 94.5               | 4.5               |                  | -becomes very dense                                                      |        |        |            |         |               |                           |                                                                |                                                     |
| 94-                | _5                |                  |                                                                          | 7      | ss     | 88         | 88      | <b>●</b> 14%  | •                         |                                                                |                                                     |
| 34-                | $\prod_{i=1}^{n}$ |                  |                                                                          |        |        |            |         |               |                           |                                                                |                                                     |
| 93.5               | 5.5               |                  | -becomes wet, compact                                                    |        |        |            |         |               |                           |                                                                |                                                     |
| 30.0               | 0.5               |                  |                                                                          |        | SS     | 67         | 20      | 18%           | 20                        |                                                                |                                                     |
| 93-                | <u></u>           |                  | 92.91                                                                    | 8      | 55     | 67         | 20      | •             | •                         |                                                                |                                                     |
| .                  | ļ -               |                  | Borehole terminated @ 6.1 mbgs <sup>6.10</sup>                           |        |        |            |         | 1             |                           |                                                                |                                                     |
| 92.5               | 6.5               |                  | target depth achieved.                                                   |        |        |            |         |               |                           |                                                                |                                                     |
|                    | +                 |                  |                                                                          |        |        |            |         |               |                           |                                                                | Borehole caved at 2.1 mbgs. Groundwater             |
| 92-                | 7                 |                  |                                                                          |        |        |            |         |               |                           |                                                                | encountered at 1.1<br>mbgs following<br>completion. |
|                    | +                 |                  |                                                                          |        |        |            |         |               |                           |                                                                | completion.                                         |
| 91.5               |                   |                  |                                                                          |        |        |            |         |               | GRAINSIZE S               | AMPLE I GRAVEL I SANI                                          | D   SILT   CLAY                                     |
|                    |                   |                  |                                                                          |        |        |            |         |               | DISTRIBUTION              | SAN   SAN   SAN   SS1B   20   53   SS3   0   22   SS6   0   19 | 57 21<br>77 4                                       |
|                    |                   |                  |                                                                          |        |        |            |         |               | _                         |                                                                |                                                     |



Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B Location: Ottawa, ON

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Log of Borehole:

Page: 1 of 1

BH102-23

March 8, 2023

Elevation: 98.72 mASL **Date Completed:** 

**UTM**: 18 T **N**: 5011843 **E**: 455153

SUBSURFACE PROFILE SAMPLE Atterberg LLO Limits (%) PLO PI Atterberg Shear Strength Cu, kPa 25 50 75 20 40 60 80 Recovery Lithology  $\widehat{z}$ (m) Depth SPT (N) Well % Moisture SPT Elevation Description Installation Log Notes 25 50 75 20 40 60 80 98.7 0 1A 98.62 TOPSOIL: 100 mm 0.10 FILL: (SM) SILTY SAND: 63 11 • 1B SS brown, wet, compact, gravelly, with roots 98.2 0.5 SS 2A 97.75 97.7 0.97 92 4 (ML) sandy CLAYEY SILT: 2B SS grey, cohesive, w>PL, firm 97.2 1.5 3 SS 75 4 96.7-2 -becomes soft 96.2 2.5 4 SS 67 3 95.7 3 (ML) SILT: grey, non-cohesive, wet, compact, some sand, trace 5 SS 42 18 clav 95.2 3.5 -becomes very dense 94.7 6 SS 71 63 94.2 4.5 7 SS 79 69 Õ • 93.7--5 93.2 5.5 SS • 8 75 56 92.7--6 Borehole terminated @ 6.1 mbgs <sup>6.10</sup> target depth achieved. 92.2 6.5 Borehole caved at 4.0 mbgs. Groundwater measured at 1.5 mbgs following completion. 91.7 91.2 GRAINSIZE SAMPLE GRAVEL SAND | SILT | CLAY



Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 98.71 mASL

Log of Borehole: BH103-23

Page: 1 of 1

Date Completed: March 8, 2023

| BIUM | Location: Ottawa, ON | UTM: | 18 T | N: | 5011831 | <b>E</b> : 455195 |
|------|----------------------|------|------|----|---------|-------------------|
|      |                      |      |      |    |         |                   |

| SUBSURFACE PROFILE        |           |                                                                     |        |      |            | SAMP    |                                                    |                                              |                       |                                                                    |
|---------------------------|-----------|---------------------------------------------------------------------|--------|------|------------|---------|----------------------------------------------------|----------------------------------------------|-----------------------|--------------------------------------------------------------------|
| c                         | >         |                                                                     |        |      | very       |         | Atterberg LLO<br>Limits (%) PLO<br>PIO<br>25 50 75 | Shear Strength<br>Cu, kPa<br>nat V. rem V. 9 |                       |                                                                    |
| Elevation<br>(m)<br>Depth | Lithology | Description Elevation Depth                                         | Number | Туре | % Recovery | SPT (N) | % Moisture<br>25 50 75                             | SPT (N)<br>20 40 60 80                       | Well<br>Installation  | Log Notes                                                          |
| 00.7                      |           |                                                                     |        |      |            |         |                                                    |                                              |                       |                                                                    |
| 98.70                     |           | TOPSOIL: 300 mm                                                     | 1A     | ss   |            |         | 39.1%                                              | 2                                            |                       |                                                                    |
| 98.2 - 0.5                |           | FILL: (SM) SILTY SAND: grey, wet, trace gravel                      | 1B     | SS   | 67         | 2       | 22%                                                |                                              |                       |                                                                    |
| †                         |           | 97.72                                                               | 2A     | SS   |            |         | 22.4%                                              |                                              |                       |                                                                    |
| 97.7 + 1                  |           | (ML) sandy CLAYEY SILT: grey, cohesive, w>PL, firm                  | 2B     | SS   | 79         | 4       | 19.3%                                              | •                                            |                       |                                                                    |
| 97.2 + 1.5                |           | -becomes stiff                                                      |        |      |            |         |                                                    |                                              |                       |                                                                    |
| 96.7—2                    |           |                                                                     | 3      | ss   | 88         | 8       | 16.7%                                              | • <sup>8</sup>                               |                       |                                                                    |
|                           |           | -decrease in clay content,<br>becomes CL-ML                         |        |      |            |         |                                                    |                                              |                       |                                                                    |
| 96.2 + 2.5                |           |                                                                     | 4      | SS   | 92         | 10      | 15.6%                                              | • 10                                         |                       |                                                                    |
| 95.7—3                    |           | 95.66                                                               |        |      |            |         | 1                                                  |                                              |                       |                                                                    |
| 95.2 - 3.5                |           | (ML) sandy SILT: grey,<br>non-cohesive, wet, compact,<br>trace clay | 5      | ss   | 88         | 17      | 14.3%                                              | 17                                           |                       |                                                                    |
| 94.7 - 4                  |           |                                                                     | 6      | SS   | 79         | 15      | 14.1%                                              | 15                                           |                       |                                                                    |
| 94.2 + 4.5                |           | -becomes dense                                                      |        |      |            |         | 1                                                  |                                              |                       |                                                                    |
| 93.7—5                    |           |                                                                     | 7      | SS   | 71         | 39      | 13.6%                                              | 39                                           |                       |                                                                    |
| 93.2 + 5.5                |           |                                                                     |        |      |            |         | _                                                  |                                              |                       |                                                                    |
| 92.7—6                    |           | 92.61                                                               | 8      | ss   | 71         | 47      | 13.7%                                              | 47                                           |                       |                                                                    |
|                           |           | Borehole terminated @ 6.1 mbgs 6.10                                 |        |      |            |         |                                                    |                                              |                       |                                                                    |
| 92.2 + 6.5                |           | target depth achieved.                                              |        |      |            |         |                                                    |                                              |                       | Borehole caved at 4.9                                              |
| 91.7—7                    |           |                                                                     |        |      |            |         |                                                    |                                              |                       | mbgs. Groundwater<br>measured at 0.9 mbgs<br>following completion. |
| †                         |           |                                                                     |        |      |            |         |                                                    |                                              |                       |                                                                    |
| 91.2                      | 1         | ı                                                                   |        | ı    | 1          | 1       |                                                    | GRAINSIZE S. DISTRIBUTION                    | AMPLE I GRAVEL I SANI | O SILT CLAY                                                        |
|                           |           |                                                                     |        |      |            |         |                                                    |                                              |                       |                                                                    |



Client: Construction

Contractor: OGS Inc.

**Project No.:** 17281-001 - B

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 98.78 mASL

Page:

BH104-23 1 of 1

3

Date Completed:

Log of Borehole:

March 8, 2023

**Location**: Ottawa, ON **UTM**: 18 T **N**: 5011812 **E**: 455184

|                           | SUE       | SURFACE PROFILE                                                       |          |          |            | SAMP    | LE                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
|---------------------------|-----------|-----------------------------------------------------------------------|----------|----------|------------|---------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|
| Elevation<br>(m)<br>Depth | Lithology | Description Elevation                                                 | Number   | Туре     | % Recovery | SPT (N) | Atterberg LLO Limits (%) PLO | Shear Strength<br>Cu, kPa<br>nat V. to the control of the | Well                                     |                                                                    |
| (m)<br>Dep                | Ë         | Description Depth                                                     | Ž        | Ţ        | %          | S       | 25 50 75                                                         | 20 40 60 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Installation                             | Log Notes                                                          |
| 98.8—0                    |           | TOPSOIL: 125 mm 98.65                                                 | 1A<br>1B | SS<br>SS |            |         | 38.1%                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                    |
| 98.3 - 0.5                |           | FILL: (SM) SILTY SAND: brown, wet, very loose                         | 1C       | SS       | 42         | 3       | 31.3%                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
|                           |           | 97.81                                                                 | 2A       | SS       |            |         | 20.7%                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
| 97.8 1                    |           | (ML) sandy CLAYEY SILT: grey, cohesive, w>PL, firm                    | 2B       | SS       | 75         | 4       | 20%                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
| 97.3 - 1.5                |           |                                                                       | 3        | SS       | 79         | 4       | 18.2%                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                    |
| 90.0                      |           | -decrease in clay content,<br>becomes CL-ML, soft                     |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 2.3m: ATT SS4:                                                     |
| 96.3 - 2.5                |           |                                                                       | 4        | SS       | 100        | 3       | 18%                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | 18.5%LL 13.1%PL                                                    |
| 95.8 - 3                  |           | -100 mm silty sand seam                                               |          |          |            |         | 16.3%                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                    |
| 95.3 + 3.5                |           | (ML) sandy SILT: grey,<br>non-cohesive, wet, compact,<br>trace clay   | 5        | SS       | 83         | 10      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
| 94.8 4                    |           |                                                                       | 6        | ss       | 75         | 26      | 14.3%                                                            | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                    |
| 94.3 + 4.5                |           |                                                                       |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
| 93.8 - 5                  |           |                                                                       | 7        | SS       | 83         | 28      | 13.9%                                                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                    |
| 93.3 + 5.5                |           | -becomes dense                                                        |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
| 92.8—6                    |           | 92.58                                                                 | 8        | ss       | 79         | 39      | 13.9%                                                            | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                    |
| 92.3 + 6.5                |           | Borehole terminated @ 6.1 mbgs <sup>6.10</sup> target depth achieved. |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |
|                           |           |                                                                       |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | Borehole caved at 4.6<br>mbgs. Groundwater<br>measured at 0.6 mbgs |
| 91.8 7                    |           |                                                                       |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | following completion.                                              |
| 91.3                      |           |                                                                       |          | <u> </u> | <u> </u>   |         |                                                                  | GRAINSIZE SA<br>DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AMPLE GRAVEL SAN<br>SS4 0 25<br>SS6 0 22 | D   SILT   CLAY   57   18   74   4                                 |
|                           |           |                                                                       |          |          |            |         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                    |



Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B

Location: Ottawa, ON

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 98.91 mASL

Log of Borehole: Page:

1 of 1

BH105-23

**Date Completed:** March 8, 2023

**UTM**: 18 T **N**: 5011843 **E**: 455141

SUBSURFACE PROFILE SAMPLE Atterberg LLO Shear Strength Cu, kPa

|                  |         |           |                                                                   |      |      | 1 🖻       |          | ery        |             | 25 50 75               | 20 40 60 80                      |                               |                                     |
|------------------|---------|-----------|-------------------------------------------------------------------|------|------|-----------|----------|------------|-------------|------------------------|----------------------------------|-------------------------------|-------------------------------------|
| Elevation<br>(m) | Depth   | Lithology | Description Elevatic<br>Dept                                      |      | Type | CSV (ppm) | OV (ppm) | % Recovery | SPT (N)/DCI | % Moisture<br>25 50 75 | SPT (N) /<br>DCPT<br>20 40 60 80 | Well<br>Installation          | Log Notes                           |
| 98.9             | -0      |           |                                                                   |      |      |           |          |            |             | 37.1%                  |                                  | Сар                           |                                     |
|                  |         |           | <b>TOPSOIL:</b> 150 mm 98.7                                       | -    | SS   | ND        | ND       |            | 1           | •                      |                                  | Bentonite Plug                |                                     |
| 98.4             | 0.5     |           | FILL: (SM) SILTY SAND: brown, wet, loose, some gravel, trace clay | 1B   | ss   | ND        | ND       | 67         | 7           | 19.3%                  | • 7                              | Riser                         |                                     |
| 97.9             | -<br>-1 |           | -becomes grey, decrease in silt content                           | 2A   | SS   | ND        | ND       | 63         | 11          | 12.1%                  | 11                               |                               |                                     |
|                  |         |           |                                                                   | 2B   | ss   | ND        | ND       | 63         | ''          | 15.4%                  | •                                | Sand                          |                                     |
| 97.4 🕂           | 1.5     |           | 97.3                                                              |      |      | -         | -        |            | -           |                        |                                  | 4324 <u> </u>                 |                                     |
| 96.9             | -2      |           | (ML) sandy CLAYEY SILT: grey, cohesive, w>PL, firm                | 3    | ss   | ND        | ND       | 92         | 4           | 19.9%                  | • 4                              | Sand<br>Pack<br>PVC<br>Screen | Groundwater<br>measured at 2.0 mbgs |
|                  |         |           |                                                                   |      |      |           | -        |            | -           |                        |                                  | 141                           | following completion.               |
| †                |         |           | 96.4                                                              | 7 4A | SS   | ND        | ND       |            |             | 20%                    |                                  | 11                            |                                     |
| 96.4             | 2.5     |           | (ML) SILT: grey, non-cohesive, wet, loose, some sand, trace clay  |      | ss   | ND        | ND       | 63         | 5           | 18.1%                  | • 5                              |                               |                                     |
| 95.9             | -3      |           | -becomes compact                                                  |      | ļ    | !         |          |            |             |                        |                                  | Cap                           |                                     |
|                  |         |           | Joseph Company                                                    | 5    | SS   | ND        | ND       | 50         | 16          | 16.1%                  | <b>•</b> 16                      | . L. <b>ж</b> Оар             |                                     |
| 95.4             | 3.5     |           | 95.2                                                              | 5    |      |           |          |            |             |                        |                                  |                               |                                     |
| 94.9             | -4      |           | Borehole terminated @ 3.7 mbgs starget depth achieved.            | 6    |      |           |          |            |             |                        |                                  |                               |                                     |
| 94.4             | 4.5     |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| <b>│</b>         |         |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| 93.9             | -5      |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| 93.4             | 5.5     |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| 92.9             | -6      |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| 92.4             | 6.5     |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| 91.9             | -7      |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
|                  | -       |           |                                                                   |      |      |           |          |            |             |                        |                                  |                               |                                     |
| 91.4 上           |         |           | l                                                                 |      | 1    | 1         |          | 1          |             |                        | GRAINSIZE IS                     | I<br>SAMPLE I GRAVEL I SAN    | ID SILT CLAY                        |
| 1                |         |           |                                                                   |      |      |           |          |            |             |                        | DISTRIBUTION                     |                               |                                     |



Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Log of Borehole: Page:

1 of 1

BH106-23

Elevation: 98.64 mASL

Date Completed:

March 7, 2023

Location: Ottawa, ON **UTM**: 18 T **N**: 5011800 **E**: 455161

|                           |           |                                                                |          |      | S         |          |            |              |                                                                                                      |                           |                                                              |
|---------------------------|-----------|----------------------------------------------------------------|----------|------|-----------|----------|------------|--------------|------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------|
| Elevation<br>(m)<br>Depth | Lithology | Description Elevation Depth                                    | Number   | Type | CSV (ppm) | OV (ppm) | % Recovery | SPT (N)/DCPT | Atterberg LO Shear Stren. Cu, kPa nat hem?  25 50 75 20 40 60 8  8 PT (N) / DCP  25 50 75 20 40 60 8 | T Well                    | Log Notes                                                    |
| 98.60                     |           | TOPSOIL: 125 mm 98.51                                          | 1A<br>1B | SS   | ND<br>ND  | ND<br>ND |            |              | 19.4%                                                                                                | Cap                       |                                                              |
| 98.1 - 0.5                |           | FILL: (SM) SILTY SAND: brown, wet, very loose, trace gravel    | 1C       | ss   | ND        | ND       | 54         | 3            | 31.1%                                                                                                | Plug<br>Riser             |                                                              |
| 97.6 1                    |           | 97.78  (ML) sandy CLAYEY SILT: grey, cohesive, w>PL, soft      | 2A<br>2B | SS   | ND<br>ND  | ND<br>ND | 75         | 3            | 22.9%                                                                                                |                           |                                                              |
| 97.1 - 1.5                |           | -becomes firm                                                  | 3        | ss   | ND        | ND       | 100        | 5            | 18.3%                                                                                                | Sand<br>Pack<br>PVC       | Groundwater<br>measured at 1.5 mbgs<br>following completion. |
| 96.6—2                    |           |                                                                |          |      |           |          |            |              |                                                                                                      | Screen                    |                                                              |
| 96.1 - 2.5                |           |                                                                | 4        | SS   | ND        | ND       | 92         | 6            | 19.1%                                                                                                |                           |                                                              |
| 95.6—3                    |           | 95.59  (ML) sandy SILT: grey, non-cohesive, wet, compact,      |          |      | NID.      |          | 75         | 45           | 15.8%                                                                                                | Сар                       |                                                              |
| 95.1 - 3.5                |           | general trace clay  94.98  Borehole terminated @ 3.7 mbgs 3.66 | 5        | SS   | ND        | ND       | 75         | 15           | •                                                                                                    |                           |                                                              |
| 94.6 - 4                  |           | target depth achieved.                                         |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 94.1 + 4.5                |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 93.6—5                    |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 93.1 - 5.5                |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 92.6—6                    |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 92.1 - 6.5                |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 91.6 - 7                  |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |
| 91.1                      |           |                                                                |          |      |           |          |            |              | GRAINSIZ<br>DISTRIBUTIO                                                                              | E [SAMPLE   GRAVEL   SAIN | ND   SILT   CLAY                                             |
|                           |           |                                                                |          |      |           |          |            |              |                                                                                                      |                           |                                                              |



Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B

Location: Ottawa, ON

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 98.12 mASL

**UTM**: 18 T **N**: 5011845 **E**: 455203

Log of Borehole: BH107-23

Page: 1 of 1

Date Completed: March 8, 2023

| SUBSURF                          |                                                                                         |          |          |           | S              |            |              |                                                                  |                                                                  |                                   |                                                              |
|----------------------------------|-----------------------------------------------------------------------------------------|----------|----------|-----------|----------------|------------|--------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|
| Elevation (m) Depth Lithology    | Description Elevation Depth                                                             | Number   | Туре     | CSV (ppm) | OV (ppm)       | % Recovery | SPT (N)/DCPT | Atterberg LLO Limits (%) PLO | Shear Strength Cu, kPa  104 0 60 80  SPT (N) / DCPT  20 40 60 80 | Well<br>Installation              | Log Notes                                                    |
| 97.6 - 0.5 FILL: (hrown, (ML) s  | SOIL: 75 mm 98.04<br>(SM) SILTY SAND:<br>1, wet, trace clay 97.82<br>sandy CLAYEY SILT: | 1A<br>1B | SS<br>SS | ND<br>ND  | ND<br>ND<br>ND | 79         | 6            | 53.8%<br>24%                                                     | • <sup>6</sup>                                                   | Cap<br>Bentonite<br>Plug<br>Riser |                                                              |
| 97.1—1                           | cohesive, w>PL, stiff                                                                   | 2        | SS       | ND        | ND             | 79         | 9            | 15.9%                                                            | 9                                                                |                                   |                                                              |
| 96.6 + 1.5<br>+<br>96.1 - 2      | mes firm                                                                                | 3        | SS       | ND        | ND             | 100        | 7            | 15,4%                                                            | • 7                                                              | Sand<br>Pack                      | Groundwater<br>measured at 1.8 mbgs<br>following completion. |
| 95.6 - 2.5 (ML) s non-co trace o | sandy SILT: grey, phesive, wet, compact,                                                | 4        | ss       | ND        | ND             | 75         | 17           | 15,1%                                                            | • 17                                                             | PVC<br>Screen                     |                                                              |
| 94.6 - 3.5                       | 94.46<br>hole terminated @ 3.7 mbgs <sup>3.66</sup>                                     | 5        | SS       | ND        | ND             | 63         | 16           | 14.8%                                                            | 16                                                               | vap                               |                                                              |
| 94.1—4<br>+<br>93.6 — 4.5        | et depth achieved.                                                                      |          |          |           |                |            |              |                                                                  |                                                                  |                                   |                                                              |
| 93.1 - 5                         |                                                                                         |          |          |           |                |            |              |                                                                  |                                                                  |                                   |                                                              |
| 92.6 + 5.5 + 92.1 - 6            |                                                                                         |          |          |           |                |            |              |                                                                  |                                                                  |                                   |                                                              |
| 91.6 + 6.5                       |                                                                                         |          |          |           |                |            |              |                                                                  |                                                                  |                                   |                                                              |
| 91.1 — 7                         |                                                                                         |          |          |           |                |            |              |                                                                  | GRAINSIZE S                                                      | AMPLE I GRAVEL I SANI             | D   SILT   CLAY                                              |



Cassidy EW

Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B

Location: Ottawa, ON

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 99.06 mASL

**UTM**: 18 T **N**: 5011890

**E**: 455169

Log of Borehole: BH108-23

Page: 1 of 1

**Date Completed:** March 8, 2023

SUBSURFACE PROFILE SAMPLE Atterberg LLO Limits (%) PLO PIO Shear Strength Cu, kPa 25 50 75 20 40 60 80 Recovery Lithology  $\widehat{z}$ (m) Depth SPT (N) Well % Moisture SPT Description Installation Log Notes 25 50 75 20 40 60 80 99.1 0 99.01 ASPHALT: 50 mm 0.05 FILL: (SM) GRAVELLY SAND, 14.2% brown, wet, some silt [base material] 1A SS 100 64 98.6 0.5 98.45 1B ss FILL: (SM) SAND and SILT: 98.1 2A SS 1.07 (ML) sandy CLAYEY SILT: 67 3 grey, non-cohesive, w>PL, firm ss 97.6 1.5 Borehole terminated @ 1.5 mbgs target depth achieved. 97.1--2 Borehole remained open. Groundwater measured at 0.8 mbgs following completion. 96.6 2.5 96.1-95.6 3.5 95.1-94.6 4.5 94.1--5 93.6 5.5 93.1--6 92.6 6.5 92.1-91.6 GRAINSIZE SAMPLE GRAVEL DISTRIBUTION SS1B 0



Cassidy EW

Client: Construction

Contractor: OGS Inc.

Project No.: 17281-001 - B

Location: Ottawa, ON

Project Name: 1386 & 1394 Greely Lane

Method: Track Mounted Hollow Stem Auger

Elevation: 98.60 mASL

**UTM**: 18 T **N**: 5011847 **E**: 455186

Log of Borehole: BH109-23

> Page: 1 of 1

Date Completed: March 7, 2023

| ,                       | SUBSURFACE PROFILE                                        | SAMPLE           |      |            |         |               |                                   |                      |                                                                    |
|-------------------------|-----------------------------------------------------------|------------------|------|------------|---------|---------------|-----------------------------------|----------------------|--------------------------------------------------------------------|
|                         |                                                           |                  |      |            |         | Atterberg LLO | Shear Strength<br>Cu, kPa         |                      |                                                                    |
|                         |                                                           |                  |      | ery        |         | 25 50 75      | nat V.<br>rem V. ♦<br>20 40 60 80 |                      |                                                                    |
| Elevation (m) Depth     | Description                                               | ution Number     | l g  | % Recovery | SPT (N) | % Moisture    | SPT (N)                           | Well                 |                                                                    |
| Elevati<br>(m)<br>Depth | Description Elevi                                         | epth Z           | Туре | %          | S       | 25 50 75      | 20 40 60 80                       | Installation         | Log Notes                                                          |
| 98.6—0                  |                                                           |                  | _    |            |         | 1             |                                   |                      |                                                                    |
|                         | TOPSOIL: 915 mm                                           | 1                | ss   | 25         | 2       | 44.3%         | 2                                 |                      |                                                                    |
| 98.1 + 0.5              |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| +                       |                                                           | 97.69            |      |            |         | 28.9%         |                                   |                      |                                                                    |
| 97.6 1                  | FILL: (SM) SILTY SAND: grey, wet                          | 0.91 2A<br>97.58 | SS   | 83         | 3       | 20.4%         | 3                                 |                      |                                                                    |
| 97.1 + 1.5              | (ML) sandy CLAYEY SILT:<br>grey, non-cohesive, w>PL, soft | 1.02 2B          | SS   | 03         |         |               |                                   |                      |                                                                    |
|                         | Borehole terminated @ 1.5 mbgs target depth achieved.     | 1.52             |      |            |         |               |                                   |                      |                                                                    |
| 96.6—2                  |                                                           |                  |      |            |         |               |                                   |                      | Borehole remained                                                  |
|                         |                                                           |                  |      |            |         |               |                                   |                      | open. Groundwater<br>measured at 1.1 mbgs<br>following completion. |
| 96.1 + 2.5              |                                                           |                  |      |            |         |               |                                   |                      | Tonorning compressions                                             |
| 95.6—3                  |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
|                         |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 95.1 + 3.5              |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
|                         |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 94.6 4                  |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 94.1 + 4.5              |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 4.0                     |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 93.6 - 5                |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
|                         |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 93.1 + 5.5              |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 92.6 6                  |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| -                       |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 92.1 + 6.5              |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
|                         |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 91.6 7                  |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
| 91.1                    |                                                           |                  |      |            |         |               |                                   |                      |                                                                    |
|                         |                                                           |                  |      |            |         |               | GRAINSIZE S                       | AMPLE I GRAVEL I SAN | D   SILT   CLAY                                                    |



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

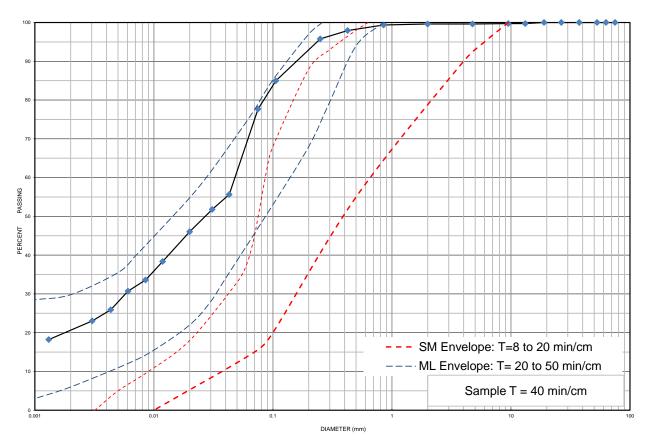
Cambium Reference: 17281-002

July 25, 2025

|              |     | App  | endi | k C  |
|--------------|-----|------|------|------|
| Grain Size A | nal | /sis | Resu | ılts |






Project Number: 17281-002 Client: Cassidy E.W. Construction Consultant Ltd.

Project Name: Hydrogeological Assessment - 1386 & 1394 Greely Lane, Ottawa

Sample Date: March 7-8, 2023 Sampled By: Farhan Imtiaz - Cambium Inc.

**Location:** BH 101-23 SS 3 **Depth:** 1.5 m to 2.1 m **Lab Sample No:** S-23-0475

| UNIFI                   | ED SOIL CLASSIF                               | ICATION SYSTE | М      |      |        |
|-------------------------|-----------------------------------------------|---------------|--------|------|--------|
| CLAV 9 CH T (-0.075 mm) | SAND (<4.75 mm to 0.075 mm) GRAVEL (>4.75 mm) |               |        |      |        |
| CLAY & SILT (<0.075 mm) | FINE                                          | MEDIUM        | COARSE | FINE | COARSE |



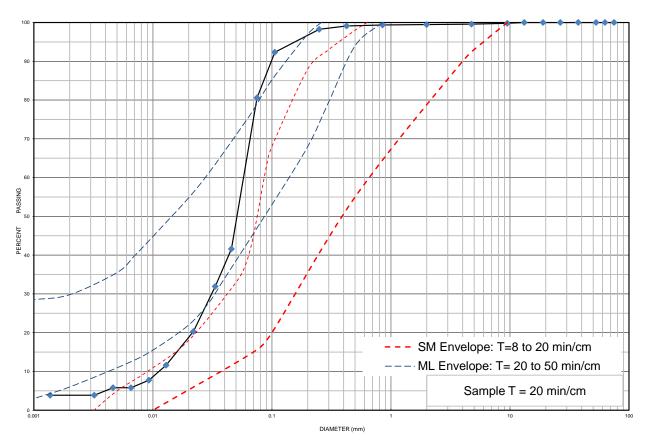
|      |        | MIT SOIL CL | ASSIFICATIO | N SYSTEM |      |        |        |          |
|------|--------|-------------|-------------|----------|------|--------|--------|----------|
| CLAY | Y SILT | FINE        | MEDIUM      | COARSE   | FINE | MEDIUM | COARSE | BOULDERS |
| CLAT | SILI   |             | SAND        |          |      | GRAVEL |        | BOOLDERS |

| Borehole No. | Sample No.       | Depth          | Gravel          | Sand            |   | Silt            | Clay | Moisture       |
|--------------|------------------|----------------|-----------------|-----------------|---|-----------------|------|----------------|
| BH 101-23    | SS 3             | 1.5 m to 2.1 m | 0               | 22              |   | 57              | 21   | 18.8           |
|              | Description      | Classification | D <sub>60</sub> | D <sub>30</sub> |   | D <sub>10</sub> | Cu   | C <sub>c</sub> |
| S            | andy Clayey Silt | ML             | 0.0480          | 0.0058          | 3 | -               | -    | -              |

Additional information availabe upon request






Project Number: 17281-002 Client: Cassidy E.W. Construction Consultant Ltd.

Project Name: Hydrogeological Assessment - 1386 & 1394 Greely Lane, Ottawa

Sample Date: March 7-8, 2023 Sampled By: Farhan Imtiaz - Cambium Inc.

**Location:** BH 101-23 SS 6 **Depth:** 3.8 m to 4.4 m **Lab Sample No:** S-23-0476

| UNIFI                   | ED SOIL CLASSIF                               | ICATION SYSTE | М      |      |        |
|-------------------------|-----------------------------------------------|---------------|--------|------|--------|
| CLAV 9 CH T (-0.075 mm) | SAND (<4.75 mm to 0.075 mm) GRAVEL (>4.75 mm) |               |        |      |        |
| CLAY & SILT (<0.075 mm) | FINE                                          | MEDIUM        | COARSE | FINE | COARSE |



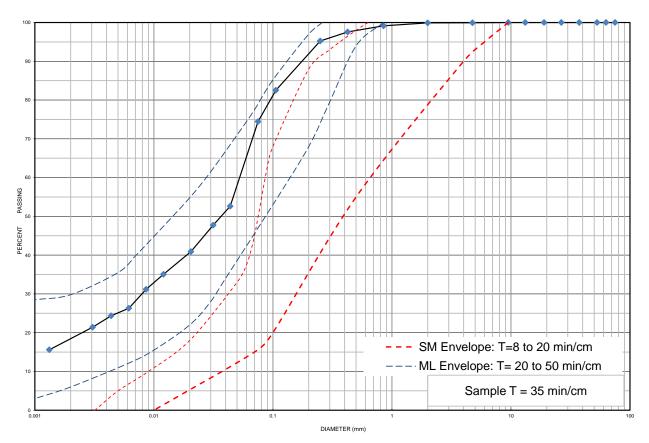
|      |       | MIT SOIL CL | ASSIFICATIO | N SYSTEM |      |        |        |          |
|------|-------|-------------|-------------|----------|------|--------|--------|----------|
| CLAY | SII T | FINE        | MEDIUM      | COARSE   | FINE | MEDIUM | COARSE | BOULDERS |
| CLAT | SILT  |             | SAND        |          |      | GRAVEL |        | BOOLDERS |

| Borehole No. | Sample No.          | Depth          | Gravel          | Sand            |   | Silt            | Clay | Moisture       |
|--------------|---------------------|----------------|-----------------|-----------------|---|-----------------|------|----------------|
| BH 101-23    | SS 6                | 3.8 m to 4.4 m | 0               | 19              |   | 77              | 4    | 13.3           |
|              | Description         | Classification | D <sub>60</sub> | D <sub>30</sub> |   | D <sub>10</sub> | Cu   | C <sub>c</sub> |
| Silt so      | ome Sand trace Clay | ML             | 0.057           | 0.032           | 2 | 0.012           | 4.75 | 1.50           |

Additional information availabe upon request






Project Number: 17281-002 Client: Cassidy E.W. Construction Consultant Ltd.

Project Name: Hydrogeological Assessment - 1386 & 1394 Greely Lane, Ottawa

Sample Date: March 7-8, 2023 Sampled By: Farhan Imtiaz - Cambium Inc.

**Location:** BH 104-23 SS 4 **Depth:** 2.3 m to 2.9 m **Lab Sample No:** S-23-0477

| UNIFI                   | ED SOIL CLASSIF | ICATION SYSTE               | М      |      |              |
|-------------------------|-----------------|-----------------------------|--------|------|--------------|
| CLAV 8 CHT ( -0.075 mm) | SAND (<4.       | SAND (<4.75 mm to 0.075 mm) |        |      | L (>4.75 mm) |
| CLAY & SILT (<0.075 mm) | FINE            | MEDIUM                      | COARSE | FINE | COARSE       |



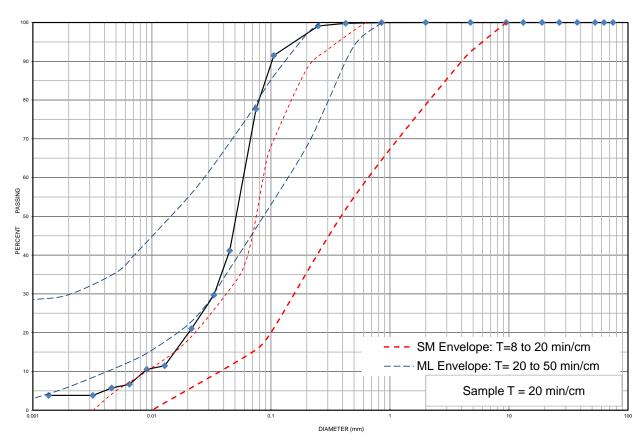
|      |        | MIT SOIL CL | ASSIFICATIO | N SYSTEM |      |        |        |          |
|------|--------|-------------|-------------|----------|------|--------|--------|----------|
| CLAY | Y SILT | FINE        | MEDIUM      | COARSE   | FINE | MEDIUM | COARSE | BOULDERS |
| CLAT | SILI   |             | SAND        |          |      | GRAVEL |        | BOOLDERS |

| Borehole No. | Sample No.         | Depth          | Gravel          | Sand            |   | Silt            | Clay | Moisture       |
|--------------|--------------------|----------------|-----------------|-----------------|---|-----------------|------|----------------|
| BH 104-23    | SS 4               | 2.3 m to 2.9 m | 0               | 25              |   | 57              | 18   | 18.0           |
|              | Description        | Classification | D <sub>60</sub> | D <sub>30</sub> |   | D <sub>10</sub> | Cu   | C <sub>c</sub> |
| Sar          | ndy Silt some Clay | ML             | 0.053           | 0.008           | 3 | -               | -    | -              |

Additional information availabe upon request






Project Number: 17281-002 Client: Cassidy E.W. Construction Consultant Ltd.

Project Name: Hydrogeological Assessment - 1386 & 1394 Greely Lane, Ottawa

Sample Date: March 7-8, 2023 Sampled By: Farhan Imtiaz - Cambium Inc.

**Location:** BH 104-23 SS 6 **Depth:** 3.8 m to 4.4 m **Lab Sample No:** S-23-0478

| UNIFI                     | ED SOIL CLASSIF | ICATION SYSTE | M      |              |        |
|---------------------------|-----------------|---------------|--------|--------------|--------|
| CLAY & SILT (<0.075 mm)   | SAND (<4.       |               | GRAVE  | L (>4.75 mm) |        |
| CLAY & SILT (<0.075 MIII) | FINE            | MEDIUM        | COARSE | FINE         | COARSE |



|      |      | MIT SOIL CL | ASSIFICATIO | N SYSTEM |      |        |        |          |
|------|------|-------------|-------------|----------|------|--------|--------|----------|
| CLAY | SILT | FINE        | MEDIUM      | COARSE   | FINE | MEDIUM | COARSE | BOULDERS |
| CLAT | SILI |             | SAND        |          |      | GRAVEL |        | BOOLDERS |

| Borehole No. | Sample No.            |                | Depth          |  | Gravel          | Sand |                 | Silt |                 |   | Clay | Moisture       |
|--------------|-----------------------|----------------|----------------|--|-----------------|------|-----------------|------|-----------------|---|------|----------------|
| BH 104-23    | SS 6                  | 3.8 m to 4.4 m |                |  | 0               | 0 22 |                 |      | 74              |   | 4    | 14.3           |
|              | Description           |                | Classification |  | D <sub>60</sub> |      | D <sub>30</sub> |      | D <sub>10</sub> |   | Cu   | C <sub>c</sub> |
| Sa           | Sandy Silt trace Clay |                | ML             |  | 0.0590          |      | 0.0340          | )    | 0.0087          | ' | 6.78 | 2.25           |

Additional information availabe upon request



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

# Appendix D Well Inventory Survey Results

## Water Well Records Summary Report

Produced by Cambium Inc. using MOECP Water Well Information System (WWIS)

All units in meters unless otherwise specified



| Well ID: 1507224<br>Construction Date: 1965-09-22 | Easting: 455211<br>Northing: 5E+06                                                | UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m                                                                        |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                   | Well Depth: 20.7 Well Diameter (cm): 15.2 Water First Found: 16.8 Static Level: 6 | Water KindFRESHPump Rate (LPM):23Final StatusWater SupplyRecommended Pump Rate:23Primary Water Use:DomesticPumping Duration (h:m):0:30 |  |  |  |  |
|                                                   | Layer: Driller's Description:                                                     | Top: Bottom:                                                                                                                           |  |  |  |  |
|                                                   | 1 MEDIUM SAND                                                                     | 0 4.57                                                                                                                                 |  |  |  |  |
|                                                   | 2 LIMESTONE                                                                       | 4.57 20.7                                                                                                                              |  |  |  |  |
| Well ID: 1507232 Construction Date: 1964-07-06    | Easting: 454801<br>Northing: 5E+06                                                | UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m                                                                        |  |  |  |  |
|                                                   | Well Depth: 20.4 Well Diameter (cm): 5.08 Water First Found: 20.4 Static Level: 2 | Water KindFRESHPump Rate (LPM):32Final StatusWater SupplyRecommended Pump Rate:23Primary Water Use:DomesticPumping Duration (h:m):2:0  |  |  |  |  |
|                                                   | Layer: Driller's Description:                                                     | Top: Bottom:                                                                                                                           |  |  |  |  |
|                                                   | 1 MEDIUM SAND                                                                     | 0 5.49                                                                                                                                 |  |  |  |  |
|                                                   | 2 BOULDERS                                                                        | 5.49 14.0                                                                                                                              |  |  |  |  |
|                                                   | 3 LIMESTONE                                                                       | 14.0 20.4                                                                                                                              |  |  |  |  |
| Well ID: 1507234<br>Construction Date: 1964-07-06 | Easting: 454851<br>Northing: 5E+06                                                | UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m                                                                        |  |  |  |  |
|                                                   | Well Depth: 20.7 Well Diameter (cm): 5.08 Water First Found: 20.7 Static Level: 1 | Water KindFRESHPump Rate (LPM):45Final StatusWater SupplyRecommended Pump Rate:23Primary Water Use:DomesticPumping Duration (h:m):2:0  |  |  |  |  |
|                                                   | Layer: Driller's Description:                                                     | Top: Bottom:                                                                                                                           |  |  |  |  |
|                                                   | 1 MEDIUM SAND                                                                     | 0 5.49                                                                                                                                 |  |  |  |  |
|                                                   | 2 BOULDERS                                                                        | 5.49 14.3                                                                                                                              |  |  |  |  |
|                                                   | 3 LIMESTONE                                                                       | 14.3 20.7                                                                                                                              |  |  |  |  |
| Well ID: 1507313<br>Construction Date: 1966-12-06 | Easting: 455541<br>Northing: 5E+06                                                | UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m                                                                        |  |  |  |  |
|                                                   | Well Depth: 18.3 Well Diameter (cm): 12.7 Water First Found: 15.2 Static Level: 6 | Water KindFRESHPump Rate (LPM):27Final StatusWater SupplyRecommended Pump Rate:23Primary Water Use:DomesticPumping Duration (h:m):1:0  |  |  |  |  |
|                                                   | Layer: Driller's Description:                                                     | Top: Bottom:                                                                                                                           |  |  |  |  |
|                                                   | 1 GRAVEL                                                                          | 0 5.49                                                                                                                                 |  |  |  |  |
|                                                   | 2 LIMESTONE                                                                       | 5.49 18.3                                                                                                                              |  |  |  |  |

2

LIMESTONE

7.62

10.7

Well ID: 1509840 Easting: 455391 UTM Zone 18 Construction Date: 1968-08-21 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m **Water Kind FRESH** Pump Rate (LPM): Well Depth: 12.8 **Final Status Recommended Pump Rate: 23** Well Diameter (cm): 10.2 Water Supply Primary Water Use: Domestic **Pumping Duration (h:m):** Water First Found: 12.8 0:30 **Static Level:** Laver: Driller's Description: Top: **Bottom:** TOPSOIL 0 0.91 1 2 **HARDPAN** 0.91 3.96 3 LIMESTONE 3.96 12.8 Well ID: 1510585 **Easting:** 455331 UTM Zone 18 Construction Date: 1970-05-28 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m **Water Kind FRESH** Pump Rate (LPM): 45 Well Depth: 32.9 **Final Status** Water Supply **Recommended Pump Rate: 36** Well Diameter (cm): 15.2 Primary Water Use: Domestic Pumping Duration (h:m): **Water First Found:** 32 1:0 Static Level: 5 Layer: Driller's Description: Top: **Bottom:** 1 **TOPSOIL** 0 1.52 2 **GRAVEL** 1.52 5.18 3 LIMESTONE 32.9 5 18 Well ID: 1512221 Easting: 455604 UTM Zone 18 Construction Date: 1973-01-12 Northing: 5E+06 Positional Accuracy: margin of error: 300 m - 1 km **Water Kind FRESH** Pump Rate (LPM): 91 Well Depth: 14.6 **Final Status** Water Supply **Recommended Pump Rate: 23** Well Diameter (cm): 15.2 Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 14.0 Static Level: 4 Layer: **Driller's Description:** Top: **Bottom:** 1 SAND 0 2.74 2 SAND 2.74 12.2 3 LIMESTONE 12.2 14.6 Well ID: 1513408 **Easting:** 455523 UTM Zone 18 Positional Accuracy: margin of error: 30 m - 100 m Construction Date: 1973-09-10 Northing: 5E+06 **Water Kind FRESH** Pump Rate (LPM): 36 Well Depth: 10.7 **Final Status Recommended Pump Rate: 23** Well Diameter (cm): 12.7 Water Supply **Water First Found:** Primary Water Use: Domestic Pumping Duration (h:m): 1:57 9.75 **Static Level:** Layer: Driller's Description: Top: **Bottom: HARDPAN** 1 0 7.62

Well ID: 1513421 **Easting:** 455556 UTM Zone 18 Construction Date: 1973-09-26 Northing: 5E+06 Positional Accuracy: margin of error: 300 m - 1 km **Water Kind FRESH** Pump Rate (LPM): Well Depth: 13.1 Well Diameter (cm): 12.7 **Final Status** Water Supply **Recommended Pump Rate: 45** Water First Found: Primary Water Use: Domestic Pumping Duration (h:m): 1:10 13.1 Static Level: Laver: Driller's Description: Top: **Bottom:** 1 HARDPAN 0 13.1 Well ID: 1515384 UTM Zone 18 Easting: 455451 Construction Date: 1976-06-19 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m Well Depth: 38.1 **Water Kind** Not stated Pump Rate (LPM): **Final Status** Water Supply **Recommended Pump Rate: 18** Well Diameter (cm): Water First Found: 12.8 Primary Water Use: Domestic Pumping Duration (h:m): **Static Level:** Layer: Driller's Description: Top: **Bottom:** 1 SAND 0 5.79 1 SAND 5.79 n 1 **SAND** 0 5.79 1 **SAND** n 5.79 2 LIMESTONE 38.1 5.79 2 LIMESTONE 5.79 38.1 2 LIMESTONE 5.79 38.1 2 LIMESTONE 5.79 38.1 Well ID: 1515531 **Easting:** 455551 UTM Zone 18 Construction Date: 1976-08-13 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind FRESH** Pump Rate (LPM): 91 Well Depth: 16.8 **Final Status** Water Supply **Recommended Pump Rate: 68** Well Diameter (cm): 15.2 Primary Water Use: Municipal Pumping Duration (h:m): Water First Found: 1:30 16.1 Static Level: Layer: Driller's Description: Top: **Bottom:** 0 1 **GRAVEL** 8.23 2 **HARDPAN** 8.23 15.2 3 **SANDSTONE** 15 2 15.5 **UNKNOWN TYPE** 15.5 16.8 Well ID: 1517024 Easting: 455530 UTM Zone 18 Construction Date: 1979-07-09 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind** Pump Rate (LPM): 91 Well Depth: **FRESH** 15.5 Well Diameter (cm): 15.2 **Final Status Recommended Pump Rate: 55** Water Supply **Water First Found:** Primary Water Use: Domestic Pumping Duration (h:m): 14.6 **Static Level:** 6 **Driller's Description:** Laver: Top: **Bottom: HARDPAN** 1 0 4.88 2 **SAND** 4.88 13.7 3 **GRAVEL** 13.7 14.3 4 LIMESTONE 14.3 15.5

Well ID: 1517148 Easting: 455430 UTM Zone 18 Construction Date: 1979-10-05 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind FRESH** Pump Rate (LPM): Well Depth: 16.8 Well Diameter (cm): 15.2 **Final Status** Water Supply **Recommended Pump Rate: 45** Water First Found: 13.7 Primary Water Use: Livestock Pumping Duration (h:m): 1:30 Static Level: Laver: Driller's Description: Top: **Bottom:** 1 HARDPAN 0 11.6 2 SAND 13.7 11.6 3 LIMESTONE 13.7 16.8 Well ID: 1517152 Easting: 455530 UTM Zone 18 Construction Date: 1979-10-05 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind FRESH** Pump Rate (LPM): 114 Well Depth: 15.5 **Recommended Pump Rate: 68** Well Diameter (cm): 15.2 **Final Status** Water Supply **Water First Found:** 14.9 Primary Water Use: Domestic Pumping Duration (h:m): 1:30 Static Level: 5 Layer: Driller's Description: **Bottom:** Top: 1 **SAND** 0 10.7 2 **HARDPAN** 10.7 12.2 3 LIMESTONE 15.5 12 2 Well ID: 1517154 Easting: 455530 UTM Zone 18 Construction Date: 1979-10-05 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind FRESH** Pump Rate (LPM): 82 Well Depth: 16.2 **Final Status** Water Supply **Recommended Pump Rate: 45** Well Diameter (cm): 15.2 Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 14.9 Static Level: 6 **Driller's Description:** Top: **Bottom:** Layer: 0 13.1 1 SAND 2 LIMESTONE 13.1 16.1 Well ID: 1517156 Easting: 455530 UTM Zone 18 Construction Date: 1979-10-05 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind** Pump Rate (LPM): 82 Well Depth: **FRESH** 15.2 **Final Status Recommended Pump Rate: 36** Well Diameter (cm): 15.2 Water Supply **Water First Found:** 14.3 Primary Water Use: Domestic Pumping Duration (h:m): Static Level: Layer: Driller's Description: Top: **Bottom:** 1 **SAND** 0 12.5 2 LIMESTONE 12.5 15.2 Well ID: 1517638 Easting: 455630 UTM Zone 18 Construction Date: 1981-09-08 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m **Water Kind** Pump Rate (LPM): **FRESH** 136 Well Depth: 12.5 **Final Status Recommended Pump Rate: 23** Well Diameter (cm): 15.2 Water Supply Primary Water Use: Domestic Pumping Duration (h:m): **Water First Found:** 12.2 Static Level: **Bottom:** Layer: Driller's Description: Top:

0 9.45 1 CLAY 2 SHALE 9.45 12.5

Well ID: 1518000

**Easting: 455630** 

UTM Zone 18

Construction Date: 1982-11-29

Northing: 5E+06

Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 13.1 Well Diameter (cm): 15.2 **Water First Found:** 12.8 **Water Kind FRESH Final Status** Water Supply Primary Water Use: Domestic

Pump Rate (LPM): 91 **Recommended Pump Rate: 45** Pumping Duration (h:m):

Static Level: 5

| Layer: | Driller's Description: | Тор: | Bottom: |
|--------|------------------------|------|---------|
| 1      | TOPSOIL                | 0    | 1.83    |
| 2      | QUICKSAND              | 1.83 | 12.2    |
| 3      | SAND                   | 12.2 | 12.5    |
| 4      | LIMESTONE              | 12.5 | 13.1    |

Well ID: 1518291

Construction Date: 1983-06-20

Easting: 455630 Northing: 5E+06

UTM Zone 18

Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 14.6 Well Diameter (cm): 15.2 Water First Found: 14.3 Static Level: 4

**Water Kind FRESH Final Status** Water Supply Primary Water Use: Public

Pump Rate (LPM): 45 **Recommended Pump Rate: 23** Pumping Duration (h:m):

L

| .ayer: | <b>Driller's Description:</b> | Тор: | Bottom: |
|--------|-------------------------------|------|---------|
| 1      | SILT                          | 0    | 3.66    |
| 2      | TILL                          | 3.66 | 11.9    |
| 3      | STONES                        | 11.9 | 14.6    |

Well ID: 1518419

Construction Date: 1983-08-24

**Easting: 455430** Northing: 5E+06 UTM Zone 18

Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 19.8 Well Diameter (cm): 15.2 19.2 Water First Found:

**Water Kind FRESH Final Status** Water Supply Primary Water Use: Domestic

Pump Rate (LPM): 136 **Recommended Pump Rate: 23** Pumping Duration (h:m):

**Static Level:** 

| Laver: | Driller's Description: | Top: | Bottom: |
|--------|------------------------|------|---------|
| 1      | SAND                   | 0    | 3.35    |
| 2      | SAND                   | 3.35 | 9.14    |
| 3      | HARDPAN                | 9.14 | 17.1    |
| 4      | LIMESTONE              | 17.1 | 19.8    |

Well ID: 1518420

Easting: 455430

UTM Zone 18

**Water Kind** 

Construction Date: 1983-08-24

Northing: 5E+06

Positional Accuracy: margin of error: 30 m - 100 m

Pump Rate (LPM):

Well Depth: 19.8 Well Diameter (cm): 15.2 **Water First Found:** 19.2

**Final Status** Primary Water Use: Domestic

Water Supply

**FRESH** 

**Recommended Pump Rate: 23** Pumping Duration (h:m):

Static Level:

2

**Driller's Description:** Layer: Top: **Bottom:** SAND 0 1.22 1 2 SAND 1.22 6.1 3 **HARDPAN** 6.1 15.2 SAND 15.2 4 16.8

Page 5 of 29

68

5 LIMESTONE

ESTONE 16.8 19.8

Well ID: 1518698 Easting: 455530 UTM Zone 18 Construction Date: 1983-11-24 Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m Well Depth: 22.9 **Water Kind FRESH** Pump Rate (LPM): 45 **Final Status Recommended Pump Rate: 23** Well Diameter (cm): 15.2 Water Supply Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 20.4 Static Level: Layer: **Driller's Description:** Top: **Bottom:** 1 SAND 0 2.44 2 SAND 2.44 11.6 3 SAND 11.6 14.6 **HARDPAN** 18.3 4 14 6 5 LIMESTONE 18.3 22.9 Well ID: 1520434 Easting: 455527 UTM Zone 18 Construction Date: 1986-02-20 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m Well Depth: 195 **Water Kind FRESH** Pump Rate (LPM): 68 **Final Status** Water Supply **Recommended Pump Rate: 68** Well Diameter (cm): 15.2 Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 15.9 Static Level: Layer: Driller's Description: Top: **Bottom: GRAVEL** 0 1 1.83 1 **GRAVEL** 0 1.83 2 CLAY 1.83 7.32 2 CLAY 1.83 7.32 3 7.32 CLAY 13.4 3 CLAY 7.32 13.4 LIMESTONE 4 13.4 19.5 4 LIMESTONE 13.4 19.5 Well ID: 1522346 Easting: 455172 UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m Construction Date: 1988-06-21 Northing: 5E+06 **Water Kind** 91 **FRESH** Pump Rate (LPM): Well Depth: 38.4 **Recommended Pump Rate: 91** Well Diameter (cm): 15.2 **Final Status** Water Supply Primary Water Use: Industrial Pumping Duration (h:m): Water First Found: 29 Static Level: Layer: Driller's Description: Top: **Bottom:** 1 **SAND** 0 2.44 2 **SAND** 2.44 17.1 3 LIMESTONE 38.4 17.1 Well ID: 1522347 Easting: 455239 UTM Zone 18 Construction Date: 1988-06-21 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m **Water Kind FRESH** Pump Rate (LPM): Well Depth: 18.9 **Final Status** Recommended Pump Rate: 2E+ Well Diameter (cm): 15.2 Recharge Well Primary Water Use: Cooling And A **Water First Found:** 18.3 Pumping Duration (h:m): Static Level: 3 Layer: Driller's Description: Top: **Bottom:** 

| usign Envelope ID: 919BBDD5-B0                 | 1                                  | SAND                      | 0                                                               | 2.74                                                            |                                         |                                                                       |                         |  |
|------------------------------------------------|------------------------------------|---------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|-------------------------|--|
|                                                | 2                                  | SAND                      | 2.74                                                            | 17.4                                                            |                                         |                                                                       |                         |  |
|                                                | 3                                  | LIMESTONE                 | 17.4                                                            | 18.9                                                            |                                         |                                                                       |                         |  |
| Well ID: 1522348 Construction Date: 1988-06-21 | _                                  | 455254<br>g: 5E+06        |                                                                 | UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m |                                         |                                                                       |                         |  |
|                                                |                                    | irst Found: 18.3          | Water Kin<br>Final Statu<br>Primary W                           | ıs                                                              | FRESH<br>Recharge Well<br>Cooling And A | Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):       | 182<br>2E+<br>1:0       |  |
|                                                | Layer:                             | Driller's Description:    | Top:                                                            | Bottom:                                                         |                                         |                                                                       |                         |  |
|                                                | 1                                  | SAND                      | 0                                                               | 2.74                                                            |                                         |                                                                       |                         |  |
|                                                | 2                                  | SAND                      | 2.74                                                            | 17.4                                                            |                                         |                                                                       |                         |  |
|                                                | 3                                  | LIMESTONE                 | 17.4                                                            | 18.9                                                            |                                         |                                                                       |                         |  |
| Well ID: 1522551 Construction Date: 1988-08-18 | Easting: 455474<br>Northing: 5E+06 |                           | UTM Zone 18 Positional Accuracy: margin of error: 100 m - 300 m |                                                                 |                                         |                                                                       |                         |  |
|                                                | Well Diameter (cm): 15.2           |                           |                                                                 |                                                                 | FRESH<br>Recharge Well<br>Cooling And A | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m): | 91<br><b>45</b><br>0:45 |  |
|                                                | Layer:                             | Driller's Description:    | Тор:                                                            | Bottom:                                                         |                                         |                                                                       |                         |  |
|                                                | 1                                  | SAND                      | 0                                                               | 2.74                                                            |                                         |                                                                       |                         |  |
|                                                | 1                                  | SAND                      | 0                                                               | 2.74                                                            |                                         |                                                                       |                         |  |
|                                                | 2                                  | TILL                      | 2.74                                                            | 10.7                                                            |                                         |                                                                       |                         |  |
|                                                | 2                                  | TILL                      | 2.74                                                            | 10.7                                                            |                                         |                                                                       |                         |  |
|                                                | 3                                  | GRAVEL                    | 10.7                                                            | 14.6                                                            |                                         |                                                                       |                         |  |
|                                                | 3                                  | GRAVEL                    | 10.7                                                            | 14.6                                                            |                                         |                                                                       |                         |  |
|                                                | 4                                  | LIMESTONE                 | 14.6                                                            | 19.8                                                            |                                         |                                                                       |                         |  |
|                                                | 4                                  | LIMESTONE                 | 14.6                                                            | 19.8                                                            |                                         |                                                                       |                         |  |
| Well ID: 1522552 Construction Date: 1988-08-18 | _                                  | 455484<br><b>g:</b> 5E+06 | UTM Zone                                                        |                                                                 | margin of error :                       | 100 m - 300 m                                                         |                         |  |
|                                                |                                    | irst Found: 17.1          | Water Kin<br>Final Statu<br>Primary W                           | ıs                                                              | FRESH<br>Water Supply<br>Domestic       | Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):       | 91<br><b>45</b><br>0:45 |  |
|                                                | Layer:                             | Driller's Description:    | Тор:                                                            | Bottom:                                                         |                                         |                                                                       |                         |  |
|                                                | 1                                  | SAND                      | 0                                                               | 2.44                                                            |                                         |                                                                       |                         |  |
|                                                | 1                                  | SAND                      | 0                                                               | 2.44                                                            |                                         |                                                                       |                         |  |
|                                                | 2                                  | TILL                      | 2.44                                                            | 9.75                                                            |                                         |                                                                       |                         |  |
|                                                | 2                                  | TILL                      | 2.44                                                            | 9.75                                                            |                                         |                                                                       |                         |  |
|                                                | 3                                  | GRAVEL                    | 9.75                                                            | 14.6                                                            |                                         |                                                                       |                         |  |
|                                                | 3                                  | GRAVEL                    | 9.75                                                            | 14.6                                                            |                                         |                                                                       |                         |  |
|                                                |                                    |                           |                                                                 |                                                                 |                                         |                                                                       |                         |  |
|                                                | 4                                  | LIMESTONE                 | 14.6                                                            | 19.8                                                            |                                         |                                                                       |                         |  |

Well ID: 1529728 **Easting: 455273** UTM Zone 18 Construction Date: 1997-12-22 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m **Water Kind** Not stated Pump Rate (LPM): 227 Well Depth: 23.2 Well Diameter (cm): 15.2 **Final Status** Water Supply **Recommended Pump Rate: 23** Primary Water Use: Domestic Water First Found: 17.1 Pumping Duration (h:m): Static Level: Laver: Driller's Description: Top: **Bottom:** TOPSOIL 1 0 1.22 2 CLAY 1.22 2.74 3 CLAY 2.74 10.4 4 SAND 10.4 15.5 5 LIMESTONE 15.5 18.9 6 LIMESTONE 18.9 23.2 Well ID: 1532070 **Easting:** 455043 UTM Zone 18 Construction Date: 2001-07-17 Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m Well Depth: 18.3 **Water Kind** Not stated Pump Rate (LPM): 45 Well Diameter (cm): 15.2 **Final Status** Water Supply **Recommended Pump Rate: 45** Primary Water Use: Commerical Pumping Duration (h:m): Water First Found: 16.8 Static Level: Layer: Driller's Description: Top: **Bottom:** 1 SAND 0 1.52 1 SAND 0 1.52 2 CLAY 1.52 11.9 2 CLAY 1.52 11.9 3 **COARSE GRAVEL** 18.3 11.9 3 **COARSE GRAVEL** 11.9 18.3 Well ID: 1533428 Easting: 455042 UTM Zone 18 Construction Date: 2002-12-17 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m Well Depth: 68 **Water Kind** Not stated Pump Rate (LPM): 45 **Recommended Pump Rate: 23 Final Status** Water Supply Well Diameter (cm): 15.2 Water First Found: 65.8 Primary Water Use: Domestic Pumping Duration (h:m): Static Level: 11 **Driller's Description:** Layer: Top: **Bottom:** 1 **TOPSOIL** 0 1.22 1 **TOPSOIL** 0 1.22 2 **SAND** 1.22 3.66 2 **SAND** 1.22 3.66 3 CLAY 3.66 9.14 3 CLAY 3.66 9.14 4 **SAND** 9.14 17.7 4 **SAND** 9.14 17.7 LIMESTONE 5 17.7 48.8 5 LIMESTONE 48.8 17.7 6 **SANDSTONE** 48.8 68

6 SANDSTONE

TONE

48.8 68

Well ID: 1533469 **Easting:** 455311 UTM Zone 18 Construction Date: 2002-12-23 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m Well Depth: 102 **Water Kind** Not stated Pump Rate (LPM): 41 **Final Status Water Supply Recommended Pump Rate: 41** Well Diameter (cm): 20.3 Water First Found: 101 Primary Water Use: Domestic Pumping Duration (h:m): Static Level: 15 Layer: **Driller's Description:** Top: **Bottom:** 1 SAND 0 18.9 1 SAND 0 18.9 2 LIMESTONE 18.9 57.3 2 LIMESTONE 18.9 57.3 3 LIMESTONE 57.3 69.2 3 LIMESTONE 57.3 69.2 4 **SANDSTONE** 69.2 102 4 **SANDSTONE** 69.2 102 Well ID: 1534585 **Easting:** 455214 UTM Zone 18 Construction Date: 2004-03-31 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m **Water Kind** Not stated Pump Rate (LPM): 84 Well Depth: 41.8 Well Diameter (cm): **Final Status** Test Hole **Recommended Pump Rate: 36** Primary Water Use: Not Used Pumping Duration (h:m): **Water First Found:** 41.1 Static Level: **Driller's Description:** Bottom: Layer: Top: 1 CLAY 0 10.1 0 1 CLAY 10.1 SANDSTONE 2 10.1 15.2 2 **SANDSTONE** 10.1 15.2 3 LIMESTONE 15.2 41.8 3 LIMESTONE 15.2 41.8 **Easting:** 454797 Well ID: 1536286 UTM Zone 18 Construction Date: 2006-04-12 Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m **Water Kind** Pump Rate (LPM): Well Depth: 91 45.7 **Final Status Recommended Pump Rate: 91** Well Diameter (cm): Water Supply Primary Water Use: Domestic Pumping Duration (h:m): **Water First Found:** 43.2 **Static Level:** 10 Layer: Driller's Description: **Bottom:** Top: 1 SAND 0 12.2 1 0 12.2 **SAND** 2 LIMESTONE 12.2 45.7 2 LIMESTONE 12.2 45.7

Well ID: 1536661 Easting: 454807 UTM Zone 18 Construction Date: 2006-09-07 Positional Accuracy: margin of error: 10 - 30 m Northing: 5E+06 **Water Kind** Pump Rate (LPM): Well Depth: 25 Well Diameter (cm): **Final Status** Water Supply **Recommended Pump Rate: 91** Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 16.8 Static Level: Laver: Driller's Description: Top: **Bottom:** 1 SAND 0 5.18 1 SAND 0 5.18 1 SAND 0 5.18 1 SAND 0 5.18 2 CLAY 5.18 11 2 CLAY 5.18 11 2 CLAY 5.18 11 2 CLAY 5.18 11 3 LIMESTONE 11 25 3 LIMESTONE 11 25 3 LIMESTONE 11 25 3 LIMESTONE 11 25 UTM Zone 18 Well ID: 1536715 **Easting:** 454725 Construction Date: 2006-10-11 Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m **Water Kind** Pump Rate (LPM): 91 Well Depth: 56.7 **Final Status** Water Supply **Recommended Pump Rate: 91** Well Diameter (cm): Water First Found: 54.3 Primary Water Use: Domestic Pumping Duration (h:m): Static Level: 10 **Driller's Description: Bottom:** Layer: Top: 1 CLAY 0 2.74 1 CLAY 0 2.74 2 SAND 2.74 13.1 2 SAND 2.74 13.1 3 LIMESTONE 46.0 13.1 3 LIMESTONE 13.1 46.0 4 **SANDSTONE** 46.0 56.7 **SANDSTONE** 4 46.0 56.7 Well ID: 7040754 **Easting: 454738** UTM Zone 18 Construction Date: 2007-02-12 Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m Well Depth: **Water Kind** Pump Rate (LPM): 91 48.8 **Final Status** Water Supply **Recommended Pump Rate: 91** Well Diameter (cm): Primary Water Use: Domestic Pumping Duration (h:m): **Water First Found:** 19.8 **Static Level:** 10 Top: **Driller's Description: Bottom:** Layer: 1 **SAND** 0 12.5 1 **SAND** 0 12.5 SAND 0 12.5 1

| cusign Envelope ID: 919BBDD5-B0                   | 67-4A30-A9<br>1      | SAND                               | 0                                                                | 12.5     |                   |                                                                 |                          |
|---------------------------------------------------|----------------------|------------------------------------|------------------------------------------------------------------|----------|-------------------|-----------------------------------------------------------------|--------------------------|
|                                                   | 2                    | LIMESTONE                          | 12.5                                                             | 45.7     |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.5                                                             | 45.7     |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.5                                                             | 45.7     |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.5                                                             | 45.7     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 45.7                                                             | 48.8     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 45.7                                                             | 48.8     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 45.7                                                             | 48.8     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 45.7                                                             | 48.8     |                   |                                                                 |                          |
| Well ID: 7048698 Construction Date: 2007-08-29    | Easting:<br>Northing |                                    | UTM Zone<br>Positional                                           |          | margin of error : | 10 - 30 m                                                       |                          |
|                                                   | Well Diameter (cm):  |                                    | Water Kind Final Status Water Supply Primary Water Use: Domestic |          |                   | Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): | 91<br>e: 91<br>1:0       |
|                                                   | Layer:               | Driller's Description:             | Тор:                                                             | Bottom:  |                   |                                                                 |                          |
|                                                   | 1                    | SAND                               | 0                                                                | 12.2     |                   |                                                                 |                          |
|                                                   | 1                    | SAND                               | 0                                                                | 12.2     |                   |                                                                 |                          |
|                                                   | 1                    | SAND                               | 0                                                                | 12.2     |                   |                                                                 |                          |
|                                                   | 1                    | SAND                               | 0                                                                | 12.2     |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.2                                                             | 43       |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.2                                                             | 43       |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.2                                                             | 43       |                   |                                                                 |                          |
|                                                   | 2                    | LIMESTONE                          | 12.2                                                             | 43       |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 43                                                               | 48.8     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 43                                                               | 48.8     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 43                                                               | 48.8     |                   |                                                                 |                          |
|                                                   | 3                    | SANDSTONE                          | 43                                                               | 48.8     |                   |                                                                 |                          |
| Well ID: 7104239 Construction Date: 2008-04-28    | Easting:<br>Northing |                                    | UTM Zone<br>Positional                                           |          | margin of error : | 10 - 30 m                                                       |                          |
|                                                   |                      | neter (cm):<br>rst Found:          | Water Kin<br>Final Statu<br>Primary W                            | ıs       | Abandoned-Ot      | Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): | :                        |
|                                                   | Layer:               | Driller's Description:             | Тор:                                                             | Bottom:  |                   |                                                                 |                          |
|                                                   | 1                    |                                    | 0                                                                | 18.9     |                   |                                                                 |                          |
| Well ID: 7120715<br>Construction Date: 2009-03-19 | Easting:<br>Northing |                                    | UTM Zone<br>Positional                                           |          | margin of error : | 30 m - 100 m                                                    |                          |
|                                                   |                      | neter (cm):<br>rst Found:          | Water Kin<br>Final Statu<br>Primary W                            | ıs       |                   | Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m): | 82<br>: <b>46</b><br>1 : |
|                                                   |                      | Driller's Description:             | Ton                                                              | Bottom:  |                   |                                                                 |                          |
|                                                   | Layer:               | ייים אייים אייים אייים אייים אייים | Top:                                                             | BOLLOIN: |                   |                                                                 |                          |

Well ID: 7130148

Construction Date: 2009-09-22

Easting: 455051 UTM Zone 18

Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m

Well Depth: 4.88 Well Diameter (cm): 5.2 Water First Found: Static Level:

**Water Kind Final Status** Monitoring an Primary Water Use: Monitoring an Pump Rate (LPM): **Recommended Pump Rate:** Pumping Duration (h:m):

| Layer: | Driller's Description: | Тор: | Bottom: |
|--------|------------------------|------|---------|
| 1      | GRAVEL                 | 0    | 0.61    |
| 1      | GRAVEL                 | 0    | 0.61    |
| 1      | GRAVEL                 | 0    | 0.61    |
| 1      | GRAVEL                 | 0    | 0.61    |
| 2      | SAND                   | 0.61 | 1.5     |
| 2      | SAND                   | 0.61 | 1.5     |
| 2      | SAND                   | 0.61 | 1.5     |
| 2      | SAND                   | 0.61 | 1.5     |
| 3      | CLAY                   | 1.5  | 2.74    |
| 3      | CLAY                   | 1.5  | 2.74    |
| 3      | CLAY                   | 1.5  | 2.74    |
| 3      | CLAY                   | 1.5  | 2.74    |
| 4      | SILT                   | 2.74 | 4.88    |
| 4      | SILT                   | 2.74 | 4.88    |
| 4      | SILT                   | 2.74 | 4.88    |
| 4      | SILT                   | 2.74 | 4.88    |

Well ID: 7156846

Construction Date: 2010-12-29

Easting: 454720 UTM Zone 18

Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m

Well Depth: 36.6 Well Diameter (cm): 15.2 Water First Found: 19.8 Static Level: 1

**Water Kind** Untested **Final Status** Water Supply Primary Water Use: Domestic

Pump Rate (LPM): 91 **Recommended Pump Rate: 91** Pumping Duration (h:m):

| Layer: | Driller's Description: | Тор: | Bottom: |
|--------|------------------------|------|---------|
| 1      | SAND                   | 0    | 8.53    |
| 1      | SAND                   | 0    | 8.53    |
| 1      | SAND                   | 0    | 8.53    |
| 2      | SAND                   | 8.53 | 16.5    |
| 2      | SAND                   | 8.53 | 16.5    |
| 2      | SAND                   | 8.53 | 16.5    |
| 3      | LIMESTONE              | 16.5 | 36.6    |
| 3      | LIMESTONE              | 16.5 | 36.6    |
| 3      | LIMESTONE              | 16.5 | 36.6    |

2

3

4

**SAND** 

LIMESTONE

LIMESTONE

1.83

12.8

30.2

12.8

30.2

32

Docusign Envelope ID: 919BBDD5-B067-4A30-A9BF-F2CF379844AC Well ID: 7157870 Easting: 455093 UTM Zone 18 Construction Date: 2011-01-17 Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m **Water Kind** Untested Pump Rate (LPM): Well Depth: 54.9 **Final Status Recommended Pump Rate: 91** Well Diameter (cm): 15.2 Water Supply Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 53.0 Static Level: Laver: Driller's Description: Top: **Bottom:** SAND 0 17.1 1 1 SAND 0 17.1 1 SAND 0 17.1 1 SAND 0 17.1 SAND 0 17.1 1 SAND 0 17.1 1 SAND 0 17.1 1 1 SAND 0 17.1 2 LIMESTONE 17.1 54.9 Well ID: 7159015 UTM Zone 18 Easting: 455214 Construction Date: 2011-02-10 Northing: 5E+06 Positional Accuracy: margin of error: 10 - 30 m **Water Kind** Pump Rate (LPM): Well Depth: Well Diameter (cm): **Final Status** Abandoned-Ot **Recommended Pump Rate: Primary Water Use:** Pumping Duration (h:m): Water First Found: Static Level: Layer: Driller's Description: Top: **Bottom:** Well ID: 7183294 **Easting:** 455487 UTM Zone 18 Construction Date: 2012-06-29 Northing: 5E+06 Positional Accuracy: margin of error: 100 m - 300 m Well Depth: **Water Kind** Untested Pump Rate (LPM): 91 32 **Final Status Recommended Pump Rate: 91** Well Diameter (cm): 15.2 Water Supply **Water First Found:** 30.2 Primary Water Use: Domestic Pumping Duration (h:m): **Static Level:** 4 Layer: Driller's Description: Top: **Bottom:** 1 CLAY 0 1.83

Well ID: 7183299

Construction Date: 2012-06-29

**Easting:** 454693 UTM Zone 18

Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m

**Water Kind** Untested Pump Rate (LPM): Well Depth: 61.3 Well Diameter (cm): 15.1 **Final Status** Water Supply **Recommended Pump Rate: 55** Primary Water Use: Domestic Pumping Duration (h:m): Water First Found: 56.4

Static Level: Laver: **Driller's Description:** Top: **Bottom:** SAND 0 1.52 1 1 SAND 0 1.52 1 SAND 0 1.52 1 SAND 0 1.52 2 CLAY 1.52 6.40 2 CLAY 1.52 6.40 2 CLAY 1.52 6.40 2 CLAY 1.52 6.40

3 SAND 6.40 18.3 3 SAND 6.40 18.3 SAND 6.40 3 18.3 SAND 3 6.40 18.3 4 LIMESTONE 18.3 34.8 4 LIMESTONE 18.3 34.8 LIMESTONE 18.3 34.8 4 4 LIMESTONE 18.3 34.8 5 SANDSTONE 34.8 54.6 5 **SANDSTONE** 34.8 54.6

5 SANDSTONE 34.8 54.6 5 **SANDSTONE** 34.8 54.6 SANDSTONE 6 54.6 56.4 6 **SANDSTONE** 54.6 56.4 6 **SANDSTONE** 54.6 56.4

6 SANDSTONE 54.6 56.4 7 **SANDSTONE** 56.4 61.3

7 SANDSTONE 56.4 61.3 7 SANDSTONE 56.4 61.3

7 SANDSTONE 56.4 61.3

Well ID: 7187406

Construction Date: 2012-09-20

**Easting:** 455459 UTM Zone 18

Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 29.9 Well Diameter (cm): 15.9 **Water First Found:** Static Level:

**Water Kind** Untested **Final Status** Water Supply Primary Water Use: Domestic

Pump Rate (LPM): 82 **Recommended Pump Rate: 46** Pumping Duration (h:m):

Layer: Driller's Description: Top: **Bottom:** 1 **TOPSOIL** 0 2.74

55

|                                                | 67-4A30-A9B<br>1                                    | F-F2CF379844AC<br>TOPSOIL                                                                                                                                                    | 0                                                | 2.74                                                                         |                                      |                                                                           |
|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|
|                                                | 2                                                   | CLAY                                                                                                                                                                         | 2.74                                             | 4.87                                                                         |                                      |                                                                           |
|                                                | 2                                                   | CLAY                                                                                                                                                                         | 2.74                                             | 4.87                                                                         |                                      |                                                                           |
|                                                | 3                                                   | SAND                                                                                                                                                                         | 4.87                                             | 9.14                                                                         |                                      |                                                                           |
|                                                | 3                                                   | SAND                                                                                                                                                                         | 4.87                                             | 9.14                                                                         |                                      |                                                                           |
|                                                | 4                                                   | GRAVEL                                                                                                                                                                       | 9.14                                             | 11.3                                                                         |                                      |                                                                           |
|                                                | 4                                                   | GRAVEL                                                                                                                                                                       | 9.14                                             | 11.3                                                                         |                                      |                                                                           |
|                                                | 5                                                   | LIMESTONE                                                                                                                                                                    | 11.3                                             | 29.9                                                                         |                                      |                                                                           |
|                                                | 5                                                   | LIMESTONE                                                                                                                                                                    | 11.3                                             | 29.9                                                                         |                                      |                                                                           |
| Well ID: 7187693 Construction Date: 2012-09-22 | Easting: 4<br>Northing:                             |                                                                                                                                                                              | UTM Zone<br>Positional                           |                                                                              | margin of error :                    | 30 m - 100 m                                                              |
|                                                | Well Dept<br>Well Diam<br>Water Firs<br>Static Leve | eter (cm): 15.9<br>et Found: 24.7                                                                                                                                            | Water Kind<br>Final Statu<br>Primary W           | ıs                                                                           | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): 91 Recommended Pump Rate: 91 Pumping Duration (h:m): 1:  |
|                                                | Layer: D                                            | oriller's Description:                                                                                                                                                       | Тор:                                             | Bottom:                                                                      |                                      |                                                                           |
|                                                | 1                                                   | SAND                                                                                                                                                                         | 0                                                | 11.6                                                                         |                                      |                                                                           |
|                                                | 1                                                   | SAND                                                                                                                                                                         | 0                                                | 11.6                                                                         |                                      |                                                                           |
|                                                | 2                                                   | LIMESTONE                                                                                                                                                                    | 11.6                                             | 24.7                                                                         |                                      |                                                                           |
|                                                | 2                                                   | LIMESTONE                                                                                                                                                                    | 11.6                                             | 24.7                                                                         |                                      |                                                                           |
|                                                | 3                                                   | LIMESTONE                                                                                                                                                                    | 24.7                                             | 27.4                                                                         |                                      |                                                                           |
|                                                | 3                                                   | LIMESTONE                                                                                                                                                                    | 24.7                                             | 27.4                                                                         |                                      |                                                                           |
| Well ID: 7194027 Construction Date: 2012-12-21 | Easting: 4<br>Northing:                             |                                                                                                                                                                              | UTM Zone<br>Positional                           |                                                                              | margin of error : :                  | 30 m - 100 m                                                              |
|                                                | Well Dept<br>Well Diam<br>Water Firs                | eter (cm): 15.4                                                                                                                                                              | Water Kind<br>Final Statu<br>Primary W           | ıs                                                                           | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): 91 Recommended Pump Rate: 91 Pumping Duration (h:m): 1:0 |
|                                                | Static Leve                                         |                                                                                                                                                                              | ·                                                |                                                                              |                                      |                                                                           |
|                                                | Static Leve                                         |                                                                                                                                                                              | Тор:                                             | Bottom:                                                                      |                                      |                                                                           |
|                                                | Static Leve                                         | e <b>l:</b> 9                                                                                                                                                                |                                                  | Bottom:<br>15.2                                                              |                                      |                                                                           |
|                                                | Static Leve                                         | el: 9<br>Oriller's Description:                                                                                                                                              | Тор:                                             |                                                                              |                                      |                                                                           |
|                                                | Static Leve<br>Layer: D                             | oriller's Description:  SAND                                                                                                                                                 | <b>Top:</b><br>0                                 | 15.2                                                                         |                                      |                                                                           |
|                                                | Static Leve<br>Layer: D<br>1                        | el: 9<br>Priller's Description:<br>SAND<br>SAND                                                                                                                              | <b>Top:</b> 0 0                                  | 15.2<br>15.2                                                                 |                                      |                                                                           |
|                                                | Static Leve Layer: C  1  1  1                       | el: 9  Priller's Description: SAND SAND SAND                                                                                                                                 | <b>Top:</b> 0 0 0                                | 15.2<br>15.2<br>15.2                                                         |                                      |                                                                           |
|                                                | Static Leve Layer: C  1  1  1  1                    | el: 9  Driller's Description: SAND SAND SAND SAND SAND                                                                                                                       | <b>Top:</b> 0 0 0 0                              | 15.2<br>15.2<br>15.2<br>15.2                                                 |                                      |                                                                           |
|                                                | Static Leve Layer: C  1  1  1  1  2                 | el: 9  Driller's Description: SAND SAND SAND SAND SAND LIMESTONE                                                                                                             | Top:<br>0<br>0<br>0<br>0<br>0                    | 15.2<br>15.2<br>15.2<br>15.2<br>33.2                                         |                                      |                                                                           |
|                                                | Static Leve Layer: D  1  1  1  1  2  2              | el: 9  Driller's Description: SAND SAND SAND SAND LIMESTONE LIMESTONE                                                                                                        | Top:<br>0<br>0<br>0<br>0<br>15.2<br>15.2         | 15.2<br>15.2<br>15.2<br>15.2<br>33.2                                         |                                      |                                                                           |
|                                                | Static Leve Layer: D  1  1  1  2  2  2              | el: 9 Driller's Description: SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE                                                                                               | Top:<br>0<br>0<br>0<br>0<br>15.2<br>15.2<br>15.2 | 15.2<br>15.2<br>15.2<br>15.2<br>33.2<br>33.2                                 |                                      |                                                                           |
|                                                | Static Leve Layer: D  1  1  1  2  2  2  2           | el: 9 Driller's Description: SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE LIMESTONE                                                                                     | Top: 0 0 0 15.2 15.2 15.2                        | 15.2<br>15.2<br>15.2<br>15.2<br>33.2<br>33.2<br>33.2                         |                                      |                                                                           |
|                                                | Static Leve Layer: D  1  1  1  1  2  2  2  3        | Priller's Description: SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE                                                             | Top: 0 0 0 15.2 15.2 15.2 33.2                   | 15.2<br>15.2<br>15.2<br>15.2<br>33.2<br>33.2<br>33.2<br>33.2<br>52.4         |                                      |                                                                           |
|                                                | Static Leve Layer: D  1  1  1  1  2  2  2  3  3     | Priller's Description: SAND SAND SAND SAND LIMESTONE                     | Top: 0 0 0 15.2 15.2 15.2 15.2 33.2 33.2         | 15.2<br>15.2<br>15.2<br>15.2<br>33.2<br>33.2<br>33.2<br>33.2<br>52.4<br>52.4 |                                      |                                                                           |
|                                                | Static Leve  Layer: D  1  1  1  2  2  2  3  3  3    | Priller's Description: SAND SAND SAND SAND LIMESTONE | Top: 0 0 0 15.2 15.2 15.2 15.2 33.2 33.2 33.2    | 15.2<br>15.2<br>15.2<br>15.2<br>33.2<br>33.2<br>33.2<br>52.4<br>52.4         |                                      |                                                                           |

| cusign Envelope ID: 919BBDD5-B06                  | 67-4A30-A<br>4                     | 9BF-F2CF3798<br>SANDST |                           | 52.4                                                           | 58.5    |                                      |                                                                       |                        |
|---------------------------------------------------|------------------------------------|------------------------|---------------------------|----------------------------------------------------------------|---------|--------------------------------------|-----------------------------------------------------------------------|------------------------|
|                                                   | 4                                  | SANDST                 | ΓONE                      | 52.4                                                           | 58.5    |                                      |                                                                       |                        |
|                                                   | 5                                  | SANDST                 | ΓONE                      | 58.5                                                           | 61      |                                      |                                                                       |                        |
|                                                   | 5                                  | SANDST                 | ΓONE                      | 58.5                                                           | 61      |                                      |                                                                       |                        |
|                                                   | 5                                  | SANDST                 |                           | 58.5                                                           | 61      |                                      |                                                                       |                        |
|                                                   | 5                                  | SANDST                 |                           | 58.5                                                           | 61      |                                      |                                                                       |                        |
| Well ID: 7197490<br>Construction Date: 2013-02-19 | Easting: 454766<br>Northing: 5E+06 |                        |                           | UTM Zone 18 Positional Accuracy: margin of error: 30 m - 100 m |         |                                      |                                                                       |                        |
|                                                   |                                    | ameter (cm):           | 42.7<br>14.9<br>36.3<br>3 | Water Kind<br>Final Status<br>Primary W                        | 5       | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m): | 91<br><b>91</b><br>1:  |
|                                                   | Layer:                             | Driller's Desc         | ription:                  | Тор:                                                           | Bottom: |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    | D                         | 0                                                              | 17.4    |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    | D                         | 0                                                              | 17.4    |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    | D                         | 0                                                              | 17.4    |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    | D                         | 0                                                              | 17.4    |                                      |                                                                       |                        |
|                                                   | 2                                  | LIMEST                 | ONE                       | 17.4                                                           | 36.3    |                                      |                                                                       |                        |
|                                                   | 2                                  | LIMEST                 | ONE                       | 17.4                                                           | 36.3    |                                      |                                                                       |                        |
|                                                   | 2                                  | LIMEST                 | ONE                       | 17.4                                                           | 36.3    |                                      |                                                                       |                        |
|                                                   | 2                                  | LIMEST                 | ONE                       | 17.4                                                           | 36.3    |                                      |                                                                       |                        |
|                                                   | 3                                  | LIMEST                 | ONE                       | 36.3                                                           | 37.5    |                                      |                                                                       |                        |
|                                                   | 3                                  | LIMEST                 | ONE                       | 36.3                                                           | 37.5    |                                      |                                                                       |                        |
|                                                   | 3                                  | LIMEST                 | ONE                       | 36.3                                                           | 37.5    |                                      |                                                                       |                        |
|                                                   | 3                                  | LIMEST                 | ONE                       | 36.3                                                           | 37.5    |                                      |                                                                       |                        |
|                                                   | 4                                  | LIMEST                 | ONE                       | 37.5                                                           | 42.7    |                                      |                                                                       |                        |
|                                                   | 4                                  | LIMEST                 | ONE                       | 37.5                                                           | 42.7    |                                      |                                                                       |                        |
|                                                   | 4                                  | LIMEST                 | ONE                       | 37.5                                                           | 42.7    |                                      |                                                                       |                        |
|                                                   | 4                                  | LIMEST                 | ONE                       | 37.5                                                           | 42.7    |                                      |                                                                       |                        |
| Well ID: 7200356<br>Construction Date: 2013-04-15 | _                                  | : 454958<br>ng: 5E+06  |                           | UTM Zone<br>Positional                                         |         | margin of error : 10                 | 00 m - 300 m                                                          |                        |
|                                                   |                                    | ameter (cm): 1         | 61<br>14.9<br>46.9<br>5   | Water Kind<br>Final Status<br>Primary W                        | 5       | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m): | 91<br><b>91</b><br>1:0 |
|                                                   | Layer:                             |                        | -                         | Тор:                                                           | Bottom: |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    |                           | 0                                                              | 13.7    |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    | D                         | 0                                                              | 13.7    |                                      |                                                                       |                        |
|                                                   |                                    |                        |                           |                                                                |         |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    |                           | 0                                                              | 13.7    |                                      |                                                                       |                        |
|                                                   |                                    | SAN                    | D                         | 0                                                              | 13.7    |                                      |                                                                       |                        |
|                                                   | 1                                  |                        | D                         |                                                                |         |                                      |                                                                       |                        |
|                                                   | 1                                  | SAN                    | D<br>ONE                  | 0                                                              | 13.7    |                                      |                                                                       |                        |

|                                                | Well Dep<br>Well Dia | oth:<br>meter (cm):<br>rst Found: | 61<br>15.6<br>48.2       | Water Kind<br>Final Statu<br>Primary W | s            | Untested<br>Water Supply             | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m): | 55<br><b>55</b><br>1:0 |
|------------------------------------------------|----------------------|-----------------------------------|--------------------------|----------------------------------------|--------------|--------------------------------------|-----------------------------------------------------------------------|------------------------|
| Well ID: 7204663 Construction Date: 2013-07-16 | Easting:<br>Northing | 454826<br>g: 5E+06                |                          | UTM Zone<br>Positional                 |              | margin of error :                    | 30 m - 100 m                                                          |                        |
|                                                | 8                    | SANDS                             | STONE                    | 89                                     | 91.4         |                                      |                                                                       |                        |
|                                                | 8                    | SANDS                             | STONE                    | 89                                     | 91.4         |                                      |                                                                       |                        |
|                                                | 7                    | SANDS                             | STONE                    | 49.1                                   | 89           |                                      |                                                                       |                        |
|                                                | 7                    | SANDS                             | STONE                    | 49.1                                   | 89           |                                      |                                                                       |                        |
|                                                | 6                    | LIMES                             | STONE                    | 41.5                                   | 49.1         |                                      |                                                                       |                        |
|                                                | 6                    |                                   | STONE                    | 41.5                                   | 49.1         |                                      |                                                                       |                        |
|                                                | 5                    |                                   | STONE                    | 38.1                                   | 41.5         |                                      |                                                                       |                        |
|                                                | 5                    |                                   | STONE                    | 38.1                                   | 41.5         |                                      |                                                                       |                        |
|                                                | 4                    |                                   | STONE                    | 18.3                                   | 38.1         |                                      |                                                                       |                        |
|                                                | 4                    |                                   | STONE                    | 18.3                                   | 38.1         |                                      |                                                                       |                        |
|                                                | 3                    |                                   | ND<br>ND                 | 10.4<br>10.4                           | 18.3<br>18.3 |                                      |                                                                       |                        |
|                                                | 2                    |                                   | ND                       | 3.35                                   | 10.4         |                                      |                                                                       |                        |
|                                                | 2                    |                                   | ND                       | 3.35                                   | 10.4         |                                      |                                                                       |                        |
|                                                | 1                    |                                   | ND                       | 0                                      | 3.35         |                                      |                                                                       |                        |
|                                                | 1                    |                                   | ND                       | 0                                      | 3.35         |                                      |                                                                       |                        |
|                                                | Layer:               | Driller's Des                     | scription:               | Тор:                                   | Bottom:      |                                      |                                                                       |                        |
|                                                |                      | meter (cm):<br>rst Found:         | 91.4<br>15.6<br>89<br>10 | Water Kind<br>Final Statu<br>Primary W | s            | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): Recommended Pump Rate: Pumping Duration (h:m):       | 55<br>55<br>1:0        |
| Construction Date: 2013-07-16                  | Northing             | g: 5E+06                          |                          | Positional A                           | Accuracy:    | margin of error :                    |                                                                       |                        |
| Well ID: 7204662                               | Easting:             |                                   |                          | UTM Zone                               |              |                                      |                                                                       |                        |
|                                                | 5                    |                                   | STONE                    | 55.5                                   | 61           |                                      |                                                                       |                        |
|                                                | 5                    |                                   | STONE                    | 55.5                                   | 61           |                                      |                                                                       |                        |
|                                                | 5<br>5               |                                   | STONE<br>STONE           | 55.5<br>55.5                           | 61<br>61     |                                      |                                                                       |                        |
|                                                | 4                    |                                   | STONE                    | 46.9                                   | 55.5         |                                      |                                                                       |                        |
|                                                | 4                    |                                   | STONE                    | 46.9                                   | 55.5         |                                      |                                                                       |                        |
|                                                | 4                    |                                   | STONE                    | 46.9                                   | 55.5         |                                      |                                                                       |                        |
|                                                | 4                    | SANDS                             | STONE                    | 46.9                                   | 55.5         |                                      |                                                                       |                        |
|                                                | 3                    | SANDS                             | STONE                    | 42.1                                   | 46.9         |                                      |                                                                       |                        |
|                                                | 3                    | SANDS                             | STONE                    | 42.1                                   | 46.9         |                                      |                                                                       |                        |
|                                                | 3                    | SANDS                             | STONE                    | 42.1                                   | 46.9         |                                      |                                                                       |                        |
|                                                | 3                    | SANDS                             | STONE                    | 42.1                                   | 46.9         |                                      |                                                                       |                        |
|                                                | 2                    | LIMES                             | STONE                    | 13.7                                   | 42.1         |                                      |                                                                       |                        |

Top:

**Bottom:** 

Layer: Driller's Description:

Docusign Envelope ID: 919BBDD5-B067-4A30-A9BF-F2CF379844AC

| Docusign Envelope ID: 919BBDD5-B0                 | 67-4A30-A9BF<br>1                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|---------------------------------------------------|---------------------------------------------------------|--------------------------------|----------------------------------------|---------|--------------------------------------|---------------------------------------------------------------------------|--|
|                                                   | 1                                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
| Well ID: 7209271<br>Construction Date: 2013-10-10 | Easting: 45                                             |                                | UTM Zone<br>Positional                 |         | margin of error : 3                  | 30 m - 100 m                                                              |  |
|                                                   | Well Depth<br>Well Diame<br>Water First<br>Static Level | eter (cm): 15.6<br>Found: 21.0 | Water Kind<br>Final Statu<br>Primary W | s       | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): 91 Recommended Pump Rate: 91 Pumping Duration (h:m): 1:0 |  |
|                                                   | Layer: Di                                               | riller's Description:          | Тор:                                   | Bottom: |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |

Docusign Envelope ID: 919BBDD5-B067-4A30-A9BF-F2CF379844AC

1

1

2

SAND

SAND

SAND

0

0

6.1

6.1

6.1

14.6

| Docusign Envelope ID: 919BBDD5-B0                 | 67-4A30-A9BF<br>1                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|---------------------------------------------------|---------------------------------------------------------|--------------------------------|----------------------------------------|---------|--------------------------------------|---------------------------------------------------------------------------|--|
|                                                   | 1                                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 4.27    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 2                                                       | SILT                           | 4.27                                   | 11.6    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 3                                                       | SAND                           | 11.6                                   | 14.3    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 4                                                       | LIMESTONE                      | 14.3                                   | 40.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 5                                                       | LIMESTONE                      | 40.2                                   | 48.2    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 6                                                       | LIMESTONE                      | 48.2                                   | 57.6    |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
|                                                   | 7                                                       | LIMESTONE                      | 57.6                                   | 61      |                                      |                                                                           |  |
| Well ID: 7209271<br>Construction Date: 2013-10-10 | Easting: 45                                             |                                | UTM Zone<br>Positional                 |         | margin of error : 3                  | 30 m - 100 m                                                              |  |
|                                                   | Well Depth<br>Well Diame<br>Water First<br>Static Level | eter (cm): 15.6<br>Found: 21.0 | Water Kind<br>Final Statu<br>Primary W | s       | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): 91 Recommended Pump Rate: 91 Pumping Duration (h:m): 1:0 |  |
|                                                   | Layer: Di                                               | riller's Description:          | Тор:                                   | Bottom: |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |
|                                                   | 1                                                       | SAND                           | 0                                      | 6.1     |                                      |                                                                           |  |

Docusign Envelope ID: 919BBDD5-B067-4A30-A9BF-F2CF379844AC

1

1

2

SAND

SAND

SAND

0

0

6.1

6.1

6.1

14.6

| Well ID: 7217217 | Easting: 45 |                        | UTM Zone     |              |  |  |
|------------------|-------------|------------------------|--------------|--------------|--|--|
|                  | 7           | SANDSTONE              | 51.8         | 54.9         |  |  |
|                  | 7           | SANDSTONE              | 51.8         | 54.9         |  |  |
|                  | 7           | SANDSTONE              | 51.8         | 54.9         |  |  |
|                  | 7           | SANDSTONE              | 51.8         | 54.9         |  |  |
|                  | 7           | SANDSTONE              | 51.8         | 54.9         |  |  |
|                  | 7           | SANDSTONE              | 51.8         | 54.9         |  |  |
|                  | 6           | SANDSTONE              | 44.8         | 51.8         |  |  |
|                  | 6           | SANDSTONE              | 44.8         | 51.8         |  |  |
|                  | 6           | SANDSTONE              | 44.8         | 51.8         |  |  |
|                  | 6           | SANDSTONE              | 44.8         | 51.8         |  |  |
|                  | 6           | SANDSTONE              | 44.8         | 51.8         |  |  |
|                  | 6           | SANDSTONE              | 44.8         | 51.8         |  |  |
|                  | 5           | SANDSTONE              | 42.4         | 44.8         |  |  |
|                  | 5           | SANDSTONE              | 42.4         | 44.8         |  |  |
|                  | 5           | SANDSTONE              | 42.4         | 44.8         |  |  |
|                  | 5           | SANDSTONE              | 42.4         | 44.8         |  |  |
|                  | 5           | SANDSTONE              | 42.4         | 44.8         |  |  |
|                  | 5           | SANDSTONE              | 42.4         | 44.8         |  |  |
|                  | 4           | LIMESTONE              | 21.0         | 42.4         |  |  |
|                  | 4           | LIMESTONE              | 21.0         | 42.4         |  |  |
|                  | 4           | LIMESTONE              | 21.0         | 42.4         |  |  |
|                  | 4           | LIMESTONE              | 21.0         | 42.4         |  |  |
|                  | 4           | LIMESTONE<br>LIMESTONE | 21.0<br>21.0 | 42.4         |  |  |
|                  | 3           | LIMESTONE              | 14.6         | 21.0<br>42.4 |  |  |
|                  | 3           | LIMESTONE              | 14.6         | 21.0         |  |  |
|                  | 3           | LIMESTONE              | 14.6         | 21.0         |  |  |
|                  | 3           | LIMESTONE              | 14.6         | 21.0         |  |  |
|                  | 3           | LIMESTONE              | 14.6         | 21.0         |  |  |
|                  | 3           | LIMESTONE              | 14.6         | 21.0         |  |  |
|                  | 2           | SAND                   | 6.1          | 14.6         |  |  |
|                  | 2           | SAND                   | 6.1          | 14.6         |  |  |
|                  | 2           | SAND                   | 6.1          | 14.6         |  |  |
|                  | 2           | SAND                   | 6.1          | 14.6         |  |  |
|                  | 2           | SAND                   | 6.1          | 14.6         |  |  |

**Construction Date: 2014-03-03** 

Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m

**Water Kind** Pump Rate (LPM): Untested 91 Well Depth: 32.3 **Recommended Pump Rate: 91** Well Diameter (cm): 15.2 **Final Status** Water Supply Water First Found: 30.2 Primary Water Use: Domestic Pumping Duration (h:m): 1: Static Level:

Layer: Driller's Description: Top: Bottom:

| Well ID: 7228009  Construction Date: 2014-09-22 | Easting: 4  |                | UTM Zone | _    | rgin of error : 30 m - | 100 m |
|-------------------------------------------------|-------------|----------------|----------|------|------------------------|-------|
|                                                 | 3           | LIMESTONE      | 30.2     | 32.3 |                        |       |
|                                                 | 3           | LIMESTONE      | 30.2     | 32.3 |                        |       |
|                                                 | 2           | LIMESTONE      | 14.3     | 30.2 |                        |       |
|                                                 | 2           | LIMESTONE      | 14.3     | 30.2 |                        |       |
|                                                 | 1           | SAND           | 0        | 14.3 |                        |       |
|                                                 | 1           | SAND           | 0        | 14.3 |                        |       |
| ocusign Envelope ID: 919BBDD5-B0                | 67-4A30-A9B | F-F2CF379844AC |          |      |                        |       |

| Well Depth:         | 61   |
|---------------------|------|
| Well Diameter (cm): | 15.1 |
| Water First Found:  | 26.2 |
| Static Level:       | Q    |

Positional Accuracy: margin of error: 30 m - 100 m

Water KindUntestedPump Rate (LPM):91Final StatusWater SupplyRecommended Pump Rate:91Primary Water Use:DomesticPumping Duration (h:m):1:

| .ayer: | Driller's Description: | Тор: | Bottom: |
|--------|------------------------|------|---------|
| 1      | SAND                   | 0    | 15.2    |
| 1      | SAND                   | 0    | 15.2    |
| 1      | SAND                   | 0    | 15.2    |
| 1      | SAND                   | 0    | 15.2    |
| 1      | SAND                   | 0    | 15.2    |
| 1      | SAND                   | 0    | 15.2    |
| 2      | LIMESTONE              | 15.2 | 26.2    |
| 2      | LIMESTONE              | 15.2 | 26.2    |
| 2      | LIMESTONE              | 15.2 | 26.2    |
| 2      | LIMESTONE              | 15.2 | 26.2    |
| 2      | LIMESTONE              | 15.2 | 26.2    |
| 2      | LIMESTONE              | 15.2 | 26.2    |
| 3      | LIMESTONE              | 26.2 | 40.8    |
| 3      | LIMESTONE              | 26.2 | 40.8    |
| 3      | LIMESTONE              | 26.2 | 40.8    |
| 3      | LIMESTONE              | 26.2 | 40.8    |
| 3      | LIMESTONE              | 26.2 | 40.8    |
| 3      | LIMESTONE              | 26.2 | 40.8    |
| 4      | LIMESTONE              | 40.8 | 54.9    |
| 4      | LIMESTONE              | 40.8 | 54.9    |
| 4      | LIMESTONE              | 40.8 | 54.9    |
| 4      | LIMESTONE              | 40.8 | 54.9    |
| 4      | LIMESTONE              | 40.8 | 54.9    |
| 4      | LIMESTONE              | 40.8 | 54.9    |
| 5      | SANDSTONE              | 54.9 | 59.1    |
| 5      | SANDSTONE              | 54.9 | 59.1    |
| 5      | SANDSTONE              | 54.9 | 59.1    |
| 5      | SANDSTONE              | 54.9 | 59.1    |
| 5      | SANDSTONE              | 54.9 | 59.1    |
|        |                        |      |         |

| cusign Envelope ID: 919BBDD5-B0                              | 67-4A30-A<br>5 | 9BF-F2CF379844AC<br>SANDSTONE          | 54.9                                  | 59.1         |                                      |                        |                       |
|--------------------------------------------------------------|----------------|----------------------------------------|---------------------------------------|--------------|--------------------------------------|------------------------|-----------------------|
|                                                              | 6              | SANDSTONE                              | 59.1                                  | 61           |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 59.1                                  | 61           |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 59.1                                  | 61           |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 59.1                                  | 61           |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 59.1                                  | 61           |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 59.1                                  | 61           |                                      |                        |                       |
| Well ID: 7230319<br>Construction Date: 2014-10-29            | _              | : 455162<br>ng: 5E+06                  | UTM Zone                              |              | margin of error :                    | 30 m - 100 m           |                       |
|                                                              |                | ameter (cm): 15.2<br>First Found: 88.7 | Water Kin<br>Final Statu<br>Primary W | ıs           | Untested<br>Water Supply<br>Domestic | Recommended Pump Rate: | 55<br><b>55</b><br>1: |
|                                                              | Layer:         | Driller's Description:                 | Тор:                                  | Bottom:      |                                      |                        |                       |
|                                                              | 1              | SAND                                   | 0                                     | 9.14         |                                      |                        |                       |
|                                                              | 1              | SAND                                   | 0                                     | 9.14         |                                      |                        |                       |
|                                                              | 2              | GRAVEL                                 | 9.14                                  | 17.7         |                                      |                        |                       |
|                                                              | 2              | GRAVEL                                 | 9.14                                  | 17.7         |                                      |                        |                       |
|                                                              | 3              | LIMESTONE                              | 17.7                                  | 43           |                                      |                        |                       |
|                                                              | 3              | LIMESTONE                              | 17.7                                  | 43           |                                      |                        |                       |
|                                                              | 4              | LIMESTONE                              | 43                                    | 48.2         |                                      |                        |                       |
|                                                              | 4              | LIMESTONE                              | 43                                    | 48.2         |                                      |                        |                       |
|                                                              | 5              | SANDSTONE                              | 48.2                                  | 88.7         |                                      |                        |                       |
|                                                              | 5              | SANDSTONE                              | 48.2                                  | 88.7         |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 88.7                                  | 90.5         |                                      |                        |                       |
|                                                              | 6              | SANDSTONE                              | 88.7                                  | 90.5         |                                      |                        |                       |
| <b>Well ID:</b> 7240506 <b>Construction Date:</b> 2015-04-24 | _              | : 455080<br>ng: 5E+06                  | UTM Zone Positional                   |              | margin of error :                    | 30 m - 100 m           |                       |
|                                                              |                | ameter (cm): 15.1<br>First Found: 41.8 | Water Kin<br>Final Statu<br>Primary W | ıs           | Untested<br>Water Supply<br>Domestic | Recommended Pump Rate: | 36<br>36<br>1:0       |
|                                                              | Layer:         | Driller's Description:                 | Тор:                                  | Bottom:      |                                      |                        |                       |
|                                                              | 1              | CLAY                                   | 0                                     | 16.8         |                                      |                        |                       |
|                                                              | 1              | CLAY                                   | 0                                     | 16.8         |                                      |                        |                       |
|                                                              | 1              | CLAY                                   | 0                                     | 16.8         |                                      |                        |                       |
|                                                              | 1              | CLAY                                   | 0                                     | 16.8         |                                      |                        |                       |
|                                                              | 2              | LIMESTONE                              | 16.8                                  | 41.8         |                                      |                        |                       |
|                                                              |                |                                        | 16.8                                  | 41.8         |                                      |                        |                       |
|                                                              | 2              | LIMESTONE                              |                                       | 41.0         |                                      |                        |                       |
|                                                              | 2              | LIMESTONE                              | 16.8                                  | 41.8         |                                      |                        |                       |
|                                                              |                | LIMESTONE<br>LIMESTONE                 |                                       | 41.8<br>41.8 |                                      |                        |                       |
|                                                              | 2              | LIMESTONE                              | 16.8                                  | 41.8         |                                      |                        |                       |

|                                                              | 3           | LIMESTONE                              | 41.8                                  | 51.8    |                                      |                                                                |                           |
|--------------------------------------------------------------|-------------|----------------------------------------|---------------------------------------|---------|--------------------------------------|----------------------------------------------------------------|---------------------------|
|                                                              | 4           | SANDSTONE                              | 51.8                                  | 59.1    |                                      |                                                                |                           |
|                                                              | 4           | SANDSTONE                              | 51.8                                  | 59.1    |                                      |                                                                |                           |
|                                                              | 4           | SANDSTONE                              | 51.8                                  | 59.1    |                                      |                                                                |                           |
|                                                              | 4           | SANDSTONE                              | 51.8                                  | 59.1    |                                      |                                                                |                           |
|                                                              | 5           | SANDSTONE                              | 59.1                                  | 61      |                                      |                                                                |                           |
|                                                              | 5           | SANDSTONE                              | 59.1                                  | 61      |                                      |                                                                |                           |
|                                                              | 5           | SANDSTONE                              | 59.1                                  | 61      |                                      |                                                                |                           |
|                                                              | 5           | SANDSTONE                              | 59.1                                  | 61      |                                      |                                                                |                           |
| Well ID: 7243021<br>Construction Date: 2015-06-15            | _           | : 455306<br>g: 5E+06                   | UTM Zone<br>Positional                |         | margin of error :                    | 30 m - 100 m                                                   |                           |
|                                                              |             | ameter (cm): 15.2<br>First Found: 22.9 | Water Kin<br>Final Statu<br>Primary W | ıs      | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): Recommended Pump Rate Pumping Duration (h:m): | 91<br>: <b>91</b><br>1:   |
|                                                              | Layer:      | Driller's Description:                 | Тор:                                  | Bottom: |                                      |                                                                |                           |
|                                                              | 1           | CLAY                                   | 0                                     | 14.9    |                                      |                                                                |                           |
|                                                              | 1           | CLAY                                   | 0                                     | 14.9    |                                      |                                                                |                           |
|                                                              | 1           | CLAY                                   | 0                                     | 14.9    |                                      |                                                                |                           |
|                                                              | 1           | CLAY                                   | 0                                     | 14.9    |                                      |                                                                |                           |
|                                                              | 2           | LIMESTONE                              | 14.9                                  | 22.9    |                                      |                                                                |                           |
|                                                              | 2           | LIMESTONE                              | 14.9                                  | 22.9    |                                      |                                                                |                           |
|                                                              | 2           | LIMESTONE                              | 14.9                                  | 22.9    |                                      |                                                                |                           |
|                                                              | 2           | LIMESTONE                              | 14.9                                  | 22.9    |                                      |                                                                |                           |
|                                                              | 3           | LIMESTONE                              | 22.9                                  | 52.4    |                                      |                                                                |                           |
|                                                              | 3           | LIMESTONE                              | 22.9                                  | 52.4    |                                      |                                                                |                           |
|                                                              | 3           | LIMESTONE                              | 22.9                                  | 52.4    |                                      |                                                                |                           |
|                                                              | 3           | LIMESTONE                              | 22.9                                  | 52.4    |                                      |                                                                |                           |
|                                                              | 4           | LIMESTONE                              | 52.4                                  | 54.9    |                                      |                                                                |                           |
|                                                              | 4           | LIMESTONE                              | 52.4                                  | 54.9    |                                      |                                                                |                           |
|                                                              | 4           | LIMESTONE                              | 52.4                                  | 54.9    |                                      |                                                                |                           |
|                                                              | 4           | LIMESTONE                              | 52.4                                  | 54.9    |                                      |                                                                |                           |
| <b>Well ID:</b> 7243032 <b>Construction Date:</b> 2015-06-15 | _           | : 455258<br><b>g:</b> 5E+06            | UTM Zone<br>Positional                |         | margin of error :                    | 30 m - 100 m                                                   |                           |
|                                                              |             | ameter (cm): 15.9<br>First Found: 46.9 | Water Kin<br>Final Statu<br>Primary W | ıs      | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): Recommended Pump Rate Pumping Duration (h:m): | 68<br>: <b>68</b><br>: 10 |
|                                                              |             |                                        | Тор:                                  | Bottom: |                                      |                                                                |                           |
|                                                              | Layer:      | Driller's Description:                 | iop.                                  |         |                                      |                                                                |                           |
|                                                              | Layer:<br>1 | Oriller's Description:                 | 0                                     | 15.9    |                                      |                                                                |                           |
|                                                              | -           | -                                      | -                                     |         |                                      |                                                                |                           |

| De | ocusion Envelope ID: 040DDDE D06                  | 7 4420 4                                                | ODE E20E270944AC                                                                                                                                                                                                          |                                                  |                                                                         |                       |                                                                          |  |
|----|---------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|--|
| DC | ocusign Envelope ID: 919BBDD5-B06                 | 7-4A30-A<br>1                                           | CLAY                                                                                                                                                                                                                      | 0                                                | 15.9                                                                    |                       |                                                                          |  |
|    |                                                   | 2                                                       | LIMESTONE                                                                                                                                                                                                                 | 15.9                                             | 26.2                                                                    |                       |                                                                          |  |
|    |                                                   | 2                                                       | LIMESTONE                                                                                                                                                                                                                 | 15.9                                             | 26.2                                                                    |                       |                                                                          |  |
|    |                                                   | 2                                                       | LIMESTONE                                                                                                                                                                                                                 | 15.9                                             | 26.2                                                                    |                       |                                                                          |  |
|    |                                                   | 2                                                       | LIMESTONE                                                                                                                                                                                                                 | 15.9                                             | 26.2                                                                    |                       |                                                                          |  |
|    |                                                   | 3                                                       | LIMESTONE                                                                                                                                                                                                                 | 26.2                                             | 46.9                                                                    |                       |                                                                          |  |
|    |                                                   | 3                                                       | LIMESTONE                                                                                                                                                                                                                 | 26.2                                             | 46.9                                                                    |                       |                                                                          |  |
|    |                                                   | 3                                                       | LIMESTONE                                                                                                                                                                                                                 | 26.2                                             | 46.9                                                                    |                       |                                                                          |  |
|    |                                                   | 3                                                       | LIMESTONE                                                                                                                                                                                                                 | 26.2                                             | 46.9                                                                    |                       |                                                                          |  |
|    |                                                   | 4                                                       | LIMESTONE                                                                                                                                                                                                                 | 46.9                                             | 48.8                                                                    |                       |                                                                          |  |
|    |                                                   | 4                                                       | LIMESTONE                                                                                                                                                                                                                 | 46.9                                             | 48.8                                                                    |                       |                                                                          |  |
|    |                                                   | 4                                                       | LIMESTONE                                                                                                                                                                                                                 | 46.9                                             | 48.8                                                                    |                       |                                                                          |  |
|    |                                                   | 4                                                       | LIMESTONE                                                                                                                                                                                                                 | 46.9                                             | 48.8                                                                    |                       |                                                                          |  |
| -  | Well ID: 7243033<br>Construction Date: 2015-06-15 |                                                         | 455335<br><b>g:</b> 5E+06                                                                                                                                                                                                 | UTM Zone<br>Positional A                         |                                                                         | margin of error : 30  | ) m - 100 m                                                              |  |
|    |                                                   |                                                         | pth: 65.5<br>nmeter (cm): 15.2<br>irst Found: 57.9                                                                                                                                                                        | Water Kind<br>Final Status<br>Primary Wa         | s                                                                       | Untested Water Supply | Pump Rate (LPM): 91 Recommended Pump Rate: 91 Pumping Duration (h:m): 1: |  |
|    |                                                   | Static Le                                               |                                                                                                                                                                                                                           | Timury VV                                        | uter Osc.                                                               | Domestic              | Tumping Suration (min).                                                  |  |
|    |                                                   |                                                         | evel: 9                                                                                                                                                                                                                   | Top:                                             | Bottom:                                                                 |                       | Tamping Datation (illin)                                                 |  |
|    |                                                   | Static Le                                               | evel: 9                                                                                                                                                                                                                   |                                                  |                                                                         |                       |                                                                          |  |
|    |                                                   | Static Le                                               | evel: 9  Driller's Description:                                                                                                                                                                                           | Тор:                                             | Bottom:                                                                 |                       |                                                                          |  |
|    |                                                   | Static Le<br>Layer:                                     | pvel: 9  Driller's Description:  CLAY                                                                                                                                                                                     | <b>Top:</b><br>0                                 | Bottom:<br>14.6                                                         |                       |                                                                          |  |
|    |                                                   | Static Le<br>Layer:<br>1                                | evel: 9  Driller's Description:  CLAY  CLAY                                                                                                                                                                               | <b>Top:</b> 0 0                                  | Bottom:<br>14.6<br>14.6                                                 |                       |                                                                          |  |
|    |                                                   | Static Le<br>Layer:<br>1<br>1                           | evel: 9  Driller's Description: CLAY CLAY CLAY                                                                                                                                                                            | <b>Top:</b> 0 0 0                                | Bottom:<br>14.6<br>14.6<br>14.6                                         |                       |                                                                          |  |
|    |                                                   | Static Let<br>Layer:<br>1<br>1<br>1                     | pvel: 9  Driller's Description: CLAY CLAY CLAY CLAY CLAY                                                                                                                                                                  | <b>Top:</b> 0 0 0 0                              | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6                                 |                       |                                                                          |  |
|    |                                                   | Static Let<br>Layer:<br>1<br>1<br>1<br>1<br>2           | Pivel: 9  Driller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE                                                                                                                                                       | Top:<br>0<br>0<br>0<br>0<br>0                    | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6<br>48.8                         |                       |                                                                          |  |
|    |                                                   | Static Let<br>Layer:<br>1<br>1<br>1<br>2<br>2           | evel: 9  Driller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE LIMESTONE                                                                                                                                              | Top:<br>0<br>0<br>0<br>0<br>0<br>14.6<br>14.6    | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6<br>48.8<br>48.8                 |                       |                                                                          |  |
|    |                                                   | Static Let<br>Layer:<br>1<br>1<br>1<br>2<br>2<br>2      | evel: 9  Driller's Description: CLAY CLAY CLAY CLAY LIMESTONE LIMESTONE LIMESTONE                                                                                                                                         | Top:<br>0<br>0<br>0<br>0<br>14.6<br>14.6<br>14.6 | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6<br>48.8<br>48.8                 |                       |                                                                          |  |
|    |                                                   | Static Let<br>Layer:<br>1<br>1<br>1<br>2<br>2<br>2<br>2 | Povel: 9  Driller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE                                                                                                               | Top: 0 0 0 14.6 14.6 14.6 14.6                   | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6<br>48.8<br>48.8<br>48.8         |                       |                                                                          |  |
|    |                                                   | Static Let  Layer:  1  1  1  2  2  2  3                 | Pivel: 9  Driller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE                                                                                 | Top: 0 0 0 14.6 14.6 14.6 48.8                   | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6<br>48.8<br>48.8<br>48.8<br>57.9 |                       |                                                                          |  |
|    |                                                   | Static Let  Layer:  1  1  1  2  2  2  3  3              | Pivel: 9  Driller's Description: CLAY CLAY CLAY CLAY LIMESTONE                                                        | Top: 0 0 0 14.6 14.6 14.6 48.8 48.8              | Bottom:<br>14.6<br>14.6<br>14.6<br>14.6<br>48.8<br>48.8<br>48.8<br>57.9 |                       |                                                                          |  |
|    |                                                   | Static Let  Layer:  1  1  1  2  2  2  3  3  3           | Pivel: 9  Driller's Description: CLAY CLAY CLAY CLAY LIMESTONE                                    | Top: 0 0 0 14.6 14.6 14.6 48.8 48.8              | Bottom: 14.6 14.6 14.6 14.6 48.8 48.8 48.8 57.9 57.9                    |                       |                                                                          |  |
|    |                                                   | Static Let  Layer:  1  1  1  2  2  2  3  3  3  3        | evel: 9  Driller's Description: CLAY CLAY CLAY CLAY LIMESTONE                           | Top: 0 0 0 14.6 14.6 14.6 48.8 48.8 48.8         | Bottom: 14.6 14.6 14.6 14.6 48.8 48.8 48.8 57.9 57.9 57.9               |                       |                                                                          |  |
|    |                                                   | Static Let  Layer:  1  1  1  2  2  2  2  3  3  3  4     | Pivel: 9  Driller's Description: CLAY CLAY CLAY CLAY CLAY LIMESTONE | Top: 0 0 0 14.6 14.6 14.6 48.8 48.8 48.8 57.9    | Bottom: 14.6 14.6 14.6 14.6 48.8 48.8 48.8 57.9 57.9 57.9 63.4          |                       |                                                                          |  |

5

5

5

5

LIMESTONE

LIMESTONE

LIMESTONE

LIMESTONE

65.5

65.5

65.5

65.5

63.4

63.4

63.4

63.4

Well ID: 7252399

Construction Date: 2015-11-17

**Easting:** 455519 **UTM Zone** 18

Northing: 5E+06 Positional Accuracy: margin of error : 30 m - 100 m

Well Depth: 25 W
Well Diameter (cm): 15.2 Fin
Water First Found: 17.7 Pr
Static Level: 3

Water Kind Untested
Final Status Water Supply
Primary Water Use: Domestic

Pump Rate (LPM): 91
Recommended Pump Rate: 91
Pumping Duration (h:m): 1:

| Layer: | Driller's Description: | Тор: | Bottom: |  |
|--------|------------------------|------|---------|--|
| 1      | SAND                   | 0    | 9.14    |  |
| 1      | SAND                   | 0    | 9.14    |  |
| 1      | SAND                   | 0    | 9.14    |  |
| 1      | SAND                   | 0    | 9.14    |  |
| 2      | LIMESTONE              | 9.14 | 17.7    |  |
| 2      | LIMESTONE              | 9.14 | 17.7    |  |
| 2      | LIMESTONE              | 9.14 | 17.7    |  |
| 2      | LIMESTONE              | 9.14 | 17.7    |  |
| 3      | LIMESTONE              | 17.7 | 22.9    |  |
| 3      | LIMESTONE              | 17.7 | 22.9    |  |
| 3      | LIMESTONE              | 17.7 | 22.9    |  |
| 3      | LIMESTONE              | 17.7 | 22.9    |  |
| 4      | LIMESTONE              | 22.9 | 25      |  |
| 4      | LIMESTONE              | 22.9 | 25      |  |
| 4      | LIMESTONE              | 22.9 | 25      |  |
| 4      | LIMESTONE              | 22.9 | 25      |  |

Well ID: 7252400

Construction Date: 2015-11-17

**Easting:** 455399 **UTM Zone** 18

Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 48.8
Well Diameter (cm): 15.9
Water First Found: 44.2
Static Level: 2

Water Kind Untested
Final Status Water Supply
Primary Water Use: Domestic

Pump Rate (LPM): 91
Recommended Pump Rate: 91
Pumping Duration (h:m): 1:

| Layer: | Driller's Description: | Top: | Bottom: |
|--------|------------------------|------|---------|
| 1      | SAND                   | 0    | 8.84    |
| 1      | SAND                   | 0    | 8.84    |
| 1      | SAND                   | 0    | 8.84    |
| 1      | SAND                   | 0    | 8.84    |
| 2      | LIMESTONE              | 8.84 | 44.2    |
| 2      | LIMESTONE              | 8.84 | 44.2    |
| 2      | LIMESTONE              | 8.84 | 44.2    |
| 2      | LIMESTONE              | 8.84 | 44.2    |
| 3      | LIMESTONE              | 44.2 | 46.9    |
| 3      | LIMESTONE              | 44.2 | 46.9    |
| 3      | LIMESTONE              | 44.2 | 46.9    |
| 3      | LIMESTONE              | 44.2 | 46.9    |
| 4      | LIMESTONE              | 46.9 | 48.8    |

4 LIMESTONE 46.9 48.8 4 LIMESTONE 46.9 48.8 4 LIMESTONE 46.9 48.8

Well ID: 7255451

Construction Date: 2016-01-06

**Easting:** 455289 **UTM Zone** 18

Northing: 5E+06 Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 64.0
Well Diameter (cm): 15.6
Water First Found: 62.5
Static Level: 8

Water Kind Untested
Final Status Water Supply
Primary Water Use: Domestic

Pump Rate (LPM): 91
Recommended Pump Rate: 91
Pumping Duration (h:m): 1:0

| Static Le | evel: 8                |      |         |
|-----------|------------------------|------|---------|
| Layer:    | Driller's Description: | Top: | Bottom: |
| 1         | CLAY                   | 0    | 15.9    |
| 1         | CLAY                   | 0    | 15.9    |
| 1         | CLAY                   | 0    | 15.9    |
| 1         | CLAY                   | 0    | 15.9    |
| 2         | LIMESTONE              | 15.9 | 48.8    |
| 2         | LIMESTONE              | 15.9 | 48.8    |
| 2         | LIMESTONE              | 15.9 | 48.8    |
| 2         | LIMESTONE              | 15.9 | 48.8    |
| 3         | LIMESTONE              | 48.8 | 49.1    |
| 3         | LIMESTONE              | 48.8 | 49.1    |
| 3         | LIMESTONE              | 48.8 | 49.1    |
| 3         | LIMESTONE              | 48.8 | 49.1    |
| 4         | LIMESTONE              | 49.1 | 62.5    |
| 4         | LIMESTONE              | 49.1 | 62.5    |
| 4         | LIMESTONE              | 49.1 | 62.5    |
| 4         | LIMESTONE              | 49.1 | 62.5    |
| 5         | LIMESTONE              | 62.5 | 64.0    |
| 5         | LIMESTONE              | 62.5 | 64.0    |
| 5         | LIMESTONE              | 62.5 | 64.0    |
| 5         | LIMESTONE              | 62.5 | 64.0    |

Well ID: 7265398

Construction Date: 2016-06-21

**Easting:** 455315 **UTM Zone** 18

Northing: 5E+06 Positional Accuracy: margin of error : 30 m - 100 m

Well Depth: 73.2 Well Diameter (cm): 15.9 Water First Found: 70.7 Water KindUntestedFinal StatusWater SupplyPrimary Water Use:Domestic

Pump Rate (LPM): 91
Recommended Pump Rate: 91
Pumping Duration (h:m): 1:0

Static Level: 8

| Layer: | Driller's Description: | Top: | Bottom: |
|--------|------------------------|------|---------|
| 1      | SAND                   | 0    | 15.9    |
| 1      | SAND                   | 0    | 15.9    |
| 1      | SAND                   | 0    | 15.9    |
| 1      | SAND                   | 0    | 15.9    |
| 1      | SAND                   | 0    | 15.9    |
| 1      | SAND                   | 0    | 15.9    |

|                                                              | 1                                                                                 | CLAY                  | 0                                                     | 3.05    |                                      |                                                                          |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|---------|--------------------------------------|--------------------------------------------------------------------------|
|                                                              | 1                                                                                 | CLAY                  | 0                                                     | 3.05    |                                      |                                                                          |
|                                                              | 1                                                                                 | CLAY                  | 0                                                     | 3.05    |                                      |                                                                          |
|                                                              | Layer: Dr                                                                         | riller's Description: | Тор:                                                  | Bottom: |                                      |                                                                          |
|                                                              | Well Depth: 67.1 Well Diameter (cm): 15.9 Water First Found: 64.9 Static Level: 7 |                       |                                                       |         | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM): 91 Recommended Pump Rate: 91 Pumping Duration (h:m): 1: |
| <b>Well ID:</b> 7296379 <b>Construction Date:</b> 2017-10-03 | Easting: 454770<br>-10-03 Northing: 5E+06                                         |                       | UTM Zone 18 Positional Accuracy: margin of error : 30 |         | margin of error :                    | 30 m - 100 m                                                             |
|                                                              | 6                                                                                 | SANDSTONE             | 70.7                                                  | 73.2    |                                      |                                                                          |
|                                                              | 6                                                                                 | SANDSTONE             | 70.7                                                  | 73.2    |                                      |                                                                          |
|                                                              | 6                                                                                 | SANDSTONE             | 70.7                                                  | 73.2    |                                      |                                                                          |
|                                                              | 6                                                                                 | SANDSTONE             | 70.7                                                  | 73.2    |                                      |                                                                          |
|                                                              | 6                                                                                 | SANDSTONE             | 70.7                                                  | 73.2    |                                      |                                                                          |
|                                                              | 6                                                                                 | SANDSTONE             | 70.7                                                  | 73.2    |                                      |                                                                          |
|                                                              | 5                                                                                 | SANDSTONE             | 59.1                                                  | 70.7    |                                      |                                                                          |
|                                                              | 5                                                                                 | SANDSTONE             | 59.1                                                  | 70.7    |                                      |                                                                          |
|                                                              | 5                                                                                 | SANDSTONE             | 59.1                                                  | 70.7    |                                      |                                                                          |
|                                                              | 5                                                                                 | SANDSTONE             | 59.1                                                  | 70.7    |                                      |                                                                          |
|                                                              | 5                                                                                 | SANDSTONE             | 59.1                                                  | 70.7    |                                      |                                                                          |
|                                                              | 5                                                                                 | SANDSTONE             | 59.1                                                  | 70.7    |                                      |                                                                          |
|                                                              | 4                                                                                 | SANDSTONE             | 55.5                                                  | 59.1    |                                      |                                                                          |
|                                                              | 4                                                                                 | SANDSTONE             | 55.5                                                  | 59.1    |                                      |                                                                          |
|                                                              | 4                                                                                 | SANDSTONE             | 55.5                                                  | 59.1    |                                      |                                                                          |
|                                                              | 4                                                                                 | SANDSTONE             | 55.5                                                  | 59.1    |                                      |                                                                          |
|                                                              | 4                                                                                 | SANDSTONE             | 55.5                                                  | 59.1    |                                      |                                                                          |
|                                                              | 4                                                                                 | SANDSTONE             | 55.5                                                  | 59.1    |                                      |                                                                          |
|                                                              | 3                                                                                 | SANDSTONE             | 48.8                                                  | 55.5    |                                      |                                                                          |
|                                                              | 3                                                                                 | SANDSTONE             | 48.8                                                  | 55.5    |                                      |                                                                          |
|                                                              | 3                                                                                 | SANDSTONE             | 48.8                                                  | 55.5    |                                      |                                                                          |
|                                                              | 3                                                                                 | SANDSTONE             | 48.8                                                  | 55.5    |                                      |                                                                          |
|                                                              | 3                                                                                 | SANDSTONE             | 48.8                                                  | 55.5    |                                      |                                                                          |
|                                                              | 3                                                                                 | SANDSTONE             | 48.8                                                  | 55.5    |                                      |                                                                          |
|                                                              | 2                                                                                 | LIMESTONE             | 15.9                                                  | 48.8    |                                      |                                                                          |
|                                                              | 2                                                                                 | LIMESTONE             | 15.9                                                  | 48.8    |                                      |                                                                          |
|                                                              | 2                                                                                 | LIMESTONE             | 15.9                                                  | 48.8    |                                      |                                                                          |
|                                                              | 2                                                                                 | LIMESTONE             | 15.9                                                  | 48.8    |                                      |                                                                          |
|                                                              | 2                                                                                 | LIMESTONE             | 15.9                                                  | 48.8    |                                      |                                                                          |
| 540.g., 2.1.6.6pc 12. 6.1622226 26                           | 2                                                                                 | LIMESTONE             | 15.9                                                  | 48.8    |                                      |                                                                          |

Docusign Envelope ID: 919BBDD5-B067-4A30-A9BF-F2CF379844AC

2

GRAVEL

3.05

17.7

| cusign Envelope ID: 919BBDD5-B0                   | 67-4A30-A9E<br>2                                                            | BF-F2CF379844AC<br>GRAVEL                                                                                                                                               | 3.05                                                      | 17.7                                                                    |                                      |                                                                                 |                 |
|---------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|-----------------|
|                                                   | 2                                                                           | GRAVEL                                                                                                                                                                  | 3.05                                                      | 17.7                                                                    |                                      |                                                                                 |                 |
|                                                   | 2                                                                           | GRAVEL                                                                                                                                                                  | 3.05                                                      | 17.7                                                                    |                                      |                                                                                 |                 |
|                                                   | 3                                                                           | LIMESTONE                                                                                                                                                               | 17.7                                                      | 46.0                                                                    |                                      |                                                                                 |                 |
|                                                   | 3                                                                           | LIMESTONE                                                                                                                                                               | 17.7                                                      | 46.0                                                                    |                                      |                                                                                 |                 |
|                                                   | 3                                                                           | LIMESTONE                                                                                                                                                               | 17.7                                                      | 46.0                                                                    |                                      |                                                                                 |                 |
|                                                   | 3                                                                           | LIMESTONE                                                                                                                                                               | 17.7                                                      | 46.0                                                                    |                                      |                                                                                 |                 |
|                                                   | 4                                                                           | SANDSTONE                                                                                                                                                               | 46.0                                                      | 63.7                                                                    |                                      |                                                                                 |                 |
|                                                   | 4                                                                           | SANDSTONE                                                                                                                                                               | 46.0                                                      | 63.7                                                                    |                                      |                                                                                 |                 |
|                                                   | 4                                                                           | SANDSTONE                                                                                                                                                               | 46.0                                                      | 63.7                                                                    |                                      |                                                                                 |                 |
|                                                   | 4                                                                           | SANDSTONE                                                                                                                                                               | 46.0                                                      | 63.7                                                                    |                                      |                                                                                 |                 |
|                                                   | 5                                                                           | SANDSTONE                                                                                                                                                               | 63.7                                                      | 64.9                                                                    |                                      |                                                                                 |                 |
|                                                   | 5                                                                           | SANDSTONE                                                                                                                                                               | 63.7                                                      | 64.9                                                                    |                                      |                                                                                 |                 |
|                                                   | 5                                                                           | SANDSTONE                                                                                                                                                               | 63.7                                                      | 64.9                                                                    |                                      |                                                                                 |                 |
|                                                   | 5                                                                           | SANDSTONE                                                                                                                                                               | 63.7                                                      | 64.9                                                                    |                                      |                                                                                 |                 |
|                                                   | 6                                                                           | SANDSTONE                                                                                                                                                               | 64.9                                                      | 67.1                                                                    |                                      |                                                                                 |                 |
|                                                   | 6                                                                           | SANDSTONE                                                                                                                                                               | 64.9                                                      | 67.1                                                                    |                                      |                                                                                 |                 |
|                                                   | 6                                                                           | SANDSTONE                                                                                                                                                               | 64.9                                                      | 67.1                                                                    |                                      |                                                                                 |                 |
|                                                   | 6                                                                           | SANDSTONE                                                                                                                                                               | 64.9                                                      | 67.1                                                                    |                                      |                                                                                 |                 |
| Well ID: 7301342<br>Construction Date: 2017-12-14 | Easting: 4                                                                  |                                                                                                                                                                         | UTM Zone<br>Positional                                    |                                                                         | margin of error :                    | 30 m - 100 m                                                                    |                 |
|                                                   | Well Dian<br>Water Fir                                                      | Well Depth: 36.6 Well Diameter (cm): 15.9 Water First Found: 35.4 Static Level: 3                                                                                       |                                                           | Water Kind Unite<br>Final Status Wat<br>Primary Water Use: Dom          |                                      | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m):           | 91<br>91<br>1:0 |
|                                                   | Lavor                                                                       | Dutti - ul - D utuat - u                                                                                                                                                | Тор:                                                      | Bottom:                                                                 |                                      |                                                                                 |                 |
|                                                   | Layer: I                                                                    | Driller's Description:                                                                                                                                                  | ιυρ.                                                      |                                                                         |                                      |                                                                                 |                 |
|                                                   | 1                                                                           | SAND                                                                                                                                                                    | 0                                                         | 10.1                                                                    |                                      |                                                                                 |                 |
|                                                   | -                                                                           | -                                                                                                                                                                       | -                                                         | 10.1<br>10.1                                                            |                                      |                                                                                 |                 |
|                                                   | 1                                                                           | SAND                                                                                                                                                                    | 0                                                         |                                                                         |                                      |                                                                                 |                 |
|                                                   | 1                                                                           | SAND                                                                                                                                                                    | 0                                                         | 10.1                                                                    |                                      |                                                                                 |                 |
|                                                   | 1<br>1<br>1                                                                 | SAND<br>SAND<br>SAND                                                                                                                                                    | 0 0                                                       | 10.1<br>10.1                                                            |                                      |                                                                                 |                 |
|                                                   | 1<br>1<br>1                                                                 | SAND<br>SAND<br>SAND<br>SAND                                                                                                                                            | 0 0 0                                                     | 10.1<br>10.1<br>10.1                                                    |                                      |                                                                                 |                 |
|                                                   | 1<br>1<br>1<br>1<br>2                                                       | SAND SAND SAND SAND LIMESTONE                                                                                                                                           | 0<br>0<br>0<br>0<br>10.1                                  | 10.1<br>10.1<br>10.1<br>36.6                                            |                                      |                                                                                 |                 |
|                                                   | 1<br>1<br>1<br>1<br>2<br>2                                                  | SAND SAND SAND LIMESTONE LIMESTONE                                                                                                                                      | 0<br>0<br>0<br>0<br>10.1<br>10.1                          | 10.1<br>10.1<br>10.1<br>36.6<br>36.6                                    |                                      |                                                                                 |                 |
| Well ID: 7318099<br>Construction Date: 2018-09-10 | 1<br>1<br>1<br>2<br>2<br>2                                                  | SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE                                                                                                   | 0<br>0<br>0<br>10.1<br>10.1<br>10.1<br>10.1               | 10.1<br>10.1<br>10.1<br>36.6<br>36.6<br>36.6<br>36.6                    | margin of error :                    | 30 m - 100 m                                                                    |                 |
|                                                   | 1 1 1 1 2 2 2 2 Northing:                                                   | SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE 455258 55E+06 th: 61 neter (cm): 15.2 st Found: 57                  | 0<br>0<br>0<br>10.1<br>10.1<br>10.1<br>10.1               | 10.1<br>10.1<br>10.1<br>36.6<br>36.6<br>36.6<br>36.6<br>36.6            | Untested<br>Water Supply             | 30 m - 100 m  Pump Rate (LPM):  Recommended Pump Rate:  Pumping Duration (h:m): | 91<br>91<br>1:  |
|                                                   | 1 1 1 1 2 2 2 2 2 Northing: Well Dept Well Dian Water Fir Static Lev Layer: | SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE  455258 55E+06 th: 61 neter (cm): 15.2 st Found: 57 el: 8 Driller's Description:                  | 0<br>0<br>0<br>10.1<br>10.1<br>10.1<br>10.1<br>Water Kind | 10.1<br>10.1<br>36.6<br>36.6<br>36.6<br>36.6<br>36.6<br>18<br>Accuracy: | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM):<br>Recommended Pump Rate:                                      | 91              |
|                                                   | 1 1 1 2 2 2 2 2 Northing: Well Dept Well Dian Water Fir Static Lev          | SAND SAND SAND SAND LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE LIMESTONE 455258 55E+06 th: 61 neter (cm): 15.2 st Found: 57 rel: 8 | 0 0 0 10.1 10.1 10.1 10.1 Water Kind                      | 10.1<br>10.1<br>10.1<br>36.6<br>36.6<br>36.6<br>36.6<br>18<br>Accuracy: | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM):<br>Recommended Pump Rate:                                      | 91              |

| Docusign Envelope ID: 919BBDD5-B06                           |                     |                                                                               |                                        |                     |                                      |                                                                       |                 |
|--------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------|----------------------------------------|---------------------|--------------------------------------|-----------------------------------------------------------------------|-----------------|
|                                                              | 2                   | SAND                                                                          | 4.27                                   | 15.2                |                                      |                                                                       |                 |
|                                                              | 2                   | SAND                                                                          | 4.27                                   | 15.2                |                                      |                                                                       |                 |
|                                                              | 3                   | LIMESTONE                                                                     | 15.2                                   | 41.8                |                                      |                                                                       |                 |
|                                                              | 3                   | LIMESTONE                                                                     | 15.2                                   | 41.8                |                                      |                                                                       |                 |
|                                                              | 4                   | SANDSTONE                                                                     | 41.8                                   | 45.7                |                                      |                                                                       |                 |
|                                                              | 4                   | SANDSTONE                                                                     | 41.8                                   | 45.7                |                                      |                                                                       |                 |
|                                                              | 5                   | SANDSTONE                                                                     | 45.7                                   | 57                  |                                      |                                                                       |                 |
|                                                              | 5                   | SANDSTONE                                                                     | 45.7                                   | 57                  |                                      |                                                                       |                 |
|                                                              | 6                   | SANDSTONE                                                                     | 57                                     | 61                  |                                      |                                                                       |                 |
|                                                              | 6                   | SANDSTONE                                                                     | 57                                     | 61                  |                                      |                                                                       |                 |
| Well ID: 7324334 Construction Date: 2018-12-11               | _                   | : 455498<br>ng: 5E+06                                                         | UTM Zone<br>Positional                 |                     | margin of error : :                  | 30 m - 100 m                                                          |                 |
|                                                              |                     | ameter (cm): 15.9<br>First Found: 15.2                                        | Water Kind<br>Final Statu<br>Primary W | s                   | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m): | 46<br>46<br>1:  |
|                                                              | Layer:              | Driller's Description:                                                        | Тор:                                   | Bottom:             |                                      |                                                                       |                 |
|                                                              | 1                   | SAND                                                                          | 0                                      | 7.31                |                                      |                                                                       |                 |
|                                                              | 1                   | SAND                                                                          | 0                                      | 7.31                |                                      |                                                                       |                 |
|                                                              | 2                   | SAND                                                                          | 7.31                                   | 11.3                |                                      |                                                                       |                 |
|                                                              | 2                   | SAND                                                                          | 7.31                                   | 11.3                |                                      |                                                                       |                 |
|                                                              | 3                   | LIMESTONE                                                                     | 11.3                                   | 15.2                |                                      |                                                                       |                 |
|                                                              | 3                   | LIMESTONE                                                                     | 11.3                                   | 15.2                |                                      |                                                                       |                 |
|                                                              | 4                   | LIMESTONE                                                                     | 15.2                                   | 18.3                |                                      |                                                                       |                 |
|                                                              | 4                   | LIMESTONE                                                                     | 15.2                                   | 18.3                |                                      |                                                                       |                 |
| <b>Well ID:</b> 7336839 <b>Construction Date:</b> 2019-07-10 | _                   | : 455307<br>ng: 5E+06                                                         | UTM Zone<br>Positional                 |                     | margin of error :                    | 30 m - 100 m                                                          |                 |
|                                                              | Well Dia<br>Water F | Well Depth: 25 Well Diameter (cm): 15.9 Water First Found: 22 Static Level: 2 |                                        | l<br>s<br>ater Use: | Untested<br>Water Supply<br>Domestic | Pump Rate (LPM):<br>Recommended Pump Rate:<br>Pumping Duration (h:m): | 91<br>91<br>1:0 |
|                                                              | Layer:              | Driller's Description:                                                        | Тор:                                   | Bottom:             |                                      |                                                                       |                 |
|                                                              | 1                   | SAND                                                                          | 0                                      | 12.5                |                                      |                                                                       |                 |
|                                                              | 1                   | SAND                                                                          | 0                                      | 12.5                |                                      |                                                                       |                 |
|                                                              | 2                   | LIMESTONE                                                                     | 12.5                                   | 22                  |                                      |                                                                       |                 |
|                                                              | 2                   | LIMESTONE                                                                     | 12.5                                   | 22                  |                                      |                                                                       |                 |
|                                                              |                     |                                                                               |                                        |                     |                                      |                                                                       |                 |

3

LIMESTONE

22

25

Well ID: 7341123

Construction Date: 2019-09-06

Easting: 455360

Northing: 5E+06

UTM Zone 18

Positional Accuracy: margin of error: 30 m - 100 m

Well Depth:

**Water Kind** 

Pump Rate (LPM):

Well Diameter (cm):

**Final Status** Water Supply

**Bottom:** 

**Recommended Pump Rate:** 

Water First Found:

**Primary Water Use:** 

Top:

**Pumping Duration (h:m):** 

Static Level:

Layer: Driller's Description:

Well ID: 7357357

Construction Date: 2020-04-28

Easting: 455292

UTM Zone 18

Northing: 5E+06

Positional Accuracy: margin of error: 30 m - 100 m

Well Depth: 24.7 Well Diameter (cm): 15.6 Water First Found: 22.9 **Water Kind Final Status** 

Untested Water Supply Primary Water Use: Domestic

Pump Rate (LPM): **Recommended Pump Rate: 91** 

Pumping Duration (h:m):

Static Level:

1

1

2

2

Layer: Driller's Description:

CLAY

CLAY

LIMESTONE

LIMESTONE

**Bottom:** Top: 0 15.2 0 15.2 15.2 24.7

> 15.2 24.7

Well ID: 7364564

Construction Date: 2020-08-13

**Easting:** 455536

Northing: 5E+06

UTM Zone 18

Positional Accuracy: margin of error: 30 m - 100 m

Well Depth:

Well Diameter (cm): **Water First Found:** 

Static Level:

**Water Kind Final Status** 

Top:

**Primary Water Use:** 

Pump Rate (LPM):

**Recommended Pump Rate:** Pumping Duration (h:m):

Layer: Driller's Description:

Bottom:



Ref. No.: 17281-002

2024-04-29

| Number | Street        | Spoke to employee | Participated in program | In-person survey results                                          | Paper survey results                                                                                                                                                                 |  |  |
|--------|---------------|-------------------|-------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1368   | Greely Lane   | Yes               | No                      | Gave letter to frontdesk and they will pass it along to the owner | Survey not returned                                                                                                                                                                  |  |  |
| 1375   | Greely Lane   | Yes               | No                      | Gave letter to frontdesk and they will pass it along to the owner | Returned survey indicates the well is approx 40ft deep and installe 31 years ago. No water quality or quanity issues are noted.                                                      |  |  |
| 1380   | Greely Lane   | No                | No                      | Left letter in mailbox                                            | Returned survey indicates water is obtained from a well constructed in approx. 1989, and is used for shower, septic, and vehicle washing. A sulfur smell is noted for water quality. |  |  |
| 6906   | McKeown Drive | Yes               | No                      | Gave letter to frontdesk and they will pass it along to the owner | Survey not returned                                                                                                                                                                  |  |  |
| 6876   | McKeown Drive | Yes               | No                      | Gave letter to frontdesk and they will pass it along to the owner | Survey not returned                                                                                                                                                                  |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |
|        |               |                   |                         |                                                                   |                                                                                                                                                                                      |  |  |



Ref. No.: 17281-002

2024-04-29

| Number | Street | Spoke to | Participated in | In-person survey results Paper survey results | ı | 1 |
|--------|--------|----------|-----------------|-----------------------------------------------|---|---|
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   | - |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   | - |
|        |        |          |                 |                                               |   | + |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |
|        |        |          |                 |                                               |   |   |



Ref. No.: 17281-002

2024-04-29

| Number | Street | Spoke to | Participated in | In-person survey results | Paper survey results |  |  |
|--------|--------|----------|-----------------|--------------------------|----------------------|--|--|
|        |        |          |                 |                          |                      |  |  |
|        |        |          |                 |                          |                      |  |  |
|        |        |          |                 |                          |                      |  |  |
|        |        |          |                 |                          |                      |  |  |
|        |        |          |                 |                          |                      |  |  |
|        |        |          |                 |                          |                      |  |  |
|        |        |          |                 |                          |                      |  |  |



Ref. No.: 17281-002 2024-04-29

| Number | Street | Spoke to | Participated in | In-person survey results | Paper survey results |  | per survey results |  |  |
|--------|--------|----------|-----------------|--------------------------|----------------------|--|--------------------|--|--|
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        | ·      |          | _               |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |
|        |        |          |                 |                          |                      |  |                    |  |  |

## CERTIFICATE OF WELL COMPLIANCE

I, Jeremy Hanna (License T3632), **AIR ROCK DRILLING CO. LTD., DO HEREBY CERTIFIY**, that I am licensed to drill water wells in the Province of Ontario, and that I have supervised the drilling of a well on the

| PROPERTY OF:                  | DANDEX D                                  | EVELOPMENTS INC.                                                                                                          |                                                  |
|-------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| LOCATED AT : _                | # 1386 GREELY                             | LANE                                                                                                                      | Greely                                           |
| LOT # P/L 4&5                 | CON# 4                                    | PLAN # 4M-351                                                                                                             | S/L # Part Block 3                               |
| Geographical Tov              | vnship OSGO                               | ODE                                                                                                                       |                                                  |
| of OTTA                       | AWA - CARLETO                             | N                                                                                                                         |                                                  |
| recommendations in the        | and regulations of<br>e Province of Ontai | ware of the well drilling re<br>the Ministry of the Envir<br>rio, and the standards spec<br>ort applicable to this site a | cified in any subdivision                        |
|                               | nite) as applicable a                     | T the said well has been or and constructed in strict co                                                                  | · ·                                              |
| Signed this 21 S              | day of                                    | MAY 2025                                                                                                                  |                                                  |
| American September 1          |                                           |                                                                                                                           |                                                  |
| Jeremy Hanna                  | (T3632)                                   | Air Rock Dr                                                                                                               | illing Co. Ltd. ( C-7681 )                       |
| He/She has Inspec             |                                           |                                                                                                                           | above Certifies that nce with the specifications |
| 11th<br>Signe Stgined by:     | day o                                     | June<br>of                                                                                                                | 2025                                             |
| A84A949C3E                    |                                           | Signed by:                                                                                                                |                                                  |
| HYDROLOGIST (Signature / STAN |                                           |                                                                                                                           |                                                  |
|                               |                                           | SO NALGEOS C.                                                                                                             | 2025225                                          |
|                               |                                           | O KYLE N. HORNER                                                                                                          | TAG A 379053                                     |
|                               |                                           | PRACTISING MEMBER 3066                                                                                                    | Cassidy EW Construction                          |
|                               |                                           | 2025-06-11                                                                                                                |                                                  |

| Conservation and Parks  Measurements recorded in: Metric Mappenial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 ag#:A37905<br>A379053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 903 On                                             | ntario Wat<br>Page                                                        |                                              | ources A                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|
| Well Owner's Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | , ago_                                                                    |                                              |                                               |
| First Name Last Name/Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E-mail Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | Ir                                                                        | 7 Well C                                     | onstructe                                     |
| Cassidy EW C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                           |                                              | Il Owner                                      |
| Mailing Address (Street Number/Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Province                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Postal Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5L5                                                | elephone N                                                                | No. (inc. a                                  | area code)                                    |
| 1-1011 Thomas Spratt Place Well Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ottawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JLU                                                |                                                                           |                                              |                                               |
| Address of Well Location (Street Number/Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                  | Concession                                                                | 1                                            | British Ma                                    |
| 1386 Greely Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Osgoode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 485                                                |                                                                           |                                              |                                               |
| County/District/Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | City/Town/Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Onta                                               |                                                                           | Postal                                       | Code                                          |
| Ottawa Carleton UTM Coordinates Zone , Easting , Northing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Greely  Municipal Plan and Sublot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Øther                                              | ſ                                                                         |                                              |                                               |
| NAD   8   3   18   455205     5011824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4M-351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blo                                                | ck ?                                                                      | 3                                            |                                               |
| Overburden and Bedrock Materials/Abandonment Sealing R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                           |                                              | Ω                                             |
| General Colour Most Common Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eral Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n                                                  |                                                                           | From                                         | th (m/ <del>d</del> )                         |
| . Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0                                                |                                                                           | 0 `                                          | 38 ′                                          |
| Boulders 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hourd Pan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | - 1                                                                       | 38                                           | 48 1                                          |
| Grey & Black Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | - 24                                                                      | 48                                           | 74                                            |
| Grey & Black Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                           | 74 /                                         | 125                                           |
| Grey & Black Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                           | 125                                          | 174                                           |
| Grey & Black Limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                           | 174                                          | 180                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                  |                                                                           |                                              |                                               |
| The Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                  | 110                                                                       | 1                                            | SE                                            |
| A SHIN ON A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UKEVELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1111V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | 111,                                                                      | _ ^                                          | 740                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                           |                                              |                                               |
| Depth Set at (militial Depth Sealant Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Volume Placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | After test of well yield,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Results of W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | Testing<br>w Down                                                         | Re                                           | ecovery                                       |
| From 10 (Material and Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (m(ft3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ Clear and sand t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time                                               | Water Leve                                                                | I Time                                       | Water Leve                                    |
| 54 44 Neat cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other, specify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | (m/ft)                                                                    | (min)                                        | (m/ft)                                        |
| 44 0 Bentonite slurry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | If pumping discontinue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed, give reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level                                              | 1.1                                                                       |                                              |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                  | 8.3                                                                       | 1                                            | 7.9                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump intake set at (rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                  | 8.3                                                                       | 2                                            | 7.7                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pumping rate (Vmin /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                  | 8.4                                                                       | 3                                            | 7.7                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                  | 8.4                                                                       | 4                                            | 7.7                                           |
| Cable Tool Diamond Public Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mmercial Not used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                           |                                              |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ınicipal Dewatering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Duration of pumping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                  | 84                                                                        | 5                                            | 7.7                                           |
| ☐ Rotary (Reverse) ☐ Driving ☐ Livestock ☐ Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | st Hole  Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 hrs + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                  | 8.4                                                                       | 5                                            | 7.7                                           |
| ☐ Rotary (Reverse) ☐ Driving ☐ Livestock ☐ Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                  | 8.5                                                                       | 5 10                                         | 7.7                                           |
| ☐ Rotary (Reverse)         ☐ Driving         ☐ Nestock         ☐ Testock         ☐ Testock         ☐ Testock         ☐ Testock         ☐ Color of the properties of the propertie                                                                                        | st Hole  Monitoring  oling & Air Conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hrs + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                  |                                                                           | -                                            |                                               |
| Rotary (Reverse) Driving Nestock Tes Boring Digging Irrigation Co Air percussion Industrial Other, specify  Construction Record - Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | st Hole  Monitoring Monitoring & Air Conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ins + 0 Final water level end of 8.6 If flowing give rate (Virial lands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>10                                            | 8.5                                                                       | 10                                           | 7.7                                           |
| Rotary (Reverse) Driving Nestock Tes Sporing Digging Industrial Other, specify  Construction Record - Casing Inside Open Hole OR Material Wall Depth (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st Hole  Monitoring Monitoring & Air Conditioning  Status of Well  Vyater Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | If flowing give rate (l/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 15                                            | 8.5<br>8.5                                                                | 10                                           | 7.7<br>7.7<br>7.7                             |
| Rotary (Reverse) Driving Drivi | st Hole  Monitoring Monitoring Monitoring Maintenance Monitoring M | # hrs + 0   Final water Jevel end ( 8.6   If flowing give rate (//m   Recommended pump   100   R | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 10 15 20 25                                   | 8.5<br>8.5<br>8.6<br>8.6                                                  | 10<br>15<br>20<br>25                         | 7.7<br>7.7<br>7.7<br>7.7                      |
| Rotary (Reverse) Driving Nestock Tes Spring Digging Imgation Co Industrial Other, specify Construction Record - Casing Inside Open Hole OR Material Wall Depth (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | st Hole  Monitoring Monitoring Monitoring Maintenance Monitoring M | # hrs + 0 Final water level end of 8.6 If flowing give rate (Vrr  Recommended pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 10 15 20 25 30                                | 8.5<br>8.5<br>8.6<br>8.6<br>8.6                                           | 10<br>15<br>20<br>25<br>30                   | 7.7<br>7.7<br>7.7<br>7.7<br>7.7               |
| Rotary (Reverse) Driving Nestock Tes Spring Digging Imgation Co Industrial Other, specify Open Hole OR Material Diamster (cry(in)) Concrete, Plastic, Steel Case Case Case Case Case Care Case Care Case Case Case Case Case Case Case Cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end of 8.6 If flowing give rate (l/m Recommended pump 100 Recommended pump (l/min/Sept) Well production (l/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 10 15 20 25                                   | 8.5<br>8.5<br>8.6<br>8.6<br>8.6                                           | 10<br>15<br>20<br>25<br>30<br>40             | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse) Driving Drivi | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end of 8.6 If flowing give rate (l/m Recommended pump 100 Recommended pump (l/min/Sext) 15 Well production (l/min/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 10 15 20 25 30                                | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                                    | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse) Driving Destock Tes   Tes | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end of 8.6 If flowing give rate (l/m Recommended pump 100 Recommended pump (l/min/Sept) Well production (l/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 10 15 20 25 30 40                             | 8.5<br>8.5<br>8.6<br>8.6<br>8.6                                           | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7               |
| Rotary (Reverse) Driving Drivi | Status of Well  Status of Well  Water Supply Replacement Well Recharge Well Dewatering Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end of 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistrifected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of pumping (m/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 10 10 15 20 25 30 40 50 60                       | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse) Driving Drivi | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end of 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistrifected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse) Driving Drivi | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse) Driving Drivi | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | st Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well  Vater Supply Replacement Well Dewatering Well Description and/or Monitoring Hole Alteration Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) Diameter To Diameter  | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well Vyater Supply Replacement Well Replacement Well Dewatering Well Dewatering Well Desartion and/or Monitoring Hole Alteration Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) D Jameter Com/in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well  Vater Supply Replacement Well Dewatering Well Description and/or Monitoring Hole Alteration Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) Diameter To Diameter  | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min 20 Pistificated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Local            | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well Vyater Supply Replacement Well Replacement Well Dewatering Well Dewatering Well Dewatering Well Destruction Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) D Jameter Com To Diameter Com To Diameter Depth (m/ft) D Jameter Depth (m/ft) D Jameter Depth (m/ft) D Jameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # hrs + 0   Final water level end   8.6   If flowing give rate (l/m   Recommended pump   100   Recommended pump   15   Well production (l/min 20   Districted?   No   Please provide a magnificant provided   No   Please provide a magnificant provided   No   Please provided   N | of pumping (m/f pin/GPM) of depth (m/ft) orate  Map of V p below follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Weil Vyater Supply Replacement Well Replacement Well Dewatering Well Dewatering Well Desarvation and/or Monitoring Hole Alteration Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) Depth (m/ft) Diameter To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # hrs + 0   Final water level end   8.6   If flowing give rate (l/m   Recommended pump   100   Recommended pump   15   Well production (l/min 20   Districted?   No   Please provide a magnificant provided   No   Please provide a magnificant provided   No   Please provided   N | of pumping (m/f pin/GPM) of depth (m/ft) orate  Map of V p below follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well  Vivater Supply Replacement Well Replacement Well Dewatering Well Dewatering Well Dewatering Well Desartion Construction Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) D Jameter Com To Confinin D 54  180  Trimation Well Contractor's Licence No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0   Final water level end   8.6   If flowing give rate (l/m   Recommended pump   100   Recommended pump   15   Well production (l/min 20   Districted?   No   Please provide a magnificant provided   No   Please provide a magnificant provided   No   Please provided   N | of pumping (m/f of pumping (m/ | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well Vyater Supply Replacement Well Dewatering Well Dewatering Well Desarvation and/or Monitoring Hole Alteration Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) | If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15 Well production (I/min/Sett) Ves No Please provide a mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of pumping (m/f pin/GPM) of depth (m/ft) orate  Map of V p below follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6                             | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well  Vivater Supply Replacement Well Replacement Well Dewatering Well Dewatering Well Dewatering Well Desartion Construction Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify  Hole Diameter Depth (m/ft) D Jameter Com To Confinin D 54  180  Trimation Well Contractor's Licence No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # hrs + 0   Final water level end   8.6   If flowing give rate (l/m   Recommended pump   100   Recommended pump   15   Well production (l/min 20   Districted?   No   Please provide a magnificant provided   No   Please provide a magnificant provided   No   Please provided   N | of pumping (m/f pin/GPM) of depth (m/ff) orate  Map of V p below follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 10 10 15 20 25 30 40 50 60 Well Locaving instru  | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7        |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well    Vater Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Set) 15  Well production (I/min/20 No Please provide a maximum set) No Please provide a max | Map of V  D FEET 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 10 10 15 20 25 30 40 50 60 Well Loca wing instru | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 10<br>15<br>20<br>25<br>30<br>40<br>50<br>60 | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well    Value Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump (I/min/SPH) 15  Well production (I/min/SPH) No  Please provide a maximum production (I/min/SPH) No  Comments: SET AT 100  Well owner's information Date I information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of pumping (m/f pin/GPM) of depth (m/ft) of rate  Map of V p below follow  Package Delive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6                               | 10<br>15<br>20<br>25<br>30<br>40<br>50       | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well    Value Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump (I/min/SPH) 15  Well production (I/min/SPH) No  Please provide a maximum production (I/min/SPH) No  Comments: SET AT 100  Well owner's information Date I information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Map of V  D FEET 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 10<br>15<br>20<br>25<br>30<br>40<br>50<br>60 | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 |
| Rotary (Reverse)   Driving   Intestock   Test   Spring   Digging   Integation   Comparison   Other, specify   Other, specif   | Status of Well Vester Supply Replacement Well Recharge Well Dewatering Well Dewatering Well Desartion and/or Monitoring Hole Alteration Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Determine To Other, specify  Hole Diameter Depth (m/ft) Diameter To Com/in)  1 54 180  Well Contractor's Licence No. 7681 Municipation of Sympatico.ca ame, First Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # hrs + 0 Final water level end 8.6 If flowing give rate (I/m Recommended pump (I/min/SPH) 15  Well production (I/min/SPH) No  Please provide a maximum production (I/min/SPH) No  Comments: SET AT 100  Well owner's information Date I information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of pumping (m/f pin/GPM) of depth (m/ft) of rate  Map of V p below follow  Package Delive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 10 10 15 20 25 30 40 50 60 Well Loca ving instru | 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6                               | 10<br>15<br>20<br>25<br>30<br>40<br>50<br>60 | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 |
| Rotary (Reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status of Well Vester Supply Replacement Well Recharge Well Dewatering Well Dewatering Well Desartion and/or Monitoring Hole Alteration Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Determine To Other, specify  Hole Diameter Depth (m/ft) Diameter To Com/in)  1 54 180  Well Contractor's Licence No. 7681 Municipation of Sympatico.ca ame, First Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | If his + 0 Final water level end of 8.6  If flowing give rate (I/m Recommended pump 100 Recommended pump (I/min/Sett) 15  Well production (I/min/Sett) No  Please provide a max  Comments: SET AT 100  Well owner's information package deligered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of pumping (m/f pin/GPM) of depth (m/ft) of rate  Map of V p below follow  Package Delive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 10 10 15 20 25 30 40 50 60 Well Locaving instru  | 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6                               | 10<br>15<br>20<br>25<br>30<br>40<br>50<br>60 | 7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7<br>7.7 |



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

# Appendix E Groundwater Quality Lab Results

## **CERTIFICATE OF ANALYSIS**



**Final Report** 

C.O.C.: G 107579 REPORT No: 24-010898 - Rev. 1

Report To:

Cambium Environmental - Kingston

625 Fortune Crescent

#1

Kingston, ON K7P 0L5

Attention: Kyle Horner

**CADUCEON Environmental Laboratories** 

2378 Holly Lane

Ottawa, ON K1V 7P1

DATE RECEIVED: 2024-Apr-22 CUSTOMER PROJECT: 17280-002

2024-Jul-30 P.O. NUMBER:

DATE REPORTED: 2024-Jul-30 SAMPLE MATRIX: Ground Water

| Analyses                       | Qty | Site Analyzed | Authorized       | Date Analyzed | Lab Method      | Reference Method |
|--------------------------------|-----|---------------|------------------|---------------|-----------------|------------------|
| Anions (Liquid)                | 1   | OTTAWA        | PCURIEL          | 2024-Apr-24   | A-IC-01         | SM 4110B         |
| BOD5 (Liquid)                  | 1   | KINGSTON      | JYEARWOOD        | 2024-Apr-24   | BOD-001         | SM 5210B         |
| Cond/pH/Alk Auto (Liquid)      | 1   | OTTAWA        | SBOUDREAU        | 2024-Apr-22   | COND-02/PH-02/A | SM 2510B/4500H/  |
|                                |     |               |                  |               | LK-02           | 2320B            |
| Cyanide Total (Liquid)         | 1   | KINGSTON      | JMACINNES        | 2024-Apr-23   | CN-001          | SM 4500-CN-E     |
| Formaldehyde (Subcontracted)   | 1   | TESTMARK      | SISLAM           | 2024-Apr-26   |                 | Subcontracted    |
| Ion Balance (Calc.)            | 1   | OTTAWA        | ASCHNEIDER       |               | CP-028          | MECP E3196       |
| Chromium VI (Liquid)           | 1   | OTTAWA        | STAILLON         | 2024-Apr-25   | D-CRVI-01       | MECP E3056       |
| ICP/MS Total (Liquid)          | 1   | OTTAWA        | AOZKAYMAK        | 2024-Apr-24   | D-ICPMS-01      | EPA 6020         |
| ICP/OES Total (Liquid)         | 1   | OTTAWA        | APRUDYVUS        | 2024-Apr-29   | D-ICP-01        | SM 3120B         |
| ICP/OES (Liquid)               | 1   | OTTAWA        | APRUDYVUS        | 2024-Apr-24   | D-ICP-01        | SM 3120B         |
| Mercury (Liquid)               | 1   | OTTAWA        | TBENNETT         | 2024-Apr-24   | D-HG-02         | SM 3112B         |
| NDMA Liquid (Subcontract)      | 1   | SGS_LAKEFIELD | SISLAM           | 2024-May-30   |                 | Subcontracted    |
| Ammonia (Liquid)               | 1   | KINGSTON      | JYEARWOOD        | 2024-Apr-24   | NH3-001         | SM 4500NH3       |
| Nonylphenols (Subcontracted)   | 1   | SGS_LAKEFIELD | SISLAM           | 2024-Apr-30   |                 | Subcontracted    |
| OC Pesticides (Liquid)         | 1   | KINGSTON      | CSUMMERHAYS      | 2024-Apr-23   | PESTCL-001      | EPA 8081         |
| Oil & Grease (Liquid)          | 1   | KINGSTON      | MLANE            | 2024-Apr-25   | O&G-001         | SM 5520          |
| Phenols (Liquid)               | 1   | KINGSTON      | <b>JMACINNES</b> | 2024-Apr-25   | PHEN-01         | MECP E3179       |
| Sulphide (Liquid)              | 1   | KINGSTON      | EHINCH           | 2024-Apr-23   | H2S-001         | SM 4500-S2       |
| SVOC - Semi-Volatiles (Liquid) | 1   | KINGSTON      | EASIEDU          | 2024-Apr-24   | NAB-W-001       | EPA 8270D        |
| TP & TKN (Liquid)              | 1   | KINGSTON      | KDIBBITS         | 2024-Apr-29   | TPTKN-001       | MECP E3516.2     |
| TSS (Liquid)                   | 1   | KINGSTON      | MCLOSS           | 2024-Apr-23   | TSS-001         | SM 2540D         |
| Turbidity (Liquid)             | 1   | OTTAWA        | STAILLON         | 2024-Apr-23   | A-TURB-01       | SM 2130B         |
| VOC-Volatiles Full (Water)     | 1   | RICHMOND_HILL | FLENA            | 2024-Apr-24   | C-VOC-02        | EPA 8260         |

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an \*

Final Report REPORT No: 24-010898 - Rev. 1

|                             |          |       |           | Client I.D.                | BH106            |
|-----------------------------|----------|-------|-----------|----------------------------|------------------|
|                             |          |       |           | Sample I.D. Date Collected | 24-010898-1      |
| Parameter                   | Units    | R.L.  | Limits    | Date Collected             | 2024-Apr-19<br>- |
| Alkalinity(CaCO3) to pH4.5  | mg/L     | 5     |           |                            | 283              |
| pH @25°C                    | pH units | -     | 11.0, 9.0 | SAN, STORM                 | 7.85             |
| Turbidity                   | NTU      | 0.1   |           |                            | 7070             |
| Fluoride                    | mg/L     | 0.1   | 10        | SAN                        | <0.1             |
| Sulphate                    | mg/L     | 1     | 1500      | SAN                        | 84               |
| BOD5                        | mg/L     | 3     | 300, 25.0 | SAN, STORM                 | 3                |
| Total Suspended Solids      | mg/L     | 3     | 350, 15.0 | SAN, STORM                 | 9480             |
| Phosphorus (Total)          | mg/L     | 0.01  | 10, 0.4   | SAN, STORM                 | 8.72             |
| Total Kjeldahl Nitrogen     | mg/L     | 0.1   | 100       | SAN                        | 6.3              |
| Ammonia (N)-Total (NH3+NH4) | mg/L     | 0.05  |           |                            | 0.15             |
| Ammonia (N)-unionized       | mg/L     | 0.01  |           |                            | <0.01            |
| Sulphide                    | mg/L     | 0.01  | 2         | SAN                        | 0.01             |
| Cyanide (Total)             | mg/L     | 0.005 | 2, 0.02   | SAN, STORM                 | <0.005           |
| Phenolics                   | mg/L     | 0.001 | 1, 0.008  | SAN, STORM                 | <0.001           |
| Hardness (as CaCO3)         | mg/L     | 0.02  |           |                            | 368              |
| Aluminum                    | mg/L     | 0.01  |           |                            | 0.07             |
| Barium                      | mg/L     | 0.001 |           |                            | 0.165            |
| Calcium                     | mg/L     | 0.02  |           |                            | 105              |
| Iron                        | mg/L     | 0.005 |           |                            | 0.020            |
| Magnesium                   | mg/L     | 0.02  |           |                            | 25.6             |
| Tungsten                    | mg/L     | 0.01  |           |                            | <0.01            |

Final Report REPORT No: 24-010898 - Rev. 1

|                     |       |       |             | Client I.D.    | BH106       |
|---------------------|-------|-------|-------------|----------------|-------------|
|                     |       |       |             | Sample I.D.    | 24-010898-1 |
| Parameter           | Units | R.L.  | Limits      | Date Collected | 2024-Apr-19 |
| Zinc                | mg/L  | 0.005 | Limito      |                | <0.005      |
| Zirconium           | mg/L  | 0.003 |             |                | <0.003      |
| Hardness (as CaCO3) | mg/L  | -     |             |                | 789         |
| Aluminum (Total)    | mg/L  | 0.01  | 50          | SAN            | 0.03        |
| Bismuth (Total)     | mg/L  | 0.02  | 5           | SAN            | <0.02       |
| Boron (Total)       | mg/L  | 0.005 | 25          | SAN            | 0.028       |
| Cadmium (Total)     | mg/L  | 0.005 | 0.02, 0.008 | SAN, STORM     | <0.005      |
| Calcium (Total)     | mg/L  | 0.02  |             |                | 97.7        |
| Chromium (Total)    | mg/L  | 0.002 | 5, 0.08     | SAN, STORM     | <0.002      |
| Cobalt (Total)      | mg/L  | 0.005 | 5           | SAN            | <0.005      |
| Copper (Total)      | mg/L  | 0.002 | 3, 0.04     | SAN, STORM     | 0.008       |
| Iron (Total)        | mg/L  | 0.005 |             |                | <0.005      |
| Lead (Total)        | mg/L  | 0.02  | 5, 0.12     | SAN, STORM     | <0.02       |
| Magnesium (Total)   | mg/L  | 0.02  |             |                | 27.3        |
| Manganese (Total)   | mg/L  | 0.001 | 0.05, 5     | STORM, SAN     | 0.003       |
| Molybdenum (Total)  | mg/L  | 0.01  | 5           | SAN            | <0.01       |
| Nickel (Total)      | mg/L  | 0.01  | 3, 0.08     | SAN, STORM     | <0.01       |
| Silver (Total)      | mg/L  | 0.005 | 5, 0.12     | SAN, STORM     | <0.005      |
| Tin (Total)         | mg/L  | 0.05  | 5           | SAN            | <0.05       |
| Titanium (Total)    | mg/L  | 0.005 | 5           | SAN            | <0.005      |
| Tungsten (Total)    | mg/L  | 0.01  |             |                | <0.01       |

Final Report

REPORT No: 24-010898 - Rev. 1

|                    |       |          |               | Client I.D.                 | BH106                      |
|--------------------|-------|----------|---------------|-----------------------------|----------------------------|
|                    |       |          |               | Sample I.D.  Date Collected | 24-010898-1<br>2024-Apr-19 |
| Parameter          | Units | R.L.     | Limits        | Date Collected              | - 2024-Api-19              |
| Vanadium (Total)   | mg/L  | 0.005    | 5             | SAN                         | <0.005                     |
| Zinc (Total)       | mg/L  | 0.005    | 3, 0.04       | SAN, STORM                  | <0.005                     |
| Zirconium (Total)  | mg/L  | 0.003    |               |                             | <0.003                     |
| Antimony (Total)   | mg/L  | 0.0001   | 5             | SAN                         | 0.0007                     |
| Arsenic (Total)    | mg/L  | 0.0001   | 0.02, 1       | STORM, SAN                  | 0.0275                     |
| Beryllium (Total)  | mg/L  | 0.0001   |               |                             | 0.0032                     |
| Cadmium (Total)    | mg/L  | 0.000015 | 0.008         | STORM                       | 0.00112                    |
| Chromium (Total)   | mg/L  | 0.001    | 0.08          | STORM                       | 0.249                      |
| Cobalt (Total)     | mg/L  | 0.0001   |               |                             | 0.103                      |
| Copper (Total)     | mg/L  | 0.0001   | 0.04          | STORM                       | 0.301                      |
| Lead (Total)       | mg/L  | 0.00002  | 0.12          | STORM                       | 0.0768                     |
| Molybdenum (Total) | mg/L  | 0.0001   |               |                             | 0.0076                     |
| Nickel (Total)     | mg/L  | 0.0002   | 0.08          | STORM                       | 0.189                      |
| Selenium (Total)   | mg/L  | 0.001    | 0.02, 5       | STORM, SAN                  | <0.001                     |
| Silver (Total)     | mg/L  | 0.0001   | 0.12          | STORM                       | 0.0011                     |
| Thallium (Total)   | mg/L  | 0.00005  |               |                             | 0.00182                    |
| Uranium (Total)    | mg/L  | 0.00005  |               |                             | 0.0114                     |
| Vanadium (Total)   | mg/L  | 0.0001   |               |                             | 0.327                      |
| Chromium (VI)      | mg/L  | 0.01     |               |                             | <0.01                      |
| Mercury            | mg/L  | 0.00002  | 0.001, 0.0004 | SAN, STORM                  | <0.00002                   |
| Anion Sum          | meq/L | -        |               |                             | 16.6                       |

Final Report

REPORT No: 24-010898 - Rev. 1

|                                  |          |      |        | Client I.D.    | BH106       |
|----------------------------------|----------|------|--------|----------------|-------------|
|                                  |          |      |        | Sample I.D.    | 24-010898-1 |
|                                  |          |      |        | Date Collected | 2024-Apr-19 |
| Parameter                        | Units    | R.L. | Limits | <u> </u>       | -           |
| Cation Sum                       | meq/L    | -    |        |                | 15.3        |
| % Difference                     | %        | -    |        |                | 4.03        |
| Ion Ratio                        | -        | -    |        |                | 1.08        |
| Sodium Adsorption Ratio          | -        | -    |        |                | 4.28        |
| TDS (Ion Sum Calc)               | mg/L     | 1    |        |                | 893         |
| TDS(calc.)/EC(actual)            | -        | -    |        |                | 0.540       |
| Conductivity Calc                | µmho/cm  | -    |        |                | 1590        |
| Conductivity Calc / Conductivity | -        | -    |        |                | 0.959       |
| Langelier Index(25°C)            | -        | -    |        |                | 0.800       |
| Saturation pH (25°C)             | -        | -    |        |                | 7.05        |
| pH (Client Data)                 | pH units | -    |        |                | 6.97        |
| Temperature (Client Data)        | °C       | -    |        |                | 9.9         |

Final Report

REPORT No: 24-010898 - Rev. 1

|                                 |       |        |               | Client I.D.    | BH106            |
|---------------------------------|-------|--------|---------------|----------------|------------------|
|                                 |       |        |               | Sample I.D.    | 24-010898-1      |
| Parameter                       | Units | R.L.   | Limits        | Date Collected | 2024-Apr-19<br>- |
| Benzene                         | mg/L  | 0.0005 | 0.01, 0.002   | SAN, STORM     | <0.0005          |
| Bromodichloromethane            | mg/L  | 0.002  | 0.35          | SAN            | <0.002           |
| Bromoform                       | mg/L  | 0.005  | 0.63          | SAN            | <0.005           |
| Bromomethane                    | mg/L  | 0.0005 | 0.11          | SAN            | <0.0005          |
| Carbon Tetrachloride            | mg/L  | 0.0002 | 0.057         | SAN            | <0.0002          |
| Chlorobenzene                   | mg/L  | 0.0005 | 0.057         | SAN            | <0.0005          |
| Chloroethane                    | mg/L  | 0.003  | 0.27          | SAN            | <0.003           |
| Chloroform                      | mg/L  | 0.001  | 0.08, 0.002   | SAN, STORM     | <0.001           |
| Chloromethane (Methyl Chloride) | mg/L  | 0.002  | 0.19          | SAN            | <0.002           |
| Dibromochloromethane            | mg/L  | 0.002  | 0.057         | SAN            | <0.002           |
| Ethylene Dibromide              | mg/L  | 0.0002 | 0.028         | SAN            | <0.0002          |
| Dichlorobenzene,1,2-            | mg/L  | 0.0005 | 0.088, 0.0056 | SAN, STORM     | <0.0005          |
| Dichlorobenzene,1,3-            | mg/L  | 0.0005 | 0.036         | SAN            | <0.0005          |
| Dichlorobenzene,1,4-            | mg/L  | 0.0005 | 0.017, 0.0068 | SAN, STORM     | <0.0005          |
| Dichloroethane,1,1-             | mg/L  | 0.0005 | 0.2           | SAN            | <0.0005          |
| Dichloroethane,1,2-             | mg/L  | 0.0005 | 0.21          | SAN            | 0.0007           |
| Dichloroethylene,1,1-           | mg/L  | 0.0005 | 0.04          | SAN            | <0.0005          |
| Dichloroethylene,1,2-cis-       | mg/L  | 0.0005 | 0.2, 0.0056   | SAN, STORM     | <0.0005          |
| Dichloroethylene,1,2-trans-     | mg/L  | 0.0005 | 0.2           | SAN            | <0.0005          |
| Dichloropropane,1,2-            | mg/L  | 0.0005 | 0.85          | SAN            | <0.0005          |
| Dichloropropene,1,3-cis-        | mg/L  | 0.0005 | 0.07          | SAN            | <0.0005          |

Final Report

REPORT No: 24-010898 - Rev. 1

|                                      |       |        |               | Client I.D.                | BH106                      |
|--------------------------------------|-------|--------|---------------|----------------------------|----------------------------|
|                                      |       |        |               | Sample I.D. Date Collected | 24-010898-1<br>2024-Apr-19 |
| Parameter                            | Units | R.L.   | Limits        | Date Concetted             | -                          |
| Dichloropropene,1,3-trans-           | mg/L  | 0.0005 | 0.07, 0.0056  | SAN, STORM                 | <0.0005                    |
| Ethylbenzene                         | mg/L  | 0.0005 | 0.057, 0.002  | SAN, STORM                 | <0.0005                    |
| Dichloromethane (Methylene Chloride) | mg/L  | 0.005  | 0.211, 0.0052 | SAN, STORM                 | <0.005                     |
| Styrene                              | mg/L  | 0.0005 | 0.04          | SAN                        | <0.0005                    |
| Tetrachloroethane,1,1,2,2-           | mg/L  | 0.0005 | 0.04, 0.017   | SAN, STORM                 | <0.0005                    |
| Tetrachloroethylene                  | mg/L  | 0.0005 | 0.05, 0.0044  | SAN, STORM                 | <0.0005                    |
| Toluene                              | mg/L  | 0.0005 | 0.08, 0.002   | SAN, STORM                 | <0.0005                    |
| Trichloroethane,1,1,1-               | mg/L  | 0.0005 | 0.054         | SAN                        | <0.0005                    |
| Trichloroethane,1,1,2-               | mg/L  | 0.0005 | 0.8           | SAN                        | <0.0005                    |
| Trichloroethylene                    | mg/L  | 0.0005 | 0.054, 0.0076 | SAN, STORM                 | <0.0005                    |
| Trichlorofluoromethane (Freon 11)    | mg/L  | 0.005  | 0.02          | SAN                        | <0.005                     |
| Trimethylbenzene,1,3,5-              | mg/L  | 0.0001 | 0.003         | SAN                        | <0.0001                    |
| Vinyl Chloride                       | mg/L  | 0.0002 | 0.4           | SAN                        | <0.0002                    |
| Xylene, m,p-                         | μg/L  | 1      |               |                            | <1                         |
| Xylene, m,p,o-                       | mg/L  | 0.0011 | 0.32, 0.0044  | SAN, STORM                 | <0.0011                    |
| Xylene, o-                           | μg/L  | 0.5    |               |                            | <0.5                       |
| Oil & Grease (Total)                 | mg/L  | 1.0    |               |                            | 1.7                        |
| Oil and Grease (Mineral)             | mg/L  | 1.0    | 15            | SAN                        | <1.0                       |
| Oil and Grease (Anim/Veg)            | mg/L  | 1.0    | 150           | SAN                        | 1.4                        |

Final Report REPORT No: 24-010898 - Rev. 1

|                             |       |         |        | Client I.D.    | BH106            |
|-----------------------------|-------|---------|--------|----------------|------------------|
|                             |       |         |        | Sample I.D.    | 24-010898-1      |
| Parameter                   | Units | R.L.    | Limits | Date Collected | 2024-Apr-19<br>- |
| Acenaphthene                | μg/L  | 0.05    |        |                | <0.05            |
| Acenaphthylene              | μg/L  | 0.05    |        |                | <0.05            |
| Anthracene                  | μg/L  | 0.05    |        |                | <0.05            |
| Benzo[a]anthracene          | μg/L  | 0.05    |        |                | <0.05            |
| Benzo(a)pyrene              | μg/L  | 0.01    |        |                | <0.01            |
| Benzo(b)fluoranthene        | μg/L  | 0.05    |        |                | <0.05            |
| Benzo(b+k)fluoranthene      | μg/L  | 0.1     |        |                | <0.1             |
| Benzo(g,h,i)perylene        | μg/L  | 0.05    |        |                | <0.05            |
| Benzo(k)fluoranthene        | μg/L  | 0.05    |        |                | <0.05            |
| Butyl Benzyl Phthalate      | mg/L  | 0.001   | 0.017  | SAN            | <0.001           |
| Bis(2-Chloroethoxy)methane  | mg/L  | 0.002   | 0.036  | SAN            | <0.002           |
| Bis(2-ethylhexyl) Phthalate | mg/L  | 0.005   | 0.28   | SAN            | <0.005           |
| Chrysene                    | μg/L  | 0.05    |        |                | <0.05            |
| Dibenzo(a,h)anthracene      | μg/L  | 0.05    |        |                | <0.05            |
| Di-n-Butyl Phthalate        | mg/L  | 0.0010  | 0.057  | SAN            | <0.0010          |
| Dichlorophenol,2,4-         | mg/L  | 0.0002  | 0.044  | SAN            | <0.0002          |
| Diethyl Phthalate           | mg/L  | 0.0010  | 0.2    | SAN            | <0.0010          |
| Di-n-Octyl Phthalate        | mg/L  | 0.0010  | 0.03   | SAN            | <0.0010          |
| Fluoranthene                | mg/L  | 0.00005 | 0.059  | SAN            | <0.00005         |
| Fluorene                    | μg/L  | 0.05    |        |                | <0.05            |
| Indeno(1,2,3,-cd)Pyrene     | μg/L  | 0.05    |        |                | <0.05            |

Final Report

REPORT No: 24-010898 - Rev. 1

|                          |       |         |              | Client I.D.                   | BH106                           |
|--------------------------|-------|---------|--------------|-------------------------------|---------------------------------|
|                          |       |         |              | Sample I.D.  Date Collected   | 24-010898-1<br>2024-Apr-19      |
| Parameter                | Units | R.L.    | Limits       |                               |                                 |
| Indole                   | mg/L  | 0.002   | 0.05         | SAN                           | <0.002                          |
| Methylnaphthalene,1-     | mg/L  | 0.00005 | 0.032        | SAN                           | <0.00005                        |
| Methylnaphthalene,2-(1-) | μg/L  | 1       |              |                               | <1                              |
| Methylnaphthalene,2-     | mg/L  | 0.00005 | 0.022        | SAN                           | <0.00005                        |
| Naphthalene              | mg/L  | 0.00005 | 0.059, 0.064 | SAN, STORM                    | <0.00005                        |
| Phenanthrene             | μg/L  | 0.05    |              |                               | <0.05                           |
| Pyrene                   | μg/L  | 0.05    |              |                               | <0.05                           |
| Total PAH                | mg/L  | 0.0001  | 0.015, 0.006 | SAN, STORM                    | <0.0001                         |
|                          |       |         |              | Client I.D.                   | BH106                           |
| Parameter                | Units | R.L.    | Limits       | Sample I.D.<br>Date Collected | 24-010898-1<br>2024-Apr-19<br>- |
| Hexachlorobenzene        | mg/L  | 0.00001 | 0.00004      | STORM                         | <0.00001                        |

Final Report

REPORT No: 24-010898 - Rev. 1

| Subcontracted Analyses      |       |      |               | Client I.D.    | BH106       |
|-----------------------------|-------|------|---------------|----------------|-------------|
|                             |       |      |               | Sample I.D.    | 24-010898-1 |
|                             |       |      |               | Date Collected | 2024-Apr-19 |
| Parameter                   | Units | R.L. | Limits        |                | -           |
| Formaldehyde                | mg/L  | -    | 0.3           | SAN            | <0.008      |
| Nitrosodimethylamine (NDMA) | mg/L  | -    | 0.4           | SAN            | <0.0004     |
| Nonylphenol Monoethoxylate  | mg/L  | -    |               |                | <0.01       |
| Nonylphenol Diethoxylate    | mg/L  | -    |               |                | <0.01       |
| Nonylphenols                | mg/L  | -    | 0.0025, 0.001 | SAN, STORM     | <0.001      |
| Nonylphenol Ethoxylates     | mg/L  | -    | 0.025, 0.01   | SAN, STORM     | <0.01       |

Revised to include additional dissolved metals at clients request

SAN: Sanitary Sewer By Law STORM: Storm Sewer By Law

| Summary of Exceedances |   |            |       |  |  |  |  |  |
|------------------------|---|------------|-------|--|--|--|--|--|
| Sanitary Sewer By Law  |   |            |       |  |  |  |  |  |
| BH106                  | F | ound Value | Limit |  |  |  |  |  |
| Total Suspended Solids |   | 9480       | 350   |  |  |  |  |  |
| Storm Sewer By Law     |   |            |       |  |  |  |  |  |
| BH106                  | F | ound Value | Limit |  |  |  |  |  |
| Total Suspended Solids |   | 9480       | 15.0  |  |  |  |  |  |
| Phosphorus (Total)     |   | 8.72       | 0.4   |  |  |  |  |  |
| Arsenic (Total)        |   | 0.0275     | 0.02  |  |  |  |  |  |
| Chromium (Total)       |   | 0.249      | 0.08  |  |  |  |  |  |
| Copper (Total)         |   | 0.301      | 0.04  |  |  |  |  |  |
| Nickel (Total)         |   | 0.189      | 0.08  |  |  |  |  |  |

<sup>:</sup> City of Ottawa

## **CERTIFICATE OF ANALYSIS**



**Final Report** 

C.O.C.: G 107579 REPORT No: 24-010898 - Rev. 2

Report To:

Cambium Environmental - Kingston

625 Fortune Crescent

#1

Kingston, ON K7P 0L5

Attention: Kyle Horner

**CADUCEON Environmental Laboratories** 

2378 Holly Lane

Ottawa, ON K1V 7P1

DATE RECEIVED: 2024-Apr-22 CUSTOMER PROJECT: 17280-002

2024-Aug-07 P.O. NUMBER:

DATE REPORTED: 2024-Aug-07 SAMPLE MATRIX: Ground Water

| Analyses                       | Qty      | Site Analyzed | Authorized       | Date Analyzed | Lab Method      | Reference Method |
|--------------------------------|----------|---------------|------------------|---------------|-----------------|------------------|
| Anions (Liquid)                | Qiy<br>1 | OTTAWA        | PCURIEL          | 2024-Apr-24   | A-IC-01         | SM 4110B         |
|                                | 1        |               |                  |               |                 |                  |
| BOD5 (Liquid)                  | 1        | KINGSTON      | JYEARWOOD        | 2024-Apr-24   | BOD-001         | SM 5210B         |
| Cond/pH/Alk Auto (Liquid)      | 1        | OTTAWA        | SBOUDREAU        | 2024-Apr-22   | COND-02/PH-02/A | SM 2510B/4500H/  |
|                                |          |               |                  |               | LK-02           | 2320B            |
| Cyanide Total (Liquid)         | 1        | KINGSTON      | JMACINNES        | 2024-Apr-23   | CN-001          | SM 4500-CN-E     |
| Formaldehyde (Subcontracted)   | 1        | TESTMARK      | SISLAM           | 2024-Apr-26   |                 | Subcontracted    |
| Ion Balance (Calc.)            | 1        | OTTAWA        | ASCHNEIDER       |               | CP-028          | MECP E3196       |
| Chromium VI (Liquid)           | 1        | OTTAWA        | STAILLON         | 2024-Apr-25   | D-CRVI-01       | MECP E3056       |
| ICP/MS Total (Liquid)          | 1        | OTTAWA        | AOZKAYMAK        | 2024-Apr-24   | D-ICPMS-01      | EPA 6020         |
| ICP/OES Total (Liquid)         | 1        | OTTAWA        | APRUDYVUS        | 2024-Apr-29   | D-ICP-01        | SM 3120B         |
| ICP/OES (Liquid)               | 1        | OTTAWA        | APRUDYVUS        | 2024-Apr-24   | D-ICP-01        | SM 3120B         |
| Mercury (Liquid)               | 1        | OTTAWA        | TBENNETT         | 2024-Apr-24   | D-HG-02         | SM 3112B         |
| NDMA Liquid (Subcontract)      | 1        | SGS_LAKEFIELD | SISLAM           | 2024-May-30   |                 | Subcontracted    |
| Ammonia (Liquid)               | 1        | KINGSTON      | JYEARWOOD        | 2024-Apr-24   | NH3-001         | SM 4500NH3       |
| Nonylphenols (Subcontracted)   | 1        | SGS_LAKEFIELD | SISLAM           | 2024-Apr-30   |                 | Subcontracted    |
| OC Pesticides (Liquid)         | 1        | KINGSTON      | CSUMMERHAYS      | 2024-Apr-23   | PESTCL-001      | EPA 8081         |
| Oil & Grease (Liquid)          | 1        | KINGSTON      | MLANE            | 2024-Apr-25   | O&G-001         | SM 5520          |
| Phenols (Liquid)               | 1        | KINGSTON      | <b>JMACINNES</b> | 2024-Apr-25   | PHEN-01         | MECP E3179       |
| Sulphide (Liquid)              | 1        | KINGSTON      | EHINCH           | 2024-Apr-23   | H2S-001         | SM 4500-S2       |
| SVOC - Semi-Volatiles (Liquid) | 1        | KINGSTON      | EASIEDU          | 2024-Apr-24   | NAB-W-001       | EPA 8270D        |
| TP & TKN (Liquid)              | 1        | KINGSTON      | KDIBBITS         | 2024-Apr-29   | TPTKN-001       | MECP E3516.2     |
| TSS (Liquid)                   | 1        | KINGSTON      | MCLOSS           | 2024-Apr-23   | TSS-001         | SM 2540D         |
| Turbidity (Liquid)             | 1        | OTTAWA        | STAILLON         | 2024-Apr-23   | A-TURB-01       | SM 2130B         |
| VOC-Volatiles Full (Water)     | 1        | RICHMOND_HILL | FLENA            | 2024-Apr-24   | C-VOC-02        | EPA 8260         |

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an  $\,^{\star}$ 

Final Report REPORT No: 24-010898 - Rev. 2

|                             |                  |       |        | Client I.D.                 | BH106                      |
|-----------------------------|------------------|-------|--------|-----------------------------|----------------------------|
|                             |                  |       |        | Sample I.D.  Date Collected | 24-010898-1<br>2024-Apr-19 |
| Parameter                   | Units            | R.L.  | Limits |                             | -                          |
| Alkalinity(CaCO3) to pH4.5  | mg/L             | 5     |        |                             | 283                        |
| pH @25°C                    | pH units         | -     | 8.5    | PWQO                        | 7.85                       |
| Turbidity                   | NTU              | 0.1   |        |                             | 7070                       |
| Fluoride                    | mg/L             | 0.1   |        |                             | <0.1                       |
| Sulphate                    | mg/L             | 1     |        |                             | 84                         |
| BOD5                        | mg/L             | 3     |        |                             | 3                          |
| Total Suspended Solids      | mg/L             | 3     |        |                             | 9480                       |
| Phosphorus (Total)          | μg/L             | 10    | 10     | INTERIM                     | 8720                       |
| Total Kjeldahl Nitrogen     | mg/L             | 0.1   |        |                             | 6.3                        |
| Ammonia (N)-Total (NH3+NH4) | mg/L             | 0.05  |        |                             | 0.15                       |
| Ammonia (N)-unionized       | μg/L             | 10.0  | 20     | PWQO                        | <10.0                      |
| Sulphide                    | mg/L             | 0.01  |        |                             | 0.01                       |
| Cyanide (Total)             | mg/L             | 0.005 |        |                             | <0.005                     |
| Phenolics                   | μg/L             | 1     | 1      | PWQO                        | <1                         |
| Hardness (as CaCO3)         | mg/L as<br>CaCO3 | 0     |        |                             | 368                        |
| Aluminum                    | μg/L             | 10    | 75     | INTERIM                     | 70                         |
| Barium                      | μg/L             | 1     |        |                             | 165                        |
| Calcium                     | μg/L             | 20    |        |                             | 105000                     |
| Iron                        | μg/L             | 5     | 300    | PWQO                        | 20                         |
| Magnesium                   | μg/L             | 20    |        |                             | 25600                      |
| Tungsten                    | μg/L             | 10    |        |                             | <10                        |

Final Report REPORT No: 24-010898 - Rev. 2

|                     |                  |      |          | Client I.D.                 | BH106                      |
|---------------------|------------------|------|----------|-----------------------------|----------------------------|
|                     |                  |      |          | Sample I.D.  Date Collected | 24-010898-1<br>2024-Apr-19 |
| Parameter           | Units            | R.L. | Limits   |                             |                            |
| Zinc                | μg/L             | 5    | 30       | PWQO                        | <5                         |
| Zirconium           | μg/L             | 3    |          |                             | <3                         |
| Hardness (as CaCO3) | mg/L as<br>CaCO3 | -    |          |                             | 789                        |
| Aluminum (Total)    | μg/L             | 10   |          |                             | 30                         |
| Bismuth (Total)     | μg/L             | 20   |          |                             | <20                        |
| Boron (Total)       | μg/L             | 5    | 200      | INTERIM                     | 28                         |
| Cadmium (Total)     | μg/L             | 5    | 0.1, 0.2 | INTERIM, PWQO               | <5                         |
| Calcium (Total)     | μg/L             | 20   |          |                             | 97700                      |
| Chromium (Total)    | μg/L             | 2    |          |                             | <2                         |
| Cobalt (Total)      | μg/L             | 5    | 0.9, 0.0 | INTERIM, PWQO               | <5                         |
| Copper (Total)      | μg/L             | 2    | 5, 0.0   | INTERIM, PWQO               | 8                          |
| Iron (Total)        | μg/L             | 5    | 300      | PWQO                        | <5                         |
| Lead (Total)        | μg/L             | 20   | 1, 0.0   | INTERIM, PWQO               | <20                        |
| Magnesium (Total)   | μg/L             | 20   |          |                             | 27300                      |
| Manganese (Total)   | μg/L             | 1    |          |                             | 3                          |
| Molybdenum (Total)  | μg/L             | 10   | 40, 0.0  | INTERIM, PWQO               | <10                        |
| Nickel (Total)      | μg/L             | 10   | 25       | PWQO                        | <10                        |
| Silver (Total)      | μg/L             | 5    | 0.1      | PWQO                        | <5                         |
| Tin (Total)         | μg/L             | 50   |          |                             | <50                        |
| Titanium (Total)    | μg/L             | 5    |          |                             | <5                         |
| Tungsten (Total)    | μg/L             | 10   | 30       | INTERIM                     | <10                        |

Final Report REPORT No: 24-010898 - Rev. 2

|                    |       |       |          | Client I.D.    | BH106            |
|--------------------|-------|-------|----------|----------------|------------------|
|                    |       |       |          | Sample I.D.    | 24-010898-1      |
| Parameter          | Units | R.L.  | Limits   | Date Collected | 2024-Apr-19<br>- |
| Vanadium (Total)   | μg/L  | 5     |          |                | <5               |
| Zinc (Total)       | μg/L  | 5     | 20, 30   | INTERIM, PWQO  | <5               |
| Zirconium (Total)  | μg/L  | 3     | 4        | INTERIM        | <3               |
| Antimony (Total)   | μg/L  | 0.1   | 20       | INTERIM        | 0.7              |
| Arsenic (Total)    | μg/L  | 0.1   | 5, 5     | INTERIM, PWQO  | 27.5             |
| Beryllium (Total)  | μg/L  | 0.1   | 11       | PWQO           | 3.2              |
| Cadmium (Total)    | μg/L  | 0.015 | 0.1, 0.2 | INTERIM, PWQO  | 1.12             |
| Chromium (Total)   | μg/L  | 1     |          |                | 249              |
| Cobalt (Total)     | μg/L  | 0.1   | 0.9      | INTERIM        | 103              |
| Copper (Total)     | μg/L  | 0.1   | 5        | INTERIM        | 301              |
| Lead (Total)       | μg/L  | 0.02  | 1, 5     | INTERIM, PWQO  | 76.8             |
| Molybdenum (Total) | μg/L  | 0.1   | 40       | INTERIM        | 7.6              |
| Nickel (Total)     | μg/L  | 0.2   | 25       | PWQO           | 189              |
| Selenium (Total)   | μg/L  | 1     | 100      | PWQO           | <1               |
| Silver (Total)     | μg/L  | 0.1   | 0.1      | PWQO           | 1.1              |
| Thallium (Total)   | μg/L  | 0.05  | 0.3, 0.3 | INTERIM, PWQO  | 1.82             |
| Uranium (Total)    | μg/L  | 0.05  | 5        | INTERIM        | 11.4             |
| Vanadium (Total)   | μg/L  | 0.1   | 6        | INTERIM        | 327              |
| Chromium (VI)      | μg/L  | 10    | 1        | PWQO           | <10              |
| Mercury            | μg/L  | 0.02  | 0.2      | PWQO           | <0.02            |
| Anion Sum          | meq/L | -     |          |                | 16.6             |

Final Report

REPORT No: 24-010898 - Rev. 2

|                                  |          |      |        | Client I.D.    | BH106       |
|----------------------------------|----------|------|--------|----------------|-------------|
|                                  |          |      |        | Sample I.D.    | 24-010898-1 |
|                                  |          |      |        | Date Collected | 2024-Apr-19 |
| Parameter                        | Units    | R.L. | Limits |                | -           |
| Cation Sum                       | meq/L    | -    |        |                | 15.3        |
| % Difference                     | %        | -    |        |                | 4.03        |
| lon Ratio                        | -        | -    |        |                | 1.08        |
| Sodium Adsorption Ratio          | -        | -    |        |                | 4.28        |
| TDS (Ion Sum Calc)               | mg/L     | 1    |        |                | 893         |
| TDS(calc.)/EC(actual)            | -        | -    |        |                | 0.540       |
| Conductivity Calc                | µmho/cm  | -    |        |                | 1590        |
| Conductivity Calc / Conductivity | -        | -    |        |                | 0.959       |
| Langelier Index(25°C)            | -        | -    |        |                | 0.800       |
| Saturation pH (25°C)             | -        | -    |        |                | 7.05        |
| pH (Client Data)                 | pH units | -    |        |                | 6.97        |
| Temperature (Client Data)        | °C       | -    |        |                | 9.9         |

Final Report REPORT No: 24-010898 - Rev. 2

|                                 |       |      |        | Client I.D.    | BH106            |
|---------------------------------|-------|------|--------|----------------|------------------|
|                                 |       |      |        | Sample I.D.    | 24-010898-1      |
| Parameter                       | Units | R.L. | Limits | Date Collected | 2024-Apr-19<br>- |
| Benzene                         | µg/L  | 0.5  | 100    | INTERIM        | <0.5             |
| Bromodichloromethane            | μg/L  | 2    | 200    | INTERIM        | <2               |
| Bromoform                       | μg/L  | 5    | 60     | INTERIM        | <5               |
| Bromomethane                    | μg/L  | 0.5  | 0.9    | INTERIM        | <0.5             |
| Carbon Tetrachloride            | μg/L  | 0.2  |        |                | <0.2             |
| Chlorobenzene                   | μg/L  | 0.5  | 15     | PWQO           | <0.5             |
| Chloroethane                    | μg/L  | 3    |        |                | <3               |
| Chloroform                      | μg/L  | 1    |        |                | <1               |
| Chloromethane (Methyl Chloride) | μg/L  | 2    | 700    | INTERIM        | <2               |
| Dibromochloromethane            | μg/L  | 2    | 40     | INTERIM        | <2               |
| Ethylene Dibromide              | μg/L  | 0.2  | 5, 5   | INTERIM, PWQO  | <0.2             |
| Dichlorobenzene,1,2-            | μg/L  | 0.5  | 2.5    | PWQO           | <0.5             |
| Dichlorobenzene,1,3-            | μg/L  | 0.5  | 2.5    | PWQO           | <0.5             |
| Dichlorobenzene,1,4-            | μg/L  | 0.5  | 4      | PWQO           | <0.5             |
| Dichloroethane,1,1-             | μg/L  | 0.5  | 200    | INTERIM        | <0.5             |
| Dichloroethane,1,2-             | μg/L  | 0.5  | 100    | INTERIM        | 0.7              |
| Dichloroethylene,1,1-           | μg/L  | 0.5  | 40     | INTERIM        | <0.5             |
| Dichloroethylene,1,2-cis-       | μg/L  | 0.5  | 200    | INTERIM        | <0.5             |
| Dichloroethylene,1,2-trans-     | μg/L  | 0.5  | 200    | INTERIM        | <0.5             |
| Dichloropropane,1,2-            | μg/L  | 0.5  | 0.7    | INTERIM        | <0.5             |
| Dichloropropene,1,3-cis-        | μg/L  | 0.5  |        |                | <0.5             |

Final Report REPORT No: 24-010898 - Rev. 2

|                                      |       |      |          | Client I.D.                   | BH106                      |
|--------------------------------------|-------|------|----------|-------------------------------|----------------------------|
| Parameter                            | Units | R.L. | Limits   | Sample I.D.<br>Date Collected | 24-010898-1<br>2024-Apr-19 |
| Dichloropropene,1,3-trans-           | µg/L  | 0.5  | 7        | INTERIM                       | <0.5                       |
| Ethylbenzene                         | μg/L  | 0.5  | 8        | INTERIM                       | <0.5                       |
| Dichloromethane (Methylene Chloride) | μg/L  | 5    | 100      | INTERIM                       | <5                         |
| Styrene                              | μg/L  | 0.5  | 4        | INTERIM                       | <0.5                       |
| Tetrachloroethane,1,1,2,2-           | μg/L  | 0.5  | 70       | INTERIM                       | <0.5                       |
| Tetrachloroethylene                  | μg/L  | 0.5  | 50       | INTERIM                       | <0.5                       |
| Toluene                              | μg/L  | 0.5  | 0.8, 0.8 | INTERIM, PWQO                 | <0.5                       |
| Trichloroethane,1,1,1-               | μg/L  | 0.5  | 10       | INTERIM                       | <0.5                       |
| Trichloroethane,1,1,2-               | μg/L  | 0.5  | 800      | INTERIM                       | <0.5                       |
| Trichloroethylene                    | μg/L  | 0.5  | 20       | INTERIM                       | <0.5                       |
| Trichlorofluoromethane (Freon 11)    | μg/L  | 5    |          |                               | <5                         |
| Trimethylbenzene,1,3,5-              | μg/L  | 0.1  | 3        | INTERIM                       | <0.1                       |
| Vinyl Chloride                       | μg/L  | 0.2  | 600      | INTERIM                       | <0.2                       |
| Xylene, m,p-                         | μg/L  | 1    |          |                               | <1                         |
| Xylene, m,p,o-                       | μg/L  | 1.1  |          |                               | <1.1                       |
| Xylene, o-                           | μg/L  | 0.5  | 40       | INTERIM                       | <0.5                       |
| Oil & Grease (Total)                 | mg/L  | 1.0  |          |                               | 1.7                        |
| Oil and Grease (Mineral)             | mg/L  | 1.0  |          |                               | <1.0                       |
| Oil and Grease (Anim/Veg)            | mg/L  | 1.0  |          |                               | 1.4                        |

Final Report REPORT No: 24-010898 - Rev. 2

|                             |       |      |          | Client I.D.    | BH106            |
|-----------------------------|-------|------|----------|----------------|------------------|
|                             |       |      |          | Sample I.D.    | 24-010898-1      |
| Parameter                   | Units | R.L. | Limits   | Date Collected | 2024-Apr-19<br>- |
| Acenaphthene                | µg/L  | 0.05 | <u> </u> |                | <0.05            |
| Acenaphthylene              | μg/L  | 0.05 |          |                | <0.05            |
| Anthracene                  | μg/L  | 0.05 | 0.0008   | PWQO           | <0.05            |
| Benzo[a]anthracene          | μg/L  | 0.05 | 0.0004   | INTERIM        | <0.05            |
| Benzo(a)pyrene              | μg/L  | 0.01 |          |                | <0.01            |
| Benzo(b)fluoranthene        | μg/L  | 0.05 |          |                | <0.05            |
| Benzo(b+k)fluoranthene      | μg/L  | 0.1  |          |                | <0.1             |
| Benzo(g,h,i)perylene        | μg/L  | 0.05 | 0.00002  | INTERIM        | <0.05            |
| Benzo(k)fluoranthene        | μg/L  | 0.05 |          |                | <0.05            |
| Butyl Benzyl Phthalate      | μg/L  | 1    | 0.2      | INTERIM        | <1               |
| Bis(2-Chloroethoxy)methane  | μg/L  | 2    |          |                | <2               |
| Bis(2-ethylhexyl) Phthalate | μg/L  | 5    |          |                | <5               |
| Chrysene                    | μg/L  | 0.05 | 0.0001   | INTERIM        | <0.05            |
| Dibenzo(a,h)anthracene      | μg/L  | 0.05 | 0.002    | INTERIM        | <0.05            |
| Di-n-Butyl Phthalate        | μg/L  | 1    | 4        | PWQO           | <1               |
| Dichlorophenol,2,4-         | μg/L  | 0.2  | 0.2      | PWQO           | <0.2             |
| Diethyl Phthalate           | μg/L  | 1    |          |                | <1               |
| Di-n-Octyl Phthalate        | μg/L  | 1    | 0.6      | PWQO           | <1               |
| Fluoranthene                | μg/L  | 0.05 | 0.0008   | INTERIM        | <0.05            |
| Fluorene                    | μg/L  | 0.05 | 0.2      | INTERIM        | <0.05            |
| Indeno(1,2,3,-cd)Pyrene     | μg/L  | 0.05 |          |                | <0.05            |

Final Report

REPORT No: 24-010898 - Rev. 2

|                          |       |      |        | Client I.D.    | BH106            |
|--------------------------|-------|------|--------|----------------|------------------|
|                          |       |      |        | Sample I.D.    | 24-010898-1      |
| Parameter                | Units | R.L. | Limits | Date Collected | 2024-Apr-19<br>- |
| Indole                   | µg/L  | 2    |        |                | <2               |
| Methylnaphthalene,1-     | μg/L  | 0.05 | 2      | INTERIM        | <0.05            |
| Methylnaphthalene,2-(1-) | μg/L  | 1    |        |                | <1               |
| Methylnaphthalene,2-     | μg/L  | 0.05 | 2      | INTERIM        | <0.05            |
| Naphthalene              | μg/L  | 0.05 | 7      | INTERIM        | <0.05            |
| Phenanthrene             | μg/L  | 0.05 | 0.03   | INTERIM        | <0.05            |
| Pyrene                   | μg/L  | 0.05 |        |                | <0.05            |
| Total PAH                | μg/L  | 0.1  |        |                | <0.1             |
|                          |       |      |        | Client I.D.    | BH106            |
|                          |       |      |        | Chonc ho       | 511100           |
|                          |       |      |        | Sample I.D.    | 24-010898-1      |
| Parameter                | Units | R.L. | Limits | Date Collected | 2024-Apr-19<br>- |
| Hexachlorobenzene        | μg/L  | 0.01 |        |                | <0.01            |

Final Report

REPORT No: 24-010898 - Rev. 2

| Subcontracted Analyses      |       |      |        | Client I.D.                   | BH106                           |
|-----------------------------|-------|------|--------|-------------------------------|---------------------------------|
| Parameter                   | Units | R.L. | Limits | Sample I.D.<br>Date Collected | 24-010898-1<br>2024-Apr-19<br>- |
| Formaldehyde                | μg/L  | -    | 0.8    | INTERIM                       | <8                              |
| Nitrosodimethylamine (NDMA) | μg/L  | -    | 15     | INTERIM                       | <0.4                            |
| Nonylphenol Monoethoxylate  | μg/L  | -    |        |                               | <10                             |
| Nonylphenol Diethoxylate    | μg/L  | -    |        |                               | <10                             |
| Nonylphenols                | μg/L  | -    | 0.04   | INTERIM                       | <1                              |
| Nonylphenol Ethoxylates     | μg/L  | -    |        |                               | <10                             |

Revised to change guideline to PWQO

: PWQO Limits INTERIM: Interim PWQO PWQO: PWQO

Final Report

REPORT No: 24-010898 - Rev. 2

| Litter of the DMOO     |             |         |
|------------------------|-------------|---------|
| Interim PWQO BH106     | Found Value | Limit   |
| Phosphorus (Total)     | 8720        | 10      |
| Cadmium (Total)        | <5          | 0.1     |
| Cobalt (Total)         | <5          | 0.1     |
| Copper (Total)         | 8           | 5       |
| Lead (Total)           | <20         | 1       |
| Arsenic (Total)        | 27.5        | 5       |
| Cadmium (Total)        | 1.12        | 0.1     |
|                        | 1.12        | 0.1     |
| Connec (Total)         |             |         |
| Copper (Total)         | 301         | 5       |
| Lead (Total)           | 76.8        | 1       |
| Thallium (Total)       | 1.82        | 0.3     |
| Uranium (Total)        | 11.4        | 5       |
| Vanadium (Total)       | 327         | 6       |
| Benzo[a]anthracene     | <0.05       | 0.0004  |
| Benzo(g,h,i)perylene   | <0.05       | 0.00002 |
| Butyl Benzyl Phthalate | <1          | 0.2     |
| Chrysene               | <0.05       | 0.0001  |
| Dibenzo(a,h)anthracene | <0.05       | 0.002   |
| Fluoranthene           | <0.05       | 0.0008  |
| Phenanthrene           | <0.05       | 0.03    |
| Formaldehyde           | <8          | 0.8     |
| Nonylphenols           | <1          | 0.04    |
| PWQO                   | '           |         |
| BH106                  | Found Value | Limit   |
| Cadmium (Total)        | <5          | 0.2     |
| Silver (Total)         | <5          | 0.1     |
| Arsenic (Total)        | 27.5        | 5       |
| Cadmium (Total)        | 1.12        | 0.2     |
| Lead (Total)           | 76.8        | 5       |
| Nickel (Total)         | 189         | 25      |
| Silver (Total)         | 1.1         | 0.1     |
| Thallium (Total)       | 1.82        | 0.3     |
| Chromium (VI)          | <10         | 1       |
| Anthracene             | <0.05       | 0.0008  |
| Di-n-Octyl Phthalate   | <1          | 0.6     |

Docusign Envelope ID: 919BBDD5-B067-4A30-A9BF-F2CF379844AC

#### **CADUCEON Environmental Laboratories Certificate of Analysis**

Final Report

REPORT No: 24-010898 - Rev. 2

## **CERTIFICATE OF ANALYSIS**



**Final Report** 

C.O.C.: G 106721 REPORT No: 24-024417 - Rev. 0

Report To:

Cambium Environmental - Kingston

31 Hyperion Crt

Suite 102

Kingston, ON K7K 7G3

DATE REPORTED:

**CADUCEON Environmental Laboratories** 

285 Dalton Ave

Kingston, ON K7K 6Z1

**Attention: Natasha Augustine** 

DATE RECEIVED: 2024-Aug-10 CUSTOMER PROJECT: 17281-002

2024-Aug-16 P.O. NUMBER:

SAMPLE MATRIX: Ground Water

| Analyses         | Qty | Site Analyzed | Authorized | Date Analyzed | Lab Method | Reference Method |
|------------------|-----|---------------|------------|---------------|------------|------------------|
| ICP/MS (Liquid)  | 1   | OTTAWA        | AOZKAYMAK  | 2024-Aug-13   | D-ICPMS-01 | EPA 200.8        |
| ICP/OES (Liquid) | 1   | OTTAWA        | APRUDYVUS  | 2024-Aug-14   | D-ICP-01   | SM 3120B         |
| TSS (Liquid)     | 1   | KINGSTON      | DCASSIDY   | 2024-Aug-15   | TSS-001    | SM 2540D         |

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an \*

|                        |                  |      |        | Client I.D.                   | BH106                      |
|------------------------|------------------|------|--------|-------------------------------|----------------------------|
| Parameter              | Units            | R.L. | Limits | Sample I.D.<br>Date Collected | 24-024417-1<br>2024-Aug-08 |
| Total Suspended Solids | mg/L             | 3    |        |                               | <3                         |
| Hardness (as CaCO3)    | mg/L as<br>CaCO3 | 0    |        |                               | 380                        |
| Aluminum               | μg/L             | 10   | 75     | INTERIM                       | 20                         |
| Boron                  | μg/L             | 5    | 200    | INTERIM                       | 62                         |
| Calcium                | μg/L             | 20   |        |                               | 107000                     |
| Iron                   | μg/L             | 5    | 300    | PWQO                          | 334                        |
| Magnesium              | μg/L             | 20   |        |                               | 27400                      |
| Tungsten               | μg/L             | 10   |        |                               | <10                        |
| Zinc                   | μg/L             | 5    | 30     | PWQO                          | <5                         |
| Zirconium              | μg/L             | 3    |        |                               | <3                         |

Final Report

REPORT No: 24-024417 - Rev. 0

|            |       |       |          | Client I.D.    | BH106       |
|------------|-------|-------|----------|----------------|-------------|
|            |       |       |          | Sample I.D.    | 24-024417-1 |
| _          |       |       |          | Date Collected | 2024-Aug-08 |
| Parameter  | Units | R.L.  | Limits   |                |             |
| Antimony   | μg/L  | 0.1   | 20, 5    | INTERIM, PWQO  | 0.3         |
| Arsenic    | μg/L  | 0.1   | 5, 0.0   | INTERIM, PWQO  | 1.0         |
| Beryllium  | μg/L  | 0.1   | 0.0, 11  | INTERIM, PWQO  | <0.1        |
| Cadmium    | μg/L  | 0.015 | 0.1, 0.2 | INTERIM, PWQO  | 0.211       |
| Chromium   | μg/L  | 1.0   |          |                | <1.0        |
| Cobalt     | μg/L  | 0.1   |          |                | 1.1         |
| Copper     | μg/L  | 0.1   | 5        | INTERIM        | 5.4         |
| Lead       | μg/L  | 0.02  | 1, 5     | INTERIM, PWQO  | 0.08        |
| Molybdenum | μg/L  | 0.1   | 40       | INTERIM        | 5.0         |
| Nickel     | μg/L  | 0.2   | 25       | PWQO           | 3.8         |
| Selenium   | μg/L  | 1.00  | 100      | PWQO           | <1.00       |
| Silver     | μg/L  | 0.1   | 0.1      | PWQO           | <0.1        |
| Thallium   | μg/L  | 0.05  | 0.3, 0.3 | INTERIM, PWQO  | <0.05       |
| Uranium    | μg/L  | 0.05  | 5        | INTERIM        | 4.68        |
| Vanadium   | μg/L  | 0.1   | 6        | INTERIM        | 0.3         |

: PWQO Limits INTERIM: Interim PWQO PWQO: PWQO

**Final Report** 

REPORT No: 24-024417 - Rev. 0

| Summary of Exceedances |             |       |
|------------------------|-------------|-------|
| Interim PWQO           |             |       |
| BH106                  | Found Value | Limit |
| Cadmium                | 0.211       | 0.1   |
| Copper                 | 5.4         | 5     |
| PWQO                   |             |       |
| BH106                  | Found Value | Limit |
| Iron                   | 334         | 300   |
| Cadmium                | 0.211       | 0.2   |



### **Final Report**

C A D U C E N V IR O N MENTAL LABORATOR I ES

Client committed. Quality assured. Canadian owned.

C.O.C.: G 106721 REPORT No: 24-024417 - Rev. 2

Report To:

Cambium Environmental - Kingston

31 Hyperion Crt

Suite 102

Kingston, ON K7K 7G3

DATE REPORTED:

**CADUCEON Environmental Laboratories** 

285 Dalton Ave

Kingston, ON K7K 6Z1

**Attention: Natasha Augustine** 

DATE RECEIVED: 2024-Aug-10 CUSTOMER PROJECT: 17281-002

2024-Sep-05 P.O. NUMBER:

SAMPLE MATRIX: Ground Water

| Analyses         | Qty | Site Analyzed | Authorized | Date Analyzed | Lab Method | Reference Method |
|------------------|-----|---------------|------------|---------------|------------|------------------|
| ICP/MS (Liquid)  | 1   | OTTAWA        | AOZKAYMAK  | 2024-Aug-13   | D-ICPMS-01 | EPA 200.8        |
| ICP/OES (Liquid) | 1   | OTTAWA        | APRUDYVUS  | 2024-Aug-14   | D-ICP-01   | SM 3120B         |
| TSS (Liquid)     | 1   | KINGSTON      | DCASSIDY   | 2024-Aug-15   | TSS-001    | SM 2540D         |

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an \*

|                        |                  |       |           | Client I.D.                   | BH106                      |
|------------------------|------------------|-------|-----------|-------------------------------|----------------------------|
| Parameter              | Units            | R.L.  | Limits    | Sample I.D.<br>Date Collected | 24-024417-1<br>2024-Aug-08 |
| Total Suspended Solids | mg/L             | 3     | 350, 15.0 | SAN, STORM                    | <3                         |
| Hardness (as CaCO3)    | mg/L as<br>CaCO3 | 0.02  |           |                               | 380                        |
| Aluminum               | mg/L             | 0.01  | 50        | SAN                           | 0.02                       |
| Boron                  | mg/L             | 0.005 | 25        | SAN                           | 0.062                      |
| Calcium                | mg/L             | 0.02  |           |                               | 107                        |
| Iron                   | mg/L             | 0.005 |           |                               | 0.334                      |
| Magnesium              | mg/L             | 0.02  |           |                               | 27.4                       |
| Phosphorus             | mg/L             | 0.1   |           |                               | <0.1                       |
| Tungsten               | mg/L             | 0.01  |           |                               | <0.01                      |
| Zinc                   | mg/L             | 0.005 | 3, 0.04   | SAN, STORM                    | <0.005                     |

Steve Garrett
Director of Laboratory Services

Final Report REPORT No: 24-024417 - Rev. 2

|            |       |          |             | Client I.D.                   | BH106                      |
|------------|-------|----------|-------------|-------------------------------|----------------------------|
| Parameter  | Units | R.L.     | Limits      | Sample I.D.<br>Date Collected | 24-024417-1<br>2024-Aug-08 |
| Zirconium  | mg/L  | 0.003    |             |                               | <0.003                     |
| Antimony   | mg/L  | 0.0001   | 5           | SAN                           | 0.0003                     |
| Arsenic    | mg/L  | 0.0001   | 1, 0.02     | SAN, STORM                    | 0.0010                     |
| Beryllium  | mg/L  | 0.0001   |             |                               | <0.0001                    |
| Cadmium    | mg/L  | 0.000015 | 0.02, 0.008 | SAN, STORM                    | 0.000211                   |
| Chromium   | mg/L  | 0.001    | 5, 0.08     | SAN, STORM                    | <0.001                     |
| Cobalt     | mg/L  | 0.0001   | 5           | SAN                           | 0.0011                     |
| Copper     | mg/L  | 0.0001   | 3, 0.04     | SAN, STORM                    | 0.0054                     |
| Lead       | mg/L  | 0.00002  | 5, 0.12     | SAN, STORM                    | 0.00008                    |
| Molybdenum | mg/L  | 0.0001   | 5           | SAN                           | 0.0050                     |
| Nickel     | mg/L  | 0.0002   | 3, 0.08     | SAN, STORM                    | 0.0038                     |
| Selenium   | mg/L  | 0.001    | 5, 0.02     | SAN, STORM                    | <0.001                     |
| Silver     | mg/L  | 0.0001   | 5, 0.12     | SAN, STORM                    | <0.0001                    |
| Thallium   | mg/L  | 0.00005  |             |                               | <0.00005                   |
| Uranium    | mg/L  | 0.00005  |             |                               | 0.00468                    |
| Vanadium   | mg/L  | 0.0001   | 5           | SAN                           | 0.0003                     |

Revised to add Phosphorous result by ICP

: City of Ottawa SAN: Sanitary Sewer By Law STORM: Storm Sewer By Law

Steve Garrett
Director of Laboratory Services



# **CERTIFICATE OF ANALYSIS**

**Final Report** 

C.O.C.: G 112298 REPORT No: 24-027621 - Rev. 0

Report To:

Cambium Environmental - Kingston

31 Hyperion Crt

Suite 102

Kingston, ON K7K 7G3

**CADUCEON Environmental Laboratories** 

285 Dalton Ave

Kingston, ON K7K 6Z1

**Attention: Natasha Augustine** 

DATE RECEIVED: 2024-Sep-06 CUSTOMER PROJECT: 17281-002

DATE REPORTED: 2024-Sep-10 P.O. NUMBER:

SAMPLE MATRIX: Ground Water

Analyses Qty Site Analyzed Authorized Date Analyzed Lab Method Reference Method TP & TKN (Liquid) 1 KINGSTON YLIEN 2024-Sep-10 TPTKN-001 MECP E3516.2

R.L. = Reporting Limit
NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an \*

|             |             | Parameter      | Phosphorus (Total) |
|-------------|-------------|----------------|--------------------|
|             |             | Units          | mg/L               |
|             |             | R.L.           | 0.01               |
| Client I.D. | Sample I.D. | Date Collected |                    |
| BH106       | 24-027621-1 | 2024-Sep-05    | <0.01              |

Steve Garrett
Director of Laboratory Services



# **CERTIFICATE OF ANALYSIS**

**Final Report** 

C.O.C.: G 132184 REPORT No: 25-015207 - Rev. 0

Report To:

Cambium Environmental - Kingston

31 Hyperion Crt Suite 102

Kingston, ON K7K 7G3

Attention: Kyle Horner

**CADUCEON Environmental Laboratories** 

2378 Holly Lane

Ottawa, ON K1V 7P1

 DATE RECEIVED:
 2025-May-30
 CUSTOMER PROJECT:
 17281-001

 DATE REPORTED:
 2025-Jun-06
 P.O. NUMBER:
 17281-001

SAMPLE MATRIX: Ground Water

| Analyses                      | Qty | Site Analyzed | Authorized | Date Analyzed | Lab Method      | Reference Method |
|-------------------------------|-----|---------------|------------|---------------|-----------------|------------------|
| Anions (Liquid)               | 2   | OTTAWA        | STAILLON   | 2025-Jun-02   | A-IC-01         | SM 4110B         |
| Colour (Liquid)               | 2   | OTTAWA        | MMIRELLA   | 2025-Jun-04   | A-COL-01        | SM 2120C         |
| Cond/pH/Alk Auto (Liquid)     | 2   | OTTAWA        | SBOUDREAU  | 2025-May-30   | COND-02/PH-02/A | SM 2510B/4500H/  |
|                               |     |               |            |               | LK-02           | 2320B            |
| Coliforms - DC Media (Liquid) | 2   | OTTAWA        | AHIRSI     | 2025-May-30   | ECTC-001        | MECP E3407       |
| DOC (Liquid)                  | 2   | OTTAWA        | SLOZO      | 2025-Jun-02   | C-OC-01         | EPA 415.2        |
| HPC Spread Plate (Liquid)     | 2   | OTTAWA        | SLOZO      | 2025-May-30   | HPC-001         | SM 9215D         |
| Ion Balance (Calc)            | 2   | OTTAWA        | ASCHNEIDER |               | CP-028          | MECP E3196       |
| ICP/MS (Liquid)               | 2   | OTTAWA        | TPRICE     | 2025-Jun-03   | D-ICPMS-01      | EPA 200.8        |
| ICP/OES (Liquid)              | 2   | OTTAWA        | GFENTON    | 2025-Jun-02   | D-ICP-01        | SM 3120B         |
| Ammonia (Liquid)              | 2   | KINGSTON      | DCASSIDY   | 2025-Jun-06   | NH3-001         | SM 4500NH3       |
| Phenols (Liquid)              | 2   | KINGSTON      | MCLOSS     | 2025-Jun-03   | PHEN-01         | MECP E3179       |
| Sulphide (Liquid)             | 2   | KINGSTON      | MWILSON    | 2025-Jun-02   | H2S-001         | SM 4500-S2       |
| Tannins (Liquid)              | 2   | KINGSTON      | MWILSON    | 2025-Jun-03   | TAN-001         | SM 5550          |
| TP & TKN (Liquid)             | 2   | KINGSTON      | YLIEN      | 2025-Jun-06   | TPTKN-001       | MECP E3516.2     |
| Turbidity (Liquid)            | 2   | OTTAWA        | MMIRELLA   | 2025-May-30   | A-TURB-01       | SM 2130B         |
| VOC-Volatiles Full (Water)    | 2   | RICHMOND_HILL | FLENA      | 2025-Jun-04   | C-VOC-02        | EPA 8260         |

R.L. = Reporting Limit

NC = Not Calculated

Test methods may be modified from specified reference method unless indicated by an  $\,^\star$ 

**Final Report** REPORT No: 25-015207 - Rev. 0

|                             |           |       |        | Client I.D.                    | TW1-1                      | TW1-2                      |
|-----------------------------|-----------|-------|--------|--------------------------------|----------------------------|----------------------------|
| Parameter                   | Units     | R.L.  | Limits | Sample I.D. Date Collected DWG | 25-015207-1<br>2025-May-29 | 25-015207-2<br>2025-May-29 |
| Total Coliform (DC Media)   | CFU/100mL | 1     | 0      | MAC                            | 0                          | 0                          |
| E coli (DC Media)           | CFU/100mL | 1     | 0      | MAC                            | 0                          | 0                          |
| Background (DC Media)       | CFU/100mL | 1     |        |                                | 55                         | 37                         |
| Heterotrophic Plate Count   | CFU/1mL   | 2     |        |                                | <2                         | <2                         |
| Alkalinity(CaCO3) to pH4.5  | mg/L      | 5     | 500    | OG                             | 241                        | 244                        |
| TDS (Calc. from Cond.)      | mg/L      | 3     | 500    | AO                             | 495                        | 503                        |
| Conductivity @25°C          | uS/cm     | 1     |        |                                | 932                        | 946                        |
| рН @25°C                    | pH units  | -     | 8.5    | OG                             | 7.98                       | 7.95                       |
| Colour                      | TCU       | 2     | 5      | AO                             | 3                          | 2                          |
| Turbidity                   | NTU       | 0.1   | 5      | AO                             | 8.4                        | 3.4                        |
| Fluoride                    | mg/L      | 0.1   | 1.5    | MAC                            | <0.1                       | <0.1                       |
| Chloride                    | mg/L      | 0.5   | 250    | AO                             | 125                        | 132                        |
| Nitrate (N)                 | mg/L      | 0.05  | 10.0   | MAC                            | <0.05                      | <0.05                      |
| Nitrite (N)                 | mg/L      | 0.05  | 1.0    | MAC                            | <0.05                      | <0.05                      |
| Sulphate                    | mg/L      | 1     | 500    | AO                             | 64                         | 65                         |
| Total Kjeldahl Nitrogen     | mg/L      | 0.1   |        |                                | 0.2                        | 0.2                        |
| Ammonia (N)-Total (NH3+NH4) | mg/L      | 0.05  |        |                                | 0.08                       | 0.08                       |
| Dissolved Organic Carbon    | mg/L      | 0.8   | 5      | AO                             | 1.3                        | 1.2                        |
| Tannin & Lignin             | mg/L      | 0.5   |        |                                | <0.5                       | <0.5                       |
| Sulphide                    | mg/L      | 0.01  | 0.05   | AO                             | <0.01                      | <0.01                      |
| Phenolics                   | mg/L      | 0.001 |        |                                | <0.001                     | <0.001                     |

Michelle Dubien

**Final Report** REPORT No: 25-015207 - Rev. 0

|                     |         |          |             | Client I.D.           | TW1-1       | TW1-2       |
|---------------------|---------|----------|-------------|-----------------------|-------------|-------------|
|                     |         |          |             | Sample I.D.           | 25-015207-1 | 25-015207-2 |
| Parameter           | Units   | R.L.     | Limits      | Date Collected<br>DWG | 2025-May-29 | 2025-May-29 |
| Hardness (as CaCO3) | mg/L as | 0.02     | 100         | OG                    | 389         | 394         |
| Aluminum            | mg/L    | 0.01     | 0.1         | OG                    | 0.02        | 0.03        |
| Barium              | mg/L    | 0.001    | 1           | MAC                   | 0.825       | 0.839       |
| Boron               | mg/L    | 0.005    | 5           | MAC                   | 0.025       | 0.025       |
| Calcium             | mg/L    | 0.02     |             |                       | 100         | 101         |
| Iron                | mg/L    | 0.005    | 0.3         | AO                    | 0.205       | 0.326       |
| Magnesium           | mg/L    | 0.02     |             |                       | 33.8        | 34.2        |
| Manganese           | mg/L    | 0.001    | 0.05        | AO                    | 0.030       | 0.025       |
| Potassium           | mg/L    | 0.1      |             |                       | 2.7         | 2.7         |
| Sodium              | mg/L    | 0.2      | 200, 20, 20 | AO, WL, MAC           | 38.9        | 40.0        |
| Strontium           | mg/L    | 0.001    |             |                       | 0.393       | 0.399       |
| Zinc                | mg/L    | 0.005    | 5           | AO                    | <0.005      | <0.005      |
| Antimony            | mg/L    | 0.0001   | 0.006       | MAC                   | <0.0001     | <0.0001     |
| Arsenic             | mg/L    | 0.0001   | 0.01        | MAC                   | <0.0001     | <0.0001     |
| Beryllium           | mg/L    | 0.0001   |             |                       | <0.0001     | <0.0001     |
| Cadmium             | mg/L    | 0.000015 | 0.005       | MAC                   | <0.000015   | <0.000015   |
| Chromium            | mg/L    | 0.001    | 0.05        | MAC                   | <0.001      | <0.001      |
| Cobalt              | mg/L    | 0.0001   |             |                       | 0.0001      | 0.0001      |
| Copper              | mg/L    | 0.0001   | 1           | AO                    | 0.0005      | 0.0008      |
| Lead                | mg/L    | 0.00002  | 0.010       | MAC                   | 0.00002     | 0.00002     |
| Molybdenum          | mg/L    | 0.0001   |             |                       | 0.0008      | 0.0008      |

Michelle Dubien

Final Report REPORT No: 25-015207 - Rev. 0

|                           |          |         |        | Client I.D.                 | TW1-1                      | TW1-2                      |
|---------------------------|----------|---------|--------|-----------------------------|----------------------------|----------------------------|
|                           |          |         |        | Sample I.D.  Date Collected | 25-015207-1<br>2025-May-29 | 25-015207-2<br>2025-May-29 |
| Parameter                 | Units    | R.L.    | Limits | DWG                         | -                          | -                          |
| Nickel                    | mg/L     | 0.0002  |        |                             | 0.0007                     | 0.0007                     |
| Selenium                  | mg/L     | 0.001   | 0.05   | MAC                         | <0.001                     | <0.001                     |
| Silver                    | mg/L     | 0.0001  |        |                             | <0.0001                    | <0.0001                    |
| Thallium                  | mg/L     | 0.00005 |        |                             | <0.00005                   | <0.00005                   |
| Uranium                   | mg/L     | 0.00005 | 0.02   | MAC                         | 0.00035                    | 0.00036                    |
| Vanadium                  | mg/L     | 0.0001  |        |                             | <0.0001                    | <0.0001                    |
| Anion Sum                 | meq/L    | -       |        |                             | 9.70                       | 9.96                       |
| Cation Sum                | meq/L    | -       |        |                             | 9.56                       | 9.71                       |
| % Difference              | %        | -       |        |                             | 0.707                      | 1.28                       |
| TDS (Ion Sum Calc)        | mg/L     | 1       | 500    | AO                          | 510                        | 522                        |
| Conductivity Calc         | µmho/cm  | -       |        |                             | 944                        | 964                        |
| pH (Client Data)          | pH units | -       |        |                             | 7.33                       | 7.42                       |
| Temperature (Client Data) | °C       | -       |        |                             | 11.6                       | 11.8                       |

Final Report REPORT No: 25-015207 - Rev. 0

|                                    |       |      |         | Client I.D.                      | TW1-1                      | TW1-2                      |
|------------------------------------|-------|------|---------|----------------------------------|----------------------------|----------------------------|
| Parameter                          | Units | R.L. | Limits  | Sample I.D.  Date Collected  DWG | 25-015207-1<br>2025-May-29 | 25-015207-2<br>2025-May-29 |
| Acetone                            | µg/L  | 30   | Lillits | DWG                              | <30                        | <30                        |
| Benzene                            | μg/L  | 0.5  | 1       | MAC                              | <0.5                       | <0.5                       |
| Bromodichloromethane               | μg/L  | 2    |         |                                  | <2                         | <2                         |
| Bromoform                          | μg/L  | 5    |         |                                  | <5                         | <5                         |
| Bromomethane                       | μg/L  | 0.5  |         |                                  | <0.5                       | <0.5                       |
| Carbon Tetrachloride               | μg/L  | 0.2  | 2       | MAC                              | <0.2                       | <0.2                       |
| Chlorobenzene                      | μg/L  | 0.5  | 80, 30  | MAC, AO                          | <0.5                       | <0.5                       |
| Chloroform                         | μg/L  | 1    |         |                                  | <1                         | <1                         |
| Dibromochloromethane               | μg/L  | 2    |         |                                  | <2                         | <2                         |
| Ethylene Dibromide                 | μg/L  | 0.2  |         |                                  | <0.2                       | <0.2                       |
| Dichlorobenzene,1,2-               | μg/L  | 0.5  | 200, 3  | MAC, AO                          | <0.5                       | <0.5                       |
| Dichlorobenzene,1,3-               | μg/L  | 0.5  |         |                                  | <0.5                       | <0.5                       |
| Dichlorobenzene,1,4-               | μg/L  | 0.5  | 5, 1    | MAC, AO                          | <0.5                       | <0.5                       |
| Dichlorodifluoromethane (Freon 12) | μg/L  | 2    |         |                                  | <2                         | <2                         |
| Dichloroethane,1,1-                | μg/L  | 0.5  |         |                                  | <0.5                       | <0.5                       |
| Dichloroethane,1,2-                | μg/L  | 0.5  | 5       | MAC                              | <0.5                       | <0.5                       |
| Dichloroethylene,1,1-              | μg/L  | 0.5  | 14      | MAC                              | <0.5                       | <0.5                       |
| Dichloroethylene,1,2-cis-          | μg/L  | 0.5  |         |                                  | <0.5                       | <0.5                       |
| Dichloroethylene,1,2-cis+trans-    | μg/L  | 0.7  |         |                                  | <0.7                       | <0.7                       |
| Dichloroethylene,1,2-trans-        | μg/L  | 0.5  |         |                                  | <0.5                       | <0.5                       |
| Dichloropropane,1,2-               | μg/L  | 0.5  |         |                                  | <0.5                       | <0.5                       |

Final Report REPORT No: 25-015207 - Rev. 0

|                                      |       |      |          | Client I.D.           | TW1-1        | TW1-2        |
|--------------------------------------|-------|------|----------|-----------------------|--------------|--------------|
|                                      |       |      |          | Sample I.D.           | 25-015207-1  | 25-015207-2  |
| Parameter                            | Units | R.L. | Limits   | Date Collected<br>DWG | 2025-May-29  | 2025-May-29  |
| Dichloropropene,1,3-cis-             |       | 0.5  | Lillits  | DWG                   | <0.5         | <0.5         |
| Dichloropropene, 1,3-cis+trans-      | μg/L  | 0.5  |          |                       | <b>~</b> 0.5 | <b>V</b> 0.5 |
| (Calculated)                         | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Dichloropropene,1,3-trans-           | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Ethylbenzene                         | μg/L  | 0.5  | 140, 1.6 | MAC, AO               | <0.5         | <0.5         |
| Hexane                               | μg/L  | 5    |          |                       | <5           | <5           |
| Dichloromethane (Methylene Chloride) | μg/L  | 5    | 50       | MAC                   | <5           | <5           |
| Methyl Ethyl Ketone                  | μg/L  | 2    |          |                       | <2           | <2           |
| Methyl Isobutyl Ketone               | μg/L  | 20   |          |                       | <20          | <20          |
| Methyl tert-Butyl Ether (MTBE)       | μg/L  | 2    |          |                       | <2           | <2           |
| Styrene                              | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Tetrachloroethane,1,1,1,2-           | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Tetrachloroethane,1,1,2,2-           | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Tetrachloroethylene                  | μg/L  | 0.5  | 10       | MAC                   | <0.5         | <0.5         |
| Toluene                              | μg/L  | 0.5  | 60       | MAC                   | <0.5         | <0.5         |
| Trichloroethane,1,1,1-               | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Trichloroethane,1,1,2-               | μg/L  | 0.5  |          |                       | <0.5         | <0.5         |
| Trichloroethylene                    | μg/L  | 0.5  | 5        | MAC                   | <0.5         | <0.5         |
| Trichlorofluoromethane (Freon 11)    | μg/L  | 5    |          |                       | <5           | <5           |
| Vinyl Chloride                       | μg/L  | 0.2  | 1        | MAC                   | <0.2         | <0.2         |
| Xylene, m,p-                         | μg/L  | 1    |          |                       | <1           | <1           |
| Xylene, m,p,o-                       | μg/L  | 1.1  | 90, 20   | MAC, AO               | <1.1         | <1.1         |

**Final Report** 

REPORT No: 25-015207 - Rev. 0

|            |       |      |        | Client I.D.    | TW1-1       | TW1-2       |
|------------|-------|------|--------|----------------|-------------|-------------|
|            |       |      |        | Sample I.D.    | 25-015207-1 | 25-015207-2 |
|            |       |      |        | Date Collected | 2025-May-29 | 2025-May-29 |
| Parameter  | Units | R.L. | Limits | DWG            | -           | -           |
| Xylene, o- | μg/L  | 0.5  |        |                | <0.5        | <0.5        |

<u>DWG - Drinking Water Guidelines</u> ODWS - Ontario Drinking Water Standards

AO - Aesthetic Objectives

IMAC - Interim Maximum Acceptable Concentration

MAC - Maximum Acceptable Concentration

ODWO - D-5-5 Objective

OG - Operational Guidelines

WL - Warning Level - Sodium Restricted Diets

| Summary of Exceedances                |             |       |
|---------------------------------------|-------------|-------|
| Aesthetic Objectives                  |             |       |
| TW1-1                                 | Found Value | Limit |
| Turbidity                             | 8.4         | 5     |
| TDS (Ion Sum Calc)                    | 510         | 500   |
| TW1-2                                 | Found Value | Limit |
| TDS (Calc. from Cond.)                | 503         | 500   |
| Iron                                  | 0.326       | 0.3   |
| TDS (Ion Sum Calc)                    | 522         | 500   |
| Maximum Acceptable Concentration      |             |       |
| TW1-1                                 | Found Value | Limit |
| Sodium                                | 38.9        | 20    |
| TW1-2                                 | Found Value | Limit |
| Sodium                                | 40.0        | 20    |
| Operational Guidelines                |             |       |
| TW1-1                                 | Found Value | Limit |
| Hardness (as CaCO3)                   | 389         | 100   |
| TW1-2                                 | Found Value | Limit |
| Hardness (as CaCO3)                   | 394         | 100   |
| Warning Level - Sodium Restricted Die | ets         |       |
| TW1-1                                 | Found Value | Limit |
| Sodium                                | 38.9        | 20    |
| TW1-2                                 | Found Value | Limit |
| Sodium                                | 40.0        | 20    |



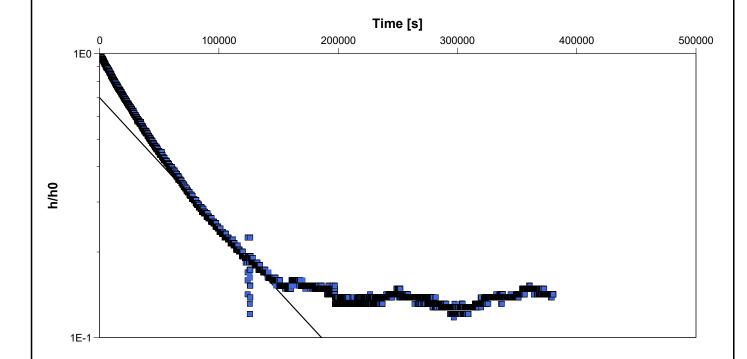
Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

Appendix F
Single Well Hydraulic Test Results




Project: Hydrogeological Assessment

Number: 17281-002

Client: Cassidy EW Construction Consultant Ltd.

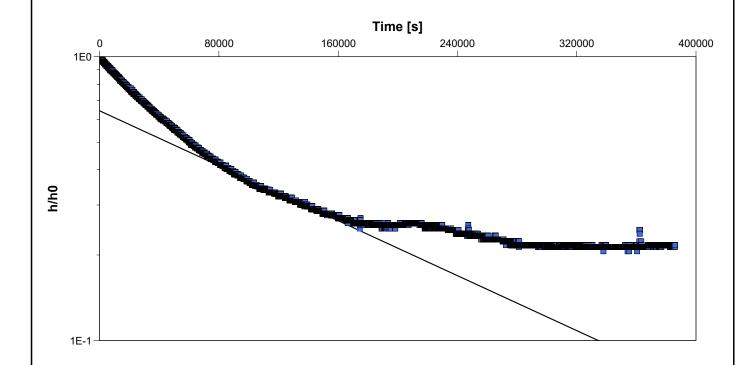
| Location: 1386 & 1394 Greely Lane | Slug Test: BH105 - Slug Test 1 | Test Well: BH105-23      |
|-----------------------------------|--------------------------------|--------------------------|
| Test Conducted by: MC             |                                | Test Date: 4/19/2024     |
| Analysis Performed by: NA         | Hvorslev                       | Analysis Date: 7/11/2024 |

Aquifer Thickness: 2.62 m



| Observation Well | Hydraulic Conductivity  |  |
|------------------|-------------------------|--|
|                  | [m/s]                   |  |
| BH105-23         | 6.35 × 10 <sup>-9</sup> |  |




Project: Hydrogeological Assessment

Number: 17281-002

Client: Cassidy EW Construction Consultant Ltd.

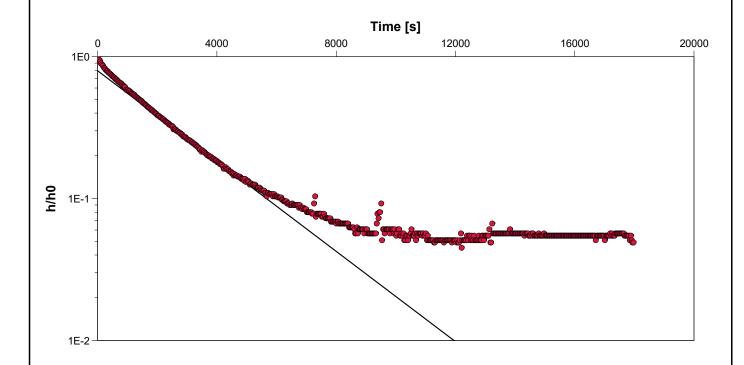
| Location: 1386 & 1394 Greely Lane | Slug Test: BH105 - Slug Test 2 | Test Well: BH105-23      |
|-----------------------------------|--------------------------------|--------------------------|
| Test Conducted by: MC             | Test Date: 4/19/2024           |                          |
| Analysis Performed by: NA         | Hvorslev                       | Analysis Date: 7/11/2024 |

Aquifer Thickness: 2.62 m



| Observation Well | Hydraulic Conductivity  |  |
|------------------|-------------------------|--|
|                  | [m/s]                   |  |
| BH105-23         | 3.38 × 10 <sup>-9</sup> |  |




Project: Hydrogeological Assessment

Number: 17281-002

Client: Cassidy EW Construction Consultant Ltd.

Location: 1386 & 1394 Greely LaneSlug Test: BH106 - Slug Test 1Test Well: BH106-23Test Conducted by: MCTest Date: 4/19/2024Analysis Performed by: NAHvorslevAnalysis Date: 7/11/2024

Aquifer Thickness: 2.46 m



| Observation Well | Hydraulic Conductivity  |  |
|------------------|-------------------------|--|
|                  | [m/s]                   |  |
| BH106-23         | 2.22 × 10 <sup>-7</sup> |  |



Project: Hydrogeological Assessment

Number: 17281-002

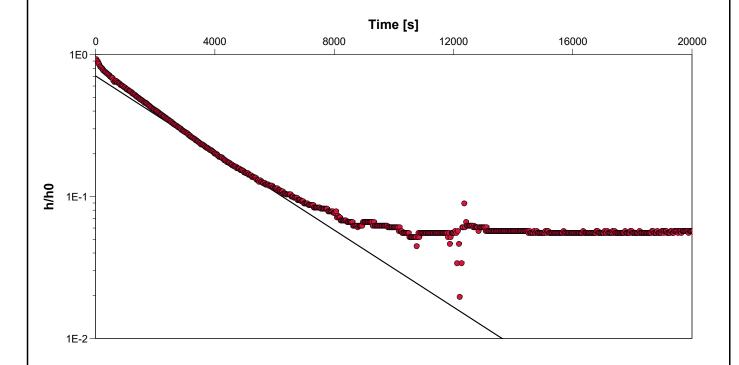
Client: Cassidy EW Construction Consultant Ltd.

Location: 1386 & 1394 Greely Lane

Slug Test: BH106 - Slug Test 2

Test Well: BH106-23

Test Date: 4/19/2024


Analysis Performed by: NA

Hvorslev

Hvorslev

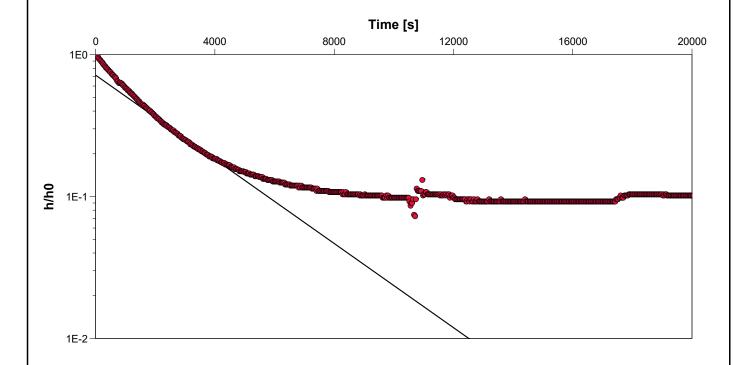
Hvorslev

Aquifer Thickness: 2.46 m



| Observation Well | Hydraulic Conductivity  |  |
|------------------|-------------------------|--|
|                  | [m/s]                   |  |
| BH106-23         | 1.90 × 10 <sup>-7</sup> |  |




Project: Hydrogeological Assessment

Number: 17281-002

Client: Cassidy EW Construction Consultant Ltd.

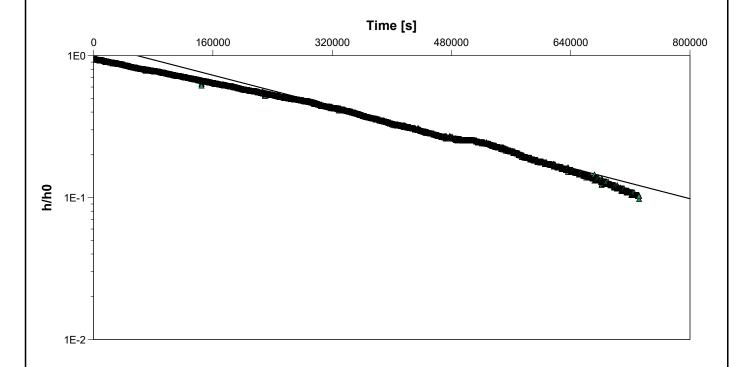
| Location: 1386 & 1394 Greely Lane | Slug Test: BH106 - Slug Test 3 | Test Well: BH106-23      |
|-----------------------------------|--------------------------------|--------------------------|
| Test Conducted by: MC             |                                | Test Date: 4/19/2024     |
| Analysis Performed by: NA         | Hvorslev                       | Analysis Date: 7/11/2024 |

Aquifer Thickness: 2.46 m



| ſ | Observation Well | Hydraulic Conductivity  |  |
|---|------------------|-------------------------|--|
|   |                  | [m/s]                   |  |
| Ī | BH106-23         | 2.07 × 10 <sup>-7</sup> |  |




Project: Hydrogeological Assessment

Number: 17281-002

Client: Cassidy EW Construction Consultant Ltd.

| Location: 1386 & 1394 Greely Lane | Slug Test: BH107 - Slug Test 1 | Test Well: BH107-23      |
|-----------------------------------|--------------------------------|--------------------------|
| Test Conducted by: MC             | Test Date: 4/19/2024           |                          |
| Analysis Performed by: NA         | Hvorslev                       | Analysis Date: 7/11/2024 |

Aquifer Thickness: 2.89 m



| Obse | rvation Well | Hydraulic Conductivity  |  |
|------|--------------|-------------------------|--|
|      |              | [m/s]                   |  |
| BH10 | )7-23        | 1.90 × 10 <sup>-9</sup> |  |



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

|            | Appendix G   |
|------------|--------------|
| Dewatering | Calculations |



Hydrogeological Assessment Report - 1386 & 1394 Greely Lane, Ottawa, ON Cassidy EW Constuction Consultant Ltd.

Cambium Ref. No.: 17281-002

**DEWATERING CALCULATIONS - CONSTRUCTION PHASE** 

Modified Dupuit-Forchheimer Equation: unconfined flow into a linear excavation. Calculations assume no flow boundary at aquifer base

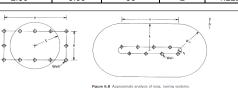
| Excavation Area                    |                  | Initial Depth to<br>Groundwater | Target Depth<br>to<br>Groundwater | Base of | Unit Length<br>of Trench<br>(a) | Width of<br>Trench<br>(b) | Hydraulic<br>Conductivity<br>(K) | Drawdown<br>(s) | R    | r <sub>w</sub> = b/2 | R <sub>o</sub> | In(R <sub>o</sub> /r <sub>w</sub> ) | L = R <sub>o</sub> /2 | н    | h = H-s | Q <sub>ends</sub> | Q <sub>trench</sub> |          | Q <sub>total</sub> |       |
|------------------------------------|------------------|---------------------------------|-----------------------------------|---------|---------------------------------|---------------------------|----------------------------------|-----------------|------|----------------------|----------------|-------------------------------------|-----------------------|------|---------|-------------------|---------------------|----------|--------------------|-------|
|                                    |                  | mbgs                            | mbgs                              | mbgs    | m                               | m                         | m/s                              | m               | m    | m                    | m              | -                                   | m                     | m    | m       | m <sup>3</sup> /s | m <sup>3</sup> /s   | m³/s     | L/s                | L/d   |
| Elongated Trench @ 50 m Increments | Minimum K        | 0.30                            | 2.50                              | 3.60    | 50                              | 2                         | 1.90E-09                         | 2.20            | 0.29 | 1.00                 | 1.29           | 0.25                                | 0.64                  | 3.30 | 1.10    | 0.000000          | 0.000001            | 0.000002 | 0.002              | 143   |
|                                    | Maximum K        | 0.30                            | 2.50                              | 3.60    | 50                              | 2                         | 2.06E-07                         | 2.20            | 2.99 | 1.00                 | 3.99           | 1.39                                | 2.00                  | 3.30 | 1.10    | 0.000005          | 0.000050            | 0.000054 | 0.05               | 4,702 |
|                                    | Geometric mean K | 0.30                            | 2.50                              | 3.60    | 50                              | 2                         | 1.22E-08                         | 2.20            | 0.73 | 1.00                 | 1.73           | 0.55                                | 0.86                  | 3.30 | 1.10    | 0.000001          | 0.000007            | 0.000008 | 0.01               | 648   |

s = target drawdown (initial - target depth to groundwater) (m)

R<sub>o</sub> = radius of influence of construction dewatering/pumping, from center of excavation (m)

L = distance to line source (m)

r<sub>s</sub> = equivalent single well radius (m)


H = Initial hydraulic head in aquifer (m)

h = hydraulic head at radius of well (m)

Q = construction dewatering rate (m<sup>3</sup>/s)

\*For base of aquifer, use target depth to groundwater plus 50% of target drawdown (s), unless specific geological conditions dictate otherwise.

For practical use, R is presented as zone of influence for reporting purposes, with the distance defined from edge of excavation.



Source: Powers, J. Patrick, et al. "Construction dewatering and groundwater control." (2007)

$$Q = \frac{\pi K(H^2 - h^2)}{\ln R_0/r_s} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$
 (6.10b)

x = unit length of trench

R = 3000\*s\*sqrt(K)

Source: Kyrieleis, W. and Sichardt, W. "Grundwasserabsenkung bei

Fundierungsarbeiten" Springer, Berlin, 1930

 $R_o = R$ , if  $R >> r_s$  (R >> rs when  $R/r_s > 100$ )

else,  $R_o = R + r_s$ 

Source: Cashman and Preene. "Groundwater Lowering in Construction." (2013)



Hydrogeological Assessment Report - 1386 & 1394 Greely Lane, Ottawa, ON Cassidy EW Constuction Consultant Ltd.

Cambium Ref. No.: 17281-002

# **DEWATERING CALCULATIONS - OPERATIONAL PHASE**

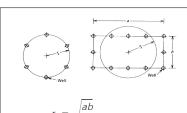
Modified Dupuit-Forchheimer Equation: unconfined flow into a rectangular excavation. Calculations assume no flow boundary at aquifer base

| Excavation Area                            |               | to   | Target Depth<br>to<br>Groundwater | Depth to<br>Base of<br>Aquifer* | Excavation<br>Length<br>(a) |    | Hydraulic<br>Conductivity<br>(K) | Drawdown<br>(s) | R    | r <sub>w</sub> = √(ab/π) | R <sub>o</sub> | In(R <sub>o</sub> /r <sub>w</sub> ) | н    | h <sub>w</sub> = H-s |          | Q <sub>total</sub> |       |
|--------------------------------------------|---------------|------|-----------------------------------|---------------------------------|-----------------------------|----|----------------------------------|-----------------|------|--------------------------|----------------|-------------------------------------|------|----------------------|----------|--------------------|-------|
|                                            |               | mbgs | mbgs                              | mbgs                            | m                           | m  | m/s                              | m               | m    | m                        | m              | -                                   | m    | m                    | m³/s     | L/s                | L/d   |
| Rectangular excavation with dimensions axb | Minimum K     | 0.30 | 1.50                              | 3.60                            | 23                          | 55 | 1.9E-09                          | 1.20            | 0.16 | 20.07                    | 20.22          | 0.01                                | 3.30 | 2.10                 | 0.000005 | 0.005              | 429   |
|                                            | Maximum K     | 0.30 | 1.50                              | 3.60                            | 23                          | 55 | 2.1E-07                          | 1.20            | 1.63 | 20.07                    | 21.70          | 0.08                                | 3.30 | 2.10                 | 0.000054 | 0.05               | 4,628 |
| Geor                                       | netric mean K | 0.30 | 1.50                              | 3.60                            | 23                          | 55 | 1.2E-08                          | 1.20            | 0.40 | 20.07                    | 20.46          | 0.02                                | 3.30 | 2.10                 | 0.000013 | 0.01               | 1,093 |

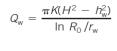
s = target drawdown (initial - target depth to groundwater) (m)

R<sub>o</sub> = radius of influence of construction dewatering/pumping, from center of excavation (m)

r<sub>s</sub> = equivalent single well radius (m)


H = Initial hydraulic head in aquifer (m)

h = hydraulic head at radius of well (m)


Q = construction dewatering rate  $(m^3/s)$ 

\*For base of aquifer, use target depth to groundwater plus 50% of target drawdown (s), unless specific geological conditions dictate otherwise.

For practical use, R is presented as zone of influence for reporting purposes, with the distance defined from edge of excavation.







(from Table 6.1, pg 67)

\*Use  $r_w = r_s$  for rectangular excavations

R = 3000\*s\*sqrt(K)

Source: Kyrieleis, W. and Sichardt, W.
"Grundwasserabsenkung bei Fundierungsarbeiten"
Springer, Berlin, 1930

 $R_o$  = R, if R >>  $r_s$  (R >> rs when R/ $r_s$  > 100) else,  $R_o$  = R +  $r_s$ 

Source: Cashman and Preene. "Groundwater Lowering in Construction." (2013)

Source: Powers, J. Patrick, et al. "Construction dewatering and groundwater control." (2007)



Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

# Appendix H Hydraulic Pumping Test Results

# **PUMPING TEST DATA SHEET CAMBIUM**



Project Name: Gredy Lane Project Number: 17

Date: May 29. 2025

Staff: Madet

Contractor: Air Rock Drilling Weather: Raining 15°C

Well Name: TWI

Depth of Pump: -165-170/

Distance to Pump Well: -

Static Level: 2.39 mbly

Start Time: 8:03

Diameter: 6 Stick up:

MP Elevation: -Geological Unit: —

End Time: 16:03

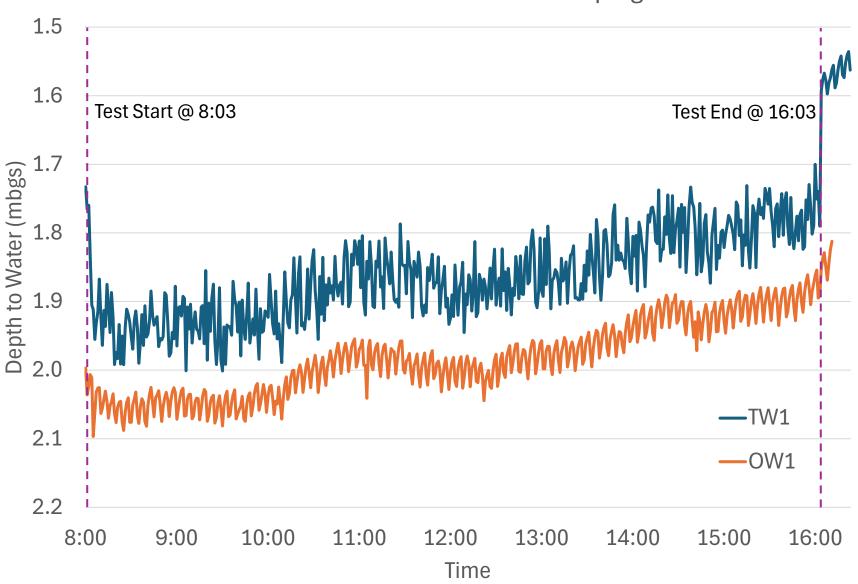
| Time | Elapsed<br>Time | Water<br>Level | Draw<br>Down | Recovery | Discharge<br>Volume | Rate<br>Change | Comments & Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-----------------|----------------|--------------|----------|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 0:30            | 2.50           |              |          |                     | -5galloy       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1:00            | 2.48           |              |          |                     | ]              | 7 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 1:30            | 2.48           |              |          |                     |                | * talky a driller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | 3:30            | 2.505          |              |          |                     |                | Total to Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 4:00            | 250            |              | 1        |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 4:30            | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 5:00            | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 6:00            | 2.50           |              |          |                     | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 7:00            | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 8:00            | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 9:00            | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 10:00           | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 12:00           | 2.50           |              |          |                     |                | The same of the sa |
|      | 14:00           | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 15:00           | Rate cha       | nge          |          |                     | 10 glan        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 16:00           | 2.54           |              |          |                     | . 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 16:30           | 2.55           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 17:00           | 2.55           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 17:30           | 2.55           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 18.00           | 2.54           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 19.00           | 2.535          |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 19:30           | 2.53           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 20:00           | 2.53           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 26:00           | 2.56           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 31:00           | 2.54           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 35:00           | 7.52           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 40:00           | 252            |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 45.00           | 2.52           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Soloo           | 2.51           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 55:00           | 251            |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1:00:00         | 2.5            |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 1:30:00         | 2.51           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 2.00.00         | 2.50           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 2:30:00         | 2.47           |              | 2011     |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3:00:00         | 2.45           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 380:00          | 2.55           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 4:00:00         | 2.43           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 430.00          | 2.49           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 5:00:00         | 2.45           |              |          |                     | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# PUMPING TEST DATA SHEET CAMBIUM



Dular

| Time  | Elapsed<br>Time | Water<br>Level | Draw<br>Down | Recovery | Discharge<br>Volume | Rate<br>Change | Comments & Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-----------------|----------------|--------------|----------|---------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 5:3000          | 2.41           | COTTI        |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 107 % |                 | 2,39           |              |          | -                   |                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 6:00:00         | 2.31           |              |          | 100                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 6:30:00         | 2.36           | _            |          | Wilde               |                | 3, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 700:00          | 2.35           |              |          |                     | 0 5,000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 7 30.00         | 2.00           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 8000            | 2.34           |              | 4 11     |                     | 1.6            | 111 - 11-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _     | Toph            | no check       | value so     | attemped | to create           | air look       | but do not believe t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -     | 20/h            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 1.00            | 2.17           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 1:30            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 2.700           |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 2.30            |                |              |          |                     |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 9.00            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 3.30            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 4.00            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 4:30            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 5 w             |                |              |          |                     |                | in the same of the |
|       | 6.00            |                |              |          |                     |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 7.00            |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 3.00            |                |              | -        |                     |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - //- | 9:00            |                |              | V.       |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 10:00           |                | 739          | _ 1      |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 15:00           | 2.14           |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                | 1            |          |                     |                | A No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 4               |                |              |          |                     |                | 3 127a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                 |                |              | 3        |                     | 400            | 3 8 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1993  |                 |                |              | 2 2      |                     |                | 6 A.S. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                 |                |              | 3        |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                |              |          | A TOTAL CONTRACTOR  | HALE YOU       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                 | 18             |              | 23.83    |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 1000            |                |              |          |                     | /              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                |              | in the   |                     |                | 317/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 10  |                 |                |              |          |                     |                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| i.    |                 |                |              |          |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                | -            | 45       |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31    |                 |                |              | 3        |                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                |              |          | 1                   |                | e de la companya del companya de la companya del companya de la co |
| 7.000 |                 |                |              | 100      | 0 1                 |                | A STATE OF THE STA |
|       |                 |                |              |          | 1                   | 6 6            | 7 1 2 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                 |                |              |          |                     |                | F / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     |                 |                |              |          | 0                   | 1 1915 121     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 |                |              |          |                     | 1 1            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                 |                |              |          | 1                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                 |                | 4.7 (2)      |          | 1                   | 100            | NO E S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                 | -              |              |          |                     |                | 7. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                 |                |              |          |                     | - 5            | The state of the s |




| Project: 17281-001   |        | Date: May 29. 2025                   |
|----------------------|--------|--------------------------------------|
| Subject: Greeky Lane | P-Test | - MWI and Ban chem<br>Staff: M. Latt |
|                      |        | Staff M. Latt                        |
| Contact:             |        |                                      |

| MW        | L W   | C's   |      |        |       |        |      |               |
|-----------|-------|-------|------|--------|-------|--------|------|---------------|
| ~         |       |       |      |        |       |        |      |               |
| tost hr   | WLM   | Alteo |      |        |       |        |      |               |
| Pre       | 2.28  |       |      |        |       |        |      |               |
|           | 2.22  |       |      |        |       |        |      |               |
| 2         | 2.24  |       |      |        |       |        |      |               |
| 2         | 2.25  |       |      |        |       |        |      |               |
| 3 4 5 6 7 | 2.21  | P     |      |        |       |        |      |               |
| -         | 2.19  |       |      |        |       |        |      |               |
| 7         | 2.16  |       |      |        |       |        |      |               |
| 9         | 2.12  |       |      |        |       |        |      |               |
|           |       |       |      |        |       |        |      |               |
| Post      | 2.09  |       |      |        |       |        |      |               |
|           |       |       |      |        |       |        |      |               |
| - I       |       | -1    |      |        |       |        |      |               |
| TWI       | gen.  | Cheno |      |        |       |        |      |               |
| testh     | (6)   |       |      | 1 11 . |       | (inth) |      |               |
|           |       |       |      | PH     |       |        |      | Comments      |
| 1         | 11.2  |       |      | 7.37   |       | 4.44   | 0.60 |               |
| 3 4 5     | 11.5  | 1.82  |      | 7.34   |       | 5.89   |      |               |
| 3         | 11.6  | 1,99  |      | 733    |       | 7.05   | 0.00 | Sangled TWI-1 |
| 4         | 114   | 1.94  |      | 7.31   |       | 5.21   | 0.00 |               |
| 5         |       | 1.92  | 688  | 7.32   | -128  | 3.95   |      |               |
| 6         | 11.7  | 1.92  | 690  | 7.36   | -29.2 | 2,83   | 6.60 |               |
| 7         | 11.8  | 1.91  | 691  | 74%    | -461  | 12.62  | 6.00 | Sampled TWL-2 |
|           |       |       |      |        |       |        |      |               |
| Losto     | Colon | 1 0   | daer | Clant  | 4 5   | heren  |      |               |
|           | none  |       | None | Cheo   |       | Work   |      |               |
| 2         |       |       | 1    | 1      |       | 1      |      |               |
| 3         |       |       |      |        |       |        |      |               |
| cq        |       |       |      |        |       |        |      |               |
| 5         |       |       |      | 3      |       |        |      |               |
| 2 3 4 5 6 |       |       |      |        |       |        |      |               |
| 7         | 16    |       |      | 11/    |       |        |      |               |
|           |       |       | V    |        |       | V      |      |               |
|           | · ·   | - 1   |      | V      | - 1   | V      |      |               |



# Measured Water Levels for TW1 Pumping Test



# TW1 Pumping Test

Prepared By: Prepared For:

Cambium Inc

Cassidy E.W. Construction

Location:

Project:

17281-002

Greely Lane, Ottawa



Date: 06/17/25

Time: 11:22:56

# **SOLUTION**

Aquifer Model: Confined Solution Method: Theis

 $T = 0.9563 \text{ m}^2/\text{sec}$ 

S = 1.0E-10

Kz/Kr = 1.

b =  $\overline{10}$ . m

## **WELL DATA**

**Pumping Wells** 

| Well Name | X (m) | Y (m) |
|-----------|-------|-------|
| TW1       | 0     | 0     |

### **Observation Wells**

| Well Name | X (m) | Y (m) |
|-----------|-------|-------|
| □ TW1     | 0     | 0     |

| Displacement (m) | 0.1  |      |                    |             |   |        |
|------------------|------|------|--------------------|-------------|---|--------|
|                  | 0.01 | 100. | 1000.<br>Time in s | 1.0E+<br>ec | 4 | 1.0E+5 |



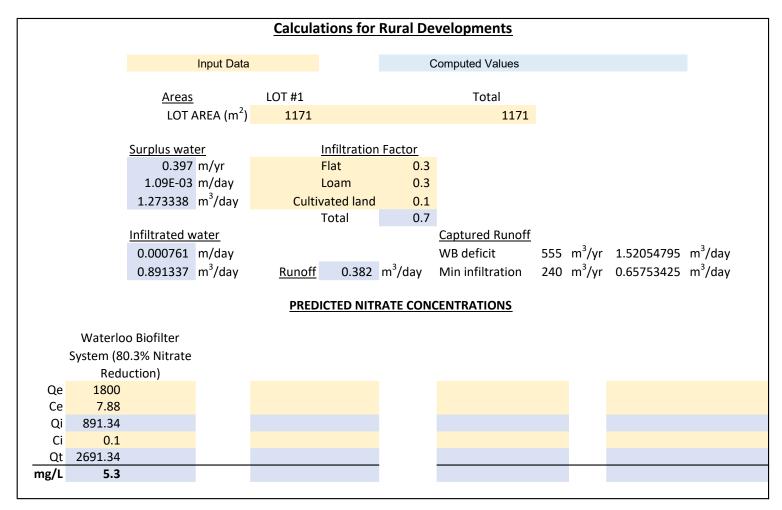
Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

# Appendix I

**Water Balance Calculations and Nitrate Assessment** 




# **Water Balance Calculations**

|                                                                                                                                           | Т                                                                                                                                                            | HORNTH                 | WAITE                   | -TYPE M                  | ONTHLY       | / WATER      | BALAN    | CE MOD    | EL        |        |         |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------------------|--------------|--------------|----------|-----------|-----------|--------|---------|-------|-------|
| mo                                                                                                                                        | dified fro                                                                                                                                                   | om Ding                | man 20.                 | 15: Box 6                | 6-8 (pg 2    | 299) using   | g ET mod | del of Ho | mon (1    | 963)   |         |       |       |
|                                                                                                                                           |                                                                                                                                                              | Ir                     | nput Dat                | ta                       |              | Comp         | outed Va | alues     |           |        |         |       |       |
|                                                                                                                                           |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        | Surplus | 397   | mm/yr |
| Weather Station Location:                                                                                                                 | Greely                                                                                                                                                       | ON                     |                         |                          |              | _atitude:    | 45.3     | degree    |           |        |         |       | - , , |
| veather Station Location.                                                                                                                 | Greery,                                                                                                                                                      |                        |                         |                          |              | atitude.     | 73.3     | uegree    |           |        |         |       |       |
| Solar Declination (degree)                                                                                                                | -20.6                                                                                                                                                        | -12.6                  | -1.5                    | 10.0                     | 19.0         | 23.1         | 21.0     | 13.4      | 2.6       | -9.0   | -18.5   | -23.0 |       |
| , , ,                                                                                                                                     |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
| DayLength (hr)*                                                                                                                           | 9.0                                                                                                                                                          | 10.3                   | 11.8                    | 13.4                     | 14.7         | 15.4         | 15.0     | 13.9      | 12.4      | 10.8   | 9.4     | 8.6   |       |
|                                                                                                                                           |                                                                                                                                                              |                        | 0.04                    | ,                        |              |              | 460      |           |           |        | 05.5    |       |       |
| Available Water St                                                                                                                        | torage C                                                                                                                                                     | apacity                | 0.21                    | m/m                      | Roc          | ot Depth     | 460      | mm        | S         | OILmax | 96.6    | mm    |       |
|                                                                                                                                           |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
|                                                                                                                                           |                                                                                                                                                              |                        | IOM                     | NTHLY W                  | /ATER B      | ALANCE       | DATA     |           |           |        |         |       |       |
|                                                                                                                                           |                                                                                                                                                              |                        |                         |                          |              | palance te   | erms in  | mm.       |           | ı      |         |       |       |
| Month:                                                                                                                                    | J                                                                                                                                                            | F                      | М                       | Α                        | M            | J            | J        | Α         | S         | 0      | N       | D     | Year  |
|                                                                                                                                           | =====                                                                                                                                                        | =====                  | =====                   | =====                    | =====        | =====        | =====    | =====     | =====     | =====  | =====   | ===== | ===== |
| TEMPERATURE (T)                                                                                                                           | -10.3                                                                                                                                                        | -8.1                   | -2.3                    | 6.3                      | 13.3         | 18.5         | 21.0     | 19.8      | 15.0      | 8.0    | 1.5     | -6.2  |       |
| PRECIPITATION (P)                                                                                                                         | 65.4                                                                                                                                                         | 54.3                   | 64.4                    | 74.5                     | 80.3         | 92.8         | 91.9     | 85.5      | 90.1      | 86.1   | 81.9    | 76.4  | 944   |
| RAIN                                                                                                                                      | 25.0                                                                                                                                                         | 18.7                   | 31.1                    | 63.0                     | 80.1         | 92.8         | 91.9     | 85.5      | 90.1      | 82.2   | 64.5    | 33.5  | 758   |
| snow                                                                                                                                      | 40                                                                                                                                                           | 36                     | 33                      | 12                       | 0            | 0            | 0        | 0         | 0         | 4      | 17      | 43    | 185   |
| MELT FACTOR (F)                                                                                                                           | 0.00                                                                                                                                                         | 0.00                   | 0.00                    | 1.00                     | 1.00         | 1.00         | 1.00     | 1.00      | 1.00      | 1.00   | 0.25    | 0.00  |       |
| PACK                                                                                                                                      | 96                                                                                                                                                           | 132                    | 165                     | 0                        | 0            | 0            | 0        | 0         | 0         | 0      | 13      | 56    |       |
| MELT                                                                                                                                      | 0                                                                                                                                                            | 0                      | 0                       | 177                      | 0            | 0            | 0        | 0         | 0         | 4      | 4       | 0     | 185   |
| INPUT (W)                                                                                                                                 | 25                                                                                                                                                           | 19                     | 31                      | 240                      | 80           | 93           | 92       | 86        | 90        | 86     | 69      | 34    | 944   |
| POTENTIAL ET (PET)                                                                                                                        | . 0                                                                                                                                                          | 0                      | 0                       | 41                       | 73           | 101          | 118      | 101       |           | 38     | 21      | 0     | 557   |
| NET INPUT (ΔW )                                                                                                                           | 25                                                                                                                                                           | 19                     | 31                      | 199                      | 8            | -8           | -26      |           |           | 48     | 48      | 34    | 337   |
| SOIL MOISTURE (SOIL)                                                                                                                      | 97                                                                                                                                                           | 97                     | 97                      | 97                       | 97           | 89           | 68       | _         | 82        |        | 97      | 97    |       |
|                                                                                                                                           | -                                                                                                                                                            |                        | _                       |                          |              |              |          |           | _         | _      | _       |       |       |
| ΔSOIL                                                                                                                                     | 0                                                                                                                                                            | 0                      | 0                       | 0                        | 0            | -8           | -21      | _         |           | 14     | 0       | 0     | - 4-  |
| ET                                                                                                                                        | 0                                                                                                                                                            | 0                      | 0                       | 41                       | 73           | 100          | 113      |           |           | 38     | 21      | 0     | 547   |
| SURPLUS=W-ET-DSOIL                                                                                                                        | 25                                                                                                                                                           | 19                     | 31                      | 199                      | 8            | 0            | 0        | 0         | 0         | 34     | 48      | 34    | 397   |
| Notes:                                                                                                                                    |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
| Precipitation, Rain, Temperature, and L                                                                                                   | atitude ar                                                                                                                                                   | e inputted             | paramet                 | ers                      |              |              |          |           |           |        |         |       |       |
| SOILmax = available water storage cap                                                                                                     | acity * roc                                                                                                                                                  | t depth                |                         |                          |              |              |          |           |           |        |         |       |       |
| m = month D = Day length (hrs) = 2*cos <sup>-1</sup> (-tan(Latiti                                                                         | -1-1-1                                                                                                                                                       | S 12 22                | - 11 /0.2555            | Faals 1 2                |              | -P1          |          |           |           |        |         |       |       |
| , , , , , ,                                                                                                                               | ude)*tan(l<br>                                                                                                                                               | Declination            | 1))/0.2618              | [calculation             | on is in rac | diansj       |          |           |           |        |         |       |       |
| SNOW <sub>m</sub> = P <sub>m</sub> -RAIN <sub>m</sub><br>$F_m = 0 \text{ if } T_m \le 0^{\circ}C; F_m = 0.167*T_m \text{ if } 0^{\circ}C$ | <br><t <6°(∙="" f<="" td=""><td>= 1 if T</td><td>&gt;=6°C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t> | = 1 if T               | >=6°C                   |                          |              |              |          |           |           |        |         |       |       |
| $PACK_m = (1-F_m)*(SNOW_m + PACK_{m-1})$                                                                                                  | \1 <sub>m</sub> \0 C,1                                                                                                                                       | m - 111 1m             | ) - 0 C                 |                          |              |              |          |           |           |        |         |       |       |
| $MELT = F_m^*(SNOW_m + PACK_{m-1})$                                                                                                       |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
| $W_m = RAIN_m + MELT_m$ .                                                                                                                 |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
| PET = 0 if $T_m$ <0; otherwise PET = 2.98*0                                                                                               | ).611*exp                                                                                                                                                    | 17.3*T <sub>m</sub> /( | (T <sub>m</sub> +237)), | /(T <sub>m</sub> +237.2  | 2)*Numbe     | r of days in | month [H | lamon ET  | model (19 | 63)]   |         |       |       |
| $\Delta W_m = W_m - PET_m$                                                                                                                |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
| SOIL = $min\{[\Delta W_m + SOIL_{m-1}], SOILmax\}$ , if                                                                                   | f ΔWm>0;                                                                                                                                                     | otherwise              | SOIL = SC               | OIL <sub>m-1</sub> * exp | (ΔW/SOIL     | max)         |          |           |           |        |         |       |       |
| $\Delta$ SOIL = SOIL <sub>m-1</sub> -SOIL <sub>m</sub>                                                                                    |                                                                                                                                                              |                        |                         |                          |              |              |          |           |           |        |         |       |       |
| ET = PET if $W_m$ > PET; otherwise, ET=W                                                                                                  | <sub>m</sub> -ΔSOIL                                                                                                                                          |                        |                         |                          |              |              |          |           |           |        |         |       |       |



# **Nitrate Attenuation**





Hydrogeological Assessment Report 1386 & 1394 Greely Lane, Ottawa, Ontario Cassidy EW Construction Consultant Ltd.

Cambium Reference: 17281-002

July 25, 2025

|          |           |            | Appe   | endix J |
|----------|-----------|------------|--------|---------|
| Waterloo | Biofilter | Supporting | Docume | ntation |



# WaterNOx-LS Third Party Testing Summary

In the fall of 2016, Waterloo Biofilter Systems Inc. installed their WaterNOx-LS™ denitrification unit at the Bureau de Normalisation du Quebec (BNQ) test site located in Quebec City. The system underwent BNQ 3680-600 test protocol which includes two parts - Period A and Period B. Period A is based on the methodology of NSF/ANSI Standards 40 and 245, containing the same flow patterns and stress tests. Period B provides for a further 6 months of seasonal reliability testing to ensure that the test includes cold weather results.

The WaterNOx-LS is a passive autotrophic denitrification process using sulphur-limestone minerals in a submerged, up-flow configuration. The WaterNOx-LS, which was sized for 1,600 L/day (350 gpd) followed a Waterloo Biofilter nitrifying treatment unit.

### **Period A Test Results**

During Period A wastewater is dosed according to the hydraulic loading specified in NSF-40. Period A includes the wash-day, working-parent, power failure, and vacation period stress tests. All sample results taken during stress tests are included in the analysis. Influent wastewater temperature values ranged from 10.0 °C (50 °F) to 16.5 °C (62 °F) with an average value of 13.3 °C (56 °F). Influent pH averaged 7.9 and effluent pH averaged 7.2.

Table 1 - Period A Results for the WaterNOx-LS

| Parameters             | Influent  | Effluent | Removal |
|------------------------|-----------|----------|---------|
| (c)BOD <sub>5</sub>    | 260       | 6        | 97.6%   |
| TSS                    | 312       | 3        | 99.2%   |
| <b>Fecal Coliforms</b> | 2,403,000 | 4,900    | 99.8%   |
| NO <sub>2,3</sub>      | 0.08      | 0.20     |         |
| TKN                    | 57.1      | 4.6      | 92.0%   |
| TN                     | 57.1      | 4.8      | 91.6%   |

n = 123; n = 357 for fecals

All parameters in mg/L except Fecal Coliforms in cfu/100mL

All values arithmetic averages except Fecal Coliforms in geometric average

Weekly influent total nitrogen concentrations ranged from 43.0 mg/L to 68.8 mg/L with a six-month average concentration of 57.1 mg/L.

Weekly effluent  $NO_{2,3}$  concentrations ranged from < 0.02 mg/L to 3.33 mg/L with a six-month average of 0.20 mg/L. Weekly effluent TKN concentrations ranged from 1.5 mg/L to 16.9 mg/L with a six-month average of 4.6 mg/L. Weekly effluent total nitrogen concentrations ranged from 1.7 mg/L to 17.1 mg/L with a six-month average of 4.8 mg/L. The total nitrogen reduction over the six-month period was 91.6%.



#### **Period B Test Results**

Weekday hydraulic loading is modified during Period B to a strenuous 'working parent' schedule where 40% of the flow is delivered over three hours in the morning, and 60% is delivered over three hours in the evening. All samples taken during Period B are included in the analysis. Influent wastewater temperature values ranged from 10.1 °C (50 °F) to 15.8 °C (60 °F) with an average value of 12.3 °C (54 °F). Influent pH averaged 8.0 and effluent pH averaged 7.1.

Table 2 – Period B Results for the WaterNOx-LS

| Parameters          | Influent  | Effluent | Removal |
|---------------------|-----------|----------|---------|
| (c)BOD <sub>5</sub> | 248       | 4        | 98.2%   |
| TSS                 | 304       | 3        | 99.1%   |
| Fecal Coliforms     | 2,142,000 | 2,800    | 99.9%   |
| NO <sub>2,3</sub>   | 0.17      | 3.38     |         |
| TKN                 | 60.3      | 8.5      | 85.9%   |
| TN                  | 60.4      | 11.9     | 80.3%   |

n = 59 except Fecal Coliforms n = 118

All parameters in mg/L except Fecal Coliforms in cfu/100mL

All values arithmetic averages except Fecal Coliforms in geometric average

Weekly influent total nitrogen concentrations ranged from 21.2 mg/L to 85.6 mg/L with a six-month average concentration of 60.4 mg/L.

Weekly effluent  $NO_{2,3}$  concentrations ranged from < 0.04 mg/L to 15.2 mg/L with a six-month average of 3.38 mg/L. Weekly effluent TKN concentrations ranged from 1.2 mg/L to 21.2 mg/L with a weekly average of 8.5 mg/L. Weekly effluent total nitrogen concentrations ranged from 3.7 mg/L to 22.2 mg/L with a six-month average of 11.9 mg/L. The total nitrogen reduction over the six-month period was 80.3%.

#### Conclusion

In summary, the WaterNOx-LS system can successfully remove very high levels of total nitrogen passively, while buffering pH to neutral and keeping cBOD₅ and TSS levels below 10 mg/L.