

4361 Harvester Rd., Unit 12, Burlington, ON L7L 5M4
P 905.331.3735 F 905.642.5999

G2Sconsulting.com

Phase Two Environmental Site Assessment

110 O'Connor Street, Ottawa, Ontario G2S25042B

Groupe Mach Inc. 630 Saint-Paul Street West, Suite 600 Montreal, Quebec H3C 1L9

Executive Summary

G2S Consulting Inc. (G2S) was retained by Groupe Mach Inc. (the Client) to complete a Phase Two Environmental Site Assessment (ESA) for the property located at 110 O'Connor Street in Ottawa, Ontario (hereinafter referred to as the 'Site'). Refer to Drawing 1 in Appendix A for the Site Location Plan. Authorization to proceed with the Phase One ESA was provided by Mohamad Kheir Hassoun of Groupe Mach Inc.

The rectangular shaped Site is located on the west side of O'Connor Street, located at the southwest corner of the intersection with Slater Street and O'Connor Street, and covers an approximate area of 0.21 ha (0.51 ac.). The Study Area consists of residential and commercial land use, and the Rideau Canal is located approximately 565 m northeast of the Site.

Based on information from the records review, the first developed use of the Site was prior to 1875, and was developed with seven residential dwellings. The Site was then developed with eight dwellings in the early 1900s. A grocery store and bakery were developed within the northern portion of the Site in 1912, as well as the central portion of the Site was occupied by a dry cleaner. The northern portion of the Site was redeveloped into a dry cleaner in the 1920s, with the central portion of the Site was developed with a residential dwelling, and the southern portion of the Site was occupied by an apartment building and a tailor. A dry cleaner was located within the central and southern portions of the Site in the 1940s to the 1950s, with the remaining Site being occupied by residential land use. The previously mentioned buildings were demolished in the 1960s, and the Site was redeveloped with an apartment building within the northern portion of the Site, and commercial buildings were developed within the southern portion of the Site. The present building configuration was developed within the 1970s and was occupied by various commercial tenants. The Site has been vacant since 2022 and is presently in the early stages of being prepared for demolition.

G2S understands the Client requires a Phase Two ESA to support an application for Record of Site Condition (RSC) related to the redevelopment of the Site for residential purposes. The Site was most recently used for commercial purposes (vacant) and is proposed to be used for residential use. Since there is a change in property use planned (commercial to residential), a RSC is required under O. Reg. 153/04, as amended, prior to redevelopment. This Phase Two ESA was completed in accordance with Schedule D. of O. Reg. 153/04

The purpose of this Phase Two ESA was to satisfy O. Reg. 153/04 (as amended) requirements, to investigate potential contamination within Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA completed by G2S in April 2025, in preparation of filing an RSC for the Site. Refer to the appended Drawings 2 and 3 in Appendix A for a summary of the identified Potentially Contaminating Activities (PCAs) and APECs for the Site.

The field work for this investigation was completed from May to June 2025 and included the advancement of seven boreholes, all of which were installed as groundwater monitoring wells. Refer to Drawing 3 for the borehole and monitoring well locations.

The findings of this assignment are summarized as follows:

1. In general, the subsurface conditions of the building exterior included a pavement structure comprising approximately 140 millimeters of concrete, underlain by crushed gravel and limestone, underlain by sand and gravel fill materials (approximately 0.1 to 2.4 m below ground surface (bgs)). The building interior comprised 115 to 190 mm of concrete

underlain by sand and gravel and clear stone fill materials to an approximate depth of 0.1 to 0.6 m bgs. Shale bedrock was encountered at depths ranging from approximately 0.1 to 0.6 m bgs within the building exterior. Refer to the borehole logs in Appendix B.

- 2. Groundwater was found in the monitoring wells during the most recent round of sampling on June 9, 2025, between depths of 0.82 and 6.57 m bgs.
- 3. Soil samples were submitted for laboratory analysis of petroleum hydrocarbon fractions F1 to F4 (PHCs F1 to F4) including benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals and other regulated parameters (ORPs), polychlorinated biphenyls (PCBs). The concentrations of the tested parameters in the submitted samples were below the Ministry of Environment, Conservation, and Parks (MECP) Table 3 Site Condition Standards (SCS) for Residential/Parkland/Institutional (RPI) Property Use, with the exception of the following:
 - Sample BH102 S1 Electrical conductivity (EC) (0.727 mS/cm) exceeded the SCS of 0.7 mS/cm.

The elevated EC are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC impact would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

- 4. Groundwater samples from the monitoring wells were submitted for laboratory analysis of PHCs F1-F4 including BTEX, VOCs, PAHs, metals and ORPs, and PCBs. The concentrations of the tested parameters in the submitted samples were below the MECP Table 3 SCS, with the exception of the following:
 - Sample BH1 (collected on May 8, 2025) Chloride (4,670,000 $\mu g/L$) exceeded the SCS of 2,300,000 $\mu g/L$.
 - Sample MW109 (duplicate of BH1 (collected on May 8, 2025)) Chloride (4,560,000 μ g/L) exceeded the SCS of 2,300,000 μ g/L, and sodium (2,450,000 μ g/L) exceeded the SCS of 2,300,000 μ g/L.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Based on the results of the Phase Two ESA, the Site soil meets the applicable MECP Table 3 RPI SCS. The groundwater quality on-Site meets the applicable SCS in the samples tested.

It is important to note that for the purposes of the full depth site cleanup, as compared with the SCS, given the heterogeneous nature of the fill on Site, the soil contamination is presumed to extend from 'clean' borehole to 'clean' borehole or to the property line.

In accordance with O. Reg. 903/90, as amended, the monitoring wells should be decommissioned if the wells are not in use or being maintained for future use.

The assignment is subject to the Statement of Limitations that is included in this report. It should be noted soil and groundwater conditions between and beyond the sampled locations may differ from those encountered during this assignment. G2S should be contacted if impacted soil or groundwater conditions become apparent during future development to further access and appropriately handle the materials, if any, and evaluate whether modifications to the conclusions documented in this report are necessary.

Table of Contents

Executive Summary	ii
1. Introduction	1
1.1 Site Description	1
1.2 Property Ownership and Information	1
1.3 Current and Proposed Future Land Uses	2
1.4 Applicable Site Condition Standards	2
2. Background Information	4
2.1 Physical Setting	4
2.2 Past Investigations	4
3. Scope of the investigation	7
3.1 Overview of Site Investigation	7
3.2 Scope of Work	7
4. Investigation method	8
4.1 General	
4.2 Media Investigated	8
4.3 Phase One Conceptual Site Model	8
4.4 Deviations from Sampling and Analysis Plan	8
4.5 Impediments	8
4.6 Drilling	8
4.7 Soil Sampling	9
4.8 Field Screening Measurements	9
4.9 Groundwater Monitoring Well Installation	9
4.10 Elevation Surveying	10
4.11 Groundwater Sampling	10
4.12 Analytical Testing	11
4.13 Residue Management Procedures	13
5. Review and Evaluation	14
5.1 Geology	14
5.2 Groundwater Elevation and Flow Direction	14
5.3 Groundwater Hydraulic Gradient	16
5.4 Soil Texture	16
5.5 Soil Field Screening	16

	5.6 Analytical Findings – Soil	16
	5.6.1 Petroleum Hydrocarbons Fractions F1 to F4 (PHC F1 to F4) including Benzene, To Ethylbenzene, and Xylene (BTEX)	
	5.6.2 Volatile Organic Compounds (VOCs)	16
	5.6.3 Polycyclic Aromatic Hydrocarbons (PAHs)	16
	5.6.4 Metals and Other Regulated Parameters (ORPs)	17
	5.6.5 Polychlorinated Biphenyls (PCBs)	17
	5.7 Analytical Findings – Groundwater	17
	5.7.1 PHC F1 to F4 and BTEX	17
	5.7.2 VOCs	17
	5.7.3 PAHs	17
	5.7.4 Metals and ORPs	17
	5.7.5 Polychlorinated Biphenyls (PCBs)	18
	5.7.6 LNAPLs and DNAPLs	18
	5.8 Quality Assurance/Quality Control (QA/QC) Results	18
	5.9 Summary of Contamination	21
6	S. Conclusions and Recommendations	22
7	7. Qualifications of the Assessors	24
8	3. References and Supporting Documentation	25
	9. Limitations	
	I0. Closing Remarks	
-	 	

Appendices

Appendix A: Drawings
Appendix B: Borehole Logs

Appendix C: Analytical Results Tables Appendix D: Certificates of Analysis

List of Drawings

Drawing 1: Site Location Plan

Drawing 2: Potentially Contaminating Activities (PCAs)

Drawing 3: Areas of Potential Environmental Concern (APECs)

Drawing 4: Borehole and Monitoring Well Location Plan

Drawing 5: Groundwater Contour Plan – June 9, 2025

Drawing 6A: Soil Analytical Results – PHCs Fractions F1 to F4

Drawing 6B: Soil Analytical Results – VOCs

Drawing 6C: Soil Analytical Results – PAHs

Drawing 6D: Soil Analytical Results – Metals and ORPs

Drawing 6E: Soil Analytical Results – EC and SAR

Drawing 6F: Soil Analytical Results - PCBs

Drawing 7A: Groundwater Analytical Results - PHCs Fractions F1 to F4

Drawing 7B: Groundwater Analytical Results – VOCs Drawing 7C: Groundwater Analytical Results – PAHs

Drawing 7D: Groundwater Analytical Results - Metals and ORPs Drawing 7E: Groundwater Analytical Results – Sodium and Chloride

Drawing 7F: Groundwater Analytical Results – PCBs

Drawing 8A: Cross Section A – A' – Soil Analytical Results – EC & SAR
Drawing 8B: Cross Section A – A' – Groundwater Analytical Results – Sodium & Chloride

Drawing 9A: Cross Section B - B' - Soil Analytical Results - EC & SAR

1. Introduction

G2S Consulting Inc. (G2S) was retained by Groupe Mach Inc. (the Client) to complete a Phase Two Environmental Site Assessment (ESA) for the property located at 110 O'Connor Street in Ottawa, Ontario, hereinafter referred to as the 'Site'. Refer to Drawing 1 in Appendix A for the Site Location Plan. Authorization to proceed with the Phase Two ESA was provided by Mohamad Kheir Hassoun of Groupe Mach Inc.

G2S understands the Client requires a Phase Two ESA to support an application for Record of Site Condition (RSC) related to the redevelopment of the Site for residential purposes. The Site was most recently used for commercial purposes (vacant) and is proposed to be used for residential use. Since there is a change in property use planned (commercial to residential), a RSC is required under O. Reg. 153/04, as amended. This Phase Two ESA was completed in accordance with Schedule D. of O. Reg. 153/04.

Drawing 1 in Appendix A illustrates the location of the Site involved in the study.

1.1 Site Description

The 'Study Area', which is defined as being the area including the Site and lands within approximately 250 m of the Site, consists of residential, institutional, and commercial land use.

The Site is currently developed with a vacant commercial building. The Site first developed use of the Site was prior to 1875 and was developed with seven residential dwellings. The Site was then developed with eight dwellings in the early 1900s. A grocery store and bakery were developed within the northern portion of the Site in 1912, as well as the central portion of the Site was occupied by a dry cleaner. The northern portion of the Site was redeveloped into a dry cleaner in the 1920s, with the central portion of the Site was developed with a residential dwelling, and the southern portion of the Site was occupied by an apartment building and a tailor. A dry cleaner was located within the central and southern portions of the Site in the 1940s to the 1950s, with the remaining Site being occupied by residential land use. The previously mentioned buildings were demolished in the 1960s, and the Site was redeveloped with an apartment building within the northern portion of the Site, and commercial buildings were developed within the southern portion of the Site. The present building configuration was developed within the 1970s and was occupied by various commercial tenants. The Site has been vacant since 2022 and is presently in the early stages of being prepared for demolition.

1.2 Property Ownership and Information

Table 1: General Site Details

Municipal Address:	110 O'Connor Street, Ottawa, Ontario
General Site Location:	West side of O'Connor Street, southwest of the intersection with Slater Street and O'Connor Street
Approximate Plan Area:	Approximate plan area of 0.21 hectares (0.51 acres) with frontage of approximately 66 m on O'Connor Street and a depth of approximately 29 m.
Property Identification Number (PIN):	04115-0095 (LT)

Legal Description:	PCL 42-1, SEC 3922 ; PT LT 42 & LT 43, PL 3922 , S SLATER ST ; PT LTS 42 & 43, PL 3922 , N LAURIER ST, BEING PT 1, 4R401 ; OTTAWA
Current Site Owner and Contact Information:	Édifice 110 O'Connor Inc. / 110 O'Connor Building
Current Site Occupant:	Vacant (fourteen-storey office building with mechanical penthouse and three basement levels)

1.3 Current and Proposed Future Land Uses

G2S understands the Client requires the Phase Two ESA for due diligence purposes related to the proposed acquisition of the Site and redevelopment for residential purposes. Since there is a change in property use planned (commercial to residential), an RSC is required under O. Reg. 153/04, as amended, prior to re-development.

In accordance with the current regulatory requirements, the environmental site assessment work was carried out under the supervision of a Qualified Person as defined in O. Reg. 153/04, as amended.

1.4 Applicable Site Condition Standards

The assessment criteria applicable to a given site in Ontario are provided in the Ministry of Environment, Conservation, and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," dated April 15, 2011.

Standards are provided in Tables 1 to 9 in the document. These standards are based on site sensitivity, groundwater use, property use, soil type and restoration depth.

For this investigation, G2S has selected the Full Depth Generic Table 3 Site Condition Standards (SCS) in a Non-Potable Groundwater Condition and Residential/Parkland/Institutional (RPI) Property Use, with coarse textured soils. The selection of this category is based on the following factors:

- There is no intention to carry out stratified restoration at the Site.
- Based on field observations and grain size analysis, the predominant soil type on the Site is coarse textured.
- The use of the Site is commercial with a proposed change in land use to residential.
- The Site is not located within 30 metres of a water body.
- The Site is not considered a sensitive site based on:
 - The Site is not within an area of natural significance or includes or is adjacent to such an area or part of such an area.
 - The pH values are within the recommended range of 5 to 9 for surface soil (<1.5 m) and within 5 to 11 for subsurface soil (>1.5 m).

- The non-potable groundwater condition applies to the Site based on:
 - ➤ The Site, and/or properties, in whole or in part, within 250 metres of the boundaries of the Site, are located within the City of Ottawa, which obtains drinking water from the Ottawa River.
- Based on the findings from the Phase Two ESA, the following can be confirmed with respect to Sections 41 and 43.1 of O.Reg. 153/04:
 - ➤ The Site is not a shallow soil property, as defined in Section 43.1 of O.Reg. 153/04.
 - The Site is not an environmentally sensitive site as defined in Section 41 of O.Reg. 153/04.

2. Background Information

2.1 Physical Setting

No water bodies or areas of natural significance were located on-Site or within the Study Area. The nearest water body is the Ottawa River, which is located approximately 570 m north of the Site, and the Rideau Canal is located approximately 565 m northeast of the Site.

The Site is located approximately 68 m above sea level. Based on our observations and review, the expected direction of groundwater flow is to the north/northeast, following surface topography towards the Rideau Canal. Local variations in groundwater flow patterns, however, can be expected due to buried utility infrastructures and buildings.

G2S reviewed the Soil Associations of Southern Ontario map which indicated the Site and Study Area is dominantly Lincoln (D.G.G.) Haldimand clay, formed on till or lacustrine sediments. Additionally, the Palaeozoic Geology of Southern Ontario, Map 2254, Ontario Division of Mines, was reviewed which indicated the Site is underlain by grey and black shale of the Upper Ordovician Georgian Bay (Whitby (Eastview and Billings)) Formation.

2.2 Past Investigations

The following previous environmental report was completed for the Site by others and provided to G2S for review.

Table 2: Summary of Previous Environmental Report

Report Details	Findings and Conclusions
	At the time of the investigation, the Site was developed with a fourteen- storey commercial building with a two-storey mechanical penthouse, and three levels of underground parking.
	Running Room and a hair salon occupied the ground floor of the building, with the remaining floors being vacant.
Title: Phase I Environmental	The present configuration of the Site building was developed within the 1970s with extensive renovations completed in 1999 and 2011.
Site Assessment 110 O'Connor Street, Ottawa, Ontario	Three diesel fired emergency generators are present within the Site, with one located within the underground parking garage, and two are located within the mechanical penthouse.
Date of Report:	The previous Site occupant included the Department of National Defense and occupied the remaining floors.
November 12, 2021	Previous Site occupants included several dry cleaners, residential and various commercial uses.
Author of the Report: Le Groupe Gesfor Poirier, Pinchin	Two single walled 1,500 L diesel aboveground storage tanks (ASTs) were identified within the underground parking garage, and two single walled 1,500 L diesel ASTs were identified within the mechanical penthouse.
	Three diesel-fired emergency generators were located within the underground parking garage, and an emergency generator is located within the mechanical penthouse.
	The Phase One ESA did not recommend a Phase Two ESA.
Title:	The proposed use of the Site was to demolish the existing building with

Report Details	Findings and Conclusions
Geotechnical Subsoil Investigation Report	the exception of the foundation walls and the basement levels and construct additional 22 levels.
Date of Report:	Three boreholes were advanced within the third level of underground parking levels, as well as two boreholes located within the exterior.
August 25, 2023	Borehole BH-5 was advanced off the Site due to limited space within the alleyway.
Author of the Report: Solroc Inc.	Five test pits were excavated to reveal the existing building foundations and to observe the underlying soils.
	 The bedrock was encountered within the underground levels at a depth of 0.67 and 1.52 m below ground surface (bgs). The bedrock encountered within the exterior boreholes at depths of 4.67 and 5.74 m bgs.
	Fill materials were identified within the boreholes to depths between 0.67 and 5.33 m bgs.
	Groundwater was identified within the bottom of the test pits, no depth was noted.
	 Groundwater was identified within the third level of underground parking at a depth of 1.28 m bgs, and groundwater was identified within the exterior location at a depth of 5.36 m bgs.
	The native soil encountered within the subsurface soil was identified as silty sand with some gravel.

G2S also completed a Phase One ESA for the Site, entitled:

"Phase One Environmental Site Assessment, 110 O'Connor Street, Ottawa, Ontario," dated April 23, 2025.

The Phase One ESA identified nine on-Site and several off-Site PCAs which were assessed based on observations of the operations, their location relative to the Site with respect to the inferred groundwater flow direction, their tenure, expected chemical storage amounts, etc. Based on review and evaluation of the information gathered, the following APECs were identified on-Site:

APEC 1:	West central portion of Site – Current and historical presence of three diesel aboveground storage tanks (ASTs) located within the underground parking levels. Presence of fill and vent pipes associated with the ASTs.
APEC 2:	Entire Site – A geotechnical report by others identified fill material present beneath the Site to a depth of 5.33 m below ground surface (bgs).
APEC 3A:	Northeastern portion of Site – Historical presence of a dry cleaner from the years 1912 – 1922.
APEC 3B:	East central portion of Site – Historical presence of a dry cleaner in 1912.
APEC 3C:	Southeastern portion of Site – Historical presence of a dry cleaner from the years 1948 – 1955.
APEC 3D:	Northwestern portion of Site – Historical use of 174 Slater Street as a dry cleaner from the years 1912 – 1922.

- APEC 4: Central portion of Site Current and historical presence of a transformer vault within the central portion of the Site.
- APEC 5: Western portion of Site Historical use of de-icing salt located on paved portions of the Site.
- APEC 6: Southern portion of Site Historical presence of a dry cleaner located at 124 O'Connor Street (south adjacent) from the years 1922 1941.
- APEC 7A: Western portion of Site Historical use of 170 Slater Street (west adjacent) as an autobody shop, from the years 1948 1966.
- APEC 7B: Northwest portion of Site Historical presence two underground storage tanks (USTs) in the 1940 1960 located along the northeastern portion of 170 Slater Street (west adjacent).
- APEC 7C: Western portion of Site Historical use of 170 Slater Street (west adjacent) for metal plating in the 1930s.
- APEC 7D: Western portion of Site Historical use of 170 Slater Street (west adjacent) as a metal fabricator in the 1970s.

Regarding APEC 5 (de-icing salt use), per Section 49.1 of O. Reg 153/04, assessment of this APEC is not required. Under the Regulations, where a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, the applicable standard is deemed not to be exceeded. In this regard, further assessment of this APEC is not required.

Based on the findings of the Phase One ESA, a Phase Two ESA was recommended to investigate the potential for contamination related to the above-noted APECs.

3. Scope of the investigation

3.1 Overview of Site Investigation

The purpose of this Phase Two ESA was to satisfy O. Reg. 153/04, as amended requirements, to investigate potential contamination within APECs identified during a Phase One ESA completed by G2S in April 2025, in preparation of filing an RSC for the Site. Refer to the appended Drawings 2 and 3 in Appendix A for a summary of the identified PCAs and APECs for the Site.

3.2 Scope of Work

The scope of work for this investigation included the following:

- Review of previous reports;
- The locating and marking of underground utilities by public and private utility locators;
- Attendance at the Site to complete boreholes and install groundwater monitoring wells;
- Soil and groundwater sampling;
- Laboratory analysis of soil and groundwater samples;
- Data compilation and evaluation of the information gathered, and
- Preparation of this report, discussing the information compiled and the corresponding conclusions and recommendations.

4. Investigation method

4.1 General

The locations of underground utilities were identified and marked by public locating companies as well as a private utility locating contractor.

4.2 Media Investigated

Based on the Phase One ESA, the media potentially impacted at the Site included soil and groundwater which were investigated as part of this Phase Two ESA. No sediment or surface water was present.

4.3 Phase One Conceptual Site Model

Based on the review, interpretation and evaluation of the data compiled, a Phase One Conceptual Site Model (CSM) of the Phase One ESA property was prepared and is included in the G2S Phase One ESA report completed in April 2025. The additional information acquired as part of this Phase Two ESA was used to prepare the Phase Two CSM, which will be finalized during the RSC.

4.4 Deviations from Sampling and Analysis Plan

No soil was encountered in boreholes BH104, BH105 and BH107. No other deviations from the sampling and analysis plan were encountered during this assignment.

4.5 Impediments

There were no impediments during completion of this Phase Two ESA.

4.6 Drilling

The field work for this investigation was completed in May 2025, and included the advancement of seven boreholes on-Site (labelled as BH101 to BH107) by Ohlmann Geotechnical Services Inc. (OGS), a licensed well contractor, under the supervision of G2S staff. All of the boreholes (BH101, BH102, BH103, BH104, BH105, BH106 and BH107) were completed as groundwater monitoring wells (labelled BH/MW101, BH/MW102, BH/MW103, BH/MW104, BH/MW105, BH/MW106 and BH/MW107, respectively). A handheld Hilti Core drill rig was used to advance the boreholes and to collect the soil samples. Monitoring well BH/MW103 was completed outside the building envelope and underground parking footprint, with the remaining boreholes/groundwater monitoring wells completed within the third level of underground.

Appropriate precautions were taken, and equipment and sampling tool decontamination was carried out during field work to minimize potential cross-contamination between samples and boreholes. Petroleum-based greases and/or solvents were not used during drilling activities. The boreholes were sampled to a maximum depth of approximately 0.6 m bgs upon auger refusal on bedrock. Six of the boreholes (BH101, BH102, BH104, BH105, BH106 and BH107) were extended into bedrock to a maximum depth of approximately 4.62 m bgs for monitoring well installation.

The borehole and monitoring well locations were established in the field by G2S as shown on Drawing 4 in Appendix A.

4.7 Soil Sampling

During field work, soil samples in the boreholes were collected with split spoon samplers using standard penetration methods. G2S staff continually monitored the field activities to log the recovered soil cores/samples, to record the depth of soil sample collection and total depths of the boreholes. Field observations were recorded on borehole logs and are included in Appendix B.

The soil samples were field logged and placed in laboratory provided glass jars with Teflon™ lined lids and/or methanol vials (pre-filled and weighed with 10 mL purge & trap grade methanol). Sample cores for analysis of volatiles were collected using a 5-gram Eze-Core Soil Sampler. Disposable nitrile gloves (one per sample) were used during sample collection. The jars and vials were then sealed and stored in an insulated cooler with ice for transportation to the laboratory for additional examination. The remaining soil samples were placed in a sealed plastic bag for vapour screening for the presence of organic vapours. Particular attention was applied to visual and olfactory evidence of potential contamination such as odour and staining during field work.

No soil was encountered in boreholes BH104, BH105 and BH107.

The soil sampling and sample handling procedures were carried out according to the supporting documents of O. Reg. 153/04, as amended and established standards.

4.8 Field Screening Measurements

Organic vapour readings were recorded using an RKI Eagle 2 gas detector, equipped with a Photo Ionization Detector (PID) sensor, calibrated to isobutylene (IBL) and a catalytic combustible gas sensor, calibrated to hexane (HEX). The PID sensor detects low level volatile organic compounds (VOCs) in parts per million (ppm) and the catalytic combustible gas sensor detects petroleum hydrocarbons (PHCs) in ppm or lower explosive limit (LEL). Accuracy of the gas monitor varies with the type of gas being measured.

The correlation between combustible vapour concentrations and PHCs in soil is highly dependent on the soil type, moisture content, and characteristics of the contaminant of concern. The results of the screening are used as a tool in establishing relative soil vapour concentrations, and aid in the selection of soil samples for chemical analysis among samples and borehole locations.

The organic vapour readings were measured by inserting the instrument's probe into the headspace of the plastic bag and manipulating the soil samples by hand. There are no regulatory criteria for soil vapours; however, organic vapour readings provide a general indication of the relative concentration of organic vapours encountered in the soil samples during drilling.

4.9 Groundwater Monitoring Well Installation

Groundwater monitoring wells were installed in boreholes BH101, BH102, BH103, BH104, BH105, BH106, and BH107, identified as BH/MW101, BH/MW102, BH/MW103, BH/MW105, BH/MW106 and BH/MW107, respectively. The monitoring wells were installed in accordance with the Ontario Water Resources Act – R.R.O. 1990, Regulation 903, as amended to O. Reg. 128/03, and were installed by a licensed well contractor (OGS).

The monitoring wells were installed to depths between 3.14 and 4.62 m bgs. The monitoring wells were constructed using 50-millimetre (mm) diameter, number 10 slot Schedule 40 PVC screen and PVC riser pipe, completed with a 1.5 m long screen, and sealed at the base with PVC end cap and an appropriate length of riser pipe extending to just below the flushmount casings. All pipe connections were threaded flush joints with no lubricants or adhesives used in the construction of the monitoring wells. Details of the completion of the monitoring wells are provided on the borehole logs in Appendix B. The annular space around the well screen in the wells were backfilled with silica sand to an approximate height of 0.3 m above the top of the screen. The sand pack was extended above the screens to allow for compaction of the sand pack and expansion of the overlying well seal. A granular bentonite ('Hole Plug') seal was placed in the borehole annulus from the top of the sand pack to approximately 0.15 m below the ground surface. The monitoring wells were completed with flushmount protective steel casings cemented in place.

The Site owner is considered to be the owner of the monitoring wells installed by Davis ("well owner" Section 1.0, Regulation 903). When the monitoring wells are no longer required, it is the owner's responsibility to arrange for abandonment in accordance with Ontario Water Resources Act–R.R.O. 1990, Regulation 903, as amended to O. Reg. 128/03.

4.10 Elevation Surveying

The borehole/monitoring well locations were selected and established in the field by G2S and ground surface elevations were determined by G2S. The following temporary benchmark was used for vertical reference:

BM: Concrete pin at southeast corner of the Site building. Geodetic Elevation: 71.32 m (metric, assigned)

4.11 Groundwater Sampling

On May 6 to May 8, 2025, G2S attended the Site to record the groundwater levels, develop and purge the groundwater in the monitoring wells, and to collect groundwater samples for chemical testing.

G2S returned to the Site on June 9, 2025, to record the groundwater levels, develop and purge the groundwater in the monitoring wells, and resample MW107 to confirm groundwater results of the previous May 8, 2025, sampling event.

G2S returned to the Site on June 13, 2025, to collect a second round of groundwater re-samples to confirm the results of previous sampling events, and to satisfy the requirements of O.Reg. 153/04, as amended for determining groundwater quality.

An electronic water level meter was used to record the depth of groundwater in the monitoring wells. Dedicated bailers were installed in the monitoring wells for purging and dedicated low-density polyethylene (LDPE) tubing was installed in the monitoring wells for sample collection with a low flow peristaltic pump. Well development included the removal of a minimum of three casing volumes or until the wells were dry, in accordance with fixed volume and well evacuation purging procedures as outlines in ASTM D6452 99 (2012). The electric water level meter was rinsed with a mild detergent, distilled water, and methanol to prevent cross contamination between wells.

The groundwater samples were field logged and placed in clean, laboratory provided bottles and stored in an insulated cooler on ice. Samples were then taken to the G2S laboratory where the

samples were temporarily preserved in a refrigerator to maintain a cool environment or were delivered directly to the laboratory for analysis. Particular attention was applied to visual and olfactory evidence of potential contamination such as odours and/or sheen during field work.

The groundwater sampling and sample handling procedures were carried out according to the supporting documents of O. Reg. 153/04, as amended and established standards.

4.12 Analytical Testing

Selected soil and groundwater samples were submitted for chemical analysis under chain of custody protocols to AGAT Laboratories (AGAT), a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory.

The rationale for soil sample selection was based on visual and/or olfactory evidence of potential contamination and assessment of the APECs identified in the 2025 Phase One ESA. Soil samples from the boreholes were analyzed for potential contaminants of concern (COCs), including petroleum hydrocarbon fractions F1 to F4 (PHCs F1 to F4) including benzene, toluene, ethylbenzenes, and xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metals and other regulated parameters (ORPs), and polychlorinated biphenyls (PCBs). The table below indicates the soil samples selected for laboratory analysis.

Table 3: Soil Samples Submitted for Laboratory Analysis

	Depths	Date								
Sample ID	(m bgs)	Sampled	PHCs F1 to F4	BTEX	VOCs	PAHs	M/ORPs	PCBs	Rationale	
BH101 S1	0.1 – 0.3	May 5, 2025			~				Investigate APECs 2 and 3C to confirm soil quality	
BH102 S1	0.2 – 0.4	May 7, 2025	✓	√	√	✓	✓	√	Investigate APECs 2, 7A, 7C, and 7D to confirm soil quality	
BH103 S1	0.8 – 1.5	May 9			✓				Investigate APECs 2,	
BH103 S2	1.5 – 2.3	May 8, 2025	✓	✓		✓	~		3C and 6 to confirm soil quality	
BH106 S1	0.2 – 0.6	May 6, 2025	✓	✓	✓	✓	✓		Investigate APECs 2 and 3B to confirm soil quality	
BH108 S1	Duplicate of BH106 S1		✓	✓	✓	~	✓		QA/QC	
BH109 S1	Duplicate of BH102 S1	May 7, 2025						✓	QA/QC	

Notes: PHCs – Petroleum Hydrocarbons Fractions F1-F4

PAHs – Polycyclic Aromatic Hydrocarbons

M/ORPs - Metals and Other Regulated Parameters*

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes VOCs - Volatile Organic Compounds

ORPs include boron-hot water soluble (HWS), free cyanide (CN-), chromium hexavalent (CrVI), mercury (Hg), pH, electrical conductivity (EC), and sodium adsorption ratio (SAR)

PCBs - Polychlorinated Biphenyls

The rationale for groundwater sample selection was based on visual and/or olfactory evidence of potential contamination and the identified APECs. Groundwater samples from the monitoring wells were analyzed for potential COCs including PHCs F1 to F4, BTEX, VOCs, PAHs, metals and ORPs, and polychlorinated biphenyls (PCBs). The table below provides details of the groundwater samples collected and the chemical analyses performed.

Table 4: Groundwater Samples Submitted for Laboratory Analysis

				Chemical Analysis					
Sample ID	Monitoring Well ID	Date Sampled	PHCs F1 to F4	BTEX	VOCs	PAHs	M/ORPs	PCBs	Rationale
В	BH1	May 8, 2025	√	√	√	√	~		Investigate APECs 2 and 3A to confirm groundwater quality
В	3H4	May 9, 2025	√	✓	✓				Investigate APECs 2, 3C and 6 to confirm groundwater quality
MW101	BH/MW101	May 8,			√				Investigate APEC 2, 3C and 6 to confirm groundwater quality
MW102	BH/MW102	2025	~	√	✓			✓	Investigate APECs 2, 7A, 7C, and 7D to confirm groundwater quality
		May 9, 2025			✓				Investigate APECs 2, 3A, 3D and 7B to
MW104	BH/MW104	June 13, 2025	√	√					confirm groundwater quality
MW105	BH/MW105	May 8, 2025	√	√	√				Investigate APEC 2 to confirm groundwater quality

				Chemical Analysis					
Sample ID	Monitoring Well ID	Date Sampled	PHCs F1 to F4	BTEX	VOCs	PAHs	M/ORPs	PCBs	Rationale
MW106	BH/MW106	May 8, 2025	~	√	√		√		Investigate APEC 2 and 3B to confirm groundwater quality
		May 8, 2025	√	√	√	√	√		Investigate APEC 2 to confirm groundwater quality
MW107	7 BH/MW107	June 9, 2025					✓		Re-sample to confirm
		June 13, 2025					√		groundwater quality
MW109	Duplicate of BH1	May 8,	√	✓	✓	✓	√		
MW110	Duplicate of BH102	2025						✓	QA/QC
Trip	Blank	May 1, 2025			√				

Notes: ORPs include free cyanide (CN-), chromium hexavalent (CrVI), mercury (Hg), pH, and chloride (CI-).

4.13 Residue Management Procedures

Soil cuttings generated during drilling and purged groundwater from the monitoring wells were stored on-Site in sealed steel drums, pending the results of chemical testing. The drums can be removed off Site by a licenced waste disposal subcontractor once no longer required, or during redevelopment of the Site.

5. Review and Evaluation

5.1 Geology

Reference is made to the appended drawings in Appendix A and borehole logs in Appendix B for details of the field work including sampling locations, visual soil classification, inferred stratigraphy, groundwater observations, and monitoring well installation details. Borehole logs for borehole/monitoring wells completed by others in 2023 are also included in Appendix B, and their approximate locations are shown on the appended drawings.

The boundaries indicated on the borehole logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A description of the soil stratigraphy encountered on the Site, in order of depth, is summarized in the sections below

Pavement Structure

A layer of concrete was encountered in boreholes BH101 to BH107, approximately 115 to 190 mm in thickness.

Fill Materials

Fill materials were encountered beneath the pavement structure in each of the boreholes. Brown sand and gravel with trace silt was encountered within boreholes BH101, BH102, BH106 and BH107, extended to depths between 0.1 to 0.6 m below ground surface (bgs). Clear stone gravel was encountered within boreholes BH104, and BH105 and extended to depths between 0.2 and 0.6 m bgs.

Beneath the exterior borehole BH103, grey crushed limestone and gravel was encountered beneath the pavement structure to a depth of 0.5 m bgs with the fill material transitioned to brown sand and gravel with trace silt to a depth of 2.4 m bgs. A void was present within borehole BH103 from depths 0.5 to 0.8 bgs.

A layer of concrete was encountered within borehole BH103 at a depth of 2.4 to 3.1 m bgs, and within borehole BH105 at a depth from 0.6 to 1.1 m bgs.

Bedrock

Shale bedrock was encountered below the fill material in boreholes BH101, BH102, BH104 to BH107 at depths ranging from approximately 0.1 to 1.1 m bgs.

5.2 Groundwater Elevation and Flow Direction

Groundwater levels were measured in the wells on May 6, May 7, May 8, May 9 and June 9, 2025, respectively. The arbitrary elevation of the ground surface was determined in the field, and groundwater level measurements were taken by measuring to the surface of the groundwater from the ground surface and from the top of the well casing with the necessary corrections made to establish depths below grade if required.

The following table summarizes the monitoring well installation details and groundwater observations.

Table 5: Summary of Groundwater Levels

Manitarian	Ground	Well Depth	Screened Interval	Groundwater Elevation and Depth (m bgs)					
Monitoring Well I.D.	Surface Elevation	from Ground Surface (m)	Elevation (m) and Depth (m bgs)	May 6, 2025	May 7, 2025	May 8, 2025	May 9, 2025	June 9, 2025	
BH/MW101	62.73	4.62	59.61 – 58.11 (3.12 – 4.62)	52.73 (1.00)	-	-	-	61.65 (1.08)	
BH/MW102	62.73	3.18	61.05 – 59.55 (1.68 – 3.18)	-	-	61.85 (0.88)	-	61.58 (1.15)	
BH/MW103	71.43	3.14	69.79 – 68.28 (1.64 – 3.14)	-	-	-	68.65 (2.78)	(Dry)	
BH/MW104	62.73	4.51	59.72 – 58.22 (3.01 – 4.51)	-	-	-	61.56 (1.17)	60.15 (2.58)	
BH/MW105	62.73	3.85	60.38 – 58.88 (2.35 – 3.85)	-	-	61.78 (0.95)	-	61.42 (1.31)	
BH/MW106	62.73	4.42	59.81 – 58.31 (2.92 – 4.42)	-	61.76 (0.97)	-	-	61.52 (1.21)	
BH/MW107	62.73	3.21	61.02 – 59.52 (1.71 – 3.21)	62.12 (0.61)	-	-	-	61.91 (0.82)	
BH1***	62.73	4.16	58.87 – 58.57 (3.86 – 4.16	-	61.47 (1.26)	-	-	**	
BH4***	71.4	13.31	58.39 – 58.09 (13.01 – 13.31)	-	67.59 (3.81)	-	-	64.83 (6.57)	

Note: Monitoring wells were surveyed for elevation relative to a geodetic benchmark.

Monitoring wells BH/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107, and BH1 are located within the third level of underground.

Based on the measured groundwater elevation data, local groundwater flow at the Site appears to be towards the northwest. The expected direction of groundwater flow in the Study Area is to the north/northeast, following surface topography towards the Ottawa River, which is located approximately 570 m north of the Site, and the Rideau Canal is located approximately 565 m northeast of the Site.

The groundwater levels were found at depths between 0.82 and 6.57 m bgs during the most recent round of measurements on June 9, 2025. Groundwater levels are subject to seasonal fluctuations and variations in precipitation; however, the effects of seasonal variation at the Site are not anticipated to significantly affect the groundwater conditions of the Site from an environmental viewpoint. Due to the depth of groundwater, utilities are not expected to impact the flow of groundwater or affect the migration of contaminants.

mbgs - meters below ground surface

⁻ water level not taken

^{**}inaccessible at time of sampling

^{***}Screen depths reported by others do not match the field measurements, therefore screen depths adjusted accordingly, and current field measurements were utilized.

5.3 Groundwater Hydraulic Gradient

Groundwater level contours for the monitoring wells on-Site are shown on Drawing 5, which also shows the monitoring well locations and measured water levels. Table 5 above provides a summary of the water levels between May and June 2025.

Based on G2Ss' Site observations and short-term water level measurements, the groundwater table underlying the Site has a horizontal gradient of approximately 0.03 (3%) towards the northwest.

Vertical hydraulic gradient was not determined as part of the investigation since the COCs in groundwater met the applicable MECP Table 3 SCS.

5.4 Soil Texture

The subsurface stratigraphy in the boreholes typically comprised of fill materials. Grain size analysis of representative samples collected during the Phase Two ESA were completed by G2S and indicated 92.1% by mass of particles were 75 μ m or larger in mean diameter, thus indicating coarse textured soils as defined in O. Reg. 153/04.

5.5 Soil Field Screening

Measured soil vapour concentrations on the headspace of recovered soil samples were identified between 0 and 10 ppm for the catalytic gas sensor and between 0 and 2 ppm for the photoionization detector at the time of sampling. Complete soil field screening measurements are presented on the borehole logs in Appendix B.

5.6 Analytical Findings – Soil

Tables summarizing the analytical results are included in Appendix C and the laboratory Certificates of Analysis for the soil samples submitted for analysis are included in Appendix D.

The laboratory reported detection limits (RDLs) were below the MECP Table 3 RPI SCS for the parameters analyzed.

5.6.1 Petroleum Hydrocarbons Fractions F1 to F4 (PHC F1 to F4) including Benzene, Toluene, Ethylbenzene, and Xylene (BTEX)

Petroleum hydrocarbons F1 to F4 and BTEX were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 1 in Appendix C.

5.6.2 Volatile Organic Compounds (VOCs)

Volatile organic compounds were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 2 in Appendix C.

5.6.3 Polycyclic Aromatic Hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 3 in Appendix C.

5.6.4 Metals and Other Regulated Parameters (ORPs)

Metals and ORPs were not detected or were detected as concentrations below the Table 3 RPI SCS in the submitted soil samples, with the exception of the following:

Sample BH102 S1 – Electrical conductivity (EC) (0.727 mS/cm) exceeded the SCS of 0.7 mS/cm.

The elevated EC and SAR are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC and SAR impacts would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Refer to Table 4 in Appendix A.

5.6.5 Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls were not detected or were detected at concentrations below the Table 3 RPI SCS in the submitted soil samples. Refer to Table 5 in Appendix C.

5.7 Analytical Findings – Groundwater

Tables summarizing the analytical results are included in Appendix C and the laboratory Certificates of Analysis for the groundwater samples submitted for analysis are included in Appendix D.

The laboratory RDLs were below the MECP Table 3 SCS for the parameters analyzed.

5.7.1 PHC F1 to F4 and BTEX

Petroleum hydrocarbons F1 to F4 and BTEX were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 6 in Appendix C.

5.7.2 VOCs

Volatile organic compounds were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 7 in Appendix C.

5.7.3 PAHs

Polycyclic aromatic hydrocarbons were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 8 in Appendix C.

5.7.4 Metals and ORPs

Metals and ORPs were not detected or were detected as concentrations below the Table 3 SCS in the submitted groundwater samples, with the exception of the following:

- Sample BH1 (collected on May 8, 2025) Chloride (4,670,000 μg/L) exceeded the SCS of 2,300,000 μg/L.
- Sample MW109 (duplicate of BH1 (collected on May 8, 2025)) Chloride (4,560,000 μg/L) exceeded the SCS of 2,300,000 μg/L, and sodium (2,450,000 μg/L) exceeded the SCS of 2,300,000 μg/L.
- Sample BH107 (collected on May 8, 2025) Cobalt (94.1 μg/L) exceeded the SCS of 66 μg/L, and chloride (2,490,000 μg/L) exceeded the SCS of 2,300,000 μg/L.
 - Additional groundwater samples (MW107) were collected from BH/MW107 during subsequent rounds of sampling conducted on June 9 and June 13, 2025; the tested metal parameters (including cobalt) were not detected in the submitted groundwater samples. As such, the original May 8 sample was judged to not be representative of site conditions.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Refer to Table 9 in Appendix C.

5.7.5 Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls were not detected in the submitted groundwater samples and met the Table 3 SCS. Refer to Table 10 in Appendix C.

5.7.6 LNAPLs and DNAPLs

No sheen or hydrocarbon odours were observed in the purged groundwater from the monitoring wells.

5.8 Quality Assurance/Quality Control (QA/QC) Results

AGAT Laboratories (AGAT) is accredited by the Canadian Association for Laboratory Accreditation (CALA) in accordance with ISO/IEC 17025:2017 – "General Requirements for the Competence of Testing and Calibration Laboratories" for the analysis of all parameters for all samples in the scope of work for which SCS have been established under O. Reg. 153/04.

The chemical analyses conducted by AGAT were in accordance with the O. Reg. 153/04 Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act dated March 9, 2004, amended as of July 1, 2011.

Soil and groundwater samples were analysed by using standard reference methods and the testing methods were referenced in the Paracel Certificates of Analysis, as required by the MECP's protocol. Laboratory Quality Assurance/Quality Control (QA/QC) data is included with the Certificates of Analysis, which are appended. Method blank, spiked method blank, laboratory spiked, and duplicate soil samples were analysed by the laboratory with each batch of samples.

The results of chemical analysis of method blank sample indicated that the detected levels were within the acceptable range. The chemical test data for spiked method blank and laboratory spike samples indicated that the recovery ranges were within the statistically determined control limits.

Trip blank and spike samples as well as blind field duplicates were obtained by G2S during the field work and submitted to Paracel as summarized in the following table:

Table 6: Trip Blank, Spike & Duplicate Sample Submissions

Sample I.D.	Date	Matrix	Rationale for Submission	Analysis
BH108 S1	05/06/25	Soil	Field duplicate of BH106 S1	PHCs, BTEX, VOCs, PAHs, M/ORPs
BH102 S1	05/06/25	Soil	Field duplicate of BH109 S1	PCBs
MW109	05/08/25	GW	Field duplicate of BH1	PHCs, BTEX, VOCs, PAHs, M/ORPs
MW120	06/09/25	GW	Field duplicate of MW107	M/ORPs
Trip Blank	05/01/25	GW	Laboratory Quality Assurance	VOCs

Note: GW – Groundwater

As a means of determining the reproducibility or variability related to analytical procedures of a homogenous sample, the relative percentage differences (RPD) between analyzed values for original and duplicate samples were calculated.

For sample reproducibility calculations, maximum RPD values were calculated using the following formula:

The maximum RPD values for a metal parameter calculated was above the acceptable statistical variation of 40% in soil sample BH106 S1 and duplicate sample BH108 S1. A summary of the data is presented in the following table. It is noted this soil sample comprised heterogeneous fill.

Table 7: QA/QC Samples Submitted of Laboratory Analysis – Soil

Parameter	Sample ID	Analytical Result (μg/g)	RPD (%)
Silver	BH106 S1	16.5	41.75
	BH108 S1	10.8	

The maximum RPD for some metal parameters in the duplicate groundwater samples was outside of the acceptable statistical variation of 30 to 40% in samples BH1 and MW109, and MW107 and duplicate MW120. The data is summarized in the following table:

Table 8: QA/QC Samples Submitted of Laboratory Analysis – Groundwater

Parameter	Sample ID	Analytical Result (ug/g)	RPD (%)
Molybdenum	BH1	0.91	129.5
	MW109	4.26	
Zinc	MW107	9.8	51.28
	MW120	5.8	

Per O. Reg. 153/04, as amended protocol, the RPD acceptance criteria only applies if the average value of the sample and duplicate is greater or equal to 5 times reported detection limit (RDL).

The RDL of zinc 0.5 μg/g and the molybdenum value for sample MW107 and MW120 (Duplicate of MW107) are 9.8 μg/L and 5.8 μg/L, respectively. The average value of the two groundwater samples is 7.8 μg/L, which is less than 5 times the RDL (25 μg/L).

The RPD acceptance criteria does not apply in the above instances. The rationale behind this is that as the measured result approaches the MDL, the uncertainty associated with the value increases dramatically, thus the duplicate acceptance limits (RPD acceptance criteria) apply only where the average of the two duplicates is greater than 5 times the RDL.

- The RDL of silver is 0.5 μg/g and the silver value for sample BH106 S1 and BH108 S1 (Duplicate of BH106 S1) are 16.5 μg/g and 10.8 μg/g, respectively. The average value of the two soil samples is 13.65 μg/g, which is greater than 5 times the RDL (2.5 μg/g).
- The RDL of molybdenum is 0.5 μ g/g and the molybdenum value for sample BH1 and MW109 (Duplicate of BH1) are 0.91 μ g/g and 4.26 μ g/g, respectively. The average value of the two groundwater samples is 2.585 μ g/L, which is greater than 5 times the RDL (2.5 μ g/L).

Regarding silver and molybdenum the MECP does allow for larger limits with respect to field duplicates as the MECP recognizes the increased variability in sampling and subsequent elevated uncertainty.

The RPDs outlined by the MECP (as generally less than or equal to 40%), refer to laboratory duplicates from homogenous samples. Fill samples are heterogeneous and thus, subject to both laboratory and sampling variability. As such, RPD control limits are generally larger than those defined in the Environmental Protection Act (EPA) and/or the MECP guidelines which outline sample duplicates of homogeneous samples and do not specify specific criteria for field duplicates. MECP documentation does however allow for larger limits with respect to field duplicates as the MECP recognizes the increased variability in sampling and subsequent elevated uncertainty.

The results of laboratory duplicate sampling performed by AGAT as part of their in-house QA/QC yielded acceptable data. The overall quality of the field data from the investigation with respect

to the data quality objectives demonstrated that the overall objectives of the investigation and the assessment were met.

Trip Blank – VOCs were not detected in the trip blank.

Trip Spike – Percent recovery of the trip spike parameters ranged from 31% to 120%, within acceptable recovery levels.

With respect to subsection 47 (3) of the regulation, we confirm that:

- A. All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3)
- B. A certificate of analysis or analytical report has been received for each sample submitted for analysis, and
- C. All certificates of analysis or analytical reports received have been included in full in an appendix to the phase two environmental site assessment report.

5.9 Summary of Contamination

Tables summarizing the analytical results are included in Appendix C – Tables 1 to 5 for soil and Tables 6 to 10 for groundwater.

The soil quality on-Site met the Table 3 SCS in the soil tested, with the exception of EC present within the fill material on-Site. The elevated EC is attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC impacts would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

The groundwater quality on-Site met the Table 3 SCS in the groundwater tested, with the exception of cobalt within BH/MW107, and sodium and chloride within BH1. Additional groundwater samples were collected from BH/MW107 during subsequent rounds of sampling conducted on June 9 and June 13, 2025; the tested metal parameters (including cobalt) were detected below the Table 3 SCS in the submitted groundwater samples. In this regard, the initial results are not believed to be representative of the groundwater quality.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Refer to Drawings 6A to 6F and Drawings 8A and 9A in Appendix A for plan views and cross-sections of the soil analytical data. The groundwater quality on-Site met the Table 3 SCS in the monitoring wells tested. Refer to Drawings 7A to 7F and Drawings 8B in Appendix A for plan views and cross-sections of the groundwater analytical data.

6. Conclusions and Recommendations

The purpose of this Phase Two ESA was to satisfy O. Reg. 153/04 (as amended) requirements, to investigate potential contamination within Areas of Potential Environmental Concern (APECs) identified during a Phase One ESA completed by G2S in April 2025, in preparation of filing an RSC for the Site. Refer to the appended Drawings 2 and 3 in Appendix A for a summary of the identified Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs) for the Site.

G2S understands the Client requires the Phase Two ESA for due diligence purposes related to the proposed acquisition of the Site and redevelopment for residential purposes. Since there is a change in property use planned (commercial to residential), a Record of Site Condition (RSC) is required under O. Reg. 153/04, as amended, prior to re-development.

The field work for this investigation was completed from May to June 2025 and included the advancement of seven boreholes, all of which were installed as groundwater monitoring wells. Refer to Drawing 4 for the borehole and monitoring well locations.

The findings of this assignment are summarized as follows:

- 1. In general, the subsurface conditions of the building exterior included a pavement structure comprising approximately 140 millimeters of concrete, underlain by crushed gravel and limestone, underlain by sand and gravel fill materials (approximately 0.1 to 2.4 m below ground surface (bgs)). The building interior comprised 115 to 190 mm of concrete underlain by sand and gravel and clear stone fill materials to an approximate depth of 0.1 to 0.6 m bgs. Shale bedrock was encountered at depths ranging from approximately 0.1 to 0.6 m bgs within the building exterior. Refer to the borehole logs in Appendix B.
- 2. Groundwater was found in the monitoring wells during the most recent round of sampling on June 9, 2025, between depths of 0.82 and 6.57 m bgs.
- 3. Soil samples were submitted for laboratory analysis of petroleum hydrocarbon fractions F1 to F4 (PHCs F1 to F4) including benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals and other regulated parameters (ORPs), polychlorinated biphenyls (PCBs). The concentrations of the tested parameters in the submitted samples were below the Ministry of Environment, Conservation, and Parks (MECP) Table 3 Site Condition Standards (SCS) for Residential/Parkland/Institutional (RPI) Property Use, with the exception of the following:
 - Sample BH102 S1 Electrical conductivity (EC) (0.727 mS/cm) exceeded the SCS of 0.7 mS/cm.

The elevated EC are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the EC impact would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

- 4. Groundwater samples from the monitoring wells were submitted for laboratory analysis of PHCs F1-F4 including BTEX, VOCs, PAHs, metals and ORPs, and PCBs. The concentrations of the tested parameters in the submitted samples were below the MECP Table 3 SCS, with the exception of the following:
 - Sample BH1 (collected on May 8, 2025) Chloride (4,670,000 μg/L) exceeded the SCS of 2,300,000 μg/L.
 - Sample MW109 (duplicate of BH1 (collected on May 8, 2025)) Chloride (4,560,000 μg/L) exceeded the SCS of 2,300,000 μg/L, and sodium (2,450,000 μg/L) exceeded the SCS of 2,300,000 μg/L.

The elevated chloride and sodium are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O. Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed not to be exceeded. In this regard, the chloride and sodium impacts would not be considered "contamination". Reference is made to O. Reg. 153/04, as amended, s. 49 (1).

Based on the results of the Phase Two ESA, the Site soil meets the applicable MECP Table 3 RPI SCS. The groundwater quality on-Site meets the applicable SCS in the samples tested.

It is important to note that for the purposes of the full depth site cleanup, as compared with the SCS, given the heterogeneous nature of the fill on Site, the soil contamination is presumed to extend from 'clean' borehole to 'clean' borehole or to the property line.

In accordance with O. Reg. 903/90, as amended, the monitoring wells should be decommissioned if the wells are not in use or being maintained for future use.

The assignment is subject to the Statement of Limitations that is included in this report. It should be noted soil and groundwater conditions between and beyond the sampled locations may differ from those encountered during this assignment. G2S should be contacted if impacted soil or groundwater conditions become apparent during future development to further access and appropriately handle the materials, if any, and evaluate whether modifications to the conclusions documented in this report are necessary.

7. Qualifications of the Assessors

This Phase Two ESA was conducted by Hailey Perras, B.Sc. Ms. Perras is responsible for the successful completion of field work and reporting. Ms. Perras has completed numerous projects on behalf of private and public sector clients for industrial, commercial, and residential sites.

This Phase Two ESA was reviewed by Ms. Stephanie Lewis, B.A. Ms. Lewis has been trained to conduct Phase One and Two ESAs in accordance with the CSA and O. Reg 153/04, as amended. She is a senior project manager with over 10 years of professional experience specializing in environmental investigations and project management. Her main areas of expertise include Phase One and Phase Two ESAs, project management, site cleanup/remediation, UST and AST removals, and site remediation. She has completed numerous projects on behalf of private and public-sector clients for industrial, commercial, and residential sites.

This Phase Two ESA was reviewed by Mr. Steve Campbell, P. Geo. Mr. Campbell has over 20 years of environmental consulting experience, including Phase One and Two ESAs, hazardous materials management, contaminant hydrogeology, air quality, environmental monitoring and remediation of contaminated sites. Mr. Campbell is responsible for the overall management of projects, QA/QC, and health and safety, as well as acting as a technical lead on projects. Mr. Campbell is a Qualified Person as defined in Ontario Regulation 153/04 for signing off on Phase One and Two ESAs, remediation reports and Records of Site Condition (RSCs). Mr. Campbell has managed numerous asbestos, designated substances and mould assessments, as well as remediation programs.

8. References and Supporting Documentation

- a) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" Ministry of the Environment of Ontario, December 1996.
- b) "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011.
- c) The Ontario Water Resources Act R.R.O. 1990, Regulation 903 Amended to O. Reg. 128/03, August 2003.0.8
- d) "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act", March 2004.
- e) Ontario Regulation 153/04 (made under the Environmental Protection Act), May 2004, as amended.
- f) "Z769-00, Phase II Environmental Site Assessment," Canadian Standard Association, March 2000.
- g) Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- h) Singer SN, Cheng CK, Scafe MG. (2003). *The Hydrogeology of Southern Ontario, Second Edition*, Report from the Ontario Ministry of the Environment.
- i) "Phase I Environmental Site Assessment, 110 O'Connor Street, Ottawa, Ontario," prepared by Le Groupe Gesfor Poirier, Pinchin for Groupe Mach Inc., dated November 12, 2021.
- j) "Geotechnical Subsoil Investigation Report, 110 O'Connor Street, Ottawa, Ontario," prepared by Solroc Inc. for Groupe Mach Inc., dated August 23, 2023.
- k) "Phase One Environmental Site Assessment, 110 O'Connor Street, Ottawa, Ontario," prepared by G2S Consulting Inc. for Groupe Mach Inc., dated April 23, 2025.

9. Limitations

This report has been prepared for the sole benefit of Groupe Mach Inc. (the Client) and is intended to provide limited information on the subsurface environmental conditions at the Site. The report may not be used by any other person or entity without the expressed written consent of the Client and G2S Consulting Inc. (G2S). Any use which a third party makes of this report, or any reliance on decisions made based on it, is the responsibility of such third parties. G2S accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.

The findings in this report are limited to the conditions at the Site at the time of this investigation as described herein. Conclusions presented in this report should not be construed as legal advice.

If Site conditions or applicable standards change or if any additional information becomes available at a future date, changes to the findings, conclusions and recommendations in this report may be necessary.

10. Closing Remarks

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

G2S Consulting Inc.

HasteyPenas

Hailey Perras, B.Sc.

Environmental Technician

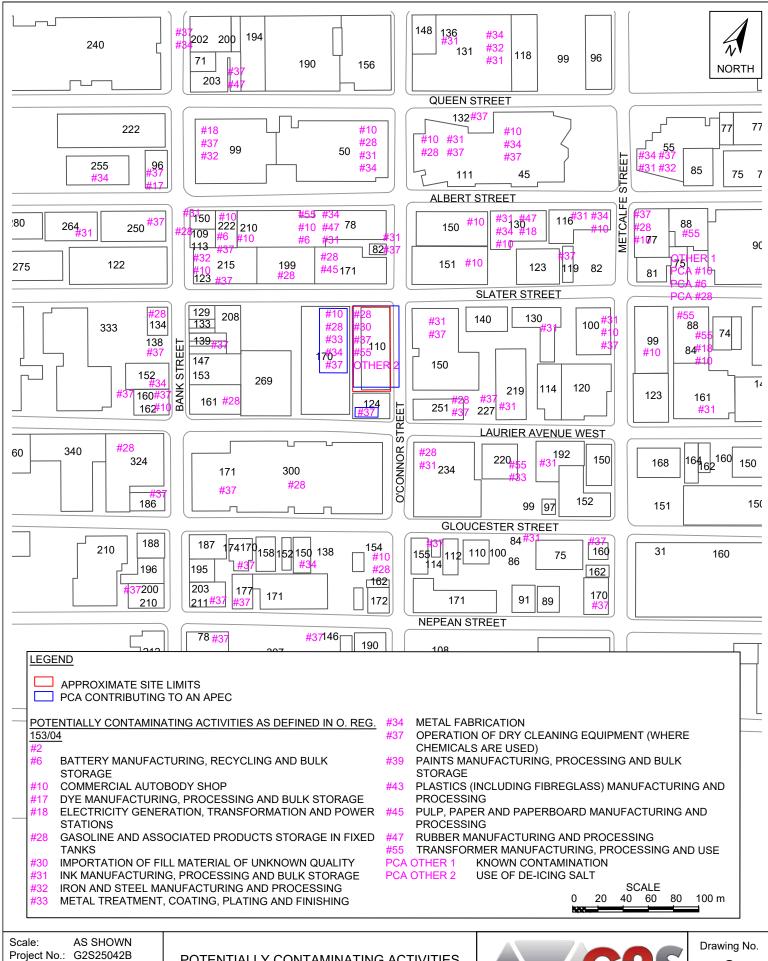

Steve Campbell, P. Geo. Senior Geoscientist

Stephanie Lewis, B.A. (Env) Senior Project Manager

Stephan Lus

Appendix A: Drawings

HP Drawn by:


G2S25042.dwg

File name:

110 O'CONNOR STREET

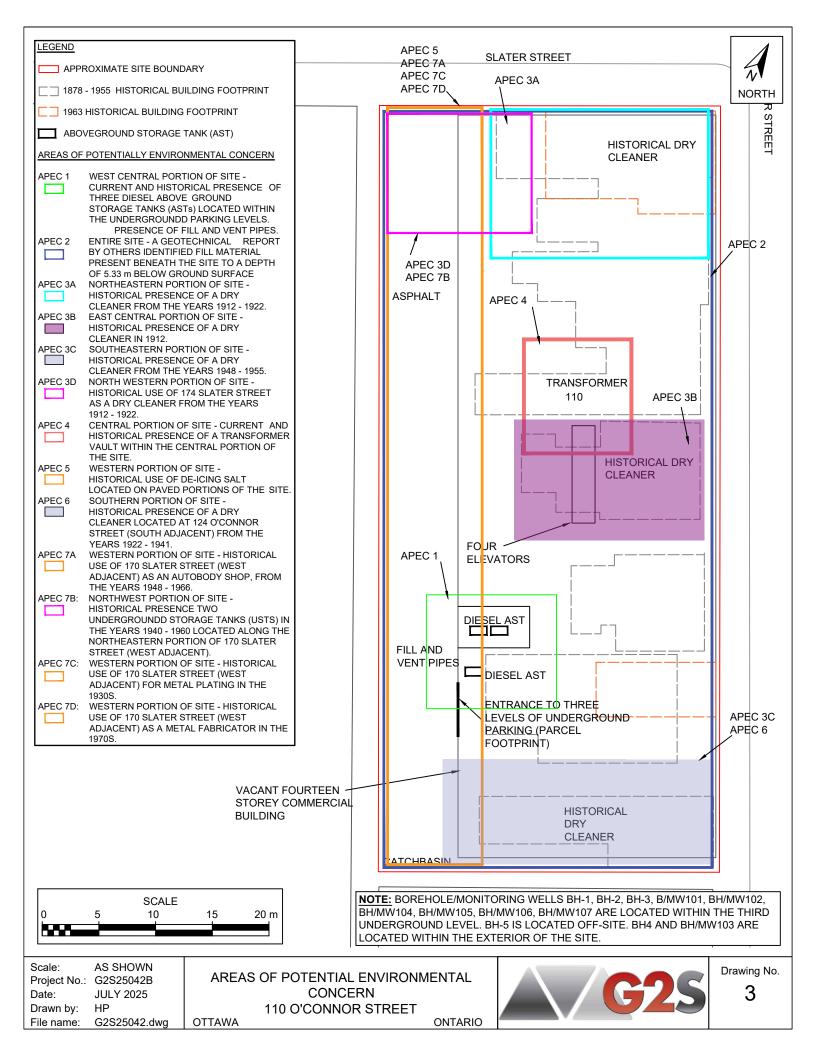
OTTAWA ONTARIO

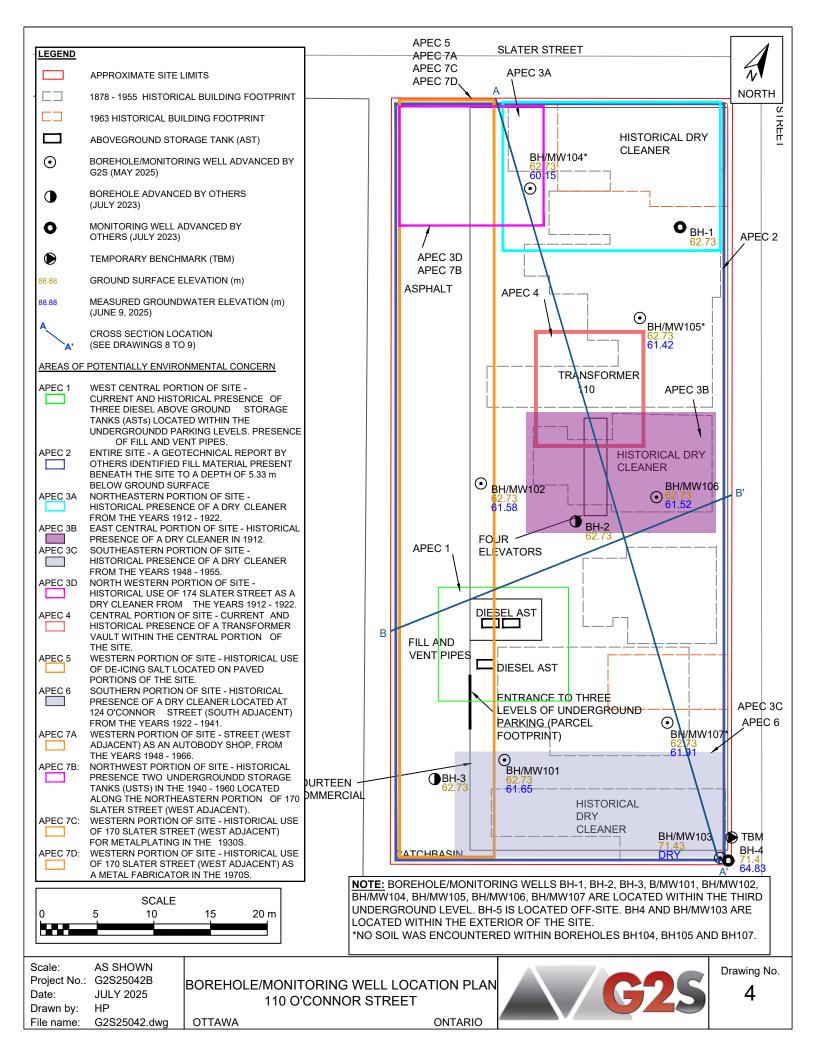
 Scale:
 AS SHOWN

 Project No.:
 G2S25042B

 Date:
 JULY 2025

 Drawn by:
 HP


 File name:
 G2S25042.dwg


POTENTIALLY CONTAMINATING ACTIVITIES 110 O'CONNOR STREET

OTTAWA ONTARIO

2

LEGEND APPROXIMATE SITE LIMITS • BOREHOLE/MONITORING WELL ADVANCED BY G2S (MAY 2025) BOREHOLE ADVANCED BY OTHERS • (JULY 2023) MONITORING WELL ADVANCED BY 0 OTHERS (JULY 2023) TEMPORARY BENCHMARK (TBM) GROUND SURFACE ELEVATION (m) 88.88 MEASURED GROUNDWATER ELEVATION (m) 88.88 (JUNE 9, 2025) INFERRED GROUNDWATER FLOW DIRECTION NOTE: BH/MW103, BH-1 AND BH-4 HAVE BEEN EXCLUDED FROM THE GROUNDWATER CONTOURS. BH-1 WAS INACCESSIBLE ON SAMPLING EVENT JUNE 9,

170

Project No.: G2S25042B

ΗP

JULY 2025

G2S25042.dwg

Date:

Drawn by:

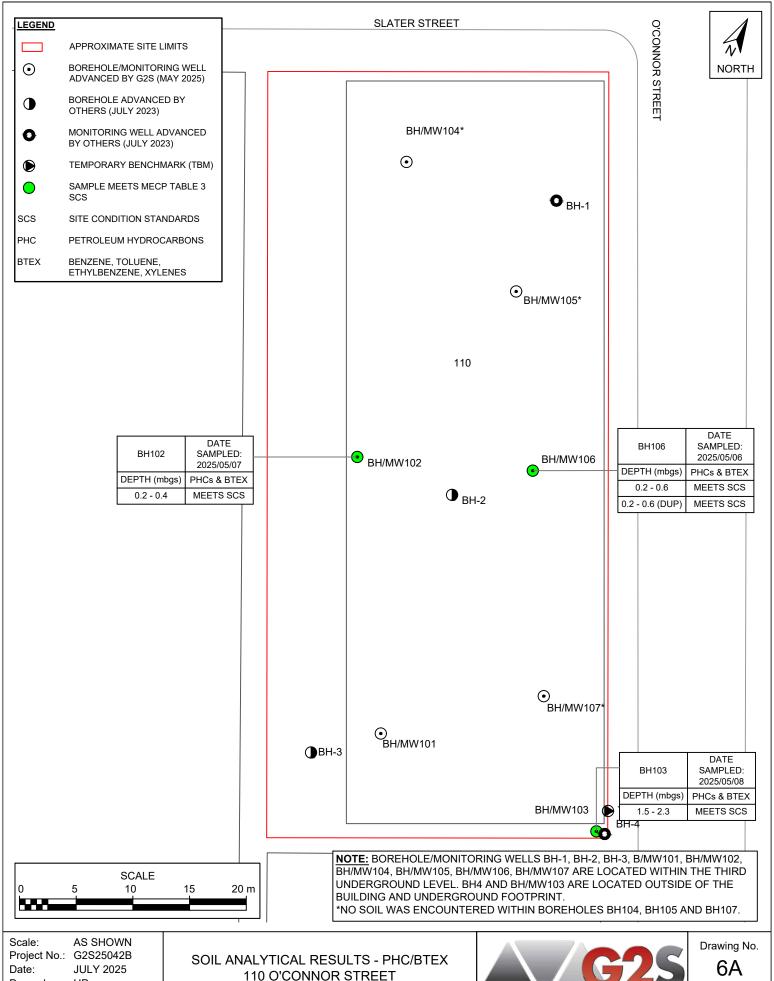
File name:

NORTH STREET BH/MW104* 60.15 60.25 \odot BH-1 BH/MW105* 61.0 110 ⊙ _{BH/MW102} **BH/MW106** 62.73 61.52 61.58 161.75 BH/MW107 61.91 BH/MW101 **BH-3** 61.65 BH/MW103 TBM BH-4 DRY NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD

SLATER STREET

GROUNDWATER CONTOUR PLAN - JUNE 9, 2025 110 O'CONNOR STREET

OTTAWA ONTARIO

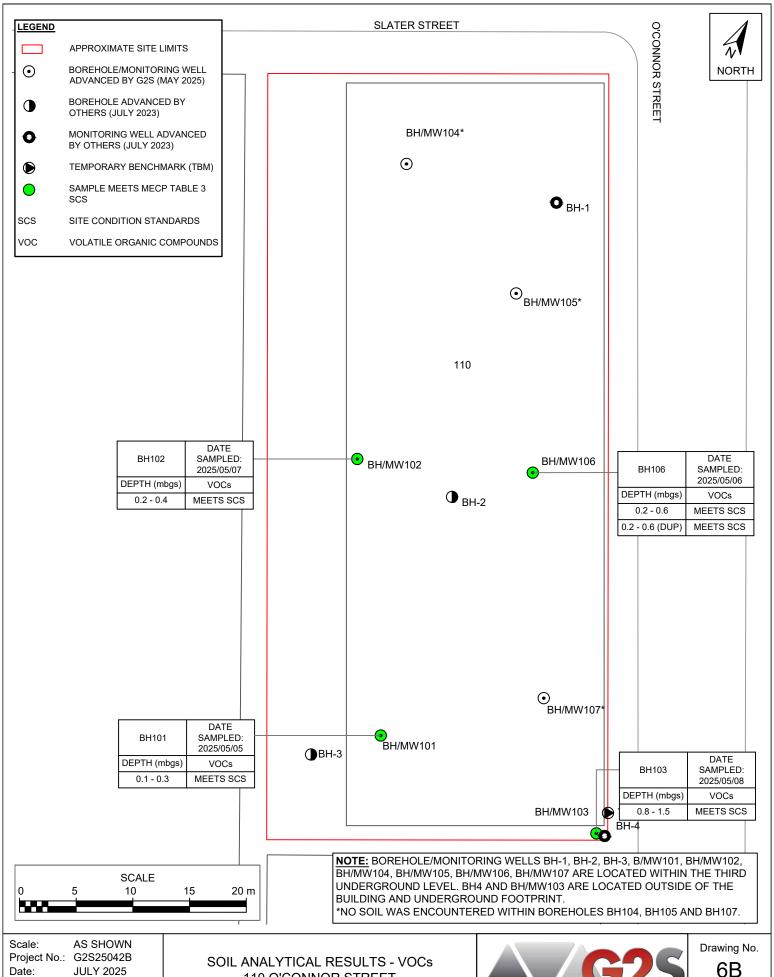


UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH4 AND BH/MW103 ARE

LOCATED WITHIN THE EXTERIOR OF THE SITE.

Drawing No.

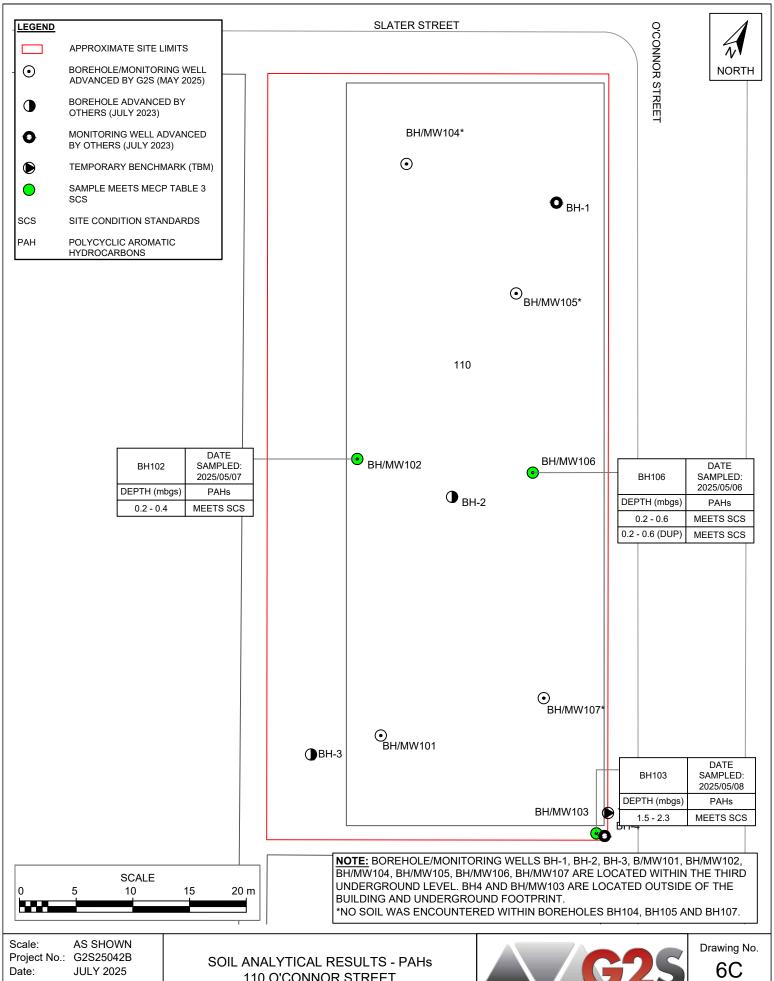
5



HP Drawn by:

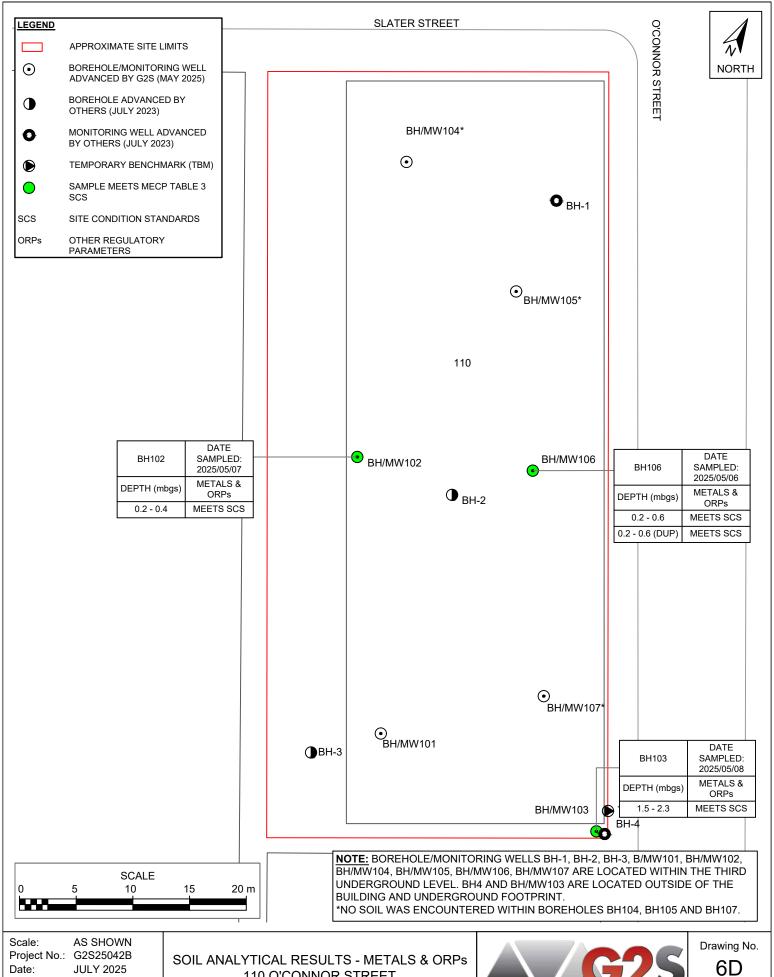
G2S25042.dwg

File name:



HP Drawn by: File name: G2S25042.dwg

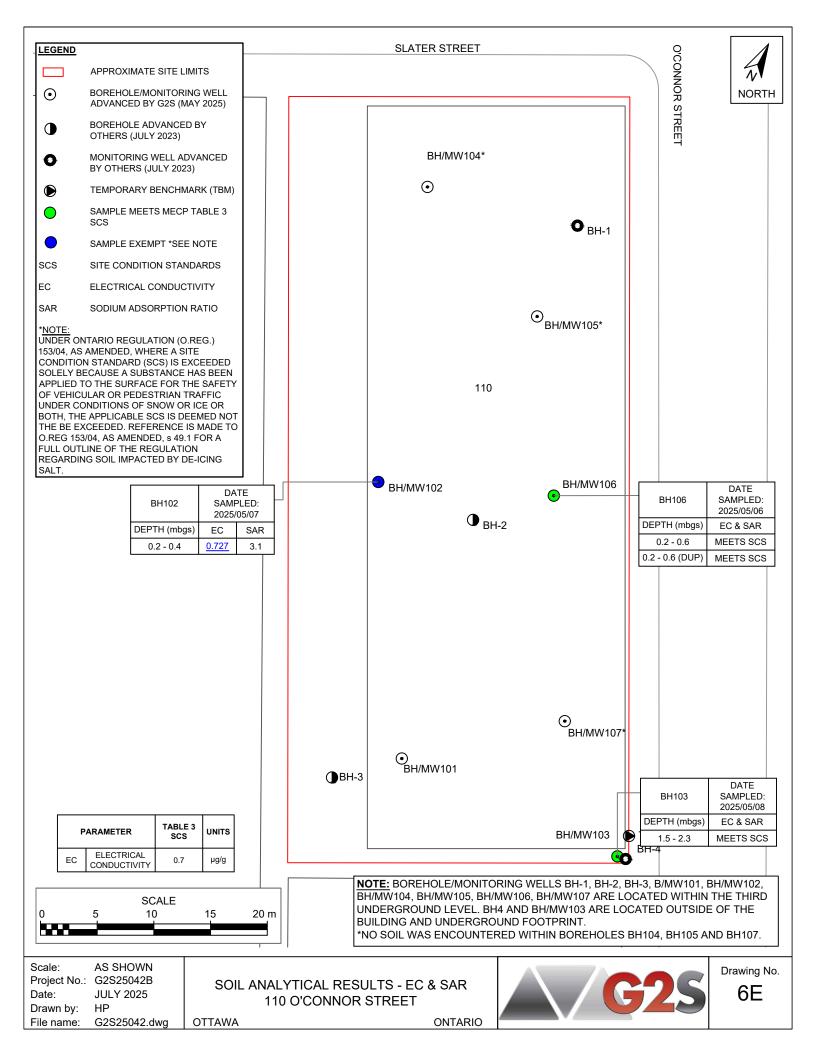
110 O'CONNOR STREET

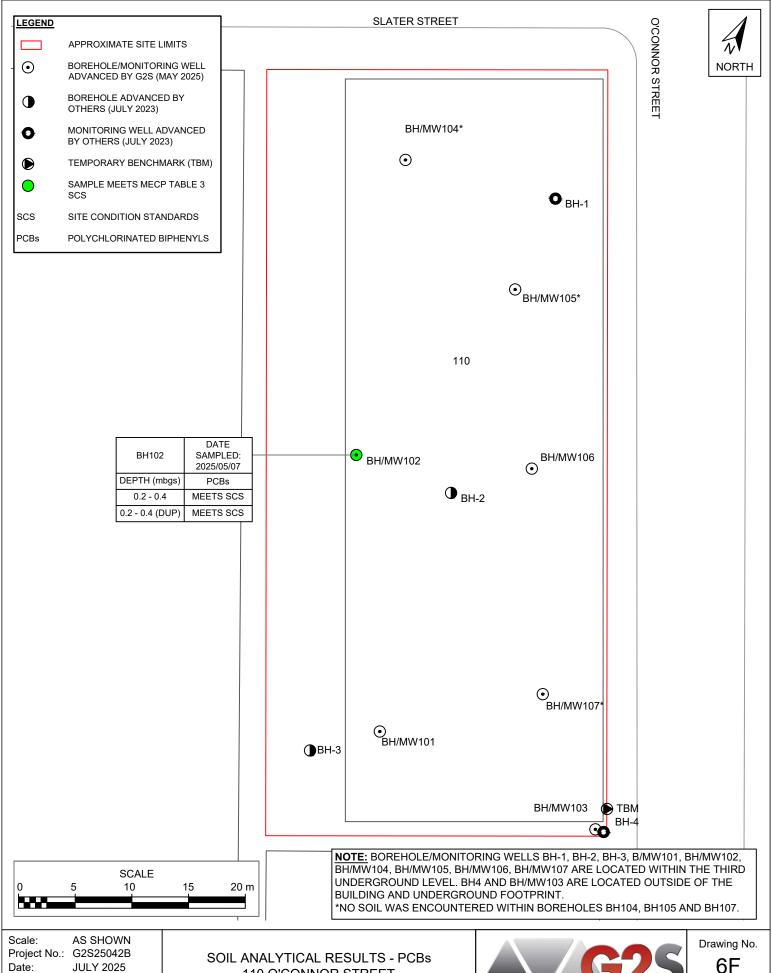


ΗP Drawn by: File name:

G2S25042.dwg

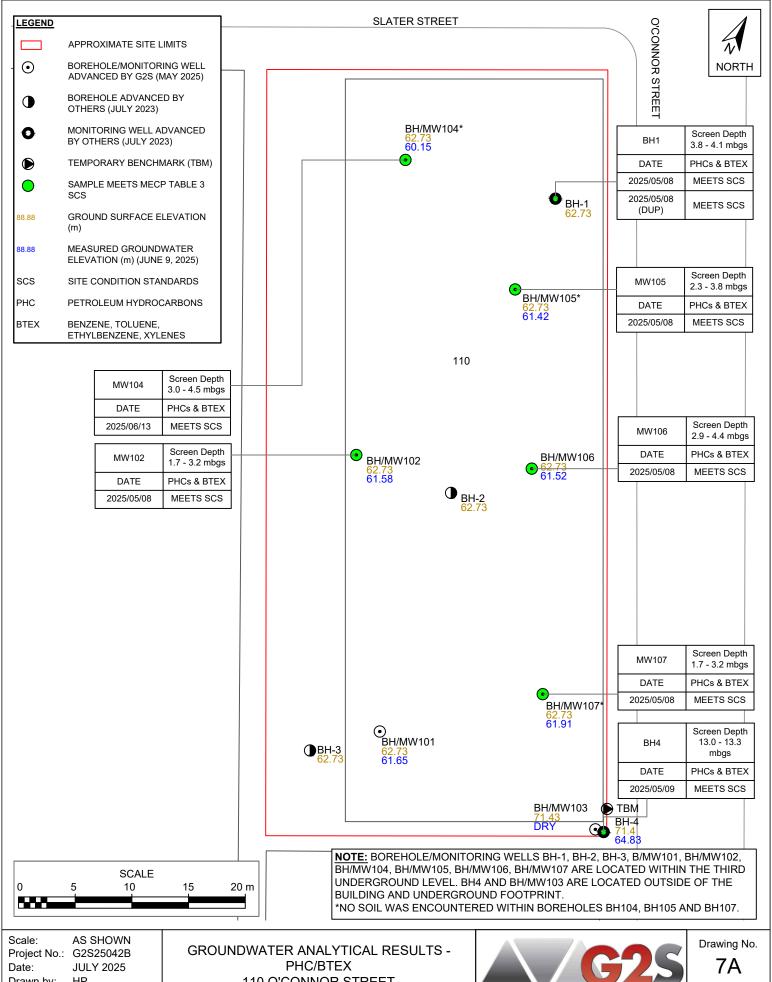
110 O'CONNOR STREET


ΗP Drawn by:


G2S25042.dwg

File name:

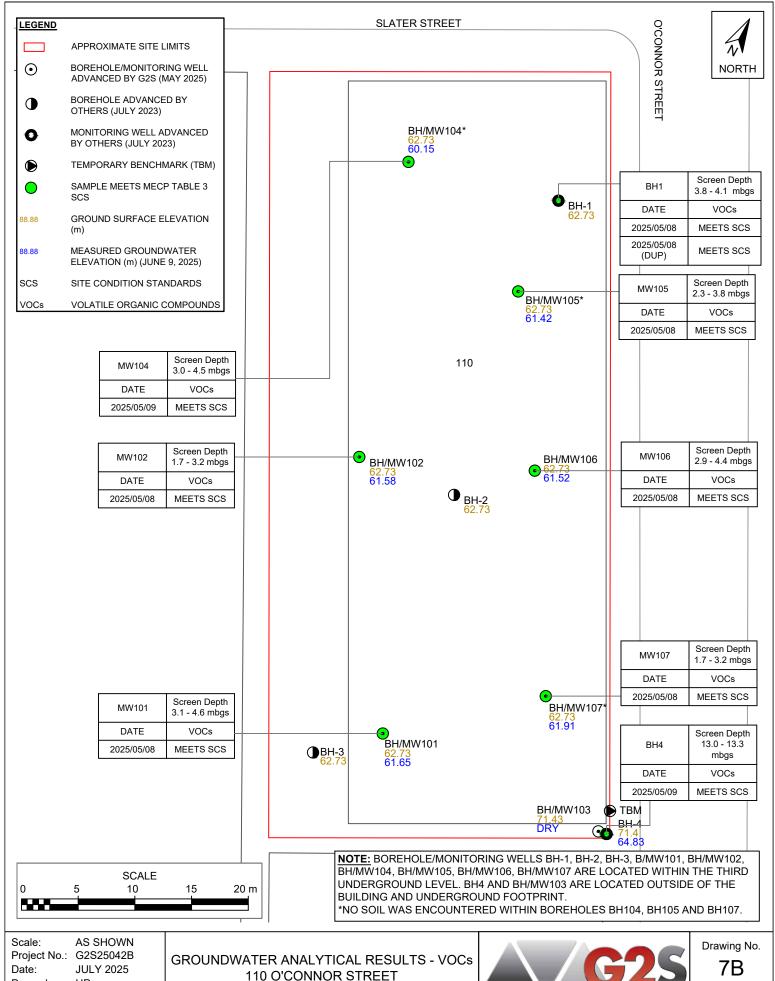
110 O'CONNOR STREET



Drawn by: ΗP File name: G2S25042.dwg

110 O'CONNOR STREET

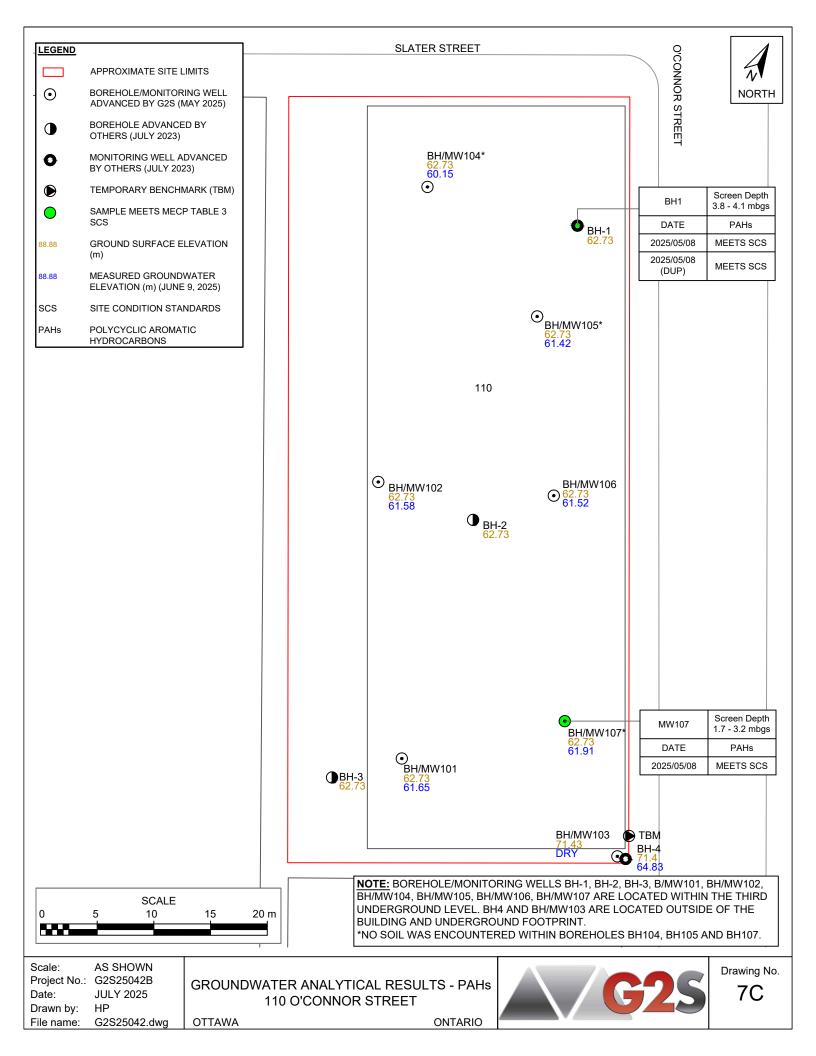
ONTARIO OTTAWA

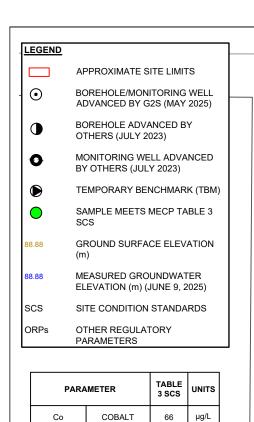

ΗP Drawn by: File name: G2S25042.dwg

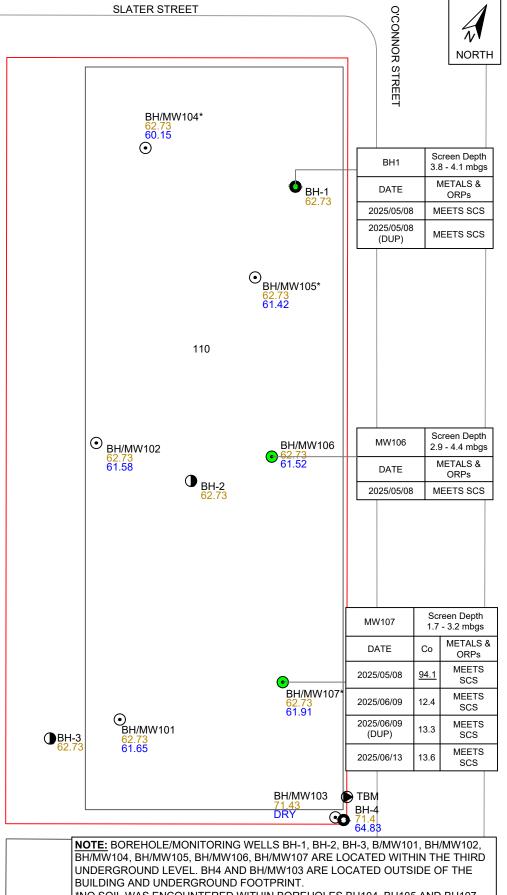
OTTAWA

110 O'CONNOR STREET

ONTARIO




ΗP Drawn by:


G2S25042.dwg

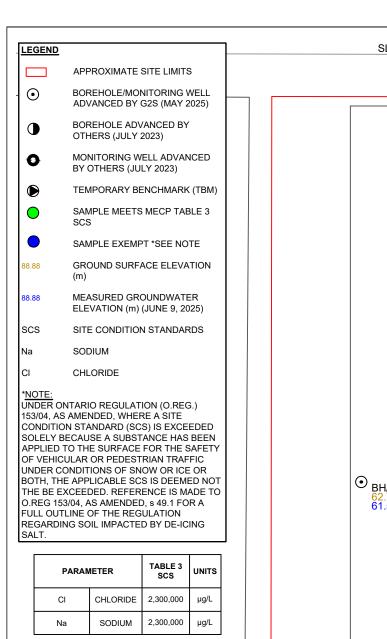
File name:

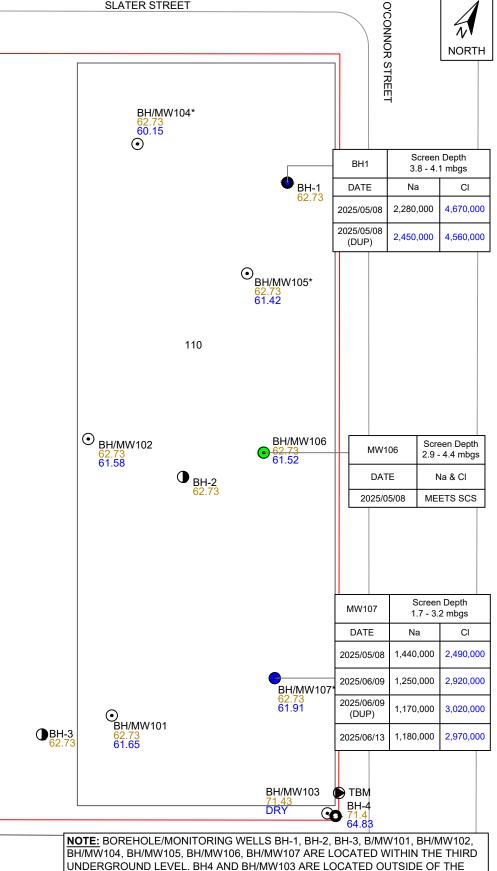
SCALE 0 5 10 15 20 m

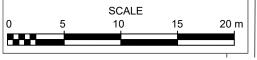
*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

ONTARIO

Scale: AS SHOWN
Project No.: G2S25042B
Date: JULY 2025


Drawn by: HP
File name: G2S25042.dwg OTTAWA


GROUNDWATER ANALYTICAL RESULTS METALS & ORPs
110 O'CONNOR STREET



Drawing No.

7D

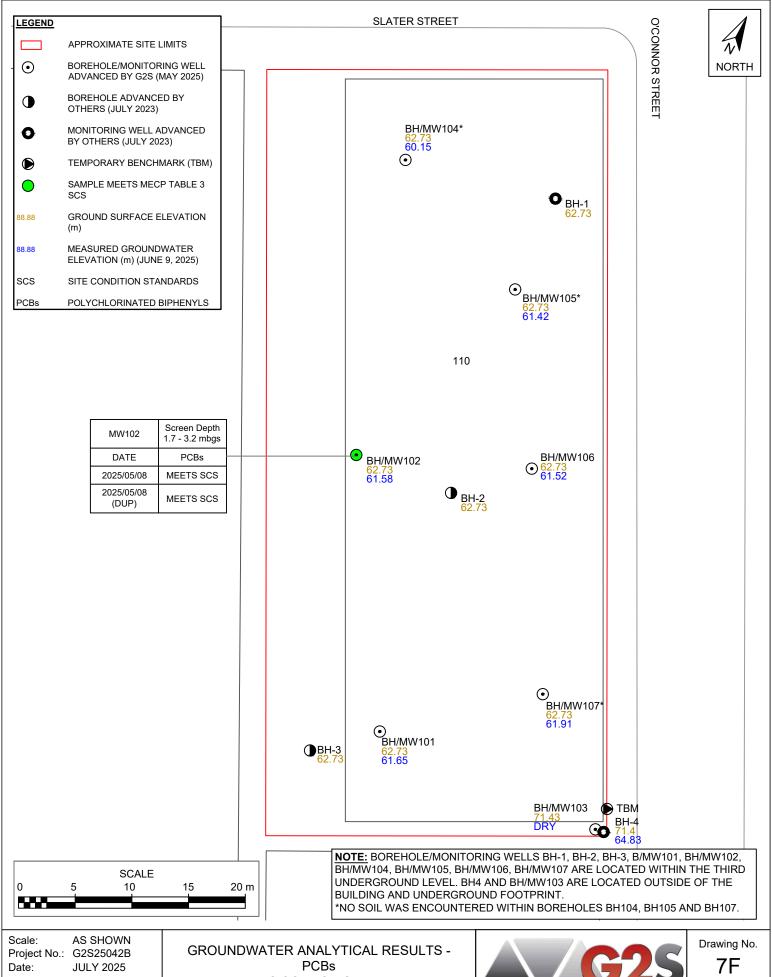
UNDERGROUND LEVEL. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

*NO SOIL WAS ENCOUNTERED WITHIN BOREHOLES BH104, BH105 AND BH107.

Scale: AS SHOWN Project No.: G2S25042B Date: JULY 2025 HP

GROUNDWATER ANALYTICAL RESULTS -SODIUM & CHLORIDE 110 O'CONNOR STREET

ONTARIO



Drawing No. 7E

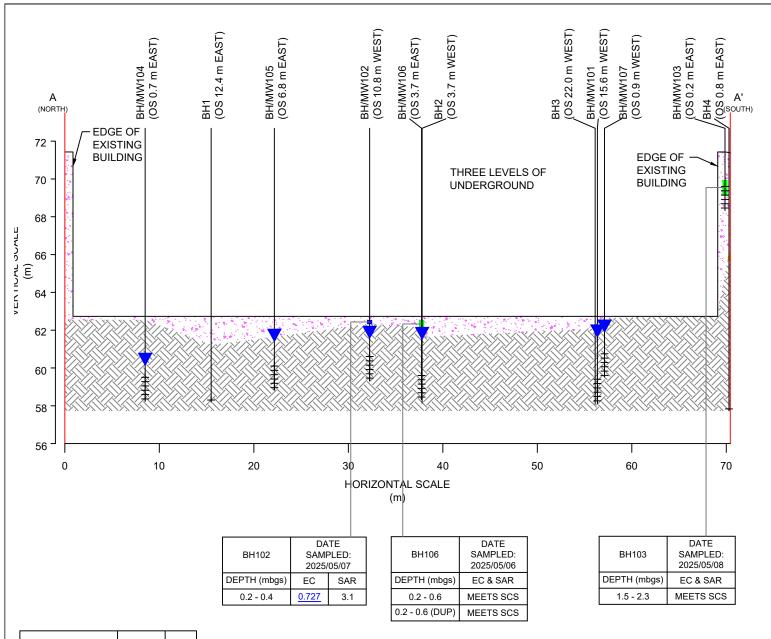
Drawn by: File name:

G2S25042.dwg

OTTAWA

HP Drawn by:

G2S25042.dwg


File name:

ONTARIO

110 O'CONNOR STREET

OTTAWA

Р	ARAMETER	TABLE 3 SCS	UNITS
EC	ELECTRICAL CONDUCTIVITY	0.7	μg/g

LEGEND

FILL MATERIALS

BEDROCK (SHALE)

GROUNDWATER LEVEL

OS OFFSET

mbgs METRES BELOW GROUND SURFACE

SAMPLE MEETS MECP TABLE 3 SCS

SCS SITE CONDITION STANDARDS

SAMPLE EXEMPT SEE *NOTE

EC ELECTRICAL CONDUCTIVITY

SAR SODIUM ADSORPTION RATIO

<u>NOTE:</u> BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

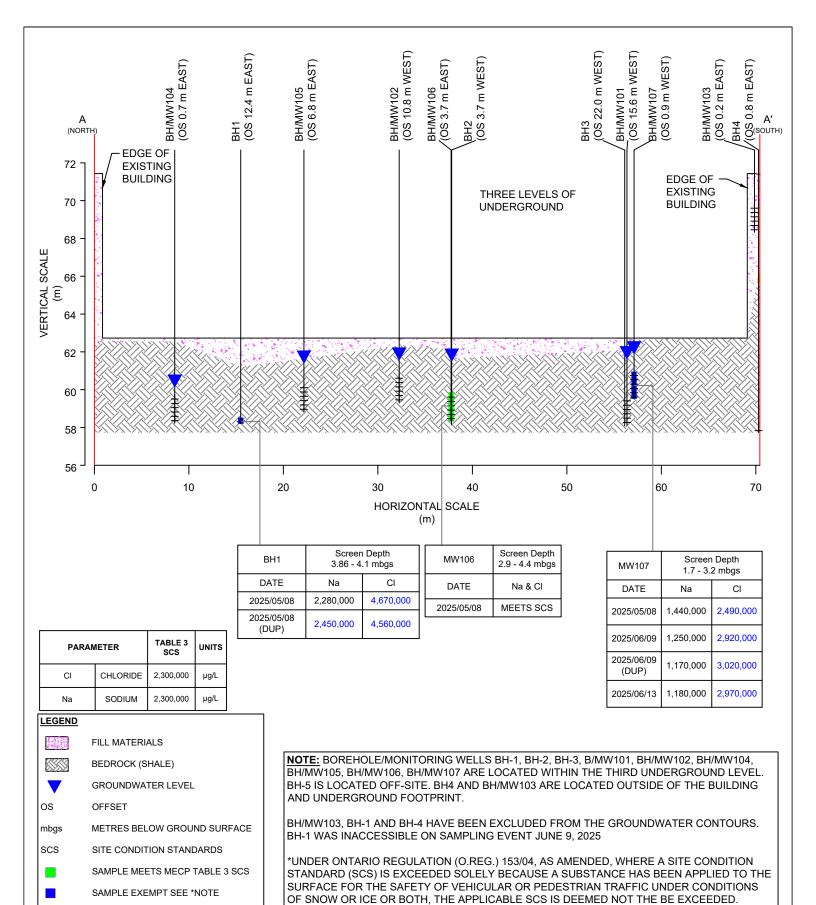
BH/MW103, BH-1 AND BH-4 HAVE BEEN EXCLUDED FROM THE GROUNDWATER CONTOURS. BH-1 WAS INACCESSIBLE ON SAMPLING EVENT JUNE 9, 2025

*UNDER ONTARIO REGULATION (O.REG.) 153/04, AS AMENDED, WHERE A SITE CONDITION STANDARD (SCS) IS EXCEEDED SOLELY BECAUSE A SUBSTANCE HAS BEEN APPLIED TO THE SURFACE FOR THE SAFETY OF VEHICULAR OR PEDESTRIAN TRAFFIC UNDER CONDITIONS OF SNOW OR ICE OR BOTH, THE APPLICABLE SCS IS DEEMED NOT THE BE EXCEEDED. REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE REGULATION REGARDING SOIL IMPACTED BY DE-ICING SALT.

Scale: AS SHOWN Project No.: G2S25042B Date: JULY 2025

Drawn by: HP

Drawn by: HP File name: G2S25042.dwg


CROSS SECTION A-A' - SOIL ANALYTICAL

RESULTS - EC & SAR

OTTAWA 110 O'CONNOR STREET ONTARIO

Drawing No.

AS SHOWN Scale: Project No.: G2S25042B Date: JULY 2025 HP

ELECTRICAL CONDUCTIVITY

SODIUM ADSORPTION RATIO

G2S25042.dwg

EC

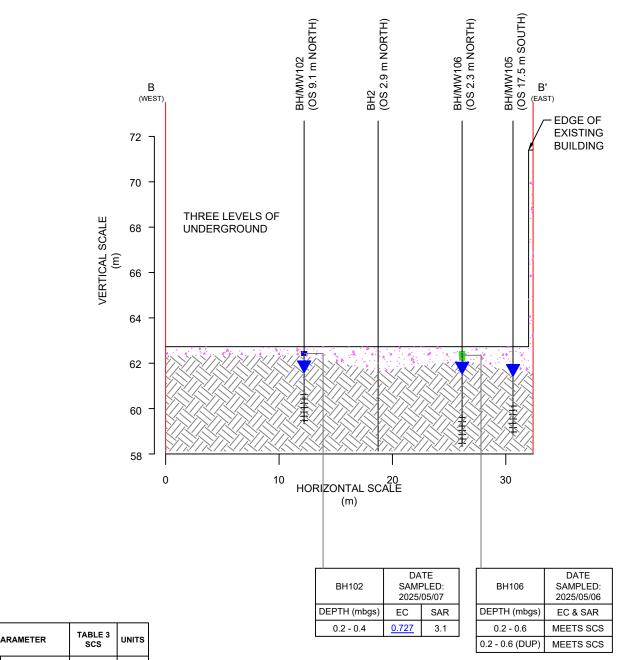
SAR

Drawn by:

File name:

CROSS SECTION A-A' - GROUNDWATER ANALYTICAL RESULTS - SODIUM & CHLORIDE

110 O'CONNOR STREET **OTTAWA**


REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE

REGULATION REGARDING GROUNDWATER IMPACTED BY DE-ICING SALT.

ONTARIO

Drawing No.

8B

Р	ARAMETER	TABLE 3 SCS	UNITS
EC	ELECTRICAL CONDUCTIVITY	0.7	μg/g

LEGEND

FILL MATERIALS

BEDROCK (SHALE)

GROUNDWATER LEVEL

os

OFFSET

METRES BELOW GROUND SURFACE mbgs

SCS

SITE CONDITION STANDARDS

SAMPLE MEETS MECP TABLE 3 SCS

EC

ELECTRICAL CONDUCTIVITY

SAR SODIUM ADSORPTION RATIO

AS SHOWN

Project No.: G2S25042B Date:

Scale:

JULY 2025 HP

Drawn by: File name: G2S25042.dwg

SAMPLE EXEMPT SEE *NOTE

NOTE: BOREHOLE/MONITORING WELLS BH-1, BH-2, BH-3, B/MW101, BH/MW102, BH/MW104, BH/MW105, BH/MW106, BH/MW107 ARE LOCATED WITHIN THE THIRD UNDERGROUND LEVEL. BH-5 IS LOCATED OFF-SITE. BH4 AND BH/MW103 ARE LOCATED OUTSIDE OF THE BUILDING AND UNDERGROUND FOOTPRINT.

BH/MW103, BH-1 AND BH-4 HAVE BEEN EXCLUDED FROM THE GROUNDWATER CONTOURS. BH-1 WAS INACCESSIBLE ON SAMPLING EVENT JUNE 9, 2025

*UNDER ONTARIO REGULATION (O.REG.) 153/04, AS AMENDED, WHERE A SITE CONDITION STANDARD (SCS) IS EXCEEDED SOLELY BECAUSE A SUBSTANCE HAS BEEN APPLIED TO THE SURFACE FOR THE SAFETY OF VEHICULAR OR PEDESTRIAN TRAFFIC UNDER CONDITIONS OF SNOW OR ICE OR BOTH, THE APPLICABLE SCS IS DEEMED NOT THE BE EXCEEDED. REFERENCE IS MADE TO O.REG 153/04, AS AMENDED, s 49.1 FOR A FULL OUTLINE OF THE REGULATION REGARDING SOIL IMPACTED BY DE-ICING SALT.

ONTARIO

CROSS SECTION B-B' - SOIL ANALYTICAL

RESULTS - EC & SAR

110 O'CONNOR STREET **OTTAWA**

Drawing No. 9A

Appendix B: Borehole Logs

PAGE 1 OF 1

Consulting Inc CLIENT Groupe Mach Inc. PROJECT NAME DRAFT Phase Two ESA PROJECT NUMBER G2S25042 PROJECT LOCATION 110 O'Connor Street, Ottawa, ON

DATE STARTED 25-5-5 COMPLETED 25-5-5 DRILLING CONTRACTOR OGS Inc. LOGGED BY DB CHECKED BY SL DRILLING METHOD Hilti Core Drill - NQ NOTES Located within the third level of underground parking

GROUND ELEVATION 62.73 m

concrete

Borehole terminated at 4.6 m.

Water Level Readings: Depth (m) Elev. (m) <u>Date</u> 2025-05-06 1.00 61.73 2025-06-09 1.08 61.65

PAGE 1 OF 1

	Consulting Inc.							
CL	ENT Groupe Mach Inc.	PROJEC	T NAME	E _C	RAF	T Phas	se Tw	o ESA
PR	OJECT NUMBER G2S25042	PROJEC	T LOCA	ATIO	N <u>1</u>	10 O'C	onnor	Street, Ottawa, ON
DA	TE STARTED 25-5-7 COMPLETED 25-5-7	GROUNE	ELEV	ATIO	N _6	2.73 n	n	
DR	ILLING CONTRACTOR OGS Inc.	LOGGE	DBY _	DB				CHECKED BY SL
DR	ILLING METHOD Hilti Core Drill - NQ	NOTES	Locate	ed wi	thin tl	ne thire	d leve	l of underground parking
DEPTH (m)	MATERIAL DESCRIPTION		ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	SOIL GAS READINGS HEX/IBL (ppm)	WELL DIAGRAM
-	0.2 CONCRETE: ~150 mm 0.4 FILL: Sand and gravel, brown, trace silt, moist		62.58 62.30	KXX1	S1	GB	0/0	Flushmount protective casing set in concrete
2	BEDROCK: Black shale, highly fractured at top portion		59.38					Bentonite seal Filter sand Slotted screen
	Encountered mud seam, no further progress			· / / !				Water Level Readings

Borehole terminated at 3.4 m.

Date Depth (m) Elev. (m) 2025-05-08 2025-06-09 61.85 61.58 0.88 1.15

PAGE 1 OF 1

G2S Consulting Inc.

	Consulting Inc.							
CL	IENT Groupe Mach Inc.	PROJEC	T NAME	E _[DRAF	T Phas	se Two	o ESA
PR	OJECT NUMBER G2S25042	PROJEC	T LOCA	ATIO	N _1	10 O'C	onnor	Street, Ottawa, ON
DA	TE STARTED 25-5-8 COMPLETED 25-5-8	GROUNE	ELEV/	ATIC	ON 7	1.43 n	n	
DR	ILLING CONTRACTOR OGS Inc.	LOGGE						CHECKED BY SL
DR	RILLING METHOD Hilti Core Drill - NQ							asurement from slurry of coring
DEPTH (m)	MATERIAL DESCRIPTION		ELEVATION (m)	GRAPHIC LOG	NUMBER	ТҮРЕ	SOIL GAS READINGS HEX/IBL (ppm)	WELL DIAGRAM
	0.1 CONCRETE: ~140 mm 0.5 FILL: Crushed gravel / limestone, grey		71.29 70.97					— Flushmount protective casing set in concrete
1	0.8 VOID FILL: Sand, brown, trace gravel, trace silt, rust staining, moist moist	to very	70.67		S1	SS	5/2	- Bentonite seal
2					S2	SS	10/1	Filter sand
	2.4 CONCRETE: Concrete (possible fill / foundation)		68.99	× 4	S3	SS		Slotted screen
3	3.1		68.29	P 4				
	Borehole terminated at 3.1 m.							Water Level Readings: Date Depth (m) Elev. (m)

 Date
 Water Level Readings

 Depth (m)
 Elev. (m

 2025-05-09
 2.78
 68.65

 2025-06-09
 Dry
 -

PAGE 1 OF 1

G25 Consulting Inc.

DRILLING CONTRACTOR OGS Inc. DRILLING METHOD Hilti Core Drill - NQ	NOTES Located within the third level of underground parking
MATERIAL DESCRIPTION	ELEVATION (m) GRAPHIC LOG NUMBER TYPE SOIL GAS READINGS HEXIBL (ppm) MW WW
CONCRETE: ~125 mm FILL: Clear stone gravel, grey, moist BEDROCK: Black shale, highly fractured at top portion	Filter sand 2.99 Slotted screen Water Level Reading

 Date
 Depth (m)
 Elev. (m)

 2025-05-09
 1.17
 61.56

 2025-06-09
 2.58
 60.15

PAGE 1 OF 1

Consulting Inc.

	LIENT Groupe Mach Inc. ROJECT NUMBER G2S25042	_ PROJEC						
D.	ATE STARTED 25-5-7 COMPLETED 25-5-7 RILLING CONTRACTOR OGS Inc.	_ GROUND	D BY _	ATIC DB	ON _6	62.73 r	n	Street, Ottawa, ON CHECKED BY SL
DI	RILLING METHOD Hilti Core Drill - NQ	_ NOTES _	Locate	ed wi	ithin t	he thir	d level	of underground parking
DEPTH (m)	MATERIAL DESCRIPTION		ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	SOIL GAS READINGS HEX/IBL (ppm)	WELL DIAGRAM
F	0.1 CONCRETE: ~115 mm		62.62					Flushmount protective casing set in concrete
ŀ	_{0.6} FILL: Clear stone gravel, grey, shale pieces, moist		62.12	\bowtie				
1	CONCRETE: Possible grade beam		61.66	P & 4				
- 2	- 1.1 BEDROCK: Black shale		61.00					- Bentonite seal
- 3								Filter sand 2.33
-	3.9		58.88					Slotted screen
	Borehole terminated at 3.9 m.							Water Level Readings Date Depth (m) Elev. (m

2025-05-08 2025-06-09 0.95 1.31 61.78 61.42

PAGE 1 OF 1

G2S Consulting Inc.

PR DA DR	## Groupe Mach Inc. OJECT NUMBER G2S25042 COMPLETED 25-5-7	GROUND	T LOCA ELEVA D BY _	ATIO ATIC DB	N <u>1</u>	10 O'C	Connoi	r Street, Ottawa, ON CHECKED BY SL of underground parking
DEPTH (m)	MATERIAL DESCRIPTION		ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	SOIL GAS READINGS HEX/IBL (ppm)	WELL DIAGRAM
3	0.2 CONCRETE: ~190 mm 0.6 FILL: Sand and gravel, brown, trace silt, moist BEDROCK: Black shale, highly fractured at top portion		62.54 62.12	\bowtie	S1	GB	0/0	Flushmount protective casing set in concrete

Borehole terminated at 4.4 m.

 Water Level Readings:

 Date
 Depth (m)
 Elev. (m)

 2025-05-07
 0.97
 61.76

 2025-06-09
 1.21
 61.52

	Consulting Inc.							PAGE 1 OF 1
CL	IENT Groupe Mach Inc.	PROJECT	NAME	Ξ	RAF	T Phas	se Two	D ESA
PR	OJECT NUMBER G2S25042	PROJECT	LOCA	TIO	N _11	10 O'C	onnor	Street, Ottawa, ON
DA	TE STARTED <u>25-5-5</u> COMPLETED <u>25-5-6</u>	GROUND	ELEV	ATIO	N _6	2.73 n	n	
DR	RILLING CONTRACTOR OGS Inc.	LOGGE	BY _	DB				CHECKED BY SL
DR	RILLING METHOD Hilti Core Drill - NQ	NOTES _	Locate	ed wi	thin th	ne thir	d leve	of underground parking
DEPTH (m)	MATERIAL DESCRIPTION		ELEVATION (m)	GRAPHIC LOG	NUMBER	TYPE	SOIL GAS READINGS HEX/IBL (ppm)	WELL DIAGRAM
	0.1 CONCRETE: ~115 mm		62.62 62.59					Flushmount protective casing set in concrete
	FILL: Sand and gravel, shale fragements, moist		(02.03					
1	BEDROCK: Black shale, highly fractured at top portion							- Bentonite seal
2								Slotted screen
3								
_	3.2 Encountered mud seam, no further progress		59.52	K/A				<u>∵⊟∴l _{3.21} </u>
	Borehole terminated at 3.2 m.							Date Depth (m) Elev. (m)
ı								2025-05-06 0.61 62.12

V	/ater Level	Readings
Date	Depth (m)	Elev. (m
2025-05-06	0.61	62.12
2025-06-09	0.82	61.91

Project No. : Reference No.

GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

SITE: 110 O'Connor Street, Ottawa, Ontario

LOCATION: See drawing No. GT01.23.0064-1

N : none

BOREHOLE No. : 1

Annex No.:

Groundwater level:

Sheet 1 / 1

6

Ø Borehole (mm): NW GEODETIC COORDINATES MADE BY: F.C. 24-07-2023 DATE:

DRILLING COMPANY: Fusion Drilling **VERIFIED BY:** G.G. Ø Screen (mm): 19

X : Z (Elevation): **62,82 m** Drilling method: Diamond core DRILL TYPE: Manual APPROVED BY: G.G.

SAMPLE STATE SAMPLE TYPE ORGANOLEPTIC SIGNS

INTACT GP : geoprobe/sedidrill/manual

SS : split spoon S : slight REMOULDED AS : auger М : medium

LOST OR NOT SAMPLED RC : coring P : pronounced

		I	NOT SAMPLED RC : coring		1				_	P : pron				OTIC	1			
	NO	_	STRATIGRAPHY	1		112	SA	AMPL		<u> </u>		SIC	OLEF SNS	T			ELL	LAYOUT
	S ELEVATION (m)	O DEPTH (m)	SOIL DESCRIPTION Ground surface	SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	N or RQD	BLOWS/15cm BLOWS/30cm N' N	N	s	М	Р	WATER	DETAIL	s	DESCRIPTION
_	62,64	0,18	178mm concrete slab.	DD 0 0 0	RC-A			100							33			
- - - -	62,64	0,10	Fill: Compact crushed stone followed by grey and black humid silt.		SS-1		\bigvee	46	49	26-32-17-26 49 24(N)					on 07-28-2023			
1	61,54	1,28			SS-2		\bigvee	25	31	11-16-15-11 31 15(N)					† 1,28 m			
2-	61,30	1,52	Bedrock: Black calcarous shale; Fractured zone from 1,52 to 1,98m.		RC-3			100	64								(Classe "B"
- - - -	60,51 59,92	2,31	Addition of passages of grey fossiliferous limestone.		RC-4			100	100									
3	59,52	3,30	Alternating beds of black calcarous shale and grey fossiliferous limestone. Black calcarous shale with passages of grey fossiliferous limestone.		RC-5			99	96									Bentonite
4	58,99	3,83	Alternating beds of black calcarous shale and grey fossiliferous limestone.		RC-6			100	100									Silica Sand
5—	58,30	4,52	End of borehole.															
- - - - -																		
6																		

INTACT

REMOULDED

LOST

Project No. : Reference No.

GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

SITE: 110 O'Connor Street, Ottawa, Ontario

LOCATION: See drawing No. GT01.23.0064-1 BOREHOLE No. :

Sheet 1 / 1

7

2

Ø Borehole (mm): NW MADE BY: F.C. 25-07-2023 DATE:

DRILLING COMPANY: Fusion Drilling **VERIFIED BY:** G.G. Ø Screen (mm):

APPROVED BY: DRILL TYPE: Manual Drilling method: Diamond core G.G.

GEODETIC COORDINATES

Groundwater level:

X : Z (Elevation): **62,82 m**

Annex No.:

SAMPLE STATE SAMPLE TYPE ORGANOLEPTIC SIGNS

GP : geoprobe/sedidrill/manual

SS : split spoon AS : auger

М : medium P : pronounced

N : none

S : slight

	OR	LOST NOT SAMPLED	RC	: coring							P : pron							
		STRATIG	RAPHY					SA	AMPI	LE		OR	GAN(DLEF SNS	TIC		WEL	L LAYOUT
Ê 82	O DEPTH (m)	SOIL DESCRII	PTION		SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	N or RQD	BLOWS/15cm BLOWS/30cm N' N					WATER LEVEL	DETAILS	DESCRIPTION
65	0,17	165mm concrete slab. Fill: Dense brown and black	humid sand.		P.P P.	RC-A SS-1			100 72	95	17-38-57							
21	0,61	Becoming dense black sandrock.	d with fragme	nts of		SS-2			60	R	60-54-30-100 /2cm							1-
73 65	1,17	Boulders.			W W	RC-3			53	29		1						
55	1,27	Black shale with occasional	l calcite	[/]		RC-4			100	93								2-
65	2,17					RC-5			100	98								
90	2,92			and		RC-6			100	100								3
						RC-7												4
22	4,60	End of borehole.				RC-8			98	98								5-
																		6
6 2	73 65 55 55 65 90	(E)	SOIL DESCRIF Ground surface 165mm concrete slab. Fill: Dense brown and black 10,61 Becoming dense black same rock. Bedrock: Fractured black slaber shale with occasional recrystallisations; Fractured 2,17m. Black calcarous shale; Past fossiliferous limestone at 2, at 2,88m. Alternating beds of black car grey fossiliferous limestone	STRATIGRAPHY SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. Becoming dense black sand with fragme rock. Boulders. Bedrock: Fractured black shale. Black shale with occasional calcite recrystallisations; Fractured zone from 2, 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78r at 2,88m. Alternating beds of black calcarous shale grey fossiliferous limestone.	STRATIGRAPHY SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. Becoming dense black sand with fragments of rock. Boulders. Bedrock: Fractured black shale. Black shale with occasional calcite recrystallisations; Fractured zone from 2,08 to 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78m and at 2,88m. Alternating beds of black calcarous shale and grey fossiliferous limestone.	STRATIGRAPHY SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. Becoming dense black sand with fragments of rock. Boulders. Bedrock: Fractured black shale. Black shale with occasional calcite recrystallisations; Fractured zone from 2,08 to 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78m and at 2,88m. Alternating beds of black calcarous shale and grey fossiliferous limestone.	STRATIGRAPHY SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. SS-1 Becoming dense black sand with fragments of rock. SS-2 Boulders. Bedrock: Fractured black shale. Black shale with occasional calcite recrystallisations; Fractured zone from 2,08 to 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78m and at 2,88m. RC-6 RC-6 RC-7	STRATIGRAPHY SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. SS-1 Becoming dense black sand with fragments of rock. SS-2 Boulders. Black shale with occasional calcite recrystallisations; Fractured zone from 2,08 to 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78m and at 2,88m. RC-6 RC-6 RC-6 RC-7 RC-7 RC-7 RC-7	STRATIGRAPHY SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. SS-1 Becoming dense black sand with fragments of rock. SS-2 Boulders. Bedrock: Fractured black shale. Black shale with occasional calcite recrystallisations; Fractured zone from 2,08 to 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78m and at 2,88m. Alternating beds of black calcarous shale and grey fossiliferous limestone. RC-6 RC-7 RC-7	STRATIGRAPHY SOIL DESCRIPTION Construction Solution Construction Co	STRATIGRAPHY SAMPLE SOIL DESCRIPTION Ground surface 165mm concrete slab. Fill: Dense brown and black humid sand. SS-1 Becoming dense black sand with fragments of rock. SS-2 Boulders. Bedrock: Fractured black shale. Black shale with occasional calcite recrystallisations; Fractured zone from 2,08 to 2,17m. Black calcarous shale; Passages of grey fossiliferous limestone at 2,66m, at 2,78m and at 2,88m. RC-5 Alternating beds of black calcarous shale and grey fossiliferous limestone. RC-6 RC-7 100 93	STRATIGRAPHY SAMPLE	STRATIGRAPHY SAMPLE OR OR OR OR OR OR OR O	STRATIGRAPHY SAMPLE ORGANISE ORGANIS	STRATIGRAPHY SAMPLE ORGANOLES SIGNS	STRATIGRAPHY SAMPLE ORGANOLEPTIC STRONG STRATIGRAPHY SAMPLE SAMP	STRATIGRAPHY SAMPLE ORGANOLEPTIC SIGNAS ORGANOLEPTIC SIGNA	STRATIGRAPHY SAMPLE ORGANOCLEPTIC GORDAN ORGANOCLEPTIC GO

G.G.

APPROVED BY :

Project No. : Reference No.

GT01.23.0064

DRILL TYPE:

CLIENT: Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

SITE: 110 O'Connor Street, Ottawa, Ontario

LOCATION: See drawing No. GT01.23.0064-1 BOREHOLE No. : 3

Annex No.:

GEODETIC COORDINATES

Groundwater level:

Sheet 1 / 1

8

Ø Borehole (mm): NW MADE BY: F.C. 26-07-2023 DATE:

DRILLING COMPANY: Fusion Drilling VERIFIED BY: G.G. Manual

Ø Screen (mm):

X : Z (Elevation): **62,82 m** Drilling method: Diamond core

SAMPLE STATE SAMPLE TYPE ORGANOLEPTIC SIGNS

INTACT GP : geoprobe/sedidrill/manual N : none SS : split spoon S : slight REMOULDED М : medium

AS : auger LOST OR NOT SAMPLED RC : coring P : pronounced

	7		STRATIGRAPHY				SA	AMPL	LE		OR	GAN	IOLEI GNS	PTIC		WEL	L LAYOUT
	S ELEVATION (m)	O DEPTH (m)	SOIL DESCRIPTION Ground surface	SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	N or RQD	BLOWS/15cm BLOWS/30cm N' N	N			Р	WATER		DESCRIPTION
	62,82	0,00	90mm concrete slab.	00000	RC-A	Ŋ		100			┢		\vdash				
_	02,73	0,03	Fill: Crushed stone with brown and black		SS-1		\setminus	89	R	28-100 /8cm							-
_	62,44	0,38	humid sand and pieces of concrete.	<u> </u>						/ocili	ł						_
-	,	,	Boulders.														=
_	62,15	0,67	Bedrock: Fractured black shale.														
-			Dedition. Flactured black stidle.	WW													=
1-				WW	RC-2			73	45								1
_				WIW													_
-				WW													=
_	61,30	1,52		WW													_
-	01,00	1,02	Black shale with calcite recrystallisations.														-
-																	-
2-																	- 2-
				-=-=	RC-3			100	92								
-				<u>-</u>													-
-																	-
-																	_
-	60,10	2,72	Slightly fractured black shale; Fractured zones	==			╂										-
-			from 2,83 to 2,92m, from 3,07 to 3,12m and at	F_=													_
3—			3,29m.	===													3
-			3,29111.	F===													-
-					RC-4			100	68								=
-				===	}												-
-					1												=
-																	-
4-	58,81	4,01		===			Ш										4
-	,	.,	Black shale; Fractured zone from 4,05 to														-
-			4,10m.		RC-5			100	86								-
-				<u> </u>	1.00												
-	58,17	4,65															=
_	00,11	1,00	End of borehole.														-
5-																	5
-																	-
] -																	=
-																	-
-																	
6-																	6
-																	
- 10																	_
				1					<u> </u>			<u> </u>					

Project No.: Reference No. GT01.23.0064

CLIENT : Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

SITE: 110 O'Connor Street, Ottawa, Ontario

LOCATION : See drawing No. GT01.23.0064-1

Annex No.: 9

Sheet 1 / 2

BOREHOLE No. :

Groundwater level:

4

 MADE BY:
 S. P.
 DATE:
 24-07-2023
 Ø Borehole (mm):
 NW
 GEODETIC COORDINATES

 VERIFIED BY:
 G. G.
 DRILLING COMPANY:
 Downing
 Ø Screen (mm):
 19
 Y:

APPROVED BY: G. G. DRILL TYPE: CME-55 LC Drilling method: Diamond core Z (Elevation): 71,42 m

SAMPLE STATE SAMPLE TYPE ORGANOLEPTIC SIGNS

INTACTGP: geoprobe/sedidrill/manualN: noneREMOULDEDSS: split spoonS: slight

	7		STRATIGRAPHY				SA	AMP	LE		OR	GAN	OLEF	PTIC		WE	L LAYOUT	
	(m) 71,42	O,O DEPTH	SOIL DESCRIPTION Ground surface	SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP %	N or RQD	BLOWS/30cm N' N	N	s	М	Р	WATER LEVEL	DETAILS	DESCRIPT	ION
-	71,37 71,27	0,05 0,15	51mm layer of asphalt. Void. Fill: Very loose humid gravel with a little grey sand and traces of silt.		SS-1		\bigvee	22	3	1-2-1	*							
1— -	70,66	0,76	Becoming very loose grey humid silty sand with a little gravel and traces of clay.		SS-2 (S. A.)			17	4	7-2-2-2	*							- - 1— -
- - - - 2—	69,90	1,52	Becoming loose.		SS-3 (S. A.)	-		42	6	1-2-4-8	*							2
-	69,13	2,29	Becoming compact grey and black humid gravelly sand with a little silt and traces of clay.		SS-4 (S. A.)	_		29	14	9-9-5-6	*							
3	68,37	3,05	Becoming very loose humid to saturated silty sand with a little gravel and traces of clay.		SS-5 (S. A.)	-		12	2	1-1-1-1	*						Class 'B'	3
4	67,61	3,81	Becoming with traces of pieces of concrete.		SS-6 (S. A.)	-		21	3	3-1-2-1	*				5-2023			- 4 - - -
5	66,85	4,57	Becoming compact grey and black humid sand and gravel with a little silt.		SS-7	-		75	12	8-6-6-9	*				5,36 m on 07-25-2023			- - - 5- -
-	66,09 66,06 65,68	5,33 5,36 5,74	Grey and black humid sand and gravel with a little silt. Bedrock: Slightly calcarous black shale with	0 0 6	SS-8	-	\boxtimes	80	R	50 /13cm	*				*			- - - -
6			occasional calcite recrystallisations.		RC-9	-		100	100									6— 6- - -

S.P.

MADE BY:

Project No.: Reference No.

DATE:

GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

24-07-2023

SITE: 110 O'Connor Street, Ottawa, Ontario

LOCATION: See drawing No. GT01.23.0064-1

 \emptyset Borehole (mm) : NW

Annex No.: 9

Sheet 2 / 2

BOREHOLE No. :

4

GEODETIC COORDINATES

		BY:	G. G. DRILLING COM		ıg				en (r								Y : X :			
APPI	ROVI	ED BY		CME-55	LC		Dri		_		Diamond c			OLE	OTIC		Z (Elevation): 71,4			
Z	5	_	STRATIGRAPHY	<u> </u>			I iii I	SA	MPL					OLEF SNS		~ .		LL LAYOUT		
FI FVAT	(m)	DEPTH (m)	SOIL DESCRIPTION		SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	N or RQD	BLOWS/15cm BLOWS/30cm N'N	N	s	М	Р	WATER LEVEL	DETAILS	DESCRIPTIO		
- 63	3,90	7,52				RC-10			99	94										
			Slightly calcarous black shale with c calcite recrystallisations; Fractured : 8,40 to 8,49m and from 8,72 and 8,	zones from		RC-11			98	90										
	2,28	9,14	Slightly calcarous black shale with c calcite recrystallisations; Shattered : 9,14 to 9,32m.			RC-12			99	87										
600	0,82	10,60	Slightly calcarous black shale with c calcite recrystallisations; Shattered a 10,67 to 10,75m and from 11,13 to	zones from		RC-13			100	91										
58	8,95	12,47	Black calcarous shale															Bentonite		
- 58 	8,51	12,91	Black calcarous shale with passage fossiliferous limestone.	s of grey		RC-14			91	85								Silica Sand		
- 57 	7,76	13,66	End of borehole.		1															

SAMPLE STATE

REMOULDED

Project No.: Reference No.: GT01.23.0064

CLIENT : Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

SITE: 110 O'Connor Street, Ottawa, Ontario

LOCATION : See drawing No. GT01.23.0064-1

DODELIOLE No.

Annex No.:

BOREHOLE No. :

Sheet 1 / 2

10

5

MADE BY: S. P. DATE: 25-07-2023 Ø Borehole (mm): **NW**

VERIFIED BY: G. G. DRILLING COMPANY: Downing Ø Screen (mm):

APPROVED BY: G.G. DRILL TYPE: CME-55 LC Drilling method: Diamond core

GEODETIC COORDINATES
Y:

X : Z (Elevation): **71,53 m**

Groundwater level:

SAMPLE TYPE ORGANOLEPTIC SIGNS

N : none

S : slight

INTACT GP : geoprobe/sedidrill/manual

SS : split spoon
AS : auger

	Z		STRATIGRAPHY			SAMPLE SAMPLE						SAN SIC	OLEF SNS				L LAYOUT
	(m) 71,53	O,O DEPTH (m)	SOIL DESCRIPTION Ground surface	SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	STATE	RECUP. %	N or RQD	BLOWS/15cm BLOWS/30cm N' N	N	s	М	Р	WATER LEVEL	DETAILS	DESCRIPTION
1-	71,43	0,10	Fill: Loose brown fine sand with a little silt and the presence of organics. Becoming loose humid 0 - 20mm crushed stone with traces of pieces of concrete.		SS-1			58	7	2-2-5-5	*						1-
2-	70,01	1,52	Compact grey and black humid sandy silt with a little gravel.		SS-2			58	14	2-8-6-7	*						2-
4-	68,48	3,05	Compact grey and black humid silty sand with a little gravel.	6 6	SS-3			100	28	7-12-16-12	*						3— ———————————————————————————————————
5-	- 66,96 - 66,86 - 66,65	4,57 4,67 4,88	No sample recovered. Bedrock: Black slightly calcarous black shale. Black slightly calcarous black shale.	9 6	SS-4 RC-5 RC-6			0 / 100		√ 50 /5cm	,						5
6-	- - - - - - - - -	5,89	Black slightly calcarous black shale; Shattered zones from 6,04 to 6,19m, at 6,50m and from 7,35 to 7,47m.														6

S.P.

MADE BY:

Project No. : Reference No.

DATE:

GT01.23.0064

CLIENT: Édifice 110 O'Connor Inc.

PROJECT: Geotechnical investigation

25-07-2023

SITE: 110 O'Connor Street, Ottawa, Ontario

 \emptyset Borehole (mm) : NW

LOCATION: See drawing No. GT01.23.0064-1

KEHOLE NO

Sheet 2 / 2

10

BOREHOLE No. :

Annex No.:

GEODETIC COORDINATES

5

	ERIFIE	D BY : /ED BY	3				en (r met		: Diamond c	ore			Y: X: Z (Elevation): 71,53 m					
			STRATIGRAPHY				 MPL				IOLE GNS	PTIC		· · · · · ·	L LAYOUT			
	ELEVATION (m)	DEPTH (m)	SOIL DESCRIPTION	SYMBOL	TYPE SAMPLE and No.	SUB-SAMPLE	RECUP. %	N or RQD	BLOWS/30cm N' N	N	M		WATER		DESCRIPTION			
7-	64,06	7.47			RC-7		100	85							7-			
8-		7,47	Black slightly calcarous black shale; Shattered zone from 7,47 to 7,62m; Fractured zones from 7,90 to 8,00m, from 8,27 to 8,32m, from 8,46 to 8,48m and from 8,69 to 8,70m.		RC-8		100	75							8-			
9-	62,54	8,99	Black slightly calcarous black shale; Shattered zone from 8,99 to 9,16m, from 9,88 to 10,34m and from 10,56 to 10,59m; Occasional	-											- - - 9- - - -			
10-	- - - - - - - - - -		passages of fossiliferous limestone from 9,78m.		RC-9		78	56							- - - 10 - - -			
11-	60,88	10,65	Alternating beds of limestone and shale; Shattered zones from 10,81 to 10,93m and from 11,39 to 11,49m; Fractured zone from 10,98 to 11,21m. Shaley limestone.												- - - 11– - -			
12-					RC-10		92	62							- - - - 12			
13-	59,24	12,29	Shaley limestone with passages of limestone from 12,86 to 13,13m and from 13,60 to 13,67m; Fractured zone from 13,75 to 13,82m.		RC-11		92	90							- - - - - 13—			
	57,71	13,82	End of borehole.												- - - - - - 14—			
14-	-																	

Appendix C: Analytical Results Tables

Table 1: Soil Quality Results Petroleum Hydrocarbons (F1-F4) and BTEX

			Sample Identification										
Parameter	Unit	*Table 3 RPI SCS Coarse	**BH102 S1	BH103 S2	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)							
Date Sampled	-	-	7-May-25	8-May-25	6-May-25	6-May-25							
Depth	mbgs	-	0.2 - 0.4	1.5 - 2.3	0.2 - 0.6	0.2 - 0.6							
Benzene	μg/g	0.21	<0.02	<0.02	<0.02	<0.02							
Ethylbenzene	μg/g	2	< 0.05	<0.05	<0.05	<0.05							
Toluene	μg/g	2.3	<0.05	<0.05	<0.05	<0.05							
Xylenes	μg/g	3.1	<0.05	<0.05	<0.05	<0.05							
Petroleum Hydrocarbons F1	μg/g	55	<5	<5	<5	<5							
Petroleum Hydrocarbons F2	μg/g	98	<10	<10	<10	<10							
Petroleum Hydrocarbons F3	μg/g	300	<50	<50	<50	<50							
Petroleum Hydrocarbons F4	μg/g	2800	<50	<50	<50	<50							

^{*}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

**mbcf - meters below concrete floor SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

Table 2: Soil Quality Results Volatile Organic Compounds (VOCs)

				Sa	ample Identific	ation	
Parameter	Unit	*Table 3 RPI SCS Coarse	**BH101 S1	**BH102 S1	BH103 S1	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)
Date Sampled	-	-	5-May-25	7-May-25	8-May-25	6-May-25	6-May-25
Depth	mbgs	-	0.1 - 0.3	0.2 - 0.4	0.8 - 1.5	0.2 - 0.6	0.2 - 0.6
Dichlorodifluoromethane	μg/g	16	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	μg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	μg/g	4	<0.05	<0.05	<0.05	<0.05	<0.05
Acetone	μg/g	16	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	µg/g	0.1	<0.05	<0.05	<0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	μg/g	0.084	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	μg/g	0.75	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	μg/g	3.5	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	µg/g	16	<0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	µg/g	3.4	<0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	μg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	µg/g	0.05	<0.03	<0.03	< 0.03	< 0.03	< 0.03
1,1,1-Trichloroethane	µg/g	0.38	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	µg/g	0.05	<0.03	< 0.03	< 0.03	< 0.03	< 0.03
Trichloroethylene	μg/g	0.061	<0.03	< 0.03	< 0.03	< 0.03	< 0.03
Bromodichloromethane	μg/g	13	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Isobutyl Ketone	µg/g	1.7	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	μg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	µg/g	9.4	<0.05	<0.05	< 0.05	<0.05	< 0.05
Ethylene Dibromide	µg/g	0.05	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	µg/g	0.28	0.07	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	µg/g	0.058	<0.04	<0.04	<0.04	<0.04	<0.04
Chlorobenzene	µg/g	2.4	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	µg/g	0.27	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	µg/g	0.7	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	µg/g	4.8	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	μg/g	0.083	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	µg/g	3.4	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total)	μg/g	3.1	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	<0.04	<0.05	<0.04	<0.05	<0.05
n-Hexane	µg/g	2.8	<0.05	<0.05	<0.05	<0.05	<0.05

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and

Sediment Standards for Use Under Part XV.1 of the Environmental Protection

**mbcf - meters below concrete floor

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

Table 3: Soil Quality Results Polycyclic Aromatic Hydrocarbons (PAHs)

			Sample Identification						
Parameter	Unit	*Table 3 RPI SCS Coarse	**BH102 S1	BH103 S2	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)			
Date Sampled	-	-	7-May-25	8-May-25	6-May-25	6-May-25			
Depth	mbgs	-	0.2 - 0.4	1.5 - 2.3	0.2 - 0.6	0.2 - 0.6			
Naphthalene	μg/g	0.6	< 0.05	<0.05	<0.05	<0.05			
Acenaphthylene	μg/g	0.15	< 0.05	<0.05	<0.05	<0.05			
Acenaphthene	μg/g	7.9	< 0.05	<0.05	< 0.05	<0.05			
Fluorene	μg/g	62	< 0.05	< 0.05	<0.05	<0.05			
Phenanthrene	μg/g	6.2	< 0.05	< 0.05	<0.05	<0.05			
Anthracene	μg/g	0.67	< 0.05	< 0.05	<0.05	<0.05			
Fluoranthene	μg/g	0.69	< 0.05	< 0.05	<0.05	<0.05			
Pyrene	μg/g	78	< 0.05	< 0.05	<0.05	<0.05			
Benzo(a)anthracene	μg/g	0.5	< 0.05	< 0.05	<0.05	<0.05			
Chrysene	μg/g	7	< 0.05	< 0.05	<0.05	<0.05			
Benzo(b)fluoranthene	μg/g	0.78	< 0.05	< 0.05	<0.05	<0.05			
Benzo(k)fluoranthene	μg/g	0.78	< 0.05	< 0.05	<0.05	<0.05			
Benzo(a)pyrene	μg/g	0.3	< 0.05	< 0.05	<0.05	<0.05			
Indeno(1,2,3-cd)pyrene	μg/g	0.38	<0.05	<0.05	< 0.05	<0.05			
Dibenz(a,h)anthracene	μg/g	0.1	< 0.05	< 0.05	<0.05	<0.05			
Benzo(g,h,i)perylene	μg/g	6.6	< 0.05	< 0.05	<0.05	<0.05			
2-and 1-methyl Naphthalene	μg/g	0.99	<0.05	<0.05	<0.05	<0.05			

^{*}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act , dated April 2011.

**mbcf - meters below concrete floor SCS - Site Condition Standards RPI - Residential/Parkland/Institutional

Table 4: Soil Quality Results Metals and Other Regulatory Parameters (ORPs)

				Sample Ide	entification	
Parameter	Unit	*Table 3 RPI SCS Coarse	**BH102 S1	BH103 S2	**BH106 S1	**BH108 S1 (Duplicate of BH106 S1)
Date Sampled	-	-	7-May-25	8-May-25	6-May-25	6-May-25
Depth	mbgs	-	0.2 - 0.4	1.5 - 2.3	0.2 - 0.6	0.2 - 0.6
Antimony	μg/g	7.5	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	2	3	2	2
Barium	μg/g	390	51.9	57.5	49.3	54.2
Beryllium	μg/g	4	<0.5	<0.5	<0.5	<0.5
Boron	μg/g	120	20	22	20	20
Boron (Hot Water Soluble)	μg/g	1.5	0.26	0.24	0.22	0.23
Cadmium	μg/g	1.2	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	8	13	9	8
Cobalt	μg/g	22	5.9	6.6	5.5	4.9
Copper	μg/g	140	11.2	16.3	16.5	10.8
Lead	μg/g	120	6	8	5	5
Molybdenum	μg/g	6.9	0.8	1.0	0.7	0.7
Nickel	μg/g	100	10	13	9	8
Selenium	μg/g	2.4	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	20	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	23	0.64	0.59	0.76	0.61
Vanadium	μg/g	86	16.8	20.4	17.4	17.9
Zinc	μg/g	340	15	26	16	15
Chromium, Hexavalent	μg/g	8	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	<0.040	<0.040	<0.040	<0.040
Mercury	μg/g	0.27	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.7	0.727	0.203	0.470	0.509
Sodium Adsorption Ratio	-	5	3.1	2.4	1.4	1.4
рН	***see note	-	6.92	6.77	6.82	6.84

^{*}Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

ORPs include Boron (HWS), Cyanide (CN-), Chromium (VI) (CrVI), Mercury (Hg), pH, Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR)

The elevated EC in soil are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O.Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed to not be exceeded. Reference is made to O.Reg. 153/04, as amended, S. 49(1).

^{**}mbcf - meters below concrete floor

^{***}pH 5 to 9 for surface soils; pH 5 to 11 for subsurface soil

Table 5: Soil Quality Results Polychlorinated Biphenyls (PCBs)

			Sample Identification			
Parameter	Unit	*Table 3 RPI SCS Coarse	**BH102 S1	**BH109 S1 (Duplicate of BH102 S1)		
Date Sampled			7-May-25	7-May-25		
Depth	mbgs		0.2 - 0.4	0.2 - 0.4		
PCBs, total	μg/g	0.35	<0.1	<0.1		

*Ministry of the Environment, Conservation, and Parks Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

**mbcf - meters below concrete floor of the third level of undergroun parking

SCS - Site Condition Standards

RPI - Residential/Parkland/Institutional

Table 6: Groundwater Quality Results Petroleum Hydrocarbons (F1-F4) and BTEX

			Sample Identification									
Parameter	Unit	*Table 3 SCS	BH1	MW109 (Duplicate of BH1)	BH4	MW102	MW104	MW105	MW106	MW107		
Date Sampled	-	-	8-May-25	8-May-25	9-May-25	8-May-25	13-Jun-25	8-May-25	8-May-25	8-May-25		
Benzene	μg/L	44	<0.20	<0.20	<0.20	0.92	<0.20	0.24	0.27	0.31		
Ethylbenzene	μg/L	2300	<0.10	<0.10	<0.10	0.35	<0.10	<0.10	<0.10	<0.10		
Toluene	μg/L	18000	<0.20	<0.20	0.72	5.17	0.24	0.86	0.92	1.14		
Xylenes (total)	μg/L	4200	<0.20	<0.20	<0.20	6.04	0.47	2.32	0.98	1.26		
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	750	<25	<25	<25	27	<25	<25	<25	<25		
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	150	<100	<100	<100	<100	<100	<100	<100	<100		
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	500	<100	<100	<100	<100	<100	<100	<100	<100		
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	500	<100	<100	<100	<100	<100	<100	<100	<100		

^{*}MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act, dated April 2011.

SCS - Site Condition Standard

Table 7: Groundwater Quality Results Volatile Organic Compounds (VOCs)

		*Table 3 SCS				Sa	mple Identificat	ion			
Parameter	Unit		BH1	MW109 (Duplicate of BH1)	BH4	MW101	MW102	MW104	MW105	MW106	MW107
Date Sampled	-	-	8-May-25	8-May-25	9-May-25	8-May-25	8-May-25	9-May-25	8-May-25	8-May-25	8-May-25
Dichlorodifluoromethane	μg/L	4400	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	μg/L	0.5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	5.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	2500	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	μg/L	130000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	1.6	<0.30	<0.30	< 0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30
Methylene Chloride	μg/L	610	<0.30	<0.30	< 0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	190	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	320	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	<0.30
Methyl Ethyl Ketone	μg/L	470000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	640	<0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	44	<0.20	<0.20	<0.20	0.76	0.92	<0.20	0.24	0.27	0.31
1,2-Dichloropropane	μg/L	16	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	85000	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	140000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	4.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	18000	<0.20	<0.20	0.72	4.42	5.17	1.72	0.86	0.92	1.14
Dibromochloromethane	μg/L	82000	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.25	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	3.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	630	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	2300	<0.10	<0.10	<0.10	0.28	0.35	0.33	<0.10	<0.10	<0.10
Bromoform	μg/L	380	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	1300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	3.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	μg/L	9600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/L	8	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	4600	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	5.2	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	μg/L	4200	<0.20	<0.20	<0.20	4.66	6.04	5.98	2.32	0.98	1.26
n-Hexane	μg/L	51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

^{*}MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act, dated April 2011.

SCS - Site Condition Standard

Table 8: Groundwater Quality Results Polycyclic Aromatic Hydrocarbons (PAHs)

			Sa	ample Identificati	on
Parameter	Unit	*Table 3 SCS	ВН1	MW109 (Duplicate of BH1)	MW107
Date Sampled	-	-	8-May-25	8-May-25	8-May-25
Naphthalene	μg/L	1400	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1.8	<0.20	<0.20	<0.20
Acenaphthene	μg/L	600	<0.20	<0.20	<0.20
Fluorene	μg/L	400	<0.20	<0.20	<0.20
Phenanthrene	μg/L	580	<0.10	<0.10	<0.10
Anthracene	μg/L	2.4	<0.10	<0.10	<0.10
Fluoranthene	μg/L	130	<0.20	<0.20	<0.20
Pyrene	μg/L	68	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	4.7	<0.20	<0.20	<0.20
Chrysene	μg/L	1	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.75	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.4	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.81	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.2	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.52	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	<0.20	<0.20	<0.20
2-and 1-methyl Napthalene	μg/L	1800	<0.20	<0.20	<0.20

*MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

Table 9: Groundwater Quality Results Metals and Other Regulatory Parameters (ORPs)

					Sa	mple Identificat	ion		
Parameter	Unit	*Table 3 SCS	ВН1	MW109 (Duplicate of BH1)	MW106	MW	107	MW120 (Duplicate of MW107)	MW107
Date Sampled	-	-	8-May-25	8-May-25	8-May-25	8-May-25	9-Jun-25	9-Jun-25	13-Jun-25
Antimony	μg/L	20000	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<1.0
Arsenic	μg/L	1900	<1.0	<1.0	1.9	1.2	<1.0	<1.0	<1.0
Barium	μg/L	29000	29.2	28.1	460	230	78.1	77.0	86.7
Beryllium	μg/L	67	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Boron	μg/L	45000	252	307	279	133	145	142	137
Cadmium	μg/L	2.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chromium	μg/L	810	<2.0	<2.0	<2.0	2.4	<2.0	<2.0	<2.0
Cobalt	μg/L	66	1.51	1.90	<0.50	94.1	12.4	13.3	13.6
Copper	μg/L	87	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8
Lead	μg/L	25	0.51	<0.50	1.42	1.24	0.56	<0.50	<0.50
Molybdenum	μg/L	9200	0.91	4.26	3.37	17.7	16.6	16.4	13.6
Nickel	μg/L	490	8.6	10.8	<1.0	60.6	17.5	16.4	22.6
Selenium	μg/L	63	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	1.9
Silver	μg/L	1.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	μg/L	510	<0.30	<0.30	<0.30	0.44	<0.30	<0.30	<0.30
Uranium	μg/L	420	14.4	13.0	1.81	26.0	21.7	20.8	18.7
Vanadium	μg/L	250	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Zinc	μg/L	1100	<5.0	<5.0	18.1	10.7	9.8	5.8	11.2
Mercury	μg/L	0.29	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chromium VI	μg/L	140	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000
Cyanide, WAD	μg/L	66	<2	<2	<2	<2	<2	<2	<2
Sodium	μg/L	2300000	2280000	2450000	854000	1440000	1250000	1170000	1180000
Chloride	μg/L	2300000	4670000	4560000	827000	2490000	2920000	3020000	2970000
pH	-	-	7.50	7.46	7.51	7.46	7.16	7.35	7.29

*MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

ORPs include Arsenic (As), Antimony (Sb), Selenium (Se), Cyanide (CN-), Mercury (Hg), Chromium VI (CrVI, Sodium (Na), and Chloride (CI).

Values shaded and in bold exceed the Table 3 SCS

The elevated sodium and chloride in groundwater are attributed to the historical use of de-icing salt on the surfaces of the Site and adjacent roadways. Under O.Reg. 153/04, as amended, where a SCS is exceeded solely because a substance has been applied for the safety of vehicular or pedestrian traffic under conditions of snow and ice, the applicable SCS is deemed to not be exceeded. Reference is made to O.Reg. 153/04, as amended, S. 49(1).

Table 10: Groundwater Quality Results Polychlorinated Biphenyls (PCBs)

			Sample Identification			
Parameter	Unit	*Table 3 SCS	MW102	MW110 (Duplicate of MW102)		
Date Sampled	-	-	8-May-25	8-May-25		
PCBs	μg/L	7.8	<0.1	<0.1		

*MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, dated April 2011.

SCS - Site Condition Standards

Appendix D: Certificates of Analysis

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC 4361 HARVESTERROAD, UNIT 12 BURLINGTON, ON L7L 5M4 (905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B AGAT WORK ORDER: 25T291319

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Lab Operation Manager

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: May 26, 2025

PAGES (INCLUDING COVER): 23 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 23

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC SAMPLING SITE:Ottawa

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2025-05-14								DATE REPORTED: 2025-05-26
		DATE S	PLE TYPE: SAMPLED:	BH102 S1 Soil 2025-05-07	BH103 S2 Soil 2025-05-08	BH106 S1 Soil 2025-05-06	BH108 S1 Soil 2025-05-06	
Parameter	Unit	G/S	RDL	6738931	6738936	6738938	6738939	
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	2	3	2	2	
Barium	μg/g	390	2.0	51.9	57.5	49.3	54.2	
Beryllium	μg/g	4	0.5	<0.5	<0.5	<0.5	<0.5	
Boron	μg/g	120	5	20	22	20	20	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.26	0.24	0.22	0.23	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	8	13	9	8	
Cobalt	μg/g	22	8.0	5.9	6.6	5.5	4.9	
Copper	μg/g	140	1.0	11.2	16.3	16.5	10.8	
Lead	μg/g	120	1	6	8	5	5	
Molybdenum	μg/g	6.9	0.5	0.8	1.0	0.7	0.7	
Nickel	μg/g	100	1	10	13	9	8	
Selenium	μg/g	2.4	8.0	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	0.64	0.59	0.76	0.61	
Vanadium	μg/g	86	2.0	16.8	20.4	17.4	17.9	
Zinc	μg/g	340	5	15	26	16	15	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.727	0.203	0.470	0.509	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	3.1	2.4	1.4	1.4	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	6.92	6.77	6.82	6.84	

Certified By:

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2025-05-14 DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

manjot Bheld AMANJOT BHELD CHEMIST JOHE TO SHEET JOHE THE TO SHEET JOHE THE SHEET JOHE TO SHEET JOHE THE SHEET JOHE TO SHEET JOHE THE SHEET JOHE TO SHEET JOHE TO SHEET JOHE TO SHEET JOHE THE SHEET J

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - PAHs (Soil)

					<u> </u>			
DATE RECEIVED: 2025-05-14								DATE REPORTED: 2025-05-26
		SAMPLE DES		BH102 S1	BH103 S2	BH106 S1	BH108 S1	
		_	PLE TYPE:	Soil	Soil	Soil	Soil	
			SAMPLED:	2025-05-07	2025-05-08	2025-05-06	2025-05-06	
Parameter	Unit	G/S	RDL	6738931	6738936	6738938	6738939	
Naphthalene	µg/g	0.6	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Acenaphthylene	μg/g	0.15	0.05	<0.05	< 0.05	< 0.05	<0.05	
Acenaphthene	μg/g	7.9	0.05	<0.05	< 0.05	< 0.05	<0.05	
Fluorene	μg/g	62	0.05	< 0.05	<0.05	<0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Anthracene	µg/g	0.67	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	78	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(a)anthracene	μg/g	0.5	0.05	< 0.05	<0.05	<0.05	<0.05	
Chrysene	μg/g	7	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	< 0.05	< 0.05	<0.05	
2-and 1-methyl Naphthalene	μg/g	0.99	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Moisture Content	%		0.1	8.3	7.1	11.0	11.1	
Surrogate	Unit	Acceptab	le Limits					
Naphthalene-d8	%	50-1	140	95	105	90	75	
Acridine-d9	%	50-1	140	90	85	110	100	
Terphenyl-d14	%	50-1	140	115	75	70	70	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

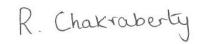
CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

				O. Re	g. 153(511) -	PCBs (Soil)
DATE RECEIVED: 2025-05-14						DATE REPORTED: 2025-05-26
		SAMPLE DES	CRIPTION:	BH102 S1	BH109 S1	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	DATE SAMPLED:		2025-05-07	
Parameter	Unit	G/S	RDL	6738931	6738940	
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	
Moisture Content	%		0.1	8.3	7.7	
Surrogate	Unit	Acceptab	le Limits			
Decachlorohiphenyl	%	50-	140	108	116	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT


Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6738931-6738940 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2025-05-14 DATE REPORTED: 2025-05-26

		SAMPLE DES	CRIPTION	BH102 S1	BH106 S1	BH108 S1
		_	PLE TYPE:	Soil	Soil	Soil
		DATE	SAMPLED:	2025-05-07	2025-05-06	2025-05-06
Parameter	Unit	G/S	RDL	6738931	6738938	6738939
F1 (C6 to C10)	μg/g	55	5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10
F3 (C16 to C34)	μg/g	300	50	<50	<50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	<50
F4 (C34 to C50)	μg/g	2800	50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA
Moisture Content	%		0.1	8.3	11.0	11.1
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	%	50-	140	117	85	84
Terphenyl	%	60-	140	64	87	93

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraberty

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2025-05-14					DATE REPORTED: 2025-05-26
	Si	AMPLE DES	CRIPTION:	BH103 S2	
		SAMI	PLE TYPE:	Soil	
		DATES	SAMPLED:	2025-05-08	
Parameter	Unit	G/S	RDL	6738936	
Benzene	μg/g	0.21	0.02	<0.02	
Toluene	μg/g	2.3	0.05	<0.05	
Ethylbenzene	μg/g	2	0.05	<0.05	
m & p-Xylene	μg/g		0.05	<0.05	
o-Xylene	μg/g		0.05	< 0.05	
(Ylenes (Total)	μg/g	3.1	0.05	< 0.05	
=1 (C6 to C10)	μg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	7.1	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	60-1	40	88	
Terphenyl	%	60-1	40	90	

Certified By:

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:DB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2025-05-14 DATE REPORTED: 2025-05-26

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738936

Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

O. Reg. 153(511) - VOCs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

SAMPLING SITE:Ottawa

DATE RECEIVED: 2025-05-14						DATE REPORTED: 2025-05-26
	;	SAMPLE DESC	CRIPTION:	BH101 S1	BH103 S1	
		SAME	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2025-05-05	2025-05-08	
Parameter	Unit	G/S	RDL	6738925	6738935	
Dichlorodifluoromethane	μg/g	16	0.05	< 0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	< 0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	< 0.05	
Acetone	ug/g	16	0.50	< 0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	< 0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	< 0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	< 0.02	<0.02	
Chloroform	ug/g	0.05	0.04	< 0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	<0.05	
Benzene	ug/g	0.21	0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	< 0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	< 0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	<0.04	
Toluene	ug/g	2.3	0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	0.07	<0.05	
,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	< 0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	< 0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	< 0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:DB

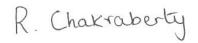
O. Reg.	153(5	1) - V	OCs ((Soil)	
---------	-------	--------	-------	--------	--

DATE RECEIVED: 2025-05-14					DATE REPORTED: 2025-05-26
	S	AMPLE DESCRIP	ΓΙΟΝ: BH101 S	S1 BH103 S1	
		SAMPLE T	YPE: Soil	Soil	
		DATE SAMP	LED: 2025-05-	05 2025-05-08	
Parameter	Unit	G/S R	DL 673892	5 6738935	
Bromoform	ug/g	0.27 0.	05 <0.05	<0.05	
Styrene	ug/g	0.7 0.	05 <0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05 0.	05 <0.05	< 0.05	
o-Xylene	ug/g	0.	05 <0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	4.8 0.	05 <0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083 0.	05 <0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	3.4 0.	05 <0.05	< 0.05	
(Ylenes (Total)	ug/g	3.1 0.	05 <0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05 0.	04 <0.04	<0.04	
n-Hexane	μg/g	2.8 0.	05 <0.05	< 0.05	
Moisture Content	%	0	.1 10.5	6.2	
Surrogate	Unit	Acceptable Lin	nits		
Toluene-d8	% Recovery	50-140	84	101	
4-Bromofluorobenzene	% Recovery	50-140	96	82	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738925-6738935 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.


Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC SAMPLING SITE:Ottawa

O. Reg. 153(511) - VOCs (with PHC) (Soil)

					(***)	S (WITH PHC)	, (· · · ·)
DATE RECEIVED: 2025-05-14							DATE REPORTED: 2025-05-26
		SAMPLE DESCI	RIPTION:	BH102 S1	BH106 S1	BH108 S1	
		SAMPL	E TYPE:	Soil	Soil	Soil	
		DATE SA	AMPLED:	2025-05-07	2025-05-06	2025-05-06	
Parameter	Unit	G/S	RDL	6738931	6738938	6738939	
Dichlorodifluoromethane	μg/g	16	0.05	< 0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	< 0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	< 0.05	<0.05	
Acetone	ug/g	16	0.50	< 0.50	< 0.50	< 0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	< 0.02	< 0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	
Benzene	ug/g	0.21	0.02	< 0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	< 0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	< 0.04	<0.04	
Toluene	ug/g	2.3	0.05	< 0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	< 0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	< 0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	< 0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	< 0.05	< 0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	< 0.05	<0.05	
m & p-Xylene	ug/g		0.05	< 0.05	< 0.05	<0.05	

Certified By:

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

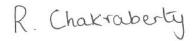
O. Reg. 153(511) - VOCs (with PHC) (Soil)

					,	•	
DATE RECEIVED: 2025-05-14							DATE REPORTED: 2025-05-26
	s	AMPLE DESC	RIPTION:	BH102 S1	BH106 S1	BH108 S1	
		SAMPI	LE TYPE:	Soil	Soil	Soil	
		DATE SA	DATE SAMPLED:		2025-05-06	2025-05-06	
Parameter	Unit	G/S	G/S RDL		6738938	6738939	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	< 0.05	
Styrene	ug/g	0.7	0.05	< 0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	<0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	ug/g	3.1	0.05	< 0.05	<0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	μg/g	2.8	0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	8.3	11.0	11.1	
Surrogate	Unit	Acceptable	Limits				
Toluene-d8	% Recovery	50-14	10	117	85	84	
4-Bromofluorobenzene	% Recovery	50-14	10	88	74	88	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738931-6738939 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.


Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6738931	BH102 S1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.727

AGAT WORK ORDER: 25T291319

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:DB

			Soi	ΙΔn	alysis	•								
RPT Date: May 26, 2025			OUPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce	ptable nits
TAKAMETEK	ld ld	Jup "	Bup #2	5		Value	Lower	Upper	110001019		Upper	110001019	Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)						•			•				
Antimony	6735264	<0.8	<0.8	NA	< 0.8	118%	70%	130%	98%	80%	120%	123%	70%	130%
Arsenic	6735264	5	5	0.0%	< 1	101%	70%	130%	90%	80%	120%	95%	70%	130%
Barium	6735264	138	139	0.7%	< 2.0	106%	70%	130%	105%	80%	120%	108%	70%	130%
Beryllium	6735264	8.0	0.8	NA	< 0.5	78%	70%	130%	84%	80%	120%	83%	70%	130%
Boron	6735264	24	24	NA	< 5	130%	70%	130%	115%	80%	120%	75%	70%	130%
Boron (Hot Water Soluble)	6735264	0.65	0.68	4.5%	< 0.10	119%	60%	140%	106%	70%	130%	115%	60%	140%
Cadmium	6735264	<0.5	< 0.5	NA	< 0.5	107%	70%	130%	98%	80%	120%	106%	70%	130%
Chromium	6735264	27	28	3.6%	< 5	95%	70%	130%	97%	80%	120%	NA	70%	130%
Cobalt	6735264	10.6	11.2	5.5%	< 0.8	91%	70%	130%	99%	80%	120%	102%	70%	130%
Copper	6735264	21.2	22.1	4.2%	< 1.0	89%	70%	130%	102%	80%	120%	105%	70%	130%
Lead	6735264	17	17	0.0%	< 1	103%	70%	130%	107%	80%	120%	107%	70%	130%
Molybdenum	6735264	<0.5	<0.5	NA	< 0.5	99%	70%	130%	99%	80%	120%	103%	70%	130%
Nickel	6735264	22	23	4.4%	< 1	92%	70%	130%	98%	80%	120%	93%	70%	130%
Selenium	6735264	0.9	1.1	NA	< 0.8	97%	70%	130%	113%	80%	120%	114%	70%	130%
Silver	6735264	<0.5	<0.5	NA	< 0.5	97%	70%	130%	98%	80%	120%	103%	70%	130%
Thallium	6735264	<0.5	<0.5	NA	< 0.5	106%	70%	130%	102%	80%	120%	106%	70%	130%
Uranium	6735264	< 0.50	0.52	NA	< 0.50	107%	70%	130%	102%	80%	120%	109%	70%	130%
Vanadium	6735264	37.0	37.5	1.3%	< 2.0	94%	70%	130%	95%	80%	120%	108%	70%	130%
Zinc	6735264	81	86	6.0%	< 5	99%	70%	130%	98%	80%	120%	NA	70%	130%
Chromium, Hexavalent	6745488	<0.2	<0.2	NA	< 0.2	103%	70%	130%	94%	80%	120%	85%	70%	130%
Cyanide, WAD	6735258	<0.040	<0.040	NA	< 0.040	98%	70%	130%	96%	80%	120%	110%	70%	130%
Mercury	6735264	<0.10	<0.10	NA	< 0.10	101%	70%	130%	101%	80%	120%	106%	70%	130%
Electrical Conductivity (2:1)	6738931 6738931	0.727	0.722	0.7%	< 0.005	98%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) (Calc.)	6738931 6738931	3.1	3.1	0.0%	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	6745705	6.14	6.36	3.5%	NA	97%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

manjot Bhells AMANJOT BHELA

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 23

AGAT WORK ORDER: 25T291319

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:DB

Trace Organics Analysis															
RPT Date: May 26, 2025			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	1 1 10	ptable nits	Recovery		ptable nits
TANAMETER	Buton	ld	Dup " 1	Dup #2	111 2		Value	Lower	Upper	110001019	Lower	Upper	necovery	Lower	Uppe
O. Reg. 153(511) - VOCs (Soil)							•								
Dichlorodifluoromethane	6459448		< 0.05	< 0.05	NA	< 0.05	70%	50%	140%	83%	50%	140%	85%	50%	140%
Vinyl Chloride	6459448		< 0.02	< 0.02	NA	< 0.02	107%	50%	140%	109%	50%	140%	127%	50%	140%
Bromomethane	6459448		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	50%	140%	102%	50%	140%
Trichlorofluoromethane	6459448		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	80%	50%	140%	90%	50%	140%
Acetone	6459448		<0.50	<0.50	NA	< 0.50	95%	50%	140%	88%	50%	140%	91%	50%	140%
1,1-Dichloroethylene	6459448		<0.05	<0.05	NA	< 0.05	62%	50%	140%	84%	60%	130%	99%	50%	140%
Methylene Chloride	6459448		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	96%	60%	130%	102%	50%	140%
Trans- 1,2-Dichloroethylene	6459448		< 0.05	< 0.05	NA	< 0.05	67%	50%	140%	92%	60%	130%	113%	50%	140%
Methyl tert-butyl Ether	6459448		< 0.05	< 0.05	NA	< 0.05	68%	50%	140%	74%	60%	130%	87%	50%	140%
1,1-Dichloroethane	6459448		<0.02	<0.02	NA	< 0.02	73%	50%	140%	78%	60%	130%	93%	50%	140%
Methyl Ethyl Ketone	6459448		<0.50	<0.50	NA	< 0.50	99%	50%	140%	133%	50%	140%	86%	50%	140%
Cis- 1,2-Dichloroethylene	6459448		<0.02	< 0.02	NA	< 0.02	110%	50%	140%	97%	60%	130%	97%	50%	140%
Chloroform	6459448		<0.04	< 0.04	NA	< 0.04	91%	50%	140%	77%	60%	130%	104%	50%	140%
1,2-Dichloroethane	6459448		< 0.03	< 0.03	NA	< 0.03	137%	50%	140%	108%	60%	130%	100%	50%	140%
1,1,1-Trichloroethane	6459448		<0.05	< 0.05	NA	< 0.05	98%	50%	140%	98%	60%	130%	89%	50%	140%
Carbon Tetrachloride	6459448		<0.05	<0.05	NA	< 0.05	92%	50%	140%	100%	60%	130%	92%	50%	140%
Benzene	6459448		<0.02	< 0.02	NA	< 0.02	91%	50%	140%	98%	60%	130%	85%	50%	140%
1,2-Dichloropropane	6459448		< 0.03	< 0.03	NA	< 0.03	111%	50%	140%	93%	60%	130%	77%	50%	140%
Trichloroethylene	6459448		< 0.03	< 0.03	NA	< 0.03	101%	50%	140%	103%	60%	130%	109%	50%	140%
Bromodichloromethane	6459448		<0.05	<0.05	NA	< 0.05	103%	50%	140%	87%	60%	130%	80%	50%	140%
Methyl Isobutyl Ketone	6459448		<0.50	<0.50	NA	< 0.50	99%	50%	140%	91%	50%	140%	93%	50%	140%
1,1,2-Trichloroethane	6459448		< 0.04	< 0.04	NA	< 0.04	90%	50%	140%	106%	60%	130%	94%	50%	140%
Toluene	6459448		< 0.05	< 0.05	NA	< 0.05	68%	50%	140%	92%	60%	130%	107%	50%	140%
Dibromochloromethane	6459448		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	101%	60%	130%	75%	50%	140%
Ethylene Dibromide	6459448		<0.04	<0.04	NA	< 0.04	83%	50%	140%	91%	60%	130%	72%	50%	140%
Tetrachloroethylene	6459448		<0.05	<0.05	NA	< 0.05	78%	50%	140%	99%	60%	130%	78%	50%	140%
1,1,1,2-Tetrachloroethane	6459448		< 0.04	< 0.04	NA	< 0.04	85%	50%	140%	96%	60%	130%	75%	50%	140%
Chlorobenzene	6459448		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	93%	60%	130%	94%	50%	140%
Ethylbenzene	6459448		< 0.05	< 0.05	NA	< 0.05	64%	50%	140%	83%	60%	130%	78%	50%	140%
m & p-Xylene	6459448		<0.05	<0.05	NA	< 0.05	77%	50%	140%	93%	60%	130%	101%	50%	140%
Bromoform	6459448		<0.05	<0.05	NA	< 0.05	87%	50%	140%	96%	60%	130%	60%	50%	140%
Styrene	6459448		<0.05	<0.05	NA	< 0.05	82%	50%		95%	60%	130%	105%		140%
1,1,2,2-Tetrachloroethane	6459448		<0.05	<0.05	NA	< 0.05	84%	50%		84%		130%	75%		140%
o-Xylene	6459448		<0.05	< 0.05	NA	< 0.05	83%		140%	95%		130%	105%		140%
1,3-Dichlorobenzene	6459448		<0.05	<0.05	NA	< 0.05	89%		140%	91%		130%	110%		140%
1,4-Dichlorobenzene	6459448		<0.05	<0.05	NA	< 0.05	94%	50%	140%	92%	60%	130%	109%	50%	140%
1,2-Dichlorobenzene	6459448		<0.05	< 0.05	NA	< 0.05	99%	50%		91%	60%		109%	50%	140%
n-Hexane	6459448		<0.05	<0.05	NA	< 0.05	67%		140%	96%		130%	78%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

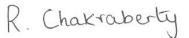
Page 15 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 25T291319

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC


PROJECT: G2S25042B ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:DB

	7	Ггасе	Org	anics	Ana	alysis	(Co	ntin	ued)					
RPT Date: May 26, 2025		DUPLICATE		R	REFERE	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits	le Recovery	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs	and VOC)	(Soil)												
F1 (C6 to C10)	6726786		<5	<5	NA	< 5	102%	60%	140%	106%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6737439		< 10	< 10	NA	< 10	91%	60%	140%	96%	60%	140%	109%	60%	140%
F3 (C16 to C34)	6737439		< 50	< 50	NA	< 50	99%	60%	140%	95%	60%	140%	114%	60%	140%
F4 (C34 to C50)	6737439		< 50	< 50	NA	< 50	92%	60%	140%	87%	60%	140%	105%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6735914		< 0.05	< 0.05	NA	< 0.05	131%	50%	140%	90%	50%	140%	93%	50%	140%
Acenaphthylene	6735914		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	88%	50%	140%	88%	50%	140%
Acenaphthene	6735914		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	98%	50%	140%	88%	50%	140%
Fluorene	6735914		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	90%	50%	140%	95%	50%	140%
Phenanthrene	6735914		<0.05	<0.05	NA	< 0.05	87%	50%	140%	90%	50%	140%	88%	50%	140%
Anthracene	6735914		<0.05	<0.05	NA	< 0.05	84%	50%	140%	93%	50%	140%	93%	50%	140%
Fluoranthene	6735914		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	98%	50%	140%	90%	50%	140%
Pyrene	6735914		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	90%	50%	140%	98%	50%	140%
Benzo(a)anthracene	6735914		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	90%	50%	140%	90%	50%	140%
Chrysene	6735914		<0.05	<0.05	NA	< 0.05	108%	50%	140%	95%	50%	140%	90%	50%	140%
Benzo(b)fluoranthene	6735914		<0.05	<0.05	NA	< 0.05	84%	50%	140%	90%	50%	140%	90%	50%	140%
Benzo(k)fluoranthene	6735914		< 0.05	< 0.05	NA	< 0.05	138%	50%	140%	95%	50%	140%	88%	50%	140%
Benzo(a)pyrene	6735914		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	90%	50%	140%	88%	50%	140%
Indeno(1,2,3-cd)pyrene	6735914		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	90%	50%	140%	90%	50%	140%
Dibenz(a,h)anthracene	6735914		<0.05	<0.05	NA	< 0.05	70%	50%	140%	95%	50%	140%	88%	50%	140%
Benzo(g,h,i)perylene	6735914		<0.05	<0.05	NA	< 0.05	102%	50%	140%	88%	50%	140%	88%	50%	140%
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	6745782		< 0.1	< 0.1	NA	< 0.1	102%	50%	140%	100%	50%	140%	98%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs)	(Soil)													
Benzene	6736028		< 0.02	< 0.02	NA	< 0.02	68%	60%	140%	90%	60%	140%	85%	60%	140%
Toluene	6736028		< 0.05	<0.05	NA	< 0.05	73%	60%	140%	93%	60%	140%	84%	60%	140%
Ethylbenzene	6736028		< 0.05	<0.05	NA	< 0.05	69%	60%	140%	90%	60%	140%	78%	60%	140%
m & p-Xylene	6736028		< 0.05	< 0.05	NA	< 0.05	86%	60%	140%	84%	60%	140%	98%	60%	140%
o-Xylene	6736028		<0.05	<0.05	NA	< 0.05	62%	60%	140%	88%	60%	140%	79%	60%	140%
F1 (C6 to C10)	6736028		<5	<5	NA	< 5	88%	60%	140%	82%	60%	140%	104%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 23

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE.Ollawa		SAMPLED B1.DB		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE	
Soil Analysis				
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES	
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS	
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER	
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS	
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS	
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE	
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES	
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE	

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa		SAMPLED BY:DB					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS				
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE				
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD				
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD				
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

AGAT WORK ORDER: 25T291319

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa		SAMPLED BY:DB				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE			
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS			
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS			
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS			
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS			
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS			
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS			
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS			
Dichlorodifluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Vinyl Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Bromomethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Trichlorofluoromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Acetone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
1,1-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Methylene Chloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
1,1-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Chloroform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
1,2-Dichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Carbon Tetrachloride	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Benzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
1,2-Dichloropropane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Trichloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Bromodichloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS			

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319
PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SHE:Ottawa		SAMPLED BY:DB	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa		SAMPLED BY:DB	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291319

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

GGGT Laboratories

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue, Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

> 5623 McAdam Road, Mississauga, ON L4Z 1N9 1686 Woodward Drive, Ottawa, ON, K2C 3R8

> > webearth.agatlabs.com

Laboratory Use Only

Work Order #: 25T291319

Cooler Quantity:

Chain of Custody Record If this is a Drinking Water sample	e, please use Drinking Water Chain of Custody Form (potable	water consumed by humans)	Depot Temperatures:				
Report Information: G72S	Regulatory Requirements: (Please check all applicable boxes)		Custody Seal Intact: Yes No Notes: No Seal Ce				
Contact: Hailey Verras	Regulation 153/04 Regulation 406	Sewer Use	Turnaround Time (TAT) Required:				
Address: 4301 Harvester Rd-Unt		-					
Burlington on 905 220 3587 Fax:		Region	J to r business bays				
Filone:		Prov. Water Quality Objectives (PWQO)	Rush TAT (Rush Surcharges Apply)				
1. Email: havey Pegesconsulting covi	Soil Texture (Check One) Regulation 558	Other	3 Business 2 Business Days Day				
2. Email: stephaniel@q2sconsulting. com	Fine CCME	Indicate One	OR Date Required (Rush Surcharges May Apply):				
Project Information:	Is this submission for a Record of Site Condition (RSC)?	Report Guideline on Certificate of Analysis	Please provide prior notification for rush TAT				
Project: 625750428 Site Location: 044aw 9	Yes □ No	Yes No	*TAT is exclusive of weekends and statutory holidays				
Site Location:	A les 🗀 No	A les LI NO	For 'Same Day' analysis, please contact your AGAT CSR				
AGAT Quote #: Standing Offer Po:	Legal Sample □	O. Reg 153	0. Reg 406 0. Reg 558 2				
Please note: If quotation number is not provided, client will be billed full price for analysis.	Legal Sample	rYi, D	Kage				
Invoice Information: Bill To Same: Yes	No □ Sample Matrix Legend	BB BB	ration Package also Package aster Leach Ization TCLP: Ization TCLP: Sulphide Concentration (Y				
Company:	GW Ground Water SD Sediment	etals, Hg	izatic iz				
Contact:	O Oil SW Surface Water	d. Me	haracterization F1.F4 PLP Rainwate Characterization CS □ Aebs □ ID Sture □ Sull PFAS Soil: □ PFAS Soil: □ Nus or High Con				
Address:	P Paint R Rock/Shale	Inorganics CrVI, □ H F4 PHCs	SPLP SPLP SPLP SPLP SPLP SPLP SPLP SPLP				
Email:	S Soil	Field Filtered - Metals, Hg, Gwl, DOC s & Inorganics - □ Crvl, □ Hg, □ HWSB F1-F4 PHCs Aroclors □	1 406 Ct 3, BTEX, I 1 406 SP Netals Sposal C St □ No.				
	of Sample Comments/	(A) (A) (L) (A)	Regulation 406 Characterization Package DH, Metals, BTEX, F1-F4 EC. SAR Regulation 406 SPLP Rainwater Leach SPLP: □ Metals □ Voos □ SVoos □ oc InSPLP: □ Metals □ Voos □ SVoos □ oc InSPLP: □ Metals □ Voos □ SVoos □ oc Insplication TCLP: □ Metal □ Noos □ ABNS □ oc Corrosivity: □ Moisture □ Sulphide PFAS Water: □ PFAS Soil: □				
	of Sample Comments/ alners Matrix Special Instructions	Metals Metals Woc Voc PAHs PCBs: A	Reggine PH, I				
1. BHIOISI 05/05/25 AM	3 5	X					
	4 5	XXXXX					
3. BH103 51 0510015 AM	3 5	X					
4. BH103 52	4 S	XXX					
3. DH (06 3)	4 5	XXXX					
6. RH108S1 V AM 4	1 5	XXXX					
7. BHID9 SI 05/07/25 AM 1	S	X					
8. AM PM							
9. AM PM							
10. AM PM							
11. AM PM							
Samples Relinquished by Print Name and Sign! Lander Revices Have 1 15/1415	2 00 Samples Received it (Print Name and Sign)	May L	1,2025 3:58 pm / 1				
Samples Relinquisited By (Print Name and Sign):	Time Samnles Received By (Print Name and Sign):	Date	Time Pageof				
Samples Relinquished By (Print Name and Sign): Date	Time Samples Received By (Print Name and Sign):	Date	Time No:				

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC 4361 HARVESTERROAD, UNIT 12 BURLINGTON, ON L7L 5M4

(905) 331-3735

ATTENTION TO: Hailey Perras PROJECT: G2S25042B

AGAT WORK ORDER: 25T291322

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: May 26, 2025

PAGES (INCLUDING COVER): 20 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 20

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:DB

Or time En to on Elottawa						67.11.11. 2.2.5 5 1.2.5
			C). Reg. 153(51 ²	1) - PAHs (Wate	er)
DATE RECEIVED: 2025-05-14						DATE REPORTED: 2025-05-26
		SAMPLE DESCRIP	TION: BI	H1 BH107	BH109	
		SAMPLE 1	ΓΥΡΕ: Wa	ter Water	Water	
		DATE SAME	PLED: 2025-	05-08 2025-05-0	8 2025-05-08	
Parameter	Unit	G/S R	DL 6738	8796 6738818	6738819	
Naphthalene	μg/L	1400 0	.20 <0.	20 <0.20	<0.20	
Acenaphthylene	μg/L	1.8 0	.20 <0.	20 <0.20	<0.20	
Acenaphthene	μg/L	600 0	.20 <0.	20 <0.20	<0.20	
Fluorene	μg/L	400 0	.20 <0.	20 <0.20	<0.20	
Phenanthrene	μg/L	580 0	.10 <0.	10 <0.10	<0.10	
Anthracene	μg/L	2.4 0	.10 <0.	10 <0.10	<0.10	
Fluoranthene	μg/L	130 0	.20 <0.	20 <0.20	<0.20	
Pyrene	μg/L	68 0	.20 <0.	20 <0.20	<0.20	
Benzo(a)anthracene	μg/L	4.7 0	.20 <0.	20 <0.20	<0.20	
Chrysene	μg/L	1 0	.10 <0.	10 <0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75 0	.10 <0.	10 <0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4 0	.10 <0.	10 <0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81 0	.01 <0.	01 <0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2 0	.20 <0.	20 <0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52 0	.20 <0.	20 <0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2 0	.20 <0.	20 <0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	1800 0	.20 <0.	20 <0.20	<0.20	
Sediment			1	1	1	
Surrogate	Unit	Acceptable Lir	nits			
Naphthalene-d8	%	50-140	11	3 117	117	
Acridine-d9	%	50-140	8	3 91	112	
Terphenyl-d14	%	50-140	9	6 100	99	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

MPoprikolog

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:DB

O. Reg. 153(511) - PCBs (Water)								
DATE RECEIVED: 2025-05-14						DATE REPORTED: 2025-05-26		
		SAMPLE DES	CRIPTION:	BH102	BH110			
		SAM	PLE TYPE:	Water	Water			
		DATE	SAMPLED:	2025-05-08	2025-05-08			
Parameter	Unit	G/S	RDL	6738806	6738821			
Polychlorinated Biphenyls	μg/L	7.8	0.1	<0.1	<0.1			
Surrogate	Unit	Acceptab	le Limits					
Decachlorobiphenyl	%	60-	140	85	94			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738806-6738821 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE: Ottawa

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

			, ,		`	, ,
DATE RECEIVED: 2025-05-14						DATE REPORTED: 2025-05-26
	,	SAMPLE DESCRIPTI	ON: BH1	BH107	BH109	
		SAMPLE TY	PE: Water	Water	Water	
		DATE SAMPL	.ED: 2025-05-08	2025-05-08	2025-05-08	
Parameter	Unit	G/S RD	L 6738796	6738818	6738819	
F1 (C6 to C10)	μg/L	750 25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750 25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500) NA	NA	NA	
Sediment			1	1	1	
Surrogate	Unit	Acceptable Limi	ts			
Toluene-d8	%	50-140	97	99	98	
Terphenyl	% Recovery	60-140	111	106	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprikolof

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

			•	,	`	, (,
DATE RECEIVED: 2025-05-14							DATE REPORTED: 2025-05-26
	S	SAMPLE DESCRIPTION:	BH4	BH102	BH105	BH106	
		SAMPLE TYPE:	Water	Water	Water	Water	
		DATE SAMPLED:	2025-05-09	2025-05-08	2025-05-08	2025-05-08	
Parameter	Unit	G/S RDL	6738799	6738806	6738808	6738815	
F1 (C6 to C10)	μg/L	750 25	<25	27	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750 25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	NA	NA	NA	
Sediment			1	3	3	3	
Surrogate	Unit	Acceptable Limits					
Toluene-d8	%	50-140	99	96	98	98	
Terphenyl	% Recovery	60-140	75	111	99	69	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738799-6738815 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:DB

O/ (IVII EII VO OITE. Ottawa							GAMILLED BY: DD
				O. Reg	j. 1 <u>53(511)</u> -	VOCs (Water	r)
DATE RECEIVED: 2025-05-14							DATE REPORTED: 2025-05-26
		SAMPLE DESC	CRIPTION:	BH101	BH104	TRIP BLANK	
		SAME	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	2025-05-08	2025-05-09	2025-05-01	
Parameter	Unit	G/S	RDL	6738803	6738807	6738823	
Dichlorodifluoromethane	μg/L	4400	0.40	<0.40	< 0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	5.6	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	< 0.30	< 0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	< 0.30	< 0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	< 0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	< 0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	44	0.20	0.76	<0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	4.42	1.72	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	

Certified By:

<0.10

< 0.20

μg/L

μg/L

2300

0.10

0.20

0.28

3.43

Ethylbenzene

m & p-Xylene

0.33

4.45

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ROJECT. G2323042B

ATTENTION TO: Hailey Perras SAMPLED BY:DB

O. Reg. 153(511) - VOCs (Water)

				O. Neg	. 153(511) -	· vocs (vvai	ਤ। <i>)</i>
DATE RECEIVED: 2025-05-14							DATE REPORTED: 2025-05-26
	S	SAMPLE DES	CRIPTION:	BH101	BH104	TRIP BLANK	
		SAMI	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	2025-05-08	2025-05-09	2025-05-01	
Parameter	Unit	G/S	RDL	6738803	6738807	6738823	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	1.23	1.53	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	< 0.30	< 0.30	< 0.30	
Xylenes (Total)	μg/L	4200	0.20	4.66	5.98	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	% Recovery	50-1	140	99	97	96	
4-Bromofluorobenzene	% Recovery	50-1	140	110	113	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738803-6738823 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

				<u> </u>						
DATE RECEIVED: 2025-05-14							I	DATE REPORTI	ED: 2025-05-26	
		SAMPLE DESCRIPTIO SAMPLE TYP DATE SAMPLE	E: Water	BH4 Water 2025-05-09	BH102 Water 2025-05-08	BH105 Water 2025-05-08	BH106 Water 2025-05-08	BH107 Water 2025-05-08	BH109 Water 2025-05-08	
Parameter	Unit	G/S RDL	6738796	6738799	6738806	6738808	6738815	6738818	6738819	
Dichlorodifluoromethane	μg/L	4400 0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	0.5 0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	5.6 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500 0.40	<0.40	< 0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	130000 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Methylene Chloride	μg/L	610 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	190 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	320 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640 0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.79 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	44 0.20	<0.20	<0.20	0.92	0.24	0.27	0.31	<0.20	
1,2-Dichloropropane	μg/L	16 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000 0.20	<0.20	0.72	5.17	0.86	0.92	1.14	<0.20	
Dibromochloromethane	μg/L	82000 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.25 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300 0.10	<0.10	<0.10	0.35	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L	0.20	<0.20	<0.20	4.47	1.61	0.67	0.88	<0.20	

SAMPLING SITE: Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

				<u> </u>	,	•	, , ,				
DATE RECEIVED: 2025-05-14								[DATE REPORTE	ED: 2025-05-26	
	S	SAMPLE DES	CRIPTION:	BH1	BH4	BH102	BH105	BH106	BH107	BH109	
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	
		DATE S	SAMPLED:	2025-05-08	2025-05-09	2025-05-08	2025-05-08	2025-05-08	2025-05-08	2025-05-08	
Parameter	Unit	G/S	RDL	6738796	6738799	6738806	6738808	6738815	6738818	6738819	
Bromoform	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	1300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	3.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	1.57	0.71	0.31	0.38	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	5.2	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
Xylenes (Total)	μg/L	4200	0.20	<0.20	<0.20	6.04	2.32	0.98	1.26	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	97	99	96	98	98	99	98	
4-Bromofluorobenzene	% Recovery	50-1	40	117	112	111	112	112	110	114	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:Ottawa

Certificate of Analysis

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLED BY:DB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14								Γ	DATE REPORTE	D: 2025-05-26
	5	SAMPLE DESC	RIPTION:	BH1		BH106		BH107	BH109	
		SAMP	LE TYPE:	Water		Water		Water	Water	
			AMPLED:	2025-05-08		2025-05-08		2025-05-08	2025-05-08	
Parameter	Unit	G/S	RDL	6738796	RDL	6738815	RDL	6738818	6738819	
Dissolved Antimony	μg/L	20000	1.0	<1.0	1.0	<1.0	1.0	2.0	<1.0	
Dissolved Arsenic	μg/L	1900	1.0	<1.0	1.0	1.9	1.0	1.2	<1.0	
Dissolved Barium	μg/L	29000	2.0	29.2	2.0	460	2.0	230	28.1	
Dissolved Beryllium	μg/L	67	0.50	<0.50	0.50	< 0.50	0.50	<0.50	<0.50	
Dissolved Boron	μg/L	45000	10.0	252	10.0	279	10.0	133	307	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	0.20	< 0.20	0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	2.0	<2.0	2.0	2.4	<2.0	
Dissolved Cobalt	μg/L	66	0.50	1.51	0.50	< 0.50	0.50	94.1	1.90	
Dissolved Copper	μg/L	87	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0	
Dissolved Lead	μg/L	25	0.50	0.51	0.50	1.42	0.50	1.24	<0.50	
Dissolved Molybdenum	μg/L	9200	0.50	0.91	0.50	3.37	0.50	17.7	4.26	
Dissolved Nickel	μg/L	490	1.0	8.6	1.0	<1.0	1.0	60.6	10.8	
Dissolved Selenium	μg/L	63	1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0	
Dissolved Silver	μg/L	1.5	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	< 0.30	0.30	< 0.30	0.30	0.44	<0.30	
Dissolved Uranium	μg/L	420	0.50	14.4	0.50	1.81	0.50	26.0	13.0	
Dissolved Vanadium	μg/L	250	0.40	<0.40	0.40	<0.40	0.40	<0.40	<0.40	
Dissolved Zinc	μg/L	1100	5.0	<5.0	5.0	18.1	5.0	10.7	<5.0	
Mercury	μg/L	0.29	0.02	<0.02	0.02	< 0.02	0.02	< 0.02	<0.02	
Chromium VI	μg/L	140	2.000	<2.000	2.000	<2.000	2.000	<2.000	<2.000	
Cyanide, WAD	μg/L	66	2	<2	2	<2	2	<2	<2	
Dissolved Sodium	μg/L	2300000	500	2280000	500	854000	500	1440000	2450000	
Chloride	μg/L	2300000	244	4670000	122	827000	244	2490000	4560000	
рН	pH Units		NA	7.50	NA	7.51	NA	7.46	7.46	

Certified By:

Yrus Verastegui

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:DB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-05-14 DATE REPORTED: 2025-05-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW CT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6738796-6738819 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured

results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

Exceedance Summary

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6738796	BH1	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	µg/L	2300000	4670000
6738818	BH107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	2490000
6738818	BH107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Cobalt	μg/L	66	94.1
6738819	BH109	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	4560000
6738819	BH109	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	μg/L	2300000	2450000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:DB

PARAMETER	
PARAMETER Batch Sample Dup #1 Dup #2 RPD Blank Measured Limits Recovery Limits Recovery Limits Recovery Dup #1 Recovery Rec	IX SPIKE
Color Colo	Acceptable Limits
FI (C6 fo C10)	ower Uppe
F2 (C10 to C16) 6737225	
F3 (C16 to C34) 6737225	60% 140%
F4 (C34 to C50) 6737225 < <100 < 100 NA < 100 65% 60% 140% 82% 60% 140% 90% 90% 100 NA < 100 65% 60% 140% 82% 60% 140% 90% 90% 100% 100% 100% 100% 100% 100%	60% 140%
Naphthalene	60% 140%
Naphthalene 6738824	60% 140%
Acenaphthylene 6738824	
Acenaphthene 6738824	50% 140%
Fluorene 6738824	50% 140%
Phenanthrene 6738824 <0.10 <0.10 NA < 0.10 106% 50% 140% 78% 50% 140% 72% Anthracene 6738824 <0.10	50% 140%
Anthracene 6738824	50% 140%
Fluoranthene 6738824	50% 140%
Fluoranthene 6738824	50% 140%
Pyrene 6738824	50% 140%
Benzo(a)anthracene 6738824 <0.20 <0.20 NA <0.20 79% 50% 140% 95% 50% 140% 84% Chrysene 6738824 <0.10	50% 140%
Chrysene 6738824	50% 140%
Benzo(k)fluoranthene 6738824 <0.10	50% 140%
Benzo(k)fluoranthene 6738824 <0.10	50% 140%
Benzo(a)pyrene 6738824 <0.01 <0.01 NA < 0.01 76% 50% 140% 88% 50% 140% 95% Indeno(1,2,3-cd)pyrene 6738824 <0.20	50% 140%
Indeno(1,2,3-cd)pyrene	50% 140% 50% 140%
Dibenz(a,h)anthracene 6738824	50% 140% 50% 140%
O. Reg. 153(511) - VOCs (with PHC) (Water) Dichlorodifluoromethane 6737084	50% 140%
Dichlorodifluoromethane 6737084 < 0.40 < 0.40 NA < 0.40 103% 50% 140% 98% 50% 140% 87% Vinyl Chloride 6737084 < 0.17	50% 140%
Dichlorodifluoromethane 6737084 < 0.40 < 0.40 NA < 0.40 103% 50% 140% 98% 50% 140% 87% Vinyl Chloride 6737084 < 0.17	
Vinyl Chloride 6737084 < 0.17 < 0.17 NA < 0.17 74% 50% 140% 93% 50% 140% 80% Bromomethane 6737084 < 0.20	50% 140%
Bromomethane 6737084 <0.20 <0.20 NA < 0.20 127% 50% 140% 89% 50% 140% 66% Trichlorofluoromethane 6737084 <0.40	50% 140%
Trichlorofluoromethane 6737084 <0.40 <0.40 NA <0.40 80% 50% 140% 71% 50% 140% 64% Acetone 6737084 <1.0	50% 140%
Acetone 6737084 <1.0 <1.0 NA <1.0 89% 50% 140% 116% 50% 140% 105% 1,1-Dichloroethylene 6737084 <0.30 <0.30 NA <0.30 79% 50% 140% 80% 60% 130% 77% Methylene Chloride 6737084 <0.30 <0.30 NA <0.30 77% 50% 140% 127% 60% 130% 64% trans- 1,2-Dichloroethylene 6737084 <0.20 <0.20 NA <0.20 86% 50% 140% 68% 60% 130% 70% Methyl tert-butyl ether 6737084 <0.20 <0.20 NA <0.20 95% 50% 140% 90% 60% 130% 72% 1,1-Dichloroethane 6737084 <0.30 <0.30 NA <0.30 76% 50% 140% 92% 60% 130% 73% Methyl Ethyl Ketone 6737084 <1.0 <1.0 NA <1.0 93% 50% 140% 80% 50% 140% 67%	50% 140%
Methylene Chloride 6737084 <0.30 <0.30 NA <0.30 77% 50% 140% 127% 60% 130% 64% trans- 1,2-Dichloroethylene 6737084 <0.20	50% 140%
Methylene Chloride 6737084 <0.30 <0.30 NA <0.30 77% 50% 140% 127% 60% 130% 64% trans- 1,2-Dichloroethylene 6737084 <0.20	50% 140%
trans- 1,2-Dichloroethylene 6737084 <0.20 <0.20 NA <0.20 86% 50% 140% 68% 60% 130% 70% Methyl tert-butyl ether 6737084 <0.20 <0.20 NA <0.20 95% 50% 140% 90% 60% 130% 72% 1,1-Dichloroethane 6737084 <0.30 <0.30 NA <0.30 76% 50% 140% 92% 60% 130% 73% Methyl Ethyl Ketone 6737084 <1.0 <1.0 NA <1.0 93% 50% 140% 80% 50% 140% 67%	50% 140%
Methyl tert-butyl ether 6737084 <0.20	50% 140%
1,1-Dichloroethane 6737084 <0.30	50% 140%
\cdot \cdot	50% 140%
• •	50% 140%
, , , , , , , , , , , , , , , , , , , ,	50% 140%
Chloroform 6737084 <0.20 <0.20 NA <0.20 74% 50% 140% 72% 60% 130% 70%	50% 140%
	50% 140%
	50% 140%
Carbon Tetrachloride 6737084 <0.20 <0.20 NA < 0.20 73% 50% 140% 114% 60% 130% 98%	50% 140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 20

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:DB

	Tr	ace	Orga	anics	Ana	lysis	(Cor	ntin	ued	l)					
RPT Date: May 26, 2025			С	DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MAT	RIX SP	IKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery		ptable nits	Recovery		eptable mits
		ld	- '				Value	Lower	Upper	,	Lower	Upper		Lower	Uppei
Benzene	6737084		<0.20	<0.20	NA	< 0.20	75%	50%	140%	71%	60%	130%	68%	50%	140%
1,2-Dichloropropane	6737084		<0.20	<0.20	NA	< 0.20	76%	50%	140%	74%	60%	130%	71%	50%	140%
Trichloroethylene	6737084		<0.20	<0.20	NA	< 0.20	64%	50%	140%	76%	60%	130%	75%	50%	140%
Bromodichloromethane	6737084		<0.20	<0.20	NA	< 0.20	95%	50%	140%	68%	60%	130%	66%	50%	140%
Methyl Isobutyl Ketone	6737084		<1.0	<1.0	NA	< 1.0	80%	50%	140%	105%	50%	140%	69%	50%	140%
1,1,2-Trichloroethane	6737084		<0.20	<0.20	NA	< 0.20	93%	50%	140%	84%	60%	130%	85%	50%	140%
Toluene	6737084		<0.20	<0.20	NA	< 0.20	115%	50%	140%	81%	60%	130%	78%	50%	140%
Dibromochloromethane	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	82%	60%	130%	85%	50%	140%
Ethylene Dibromide	6737084		<0.10	<0.10	NA	< 0.10	87%	50%	140%	75%	60%	130%	77%	50%	140%
Tetrachloroethylene	6737084		<0.20	<0.20	NA	< 0.20	58%	50%	140%	90%	60%	130%	81%	50%	140%
1,1,1,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	69%	50%	140%	71%	60%	130%	79%	50%	140%
Chlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	65%	50%	140%	86%	60%	130%	83%	50%	140%
Ethylbenzene	6737084		<0.10	<0.10	NA	< 0.10	110%	50%	140%	82%	60%	130%	79%	50%	140%
m & p-Xylene	6737084		<0.20	<0.20	NA	< 0.20	60%	50%	140%	85%	60%	130%	82%	50%	140%
Bromoform	6737084		<0.10	<0.10	NA	< 0.10	93%	50%	140%	87%	60%	130%	106%	50%	140%
Styrene	6737084		<0.10	<0.10	NA	< 0.10	67%	50%	140%	83%	60%	130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	6737084		<0.10	<0.10	NA	< 0.10	86%	50%	140%	89%	60%	130%	91%	50%	140%
o-Xylene	6737084		<0.10	<0.10	NA	< 0.10	70%	50%	140%	86%	60%	130%	84%	50%	140%
1,3-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	74%	50%	140%	87%	60%	130%	89%	50%	140%
1,4-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	81%	50%	140%	95%	60%	130%	98%	50%	140%
1,2-Dichlorobenzene	6737084		<0.10	<0.10	NA	< 0.10	84%	50%	140%	96%	60%	130%	100%	50%	140%
n-Hexane	6737084		<0.20	<0.20	NA	< 0.20	99%	50%	140%	93%	60%	130%	66%	50%	140%
Comments: When the average of the	e sample and d	uplicate	results is l	ess than 5	x the RDI	_, the Rela	tive Perce	nt Diffe	rence (F	RPD) will b	e indic	ated as	Not Applic	able (l	NA).
O. Reg. 153(511) - PHCs F1 - F4 ((with VOC) (Wa	ater)													
F1 (C6 to C10)	6737084		<25	<25	NA	< 25	77%	60%	140%	81%	60%	140%	99%	60%	140%
O. Reg. 153(511) - PCBs (Water)															
Polychlorinated Biphenyls	6738821 673	38821	< 0.1	< 0.1	NA	< 0.1	106%	50%	140%	91%	50%	140%	95%	50%	140%

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:DB

OANII ELIO OTE. OLIUNA															
Water Analysis															
RPT Date: May 26, 2025			DUPLICATE				REFERE	REFERENCE MATERIAL		METHOD BLANK SPIKE			MAT	MATRIX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	eptable mits
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorg	janics (Wate	er)													•
Dissolved Antimony	6738615		1.9	1.9	NA	< 1.0	100%	70%	130%	98%	80%	120%	97%	70%	130%
Dissolved Arsenic	6738615		4.4	4.1	NA	< 1.0	93%	70%	130%	91%	80%	120%	101%	70%	130%
Dissolved Barium	6738615		97.9	101	3.1%	< 2.0	95%	70%	130%	93%	80%	120%	93%	70%	130%
Dissolved Beryllium	6738615		< 0.50	< 0.50	NA	< 0.50	105%	70%	130%	100%	80%	120%	101%	70%	130%
Dissolved Boron	6738615		160	151	5.8%	< 10.0	99%	70%	130%	98%	80%	120%	98%	70%	130%
Dissolved Cadmium	6738615		<0.20	<0.20	NA	< 0.20	100%	70%	130%	97%	80%	120%	96%	70%	130%
Dissolved Chromium	6738615		<2.0	<2.0	NA	< 2.0	95%	70%	130%	100%	80%	120%	93%	70%	130%
Dissolved Cobalt	6738615		0.87	0.77	NA	< 0.50	93%	70%	130%	102%	80%	120%	95%	70%	130%
Dissolved Copper	6738615		1.5	2.2	NA	< 1.0	98%	70%	130%	101%	80%	120%	94%	70%	130%
Dissolved Lead	6738615		<0.50	<0.50	NA	< 0.50	91%	70%	130%	94%	80%	120%	92%	70%	130%
Dissolved Molybdenum	6738615		10.2	11.1	8.5%	< 0.50	104%	70%	130%	114%	80%	120%	106%	70%	130%
Dissolved Nickel	6738615		2.3	3.9	NA	< 1.0	92%	70%	130%	105%	80%	120%	96%	70%	130%
Dissolved Selenium	6738615		<1.0	<1.0	NA	< 1.0	97%	70%	130%	97%	80%	120%	98%	70%	130%
Dissolved Silver	6738615		<0.20	< 0.20	NA	< 0.20	102%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Thallium	6738615		<0.30	< 0.30	NA	< 0.30	94%	70%	130%	99%	80%	120%	95%	70%	130%
Dissolved Uranium	6738615		5.08	4.97	2.2%	< 0.50	95%	70%	130%	99%	80%	120%	97%	70%	130%
Dissolved Vanadium	6738615		< 0.40	0.91	NA	< 0.40	99%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Zinc	6738615		<5.0	<5.0	NA	< 5.0	96%	70%	130%	94%	80%	120%	96%	70%	130%
Mercury	6740989		< 0.02	< 0.02	NA	< 0.02	103%	70%	130%	97%	80%	120%	95%	70%	130%
Chromium VI	6737246		<2.000	<2.000	NA	< 2	102%	70%	130%	102%	80%	120%	104%	70%	130%
Cyanide, WAD	6744990		<2	<2	NA	< 2	90%	70%	130%	NA	80%	120%	102%	70%	130%
Dissolved Sodium	6738615		57000	47700	17.8%	< 50	112%	70%	130%	105%	80%	120%	107%	70%	130%
Chloride	6737247		75400	75400	0.0%	< 100	98%	70%	130%	105%	80%	120%	105%	70%	130%
pH	6719189		7.35	7.32	0.5%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

AGAT WORK ORDER: 25T291322

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa		SAMPLED BY:DB					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Sediment			N/A				
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD				
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD				
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

SAMPLING SITE. Ottawa		SAIVIPLED BT.DB	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

	SAMPLED BY.DB	
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5001	AGAT S.O.P LITERATURE REFERENCE VOL-91-5001 modified from EPA 5030B & EPA 8260D MOL-91-5001 modified from EPA 5030B & EPA 8260D

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T291322
PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	I		
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

AGAT Laboratories

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue, Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

> 5623 McAdam Road, Mississauga, ON L4Z 1N9 1686 Woodward Drive, Ottawa, ON, K2C 3R8

webearth.agatlabs.com

Laboratory Use Only

Work Order #:

Cooler Quantity:

25T291322

large

Chain of Custody Recor

Chain of Custody Record	If this is a Di	rinking Water s	ample, plea	se use Drin	king Water Chain of Custody Form (potat	ole water	consum	ed by h	uman	5)		- 1			ratures:	9	-5	18-	t 1	8-1	_
Report Information: G25				(Please	gulatory Requirements:	3.5							Depot Temperatures: Custody Seal Intact: Notes: Depot Temperatures: No N					/A			
Contact: Hailey Perras Address: 4361 Harvester Rd-Uni+12 Burlington ON				- Ta	Regulation 153/04 Regulation 406 Sewer Use Sanitary Storm			111	Turnaround Time (TAT) Required:												
Phone: 905 220 8587	20 8587 Fax:			- E	Ges/Park Res/Park Agriculture Agriculture Exture (Check One) Regulation 558		Prov Obje	ectives				R	Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Business					P66			
2. Email: stephaniel@gzsconsutting.wm				Coarse CCME			Indicate	One					Days OR Da	te Requi		Days ush Sur	charges I	⊔ _{Day}	У		
Project Information: Project: G7.5.2502 Site Location: G1+awa Sampled By: DB	AZB			0	is submission for a Record of Site Condition (RSC)? Yes		eport rtifica Yes	te of	Ana				Please provide prior notification for rush T. *TAT is exclusive of weekends and statutory he For 'Same Day' analysis, please contact your AGA			olidays					
AGAT Quote #: Standing OFFar Please note: If quotation number is no		hilled full price for a	nalveis	Leg	al Sample 🔲	CrVI, DOC	0.	Reg 15	3			_	O. Reg	-	0. Reg 558 883					VANI	(N)
Invoice Information: Company: Contact: Address: Email:	Bill	To Same: Yes	No 🗆	San GW O P	Apple Matrix Legend Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg, CrVI	s & Inorganics	s - □ CrVi, □ Hg, □ HWSB	F1-F4 PHCs		Amelors		adis, biles, ru-ra	Regulation 406 SPLP Rainwater Leach mSPLP: ☐ Metals ☐ VOCs ☐ SVOCs ☐ OC	Disposal Characterization TCLP M&I □VOCs □ABNs □ B(a)P□	Ž	Water: ☐ PFAS Soil: ☐			Illu Hosardoire or High Concentration	entially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals-	BTEX,	NOC :	PCR:	Hegul.	EC, SAR	Regula mSPL	Landfill TCLP:	Corros	Y-AS			Potents	1.000Hz
2. BHH 3. BH101	१५।०४१८५ १५।०९१८५ १५।०४१८५ १५।०४१८५	AM PM AM PM AM PM AM PM	13 5 3 7	6W 6W 6W		Y	X		X	XXX		4									
5. BH104	05/09/25	AM PM	3	GW			211			X	_ ′						9.4		8		
6. BH105 7. BH100	05/08/25	AM PM AM PM	5	GW			- 1		X	X				10							
D F () O	05/08/25	AM PM	13	GW GW		7	X		X	X	<		-				-		+		_
9. BH109	05/08/25	AM PM	13	GW		7	×	\dashv		X	<u>/</u>		1				-				
	05/02/25	AM PM	2	GW		-					X										
11. TRIP BLANK	05/01/25	AM PM	3							X										×	
Samples Relinquished By (Print Name and Sign); Halty Petros Hady Samples Relinquished B) (Print Name and Sign);	2_	S/14/2	Time	00 pm	Samples Received By (Principlame and Sign): Samples Received By (Principlame and Sign): Samples Received By (Principlame and Sign):					8 7	Date	14/2	202	me -5	3:5	9	Page		of _		
Samples Relinquished By (Print Name and Sign):		Dete	Time		Samples Received By (Print Name and Sign):						Date		Т	me		Nº:					

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC 4361 HARVESTERROAD, UNIT 12 BURLINGTON, ON L7L 5M4 (905) 331-3735

ATTENTION TO: Stephanie Lewis

PROJECT: 25042

AGAT WORK ORDER: 25T307983

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

DATE REPORTED: Jun 11, 2025

PAGES (INCLUDING COVER): 7 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 7

Member of: Association of Professional Engineers and Geoscientists of Alberta

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 25T307983

PROJECT: 25042

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:110 O'Connor St

ATTENTION TO: Stephanie Lewis
SAMPLED BY: D BRUCE

SAMPLING SITE: 110 O'Conn	or St					SAMPLED BY:D BRUCE
			O. I	Reg. 153(5	11) - Metals 8	k Inorganics (Water)
DATE RECEIVED: 2025-06-10						DATE REPORTED: 2025-06-11
	5	SAMPLE DESC	CRIPTION:	MW107	MW120	
		SAMF	PLE TYPE:	Water	Water	
		DATE S	SAMPLED:	2025-06-09	2025-06-09	
Parameter	Unit	G/S	RDL	12:00 6806115	12:00 6806123	
Dissolved Antimony	μg/L	20000	1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1900	1.0	<1.0	<1.0	
Dissolved Barium	μg/L	29000	2.0	78.1	77.0	
Dissolved Beryllium	μg/L	67	0.50	<0.50	<0.50	
Dissolved Boron	μg/L	45000	10.0	145	142	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	<2.0	
Dissolved Cobalt	μg/L	66	0.50	12.4	13.3	
Dissolved Copper	μg/L	87	1.0	<1.0	<1.0	
Dissolved Lead	μg/L	25	0.50	0.56	<0.50	
Dissolved Molybdenum	μg/L	9200	0.50	16.6	16.4	
Dissolved Nickel	μg/L	490	1.0	17.5	16.4	
Dissolved Selenium	μg/L	63	1.0	3.1	<1.0	
Dissolved Silver	μg/L	1.5	0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	< 0.30	<0.30	
Dissolved Uranium	μg/L	420	0.50	21.7	20.8	
Dissolved Vanadium	μg/L	250	0.40	<0.40	<0.40	
Dissolved Zinc	μg/L	1100	5.0	9.8	5.8	
Mercury	μg/L	0.29	0.02	<0.02	<0.02	
Chromium VI	μg/L	140	2.000	<2.000	<2.000	
Cyanide, WAD	μg/L	66	2	<2	<2	
Dissolved Sodium	μg/L	2300000	500	1250000	1170000	
Chloride	μg/L	2300000	244	2920000	3020000	
pH	pH Units		NA	7.16	7.35	

AGAT WORK ORDER: 25T307983

PROJECT: 25042

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:110 O'Connor St

ATTENTION TO: Stephanie Lewis SAMPLED BY:D BRUCE

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-06-10 DATE REPORTED: 2025-06-11

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6806115-6806123 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured

results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NIVINE BASILY O CHEMIST OF CHARTER S NIVINE BASILY O CHEMIST OF CHARTER S NIVINE BASILY O CHEMIST OF CHARTER S NIVINE BASILY O CHARTER S

Exceedance Summary

AGAT WORK ORDER: 25T307983

PROJECT: 25042

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Stephanie Lewis

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6806115	MW107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	2920000
6806123	MW120	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	3020000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T307983

PROJECT: 25042

ATTENTION TO: Stephanie Lewis

SAMPLING SITE:110 O'Connor St SAMPLED BY:D BRUCE

CANN EING SITE: 110 G GG								J/ (IVII		1.0 010					
				Wate	er Ar	nalys	is								
RPT Date: Jun 11, 2025				UPLICATE	Ē		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld		'			Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inc	organics (Wate	er)													
Dissolved Antimony	6806115	6806115	<1.0	<1.0	NA	< 1.0	100%	70%	130%	103%	80%	120%	99%	70%	130%
Dissolved Arsenic	6806115	6806115	<1.0	<1.0	NA	< 1.0	101%	70%	130%	97%	80%	120%	103%	70%	130%
Dissolved Barium	6806115	6806115	78.1	76.1	2.6%	< 2.0	100%	70%	130%	96%	80%	120%	93%	70%	130%
Dissolved Beryllium	6806115	6806115	< 0.50	< 0.50	NA	< 0.50	100%	70%	130%	116%	80%	120%	112%	70%	130%
Dissolved Boron	6806115	6806115	145	144	0.7%	< 10.0	96%	70%	130%	108%	80%	120%	108%	70%	130%
Dissolved Cadmium	6806115	6806115	<0.20	<0.20	NA	< 0.20	95%	70%	130%	99%	80%	120%	93%	70%	130%
Dissolved Chromium	6806115	6806115	<2.0	<2.0	NA	< 2.0	98%	70%	130%	104%	80%	120%	109%	70%	130%
Dissolved Cobalt	6806115	6806115	12.4	12.6	1.6%	< 0.50	96%	70%	130%	102%	80%	120%	105%	70%	130%
Dissolved Copper	6806115	6806115	<1.0	1.0	NA	< 1.0	94%	70%	130%	100%	80%	120%	96%	70%	130%
Dissolved Lead	6806115	6806115	0.56	0.51	NA	< 0.50	97%	70%	130%	96%	80%	120%	88%	70%	130%
Dissolved Molybdenum	6806115	6806115	16.6	17.1	3.0%	< 0.50	103%	70%	130%	106%	80%	120%	117%	70%	130%
Dissolved Nickel	6806115	6806115	17.5	17.6	0.6%	< 1.0	95%	70%	130%	102%	80%	120%	100%	70%	130%
Dissolved Selenium	6806115	6806115	3.1	2.9	NA	< 1.0	94%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Silver	6806115	6806115	<0.20	<0.20	NA	< 0.20	99%	70%	130%	100%	80%	120%	95%	70%	130%
Dissolved Thallium	6806115	6806115	<0.30	<0.30	NA	< 0.30	97%	70%	130%	96%	80%	120%	89%	70%	130%
Dissolved Uranium	6806115	6806115	21.7	20.8	4.2%	< 0.50	95%	70%	130%	99%	80%	120%	98%	70%	130%
Dissolved Vanadium	6806115	6806115	< 0.40	< 0.40	NA	< 0.40	99%	70%	130%	105%	80%	120%	113%	70%	130%
Dissolved Zinc	6806115	6806115	9.8	7.2	NA	< 5.0	98%	70%	130%	97%	80%	120%	95%	70%	130%
Mercury	6806115	6806115	< 0.02	< 0.02	NA	< 0.02	100%	70%	130%	101%	80%	120%	95%	70%	130%
Chromium VI	6806115	6806115	<2.000	<2.000	NA	< 2	99%	70%	130%	93%	80%	120%	92%	70%	130%
Cyanide, WAD	6806115 (6806115	<2	<2	NA	< 2	101%	70%	130%	96%	80%	120%	92%	70%	130%
Dissolved Sodium	6806115	6806115	1250000	1220000	2.4%	< 50	104%	70%	130%	102%	80%	120%	NA	70%	130%
Chloride	6803735		43400	44400	2.3%	< 100	100%	70%	130%	106%	80%	120%	106%	70%	130%
pH	6805810		6.81	7.00	2.8%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

CHARTERED S NIVINE BASILY O CHEMIST DO CHEMI

Method Summary

SAMPLED BY:D BRUCE

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T307983

PROJECT: 25042

ATTENTION TO: Stephanie Lewis

SAMPLING SITE:110 O'Connor St

PARAMETER	AGAT S.O.P	AGAT S.O.P LITERATURE REFERENCE ANALYTICAL			
Water Analysis	·				
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS		
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA		
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS		
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS		
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH		
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE		

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth_agatlabs.com

Laboratory Use	Only		011
	~	00	076

25-130	7983
0 1	
	25730

Cooler Quantity:	100	regio	
Arrival Temperatures:	7-2	9.5	9.1
Depot Temperatures:			
Custody Seal Intact:	Ves	□No	₩/A

Chain of Custody Recor	d If this is a	le, please use	Drinkir	ing Water Chain of Custody Form (pota	able water	солѕит	ed by h	umans	5)				Temper Temper			- 2	19-5	19.)	
Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email: Project Information: Project: Site Location: Sampled By: STEPHANIE ASTEPHANIE ASTEPH	Fax: C & 2s (n 2s cunsulti	SUITE 12 SMI4		Reggi Table	ulatory Requirements: theck all applicable bises) gulation 153/04 Ile Indicate One Ind/Com	88 R 6	Pro	Region Re	er Ques (PW	ality QO)	7700	Tu Re Ru	rna gula sh T	roundar TAT AT (Rus 3 Busin Days OR Da Plea	h Surchaness te Req	ne (1	2 Busin bays (Rush Sur (Rush Sur prior notifi weekends	Business mess me	Next B Day May Philips r rush Fatterry holida	ays
Sampled By: D Buce				1		_		Reg 1				4	-	- T	0. Reg		, please o	contact y	our AGAT C	SR
AGAT Quote #: Please note: If quotation number	GAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis.				al Sample 🗌	, DOC	0.	reg I	55				. Reg	9	SR.		38			
Invoice Information: Company: Contact: Address: Email:	- UA E	iill To Same: Yes □		GW (0 O (0 P F	ple Matrix Legend Ground Water Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg, CrVI,	Metals & Inorganics	□ CrVI, □ Hg, □ HWSB	F1-F4 PHCs	svi Lei	Aroclors	Regulation 406 Characterization Package oH. Metals, BTEX, F1,-F4		tion 406 SPLP Rainwater Leach : ☐ Metals ☐ VOCs ☐ SVOCs ☐	Disposal Characterization TCL	nity: ☐ Moisture ☐ Su	3 16			
Sample Identification	Date			nple	Comments/ Special Instructions	Y/N	Aetals	Metals -	втех,	NOC NOC	PCBs: /	Regulation of Metals,	EC. SAR	Regulation mSPLP: □	Landfill TCI P:	Corros				
1. BH107	Sampled	PM AM 9		W	Special instructions	y	X	_	В	2		L. 0	-	E C						
2. BH120	A n	A AM 9		h		Ý	X													
3.		AM PM																		
4.	CARRE	AM PM	Page 1	XL II				71												
5.		AM PM			TOTAL Section in the		144					100	4	100				To a second		
6.	W 715	AM PM		- 1	Que-medit-tus							10		12.5				100		
7,		AM PM					21					17.		1.0			. 1			
8.		AM PM			market				=			TE.		7						
9.		AM PM	M III				-					4=								
10.		AM PM						-					1					4-17		

Client | Yellow Copy - AGAT | White Copy- AGAT Pink Copy -Samples Relinquished By (Print Name and Sign)

11.

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlahs.com/terms and conditions unless otherwise agreed in a current written contractual document

June 10 12:5/A

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC 4361 HARVESTERROAD, UNIT 12 BURLINGTON, ON L7L 5M4 (905) 331-3735

(905) 331-3735

ATTENTION TO: Hailey Perras

PROJECT: G2S25042B AGAT WORK ORDER: 25T310240

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Jun 19, 2025

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:HP

				O. Reg. 153	(511) - PHCs F1 - F4 (Water)
DATE RECEIVED: 2025-06-16					DATE REPORTED: 2025-06-19
	SA	AMPLE DES	CRIPTION:	MW104	
		SAMI	PLE TYPE:	Water	
		DATES	SAMPLED:	2025-06-13 15:55	
Parameter	Unit	G/S	RDL	6817123	
Benzene	μg/L	44	0.20	<0.20	
Toluene	μg/L	18000	0.20	0.24	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	μg/L		0.20	0.35	
o-Xylene	μg/L		0.10	0.12	
Xylenes (Total)	μg/L	4200	0.20	0.47	
F1 (C6 to C10)	μg/L	750	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	
Sediment				1	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	60-1	40	89	
Terphenyl	% Recovery	60-1	40	94	

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:HP

O. Reg. 153(511) - PHCs F1 - F4 (Water)

DATE RECEIVED: 2025-06-16 DATE REPORTED: 2025-06-19

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6817123 The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client.

NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Jinkal Jata

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

ATTENTION TO: Hailey Perras SAMPLED BY:HP

			<u> </u>	100(011	- Metals & Inorganics (Water)	
DATE RECEIVED: 2025-06-	16					DATE REPORTED: 2025-06-19
	S	SAMPLE DESC	CRIPTION:	MW107		
		SAMF	LE TYPE:	Water		
		DATE S	AMPLED:	2025-06-13 15:45		
Parameter	Unit	G/S	RDL	6817122		
Dissolved Antimony	μg/L	20000	1.0	<1.0		
Dissolved Arsenic	μg/L	1900	1.0	<1.0		
Dissolved Barium	μg/L	29000	2.0	86.7		
Dissolved Beryllium	μg/L	67	0.50	<0.50		
Dissolved Boron	μg/L	45000	10.0	137		
Dissolved Cadmium	μg/L	2.7	0.20	<0.20		
Dissolved Chromium	μg/L	810	2.0	<2.0		
Dissolved Cobalt	μg/L	66	0.50	13.6		
Dissolved Copper	μg/L	87	1.0	1.8		
Dissolved Lead	μg/L	25	0.50	<0.50		
Dissolved Molybdenum	μg/L	9200	0.50	13.6		
Dissolved Nickel	μg/L	490	1.0	22.6		
Dissolved Selenium	μg/L	63	1.0	1.9		
Dissolved Silver	μg/L	1.5	0.20	<0.20		
Dissolved Thallium	μg/L	510	0.30	<0.30		
Dissolved Uranium	μg/L	420	0.50	18.7		
Dissolved Vanadium	μg/L	250	0.40	<0.40		
Dissolved Zinc	μg/L	1100	5.0	11.2		
Mercury	μg/L	0.29	0.02	<0.02		
Chromium VI	μg/L	140	2.000	<2.000		
Cyanide, WAD	μg/L	66	2	<2		
Dissolved Sodium	μg/L	2300000	500	1180000		
Chloride	μg/L	2300000	244	2970000		
рН	pH Units		NA	7.29		

Certified By:

Yrus Verastegui

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

ATTENTION TO: Hailey Perras

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

SAMPLING SITE:Ottawa

SAMPLED BY:HP

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2025-06-16 DATE REPORTED: 2025-06-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured

results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

Exceedance Summary

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

ATTENTION TO: Hailey Perras

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6817122	MW107	ON T3 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	2300000	2970000

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

PROJECT: G2S25042B

AGAT WORK ORDER: 25T310240

ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:HP

SAME ENGINEERS SAME																						
	Trace Organics Analysis																					
RPT Date: Jun 19, 2025			С	UPLICAT	E		REFERENCE MATER			METHOD	BLANK	SPIKE	MAT	KE								
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	Plank Massured Limite		Acceptable Limits		Limite		Limite		Limite		Limite		Recovery	Lin	ptable nits	Recovery	منا ا	eptable nits
		Id	·				value	Lower	Upper		Lower Upper			Lower	Upper							
O. Reg. 153(511) - PHCs F1 - F4 (\	Nater)																					
Benzene	6815772		< 0.20	< 0.20	0.0%	< 0.20	89%	60%	140%	99%	60%	140%	99%	60%	140%							
Toluene	6815772		< 0.20	< 0.20	0.0%	< 0.20	95%	60%	140%	102%	60%	140%	82%	60%	140%							
Ethylbenzene	6815772		< 0.10	< 0.10	0.0%	< 0.10	86%	60%	140%	78%	60%	140%	75%	60%	140%							
m & p-Xylene	6815772		< 0.20	< 0.20	0.0%	< 0.20	91%	60%	140%	83%	60%	140%	100%	60%	140%							
o-Xylene	6815772		< 0.10	< 0.10	0.0%	< 0.10	104%	60%	140%	104%	60%	140%	101%	60%	140%							
F2 (C10 to C16)	6807791		< 100	< 100	NA	< 100	99%	60%	140%	61%	60%	140%	67%	60%	140%							
F3 (C16 to C34)	6807791		< 100	< 100	NA	< 100	108%	60%	140%	60%	60%	140%	65%	60%	140%							
F4 (C34 to C50)	6807791		< 100	< 100	NA	< 100	89%	60%	140%	61%	60%	140%	83%	60%	140%							

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Pinkal Sate

Quality Assurance

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC

AGAT WORK ORDER: 25T310240

PROJECT: G2S25042B ATTENTION TO: Hailey Perras

SAMPLING SITE:Ottawa SAMPLED BY:HP

Water Analysis															
RPT Date: Jun 19, 2025			D	UPLICATE			REFEREN	NCE MATERIAL		METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Si	ample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable	Recovery	Acce Lin	ptable nits	Recovery		ptable nits
		ld		.			Value	Lower Upper		,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Ino	rganics (Water)														
Dissolved Antimony	6817122 6817	7122	<1.0	<1.0	NA	< 1.0	104%	70%	130%	101%	80%	120%	103%	70%	130%
Dissolved Arsenic	6817122 6817	7122	<1.0	<1.0	NA	< 1.0	100%	70%	130%	98%	80%	120%	100%	70%	130%
Dissolved Barium	6817122 6817	7122	86.7	88.4	1.9%	< 2.0	100%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Beryllium	6817122 6817	7122	< 0.50	< 0.50	NA	< 0.50	101%	70%	130%	102%	80%	120%	88%	70%	130%
Dissolved Boron	6817122 6817	7122	137	138	0.7%	< 10.0	98%	70%	130%	101%	80%	120%	86%	70%	130%
Dissolved Cadmium	6817122 6817	7122	<0.20	<0.20	NA	< 0.20	103%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Chromium	6817122 6817	7122	<2.0	<2.0	NA	< 2.0	101%	70%	130%	100%	80%	120%	106%	70%	130%
Dissolved Cobalt	6817122 6817	7122	13.6	15.0	9.8%	< 0.50	102%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Copper	6817122 6817	7122	1.8	2.7	NA	< 1.0	101%	70%	130%	98%	80%	120%	92%	70%	130%
Dissolved Lead	6817122 6817	7122	<0.50	<0.50	NA	< 0.50	101%	70%	130%	97%	80%	120%	82%	70%	130%
Dissolved Molybdenum	6817122 6817	7122	13.6	15.2	11.1%	< 0.50	103%	70%	130%	104%	80%	120%	111%	70%	130%
Dissolved Nickel	6817122 6817	7122	22.6	23.5	3.9%	< 1.0	103%	70%	130%	97%	80%	120%	99%	70%	130%
Dissolved Selenium	6817122 6817	7122	1.9	2.7	NA	< 1.0	104%	70%	130%	97%	80%	120%	105%	70%	130%
Dissolved Silver	6817122 6817	7122	<0.20	<0.20	NA	< 0.20	101%	70%	130%	100%	80%	120%	95%	70%	130%
Dissolved Thallium	6817122 6817	7122	<0.30	<0.30	NA	< 0.30	97%	70%	130%	97%	80%	120%	86%	70%	130%
Dissolved Uranium	6817122 6817	7122	18.7	19.1	2.1%	< 0.50	101%	70%	130%	99%	80%	120%	95%	70%	130%
Dissolved Vanadium	6817122 6817	7122	<0.40	< 0.40	NA	< 0.40	103%	70%	130%	103%	80%	120%	115%	70%	130%
Dissolved Zinc	6817122 6817	7122	11.2	14.0	NA	< 5.0	102%	70%	130%	98%	80%	120%	89%	70%	130%
Mercury	6817122 6817	7122	< 0.02	< 0.02	NA	< 0.02	101%	70%	130%	100%	80%	120%	96%	70%	130%
Chromium VI	6811299		<2.000	<2.000	NA	< 2	100%	70%	130%	99%	80%	120%	105%	70%	130%
Cyanide, WAD	6811299		<2	<2	NA	< 2	98%	70%	130%	83%	80%	120%	106%	70%	130%
Dissolved Sodium	6817122 6817	7122 1	1180000	1200000	1.7%	< 50	107%	70%	130%	111%	80%	120%	NA	70%	130%
Chloride	6815892	1	1410000	1370000	2.9%	< 100	93%	70%	130%	101%	80%	120%	NA	70%	130%
рН	6819362		6.77	6.88	1.6%	NA	99%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Tris Verástegui

Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC
PROJECT: G2S25042B

AGAT WORK ORDER: 25T310240
ATTENTION TO: Hailey Perras

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Toluene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Ethylbenzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
m & p-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
o-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Xylenes (Total)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL - 5010	MOE E3421	(P&T)GC/MS
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Sediment			N/A

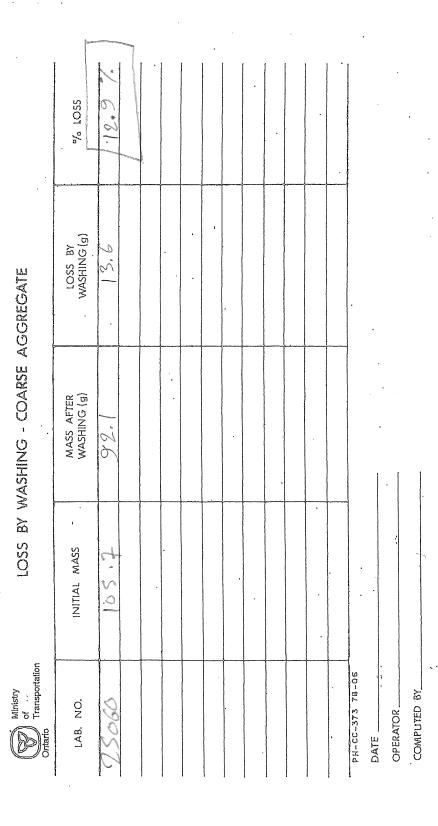
Method Summary

CLIENT NAME: G2S ENVIRONMENTAL CONSULTING INC AGAT WORK ORDER: 25T310240 PROJECT: G2S25042B ATTENTION TO: Hailey Perras

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			'
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Have feedback?

Scan here for a quick survey!


5835 Coopers Ave Mississauga, Ontario L4Z Ph: 905.712.5100 Fax: 905.712.5

Laboratory Lico Only webearth.agatlabs.

om		Arr De Cus	ival '	Quantit Temper Temper y Seal II	atures: atures:		_ 5]Yes	I I	6.	L □No	1	24	N/A
		Reg	gula sh T	AT (Rust 3 Busin Days OR Dat	d Time a Surcharg less de Requ dese prov axeclusive	ired (5 to 2 B Day Rush prior r	o 7 Bu usine: /s Surch	sine: ss narge	es Ma	Ne Da ny App	oly): AT	
		F	or 'S	Same D	o. Reg	lysis	plea	se co	ntac	t you	r AG/	AT CSF	?
SIN.	PCBs: Aroclors	Regulation 406 Characterization Package pH, Metals, BTEX, F1-F4	EC, SAR	Regulation 406 SPLP Rainwater Leach mSPLP: ☐ Metals ☐ VOCs ☐ SVOCs ☐ OC	Landfill Disposal Characterization TCLP: TCLP: ☐ M&I ☐ VOCs ☐ ABNS ☐ B(a)P☐ PCBs	Corrosivity: ☐ Moisture ☐ Sulphide							Potentially Hazardous or High Concentration (Y/N)
				100 100 100 100 100 100 100									

Chain of Custody Record	amp le , pleas	se use Drini	king Water Chain of	Custody Form (potat	ole water	consume	ed by hur	nans)			-		_	atures:	1	5 6	6	54		
Report Information: G7 Company: Contact:	Servas			(Please	Sulatory Requirement of the check all applicable boxes agulation 153/04	irements:	3	Sew	ver Use				Cu. No	stody tes:	Seal I	ntact:	ce _		□No	⊠ N/A
Company: Contact: Address: Hauley Unit 17 Phone: Reports to be sent to:	Bunne	to-		Tai	ble Indicate One	Table	- 1	s	anitary Region	Sto	rm				ound r TAT		,	T) Require 5 to 7 Busines		
Phone: Reports to be sent to:	Fax:				Res/Park Agriculture	□Res/Park □Agriculture			. Water				Rus	1			ges Apply		3 Days	
Reports to be sent to: 1. Email: 2. Email: Anleys O	925001	nsultrn	9-101		exture (Check One) Coarse Fine	Regulation 558	3	Oth	er Indicate (ле)		Busir Days DR Dat		Ш	2 Business Days ush Surcharge		Next Business Day .pply):
Project Information: Project: Site Location: Sampled By:		0	of Site Condition (RSC)? Yes \(\text{No} \) Report Guideling Certificate of An XYes \(\text{Condition} \)									Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR								
AGAT Quote #: Standing off	PO:			Leg	al Sample 🗆		200	0.	Reg 153	T /U.				Reg 40		O. Reg 558			B.	(N/Y
Invoice Information: Company: Contact: Address: Email:		ill To Same: Ye	1.7	Sam GW O P S	Ground Water Oil Paint Soil	Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	s & Inorganics	0 - 0	FI-F4 PHCs		PCBs: Aroclors	Regulation 406 Character zation Package ph, Metals, BTEX, F1-F4		itlon 406 SPLP Rainwater Leach	Disposal Characteri M&l □vocs □ABNs	sivity: ☐ Moisture ☐ Sulphide			Potentially Hazardous or High Concentration (V/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ nstructions	Y/N	Metals	Metal	VOC VOC	PAHs	PCBs:	Regulation pH, Metals,	EC, S,	Regulation mSPLP: □	Landfi TCLP: [Corrosivity:			Potent
1. BHI 0Z	CHBISS	1:30 3	6	6h	please	hold	Y	X												
2. BH130 3. BMW107		1. 35 AM	0	- (prase	hold	7	X		-		H	m		-					
4. BHIOH		3:45A	5	17			Y	×		X		-		-	U.S.					
5.		AM PM						000							- 100					
6.		AM PM						i is							- 0		7			
7.		AM PM						UR		111					D.					
8.		AM PM		- 100			10 1	100												
9.		AM PM											11							
10.		AM PM						J C.							-10					
11.		AM PM																		
Samples Rejunquished By (Print Name and Sign) + Quey few G Samples Rejunquished By Print Name and Sign)		Date Cb/y	125 8	. 5 av	Sample Received By (Pr	int Name and Sign): ONE Gue	>	H	P		J Da		6.29	S Tim	1e	0			1	1
Samples Rollmouished By (Print Name and Sign):		D	Time		Samples Received By (Po	int Name and Sign):					Da	le		Tarr	ne		Nim	Page	of 7 1 0	/

Figure 1 Loss By Washing Data Card

G28 25012B