SURVEILLANCE DES TRAVAUX CONTRÔLE QUALITÉ INGÉNIERIE DES MATÉRIAUX ENROBÉS BITUMINEUX BÉTON DE CIMENT SOLS & GRANULATS MÉTAUX

PRELIMINARY GEOTECHNICAL INVESTIGATION

PROPOSED MID-RISE RESIDENTIAL DEVELOPMENT AT 630 MONTREAL ROAD, OTTAWA, ONTARIO

> CLIENT CODE: **GMBC100** F/N: **UO-24-1324-00**

> > June 2025

CLIENT: MB CANADA GROUP INC.

METAUX SCIENCE DU BÂTIMENT TOITURE & ÉTANCHÉITÉ GÉOTECHNIQUE & GÉOLOGIE FORAGES ENVIRONNEMENT HYDROGÉOLOGIE

PRELIMINARY GEOTECHNICAL STUDY PROPOSED MID-RISE RESIDENTIAL PRELIMINARY VERSION Prepared by DEVELOPMENT AT 630 MONTREAL ROAD, Alpesh Ramesh Senghani OTTAWA, ONTARIO Assistant Project Manager CLIENT CODE: GMBC100 F/N: UO-24-1324-00 PRELIMINARY VERSION Reviewed by Amer Mohammad, P.Eng. June 2025 Geotechnical Team Lead **CONFIDENTIAL** Report presented to Mr. Mohamed (Max) Mahi, CLIENT: MB CANADA GROUP INC. President MB Canada Group Inc. 657, boul. Cure-labelle, suite 200, Laval, Québec H7V 2T8

This document is presented and intended exclusively for the attention of MB Canada Group Inc. (GMBC) and has not been distributed or transmitted to any other organization, ministry, government, or individual. This report contains legally privileged and confidential information.

Any reproduction, distribution, or adaptation, partial or total, in any manner whatsoever, is strictly prohibited without the prior written consent of GMBC and Groupe ABS Inc (ABS).

RAF

REGISTRY OF REVISIONS AND ISSUANCES

REVISION #	Date	Description of Modification and/or Issuance
00	2025-06-27	Draft report

DISTRIBUTION

DESCRIPTION	NAME(S) ROLE				
An electronic copy in PDF format	Mr. Mohamed (Max) Mahi President				

ORAN

TABLE OF CONTENTS

2.0	INTROD	OUCTIO	N	1
2.0	SITE AN	D PROJ	ECT DESCRIPTION	1
	2.1	Site De	SCRIPTION	1
	2.2	Projec	T DESCRIPTION	2
3.0	GEOTEC	HNICA	L FIELD INVESTIGATION	3
	3.1	Under	GROUND UTILITY CLEARANCE	3
	3.2	Fieldw	/ORK	3
	3.3	SITE LA	YOUT AND SURVEYING OPERATIONS	4
4.0	GEOTEC	HNICA	L LABORATORY TESTING	5
5.0	SOIL ST	RATIGR	APHY AND PROPERTIES	6
	5.1	SUBSUF	RFACE SOIL, ROCK, AND GROUNDWATER CONDITIONS	6
		5.1.1	Asphalt and Granular Base	6
		5.1.2	FILL	7
		5.1.3	Silty Sand/Sandy Silt	7
		5.1.4	Sand/Sand and Gravel (TILL)	
		5.1.5	Bedrock	
	5.2	GROUN	IDWATER	10
	5.3	Снеми	CAL ANALYSIS	10
6.0	GEOTEC	HNICA	L DISCUSSIONS AND PRELIMINARY RECOMMENDATIONS	12
	6.1	SITE PRI	EPARATION	13
		6.1.1	General Grading and Interference with Existing Underground Utilities	13
		6.1.2	Subgrade Preparation for Footings on Rock	13
	6.2	EXCAVA	ATIONS	13
		6.2.1	Open Excavations	13
		6.2.2	Bedrock Excavation and Blasting	14
		6.2.3	Excavations Adjacent to Infrastructure	15
		6.2.4	Engineered Shoring	15
		6.2.5	Construction Dewatering and EASR/PTTW	15
	6.3	FROST F	PROTECTION	17
	6.4	Seismic	C SITE CLASSIFICATION	17
	6.5	LIQUEF	ACTION INDUCED SETTLEMENT	17
	6.6	FOUND	ATIONS	17
		6.6.1	Foundations on Bedrock	18
		6.6.2	Foundations on Engineered Fill	18
	6.7	RESISTA	ANCE TO FOUNDATION UPLIFT	19
	6.7 6.8		ANCE TO FOUNDATION UPLIFT	

	6.9	ENGINEERED FILL	20
	6.10	Exterior Structure Backfill (Walls, paved areas, sidewalks, exterior slabs, landscape,	
		етс.)	21
	6.11	BASEMENT SLAB ON GRADE	21
	6.12	PERIMETER DRAINAGE AND WATERPROOFING	22
	6.13	UNDERGROUND UTILITIES	23
		6.13.1 Pipe Bedding and Cover	23
		6.13.2 Backfill	23
	6.14	CHEMICAL CHARACTERIZATION OF SUBSURFACE SOIL	24
	6.15	CONSTRUCTION INSPECTIONS AND MONITORING	24
7.0	SCOPE O	OF THE REPORT AND LIMITATION OF LIABILITY	25

LIST OF TABLES

TABLE 1: SUMMARY OF THE ENCOUNTERED STRATIGRAPHY – ABS BOREHOLES	6
TABLE 2: SUMMARY OF THE ENCOUNTERED STRATIGRAPHY – ENVIRO-EXPERTS BOREHOLES	6
TABLE 3: GRAIN SIZE ANALYSIS AND WATER CONTENT TESTS SUMMARY – FILL	7
TABLE 4: WATER CONTENT TESTS SUMMARY – SILTY SAND/SANDY SILT	8
TABLE 5: GRAIN SIZE ANALYSIS AND WATER CONTENT TESTS SUMMARY – SAND/SAND AND GRAVEL (TILL)	8
TABLE 6: UNIT WEIGHT AND UNCONFINED COMPRESSIVE STRENGTH - BEDROCK	9
Table 7: Groundwater Level Measurement Summary	10
TABLE 8: SOIL CHEMICAL ANALYSIS RESULTS	10
TABLE 9: MAXIMUM PEAK PARTICLE VELOCITY VALUES	14
TABLE 10: DEFINED LATERAL EARTH PRESSURE SOIL PARAMETERS	19
TABLE 11: LATERAL EARTH PRESSURE DESIGN PARAMETERS – STATIC CONDITIONS	20
TABLE 12: ADDITIONAL REQUIREMENT FOR CONCRETE SUBJECTED TO SULPHATE ATTACK	24

LIST OF APPENDICES

- APPENDIX 1: LOCATION OF BOREHOLES FIGURE GEO-01
- APPENDIX 2: BOREHOLE RESULTS BOREHOLE LOGS
- APPENDIX 3: GEOTECHNICAL LABORATORY TESTS TEST RESULTS
- APPENDIX 4: ROCK CORE PHOTOGRAPHS
- APPENDIX 5: CONCEPTUAL AND ELEVATION PLAN DRAWINGS

ORAF

1.0 INTRODUCTION

Groupe ABS Inc. (ABS) was retained by GMBC (the "Client") to complete a preliminary geotechnical investigation to support the design of the proposed residential development (the "Project") at the civic address 630 Montreal Road, Ottawa, Ontario (the "Site").

This investigation was carried out per the professional services proposal prepared by ABS (F/N: H241324) dated May 27, 2025. The proposal and the scope of work were accepted by the Client by means of a signed back proposal on May 28, 2025.

This report is prepared specifically and exclusively for GMBC and consultants potentially collaborating on the Project. The use of this report or the reliance on it by any third party is the responsibility of such third party. Any modifications to the Project must be reported to ABS so that the scope and relevance of the geotechnical investigation and the recommendations contained in this report can be reviewed and adjusted, if necessary. This report is subject to the limitations presented in Section 7.

This report presents the results of the investigation performed in accordance with the general terms of reference outlined above. It is understood that the Project will be performed in accordance with applicable codes and standards within its jurisdiction.

It is worth noting the Client previously retained ABS to complete a Phase II Environmental Site Assessment (ESA). The Phase II ESA is submitted under a separate cover.

2.0 SITE AND PROJECT DESCRIPTION

2.1 SITE DESCRIPTION

The Site for the Project is located at the northwest corner of the intersection on Montreal Road and Borthwick Avenue, with a municipal address of 630 Montreal Road in Ottawa, Ontario. The surrounding area consists of a mixture of existing commercial and residential developments, with adjacent properties situated to the east and south of the Site.

At the time of our field investigation, remnants of previously demolished structures including two (2) dwellings were observed on-site, including wood debris and minor concrete fragments. The Site is vegetated along its periphery, with the boundaries delineated by small trees, bushes, and grass cover. Overhead hydro lines are present along the northern and western sides of the property.

Topographically, the Site exhibits a gentle slope descending from the north-eastern boundary toward the central portion, while the eastern, western, and southern sections are relatively flat; the elevations for the ground surface at the Site based on our field investigation borehole survey were found to be near 77.984 to 79.635 meters above sea level (masl).

2.2 PROJECT DESCRIPTION

Our understanding of the Project is based on our communication, files and information provided by the Client. It is understood by ABS that the Project will consist of designing and constructing a mid-rise residential building which will include nine (9) above ground storeys, and two (2) levels of underground parking.

At the time of completing this report, the Client had provided ABS with the following documents:

- Architectural/Conceptual Drawings: Racine Ottawa 630 Montreal Road, Ottawa, ON by Yves Lussier Architect (File No.: DO7-12-21-0189, Plan No.: 18965, dated March 27, 2024);
- Elevation Plan Drawings: Racine Ottawa 630 Montreal Road, Ottawa, ON by Yves Lussier Architect, dated December 7, 2023;
- Plan of Survey of Part of Lots 3, 4 & 5, Registered Plan 343, City of Ottawa (Job No.: AB28300, Ref. No.: 12(a)-343GR)
- Geotechnical Investigation Report: ÉTUDE GÉOTECHNIQUE POUR UNE NOUVELLE CONSTRUCTIONS by Enviro-Experts (Ref. No.: E2021-3260, dated January 17, 2022); and,
- Summary of the Geotechnical Report by Enviro-Experts (Ref. No.: E2021-3260, dated May 3, 2023).

Based on our communication with the Client, and our review of the conceptual, and elevation plan drawings, we understand that the development will include two (2) levels of underground parking, which will extend to approximate depths of at least 8.3 metres below the existing ground surface (mbgs), and an elevator pit; we are assuming the elevator pit to extend an additional 3 m below proposed footing depths, i.e., 11.3 mbgs. We also understand that the Client previously retained a consultant, Enviro-Experts, to complete a Geotechnical Investigation Report for the Project in 2020; this report, referenced above, was completed and dated January 17, 2022. Based on our review of the Geotechnical Investigation Report by Enviro-Experts, a total of four (4) boreholes were drilled, three (3) of which included monitoring well installs. These boreholes extended to depths of 1.8 mbgs, 6.6 mbgs, 6.7 mbgs, and 12.0 mbgs. Based on our communication with the Client, we understand that the report by Enviro-Experts was not completed in accordance with the Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa and was non-compliant.

The Architect's conceptual, and elevation plan drawings are attached at the end of this report for reference in Appendix 5, and one (1) of the boreholes from the Enviro-Experts geotechnical investigation was considered as a reliant borehole and is included in Appendix 1, and in the borehole logs in Appendix 2.

It is important to note at the time of this geotechnical investigation report, the Client had not provided ABS with the civil plans or design details for the Project. Therefore, this geotechnical investigation report including our recommendations are preliminary in nature.

3.0 GEOTECHNICAL FIELD INVESTIGATION

The ABS scope of work for this geotechnical investigation was documented in our proposal and included the following below tasks.

3.1 UNDERGROUND UTILITY CLEARANCE

Public and private utility clearances were completed for the Site prior to undertaking the geotechnical field investigation. ABS completed the utility public locates request through Ontario One Call and retained a subcontractor to complete the Site's utility private locate clearances.

3.2 FIELDWORK

The fieldwork for this geotechnical investigation was conducted from June 10 through 12, 2025. The investigation included the advancement of three (3) Boreholes labelled BH25-1, BH25-2, and BH25-3 to depths ranging from 11.84 to 14.88 mbgs (elevations near 63.63 to 67.80 masl) by a geotechnical drilling subcontractor, George Downing Estate Drilling Ltd. of Grenville-sur-la-Rogue, Quebec. The boreholes were drilled by using a CME 55 truck-mounted drill rig, outfitted with hollow stem continuous flight augers and HQ casing diamond wireline coring.

Soil samples were obtained at 0.75 m intervals by using a 51 mm outside diameter split spoon sampler. The compactness or density of cohesionless soils were assessed by using Standard Penetration Test (SPTs). Advancement into the bedrock was performed by using casings and HQ double-walled wireline diamond coring methods.

Monitoring wells were installed in Boreholes BH25-2 and BH25-3. Each well consisted of a 51 mm diameter flush-mount protective cover at the surface. A 1.5 m long well screen was installed at the bottom of each borehole, positioned within the bedrock to facilitate groundwater monitoring. Both monitoring wells for this investigation were developed, and groundwater level measurements were made.

The annular space surrounding the screen was backfilled with clean silica sand from the base of the borehole to approximately 0.3 m above the top of screen. A bentonite hole plug seal was placed from 0.3 m above the screen to approximately 0.61 m below the ground surface. The remaining upper portion of the borehole, from 0.61 m below ground surface to the surface, was backfilled with sand to complete the installation. The location of all drilled boreholes is presented in Figure GEO-01 in Appendix 1, and the respectable borehole logs are provided in Appendix 2.

3.3 SITE LAYOUT AND SURVEYING OPERATIONS

A geodetic survey for the boreholes was completed using an Emlid Reach RS2+ Multi-band RTK GNSS receiver, which was operated in Real-Time Kinematic (RTK) mode using Networked Transport of RTCM via Internet Protocol (NTRIP) to receive real-time correction data and enable centimeter-level accuracy.

The coordinates and elevations of the boreholes are referenced to the Canadian Spatial Reference System (CSRS) UTM NAD 1983 Zone 18 North coordinate system.

The location, coordinates, and elevation of the boreholes in this geotechnical investigation report are presented on Figure GEO-01 in Appendix 1, and their respectable logs in Appendix 2.

JRAF

4.0 GEOTECHNICAL LABORATORY TESTING

The samples collected during the field investigation were transported to ABS's laboratory for the purposes of sample and log reviews, analysis, identification, and classification. All samples underwent a thorough visual examination by a senior geotechnical engineer. Geotechnical laboratory testing was performed on representative selected soil samples, and included:

- Grain Size Analyses on four (4) representative soil samples;
- Water content on fourteen (14) representative soil samples;
- Uniaxial compressive strength and unit weight on six (6) representative rock core samples; and,
- Corrosion potential (pH, chloride, sulphate, resistivity, sulphide, and Redox potential) on two (2) representative soil samples.

The results of the geotechnical laboratory testing are included in Appendix 3.

All samples recovered from the boreholes which were not subject to laboratory testing will be stored for a period of three (3) months from the date of the final report. Afterward, they will be disposed of unless a written notice regarding their disposition is provided to ABS.

RAI

5.0 SOIL STRATIGRAPHY AND PROPERTIES

The stratigraphy of the soil and bedrock encountered in the ABS and Enviro-Experts borehole locations is summarized in the tables below and detailed in the borehole logs presented in Appendix 2.

Borehole	Asphalt Depth (mbgs) [EL. (masl)]	Granular Base Depth (mbgs) [EL. (masl)]	SAND/SILTY GRAVELLY SAND (FILL) DEPTH (mbgs) [EL. (masl)]	SILTY SAND/SANDY SILT DEPTH (mbgs) [EL. (masl)]	Silty Sand/Sandy Gravel (Till) Depth (mbgs) [EL. (masi)]	Ведкоск Дертн (mbgs) [EL. (masl)]
BH25-1			0.0 – 3.05 [77.98 – 74.93]	3.05 – 5.33 [74.93 – 72.65]	5.33 – 8.66 [72.65 – 69.32]	8.66 – 11.91* [69.32 – 66.07]
BH25-2	0.0 – 0.03	0.03 – 0.15	0.15 – 3.05		3.05 – 6.86	6.86 – 11.84*
(MW)	[79.64 – 79.61]	[79.61 – 79.49]	[79.49 – 76.59]		[76.59 – 72.78]	[72.78 – 67.80]
BH25-3	0.0 – 0.03	0.03 – 0.15	0.15 – 3.05		3.05 – 5.38	5.38 – 14.88*
(MW)	[78.51 – 78.48]	[78.48 – 78.36]	[78.36 – 75.46]		[75.46 – 73.13]	[73.13 – 63.63]

TABLE 1: SUMMARY OF THE ENCOUNTERED STRATIGRAPHY – ABS BOREHOLES

'Borehole terminated at noted depth.

TABLE 2: SUMMARY OF THE ENCOUNTERED STRATIGRAPHY ENVIRO-EXPERTS BOREHOLES

Borehole	Asphalt Depth (mbgs)	Granular Base Depth (mbgs)	SAND/SILTY GRAVELLY SAND (FILL) DEPTH (mbgs)	Silty Sand/Sandy Silt Depth (mbgs)	Silty Sand/Sandy Gravel (Till) Depth (mbgs)	Bedrock Depth (mbgs)
F-01	0.0 – 0.05		0.05 – 2.39		2.39 – 9.00	9.00 - 12.04*

*Borehole terminated at noted depth.

5.1 SUBSURFACE SOIL, ROCK, AND GROUNDWATER CONDITIONS

5.1.1 Asphalt and Granular Base

The ABS Boreholes BH25-2 and BH25-3 were located on existing asphaltic pavement; the thickness of the asphalt measured in the boreholes was approximately 30 mm. The Enviro-Experts Borehole F-01 was located on existing asphaltic pavement as well; the thickness of the asphalt measured in this borehole was 50 mm.

In the ABS Boreholes BH25-2 and BH25-3, the asphalt was underlain by a layer of granular base course material consisting of gravely sand to sand and gravel. The thickness of the granular base course was approximately 125 mm.

5.1.2 FILL

A layer of FILL was encountered in all the ABS boreholes, either below the granular base or at the surface. This layer of FILL generally consisted of sand, trace gravel, trace silt/silty gravelly sand. It was observed to be reddish to greyish brown in colour and recovered in damp to moist state with moisture contents ranging from 6 to 10%. The recorded SPT 'N' value in the FILL ranged from 6 to 17 blows/300 mm, indicating that the FILL is loose to compact. The FILL layer extended either from the ground surface or below the granular base to maximum depths of 3.05 mbgs corresponding to elevations near 74.93 to 76.59 masl.

In the Enviro-Experts Borehole F-01, the FILL was encountered below the asphalt. It consisted of sand and gravel to sand with traces of gravel, and was brown in colour. The recorded SPT 'N' value for the FILL in this Borehole ranged from 9 to 31 blows/300 mm, indicating that the FILL is loose to dense. The FILL deposit in this Borehole extended from 0.05 to 2.39 mbgs.

Two (2) samples from the deposit underwent grain-size sieve analysis testing, and six (6) samples underwent moisture content determination. The test results are summarized in Table 3 and are included in Appendix 3.

					•		
BOREHOLE	DEPTH (mbgs)		SIZE FRACT	ION (%)		NAL (0/)	Remarks
[SAMPLE ID]	[ELEVATION (masl)]	GRAVEL	SAND	SILT	CLAY	W _№ (%)	КЕМАККЗ
BH25-1	0.0-0.61					10	
[SS1]	[77.98 – 77.37]					10	
BH25-1	0.76 – 1.37	7.0	88.3	4	.7		Sand, traces of gravel, traces of silt
[SS2]	[77.22 – 76.61]	7.0	00.5	4	./		Sand, traces of graver, traces of site
BH25-1	1.52 – 2.13					6	
[SS3]	[76.46 – 75.85]					0	
BH25-2	0.76 – 1.37					10	
[SS2]	[78.88 – 78.27]					10	
BH25-2	2.29 – 2.90					7	
[SS4]	[77.35 – 76.74]					/	
BH25-3	0.0 - 0.61	28	50.7	21	2		Silty gravelly sand
[SS1]	[78.51 – 77.90]	20	50.7	21			Sitty graveny sand
BH25-3	0.76 – 1.37					7	
[SS2]	[77.75 – 77.14]					/	
BH25-3	2.29 – 2.90					6	
[SS4]	[76.22 – 75.61]					0	

TABLE 3: GRAIN SIZE ANALYSIS AND WATER CONTENT TESTS SUMMARY - FILL

5.1.3 Silty Sand/Sandy Silt

In the ABS Borehole BH25-1, a layer of native silty sand/sandy silt with trace clay was encountered below the FILL. It was observed to be brown to greyish brown in colour and recovered in a damp to wet state

with moisture contents ranging from 7 to 21 %. The recorded SPT 'N' value within the silty sand/sandy silt ranged from 10 to 17 blows/300 mm, indicating a compact density/stiff consistency. The silty sand/sandy silt extended from 3.05 to 5.33 mbgs corresponding to elevations near 72.65 to 74.93 masl.

Two (2) samples from the deposit underwent water content determination testing. The test results are summarized in Table 4 and are included in Appendix 3.

BOREHOLE	Depth (mbgs)	Size Fraction (%)				\A/ (0/)	Remarks
[SAMPLE ID]	[ELEVATION (masl)]	GRAVEL	Sand	Silt	CLAY	W _№ (%)	REMARKS
BH25-1	3.05 – 3.66					7	
[SS5]	[74.93 – 74.32]					/	
BH25-1	4.57 – 5.18					21	
[SS7]	[73.41 – 72.80]					21	

TABLE 4: WATER CONTENT TESTS SUMMARY – SILTY SAND/SANDY SILT

5.1.4 Sand/Sand and Gravel (TILL)

In all the ABS boreholes, a lay of sand, some gravel, trace silt/sand and gravel, trace silt was encountered below the native silty sand/sandy silt or the FILL material. It was observed to be brown/brownish grey to greyish black in colour and recovered in a moist to wet state with moisture contents ranging from 4 to 14 %. The recorded SPT 'N' value within the till layer ranged from 5 to over 50 blows/300 mm, indicating that the till layer is loose to very dense. The depths of the till layer ranged from approximately 3.05 to 8.66 mbgs corresponding to elevations near 69.32 to 76.59 masl.

In the Enviro-Experts Borehole F-01, the sand/gravelly sand with traces of silt (TILL) was encountered below the FILL. It was brown in colour and recovered in a moist to wet state. The recorded SPT 'N' value for the sand/gravelly sand (TILL) in this Borehole ranged from 3 to 37 blows/300 mm, indicating that the sand/gravelly sand (TILL) is loose to dense. The sand/gravelly sand (TILL) deposit in this Borehole extended from 2.39 to 9.00 mbgs.

Two (2) samples from the deposit underwent grain-size sieve analysis testing, and six (6) samples underwent moisture content testing. The test results are summarized in Table 5 and are included in Appendix 3.

BOREHOLE	DEPTH (mbgs)	Size Fraction (%)				W _№ (%)	Remarks
[SAMPLE ID]	[ELEVATION (masl)]	GRAVEL	Sand	Silt	CLAY	VV _N (70)	REWIAKKS
BH25-1	6.1 - 6.71					10	
[SS9]	[71.88 – 71.27]					10	
BH25-1	7.62 – 8.23					7	

TABLE 5: GRAIN SIZE ANALYSIS AND WATER CONTENT TESTS SUMMARY – SAND/SAND AND GRAVEL (TIL	L)
TABLE ST GRAIN SILL / MALISIS AND WATCH CONTENT TESTS SOMMARY SAND AND GRAVEL THE	

PRELIMINARY GEOTECHNICAL INVESTIGATION Proposed Mid-Rise Residential Development Located on 630 Montreal Road, Ottawa, Ontario F/N: GO-24-1324-00 |June 2025

BOREHOLE	Depth (mbgs)	Size Fraction (%)				NAL (0/)	Drawnyc
[SAMPLE ID]	[ELEVATION (masl)]	GRAVEL	SAND	Silt	CLAY	W _№ (%)	Remarks
[SS11]	[70.36 – 69.75]						
BH25-2	3.81 - 4.42					5	
[SS6]	[75.83 – 75.22]					5	
BH25-2	5.33 – 5.94	13.0	78.9	0	8.1		Sand, some gravel, traces of silt
[SS8]	[74.31 – 73.70]	15.0	76.9	0			
BH25-2	6.86 - 7.47					12	
[SS10]	[72.78 – 72.17]					12	
BH25-3	3.81 - 4.42					4	
[SS6]	[74.70 – 74.09]					4	
BH25-3	4.57 - 5.18	38.0	52.2	0	.8		Sand and Gravel, traces of silt
[SS7]	[73.97 – 73.33]	58.0	52.2	9	.0		Sand and Gravel, traces of silt

5.1.5 Bedrock

Bedrock was encountered and cored in all the ABS boreholes. The rock was generally described as Shale, which was slightly weathered, strong, and black to greyish black in colour; in Borehole BH25-3, some of the shale was interbedded with limestone. The rock was poor to fair quality at the top, becoming of good to excellent quality with depth based on the Rock Quality Designation (RQD) with minimal joints, clay seams, and fracturing, if any. The top of the rock was encountered at depths ranging from 5.38 to 8.66 mbgs corresponding to elevations near 69.32 to 73.13 masl.

In the Enviro-Experts Borehole F-01, bedrock was encountered below the sand/gravelly sand (TILL). The bedrock was described as very poor to fair quality based on the RQD. The rock was encountered at a depth of 9.00 mbgs.

Photographs of the recovered ABS rock cores are included in Appendix 4.

Six (6) samples from the rock underwent unit weight and unconfined compressive strength testing. The test results are summarized in Table 6 and are included in Appendix 3.

BOREHOLE ID [Sample ID]	Dертн (mbgs) [ELEVATION (masl)]	UCS (MPA)	Unit Weight (kN/m <u>³</u>)	
BH25-1	8.89 - 10.41	44.8	25.2	
[RC-2]	[69.09 – 67.57]	44.0	23.2	
BH25-1	10.41 - 11.91	44.7	25.5	
[RC-3]	[67.57 – 66.07[44.7	25.5	
BH25-2	7.32 - 8.84	70.9	25.3	
[RC-1]	[72.34 – 70.80]	70.9	23.3	
BH25-2	8.84 - 10.34	36.0	25.6	

BOREHOLE ID [Sample ID]	Dертн (mbgs) [ELEVATION (masl)]	UCS (MPA)	Unit Weight (kN/m³)	
[RC-2]	[70.84 – 69.30]			
BH25-3	10.36 - 11.86	63.0	25.6	
[RC-6]	[68.15 – 66.65]	05.0	25.0	
BH25-3	13.41 - 14.88	61.9	26.2	
[RC-8]	[65.10 - 63.63]	01.5	20.2	

5.2 GROUNDWATER

For this geotechnical investigation, ABS installed a total of two (2) monitoring wells in Boreholes BH25-2 and BH25-3. Groundwater level was measured in the ABS boreholes including monitoring wells, and the measurements are presented in Table 7 below.

TABLE 7: GROUNDWATER LEVEL MEASUREMENT SUMMARY

	WELL SCF	REEN DETAILS	WATER LEVEL OBSERVATION		
BOREHOLE ID	Screen Interval (mbgs) [El. (masl)]	Screened Material	Water Level (mbgs) [EL. (masl)]	Measurement Date	
BH25-1	N/A	Shale	6.00 [71.98]	June 11, 2025	
BH25-2	10.34 - 11.84 [66.30 – 67.80]	Shale	5.69 [73.95]	June 18, 2025	
BH25-3	13.38 - 14.88 [65.13 - 63.63]	Shale interbedded with Limestone	3.71 [74.80]	June 18, 2025	

It is important to note and emphasize that the groundwater levels are subject to seasonal fluctuations. A higher groundwater level condition will likely develop in the spring, during the thaw, and following rainfall events.

5.3 CHEMICAL ANALYSIS

Chemical analyses were conducted by Eurofins Environment Testing in Ottawa to determine the pH, resistivity, sulphate, chloride, sulphide, electric conductivity, and Redox potential of representative soil samples. The laboratory results for the chemical analysis are shown in Table 8 and included in Appendix 3.

TABLE 8: SOIL CHEMICAL ANALYSIS RESULTS

BOREHOLE ID	Sample	Dертн (mbgs) [El. (M)]	рН	Sulphate (%)	Chloride (%)	Resistivity (Ohm-cm)	Redox (mV)	Sulphide (%)	ELECTRIC CONDUCTIVITY <u>(</u> ms/cm <u>)</u>
BH25-1	SS11	7.62 – 8.23 [70.36 – 69.75]	8.11	0.07	0.018	1317	213	1.86	0.754
BH25-2	SS3	1.52 – 2.13 [78.12 – 77.51]	8.52	<0.01	0.002	6024	257	0.01	0.166

ORAF

6.0 GEOTECHNICAL DISCUSSIONS AND PRELIMINARY RECOMMENDATIONS

Based on this Geotechnical Investigation Report and our understanding of the Project, the Site is suitable for the proposed development.

The following discussion and preliminary recommendations are based on our understanding of the Project. Any changes to the Project will require a review to assess the impact on the recommendations given herein. This geotechnical report is based on the factual data obtained from the boreholes advanced at the Site by ABS and are intended for use by the Client and Designers only. Contractors bidding on this Project or conducting work associated with this Project should make their own interpretation of the factual data and/or carry out their own investigations.

Important factors to be considered for the design and construction of the proposed Project are expected to include the following:

- Pre-Design Geotechnical Investigation Report: At the time of this report, the Client had not provided ABS with the design details for the Project. It is our understanding that the Project is currently in the pre-design stages, and this Geotechnical Investigation Report is preliminary in nature;
- Deep Excavations: All excavations for this Project will need to be completed and maintained in accordance with the requirements of the Occupational Health and Safety Act (OHSA) Regulations for Construction, as discussed in section 6.2 of this report. Designers and Contractors should review the geometry of planned excavations including depths and sloping requirements. We are assuming that excavations will extend to approximate depths of 8.3 to 11.3 mbgs, into the bedrock. The Client should retain Contractors with significant experience working on similar projects. Contractors will need to assess the use of Engineered Shoring methods versus open cut methods;
- Construction Dewatering: Excavations for this Project will penetrate through the fill, sands and into the bedrock, below the groundwater table. As such, an Environmental Activity and Sector Registry (EASR) or Permit to Take Water (PTTW) may be required. Discussions regarding requirements for these permits is further discussed in section 6.2.5;
- Foundation Bearing Pressures: The ABS recommended foundation bearing pressures provided in Section 6.6 assume that foundations for the building will be designed and constructed on the weathered shale bedrock at depths near 8.3 mbgs. ABS completed unconfined compressive strength on representative rock core samples at various depths; higher bearing pressures can be provided should the Client consider extending the building foundation depths beyond 8.3 mbgs.

Based on the ABS boreholes, laboratory tests, and subsurface conditions encountered in the boreholes, the following comments and recommendations are provided.

6.1 SITE PREPARATION

6.1.1 General Grading and Interference with Existing Underground Utilities

Grading of the Site will need to be conducted during the early stages of construction. This will provide a positive control of surface water, directing it away from excavations and subgrades. Subgrades will need to be protected from surface water runoff or groundwater accumulation.

Designers will need to review locations of all proposed excavation and compare with the location of all existing underground utilities, if any. Existing utilities which will be exposed will need to be supported, rerouted, or removed during construction and/or excavation.

6.1.2 Subgrade Preparation for Footings on Rock

Subgrade preparation for footings founded on rock will involve the removal of all fill, organic matter, and loose bedrock. Any pieces of rock that can be easily manipulated by conventional excavation equipment should be removed, as directed by the Geotechnical Engineer. Final subgrade surfaces should be brushed and/or air blown clean, and dry. The exposed bedrock surface should be examined and approved by the Geotechnical Engineer to confirm the competency of foundation to support the design bearing pressures.

Additional excavation of fractured rock to achieve a sound bedrock subgrade surface may be necessary. It is recommended that a unit price item for additional rock excavation and replacement with concrete fill be incorporated into the tender documents.

All footing subgrades must be reviewed and approved by the Geotechnical Engineer.

6.2 EXCAVATIONS

ABS is anticipating the excavations for this Project to extend to approximate depths of 8.3 to 11.3 mbgs and may consist of open cut excavations and/or Engineered Shoring. All excavations for this Project must be carried out in accordance with the OHSA. The following excavation recommendations should be considered a supplement to, and not a replacement of the OHSA requirements for Construction Projects.

6.2.1 Open Excavations

Should open excavations be used during construction, the following OHSA recommendations will need to be considered:

- The existing FILL on Site would be considered "Type 3 Soils" according to OHSA. "Type 3 Soils" must be sloped from its bottom with a slope having a minimum gradient of 1H:1V. Excavations into the fill soils should be relatively straightforward with conventional excavation equipment;
- The <u>native soils</u> on Site would generally be considered "Type 3 Soil" according to OHSA. "Type 3 Soils" must be sloped from its bottom with a slope having a minimum gradient of 1H:1V.

However, if excavations proceed below the water table, become wet or muddy, or exhibit signs of seepage, they would become a "Type 4 Soil". Excavations in "Type 4 Soils" must be sloped from its bottom with a slope having a minimum gradient of 3H:1V. Excavations into the native soils should be relatively straightforward with conventional excavation equipment;

- For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. Excavation side-slopes should not be unduly left exposed to inclement weather;
- For excavations into bedrock, there may be an upper weathered rock zone that may require some shoring depending on the degree of weathering. The bedrock quality and site-specific requirements need to be assessed during construction by the Geotechnical Engineer. For planning purposes, a weathered bedrock is recommended to be treated as a "Type 2 Soil". Sound rock would generally be self-supporting; and,
- Vertical cuts into the bedrock will be possible. However, the exposed rock surface should be inspected by the Geotechnical Engineer to ensure stability, particularly at areas where groundwater seepage occurs from the rock. Remedial works, such as steel mesh shotcrete should be implemented, if deemed necessary.

Where workers must enter excavations extending deeper than 1.2 m below grade, the excavation sidewalls must be suitably sloped and/or braced in accordance with OHSA and Regulations for Construction Projects.

6.2.2 Bedrock Excavation and Blasting

Bedrock excavation will require line drilling, pneumatic, or hydraulic breakers such as hoe-rams or heavy excavation equipment equipped for rock excavation. Controlled blasting techniques may also need to be used, subject to the laws and blasting restrictions that are in effect for the area. Designers are referred to the OPSS.MUNI 120 and the City of Ottawa Special Provision F-1201 specifications for the use of explosives. In general, these documents require a blasting plan to be prepared by a Blasting Engineer. They also require conducting pre-condition surveys on nearby buildings, utilities, structures, water wells, and facilities likely to be affected by the blast, within a minimum 150 m of the location where explosives are to be used. Vibration monitoring during the blasting in nearby structures or infrastructure will be required. The frequency dependent peak vibration limits from the City of Ottawa Special Provision F-1201 are specified in the table below.

Element	Frequency (Hz)	Peak Particle Velocity (mm/s)
Structures and Pipelines	≤ 40	20

TABLE 9: MAXIMUM PEAK PARTICLE VELOCITY VALUES

PRELIMINARY GEOTECHNICAL INVESTIGATION Proposed Mid-Rise Residential Development Located on 630 Montreal Road, Ottawa, Ontario F/N: GO-24-1324-00 | June 2025

> 40	50

6.2.3 Excavations Adjacent to Infrastructure

Designers and Contractors will need to review the geometry of the planned excavations regarding requirements for depths and sloping. This will need to be compared to the location of existing adjacent infrastructure, if any, to ensure they are not undermined. Undermining can be prevented by ensuring that excavations do not penetrate below an imaginary line constructed outwards and downwards at a slope of 10H:7V from the toe of existing or proposed footings.

If the limitations of undermining cannot be met, then an engineered shoring or underpinning systems will be required

6.2.4 Engineered Shoring

Due to the anticipated depth of excavation, Designers and Contractors may consider the use of Engineered Shoring systems through the overburden soils and the upper weathered layer of bedrock. Such systems may include soldier piles, slide rail systems, sheet piles, etc. The appropriate method should be selected by the Project Designers and Contractors, and the Engineered Shoring system will need to be designed by a Professional Engineer considering the following aspects:

- Lateral earth pressures;
- Loads from any adjacent structures, or infrastructure being retained;
- Seismic loadings;
- Freeze-thaw action on the face of the excavations;
- Expansion and contraction of shoring elements;
- Pre-stressing loads, or post tensioning loads on tie backs;
- Possible surcharge loads throughout construction (i.e., trucks, equipment, stockpiles, etc.); and,
- Vibrations caused by construction methods.

It is recommended that the Client retain Contractors and Designers who have significant experience with similar deep excavations and soil conditions. The lateral pressure parameters to assist Designers and Contractors are discussed in Section 6.8.

6.2.5 Construction Dewatering and EASR/PTTW

As part of this Geotechnical Investigation, ABS installed a total of two (2) monitoring wells; the groundwater levels for the two (2) ABS monitoring wells are provided in section 5.2.

Based on the monitoring well observations, the water levels encountered at the Site were approximately 3.71 to 6.00 mbgs, corresponding to approximate elevations near El. 74.80 to 71.98 masl. As excavations for this Project will extend to depths ranging from 8.3 to 11.3 mbgs (below the groundwater), dewatering during construction will be required.

Both surface water and groundwater seepage are anticipated in the excavation and will need to be controlled. Water quantities will depend on seasonal conditions, depths of excavations, presence and lateral extents of fractured rock zones, and the duration that excavations are left open. Groundwater will travel easily through the fill material, and especially near the fill-native interface. The same is likely at the soil-rock interface and through fractured rock zones. Existing utility trenches which join or intersect the excavations may act as a drain and supply off-Site water into the excavations. These may need to be plugged at the outset of construction to mitigate this possibility.

Comprehensive construction dewatering techniques should be used during excavation for the building, such as pumping from sumps, and/or ditches. Dewatering measures beyond conventional sump pump techniques such as a positive dewatering system to temporarily lower the static groundwater level may be required.

Based on the Ontario Regulation (O.Reg.) 387/04, a regulation in the Ontario Water Resources Act (Section 34 – 34.11), dewatering or water takings of more than 50,000 L per day requires registration with the Ministry of Environment, Conservation and Parks (MECP) for an Environmental Activity and Sector Registry (EASR) or a Permit to Take Water (PTTW) submission.

For EASR, the Client is referred to the water taking user guide for EASR or O.Reg. 63/16 to determine whether the water taking is required to be registered. For PTTW applications, there are three (3) categories of permits, and they include:

- Category 1: Water takings are anticipated to have a lower risk of causing an unacceptable environmental impact/interference
- Category 2: Water takings are anticipated to having a higher potential of causing unacceptable environmental impact or interference
- Category 3: Water takings are anticipated to have the highest potential of causing unacceptable environmental impactor interference

Review of applications for PTTW with the MECP may take at least 3 months or longer depending on MECP comments.

It should be noted, ABS were not retained to complete a hydrogeological assessment to determine potential groundwater inflow in advance of construction and determine whether or not an EASR or PTTW is required.

6.3 FROST PROTECTION

Based on the Ontario Ministry of Transportation (MTO) foundation frost penetration depths for Southern Ontario map (OPSD 3090.101), the design frost depth for the Site is 1.8 mbgs. All foundations for unheated/isolated structures or underground utilities must be provided with a minimum of 1.8 m of soil cover for frost protection.

Where an adequate depth of soil cover cannot be provided, an equivalent insulation detail should be designed or approved by a Geotechnical Engineer; this will need to be designed or pre-approved prior to placement of any foundations or underground utilities.

Should construction take place during the winter season, exposed subgrades and underlying soils must be protected by the Contractor against freezing for the entire duration of construction, or until adequate frost protection is in place. Backfill should not be placed or compacted in a frozen condition or placed on frozen subgrades.

6.4 SEISMIC SITE CLASSIFICATION

In accordance with the Ontario Building Code (OBC), structures designed under Part Four of the code must be designed to resist a minimum earthquake force. The parameters for determination of the Site Classification for Seismic Site Response are set out in Table 4.1.8.4.A of the OBC.

Based on the results of the field drilling, and the subsurface stratigraphy as revealed in the boreholes, ABS recommends that the building be designed to **"Site Class C"** with footings placed on bedrock, as per table 4.1.8.4.A of the OBC, and subject to the limitations of the Code.

It is possible to prove an increased Site Class, however, additional geophysical testing by using shear wave velocity would be required. An increased Site Class can often result in significant design savings especially for large structures and structures with post-disaster importance. ABS can provide the geophysical testing, if requested by the Client.

6.5 LIQUEFACTION INDUCED SETTLEMENT

As the foundations for the proposed development will be founded on bedrock, the potential for liquefaction induced settlement for the building structure would not be applicable.

6.6 FOUNDATIONS

Based on our understanding of the Project, and review of the architectural/conceptual drawings, we are anticipating the foundations for the building will be at a depth of 8.3 mbgs, and elevator pit at 11.3 mbgs. It is worth mentioning that based on the Boreholes completed at the Site, the top of rock depths ranged

from 5.38 to 9.00 mbgs; therefore, ABS recommends the foundation of the building to be designed and constructed on top of rock.

6.6.1 Foundations on Bedrock

For concrete pads and/or strip footings founded on the weathered shale bedrock, the recommended factored bearing capacity under Ultimate Limit State (ULS) conditions would be 500 kPa. This includes a geotechnical resistance factor of Φ = 0.5. Under Serviceability Limit States (SLS) conditions, there is no recommended bearing capacity as settlement under the ULS condition is expected to be nil. Designers should limit footing dimensions to 1.0 m for pad footings, and 0.5 m for strip footings.

Subgrade preparation for footings founded on rock will involve the removal of all soils to expose sound bedrock. Any pieces of rock that can be easily manipulated by conventional excavation equipment should be removed, as directed by the Geotechnical Engineer. Final subgrade surfaces should be brushed and/or air blown clean, and dry. The exposed surface should be examined by the Geotechnical Engineer to assess its competency.

6.6.2 Foundations on Engineered Fill

The use of Engineered Fill may be used directly over the bedrock, subject to approval by the Geotechnical Engineer, to correct irregularities in the design subgrades, and to backfill over-excavated areas.

If Engineered Fill is used below footings, then it would have reduced geotechnical resistance factors from those available on the bedrock. For footings founded on Engineered Fill, the recommended factored bearing pressure under ULS conditions would be 225 kPa. This includes a geotechnical resistance factor of $\Phi = 0.5$. A corresponding recommended SLS value for footings on Engineered Fill would be 150 kPa. This assumes a maximum tolerable differential settlement in the order of 19 mm and a maximum tolerable total settlement in the order of 25 mm. Designers should limit footing dimensions to 1.0 m for pad footings, and 0.5 m for strip footings.

When Engineered Fill is being placed below future load bearing structures, the extents of the Engineered Fill should extend a minimum of 0.3 m beyond the edge of the footings or structure on all sides and then must be continued downwards and outwards at a 1H:1V slope until the approved subgrade level. This footprint can become quite large if the Engineered Fill is required to be deep.

Subgrade preparation below Engineered Fill will be similar to that for footings as noted above. The exposed surface should be examined by the Geotechnical Engineer to assess the competency. Engineered Fill must be treated in accordance with the requirements in Section 6.9.

6.7 RESISTANCE TO FOUNDATION UPLIFT

Resistance to foundation uplift or overturning forces can be provided by considering the dead weight of the structures and backfill soils, increasing the dead weight of the structure using additional concrete, or with the use of additional rock anchors.

In the case that grouted rock anchors are considered, rock anchors may be designed based on a frictional stress between grout and intact bedrock; a conservative allowable working stress value of 690 kPa may be used to calculate the length of the required bond zone. The bond zone must be entirely within sound bedrock; below the weathered zone.

In order to mobilize the shear stress in the rock, the load at the top of the anchor must be properly transferred through the upper bedrock to the bond zone to prevent progressive grout fail and ensure proper performance. Therefore, a "free length" is required through the foundation element, the weathered rock zone, and down to the bond zone.

The mass of rock mobilized by a rock anchor may be assumed to be based upon a 60° cone drawn upward from a point located at the lower one-third point of the bond zone and spaced such that the theoretical cones do not overlap. Designers should review the spacing of anchors and take into account of any overlapping cones (i.e. avoid doubling up on rock mass calculations for overlapping cones). The bulk unit weight of bedrock may be assumed to be approximately 25 kN/m³. The corresponding buoyant unit weight would be approximately 15 kN/m³. It is recommended that Designers consider the water level to be near the surface, and therefore, use submerged unit weights for the rock mass calculations.

6.8 LATERAL EARTH PRESSURES

The following soil parameters used in the determination of earth pressure acting on basement walls and temporary Engineered Shoring are defined and provided below.

Parameter	DEFINITION	Units
φ '	Angle of Internal Friction	Degrees
γ	Bulk Density	kN/m ³
Cu	Undrained Shear Strength	kPa
C'	Effective Cohesion	Degrees
Ko	active earth pressure coefficient (Rankine)	Dimensionless
Ka	at-rest earth pressure coefficient (Rankine)	Dimensionless

TABLE 10: DEFINED LATERAL EARTH PRESSURE SOIL PARAMETERS

Kp	passive earth pressure coefficient (Rankine)	Dimensionless

6.8.1 Statis Conditions

The appropriate un-factored static condition values for use in the design of structures subject to unbalanced earth pressures at this Site are tabulated as follows:

 TABLE 11: LATERAL EARTH PRESSURE DESIGN PARAMETERS – STATIC CONDITIONS

Parameter							
φ' (°)	γ(kN/m³)	c' (°)	<i>С</i> _U (кРА)	Ko	Ka	Kp	
28	18	-	-	0.53	0.36	2.77	
30	20	-	-	0.50	0.33	3.00	
32	22	-	-	0.47	0.31	3.25	
36	22	-	-	0.41	0.26	3.85	
37	25		-	0.40	0.25	4.02	
32	22	N	-	0.47	0.31	3.25	
	28 30 32 36 37	28 18 30 20 32 22 36 22 37 25	28 18 - 30 20 - 32 22 - 36 22 - 37 25 -	ϕ' (°) γ (kN/m³) c' (°) C_{υ} (кРА)28183020322236223725	ϕ' (°) γ (kN/m³) c' (°) C_{υ} (kPA) K_o 28180.5330200.5032220.4736220.413725-0.40	ϕ' (°) γ (kN/m³) C' (°) C_{U} (kPA) K_{o} K_{o} 28180.530.3630200.500.3332220.470.3136220.410.2637250.400.25	

For yielding retaining walls, the active earth pressure coefficients, K_a , is recommended to be used. The resultant of the applicable static or at-rest force is assumed to act at 1/3H above the base of the wall where H is the Height of the wall.

6.9 ENGINEERED FILL

All new fill soils that underlie slabs, footings, are in building interiors, or other structural applications are considered to be Engineered Fill.

For this Project, Engineered Fill may be required to backfill the interior below the floor slab, and to correct deficiencies in the footing subgrades. To qualify as Engineered Fill, the following strict requirements must be met:

- Prior to placing any Engineered Fill, all unsuitable fill materials must be removed, and the subgrade approved by the Geotechnical Engineer. Any deficient areas should be repaired prior to placement;
- The proposed fill material must be tested for grain size and standard Proctor; it must be reviewed and approved by the Geotechnical Engineer before being considered as Engineered Fill. Typically,

a crushed well-graded granular material such as an Ontario Provincial Standard Specification (OPSS) 1010 Granular 'A' or Granular 'B' Type II type material is suitable. However, other suitable granular materials may be proposed and considered depending on the Site-specific conditions;

- Engineered Fill should be placed in maximum loose lifts of 200 mm and adequately compacted to achieve 100% of its Standard Proctor Maximum Dry Density (SPMDD). Engineered Fill must have full-time compaction testing on-Site by geotechnical personnel; and,
- When Engineered Fill is being placed below future load bearing structures, the extents of the Engineered Fill should extend a minimum of 0.3 m beyond the edge of the footings or structure on all sides, and then must be continued downwards and outwards at a 1H:1V slope until the approved subgrade level. This footprint can become quite large if the Engineered Fill is required to be deep.

Fill that is placed on un-approved subgrades and/or without prior approval and/or review by the Geotechnical Engineer will not be considered as Engineered Fill and may need to be excavated and replaced.

6.10 EXTERIOR STRUCTURE BACKFILL (WALLS, PAVED AREAS, SIDEWALKS, EXTERIOR SLABS, LANDSCAPE, ETC.)

The exterior backfill placed against new structures should be a compactable free-draining non-frost susceptible material. Typically, a pit -run sandy soil meeting the grading requirements of an OPSS 1010 Granular 'B' Type I is acceptable, however, other materials may be considered if they are tested and approved by the Geotechnical Engineer ahead of time. In landscaped areas (without asphalt cover), the upper 0.3 m below landscape details should be a low permeable soil to reduce surface water infiltration. Backfill should be placed and compacted as outlined below.

- Backfill should not be placed in a frozen condition, or placed on a frozen subgrade;
- The entrance slabs should slope away from the building;
- Entrance slabs should be supported on frost walls founded below the design frost depth, or alternatively, have insulation details designed to ensure they do not heave;
- For backfill that would underlie paved areas, sidewalks or exterior slabs-on-grade, each lift should be uniformly compacted to at least 98% of its SPMDD;
- For backfill on exteriors that would underlie landscaped areas, each lift should be uniformly compacted to at least 95% of its SPMDD; and,
- Exterior grades should be sloped away from the structures, and roof drainage downspouts should be placed so that water flows away from the structure wall.

6.11 BASEMENT SLAB ON GRADE

It is important to note that ABS has not been provided with the design for the floor slab loadings. ABS is assuming that a typical floor slab loading of a maximum 24 kPa would be applicable. The bedrock subgrade

for the floor slab will need to be prepared by the Contractor and reviewed and approved by the Geotechnical Engineer prior to placement of Engineered Fill.

Subgrade preparation should include the removal of any disturbed or loose rock. Any unsuitable subgrade areas will need to be sub-excavated and replaced with suitable Engineered Fill material compacted to 100 % of its SPMDD.

A capillary moisture barrier consisting of a layer of 19 mm clear stone or an OPSS 1010 Granular 'A' at least 200 mm thick should underlie the slab. This layer should be compacted to 100 % of its SPMDD and placed on approved subgrade surfaces.

For design purposes and based upon a properly prepared native subgrade surface covered with 200 mm of 19 mm clear stone or OPSS 1010 Granular 'A' compacted to 100 % its SPMDD, a typical preliminary modulus of subgrade reaction appropriate for the slab design would be approximately 30,000 kN/m³.

6.12 PERIMETER DRAINAGE AND WATERPROOFING

Sub-floor weeping pipes 100 mm in diameter must be placed under the basement slab-on-grade at a maximum spacing of 8 m (subject to confirmation at the time of construction). The weeping tiles must be covered with a minimum of 150 mm of clear stone. They should be placed a minimum of 0.5 m below the basement floor slab, above the founding level of the footings.

The exterior basement walls of the proposed building will be poured up against the shored or grouted walls of the excavation, prefabricated drainage sheets (Terradrain 600 or equivalent) must be placed continuously against the excavation / shoring walls. These should drain through drainage ports in the walls into a perimeter solid pipe and channel all the water into the sump pits in the building. The maximum spacing of the drainage ports must not exceed 6 m, subject to confirmation at the time of construction.

The perimeter foundation and sub-floor drains must be connected to a positive frost-free outlet from which the water can be removed or connected to a sump located in the lowest level of the basement. The water from the sump must be pumped out to a suitable discharge point.

The installation of the perimeter and sub-floor drains as well as the outlet must conform to the applicable plumbing code requirements.

Based on the elevation of the water table we recommend a waterproofing membrane such as a WR Meadows MEL-ROL PRECON or equivalent for walls. These types of membranes adhere to the concrete and provide a waterproof seal between the membrane and poured concrete. Water stops should be installed at cold joints in the foundation walls and floor-wall joints.

The near surface soils at this site are susceptible to frost effects which would have the potential to deform hard landscaping adjacent to the building. At locations where the building is expected to have flush

entrances, care must be taken in detailing the exterior slabs / sidewalks, providing insulation / drainage / non-frost susceptible backfill to maintain the flush threshold during freezing weather conditions.

6.13 UNDERGROUND UTILITIES

6.13.1 Pipe Bedding and Cover

The following are recommendations for the service trench bedding and cover materials:

- Watermain and sewer bedding must be placed on a uniformly competent subgrade within a trench that's maintained in a dry condition. Any unsuitable material in the subgrade including organics, unsuitable fill, soft spots or local anomalies must be excavated out and replaced with suitable material such as an OPSS 1010 Granular 'B' Type I or similar, subject to approval by the Geotechnical Engineer. Geotechnical staff should be retained to approve the subgrade prior to the placement of pipe bedding;
- Bedding for buried utilities should consist of an OPSS 1010 Granular 'A' or Granular 'B' Type II (conforming to City of Ottawa specification S.P. F-3147) material, and placed in accordance with municipal requirements;
- The use of clear 19 mm stone is not recommended for use as pipe bedding. The voids in the stone can cause a low gradient water flow and infiltration of fines from the surrounding soils and/or cover materials, which can cause settlement and loss of support to pipes and structures;
- The cover material should be a service sand material like an OPSS 1010 Granular 'B' Type I or an OPSS 1010 Granular 'A' (conforming to City of Ottawa specification S.P. F-3147) material;
- Pipe bedding and backfill for flexible pipes should be undertaken in accordance with OPSD 802.010; and,
- The bedding and cover materials should be compacted to a minimum of 95% SPMDD. Bedding and cover details should follow the applicable governing design detail (i.e. City of Ottawa, OPSD).

6.13.2 Backfill

Backfill above the cover for the underground sewers should be in accordance with the following recommendations:

- The existing FILL material and native soils may be used as backfill material with the approval of the Geotechnical Engineer. Imported suitable pit-run sandy soil material such an OPSS 1010 Granular 'B' Type I would also be suitable for use as service backfill material as well; and,
- The backfill should be placed and compacted in uniform lift thickness compatible with the selected compaction equipment and not thicker than 300 mm. Each lift should be compacted to a minimum 95% of its SPMDD.

6.14 CHEMICAL CHARACTERIZATION OF SUBSURFACE SOIL

Two (2) soil samples were submitted to Eurofins Environment Testing in Ottawa for testing of chemical properties relevant to exposure of concrete elements to sulphate attacks as well as potential soil corrosivity effects on buried metallic structural elements. Test results are presented in Section 5.3 and the laboratory results for the chemical analysis are shown in Appendix 3.

The American Water Works Association (AWWA) publication 'Polyethylene Encasement for Ductile-Iron Pipe Systems' ANSI/AWWA C105/A21.5-10 dated October 1, 2010, assigns points based on the results of the above tests. A soil that has a total point score of 10 or more is potentially corrosive to ductile iron pipe. Based on the results obtained for the samples submitted, the Site soils are slightly corrosive (BH25-2, SS3) to corrosive (BH25-1, SS11) to ductile iron pipe.

The analytical results of the soil samples were compared with applicable Canadian Standards Association (CSA) A23.1-04 and are given in the table below.

CLASS OF EXPOSURE	DEGREE OF EXPOSURE	WATER SOLUBLE SULPHATE IN SOIL SAMPLE (%)	CEMENTING MATERIAL TO BE USED
S-1	Very Severe	> 2.0	HS or HSb
S-2	Severe	0.2 – 2.0	HS or HSb
S-3	Moderate	0.1 - 0.2	MS, MSb, LH, HS, or HSb

TABLE 12: ADDITIONAL REQUIREMENT FOR CONCRETE SUBJECTED TO SULPHATE ATTACK

The chemical sulphate content analyses for selected soil samples tested indicate a sulphate concentration ranging from less than 0.01 to 0.07 % in soil, as shown in Section 5.3. The results were compared with Canadian Standards Association (CSA) Standards A23.1 for sulphate attack potential on concrete structures and possesses a low risk for sulphate attack on concrete material.

6.15 CONSTRUCTION INSPECTIONS AND MONITORING

The recommendations presented in this report assume that adequate and satisfactory inspections and monitoring during construction by qualified geotechnical personnel will be provided. This will include:

- Review and approval of all subgrade and footing base inspections by geotechnical staff;
- Part time compaction testing of bedding, and cover soils;
- Full time compaction testing of Engineered Fill;
- Periodic testing of concrete; and,
- Proof testing and performance testing of rock anchors.

7.0 SCOPE OF THE REPORT AND LIMITATION OF LIABILITY

The characteristics of the soil and rock described in this report are based on boreholes and exploration trenches conducted at a specific period and depict the nature of the site precisely where these boreholes were carried out. Thus, the characteristics between sampling points can vary significantly from the conditions encountered at the exact location where the samples were taken.

Furthermore, it should be noted that soil and rock formations may differ on the same site, and the boundaries between the various formations presented in this report should not be considered fixed. Groupe ABS Inc. cannot guarantee the accuracy of these boundaries, which depend on factors such as the number of boreholes or the sampling method.

Additionally, the properties of the soil and rock can be significantly altered after construction activities are carried out on the site or on adjacent sites. They can also be indirectly affected by exposure to freezing or weather conditions.

The groundwater conditions presented in this report apply solely to the study site. The groundwater levels indicated correspond only to the levels observed during the specified works, on the specified date and location. It should be noted that these conditions may vary depending on precipitation, snowmelt, or seasons. Moreover, construction activities or modifications to the physical conditions of the study site or adjacent sites can also alter groundwater conditions.

In this report, the descriptions of the sampled materials were conducted using commonly recognized methods of identification and classification in geotechnical engineering. These methods may involve judgment and interpretation. In practice, these descriptions are presumed to be accurate and correct.

The results of tests and analyses are valid only for the samples described in this report. The interpretation of field and laboratory results, as well as the recommendations provided, is applicable only to the study site and the information available for the project at the time of writing this report. They do not apply to any other project or site.

The recommendations given in this report are primarily intended for the project design team. The number of boreholes needed to determine all subsurface conditions may exceed the number of boreholes conducted for design purposes. If the project design is modified, Groupe ABS Inc. should be consulted to ensure that the recommendations in this report are still valid. In the event of modifications to the recommendations, additional field or laboratory work may be necessary.

It is recommended that site visits be conducted by Groupe ABS Inc. as the work progresses to confirm, and if necessary, modify the interpretations or recommendations provided in this report. If such verifications are not possible, Groupe ABS Inc. will assume no responsibility for the geotechnical interpretation that third parties may make of this report, especially if the design is altered or if site conditions differ from those described in this report.

This report should not be reproduced, in whole or in part, without the permission of Groupe ABS Inc.

Note: All indications in this drawing are located approximately, according to satellite images and/or chaining. The graphical registers are, for their part, georeferenced with the lot limits. It should be noted that only the surveys recorded by the surveyor are georeferenced. This information will be indicated in the legend. This drawing should be read in accordance with the report that accompanies it.

Legend

Study site

Borehole completed by ABS

Borehole/Monitoring Well Completed by ABS

Borehole/Monitoring Well Drilled by Others

Geodesic coordinates (UTM NAD83(CSRS))						
Borehole	Easting (m)	Northing (m)	Elevation (m)			
BH25-1	449840.2	5032309.0	77.98			
BH25-2	449853.9	5032335.9	79.64			
BH25-3	449847 6	5032320.9	78 51			

Issue date of plan: June 2025

850, Av. Industrial (suite 8) Ottawa (ON) K1G 4H3 Phone: 613.913.9702 | Email:ottawa@groupeabs.com

Drawn by: K. Si Moussa, Drafter Reviewed by: A. Mohammad

MB Canada Group Inc.

Borehole location plan

Project:

Preliminary Geotechnical Investigation for a Proposed Mid-rise Residential Building

Location:

630 Montreal Road, Ottawa, Ontario

Scale:	1:600		Client code	GMBC1	00	
F/N:	GO-24-1	324-00	Drawing #	GEO-01		1
Client ref.:						1
				1		
0) 5	m 10	m 1	5m 2	0m 2	5m

APPENDIX 2 BOREHOLE RESULTS BOREHOLE LOGS

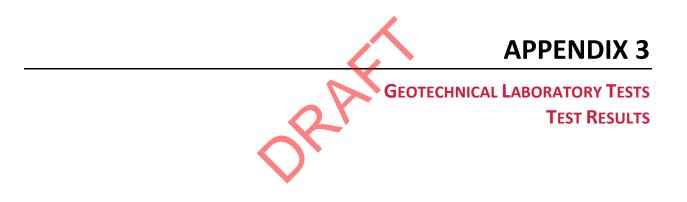
PRELIMINARY GEOTECHNICAL INVESTIGATION Proposed Mid-Rise Residential Development Located on 630 Montreal Road, Ottawa, Ontario F/N: GO-24-1324-00 |June 2025

			4E	35		BC)R	Eł	łO	L	EI	LOG							oreh 8H25	ole N° 5-1
Proj	ect Na	ame:	Prelim	inary Geotechnical In	vesti	gation	for a	a Pro	pos	ed M	id-ri	se Resident	ial Bui	ld	CRN	G	MBC1	0 0 F	=/N: (GO-24-1324-00
Clie	nt:		MB Ca	inada Group Inc.											Geod	osic (Coordina	itos	×۰	449840.2
Loca	ation:		630 M	ontreal Road, Ottawa,	Onta	ario										NAD	83 (SCF			449840.2 5032309.0
Con	tracto	r:	Georg	e Downing Estate Dri	lling	Ltd									Zone	. 10				77.98
		em auge Diamete	•			0	D .													GEO-01 2025-06-11
		nnician:		enghani, J. Brooks,		Core Prep						mm ı, Drafter				De	epth of B			
	SAN	IPLE STA	TE	TERMINOLOGY	-10 %	сом						NSISTENCY					ALITY DE			VISUAL CONTAMINATI (hydrocarbons)
\succ	C Di	sturbed		"some" 10 adjective (sandy) 20	-20 % -35 %	Very Loos Com		e	0 4-1 10-3	0	Ve So Fir		< 12 12 - 2 25 - 5	5		ALIFIE / Poor r		% RQD <25 25-50	'	A : Absent
	 // Inf	tact (thin v	vall sampler)	"and" 35 CLASSIFICATIO	i-50 % N	Dens		e	30- 30-	50	Sti Ve Ha	ery Stiff	50 - 10 100 - 2 > 200	00	Fair Goo Exce			50-75 75-90 90-100		D : Disseminate P : Pervasive
	Lo	st		Clay < 0,00 Silt 0.002 to 0.		DEG	REE	OF P	LAST	ICITY	-		Cu/Cur	-		CALIB	ER	30-100		ATER LEVEL
	L Dia	amond co	re	Sand 0.08 to	5 mm 30 mm	Low Med	ium				30	- 50 % 2	< 2 2 - 4 4 - 8		N	: 148 : 64	mm	Data	2025-	Water Infi
					0 mm	Very	r high sitive				ĺ	8	+ - 0 - 16 > 16			: 51			2025- h(m) :	Groundwa
			STRA	TIGRAPHY			SA	١MF	PLE:	S		ST (mm			VISUA	L			S	G : grain size analysis H : hydrometer test
Ē	l - ft	ELEVATION (m)			F		PLE	Ř		RΥ	B	BLOW COUNTS /15 cm agmentation (mm)	(mqq)	CON (hyd	TAMIN drocarl	ATION ons)	I ▲ : N (stand △ : Nc (dyn ▼ : Cu (labo ∇ : Cur (labo	oratory)	LEVEL	CA : chemical analysis LI : liguid limit
DEPTH (m)	DEPTH .	EVA1 (m)		ATIGRAPHIC SCRIPTION	SYMBOL	NO	SUB-SAMPLE	CALIBER	STATE	RECOVERY	R or RQD	DW COU /15 cm nentatior	C (pp				× : Cu (field + : Cur (fiel	d) Id)	WATER L	PI : plastic limit w : water content Qu : rock comp. strengtl Cur : disturbed shear stre
			Laval		Ś		SUB	υ	0,	RE	, Ľ	BLO	voc	Α	D	Р		v, w, ⊚——↓ 0 60 80	MA.	K : permeability
		77.98 0.00		trace silt, reddish		SS-1		N	\bigtriangledown	75	6	2-3-3-4								Dup: duplicate Wn = 10.0%
			brown, dar	np, 100se.		× 33-1			\square	15	0	2-3-3-4					Î			VVII - 10.0%
- 1	_		- Trace gra	avel, brown,		SS-2		N	\bigvee	58	12	3-5-7-6							-	
	5-		compact.	iroi, broini,		<u> </u>		_												
			-Loose.			SS-3		N	\mathbb{N}	58	8	2-3-5-7								
- 2	_																\uparrow		1	
			-Greyish b	rown compact.		SS-4		N	\mathbb{N}	58	16	2-9-7-8								
- 3	10-	74.93 3.05	Native : Si	lty Sand, greyish		×													-	
	-	0.00		np, compact.		SS-5		Ν	X	83	17	7-9-8-8								Wn = 7.0%
		74.17 3.81	Sandy Silt.	brown, wet, stiff.	0000	•	1		\vdash											
- 4					2 0 2	SS-6		N	Ю	67	13	5-6-7-6							1	
	15-				• •		-													
- 5		70.05			• •	SS-7		N	ert	67	10	2-4-6-15							-	Wn = 21.0%
	-	72.65 5.33 72.34		e gravel, trace silt, , very dense (TILL).	.0.	SS-8	1	N	\bigtriangledown	92	90	26-34-56-51						\mathbb{N}	38 m	
- 6	_	5.64	Silty Grave	el, some sand, some	000	33-6				92	90	20-04-00-01							71.98 m	
	20-		clay , brow dense (TIL	nish grey, wet, very L).	00		1	N	\bigvee	100	R	20-22 > 50							Ī	Wn = 10.0%
	-		01		00				\square			cm								
- 7	-		-Clayey, gi	ey.		SS-10		N	\mathbb{N}	67	R	16-34 > 70 cm					$\left + \right $	+	1	
	25-				0.0				\vdash											
	_		-Greyish b		00	SS-11		Ν	X	100		22-46-44 > 70 cm								Wn = 7.0%
Rem	nark(s	s) :	GWL at 6.0	m on June 11, 202	5 in (open l	oore	hole	•											
V	erified	d by: A	.R. Senghani				A	Appro	oved	by:	A. I	Nohammad							D	Date of report 2025-0

				ABS		BC)R	Eł	10	L	ΕI	LOG						oreho 8H25-	Page 2 of 2 Ie N° 1
\vdash				STRATIGRAPHY			S		LE	s		Ê					GRAPHIC	T	LAB TESTS
DEDTH (m)		NET IN - 11	ELEVATION (m)	STRATIGRAPHIC DESCRIPTION	SYMBOL	TYPE NO	٦LE	CALIBER	STATE	RECOVERY	N, R or RQD	BLOW COUNTS /15 cm Fragmentation (mm)	VOC (ppm)	CONT (hyd	VISUA AMIN rocart	L ATION ions) P	▲ : N (standard pen.) ▲ : N (dynamic pen.) ♥ : Cu (laboratory) ♥ : Cu (field) + : Cur (field) ₩ _p ₩ _n ₩ ₁ 20 40 60 80	WATER LEVELS	G : grain size analysis H : hydrometer test CA : chemical analysis Li : liquid limit w : water content Qu : rock comp. strength Cur : disturbed shear strength Cu : undrained shear strength CC : consolidation coefficient k : permeability Dup: duplicate
-		-	69.32	- Cobbles and boulders.	0.000					400	4								TCR = 100%
-	9 3	0-	8.66	BEDROCK : Shale, black, slightly weathered, strong, fair quality based on RQD.		RC-1	-	N		100	49							_	SCR = 56% RQD = 49%
- - - -1	0	_		-Good quality based on RQD.		RC-2		N		100	76								UCS = 44.8 MPa TCR = 100% SCR = 83% RQD = 76%
-	3	5-					•												UCS = 44.7 MPa TCR = 100%
-1	1	_		- Ecellent quality based on RQD.		RC-3		N		100	92								SCR = 97% RQD = 92%
-1	2 4	0-	<u>66.07</u> 11.91	END OF THE BOREHOLE		-													-
-1	3	_																	- - -
-1	4	5-										X							-
-		_								2									-
-1	5	 0																_	-
revisé.sty	6																	-	-
	7 5	_ I																	-
ation_EN(_																	-
orage_Êlé\	8 6	 0																_	-
nglais/6-Fo	9																		-
gés\Logs ar	6	5-																	
Z:\11-Geotec/Fichier de style/Corrigés/Logs anglais/6-Forage_Elévation_ENG_OBS/VIS_revisé.sty		_																	
richier de s	1	_																-	-
1-Geotec/F	2	_																	-
Z		_																	

/			AE	35		BC	R	EF	łO	L	ΕI	LOG							oreł 3H2	-	Page 1 o e Nº 2
Proje	ect Na	ame:	Prelim	inary Geotechnical In	vesti	gation	for a	a Pro	pos	ed M	id-ri	se Resident	tial Bu	ild	CRN:	G	МВС1	00	F/N:	GC)-24-1324-00
Clie	nt:		MB Ca	anada Group Inc.											Geod	esic (Coordina	ates	×۰	11	9853.9
Loca	ition:		630 M	ontreal Road, Ottawa	Onta	ario										NAD	83 (SCI		Y :	50	32335.9
Con	tracto	r:	Georg	e Downing Estate Dri	lling	Ltd									Zone.	. 10					.64
		em auge Diametei				0	D .											Plan Nu e of Bore			:0-01 25-06-12
		nician:		Senghani, J. Brooks,		Core Prep						mm a, Drafter				De		Borehole			
	SAN	IPLE STA	TE	TERMINOLOGY	-10 %			FION				INSISTENCY	" Cu" (< 12					ESIGNA ⁻ % RQI		VIS	UAL CONTAMINATIO (hydrocarbons)
\succ	Di	sturbed		"some" 10 adjective (sandy) 20	-20 %	Loos		e	0-4 4-1 10-3	0	So Fir	m	12 - 2 25 - 5	25 50	Very Poo	/ Poor r	`	<25 25-50)		A : Absent D : Disseminated
	🖉 Int	act (thin w	vall sampler)	CLASSIFICATIO		- Dens		e	30- >5	50	Sti Ve Ha	ry Stiff	50 - 1 100 - 2 > 20	200	Fair Goo Exce			50-75 75-90 90-10			P : Pervasive
	Lo			Clay < 0,00 Silt 0.002 to 0.	08 mm	1 	REE	OF PI	AST	ICITY			Cu/Cu	r		CALIB	ER		, ,	WAT	ER LEVEL
	■ Diamond core Sand 0.08 to 5 mm Gravel 5 to 80 mm Cobbles 80 to 300 mm Blocks > 300 mm						ium high				30 -	- 50 % 50 %	< 2 2 - 4 4 - 8 3 - 16		N	: 148 : 64 : 51	mm		e: 202		Groundwate
			STDA	TIGRAPHY		Sens	sitive	AMP		e		1	> 16	<u> </u>			GR		th(m) :	5.7	
ر	ų	z	JIKA								_	BLOW COUNTS /15 cm agmentation (mm)		CON	VISUA TAMIN	ATION	▲ : N (stan	dard pen.)	- v		G : grain size analysis H : hydrometer test
DEPTH (m)	DEPTH - ft	ELEVATION (m)		ATIGRAPHIC	SYMBOL	TYPE NO	SUB-SAMPLE	CALIBER	STATE	RECOVERY	R or RQD	BLOW COUNTS /15 cm	VOC (ppm)	(nyo	drocart	ons)	▼ : Cu (lab ▽ : Cur (lal × : Cu (fiel	oratory) boratory) d)			CA : chémical analysis LI : liquid limit PI : plastic limit w : water content
DEP	DEP	с ЕГЕЛ	DE	SCRIPTION	SΥM	ĮΣž	JB-S/	CALI	STA	RECO	N, R o	1/ 1/	voc (A	D	P		eld) V _n W _i ⊚————————————————————————————————————	WATEP		Qu : rock comp. strength Cur : disturbed shear stren Cu : undrained shear stren Cc : consolidation coeffici
		79.64	Level			,	۵.			-	~		ſ					0 60 80	-		k : permeability Dup: duplicate
	_	79.61 0.025	Granular b	/		SS-1		Ν	X	42	3	2-1-10								R	
		79.49 0.15	-	Sand, some gravel, t, very loose.																	
- 1	_		-Loose			SS-2		N	X	38	8	3-5-3-5					•				Wn = 10.0%
	5-	78.12 1.52		e silt, trace gravel,																	
- 2			brown, mo	ist, loose.		SS-3		N		46	6	1-2-4-4									
	_					SS-4		N	\bigtriangledown	58	8	3-4-4-6									Wn = 7.0%
- 3		76.59							\square		Ū	0.1.0					Ī				vvii - 7.070
•	10	3.05		and, some gravel, prown, moist, loose	0.00	SS-5		N	\mathbb{N}	33	5	3-3-2-2									
	_		(TILL).		0. 0.	* * *															
- 4			-Trace are	vel, compact.		SS-6		Ν		54	13	2-5-8-8						+			Wn = 5.0%
	15-		- nace yra	to, oompaot.		*															
- 5	_		- Some silf	t, light brown.	0.0	SS-7		Ν		63	19	6-10-9-9									
																			100		Wn = 14.0%
	_	70.54	- Some gra	avel, wet.		SS-8		N		63	19	4-10-9-11									vvII – 14.U%
- 6	20-	73.54 6.10		el, some sand,	0	SS-9		N	\bigtriangledown	31	R	50/15 cm									
		72.78	DIOWII, WE	t, very dense (TILL).	000	33-9		IN		31		50/15 011									
- 7	_	6.86 72.32	Inferred Be Shale, gre	edrock : weathered ish black.		SS-10			\square	17	R	50/8 cm						+			Wn = 12.0%
	 25	7.32	Bedrock :	Shale, black, slightly , strong, poor quality		RC-1				100	42										
Rem	ark(s	s):		m on June 18, 202	 5	1	<u> </u>	1				<u> </u>		<u> </u>	<u> </u>	<u> </u>			-17	\mathbb{N}	
		lbv: Δ	.R. Senghani				A	Appro	ved	by:	A. I	Nohammad								Date	e of report 2025-06

9	DEPTH - ft	ELEVATION (m)	STRATIGRAPHY														-		-2
9	DEPTH - ft	LEVATION (m)				SA	MP	LE	S		رم آ <u>و</u>			/ISUA			RAPHIC		LAB TESTS
9	_		STRATIGRAPHIC DESCRIPTION	SYMBOL	TYPE NO	SUB-SAMPLE	CALIBER	STATE	RECOVERY	N, R or RQD	BLOW COUNTS /15 cm Fragmentation (mm)	VOC (ppm)	CONT (hydi	AMIN	ATION ions)	▲ : N (st △ : Nc (d ▼ : Cu (l ▽ : Cur) × : Cu (t + : Cur) ₩ _p		MATER LEVELS	G : grain size analysis H : hydrometr test CA : chemical analysis LI : liquid limit W : water content Qu : rock comp. strength Cur : disturbed shear stre Cu : undrained shear stre Cc : consolidation coeffic k : permeability Dup: duplicate
	_	ш				SU	0		R R	, z	BL Frag	ž	A	D	P	i —	40 60 80	Ń	Cc : consolidation coeffici k : permeability Dup : duplicate
				E															TCR = 100% SCR = 67%
																			RQD = 42% UCS = 70.9 MPa
																			0005 = 70.9 MPa
			- fair quality based on RQD						100										TCR = 100% SCR = 79%
40	_				RC-2				100	64									RQD = 64%
10					1														UCS = 36.0 MPa
3	35-																		TCR = 100%
11	-				RC-3				100	66									SCR = 76% RQD = 66%
		68.03																	
12	-	11.84	END OF THE BOREHOLE		$\frac{1}{2}$														
	40-																		
											_								
13	_																	_	
	_										V	ľ							
14	45																		
	_								2										
	_																		
15	50-																	-	
	_																		
16	-																	_	
5	55																		
17	-																		
18	4																	_	
6	60-																		
19	-																		
20	65— 																	-	
	_																		
24	-																		
21	70-																		
	_																		
22	-																+	-	


			ΔE	35		BC)R	EF	łO	L	E]	LOG						Bo	oreh	ole	N°
-																		В	8H25	5-3	
Proj∉	ect Na	ame:	Prelim	inary Geotechnical I	nvesti	gation	for a	a Pro	pos	ed M	lid-ri	ise Resident	tial Bu	ild	CRN:	G	MBC1	00 F	=/N: (GO-2	4-1324-00
Clie	nt:		MB Ca	anada Group Inc.											Geod	esic (Coordina	ites	X: .	4498	47.6
.oca	ation:		630 M	ontreal Road, Ottawa	a, Onta	rio									(UTM Zone:		83 (SCF	RS))	Y:	5032	320.9
Con	tracto	r:	Georg	je Downing Estate Di	rilling	Ltd									20110.			Non Num		78.51 050	-
		em auge Diametei				0	Dia				~~ F							lan Nun of Bore			
		nnician:		Senghani, J. Brooks,		Core Prep						mm a, Drafter				De	epth of B				
	SAN	IPLE STA	TE	TERMINOLOG	Y 1-10 %					X "N		DNSISTENCY					ALITY DE				CONTAMINATIC
>	< Di	sturbed		"some" 1 adjective (sandy) 2	0-20 % 0-35 %	Very Loos Com		e	0- 4-1 10-	10	Sc		<pre>< 12 12 - 2 25 - 5</pre>	25		LIFIE Poor		% RQD <25 25-50	,	A	
_ /////			vall sampler)	"and" 3 CLASSIFICATIO	5-50 %	Dens		е	-10- 30- >5	50		iff ery Stiff ard	50 - 1 100 - 2 > 20	00 200	Fair Goo			50-75 75-90 90-100		D P	
	Lo	st		Clay < 0,0 Silt 0.002 to 0)02 mm).08 mm	DEG	REE	OF PI	LAST	ICITY	-		Cu/Cu			CALIB	ER	90-100		ATER	LEVEL
	Dia	amond cor	e	Sand 0.08 t Gravel 5 to	o 5 mm 80 mm 300 mm	Low Med	ium				30		<2 2-4			: 148 : 64					Vater Infilt
					300 mm		i high sitive				>	8	4 - 8 3 - 16 > 16			: 51		1	2025- h(m):;		Groundwate
			STRA	TIGRAPHY			SA	MF	PLE	s		s (uu			VISUA	ı		PHIC	s	-	
(E	-ft	NO					۲.	~		۲	B	BLOW COUNTS /15 cm agmentation (mm)	Ê	CON (hyc	AMIN.	ATION ons)	Cu (labo	lard pen.) amic pen.) oratory)	LEVEL	H :	: grain size analysis : hydrometer test : chemical analysis : liquid limit
рертн	DEPTH - ft	ELEVATION (m)		RATIGRAPHIC ESCRIPTION	SYMBOL	TYPE NO	SUB-SAMPLE	CALIBER	STATE	RECOVERY	N, R or RQD	W COU /15 cm entatior	VOC (ppm)				V : Cur (lab X : Cu (fielo + : Cur (fiel	i)	l H	PI W Qu	: plastic limit : water content : rock comp. strength
õ	Ö	ELE			۶		SUB-	CA	Ś	REC	, R	BLO	Ň	A	D	Р		ĵ—−i	WAT	Cu Cc	disturbed shear stren undrained shear stren consolidation coeffici permeability
		78.51	Level		/		-		/	-		E.					20 40	60 80		Dup	: duplicate
		78.48 0,025 78.36		Gravely Sand,	/ 👹	SS-1		N	\land	63	17	6-9-8-4									
1	_	0.15 77.90	greyish bro	own, damp,	/ 🎇	SS-2		N	\bigtriangledown	63	8	3-4-4-6								3	
	_	0.61	Sand, trac loose.	e silt, brown, damp,		33-2			\land		0	5-4-4-0					IÎ) wi	n = 7.0%
	5		T			SS-3		N	\bigvee	67	6	4-3-3-5									
2	_		- Trace gra	avel, moist.																	
	_					SS-4		N	\mathbb{N}	42	10	4-5-5-4								\mathbb{Z}_{w}	n = 6.0%
3	 10	75.46							\square											3	
	_	3.05	trace silt, b	and, some gravel, prown, moist,	· · · · · · · · · · · · · · · · · · ·	SS-5		N	\mathbb{N}	38	12	1-8-4-13							4.8 m	3	
	_		compact (TILL).	0	· 														3	
4			- Trace gra	avel.	· · · · · · · · · · · · · · · · · · ·	SS-6		Ν	X	56	22	5-10-12-17						++-) wi	n = 4.0%
	15				0.00		1	<u> </u>	\vdash	+											
5	_		-Gravel, w	et, very dense.		SS-7		Ν	X	42	R	11-34 > 50 cm									
		73.13 5.38		and boulders. Shale, black, slightly		RC-1	1			81	0										CR = 81% CR = 20%
_	_		weathered	l, strong, very poor sed on RQD.					┝┫		ľ									<u>\ 1</u>	QD = 0%
6	20-																				NR - 1000/
			-Good qua	lity based on RQD.		RC-2				100	75) sc	CR = 100% CR = 88%
7	_																$\left + \right $				QD = 75%
	_						-		╞╢												
	25— 					RC-3				100	72										
kem	ark(s	s):	GWL at 3,7	'1 m mbgs on June	18, 2	025															
. ,	orifior	lbv: A	.R. Senghani				A		oved	by:	A .	Mohammad							C	Date of	report 2025-06

2			ABS		DU	/1\		10			JOG							Boreho BH25	
			STRATIGRAPHY			SA	٩MF	۲LE	S		٦ ټ					GR	APHIC		LAB TEST
DEPTH (m)	DEPTH - ft	ELEVATION (m)	STRATIGRAPHIC DESCRIPTION	SYMBOL	TYPE NO	SUB-SAMPLE	CALIBER	STATE	RECOVERY	N, R or RQD	BLOW COUNTS /15 cm Fragmentation (mm)	VOC (ppm)	CONT (hyd	/ISUA AMIN rocart	L ATION ons)	V : Cur (la X : Cu (fie ⁺ : Cur (fi	eld)	ER LI	G : grain size analysis H : hydrometer test CA : chemical analysis LI : liquid limit PI : plastic limit w : water content Qu : rock comp, strength Cur : disturbed shear stre
		Е		ŝ	ľ	SUB	S	0)	RE	N, F	BLC Fragn	2	A	D	Р	É.	w _n w _i ⊛ → 0 60 8	MA ⁰	PI : plastic limit w : water content Qu : rock comp. strength Cur : disturbed shear stre Cu : undrained shear stre Cc : consolidation coeffic k : permeability Dup : duplicate
	_		- Fair quality based on RQD.		-														TCR = 100% SCR = 81% RQD = 72%
9	_	69.67 8.84	Shale interbedded with		RC-4	-				-									RQD = 72%
	30— —		limestone, black to greyish black, strong, fair quality based on RQD.		RC-5				100	72									TCR = 100% SCR = 92%
10	_																		RQD = 72%
										-									
11	_				RC-6				100	99									TCR = 100% SCR = 100% RQD = 99%
	_																		UCS = 63.0 MPa
12	40																		
13	_				RC-7				98	97	$\boldsymbol{\wedge}$								TCR = 98% SCR = 98% RQD = 97%
	_										$\langle \cdot \rangle$								0 0 0 0 0 0
14	45																		UCS = 61.9 MPa TCR = 100%
	_				RC-8				100	95									SCR = 100% RQD = 95%
15	_ 50_	<u>63.63</u> 14.88	END OF THE BOREHOLE)											<u> </u>
	_																		
16	_																		
17	55																		
	_																		
18	_																		
	60 _																		
19	_																		
20	_																		
.24	_																		
21																			
22																			

E-2020-	3260																			
A					FORAGE No.	F-01	RAPPOF	RT DE	SONDA	GE		LEGENDE:								
E			PERT	S	ÉLÉVATION	99.18	FEUILLE		01 de	05		CF CUILLÈ TM TUBE	À PAR	OI MI	NCE					
PRO	JET:	Étud	le Géote	ech	nique							CR CAROT		DIAM.	ANTE					
N/P	ROJE	T: E-20			*															
CLIE			lax Mał									GRAVIER			ENEUR				,	
					montréal, Ottawa, Onta							SABLE SILT		AG :	CONSOI ANALY	SE GRA	ANULO	MÉTRI		JΈ
DÉC				F.A	Septembre 2020	VÉRIFIÉE I DATE (fin			bre 2020			ARGILE		AC :	ANALY	SE CHI	MIQUE			
-		ébut): 		25	-	DATE (TIN		1	ÉCHANTIL				RÉS		ATS [FSSA	IS		
R (PIE	R (M)	દ	 <u>+</u>			U ROC								6	CISAILI	LEMEN	TAU	-	SUÉD	JIS
PROFONDEUR (PIED)	PROFONDEUR	ELEVATION (m)	STRA TIGRAPHE			niveau d'eau: nbre 2020 : Se	с	ÉTAT	type et Numéro	RÉCUP.(%)	AUTRES ESSAIS	COUPS 6po/15cm OU RQD	INDICE DE PÉNÉTRATION	(C _{UV} ○ ₩•₩) SCISS TENEU LIMITES	R EN S D'AT	EAU (: TENBE	RG (%	K) 🔺	Chantier Lab.
- BR	ВЧ			+	SURFA	CE DU SOL		ET	₽₹	RÉ	ES		Z₩		INDICE					
0-	0—	99.18 99.13			Béton bitumine		/	k					-		20					
-	_			ġ	Remblai :			IX.	CF-1	25		2-10-7-12	17		•			—		
2 —	_		\boxtimes	<u>}</u>	Sable silteux e	et gravier.		$\left(\rightarrow \right)$							-			—		
_	1		\boxtimes	X	Pierre concasso	ée et sable.		X	CF-2	50		25-15-16-14	31					_		
4 —	' –		\boxtimes	X-				$\left(\rightarrow \right)$								·		_		
_	_		$\boxtimes \mathbb{R}$	X	Sable brun ave	ec des traces de	gravier.		CF-3	40		20-5-4-10	9					_	_	
6 —	_		$\boxtimes \mathbb{R}$	X_				$\mid \land \mid$												
_	2 —		\boxtimes	X	Sable brun, pro	ésence de débrit	t de béton.	\mathbb{N}	CF-4	25		20-7-7-8	14							
8-	_	96.74		X	, F			\square		20		20 / / 0								
	-				Sol naturel :			\mathbb{N}	CF-5	50		6-5-6-5	11							
10—	- 3 —				Sable un peu g	grossier, brun .		\square		50		0-0-0-0	''							
	-				Sable un neu g	grossier compac	t brun	\mathbb{N}	CF-6	45		5-6-7-7	13							
12—	_				Suble un peu g	crossier compue		\bigwedge		40		5-0-7-7			I					
12-	_				Idem .		$\overline{)}$	\mathbb{N}	CF-7	- 0										
	4 —							\square	Cr = 7	50		5-6-5-5	11							
14—	_							\bigwedge												
-	_				Sable lâche, un	i peu grossier .		ľŇ	CF-8	40		5-5-4-4	9							
16—	5 —							K7												
_	-				Idem .			X	CF-9	60		3-3-2-2	5					+		
18—	_							K)										-		
-					Sable lâche hum	nide , un peu gro	ossier, brun	ΙX	CF-10	50		2-2-2-2	4	+ -				+		
20—	6 —]						$ \land $						\square						
-	_				Sable lâche satu brun.	uré en eau , un p	eu grossier,	X	CF-11	20		0-1-2-2	3							
22—	_				orun.			\longleftrightarrow						\vdash				+		
	7 —				Sable lâche satu	uré en eau , gros	sier, brun.	IX.	CF-12	40		12-13-12-12	25		-	\ \				
24—	_							$\left(\rightarrow \right)$									holyo		nulam	étrique
_	-				Sable graveleux	avec un peu de	e silt.	X	CF-13	70		28-20-17-6	37			Y		e grai		
26—	- 8				0.111			$\left(\right)$										+		
_	- 0				Cuillère vide. Refus à la	a cuillère fendue	e.	X	CF-14			10-12-50/2'								
28—	_				Forage destruct	if												\perp		
	_				-													\perp		
30—	9 —	90.19			Refus à la ta Roc :	arière à 8,99 mè	etre .													
	_								CR-1											
		I		_									1							

E-2020	-3260																				
				FORAGE No. F-01	RAPPOR	t de	E SONDA	GE		LEG	ENDE:										
(=		O-EXI			FEUILLE	0	2 de 0	5			CF CUILLÈ TM TUBE CR CAROT	À PAR	OI MINC								
PRC	JET:	Étud	e Géotec	hnique						X	NIVEAU D'		DIAMAN	IL							
N/F	ROJE		20 - 326	*																	
CLIE	NT :	M. N	lax Mahi							2	GRAVIER		W: TEN	IEUR B	EN EA	U					
ADR	ESSE	: 630 0	Chemin de	e Montréal, Ottawa, Ontario, Canada.							SABLE SILT		Od : CC AG : Al	NSOL	IDATI SE GR	ON O	EUDC	OMÉT TRIOI	RIQU	JΕ	
	RIT F			.A. VÉRIFIÉE I							ARGILE		AC : Al								
	E (Dé	ébut):	25	5 Septembre 2020 DATE (fin	,	-	bre 2020														
(PIED	Ŵ	2		DESCRITPION DES SOLS DU ROC	ET	E	ÉCHANTIL	LON				RES									
DEUR	EUR	L) NO	APHI					्र		~	DUPS	L N	(CU) C (C _{UV}) S	SCISS	OMÈTF	RE		NE SI			
PROFONDEUR (PIED)	PROFONDEUR (M)	ELEVATION (m)	STRATIGRAPHE			ÉTAT	type et Numéro	RÉCUP.(%)	AUTRES ESSAIS	6p 0l	oo/15cm J RQD	INDICE DE PÉNÉTRATIO	ᄔᆝᆹᆛᇉᄔ	MITES	R EN 5 D'AT	TTENE	BERG	(%)		Lo	ntier ıb.
R	R	Ξ	IS			ĒŢ	Ϋ́	ля Т	ES			+	● IN 0 10		"N" (30 4						
-	9_																				<u> </u>
30—																					
-	+ $-$			Roc de très mauvaise qualité.			CR-1			POD	= 20%										
32-	-									NQD	- 20%										
_																		\square			
34—																					L
<u> </u>																					
76	11																				
36—	1 -			Roc de qualité moyenne.									Résist	ance	à la c	comp	oress	sion =	= 48	.7 M	Pa
-	1 1						CR-2			RQD	= 58%										
38-	1 _						X														
-	12—	87.14																			
40—	+			Fin du forage à 12.04 mètre.	$\langle \rangle$																
-	+ $-$														+			\vdash			
42—	13—				·																
_																		\square			
44—	-																				L
_																					
46—	14—																				
40																					
-	1]																				
48—	1																				
1	15—																				<u> </u>
50—	┤╶┥																				
-	+ $-$																				
52—	16-																				
_	–																				
54—																					
Ĭ .	$\mid \neg$																				
	þ7—																				
56—	1 1																				
-	1 -																				
58—	╏╴┥																				
-	18—														+	\square					

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,224
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-1 SS1	Depth :	0 - 0.61 m
Use:		Customer reference:	GMBC100
	Tests	Unit R	esult _{Requirements} Status
Determination of water conte	nt / BNQ 2501-170	%	9.9

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,239
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-1 SS3	Depth :	1.52 - 2.13m
Use:		Customer reference:	GMBC100
	Tests	Unit Result	Requirements Status
Determination of water conte	nt / BNQ 2501-170	% 5.6	

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,242
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-1 SS5	Depth :	3.05 - 3.66m
Use:		Customer reference:	GMBC100
	Tests	Unit Result	Requirements Status
Determination of water conte	ent / BNQ 2501-170	% 7.0	

RAF

Remarks

Prepared by:

March Broutbill g

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,244
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-1 SS7	Depth :	4.57 - 5.18m
Use:		Customer reference:	GMBC100
	Tests	Unit Re	sult _{Requirements} Status
Determination of water conte	nt / BNQ 2501-170	% 2	20.8

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC	100
	Sampling			
Material type:	Natural soil	Lab No.:	358,245	2
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16	
Supplier/Career:	In place / In situ	Caliber:	Natural soil	
Location of the sample: B	H21-1 SS9	Depth :	6.1 - 6.71m	
Use:		Customer reference:	GMBC100	
	Tests	Unit R	esult Requirements	Status
Determination of water co	ntent / BNQ 2501-170	%	10.2	

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,246
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-1 SS11	Depth :	7.62 - 8.23m
Use:		Customer reference:	GMBC100
	Tests	Unit R	esult _{Requirements} Status
Determination of water conte	nt / BNQ 2501-170	%	6.8

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:		Client #: GMBC	100
	Sampling				
Material type:	Natural soil	Lab No.:	25.8	358,254	5-
Collected by:	Alpesh Ramesh Senghani	Collected on:		2025-06-16	
Supplier/Career:	In place / In situ	Caliber:		Natural soil	
Location of the sample:	BH25-2 SS2	Depth :		0.76 - 1.37m	
Use:		Customer refere	nce:	GMBC100	
	Tests	Unit	Result	Requirements	Status
Determination of water conte	nt / BNQ 2501-170	%	10.1		

RAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,257
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-2 SS4	Depth :	2.29 - 2.9m
Use:		Customer reference:	GMBC100
	Tests	Unit Result	Requirements Status
Determination of water conte	nt / BNQ 2501-170	% 7.0	

RAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,259
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-2 SS6	Depth :	3.81 - 4.42m
Use:		Customer reference:	GMBC100
	Tests	Unit Result	Requirements Status
Determination of water conte	nt / BNQ 2501-170	% 4.6	

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:		Client #: GMBC	100
	Sampling				
Material type:	Natural soil	Lab No.:		358,262	
Collected by:	Alpesh Ramesh Senghani	Collected on:		2025-06-16	
Supplier/Career:	In place / In situ	Caliber:		Natural soil	
Location of the sample:	BH25-2 SS10	Depth :		6.86 - 7.47 m	
Use:		Customer reference	ce:	GMBC100	
	Tests	Unit	Result	Requirements	Status
Determination of water conte	ent / BNQ 2501-170	%	11.3		

ORAF

Remarks

Prepared by:

Maude Broutlitte

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,266
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-3 SS2	Depth :	0.76 - 1.37m
Use:		Customer reference:	GMBC100
	Tests	Unit Result	Requirements Status
Determination of water conte	ent / BNQ 2501-170	% 7.0	

RAF

Remarks

Prepared by:

Maude Broutlitt

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:	Client #: GMBC100
	Sampling		
Material type:	Natural soil	Lab No.:	358,268
Collected by:	Alpesh Ramesh Senghani	Collected on:	2025-06-16
Supplier/Career:	In place / In situ	Caliber:	Natural soil
Location of the sample:	BH25-3 SS4	Depth :	2.29 - 2.9m
Use:		Customer reference:	GMBC100
	Tests	Unit Resul	t _{Requirements} Status
Determination of water conte	nt / BNQ 2501-170	% 5.6	

ORAF

Remarks

Prepared by:

March Broutlite J

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref: GO24132400	V/Ref:		Client #: GMBC	100
	Sampling				
Material type:	Natural soil	Lab No.:		358,269	
Collected by:	Alpesh Ramesh Senghani	Collected on:		2025-06-16	
Supplier/Career:	In place / In situ	Caliber:		Natural soil	
Location of the sample:	BH25-3 SS6	Depth :		3.81 - 4.42m	
Use:		Customer reference	e:	GMBC100	
	Tests	Unit	Result	Requirements	Status
Determination of water conte	nt / BNQ 2501-170	%	3.4		

RAF

Remarks

Prepared by:

Maude Broutlitt

Verified by:

Date :

Amer Mohammad

2025-06-19

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

	N/Ref:	GO24132400	V/Ref:		Client #: GN	MBC100
		Sampling				
Material type:	Natural soil		Lab No.:		358,236	
Collected by:	Alpesh Ramesh Senghani		Collected on:		2025-06-16	
Supplier/Career:	In place / In situ		Caliber:		Natural soil	
Location of the sample:	BH25-1 SS2		Depth :		0.76-1.37m	
Use:	DI 123-1 332		Customer refere	ence.	GMBC100	
			Customer refere		-	_
	Granulometric curve				BNQ 2501-025	
			% passing s		Requiremer	_{nts} Status
	1		80 mm	100		
PARTICULES FINES ARGILE SILT	SABLE FIN MOYEN	GR0S FIN GR0S	56 mm	100		
			40 mm	100		
100 0,002	0,08 0,4		31.5 mm	100		
90		-x	28 mm	100		
80			20 mm	96		
70			14 mm	96		
60 60			10 mm	95		
8 50 50			5 mm	93		
bourceupa advanceup	1		2.5 mm	91		
30			1.25 mm	87		
20			0.630 mm	77		
10			0.315 mm	47		
			0.160 mm	11		
0,0010 0,0100	0,1000 1,0000	10,0000				
	(Diamètre (mm))		0.080 mm	4.7		
D10 (mm) 0.143	D30 (mm) 0.229	D60 (mm) 0.425	Cu	2.97	Cc	0.86
	Percer	ntage of particle size fractions				
		ntage of particle size fractions	C	Coarse Fraction		
Clay (%)	Percer	ntage of particle size fractions	C Gravel (Pebble	es (%)
Clay (%)	Percer Fine Fraction			%)	Pebble	95 (%) / A
Clay (%)	Percer Fine Fraction Silt (%)	Sand (%)	Gravel (%)	Pebble	1.
Clay (%)	Percer Fine Fraction Silt (%)	Sand (%)	Gravel (%)	Pebble	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)4 Simple description: Sand, traces o	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)4 Simple description: Sand, traces o	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%)4 Simple description: Sand, traces o	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt.	Sand (%)	Gravel (7.0	%)	Pebble N	/ A
Clay (%) 4 Simple description: Sand, traces of	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt. Tests	Sand (%) 88.3	Gravel (7.0	%)	Requirement	/ A
Clay (%) 4 Simple description: Sand, traces of	Percer Fine Fraction Silt (%) .7 of gravel, traces of silt. Tests	Sand (%)	Gravel (7.0	%)	Pebble N	/ A

20 Émilien-Marcoux, Blainville, Quebec, J7C 0B5, 450 435-9900

Project: 630 Montreal Road Client: MB Canada Group Inc. Client #: GMBC100 V/Ref: N/Ref: GO24132400 Sampling Natural soil Lab No.: 358,261 Material type: 2025-06-16 Collected by: Alpesh Ramesh Senghani Collected on: Caliber: Natural soil Supplier/Career: In place / In situ Location of the sample: BH25-2 SS8 Depth : 5.33 - 5.94m Use: GMBC100 Customer reference: Granulometry BNQ 2501-025 Granulometric curve Status % passing sieve Requir 80 mm 100 SAILE 56 mm 100 PARTICULES FINES MOYE ARGUE 40 mm 100 31.5 mm 100 100 28 mm 100 90 97 20 mm 80 14 mm 94 70 10 mm 91 60 Pourcentage p 87 5 mm 50 2.5 mm 79 40 1.25 mm 59 30 0.630 mm 32 20 0.315 mm 17 10 0.160 mm Ô 11 0,0010 0,0100 0,1000 1.0000 10,0000 0.080 mm Diamètre (m 8.1 Cu Cc D10 (mm) 0.126 D30 (mm) 0.574 D60 (mm) 1,294 10.27 2.02 Percentage of particle size fractions Fine Fraction **Coarse Fraction** <u>Silt (%)</u> Sand (%) Clay (%) Gravel (%) Pebbles (%) 78.9 13.0 8.1 N / A Simple description: Sand, some gravel, traces of silt. Unit Result Status Tests % Determination of water content / BNQ 2501-170 13.7 Remarks Maride Benutlite Date : Prepared by: Verified by: 2025-06-19

Amer Mohammad

Project: 630 Montreal Road Client: MB Canada Group Inc. N/Ref: GO24132400

			N/Ref: (GO24132400		V/Ref:		Client #: (GMBC100
				Sampli	ng				
Material type:		Natural soil				Lab No.:		358,265	
Collected by:		Alpesh Ramesh Se	enghani			Collected on:		2025-06-16	
Supplier/Career:		In place / In situ				Caliber:		Natural soil	
Location of the sample	e:	BH25-3 SS1				Depth :		0 - 0.61 m	
Use:						Customer refer	ence:	GMBC100	
							Granulometry Bl	NQ 2501-025	
		Granulometric cu	irve			% passing si	eve	Requiren	_{nents} Status
						80 mm	100		
ARGILE	PARTICULES FINES SILT	FIN	SABLE	GROS FIN	GRO S	56 mm	100		
- Andrew -	strict 1		moren	units mit	0403	40 mm	100		
100 0.002		0,08	0,4	2 6	20 80	31.5 mm	100		
90						28 mm	100		
80						20 mm	97		
70						14 mm	94		
tuese 60						10 mm	88		
4 92 50						5 mm	72		
1000 1000 1000 1000 1000 1000 1000 100			1			2.5 mm	64		
30						1.25 mm	53		
20						0.630 mm	44		
10						0.315 mm	32		
						0.160 mm	26		
0,0010	0,0100	0,1000 Diamètre	1,0000 (mm)	10,0000	X	0.080 mm	21.3		
D10 (mm)	N / A	D30 (mm)	0.251	D60 (mm) 1,94	13	Cu	N / A	Cc	N / A
ű.			Percent	age of particle size	fractions				
		Fine Fraction				C	Coarse Fraction		
Clay (%)		Silt (%	6)	Sand	(%)	Gravel (%)	Peb	bles (%)
	21.			50		28.0			N/A
Simple description: Sil	ty gravelly sand	1.							
li in the second se		Tests				Unit	Result	Requirem	_{ents} Status
Remarks									
Droported by it	cha-	de Continte 1	7	orifical barr				Date :	
Prepared by:	Allan	ide formillete f	V	erified by:				Dale .	2025-06-19
	Maude Br	ouillette Fischbach			Α.	mer Mohammad		-	2020-00-13

20 Émilien-Marcoux, Blainville, Quebec, J7C 0B5, 450 435-9900

Project: 630 Montreal Road Client: MB Canada Group Inc. Client #: GMBC100 V/Ref: N/Ref: GO24132400 Sampling 358,270 Natural soil Lab No.: Material type: 2025-06-16 Collected by: Alpesh Ramesh Senghani Collected on: Caliber: Natural soil Supplier/Career: In place / In situ 4.57 - 5.18m Location of the sample: BH25-3 SS7 Depth : Use: GMBC100 Customer reference: Granulometry BNQ 2501-025 Granulometric curve Status % passing sieve Reauir 80 mm 100 SAILE 56 mm 100 PARTICULES FINES MOYE ARGUE 100 40 mm 31.5 mm 100 100 28 mm 100 90 87 20 mm 80 14 mm 81 70 10 mm 75 60 Pourcentage 62 5 mm 50 2.5 mm 52 40 1.25 mm 42 30 1111 0.630 mm 32 20 21 0.315 mm 10 0.160 mm 15 Ô 0,0010 0,0100 0,1000 1.0000 10,0000 0.080 mm Diar 9.8 Cu Cc D10 (mm) 0.082 D30 (mm) 0.555 D60 (mm) 4,353 52.98 0.86 Percentage of particle size fractions Fine Fraction **Coarse Fraction** Silt (%) Sand (%) Clay (%) Gravel (%) Pebbles (%) 52.2 38.0 9.8 N/A Simple description: Sand and gravel, traces of silt. Result Status Tests Remarks Maride Benutlite Date : Prepared by: Verified by: 2025-06-19

Amer Mohammad

Customer:

ROCK CORE TEST

ABS/REF:GO24132400

Date: 2025-06-25

ASTM D 4543 and ASTM D 7012

Customer	GMBC100

MB Group Canada Inc.

Part of structure : BH25 Sample number Borehole identification Stroke identification Depth (m) Core drilling carried out by Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN) Area (mm ²)	358 247 BH25-1 RC2 9.2 - 9.3 m	ROCK CORE SAMP 358 252 BH25-1 RC3	PLES 358 263 BH25-2	358 264	050 071	
Borehole identification Stroke identification Depth (m) Core drilling carried out by Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	BH25-1 RC2	358 252 BH25-1	358 263	358 264	050 554	
Borehole identification Stroke identification Depth (m) Core drilling carried out by Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	BH25-1 RC2	BH25-1		358 264		1
Stroke identification Depth (m) Core drilling carried out by Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	RC2				358 271	358 272
Depth (m) Core drilling carried out by Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)		RC3		BH25-2	BH25-3	BH25-3
Core drilling carried out by Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	9.2 - 9.3 m		RC1	RC2	RC6	RC8
Nature Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)		10,4 - 10,6 m	8.4 - 8.5 m	10 - 10,1 m	11,1 - 11,4 m	13,9 - 14,1 m
Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	A - Senghani	A - Senghani	A - Senghani	A-Senghani	A - Senghani	A - Senghani
Presence of interbeds Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	LIT	HOLOGICAL DESC	RIPTION			
Intrusion Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	Shale	Clayey limestone	Shale	Shale	Clay Limestone	Clayey limestone
Preparation of ends by sawing Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	Litage	-	Litage	Litage	-	-
Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	No	No	No	No	No	No
Flatness and angle Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	C	OMPRESSIVE STRI	ENGTH			
Length after cut (mm) Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	Yes	Yes	Yes	Yes	Yes	Yes
Loading rate (MPa/s) Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	С	С	С	С	С	С
Core diameter (mm) Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	99,64	154,88	94,64	98,90	157,13	155,64
Carrot weight (g) Height/diameter ratio Correction factor Breaking load (kN)	0,5	0,5	0,5	0,5	0,5	0,5
Height/diameter ratio Correction factor Breaking load (kN)	63,06	63,34	63,15	63,22	63,26	63,15
Correction factor Breaking load (kN)	797,90	1 270,10	764,30	808,80	1 290,10	1 303,10
Breaking load (kN)	1,6	2,5	1,5	1,6	2,5	2,5
	1,0	1,0	1,0	1,0	1,0	1,0
Area (mm²)	140	141	222	113	198	194
	3 123	3 151	3 132	3 139	3 143	3 132
Compressive strength (MPa)	44,8	44,7	70,9	36,0	63,0	61,9
Density (kN/m³)	25,2	25,5	25,3	25,6	25,6	26,2
Density (kg/m³)	2 568	2 599	2 579	2 609	2 609	2 670
Appearance after breakage	Shattered	Splintered	Shattered	Shattered	Shattered	Exploded
		NOTES				
Press (compression)	Model: 1500 KN		Serial no. :	21005777		
Prepared by : Imane Djerrab	Verified by:	Amer Mohammad		Dat	e: 2025-06-25	

Ref: LG027 (R07 2022-01-10)

* Contractions used in the report: Compliant - C, Non-compliant - NC, Not available - N/A

Certificate of Analysis

Environment Testing

Client: Attention: PO#:	Groupe ABS 850 Industrial Ave (Suite B) Ottawa, ON K1G 4H3 Mr. Amer Mohammad		Report Number: Date Submitted: Date Reported: Project: COC #:	3017271 2025-06-16 2025-06-24 G024132400 124134
Invoice to:	Groupe ABS	Page 1 of 4		

Dear Amer Mohammad:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

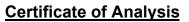
Report Comments:

🛟 eurofins

APPROVAL:

Patrick Jacques, Chemist

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.


Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Eurofins_multisample(L)45.rpt

Environment Testing

Client:	Groupe ABS
	850 Industrial Ave (Suite B)
	Ottawa, ON
	K1G 4H3
Attention:	Mr. Amer Mohammad
PO#:	
Invoice to:	Groupe ABS

🛟 eurofins


Report Number:	3017271
Date Submitted:	2025-06-16
Date Reported:	2025-06-24
Project:	G024132400
COC #:	124134

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1770962 Soil 2025-06-10 BH25-2 SS3	1770963 Soil 2025-06-11 BH25-1 SS11
Group	Analyte	MRL	Units	Guideline		
Anions	CI	0.002	%		0.002	0.018
	SO4	0.01	%		<0.01	0.07
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.166	0.754
	рН	2.00			8.52	8.11
	Resistivity	1	ohm-cm		6024	1317
Moisture	Moisture-Humidite	0.1	%		7.1	7.7
Redox Potential	REDOX Potential		mV		257	213
Subcontract	S2-	0.01	%		0.01	1.86
Subcontract	52-	0.01	%	~	0.01	1.86

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Environment Testing

Client:	Groupe ABS
	850 Industrial Ave (Suite B)
	Ottawa, ON
	K1G 4H3
Attention:	Mr. Amer Mohammad
PO#:	
Invoice to:	Groupe ABS

🛟 eurofins

Report Number:	3017271
Date Submitted:	2025-06-16
Date Reported:	2025-06-24
Project:	G024132400
COC #:	124134

QC Summary

Analyte B		Blank		QC % Rec	QC Limits
Run No 477234 Method C CSA A23.2-4	Analysis/Extraction Date 20 B	025-06-18	Analy	yst AsA	
Chloride		<0.002 %		114	75-125
Run No 477267 Method Cond-Soil	Analysis/Extraction Date 20	025-06-18	Analy	yst NK	
Electrical Conduction	vity	<0.05 mS/cm		100	90-110
рН		5.10		97	90-110
Resistivity					
Run No 477280 Method C SM2580B	Analysis/Extraction Date 20	025-06-18	Analy	yst IP	
REDOX Potential		205 mV		98	97-103
Run No 477283 Method ASTM 2216	Analysis/Extraction Date 20	025-06-18	Analy	yst IP	
Moisture-Humidite					80-120
Run No 477453 Method AG SOIL	Analysis/Extraction Date 20	025-06-23	Analy	yst IP	
SO4		<0.01 %		98	70-130
Run No 477537 Method SUBCONTRAC	Analysis/Extraction Date 20 CT-SGS)25-06-24	Analy	yst AET	

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Certificate of Analysis

Environment Testing

Client:	Groupe ABS
	850 Industrial Ave (Suite B)
	Ottawa, ON
	K1G 4H3
Attention:	Mr. Amer Mohammad
PO#:	
Invoice to:	Groupe ABS

🛟 eurofins

Report Number:	3017271
Date Submitted:	2025-06-16
Date Reported:	2025-06-24
Project:	G024132400
COC #:	124134

QC Summary

Analyte	Blank	QC % Rec	QC Limits
S2-			
	2 Art		

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

🔅 eurofins 124134

.

• a • •

STANDARD.CHAIN-OF-CUSTODY

ł ч

.

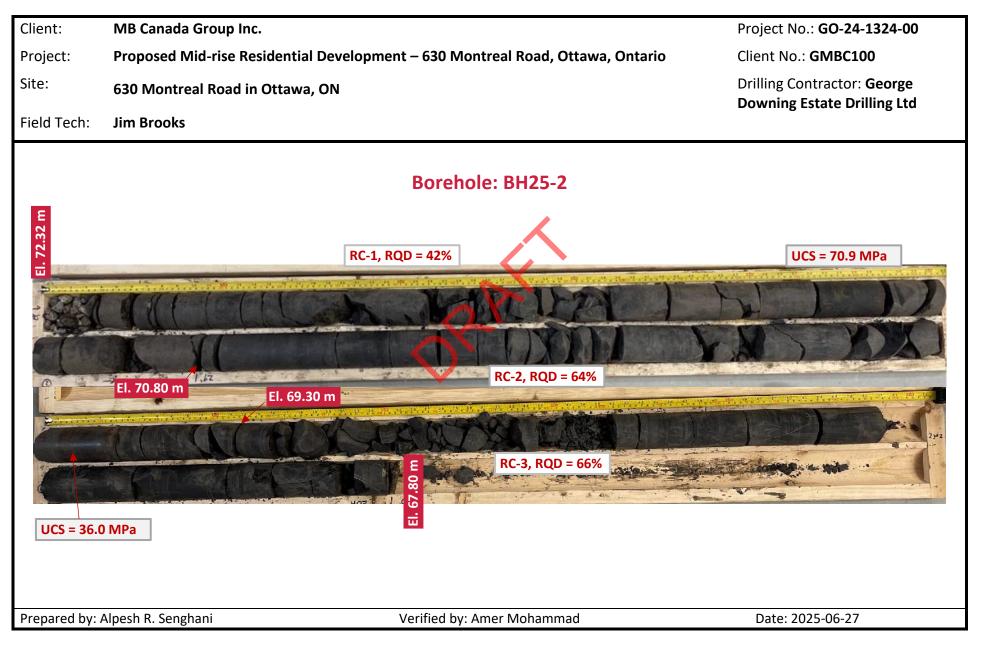
ж.

eurofins	127137		HAIN-OF-CUSTODY ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222	3017771
	CLIENT INFORMATION	the second s	INVOICE INFORMATION (SAME	AS CLIENT INFORMATION YES (NO)
Compañy: CIEUVPE	ABS Luci		Company:	
Contact: Amer	Mohanmad		, Contact:	Email: #1:
Address: $8-8.50$		ve: Ottawa, Or	Address:	Emall: #2:
Telephone:	Cell: (613-316-9513	Telephone:	PO #:
Email: a mohanimad @ groupeabs.com				
Email: #2:			Sanitary Sewer, City:	O. Reg. 153/04
Project: GOQ4132	400	Quote #: 192463	Storm Sewer, City:	Table # Coarse / Fine, Surface /
	TURN AROUND TIME (Business	s Days)	ODWSOG (Use DW COC If samples are for human consump	will form part of a formal Record of Site Type: Com-Ind / Res-Park / Agri / GW / Condition (RSC) under D.Reg. 353/04. All Other / Sediment Analysis of full parameter fulls to nhy
1 Daγ* (100%) [<u> </u>	Days (25%) 🛛 🖌 5-7 Days (Standard		Yes No
12:00 - 50%. **For resul	e rush availability. * For results reported after rush du ts reported after rush due date, surcharges will apply:	before 12:00 - 50%, after 12:00 - 25%.	0.Keg. 347 (TCLP)	O. Reg 406 Excess Soils
- *	harges are 100% (3 day) and 50% (4 day). For farm soil days.		: 10 Other:	Table #Full depth/Strat/Ceiling/mSPLP Leachate Type: Com-Ind /Res-Park /Agri/All Other
otherwise indicated or agreed upon with the Lab	port is 4 - 10°C. Sample(s) cannot be frozen, unless pratory. This COC must not be used for drinking water	Sample Details		Category: Surface /Subsurface
required information is missing (required fields a		Field Filtered ->		
sample after receipt. By signing this chain-of-cust	wironment Testing Canada (Ottawa) is unable to process a ody form, the client agrees that Eurofins Environment	O.Reg.153/	14 parameters	(Lab Use Only)
Testing Canada (Ottawa) may subcontract sample subcontracted laboratory will perform the same a made in advance to subcontract to a specific labo	analysis using the same or similar methodology. Agreements	사용[1] *6 M · 국민가 · 제시 · · · · · · ·		
Sample ID	Date/Time Collected	BITER	CC-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	
BH25-2, SS 3	25 06 10	Soil	X	1770962
BHAS- \$, SS 11	25 06 11	sal	X	63
And an				
1 44 4 11, 11, 11 , 1 44, 11, 11, 11, 11, 11, 11, 11, 11, 11,				
A .064	PRINTINAME		ADATE/TIME	
Sampled By: ALPESS			2 S V2 10-11	
Relinquished By:				FOR INTERNALLABUSE ONLY
Received By:	hel glubn Ott		16 June 2005 Q3°C	
COMMENTS:	/ 	······································	8:15am	
trit Managale Driv				

401 Magnetic Drive, Unit #1, North York, ON, M3J 3H9 - Telephone: 416-661-5287 • 380 Vansickle Road, Unit #630, St. Catharines, ON, L25 085 - Telephone: 905-680-8887 • 608 Norris Court, Kingston, ON, K7P 2R9 - Telephone: 613-634-9307 OTT-P-SOP73462, Revision 10 (formerly AFSTDCOC)

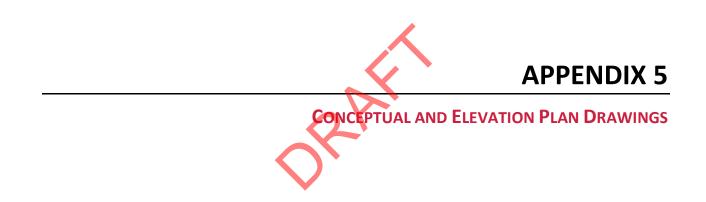
Copies: While Loburatory Vellow Samples

1 4 .

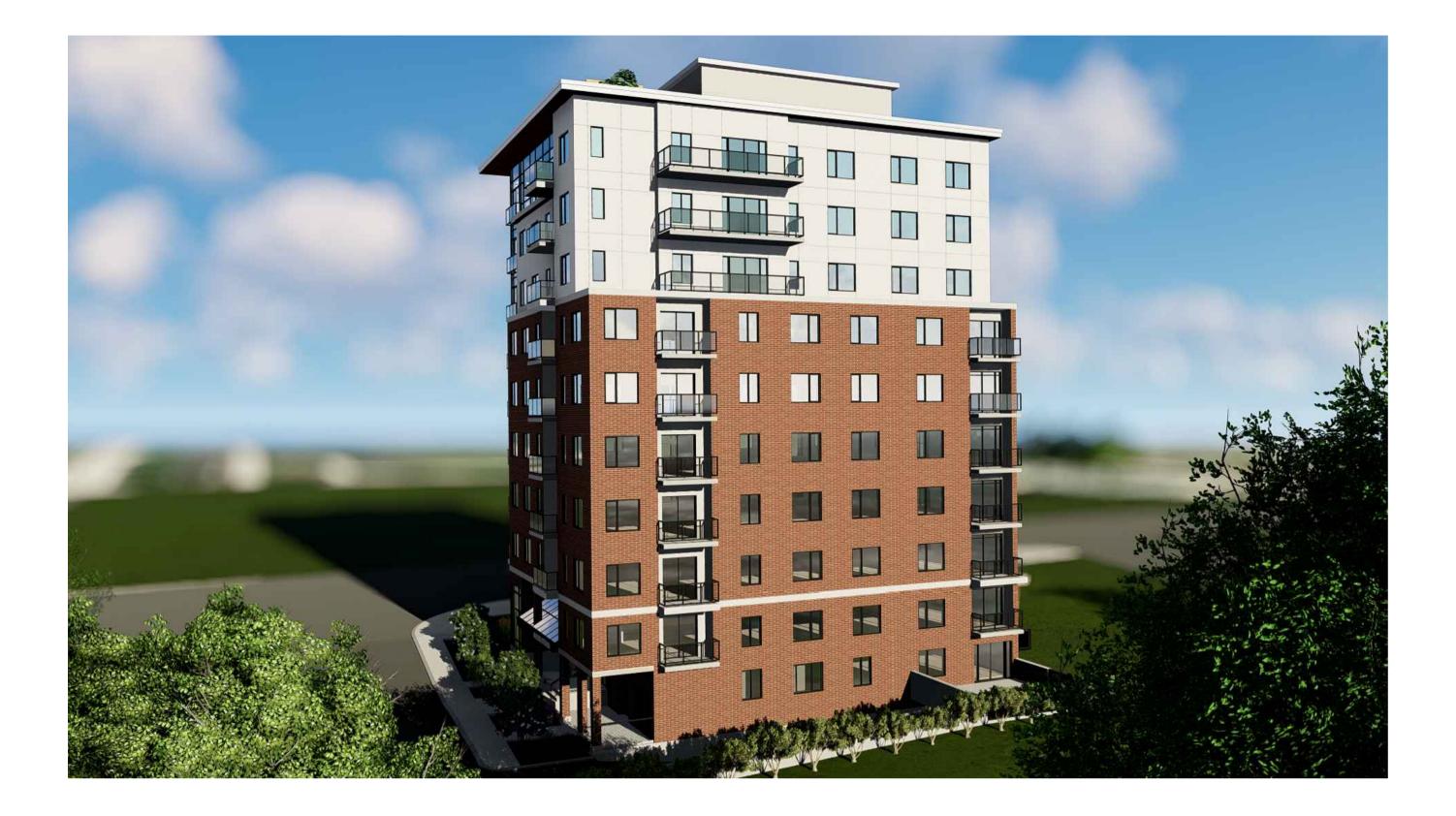


Retrieved Rock Cores

Retrieved Rock Cores



Retrieved Rock Cores



FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

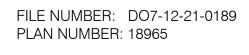
PERSPECTIVES **A D1 | 18** REVISION 9 / 27 -03 - 2024

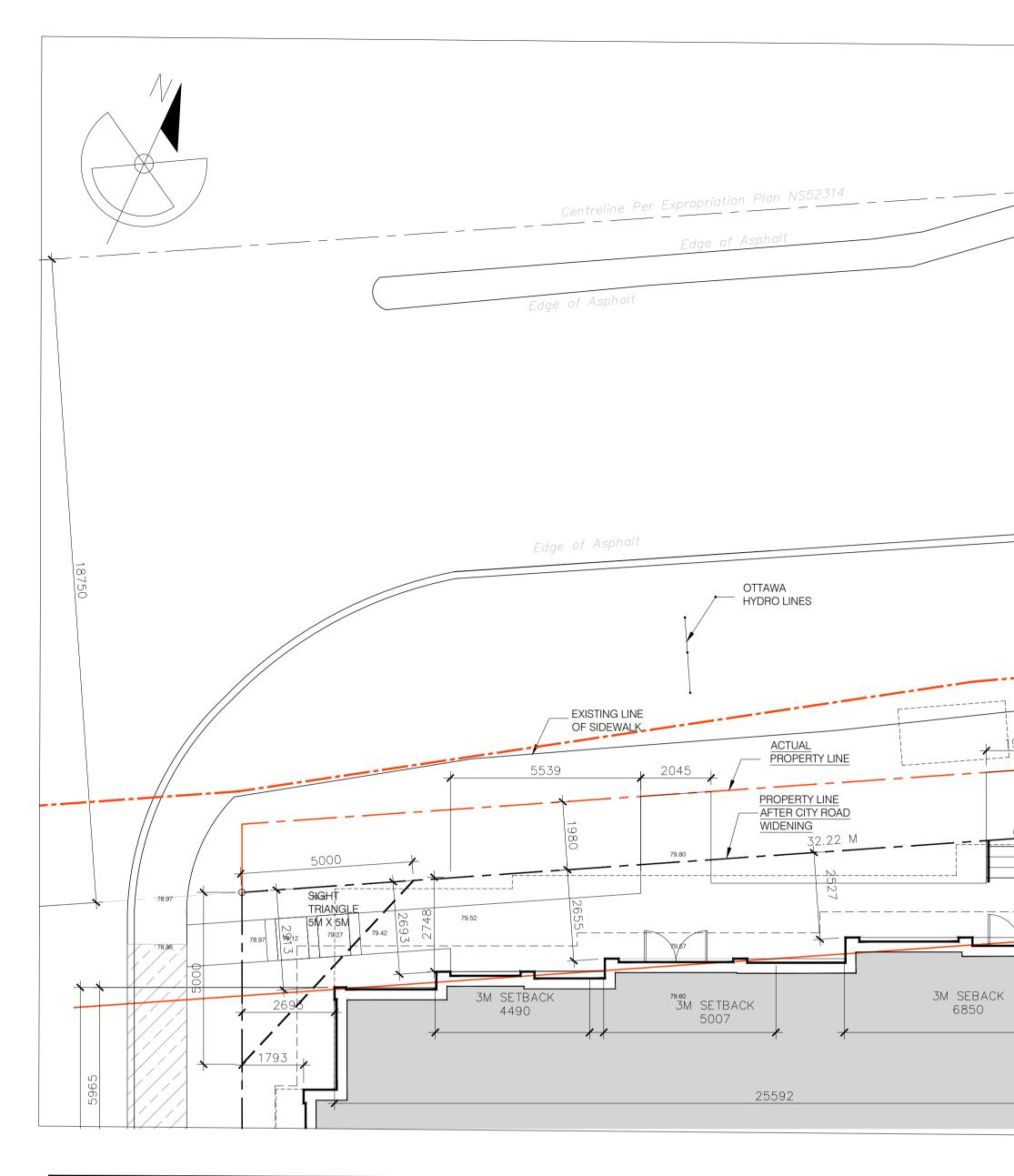
FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

PERSPECTIVES **A D2 | 18** REVISION 9 / 27 -03 - 2024

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

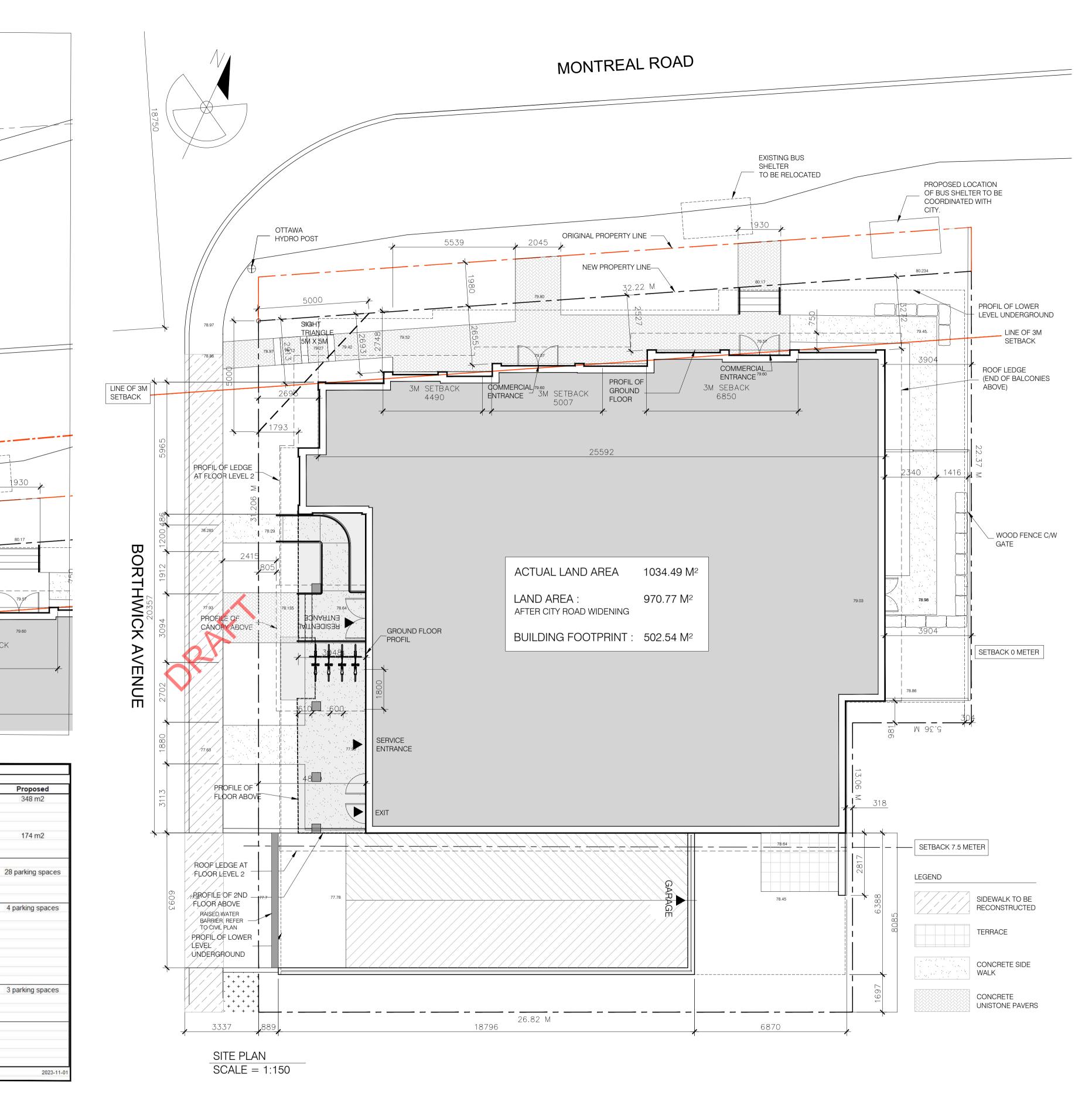
PERSPECTIVES **A D 3 | 18** REVISION 9 / 27 -03 - 2024





RACINE = OTTAWA 630 Montréal Road, Ottawa, On LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

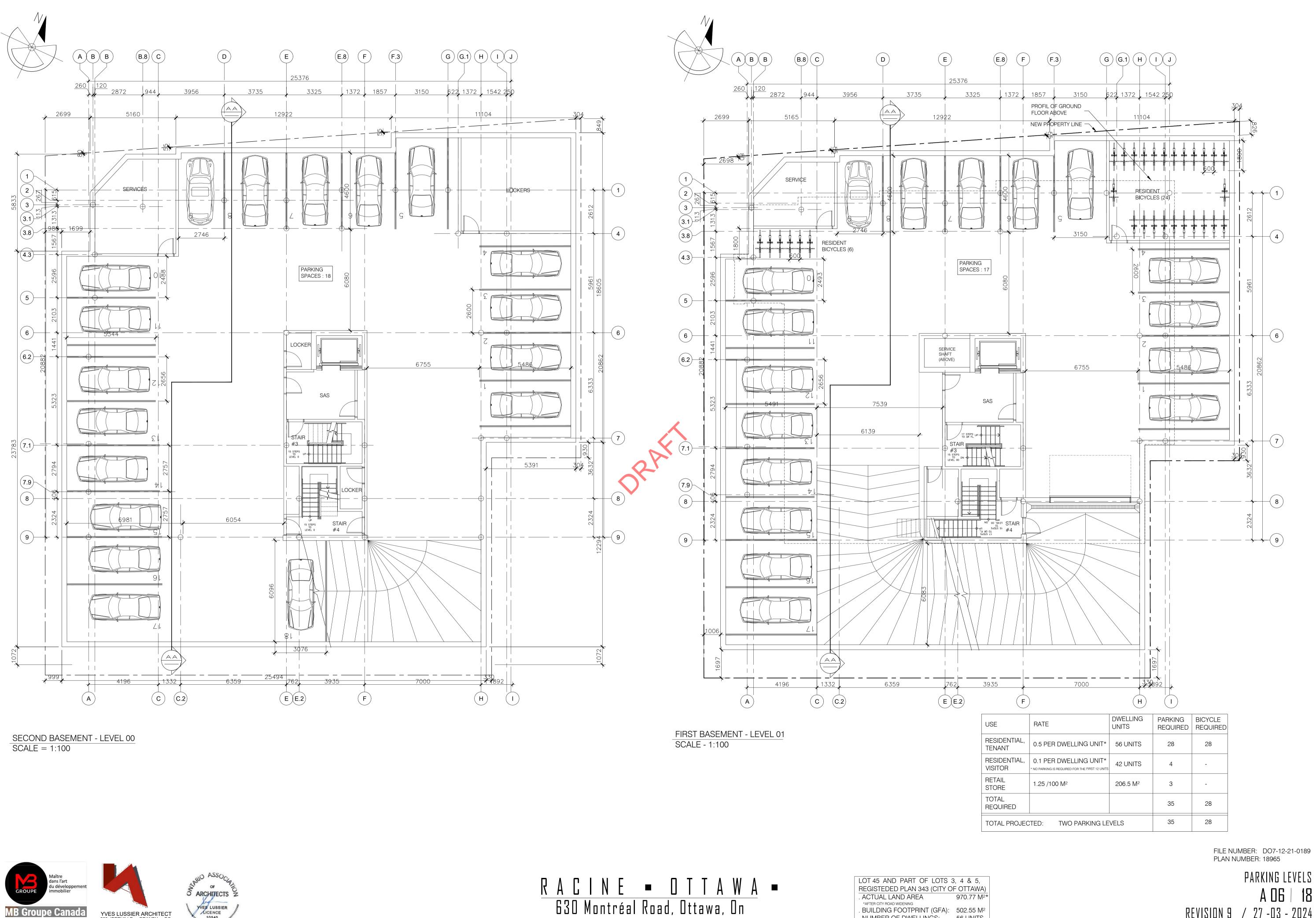
PERSPECTIVES **A D4** | **18** REVISION 9 / 27 -03 - 2024



		Lonnie oo	MPLIANCE TABLE		
Zoning Provision	Requirement	Proposed	Zoning Provision	Requirement	
Minimum lot width	No minimum	32.2 m	Minimum required amenity area Apartment Building, mid-high rise	Total Amenity Area: 6m2 per dwelling unit, and 10% of the gross floor area of each rooming unit.	
Minimum lot area	No minimum	970,77 m2			
Maximun building height	(ii) in any area up to and including 20 metres from a property line abutting a R4	30.1 m		Communal Amenity Area: A minimum o 50% of the required total amenity area	
	residential zone		Parking		
	(iii) in any area over 20 metres and up to	30.1 m	Minimum parking space rate for Area X – Sec. 102, Table 101,	0.5 per dwelling unit	
	30 metres from a property line abutting a R4 zone		dwelling, mid-high-rise apartment	(56 units x 0.5) = 28 spaces	
	(iv) in any area : 1. Outside of the areas	30.1 m	Minimum visitor parking space rate for Area X, apartment dwelling low or	0.1 per dwelling unit	
	identified in (i) through (iii)		mid-high-rise apartment – Sec. 102, Table 102 (iii)	(56 units - 12 spaces = 44 <mark>s</mark> paces)	
Minimum front yard setback	0 m	3.15 m			
Minimum interior setback	(i) First 20 metres from the street: 3.0 m	3.9 m	No visitor parking required for the first 12 units on a lot within areas X, Y, Z and B – Sec. 102(2)		
	(i) Beyond 20 metres from the street. 7.5	0.32 m	Minimum parking retail store space rate for Area X, retail store -	1.25 per 100m2 of gross floor area	
			Sec. 102, Table 102	(225.20 m2/100 m2 x 1.25 = 2.8 spaces)	
Minimum rear yard setback	 (i) Any building wall within 20 metres of a lot line abutting a public street: 3.0 m 	7.4 m			
				Note	
	All other cases: 7.5 m	7.4 m		2 parking spaces are less then 2.6m wide Actual dimension is 2.49 m	

RACINE = OTTAWA 630 Montréal Road, Ottawa, On

LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

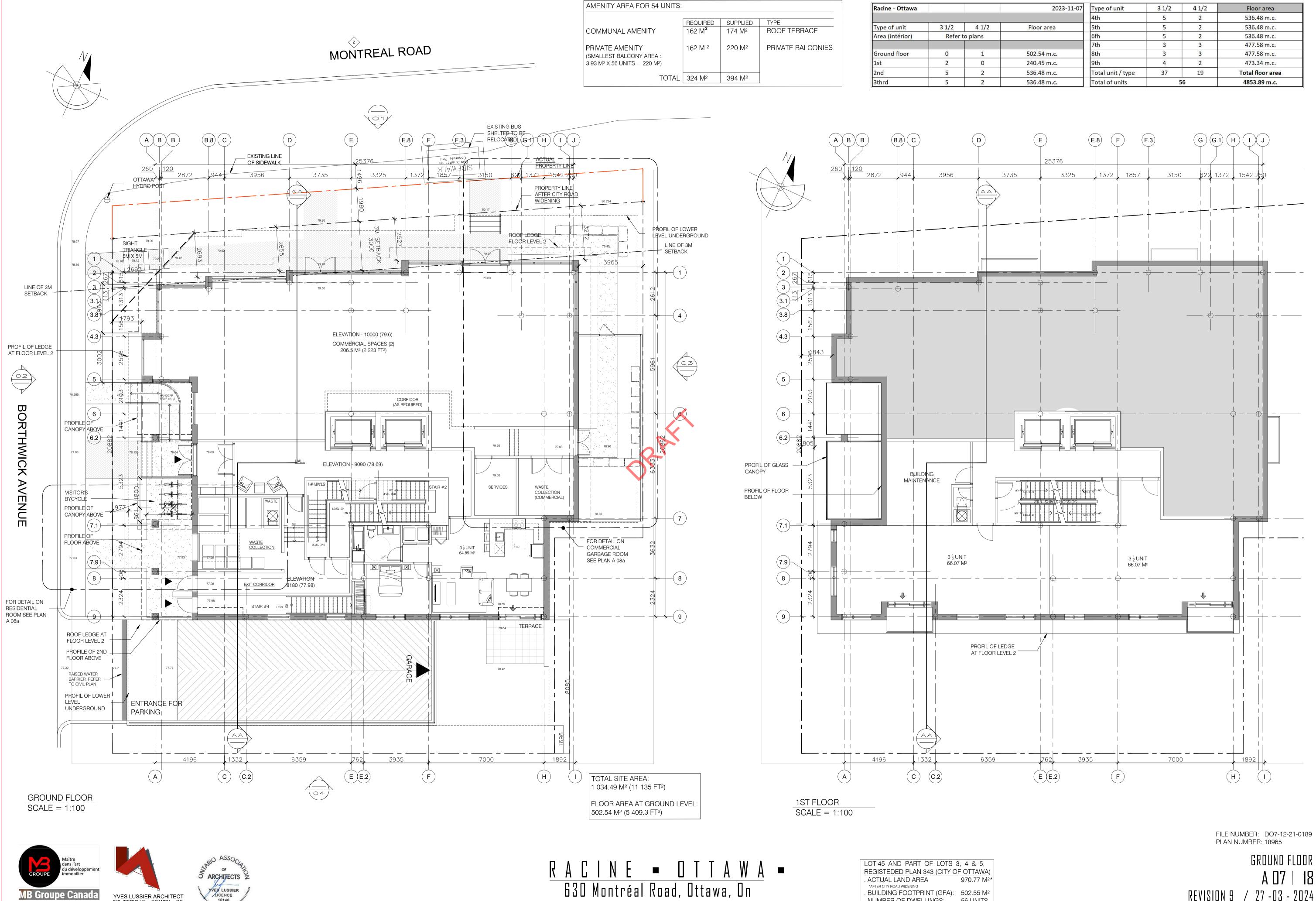

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

SITE PLAN

18

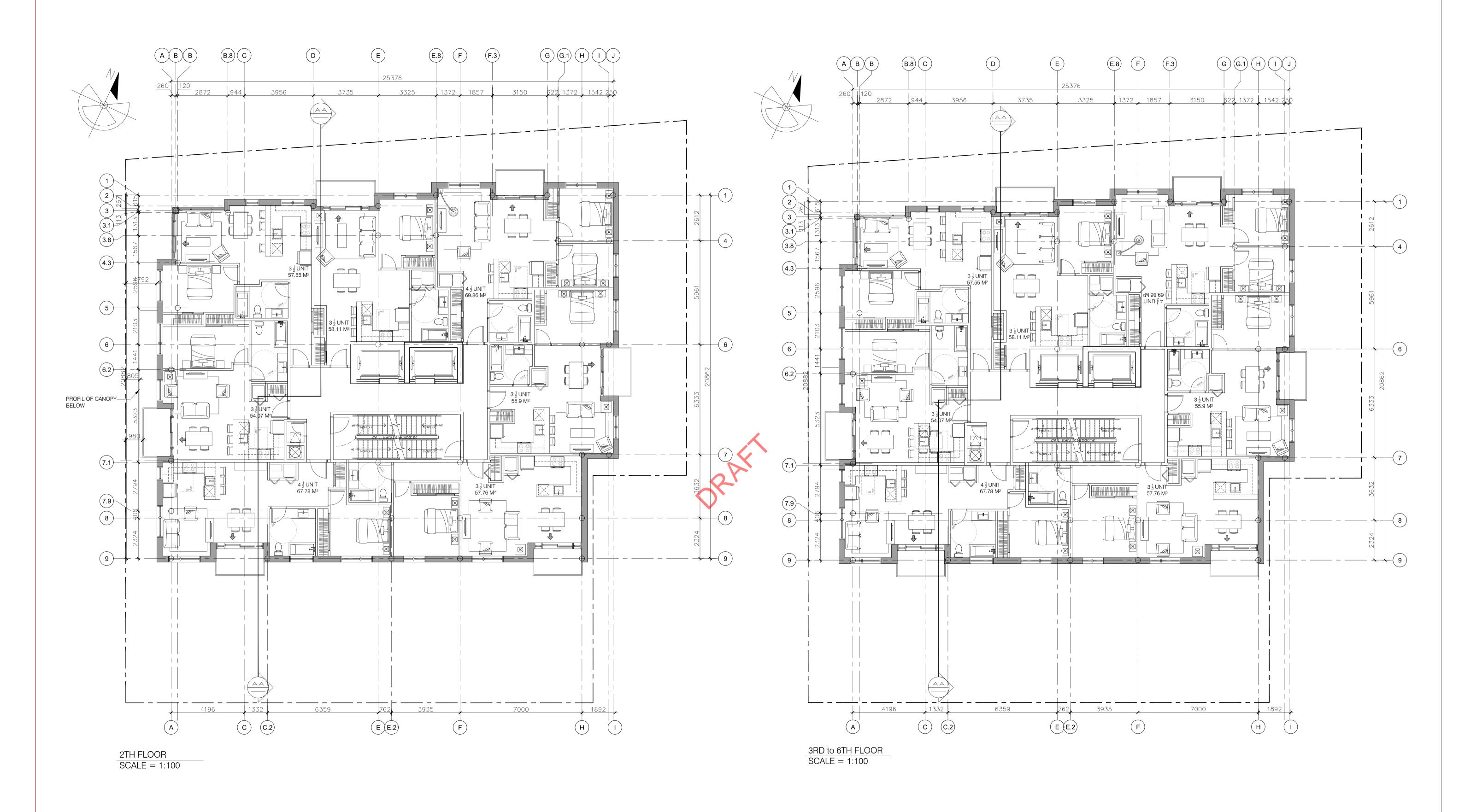
A 05 |

REVISION 9 / 27 - 03 - 2024



ACTUAL LAND AREA *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS 970.77 M^{2*} FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

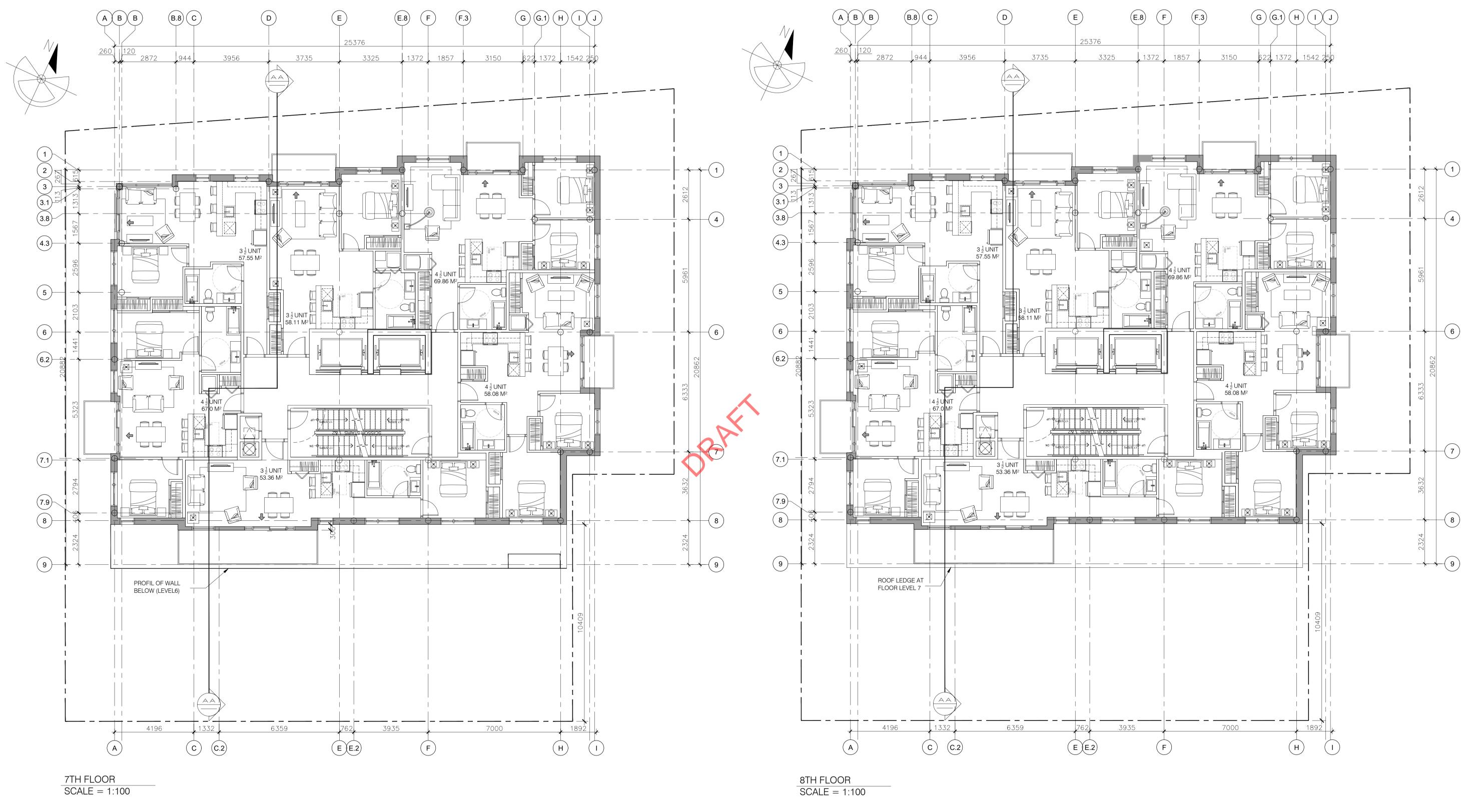
REVISION 9 / 27 - 03 - 2024


AMENITY AREA FOR 54 UNITS:			
COMMUNAL AMENITY	REQUIRED	SUPPLIED	TYPE ROOF TERRACE
PRIVATE AMENITY (SMALLEST BALCONY AREA : 3.93 M ² X 56 UNITS = 220 M ²)	162 M ²	220 M ²	PRIVATE BALCONIES
TOTAL	324 M ²	394 M ²	

Racine - Ottawa		
Type o <mark>f</mark> unit	3 1/2	4 1/2
Area (intérior)	Refer to plans	
Ground floor	0	1
1st	2	0
2nd	5	2
3thrd	5	2

*AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

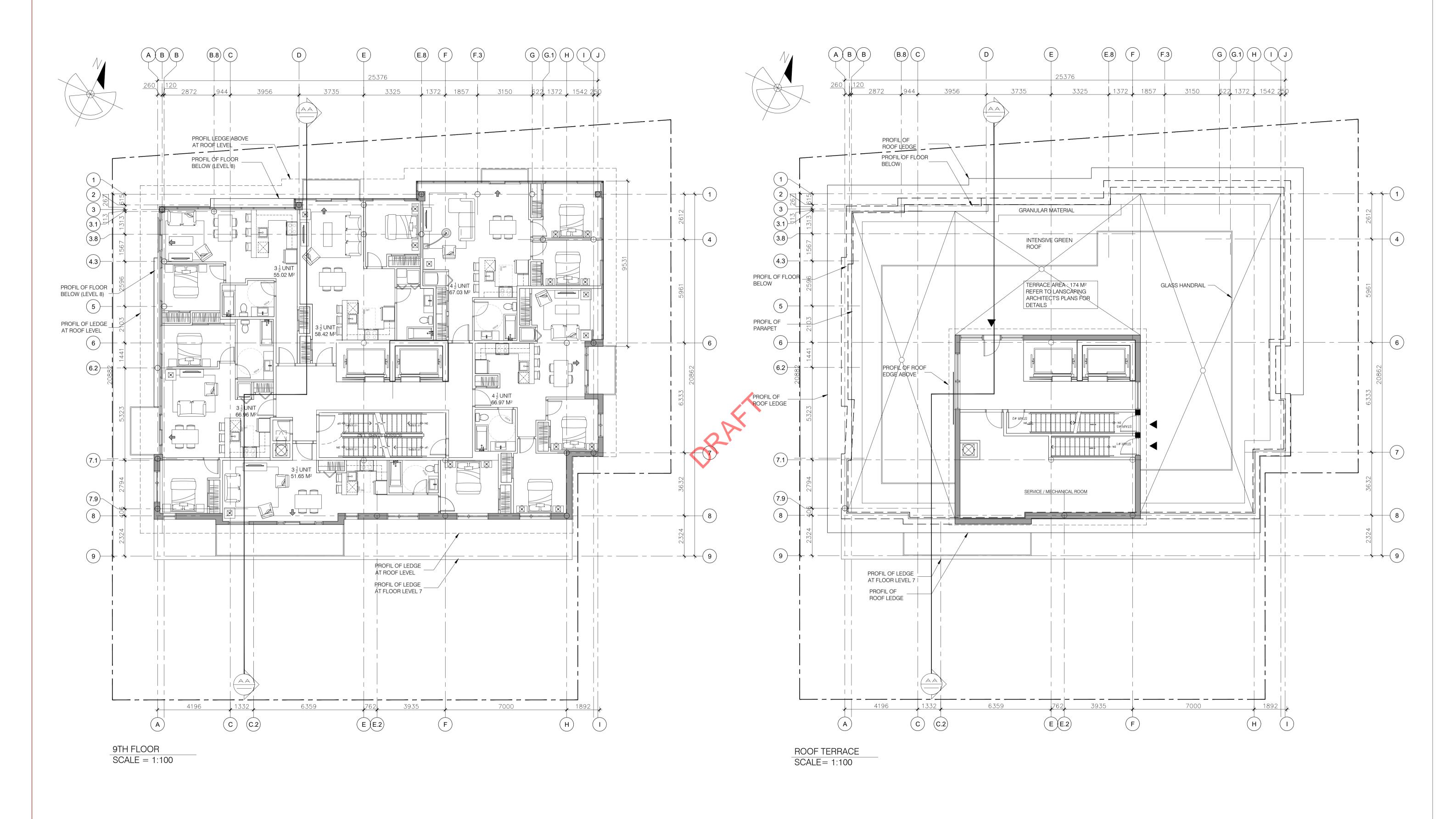
REVISION 9 / 27 - 03 - 2024



<u>RACINE</u> – OTTAWA 630 Montréal Road, Ottawa, On

LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) ACTUAL LAND AREA970.77 M2**AFTER CITY ROAD WIDENING502.55 M2. BUILDING FOOTPRINT (GFA):502.55 M2. NUMBER OF DWELLINGS:56 UNITS 970.77 M^{2*} FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

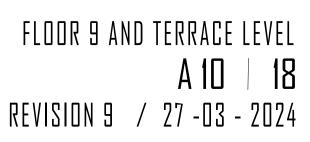
FLOORS 2 TO 6 A 08 18 REVISION 9 / 27 - 03 - 2024


RACINE = OTTAWA = 630 Montréal Road, Ottawa, On

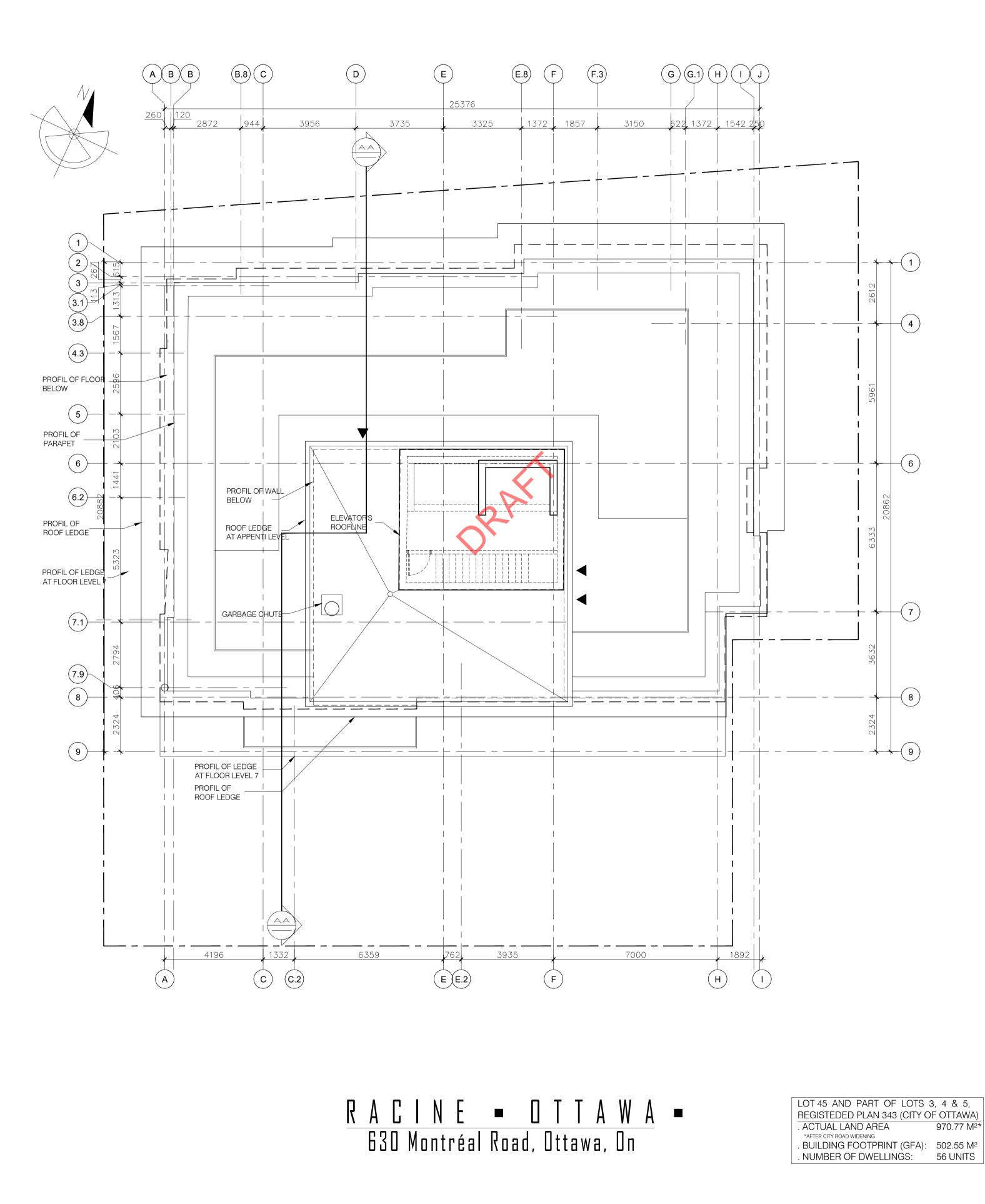
LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

FLOORS 7 AND 8 A 09 18 REVISION 9 / 27 - 03 - 2024


ASSOn

DEVELOPPER


R A C I N E = O T T A W A =630 Montréal Road, Ottawa, On

LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

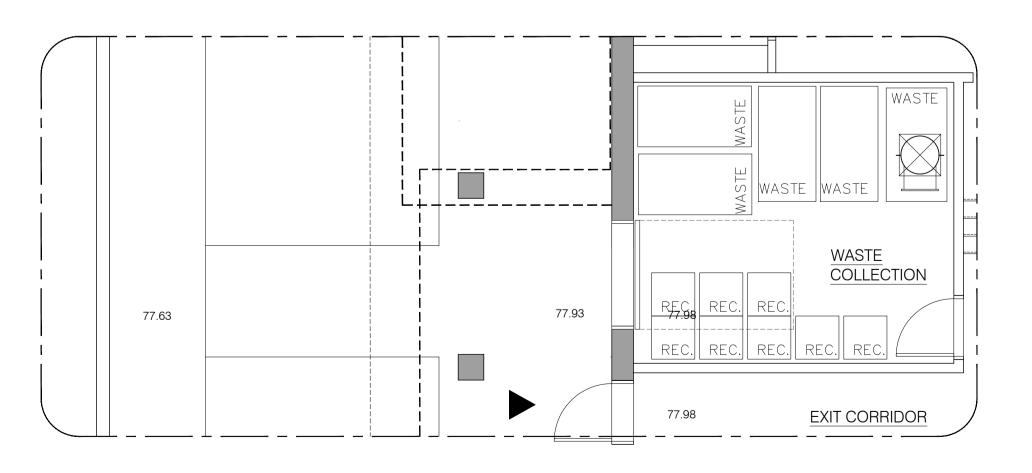
FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

007-12-21-0189

FILE NUMBER: D07-12-21-0189 PLAN NUMBER: 18965 ROOF LEVEL A 11 | 18 REVISION 9 / 27 -03 - 2024

RESIDENTIAL - WASTE AND RECYCLING COLLECTION

RESIDENTIAL WASTE ARE COLLECTED THOUGH A GARBAGE CHUTE INTO A WASTE BIN LOCATED ON THE GROUND FLOOR. THE BINS WILL BE MANAGED BY THE BUILDING INTENDANT.


THE RECYCLING WILL BE PICKED UP ON EACH FLOOR, ONCE A WEEK BY THE BUILDING INTENDANT, OR BROUGHT DOWN BY THE TENANT, TO THE WASTE COLLECTION ROOM LOCATED ON THE GROUND FLOOR. THE RECYCLING WILL THEN BE DEPOSITED IN THE APPROPRIATE RECYCLING BINS.

METHOD:

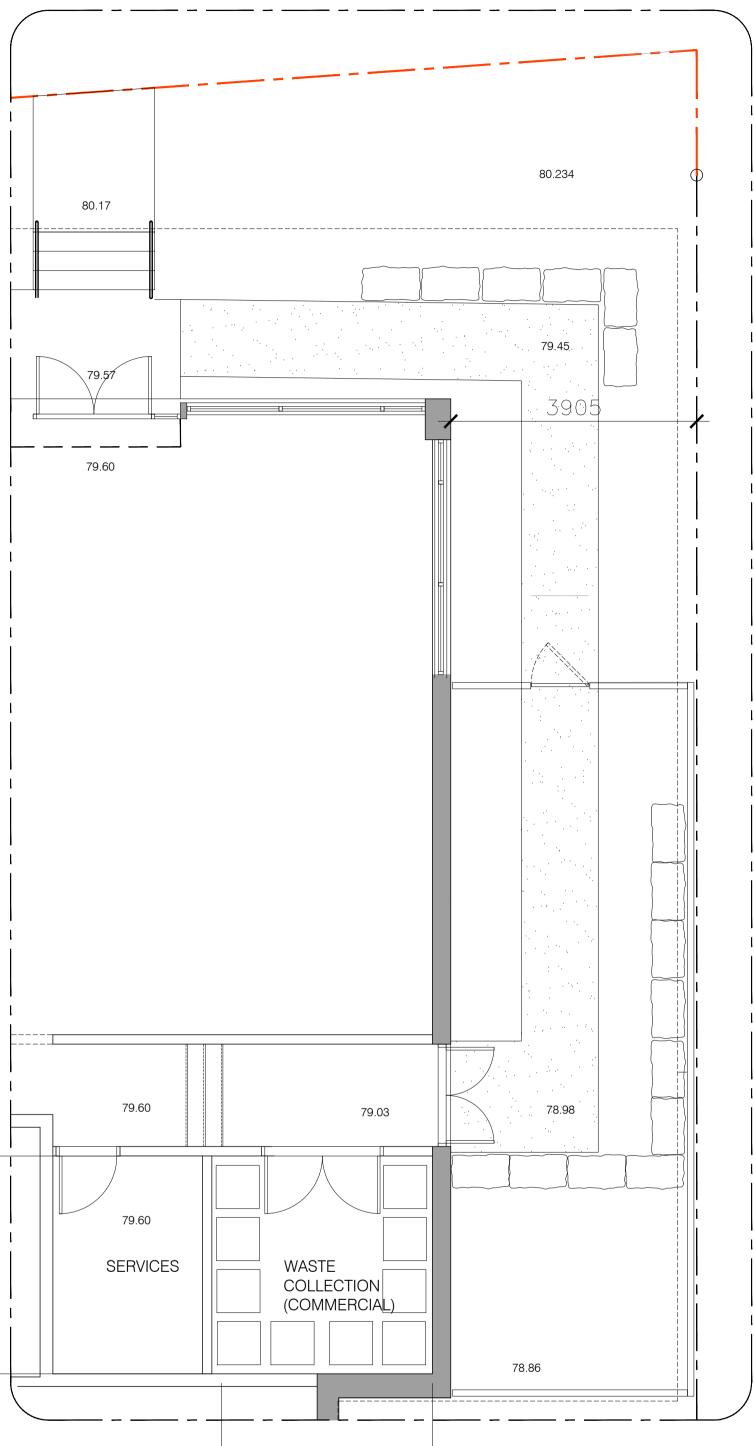
TRASH AND RECYCABLE WOULD THEN BE TAKEN ON DAYS OF COLLECTION BY THE BUILDING INTENDANT TO THE STREET CURB (BORTHWICK AVENUE).

THE BUILDING INTENDANT WILL BRING THEM BACK, ON THE SAME DAY, TO THE WASTE COLLECTION ROOM.

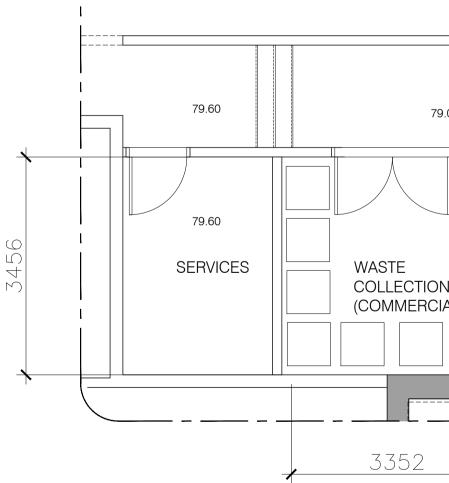
SIZE OF ROOM: 3350MM X 3455MM NUMBER OF RECYCLING CAN : 5 BINS - 965 X 1800 (750L) NUMBER OF TRASH CAN : 8 (65L)

COMMERCIAL - WASTE AND RECYCLING COLLECTION

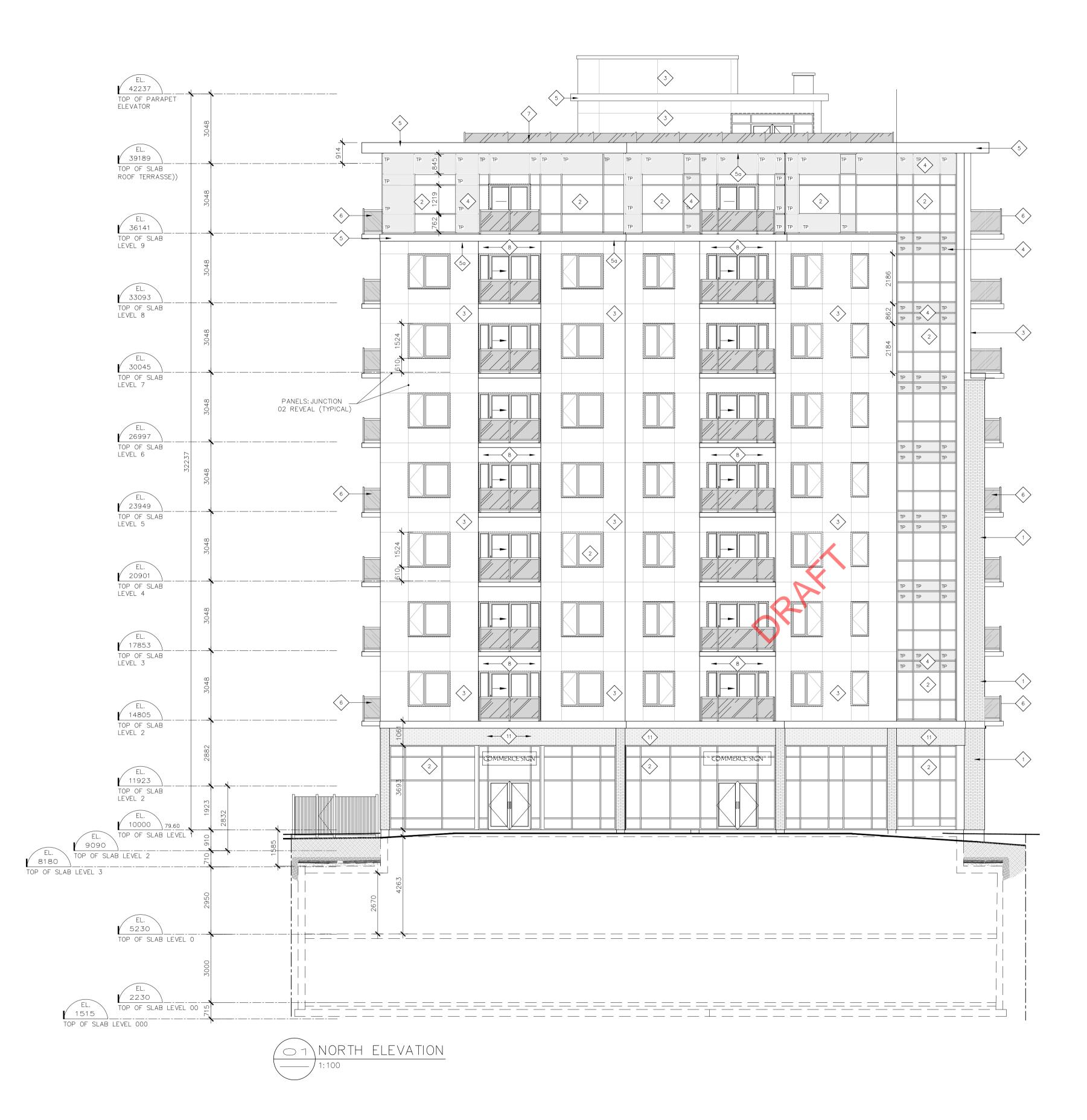
COMMERCIAL WASTE AND RECYCLING ARE COLLECTED BY EACH TENANT AND STORED IN A SPECIALLY DEDICATED ROOM ACCESSIBLE THROUGH THE BACK STORE.


METHOD:

TRASH AND RECYCABLE ARE THEN COLLECTED IN 65 GALS CAN WITH WHEELS. THE UNIT WOULD THEN BE TAKEN ON DAYS OF COLLECTION TROUGH THE COURTYARD UP TO THE STREET (MONTREAL ROAD).


THEN THE PERSON IN CHARGE WILL BRING THEM BACK, ON THE SAME DAY, TO THE STORAGE AREA.

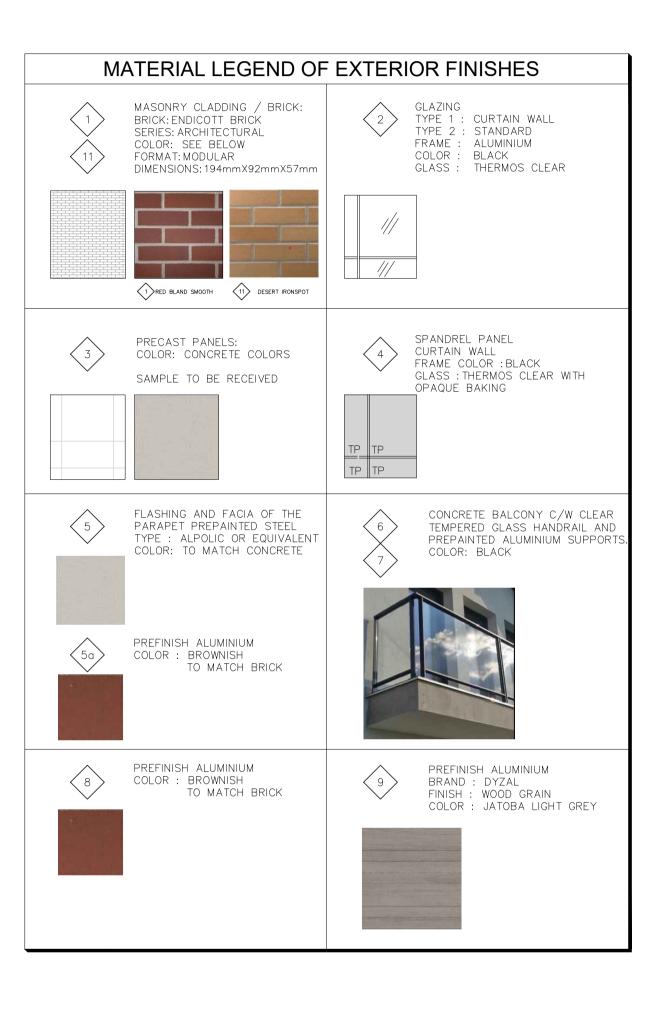
SIZE OF ROOM: 3350MM X 3455MM NUMBER OF RECYCLING CAN : 5 NUMBER OF TRASH CAN : 5



RACINE = OTTAWA =630 Montréal Road, Ottawa, On

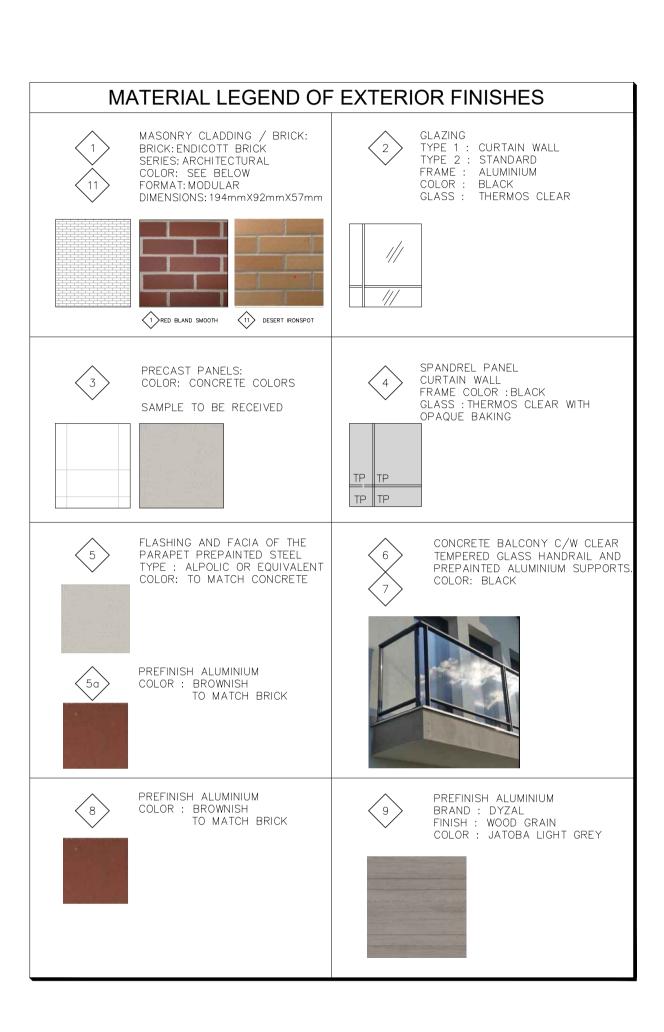
LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

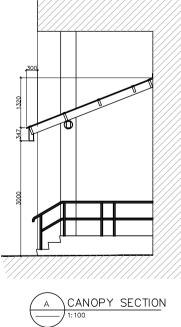
FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965 WASTE AND RECYCLING COLLECTION A 12 18 REVISION 9 / 27 - 03 - 2024

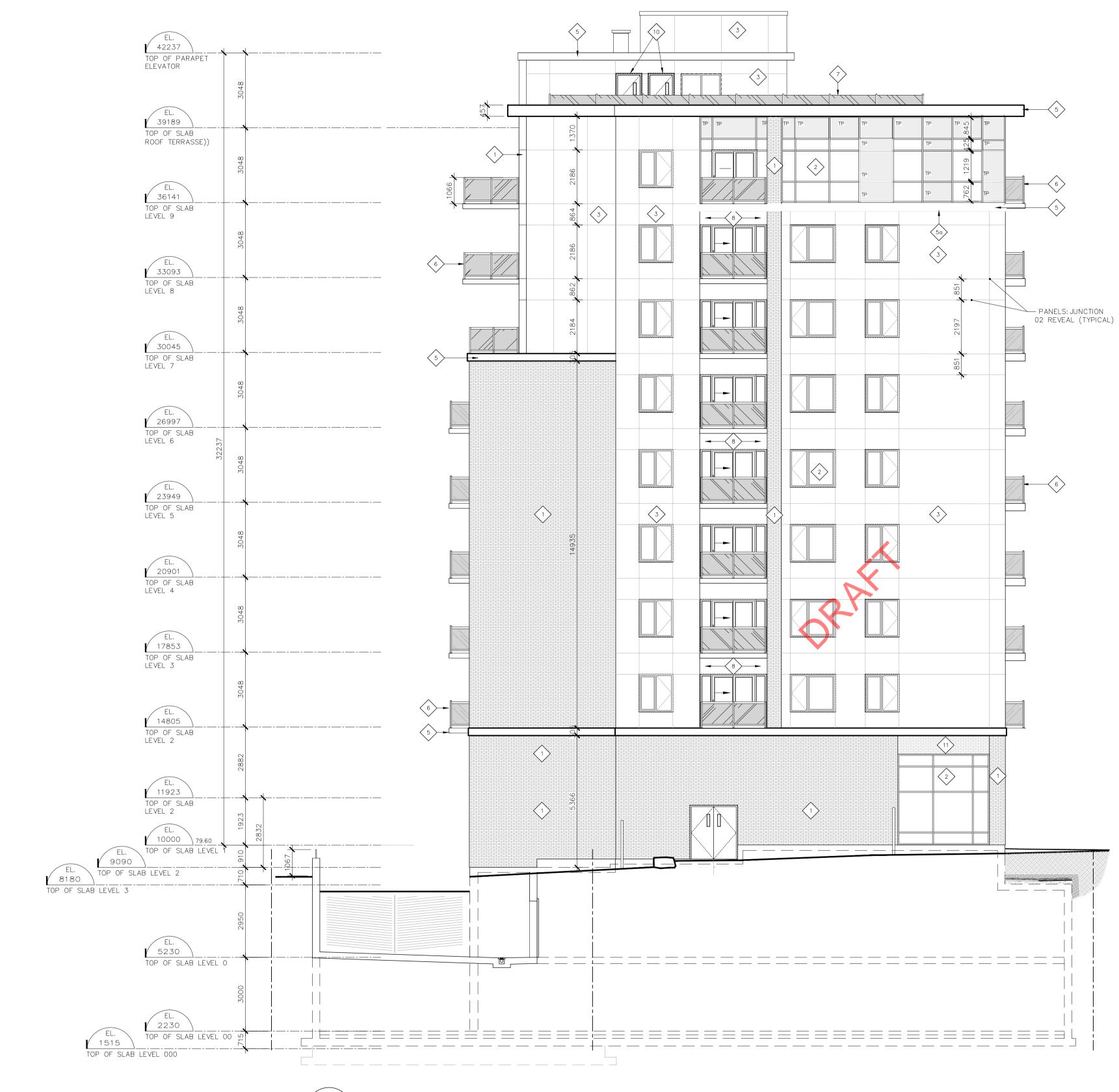

007-12-21-0189

<u>RACINE</u> – OTTAWA 630 Montréal Road, Ottawa, On LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

NORTH ELEVATION A 13 | 18 REVISION 9 / 27 -03 - 2024



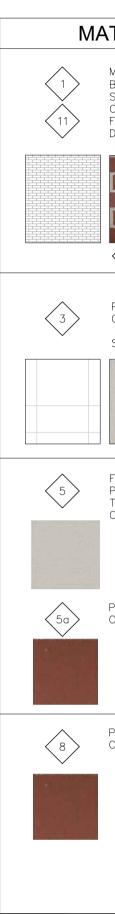


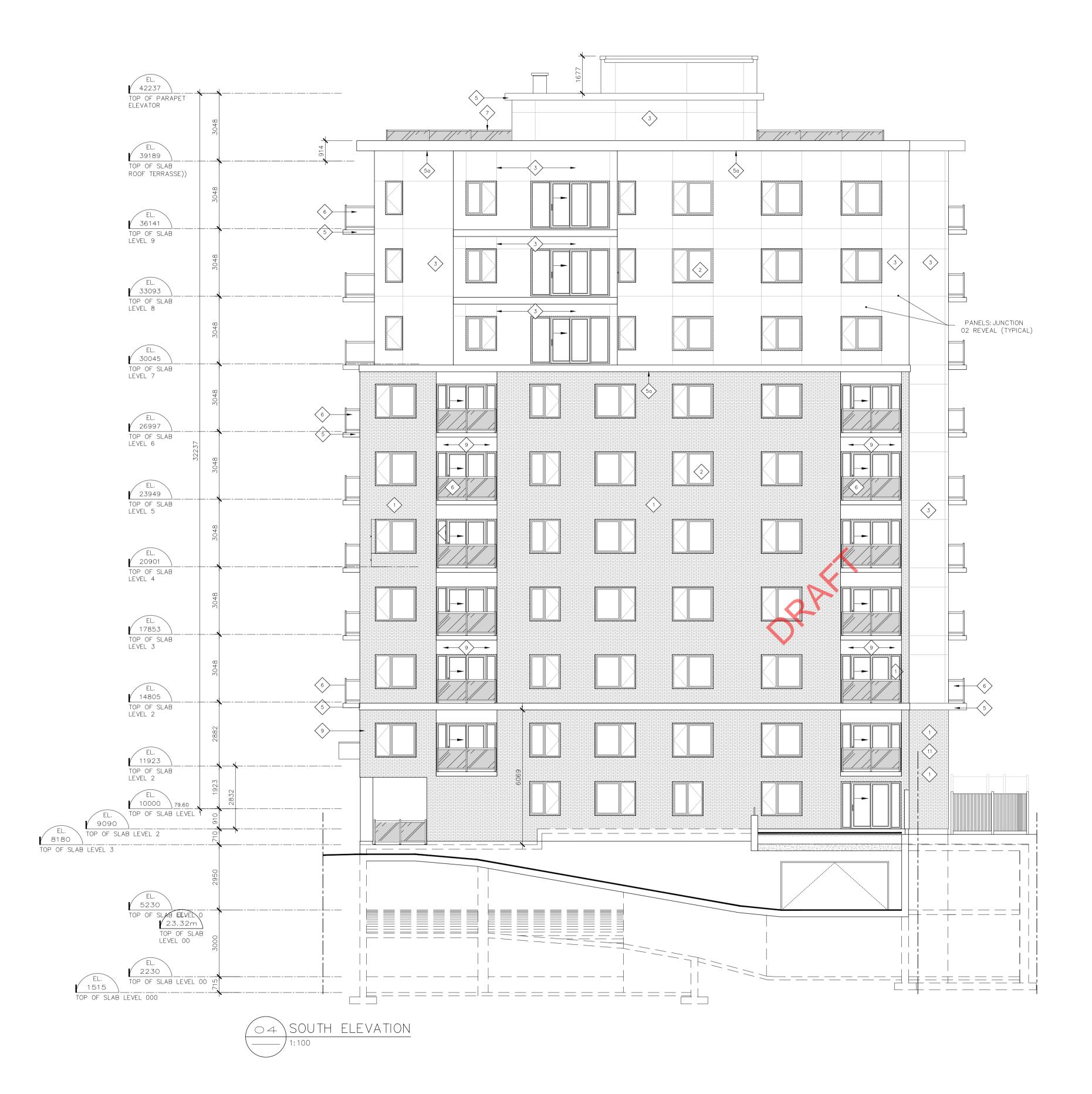

<u>RACINE</u> – OTTAWA 630 Montréal Road, Ottawa, On

 \rightarrow

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

EAST ELEVATION A 14 18 REVISION 9 / 27 - 03 - 2024

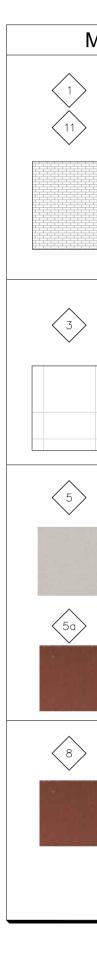



<u>RACINE</u> – OTTAWA 630 Montréal Road, Ottawa, On

LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

ATERIAL LEGEND OF	EXTERIOR FINISHES
MASONRY CLADDING / BRICK: BRICK: ENDICOTT BRICK SERIES: ARCHITECTURAL COLOR: SEE BELOW FORMAT: MODULAR DIMENSIONS: 194mmX92mmX57mm	GLAZING TYPE 1 : CURTAIN WALL TYPE 2 : STANDARD FRAME : ALUMINIUM COLOR : BLACK GLASS : THERMOS CLEAR
Image: transmission of the sector of the	
PRECAST PANELS: COLOR: CONCRETE COLORS SAMPLE TO BE RECEIVED	4 SPANDREL PANEL CURTAIN WALL FRAME COLOR : BLACK GLASS : THERMOS CLEAR WITH OPAQUE BAKING
FLASHING AND FACIA OF THE	TP TP CONCRETE BALCONY C/W CLEAR
PARAPET PREPAINTED STEEL TYPE : ALPOLIC OR EQUIVALENT COLOR: TO MATCH CONCRETE	6 TEMPERED GLASS HANDRAIL AND PREPAINTED ALUMINIUM SUPPORTS. COLOR: BLACK
PREFINISH ALUMINIUM COLOR : BROWNISH TO MATCH BRICK	
PREFINISH ALUMINIUM COLOR : BROWNISH TO MATCH BRICK	9 PREFINISH ALUMINIUM BRAND : DYZAL FINISH : WOOD GRAIN COLOR : JATOBA LIGHT GREY

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965


WEST ELEVATION **A 15** | **18** REVISION 9 / 27 - 03 - 2024

RACINE = OTTAWA 630 Montréal Road, Ottawa, On LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS

MATERIAL LEGEND OF EXTERIOR FINISHES				
MASONRY CLADDING / BRICK: BRICK: ENDICOTT BRICK SERIES: ARCHITECTURAL COLOR: SEE BELOW FORMAT: MODULAR DIMENSIONS: 194mmX92mmX57mm	GLAZING 2 GLAZING TYPE 1 : CURTAIN WALL TYPE 2 : STANDARD FRAME : ALUMINIUM COLOR : BLACK GLASS : THERMOS CLEAR			
Image: state of the state				
PRECAST PANELS: COLOR: CONCRETE COLORS SAMPLE TO BE RECEIVED	4 SPANDREL PANEL CURTAIN WALL FRAME COLOR : BLACK GLASS : THERMOS CLEAR WITH OPAQUE BAKING TP TP TP TP			
FLASHING AND FACIA OF THE PARAPET PREPAINTED STEEL TYPE : ALPOLIC OR EQUIVALENT COLOR: TO MATCH CONCRETE	6 7 CONCRETE BALCONY C/W CLEAR TEMPERED GLASS HANDRAIL AND PREPAINTED ALUMINIUM SUPPORTS. COLOR: BLACK			
PREFINISH ALUMINIUM COLOR : BROWNISH TO MATCH BRICK				
PREFINISH ALUMINIUM COLOR : BROWNISH TO MATCH BRICK	9 PREFINISH ALUMINIUM BRAND : DYZAL FINISH : WOOD GRAIN COLOR : JATOBA LIGHT GREY			

MATERIAL LEGEND OF EXTERIOR FINISHES

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

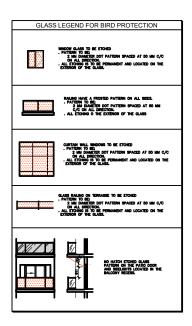
SOUTH ELEVATION A 16 | 18 REVISION 9 / 27 -03 - 2024

SECTION NORTH/SOUTH

1:100

RACINE = OTTAWA = 630 Montréal Road, Ottawa, On

LOT 45 AND PART OF LOTS 3, 4 & 5, REGISTEDED PLAN 343 (CITY OF OTTAWA) . ACTUAL LAND AREA 970.77 M^{2*} *AFTER CITY ROAD WIDENING . BUILDING FOOTPRINT (GFA): 502.55 M² . NUMBER OF DWELLINGS: 56 UNITS FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965 SECTION NORTH/SOUTH A 17 | 18 REVISION 9 / 27 - 03 - 2024


007-12-21-0189

RACINE – DTTAWA – 630 Montréal Road, Ottawa, On

FILE NUMBER: DO7-12-21-0189 PLAN NUMBER: 18965

SECTION NORTH/SOUTH A 18 | 18 REVISION 9 / 27 -03 - 2024

