

Geotechnical Investigation and Phase II Environmental Site Assessment Report Proposed New Riverside South Secondary School 675 Borbridge Avenue Ottawa, Ontario

Client:

Conseil des écoles catholiques du Centre-Est (CECCE) 4000 rue Labelle Ottawa, Ontario K1J 1A1

Type of Document: FINAL REPORT

Project Number: OTT-24010349-A0

Prepared By:

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada

Date Submitted: June 27, 2025

> 100-2650 Queensview Drive | Ottawa, Ontario K2B 8H6 | Canada t: +1.613.688.1899 | f: +1.613.225.7337 | exp.com

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Table of Contents

Executi	ive Sumi	mary1
1.	Introdu	uction
2.	Site De	scription7
3.	Availab	le Master Geotechnical Study Report8
4.	Geolog	y of the Site9
	4.1	Surficial Geology Map9
	4.2	Bedrock Geology Map9
5.	Proced	ure
	5.1	Fieldwork10
	5.2	Geotechnical Laboratory Testing Program10
	5.3	Seismic Shear Wave Velocity Sounding Survey11
	5.4	Environmental Procedure
6.	Subsur	face Conditions and Groundwater Levels12
	6.1	Topsoil
	6.2	Sandy Silt to Clayey Silt
	6.3	Silty Clay
	6.4	Glacial Till
	6.5	Inferred Bedrock14
	6.6	Groundwater Level Measurements
7.	Phase l	II Environmental Site Assessment 15
	7.1	Environmental Site Condition Standards15
	7.2	Environmental Results16
	7.3	Environmental Recommendations16
8.	Site Cla	assification and Designation for Seismic Design and Liquefaction Potential of Soils 17
	8.1	Site Classification for Seismic Site Response17
	8.2	Liquefaction Potential of Soils17
9.	Grade	Raise Restrictions
10.	Site Gr	ading

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

11.	Found	ation Considerations	20
	11.1	Vertical Modulus of Subgrade Reaction	21
12.	Floor S	lab and Drainage Requirements	22
13.	Excava	tion and De-Watering Requirements	23
	13.1	Excavation	23
	13.2	De-Watering Requirements	23
14.	Pipe B	edding Requirements	25
15.	Backfil	ling Requirements and Suitability of On-Site Soils for Backfilling Purposes	26
16.	Pavem	ent Structures	27
17.	Corros	ion Potential	29
18.	Tree P	lanting Restrictions	30
19.	Compa	arison with Master Geotechnical Study for the Surrounding Residential Development 3	31
20.	Genera	al Comments	32

List of Tables

Table I: Summary of Laboratory Testing Program	10
Table II: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination	Sandy Silt12
Table III: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination	Silty Clay 13
Table IV: Consolidation Test Results	13
Table V: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination (Glacial Till14
Table VI: Summary of Groundwater level Measurements	14
Table VII: Recommended Pavement Structure Thicknesses	27
Table VIII: Corrosion Test Results on Soil Samples	29

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

List of Figures

Figure 1	-	Site Location Plan
Figure 2	-	Borehole Location Plan
Figures 3 to 16	-	Borehole Logs
Figures 17 to 35	-	Test Pit Logs
Figures 36 to 41	-	Grain-size Distribution Curves

List of Appendices

Appendix A – Seismic Shear Wave Velocity Sounding Survey Report by GPR Appendix B - Consolidation Test Results

Appendix C – Environmental Laboratory Certificates of Analysis

Appendix D – Environmental Soil Analytical Tables

Appendix E – Laboratory Certificate of Analysis Report by AGAT

Legal Notification

List of Distribution

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Executive Summary

Introduction

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed New Riverside South Secondary School to be located at 675 Borbridge Avenue, Ottawa, ON (Figure 1). The terms and conditions of this assignment were outlined in EXP's proposal number: OTT-24010349-A0 dated June 12,2024 and authorized by the Conseil des écoles catholiques du Centre-Est (CECCE) on June 26, 2024.

In conjunction with this geotechnical investigation, EXP has carried out a Phase II Environmental Site Assessment (Phase II ESA) and retained Kilgour & Associates Ltd. (KAL) to carry out an Environmental Impact Study (EIS) and a Tree Conservation Report (TCR). The results of the Phase II ESA have been included in this report. The EIS and TCR will be provided in separate reports. EXP previously completed a Phase I Environmental Site Assessment (Phase I ESA) of the site in 2022 and the results are provided in a separate report. EXP is also undertaking civil design for this project and the design will be provided in separate documents.

Proposed Development

The proposed school building will be two (2) storeys with no basement. Based a proposed site plan provided by GRC Architects, Option 1, the proposed school development will include the school building located in the northwest corner of the site next to the Brian Good Avenue and Borbridge Avenue intersection. The development will also include future portables to the south of the school building, an outdoor sports field in the east portion of the site, bus loop south of the proposed school building, a bus loading and unloading area north of the proposed school building and an access road and parking lot in the northeast portion of the site. The development will be serviced by municipal underground services.

The BPA emails and meeting provide the following foundation design information regarding the design of the footings for the proposed new school building:

- 1) Foundation Drawing No. S004 titled, Schedules, dated March 14,2025 (Revision No. 1) and prepared by BPA. The drawing shows the footing schedule for the sizes and thickness of seventeen (17) pad footings, F1 to F17 ranging in size from 1.5 m by 1.5 m to 6.45 m by 7.25 m to 3.0 m by 12.4 m and one (1) 600 mm wide strip footing SF1.
- 2) Foundation Drawing No. S100 (with mark ups) titled, Foundation Plan, dated May 9,2025 (Revision No. 2) and prepared by BPA. The marked-up drawing shows the governing foundation loads for selected footings, F9 to F17, that include dead load (DL), live load (LL), snow load (SL), earthquake load (EQ) and load at ultimate limit state (ULS).
- 3) The emails indicate the founding depth of the footings is based on the following criteria:
 - Top of footing elevation is 1.2 m below the top of the pier where the top of the pier is 300 mm below the finished floor. Four (4) of the F11 size pad footings marked on the foundation plan require increased soil cover, deeper footings, resulting in top of footing depth will be 1.8 m below finished floor (FFE).
- 4) The emails also indicate that for some footings larger than 3.0 m by 3.0 m in size, specifically 3.6 m by 3.6 m, 4.2 m by 4.2 m and 4.5 m by 4.5 m, they have bearing pressures at serviceability limit state (SLS) ranging from 17 kPa to 34 kPa and ultimate limit state (ULS) of 88 kPa to 125 kPa.
- 5) Some footings have been combined into larger mats designed to resist overturning due to lateral loads. These footings are upwards of 3.6 m wide and up to 12.4 m in length as shown in the footing schedule on Drawing No. S004. Under seismic or wind loading, the maximum compressive stress at the toe is expected to be 173 kPa decreasing linearly along the footing length. Maximum serviceability limit state (SLS) and ultimate limit state (ULS) bearing pressure below these footings, due to gravity loads in compression would be 25 kN and 50 kN respectively.

[»]exp.

6) Based on the meeting with BPA on May 22,2025, it is our understanding that with the exception of footings noted on the foundation drawings and BPA May 7 and 8, 2025 emails and discussed above, footings have been designed for the SLS and factored ULS values of 120 kPa and 180 kPa respectively.

EXP also prepared the latest site grading plan titled, Site Grading Plan – Ultimate dated April 4,2025, Drawing No. C2-00-2. The latest site grading plan indicates the finished floor slab elevation will be at Elevation 92.10 m which results in a site grade raise of 1.0 m in the footprint of the proposed building.

Based on the finished floor elevation (FFE) of Elevation 92.10 m provided by EXP and the footing founding depth criteria and footing schedule provided by BPA, the footings will be founded at Elevation 90.3 m to Elevation 90.0 m which is approximately at 0.8 m to 1.1 m depths below existing grade and for the four (4) deeper F11 size footings founded at Elevation 89.7 m which is approximately at a 1.4 m below existing grade. At these founding elevations, the footings are anticipated to be founded on an engineered fill pad constructed on top of the silty clay.

Test Hole Fieldwork Program

The fieldwork for this geotechnical investigation was undertaken from December 3 to 6, 2024 and on June 13,2025 and consists of fourteen (14) boreholes (Borehole Nos. 24-1 to 24-4 and Nos. 24-6 to 24-15) and nineteen (19) test pits (Test Pit Nos. 25-1 to 25-19) advanced to auger refusal, cone refusal and termination depths ranging from 1.8 m to 10.9 m depths below existing grade. The test holes (boreholes and test pits) were undertaken at locations where the trees were cleared. Borehole 24-5 was not drilled. The fieldwork was supervised on a full-time basis by EXP.

Subsurface Conditions

The borehole information indicates the subsurface conditions consist of a surficial topsoil layer underlain by a brown very loose to compact sandy silt to clayey silt, grey firm to very stiff silty clay and loose to very dense glacial till. Refusal to auger and DCPT cone refusal were encountered in 4.9 m to 10.9 m depths (Elevation 86.2 m to Elevation 80.7 m) on inferred cobbles or boulders within the glacial till or on bedrock. Based on the recent groundwater level measurements from June 16,2025, the groundwater level is at 1.5 m and 2.2 m depths (Elevation 89.6 m to Elevation 89.2 m).

Phase II ESA Environmental Comments and Recommendations

Three environmental samples and one duplicate sample were submitted to a certified laboratory for analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC) inorganics (pH, electrical conductivity (EC), sodium adsorption ratio (SAR)) and metals.

For the purpose of this investigation, analytical results obtained from the soil samples were assessed against the generic Excess Soil Quality Standards (ESQS) as established under the Environmental Protection Act and regulated under O. Reg 406/19.

Based on the laboratory results of the three samples that were analyzed, all parameter concentrations were found to meet MECP Table 1 SCS for all land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeded MECP Table 1 SCS for barium, chromium and vanadium.

The laboratory results of the three samples which were analyzed, all parameter concentrations were found to meet MECP Tables 2.1 for residential/parkland/institutional and industrial/commercial/community land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 2.1 ESQS for vanadium.

The laboratory results of the three samples which were analyzed, all parameter concentrations were found to meet MECP Table 3.1 for residential/parkland/institutional and industrial/commercial/community land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 3.1 ESQS for vanadium.

According to Section 49.1 of O. Reg 153/04, if a contaminant exceeds the applicable SCS but does not exceed the naturally occurring range of that contaminant in that area, then the contaminant is considered to meet the applicable SCS. Native soils

consisting of Champlain Sea Deposits can have higher concentrations of barium, chromium and vanadium. The Site is located within an area consisting of Champlain Sea Deposits and the exceedances of barium, chromium and vanadium do not exceed the naturally occurring range. Therefore, these parameters are not considered to exceed and meet the applicable SCS and ESQS.

Based on the Section 2. (3).15. of the "Rules for Soil Management and Excess Soil Quality Standards" (MECP 2019) document, a minimum of three samples must be analyzed if less than 600 cubic metres of soil will be excavated. Three samples were collected and submitted to be analyzed as part of this investigation, therefore up to 600 cubic metres of soil can be excavated and disposed of without restrictions. If additional soil is to be removed from the Site, then additional soil samples will need to be collected and submitted for laboratory analysis.

Geotechnical Engineering Comments and Recommendations

A seismic shear wave velocity sounding survey was conducted by GPR and the results of the survey are provided in Appendix A of the attached report. The results of the survey indicate an average seismic shear wave velocity (Vs30) of 479 m/s. Based on Tables 4.1.8.4.-A and 4.1.8.4.-B of the 2024 Ontario Building Code (OBC), the site class, S, is Class C and the site designation is X_c.

Based on a review of the test hole information and consolidation test results and to maintain settlements within normally tolerable limits, it is considered that the maximum permissible site grade raise using soil fill is 1.0 m in conjunction with the footings designed in accordance with Section 11 of the attached report.

EXP prepared the latest site grading plan titled, Site Grading Plan – Ultimate dated April 4,2025, Drawing No. C2-00-2. The latest site grading plan indicates the finished floor slab elevation will be at Elevation 92.10 m which results in a site grade raise of 1.0 m in the footprint of the proposed building and up to 1.0 m in the remaining portion of the site. Based on a review of the grading plan, the proposed site grade raise is within the maximum permissible grade raise of 1.0 m and therefore considered to be acceptable.

Based on a review of the borehole and test pit information and above foundation design information, it is considered feasible to support the proposed school building by footings founded on an engineered fill pad constructed on the silty clay. The sandy silt to clayey silt will have to be excavated and removed from within the proposed building area. The engineered fill pad should be constructed in accordance with the procedure provided in the attached report.

For the subsurface conditions encountered in the test holes on site and the anticipated founding elevations noted above, the footings may be designed for a bearing pressure at serviceability limit state (SLS) of 120 kPa and factored geotechnical resistance at ultimate limit state (ULS) of 180 kPa. The sustained load considered for bearing pressure at SLS consists of 100 percent dead load plus 50 percent live load. In summary, the design of the various pad and strip footing sizes placed at the anticipated founding depths (elevations) and designed for the bearing pressure at SLS values provided above by BPA and for the recommended SLS value of 120 kPa are considered to be acceptable. The factored ULS value includes a geotechnical resistance value of 0.5. The SLS and factored ULS values are valid provided the maximum permissible site grade raise of 1.0 m using approved soil fill is respected. The settlement of the footings designed as noted above and for the recommended SLS value and properly constructed are expected to be within the normally tolerable limits of 25 mm total settlement and 19 mm differential settlement.

Should the footing sizes, footing design loads, founding depth (elevation) of the footings and/or site grade raise be different than indicated in the BPA May 7 and 8, 2025 emails and on the EXP site grading plan, EXP should be contacted to review.

The ground floor of the proposed school building may be designed as a slab-on-grade placed on a well packed 200 mm thick 19 mm sized clear stone bed placed on a minimum 300 mm thick engineered fill pad set on the approved silty clay subgrade constructed in accordance with Sections 10 and 11 of the attached report. The proposed school building should have a perimeter drainage system. Underfloor drainage is not required.

Excavations for the construction of the foundations and installation the underground services for the proposed school development are expected to extend to a maximum depth of 3.0 m below the existing grade into the sandy silt and silty clay. Based on groundwater level measurements from January 9,2025 excavations are anticipated to be below the groundwater level.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

The excavations may be undertaken by conventional heavy equipment capable of removing cobbles and boulders.

All excavations must be undertaken in accordance with the Occupational Health and Safety Act (OHSA), Ontario Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils on site are considered to be Type 3 and as such must be cut back at 1H:1V from the bottom of the excavation. Within zones of seepage, the excavation side slopes are expected to slough and eventually stabilize at 2H:1V to 3H:1V from the bottom of the excavation. Seepage of surface and subsurface water into the excavations is anticipated and it should be possible to remove any water entering the excavations by pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated requiring high-capacity pumps to keep the excavation dry.

Open cut excavations that extend below the groundwater level into the very loose to compact sandy silt are anticipated to be problematic and will require the lowering of the groundwater level prior to the start of excavation. Further it is anticipated that excavations within the sandy silt and below the groundwater level may be susceptible to basal instability or base type failure in the form of piping or heave. To assist in the excavation and removal of the sandy silt down to the silty clay and minimize the occurrence of base type failure during the excavation of the sandy silt, it is recommended that the groundwater level should be lowered by at least 1.0 m below the bottom of the excavation of the sandy silt prior to the start of excavation. This may be achieved by installing deep sumps and pumping with high-capacity pumps. The dewatering contractor should review the subsurface conditions at the site and select the most appropriate method to lower the groundwater level. The excavation and de-watering of the excavation of the satisfue in section 13 of the attached report.

It is anticipated that the majority of the material required for engineered fill construction and backfilling purposes will have to be imported and should preferably conform to the specifications stated in the attached report.

Comparison with Master Geotechnical Study for the Surrounding Residential Development

The master geotechnical study for the residential subdivision surrounding the proposed school is provided in the geotechnical report titled, Geotechnical Investigation Proposed Residential Development Riverside South Development (Phase 15) Ottawa, Ontario dated June 2019 and prepared by Golder Associates Ltd. (Golder).

Based on a review of the master geotechnical study prepared by Golder and a review of this geotechnical and Phase II ESA report, the geotechnical engineering comments and recommendations provided in this geotechnical and Phase II ESA report are in conformance with the recommendations and restrictions provided within the master study report.

Closure

The above and other related considerations are discussed in greater detail in the main body of the attached report.

This executive summary is a brief synopsis of the attached report and should not be read in lieu of reading the attached report in its entirety.

1. Introduction

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed New Riverside South Secondary School to be located at 675 Borbridge Avenue, Ottawa, ON (Figure 1). The terms and conditions of this assignment were outlined in EXP's proposal number: OTT-24010349-A0 dated June 12,2024 and authorized by the Conseil des écoles catholiques du Centre-Est (CECCE) on June 26, 2024.

In conjunction with this geotechnical investigation, EXP has carried out a Phase II Environmental Site Assessment (Phase II ESA) and retained Kilgour & Associates Ltd. (KAL) to carry out an Environmental Impact Study (EIS) and Tree Conservation Report (TCR). The results of the Phase II ESA have been included in this report. The EIS and TCR will be provided in separate reports. EXP previously completed a Phase I ESA of the site in 2022 and the results are provided in a separate report. EXP is also undertaking civil design for this project and the design will be provided in separate documents.

The proposed school building will be two (2) storeys with no basement. Based a proposed site plan provided by GRC Architects, Option 1, the proposed school development will include the school building located in the northwest corner of the site next to the Brian Good Avenue and Borbridge Avenue intersection. The development will also include future portables to the south of the school building, an outdoor sports field in the east portion of the site, bus loop south of the proposed school building, a bus loading and unloading area north of the proposed school building and an access road and parking lot in the northeast portion of the site. The development will be serviced by municipal underground services.

The following foundation design information regarding the design of the footings for the proposed new school building were provided by the structural engineering firm, BPA, in emails and during a meeting with EXP:

- 1) Foundation Drawing No. S004 titled, Schedules, dated March 14,2025 (Revision No. 1) and prepared by BPA. The drawing shows the footing schedule for the sizes and thickness of seventeen (17) pad footings, F1 to F17 ranging in size from 1.5 m by 1.5 m to 6.45 m by 7.25 m to 3.0 m by 12.4 m and one (1) 600 mm wide strip footing SF1.
- 2) Foundation Drawing No. S100 (with mark ups) titled, Foundation Plan, dated May 9,2025 (Revision No. 2) and prepared by BPA. The marked-up drawing shows the governing foundation loads for selected footings, F9 to F17, that include dead load (DL), live load (LL), snow load (SL), earthquake load (EQ) and load at ultimate limit state (ULS).
- 3) The emails indicate the founding depth of the footings is based on the following criteria:
 - Top of footing elevation is 1.2 m below the top of the pier where the top of the pier is 300 mm below the finished floor. Four (4) of the F11 size pad footings marked on the foundation plan require increased soil cover, deeper footings, resulting in top of footing depth will be 1.8 m below finished floor (FFE).
- 4) The emails also indicate that for some footings larger than 3.0 m by 3.0 m in size, specifically 3.6 m by 3.6 m, 4.2 m by 4.2 m and 4.5 m by 4.5 m, they have bearing pressures at serviceability limit state (SLS) ranging from 17 kPa to 34 kPa and ultimate limit state (ULS) of 88 kPa to 125 kPa.
- 5) Some footings have been combined into larger mats designed to resist overturning due to lateral loads. These footings are upwards of 3.6 m wide and up to 12.4 m in length as shown in the footing schedule on Drawing No. S004. Under seismic or wind loading, the maximum compressive stress at the toe is expected to be 173 kPa decreasing linearly along the footing length. Maximum serviceability limit state (SLS) and ultimate limit state (ULS) bearing pressure below these footings, due to gravity loads in compression would be 25 kN and 50 kN respectively.
- 6) Based on the meeting with BPA on May 22,2025, it is our understanding that with the exception of footings noted on the foundation drawings and BPA May 7 and 8, 2025 emails and discussed above, footings have been designed for the SLS and factored ULS values of 120 kPa and 180 kPa respectively.

EXP prepared the latest site grading plan titled, Site Grading Plan – Ultimate dated April 4,2025, Drawing No. C2-00-2. The site grading plan indicates the finished floor slab elevation will be at Elevation 92.10 m which results in a site grade raise of 1.0 m in the footprint of the proposed building.

*exp

Based on the finished floor elevation (FFE) of Elevation 92.10 m provided by EXP and the footing founding depth criteria and footing schedule provided by BPA, the footings will be founded at Elevation 90.3 m to Elevation 90.0 m which is approximately at 0.8 m to 1.1 m depths below existing grade and for the four (4) deeper F11 size footings founded at Elevation 89.7 m which is approximately at a 1.4 m below existing grade.

The geotechnical investigation was undertaken to:

- a) Establish the subsurface soil and groundwater conditions at fourteen (14) boreholes and nineteen (19) test pits located on the site,
- b) Provide the site classification and designation for seismic design in accordance with the 2024 Ontario Building Code and assess the potential for liquefaction of the subsurface soils during a seismic event,
- c) Carry out a Phase II Environmental Site Assessment (ESA) concurrent with the geotechnical investigation,
- d) Comment on grade-raise restrictions,
- e) Make recommendations regarding the most suitable type of foundations, founding depth and bearing pressure at serviceability limit state (SLS) and factored geotechnical resistance at ultimate limit state (ULS) of the founding strata and comment on the anticipated total and differential settlements of the recommended foundation type,
- Provide comments regarding slab-on-grade construction and the requirement for perimeter and underfloor drainage systems,
- g) Comment on excavation conditions and de-watering requirements during construction,
- h) Provide pipe bedding requirements for underground services,
- i) Discuss backfilling requirements and suitability of on-site soils for backfilling purposes,
- j) Recommend pavement structure thicknesses for the access road, parking lot, bus loading and unloading area and bus loop,
- k) Comment on subsurface concrete requirements and corrosion potential of subsurface soils to buried metal structures/members; and
- I) Conduct a comparison of the geotechnical engineering comments and recommendations provided in this report with the geotechnical engineering comments and recommendations provided in the June 2019 master geotechnical study report for the surrounding residential development prepared by Golder Associates Ltd.

The comments and recommendations given in this report assume that the above-described design concept will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations, or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

[»]ехр.

2. Site Description

The site is located in the southeast corner of the Brian Good Avenue and Borbridge Avenue intersection at the municipal address of 675 Borbridge Avenue, Ottawa, Ontario. The site is approximately square in shape with an approximate area of 5.8 hectares. The site is bounded to the south and to the west by residential developments. At the time of this geotechnical investigation, the majority of the site was covered with dense trees.

The EXP Phase I ESA identified that small stockpiles of soil and granular material are present on the site, generated from residential construction activities.

A black ash tree cluster to be preserved was also identified by KAL and the location is shown on the Test Hole Location Plan, Figure 2.

The ground surface elevation of the boreholes and test pits range from Elevation 91.96 m to Elevation 90.65 m.

[%]ехр.

3. Available Master Geotechnical Study Report

A reference is made to the following master geotechnical study report for the residential development around the proposed school:

• Geotechnical Investigation Proposed Residential Development Riverside South Development (Phase 15) Ottawa, Ontario dated June 2019 and prepared by Golder Associates Ltd. (Golder).

Comments regarding the comparison of the geotechnical engineering comments and recommendations provided in this geotechnical and Phase II ESA report with the geotechnical engineering comments and recommendations provided in the June 2019 master geotechnical study report by Golder are provided in section 19 of this geotechnical and Phase II ESA report.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

4. Geology of the Site

4.1 Surficial Geology Map

The surficial geology was reviewed via the Google Earth application using the map published by the Ontario Ministry of Energy, Northern Development and Mines available via www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/surficialgeology and was last modified on May 23, 2017. The map indicates the site is underlain by fine textured glaciomarine deposits consisting of silt and clay with minor sand and gravel as well as coarse textured glaciomarine deposits consisting of sand and gravel with minor silt and clay. Underlying the glaciomarine deposits is a deposit of stone-poor, sandy silt to silt and sandtextured glacial till. The surficial deposits are shown in Image 1 below.

4.2 Bedrock Geology Map

The bedrock geology was reviewed via the Google Earth application using the map published by the Ontario Ministry of Energy, Northern Development and Mines available via http://www.geologyontario.mndm.gov.on.ca/mines/data/google/MRD219/ geology/doc.kml and publish in 2007. The map indicates the site is underlain by dolostone with minor shale and sandstone of the Beekmantown Group, Oxford formation. The bedrock geology is show in Image 2 below.

Dolostone, minor shale and sandstone bedrock of the Beekmantown Group, Oxford formation

Image 2 – Bedrock Geology

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

5. Procedure

5.1 Fieldwork

The fieldwork for this geotechnical investigation was undertaken from December 3 to 6, 2024 and on June 13,2025 and consists of fourteen (14) boreholes (Borehole Nos. 24-1 to 24-4 and Nos. 24-6 to 24-15) and nineteen (19) test pits (Test Pit Nos. 25-1 to 25-19) advanced to auger refusal, cone refusal and termination depths ranging from 1.8 m to 10.9 m depths below existing grade. The test holes (boreholes and test pits) were undertaken at locations where the trees were cleared. Borehole 24-5 was not drilled. The fieldwork was supervised on a full-time basis by EXP.

The boreholes were drilled using a CME-55 track-mounted drill rig equipped with continuous flight hollow-stem auger equipment operated by a drilling contractor subcontracted to EXP. Standard penetration tests (SPTs) were performed in all the boreholes at 0.75 m to 1.5 m depth intervals and soil samples were retrieved by the split-spoon sampler. Relatively undisturbed Shelby tube samples were retrieved from two (2) boreholes. The undrained shear strength of the silty clay was measured by conducting in-situ vane tests at selected depths in the boreholes. Dynamic cone penetration tests (DCPT) were conducted in Borehole Nos. 24-3, 24-10 and 24-12.

Fifty (50) mm diameter monitoring wells and nineteen (19) mm standpipes were installed in selected boreholes for long-term monitoring of the groundwater table. The monitoring wells were also used for sampling of the groundwater as part of the Phase II ESA. The monitoring wells and standpipes were installed in accordance with EXP standard practice, and the installation configuration is documented on the respective borehole log. The boreholes were backfilled upon completion of drilling and installation of the monitoring wells.

The test pits were excavated using a Kubota KX080-4 Excavator. Soil samples (grab samples (GS)) of the different soil types exposed in the test pits were retrieved at select depth intervals and the soil conditions from the test pits were logged with each soil sample placed in a labelled sample bag. The undrained shear strength of the silty clay was measured by conducting penetrometer tests on selected soil samples from the test pits. The groundwater level was measured in the test pits upon completion of excavating. The test pits were backfilled upon completion of excavating and the backfill nominally paved in placed using the backhoe bucket.

5.2 Geotechnical Laboratory Testing Program

On completion of the borehole fieldwork, the soil samples were transported to the EXP laboratory in Ottawa and borehole logs prepared. The soils are classified by their main constituents in accordance with the Unified Soil Classification System (USCS) using the soil group name and symbol and by the modified Burmister soil classification method for the classification of the minor constituents using adjectives and modifiers such as trace and some.

Table I: Summary of Laboratory Testing Program								
Type of Test	Number of Tests Completed							
Moisture Content Determination	163							
Unit Weight Determination	7							
Grain Size Analysis	9							
Atterberg Limit Determination	6							
Consolidation Test	1							
Corrosion Analysis (pH, sulphate, chloride and resistivity)	2							

A summary of the laboratory testing program for the soil samples is shown in Table I.

5.3 Seismic Shear Wave Velocity Sounding Survey

A seismic shear wave velocity sounding survey was conducted at the site on December 5, 2024, by Geophysics GPR International Inc. (GPR). The survey line is located along Brian Good Avenue to the southwest of the site. The survey was undertaken using the multi-channel analysis of surface waves (MASW), spatial auto correlation (SPAC) and seismic refraction methods. The seismic shear wave velocity sounding survey report is shown in Appendix A and the location of the survey line is shown in Figure 2 of the GPR report.

5.4 Environmental Procedure

A total of three representative soil samples and one duplicate sample were collected from three boreholes (Borehole Nos. 24-1, 24-4 and 24-14) and were submitted to a certified laboratory for analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC) inorganics (pH, electrical conductivity (EC), sodium adsorption ratio (SAR)) and metals.

6. Subsurface Conditions and Groundwater Levels

A detailed description of the subsurface conditions and groundwater levels from the teste holes (boreholes and test pits) are given on the attached Borehole and Test Pit Logs, Figure Nos. 3 to 35. The test hole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted.

It should be noted that the soil boundaries indicated on the test hole logs are inferred from non-continuous sampling and observations during drilling operations. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Note on Sample Descriptions" preceding the test hole logs form an integral part of this report and should be read in conjunction with this report.

Reference is made to Section 7 of this report and to the 2022 Phase I ESA report regarding the environmental condition of the subsurface soils and groundwater.

A review of the borehole logs indicates the following subsurface conditions with depth and groundwater level measurements.

6.1 Topsoil

A 150 mm to 400 mm thick surficial topsoil layer was encountered in all the boreholes.

6.2 Sandy Silt to Clayey Silt

A brown sandy silt to clayey silt was encountered beneath the topsoil in all the boreholes and test pits and extends to depths ranging from 1.4 m to 2.6 m (Elevation 89.6 m to Elevation 88.4 m). The sandy silt to clayey silt contains silty clay seams. The SPT N-values of the sandy silt to clayey silt to clayey silt range from 3 to 26 indicating the sandy silt to clayey silt is in a very loose to compact state. The natural moisture content and unit weight of the sandy silt is 11 percent to 40 percent and 18.7 kN/m³ to 20.2 kN/m³, respectively.

The results from the grain-size analysis and Atterberg limit determination conducted on two (2) samples of the soil are summarized in Table II. The grain-size distribution curves are shown in Figures 36 and 37.

Table II: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination Sandy Silt											
Borehole No.	Depth (m)	Grain-Size Analysis (%) and Atterberg Limit Determination (%)									
(BH) – Sample No. (SS)		Gravel	Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Soil Classification		
BH24-1 SS3	1.5 - 2.1	0	21	43	36	28	15	13	Clayey Sandy Silt (ML) with Silty Clay Seams of Low Plasticity		
BH24-14 SS3	1.5 - 2.1	0	45	37	18	Non-Plastic			Sandy Silt (ML) - Some Clay		

Based on a review of the results of the grain-size analysis, the soil may be classified as a clayey sandy silt (ML) with silty clay seams of low plasticity to a non-plastic sandy silt (ML) with some clay.

6.3 Silty Clay

The sandy silt is underlain by a sensitive marine silty clay contacted in all boreholes that extends to depths ranging from 4.1 m to 6.5 m (Elevation 87.5 m to Elevation 84.5 m). The undrained shear strength of the silty clay ranges from 38 kPa to greater than 120 kPa indicating a firm to very stiff consistency. The natural moisture content and unit weight of the silty clay is 20 percent to 68 percent and 15.9 kN/m³ to 16.5 kN/m³, respectively.

The results from the grain-size analysis and Atterberg limit determination conducted on three (3) selected samples of the silty clay are summarized in Table III. The grain-size distribution curves are shown in Figures 38 to 40.

Г	Table III: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination Silty Clay												
Borehole No.		Grain-Size Analysis (%) and Atterberg Limit Determination (%)											
(BH) – Sample No. (SS)	Depth (m)	Gravel	Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Soil Classification				
BH24-1 SS6	3.8 - 4.4	2	7	45	46	35	16	19	Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel				
BH24-3 SS5	3.8 - 4.4	1	5	61	33	31	14	17	Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel				
BH24-15 SS4	3.0 - 3.6	0	1	41	58	53	14	39	Silty Clay of High Plasticity (CH) – Trace Sand				

Based on a review of the results of the grain-size analysis and Atterberg limits, the soil may be classified as a silty clay of medium to high plasticity (CI to CH) with trace sand and trace gravel.

A consolidation test was performed on one (1) Shelby tube sample of the silty clay. The test results and estimated consolidation soil parameters are summarized in Table IV. The consolidation test results are shown in Appendix B.

Table IV: Consolidation Test Results											
Borehole No. (BH)-Sample No. (ST)	Sample Depth (Elevation) (m)	σ'_{v0} (kPa)	W _c (%)	γ (kN/m³)	σ' _p (kPa)	e₀	Cr	Cc	OCR		
BH24-12 - ST1	3.8 - 4.4 (87.0 - 86.4)	69	62.5	15.9	96	1.757	0.049	0.844	1.4		

 σ'_{v0} = calculated effective overburden pressure (kPa); W_c: natural moisture content (%), γ : estimated natural unit weight σ'_{p} = pre-consolidation pressure (kPa), e₀ = initial void ratio; C_r = re-compression index; C_c = compression index; OCR - Over-Consolidation Ratio

Based on a review of the consolidation test result, the pre-consolidation pressure of the silty clay sample is 96 kPa and the silty clay is slightly over-consolidated with an over-consolidation ratio of 1.4 indicating the silty clay is over-consolidated by 27 kPa.

6.4 Glacial Till

A glacial till was contacted beneath the silty clay at depths of 4.1 m to 6.5 m (Elevation 87.5 m to Elevation 84.5) The glacial till contains varying amounts of gravel, sand, silt and clay within the soil matrix as well as cobbles and boulders. The standard penetration test (SPT) N-values of the glacial till ranges from 5 to 54 indicating the glacial till is in a loose to very dense state. A high N value with low sampler penetration such as N equal to 50 for 25 mm sampler penetration is likely a result of the sampler making contact with a cobble or boulder within the glacial till. The moisture content of the glacial till is 4 percent to 35 percent.

The results from the grain-size analysis conducted on one (1) sample of the glacial till are summarized in Table V. The grain-size distribution curves are shown in Figure 41.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

	Table V: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination Glacial Till											
	Borehole No. (BH No. – Sample (SS) No.	Depth (m)	Grain-Size Analysis (%) and Atterberg Limit Determination (%)									
		Depth (m)	Gravel	Sand	Silt	Clay	Plasticity Index	Soil Classification				
	BH24-2 SS6	4.6-5.1	22	50	24	4	Non-Plastic	Gravelly Silty Sand (SM) - Trace Clay				

Based on a review of the results of the grain-size analysis and Atterberg limits, the glacial till is a gravelly silty sand (SM) with trace clay. The glacial till contains cobbles and boulders.

6.5 Inferred Bedrock

Auger refusal and dynamic cone penetration test (DCPT) cone refusal were encountered in Borehole Nos. 24-1 to 24-3, 24-10 and 24-12 at a 4.9 m to 10.9 m depths (Elevation 86.2 m to Elevation 80.7 m) on inferred cobbles or boulders within the glacial till or on bedrock.

In Borehole No. 24-3 auger refusal was encountered at a 7.4 m depth (Elevation 84.1 m) on inferred cobbles or boulders within the glacial till.

6.6 Groundwater Level Measurements

A summary of the groundwater level measurements taken in the boreholes equipped with monitoring wells and standpipes are shown in Table VI.

	Table VI: Summary of Groundwater level Measurements										
Borehole (BH)	BH) Ground Surface Screened Elevation (m) Material		Date of Measurement (Elapsed Time in Days from Date of Installation)	Groundwater Depth Below Ground Surface (Elevation), m							
BH24-02	91.44	Silty Clay/	June 16,2025 (158 days)	2.2 (89.2)							
вп24-02	91.44	Glacial Till	January 9, 2025 (37 days)	5.1 (86.3)							
0124.02	01.40	Silty Clay/	June 16,2025 (158 days)	2.2 (89.3)							
BH24-03	91.46	Glacial Till	January 9, 2025 (37 days)	5.0 (86.5)							
000	01 52	Silty Clay/	June 16.2025 (157 days)	Damaged							
BH24-08	91.52	Glacial Till	January 9, 2025 (36 days)	5.1 (86.4)							
		Sandy Silt/	June 16,2025 (156 days)	1.5 (89.6)							
BH24-13	91.14	Silty Clay	January 9, 2025 (35 days)	4.5 (86.6)							

Based on the recent groundwater level measurements, the groundwater level is at 1.5 m and 2.2 m depths (Elevation 89.6 m to Elevation 89.2 m).

The groundwater levels were determined in the boreholes at the time and under the condition stated in this report. Note that fluctuations in the level of groundwater may occur due to a seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

»ехр.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

7. Phase II Environmental Site Assessment

7.1 Environmental Site Condition Standards

For the purpose of this investigation, analytical results obtained from the soil samples were assessed against the generic Excess Soil Quality Standards (ESQS) as established under the Environmental Protection Act and regulated under O. Reg 406/19, as well as the Agricultural land use standards made under the Canadian Council of Ministers of the Environment (CCME) as per the request of the client. Table 1 provides the "Full Depth Background Site Condition Standards" and contains the same standards as provided in Table 1 of the Soil, Ground Water and Sediment Standards made under Part XV.1 of the EPA and referred to in O. Reg. 153/04 as the full depth background site condition standards ("Soil, Ground Water and Sediment Standards") but has been modified by noting when leachate analysis is required and if the standard is based on the analytical reporting limit or not.

Tabulated background ESQS (Table 1) applicable to environmentally sensitive sites and effects based generic ESQS (Tables 2.1 to 9.1) applicable to non-environmentally sensitive sites are provided in the accompanying "Rules for Soil Management and Excess Soil Quality Standards" (MECP 2019) document. The effects-based ESQS (Tables 2.1 to 9.1) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), and restoration depth (full or stratified).

Tables 1 and 2.1 to 9.1 of MECP (2019) are summarized as follows:

- Table 1 Applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2.1 Applicable to sites with potable groundwater and full depth restoration;
- Table 3.1 Applicable to sites with non-potable groundwater and full depth restoration;
- Table 4.1 Applicable to sites with potable groundwater and stratified restoration;
- Table 5.1 Applicable to sites with non-potable groundwater and stratified restoration;
- Table 6.1 Applicable to sites with potable groundwater and shallow soils;
- Table 7.1 Applicable to sites with non-potable groundwater and shallow soils;
- Table 8.1 Applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9.1 Applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background ESQS to a specific site is based on a consideration of site conditions related to soil pH (i.e., surface and subsurface soil), thickness and extent of overburden material, (i.e., shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance.

As development is planned for the Site, it is anticipated that excess soil will be generated. The applicable SCS depend on the quantity of soil being disposed of and the applicable SCS to the receiving property. In accordance with Regulation 406/19, excess soil that meets the MECP Table 1 to Table 9 SCS may be disposed of at a property where less than 350 m3 of soil are required, while excess soil that meets the MECP Table 1 or Table 2.1 to 9.1 ESQS may be disposed of at a property where more than 350 m3 of soil are required. The volume of soil to be generated at the site is unknown at this time.

The soil quality was compared to the MECP Table 1 SCS, which are based on background concentrations. Soil with concentrations less than MECP Table 1 can be disposed of without restrictions.

Analytical results were also compared to Table 2.1, which allows for evaluation to any off-site properties that are not municipally serviced with drinking water, and Table 3.1 for off-site properties that are municipally serviced with drinking water. If Tables 4.1 to 9.1 are applicable to the receiving site, then the data should be compared to the receiving site applicable ESQS, at the direction of the receiving site Qualified Person.

The laboratory certificates of analysis for the report are in Appendix C. The analytical results are included in Appendix D.

°ex⊳.

ехр.

7.2 Environmental Results

The results and findings of the soil characterization investigation are summarized as follows:

- A total of three (3) representative samples and one duplicate sample were collected and were submitted to a certified laboratory for analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC) inorganics (pH, electrical conductivity (EC), sodium adsorption ratio (SAR)) and metals. Refer to the analytical summary Tables 1 to 4 in Appendix D. Laboratory certificates of analysis can be found in Appendix C.
- The soil sample collected from BH24-04 (1.5-2.1 mbgs) consisted of brown, moist, sandy silt with clay. The soil samples collected from BH24-01 and BH24-14 (3.0-3.6 and 2.3-2.9 mbgs, respectively). Fill material was not identified on the Site in the borehole drilling program.
- The MECP SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The pH across the samples was found to be in an acceptable range (7.13 7.66).
- Based on the laboratory results of the three (3) samples that were analyzed, all parameter concentrations were found to meet MECP Table 1 SCS for all land uses with the exception of BH24-14 SS4 and its duplicate (DUP), which exceeded MECP Table 1 SCS for barium, chromium and vanadium.
- Based on the laboratory results of the three (3) samples were analyzed all parameter concentrations were found to meet MECP Tables 2.1 for residential/parkland/institutional and industrial/commercial/community land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 2.1 ESQS for vanadium.
- Based on the laboratory results of the three (3) samples were analyzed all parameter concentrations were found to meet MECP Table 3.1 for residential/parkland/institutional and industrial/commercial/community land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 3.1 ESQS for vanadium.

7.3 Environmental Recommendations

16

According to Section 49.1 of O.Reg 153/04, if a contaminant exceeds the applicable SCS but does not exceed the naturally occurring range of that contaminant in that area, then the contaminant is considered to meet the applicable SCS. Native soils consisting of Champlain Sea Deposits can have higher concentrations of barium, chromium and vanadium. The Site is located within an area consisting of Champlain Sea Deposits and the exceedances of barium, chromium and vanadium do not exceed the naturally occurring range. Therefore, these parameters are not considered to exceed and meet the applicable SCS and ESQS.

Based on the Section 2.(3).15. of the "Rules for Soil Management and Excess Soil Quality Standards" (MECP 2019) document, a minimum of three samples must be analyzed if less than 600 cubic metres of soil will be excavated. Three samples were collected and submitted to be analyzed as part of this investigation, therefore up to 600 cubic metres of soil can be excavated and disposed of without restrictions. If additional soil is to be removed from the Site then additional soil samples will need to be collected and submitted for laboratory analysis.

8. Site Classification and Designation for Seismic Design and Liquefaction Potential of Soils

8.1 Site Classification for Seismic Site Response

A seismic shear wave velocity sounding survey was conducted at the site on December 5, 2024, by Geophysics GPR International Inc. (GPR). The survey line is located along Brian Good Avenue to the southwest of the site. The survey was undertaken using the multi-channel analysis of surface waves (MASW), spatial auto correlation (SPAC) and seismic refraction methods. The seismic shear wave velocity sounding survey report is shown in Appendix A and the location of the survey line is shown in Figure 2 of the GPR report.

The results of the survey indicate an average seismic shear wave velocity (V_{s30}) of 479 m/s. Based on Tables 4.1.8.4.-A and 4.1.8.4.-B of the 2024 Ontario Building Code (OBC), the site class, S, is Class C and the site designation is X_{C} .

8.2 Liquefaction Potential of Soils

The subsurface soils are not susceptible to liquefaction during a seismic event.

[‰]ехр.

9. Grade Raise Restrictions

The results of the boreholes revealed that the site is underlain by a sensitive marine silty clay that is slightly over-consolidated and prone to consolidation settlement that will exceed normally tolerable limits if overstressed by a combination of the following loads imposed on the silty clay:

- Placement of fill on the site to raise the grades at the site,
- Footing loads applied to the silty clay by the proposed buildings; and
- Post construction permanent lowering of the groundwater table.

For the proposed development, the load stress imposed on the silty clay will include a combination of the first two (2) types of loads listed above. Long-term lowering of the groundwater table is not anticipated since it is recommended that clay seals be installed in service trenches to prevent the permanent lowering of the groundwater level as per section 14 of this report. The total combined load stress applied to the silty clay should be below the preconsolidation pressure of the silty clay in order to keep consolidation settlement of the proposed school building within normally tolerable limits.

Based on a review of the borehole information and consolidation test results and to maintain settlements within normally tolerable limits, it is considered that the maximum permissible site grade raise using soil fill is 1.0 m in conjunction with the footings designed in accordance with Section 11 of this report.

EXP also prepared the latest site grading plan titled, Site Grading Plan – Ultimate dated April 4,2025, Drawing No. C2-00-2. The latest site grading plan indicates the finished floor slab elevation will be at Elevation 92.10 m which results in a site grade raise of 1.0 m in the footprint of the proposed building and up to 1.0 m in the remaining portion of the site. Based on a review of the grading plan, the proposed site grade raise is within the maximum permissible grade raise of 1.0 m and therefore considered to be acceptable.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

10. Site Grading

Site grading within the **proposed school building footprint area** should consist of the removal of the surficial topsoil, organic stained soils and the sandy silt down to the silty clay. The exposed silty clay should be examined by a geotechnician. Once the subgrade has been approved, the grades may be raised to the underside of footing elevation and design elevation of the ground floor by the construction of an engineered fill pad in accordance with the procedure outlined in Section 10 of this report.

Site grading within the **proposed portable areas** should consist of the removal of the surficial topsoil layer and organic stained soils down to the sandy silt. The exposed sandy silt should be examined by a geotechnician. Once the exposed sandy silt has been approved, the grades may be raised to the design elevation of the underside of the portables by the construction of an engineered fill pad in accordance with the procedure outlined in Section 11 of this report

Site grading within the **proposed sports field, access road, parking lot, bus loading and unloading area and the bus loop** should consist of the removal of the surficial topsoil layer and organic stained soils down to the native sandy silt. The exposed sandy silt should be examined by a geotechnician. Once the exposed subgrade has been approved, the grades may be raised to the design elevation of the subgrade of the sports field, access road, parking lot, bus loading and unloading area and bus loop by the placement of fill material consisting of Ontario Provincial Standard Specification (OPSS) Select Subgrade Material (SSM) or approved non-organic on-site material that is free of debris, cobbles and boulders compacted to 95 percent standard Proctor maximum dry density (SPMDD). In-place density tests should be undertaken on each lift of the fill material to ensure the material is properly compacted prior to the placement of subsequent lifts.

11. Foundation Considerations

Based on a review of the borehole and test pit information, it is considered feasible to support the proposed school building by footings founded on an engineered fill pad constructed on the grey silty clay. The brown sandy silt to clayey silt will have to be excavated and removed from within the proposed building area. The engineered fill pad should be constructed in accordance with the procedure below.

The following foundation design information regarding the design of the footings for the proposed new school building were provided by the structural engineering firm, BPA, in emails and during a meeting with EXP:

- 1) Foundation Drawing No. S004 titled, Schedules, dated March 14,2025 (Revision No. 1) and prepared by BPA. The drawing shows the footing schedule for the sizes and thickness of seventeen (17) pad footings, F1 to F17 ranging in size from 1.5 m by 1.5 m to 6.45 m by 7.25 m to 3.0 m by 12.4 m and one (1) 600 mm wide strip footing SF1.
- 2) Foundation Drawing No. S100 (with mark ups) titled, Foundation Plan, dated May 9,2025 (Revision No. 2) and prepared by BPA. The marked-up drawing shows the governing foundation loads for selected footings, F9 to F17, that include dead load (DL), live load (LL), snow load (SL), earthquake load (EQ) and load at ultimate limit state (ULS).
- 3) The emails indicate the founding depth of the footings is based on the following criteria:
 - Top of footing elevation is 1.2 m below the top of the pier where the top of the pier is 300 mm below the finished floor. Four (4) of the F11 size pad footings marked on the foundation plan require increased soil cover, deeper footings, resulting in top of footing depth will be 1.8 m below finished floor (FFE).
- 4) The emails also indicate that for some footings larger than 3.0 m by 3.0 m in size, specifically 3.6 m by 3.6 m, 4.2 m by 4.2 m and 4.5 m by 4.5 m, they have bearing pressures at serviceability limit state (SLS) ranging from 17 kPa to 34 kPa and ultimate limit state (ULS) of 88 kPa to 125 kPa.
- 5) Some footings have been combined into larger mats designed to resist overturning due to lateral loads. These footings are upwards of 3.6 m wide and up to 12.4 m in length as shown in the footing schedule on Drawing No. S004. Under seismic (earthquake) or wind loading, the maximum compressive stress at the toe is expected to be 173 kPa decreasing linearly along the footing length. Maximum serviceability limit state (SLS) and ultimate limit state (ULS) bearing pressure below these footings, due to gravity loads in compression would be 25 kN and 50 kN respectively.
- 6) Based on the meeting with BPA on May 22,2025, it is our understanding that with the exception of footings noted on the foundation drawings and BPA May 7 and 8, 2025 emails and discussed above, footings have been designed for the SLS and factored ULS values of 120 kPa and 180 kPa respectively.

Based on the finished floor elevation (FFE) of Elevation 92.10 m provided by EXP, the footing founding depth criteria and footing schedule provided by BPA, the footings will be founded at Elevation 90.3 m to Elevation 90.0 m which is approximately at 0.8 m to 1.1 m depths below existing grade and for the four (4) deeper F11 size footings founded at Elevation 89.7 m which is approximately at a 1.4 m below existing grade. At these founding elevations, the footings are anticipated to be founded on an engineered fill pad constructed on top of the silty clay.

For the subsurface conditions encountered in the test holes on site and the anticipated founding elevations noted above, the footings may be designed for a bearing pressure at serviceability limit state (SLS) of 120 kPa and factored geotechnical resistance at ultimate limit state (ULS) of 180 kPa. The sustained load considered for bearing pressure at SLS consists of 100 percent dead load plus 50 percent live load. In summary, the design of the various pad and strip footing sizes placed at the anticipated founding depths (elevations) and designed for the bearing pressure at SLS values provided above by BPA and for the recommended SLS value of 120 kPa are considered to be acceptable. The factored ULS value includes a geotechnical resistance value of 0.5. The SLS and factored ULS values are valid provided the maximum permissible site grade raise of 1.0 m using approved soil fill is respected.

The settlement of the footings designed as noted above and for the recommended SLS value and properly constructed are expected to be within the normally tolerable limits of 25 mm total settlement and 19 mm differential settlement.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Should the footing sizes, footing design loads, founding depth (elevation) of the footings and/or site grade raise be different than indicated in the BPA May 7 and 8, 2025 emails and on the EXP site grading plan, EXP should be contacted to review.

The construction of engineered fill pad for the proposed school building should consist of the excavation and removal of the surficial topsoil, organic stained soils and brown sandy silt to clayey silt down to the grey silty clay. The exposed subgrade should be examined by a geotechnician. Once the subgrade has been approved, the grades may be raised to the design underside footing and floor slab elevations by the construction of an engineered fill pad. The excavation for the proposed school building should extend to a sufficient distance beyond the limits of the proposed school building to accommodate a 1.0 m wide horizontal bench of engineered fill that extends beyond the perimeter of the proposed building on all sides, which should thereafter be sloped at an inclination of 1H to 1V down to the approved subgrade. The engineered fill should consist of OPSS Granular B Type II material that is placed in 300 mm thick lifts and each lift compacted to 100 percent SPMDD. The placement and compaction of the floor slab, each lift of the Granular B Type II material should be compacted to 98 percent of SPMDD. The engineered fill should be placed under the full-time supervision of a geotechnician working under the direction of a geotechnical engineer. In-place density tests should be undertaken on each lift of the engineered fill to ensure that it is properly compacted prior to placement of subsequent lift.

Open cut excavations that extend below the groundwater level into the very loose to compact sandy silt are anticipated to be problematic and will require the lowering of the groundwater level prior to the start of excavation. Further it is anticipated that excavations within the sandy silt and below the groundwater level may be susceptible to basal instability or base type failure in the form of piping or heave. To assist in the excavation and removal of the sandy silt down to the silty clay and minimize the occurrence of base type failure during the excavation of the sandy silt, it is recommended that the groundwater level should be lowered by at least 1.0 m below the bottom of the excavation of the sandy silt prior to the start of excavation. This may be achieved by installing deep sumps and pumping with high-capacity pumps. The dewatering contractor should review the subsurface conditions at the site and select the most appropriate method to lower the groundwater level. The excavation and de-watering of the excavation of the silt is further discussed in section 10 of this report.

All the footing beds should be examined by a geotechnical engineer to ensure that the founding surfaces are capable of supporting the design bearing pressure and that the footing beds have been properly prepared.

The first lift of compacted engineered fill should be placed on the approved subgrade within the same day of approval to protect the approved soi subgrade from disturbance.

A minimum of 1.5 m of earth cover should be provided to the footings to protect them from damage due to frost penetration. The frost cover should be increased to 2.1 m for unheated structures if snow will not be removed from their vicinity. If snow will be removed from the vicinity of the unheated structures, the frost cover should be increased to 2.4 m. Rigid insulation thermally equivalent to the required soil cover may be used instead of the soil cover. Alternatively, a combination of rigid insulation and soil cover may be used to achieve the required frost protection for the footings.

The recommended bearing pressures at SLS and factored geotechnical resistances at ULS have been calculated by EXP from the borehole and test pit information for the design stage only. The investigation and comments are necessarily on-going as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes and test pits, when foundation construction is underway. The interpretation between boreholes and test pits and the recommendations of this report must therefore be checked through field monitoring provided by an experienced geotechnical engineer to validate the information for use during the construction stage.

11.1 Vertical Modulus of Subgrade Reaction

Based on the finished floor elevation (FFE) of Elevation 92.10 m, the footing founding depth criteria and footing schedule, the footings will be founded at Elevation 90.3 m to Elevation 90.0 m which is approximately at 0.8 m to 1.1 m depths below existing grade and for the four (4) deeper F11 size footings founded at Elevation 89.7 m which is approximately at a 1.4 m below existing grade. The footings will be founded on an engineered fill pad constructed on top of the silty clay.

For footings placed at the above noted founding depths (elevation) on an engineered fill pad constructed in accordance with this report, the vertical modulus of subgrade reaction value is 25 MPa/m.

®exp.

12. Floor Slab and Drainage Requirements

The ground floor of the proposed school building may be designed as a slab-on-grade placed on a well packed 200 mm thick 19 mm sized clear stone bed placed on a minimum 300 mm thick engineered fill pad set on the approved silty clay subgrade constructed in accordance with Sections 10 and 11 of this report. The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. Alternatively, the clear stone may be replaced with a 200 mm thick bed of OPSS Granular A compacted to 98 percent overlain by a vapour barrier. Adequate saw cuts should be provided in the floor slabs to control cracking.

The proposed school building should have a perimeter drainage system. An underfloor drainage system is not required.

The finished floor slab should be set at least 150 mm higher than the finished exterior grade.

The finished exterior grade should be sloped away from the proposed school building to prevent ponding of surface water close to the exterior walls of the proposed school building.

13. Excavation and De-Watering Requirements

13.1 Excavation

Excavations for the construction of the foundations and installation the underground services for the proposed school development are expected to extend to a maximum depth of 3.0 m below the existing grade into the sandy silt and silty clay. Based on groundwater level measurements from January 9,2025 excavations are anticipated to be below the groundwater level.

The excavations may be undertaken by conventional heavy equipment.

All excavations must be undertaken in accordance with the Occupational Health and Safety Act (OHSA), Ontario Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils on site are considered to be Type 3 and as such must be cut back at 1H:1V from the bottom of the excavation. Within zones of seepage, the excavation side slopes are expected to slough and eventually stabilize at 2H:1V to 3H:1V from the bottom of the excavation.

If side slopes cannot be achieved due to space restrictions on site such as the proximity of open cut excavations to the property limits, existing infrastructure or to foundations of adjacent existing building(s), the new building construction would have to be undertaken within the confines of an engineered support system (shoring system). The dewatered excavation for the installation of the municipal underground services may be undertaken within the confines of a prefabricated support system (trench box) designed and installed in accordance with OHSA.

The need for a shoring system, the most appropriate type of shoring system and the design and installation of the shoring system should be determined by the contractors bidding on this project. The design of the shoring system should be undertaken by a professional engineer experienced in shoring design and the installation of the shoring system should be undertaken by a contractor experienced in the installation of shoring systems. The shoring system should be designed and installed in accordance with latest edition of Ontario Regulation 213/91 under the OHSA and the 2023 Fifth Edition of the Canadian Foundation Engineering Manual (CFEM).

It is recommended that a pre-construction condition survey of adjacent buildings and infrastructure be undertaken prior to the start of construction activities and that vibration monitoring be conducted during construction activities.

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

13.2 De-Watering Requirements

Seepage of surface and subsurface water into the excavations is anticipated and it should be possible to remove any water entering the excavations by pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated requiring high-capacity pumps to keep the excavation dry.

Open cut excavations that extend below the groundwater level into the very loose to compact sandy silt are anticipated to be problematic and will require the lowering of the groundwater level prior to the start of excavation. Further it is anticipated that excavations within the sandy silt and below the groundwater level may be susceptible to basal instability or base type failure in the form of piping or heave. To assist in the excavation and removal of the sandy silt down to the silty clay and minimize the occurrence of base type failure during the excavation of the sandy silt, it is recommended that the groundwater level should be lowered by at least 1.0 m below the bottom of the excavation of the sandy silt prior to the start of excavation. This may be achieved by installing deep sumps and pumping with high-capacity pumps. The dewatering contractor should review the subsurface conditions at the site and select the most appropriate method to lower the groundwater level. The excavation and de-watering of the excavation of the silt is further discussed in section 10 of this report.

For construction dewatering, an Environmental Activity and Sector Registry (EASR) approval may be obtained for water takings greater than 50 m³ and less than 400 m³ per day. If more than 400 m³ per day of groundwater are generated for dewatering

purposes, then a Category 3 Permit to Take Water (PTTW) must be obtained from the Ministry of the Environment, Conservation and Parks (MECP). A Category 3 PTTW would require a complete hydrogeological assessment and would take at least 90 days for the MECP to process once the application is submitted.

Although this investigation has estimated the groundwater levels at the time of the fieldwork, and commented on dewatering and general construction problems, conditions may be present which are difficult to establish from standard boring and excavating techniques and which may affect the type and nature of dewatering procedures used by the contractor in practice. These conditions include local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile, thin layers of soil with large or small permeabilities compared with the soil mass, etc. Only carefully controlled tests using pumped wells and observation wells will yield the quantitative data on groundwater volumes and pressures that are necessary to adequately engineer construction dewatering systems.

14. Pipe Bedding Requirements

For site servicing, it is anticipated that the subgrade for the proposed underground services will consist of sandy silt to clayey silt and silty clay.

It is recommended that the bedding for the underground services including material specifications, thickness of cover material and compaction requirements conform to the City of Ottawa requirements and/or Ontario Provincial Standard Specification and Drawings (OPSS and OPSD).

It is recommended that the pipe bedding should be 300 mm thick and consist of OPSS Granular A. The bedding material should be placed along the sides and on top of the pipe to provide a minimum cover of 300 mm. The bedding should be compacted to at least 98 percent of the SPMDD. The bedding thickness may be further increased in areas where the subgrade becomes disturbed or in areas where the subgrade consists of the very loose to loose sandy silt. loose zone of the sandy silt.

Should paved surfaces be located over service trenches, it is recommended that the trench backfill material within the frost zone (up to 1.8 m below finished grade), should match the existing material in the roadway to minimize differential frost heaving of the subgrade. Otherwise, frost tapers will be required. The trench backfill should be placed in 300 mm thick lifts and each lift should be compacted to 95 percent SPMDD.

If the backfill for the service trenches will consist of granular fill, clay seals should be installed in the service trenches at select intervals (spacing) as per City of Ottawa Drawing No. S8. The seals should be 1 m wide, extend over the entire trench width and from the bottom of the trench to the underside of the pavement structure. The clay should be compacted to 95 percent SPMDD. The purpose of the clay seals is to prevent the permanent lowering of the groundwater level.

The underground services should be installed in short open trench sections that are excavated and backfilled the same day.

»ехр.

15. Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes

The materials to be excavated from the site will comprise of topsoil, sandy silt to clayey silt and silty clay. From a geotechnical perspective, the topsoil is not considered suitable for reuse as backfill material in the interior or exterior of the buildings and should be discarded. Portions of the sandy silt and silty clay, free of organics, debris, cobbles and boulders above the groundwater level may be re-used as fill in locations away from the proposed building as backfill in service trenches and subgrade fill in paved, outdoor sports field and landscaped areas, subject to further geotechnical examination and testing during construction. These soils are subject to moisture absorption due to precipitation and must be protected at all times from the elements. The soils below the groundwater level are considered too wet for re-use as backfill material and to achieve the required degree of compaction and should be removed or may be used in landscaped areas.

Therefore, it is anticipated that the majority of the material required for backfilling purposes in the interior and exterior of the proposed school building, at locations of the portables, outdoor sports field, access road, parking lot, bus loading and unloading area, the bus loop and in the underground service trenches will need to be imported and should preferably conform to the following specifications:

- Engineered fill under slab-on-grade and footings for the proposed school building and portables OPSS Granular B Type II placed in 300 mm thick lifts and each lift compacted to 98 percent SPMDD beneath the floor slab and 100 percent SPMDD beneath footings,
- Backfill material against foundation walls outside the proposed school building OPSS Granular B Type II placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD,
- Trench backfill and subgrade fill for access road, parking lot, bus loading and unloading area, bus loop and outdoor sports fields OPSS Granular B Type I, Type II or Select Subgrade Material (SSM) or approved on site non-organic material (free of organics, debris, cobbles and boulders) placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD; and
- Landscaped areas clean fill that is free of organics and deleterious material, debris, cobbles and boulders and is placed in 300 mm thick lifts with each lift compacted to 92 percent of the SPMDD.

16. Pavement Structures

Pavement structures for the access road, parking lot, bus loading and unloading area and the bus loop are given on Table VII for the subgrade anticipated to consist of existing fill, sandy silt to clayey silt, silty clay, OPSS Granular B Type II or Select Subgrade Material (SSM). The pavement structures are based upon the assumption that the subgrade will be properly prepared and assumes a functional design life of 15 to 18 years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out.

Table VII: Recommended Pavement Structure Thicknesses									
	Common time	Computed Pavement Structure							
Pavement Layer	Compaction Requirements	Light Duty Traffic (Cars Only)	Heavy Duty Traffic (Bus areas, Garbage Trucks, Emergency Vehicles)						
Asphaltic Concrete	92-97 percent MRD	65 mm HL3/SP12.5 mm/ Cat. B (PG 58-34)	50 mm HL3/SP12.5 Cat. B 60 mm HL8/SP 19 Cat. B (PG 58-34)						
OPSS 1010 Granular A Base (crushed limestone)	100% percent SPMDD	150 mm	150 mm						
OPSS 1010 Granular B Type II Sub-base	100 percent SPMDD	450 mm	600 mm						
Notes: 1. SPMDD denotes standard Proctor maximum dry density, ASTM, D-698-12e2. 2. MRD denotes Maximum Relative Density, ASTM D2041.									

3. The upper 300 mm of the subgrade fill must be compacted to 98% SPMDD.

4. The approved subgrade should be covered with a woven geotextile prior to placement of granular sub-base of the pavement structure.

The foregoing design assumes that construction is carried out during dry periods and that the subgrade is stable under the load of construction equipment. If construction is carried out during wet weather and heaving or rolling of the subgrade is experienced, additional thickness of granular material may be required in addition to the woven geotextile indicated in Table VII.

Additional comments on the construction of the parking lot, access road, bus unloading and loading area and the bus loop are as follows:

- 1. As part of the subgrade preparation, the proposed parking area, bus loading area and bus loop should be stripped of topsoil, fill and other obviously unsuitable material. The subgrade should be properly shaped, crowned, then proofrolled with a heavy vibratory roller in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with suitable approved backfill compacted to 95 percent SPMDD. Alternatively, crusher-run material (100 mm minus) may be used in the lower level of the subgrade fill for the proposed access road, parking lot, bus loading and unloading area and bus loop for the purposed of stabilizing the clayey subgrade in addition to using a geotextile (separation membrane) over the crusher-run material.
- 2. The long-term performance of the pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. The need for adequate drainage cannot be over-emphasized. Subdrains should be installed on both sides of the bus loop. Subdrains must be installed in the proposed parking area at low points and should be continuous between catchbasins to intercept excess surface and subsurface moisture and to prevent subgrade softening. This will ensure no water collects in the granular course, which could result in pavement failure during the

spring thaw. The location and extent of subdrains required within the paved areas should be reviewed by this office in conjunction with the proposed site grading.

- 3. To minimize the problems of differential movement between the pavement and catchbasins/manhole due to frost action, the backfill around the structures should consist of free-draining granular preferably conforming to OPSS Granular B Type II material. Weep holes should be provided in the catchbasins/manholes to facilitate drainage of any water that may accumulate in the granular fill.
- 4. The most severe loading conditions on light-duty pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted lanes, half-loads during paving, temporary construction roadways, etc., may be required, especially if construction is carried out during unfavorable weather.
- 5. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catch basins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 6. Relatively weaker subgrade may develop over service trenches at subgrade level. These areas may require the use of thicker/coarser sub-base material and the use of a geotextile at the subgrade level. If this is the case, it is recommended that additional 150 mm thick granular sub-base, OPSS Granular B Type II, should be provided in these areas, in addition to the use of a geotextile at the subgrade level.
- 7. The granular materials used for pavement construction should conform to Ontario Provincial Standard Specifications (OPSS 1010) for Granular A and Granular B Type II and should be compacted to 100 percent of the SPMDD.

The asphaltic concrete used, and its placement should meet OPSS 1150 or 1151 requirements. It should be compacted from 92 percent to 97 percent of the MRD. Asphalt placement should be in accordance with OPSS 310 and OPSS 313.

It is recommended that EXP be retained to review the final pavement structure design and drainage plans prior to construction to ensure they are consistent with the recommendations of this report.

17. Corrosion Potential

Chemical tests limited to pH, sulphate, chloride and resistivity were undertaken on three (3) soil samples. A summary of the results is shown in Table VIII. The laboratory certificate of analysis is shown in Appendix E.

	Table VIII: Corrosion Test Results on Soil Samples										
Borehole No.: Sample No.	Depth (m) Soli Type		рН	Sulphate (%)	Chloride (%)	Resistivity (ohm-cm)					
BH 24-01: SS6	3.8-4.4	Silty Clay	8.53	0.0047	0.0009	4120					
BH 24-13: SS4	2.3-2.9	Silty Clay	8.28	0.0026	0.0011	6580					

The results indicate the soils have a negligible sulphate attack on subsurface concrete. The concrete should be designed in accordance with CSA A23.1:24/CSA A23.2:24.

The results from the resistivity tests indicate that the silty clay is mildly corrosive to bare steel as per the National Association of Corrosion Engineers (NACE). Appropriate measures should be taken to protect the buried bare steel from corrosion.

18. Tree Planting Restrictions

The site is underlain by marine silty clay. The Atterberg limit test results of the silty clay were compared with the document titled, *Tree Planting in Sensitive Marine Clay Soils – 2017 City of Ottawa Guidelines (2017 Guidelines)* and indicate the silty clay has a low/medium potential for soil volume change. For soils that have a low/medium potential for soil volume change, the 2017 Guidelines indicate that the tree to foundation setback distance and tree planting restrictions should be in accordance with the 2017 guidelines.

In accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines), for soils of a low/medium potential for soil volume change, as is the case for this project, large trees (mature height over 14.0 m) can be planted provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space).

Further, in accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines), for soils of a low/medium potential for soil volume change, as is the case for this project, for street trees in the road right-of-way, the tree to foundation setbacks may be reduced to 4.5 m for small (mature tree height up to 7.5 m) and medium sized trees (mature tree height 7.5 m to 14.0 m) provided all of the following conditions are met:

- The underside of footing (USF) is 2.1 m or greater below the lowest finished grade. Note: This footing level must be satisfied for footings within 10 m of the tree, as measured from centre of tree trunk, and verified by means of the grading plan as indicated in the Procedural Changes in the 2017 Guidelines. Based on the foundation information provided by BPA, the USF relative to the final site grade meet this criterion and are generally 2.1 m or greater below the lowest finished grade.
- A small sized tree must be provided with a minimum of 25 cubic metres of available soil volume, as determined by a Landscape Architect. A medium sized tree must be provided with a minimum 30 cubic metres of available soil volume, as determined by the Landscape Architect. The developer will ensure the soil is generally uncompacted when backfilling in street tree planting locations.
- The tree species must be small to medium sized, as confirmed by the Landscape Architect in the Landscape Plan.
- The foundation walls are to be reinforced at least nominally (minimum of two (2) upper and two (2) lower 15 M sized bars in the foundation walls).
- Grading surrounding the tree must promote draining to the tree root zone (in such a manner as not to be detrimental to the tree), as to be noted on the subdivision Grading Plan.

A landscape architect should be consulted to ensure the setbacks and tree planting restrictions are in accordance with the 2017 guidelines.

19. Comparison with Master Geotechnical Study for the Surrounding Residential Development

The master geotechnical study for the residential subdivision surrounding the proposed school is provided in the geotechnical report titled, Geotechnical Investigation Proposed Residential Development Riverside South Development (Phase 15) Ottawa, Ontario dated June 2019 and prepared by Golder Associates Ltd. (Golder).

Based on a review of the master geotechnical study prepared by Golder and a review of this geotechnical and Phase II ESA report, the geotechnical engineering comments and recommendations provided in this geotechnical and Phase II ESA report are in conformance with the recommendations and restrictions provided within the master study report.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

20. General Comments

The comments given in this report are intended only for the guidance of design engineers. The number of test holes required to determine the localized underground conditions, between test holes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well, as their own interpretations of the factual test hole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

We trust that the information contained in this geotechnical engineering and Phase II ESA report will be satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Sincerely

Susan M. Potyondy, P.Eng. Senior Geotechnical Engineer Earth & Environment

in lath

Devin Clouthier Environmental Scientist Earth & Environment

alull

Ismail M. Taki, M.Eng., P.Eng. Senior Manager, Eastern Region Earth & Environment

Chis Kan

Chris Kimmerly, M.Sc., P. Geo. Manager, Environmental Earth & Environment

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Figures

*exp.

🎙 exp.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by **exp** Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

CLAY		SILT	10.000000000		SAND)		GRA	VEL		COBBLES	BOULDERS
	FINE	MEDIUM	COAR	SE FINE	E MEDIL	JM COA	RSE FINE	MED	IUM (COARSE		
	0.002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	2	00
				FOLUN /A			FER IN MILI	METDEO	6			

CLAY (PLASTIC) TO	FINE MEDIUM CRS. FINE							
SILT (NONPLASTIC)		SAND			GRAVEL			
SILT (NONPLASTIC)	UNIFIED SOIL CLASSIFICATION							

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Project No:	<u>OTT-24010349-A0</u>	DU		7119	0	. יי		124		Fig	ure N	۱o.	3	•••(Э	xp
Project:	Proposed New Riverside South Second	ary Scho	ol							U	Pag		1 of	- 1		
ocation:	675 Borbridge Avenue, Ottawa, ON															
ate Drilled:	'December 6, 2024			•	•	oon Samp	ole			Combustible Vapour Reading						
rill Type:	CME-55 Track Mounted Drill Rig			-		ample Value		0		Natural Moisture Content Atterberg Limits						× ⊸
atum:	Geodetic Elevation			•		Cone Te	st			Un	draine	- ed Triaxia at Failur				\oplus
ogged by:	M.Z. Checked by: D.W.			Shelt Shea Vane	r St	rength by	(+ s				trength b neter Te				
SY MBO	SOIL DESCRIPTION	Geodel Elevatio	on p	e l	2	.0 4	netration	Test N Va	80	C	25	stible Vapo 50 5 ural Moist erg Limits	00 7	50	SAMP.	Natural Unit Wt.
L			t F	i She	ar S	Strength	20	150 2	kPa 200	<u> </u>	Atterb			Veight) 60	LES	kN/m ³
CLA Wiith	<u>SOIL</u> ~ 150 mm thick <u>YEY SANDY SILT</u> I some silty clay seams of low plasticity,	90.9		- 10 - 0) 🔅 🤆							×			X	SS1
	n, moist, (loose to compact)		1			22										
						0					*				\mathbb{X}	SS2
			2								E-	X 0				SS3
SILT	Y CLAY	88.9														
Medi	um plasticity, trace sand, trace gravel, wet, (very stiff)	-		- 5 - O									×		X	SS4
		- 	a Iamm	er Weig			>120						×		\mathbb{N}	SS5
		-							+ : - > <- : - : - > <- : - : - > <- : - : - > <- :							
		-	4	- 3							··· •	*			\mathbb{N}	SS6
GLA	CIAL TILL	86.6									· · · · ·					
Silty	sand with clay, gravel, cobbles and ders, grey, wet, (very dense)	86.2				21, 34	then 50	0/50 mm		-	X				\mathbb{X}	SS7
Auge	ers grinding from 4.6 m to auger refusal															
Note	Auger Refusal at 4.9 m Depth															
1- Sa	mple SS5 submitted for onmental laboratory testing															

1	
GDT.	
DTTAWA	
TROW OT	
GPJ	
2024.	
12.27	
ogs	L
GINT LO	
EHOLE	

Ű								
	NOTES: 1. Borehole data requires interpretation by EXP before	WA	FER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
GINT	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
40LE	2. The borehole was backfilled upon completion.	Completion	Dry	4.6				
BOREH	3. Field work was supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-24010349-A0							

roject:	Proposed New Riverside South Seconda	ary School		<u> </u>					Figure I	No ge. ´	4 1 of	1			
ocation:	675 Borbridge Avenue, Ottawa, ON								Ра	ge	<u> </u>	<u> </u>			
ate Drilled:	'December 3, 2024		_	Split Sp	oon Sam	ple	\boxtimes		Combus	stible Vap	our Read	ling			
ill Type:	CME-55 Track Mounted Drill Rig		_	Auger S SPT (N)						Moisture g Limits	Content	F		× ⊸	
atum:	Geodetic Elevation		_	Dynami	c Cone T	est			Undrain	ed Triaxia at Failur		I		⊕	
ogged by:	M.Z. Checked by: D.W.			Shelby ⁻ Shear S Vane Te	trength b	y	+ s		Shear S	strength b meter Te	у				
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	:			Test N Val	ue 30 kPa	2 Na	stible Vapo 50 5 tural Moist berg Limits	00 7	50 nt %	SA∑P-LIIS	Natural Unit Wt kN/m ³	
	SOIL ~ 260 mm thick	_91.44 91.2	0	··· ·· ···	50 1 •••••	00	150 2 · · · · · · · · · · · · · · · · · · ·	<u>00</u>		20 4 X	0 6		S		
∐∵⊡– Wiith	<u>DY SILT</u> some silty clay seams, brown, moist, -	_		0						×			\mathbb{A}	SS1	
loose)		1												
				Ō					>	<			\mathbb{N}	SS2	
	-	-								×			\mathbb{N}	SS3	
	-		2										\square	555	
		88.8		-5						×			\mathbb{V}		
<u>SILT</u> With	<u>Y CLAY</u> sand and gravel, grey, wet, (stiff)										×		\mathbb{N}	SS4	
	-	-	3		₩82 kP			+ + + + + + + + + + + + + + + + + + + +							
	-	-					· · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + +							
	-	-	4	7 0							X		\mathbb{N}	SS5	
<u>GLA</u>	CIAL TILL elly silty sand with clay, gravel, cobbles	87.1							×				Δ		
and b	oulders, grey, moist to wet, (very dense)				21, 49	then 50/	/150 mm :		×				\mathbb{N}	SS6	
	rs grinding from 4.6 m to auger refusal	86.2	1 5										\square		
depth	Auger Refusal at 5.2 m Depth														
				::::	1::::	1::::	1::::	1::::	::::		1::::				

Ċ								
	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	TER LEVEL RECOR	RDS		CORE D	RILLING RECOR	D
GINT	-	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ë	2.A 19 mm slotted standpipe was installed in the	Completion	Dry	5.2				
BOREHOLE	borehole upon completion	'January 9. 2024	5.1					
R	3. Field work was supervised by an EXP representative.							
DF B(
00	5. Log to be read with EXP Report OTT-24010349-A0							

Project:	Proposed New Riverside South	Seconda	arv School							Figure		5	-		1		
ocation:	675 Borbridge Avenue, Ottawa,									Pa	ge	1_ of	2				
															_		
					Split Spoor Auger Sam		le		_			apour Rea e Content	ding		×		
orill Type:	CME-55 Track Mounted Drill Rig				SPT (N) Va Dynamic C		ot	C)	Atterberg Limits Undrained Triaxial at					F		
)atum:	Geodetic Elevation				Shelby Tub		51			% Strai	n at Faile	ure			\oplus		
ogged by:	M.Z. Checked by:_	D.W.			Shear Stre Vane Test	ngth by	,	+	-		Strength meter T						
S Y			Geodetic	D	Stand	lard Per	netration Te	est N Va	alue			pour Readi 500 7	ng (ppm) '50	S A	Natura		
A M V B - O	SOIL DESCRIPTION		Elevation	e p t h	20 Shear Stre		0 6	0	80 kPa	Na Atter	tural Moi: berg Limi	sture Conte its (% Dry V	nt % Veight)	SAMP-LES	Unit Wi		
	SOIL ~ 300 mm thick	_	91.46	0	50	1(··· :· i ·	0 15	50 ••••••	200		20 ••••••••		60	5			
	DY SILT		91.2		•5•••• •••••						×			X	SS1		
¦a: : : -₩iith	some silty clay seams, brown, m e to compact)	oist, -												Д			
							• • • • • • •							\mathbb{H}			
		-		'	0						*			XI	SS2		
		-												H			
					.5 Ю						×			M	SS3		
		-	-	2											000		
	Y CLAY		89.3		1	··· ·· ·								\square			
	um plasticity, trace sand, trace gr wet, (stiff)	avel, _	-		4								×	X	SS4		
								······ ·····						Ш			
				3	58 k	(Pa		··· ·· · ·						n			
						6	• • • • • • •										
							• • • • • • •										
		-		4	3			•••••						M			
					\odot					· · · · · · · · · · · · · · · · · · ·	÷.	*		Ŵ	SS5		
GLA	CIAL TILL		87.0											⊟			
Silty	sand with clay, gravel, cobbles an lers, grey, wet, (loose)	d			9					×				M	SS6		
		-	86.46	5	· X · · ·									₩	330		
					X									\square			
		-			8 ⊙	\mathbf{i}				×				₩	SS7		
				6			2							H			
Auge depth	rs grinding from 4.6 m to auger re	efusal			.5	/								\mathbf{H}			
		-	-		ð 4	\Rightarrow				×				X	SS8		
									\geq					\mathbb{H}			
		-	-	7													
			84.1			/								1			
Dyna	mic Cone Penetration Test (DCP ucted from 7.4 m to 10.9 m depth	'T) - ns.	1		K	((1			
						\mathbf{i}											
OTES:	Continued Next Page			RI	EVEL REC	OBDe						RILLING R	FCOPD				
1.Borehole data r use by others	equires interpretation by EXP before	Da			Water		Hole Ope	n	Run	Dep	th	RILLING R % Re		R	2D %		
	oring well was installed in the borehole	Comp	letion	L	evel (m) Dry	+	<u>To (m)</u> 7.4	-+	No.	(m)						
· ·	n supervised by an EXP representative.	'January	9. 2024		5.0												

4. See Notes on Sample Descriptions

Log of Borehole BH24-3

Project No: <u>OTT-24010349-A0</u>

Figure No.

Projec	ct: Proposed New Riverside South Sec	ondary Scho	ol				<u> </u>	
			Stand	ard Penetration Test N	/alua	Page.	2 of 2 apour Reading (ppr	
SY M BO		Geodeti				250	500 750	A Natural
	SOIL DESCRIPTION	Elevation m	n p 20 t Shear Stre	40 60 ngth	80 kPa		isture Content % hits (% Dry Weight)	E Unit Wt
	Dynamic Cone Penetration Test (DCPT)	83.46	8 50	100 150	200	20	40 60	
	conducted from 7.4 m to 10.9 m depths.			/::::::::::::::::::::::::::::::::::::::				÷:
	(continued)	_						÷.
				×				÷.
			9] ===============				
				<u> </u>				
				\mathcal{L}				
	-	-			*****	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	** **
					>			
	-	_	10	····				** **
				····	<u>}</u>		•••••••	
					<u> </u>			
		80.6			\rightarrow			÷
	Cone Refusal at 10.9 m depth							:
	Note:							
	1) Auger Refusal at 7.4 m Depth							
	 Dynamic Cone Penetration Test (DCPT)						
	conducted adjacent to BH-3 from 1.5 m depth to the cone refusal depth.				:::::			
	 Sample SS3 submitted for environme 	ental						
	laboratory testing							
								:
								:
								:
								:
								:
								÷
							<u>. </u>	:
TES:		WAT	ER LEVEL RECO	ORDS		CORE D	RILLING RECOR	D
Borel use b	nole data requires interpretation by EXP before	Date	Water	Hole Open	Run	Depth	% Rec.	RQD %
.A 50	mm monitoring well was installed in the borehole	Completion	Level (m) Dry	To (m) 7.4	No.	(m)		
upon	completion	0 2024	50					

LOG OF BOREHOLE GINT LOGS 12.27.2024.GPJ TROW OTTAWA.GDT 1/17/25 upon completion 3. Field work was supervised by an EXP representative.

'January 9. 2024

5.0

4. See Notes on Sample Descriptions

Project No:								I	Figure N	o	6	2	-	
Project:	Proposed New Riverside South							_	Pag	e.	1 of	1		
ocation:	675 Borbridge Avenue, Ottawa,	ON						_						
ate Drilled:	'December 4, 2024		_	Split Spoon S	•						apour Read	ling		□ ×
orill Type:	CME-55 Track Mounted Drill Rig	1	_	Auger Sampl SPT (N) Valu			∎ ○		Natural M Atterberg			F		^
atum:	Geodetic Elevation		_	Dynamic Cor Shelby Tube	e Test				Undraine % Strain a					\oplus
ogged by:	M.Z. Checked by:	D.W		Shear Streng Vane Test	th by		+ s		Shear Str Penetrom					
S Y		Geodetic	D	Standar	d Penetratio	n Test N	Value	e	Combust 25		pour Readir 500 7	ng (ppm) 50	S A	Natural
	SOIL DESCRIPTION	Elevation		20 Shear Streng	40 jth	60	80) kPa	Natu Atterbe	iral Mois erg Limit	sture Conte ts (% Dry W	nt % /eight)	SAMP-LES	Unit Wt
L	2SOIL ~ 400 mm thick	91.64	0	50	100	150 	20	0	20		40 6		5 \\/	
1/ <u>1</u>	NDY SILT	91.2		• 5 •••••••••••••••••••••••••••••••••••									X	SS1
	h some silty clay seams, brown, m	oist,								•••••				
	50)	_	1	8						····			\mathbb{N}	000
													\mathbb{N}	SS2
		_		5									$\overline{\mathbb{N}}$	
			2	Ð						×			X	SS3
	TY CLAY	89.2		3						*			\mathbb{N}	004
With	n sand, grey, moist, (stiff)									×			\mathbb{N}	SS4
		_	3	8	6 kPa					·····			ī	
					s=12					· · · · · · · · · · · · · · · · · · ·			₽	
		87.5	4	-: <u>6</u> :	······································					.			\mathbb{N}	005
	ACIAL TILL sand with clay, gravel, cobbles an			•Q•••••					×.				\mathbb{N}	SS5
boul	ders, grey, wet, (loose to dense)	_												
					37 				×				X	SS6
			5										Д	
		4		16									\mathbb{N}	00-
				©					× · · ·	•••••			\mathbb{N}	SS7
	ers grinding from 5.3 m to termina	tion	6							••••••			\square	
dept	h								×	•••••••			X	SS8
	Borehole Terminated at 6.7 m D	84.9											\mathbb{N}	
	Borehole Terminated at 6.7 m De	րո												
OTES:		WATE	ER I	EVEL RECOF	RDS] [COI				<u> </u>	
1.Borehole data use by others	requires interpretation by EXP before	Date		Water Level (m)	Hole C To (I		┤┝	Run No.	Depth (m)		% Red		R	QD %
2. The borehole	was backfilled upon completion.	Completion		Dry	5.6		1		(11)					

Ë	3. Field work was supervised by an EXP representative.
---	--

LOG OF BOR 4. See Notes on Sample Descriptions

roject:	OTT-24010349-A0 Proposed New Riverside South S	Secondary School	l					Fi	gure N		7	-		
ocation:	675 Borbridge Avenue, Ottawa,	ON							Paę	ge	<u>1</u> of	_1_		
ate Drilled:	'December 5, 2024			Split Spoon S	ample		\boxtimes	C	Combus	tible Va	apour Rea	ding		
rill Type:	CME-55 Track Mounted Drill Rig	1	-	Auger Sampl							e Content	-	1	× -0
atum:	Geodetic Elevation		-	SPT (N) Valu Dynamic Cor			0	ι	Atterberg	ed Triax	ial at	ļ		Ф
ogged by:	M.Z. Checked by:	D.W.	-	Shelby Tube Shear Streng	th by		■ + s	5	% Strain Shear St	rength	by			•
				Vane Test			Ś	F	Penetror	neter I	est			_
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation	Dep	20	d Penetratio 40	on Test N 60	80		25	50	pour Read 500 sture Conte ts (% Dry \	750	оч∑в-тшо	Natural Unit Wt
L		91.12	h b	Shear Strend	,th <u>100</u>	150	k	⊃a	Atterb		ts (% Dry \ 40	Neight) 60	L E S	kN/m ³
	<u>SOIL</u> ~ 200 mm thick DY SILT	90.9							• • • • • • • • • • • • • • •	×			W	SS1
· · _ Wiith	some silty clay seams, brown, mo loose to compact)	oist, _							>	¢			ĽΛ	501
		-	1	9 ••••••••••••••••••••••••••••••••••••					×				HV	SS2
													\mathbb{A}	
				4						~			\mathbb{N}	000
		4	2	₩ ₩ ₩						X				SS3
	YCLAY	88.8												
	, wet, (stiff to very stiff)	-			110 kPa									
									0.000 0.000 0.000	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			3	2:					+ + + + + + + + + + + + + + + + + + + +				\mathbb{N}	
				0			· · · · · · · · · · · · · · · · · · ·		0 (•) 0 (0 (•) 0 (• • • • • • •		×	<u>I</u> Å	SS4 16.5
										••••••				10.0
		_	4	62 kP	a		····			•••••			. r1	
		86.7								•••••			₽	
Silty	CIAL TILL sand with clay, gravel, cobbles and	d												
bould	lers, grey, wet, (loose to dense)		5	• 5						···· X			X	SS5
		4			46				×				÷V	SS6
													\mathbb{N}	330
	ers grinding from 4.6 m to terminal		6		14 then 50)/25 mm								007
	al depth orehole Terminated at 6.3 m De	epth 84.8	+						×				\square	SS7
DTES:] [)	
Borehole data r use by others	requires interpretation by EXP before	Date		EVEL RECO	Hole		Ru		Dept	h	Re			QD %
	ras backfilled upon completion.	Completion	L	<u>_evel (m)</u> Dry	<u>To (</u> 5.		<u>No</u>		(m)					
.Field work was	supervised by an EXP representative.													

1.Borehole data requires interpretation by EXP before	WA	TER LEVEL RECO	RDS		CORE D	RILLING RECOR	D
use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2. The borehole was backfilled upon completion.	Completion	Dry	5.5				
3. Field work was supervised by an EXP representative.							
4. See Notes on Sample Descriptions							
5. Log to be read with EXP Report OTT-24010349-A0							

oject:	Proposed New Riverside South Second	ary Scho	ol									i igi	ure l Pa		1	8 of	- 1		1
ocation	: 675 Borbridge Avenue, Ottawa, ON												1 u	90.	-	_ 01	<u> </u>	-	
ate Dril	led: <u>'December 4, 2024</u>			Sp	lit Sp	oon S	Samp	le		\boxtimes		Co	mbus	stible \	/apo	ur Rea	ding		
ill Type	E: CME-55 Track Mounted Drill Rig				-	Sampl) Valu								Moistu g Limi		ontent		⊢	× ⊸⊖
atum:	Geodetic Elevation			Dy	nami	c Cor		st	_			Un	drain	ed Tria 1 at Fa	axial				\oplus
gged I	by: <u>M.Z.</u> Checked by: <u>D.W.</u>			Sł	ielby iear S ine Te	Streng	ith by	,		+ s		Sh	ear S	trengt meter	h by				
S Y M B O L	SOIL DESCRIPTION	Geodeti Elevatio m	16			tandar 20 Strenç	4	etration 0	Test 60		lue 80 kPa		2	50	500	ur Read) Te Conte % Dry \	750		
<u>, x 1, .</u> 	TOPSOIL ~ 300 mm thick	91.27 91.0	C) 		50	10	00	150	2 	200		2 	20	40	(·) · · · ((·) · · · (60 • • • • • •		SS1
· · · -'	SANDY SILT Wiith some silty clay seams, brown, moist, (very loose to compact)	-			<pre></pre>			• • • • • • • • •		· · · · · · · · · · · · · · · · · · ·			**			(-1 -> ((-1 -> ((-1 -> ((-1 -> ((-1 -> ((-1 -> (
			1		····	-26 -0							*						SS2
					7 Ə									×					SS3
	<u>SILTY CLAY</u> Grey, wet, (stiff to very stiff)	89.2	2				11	0 kPa											1 20.1
			3					s=12. ; ;	· · · · · · ·										
		_		10			·····	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	0- 0- 0 0- 0 0 0 0- 0 0 0 0			(-) (-) (-) (-) (-) (-)			(-)	×		SS4
		_	4		5	3 kPa				· · · · · · · · · · · · · · · · · · ·			···· ···· ····			·····			4
		_				s=7													
	Clayey silt below 5 m depth		5	1) X					SS5
	GLACIAL TILL Silty sand with clay, gravel, cobbles and boulders, grey, moist, (dense to very dense)	86.0						52				>	K						SS6
	Wet below 6.0 m depth	-	6		<pre></pre>		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			0- 1-0 0- 1-0 0- 1-0 0- 1-0 0- 1-0 0- 1-0			<pre></pre>						SS7
		84.6				++++	***			••••• •••••						(- -> ((- -> ((- -> ((- -> (::/	
	Borehole Terminated at 6.7 m Depth																		

	NOTES: 1. Borehole data requires interpretation by EXP before	WA	FER LEVEL RECOR	RDS		CORE D	RILLING RECOR	D
GINT	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ы	2. The borehole was backfilled upon completion.	Completion	Dry	5.9				
BOREHOL	3. Field work was supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
OG OF	5. Log to be read with EXP Report OTT-24010349-A0							
Ц								

Project No:	<u>OTT-24010349-A0</u>			hol	le _	B⊦	<u>124</u>		- Figure I	No	9	*(Э	xp
Project:	Proposed New Riverside South Seconda	ry School	I					_	Pa	ge. 1	of	1		•
Location:	675 Borbridge Avenue, Ottawa, ON							_						
Date Drilled:	'December 4, 2024			Split Spoo		le				tible Vap		ing		
Drill Type:	CME-55 Track Mounted Drill Rig			Auger Sa SPT (N) V					Natural Atterber	Moisture (g Limits	Content	⊢		× €
Datum:	Geodetic Elevation			Dynamic Shelby Tu		st				ed Triaxial at Failure				\oplus
Logged by:	M.Z. Checked by: D.W.		:	Shear Str Vane Tes	ength by		+ s			trength by meter Tes				
G SY MB G B L L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Star 20 Shear St 50) 4(rength) 6	est N Valu 0 80 50 20) kPa	2 Nat Attert	stible Vapo 50 50 tural Moistu berg Limits 20 40	0 75	it % eight)	SAMPLES	Natural Unit Wt. kN/m ³
	<u>SOIL</u> ~ 350 mm thick <u>IDY SILT</u> n some silty clay seams, brown, moist,	91.52 91.2	0	••••••••••••••••••••••••••••••••••••••						×		· · · · · · · · · · · · · · · · ·	Ň	SS1
	/ loose to loose) -	_	1	7 						×			X	SS2
	-	_	2	4 						*				SS3
	TY CLAY t brown to grey, moist to wet, (stiff to very_	89.3		2 Q								*		SS4
	-	-	3		82 kPa 			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
	-	- Ham	mmei	r Weight						·····	<			SS5
	-	86.42	2 5		> 	120 kPa				*			X	SS6
Silty	CIAL TILL sand with clay, gravel, cobbles and ders, grey, wet, (compact)	86.0							*	*			X	SS7
	-	84.8	6	::::::::::::::::::::::::::::::::::::::					*		· · · · · · · · · · · · · · · · · · ·			SS8
	orehole Terminated at 6.7 m Depth													
NOTES:		WATE	RLE	EVEL RE	CORDS				CC	ORE DRIL	LING RE	CORD		

AWA.GDT 1/17/25	<u> </u>		<u>GLACIAL TILL</u> Silty sand with clay, gravel, cobbles a boulders, grey, wet, (compact)	nd -	-	6		. 12										• • • •						······································					X	SS7 SS8
Ê	Ē				84.8								÷	••••	·	÷÷		• • •			<u>.</u>	÷÷			÷.		<u>.</u>	:/		
12.27.2024.GPJ TROW			Borehole Terminated at 6.7 m D	lepth			· · · · · · · · · · · · · · · · · · ·				• • • • • • • • • • • • • • • • • • • •																	· · · · · · · · · · · · · · · · · · ·		
LOGS	NO	TES:										-					ו ר		 		-	 						_		
Ę	1.	Boreho	ble data requires interpretation by EXP before		WATE	ERL				CO	RD											E DF	RILL				JRI			
GINT		use by		Da	ite	L	Wa eve					H		e Op o (m		1		R		0	Dep (m			%	Re	C.			RQ	D %
OF BOREHOLE	2.	A 19 m boreho	m slotted standpipe was installed in the le upon completion	Comp			D	ry	,					6.7	,		11													
OREF			ork was supervised by an EXP representative.	'January	9.2024		5	.1																						
F B(4.	See No	otes on Sample Descriptions																											
LOG O	5.	Log to	be read with EXP Report OTT-24010349-A0																											

ocation: ate Drilled: rill Type: atum: ogged by:	Proposed New Riverside South : 675 Borbridge Avenue, Ottawa, 'December 5, 2024 CME-55 Track Mounted Drill Ric Geodetic Elevation M.Z. Checked by: SOIL DESCRIPTION OIL ~ 260 mm thick Y SILT some silty clay seams and layers , moist, (loose to compact)	ON g D.W.	Geodetic Elevation m 90.98 90.7	Depthh0	Split Spoon S Auger Sampl SPT (N) Valu Dynamic Con Shelby Tube Shear Streng Vane Test Standar 20 Shear Streng Shear Streng	e e ne Test th by d Penetration <u>40</u> th	60 8		250	sture Content nits riaxial at Failure gth by er Test	ading t ling (ppm) 750		□ ★ ● Natural Unit Wt
ate Drilled: rill Type: atum: ogged by:	December 5, 2024 CME-55 Track Mounted Drill Rig Geodetic Elevation M.Z. Checked by: SOIL DESCRIPTION OIL ~ 260 mm thick Y SILT some silty clay seams and layers	g D.W.	Elevation m 90.98	h	Auger Sampli SPT (N) Valui Dynamic Con Shelby Tube Shear Streng Vane Test Standard 20	e e ne Test th by d Penetration <u>40</u> th	C C Test N Valie 60 8	ue 30	Natural Mois Atterberg Lir Undrained T % Strain at F Shear Streng Penetromete 250	ture Content nits riaxial at Failure gth by er Test Vapour Read 500	ling (ppm) 750	SAMPL	× • • Natural
rill Type: atum: ogged by:	CME-55 Track Mounted Drill Rig Geodetic Elevation M.Z. Checked by: SOIL DESCRIPTION OIL ~ 260 mm thick Y SILT some silty clay seams and layers	D.W.	Elevation m 90.98	h	Auger Sampli SPT (N) Valui Dynamic Con Shelby Tube Shear Streng Vane Test Standard 20	e e ne Test th by d Penetration <u>40</u> th	C C Test N Valie 60 8	ue 30	Natural Mois Atterberg Lir Undrained T % Strain at F Shear Streng Penetromete 250	ture Content nits riaxial at Failure gth by er Test Vapour Read 500	ling (ppm) 750	SAMPL	× ÷ • Natura
atum: pgged by:	Geodetic Elevation <u>M.Z.</u> Checked by: SOIL DESCRIPTION <u>OIL</u> ~ 260 mm thick <u>Y SILT</u> some silty clay seams and layers	D.W.	Elevation m 90.98	h	Dynamic Con Shelby Tube Shear Streng Vane Test Standard 20	ne Test th by d Penetration 40 gth	Test N Vale	30	Undrained T % Strain at F Shear Streng Penetromete Combustible 250	riaxial at Failure gth by er Test Vapour Read 500	750	SAMPL	⊕ ▲ Natura
S M M C C C C C C C C C C C C C C C C C	M.Z. Checked by:		Elevation m 90.98	h	Shelby Tube Shear Streng Vane Test Standard 20	th by d Penetration <u>40</u> gth	Test N Val	30	% Strain at F Shear Streng Penetromete Combustible 250	Failure gth by er Test Vapour Read 500	750	SAMPL	▲ Natura
	SOIL DESCRIPTION OIL ~ 260 mm thick Y SILT some silty clay seams and layers		Elevation m 90.98	h	Vane Test Standard 20	d Penetration 40 gth	Test N Val	30	Combustible 250	Vapour Read	750	SAMPL	
M D D D TOPS SAND With s	<u>OIL</u> ~ 260 mm thick I <u>Y SILT</u> some silty clay seams and layers	9	Elevation m 90.98	h	20	40 gth	60 8	30	250	500	750	S A M P L	
Ŭ <u> TOPS</u> <u> SAND</u> Wiith	<u>OIL</u> ~ 260 mm thick I <u>Y SILT</u> some silty clay seams and layers	9	m 90.98	h	Shear Streng	gth			Atterberg	Limits (% Dry	Weight)	ιĹ	
SAND Wiith	Y SILT some silty clay seams and layers	9						00	20	40	60	E S	kN/m
Wiith :	some silty clay seams and layers	s, —							×			N	004
	, molol, (1999) to comparty						192 I	(Pa	*			\mathbb{A}	SS1
		-		1	18					×		X	SS2
		_											20.1
										×		N	SS3
		_		2		÷:						<u> </u>	000
SILTY	CLAY	{	88.8										
_Grey,	wet, (stiff)	-			4						×	HV	SS4
										· · · · · · · · · · · · · · · · · · ·		Ľ	
		-		3	53 kPa							-M	
					s=7					• • • • • • • • • • • •			
		_		4	3					×.		H	SS5
												\mathbb{N}	333
		_			82	2 kPa							
					· · · · · · · · · · · · · · · · · · ·	<u>+</u>							
		-		5									
GLAC	CIAL TILL	<u>ا</u>	85.6		1	l, 35, then 50	/50 mm		×			17	
Silty s	and with clay, gravel, cobbles an ers, grey, wet, (very dense)	nd				O						Ň	SS6
	, g,,, (,)	_		6		50/125 m	· · · · · · · · · · · · · · · · · · ·		×	· · · · · · · · · · · · · · · · · · ·		Ë	
Bo	rehole Terminated at 6.2 m De		84.8						X				SS7
				_									
DTES: .Borehole data re	quires interpretation by EXP before		WATE	RL	EVEL RECOR								
use by others	is backfilled upon completion.	Date		L	Water _evel (m)	Hole Op To (m		Run No.	Depth (m)	% Re	ec.	R	QD %
	supervised by an EXP representative.	Complet	uon		Dry	5.8							

roject:	Proposed New Riverside South	Secondary School						I	Figure N		11	-		
ocation:	675 Borbridge Avenue, Ottawa,							_	Pag	ge	1_ of	_2_		
	'December 6, 2024	-		Split Spoon S	Comple			_	Combust	tible Var		ding		
	CME-55 Track Mounted Drill Rig	n	_	Auger Sampl	•				Natural M	/oisture		ung	×	
atum:	Geodetic Elevation	9		SPT (N) Valu Dynamic Cor			0		Atterberg Undraine		al at	F	— 0	
	M.Z. Checked by:	D W		Shelby Tube	41- 1				% Strain Shear St				•	
byged by.	M.Z. Checked by.	D.vv.		Shear Streng Vane Test	th by		+ s		Penetron					
S Y M B O		Geodetic	De			ation Test			25	50 5		50	S A M P Unit	
S Y B O L	SOIL DESCRIPTION	Elevation m	e p t h	20 Shear Streng		60	80	kPa	Atterb	ural Moist erg Limits	ture Conte s (% Dry V	ent % Veight)	PUnit	
	SOIL ~ 280 mm thick	91.04 90.8	0	50	100	150	20			· · · ×			Ň	
	<u>DY SILT</u> some silty clay seams, brown, m			••••••••••••••••••••••••••••••••••••••			• • • • •			×) se	S1
loose		loist,								•••••••				
		_	1		****			• • • • • • •						<u></u>
		89.6							.					S2).2
	<u>Y CLAY</u> sand, grey, moist, (stiff)	_											$\overline{\Box}$	
				P						×			X se	S3
			2	1										
													$\overline{\mathbf{M}}$	
				\circ							****		K se	S4
		_	3	58 kPa	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			• • • • • • • • • •		••••••				
				/			• • • •			$ \begin{array}{c} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \end{array} $			Ш	
		_								****				
							· · · · · ·							
			4	2. O.							×		X se	S5
				58 kPa									m	
		_	5		<u></u>					· · · · · · · · · · · · · · · · · · ·				
		-		3 O							×		X s	S6
										×			Д	
			6							••••••				
		84.5						· · · · · · · · · · · · · · · · · · ·		X			K se	S7
\Silty s	CIAL TILL sand with clay, gravel, cobbles ar	1								•••••••••••••••••••••••••••••••••••••••				
Dyna	lers, grey, wet mic Cone Penetration Test (DCP	PT) /	7											
condu	ucted from 6.6 m to 10.3 m depth	าร.]	
		-											1	
			8											
DTES:	Continued Next Page	WATE	RL	EVEL RECO	RDS				СО	RE DRI	LLING R	ECORD		
Borehole data re use by others	equires interpretation by EXP before	Date		Water .evel (m)	Hol	e Open o (m)	┥┝	Run No.	Dept (m)	h	% Re		RQD %	6
The borehole wa	as backfilled upon completion.	Completion	L	Dry		5.6	\dashv	110.	(11)					

Log of Borehole BH24-10

Figure No.

		1	_	04	d D-	otrof T	oot NIV/		Pa	_		of 2	-	
S Y		Geodetic	D			netration T			25	50	500	eading (ppr 750	- A	Natu
SY M BO L	SOIL DESCRIPTION	Elevation		20 Shear Stren	4 ath	0 6	0	80 kPa	Nat Atterb	ural Moi	sture C	ontent % Dry Weight)	P	Unit \ kN/n
Ľ			h 8 ·	50		00 15	50 2	200		0	40	60	LES	KIN/I
	Dynamic Cone Penetration Test (DCP conducted from 6.6 m to 10.3 m depth	T)	°.			/::::::						÷ : ÷ : :		
	conducted from 6.6 m to 10.3 m depth (continued)	S.		****	/.							÷ • • •		
		_			<u> </u>			+ • • • • •				÷ : : : :		
				****	1	÷ : • •						÷ • • •		
					Z							÷ • • •		
			9		N		••••••			•••••				
				····		$\sum_{i=1}^{n}$		•••••						
	_	_			÷÷			+						
						1								
	_	_	10		· · · · ·	\sim			÷÷			$\langle \cdot \rangle \langle \cdot \rangle$		
		00.7		··· ··· ·· · · · ·	·			\mathbf{k}						
	Cone Refusal at 10.3 m Depth	80.7	_		÷.	÷ • • • •		\mapsto				÷: ÷:		
					::									
											:::			
					::									
											:			
											::			
					::						: : :			
OTES:		I				••••	i-i 	· · · · · ·						1
	ole data requires interpretation by EXP before others			EVEL RECO		Hole Ope	en	Run	CC Dept			G RECOR		RQD %
-	rehole was backfilled upon completion.	Date		evel (m)		<u>To (m)</u> 5.6		No.	(m))		-	<u> </u>	
	vork was supervised by an EXP representative.	Completion		Dry		0.0								
					1								1	
	otes on Sample Descriptions be read with EXP Report OTT-24010349-A0													

Proje	ct No:	<u>Log of</u>	Bor	e	ho	le _	Bŀ	124		igure 1	lo	12	*e	exp.
Proje	ct:	Proposed New Riverside South Seconda	ry School						_ '	Pa		of	1	1
Locat	tion:	675 Borbridge Avenue, Ottawa, ON							_	Га	Je		<u> </u>	
Date I	Drilled:	'December 5, 2024		-	Split Spo	oon Samp	e	\boxtimes		Combus	tible Vap	our Read	ing	
Drill T	ype:	CME-55 Track Mounted Drill Rig			Auger Sa SPT (N)					Natural Atterber	Moisture (Content	1	× ⊸⊖
Datun	n:	Geodetic Elevation			Dynamic	Cone Te	st			Undrain	ed Triaxia			⊖ ⊕
Logge	ed by:	M.Z. Checked by: D.W.			Shelby T Shear Si Vane Te	trength by		■ + s		Shear S	at Failure trength by meter Tes	4		A
G Y			Geodetic	D e	Sta	andard Pen	etration T				stible Vapo 50 50		ig (ppm)	Natural
G Y W B L O L		SOIL DESCRIPTION	Elevation m	p t h		20 40 Strength			kPa		ural Moistu erg Limits			Unit Wt. kN/m ³
<u> </u>	TOP	SOIL ~ 280 mm thick	91.26 91.0	0	: 6 :•••	50 10 		50 20	00 • • • • • • • • • • •	2 · · · · · · · ·	0 4	0 6	0 8 	
	SAN Wiith	DY SILT_ some silty clay seams, brown, moist, -					* * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·			×			SS1
	(very	loose to loose)						•••••••••••••••••••••••••••••••••••••••			•••••••••••			
		-	-	1	8 •••						X			SS2
		-			4									7
			_	2	φ						× · · ·		/	SS3
	∷ ∄ SILT	YCLAY	89.1											
	_Grey	, wet, (stiff to very stiff)	-		2		÷ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						×	SS4
														004
		-	-	3		72 kPa	÷	·····						4
						s=30							¥	
		-						••••••••••			· · · · · · · · · · · · · · · · · · ·		······································	
			_	4	2		****** ****** *****	••••••••••						7
					\odot			••••••				X		SS5
			-				i kPa							
							+ =4:							
	GI A	CIAL TILL	86.2	5									· · · · ·	
	Silty	sand with clay, gravel, cobbles and ders, grey, wet, (compact to dense)												7
	- Doun				Ŏ						×			SS6
	X	-	_	6			<u></u>			× :				
								· · · · · · · · · · · · · · · · · · ·		×	· · · · · · · · · · · · · · · · · · ·	· (·) · · · (· · (·) · · · · · ·		7
			84.6				<pre></pre>	· · · · · · · · · · · · · · · · · · ·						SS7
	B	orehole Terminated at 6.7 m Depth	04.0				****	•••••••			• • • • • • • •			

LOG OF BOREHOLE GINT LOGS 12.27.2024.GPJ TROW OTTAWA.GDT 1/17/25

Borehole Terminated at 6.7 m Do							
NOTES:	TAW	TER LEVEL RECO	RDS		CORE DF	RILLING RECOR	D
1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2. The borehole was backfilled upon completion.	Completion	Dry	5.8				
3. Field work was supervised by an EXP representative.							
4. See Notes on Sample Descriptions							
5. Log to be read with EXP Report OTT-24010349-A0							

Project No:	OTT-24010349-A0						F	Figure No.	13		
Project:	Proposed New Riverside South S	•	chool				_	Page.	1_of_2	_	
ocation:	675 Borbridge Avenue, Ottawa, (N					-				
Date Drilled:	'December 6, 2024				oon Sample			Combustible Va			
orill Type:	CME-55 Track Mounted Drill Rig			Auger S SPT (N)				Natural Moistur Atterberg Limits		⊢	× ⊸⊖
)atum:	Geodetic Elevation			Dynamio Shelby 1	Cone Test			Undrained Triax % Strain at Fail			\oplus
ogged by:	M.Z. Checked by: [D.W			trength by	+ s		Shear Strength Penetrometer T			
S Y M B O	SOIL DESCRIPTION	Elev	odetic vation	D e p		Test N Value		250	apour Reading (ppr 500 750 isture Content % its (% Dry Weight)	A M	
Ľ		90.8	m 4	h	Strength 50 100 1 1 • • • • • • • •	150 20		20	40		kN/m ³
1 in in	SOIL ~ 280 mm thick	90.6		······································				*) + (-) + (-) + (-)) + (-) + (-) + (-)) + (-) + (-) + (-) + (-)	$\langle \cdot \rangle$	SS1
: · · − Wiith	IDY SILT_ n some silty clay seams, brown, mo	oist, —		·····	4 : : : : : : : : : : : : : : : : : : :	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	X	2 + 4 + 2 + 2 + 4 + 4 + 4 + 4 + 4 + 4 +	<u> </u>	
loos	se to compact)										
		-		1 1	8				*	X	SS2
										¥	18.7
		1									
				2				*		Ľ.	SS3
		88.4									1
		88.4		4				*			SS4
Grey	/, wet, (firm to stiff)								*	/	554
		_		3 48	kPa ∻ · · · · · · · · · · · · · · · · · · ·)	i I	
					20					Ľ	1
		_									
									×		ST1
											15.9
		_									
					52 kPa 					1]
		-		5	· · · · · · · · · · · · · · · · · · ·				· + · · · · · · · · · · · · · · · · · ·		1
		-		6 0					X	ΞX	SS5
		84.8	85.04							Ľ	¥.
GLA Silty	CIAL TILL sand with clay, gravel, cobbles and										/
bould	ders, grey, wet, (loose to dense)	-			······································	· • • • • • • • • • • • • • • • • • • •		*) + (-) -> (-) -> (-) + (-) -> (-) -> (-) + (-) -> (-) -> (-) -> (-)	X	SS6
										¥	<u>N</u>
		_		7							
		-									
				9				×			SS7
OTES:	Continued Next Page			8	1.:.:::::	. <u>t.:.:</u>		1	<u></u>	::: <i>\</i>	1 007
1. Borehole data	requires interpretation by EXP before		VATE	R LEVEL RE Water	ECORDS Hole Op		Run	CORE DF	RILLING RECOF		RQD %
use by others		Date		Level (m)			No.	(m)	70 NEG.		יער /0

비	3. Field work was supervised by an EXP representative.
ΣI	

LOG OF BOI 4. See Notes on Sample Descriptions

Log of Borehole BH24-12

Figure No.

s			_		St	anda	rd Pe	netr	atio	n Te	est N	Val	ue			Com						g (pp	_ m)	ş	
Р М В О	SOIL DESCRIPTION	Geodetic Elevation	Dep			20		40		60)	1	30		\vdash		250)	50	00	75	50		M	Natu Unit \
SY MBOL		m	p t h	Sh	near	Strer	gth							kPa	1	Atte						nt % eight)	SAZPLES	kN/r
		82.84	8	<u> </u>		50 	1	00	:.:	15	0	2	00		+		20		4	0	6	0		S	
4244	Dynamic Cone Penetration Test (DCPT)	82.6			÷					-							:	:::				÷÷	:	M	
	Dynamic Cone Penetration Test (DCPT) conducted from 8.2 m to 8.8 m depths.					\geq	~			-											•				
					•			ŧĒ	The second secon	Ŧ	÷		Ŀ				÷F							1	
	Cone Refusal at 8.8 m depth	82.0	+		÷÷	+			÷÷	÷	÷:	÷÷	ŧ	\geq	+	÷÷	÷	:::					::: :::	┝┤	
					::				: : :	-	::	::		÷÷		::: :::	:	::		÷ :	::		::		
	Note: 1) On completion of augering to 7.6 m depth,				÷÷				: : :		::	::		÷÷		÷÷	:	::					::		
	sand heaving up into the augers to 6.4 m				÷÷				: : :		::	::		÷÷		÷÷		÷÷					÷÷		
	depth.				::				::	:	::			÷÷		::	:			÷ :	::	•			
	 Dynamic Cone Penetration Test (DCPT) extened bborehole to cone refusal depth at 				::				: : :	-	::	::		÷÷		::	1	::		::			::		
	8.8 m.				::				::	:	::	::		÷÷		÷÷		::			::		::		
					::				::	:	::	::		÷÷		::	:	::		::	::	÷÷	::		
					::				::	:	::	::		÷÷		::	:	::		::	::	::	::		
									::		::			::									::		
					::				: : :	:	::	::		:: ::		::	:	::			:::		::		
					::	1:		1:	::		::	::				::		::					::		
											: :						1						÷÷		
											::														
											::														
											::														
						l																			
					::				::	:	: :						:								
					::				::	:	::		l			:::	:	::			:::		::		
					::				::	:			l			:::	:	::			:::		::		
					::				::		::	::		::		÷÷	:	::			:::		::		
					::	1		÷	::		::	::		::	:	::	:	::			:::		::		
					::	1:		1	::	:	::	::	1:	::		::	:	::			:::		::		
					::			1:	::	:	::	÷÷	1	::		÷÷	:	::			:::		::		
					::	1			::		::	::		::			1	÷÷					::		
																							::		
						1		1															::		
											::						1								
											::														
					::					:							:				:::				
					::					:							:	::					::		
					::				::	:			l			::	:	::			:::		::		
					::				::		::	÷÷		::		÷÷	:	::			:::		::		
					::	1		÷	::		::	::		::	:		:	::			:::		::		
					::	11			::	:	::	::		:: ::		::	:	::			:::		::		
					÷÷				į		::	į÷	1			::	1	::					::		
																	1						÷÷		
					÷÷	li		÷					1				1								
					::																				
			_		::	l		E	: :	:	: :	::		::		::	:	::			::		::		
OTES:		WATE	RI			FCC	RUA						Γ				204		JBII			COF	חא		
. Boreh	ole data requires interpretation by EXP before		.r. L	Wat					le (Dper	n	-	F	Run	-		-OF				Rec			R	2D %
		ate	L	evel	(m))			ō (I	m)				No.			m)	•		70	1.00	•			0/ في
		oletion		5.8	8				6.4	ł															
	work was supervised by an EXP representative.																								
	otes on Sample Descriptions be read with EXP Report OTT-24010349-A0																								

NOTES:	WA'	TER LEVEL RECOR	RDS		CORE DF	RILLING RECOR	D
1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2. The borehole was backfilled upon completion.	Completion	5.8	6.4				
3. Field work was supervised by an EXP representative.							
4. See Notes on Sample Descriptions							
5. Log to be read with EXP Report OTT-24010349-A0							

Project No: <u>OTT-24010349-A0</u>

·	-24010349-A0 osed New Riverside South Seconda	ary School						I	Figure N		14			
	Borbridge Avenue, Ottawa, ON								Pa	ge. <u>1</u>	of	1		
ate Drilled: 'Dece	ember 5, 2024			Split Sp	oon Sam	ple	D		Combus	tible Vapo	our Read	ing		
ill Type: CME	-55 Track Mounted Drill Rig			Auger S	ample		۵	0	Natural	Moisture (×
	letic Elevation		-	SPT (N) Dynami	Value c Cone T	est		-		ed Triaxia		F		-⊖ ⊕
ogged by: M.Z.	Checked by: D.W.		-	Shelby ⁻ Shear S Vane Te	trength b	y	-		Shear S	at Failure trength by meter Tes	/			▲
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h			enetration	Test N V 60	alue 80 kPa	2	stible Vapo 50 50 ural Moistu perg Limits	0 75	50	SAZP ⊣⊞S	Natural Unit Wt kN/m ³
	~ 300 mm thick	91.14 90.8	0	·····		1 <u>00</u> 1	150	200	2 ······	0 40	0 6	0	Š	004
Wiith some	e silty clay seams, brown, moist, 📑			*0 *****	·····	· · · · · · · · · · · · · · · · · · ·			×	×	· · · · · · · · · · · · · · · · · · ·		\square	SS1
	-		1										X	SS2
	-		2							×			M	SS3 18.9
SILTY CLA	AY	88.9		2 O							>		X	SS4
_	-		3								****		/	ST1
_	-		4	38 ki	1									
_	-		5	3. O						>	c		X	SS5
		85.2	6		-72 kPa 									
	with clay, gravel, cobbles and rey, wet, (very dense)					53 •••••)	×		· · · · · · · · · · · · · · · · · · ·		M	SS6
Boreho	le Terminated at 6.7 m Depth													

G								
	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	TER LEVEL RECOR	RDS		CORE D	RILLING RECOR	D
GINT	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
СШ	2. A 50 mm monitoring well was installed in the borehole	Completion	Dry					
BOREHOLE		'January 9. 2024	4.5					
ЗŐР	3. Field work was supervised by an EXP representative.							
OFI	4. See Notes on Sample Descriptions							
ð	5. Log to be read with EXP Report OTT-24010349-A0							
Ц								

roject No: roject:		Soondon (C-b	I			Figure No.	15	
-	Proposed New Riverside South		<u> </u>			Page.	1_of_1_	
ocation:	675 Borbridge Avenue, Ottawa,	ON						
ate Drilled:	'December 4, 2024		_ Split Spoon S Auger Sampl			Combustible V Natural Moistu		□ ×
rill Type:	CME-55 Track Mounted Drill Ri	g	 SPT (N) Valu 		0	Atterberg Limit		н
atum:	Geodetic Elevation		Dynamic Cor Shelby Tube	ie Test 🗕	_	Undrained Tria % Strain at Fai		\oplus
ogged by:	M.Z. Checked by:	D.W.	Shear Streng Vane Test	th by	+ s	Shear Strength Penetrometer ⁻		
S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p 20 t Shear Streng	d Penetration Tes <u>40 60</u> jth 100 150	t N Value 80 kPa 200	250	apour Reading (ppr 500 750 isture Content % hits (% Dry Weight)	n) S A M Natural P Unit Wt E kN/m ³
12.3.1	PSOIL ~ 300 mm thick	91.22	0 ••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		×		SS1
· · · · · · · · · ·	h some silty clay seams, brown, n se to compact)	noist, — — —	1			*	6	ss2
			2			>	<	ss3
<u>SIL1</u> _Grey	TY CLAY y, wet, (firm)		2					SS4
		-	4 1				×	ss5
		-	5 48 kPa					
	ACIAL TILL	85.4	3			*		ss6
boul	r sand with clay, gravel, cobbles ar Iders, grey, wet Borehole Terminated at 6.3 m D	84.9	6	16 then 50/75 m	im :	*		SS7
	ample SS4 and duplicate sample nitted for environmental laborato							
DTES:]						: : : : : : : : RILLING RECOR	
Borehole data use by others	requires interpretation by EXP before	Date	Water	Hole Open	Run	Depth	RILLING RECOR	RQD %
The borehole v Field work was	was backfilled upon completion. s supervised by an EXP representative. Sample Descriptions i with EXP Report OTT-24010349-A0	Completion	Level (m) Dry	<u>To (m)</u> 6.1	No.	(m)		

roject No: roject:	OTT-24010349-A0 Proposed New Riverside South Seconda	ary Schoo							I	Figure I Pa		16 1 of	- 1		
ocation:	675 Borbridge Avenue, Ottawa, ON									1.0		01	<u> </u>		
ate Drilled:	'December 4, 2024		_		Split Spoor		ble	\boxtimes				oour Read	ding		
rill Type:	CME-55 Track Mounted Drill Rig		_		Nuger Sam SPT (N) Va			C	-		Moisture g Limits	Content	F		× ⊸
atum:	Geodetic Elevation		_) Shelby Tub		est		-		ed Triaxia n at Failu				\oplus
ogged by:	M.Z. Checked by: D.W.			S	Shear Stre ane Test		/	+ s	-		Strength b meter Te				
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	e D t	Stand 20 Shear Stre	4 ength		60	80 kPa	2	50 5	ture Conte s (% Dry V	50 nt % Veight)	SAMPLES	Natural Unit Wt. kN/m ³
1/	SOIL ~ 320 mm thick	91.03 90.7	0		50 • • • • • • • • • • • • • • • • • • •	1 -> -> ->		50	200		20 ••••••	40 (50 	S	SS1
· · [−] Wiith	DY SILT a some silty clay seams, brown, moist, e to compact)	_				······································					*	+			
	-	89.6	1	1		······					× • • • • • • • • • • • • • • • • • • •	¢			SS2
HIgh	Y CLAY plasticity, with sand seams, grey, moist, to stiff)		2	2	6 O						×				SS3
	-	_			::::H										
	-	-	3	3 · · 2		6; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;							×.		SS4
	-				38 kPa										004
	-		4	4											
With	gravel below 4.5 m depth		5	- I G	4						>	K			SS5
	-	-		1- 0										\mathbb{N}	SS6
Silty	CIAL TILL - sand with clay, gravel, cobbles and ders, grey, wet, (very dense)	85.1	6	6						×					
		84.3					· · · · 54 · · · · O·			×				\mathbb{N}	SS7
B	orehole Terminated at 6.7 m Depth														

GINT LOGS 12.27.2024.GPJ TROW OTTAWA.C	
GINT LOGS	NO ⁻
EHOLE	2. ⁻ 3.1
LOG OF BOREHOLE	4.\$ 5.L
LOG	

WA	TER LEVEL RECO	RDS	CORE DRILLING RECORD										
Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %							
Completion	Dry	5.2											
	Date	Date Water Level (m)	Level (m) To (m)	Date Water Level (m) Hole Open To (m) Run No.	Date Water Level (m) Hole Open To (m) Run No. Depth (m)	Date Water Level (m) Hole Open To (m) Run No. Depth (m) % Rec.							

		Log of	Tes	51	t Pit <u>TP25-0</u>)1	0.00 0.00 0.00 0.00	2	xn
Projec	ct No:	OTT-24010349-A0					····· 17		λ _Γ
Projec	ct:	Proposed New Riverside South Seconda	ary Schoo	ol		F	igure No. <u>17</u>		I
Locati	ion:	675 Borbridge Avenue, Ottawa, Ontario					Page. <u>1</u> of <u>1</u>		
Date D	Drilled:	'June 13, 2025			Split Spoon Sample		Combustible Vapour Reading		
Drill Ty	ype:	Kubota KX080-4 Rubber Track Mounted	Excavato	nr	Auger Sample SPT (N) Value O		Natural Moisture Content Atterberg Limits		× -⊕
Datum	ו:	Geodetic Elevation			Dynamic Cone Test		Undrained Triaxial at % Strain at Failure		\oplus
Logge	d by:	M.Z. Checked by: S.P.	_		Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test		
G Y M W B U L		SOIL DESCRIPTION	Geodetic Elevation m 90.65	Depth	Standard Penetration Test N Value 20 40 60 80 Shear Strength 50 100 150 200	kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60		Natural Unit Wt. kN/m ³
1 <u>/ 1</u> / 1/ <u>1</u> /	TOPS	SOIL ~400 mm thick	00.00	U					

	Ľ		90.65	h 0		50	100	150	2	200		20	4	0	60	ĽS	KI V /111
		TOPSOIL ~400 mm thick SANDY SILT TO CLAYEY SILTY With sandy seams, no odours, no st brown to reddish brown, moist to we	90.3 														
		brown to readish brown, moist to we	_	1									>	<			GS1
		_	_														0.00
		Test Pit Terminated at 1.8 m De	88.9 Ppth											×			GS2
675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
A0 - 675 BORBRIDGE TF																	
OTT-24010349-A0 -	IOTES: .Borehol	le/Test Pit data requires Interpretation by exp. use by others	WAT	ERL	EVEL R	ECO	RDS				C	ORE	DRIL	LING	RECOF	RD	
°∏-24		use by others was backfilled upon completion	Elapsed Time	L	Water .evel (m))	Ho	le Oper Γο (m)	۱	Run No.		epth m)		% R	ec.	R	QD %
		ork supervised by an EXP representative.	Upon Completion		1.7			1.8									
4 LSH	.See No	tes on Sample Descriptions gure is to read with exp. Services Inc. report 010349-A0															
g	011-24																

	Log of Tes	t Pit TP25	-02			vn
Project No:	OTT-24010349-A0				C	$\gamma \rho$
Project:	Proposed New Riverside South Secondary Schoo	I	I	Figure No. <u>18</u>		1
Location:	675 Borbridge Avenue, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_	
Date Drilled:	'June 13, 2025	Split Spoon Sample	\boxtimes	Combustible Vapour Reading		
Drill Type:	Kubota KX080-4 Rubber Track Mounted Excavato	r ° '		Natural Moisture Content		Х
		SPT (N) Value	0	Atterberg Limits		-0
Datum:	Geodetic Elevation	Dynamic Cone Test	-	Undrained Triaxial at		\oplus
		Shelby Tube		% Strain at Failure		•
Logged by:	M.Z. Checked by: S.P.	Shear Strength by	+ s	Shear Strength by Penetrometer Test		A
S	Geodetic	Standard Penetration Test N V	/alue	Combustible Vapour Reading (p	opm) S	Network

[S Y		Geodetic	c D		St	anda	rd Pe	netra	ation T	est N V	alue		Cor		tible 50		our R	eadin 75	ig (ppr	n) {	S A	Natural
	G W L	M B O	SOIL DESCRIPTION	Elevation	ť		Shear	20 Stre		40	6	0	80 ł	Pa	A	Natu	ural N erg L	/oisti imits	ure C (% [onter Dry W	nt % 'eight)	F	Ρl	Jnit Wt. kN/m ³
		Ľ	TOPSOIL ~ 260 mm thick	91.02	h 0	1		50		00	1	50	200				0		0	6			Š	
		1/ 1/		00.0																				
			SANDY SILT TO CLAYEY SILT	90.8		1																		
			Some sand, no odours, no stains, bro -moist	own,																				
			hieldt																				00	
																	×					n n	2	GS1
														÷÷										
			-		1				: : :							: :		: :		: :				
			-	_														÷						
				89.2														: • ×				61	m	GS2
	ľ		Test Pit Terminated at 1.8 m Dep	oth		:			· · · · ·											: :			4	002
										÷				::		: :		: :						
/25																								
6/25																								
GDT																								
AWA.											· · ·													
LLO																								
ROW																								
БU																								
GS.G																								
ΓŌ														::		: :								
GET																								
BRID																								
BOR																								
- 675																								
49-A0						L														: :		:		
OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25	1.B	TES: orehole	/Test Pit data requires Interpretation by exp.	WAT	ER L	EV	EL R	REC	ORD	s						CO	RED	DRIL	.LIN	g Ri	ECOF	۶D		
111-24			se by others	Elapsed Time	L		ater el (m)			e Ope c (m)		Ru No		[Dept (m)			%	Red).		RQ	D %
		•	rk supervised by an EXP representative.	Upon Completion			lry	-			1.8													
LOG OF TEST PIT			es on Sample Descriptions																					
OF TI	5.T	his Fig	ure is to read with exp. Services Inc. report)10349-A0																					
90	0																							

Proj	ect No:	OTT-24010349-A0	Te	S	t P	it _	T	P2	<u>5-</u>	<u>03</u>				*e	exp
Proj		Proposed New Riverside South Second	larv Scho	പ						F	igure I	No	19)	
	ation:	675 Borbridge Avenue, Ottawa, Ontario	,	501						_	Pa	ge	<u>1</u> of	_1_	
Date	Drilled:	'June 13, 2025			Split Sp	oon Samp	le		\boxtimes		Combus	tible Vap	our Read	ling	
Drill	Type:	Kubota KX080-4 Rubber Track Mounted	d Excava	tor	Auger S SPT (N)	•							Content		×
Datu	ım:	Geodetic Elevation		-	. ,	c Cone Te	st	_	0		Atterber Undrain	ed Triaxi	alat		
	ged by:	M.Z. Checked by: S.P.		-	Shelby⊺ Shear S Vane Te	trength by			■ + s		Shear S	i at Failu trength b meter Te	y		●
	S Y B O	SOIL DESCRIPTION	Geodetic Elevation	D e p t		andard Pe 20 Strength	netra 10	tion Test 60	N Valu 80		2	50		ling (ppm) 750 ent % Weight) 60	Natural Unit Wt.
, 	L	SOIL ~ 230 mm thick	91.18	h 0		-	00	150	20	0		20	40	60	5
1.			91.0												
		DY SILT dours, no stains, brown, moist 													
	Som	VEY SILT e sand, occasional sandstone cobbles, dours, no stains, reddish brown to n, moist to wet	90.6										*		GS1
		_	-	1									*		GS2
		_	89.4									>	<	<i>n</i>	ß GS3
		est Pit Terminated at 1.8 m Depth													

EST PIT OTT-24010349-40 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25

a							
NOTES: 5 INSORPOIE/Test Pit data requires Interpretation by exp. 5 Insorehole/Test Pit data requires Interpretation by exp.	WATI						RD
2. Test pit was backfilled upon completion 3. Field work supervised by an EXP representative.	Elapsed Time Upon Completion	Water Level (m) 1.8	Hole Open <u>To (m)</u> 1.8	Run No.	Depth (m)	% Rec.	RQD %
4.See Notes on Sample Descriptions 5.This Figure is to read with exp. Services Inc. report OTT-24010349-A0							

			Log of	Tes	S	t Pit <u>TP2</u>	5-04		nya
Ρ	roject	t No:	OTT-24010349-A0						JNP.
Ρ	roject	t:	Proposed New Riverside South Second	lary Scho	ol			Figure No. <u>20</u>	I
Lo	ocatio	on:	675 Borbridge Avenue, Ottawa, Ontario	I				Page. <u>1</u> of <u>1</u>	
Da	ate D	rilled:	'June 13, 2025			Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Dr	ill Ty	pe:	Kubota KX080-4 Rubber Track Mounted	Excavat	٥r	Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ──
Da	atum:		Geodetic Elevation			Dynamic Cone Test — Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Lc	ggeo	l by:	M.Z. Checked by: S.P.			Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•
G W L	SY MBOL		SOIL DESCRIPTION	Geodetic Elevation m .91.17	D e p t h 0	Standard Penetration Test I <u>20</u> 40 60 Shear Strength 50 100 150	N Value 80 kPa 200		Natural Unit Wt. KN/m ³
	7 <u>11</u>	TOP	SOIL ~ 300 mm thick						

H			91.17	0	2	U .	100	150	200		20	40	60	5	4
	<u>74 1</u>										5		1.1.1.1	: .: .	
	1/	<u></u>	90.9												
			90.9												
		Some sand, no odours, no stains, bro	own,								1111				
		moist									×			m	GS1
											5 . : : : :				
			_	1			· · · · ·				· · · · ·	· · · · ·	· · · ·		
											9 1 1 1 1 1				
		£	89.7												
		SANDY SILT													-
		Trace clay, no odours, no stains, brow and grey, wet									×	6		m	GS2
	<u> </u>	Test Pit Terminated at 1.8 m Dep	89.4			· · · ·					<u></u>	+++++	+ + + +		
		rest Fit terminated at 1.0 m Dep	501												
						:::	8 8 8 8 8					::::::::::::::::::::::::::::::::::::::	: : : :		
						1 i i i	8 8 8 8 8				: : : : : : : : : : : : : : : : : : :	E E E E	1 1 I I		
						:::	: : : : :			:::		: : : :	: : :		
25							: : : : :					: : : :	: : : :		
125/							: : : : :						: : :		
10															
B						::::	: : : : :					:::::	1 1 1		
Ă.						:::	: : : : :				: : : :	: : : :	: : :		
A															
Ы						:::						: : : : : : : : : : : : : : : : : : :	: : : :		
§										1 1 1 1					
띹															
<u> </u>						· · · ·									
S.G															
OGS.G															
LOGS.G						· · · · · ·									
3E TP LOGS.G						· · · · · ·									
RIDGE TP LOGS.G															
RBRIDGE TP LOGS.G															
BORBRIDGE TP LOGS.G															
675 BORBRIDGE TP LOGS.G															
00 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25															
49-A0 - 675 BORBRIDGE TP LOGS.G															
10349-A0 - 675 BORBRIDGE TP LOGS.C	NOTES	S:		ĒRI											
24010349-A0 - 675 BORBRIDGE TP LOGS.C	NOTES 1.Bore befor	S: hole/Test Pit data requires Interpretation by exp. re use by others		ERL	EVEL RE		DS			С	ORE DF	RILLING	RECO	RD	00 %
011-24010349-A0 - 675 BORBRIDGE TP LOGS.C	1.Bore befor	Phole/Test Pit data requires Interpretation by exp. re use by others	WA1 Elapsed Time		EVEL RE Water .evel (m)			pen	Run No.	C			RECO	RD	RQD %
T OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.C	1.Bore befor 2.Test	hole/Test Pit data requires Interpretation by exp. re use by others pit was backfilled upon completion	Elapsed		EVEL RE Water		DS Hole O	pen n)	Run	C	ORE DF	RILLING	RECO	RD	RQD %
T PIT OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.C	1.Bore befor 2.Test 3.Field	hole/Test Pit data requires Interpretation by exp. re use by others pit was backfilled upon completion d work supervised by an EXP representative.	Elapsed Time		EVEL RE Water .evel (m)		DS Hole O To (n	pen n)	Run	C	ORE DF	RILLING	RECO	RD	RQD %
TEST PIT OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.C	1. Bore befor 2. Test 3. Field 4. See	hole/Test Pit data requires Interpretation by exp. re use by others pit was backfilled upon completion d work supervised by an EXP representative. Notes on Sample Descriptions	Elapsed Time		EVEL RE Water .evel (m)		DS Hole O To (n	pen n)	Run	C	ORE DF	RILLING	RECO	RD	RQD %
DF TEST PIT OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.C	1. Bore befor 2. Test 3. Field 4. See	hole/Test Pit data requires Interpretation by exp. re use by others pit was backfilled upon completion d work supervised by an EXP representative. Notes on Sample Descriptions	Elapsed Time		EVEL RE Water .evel (m)		DS Hole O To (n	pen n)	Run	C	ORE DF	RILLING	RECO	RD	QD %
EST PIT OTT-24010349-A0	1. Bore befor 2. Test 3. Field 4. See	hole/Test Pit data requires Interpretation by exp. re use by others pit was backfilled upon completion d work supervised by an EXP representative.	Elapsed Time		EVEL RE Water .evel (m)		DS Hole O To (n	pen n)	Run	C	ORE DF	RILLING	RECO	RD	RQD %

		Log of	Tes	5	t Pit <u>TF</u>	<u>ک</u>	<u>5-05</u>		**	ר	xn
P	roject No:								`		$\gamma \gamma$
Pı	roject:	Proposed New Riverside South Second	ary Scho	ol			F	Figure No. 21			I
Lo	ocation:	675 Borbridge Avenue, Ottawa, Ontario						Page. <u>1</u> of	_1		
Da	ate Drillec	l: <u>'June 13, 2025</u>			Split Spoon Sample		\boxtimes	Combustible Vapour Read	ling		
Dr	ill Type:	Kubota KX080-4 Rubber Track Mounted	Excavat	or	Auger Sample SPT (N) Value		•	Natural Moisture Content Atterberg Limits	F		× -
Da	atum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube			Undrained Triaxial at % Strain at Failure			\oplus
Lc	ogged by:	M.Z. Checked by: S.P.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test			•
G W L	S Y M B O	SOIL DESCRIPTION	Geodetic Elevation	D e p t h	Standard Penetration 20 40 Shear Strength	on Test N 60	l Value 80 kPa	Combustible Vapour Read 250 500 Natural Moisture Cont Atterberg Limits (% Dry	750 tent %	P	Natural Unit Wt. kN/m ³
	L <u>X 1/2</u> <u>I/2 X 1</u> <u>TOI</u>	P SOIL ~ 300 mm thick	90.99	0	50 100	150	200	20 40	60	LES	
	No	AYEY SILT odours, no stains, reddish brown to wn, moist	90.7							-	

89.8

89.2

an

m

GS1

GS2

Х

X

A.GDT 6/25/25	
VA.GDT	
TROW OTTAN	
J TROV	
E TP LOGS.GPJ	
POG	
GETF	
- 675 BORBRIDGE	
- 675 E	
10103	
T OTT-24010349-A(
ST PIT	
μ	

SANDY SILT No odours, no stains, light brown, moist

Test Pit Terminated at 1.8 m Depth

	Log of	Tes	S	t Pit <u>T</u>	'P2	<u>25-(</u>	<u>)6</u>					xn
Project No:	OTT-24010349-A0						_	inuma Nia		22		\sim
Project:	Proposed New Riverside South Second	dary Scho	ool				- F	igure No.				1
Location:	675 Borbridge Avenue, Ottawa, Ontario)					-	Page.	_1_	of <u>1</u>		
Date Drilled:	'June 13, 2025			Split Spoon Sample		\boxtimes		Combustible '	Vapour F	Reading		
Drill Type:	Kubota KX080-4 Rubber Track Mounted	1 Excavat	tor	Auger Sample				Natural Moist	ure Cont	tent		Х
Dim Type.				SPT (N) Value		0		Atterberg Lim		F		-0
Datum:	Geodetic Elevation			Dynamic Cone Test	-	_		Undrained Tri % Strain at Fa				\oplus
Logged by:	M.Z. Checked by: S.P.			Shelby Tube Shear Strength by Vane Test		+ s		Shear Streng Penetrometer	th by			
G Y W B	SOIL DESCRIPTION	Geodetic Elevation	D e p	20 40	ration Te: 60	st N Value 80		250 Natural M	500 Aoisture (Reading (ppm) 750 Content %	S A P	Natural Unit Wt.
		m	h	Shear Strength 50 100	150	200	kPa	Atterberg L 20	imits (%	Dry Weight) 60	L E S	kN/m ³
	SOIL ∼250 mm thick	91.1 90.9	0		150	200			40			
No o	YEY SILT dours, no stains, brown to reddish n, moist to wet											
								×			M.	GS1
			1									
Beco	omes sandy below 1.0 m depth		·									

89.1

Test Pit Terminated at 2.0 m Depth

😗 GS2

X

A.GDT 6/25/25	
TROW OTTAWA	
EST PIT_OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.GPJ_TROW OTTAWA.GDT_6/	
349	NI
24010	N(1.
0TT-	2.
μ	3.
EST	4.

NOTES: 1.Borehole/Test Pit data requires Interpretation by exp.	WATE	R LEVEL RECC	RDS		CORE DF	RILLING RECO	RD
Encehole/Test Pit data requires Interpretation by exp. before use by others 2. Test pit was backfilled upon completion 3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions 5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0	Elapsed Time Upon Completion	Water Level (m) 1.8	Hole Open To (m) 2.0	Run No.	Depth (m)	% Rec.	RQD %

roject: Proposed New Riverside South Seco	ndary Scho	ool								Figu				23			
ocation: 675 Borbridge Avenue, Ottawa, Onta	-										Paę	ge.	1	_ of	1		
ate Drilled: 'June 13, 2025			Split Sp	oon S	Sampl	e		X		Со	mbus	tible Va		r Readii	na		
ill Type: Kubota KX080-4 Rubber Track Mount	ed Excava	tor	Auger S	Sampl	e			П	l	Nat	tural N	Noistur	e Co				×
atum: Geodetic Elevation		-	SPT (N) Dynami			st				Une	draine	g Limits ed Tria	xial a	t	F		
ogged by: <u>M.Z.</u> Checked by: <u>S.P.</u>		-	Shelby Shear S Vane Te	Streng	th by			+ s		She	ear St	at Fail rength neter T	by				▲
	Geodetic	D e						est N Va			2	50	500	7	ng (ppm) 50	S A P	Natural
M B O L	Elevation m 91.24	p t h	Shear	20 Stren 50	igth	00	61 15		80 kPa 200	1,		ural Mo erg Lin :0	oisture nits (9 40	e Conte % Dry W	nt % Veight) 60		Unit Wt kN/m ³
TOPSOIL ~260 mm thick		0															
CLAYEY SILT No odours, no stains, brown, moist	91.0																
	_											×				3	GS1
	90.3																001
SANDY SILT No odours, no stains, light brown, moist		1														-	
	89.3											×				872	GS2
Test Pit Terminated at 1.9 m Depth	09.0									-				<u></u>			002
	1	1	1::::			1::::	:::		1::::	1:::		1:::	:	: : : :	1::::		

ø	
.GDT	
TTAWA	
TROW OTT/	
Ħ	
S.GPJ	
TP LOGS.GP.	
ΗЬ	
DGE	
ORBRIDGE	
ORI	
75 B	
0 - 6	
9-A	
34	
401	
T-2	
OTT-24010349	
ΡIΤ	
EST	

8 NOTES: 1.Borehole/Test Pit data requires Interpretation by exp. before use by others	WATE	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
2. Test pit was backfilled upon completion	Time	Level (m)	To (m)	No.	(m)		
 3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions 5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0 	Upon Completion	dry	1.9				

			Log of	Tes	5	t Pit <u>TP25-</u>	<u>-08</u>		ב	xn
Ρ	roject	t No:	OTT-24010349-A0					igure No. 24	-	$\gamma \gamma$
Ρ	roject	t:	Proposed New Riverside South Second	dary Scho	ol			3 <u> </u>		1
L	ocatio	on:	675 Borbridge Avenue, Ottawa, Ontario)				Page. <u>1</u> of <u>1</u>		
D	ate D	rilled:	'June 13, 2025			Split Spoon Sample]	Combustible Vapour Reading		
D	rill Ty	pe:	Kubota KX080-4 Rubber Track Mounted	d Excavat	or	Auger Sample	-	Natural Moisture Content Atterberg Limits		× ⊕
D	atum:		Geodetic Elevation			Dynamic Cone Test	I	Undrained Triaxial at % Strain at Failure		\oplus
L	oggeo	l by:	M.Z. Checked by: S.P.			Shear Strength by + Vane Test S	-	Shear Strength by Penetrometer Test		
G W L	S Y B O		SOIL DESCRIPTION	Geodetic Elevation	D e p t	Standard Penetration Test N Va 20 40 60 a Shear Strength	alue 80 kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	P	Natural Unit Wt. kN/m ³
	Ľ	TOP	SOIL ~230 mm thick	91.18	n 0	50 100 150 2	200	20 40 60	LES	
	14 X X X			91.0			4.000			

		TOPSOIL ~230 mm thick CLAYEY SILT No odours, no stains, light brown, r _	91.0 noist	1							>	<				GS1
		SANDY SILT Trace clay, no odours, no stains, lig brown, wet	 ght 									>	<			GS2
OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25		Test Pit Terminated at 1.8 m D	lepth													
TT-2401034	before u	e/Test Pit data requires Interpretation by exp. se by others was backfilled upon completion	WA1 Elapsed Time	TER L	EVEL Wate	er	CORI	Но	ole Ope To (m)	Ru No	CC Dep (m			NG F % Re)RD	QD %
LI J J	Field wo	was backlined upon completion ork supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 010349-A0	Upon Completion		1.5				1.8		(,				

	Log of Tes	t Pit <u>TP25-</u>	09 [%] eyn
Project No:	OTT-24010349-A0		
Project:	Proposed New Riverside South Secondary School	I	Figure No. <u>25</u>
Location:	675 Borbridge Avenue, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>
Date Drilled:	'June 13, 2025	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Kubota KX080-4 Rubber Track Mounted Excavato	Auger Sample	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure
Logged by:	M.Z. Checked by: S.P.	Shelby Tube Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S	Geodetic	Standard Penetration Test N Valu	e Combustible Vapour Reading (ppm) S 250 500 750 A Natural

	G W L	Y MBOL	SOIL DESCRIPTION	Elevatio m 91.39	l e	Shear	20 Streng 50	4 Jth 10		80 kPa 200	Na Atter	250 tural Mois berg Limi 20	sture Conte its (% Dry \	750 ent % Weight) 60	PLES	Natural Unit Wt. kN/m ³
		<u>7 7</u>	TOPSOIL ~ 250 mm thick	91.1	0											
			SANDY SILT Some clay, no odours, no stains, ligi brown, moist to wet													
				_	1							×				GS1
			· 	_												_
			Toot Dit Tourningtod of 4.0 m Do	89.6					· · · · ·		· · · · · ·	×	(GS2
			Test Pit Terminated at 1.8 m De	ptn												
							· · · · · · · · · · · · · · · · · · ·									
25/25																
3DT 6/																
-AWA.0																
TTO W																
J TRC																
GS.GP																
TP LO																
RIDGE																
BORB																
40 - 675																
OTT-24010349-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25	NO ⁻	TES:		WAT	ER I	EVEL R	ECO	RDS	3		 CC		ILLING F	RECOF		1
TT-240			ble/Test Pit data requires Interpretation by exp. use by others	Elapsed Time		Water			, Hole Ope To (m)	Run No.	Dep (m	oth	% Re			RQD %
0. 110			it was backfilled upon completion vork supervised by an EXP representative.	Upon Completion		1.0			1.8	110.		.,				
LOG OF TEST PIT	4.S	ee No	otes on Sample Descriptions													
OF T	5.T 0	his Fi TT-2	igure is to read with exp. Services Inc. report 4010349-A0													

FI	oje	εCL	INO.	
_				

	Log of Tes	t Pit TP25-	-10		evn
Project No:	OTT-24010349-A0			N 06	CAP
Project:	Proposed New Riverside South Secondary School	l	⊢ıç	gure No. <u>26</u>	_ I
Location:	675 Borbridge Avenue, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'June 13, 2025	Split Spoon Sample	3 C	Combustible Vapour Reading	
Drill Type:	Kubota KX080-4 Rubber Track Mounted Excavator	Auger Sample		Natural Moisture Content	×
		SPT (N) Value		Atterberg Limits	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test	-	Jndrained Triaxial at 6 Strain at Failure	\oplus
Logged by:	M.Z. Checked by: S.P.	Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test	A
S	Geodetic	Standard Penetration Test N Va	alue	Combustible Vapour Reading (p	opm) S A Netural

	G W L	м В О	SOIL DESCRIPTION	Elevatio	ľť	2 Shear S	20 Streng	40 gth	6	60	80 kPa	Att	Vatura	l Moist Limits	ure Cont (% Dry	ent % Weight)	₽ ₽	Unit Wt.
+	-	L <u>x¹ /_Z ·</u> .	TOPSOIL ~ 250 mm thick	91.54	h 0		50	100	D 15	50	200		20		10 : : : :	60	S	
	`	<u></u>		91.3														
			SANDY SILT															
			Occasional sandstone cobbles, no od – no stains, brown, moist to wet															
														×			- m	GS1
			_		1												.: <u>\</u>	
									· · · · · ·							-		
																-		
																	-	_
				89.7										Х				GS2
			Test Pit Terminated at 1.8 m Dep	oth														
									· · · · ·									
									· · · ·									
									· · · · ·									
5/25																		
T 6/2																		
A.GD									· · · · ·									
TAW									· · · · ·									
ORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25									· · · · ·									
TRO									· · · · ·									
GPJ																		
OGS																		
TPL																		
IDGE																		
RBR																		
75 BC																		
Y0 - 6																		
1349-/		FS [.]	، ۱ ۲		I	L	<u> </u>	1							1	1		1
OTT-24010349-A0 - 675 B	1.Bc	oreho	le/Test Pit data requires Interpretation by exp. use by others	WAT Elapsed	ER L	EVEL RI Water	ECO		ole Ope	en	Run		CORE epth		LING F			RQD %
			t was backfilled upon completion	Time	L	evel (m)		11	To (m)		No.		(<u>m)</u>		70 1 1		F	ι
	3.Fi	eld w	ork supervised by an EXP representative.	Upon Completion		1.5			1.8									
ш			otes on Sample Descriptions															
Ш	5. Th	nis Fie	gure is to read with exp. Services Inc. report 4010349-A0															
0	0			1						ļ		1						

F

Γ

			Lo	g of	Tes	51	t Pit <u>TF</u>	P2 5	5-11		0	yn
Ρ	roject	t No:	OTT-24010349-A0	U								$\gamma \rho$
Ρ	roject	t:	Proposed New Riverside Sou	uth Seconda	ary Scho	ol				Figure No. <u>27</u> Page. 1 of 1		I
Lo	ocatio	on:	675 Borbridge Avenue, Ottaw	va, Ontario						Page. <u>1</u> of <u>1</u>		
Da	ate D	rilled:	'June 13, 2025				Split Spoon Sample		\boxtimes	Combustible Vapour Reading		
Dr	ill Ty	pe:	Kubota KX080-4 Rubber Trac	k Mounted	Excavat	or	Auger Sample SPT (N) Value		I 0	Natural Moisture Content Atterberg Limits		×
Da	atum	:	Geodetic Elevation				Dynamic Cone Test Shelby Tube		_ ■	Undrained Triaxial at % Strain at Failure		\oplus
Lo	ggeo	d by:	M.Z. Checked by	: S.P.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		
G W L	S Y M B O L		SOIL DESCRIPTION		Geodetic Elevation m 91.44	D e p t h	Standard Penetrati 20 40 Shear Strength 50 100	on Test N V 60 150	Value 80 kPa 200	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60		Natural Unit Wt. kN/m ³

		0 L		91.44	h 0	Shear	Strengt 50		150 2	kPa 200		berg Lim 20	40 6	oligni) 60	LEO	kN/m°
	1.7	1,	TOPSOIL ~ 280 mm thick													
	4	<u>_1 /</u>		91.2												
			SANDY SILT No odours, no stains, brown, moist									\$			۳Ľ	GS1
			_	-											_	
											•					
			_	_	1			: : : : : : : : : :							-	
				89.6								×			M.	GS2
			Test Pit Terminated at 1.8 m De	pth												
71071																
200																
	OTE	S:	e/Test Pit data requires Interpretation by exp	WAT	ERL	EVEL R	ECOR	DS			CO	REDR	ILLING R	ECOR)	
5 1.	hof	ore u	e/Test Pit data requires Interpretation by exp. use by others	Elapsed		Water			ben	Run	Dep	oth	% Re			QD %
<u> </u>	DCI													I		
5 2.	Tes	•	was backfilled upon completion	Time	l	<u>evel (m)</u> dry		Hole Op <u>To (m</u> 1.8)	No.	(m	I)				
- 5 2. 	Tes Fiel	d wo	was backfilled upon completion ork supervised by an EXP representative. tes on Sample Descriptions	Time Upon Completion	[<u>_evel (m)</u> dry		<u>To (m</u> 1.8)	No.	(m	ı <u>)</u>				

5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0 LOG OF T

Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
Time	Level (m)	To (m)	No.	(m)		
on Completion	dry	1.8				
	,					

	Log of Tes	t Pit TP2	5-12		evn
Project No:	OTT-24010349-A0			-	CNP
Project:	Proposed New Riverside South Secondary Schoo	I		Figure No. <u>28</u>	- 1
Location:	675 Borbridge Avenue, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'June 13, 2025	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	Kubota KX080-4 Rubber Track Mounted Excavato	Auger Sample r SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test — Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: S.P.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A
		Standard Penetration Test	N Value	Combustible Vapour Reading (pr) S

	ş		Geodet	ic D Standard Penetration Test N Value Combustible Vapour Reading (ppn				om) S	S Network				
G W L	SY MBOL	SOIL DESCRIPTION	Elevatio	le	20 40 60 80							om) S A N E :) L E	Natural Unit Wt.
L	ļŏ		m	h	Shear Stren			kPa				I) L	kN/m ³
-	N 12.	TOPSOIL ~200 mm thick	91.74	0	50	100 150	2	00	2	20	40 60	::	5
	1		91.5									1.1. 1.	
		CLAYEY SILT										1.11	
		No odours, no stains, light brown, mo	oist to										
		wet	_				· · ·					: :	
												1 - 1 1 - 1 - 1	
							:::::	• • • • • • •		12:22		111	
		becomes sandy below 1.0 m depth	-	1			: : :	: : : :		:::		::	
										1111			
			_			<u> </u>	· · ·					<u>.</u>	
												÷	-
			89.9							×		a.	۶ GS1
		Test Pit Terminated at 1.8 m De	pth									1	
												:::	
							: : :					::	
							: : :					::	
							· · ·						
22												::	
67/0													
							: : :					::	
							: : :					::	
S ≥							· · ·						
2										::			
-													
5													
3													
1 1													
ц Ц													
2							: : :					::	
6/0													
δ δ	·	l											
3 NO	DTES: Boreho	le/Test Pit data requires Interpretation by exp	WAT	ERL	EVEL RECC	RDS			CO	RE DR	ILLING RECO	RD	
	before	le/Test Pit data requires Interpretation by exp. use by others	Elapsed	_	Water	Hole Open		Run	Dep		% Rec.	RQD %	
2.	Test pit	was backfilled upon completion	Time Level (m) To (m) No. (m)										

3. Field work supervised by an EXP representative.
4. See Notes on Sample Descriptions
5. This Figure is to read with exp. Services Inc. repo OTT-24010349-A0 5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0

WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECO	RD
Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD
on Completion		1.8				

	Log of	Tes	5	t Pit <u>TP25-</u>	13	% <u>(</u>	2	yn
Project No:	OTT-24010349-A0						-	$\gamma \rho$
Project:	Proposed New Riverside South Second	lary Scho	ol		- F	igure No. <u>29</u>		I
Location:	675 Borbridge Avenue, Ottawa, Ontario)				Page. <u>1</u> of <u>1</u>		
Date Drilled:	'June 13, 2025			Split Spoon Sample		Combustible Vapour Reading		
Drill Type:	Kubota KX080-4 Rubber Track Mounted	d Excavat	nr	Auger Sample II SPT (N) Value O		Natural Moisture Content Atterberg Limits		× ⊕
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.Z. Checked by: S.P.			Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test		A
GWL O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Shear Strength	80 kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)		Natural Unit Wt. kN/m ³
1/ <u>x</u> 1/	SOIL ~300 mm thick	92.01	0	50 100 150 20	00	20 40 60	5	
No o	dours, no stains, brown, moist							

😷 GS1

S)

GS2

×

X

91.1

90.2

T 6/25/25	
AWA.GD	
J TROW OTT	
-OGS.GP.	
ORBRIDGE TP I	
9-A0 - 675 B	
OTT-24010349-P	
TEST PIT	

SANDY SILT No odours, no stains, light brown, moist

Test Pit Terminated at 1.8 m Depth

~								
49								
-240103	NOTES: 1. Borehole/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	RDS		CORE D	RILLING RECOF	RD
Š	before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
E	2. Test pit was backfilled upon completion	Time	Level (m)	To (m)	No.	<u>(m)</u>		
TEST PIT	 Field work supervised by an EXP representative. See Notes on Sample Descriptions This Figure is to read with exp. Services Inc. report OTT-24010349-A0 	Upon Completion	dry	1.8				
Ч								

	Log of Tes	t Pit TP25	-14			yn
Project No:	OTT-24010349-A0			N 20		$\gamma \rho$
Project:	Proposed New Riverside South Secondary Schoo	bl		gure No. <u>30</u>	_	I
Location:	675 Borbridge Avenue, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_	
Date Drilled:	'June 13, 2025	Split Spoon Sample	3 0	Combustible Vapour Reading		
Drill Type:	Kubota KX080-4 Rubber Track Mounted Excavato	Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	L	× ⊕
Datum:	Geodetic Elevation	Dynamic Cone Test	_ ι	Jndrained Triaxial at % Strain at Failure	I	⊕
Logged by:	M.Z. Checked by: S.P.	Shear Strength by Vane Test S	F -	Shear Strength by Penetrometer Test		A
s		Standard Penetration Test N Va	'alue	Combustible Vapour Reading (opm) S	

	G W L	Ŷ М В О L	SOIL DESCRIPTION	Geodetic Elevation m	l e	Shear S				60		Pa	Na Atter	250 itural Mo berg Lin			nt % 'eight)		Natural Unit Wt. kN/m ³
ŀ	-	<u>N 17</u>	TOPSOIL ~ 200 mm thick	91.55	0		50	10	10 1	50	200			20	40	6	0 	5	
			CLAYEY SILT No odours, no stains, brown, moist	91.4															
				_															
				90.5	1									x				 	GS1
			No odours, no stains, brown, moist t	o wet															
				89.7															
J-40 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25		TES: oreho efore t	Test Pit Terminated at 1.9 m De	ptn															
1349 1949	NO	TES:		· · · · · ·			· · · · ·												
2401	1.B	oreho efore i	le/Test Pit data requires Interpretation by exp. use by others	WATI Elapsed	ER L	EVEL R	ECC		i Iole Op	en	Ru	CORE DR Run Depth			RILLING RECORD			QD %	
Ė	2.T	est pit	was backfilled upon completion	Time	L	evel (m))		To (m)	No		(n				<i>.</i>	1	
			Upon Completion		1.7			1.9											

LOG OF TEST F 4. See Notes on Sample Descriptions

5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0

	Log of T	es	t Pit <u>TP25</u>	5-15	1	evn
Project No:	OTT-24010349-A0					CAP.
Project:	Proposed New Riverside South Secondary S	choc	bl		Figure No. <u>31</u> Page. 1 of 1	- 1
Location:	675 Borbridge Avenue, Ottawa, Ontario					-
Date Drilled:	'June 13, 2025		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	Kubota KX080-4 Rubber Track Mounted Exca	avato	Auger Sample SPT (N) Value	•	Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation		Dynamic Cone Test Shelby Tube	-	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: S.P.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	▲
G Y M			D Standard Penetration Test N	Value 80	Combustible Vapour Reading (pp 250 500 750	om) S A M Natural

	Ŵ	M B O	SOIL DESCRIPTION	Elevation	p t h	20 Shear Stren	40 ath	60	80 kPa	Natural Mo Atterberg Lir	isture Content % hits (% Dry Weight)	P LES	Unit Wt. kN/m ³
		L		91.66	h 0		10	0 150 2	200	20	40 60	E S	
		<u>717</u>	TOPSOIL ~ 300 mm thick	91.4									
			CLAYEY SILT Some sand seams, no odours, no st brown, moist to wet										
			brown, moist to wet							• • • • • • • • • •			
					1					×		- M2	GS1
			_	_									
										• • • • • • • • • • • • • • • • •			
			Test Pit Terminated at 2.1 m De	89.6	2	2		· · · · · · · · · · · · · · · · · · ·		>	<hr/>	- M	GS2
6/25/25													
9-40 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25													
PJ TROW (· · · · · · · · · · · · · · · · · · ·	
P LOGS.G												· · · · · · · · · · · · · · · · · · ·	
SRIDGE 1													
75 BORE													
- 40 - 6													
0349	NO	TES:		\\\\\ \									
-2401034	1.B b	oreho efore (le/Test Pit data requires Interpretation by exp. use by others	Elapsed	×∟	EVEL RECC		ole Open	Run	Depth	RILLING RECOR	RQD %	
~ I			was backfilled upon completion	Time Upon Completion	Time Level (m) To (m) No. (m)								

LOG OF TEST PI 4. See Notes on Sample Descriptions

5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0

Time	Level (m)	To (m)	No.			
Completion	1.8	2.1				
• · · · · · · · · · · · · · · · · · · ·						
	Log of	Tes	t Pit TP2	5-16		exn
---------------	---------------------------------------	---------------------------------------	---	-----------------------------	---	---
Project No:	OTT-24010349-A0					CAP.
Project:	Proposed New Riverside South Second	lary Schoo	bl		Figure No. <u>32</u>	I
Location:	675 Borbridge Avenue, Ottawa, Ontario)			Page. <u>1</u> of <u>1</u>	
Date Drilled:	'June 13, 2025		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	Kubota KX080-4 Rubber Track Mounted	l Excavato	Auger Sample		Natural Moisture Content	×
Datum:	Geodetic Elevation		SPT (N) Value Dynamic Cone Test Shelby Tube	0	Atterberg Limits Undrained Triaxial at % Strain at Failure	⊖ ⊕
Logged by:	M.Z. Checked by: S.P.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•
G Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m H 91.62	Standard Penetration Test N 20 40 60 Shear Strength 50 100 150	N Value 80 kPa 200	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	¹⁾ S M P Unit Wt. E S

	L		91.62	0	50	100) 1:	50 2	200		20	4	0	60	S	S	
	7 <u>1</u> 7	TOPSOIL ~ 250 mm thick		ľ		1 I I I	::::::					11		1 : : :			
	1/	-/				111 I I I					111						
	- <u>`</u>		91.4								e le e				1		
		CLAYEY SILT													÷		
		Some sand, no odours, no stains, lig	ht			111 I I I I I I I I I I I I I I I I I I						111			÷		
		brown, moist	_											+ + + + + + + + + + + + + + + + + + + +	÷		
							÷:-:-:				444				4.		
		£				333 J.	÷		1.1.1.1.1		444	444			4.		
						3331					3133				÷.,		
							:::::				: : : :						
				'		::::	1111		1 1 1 1 1	1111	1 21	111	1111	1 : : :	:	0 0	
											: X				.:	96	SS1
						111 E E E					2122		11111	1223		-	
					122221	999 P	<u>e e e e e</u>	2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	10000	1999	2122		• • • • • •	1999	÷.		
		8				d de la la	4.4.4.4	-2-2-2-2			646				÷.,		
			90.1												<u> </u>		
		SANDY SILT															
		No odours, no stains, brown and gre	y, wet							1 1 1 1							
		· ·				::::	1111			1 : : :				1 : : :			
		* -					::::		1 : : : :			111					
						2221	1111 C	11111	12223		×	111	11111	1222	.:	5 1	SS2
		: -		2			<u> </u>		1::::					1:::	\div	\neg	
	- H-L-	Test Pit Terminated at 2.1 m De	89.5				<u></u>		+					+	\div +	-	
		rest Fit Terminated at 2.1 III De	pui							1 : : :				1:::			
						:::				1 : : :				1 : : :	-		
							::::			1				1 : : :	-		
					1 : : : : :	:::	::::	::::		1 : : :	: : : :	111		1 : : :	1		
							1111					11		1 : : :			
						::: !						111					
										1 : : :							
										1							
25																	
25/25																	
6/25/25																	
DT 6/25/25							· · · · · · · · · · · · · · · · · · ·								•		
.GDT 6/25/25																	
NA.GDT 6/25/25							· ·										
FAWA.GDT 6/25/25																	
DTTAWA.GDT 6/25/25																	
N OTTAWA.GDT 6/25/25																	
ROW OTTAWA.GDT 6/25/25																	
TROW OTTAWA.GDT 6/25/25																	
J TROW OTTAWA.GDT 6/25/25																	
.GPJ TROW OTTAWA.GDT 6/25/25																	
GS.GPJ TROW OTTAWA.GDT 6/25/25																	
LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
P LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
E TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
DGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
RIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
RBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
75 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
- 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
149-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25																	
10349-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25	NOTES				EVEL REC	ORDS						DRI					
4010349-A0 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25	NOTES 1. Boreh before	ole/Test Pit data requires Interpretation by exp.			EVEL REC							DRIL		RECOR			2
T-24010349-40 - 675 BORBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25	1.Boreh before	ole/Test Pit data requires Interpretation by exp. use by others	Elapsed		Water	H	oje Opi		Run	De	epth	DRIL	LING F % Re			RQD	%
T-24010349-A0	1.Boreh before	ole/Test Pit data requires Interpretation by exp. use by others it was backfilled upon completion	Elapsed Time	L	Water .evel (m)	H	To (m)		Run No.	De		DRIL				RQD	%
OTT-24010349-A0	1.Boreh before 2.Test p	ole/Test Pit data requires Interpretation by exp. e use by others it was backfilled upon completion	Elapsed	L	Water	H				De	epth					RQD	%
OTT-24010349-A0	1. Boreh before 2. Test p 3. Field	ole/Test Pit data requires Interpretation by exp. • use by others it was backfilled upon completion work supervised by an EXP representative.	Elapsed Time	L	Water .evel (m)	H	To (m)			De	epth	DRIL				RQD	%
OTT-24010349-A0	1. Boreh before 2. Test p 3. Field	ole/Test Pit data requires Interpretation by exp. e use by others it was backfilled upon completion	Elapsed Time	L	Water .evel (m)	H	To (m)			De	epth	DRIL				RQD	%
OTT-24010349-A0	1. Boreh before 2. Test p 3. Field 4. See N	ole/Test Pit data requires Interpretation by exp. use by others it was backfilled upon completion work supervised by an EXP representative. otes on Sample Descriptions	Elapsed Time	L	Water .evel (m)	H	To (m)			De	epth	DRIL				RQD	%
OTT-24010349-A0	1. Boreh before 2. Test p 3. Field 4. See N	ole/Test Pit data requires Interpretation by exp. • use by others it was backfilled upon completion work supervised by an EXP representative.	Elapsed Time	L	Water .evel (m)	H	To (m)			De	epth	DRIL				RQD	%
TEST PIT OTT-24010349-A0	1. Boreh before 2. Test p 3. Field 4. See N	ole/Test Pit data requires Interpretation by exp. use by others it was backfilled upon completion work supervised by an EXP representative. otes on Sample Descriptions	Elapsed Time	L	Water .evel (m)	H	To (m)			De	epth	DRIL				RQD	%

	Log of	Tes	51	t Pit <u>TF</u>	<u>ک</u>	5-17			***	2	vn
Project No:	OTT-24010349-A0							00		-	$\gamma \rho$
Project:	Proposed New Riverside South Second	dary Scho	ol			F	igure No.	33			I
Location:	675 Borbridge Avenue, Ottawa, Ontario)					Page.	_1_ of	_1		
Date Drilled:	'June 13, 2025		;	Split Spoon Sample		\boxtimes	Combustible \	/apour Readi	ing		
Drill Type:	Kubota KX080-4 Rubber Track Mounter	d Excavat	or	Auger Sample SPT (N) Value		•	Natural Moistu Atterberg Limi		⊢		× ⊕
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		—	Undrained Tri % Strain at Fa				\oplus
Logged by:	M.Z. Checked by: S.P.		5	Shear Strength by Vane Test		+ s	Shear Strengt Penetrometer				A
G Y W B L O L	SOIL DESCRIPTION	Geodetic Elevation	D e p t h	Standard Penetration 20 40 Shear Strength 50 100	ion Test N 60 150	N Value 80 kPa 200	Combustible 250 Natural M Atterberg L 20	500 7 loisture Conte imits (% Dry V	'50 ent %		Natural Unit Wt. kN/m ³
	SOIL ∼ 230 mm thick YEY SILT e sand, no odours, no stains, brown, t	91.32	0	30 100		200	20 	40		3	GS1
				interes entre entre entre	20100		0.000000	••••••••••••••••••••••••••••••••••••	10000		

90.3

89.5

1

. M

GS2

X

SANDY SILT No odours, no stains, brown and grey, moist to wet

Test Pit Terminated at 1.8 m Depth

6/25/25	
TROW OTTAWA.GDT 6	
- 675 BORBRIDGE TP LOGS.GPJ	
49-A0	
OTT-24010349-P	
TEST PIT	

6 ⁻	
80 NOTES: WATER LEVEL RECORDS CORE DRILLING RI 1. Borehole/Test Pit data requires Interpretation by exp. Elapsed Water Hole Open 80 Elapsed Water Hole Open Run Depth % Rec	CORD
	RQD %
E 2. Test pit was backfilled upon completion Time Level (m) To (m)	
3. Field work supervised by an EXP representative. Upon Completion 1.6 1.8 4. See Notes on Sample Descriptions 5. This Figure is to read with exp. Services Inc. report 1.6 1.8	

	Log of Tes	st Pit TP2	5-18	*evr	\$
Project No:	OTT-24010349-A0				•
Project:	Proposed New Riverside South Secondary School	ol		Figure No. <u>34</u>	
Location:	675 Borbridge Avenue, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	
Date Drilled:	'June 13, 2025	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	Kubota KX080-4 Rubber Track Mounted Excavato	Auger Sample Or SPT (N) Value	•	Natural Moisture Content X Atterberg Limits ————————————————————————————————————	
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	-	Undrained Triaxial at \oplus % Strain at Failure	
Logged by:	M.Z. Checked by: S.P.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
S	Geodetic	D Standard Penetration Test N	N Value	Combustible Vapour Reading (ppm) S	

	G	9 ≻ MBO.		Geodetic	l e			o co (20	250	500 750	Å	Natural Unit Wt. kN/m ³
	G W L	B	SOIL DESCRIPTION	Elevation	- I t	Shear Stren	40 ath	0 60 8	30 kPa	Atterberg Lin	isture Content % hits (% Dry Weight)		kN/m^3
		Ľ		91.77	h	1 50 T	10	0 150 2	00	20	40 60	E	S NIN/III
		<u>71 /2</u> .	TOPSOIL ~ 300 mm thick		1		:::						
	- /	1.1.1											
	Ē			91.5									
	ł		CLAYEY SILT										
	F		With sand seams, no odours, no sta	ains,			:::						
	ł		brown, moist				11						
	F												
	ľ												
	ľ				1		:::		1 : : : :		<u> </u>	1	
	ł				·		1.1.						
	Ľ			90.6			11						
		· [·] ·	SANDY SILT				11						
			No odours, no stains, brown and gre	ey,									
			moist to wet				11						
	Ľ												
	ľ									×			GS1
				90.0			1.1			^^		: \	9 001
			Test Pit Terminated at 1.8 m De	pth					1 : : : :				
							÷ :		1				
							11						
							÷ :		1				
							11						
52													
RBRIDGE TP LOGS.GPJ TROW OTTAWA.GDT 6/25/25													
6							÷ ; ;						
<u> </u>							÷ :						
A I							11						
§∣													
Ĕ							÷ :		1 : : : :				
S							÷ :		1				
õ							11						
⊨													
<u> </u>													
SS							÷ :						
8							11						
4													
Ξ							11						
Ĕ							11						
H H H H H H H													
2													
- 61									1 : : : :				
PA							<u>:</u> :						
349- 1													
-24010349-A0 - 675 BC	NO1 1 Br	ES:	le/Test Pit data requires Interpretation by exp	WATE	ERL	EVEL RECO	RDS	s		CORE DF	RILLING RECOF	RD	
146	be	fore u	le/Test Pit data requires Interpretation by exp. use by others	Elapsed		Water		Hole Open	Run	Depth	% Rec.		RQD %
⊢ I			was backfilled upon completion	Time	I	Level (m)		To (m)	No.	(m)	/01/00.		
- I				Upon Completion		1.6		1.8					
티	3. Fi	eld w	ork supervised by an EXP representative.										

4. See Notes on Sample Descriptions 5. This Figure is to read with exp. Serv OTT-24010349-A0 5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0

Elapsed	water	Hole Open	Run	Depin	% Rec.	
Time	Level (m)	To (m)	No.	(m)		
n Completion	1.6	1.8				

	Log of	Te	S	t Pit	Τ	'P2	<u>5-1</u>	9				**	2	xr)
Project No:	OTT-24010349-A0								iouro No		35			$\sim r$	•
Project:	Proposed New Riverside South Second	lary Scho	ool					Г	igure No					1	
Location:	675 Borbridge Avenue, Ottawa, Ontario)							Page	e. <u>1</u>	of	1			
Date Drilled:	'June 13, 2025		-	Split Spoon Sa	mple		\boxtimes		Combustib	ole Vapou	ur Readir	ng			
Drill Type:	Kubota KX080-4 Rubber Track Mounted	d Excava	tor	Auger Sample SPT (N) Value			•		Natural Mo Atterberg L		ontent	⊢		× ⊕	
Datum:	Geodetic Elevation			Dynamic Cone Shelby Tube	Test	_			Undrained % Strain a		at			\oplus	
Logged by:	M.Z. Checked by: S.P.			Shear Strength Vane Test	by		+ s		Shear Stre Penetrome					A	
G Y W B	SOIL DESCRIPTION	Geodetic Elevation	D e p t		40	ration Test 60	N Value 80	kPa	Combustil 250 Natur) 50 al Moistu		50 nt %	P	Natural Unit Wt.	
		m 91.96	h 0	50	100	150	200	кга	20	40 g Einits) 6	0	Ē	kN/m ³	
<u>17</u> <u>x¹ 1</u>	<u>SOIL</u> ~ 300 mm thick YEY SILT	91.7													
	odours, no stains, light brown, moist							· · · · · · · · · · · · · · · · · · ·							
										×			3	GS1	

TOPSOIL ~ 300 mm thick	91.90	0					
$I_{Z} = \frac{1}{2^{N-1}}$							
	91.7						
CLAYEY SILT No odours, no stains, light brown, mo	iot						
			· · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
		244224	********		1222222	×	😗 GS1
	_						
	90.8						an a
SANDY SILT							
No odours, no stains, light brown, we							
	_						
	90.2				×		🖑 GS2
Test Pit Terminated at 1.8 m Dep	th						
52							
521							
ũ H							
8							
5							
S.							
O N N N N N N N N N N N N N N N N N N N							
25 B							:
- 0 ⁻							
							<u>;</u>]]
SS0101 USUBLIC 100 (S000) NOTES: 1. Borehole/Test Pit data requires Interpretation by exp. before use by others 2. Test pit was backfilled upon completion							
1. Borehole/Test Pit data requires Interpretation by exp. before use by others		ER LEVEL RECO				RILLING RECOP	
	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
	Time Upon Completion	Level (m) dry	To (m) 1.8	No.	(m)		
La 3. Field work supervised by an EXP representative.	Chour Combierion	ary	1.0				

4. See Notes on Sample Descriptions 5. This Figure is to read with exp. Serv OTT-24010349-A0 5. This Figure is to read with exp. Services Inc. report OTT-24010349-A0

EXP Project No.:	OTT-24010349-A0	T-24010349-A0 Project Name : Proposed New Riverside South Secondary School									
Client :	CECCE	Project Location : 675 Borbridge Avenue, Ottawa, Ontario									
Date Sampled :	December 6, 2024	Borehole No:	ehole No: 24-1 Sample No.: SS3 Depth (m) :							1.5 - 2.1	
Sample Description :		% Silt and Clay	79	% Sand	21	% Gravel		0	Eiguro :	26	
Sample Description :	Clayey	Clayey Sandy Silt (ML) with Silty Clay Seams of Low Plasticity Figure : 36									

EXP Project No.:	OTT-24010349-A0	Project Name :	oject Name : Proposed New Riverside South Secondary School								
Client :	CECCE	Project Location :	Project Location : 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 4, 2024	Borehole No:		24-14 Sample No.: SS3 Depth (m) :						1.5-2.1	
Sample Description :		% Silt and Clay	55	% Sand	45	% Gravel		0	Figure .	27	
Sample Description :		Sandy Silt (ML) - Some Clay Figure : 37									

EXP Project No.:	OTT-24010349-A0	Project Name :		Proposed New Riverside South Secondary School						
Client :	CECCE	Project Location	Project Location : 675 Borbridge Avenue, Ottawa, Ontar							
Date Sampled :	December 6, 2024	Borehole No:	No: 24-1			Sample No.:		56	Depth (m) :	3.8 - 4.4
Sample Description :		% Silt and Clay	91	% Sand	7	% Gravel		2	Figure :	20
Sample Description :	nple Description : Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel									38

EXP Project No.:	OTT-24010349-A0	Project Name :	Project Name : Proposed Ne				v Riverside South Secondary School						
Client :	CECCE	Project Location	Project Location : 675 Borbridge Av				Avenue, Ottawa, Ontario						
Date Sampled :	December 3, 2024	Borehole No:		24-3	Sam	ple No.: S		S5	Depth (m) :	3.8-4.4			
Sample Description :		% Silt and Clay	94	% Sand	5	% Gravel		1	Figure :	39			
Sample Description : Silty Clay of Medium Plasticity (CI) - Trace Sand										39			

EXP Project No.:	OTT-24010349-A0	Project Name :		Proposed New Riverside South Secondary School							
Client :	CECCE	Project Location :	Project Location : 675 Borbridg			rbridge Avenue, Ottawa, Ontario					
Date Sampled :	December 4, 2024	Borehole No:		24-15	Sample No.:		SS4		Depth (m) :	3.0-3.6	
Sample Description :		% Silt and Clay	99	% Sand	1	% Gravel		0	Figure .	40	
Sample Description : Silty Clay of High Plasticity (CH) - Trace Sand									Figure :	40	

EXP Project No.:	OTT-24010349-A0	Project Name :	Project Name : Proposed New Riverside South Secondary School						lool	
Client :	CECCE	Project Location :	Project Location : 675 Borbridge Avenue, Ottawa, Ontario							
Date Sampled :	December 3, 2024	Borehole No:		24-2	Sample No.:		SS6		Depth (m) :	4.6-5.1
Sample Description :		% Silt and Clay	28	% Sand	50	% Gravel		22	Eigura :	44
Sample Description : Glacial Till - Gravelly Silty Sand (SM) - Trace Clay									Figure :	41

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Appendix A – Seismic Shear Wave Velocity Sounding Survey Report by GPR

[‰]ехр.

January 15th, 2025

Transmitted by email : daniel.wall@exp.com c.c. : ismail.taki@exp.com

Our ref : GPR24-05886-d

Mr. Daniel Wall, P.Eng. Intermediate Geotechnical Engineer **exp** Services inc. 100 - 2650 Queensview Drive Ottawa ON K2B 8H6

Subject: Shear Wave Velocity Sounding for the Site Class Determination 906 Brian Good Avenue, Ottawa (ON)

[Project: OTT-23012778-I0]

Dear Mr. Wall,

Geophysics GPR International inc. has been mandated by **exp** Services inc. to carry out seismic surveys at 960 Brian Good Avenue, Riverside South, in Ottawa (ON). The geophysical investigation used the Multi-channel Analysis of Surface Waves (MASW) with the Spatial AutoCorrelation (SPAC), and the seismic refraction and reflection methods. From the subsequent results, the seismic shear wave velocity values were calculated for the soils and the rock, to determine the Site Class.

The surveys were conducted on December 5th, 2024, by Mrs. Karyne Faguy, B.Sc. geophysics and Mr. Félix Bergeron, EIT (QC). Figure 1 shows the regional location of the site and Figure 2 illustrates the location of the seismic spread. Both figures are presented in the Appendix.

The following paragraphs briefly describe the survey design, the principles of the testing methods, and the results presented in table and graph.

MASW Principle

The *Multi-channel Analysis of Surface Waves* (MASW) and the *SPatial AutoCorrelation* (SPAC or MAM for *Microtremors Array Method*) are seismic methods used to evaluate the shear wave velocities of subsurface materials through the analysis of the dispersion properties of the Rayleigh surface wave. The MASW is considered an "active" method, as the seismic signal is induced at known location and time in the geophones' spread axis. Conversely, the SPAC is considered a "passive" method, using the low frequency "signals" produced far away. The method can also be used with "active" seismic source records. The SPAC method generally allows deeper V_S soundings. Its dispersion curve can then be merged with the one of higher frequency from the MASW to calculate a more complete inversion. The dispersion properties are expressed as a change of velocities with respect to frequencies. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. The inversion of the Rayleigh wave dispersion curve yields a shear wave (V_S) velocity depth profile (sounding).

Figure 3 schematically outlines the basic operating procedure for the MASW method. Figure 4 illustrates an example of one of the MASW/SPAC records, a corresponding spectrogram analysis and resulting 1D V_s model.

INTERPRETATION

The main processing sequence involved data inspection and edition when required; spectral analysis (from MASW and SPAC); picking the fundamental mode; and 1D inversion of the MASW and SPAC shot records using the SeisImagerSW[™] software. The data inversions used a nonlinear least squares algorithm.

In theory, all the shot records for a given seismic spread should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation, local surface seismic velocities variations, and/or dipping of overburden layers or rock. In general, the precision of the calculated seismic shear wave velocities (V_s) is around 15% or better.

More detailed descriptions of these methods are presented in *Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock*, Hunter, J.A., Crow, H.L., et al., Geological Surveys of Canada, General Information Product 110, 2015.

SURVEY DESIGN

The seismic spreads were laid out north-west of the intersection of Brian Good Ave and Atrium Ridge (Figure 2). The geophone spacing was 3.0 metres for the main spread, using 24 geophones. A shorter seismic spread, with geophone spacing of 1.0 metre, was dedicated to the near surface materials. The seismic records were produced with a seismograph Terraloc PRO2 (from ABEM Instrument), and the geophones were 4.5 Hz.

The seismic records counted 4096 data, sampled at 1000 μ s for the MASW surveys, and at 50 μ s for the seismic refraction. The records included a pre-trigged portion of 10 ms. A 5 kg sledgehammer was used as the energy source, with impacts being recorded off both ends of the seismic spreads. A stacking procedure was also used to improve the Signal / Noise ratio for the seismic records.

The shear wave depth sounding can be considered as the average of the bulk area within the geophone spread, especially for its central half-length.

RESULTS

From seismic reflection (NMO) a reflector associated to the rock was calculated between 33.5 and 37 metres deep. This parameter was used for the initial geophysical models, prior to the modelling and inversion of the MASW results.

The MASW calculated V_s results are illustrated at Figure 5.

The \overline{V}_{S30} value results from the harmonic mean of the shear wave velocities, from the surface to 30 metres deep. It is calculated by dividing the total depth of interest (30 metres) by the sum of the time spent in each velocity layer from the surface down to 30 metres, as:

$$\bar{V}_{S30} = \frac{\sum_{i=1}^{N} H_i}{\sum_{i=1}^{N} H_i/V_i} \mid \sum_{i=1}^{N} H_i = 30 \text{ m}$$

(N: number of layers; H_i: thickness of layer "i"; V_i: V_s of layer "i")

Thus, the \overline{V}_{S30} value represents the seismic shear wave velocity of an equivalent homogeneous single layer response, between the surface and 30 metres deep.

The calculated \overline{V}_{S30} value of the actual site is 478.9 m/s (Table 1), corresponding to the Site Class "C".

CONCLUSION

Geophysical surveys were carried out to identify the Site Class at 960 Brian Good Avenue, Riverside South, in Ottawa (ON). The seismic surveys used the MASW and the SPAC analysis to calculate the \overline{V}_{S30} value. Its calculation is presented at Table 1.

The \overline{V}_{S30} value of the actual site is 479 m/s, corresponding to the Site Class "C" (360 < $\overline{V}_{S30} \leq$ 760 m/s), as determined through the MASW and SPAC methods, Table 4.1.8.4.-A of the NBC (2015), and the Building Code, O. Reg. 332/12.

It must be noted that other geotechnical information gleaned on site; including the presence of liquefiable soils, very soft clays, high moisture content etc. (cf. Table 4.1.8.4.-A of the NBC 2015) can supersede the Site classification provided in this report based on the \overline{V}_{S30} value.

The V_s values calculated are representative of the in situ materials and are not corrected for the total and effective stresses.

Hoping the whole to your satisfaction, we remain yours truly,

4th P. Eng.

Jean-Luc Arsenault, M.A.Sc., P.Eng. Senior Project Manager

Figure 1: Regional location of the Site (Source : OpenStreetMap©)

Figure 2: Location of the seismic spread (source: Google Earth™)

Figure 3: MASW Operating Principle

Figure 4: Example of a MASW/SPAC record, Phase Velocity - Frequency curve of the Rayleigh wave and resulting 1D Shear Wave Velocity Model

Figure 5: MASW Shear-Wave Velocity Sounding

Depth		Vs		Thickness	Cumulative	Delay for	Cumulative	Vs at given
Depth	Min.	Median	Max.	Thickness	Thickness	med. Vs	Delay	Depth
(m)	(m/s)	(m/s)	(m/s)	(m)	(m)	(s)	(s)	(m/s)
0	157.8	179.3	187.2		Grade Le	vel (Decembe	er 5 th , 2024)	
1.25	189.4	194.5	240.7	1.25	1.25	0.006973	179.3	
2.69	259.1	275.7	303.9	1.44	2.69	0.007415	0.014388	187.1
4.33	281.3	303.7	313.4	1.63	4.33	0.005929	0.020317	213.0
6.15	256.0	324.7	398.1	1.83	6.15	0.006016	0.026333	233.7
8.17	343.1	401.2	490.0	2.02	8.17	0.006218	0.032551	251.1
10.38	528.5	703.7	723.0	2.21	10.38	0.005513	0.038064	272.8
12.79	714.6	726.4	760.6	2.40	12.79	0.003416	0.041480	308.3
15.38	742.3	759.6	804.5	2.60	15.38	0.003574	0.045054	341.5
18.17	749.0	780.9	827.4	2.79	18.17	0.003671	0.048725	373.0
21.17	765.4	842.3	848.3	3.00	21.17	0.003842	0.052566	402.8
24.37	791.6	886.2	915.0	3.20	24.37	0.003799	0.056366	432.4
27.97	852.1	912.2	946.8	3.60	27.97	0.004062	0.060428	462.9
30				2.03	30.00	0.002222	0.062650	478.9
							VS30 (m/s)	478.9

$\frac{\text{TABLE 1}}{\bar{V}_{\text{S30}}}$ Calculation for the Site Class (actual site)

Vs30 (m/s) Class

С

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Appendix B – Consolidation Test Results

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue, Ottawa ON K2C 3G4

January 17, 2025 File: 121624678

Attention: Ismail Taki, M.Eng., P.Eng. Exp Services Inc 2650 Queensview Drive Suite 100 Ottawa, Ontario, Canada, K2B 8H6 Tel: 1-613-853-1350 E-mail: ismail.taki@exp.com

Dear Mr. Taki,

Reference: Consolidation Test Results: Proposed OCDSB Riverside South Elementary School, 675 Borbridge, Ottawa, ON. Exp Services Inc., File # OTT-24010349-A0

This letter presents the results of one-dimensional consolidation test carried out on one shelby tube samples in accordance with ASTM D2435/D2435M - 11(2020). The test result is provided in the attached tables and figures.

Summary of samples tested.

Sample ID	Depth (ft)	Date sampled
BH 24-12, ST1	12.5-14.5	December 6, 2024

This letter provides test results only and does not constitute any interpretation or engineering recommendations with respect to material suitability or specification compliance.

We trust the information presented herein meets your present requirements. Should you have any questions or require additional information, please do not hesitate to contact us.

Regards,

Stantec Consulting Ltd.

Ramin Ghassemi Ph.D., P.Eng. Geotechnical Engineer Direct: 613 722-4420 Mobile: 437 775-7625 Ramin.ghassemi@stantec.com

v:\01216\active\laboratory_standing_offers\2024 laboratory standing offers\121625890 exp services inc\1 consol, exp # ott-24010349a0\121624678_let_consolidation_bh24-12, st1_revised.docx

		C	ONSOLIDATION T	EST SUM	MARY					
				SAMPLE	DENTIFIC	ATION				
Bo	orehole No.	:	BH24-12			Sample No	.:		ST1	1
						Sample De	pth (ft) :		12.5-14.5	5
				TEST CON	DITIONS					
Τe	est Type :		ASTM D2435/D243	5M		Date Starte	d :		24-Dec-24	1
Lc	oad Duratio	n (hr) :	24			Date Comp	leted :		9-Jan-25	5
			SAMPLE DIMENS	SIONS AND	PROPER	TIES_INI	TIAL			
Sa	ample Heigl	ht (mm) :	20.50			Unit Weigh	t (kN/m ³) :		15.89	
		eter (mm) :	50.00				eight (kN/m ³	³):	9.78	
	rea (cm²) :		19.63			Specific Gra	avity : (Assu	imed)	2.75	
	olume (cm ³)):	40.25			Solid Heigh	• •	,	7.44	
	ater Conter		62.47				Solids (cm ³)	:	14.60	
	/et Mass (g)		65.23				Voids (cm ³)		25.65	
	ry Mass (g)		40.15			Degree of S	Saturation (9	%):	97.77	
				TEST CON		10				
			Corrected	Axial	Void Ratio	t ₉₀	Cv	m _v	k	
۵	xial Stress	Height (H)	-	Strain (ε _a)	e	(sec)	(cm ² /s)	(m ² /kN)	(m/s)	
10	(kPa)	(mm)	(mm)	(%)	C	(300)	(01173)	(111 / 131 • 1)	(11/3)	
	0	20.5000	0.0000	0.00	1.757					
	5	20.2906	0.2094	1.02	1.729		3 1/ ⊑_03	2.04E-03	6.29E-09	2
	10	20.2300	0.3575	1.74	1.709			1.44E-03	5.83E-09	
	20	19.7985	0.7015	3.42	1.663			1.68E-03	3.14E-09	
	40	19.3321	1.1679	5.70	1.600			1.14E-03	2.04E-09	
	80	18.7516	1.7484	8.53	1.522			7.08E-04	1.40E-09	
	160	17.2892	3.2108	15.66	1.325			8.92E-04	6.31E-10	
	320	15.6111	4.8889	23.85	1.099			5.12E-04	4.46E-10	
	480	14.7798	5.7202	27.90	0.988			2.53E-04	7.09E-11	
	160	14.8427	5.6573	27.60	0.996		2.000-04	2.000-04	1.000-11	•
	40	15.0683	5.4317	26.50	1.026					
	160	14.9356	5.5644	27.14	1.009		3 79E-03	5.39E-05	2.01E-10)
	480	14.5697	5.9303	28.93	0.959			5.58E-05	1.92E-10	
	720	14.0359	6.4641	31.53	0.888			1.08E-04	9.52E-11	
	960	13.5449	6.9551	33.93	0.822			9.98E-05	2.00E-11	
	1920	12.5916	7.9084	38.58	0.693			4.84E-05	6.60E-11	
			SAMPLE DIMENS	SIONS AND	PROPER	TIES_FIN	IAL			
Sa	ample Heigl	nt (mm) :	12.59			Unit Weigh			20.73	
	-	eter (mm) :	50.00			Dry Unit W	eight (kN/m ³	³):	15.93	
	rea (cm²) :		19.63	Specific Gravity (Assumed) :					2.75	
Vo	olume (cm ³)):							7.44	
W	ater Conter	nt (%) :	30.16				Solids (cm ³)		14.60	
W	′et Mass (g)	:	52.26			Volume of V	√oids (cm³)	:	10.12	
Dr	ry Mass (g)	:	40.15							
niect	No. :	121624678						Prepared E	Sv ·	C
te :	110	17-Jan-25			Sta	ntec		Checked E	-	F

PHOTOS 1 & 2

BH24-12, ST1

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Appendix C – Environmental Laboratory Certificates of Analysis

[‰]ехр.

Your Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Your C.O.C. #: N/A

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2024/12/13 Report #: R8445437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BB424

Received: 2024/12/09, 14:48

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Hot Water Extractable Boron (1)	3	2024/12/12	2024/12/12	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron (1)	1	2024/12/12	2024/12/13	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum (1)	4	N/A	2024/12/12		EPA 8260C m
Free (WAD) Cyanide (1)	4	2024/12/12	2024/12/12	CAM SOP-00457	OMOE E3015 m
Conductivity (1)	4	2024/12/12	2024/12/12	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1, 2)	4	2024/12/12	2024/12/12	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	1	2024/12/12	2024/12/12	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	3	2024/12/12	2024/12/13	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS (1)	4	2024/12/12	2024/12/12	CAM SOP-00447	EPA 6020B m
Moisture (1)	4	N/A	2024/12/11	CAM SOP-00445	Carter 2nd ed 70.2 m
pH CaCl2 EXTRACT (1)	4	2024/12/12	2024/12/12	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR) (1)	4	N/A	2024/12/12	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs (1)	4	N/A	2024/12/12	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Your Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Your C.O.C. #: N/A

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2024/12/13 Report #: R8445437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BB424

Received: 2024/12/09, 14:48

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) Soils are reported on a dry weight basis unless otherwise specified.

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		ALGO15			ALGO15			ALGO16		
Sampling Date		2024/12/06			2024/12/06			2024/12/04		
		13:00			13:00			09:00		
COC Number		N/A			N/A			N/A		
	UNITS	BH 24-01 , SS5	RDL	QC Batch	BH 24-01 , SS5 Lab-Dup	RDL	QC Batch	BH24-04,SS3	RDL	QC Batch
Calculated Parameters									I	
Sodium Adsorption Ratio	N/A	0.27 (1)		9820300				0.38 (1)		9820300
Inorganics	<u> </u>	. ,		ļļ		4			Į	
Conductivity	mS/cm	0.16	0.002	9822989				0.085	0.002	9822989
Available (CaCl2) pH	рН	7.66		9823309				7.13		9823309
WAD Cyanide (Free)	ug/g	<0.01	0.01	9822211				<0.01	0.01	9822211
Chromium (VI)	ug/g	<0.18	0.18	9822456				0.24	0.18	9822456
Metals						1			1	
Hot Water Ext. Boron (B)	ug/g	<0.050	0.050	9822615				<0.050	0.050	9822615
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	9822953	<0.20	0.20	9822953	<0.20	0.20	9822630
Acid Extractable Arsenic (As)	ug/g	<1.0	1.0	9822953	<1.0	1.0	9822953	2.1	1.0	9822630
Acid Extractable Barium (Ba)	ug/g	200	0.50	9822953	190	0.50	9822953	130	0.50	9822630
Acid Extractable Beryllium (Be)	ug/g	0.56	0.20	9822953	0.52	0.20	9822953	0.46	0.20	9822630
Acid Extractable Boron (B)	ug/g	<5.0	5.0	9822953	<5.0	5.0	9822953	<5.0	5.0	9822630
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	9822953	<0.10	0.10	9822953	<0.10	0.10	9822630
Acid Extractable Chromium (Cr)	ug/g	42	1.0	9822953	40	1.0	9822953	28	1.0	9822630
Acid Extractable Cobalt (Co)	ug/g	11	0.10	9822953	11	0.10	9822953	8.3	0.10	9822630
Acid Extractable Copper (Cu)	ug/g	26	0.50	9822953	24	0.50	9822953	18	0.50	9822630
Acid Extractable Lead (Pb)	ug/g	5.1	1.0	9822953	5.0	1.0	9822953	4.7	1.0	9822630
Acid Extractable Molybdenum (Mo)	ug/g	0.61	0.50	9822953	0.66	0.50	9822953	<0.50	0.50	9822630
Acid Extractable Nickel (Ni)	ug/g	24	0.50	9822953	23	0.50	9822953	17	0.50	9822630
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	9822953	<0.50	0.50	9822953	<0.50	0.50	9822630
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	9822953	<0.20	0.20	9822953	<0.20	0.20	9822630
Acid Extractable Thallium (Tl)	ug/g	0.24	0.050	9822953	0.24	0.050	9822953	0.15	0.050	9822630
Acid Extractable Uranium (U)	ug/g	0.67	0.050	9822953	0.66	0.050	9822953	0.54	0.050	9822630
Acid Extractable Vanadium (V)	ug/g	67	5.0	9822953	63	5.0	9822953	42	5.0	9822630
Acid Extractable Zinc (Zn)	ug/g	68	5.0	9822953	67	5.0	9822953	46	5.0	9822630
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	9822953	<0.050	0.050	9822953	<0.050	0.050	9822630

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		ALGO17		ALGO18		
Sampling Date		2024/12/04		2024/12/04		
		13:30				
COC Number		N/A		N/A		
	UNITS	BH24-14,SS4	QC Batch	DUP	RDL	QC Batch
Calculated Parameters						
Sodium Adsorption Ratio	N/A	0.25	9820300	0.25		9820300
Inorganics						
Conductivity	mS/cm	0.22	9822989	0.23	0.002	9822989
Available (CaCl2) pH	рН	7.63	9823309	7.64		9822993
WAD Cyanide (Free)	ug/g	<0.01	9822210	<0.01	0.01	9822210
Chromium (VI)	ug/g	<0.36	9822456	<0.36	0.36	9822456
Metals						
Hot Water Ext. Boron (B)	ug/g	<0.050	9822615	<0.050	0.050	9822600
Acid Extractable Antimony (Sb)	ug/g	<0.20	9822630	<0.20	0.20	9822630
Acid Extractable Arsenic (As)	ug/g	1.0	9822630	<1.0	1.0	9822630
Acid Extractable Barium (Ba)	ug/g	390	9822630	340	0.50	9822630
Acid Extractable Beryllium (Be)	ug/g	0.77	9822630	0.71	0.20	9822630
Acid Extractable Boron (B)	ug/g	<5.0	9822630	<5.0	5.0	9822630
Acid Extractable Cadmium (Cd)	ug/g	<0.10	9822630	<0.10	0.10	9822630
Acid Extractable Chromium (Cr)	ug/g	89	9822630	89	1.0	9822630
Acid Extractable Cobalt (Co)	ug/g	21	9822630	21	0.10	9822630
Acid Extractable Copper (Cu)	ug/g	40	9822630	38	0.50	9822630
Acid Extractable Lead (Pb)	ug/g	6.1	9822630	5.8	1.0	9822630
Acid Extractable Molybdenum (Mo)	ug/g	0.66	9822630	0.59	0.50	9822630
Acid Extractable Nickel (Ni)	ug/g	50	9822630	51	0.50	9822630
Acid Extractable Selenium (Se)	ug/g	<0.50	9822630	<0.50	0.50	9822630
Acid Extractable Silver (Ag)	ug/g	<0.20	9822630	<0.20	0.20	9822630
Acid Extractable Thallium (Tl)	ug/g	0.43	9822630	0.38	0.050	9822630
Acid Extractable Uranium (U)	ug/g	0.66	9822630	0.68	0.050	9822630
Acid Extractable Vanadium (V)	ug/g	100	9822630	98	5.0	9822630
Acid Extractable Zinc (Zn)	ug/g	130	9822630	120	5.0	9822630
Acid Extractable Mercury (Hg)	ug/g	<0.050	9822630	<0.050	0.050	9822630
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALGO15	ALGO16		ALGO17		ALGO18		
Sampling Data		2024/12/06	2024/12/04		2024/12/04		2024/12/04		
Sampling Date		13:00	09:00		13:30		2024/12/04		
COC Number		N/A	N/A		N/A		N/A		
	UNITS	BH 24-01 , SS5	BH24-04,SS3	RDL	BH24-14,SS4	RDL	DUP	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9819530
Volatile Organics			•			•			
Acetone (2-Propanone)	ug/g	<0.49	<0.49	0.49	<0.49	0.49	<0.49	0.49	9820755
Benzene	ug/g	<0.0060	<0.0060	0.0060	<0.0060	0.0060	<0.0060	0.0060	9820755
Bromodichloromethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Bromoform	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Bromomethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Carbon Tetrachloride	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Chlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Chloroform	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Dibromochloromethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1-Dichloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,2-Dichloroethane	ug/g	<0.049	<0.049	0.049	<0.049	0.049	<0.049	0.049	9820755
1,1-Dichloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,2-Dichloropropane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	<0.030	0.030	<0.030	0.030	9820755
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Ethylbenzene	ug/g	<0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	9820755
Ethylene Dibromide	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Hexane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	0.049	<0.049	0.049	<0.049	0.049	9820755
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	0.40	<0.40	0.40	<0.40	0.40	9820755
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	0.40	<0.40	0.40	<0.40	0.40	9820755
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Styrene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
RDL = Reportable Detection Limit	••		•		•		•		•
QC Batch = Quality Control Batch									

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALGO15	ALGO16		ALGO17		ALGO18		
Sampling Date		2024/12/06	2024/12/04		2024/12/04		2024/12/04		
		13:00	09:00		13:30		2024/12/04		
COC Number		N/A	N/A		N/A		N/A		
	UNITS	BH 24-01 <i>,</i> SS5	BH24-04,SS3	RDL	BH24-14,SS4	RDL	DUP	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Toluene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Trichloroethylene	ug/g	<0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	9820755
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Vinyl Chloride	ug/g	<0.019	<0.019	0.019	<0.019	0.019	<0.019	0.019	9820755
p+m-Xylene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
o-Xylene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
Total Xylenes	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
F1 (C6-C10)	ug/g	<10	<10	10	<10	10	<10	10	9820755
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	<10	10	<10	10	9820755
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	<7.0	7.0	<14	14	7.1	7.0	9822204
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	<100	100	<50	50	9822204
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	<100	100	<50	50	9822204
Reached Baseline at C50	ug/g	Yes	Yes		Yes		Yes		9822204
Surrogate Recovery (%)									
o-Terphenyl	%	96	104		98		100		9822204
4-Bromofluorobenzene	%	94	96		95		95		9820755
D10-o-Xylene	%	86	88		83		81		9820755
D4-1,2-Dichloroethane	%	123	124		121		123		9820755
D8-Toluene	%	90	90		91		92		9820755
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ALGO15	ALGO16	ALGO17	ALGO18		
Sampling Date		2024/12/06	2024/12/04	2024/12/04	2024/12/04		
		13:00	09:00	13:30			
COC Number		N/A	N/A	N/A	N/A		
	UNITS	BH 24-01 , SS5	BH24-04,SS3	BH24-14,SS4	DUP	RDL	QC Batch
Inorganics							
Inorganics Moisture	%	30	22	40	36	1.0	9821321

Collected: 2024/12/06

TEST SUMMARY

Bureau Veritas ID:	ALGO15
Sample ID:	BH 24-01 , SS5
Matrix:	Soil

Sample ID: BH 24-01 , SS5 Matrix: Soil					Shipped: Received: 2024/12/09
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822615	2024/12/12	2024/12/12	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822211	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/12	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822953	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9823309	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Bureau Veritas ID: ALGO15 Dup Sample ID: BH 24-01, SS5 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Acid Extractable Metals by ICPMS	ICP/MS	9822953	2024/12/12	2024/12/12	Daniel Teclu

Bureau Veritas ID: ALGO16 Sample ID: BH24-04,SS3 Matrix: Soil

Collected: 2024/12/04 Shipped: **Received:** 2024/12/09

Collected: 2024/12/06

Received: 2024/12/09

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822615	2024/12/12	2024/12/12	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822211	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/13	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822630	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9823309	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Bureau Veritas ID: Sample ID: Matrix:	ALGO17 BH24-14,SS4 Soil					Collected: 2024/12/04 Shipped: Received: 2024/12/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Bo	ron	ICP	9822615	2024/12/12	2024/12/12	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	I	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide		TECH	9822210	2024/12/12	2024/12/12	Prgya Panchal
Conductivity		AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR

TEST SUMMARY

Bureau Veritas ID:	ALGO17
Sample ID:	BH24-14,SS4
Matrix:	Soil

Sample ID: BH24-14,SS Matrix: Soil	64				Shipped: Received: 2024/12/09
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/13	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822630	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9823309	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PH	Cs GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Bureau Veritas ID:	ALGO18
Sample ID:	DUP
Matrix:	Soil

Collected:	2024/12/04
Shipped:	
Received:	2024/12/09
Receiveu.	2024/12/05

Collected: 2024/12/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822600	2024/12/12	2024/12/13	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822210	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/13	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822630	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9822993	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt					
]	Package 1	2.0°C]			
Sample	ALGO17 [BH24-14,S	S4] :F2-F4 Ana	lysis: Detection limits were adjusted for high moisture content.			
Hexava	Hexavalent Chromium: Detection Limits were raised due to high moisture content.					
Sample ALGO18 [DUP] : Hexavalent Chromium: Detection Limits were raised due to high moisture content.						
Results	Results relate only to the items tested.					

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9820755	4-Bromofluorobenzene	2024/12/12	101	60 - 140	104	60 - 140	95	%		
9820755	D10-o-Xylene	2024/12/12	100	60 - 130	89	60 - 130	84	%		
9820755	D4-1,2-Dichloroethane	2024/12/12	112	60 - 140	120	60 - 140	124	%		
9820755	D8-Toluene	2024/12/12	101	60 - 140	105	60 - 140	90	%		
9822204	o-Terphenyl	2024/12/12	112	60 - 140	85	60 - 140	91	%		
9820755	1,1,1,2-Tetrachloroethane	2024/12/12	109	60 - 140	117	60 - 130	<0.040	ug/g	NC	50
9820755	1,1,1-Trichloroethane	2024/12/12	109	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
9820755	1,1,2,2-Tetrachloroethane	2024/12/12	89	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9820755	1,1,2-Trichloroethane	2024/12/12	97	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9820755	1,1-Dichloroethane	2024/12/12	101	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
9820755	1,1-Dichloroethylene	2024/12/12	103	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
9820755	1,2-Dichlorobenzene	2024/12/12	95	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
9820755	1,2-Dichloroethane	2024/12/12	109	60 - 140	115	60 - 130	<0.049	ug/g	NC	50
9820755	1,2-Dichloropropane	2024/12/12	99	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9820755	1,3-Dichlorobenzene	2024/12/12	97	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
9820755	1,4-Dichlorobenzene	2024/12/12	97	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
9820755	Acetone (2-Propanone)	2024/12/12	104	60 - 140	109	60 - 140	<0.49	ug/g	NC	50
9820755	Benzene	2024/12/12	101	60 - 140	100	60 - 130	<0.0060	ug/g	NC	50
9820755	Bromodichloromethane	2024/12/12	104	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
9820755	Bromoform	2024/12/12	93	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
9820755	Bromomethane	2024/12/12	104	60 - 140	104	60 - 140	<0.040	ug/g	NC	50
9820755	Carbon Tetrachloride	2024/12/12	119	60 - 140	118	60 - 130	<0.040	ug/g	NC	50
9820755	Chlorobenzene	2024/12/12	87	60 - 140	87	60 - 130	<0.040	ug/g	NC	50
9820755	Chloroform	2024/12/12	107	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9820755	cis-1,2-Dichloroethylene	2024/12/12	101	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9820755	cis-1,3-Dichloropropene	2024/12/12	86	60 - 140	82	60 - 130	<0.030	ug/g	NC	50
9820755	Dibromochloromethane	2024/12/12	100	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
9820755	Dichlorodifluoromethane (FREON 12)	2024/12/12	133	60 - 140	126	60 - 140	<0.040	ug/g	NC	50
9820755	Ethylbenzene	2024/12/12	90	60 - 140	85	60 - 130	<0.010	ug/g	NC	50
9820755	Ethylene Dibromide	2024/12/12	92	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9820755	F1 (C6-C10) - BTEX	2024/12/12					<10	ug/g	2.8	30
9820755	F1 (C6-C10)	2024/12/12	65	60 - 140	91	80 - 120	<10	ug/g	2.8	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
9820755	Hexane	2024/12/12	104	60 - 140	107	60 - 130	<0.040	ug/g	NC	50	
9820755	Methyl Ethyl Ketone (2-Butanone)	2024/12/12	98	60 - 140	105	60 - 140	<0.40	ug/g	NC	50	
9820755	Methyl Isobutyl Ketone	2024/12/12	92	60 - 140	94	60 - 130	<0.40	ug/g	NC	50	
9820755	Methyl t-butyl ether (MTBE)	2024/12/12	91	60 - 140	93	60 - 130	<0.040	ug/g	NC	50	
9820755	Methylene Chloride(Dichloromethane)	2024/12/12	103	60 - 140	106	60 - 130	<0.049	ug/g	NC	50	
9820755	o-Xylene	2024/12/12	95	60 - 140	91	60 - 130	<0.020	ug/g	NC	50	
9820755	p+m-Xylene	2024/12/12	87	60 - 140	83	60 - 130	<0.020	ug/g	NC	50	
9820755	Styrene	2024/12/12	87	60 - 140	83	60 - 130	<0.040	ug/g	NC	50	
9820755	Tetrachloroethylene	2024/12/12	98	60 - 140	95	60 - 130	<0.040	ug/g	NC	50	
9820755	Toluene	2024/12/12	96	60 - 140	98	60 - 130	<0.020	ug/g	NC	50	
9820755	Total Xylenes	2024/12/12					<0.020	ug/g	NC	50	
9820755	trans-1,2-Dichloroethylene	2024/12/12	104	60 - 140	102	60 - 130	<0.040	ug/g	NC	50	
9820755	trans-1,3-Dichloropropene	2024/12/12	94	60 - 140	97	60 - 130	<0.040	ug/g	NC	50	
9820755	Trichloroethylene	2024/12/12	98	60 - 140	96	60 - 130	<0.010	ug/g	NC	50	
9820755	Trichlorofluoromethane (FREON 11)	2024/12/12	112	60 - 140	110	60 - 130	<0.040	ug/g	NC	50	
9820755	Vinyl Chloride	2024/12/12	112	60 - 140	111	60 - 130	<0.019	ug/g	NC	50	
9821321	Moisture	2024/12/11							1.9	20	
9822204	F2 (C10-C16 Hydrocarbons)	2024/12/12	107	60 - 140	82	80 - 120	<7.0	ug/g	NC	30	
9822204	F3 (C16-C34 Hydrocarbons)	2024/12/12	110	60 - 140	84	80 - 120	<50	ug/g	NC	30	
9822204	F4 (C34-C50 Hydrocarbons)	2024/12/12	108	60 - 140	82	80 - 120	<50	ug/g	NC	30	
9822210	WAD Cyanide (Free)	2024/12/12	101	75 - 125	111	80 - 120	<0.01	ug/g	NC	35	
9822211	WAD Cyanide (Free)	2024/12/12	92	75 - 125	106	80 - 120	<0.01	ug/g	NC	35	
9822456	Chromium (VI)	2024/12/12	39 (1)	70 - 130	93	80 - 120	<0.18	ug/g	NC	35	
9822600	Hot Water Ext. Boron (B)	2024/12/13	106	75 - 125	91	75 - 125	<0.050	ug/g	6.2	40	
9822615	Hot Water Ext. Boron (B)	2024/12/12	103	75 - 125	106	75 - 125	<0.050	ug/g	NC	40	
9822630	Acid Extractable Antimony (Sb)	2024/12/12	115	75 - 125	111	80 - 120	<0.20	ug/g	4.6	30	
9822630	Acid Extractable Arsenic (As)	2024/12/12	109	75 - 125	98	80 - 120	<1.0	ug/g	5.1	30	
9822630	Acid Extractable Barium (Ba)	2024/12/12	NC	75 - 125	92	80 - 120	<0.50	ug/g	3.3	30	
9822630	Acid Extractable Beryllium (Be)	2024/12/12	107	75 - 125	90	80 - 120	<0.20	ug/g	0.032	30	
9822630	Acid Extractable Boron (B)	2024/12/12	97	75 - 125	91	80 - 120	<5.0	ug/g	1.5	30	
9822630	Acid Extractable Cadmium (Cd)	2024/12/12	110	75 - 125	92	80 - 120	<0.10	ug/g	NC	30	
9822630	Acid Extractable Chromium (Cr)	2024/12/12	110	75 - 125	96	80 - 120	<1.0	ug/g	4.3	30	

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9822630	Acid Extractable Cobalt (Co)	2024/12/12	107	75 - 125	96	80 - 120	<0.10	ug/g	3.6	30
9822630	Acid Extractable Copper (Cu)	2024/12/12	NC	75 - 125	95	80 - 120	<0.50	ug/g	0.71	30
9822630	Acid Extractable Lead (Pb)	2024/12/12	111	75 - 125	95	80 - 120	<1.0	ug/g	1.3	30
9822630	Acid Extractable Mercury (Hg)	2024/12/12	118	75 - 125	101	80 - 120	<0.050	ug/g		
9822630	Acid Extractable Molybdenum (Mo)	2024/12/12	109	75 - 125	90	80 - 120	<0.50	ug/g	NC	30
9822630	Acid Extractable Nickel (Ni)	2024/12/12	NC	75 - 125	96	80 - 120	<0.50	ug/g	1.9	30
9822630	Acid Extractable Selenium (Se)	2024/12/12	105	75 - 125	94	80 - 120	<0.50	ug/g	NC	30
9822630	Acid Extractable Silver (Ag)	2024/12/12	109	75 - 125	92	80 - 120	<0.20	ug/g	NC	30
9822630	Acid Extractable Thallium (TI)	2024/12/12	112	75 - 125	96	80 - 120	<0.050	ug/g	7.0	30
9822630	Acid Extractable Uranium (U)	2024/12/12	117	75 - 125	99	80 - 120	<0.050	ug/g	2.8	30
9822630	Acid Extractable Vanadium (V)	2024/12/12	NC	75 - 125	97	80 - 120	<5.0	ug/g	3.8	30
9822630	Acid Extractable Zinc (Zn)	2024/12/12	NC	75 - 125	98	80 - 120	<5.0	ug/g	1.5	30
9822953	Acid Extractable Antimony (Sb)	2024/12/12	107	75 - 125	112	80 - 120	<0.20	ug/g	NC	30
9822953	Acid Extractable Arsenic (As)	2024/12/12	104	75 - 125	101	80 - 120	<1.0	ug/g	NC	30
9822953	Acid Extractable Barium (Ba)	2024/12/12	NC	75 - 125	94	80 - 120	<0.50	ug/g	2.0	30
9822953	Acid Extractable Beryllium (Be)	2024/12/12	101	75 - 125	92	80 - 120	<0.20	ug/g	6.5	30
9822953	Acid Extractable Boron (B)	2024/12/12	95	75 - 125	90	80 - 120	<5.0	ug/g	NC	30
9822953	Acid Extractable Cadmium (Cd)	2024/12/12	102	75 - 125	96	80 - 120	<0.10	ug/g	NC	30
9822953	Acid Extractable Chromium (Cr)	2024/12/12	NC	75 - 125	100	80 - 120	<1.0	ug/g	5.7	30
9822953	Acid Extractable Cobalt (Co)	2024/12/12	105	75 - 125	100	80 - 120	<0.10	ug/g	4.4	30
9822953	Acid Extractable Copper (Cu)	2024/12/12	NC	75 - 125	98	80 - 120	<0.50	ug/g	6.1	30
9822953	Acid Extractable Lead (Pb)	2024/12/12	104	75 - 125	98	80 - 120	<1.0	ug/g	2.0	30
9822953	Acid Extractable Mercury (Hg)	2024/12/12	110	75 - 125	107	80 - 120	<0.050	ug/g	NC	30
9822953	Acid Extractable Molybdenum (Mo)	2024/12/12	102	75 - 125	95	80 - 120	<0.50	ug/g	6.5	30
9822953	Acid Extractable Nickel (Ni)	2024/12/12	109	75 - 125	102	80 - 120	<0.50	ug/g	4.1	30
9822953	Acid Extractable Selenium (Se)	2024/12/12	102	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
9822953	Acid Extractable Silver (Ag)	2024/12/12	100	75 - 125	96	80 - 120	<0.20	ug/g	NC	30
9822953	Acid Extractable Thallium (TI)	2024/12/12	105	75 - 125	99	80 - 120	<0.050	ug/g	1.0	30
9822953	Acid Extractable Uranium (U)	2024/12/12	110	75 - 125	103	80 - 120	<0.050	ug/g	1.4	30
9822953	Acid Extractable Vanadium (V)	2024/12/12	NC	75 - 125	100	80 - 120	<5.0	ug/g	6.2	30
9822953	Acid Extractable Zinc (Zn)	2024/12/12	NC	75 - 125	102	80 - 120	<5.0	ug/g	2.1	30
9822989	Conductivity	2024/12/12			104	90 - 110	<0.002	mS/cm	3.6	10

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE	2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9822993	Available (CaCl2) pH	2024/12/12			100	97 - 103			0.20	N/A
9823309	Available (CaCl2) pH	2024/12/12			100	97 - 103			0.90	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

exp Services Inc Client Project #: OTT-24010349-A0 Site Location: BARRHAVEN, 675 BORBRIDGE AVE. Sampler Initials: MB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Lowie A Marding

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

((((()))	aww.8VNA.	com	6740 Campo Phone: 905-						re: 800-563-626	6								C		NV CO				RD						P	age		of	
Invoice Inform	mation	Invoice to (requires report)				Report la	nforma	tion (if	differs from inv	oice)						- 10		Proj	ect Inf	ormati	on			_	_									
Company :	EXP	Serves no		Company:										Quota	ation #	6)										ſ	7	26	1	n 7	10	RR	4 21	1.
Contact Name:	Chris	Kumery		Contact Name:		_								P.O. #	I/ AFER	t:											2	÷	-		-4	S	420	-1
Street Address:	2650	queensirw Dr.	SA 100	Street Address:										Projec	ct #:		ÖTT.	- 2	40	10	340	1-A	10				13	<u>ښ</u> د	ġ	N N	ONT-	2024-	12-17	66
	tawo	Prov: ON Code:	K288K1	City:				F	Prov:	Post				Site #	t:											1	٦,	57	<u>.</u>	<u>,</u>				
Phone:	613-	863-1891		Phone:				-		Teor				Site L	ocation	n:	barri	hah	2	6	75	Borl	ndy	e A	Acc.									
Email:		. Kimmerly @ Exp.	Lom	Email:										Site Li Provin	ocation	n	ON.						- 3											-
Copies:	Matthe	ur, Zamito Exp.	. com	Copies:						_		_		100.000	led By		Mat	7	3	an	it	-												
		R	egulatory Crite							1	2	3	4	5	6	7	8 9	10	11	12	13 1	4 1	5 16	17	18	19	20 2	1 2	22	Reg	ular Turn	around Tin	e (TAT)	
ESI 038	e 3	Res/Park Med/ Ind/Comm Coars Agri/other For RS	e BHLO	PWQO	TAT [Othe	ary Sev n Sewe Munici	ver Byla r Bylaw						~		lics	ALC . B1	200									4	ED			sh Turnai Surch	I nound Time	(TAT)	
a set a c		Include Criteria o										JIRED		a		organ	1										Liber.	MIT		3 Same I	Day		Day	
	SAMPLES MUS	T BE KEPT COOL (<10°C) FROM	TIME OF SAMP	LING UNTIL	DELIVER	TO BU	REAU	ERITA	s			LAB FILTRATION REQUIRED		3		and in	metals										10.00	# OF CONTAINERS SUBMITTED	DO NOT ANALYZE	2 Day		□ 3	Day	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			82.9		te Samp	oled	Tir (24	ne hrì		ERED	SERVE	ATION		J		letals	PMS letals										STATES.	AINE	IQ I] 4 Day				
Sample Id	entification	print or Type)	(Ple	ase yyyy	MM	DD	нн	MM	Matrix	FIELD FILTERED	FIELD PRESERVED	FILTR	BTEX/ F1	F		Reg 153 metals and	eg 153 ICPMS eg 153 metals										1000	CON		te quired:	-	111	MM D	D
		and on the second second		_		-				FIEL	FIEL	LAB	BTE	3	vocs	Reg	Reg				_		_				1	0 1	010H		Co	mments		
1 BH	24-01	1, 555		2024	12	06	13	DO	Som					V	V	V											3	5	_					
2 BH	24-0	54, SS 3		2024	12	04	09	00	11					1	~	~						_					5	7						
3 BH	24-	14, 554		2024	12	64	13	30	11					V	VI	~											5	5	Т					
	чP			2024	1.0	04			11					v	1	/											4	ī						
5	- <u>+</u> ,+																										1	T	\top					
6							\square			\top	\top	\square						\top	\square	\square		1	1		T			+	+				_	-
7						1												T				+	+	t	T		+	+	+					-
8						1	\vdash			+	1		t				-	t	\vdash	\vdash	+	+	+	╈	\vdash	\vdash	+	+	+					-
9						+	\vdash	\square	· · · · · · · · · · · · · · · · · · ·	+	+	\vdash						+		\vdash	+	+	+	╈	\vdash			+	+					-
10				-		-				÷.	+		\vdash			-		+	-	\vdash	+	+	+	┢	+	\vdash	+	+	+	_				-
11				-	-	-				+	-	+	-	-		_		-	-	\vdash	-	+	-	+	+	\vdash	+	+	+		_			_
					-	-	-	\vdash		+	+	\vdash	+	-		Re	ceiv	ed	l ix	h ()	**	110	0	+	-	$ \rightarrow$	+	+	+					_
12			in the second second						CALL VIEW STATE										Hereit						() IT IS IT					a come				
•UNLESS O	THERWISE AG	REED TO IN WRITING, WORK SU	JEMITTED ON TH	HIS CHAIN OF	AILABLE	FOR VIE	BJECT I	AT WW	EAU VERITAS ST W.BVNA.COM/	ANDAR	AND-C	MS AI	ND COL ITIONS	OR B	ONS. S	IGNIN ING T	NG OF THE	ATOR	N OF O	D ASO	VE TO O	DBTAIN	T IS AC	KNOW PY	LEDGI	MENT A	ND ACC	CEPTA	NCE OF	OUR TEI	RMS AND	CONDITIO	NS WHICH A	RE
Seal presen Seal intact	USE ONLY	Yes No	20	22	Seal p Seal in				Yes	No		۰c	7	2	3	>	3	-	prese	nt	ISE ON	LY			Yes	N	-	۰c					Temperatur reading by	
	dia present			3 Date	·	ng media	Time				-	have be	1		2	-	3	Coo	_	edia pr	Date		-		1	Tim		_	1	2	special in	3 structions		
<u> </u>	seringuished b	y: (Signature/ Print)	YYYY	MM	DD	нн	N	MM	1.		eived	122.0	- C			10	h	20	YYYY	-	n	MM		DD 17		H	MM							-
1					+		-	-	Acup	ai	as	cu						-	24	4	14		- 2	70	/	8	48						0	ÿ
2							_	_	2	0	<u> </u>	_	/	m	17	-		2	vr	T	1	2	1	0	-	0	>	-					10003	a .

exp Services Inc Client Project #: OTT-24010349-A0 Project name: BARRHAVEN, 675 BORBRIDGE AVE. Client ID: BH 24-01, SS5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc Client Project #: OTT-24010349-A0 Project name: BARRHAVEN, 675 BORBRIDGE AVE. Client ID: BH24-04,SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc Client Project #: OTT-24010349-A0 Project name: BARRHAVEN, 675 BORBRIDGE AVE. Client ID: BH24-14,SS4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

exp Services Inc Client Project #: OTT-24010349-A0 Project name: BARRHAVEN, 675 BORBRIDGE AVE. Client ID: DUP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Appendix D – Environmental Soil Analytical Tables

*ехр.

Table 1 - Soil Analytical Results - Residential/Parkland/Institutional - Metals & InorganicsProposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ONOTT-24010349-A0

Sample ID	RDL	MECP Table 1 ¹	MECP Table 2.1 Residential/Parkland/ Institutional ²	MECP Table 3.1 Residential/Parkland/ Institutional ³	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)
Sampling Date			Institutional	Institutional	2024-12-06	2024-12-04	202	4-12-04
Sample Depth		Bold	Underline	Underline	3 to 3.6	1.5 to 2.1	2.2	5 - 2.85
Metals			•			•		
Antimony	0.2	1.3	7.5	7.5	<0.20	<0.20	<0.20	<0.20
Arsenic	1	18	18	18	<1.0	2.1	1	<1.0
Barium	0.5	220	390	390	200	130	390	340
Beryllium	0.2	2.5	4	4	0.56	0.46	0.77	0.71
Boron (Total)	5	36	120	120	<5.0	<5.0	<5.0	<5.0
Boron (Hot Water Soluble)	0.05	NV	1.5	1.5	<0.050	<0.050	<0.050	< 0.050
Cadmium	0.1	1.2	1.2	1.2	<0.10	<0.10	<0.10	<0.10
Chromium	1	70	160	160	42	28	89	89
Chromium VI	0.36	0.66	8	8	<0.18	0.24	< 0.36	<0.36
Cobalt	0.1	21	22	22	11	8.3	21	21
Copper	0.5	92	140	140	26	18	40	38
Lead	1	120	120	120	5.1	4.7	6.1	5.8
Mercury	0.05	0.27	0.27	0.27	<0.050	<0.050	<0.050	< 0.050
Molybdenum	0.5	2	6.9	6.9	0.61	<0.50	0.66	0.59
Nickel	0.5	82	100	100	24	17	50	51
Selenium	0.5	1.5	2.4	2.4	<0.50	<0.50	<0.50	<0.50
Silver	0.2	0.5	20	20	<0.20	<0.20	<0.20	<0.20
Thallium	0.05	1	1	1	0.24	0.15	0.43	0.38
Uranium	0.05	2.5	23	23	0.67	0.54	0.66	0.68
Vanadium	5	86	86	86	67	63	<u>100</u>	<u>98</u>
Zinc	5	290	340	340	68	67	130	120
Inorganics								
pH (pH Units)	N/A	NV	NV	NV	7.66	7.13	7.63	7.64
Conductivity (mS/cm)	0.001	0.57	0.7	0.7	0.16	0.085	0.22	0.23
Cyanide, Free	0.01	0.051	0.051	0.051	<0.01	<0.01	<0.01	<0.01
Sodium Adsroption Ratio (no units)	N/A	2.4	5	5	0.27	0.38	0.25	0.25

Notes

1	Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.
2	Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.
3	Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.
<(RDL)	Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
NV	No Value
m bgs	Metres below ground surface
	_All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.
Bold	Indicates soil exceedance of MECP Table 1 SCS
<u>Underline</u>	Indicates soil exceedance of MECP Table 2.1 ESQS
<u>Underline</u>	Indicates soil exceedance of MECP Table 3.1 ESQS

*exp.

Table 2 - Soil Analytical Results - Residential/Parkland/Institutional - VOC & PHC

Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON

OTT-24010349-A0

Sample ID	RDL	MECP Table 1 ¹	MECP Table 2.1 Residential/Parkland/	MECP Table 3.1 Residential/Parkland/	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)
Sampling Date	RDL		Institutional ²	Institutional ³	2024-12-06	2024-12-04	2024	-12-04
Sample Depth		Bold	<u>Underline</u>	<u>Underline</u>	3 to 3.6	1.5 to 2.1	2.25	- 2.85
Volatile Organic Compounds (VOC)								
Acetone	0.49	0.5	0.5	1.8	<0.49	<0.49	<0.49	<0.49
Benzene	0.006	0.02	0.02	0.02	<0.0060	<0.0060	<0.0060	<0.0060
Bromodichloromethane	0.04	0.05	0.05	5.8	<0.040	<0.040	<0.040	<0.040
Bromoform	0.04	0.05	0.05	2.5	<0.040	<0.040	<0.040	<0.040
Bromomethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Carbon Tetrachloride	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Chlorobenzene	0.04	0.05	0.083	0.28	<0.040	<0.040	<0.040	<0.040
Chloroform	0.04	0.05	0.05	0.08	<0.040	<0.040	<0.040	<0.040
Dibromochloromethane	0.04	0.05	0.05	5.5	<0.040	<0.040	<0.040	<0.040
1,2-Dichlorobenzene	0.04	0.05	3.4	3.4	<0.040	<0.040	<0.040	<0.040
1,3-Dichlorobenzene	0.04	0.05	0.26	4.8	<0.040	<0.040	<0.040	<0.040
1,4-Dichlorobenzene	0.04	0.05	0.05	0.05	<0.040	< 0.040	<0.040	<0.040
1,1-Dichloroethane	0.04	0.05	0.05	0.14	<0.040	<0.040	<0.040	<0.040
1,2-Dichloroethane	0.049	0.05	0.05	0.05	<0.049	< 0.049	<0.049	<0.049
1,1-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	< 0.040	<0.040	<0.040
Cis-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trans-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	< 0.040	<0.040	<0.040
1,2-Dichloropropane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Cis-1,3-Dichloropropylene	0.03	NV	NV	NV	< 0.030	< 0.030	< 0.030	< 0.030
Trans-1,3-Dichloropropylene	0.04	NV	NV	NV	< 0.040	< 0.040	<0.040	<0.040
Ethylbenzene	0.01	0.05	0.05	1.9	<0.010	<0.010	<0.010	<0.010
Ethylene Dibromide	0.04	0.05	0.05	0.05	<0.040	< 0.040	<0.040	<0.040
Methyl Ethyl Ketone	0.4	0.5	0.5	14	<0.40	<0.40	<0.40	<0.40
Methylene Chloride	0.049	0.05	0.05	0.06	<0.049	<0.049	<0.049	< 0.049
Methyl Isobutyl Ketone	0.4	0.5	0.5	0.89	<0.40	<0.40	<0.40	<0.40
Methyl-t-Butyl Ether	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Styrene	0.04	0.05	0.05	0.05	< 0.040	<0.040	<0.040	<0.040
1,1,1,2-Tetrachloroethane	0.04	0.05	0.05	0.05	< 0.040	< 0.040	<0.040	<0.040
1,1,2,2-Tetrachloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Toluene	0.04	0.2	0.03	0.99	<0.020	<0.040	<0.020	<0.020
Tetrachloroethylene	0.02	0.05	0.05	0.05	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	0.04	0.05	0.03	0.03	<0.040	<0.040	<0.040	<0.040
1,1,2-Trichloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Vinyl Chloride	0.019	0.03	0.02	0.03	<0.010	<0.010	<0.010	<0.019
m-Xylene & p-Xylene	0.019	0.02 NV	0.02 NV	0.02 NV	<0.019	<0.019	<0.019	<0.020
o-Xylene	0.02	NV	NV	NV	<0.020	<0.020	<0.020	<0.020
Total Xylenes	0.02	0.05	0.091	0.9	<0.020	<0.020	<0.020	<0.020
Dichlorodifluoromethane					<0.020		<0.020	<0.020
Hexane(n)	0.04	0.05	1.5	1.8	<0.040	<0.040		<0.040
Trichlorofluoromethane	0.04	0.05	2.5	2.5	<0.040	<0.040 <0.040	<0.040 <0.040	<0.040
1,3-Dichloropropene (cis + trans)	0.04 0.05	0.25 0.05	0.25 0.05	0.46 0.05		<0.040		
Petroleum Hydrocarbons (PHC)	0.05	0.05	C.UO	0.05	<0.050	<0.000	<0.050	<0.050
Petroleum Hydrocarbons (PHC) PHC F1 (C6-C10)	10	05	05	25	~10	<10	<10	<10
PHC F1 (C6-C10) PHC F2 (>C10-C16)	10	25	25	25	<10 <7	<10		<10
PHC F2 (>C10-C16) PHC F3 (>C16-C34)	7	10	10	10			<14	7.1
	50	240	240	300	<50	<50	<100	<50
PHC F4 (>C34-C50)	50	120	2800	2800	<50	<50	<100	<50

Notes

2

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.

3	Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.
<(RDL)	Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
NV	No Value
m bgs	Metres below ground surface
	All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.
Bold	Indicates soil exceedance of MECP Table 1 SCS
<u>Underline</u>	Indicates soil exceedance of MECP Table 2.1 ESQS
<u>Underline</u>	Indicates soil exceedance of MECP Table 3.1 ESQS

*ехр.

Table 3 - Soil Analytical Results - Industrial/Commercial/Community - Metals & Inorganics Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON

Sample ID	RDL	MECP Table 1 ¹	MECP Table 2.1 Industrial/Commercial/C ommunity ²	MECP Table 3.1 Industrial/Commercial/C	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)
Sampling Date	1		ommunity	ommunity ³	2024-12-06	2024-12-04	2024	-12-04
Sample Depth		Bold	<u>Underline</u>	<u>Underline</u>	3 to 3.6	1.5 to 2.1	2.25	- 2.85
Metals								
Antimony	0.2	1.3	40	40	<0.20	<0.20	<0.20	<0.20
Arsenic	1	18	18	18	<1.0	2.1	1	<1.0
Barium	0.5	220	670	670	200	130	390	340
Beryllium	0.2	2.5	8	8	0.56	0.46	0.77	0.71
Boron (Total)	5	36	120	120	<5.0	<5.0	<5.0	<5.0
Boron (Hot Water Soluble)	0.05	NV	2	2	<0.050	<0.050	<0.050	<0.050
Cadmium	0.1	1.2	1.9	1.9	<0.10	<0.10	<0.10	<0.10
Chromium	1	70	160	160	42	28	89	89
Chromium VI	0.36	0.66	8	8	<0.18	0.24	<0.36	<0.36
Cobalt	0.1	21	80	80	11	8.3	21	21
Copper	0.5	92	230	230	26.00	18	40.00	38.00
Lead	1	120	120	120	5.1	4.7	6.1	5.8
Mercury	0.05	0.27	0.27	0.27	<0.050	<0.050	<0.050	<0.050
Molybdenum	0.5	2	40	40	0.61	<0.50	0.66	0.59
Nickel	0.5	82	270	270	24.00	17.00	50.00	51.00
Selenium	0.5	1.5	5.5	5.5	<0.50	<0.50	<0.50	<0.50
Silver	0.2	0.5	40	40	<0.20	<0.20	<0.20	<0.20
Thallium	0.05	1	3.3	3.3	0.24	0.15	0.43	0.38
Uranium	0.05	2.5	33	33	0.67	0.54	0.66	0.68
Vanadium	5	86	86	86	67	63	<u>100</u>	<u>98</u>
Zinc	5	290	340	340	68	67	130	120
Inorganics								
pH (pH Units)	N/A	NV	NV	NV	7.66	7.13	7.63	7.64
Conductivity (mS/cm)	0.001	0.57	1.4	1.4	0.16	0.085	0.22	0.23
Cyanide, Free	0.01	0.051	0.051	0.051	<0.01	<0.01	<0.01	<0.01
Sodium Adsroption Ratio (no units)	N/A	2.4	12	12	0.27	0.38	0.25	0.25

OTT-24010349-A0

Notes

1	Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.
2	Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.
3	Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.
<(RDL)	Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
NV	No Value
m bgs	Metres below ground surface
	_All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.
Bold	Indicates soil exceedance of MECP Table 1 SCS
<u>Underline</u>	Indicates soil exceedance of MECP Table 2.1 ESQS
<u>Underline</u>	Indicates soil exceedance of MECP Table 3.1 ESQS

*exp.

Table 4 - Soil Analytical Results - Industrical/Commercial/Community - VOC & PHC

Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON OTT-24010349-A0

OTT-24010349-A0				MECD Table 2.4				DUP (duplicate of
Sample ID	RDL	MECP Table 1 ¹	MECP Table 2.1 Industrial/Commercial/C		BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	BH24-14-SS4)
Sampling Date	RBE		ommunity ²	Community ³	2024-12-06	2024-12-04	2024	-12-04
Sample Depth		Bold	<u>Underline</u>	<u>Underline</u>	3 to 3.6	1.5 to 2.1	2.25	- 2.85
Volatile Organic Compounds (VOC)								
Acetone	0.49	0.5	0.5	1.8	<0.49	<0.49	<0.49	<0.49
Benzene	0.006	0.02	0.02	0.034	<0.0060	<0.0060	<0.0060	<0.0060
Bromodichloromethane	0.04	0.05	0.05	5.8	<0.040	<0.040	<0.040	<0.040
Bromoform	0.04	0.05	0.05	2.5	<0.040	<0.040	<0.040	<0.040
Bromomethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Carbon Tetrachloride	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Chlorobenzene	0.04	0.05	0.083	0.28	<0.040	<0.040	<0.040	<0.040
Chloroform	0.04	0.05	0.05	0.26	<0.040	<0.040	<0.040	<0.040
Dibromochloromethane	0.04	0.05	0.05	5.5	<0.040	<0.040	<0.040	<0.040
1,2-Dichlorobenzene	0.04	0.05	6.8	6.8	<0.040	<0.040	<0.040	<0.040
1,3-Dichlorobenzene	0.04	0.05	0.26	6.8	<0.040	<0.040	<0.040	<0.040
1,4-Dichlorobenzene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1-Dichloroethane	0.04	0.05	0.05	0.57	<0.040	<0.040	<0.040	<0.040
1,2-Dichloroethane	0.049	0.05	0.05	0.05	<0.049	<0.049	<0.049	<0.049
1,1-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Cis-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trans-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,2-Dichloropropane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Cis-1,3-Dichloropropylene	0.03	0.05	NV	NV	<0.030	<0.030	<0.030	<0.030
Trans-1,3-Dichloropropylene	0.04	0.05	NV	NV	<0.040	<0.040	<0.040	<0.040
Ethylbenzene	0.01	0.05	0.05	1.9	<0.010	<0.010	<0.010	<0.010
Ethylene Dibromide	0.04	NV	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Methyl Ethyl Ketone	0.4	NV	0.5	26	<0.40	<0.40	<0.40	<0.40
Methylene Chloride	0.049	0.05	0.05	0.2	<0.049	<0.049	<0.049	<0.049
Methyl Isobutyl Ketone	0.4	0.05	0.5	17	<0.40	<0.40	<0.40	<0.40
Methyl-t-Butyl Ether	0.04	0.5	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Styrene	0.04	0.5	0.05	6.8	<0.040	<0.040	<0.040	<0.040
1,1,1,2-Tetrachloroethane	0.04	0.1	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1,2,2-Tetrachloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Toluene	0.02	0.05	0.2	7.8	<0.020	<0.020	<0.020	<0.020
Tetrachloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1,1-Trichloroethane	0.04	0.05	0.12	0.4	<0.040	<0.040	<0.040	<0.040
1,1,2-Trichloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trichloroethylene	0.01	0.2	0.05	0.05	<0.010	<0.010	<0.010	<0.010
Vinyl Chloride	0.019	0.05	0.02	0.02	<0.019	<0.019	<0.019	<0.019
m-Xylene & p-Xylene	0.02	0.05	NV	NV	<0.020	<0.020	<0.020	<0.020
o-Xylene	0.02	0.05	NV	NV	<0.020	<0.020	<0.020	<0.020
Total Xylenes	0.02	0.25	0.091	3	<0.020	< 0.020	<0.020	<0.020
Dichlorodifluoromethane	0.04	0.02	1.5	1.8	<0.040	<0.040	<0.040	<0.040
Hexane(n)	0.04	NV	2.5	2.5	<0.040	<0.040	<0.040	<0.040
Trichlorofluoromethane	0.04	NV	0.25	0.46	<0.040	<0.040	<0.040	<0.040
1,3-Dichloropropene (cis + trans)	0.05	0.05	0.05	0.05	<0.050	<0.050	< 0.050	<0.050
Petroleum Hydrocarbons (PHC)	-	-	-			-	-	-
PHC F1 (C6-C10)	10	25	25	25	<10	<10	<10	<10
PHC F2 (>C10-C16)	7	10	26	26	<7	<7	<14	7.1
PHC F3 (>C16-C34)	50	240	240	1700	<50	<50	<100	<50
PHC F4 (>C34-C50)	50	120	3300	3300	<50	<50	<100	<50

6

Notes

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.

Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Soil Quality Standards, Table 2.1 Full Depth Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.

2

3	Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.
<(RDL)	Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
NV	No Value
m bgs	Metres below ground surface
	All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.
Bold	Indicates soil exceedance of MECP Table 1 ESQS
<u>Underline</u>	Indicates soil exceedance of MECP Table 2.1 ESQS
<u>Underline</u>	Indicates soil exceedance of MECP Table 3.1 ESQS

*ехр.

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Appendix E – Laboratory Certificate of Analysis Report by AGAT

[‰]ехр.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899 ATTENTION TO: Matthew Zammit PROJECT: OTT-24010349-A0 AGAT WORK ORDER: 24Z230231 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Dec 13, 2024 PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 24Z230231 PROJECT: OTT-24010349-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:675 Borbridge Ave., Ottawa

ATTENTION TO: Matthew Zammit

SAMPLED BY:EXP

					DATE REPORTED: 2024-12-1
			BH24-01 SS6	BH24-13 SS4	
S	AMPLE DES	CRIPTION:	12.5'-14.5'	7.5'-9.5'	
	SAM	PLE TYPE:	Water	Water	
	DATES	SAMPLED:	2024-12-06	2024-12-05	
Unit	G/S	RDL	6396631	6396632	
µg/g		2	9	11	
µg/g		2	47	26	
pH Units		NA	8.53	8.28	
ohm.cm		1	4120	6580	
	Unit µg/g µg/g pH Units	SAMI DATE S Unit G / S µg/g µg/g pH Units	μg/g 2 μg/g 2 pH Units NA	SAMPLE TYPE: Water DATE SAMPLED: 2024-12-06 Unit G / S RDL 6396631 μg/g 2 9 μg/g 2 47 pH Units NA 8.53	SAMPLE TYPE: Water Water DATE SAMPLED: 2024-12-06 2024-12-05 Unit G / S RDL 6396631 6396632 µg/g 2 9 11 µg/g 2 47 26 pH Units NA 8.53 8.28

(Soil) Inorganic Chemistry

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6396631 pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

6396632 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from field measured results.

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Analysis performed at AGAT Toronto (unless marked by *)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-24010349-A0

SAMPLING SITE:675 Borbridge Ave., Ottawa

AGAT WORK ORDER: 24Z230231

ATTENTION TO: Matthew Zammit

SAMPLED BY:EXP

RPT Date: Dec 13, 2024			- C	DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits				Recovery	Acceptable Limits		Recovery	lir	eptable nits
		Ia	Value		Lower	Upper	-	Lower	Upper	-	Lower	Upper					
(Soil) Inorganic Chemistry																	
Chloride (2:1)	6396631	6396631	9	9	NA	< 2	97%	70%	130%	98%	80%	120%	97%	70%	130%		
Sulphate (2:1)	6396631	6396631	47	47	0.5%	< 2	96%	70%	130%	99%	80%	120%	106%	70%	130%		
pH (2:1)	6396228		7.96	7.96	0%		97%	80%	120%	NA			NA				

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-24010349-A0

AGAT WORK ORDER: 24Z230231

ATTENTION TO: Matthew Zammit

SAMPLING SITE:675 Borbridge Ave., Ottawa	
--	--

SAMPLED BY:EXP

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
рН (2:1)	INOR 93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION

	Custody Recor				ave feedb Scan here t quick surv se use DrInt	for a Vey!		905.7	12.910 \v	i0 Fax iebeer	: 905.) In agai	labs.co	2	Co	ork Orde oler Qu rival Ter	antity npera	: 👖	10	- r .3	10	18	25	51 PCIC 118	k
If this is a Drinking Water sample, please Report Information: Company: EXP Services Inc Contact: Matthew Zammit Address: 2650 Queensview Drive, Suite 100 Ottawa, Ontario, K2B 8H6 613-688-1899 Phone: Fax: Reports to be sent to: matthew.zammit@exp.com 1. Email: matthew.zammit@exp.com 2. Email: ryan.digiuseppe@exp.com OTT-24010349-A0 Site Location: 675 Borbridge Ave, Ottawa					(Presse	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table				Ater consumed by humans)						Depot Temperatures: 6.5 6.0 5.9 Custody Seal Intact: Yes No No Notes: 02990110 Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays								
Sampled By: AGAT Quote #: Invoice Infor	EXP Please note: If quotation number i rmation:		be billed full price for a			al Sample	egend	ils, Hg. CrVI, DOC	0	Reg 1 8SMH	53				Reg 400		racterization TCLP: GABNs □ B(a)P □ PCBs 838 Bab	Sulphide						Concentration (Y/N)
Company: Contact: Address: Email:					- 0 - P - S		W Surface Water	Field Filtered - Melals, Hg,	& Inorganics	□ crvi, □ Hg,	-1-F4 PHCs		voctors 🗆	tion 406 Characterizz tals, BTEX, F1-F4	R ion 406 SPI P Painue	Metals	Disposal Cha M&I 0000 0	vity: 🗖 Moisture		orides	hates	stivity		Ily Hazardous or High
Contact: Address: Email:	ple Identification	Date Sampled	Time Sampled	# of Containers	- 0 - P	Oil S Paint R Soil	W Surface Water	 ≺ ≺ Field Filtered - Meta 	Metals & Inorganics	Metals - 🗆 CrVI, 🗆 Hg, 🗆	BTEX, F1-F4 PHCs	VOC PAHs	PCBs: Aroclors	Regulation 406 Characterization Package pH, Metals, BTEX, F1-F4		C Metals	S G	rity: 🗖 Moisture	pH	Chlorides	Sulphates	Resistivity		5
ontact: ddress: mail:			Sampled AM PM	Containers 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	VOC PAHs	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity: Moisture	Ø					Hazardous or
ontact: ddress: mail: Sam	5 12.5'-14.5'	Sampled	Sampled AM PM AM PM	Containers 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	PAHS	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity.	-		-			Hazardous or
Contact: (ddress: :mail: Sam BH24-01 SS6 BH24-13 SS6	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM	Containers 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	VOC PAHs	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity: Consture	Ø					Hazardous or
Contact: Address: imail: Sam BH24-01 SS6 BH24-13 SS6	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM AM PM AM PM	Containers 1 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	VOC	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity: Moisture	Ø					Hazardous or
Contact: kiddress: :mail: Sam BH24-01 SSC BH24-13 SSC	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM AM PM AM PM PM	Containers 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	VOC	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity: Consture	Ø					Hazardous or
Contact: Address: Email: BH24-01 SS6 BH24-13 SS6	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM AM PM AM PM AM PM	Containers 1 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	PAHS	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity:	Ø					Hazardous or
contact: .ddress: .imail: 	5 12.5'-14.5'	Sampled Dec 6	Sampled AM AM AM AM AM AM AM AM PM	Containers 1 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	VOC PAHS	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity: Moisture	Ø					Hazardous or
Contact: (ddress: :mail: BH24-01 SS6 BH24-13 SS4	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM AM PM AM PM AM PM AM PM	Containers 1 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	PAHS	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity:	Ø					Hazardous or
Contact: Address: Email: BH24-01 SS6 BH24-13 SS4	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM	Containers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PHCs	Parts Parts	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity:	Ø					Hazardous or
Contact: Address: Email: Sam BH24-01 SSC	5 12.5'-14.5'	Sampled Dec 6	Sampled AM PM AM PM AM PM AM PM AM PM AM PM	Containers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- O P S Sample	Oil S Paint R Soil	W Surface Water Rock/Shale ments/	Field	Metals & Inorganics	□ crvi, □ Hg,	BTEX, F1-F4 PMCs	Parts	Aroclors	Regulation 406 Characteriz	AD6 SPI P	Metals	Disposal Cha M&I 0000 0	Corrosivity:	Ø					Hazardous or

	4.
AGAT	5.
opy-	6,
hite (7,
-	8.
AGAT	9.
Copy -	10.
llow (11.
nt I Ye	Samples Relinquished By (Print Name and Sign
Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT	Samples Rabnaulated By (Print Nature and Sup Samples Retinodistica By (Print Nature and Sup

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agattabs.com/termsandconditions unless otherwise agreed in a current written contractual document,

*ехр.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

Legal Notification

This report was prepared by EXP Services Inc. for the account of Conseil des écoles catholiques du Centre-Est (CECCE).

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc.

Project Name: Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 June 27,2025

List of Distribution

Report Distributed To:

Jacques Lavictoire <u>lavicj@ecolecatholique.ca</u>

Pamela Reid preid@provencherroy.ca

Aaditya Jariwala aaditya.jariwala@exp.com

[«]ехр.