

MEMORANDUM

DATE: FEBRUARY 18, 2025

TO: JASDEEP BRAR

FROM: MELANIE SCHROEDER, P.ENG.

RE: 541 SOMME STREET

WATER BUDGET ASSESSMENT NOVATECH PROJECT NO.: 124111

CC: GREG MACDONALD, JEFFERY KELLY, DEREK KULYK

1.0 INTRODUCTION

This memorandum has been prepared to provide a water budget assessment for the proposed office/warehouse building and outdoor storage area located at 541 Somme Street within the Hawthorne Industrial Park in the City of Ottawa. The site location is shown in **Figure 1** Key Plan.

1.1 Background

The site is approximately 0.801 hectares (ha) in area and is currently vacant, consisting of a meadow/grass area with a small, treed portion on the east side of the site. The site is bordered by Somme Street to the west, the Hawthorne Industrial Park SWMF to the north, a vacant undeveloped lot to the south and a bedrock resource area to the east. The existing ground surface of most of the subject site is ranges between approximately 1 to 2% slope. According to the "Geotechnical Investigation Proposed Commercial Storage Building, 541 Somme Street, Ottawa, Ontario" report (PG7327-1), prepared by Paterson Group Inc., dated November 25, 2024, the on-site soils are a mix of silty sand to sandy silt. **Figure 2** Existing Conditions shows the existing site conditions.

The proposed development is intended to be an office/ warehouse. The building will be a warehouse and office with second floor mezzanine. A lean-to will project towards the south lot line. A surface parking lot is proposed in front of the proposed building, with access to the site via two entrances from Somme Street. Refer to **Figure 3** for a copy of the latest Site Plan (by Novatech) showing the general layout of the proposed development.

A summary of the pre- and post-development land use is provided in **Table 1**.

Table 1: Land Use Summary

Scenario	Site Area	Land Use as Percent of Site Area								
	(ha)	Forest	Meadow	Urban Lawn	Impervious Areas					
Pre-Development	0.801	19.5%	80.5%	0.0%	0.0%					
Post-Development	0.801	19.5%	0.0%	24.7%	55.8%					

2.0 WATER BUDGET CALCULATIONS

The Thornthwaite-Mather (1957) water balance methodology was used to determine conceptual values for precipitation, evapotranspiration, runoff, and infiltration from the proposed development. Water budget calculations have been provided as attachments. A summary of the results is provided in **Table 2**.

Table 2: Water Budget Summary

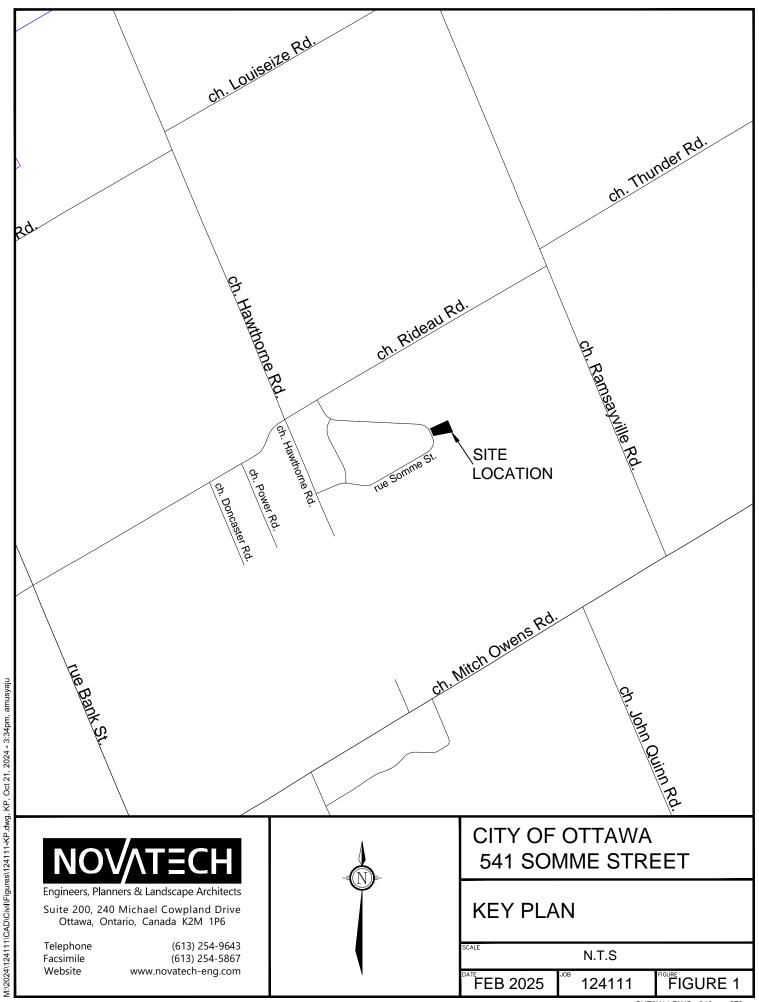
Scenario	Precipitation (mm/yr)	ET (mm/yr)	Infiltration (mm/yr)	Runoff (mm/yr)
Pre-Development	920	570	199	150
Post-Development	920	536	101	283
Difference	0	-34	-98	132

Due to the increase in impervious area, there is a decrease in annual evapotranspiration and infiltration and an increase in annual runoff. The annual infiltration from the site will decrease by 98 mm/year (or 788 m³/year). The summary for annual infiltration volume is provided in **Table 3**.

Table 3: Infiltration Results Summary

Infiltrati	on Depth (mn	n/yr)	Infiltration Volume (m³/yr)					
Pre-Dev.	Post-Dev.	Difference	Pre-Dev.	Post-Dev.	Difference			
199	101	-98	1,594	806	-788			

It should be noted that these infiltration results are conservative due to assumptions made in the calculations for the impervious areas. A considerable portion of the calculated impervious area is gravel which will have some capacity for infiltration compared to a paved surface. The site also outlets to roadside ditches through on-site grassed swales which will also provide an opportunity for infiltration for the impervious runoff generated from the site.


3.0 CONCLUSIONS

Based on the water budget assessment, there will be a decrease in infiltration of 98 mm/year (or 788 m³/year). This result is conservative due to the following assumptions:

- Not accounting for the infiltration capacity of the gravel area by assuming it is fully impervious;
 and
- Not accounting for the potential infiltration of impervious runoff outletting through grassed ditches.

Attachments:

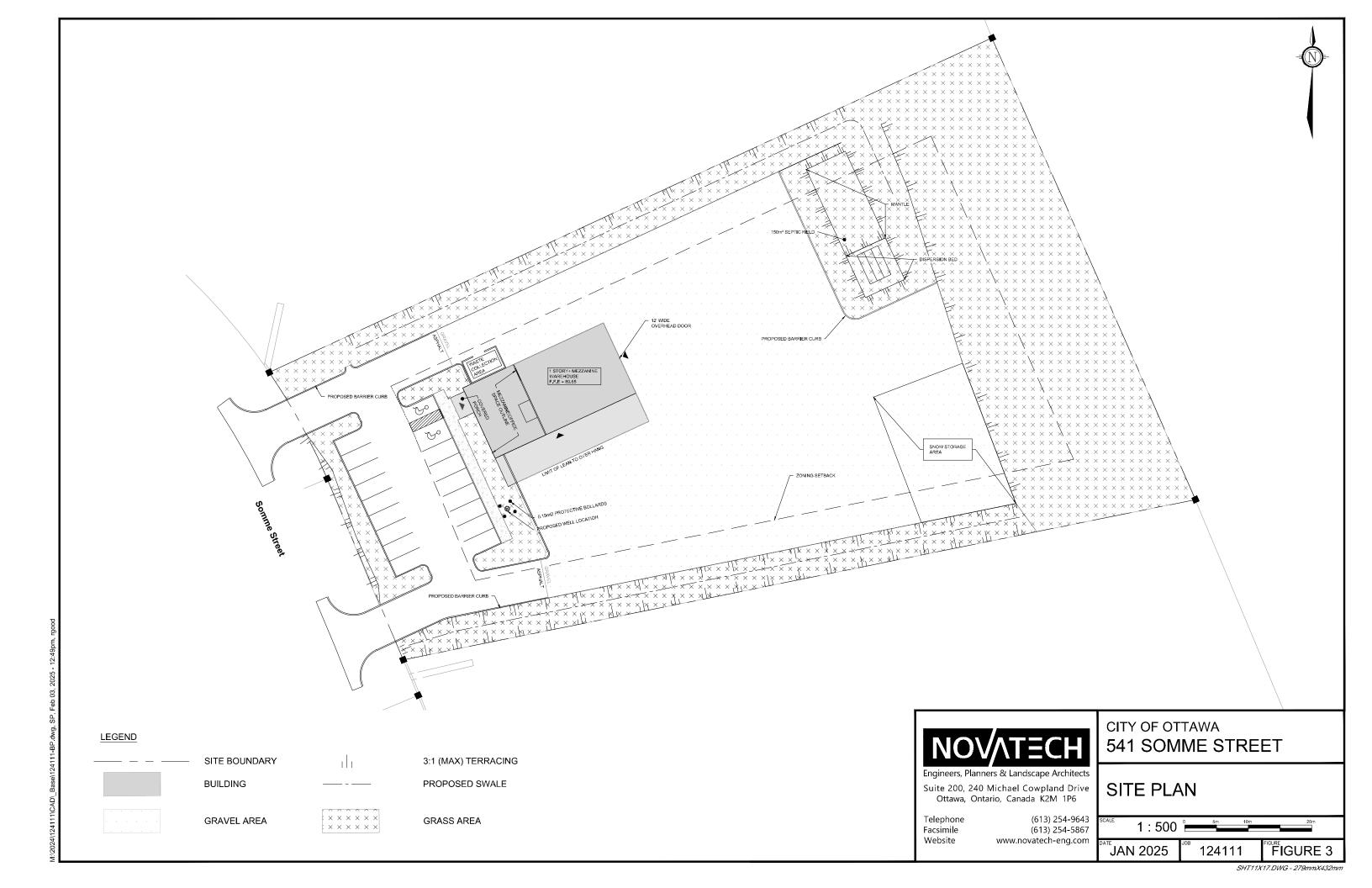
- 1. Figure 1: Key Plan
- 2. Figure 2: Existing Conditions
- 3. Figure 3: Site Plan
- 4. Figure SRF: Surface Types
- 5. Water Budget Calculations

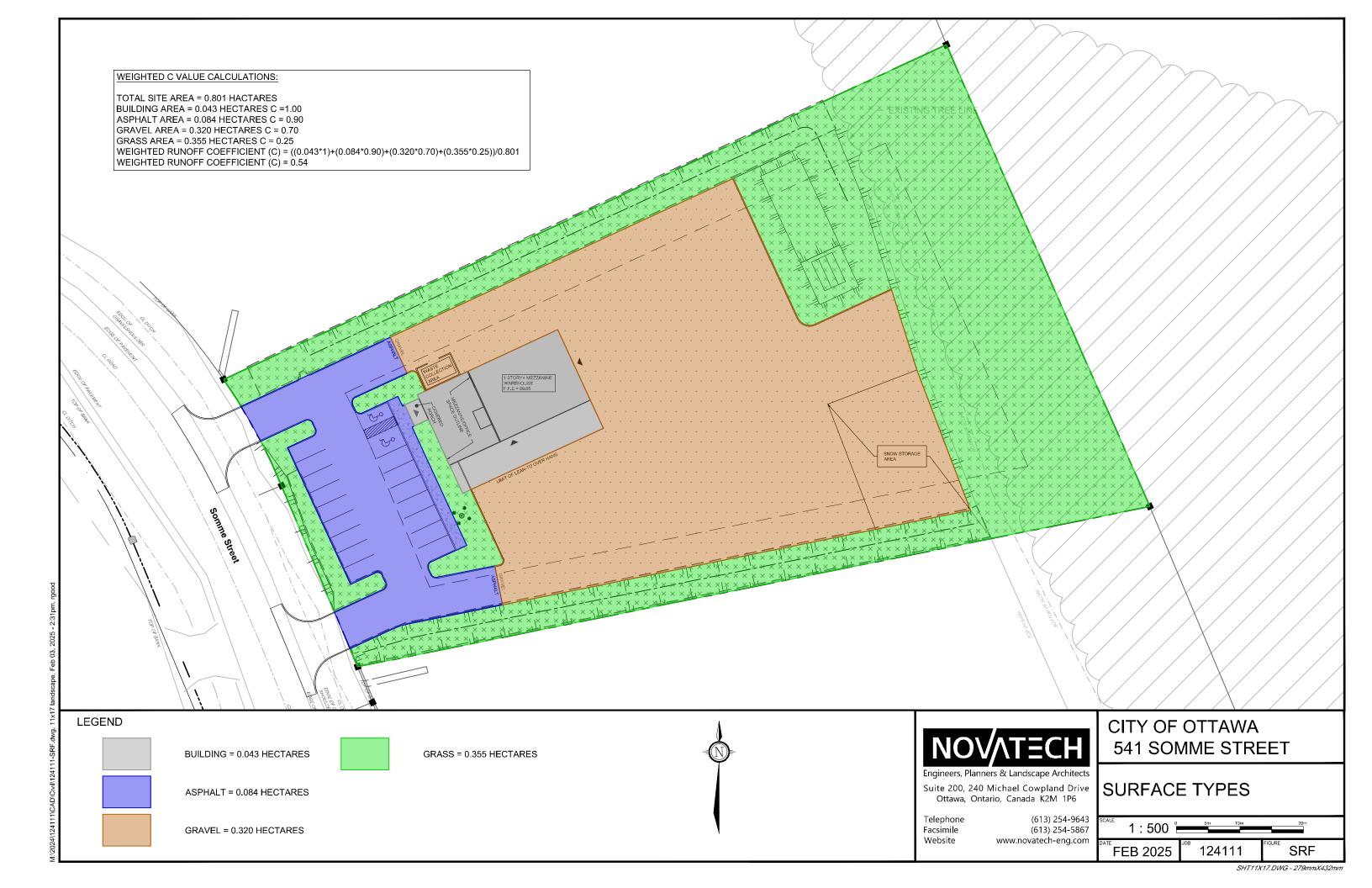
LEGEND

SITE BOUNDARY

Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6

(613) 254-9643 (613) 254-5867 www.novatech-eng.com Telephone Facsimile


Website


541 SOMME STREET

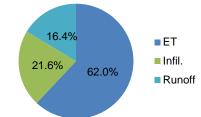
EXISTING CONDITIONS

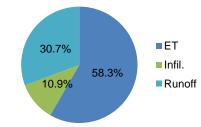
FEB 2025 124111 FIGURE 2

SHT11X17.DWG - 279mmX432mm

541 Somme Street (124111) **Water Budget Calculations**

Pre-Development	Drainage Area	0.801 ha						
Landuse	% of Watershed	Watershed Area	% of Pervious Area within Watershed	Water Holding Capacity	Infiltration Factor	Factor	Condition	Infiltration Factor
Mature Forest	19.5%	0.156	19.5%	350 mm	0.20	Topograph	y Rolling to Hilly Land	0.15
Pasture/Meadow	80.5%	0.645	80.5%	200 mm	0.10	Soils	Silty sand / sand silt	0.30
Urban Lawns	0.0%	0.000	0.0%	100 mm	0.10		Pervious Infiltration Factor	0.57
Imp. Areas	0.0%	0.000	-	0 mm	0.00		Weighted Infiltration Factor	0.57
Average				229 mm	0.12		Runoff Factor	0.43
*table 3.1 MOF	•				•			




table 3.1 MOE

Total Precipitation (mm) Potential Evapotranspiration (mm) Total Precip. - Potential ET (mm) Soil Moisture Storage (mm) Change in Soil Moisture Storage (mm) Deficit (mm) Actual Evapotranspiration (mm) Water Surplus (mm)

Annual Infiltration (mm) Annual Runoff (mm)

						awa (6105976 1981-2010)						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Р	63	50	58	71	87	93	84	84	93	86	83	70	920
PE	0	0	0	0	112	129	136	115	72	43	0	0	607
P-PE	63	50	58	71	-25	-36	-52	-31	21	43	83	70	
ST	229	229	229	229	205	175	140	122	143	185	229	229	
ΔST	0	0	0	0	-24	-30	-36	-18	21	43	44	0	
D	0	0	0	0	1	6	16	13	0	0	0	0	37
ΑE	0	0	0	0	110	123	120	101	72	43	0	0	570
S	63	50	58	71	0	0	0	0	0	0	39	70	349
													199
R													150

Post-Development	Drainage Area	0.801 ha							
Landuse	% of Watershed	Watershed Area	% of Pervious Area within Watershed	Water Holding Capacity	Infiltration Factor	Fac	tor	Condition	Infiltration Factor
Mature Forest	19.5%	0.156	44.1%	350 mm	0.20	Topog	raphy	Rolling to Hilly Land	0.15
Pasture/Meadow	0.0%	0.000	0.0%	200 mm	0.10	So	ils	Silty sand / sand silt	0.30
Urban Lawns	24.7%	0.198	55.9%	100 mm	0.10		Pervio	us Infiltration Factor	0.59
Imp. Areas	55.8%	0.447	-	0 mm	0.00		Weighted Infiltration Factor		0.26
Average				93 mm	0.14			Runoff Factor	0.74

Total Precipitation (mm) Potential Evapotranspiration (mm) Total Precip. - Potential Evap. (mm) Soil Moisture Storage (mm) Change in Soil Moisture Storage (mm)

Deficit (mm) Actual Evapotranspiration (mm) Water Surplus (mm)

Annual Infiltration (mm) Annual Runoff (mm)

	Ottawa (6105976) 1981-2010												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Р	63	50	58	71	87	93	84	84	93	86	83	70	920
PE	0	0	0	0	112	129	136	115	72	43	0	0	607
P-PE	63	50	58	71	-25	-36	-52	-31	21	43	83	70	
ST	93	93	93	93	71	48	27	19	40	83	93	93	
ΔST	0	0	0	0	-22	-23	-21	-8	21	43	10	0	
D	0	0	0	0	3	13	31	23	0	0	0	0	71
AE	0	0	0	0	109	116	105	92	72	43	0	0	536
S	63	50	58	71	0	0	0	0	0	0	72	70	383
													101
R		<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	_	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	283

Notes:

- 1) Uses measured average monthly total precipitation and potential evaporation data (converted to evapotranspiration based on a cover coefficient of 1.0).
- 2) Actual evapotranspiration and water surplus calculated using the Thornthwaite & Mather (1957) methodology.
- 3) Runoff and infiltration calculated as per the MOE SWM Planning and Design Manual (2003) methodology.
- 4) Impervious areas consist of rooftops, roads, and driveways.

Annual Summary

Sceneario	Precipitation	ET		Surplus		Infil.		Runoff	
Pre-Development	920 mm	570 mm	62.0%	349 mm	38.0%	199 mm	21.6%	150 mm	16.4%
Post-Development	920 mm	536 mm	58.3%	383 mm	41.7%	101 mm	10.9%	283 mm	30.7%
Difference (Post - Pre)	0 mm	-34 mm	-3.7%	34 mm	3.7%	-98 mm	-10.7%	132 mm	14.4%

Thornthwaite, C.W., and Mather, J.R. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Centerton, N.J., Laboratory of Climatology, Publications in Climatology, v.10, no.3, p.185-311

541 Somme Street (124111) Water Budget Calculations

Table 3.1: Hydrologic Cycle Component Values

	Water Holding Capacity	Hydrologic	Precipitation	Evapo- transpiration	Runoff	Infiltration*		
	mm	Soil Group	mm	mm	mm	mm		
Urban Lawns/Sh	allow Rooted Cre	pps (spinach, b	eans, beets, car	rots)				
Fine Sand	50	Α	940	515	149	276		
Fine Sandy Loam	75	В	940	525	187	228		
Silt Loam	125	С	940	536	222	182		
Clay Loam	100	CD	940	531	245	164		
Clay	75	D	940	525	270	145		
Moderately Root	ed Crops (corn a	nd cereal grain	is)					
Fine Sand	75	A	940	525	125	291		
Fine Sandy Loam	150	В	940	539	160	241		
Silt Loam	200	С	940	543	199	199		
Clay Loam	200	CD	940	543	218	179		
Clay	150	D	940	539	241	160		
Pasture and Shru	ıbs							
Fine Sand	100	A	940	531	102	307		
Fine Sandy Loam	150	В	940	539	140	261		
Silt Loam	250	С	940	546	177	217		
Clay Loam	250	CD	940	546	197	197		
Clay	200	D	940	543	218	179		
Mature Forests								
Fine Sand	250	Δ	940	546	79	315		
Fine Sandy Loam	300	В	940	548	118	274		
Silt Loam	400	С	940	550	156	234		
Clay Loam	400	CD	940	550	176	215		
Clay	350	D	940	549	196	196		
with high runoff p baseflow and runo *This is the total i	e Soil Group A rep otential. The evap off. infiltration of which inming a factor for	otranspiration v h some dischary	alues are for ma	ture vegetation.	Streamflow is c	omposed of		
Topograj Soils								
Medium combinations of clay and loam 0.2 Open Sandy loam 0.4								

SWM Planning & Design Manual

Cover

- 3-4 -

Environmental Design Criteria

Cultivated Land Woodland